WorldWideScience

Sample records for circumstellar disk envelope

  1. Vortices in circumstellar disks

    CERN Document Server

    Adams, F; Adams, Fred; Watkins, Richard

    1995-01-01

    We discuss the physics of vortices in the circumstellar disks associated with young stellar objects. We elucidate the basic physical properties of these localized storm systems. In particular, we consider point vortices, linear vortices, the effects of self-gravity, magnetic fields, and nonlinear aspects of the problem. We find that these vortices can exist in many different forms in the disks of young stellar objects and may play a role in the formation of binary companions and/or giant planets. Vortices may enhance giant planet formation via gravitational instability by allowing dust grains (heavy elements) to settle to the center on a short timescale; the gravitational instability itself is also enhanced because the vortices also create a larger local surface density in the disk. In addition, vortices can enhance energy dissipation in disks and thereby affect disk accretion. Finally, we consider the possibility that vortices of this type exist in molecular clouds and in the disk of the galaxy itself. On al...

  2. An efficient algorithm for two-dimensional radiative transfer in axisymmetric circumstellar envelopes and disks

    CERN Document Server

    Dullemond, C P

    2000-01-01

    We present an algorithm for two-dimensional radiative transfer in axisymmetric, circumstellar media. The formal integration of the transfer equation is performed by a generalization of the short characteristics (SC) method to spherical coordinates. Accelerated Lambda Iteration (ALI) and Ng's algorithm are used to converge towards a solution. By taking a logarithmically spaced radial coordinate grid, the method has the natural capability of treating problems that span several decades in radius, in the most extreme case from the stellar radius up to parsec scale. Flux conservation is guaranteed in spherical coordinates by a particular choice of discrete photon directions and a special treatment of nearly-radially outward propagating radiation. The algorithm works well from zero up to very high optical depth, and can be used for a wide variety of transfer problems, including non-LTE line formation, dust continuum transfer and high temperature processes such as compton scattering. In this paper we focus on multip...

  3. Circumstellar Disks and Envelopes around Young Low-mass Stars: Observing the Cradles of Future Planetary Systems in the Milky Way

    Science.gov (United States)

    Quanz, Sascha P.

    2008-05-01

    How do stars - like our sun - form? Where do planets come from? - In the last years astronomers were able to uncover some of the fundamental processes related to these very questions. It showed that circumstellar disks and envelopes of gas, dust and ices are a natural byproduct of the formation process of young stars. These objects grow then more massive by accreting material from the disk, which itself is fed by the envelope in the early phases. In the course of several million years, the envelope is dispersed, infall onto the disk comes to a hold, and most matter is either accreted onto the young star or possibly built into planets. In this book, astronomical observations of young low-mass stars are presented. Using data from modern telescopes the surrounding accretion disks and envelopes are investigated, and physical parameters, their possible dust compositions, and ice properties are derived. Some of the young stars seem to have masses in the range of only several Jupiter masses and might be among the least massive free-floating objects known today.This book is intended for students in physics or astronomy who are interested in the formation of stars and planets.

  4. Polarimetric microlensing of circumstellar disks

    CERN Document Server

    Sajadian, Sedighe

    2015-01-01

    We study the benefits of polarimetry observations of microlensing events to detect and characterize circumstellar disks around the microlensed stars located at the Galactic bulge. These disks which are unresolvable from their host stars make a net polarization effect due to their projected elliptical shapes. Gravitational microlensing can magnify these signals and make them be resolved. The main aim of this work is to determine what extra information about these disks can be extracted from polarimetry observations of microlensing events in addition to those given by photometry ones. Hot disks which are closer to their host stars are more likely to be detected by microlensing, owing to more contributions in the total flux. By considering this kind of disks, we show that although the polarimetric efficiency for detecting disks is similar to the photometric observation, but polarimetry observations can help to constraint the disk geometrical parameters e.g. the disk inner radius and the lens trajectory with resp...

  5. The circumstellar disk, envelope, and bi-polar outflow of the Massive Young Stellar Object W33A

    CERN Document Server

    Davies, Ben; Hoare, Melvin G; Oudmaijer, Rene D; de Wit, Willem-Jan

    2009-01-01

    The Young Stellar Object (YSO) W33A is one of the best known examples of a massive star still in the process of forming. Here we present Gemini North ALTAIR/NIFS laser-guide star adaptive-optics assisted K-band integral-field spectroscopy of W33A and its inner reflection nebula. In our data we make the first detections of a rotationally-flattened outer envelope and fast bi-polar jet of a massive YSO at near-infrared wavelengths. The predominant spectral features observed are Br-gamma, H_2, and a combination of emission and absorption from CO gas. We perform a 3-D spectro-astrometric analysis of the line emission, the first study of its kind. We find that the object's Br-gamma emission reveals evidence for a fast bi-polar jet on sub-milliarcsecond scales, which is aligned with the larger-scale outflow. The hybrid CO features can be explained as a combination of hot CO emission arising in a disk close to the central star, while cold CO absorption originates in the cooler outer envelope. Kinematic analysis of th...

  6. Bimodality of circumstellar disk evolution induced by Hall current

    CERN Document Server

    Tsukamoto, Y; Okuzumi, S; Machida, M N; Inutsuka, S

    2015-01-01

    The formation process of circumstellar disks is still controversial because of the interplay of complex physical processes that occurs during the gravitational collapse of prestellar cores. In this study, we investigate the effect of the Hall current term on the formation of circumstellar disk using three-dimensional simulations. In our simulations, all non-ideal effects as well as the radiation transfer are considered. We show that the size of the disk is significantly affected by a simple difference in the inherent properties of the prestellar core, namely whether the rotation vector and the magnetic field are parallel or anti-parallel. In the former case, only a very small disk ($20$ AU) disk is formed in the early phase of protostar formation. We also show that the anti-rotating envelopes against the disk-rotation appear with a size of $\\gtrsim 200$ AU. We predict that the anti-rotating envelope will be found in the future observations.

  7. The circumstellar envelope of AFGL 4106

    CERN Document Server

    Van Loon, J T; Van Winckel, H; Waters, L B F M; Loon, Jacco Th. van; Winckel, Hans van

    1999-01-01

    We present new imaging and spectroscopy of the post-red supergiant binary AFGL 4106. Coronographic imaging in H-alpha reveals the shape and extent of the ionized region in the circumstellar envelope (CSE). Echelle spectroscopy with the slit covering almost the entire extent of the CSE is used to derive the physical conditions in the ionized region and the optical depth of the dust contained within the CSE. The dust shell around AFGL 4106 is clumpy and mixed with ionized gas. H-alpha and [N II] emission is brightest from a thin bow-shaped layer just outside of the detached dust shell. On-going mass loss is traced by [Ca II] emission and blue-shifted absorption in lines of low-ionization species. A simple model is used to interpret the spatial distribution of the circumstellar extinction and the dust emission in a consistent way.

  8. Secular Planetary Perturbations in Circumstellar Debris Disks

    Science.gov (United States)

    Hahn, Joseph M.; Capobianco, C.

    2006-12-01

    Circumstellar debris disks are likely the by-product of collisions among unseen planetesimals. Planetesimals are also the seeds of planets, so it is reasonable to expect that some debris disks might also harbor planets. In fact several such disks, like those orbiting beta Pictoris, Fomalhaut, etc., do appear to be perturbed by unseen planets orbiting within. The signatures of planetary perturbations include: central gaps, warps, and radial offsets in the disk's surface brightness. By modeling the disturbances observed in a circumstellar dust disk, one can then measure or constrain the masses and orbits of the planets that may be lurking within. Of particular interest here are the warps and radial offsets seen in such disks, since these features can be due to secular planetary perturbations (Mouillet et al 1997, Wyatt et al 1999). Secular perturbations are the slowly varying gravitational perturbations that can excite orbital eccentricities and inclinations in a disk, and can also drive a slow orbital precession. Note that a dust grain's motion is completely analytic when suffering secular perturbations (Murray & Dermott 1999), which allows us to rapidly generate a synthetic image of a simulated disk as would be seen in scattered starlight or via thermal emission. And because this model is quite fast, our model can rapidly scan a rather large parameter space in order to determine the planetary configuration that may be responsible for the disk's perturbed appearance. We have applied this dust-disk model to Hubble observations of the β Pictoris dust-disk (from Heap et al 2000), and will report on the planets that may be responsible for the warp seen in this edge-on disk. We will also apply the model to optical and IR observations of debris disks at Fomalhaut, AU Microscopii, and others, with additional results to be reported at conference time.

  9. Gravitational Instabilities in Circumstellar Disks

    CERN Document Server

    Kratter, Kaitlin M

    2016-01-01

    [Abridged] Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability, and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability, supplemented with a survey of numerical simulations that aim to capture the non-linear evolution. We emphasize the role of thermodynamics and large scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analyt...

  10. Gravitational Instabilities in Circumstellar Disks

    Science.gov (United States)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  11. Circumstellar Debris Disks: Diagnosing the Unseen Perturber

    CERN Document Server

    Nesvold, Erika R; Vican, Laura; Farr, Will M

    2016-01-01

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles' eccentricities and inclinations via the Kozai-Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai-Lidov excited disk can generate a dust disk via collisions and we compare t...

  12. Chemical history of molecules in circumstellar disks

    OpenAIRE

    Visser, Ruud; van Dishoeck, Ewine F.; Doty, Steven D.

    2011-01-01

    The chemical composition of a protoplanetary disk is determined not only by in situ chemical processes during the disk phase, but also by the history of the gas and dust before it accreted from the natal envelope. In order to understand the disk's chemical composition at the time of planet formation, especially in the midplane, one has to go back in time and retrace the chemistry to the molecular cloud that collapsed to form the disk and the central star. Here we present a new astrochemical m...

  13. Magnetic field and early evolution of circumstellar disks

    CERN Document Server

    Tsukamoto, Yusuke

    2016-01-01

    The magnetic field plays a central role in the formation and evolution of circumstellar disks. The magnetic field connects the rapidly rotating central region with the outer envelope and extracts angular momentum from the central region during gravitational collapse of the cloud core. This process is known as magnetic braking. Both analytical and multidimensional simulations have shown that disk formation is strongly suppressed by magnetic braking in moderately magnetized cloud cores in the ideal magnetohydrodynamic limit. On the other hand, recent observations have provided growing evidence of a relatively large disk several tens of astronomical units in size existing in some Class 0 young stellar objects. This introduces a serious discrepancy between the theoretical study and observations. Various physical mechanisms have been proposed to solve the problem of catastrophic magnetic braking, such as misalignment between the magnetic field and the rotation axis, turbulence, and non-ideal effect. In this paper,...

  14. Circumstellar disks around binary stars in Taurus

    Energy Technology Data Exchange (ETDEWEB)

    Akeson, R. L. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States); Jensen, E. L. N. [Swarthmore College, Department of Physics and Astronomy, Swarthmore, PA 19081 (United States)

    2014-03-20

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10{sup –4} M {sub ☉}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F{sub mm}∝M{sub ∗}{sup 1.5--2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  15. An MCMC Circumstellar Disks Modeling Tool

    Science.gov (United States)

    Wolff, Schuyler; Perrin, Marshall D.; Mazoyer, Johan; Choquet, Elodie; Soummer, Remi; Ren, Bin; Pueyo, Laurent; Debes, John H.; Duchene, Gaspard; Pinte, Christophe; Menard, Francois

    2016-01-01

    We present an enhanced software framework for the Monte Carlo Markov Chain modeling of circumstellar disk observations, including spectral energy distributions and multi wavelength images from a variety of instruments (e.g. GPI, NICI, HST, WFIRST). The goal is to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in the derived properties. This modular code is designed to work with a collection of existing modeling tools, ranging from simple scripts to define the geometry for optically thin debris disks, to full radiative transfer modeling of complex grain structures in protoplanetary disks (using the MCFOST radiative transfer modeling code). The MCMC chain relies on direct chi squared comparison of model images/spectra to observations. We will include a discussion of how best to weight different observations in the modeling of a single disk and how to incorporate forward modeling from PCA PSF subtraction techniques. The code is open source, python, and available from github. Results for several disks at various evolutionary stages will be discussed.

  16. Rapid disappearance of a warm, dusty circumstellar disk

    CERN Document Server

    Melis, Carl; Rhee, Joseph H; Song, Inseok; Murphy, Simon J; Bessell, Michael S

    2012-01-01

    Stars form with gaseous and dusty circumstellar envelopes, which rapidly settle into disks that eventually give rise to planetary systems. Understanding the process by which these disks evolve is paramount in developing an accurate theory of planet formation that can account for the variety of planetary systems discovered so far. The formation of Earth-like planets through collisional accumulation of rocky objects within a disk has mainly been explored in theoretical and computational work in which post-collision ejecta evolution is typically ignored, although recent work has considered the fate of such material. Here we report observations of a young, Sun-like star (TYC 8241 2652 1) where infrared flux from post-collisional ejecta has decreased drastically, by a factor of about 30, over a period of less than two years. The star seems to have gone from hosting substantial quantities of dusty ejecta, in a region analogous to where the rocky planets orbit in the Solar System, to retaining at most a meagre amoun...

  17. The Origin and Formation of the Circumstellar Disk

    CERN Document Server

    Machida, Masahiro N

    2010-01-01

    The formation and evolution of the circumstellar disk in the collapsing molecular cloud is investigated from the prestellar stage resolving both the molecular cloud core and the protostar itself. In the collapsing cloud, the first adiabatic core appears prior to the protostar formation. Reflecting the thermodynamics of the collapsing gas, the first core is much more massive than the protostar. When the molecular cloud has no angular momentum, the first core falls onto the protostar and disappears a few years after the protostar formation. On the other hand, when the molecular cloud has an angular momentum, the first core does not disappear even after the protostar formation, and directly evolves into the circumstellar disk with a Keplerian rotation. There are two paths for the formation of the circumstellar disk. When the initial cloud has a considerably small rotational energy, two nested disks appear just after the protostar formation. During the early main accretion phase, the inner disk increases its size...

  18. External Shaping of Circumstellar Envelopes of Evolved Stars

    Science.gov (United States)

    Cox, N. L. J.

    2015-08-01

    The circumstellar envelopes of asymptotic giant branch (AGB) stars and red supergiants (RSGs) are complex chemical and physical environments, and the specifics of their mass-loss history are important for both stellar and galactic evolution. One key aspect in this is to understand how the circumstellar medium of these stars can be shaped and affected by both internal and external mechanisms. These influences can skew our view on the (dust) chemistry and mass-loss history of these stars, and hence their role in the chemical enrichment of galaxies. This contribution focuses on the external mechanism related to the interaction between the slow dusty stellar wind and the local ambient medium. I will discuss what recent observations and hydrodynamical simulations have revealed and how these can help us learn more about AGB stars and RSGs, as well as the interstellar medium (ISM).

  19. The EXoplanetary Circumstellar Environments and Disk Explorer (EXCEDE)

    CERN Document Server

    Guyon, Olivier; Belikov, Ruslan; Tenerelli, Domenick J

    2012-01-01

    We present an overview of the EXoplanetary Circumstellar Environments and Disk Explorer (EXCEDE), selected by NASA for technology development and maturation. EXCEDE will study the formation, evolution and architectures of exoplanetary systems, and characterize circumstellar environments into stellar habitable zones. EXCEDE provides contrast-limited scattered-light detection sensitivities ~ 1000x greater than HST or JWST coronagraphs at a much smaller effective inner working angle (IWA), thus enabling the exploration and characterization of exoplanetary circumstellar disks in currently inaccessible domains. EXCEDE will utilize a laboratory demonstrated high-performance Phase Induced Amplitude Apodized Coronagraph (PIAA-C) integrated with a 70 cm diameter unobscured aperture visible light telescope. The EXCEDE PIAA-C will deliver star-to-disk augmented image contrasts of < 10E-8 and a 1.2 L/D IWA or 140 mas with a wavefront control system utilizing a 2000-element MEMS DM and fast steering mirror. EXCEDE will...

  20. Cepheids at high angular resolution: circumstellar envelope and pulsation

    Science.gov (United States)

    Gallenne, Alexandre

    2011-12-01

    In 2005, interferometric observations with VLTI/VINCI and CHARA/FLUOR revealed the existence of a circumstellar envelope (CSE) around some Cepheids. This surrounding material is particularly interesting for two reasons: it could have an impact on the distance estimates and could be linked to a past or on-going mass loss. The use of Baade-Wesselink methods for independent distance determinations could be significantly biased by the presence of these envelopes. Although their observations are difficult because of the high contrast between the photosphere of the star and the CSE, several observation techniques have the potential to improve our knowledge about their physical properties. In this thesis, I discuss in particular high angular resolution techniques that I applied to the study of several bright Galactic Cepheids. First, I used adaptive optic observations with NACO of the Cepheid RS Puppis, in order to deduce the flux ratio between the CSE and the photosphere of the star. In addition, I could carry out a statistical study of the speckle noise and inspect a possible asymmetry. Secondly, I analysed VISIR data to study the spectral energy distribution of a sample of Cepheids. These diffraction-limited images enabled me to carry out an accurate photometry in the N band and to detect an IR excess linked to the presence of a circumstellar component. On the other hand, applying a Fourier analysis I showed that some components are resolved. I then explored the K' band with the recombination instrument FLUOR for some bright Cepheids. Thanks to new set of data of Y Oph, I improved the study of its circumstellar envelope, using a ring-like model for the CSE. For two other Cepheids, U Vul and S Sge, I applied the interferometric Baade-Wesselink method in order to estimate their distance.

  1. Circumplanetary disk or circumplanetary envelope?

    CERN Document Server

    Szulágyi, J; Lega, E; Crida, A; Morbidelli, A; Guillot, T

    2016-01-01

    We present three-dimensional simulations with nested meshes of the dynamics of the gas around a Jupiter mass planet with the JUPITER and FARGOCA codes. We implemented a radiative transfer module into the JUPITER code to account for realistic heating and cooling of the gas. We focus on the circumplanetary gas flow, determining its characteristics at very high resolution ($80\\%$ of Jupiter's diameter). In our nominal simulation where the temperature evolves freely by the radiative module and reaches 13000 K at the planet, a circumplanetary envelope was formed filling the entire Roche-lobe. Because of our equation of state is simplified and probably overestimates the temperature, we also performed simulations with limited maximal temperatures in the planet region (1000 K, 1500 K, and 2000 K). In these fixed temperature cases circumplanetary disks (CPDs) were formed. This suggests that the capability to form a circumplanetary disk is not simply linked to the mass of the planet and its ability to open a gap. Inste...

  2. Hot Molecular Circumstellar Disk around Massive Protostar Orion Source I

    CERN Document Server

    Hirota, Tomoya; Kurono, Yasutaka; Honma, Mareki

    2013-01-01

    We report new Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a circumstellar disk around Source I in Orion KL, an archetype of massive protostar candidate. We detected two ortho-H$_{2}$O lines at 321 GHz ($10_{2,9}$-$9_{3,6}$) and 336 GHz ($\

  3. Constraints on the Formation and Evolution of Circumstellar Disks in Rotating Magnetized Cloud Cores

    CERN Document Server

    Basu, S

    1998-01-01

    We use magnetic collapse models to place some constraints on the formation and angular momentum evolution of circumstellar disks which are embedded in magnetized cloud cores. Previous models have shown that the early evolution of a magnetized cloud core is governed by ambipolar diffusion and magnetic braking, and that the core takes the form of a nonequilibrium flattened envelope which ultimately collapses dynamically to form a protostar. In this paper, we focus on the inner centrifugally-supported disk, which is formed only after a central protostar exists, and grows by dynamical accretion from the flattened envelope. We estimate a centrifugal radius for the collapse of mass shells within a rotating, magnetized cloud core. The centrifugal radius of the inner disk is related to its mass through the two important parameters characterizing the background medium: the background rotation rate $\\Omb$ and the background magnetic field strength $\\Bref$. We also revisit the issue of how rapidly mass is deposited onto...

  4. The circumstellar envelope of the C-rich post-AGB star HD 56126

    NARCIS (Netherlands)

    Hony, S; Tielens, AGGM; Waters, LBFM; de Koter, A

    2003-01-01

    We present a detailed study of the circumstellar envelope of the post-asymptotic giant branch "21 mum object" HD 56126. We build a detailed dust radiative transfer model of the circumstellar envelope in order to derive the dust composition and mass, and the mass-loss history of the star. To model th

  5. The Velocity Structure of SN 1987A's Outer Circumstellar Envelope

    Science.gov (United States)

    Crotts, A. P. S.; Heathcote, S. R.

    1997-12-01

    We present high-resolution optical spectroscopy, (obtained with the CTIO 4-meter/echelle spectrograph over many epochs between 1989 and 1997) of the circumstellar nebula of SN 1987A, including the outer rings (within 3 arcsec of the SN), the inner (equatorial) ring, and fainter features at larger radii never studied before spectroscopically. We report velocity displacements for portions of the outer rings, up to 26 km s(-1) with respect the SN centroid velocity, with blueshifted components in the location of the southern outer ring and the redshifted portions of the northern outer ring. The largest shifts are near the SN, as predicted by a model in which the outer rings are the crowns of an expanding, bipolar nebula with the inner ring at its waist. We also confirm that the inner ring shows a velocity full-width of about 13 km s(-1) , which, along with the geometry of the rings and our outer ring velocity measurements, allows us to estimate a characteristic timescale of about 20,000 y for each of the three rings, implying that all are coeval. This contrasts with measurements by others of compositional ratios in the inner versus outer rings indicating that they were, perhaps, ejected at different times from the progenitor's star's outer envelope. Additionally, we measure the velocity of low surface brightness features at larger radii indicating that circumstellar material even farther from the SN was ejected up to 400,000 y before the explosion. Finally, we note the presence of transient emission features within the circumstellar nebula and describe their behaviour, and consider what implications our observations may have for the coming transformation of this nebula into Supernova Remnant 1987A.

  6. Molecular content of the circumstellar disk in AB Aur: First detection of SO in a circumstellar disk

    CERN Document Server

    Fuente, A; Agundez, M; Berne, O; Goicoechea, J R; Alonso-Albi, T; Marcelino, N

    2010-01-01

    Very few molecular species have been detected in circumstellar disks surrounding young stellar objects. We are carrying out an observational study of the chemistry of circumstellar disks surrounding T Tauri and Herbig Ae stars. First results of this study are presented in this note. We used the EMIR receivers recently installed at the IRAM 30m telescope to carry a sensitive search for molecular lines in the disks surrounding AB Aur, DM Tau, and LkCa 15. We detected lines of the molecules HCO+, CN, H2CO, SO, CS, and HCN toward AB Aur. In addition, we tentatively detected DCO+ and H2S lines. The line profiles suggest that the CN, HCN, H2CO, CS and SO lines arise in the disk. This makes it the first detection of SO in a circumstellar disk. We have unsuccessfully searched for SO toward DM Tau and LkCa 15, and for c-C3H2 toward AB Aur, DM Tau, and LkCa 15. Our upper limits show that contrary to all the molecular species observed so far, SO is not as abundant in DM Tau as it is in AB Aur. Our results demonstrate th...

  7. Spectroscopic diagnostics for circumstellar disks of B[e] supergiants

    CERN Document Server

    Kraus, Michaela

    2016-01-01

    B[e] supergiants (B[e]SGs) are emission-line objects, presumably in a short-lived phase in the post-main sequence evolution of massive stars. Their intense infrared excess emission indicates large amounts of warm circumstellar dust, and the stars were longtime assumed to possess an aspherical wind consisting of a classical line-driven wind in polar direction and a dense, slow equatorial wind dubbed outflowing disk. The general properties obtained for these disks are in line with this scenario, although current theories have considerable difficulties reproducing the observed quantities. Therefore, more sophisticated observational constraints are needed. These follow from combined optical and infrared spectroscopic studies, which delivered the surprising result that the circumstellar material of B[e]SGs is concentrated in multiple rings revolving the stars on stable Keplerian orbits. Such a scenario requires new ideas for the formation mechanism, in which pulsations might play an important role.

  8. Cepheids at high angular resolution: circumstellar envelope and pulsation

    CERN Document Server

    Gallenne, Alexandre

    2011-01-01

    In 2005, interferometric observations with VLTI/VINCI and CHARA/FLUOR revealed the existence of a circumstellar envelope (CSE) around some Cepheids. This surrounding material is particularly interesting for two reasons: it could have an impact on the distance estimates and could be linked to a past or on-going mass loss. The use of Baade-Wesselink methods for independent distance determinations could be significantly biased by the presence of these envelopes. Although their observations are difficult because of the high contrast between the photosphere of the star and the CSE, several observation techniques have the potential to improve our knowledge about their physical properties. In this thesis, I discuss in particular high angular resolution techniques that I applied to the study of several bright Galactic Cepheids. First, I used adaptive optic observations with NACO of the Cepheid RS Puppis, in order to deduce the flux ratio between the CSE and the photosphere of the star. In addition, I could carry out ...

  9. Massive circumstellar envelope around type IIn supernova SN 1995G

    CERN Document Server

    Chugai, N N

    2003-01-01

    We model the interaction of the supernova SN 1995G with a dense circumstellar (CS) gas in a thin shell approximation. A model fit of the observed bolometric light curve combined with data on the supernova expansion velocity provides an estimate of the density of the CS shell, its mass ($approx 1 M_{odot}$), and age ($approx 8$ years). It is shown that the derived CS gas density does not depend on the assumed mass of the supernova ejecta. This results from the high CS density, which ensures that the forward shock wave is essentially radiative. The derived CS density is consistent with the H$alpha$ luminosity and with the presence of the apparent effect of Thomson scattering in the red wing of this line. The mass of the CS envelope together with its expansion velocity indicates that the CS envelope was ejected as a result of violent energy release ($sim 6times10^{48}$ erg) eight years before the supernova outburst.

  10. The Circumstellar Disk of the Be Star $o$~Aquarii

    CERN Document Server

    Sigut, T A A; Jansen, B; Zavala, R T

    2015-01-01

    Omicron Aquarii is late-type, Be shell star with a stable and nearly symmetric H$\\alpha$ emission line. We combine H$\\alpha$ interferometric observations obtained with the Navy Precision Optical Interferometer (NPOI) covering 2007 through 2014 with H$\\alpha$ spectroscopic observations over the same period and a 2008 observation of the system's near-infrared spectral energy distribution to constrain the properties of $o$~Aqr's circumstellar disk. All observations are consistent with a circumstellar disk seen at an inclination of $75\\pm\\,3^{\\circ}$ with a position angle on the sky of $110\\pm\\,8^{\\circ}$ measured E from N. From the best-fit disk density model, we find that 90\\% of the H$\\alpha$ emission arises from within $9.5$ stellar radii, and the mass associated with this H$\\alpha$ disk is $\\sim 1.8\\times10^{-10}$ of the stellar mass and the associated angular momentum, assuming Keplerian rotation for the disk, is $\\sim 1.6\\times10^{-8}$ of the total stellar angular momentum. The occurrence of a central quas...

  11. Observations of Circumstellar Disks with Infrared Interferometry

    Science.gov (United States)

    Akeson, Rachel

    2008-01-01

    Star formation is arguably the area of astrophysics in which infrared interferometry has had the biggest impact. The optically thick portion of T Tauri and Herbig Ae/Be disks DO NOT extend to a few stellar radii of the stellar surface. Emission is coming from near the dust sublimation radius, but not all from a single radius. The Herbig Ae stars can be either flared or self-shadowed but very massive (early Be) stars are geometrically thin. The Herbig Ae stars can be either flared or self-shadowed but very massive (early Be) stars are geometrically thin. Observational prospects are rapidly improving: a) Higher spectral resolution will allow observations of the gas: jets, winds, accretion. b) Closure phase and imaging will help eliminate model uncertainties/dependencies.

  12. First Evidence of Circumstellar Disks around Blue Straggler Stars

    CERN Document Server

    De Marco, O; Ouellette, J A; Zurek, D R; Shara, M M; Marco, Orsola De; Lanz, Thierry; Ouellette, John A.; Zurek, David; Shara, Michael M.

    2004-01-01

    We present an analysis of optical HST/STIS and HST/FOS spectroscopy of 6 blue stragglers found in the globular clusters M3, NGC6752 and NGC6397. These stars are a subsample of a set of ~50 blue stragglers and stars above the main sequence turn-off in four globular clusters which will be presented in an forthcoming paper. All but the 6 stars presented here can be well fitted with non-LTE model atmospheres. The 6 misfits, on the other hand, possess Balmer jumps which are too large for the effective temperatures implied by their Paschen continua. We find that our data for these stars are consistent with models only if we account for extra absorption of stellar Balmer photons by an ionized circumstellar disk. Column densities of HI and CaII are derived as are the the disks' thicknesses. This is the first time that a circumstellar disk is detected around blue stragglers. The presence of magnetically-locked disks attached to the stars has been suggested as a mechanism to lose the large angular momentum imparted by ...

  13. A Collisional Algorithm for Modeling Circumstellar Debris Disks

    Science.gov (United States)

    Nesvold, Erika; Kuchner, Marc

    2011-01-01

    Many planetary systems harbor circumstellar disks of dust and planetesimals thought to be debris left over from planet formation. These debris disks exhibit a range of morphological features which can arise from the gravitational perturbations of planets. Accurate models of these features, accounting for the interactions of the particles in a disk with each other and with whatever planets they contain, can act as signposts for planets in debris disks that otherwise could not be detected. Such models can also constrain the planet's mass and orbital parameters. Current models for many disks consider the gravitational and radiative effects of the star and planets on the disk, but neglect the morphological consequences of collisional interactions between the planetesimals. Many observed disk features are not satisfactorily explained by the current generation of models. I am developing a new kind of debris disk model that considers both the gravitational shaping of the disk by planets and the inelastic collisions between particles. I will use a hybrid N-body integrator to numerically solve the equations of motion for the particles and planets in the disk. To include the collisional effects, I begin with an algorithm that tests for collisions at each step of the orbit integration and readjusts the velocities of colliding particles. I am adapting this algorithm to the problem at hand by allowing each particle to represent a "swarm" of planetesimals with a range of masses. When the algorithm detects an encounter between swarms, two or three swarms are produced to approximate the range of possible trajectories of the daughter planetesimals. Here I present preliminary results from my collisional algorithm.

  14. Dust Migration and Morphology in Optically Thin Circumstellar Gas Disks

    CERN Document Server

    Takeuchi, T; Takeuchi, Taku; Artymowicz, Pawel

    2001-01-01

    We analyze the dynamics of gas-dust coupling in the presence of stellar radiation pressure in circumstellar gas disks, which are in a transitional stage between the gas-dominated, optically thick, primordial nebulae, and the dust-dominated, optically thin Vega-type disks. Dust undergo radial migration, seeking a stable equilibrium orbit in corotation with gas. The migration of dust gives rise to radial fractionation of dust and creates a variety of possible observed disk morphologies, which we compute by considering the equilibrium between the dust production and the dust-dust collisions removing particles from their equilibrium orbits. Sand-sized and larger grains are distributed throughout most of the gas disk, with concentration near the gas pressure maximum in the inner disk. Smaller grains (typically in the range of 10 to 200 micron) concentrate in a prominent ring structure in the outer region of the gas disk (presumably at radius 100 AU), where gas density is rapidly declining with radius. The width an...

  15. A WISE Survey of Circumstellar Disks in Taurus

    CERN Document Server

    Esplin, T L; Mamajek, E E

    2014-01-01

    We have compiled photometry at 3.4, 4.6, 12 and 22 $\\mu$m from the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) for all known members of the Taurus complex of dark clouds. Using these data and photometry from the Spitzer Space Telescope, we have identified members with infrared excess emission from circumstellar disks and have estimated the evolutionary stages of the detected disks, which include 31 new full disks and 16 new candidate transitional, evolved, evolved transitional, and debris disks. We have also used the WISE All-Sky Source Catalog to search for new disk-bearing members of Taurus based on their red infrared colors. Through optical and near-infrared spectroscopy, we have confirmed 26 new members with spectral types of M1 - M7. The census of disk-bearing stars in Taurus should now be largely complete for spectral types earlier than $\\sim$M8 ($M \\gtrsim 0.03$ $M_\\odot$).

  16. ALMA Observations of HD141569's Circumstellar Disk

    CERN Document Server

    White, J A; Hughes, A M; Flaherty, K M; Ford, E; Wilner, D; Corder, S; Payne, M

    2016-01-01

    We present ALMA band 7 (345 GHz) continuum and $^{12}$CO(J = 3-2) observations of the circumstellar disk surrounding HD141569. At an age of about 5 Myr, the disk has a complex morphology that may be best interpreted as a nascent debris system with gas. Our $870\\rm~\\mu m$ ALMA continuum observations resolve a dust disk out to approximately $ 56 ~\\rm au$ from the star (assuming a distance of 116 pc) with $0."38$ resolution and $0.07 ~ \\rm mJy~beam^{-1}$ sensitivity. We measure a continuum flux density for this inner material of $3.8 \\pm 0.4 ~ \\rm mJy$ (including calibration uncertainties). The $^{12}$CO(3-2) gas is resolved kinematically and spatially from about 30 to 210 au. The integrated $^{12}$CO(3-2) line flux density is $15.7 \\pm 1.6~\\rm Jy~km~s^{-1}$. We estimate the mass of the millimeter debris and $^{12}$CO(3-2) gas to be $\\gtrsim0.04~\\rm M_{\\oplus}$ and $\\sim2\\times 10^{-3}~\\rm M_{\\oplus}$, respectively. If the millimeter grains are part of a collisional cascade, then we infer that the inner disk ($&...

  17. B[e] Supergiants' circumstellar environment: disks or rings?

    CERN Document Server

    Maravelias, G; Aret, A; Cidale, L; Arias, M L; Fernandes, M Borges

    2016-01-01

    B[e] Supergiants are a phase in the evolution of some massive stars for which we have observational evidence but no predictions by any stellar evolution model. The mass-loss during this phase creates a complex circumstellar environment with atomic, molecular, and dust regions usually found in rings or disk-like structures. However, the detailed structure and the formation of the circumstellar environment are not well-understood, requiring further investigation. To address that we initiated an observing campaign to obtain a homogeneous set of high-resolution spectra in both the optical and NIR (using MPG-ESO/FEROS, GEMINI/Phoenix and VLT/CRIRES, respectively). We monitor a number of Galactic B[e] Supergiants, for which we examined the [OI] and [CaII] emission lines and the bandheads of the CO and SiO molecules to probe the structure and the kinematics of their formation regions. We find that the emission from each tracer forms either in a single or in multiple equatorial rings.

  18. The chemical history of molecules in circumstellar disks. I. Ices

    CERN Document Server

    Visser, R; Doty, S D; Dullemond, C P

    2009-01-01

    (Abridged) Aims & Methods. A two-dimensional, semi-analytical model is presented that follows, for the first time, the chemical evolution from a collapsing molecular cloud (a pre-stellar core) to a protostar and circumstellar disk. The model computes infall trajectories from any point in the cloud and tracks the radial and vertical motion of material in the viscously evolving disk. It includes a full time-dependent radiative transfer treatment of the dust temperature, which controls much of the chemistry. A small parameter grid is explored to understand the effects of the sound speed and the mass and rotation of the cloud. The freeze-out and evaporation of carbon monoxide (CO) and water (H2O), as well as the potential for forming complex organic molecules in ices, are considered as important first steps to illustrate the full chemistry. Results. Both species freeze out towards the centre before the collapse begins. Pure CO ice evaporates during the infall phase and re-adsorbs in those parts of the disk th...

  19. TW Hya Association Membership and New WISE-detected Circumstellar Disks

    CERN Document Server

    Schneider, Adam; Song, Inseok

    2012-01-01

    We assess the current membership of the nearby, young TW Hydrae Association and examine newly proposed members with the Wide-field Infrared Survey Explorer (WISE) to search for infrared excess indicative of circumstellar disks. Newly proposed members TWA 30A, TWA 30B, TWA 31, and TWA 32 all show excess emission at 12 and 22 \\mum providing clear evidence for substantial dusty circumstellar disks around these low-mass, ~8 Myr old stars that were previously shown to likely be accreting from circumstellar material. TWA 30B shows large amounts of self-extinction, likely due to an edge-on disk geometry. We also confirm previously reported circumstellar disks with WISE, and determine a 22 \\mum excess fraction of 42+/- 9% based on our results.

  20. Photon Bubbles in the Circumstellar Envelopes of Young Massive Stars

    CERN Document Server

    Turner, N J; Yorke, H W

    2007-01-01

    We show that the optically-thick dusty envelopes surrounding young high-mass stars are subject to the photon bubble instability. The infrared radiation passing through the envelope amplifies magnetosonic disturbances, with growth rates in our local numerical radiation MHD calculations that are consistent with a linear analysis. Modes with wavelengths comparable to the gas pressure scale height grow by more than two orders of magnitude in a thousand years, reaching non-linear amplitudes within the envelope lifetime. If the magnetic pressure in the envelope exceeds the gas pressure, the instability develops into trains of propagating shocks. Radiation escapes readily through the low-density material between the shocks, enabling accretion to continue despite the Eddington limit imposed by the dust opacity. The supersonic motions arising from the photon bubble instability can help explain the large velocity dispersions of hot molecular cores, while conditions in the shocked gas are suitable for maser emission. We...

  1. Hydrocarbon anions in interstellar clouds and circumstellar envelopes

    CERN Document Server

    Millar, T J; Cordiner, M A; Herbst, Eric; Walsh, C

    2007-01-01

    The recent detection of the hydrocarbon anion C6H- in the interstellar medium has led us to investigate the synthesis of hydrocarbon anions in a variety of interstellar and circumstellar environments. We find that the anion/neutral abundance ratio can be quite large, on the order of at least a few percent, once the neutral has more than five carbon atoms. Detailed modeling shows that the column densities of C6H- observed in IRC+10216 and TMC-1 can be reproduced. Our calculations also predict that other hydrocarbon anions, such as C4H- and C8H-, are viable candidates for detection in IRC+10216, TMC-1 and photon-dominated regions such as the Horsehead Nebula.

  2. Modeling transiting circumstellar disks: characterizing the newly discovered eclipsing disk system OGLE LMC-ECL-11893

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Erin L.; Mamajek, Eric E.; Pecaut, Mark J.; Quillen, Alice C.; Moolekamp, Fred; Bell, Cameron P. M., E-mail: elscott@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)

    2014-12-10

    We investigate the nature of the unusual eclipsing star OGLE LMC-ECL-11893 (OGLE J05172127-6900558) in the Large Magellanic Cloud recently reported by Dong et al. The eclipse period for this star is 468 days, and the eclipses exhibit a minimum of ∼1.4 mag, preceded by a plateau of ∼0.8 mag. Spectra and optical/IR photometry are consistent with the eclipsed star being a lightly reddened B9III star of inferred age ∼150 Myr and mass ∼4 M {sub ☉}. The disk appears to have an outer radius of ∼0.2 AU with predicted temperatures of ∼1100-1400 K. We model the eclipses as being due to either a transiting geometrically thin dust disk or gaseous accretion disk around a secondary object; the debris disk produces a better fit. We speculate on the origin of such a dense circumstellar dust disk structure orbiting a relatively old low-mass companion, and on the similarities of this system to the previously discovered EE Cep.

  3. Disk Detective: Discovery of New Circumstellar Disk Candidates through Citizen Science

    CERN Document Server

    Kuchner, Marc J; Bans, Alissa S; Bhattacharjee, Shambo; Kenyon, Scott J; Debes, John H; Currie, Thayne; Garcia, Luciano; Jung, Dawoon; Lintott, Chris; McElwain, Michael; Padgett, Deborah L; Rebull, Luisa M; Wisniewski, John P; Nesvold, Erika; Schawinski, Kevin; Thaller, Michelle L; Grady, Carol A; Biggs, Joseph; Bosch, Milton; Cernohous, Tadeás; Luca, Hugo A Durantini; Hyogo, Michiharu; Wah, Lily Lau Wan; Piipuu, Art; Piñeiro, Fernanda

    2016-01-01

    The Disk Detective citizen science project aims to find new stars with 22 micron excess emission from circumstellar dust using data from NASA's WISE mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10 different bands to identify false-positives (galaxies, background stars, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disks and protoplanetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137, and HD 218546) and a new detection o...

  4. Oxygen Chemistry in the Circumstellar Envelope of the Carbon-Rich Star IRC+10216

    CERN Document Server

    Agundez, M; Agundez, Marcelino; Cernicharo, Jose

    2006-01-01

    In this paper we study the oxygen chemistry in the C-rich circumstellar shells of IRC+10216. The recent discoveries of oxygen bearing species (water, hydroxyl radical and formaldehyde) toward this source challenge our current understanding of the chemistry in C-rich circumstellar envelopes. The presence of icy comets surrounding the star or catalysis on iron grain surfaces have been invoked to explain the presence of such unexpected species. This detailed study aims at evaluating the chances of producing O-bearing species in the C-rich circumstellar envelope only by gas phase chemical reactions. For the inner hot envelope, it is shown that although most of the oxygen is locked in CO near the photosphere (as expected for a C/O ratio greater than 1), some stellar radii far away species such as H2O and CO2 have large abundances under the assumption of thermochemical equilibrium. It is also shown how non-LTE chemistry makes very difficult the CO-->H2O,CO2 transformation predicted in LTE. Concerning the chemistry ...

  5. Photodissociation and chemistry of N$_2$ in the circumstellar envelope of carbon-rich AGB stars

    CERN Document Server

    Li, Xiaohu; Walsh, Catherine; Heays, Alan N; van Dishoeck, Ewine F

    2014-01-01

    The envelopes of AGB stars are irradiated externally by ultraviolet photons; hence, the chemistry is sensitive to the photodissociation of N$_2$ and CO, which are major reservoirs of nitrogen and carbon, respectively. The photodissociation of N$_2$ has recently been quantified by laboratory and theoretical studies. Improvements have also been made for CO photodissociation. For the first time, we use accurate N$_2$ and CO photodissociation rates and shielding functions in a model of the circumstellar envelope of the carbon-rich AGB star, IRC +10216. We use a state-of-the-art chemical model of an AGB envelope, the latest CO and N$_2$ photodissociation data, and a new method for implementing molecular shielding functions in full spherical geometry with isotropic incident radiation. We compare computed column densities and radial distributions of molecules with observations. The transition of N$_2$ $\\to$ N (also, CO $\\to$ C $\\to$ C$^+$) is shifted towards the outer envelope relative to previous models. This leads...

  6. Differential interferometric phases at high spectral resolution as a sensitive physical diagnostic of circumstellar disks

    CERN Document Server

    Faes, D M; Rivinius, Th; Štefl, S; Baade, D; de Souza, A Domiciano

    2013-01-01

    Context. The circumstellar disks ejected by many rapidly rotating B stars (so-called Be stars) offer the rare opportunity of studying the structure and dynamics of gaseous disks at high spectral as well as angular resolution. Aims. This paper explores a newly identified effect in spectro-interferometric phase that can be used for probing the inner regions of gaseous edge-on disks on a scale of a few stellar radii. Methods. The origin of this effect (dubbed central quasi-emission phase signature, CQE-PS) lies in the velocity-dependent line absorption of photospheric radiation by the circumstellar disk. At high spectral and marginal interferometric resolution, photocenter displacements between star and isovelocity regions in the Keplerian disk reveal themselves through small interferometric phase shifts. To investigate the diagnostic potential of this effect, a series of models are presented, based on detailed radiative transfer calculations in a viscous decretion disk. Results. Amplitude and detailed shape of ...

  7. Chemistry and distribution of daughter species in the circumstellar envelopes of O-rich AGB stars

    Science.gov (United States)

    Li, Xiaohu; Millar, Tom J.; Heays, Alan N.; Walsh, Catherine; van Dishoeck, Ewine F.; Cherchneff, Isabelle

    2016-03-01

    Context. Thanks to the advent of Herschel and ALMA, new high-quality observations of molecules present in the circumstellar envelopes of asymptotic giant branch (AGB) stars are being reported that reveal large differences from the existing chemical models. New molecular data and more comprehensive models of the chemistry in circumstellar envelopes are now available. Aims: The aims are to determine and study the important formation and destruction pathways in the envelopes of O-rich AGB stars and to provide more reliable predictions of abundances, column densities, and radial distributions for potentially detectable species with physical conditions applicable to the envelope surrounding IK Tau. Methods: We use a large gas-phase chemical model of an AGB envelope including the effects of CO and N2 self-shielding in a spherical geometry and a newly compiled list of inner-circumstellar envelope parent species derived from detailed modeling and observations. We trace the dominant chemistry in the expanding envelope and investigate the chemistry as a probe for the physics of the AGB phase by studying variations of abundances with mass-loss rates and expansion velocities. Results: We find a pattern of daughter molecules forming from the photodissociation products of parent species with contributions from ion-neutral abstraction and dissociative recombination. The chemistry in the outer zones differs from that in traditional PDRs in that photoionization of daughter species plays a significant role. With the proper treatment of self-shielding, the N → N2 and C+→ CO transitions are shifted outward by factors of 7 and 2, respectively, compared with earlier models. An upper limit on the abundance of CH4 as a parent species of (≲2.5 × 10-6 with respect to H2) is found for IK Tau, and several potentially observable molecules with relatively simple chemical links to other parent species are determined. The assumed stellar mass-loss rate, in particular, has an impact on the

  8. The infrared spectral features of circumstellar envelope of evolved low- and intermediate-mass stars

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The circumstellar envelope of evolved stars of low- and intermediate-mass is an important site for dust formation. In comparison with the interstellar medium, they have more types of organics and different types of inorganics. Various infrared features in the circumstellar envelope can reveal the composition and abundance of dust, as well as the chemical and physical conditions of the circumstellar shell. Infrared features and their carriers are different in the C-rich or O-rich environment, and the mixed-environment where the C-rich and O-rich circumstellar materials co-exist. The C-rich sources exhibit a series of spectral features which are attrib- uted to organic molecules. They also show two prominent features at 21 μm and 30 μm which emit a large portion of infrared radiation. The O-rich sources exhibit the strong 9.7 μm and 18 μm features attributed to the Si-O bending and O-Si-O stretching modes of amorphous silicate dust. With the ISO/SWS spectrometer, about 50 narrow bands are identified with the crystalline silicate grains, mainly forsterite and enstatite. In addition, a series of features, at 13 μm, 16.8 μm, 19.5 μm and 31.8 μm, appearing to be correlated with each other, are attributed to oxides. Some objects simultaneously show the C-rich and O-rich features, e.g. some C-rich sources have silicate features. There is no well-accepted interpretation for such mixed appearance, though a binary model is suggested.

  9. The infrared spectral features of circumstellar envelope of evolved low-and intermediate-mass stars

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ke; JIANG BiWei

    2008-01-01

    The circumstellar envelope of evolved stars of low-and intermediate-mass is an important site for dust formation. In comparison with the interstellar medium, they have more types of organics and different types of inorganics. Various infrared features in the circumstellar envelope can reveal the composition and abundance of dust, as well as the chemical and physical conditions of the circumstellar shell. Infrared features and their carriers are different in the C-rich or O-rich environment, and the mixed-environment where the C-rich and O-rich circumstellar materials co-exist. The C-rich sources exhibit a series of spectral features which are attrib-uted to organic molecules. They also show two prominent features at 21 μm and 30 μm which emit a large portion of infrared radiation. The O-rich sources exhibit the strong 9.7 μm and 18 μm features attributed to the Si-O bending and O-Si-O stretching modes of amorphous silicate dust. With the ISO/SWS spectrometer, about 50 narrow bands are identified with the crystalline silicate grains, mainly forsterite and enstatite. In addition, a series of features, at 13 μm, 16.8 μm, 19.5 μm and 31.8 μm, appearing to be correlated with each other, are attributed to oxides. Some objects simultaneously show the C-rich and O-rich features, e.g. some C-rich sources have silicate features. There is no well-accepted interpretation for such mixed appearance, though a binary model is suggested.

  10. THE NATURE OF TRANSITION CIRCUMSTELLAR DISKS. II. SOUTHERN MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Gisela A.; Schreiber, Matthias R.; Rebassa-Mansergas, Alberto [Departamento de Fisica y Astronomia, Universidad de Valparaiso, Valparaiso (Chile); Cieza, Lucas A. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Merin, Bruno [Herschel Science Centre, ESAC (ESA), P.O. Box 78, 28691 Villanueva de la Canada, Madrid (Spain); Smith Castelli, Analia V. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Allen, Lori E. [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Morrell, Nidia [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile)

    2012-04-10

    Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate the multiplicity, disk mass, and accretion rate for each object in our sample in order to identify the mechanism potentially responsible for its inner hole. We find that our transition disks show a rich diversity in their spectral energy distribution morphology, have disk masses ranging from {approx}<1 to 10 M{sub JUP}, and accretion rates ranging from {approx}<10{sup -11} to 10{sup -7.7} M{sub Sun} yr{sup -1}. Of the 17 bona fide transition disks in our sample, three, nine, three, and two objects are consistent with giant planet formation, grain growth, photoevaporation, and debris disks, respectively. Two disks could be circumbinary, which offers tidal truncation as an alternative origin of the inner hole. We find the same heterogeneity of the transition disk population in Lupus III, IV, and Corona Australis as in our previous analysis of transition disks in Ophiuchus while all transition disk candidates selected in Lupus V, VI turned out to be contaminating background asymptotic giant branch stars. All transition disks classified as photoevaporating disks have small disk masses, which indicates that photoevaporation must be less efficient than predicted by most recent models. The three systems that are excellent candidates for harboring giant planets potentially represent invaluable laboratories to study planet formation with the Atacama Large Millimeter/Submillimeter Array.

  11. Photoevaporation of Circumstellar Disks due to External FUV Radiation in Stellar Aggregates

    CERN Document Server

    Adams, F C; Laughlin, G; Gorti, U; Adams, Fred C.; Hollenbach, David; Laughlin, Gregory; Gorti, Uma

    2004-01-01

    When stars form in small groups (N = 100 - 500 members), their circumstellar disks are exposed to little EUV radiation but a great deal of FUV radiation from massive stars in the group. This paper calculates mass loss rates for circumstellar disks exposed to external FUV radiation. Previous work treated large disks and/or intense radiation fields in which the disk radius exceeds the critical radius (supercritical disks) where the sound speed in the FUV heated layer exceeds the escape speed. This paper shows that significant mass loss still takes place for subcritical systems. Some of the gas extends beyond the disk edge (above the disk surface) to larger distances where the temperature is higher, the escape speed is lower, and an outflow develops. The evaporation rate is a sensitive function of the stellar mass and disk radius, which determine the escape speed, and the external FUV flux, which determines the temperature structure of the flow. Disks around red dwarfs are readily evaporated and shrink to disk r...

  12. Radiative transfer modeling of three T Tauri stars: selecting candidates for studying circumstellar disk evolution

    Institute of Scientific and Technical Information of China (English)

    Yao Liu; Hong-Chi Wang; Sebastian Wolf; David Madlener

    2013-01-01

    We present modeling work on three young stellar objects that are promising targets for future high-resolution observations to investigate circumstellar disk evolution.The currently available data comprise the spectral energy distribution from optical to millimeter wavelengths which allow constraining the structure of the circumstellar disk using self-consistent radiative transfer models.The results suggest that the assumption of well-mixed dust and gas leads to overestimation of flux in the far-infrared.Observational and theoretical arguments suggest that an overall decrease in far-infrared excess can be explained by dust settling towards the midplane.A new disk model is hence employed to take the effect of dust sedimentation into account.The extended model satisfactorily reproduces all existing observations.The three targets studied here therefore deserve follow-up observations to reveal the evolutionary state of their protoplanetary disks.

  13. Observational Possibility of the "Snow Line" on the Surface of Circumstellar Disks with the Scattered Light

    CERN Document Server

    Inoue, Akio K; Nakamoto, Taishi; Oka, Akinori

    2008-01-01

    We discuss how we obtain the spatial distribution of ice on the surface of the circumstellar disk around young stars. Ice in the disks plays a very important role in various issues, for instance, on the disk structure, on the planet formation, on the isotopic anomaly in meteorites, and on the origin of the sea on the Earth. Therefore, the spatially resolved observation of the condensation/sublimation front of ice, so-called ``snow line'' is strongly required. Here, we propose a new method for obtaining the spatially resolved ``snow line'' on the circumstellar disks by observing 3 \\micron H$_2$O ice feature in the scattered light. Based on radiative transfer considerations, we show that the feature is clearly imprinted in the spectrum of the scattered light from both optically thick and thin circumstellar disks. We also show that the scattered light and the H$_2$O ice feature from protoplanetary disks are detectable and spatially resolvable with the current instruments through a $H_2O$ narrowband filter around...

  14. The Nature of Transition Circumstellar Disks II. Southern Molecular Clouds

    OpenAIRE

    Romero, Gisela A.; Schreiber, Matthias R.; Cieza, Lucas A.; Rebassa-Mansergas, Alberto; Merín, Bruno; Castelli, Analía V. Smith; Allen, Lori E.; Morrell, Nidia

    2012-01-01

    Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate ...

  15. Sulphur molecules in the circumstellar envelopes of M-type AGB stars

    CERN Document Server

    Danilovich, Taissa; Black, J H; Olofsson, H; Justtanont, K

    2016-01-01

    The sulphur compounds SO and SO$_2$ have not been widely studied in the circumstellar envelopes of asymptotic giant branch (AGB) stars. By presenting and modelling a large number of SO and SO$_2$ lines in the low mass-loss rate M-type AGB star R Dor, and modelling the available lines of those molecules in a further four M-type AGB stars, we aim to determine their circumstellar abundances and distributions. We use a detailed radiative transfer analysis based on the accelerated lambda iteration method to model circumstellar SO and SO$_2$ line emission and molecular data files for both SO and SO$_2$ that are more extensive than those previously available. Using 17 SO lines and 98 SO2 lines to constrain our models for R Dor, we find an SO abundance of 6.7x10$^{-6}$ and an SO$_2$ abundance of 5x10$^{-6}$ with both species having high abundances close to the star. We also modelled $^{34}$SO and found an abundance of 3.1x10$^{-7}$, giving an $^{32}$SO/$^{34}$SO ratio of 21.6. We derive similar results for the circum...

  16. Atomic and Molecular Isotope Ratios in Circumstellar Envelopes: Fractionation vs. Nucleosynthesis

    Science.gov (United States)

    Milam, Stefanie

    The long standing question of "What are the origin, evolution, and fate of our Universe and/or Galaxy?" has puzzled humankind for centuries. One approach to answering this question is to gain further understanding of stellar evolution, since stars are fundamental in galaxy development and evolution. A compilation of stellar composition can reveal the age, dynamics, and possibly the evolutionary state of a galaxy. Stars are the factories of heavy elements, including carbon, nitrogen, and oxygen, that are key to the chemical complexity associated with planetary systems. Primitive materials, such as meteorites and IDPs, have revealed a component of "atypical" isotopic signatures of these fundamental elements denoting a possible stellar origin. Understanding the processes by which these elements derive is essential for astrophysics on cosmochemical, galactic, stellar, and planetary scales. We propose to analyze data obtained from the Herschel Space Observatory of circumstellar envelopes to definitively measure C, N, and O isotope ratios and test current models of photo-selective isotope fractionation vs. nucleosynthetically determined values. This proposal augments completed programs from the Herschel Space Observatory, namely the the HIFISTARS program (PI: Bujarrabal), which at the time of proposal submission a significant portion of data will no longer be under proprietary regulations (https://nhscsci.ipac.caltech.edu/sc/).) The broader implications for this study include fundamental data necessary for furthering our current understanding of stellar nucleosynthesis, circumstellar chemistry, Galactic chemical evolution, and the origin of presolar grains found in primitive materials. We will focus on isotopologues of species formed in thermochemical equilibrium and trace their natal, nucleosynthetic isotope ratios. We will analyze Herschel data obtained for a survey of evolved stars with varying degrees of nuclear processing, evolutionary states, and envelope chemistry

  17. Photoevaporation of Circumstellar Disks Revisited: The Dust-Free Case

    CERN Document Server

    Tanaka, Kei E I; Omukai, Kazuyuki

    2013-01-01

    Photoevaporation by stellar ionizing radiation is believed to play an important role in the dispersal of disks around young stars. The mass loss model for dust-free disks developed by Hollenbach et al. is currently regarded as a conventional one and has been used in a wide variety of studies. However, the rate in this model was derived by the crude so-called 1+1D approximation of ionizing radiation transfer, which assumes that diffuse radiation propagates in a direction vertical to the disk. In this study, we revisit the photoevaporation of dust-free disks by solving the 2D axisymmetric radiative transfer for steady-state disks. Unlike that solved by the conventional model, we determine that direct stellar radiation is more important than the diffuse field at the disk surface. The radial density distribution at the ionization boundary is represented by the single power-law with an index -3/2 in contrast to the conventional double power-law. For this distribution, the photoevaporation rate from the entire disk...

  18. The Nature of Transition Circumstellar Disks II. Southern Molecular Clouds

    CERN Document Server

    Romero, Gisela A; Cieza, Lucas A; Rebassa-Mansergas, Alberto; Merín, Bruno; Castelli, Analía V Smith; Allen, Lori E; Morrell, Nidia; 10.1088/0004-637X/749/1/79

    2012-01-01

    Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate the multiplicity, disk mass, and accretion rate for each object in our sample in order to identify the mechanism potentially responsible for its inner hole. We find that our transition disks show a rich diversity in their spectral energy distribution morphology, have disk masses ranging from lsim1 to 10 M JUP, and accretion rates ranging from lsim10-11 to 10-7.7 M \\odot yr-1. Of the 17 bona fide transition disks in our sample, three, nine, three, and two objects are consistent with giant planet formation, grain growth, ph...

  19. Tracing planet-induced structures in circumstellar disks using molecular lines

    CERN Document Server

    Ober, F; Uribe, A L; Klahr, H H

    2015-01-01

    Circumstellar disks are considered to be the birthplace of planets. Specific structures like spiral arms, gaps, and cavities are characteristic indicators of planet-disk interaction. Investigating these structures can provide insights into the growth of protoplanets and the physical properties of the disk. We investigate the feasibility of using molecular lines to trace planet-induced structures in circumstellar disks. Based on 3D hydrodynamic simulations of planet-disk interactions, we perform self-consistent temperature calculations and produce N-LTE molecular line velocity-channel maps and spectra of these disks using our new N-LTE line radiative transfer code Mol3D. Subsequently, we simulate ALMA observations using the CASA simulator. We consider two nearly face-on inclinations, 5 disk masses, 7 disk radii, and 2 different typical pre-main-sequence host stars (T Tauri, Herbig Ae). We calculate up to 141 individual velocity-channel maps for five molecules/isotopoloques in a total of 32 rotational transitio...

  20. The circumstellar envelope of IRC+10216 from milli-arcsecond to arcmin scales

    CERN Document Server

    Leao, I C; Mekarnia, D; De Medeiros, J R; Vandame, B; Laverny, Patrick De; Vandame, Benoit

    2006-01-01

    Aims.Analysis of the innermost regions of the carbon-rich star IRC+10216 and of the outer layers of its circumstellar envelope have been performed in order to constrain its mass-loss history. Methods: .We analyzed the high dynamic range of near-infrared adaptive optics and the deep V-band images of the circumstellar envelope of IRC+10216 using high angular resolution, collected with the VLT/NACO and FORS1 instruments. Results: .From the near-infrared observations, we present maps of the sub-arcsecond structures, or clumps, in the innermost regions. The morphology of these clumps is found to strongly vary from J- to L-band. Their relative motion appears to be more complex than proposed in earlier works: they can be weakly accelerated, have a constant velocity, or even be motionless with respect to one another. From V-band imaging, we present a high spatial resolution map of the shell distribution in the outer layers of IRC+10216. Shells are resolved well up to a distance of about 90'' to the core of the nebula...

  1. The circumstellar envelope of the C-rich post-AGB star HD 56126

    CERN Document Server

    Hony, S; Waters, L B F M; De Koter, A

    2003-01-01

    We present a detailed study of the circumstellar envelope of the post-asymptotic giant branch ``21 micron object'' HD 56126. We build a detailed dust radiative transfer model of the circumstellar envelope in order to derive the dust composition and mass, and the mass-loss history of the star. To model the emission of the dust we use amorphous carbon, hydrogenated amorphous carbon, magnesium sulfide and titanium carbide. We present a detailed parametrisation of the optical properties of hydrogenated amorphous carbon as a function of H/C content. The mid-infrared imaging and spectroscopy is best reproduced by a single dust shell from 1.2 to 2.6 arcsec radius around the central star. This shell originates from a short period during which the mass-loss rate exceeded 10^(-4) M_sun/yr. We find that the strength of the ``21'' micron feature poses a problem for the TiC identification. The low abundance of Ti requires very high absorption cross-sections in the ultraviolet and visible wavelength range to explain the st...

  2. AGB stars in the LMC: evolution of dust in circumstellar envelopes

    CERN Document Server

    Dell'Agli, F; Schneider, R; Di Criscienzo, M; García-Hernández, D A; Rossi, C; Brocato, E

    2014-01-01

    We calculated theoretical evolutionary sequences of asymptotic giant branch (AGB) stars, including formation and evolution of dust grains in their circumstellar envelope. By considering stellar populations of the Large Magellanic Cloud (LMC), we calculate synthetic colour-colour and colour-magnitude diagrams, which are compared with those obtained by the Spitzer Space Telescope. The comparison between observations and theoretical predictions outlines that extremely obscured carbon-stars and oxygen-rich sources experiencing hot bottom burning (HBB) occupy well defined, distinct regions in the colour-colour ($[3.6]-[4.5]$, $[5.8]-[8.0]$) diagram. The C-rich stars are distributed along a diagonal strip that we interpret as an evolutionary sequence, becoming progressively more obscured as the stellar surface layers enrich in carbon. Their circumstellar envelopes host solid carbon dust grains with size in the range $0.05 2$, are the descendants of stars with initial mass $M_{in} \\sim 2.5 - 3 M_{\\odot}$ in the ver...

  3. Circumstellar disks of the most vigorously accreting young stars.

    Science.gov (United States)

    Liu, Hauyu Baobab; Takami, Michihiro; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M; Karr, Jennifer L; Kusakabe, Nobuhiko; Tsuribe, Toru

    2016-02-01

    Stars may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. Our high-resolution near-infrared imaging has verified the presence of the key associated features, large-scale arms and arcs surrounding four young stellar objects undergoing luminous outbursts. Our hydrodynamics simulations and radiative transfer models show that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation phase. The effect of those tempestuous episodes of disk evolution on star and planet formation remains to be understood. PMID:26989772

  4. Circumstellar disks of the most vigorously accreting young stars.

    Science.gov (United States)

    Liu, Hauyu Baobab; Takami, Michihiro; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M; Karr, Jennifer L; Kusakabe, Nobuhiko; Tsuribe, Toru

    2016-02-01

    Stars may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. Our high-resolution near-infrared imaging has verified the presence of the key associated features, large-scale arms and arcs surrounding four young stellar objects undergoing luminous outbursts. Our hydrodynamics simulations and radiative transfer models show that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation phase. The effect of those tempestuous episodes of disk evolution on star and planet formation remains to be understood.

  5. A SYMMETRIC INNER CAVITY IN THE HD 141569A CIRCUMSTELLAR DISK

    Energy Technology Data Exchange (ETDEWEB)

    Mazoyer, J.; Choquet, É.; Perrin, M. D.; Pueyo, L.; Debes, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21218 (United States); Boccaletti, A. [LESIA, Observatoire de Paris, CNRS, UPMC and Univ. Paris Diderot, 5 place Jules Janssen, F-92190 Meudon (France); Augereau, J.-C.; Lagrange, A.-M. [Univ. Grenoble Alpes, Institut de Planétologie et d´Astrophysique (IPAG) F-38000 Grenoble (France); Wolff, S. G., E-mail: jmazoyer@stsci.edu [Johns Hopkins University, 3400 North Charles Street, Baltimore, MD (United States)

    2016-02-20

    Some circumstellar disks, called transitional or hybrid disks, present characteristics of both protoplanetary disks (significant amount of gas) and debris disks (evolved structures around young main-sequence stars, composed of second generation dust, from collisions between planetesimals). Therefore, they are ideal astrophysical laboratories to witness the last stages of planet formation. The circumstellar disk around HD 141569A was intensively observed and resolved in the past from space, but also from the ground. However, the recent implementation of high contrast imaging systems has opened up new opportunities to re-analyze this object. We analyzed Gemini archival data from the Near-infrared Coronagraphic Imager obtained in 2011 in the H band, using several angular differential imaging techniques (classical ADI, LOCI, KLIP). These images reveal the complex structures of this disk with an unprecedented resolution. We also include archival Hubble Space Telescope images as an independent data set to confirm these findings. Using an analysis of the inner edge of the disk, we show that the inner disk is almost axisymmetrical. The measurement of an offset toward the east observed by previous authors is likely due to the fact that the eastern part of this disk is wider and more complex in substructure. Our precise reanalysis of the eastern side shows several structures, including a splitting of the disk and a small finger detached from the inner edge to the southeast. Finally, we find that the arc at 250 AU is unlikely to be a spiral, at least not at the inclination derived from the first ring, but instead could be interpreted as a third belt at a different inclination. If the very symmetrical inner disk edge is carved by a companion, the data presented here put additional constraints on its position. The observed very complex structures will be confirmed by the new generation of coronagraphic instrument (GPI, SPHERE). However, a full understanding of this system will

  6. Dynamics of Circumstellar Disks; 2, Heating and Cooling

    CERN Document Server

    Nelson, A F; Ruzmaikina, T; Nelson, Andrew F.; Benz, Willy; Ruzmaikina, Tamara

    1999-01-01

    We present a series of 2-d ($r,\\phi$) hydrodynamic simulations of marginally self gravitating disks around protostars using an SPH code. We implement simple dynamical heating and we cool each location as a black body, using a photosphere temperature obtained from the local vertical structure. We synthesize SEDs from our simulations and compare them to fiducial SEDs derived from observed systems. These simulations produce less distinct spiral structure than isothermally evolved systems, especially in the inner third of the disk. Pattern are similar further from the star but do not collapse into condensed objects. The photosphere temperature is well fit to a power law in radius with index $q\\sim1.1$, which is very steep. Far from the star, internal heating ($PdV$ work and shocks) are not responsible for generating a large fraction of the thermal energy contained in the disk matter. Gravitational torques responsible for such shocks cannot transport mass and angular momentum efficiently in the outer disk. Within ...

  7. Effects of stellar flybys on planetary systems: 3D modeling of the circumstellar disks damping effects

    CERN Document Server

    Picogna, Giovanni

    2014-01-01

    Stellar flybys in star clusters are suspected to affect the orbital architecture of planetary systems causing eccentricity excitation and orbital misalignment between the planet orbit and the equatorial plane of the star. We explore whether the impulsive changes in the orbital elements of planets, caused by an hyperbolic stellar flyby, can be fully damped by the circumstellar disk surrounding the star. The time required to disperse stellar clusters is in fact comparable to circumstellar disk's lifetime. We have modelled in 3D a system made of a solar type star surrounded by a low density disk with a giant planet embedded in it approached on a hyperbolic encounter trajectory by a second star, of similar mass and with its own disk. We focus on extreme configurations where a very deep stellar flyby perturbs a Jovian planet on an external orbit. This allows to test in full the ability of the disk to erase the effects of the stellar encounter. We find that the amount of mass lost by the disk during the stellar fly...

  8. First Science Observations with SOFIA/FORCAST: Properties of Intermediate-Luminosity Protostars and Circumstellar Disks in OMC-2

    CERN Document Server

    Adams, Joseph D; Osorio, Mayra; Macias, Enrique; Megeath, S Thomas; Fischer, William J; Ali, Babar; Calvet, Nuria; D'Alessio, Paola; De Buizer, James M; Gull, George E; Henderson, Charles P; Keller, Luke D; Morris, Mark R; Remming, Ian S; Schoenwald, Justin; Shuping, Ralph Y; Stacey, Gordon; Stanke, Thomas; Stutz, Amelia; Vacca, William

    2012-01-01

    We examine eight young stellar objects in the OMC-2 star forming region based on observations from the SOFIA/FORCAST early science phase, the Spitzer Space Telescope, the Herschel Space Observatory, 2MASS, APEX, and other results in the literature. We show the spectral energy distributions of these objects from near-infrared to millimeter wavelengths, and compare the SEDs with those of sheet collapse models of protostars and circumstellar disks. Four of the objects can be modelled as protostars with infalling envelopes, two as young stars surrounded by disks, and the remaining two objects have double-peaked SEDs. We model the double-peaked sources as binaries containing a young star with a disk and a protostar. The six most luminous sources are found in a dense group within a 0.15 x 0.25 pc region; these sources have luminosities ranging from 300 L_sun to 20 L_sun. The most embedded source (OMC-2 FIR 4) can be fit by a class 0 protostar model having a luminosity of ~50 L_sun and mass infall rate of ~10^-4 sol...

  9. FIRST SCIENCE OBSERVATIONS WITH SOFIA/FORCAST: PROPERTIES OF INTERMEDIATE-LUMINOSITY PROTOSTARS AND CIRCUMSTELLAR DISKS IN OMC-2

    International Nuclear Information System (INIS)

    We examine eight young stellar objects in the OMC-2 star-forming region based on observations from the SOFIA/FORCAST early science phase, the Spitzer Space Telescope, the Herschel Space Observatory, Two Micron All Sky Survey, Atacama Pathfinder Experiment, and other results in the literature. We show the spectral energy distributions (SED) of these objects from near-infrared to millimeter wavelengths, and compare the SEDs with those of sheet collapse models of protostars and circumstellar disks. Four of the objects can be modeled as protostars with infalling envelopes, two as young stars surrounded by disks, and the remaining two objects have double-peaked SEDs. We model the double-peaked sources as binaries containing a young star with a disk and a protostar. The six most luminous sources are found in a dense group within a 0.15 × 0.25 pc region; these sources have luminosities ranging from 300 L☉ to 20 L☉. The most embedded source (OMC-2 FIR 4) can be fit by a class 0 protostar model having a luminosity of ∼50 L☉ and mass infall rate of ∼10–4 M☉ yr–1.

  10. FIRST SCIENCE OBSERVATIONS WITH SOFIA/FORCAST: PROPERTIES OF INTERMEDIATE-LUMINOSITY PROTOSTARS AND CIRCUMSTELLAR DISKS IN OMC-2

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Joseph D.; Herter, Terry L.; Gull, George E.; Henderson, Charles P.; Schoenwald, Justin; Stacey, Gordon [Department of Astronomy, Cornell University, Space Sciences Bldg., Ithaca, NY 14853 (United States); Osorio, Mayra; Macias, Enrique [Instituto de Astrofisica de Andalucia, CSIC, Camino Bajo de Huetor 50, E-18008 Granada (Spain); Thomas Megeath, S.; Fischer, William J. [Department of Physics and Astronomy, University of Toledo, Mailstop 111, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Ali, Babar [NHSC/IPAC/Caltech, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Calvet, Nuria [Department of Astronomy, University of Michigan, 825 Dennison Building, 500 Church St, Ann Arbor, MI 48109 (United States); D' Alessio, Paola [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, 58089 Morelia, Michoacan (Mexico); De Buizer, James M.; Shuping, Ralph Y. [SOFIA-University Space Research Association, NASA Ames Research Center, Mail Stop N211-3, Moffett Field, CA 94035 (United States); Keller, Luke D. [Ithaca College, Physics Department, 264 Ctr for Natural Sciences, Ithaca, NY 14850 (United States); Morris, Mark R. [Department of Physics and Astronomy, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1547 (United States); Remming, Ian S. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Stanke, Thomas [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen (Germany); Stutz, Amelia [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); and others

    2012-04-20

    We examine eight young stellar objects in the OMC-2 star-forming region based on observations from the SOFIA/FORCAST early science phase, the Spitzer Space Telescope, the Herschel Space Observatory, Two Micron All Sky Survey, Atacama Pathfinder Experiment, and other results in the literature. We show the spectral energy distributions (SED) of these objects from near-infrared to millimeter wavelengths, and compare the SEDs with those of sheet collapse models of protostars and circumstellar disks. Four of the objects can be modeled as protostars with infalling envelopes, two as young stars surrounded by disks, and the remaining two objects have double-peaked SEDs. We model the double-peaked sources as binaries containing a young star with a disk and a protostar. The six most luminous sources are found in a dense group within a 0.15 Multiplication-Sign 0.25 pc region; these sources have luminosities ranging from 300 L{sub Sun} to 20 L{sub Sun }. The most embedded source (OMC-2 FIR 4) can be fit by a class 0 protostar model having a luminosity of {approx}50 L{sub Sun} and mass infall rate of {approx}10{sup -4} M{sub Sun} yr{sup -1}.

  11. Circumstellar Disks of the Most Vigorously Accreting Young Stars

    CERN Document Server

    Liu, Hauyu Baobab; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M; Karr, Jennifer; Kusakabe, Nobuhiko; Tsuribe, Toru

    2016-01-01

    Young stellar objects (YSOs) may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. We report our high angular resolution, coronagraphic near-infrared polarization imaging observations using the High Contrast Instrument for the Subaru Next Generation Adaptive Optics (HiCIAO) of the Subaru 8.2 m Telescope, towards four YSOs which are undergoing luminous accretion outbursts. The obtained infrared images have verified the presence of several hundred AUs scale arms and arcs surrounding these YSOs. In addition, our hydrodynamics simulations and radiative transfer models further demonstrate that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation p...

  12. Planet--planet scattering in circumstellar gas disks

    OpenAIRE

    Marzari, F.; Baruteau, C.; Scholl, H.

    2010-01-01

    Hydrodynamical simulations of two giant planets embedded in a gaseous disk have shown that in case of a smooth convergent migration they end up trapped into a mean motion resonance. These findings have led to the conviction that the onset of dynamical instability causing close encounters between the planets can occur only after the dissipation of the gas when the eccentricity damping is over. We show that a system of three giant planets may undergo planet-planet scattering when the gaseous di...

  13. Planet--planet scattering in circumstellar gas disks

    CERN Document Server

    Marzari, F; Scholl, H

    2010-01-01

    Hydrodynamical simulations of two giant planets embedded in a gaseous disk have shown that in case of a smooth convergent migration they end up trapped into a mean motion resonance. These findings have led to the conviction that the onset of dynamical instability causing close encounters between the planets can occur only after the dissipation of the gas when the eccentricity damping is over. We show that a system of three giant planets may undergo planet-planet scattering when the gaseous disk, with density values comparable to that of the Minimum Mass Solar Nebula, is still interacting with the planets. The hydrodynamical code FARGO--2D--1D is used to model the evolution ofthe disk and planets, modified to properly handle close encounters between the massive bodies. Our simulations predict a variety of different outcomes of the scattering phase which includes orbital exchange, planet merging and scattering of a planet in a hyperbolic orbit. This implies thatthe final fate of a multiplanet system under the a...

  14. Far-Ultraviolet H2 Emission from Circumstellar Disks

    CERN Document Server

    Ingleby, Laura; Bergin, Edwin; Yerasi, Ashwin; Espaillat, Catherine; Herczeg, Gregory; Roueff, Evelyne; Abgrall, Herve; Hernandez, Jesus; Briceno, Cesar; Pascucci, Ilaria; Miller, Jon; Fogel, Jeffrey; Hartmann, Lee; Meyer, Michael; Carpenter, John; Crockett, Nathan; McClure, Melissa

    2009-01-01

    We analyze the far-ultraviolet (FUV) spectra of 33 classical T Tauri stars (CTTS), including 20 new spectra obtained with the Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) on the Hubble Space Telescope. Of the sources, 28 are in the ~1 Myr old Taurus-Auriga complex or Orion Molecular Cloud, 4 in the 8-10 Myr old Orion OB1a complex and one, TW Hya, in the 10 Myr old TW Hydrae Association. We also obtained FUV ACS/SBC spectra of 10 non-accreting sources surrounded by debris disks with ages between 10 and 125 Myr. We use a feature in the FUV spectra due mostly to electron impact excitation of \\h2 to study the evolution of the gas in the inner disk. We find that the \\h2 feature is absent in non-accreting sources, but is detected in the spectra of CTTS and correlates with accretion luminosity. Since all young stars have active chromospheres which produce strong X-ray and UV emission capable of exciting \\h2 in the disk, the fact that the non-accreting sources show no \\h2 emission implies that the \\h2 ga...

  15. Properties of the $\\delta$ Scorpii Circumstellar Disk from Continuum Modeling

    CERN Document Server

    Carciofi, A C; Björkman, J E; Calderón, J V P; Fabregat, J; Kuratov, K S; Kusakin, A V; Lario, P G; Magalhães, A M; Marang, F; Miroshnichenko, A S

    2006-01-01

    We present optical $WBVR$ and infrared $JHKL$ photometric observations of the Be binary system $\\delta$ Sco, obtained in 2000--2005, mid-infrared (10 and $18 \\mu$m) photometry and optical ($\\lambda\\lambda$ 3200--10500 \\AA) spectropolarimetry obtained in 2001. Our optical photometry confirms the results of much more frequent visual monitoring of $\\delta$ Sco. In 2005, we detected a significant decrease in the object's brightness, both in optical and near-infrared brightness, which is associated with a continuous rise in the hydrogen line strenghts. We discuss possible causes for this phenomenon, which is difficult to explain in view of current models of Be star disks. The 2001 spectral energy distribution and polarization are succesfully modeled with a three-dimensional non-LTE Monte Carlo code which produces a self-consistent determination of the hydrogen level populations, electron temperature, and gas density for hot star disks. Our disk model is hydrostatically supported in the vertical direction and radia...

  16. CO and HI emission from the circumstellar envelopes of some evolved stars

    CERN Document Server

    Diep, P N; Nhung, P T; Tuan-Anh, P; Bertre, T Le; Winters, J M; Matthews, L D; Phuong, N T; Thao, N T; Darriulat, P

    2015-01-01

    Studies of the CO and HI radio emission of some evolved stars are presented using data collected by the IRAM Plateau de Bure interferometer and Pico Veleta telescope, the Nan\\c{c}ay Radio Telescope and the JVLA and ALMA arrays. Approximate axial symmetry of the physical and kinematic properties of the circumstellar envelope (CSE) are observed in CO emission, in particular, from RS Cnc, EP Aqr and the Red Rectangle. A common feature is the presence of a bipolar outflow causing an enhanced wind velocity in the polar directions. HI emission extends to larger radial distances than probed by CO emission and displays features related to the interaction between the stellar outflow and interstellar matter. With its unprecedented sensitivity, FAST will open a new window on such studies. Its potential in this domain is briefly illustrated.

  17. The PDS 66 Circumstellar Disk as seen in Polarized Light with the Gemini Planet Imager

    CERN Document Server

    Wolff, Schuyler G; Millar-Blanchaer, Maxwell A; Nielsen, Eric L; Wang, Jason; Cardwell, Andrew; Chilcote, Jeffrey; Dong, Ruobing; Draper, Zachary H; Duchene, Gaspard; Fitzgerald, Michael P; Goodsell, Stephen J; Grady, Carol A; Graham, James R; Greenbaum, Alexandra Z; Hartung, Markus; Hibon, Pascale; Hines, Dean C; Hung, Li-Wei; Kalas, Paul; Macintosh, Bruce; Marchis, Franck; Marois, Christian; Pueyo, Laurent; Rantakyro, Fredrik T; Schneider, Glenn; Sivaramakrishnan, Anand; Wiktorowicz, Sloane J

    2016-01-01

    We present H and K band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.12'' inner working angle (IWA) in H band, almost 3 times as close to the star as the previous HST observations with NICMOS and STIS (0.35'' effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physical mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the East side of the disk which is inferred to be nearer to us. We also detect a lateral asymmetry in the South possibly due to shadowing from material within the inner working angle. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging.

  18. THE PDS 66 CIRCUMSTELLAR DISK AS SEEN IN POLARIZED LIGHT WITH THE GEMINI PLANET IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Schuyler G.; Greenbaum, Alexandra Z. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Perrin, Marshall; Hines, Dean C. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Millar-Blanchaer, Maxwell A. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Nielsen, Eric L. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Wang, Jason; Dong, Ruobing; Duchêne, Gaspard; Graham, James R.; Kalas, Paul [Astronomy Department, University of California, Berkeley, Berkeley, CA 94720 (United States); Cardwell, Andrew [LBT Observatory, University of Arizona, 933 N. Cherry Avenue, Room 552, Tucson, AZ 85721 (United States); Chilcote, Jeffrey [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Draper, Zachary H. [University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Fitzgerald, Michael P.; Hung, Li-Wei [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 (United States); Goodsell, Stephen J. [Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Hartung, Markus; Hibon, Pascale, E-mail: swolff9@jh.edu [Gemini Observatory, Casilla 603, La Serena (Chile); and others

    2016-02-10

    We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physical mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging.

  19. A CHARA ARRAY SURVEY OF CIRCUMSTELLAR DISKS AROUND NEARBY Be-TYPE STARS

    International Nuclear Information System (INIS)

    We report on a high angular resolution survey of circumstellar disks around 24 northern sky Be stars. The K-band continuum survey was made using the CHARA Array long baseline interferometer (baselines of 30-331 m). The interferometric visibilities were corrected for the flux contribution of stellar companions in those cases where the Be star is a member of a known binary or multiple system. For those targets with good (u, v) coverage, we used a four-parameter Gaussian elliptical disk model to fit the visibilities and to determine the axial ratio, position angle, K-band photospheric flux contribution, and angular diameter of the disk's major axis. For the other targets with relatively limited (u, v) coverage, we constrained the axial ratio, inclination angle, and/or disk position angle where necessary in order to resolve the degeneracy between possible model solutions. We also made fits of the ultraviolet and infrared spectral energy distributions (SEDs) to estimate the stellar angular diameter and infrared flux excess of each target. The mean ratio of the disk diameter (measured in K-band emission) to stellar diameter (from SED modeling) is 4.4 among the 14 cases where we reliably resolved the disk emission, a value which is generally lower than the disk size ratio measured in the higher opacity Hα emission line. We estimated the equatorial rotational velocity from the projected rotational velocity and disk inclination for 12 stars, and most of these stars rotate close to or at the critical rotational velocity.

  20. ALMA Observations of Circumstellar Disks in the Upper Scorpius OB Association

    CERN Document Server

    Barenfeld, Scott A; Ricci, Luca; Isella, Andrea

    2016-01-01

    We present ALMA observations of 106 G-, K-, and M-type stars in the Upper Scorpius OB Association hosting circumstellar disks. With these data, we measure the 0.88 mm continuum and $^{12}$CO $J = 3-2$ line fluxes of disks around low mass ($0.14-1.66$ $M_{\\odot}$) stars at an age of 5-11 Myr. Of the 75 primordial disks in the sample, 53 are detected in the dust continuum and 26 in CO. Of the 31 disks classified as debris/evolved transitional disks, 5 are detected in the continuum and none in CO. The lack of CO emission in approximately half of the disks with detected continuum emission can be explained if CO is optically thick but has a compact emitting area ($\\lesssim 40$ AU), or if the CO is heavily depleted by a factor of at least $\\sim1000$ relative to interstellar medium abundances and is optically thin. The continuum measurements are used to estimate the dust mass of the disks. We find a correlation between disk dust mass and stellar host mass consistent with a power-law relation of $M_{dust}\\propto M_*^...

  1. Line-driven ablation of circumstellar disks: I. Optically thin decretion disks of classical Oe/Be stars

    CERN Document Server

    Kee, N D; Sundqvist, J O

    2016-01-01

    The extreme luminosities of hot, massive stars drive strong stellar winds through UV line-scattering. For OB stars with an orbiting circumstellar disk, we explore the effect of such line-scattering in ablating disk material, initially focusing on the marginally optically thin decretion disks of classical Oe and Be stars. For this we apply a multi-dimensional radiation-hydrodynamics code, assuming optically thin ray tracing for the stellar continuum and a multi-ray Sobolev treatment of the line transfer. This accounts for desaturation of line-absorption by Keplerian shear in the disk, and associated driving by non-radial photons. Results show dense, intermediate-speed surface ablation, consistent with the strong, blue-shifted absorption seen in UV wind lines of Be shell stars. The asymptotic ablation rate is typically an order-unity factor times the stellar wind mass loss rate, leading to disk destruction times of order months to years for Be disks, consistent with observations. The much stronger radiative for...

  2. Volatile-Rich Circumstellar Gas in the Unusual 49 Ceti Debris Disk

    CERN Document Server

    Roberge, Aki; Kamp, Inga; Weinberger, Alycia J; Grady, Carol A

    2014-01-01

    We present Hubble Space Telescope STIS far-UV spectra of the edge-on disk around 49 Ceti, one of the very few debris disks showing sub-mm CO emission. Many atomic absorption lines are present in the spectra, most of which arise from circumstellar gas lying along the line-of-sight to the central star. We determined the line-of-sight CI column density, estimated the total carbon column density, and set limits on the OI column density. Surprisingly, no line-of-sight CO absorption was seen. We discuss possible explanations for this non-detection, and present preliminary estimates of the carbon abundances in the line-of-sight gas. The C/Fe ratio is much greater than the solar value, suggesting that 49 Cet harbors a volatile-rich gas disk similar to that of Beta Pictoris.

  3. THE GAS/DUST RATIO OF CIRCUMSTELLAR DISKS: TESTING MODELS OF PLANETESIMAL FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Horne, David [New York Center for Astrobiology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180-3590 (United States); Gibb, Erika [Department of Physics and Astronomy, University of Missouri-St. Louis, 8001 Natural Bridge Road, St. Louis, MO 63121 (United States); Rettig, Terrence W.; Tilley, David; Balsara, Dinshaw [Center for Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Brittain, Sean [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978 (United States)

    2012-07-20

    We present high-resolution, near-infrared NIRSPEC observations of CO absorption toward six class II T Tauri stars: AA Tau, DG Tau, IQ Tau, RY Tau, CW Tau, and Haro 6-5b. {sup 12}CO overtone absorption lines originating from the circumstellar disk of each object were used to calculate line-of-sight gas column densities toward each source. We measured the gas/dust ratio as a function of disk inclination, utilizing measured visual extinctions and inclinations for each star. The majority of our sources show further evidence for a correlation between the gas/dust column density ratio and disk inclination similar to that found by Rettig et al.

  4. THE GAS/DUST RATIO OF CIRCUMSTELLAR DISKS: TESTING MODELS OF PLANETESIMAL FORMATION

    International Nuclear Information System (INIS)

    We present high-resolution, near-infrared NIRSPEC observations of CO absorption toward six class II T Tauri stars: AA Tau, DG Tau, IQ Tau, RY Tau, CW Tau, and Haro 6-5b. 12CO overtone absorption lines originating from the circumstellar disk of each object were used to calculate line-of-sight gas column densities toward each source. We measured the gas/dust ratio as a function of disk inclination, utilizing measured visual extinctions and inclinations for each star. The majority of our sources show further evidence for a correlation between the gas/dust column density ratio and disk inclination similar to that found by Rettig et al.

  5. ALMA Observations of Circumstellar Disks in the Upper Scorpius OB Association

    Science.gov (United States)

    Barenfeld, Scott A.; Carpenter, John M.; Ricci, Luca; Isella, Andrea

    2016-08-01

    We present ALMA observations of 106 G-, K-, and M-type stars in the Upper Scorpius OB Association hosting circumstellar disks. With these data, we measure the 0.88 mm continuum and 12CO J = 3-2 line fluxes of disks around low-mass (0.14-1.66 M ⊙) stars at an age of 5-11 Myr. Of the 75 primordial disks in the sample, 53 are detected in the dust continuum and 26 in CO. Of the 31 disks classified as debris/evolved transitional disks, five are detected in the continuum and none in CO. The lack of CO emission in approximately half of the disks with detected continuum emission can be explained if CO is optically thick but has a compact emitting area (≲40 au), or if the CO is heavily depleted by a factor of at least ˜1000 relative to interstellar medium abundances and is optically thin. The continuum measurements are used to estimate the dust mass of the disks. We find a correlation between disk dust mass and stellar host mass consistent with a power-law relation of {M}{dust}\\propto {M}* 1.67+/- 0.37. Disk dust masses in Upper Sco are compared to those measured in the younger Taurus star-forming region to constrain the evolution of disk dust mass. We find that the difference in the mean of {log}({M}{dust}/{M}* ) between Taurus and Upper Sco is 0.64 ± 0.09, such that M dust/M * is lower in Upper Sco by a factor of ˜4.5.

  6. Dynamics of Circumstellar Disks. III. The Case of GG Tau A

    Science.gov (United States)

    Nelson, Andrew F.; Marzari, F.

    2016-08-01

    We present two-dimensional hydrodynamic simulations using the Smoothed Particle Hydrodynamic code, VINE, to model a self-gravitating binary system. We model configurations in which a circumbinary torus+disk surrounds a pair of stars in orbit around each other and a circumstellar disk surrounds each star, similar to that observed for the GG Tau A system. We assume that the disks cool as blackbodies, using rates determined independently at each location in the disk by the time dependent temperature of the photosphere there. We assume heating due to hydrodynamical processes and to radiation from the two stars, using rates approximated from a measure of the radiation intercepted by the disk at its photosphere. We simulate a suite of systems configured with semimajor axes of either a = 62 AU (“wide”) or a = 32 AU (“close”), and with assumed orbital eccentricity of either e = 0 or e = 0.3. Each simulation follows the evolution for ˜6500-7500 yr, corresponding to about three orbits of the torus around the center of mass. Our simulations show that strong, sharply defined spiral structures are generated from the stirring action of the binary and that, in some cases, these structures fragment into 1-2 massive clumps. The torus quickly fragments into several dozen such fragments in configurations in which either the binary is replaced by a single star of equal mass, or radiative heating is neglected. The spiral structures extend inwards to the circumstellar environment as large scale material streams for which most material is found on trajectories that return it to the torus on a timescale of 1-200 yr, with only a small fraction accreting into the circumstellar environment. The spiral structures also propagate outwards through the torus, generating net outwards mass flow, and eventually losing coherence at large distances from the stars. The torus becomes significantly eccentric in shape over most of its evolution. In all configurations, accretion onto the stars

  7. Dynamics of Circumstellar Disks. III. The Case of GG Tau A

    Science.gov (United States)

    Nelson, Andrew F.; Marzari, F.

    2016-08-01

    We present two-dimensional hydrodynamic simulations using the Smoothed Particle Hydrodynamic code, VINE, to model a self-gravitating binary system. We model configurations in which a circumbinary torus+disk surrounds a pair of stars in orbit around each other and a circumstellar disk surrounds each star, similar to that observed for the GG Tau A system. We assume that the disks cool as blackbodies, using rates determined independently at each location in the disk by the time dependent temperature of the photosphere there. We assume heating due to hydrodynamical processes and to radiation from the two stars, using rates approximated from a measure of the radiation intercepted by the disk at its photosphere. We simulate a suite of systems configured with semimajor axes of either a = 62 AU (“wide”) or a = 32 AU (“close”), and with assumed orbital eccentricity of either e = 0 or e = 0.3. Each simulation follows the evolution for ˜6500–7500 yr, corresponding to about three orbits of the torus around the center of mass. Our simulations show that strong, sharply defined spiral structures are generated from the stirring action of the binary and that, in some cases, these structures fragment into 1–2 massive clumps. The torus quickly fragments into several dozen such fragments in configurations in which either the binary is replaced by a single star of equal mass, or radiative heating is neglected. The spiral structures extend inwards to the circumstellar environment as large scale material streams for which most material is found on trajectories that return it to the torus on a timescale of 1–200 yr, with only a small fraction accreting into the circumstellar environment. The spiral structures also propagate outwards through the torus, generating net outwards mass flow, and eventually losing coherence at large distances from the stars. The torus becomes significantly eccentric in shape over most of its evolution. In all configurations, accretion onto the

  8. VizieR Online Data Catalog: CO and HCN observations of circumstellar envelopes (Loup+ 1993)

    Science.gov (United States)

    Loup, C.; Forveille, T.; Omont, A.; Paul, J. F.

    1997-06-01

    We have searched the literature for all observations of the 12CO(1-0), 12CO(2-1), and HCN(1-0) lines in circumstellar envelopes of late type stars published between January 1985 and September 1992. We report data for 1361 observations (stellar velocity, expansion velocity, peak intensity, integrated area, noise level). This CO-HCN sample now contains 444 sources. 184 are identified as oxygen-rich, 205 as carbon-rich, and there are 9 S stars. About 85% of the sources are AGB stars. There are 32 planetary nebulae and about thirty post-AGB stars candidates. Besides results of millimeter observations, we also list identifications, coordinates, IRAS data, chemical and spectral types for every source. For AGB stars, we have estimated (or compiled) bolometric fluxes and distances for 349 sources, and mass loss rates deduced from CO results for 324 sources, taking into account the influence of the CO photodissociation radius. We also list mass loss rates derived from detailed models of CO emission which we could find in the literature. (7 data files).

  9. SN 2012ca: a stripped envelope core-collapse SN interacting with dense circumstellar medium

    CERN Document Server

    Inserra, C; Scalzo, R; Fraser, M; Pastorello, A; Childress, M; Pignata, G; Jerkstrand, A; Kotak, R; Benetti, S; Della Valle, M; Gal-Yam, A; Mazzali, P; Smith, K; Sullivan, M; Valenti, S; Yaron, O; Young, D

    2013-01-01

    We report optical and near-infrared observations of SN 2012ca with PESSTO, spread over one year since discovery. The SN bears many similarities to SN 1997cy and to other events classified as Type IIn but which have been suggested to have a thermonuclear origin with narrow hydrogen lines produced when the ejecta impact a hydrogen-rich circumstellar medium (CSM). Our analysis, especially in the nebular phase, reveals the presence of strong oxygen, magnesium and carbon features. The broad ejecta lines resemble those seen in Type Ic SNe. This suggests a core collapse explanation for this event, in contrast to the thermonuclear interpretation proposed for some members of this group. We suggest that the data can be explained with a hydrogen and helium deficient SN ejecta (Type I) interacting with a hydrogen-rich CSM, but that the explosion was more likely a Ic core-collapse explosion than a Type Ia thermonuclear explosion. This suggests two channels (both thermonuclear and stripped envelope core-collapse) are respo...

  10. CARMA CO(J = 2 - 1) Observations of the Circumstellar Envelope of Betelgeuse

    CERN Document Server

    O'Gorman, Eamon; Brown, Joanna M; Brown, Alexander; Redfield, Seth; Richter, Matthew J; Requena-Torres, Miguel A

    2012-01-01

    We report radio interferometric observations of the 12C16O 1.3 mm J = 2-1 emission line in the circumstellar envelope of the M supergiant Alpha Ori and have detected and separated both the S1 and S2 flow components for the first time. Observations were made with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) interferometer in the C, D, and E antenna configurations. We obtain good u-v coverage (5-280 klambda) by combining data from all three configurations allowing us to trace spatial scales as small as 0.9\\arcsec over a 32\\arcsec field of view. The high spectral and spatial resolution C configuration line profile shows that the inner S1 flow has slightly asymmetric outflow velocities ranging from -9.0 km s-1 to +10.6 km s-1 with respect to the stellar rest frame. We find little evidence for the outer S2 flow in this configuration because the majority of this emission has been spatially-filtered (resolved out) by the array. We also report a SOFIA-GREAT CO(J= 12-11) emission line profile w...

  11. Structure and Composition of Two Transitional Circumstellar Disks in Corona Australis

    CERN Document Server

    Hughes, A M; Wilner, D J; Meyer, M R; Carpenter, J M; Qi, C; Hales, A S; Casassus, S; Hogerheijde, M R; Mamajek, E E; Wolf, S; Henning, T; Silverstone, M D

    2010-01-01

    The late stages of evolution of the primordial circumstellar disks surrounding young stars are poorly understood, yet vital to constrain theories of planet formation. We consider basic structural models for the disks around two ~10 Myr-old members of the nearby RCrA association, RX J1842.9-3532 and RX J1852.3-3700. We present new arcsecond-resolution maps of their 230 GHz continuum emission from the Submillimeter Array and unresolved CO(3-2) spectra from the Atacama Submillimeter Telescope Experiment. By combining these data with broadband fluxes from the literature and infrared fluxes and spectra from the catalog of the Formation and Evolution of Planetary Systems (FEPS) Legacy program on the Spitzer Space Telescope, we assemble a multiwavelength data set probing the gas and dust disks. Using the Monte Carlo radiative transfer code RADMC to model simultaneously the SED and millimeter continuum visibilities, we derive basic dust disk properties and identify an inner cavity of radius 16 AU in the disk around R...

  12. THE FIRST DETERMINATION OF THE VISCOSITY PARAMETER IN THE CIRCUMSTELLAR DISK OF A Be STAR

    Energy Technology Data Exchange (ETDEWEB)

    Carciofi, Alex C.; Bjorkman, Jon E.; Haubois, Xavier [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, 05508-900, Sao Paulo, SP (Brazil); Otero, Sebastian A. [American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138 (United States); Okazaki, Atsuo T. [Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605 (Japan); Stefl, Stanislav; Rivinius, Thomas [European Organisation for Astronomical Research in the Southern Hemisphere, Casilla 19001, Santiago 19 (Chile); Baade, Dietrich, E-mail: carciofi@usp.br, E-mail: jon@physics.utoledo.edu [European Organisation for Astronomical Research in the Southern Hemisphere, Karl-Schwarzschild-Str. 2, 85748 Garching bei Muenchen (Germany)

    2012-01-15

    Be stars possess gaseous circumstellar decretion disks, which are well described using standard {alpha}-disk theory. The Be star 28 CMa recently underwent a long outburst followed by a long period of quiescence, during which the disk dissipated. Here we present the first time-dependent models of the dissipation of a viscous decretion disk. By modeling the rate of decline of the V-band excess, we determine that the viscosity parameter {alpha} = 1.0 {+-} 0.2, corresponding to a mass injection rate M-dot =(3.5{+-}1.3) Multiplication-Sign 10{sup -8} M{sub Sun} yr{sup -1}. Such a large value of {alpha} suggests that the origin of the turbulent viscosity is an instability in the disk whose growth is limited by shock dissipation. The mass injection rate is more than an order of magnitude larger than the wind mass-loss rate inferred from UV observations, implying that the mass injection mechanism most likely is not the stellar wind, but some other mechanism.

  13. Testing circumstellar disk lifetimes in young embedded clusters associated with the Vela Molecular Ridge

    CERN Document Server

    Massi, Fabrizio; Codella, Claudio; Testi, Leonardo; Vanzi, Leonardo; Gomes, Joana

    2010-01-01

    Context. The Vela Molecular Ridge hosts a number of young embedded star clusters in the same evolutionary stage. Aims. The main aim of the present work is testing whether the fraction of members with a circumstellar disk in a sample of clusters in the cloud D of the Vela Molecular Ridge, is consistent with relations derived for larger samples of star clusters with an age spread. Besides, we want to constrain the age of the young embedded star clusters associated with cloud D. Methods. We carried out L (3.78 microns) photometry on images of six young embedded star clusters associated with cloud D of the Vela Molecular Ridge, taken with ISAAC at the VLT. These data are complemented with the available HKs photometry. The 6 clusters are roughly of the same size and appear to be in the same evolutionary stage. The fraction of stars with a circumstellar disk was measured in each cluster by counting the fraction of sources displaying a NIR excess in colour-colour (HKsL) diagrams. Results. The L photometry allowed us...

  14. BANYAN. VIII. New Low-Mass Stars and Brown Dwarfs with Candidate Circumstellar Disks

    CERN Document Server

    Boucher, Anne; Gagné, Jonathan; Malo, Lison; Faherty, Jacqueline K; Doyon, René; Chen, Christine H

    2016-01-01

    We present the results of a search for new circumstellar disks around low-mass stars and brown dwarfs with spectral types >K5 that are confirmed or candidate members of nearby young moving groups. Our search input sample was drawn from the BANYAN surveys of Malo et al. and Gagn\\'e et al. Two-Micron All-Sky Survey and Wide-field Infrared Survey Explorer data were used to detect near- to mid-infrared excesses that would reveal the presence of circumstellar disks. A total of 13 targets with convincing excesses were identified: four are new and nine were already known in the literature. The new candidates are 2MASS J05010082$-$4337102 (M4.5), J08561384$-$1342242 (M8$\\,\\gamma$), J12474428$-$3816464 (M9$\\,\\gamma$) and J02265658$-$5327032 (L0$\\,\\delta$), and are candidate members of the TW Hya ($\\sim10\\pm 3\\,$Myr), Columba ($\\sim 42^{+6}_{-4}\\,$Myr) and Tucana-Horologium ($\\sim 45\\pm 4\\,$Myr) associations, with masses of $120$ and $13-18\\,M_{\\mathrm{Jup}}$. The M8$-$L0 objects in Columba and Tucana-Horologium are po...

  15. V409 Tau As Another AA Tau: Photometric Observations of Stellar Occultations by the Circumstellar Disk

    CERN Document Server

    Rodriguez, Joseph E; Stassun, Keivan G; Siverd, Robert J; Cargile, Phillip; Weintraub, David A; Beatty, Thomas G; Gaudi, B Scott; Mamajek, Eric E; Sanchez, Nicole

    2015-01-01

    AA Tau is a well studied young stellar object that presents many of the photometric characteristics of a Classical T Tauri star (CTTS), including short-timescale stochastic variability attributed to spots and/or accretion as well as long duration dimming events attributed to occultations by vertical features (e.g., warps) in its circumstellar disk. We present new photometric observations of AA Tau from the Kilodegree Extremely Little Telescope North (KELT-North) which reveal a deep, extended dimming event in 2011, which we show supports the interpretation by Bouvier et al. (2013) of an occultation by a high-density feature in the circumstellar disk located >8 AU from the star. We also present KELT-North observations of V409 Tau, a relatively unstudied young stellar object also in Taurus-Auriga, showing short timescale erratic variability, along with two separate long and deep dimming events, one from January 2009 through late October 2010, and the other from March 2012 until at least September 2013. We interp...

  16. The HD 163296 Circumstellar Disk in Scattered Light: Evidence of Time-Variable Self-Shadowing

    Science.gov (United States)

    Wisniewski, John P.; Clampin, Mark; Grady, Carol A.; Ardila, David R.; Ford, Holland C.; Golimowski, David A.; Illingworth, Garth D.; Krist, John E.

    2008-01-01

    We present the first multi-color view of the scattered light disk of the Herbig Ae star HD 163296, based on coronagraphic observations from the Hubble Space Telescope Advanced Camera for Surveys (ACS). Radial profile fits of the surface brightness along the disk's semi-major axis indicates that the disk is not continuously flared, and extends to approx.540 AU. The disk's color (V-I)=1.1 at a radial distance of 3.5" is redder than the observed stellar color (V-I)=0.15. This red disk color might be indicative of either an evolution in the grain size distribution (i.e. grain growth) and/or composition, both of which would be consistent with the observed non-flared geometry of the outer disk. We also identify a single ansa morphological structure in our F435W ACS data, which is absent from earlier epoch F606W and F814W ACS data, but corresponds to one of the two ansa observed in archival HST STIS coronagraphic data. Following transformation to similar band-passes, we find that the scattered light disk of HD 163296 is 1 mag arcsec(sup -2) fainter at 3.5" in the STIS data than in the ACS data. Moreover, variations are seen in (i) the visibility of the ansa(e) structures, in (ii) the relative surface brightness of the ansa(e) structures, and in (iii) the (known) intrinsic polarization of the system. These results indicate that the scattered light from the HD 163296 disk is variable. We speculate that the inner disk wall, which Sitko et al. suggests has a variable scale height as diagnosed by near-IR SED variability, induces variable self-shadowing of the outer disk. We further speculate that the observed surface brightness variability of the ansa(e) structures may indicate that the inner disk wall is azimuthally asymmetric. Subject headings: circumstellar matter - stars: individual (HD 163296) - planetary systems: formation - planetary systems: protoplanetary disks

  17. Observational constraints for the circumstellar disk of the B[e] star CPD-52 9243

    Science.gov (United States)

    Cidale, L. S.; Borges Fernandes, M.; Andruchow, I.; Arias, M. L.; Kraus, M.; Chesneau, O.; Kanaan, S.; Curé, M.; de Wit, W. J.; Muratore, M. F.

    2012-12-01

    Context. The formation and evolution of gas and dust environments around B[e] supergiants are still open issues. Aims: We intend to study the geometry, kinematics and physical structure of the circumstellar environment (CE) of the B[e] supergiant CPD-52 9243 to provide further insights into the underlying mechanism causing the B[e] phenomenon. Methods: The influence of the different physical mechanisms acting on the CE (radiation pressure, rotation, bi-stability or tidal forces) is somehow reflected in the shape and kinematic properties of the gas and dust regions (flaring, Keplerian, accretion or outflowing disks). To investigate these processes we mainly used quasi-simultaneous observations taken with high spatial resolution optical long-baseline interferometry (VLTI/MIDI), near-IR spectroscopy of CO bandhead features (Gemini/Phoenix and VLT/CRIRES) and optical spectra (CASLEO/REOSC). Results: High angular resolution interferometric measurements obtained with VLTI/MIDI provide strong support for the presence of a dusty disk(ring)-like structure around CPD-52 9243, with an upper limit for its inner edge of ~8 mas (~27.5 AU, considering a distance of 3.44 kpc to the star). The disk has an inclination angle with respect to the line of sight of 46 ± 7°. The study of CO first overtone bandhead evidences a disk structure in Keplerian rotation. The optical spectrum indicates a rapid outflow in the polar direction. Conclusions: The IR emission (CO and warm dust) indicates Keplerian rotation in a circumstellar disk while the optical line transitions of various species are consistent with a polar wind. Both structures appear simultaneously and provide further evidence for the proposed paradigms of the mass-loss in supergiant B[e] stars. The presence of a detached cold CO ring around CPD-52 9243 could be due to a truncation of the inner disk caused by a companion, located possibly interior to the disk rim, clearing the center of the system. More spectroscopic and

  18. Spitzer Observations of G Dwarfs in the Pleiades: Circumstellar Debris Disks at 100 Myr Age

    CERN Document Server

    Stauffer, J R; Carpenter, J; Hillenbrand, L; Backman, D; Meyer, M R; Kim, J S; Silverstone, M D; Young, E; Hines, D C; Soderblom, D R; Mamajek, E E; Morris, P; Bouwman, J; Strom, S E

    2005-01-01

    Fluxes and upper limits in the wavelength range from 3.6 to 70 microns from the Spitzer Space Telescope are provided for twenty solar-mass Pleiades members. One of these stars shows a probable mid-IR excess and two others have possible excesses, presumably due to circumstellar debris disks. For the star with the largest, most secure excess flux at MIPS wavelengths, HII1101, we derive Log(L[dust]/L[Sun]) ~ -3.8 and an estimated debris disk mass of 4.2 x 10^-5 M(Earth) for an assumed uniform dust grain size of 10 microns If the stars with detected excesses are interpreted as stars with relatively recent, large collision events producing a transient excess of small dust particles, the frequency of such disk transients is about ~ 10 % for our ~ 100 Myr, Pleiades G dwarf sample. For the stars without detected 24-70 micron excesses, the upper limits to their fluxes correspond to approximate 3 sigma upper limits to their disk masses of 6 x 10^-6 M(Earth) using the MIPS 24 micron upper limit, or 2 x 10^-4 M(Earth) us...

  19. Far-infrared and sub-millimetre imaging of HD~76582's circumstellar disk

    CERN Document Server

    Marshall, J P; Holland, W S; Matthews, B C; Greaves, J S; Zuckerman, B

    2016-01-01

    Debris disks, the tenuous rocky and icy remnants of planet formation, are believed to be evidence for planetary systems around other stars. The JCMT/SCUBA-2 debris disk legacy survey 'SCUBA-2 Observations of Nearby Stars' (SONS) observed 100 nearby stars, amongst them HD~76582, for evidence of such material. Here we present imaging observations by JCMT/SCUBA-2 and \\textit{Herschel}/PACS at sub-millimetre and far-infrared wavelengths, respectively. We simultaneously model the ensemble of photometric and imaging data, spanning optical to sub-millimetre wavelengths, in a self-consistent manner. At far-infrared wavelengths, we find extended emission from the circumstellar disk providing a strong constraint on the dust spatial location in the outer system, although the angular resolution is too poor to constrain the interior of the system. In the sub-millimetre, photometry at 450 and 850~$\\mu$m reveal a steep fall-off that we interpret as a disk dominated by moderately-sized dust grains ($a_{\\rm min}~=~36~\\mu$m), ...

  20. A Deep Spitzer Survey of Circumstellar Disks in the Young Double Cluster, h and chi Persei

    CERN Document Server

    Cloutier, Ryan; Rieke, George; Kenyon, Scott J; Balog, Zoltan; Jayawardhana, Ray

    2014-01-01

    We analyze very deep IRAC and MIPS photometry of $\\sim$ 12,500 members of the 14 Myr old Double Cluster, h and $\\chi$ Persei, building upon on our earlier, shallower Spitzer studies (Currie et al. 2007a, 2008a). Numerous likely members show infrared (IR) excesses at 8 {\\mu}m and 24 $\\mu$m indicative of circumstellar dust. The frequency of stars with 8 $\\mu$m excess is at least 2% for our entire sample, slightly lower (higher) for B/A stars (later type, lower-mass stars). Optical spectroscopy also identifies gas in about 2% of systems but with no clear trend between the presence of dust and gas. Spectral energy distribution (SED) modeling of 18 sources with detections at optical wavelengths through MIPS 24 $\\mu m$ reveals a diverse set of disk evolutionary states, including a high fraction of transitional disks, although similar data for all disk-bearing members would provide better constraints. We combine our results with those for other young clusters to study the global evolution of dust/gas disks. For nomi...

  1. A CHARA Array Survey of Circumstellar Disks around Nearby Be-type Stars

    CERN Document Server

    Touhami, Y; Schaefer, G H; McAlister, H A; Ridgway, S T; Richardson, N D; Matson, R; Grundstrom, E D; Brummelaar, T A ten; Goldfinger, P J; Sturmann, L; Sturmann, J; Turner, N H; Farrington, C

    2013-01-01

    We report on a high angular resolution survey of circumstellar disks around 24 northern sky Be stars. The K-band continuum survey was made using the CHARA Array long baseline interferometer (baselines of 30 to 331 m). The interferometric visibilities were corrected for the flux contribution of stellar companions in those cases where the Be star is a member of a known binary or multiple system. For those targets with good uv coverage, we used a four parameter Gaussian elliptical disk model to fit the visibilities and to determine the axial ratio, position angle, K-band photospheric flux contribution, and angular diameter of the disk major axis. For the other targets with relatively limited uv coverage, we constrained the axial ratio, inclination angle, and or disk position angle where necessary in order to resolve the degeneracy between possible model solutions. We also made fits of the ultraviolet and infrared spectral energy distributions to estimate the stellar angular diameter and infrared flux excess of e...

  2. Resolving the inner regions of the HD97048 circumstellar disk with VLT/NACO polarimetric differential imaging

    CERN Document Server

    Quanz, Sascha P; Apai, Daniel; Wolf, Sebastian; Henning, Thomas

    2011-01-01

    Circumstellar disks are the cradles of planetary systems and their physical and chemical properties directly influence the planet formation process. As most planets supposedly form in the inner disk regions, i.e., within a few tens of AU, it is crucial to study circumstellar disk on these scales to constrain the conditions for planet formation. Our aims are to characterize the inner regions of the circumstellar disk around the young Herbig Ae/Be star HD97048 in polarized light. We use VLT/NACO to observe HD97048 in polarimetric differential imaging (PDI) mode in the H and Ks band. We spatially resolve the disk around HD97048 in polarized flux in both filters on scales between ~0.1"-1.0" corresponding to the inner ~16-160 AU. Fitting isophots to the flux calibrated H-band image between 13 - 14 mag/arcsec^2 and 14 - 15 mag/arcsec^2 we derive a apparent disk inclination angle of 34+-5 deg and 47+-2 deg, respectively. The disk position angle in both brightness regimes is almost identical and roughly 80 deg. Along...

  3. FIRST DETECTION OF NEAR-INFRARED LINE EMISSION FROM ORGANICS IN YOUNG CIRCUMSTELLAR DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Mandell, Avi M.; Mumma, Michael J.; Villanueva, Geronimo [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bast, Jeanette; Van Dishoeck, Ewine F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Blake, Geoffrey A. [California Institute of Technology, Division of Geological and Planetary Sciences, MS 150-21, Pasadena, CA 91125 (United States); Salyk, Colette, E-mail: Avi.Mandell@nasa.gov [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2012-03-10

    We present an analysis of high-resolution spectroscopy of several bright T Tauri stars using the CRIRES spectrograph on the Very Large Telescope and NIRSPEC spectrograph on the Keck Telescope, revealing the first detections of emission from HCN and C{sub 2}H{sub 2} in circumstellar disks at near-infrared wavelengths. Using advanced data reduction techniques, we achieve a dynamic range with respect to the disk continuum of {approx}500 at 3 {mu}m, revealing multiple emission features of H{sub 2}O, OH, HCN, and C{sub 2}H{sub 2}. We also present stringent upper limits for two other molecules thought to be abundant in the inner disk, CH{sub 4} and NH{sub 3}. Line profiles for the different detected molecules are broad but centrally peaked in most cases, even for disks with previously determined inclinations of greater than 20 Degree-Sign , suggesting that the emission has both a Keplerian and non-Keplerian component as observed previously for CO emission. We apply two different modeling strategies to constrain the molecular abundances and temperatures: we use a simplified single-temperature local thermal equilibrium (LTE) slab model with a Gaussian line profile to make line identifications and determine a best-fit temperature and initial abundance ratios, and we compare these values with constraints derived from a detailed disk radiative transfer model assuming LTE excitation but utilizing a realistic temperature and density structure. Abundance ratios from both sets of models are consistent with each other and consistent with expected values from theoretical chemical models, and analysis of the line shapes suggests that the molecular emission originates from within a narrow region in the inner disk (R < 1 AU).

  4. A deep Spitzer survey of circumstellar disks in the young double cluster, h and χ Persei

    International Nuclear Information System (INIS)

    We analyze very deep Infrared Array Camera and Multiband Imaging Photometer for Spitzer (MIPS) photometry of ∼12, 500 members of the 14 Myr old Double Cluster, h and χ Persei, building upon our earlier, shallower Spitzer Cycle 1 studies. Numerous likely members show infrared (IR) excesses at 8 μm and 24 μm, indicative of circumstellar dust. The frequency of stars with 8 μm excess is at least 2% for our entire sample, slightly lower (higher) for B/A stars (later type, lower mass stars). Optical spectroscopy also identifies gas in about 2% of systems, but with no clear trend between the presence of dust and gas. Spectral energy distribution modeling of 18 sources with detections at optical wavelengths through MIPS 24 μm reveals a diverse set of disk evolutionary states, including a high fraction of transitional disks, though similar data for all disk-bearing members would provide constraints. Using Monte Carlo simulations, we combine our results with those for other young clusters to study the global evolution of dust/gas disks. For nominal cluster ages, the e-folding times (τ0) for the frequency of warm dust and gas are 2.75 Myr and 1.75 Myr, respectively. Assuming a revised set of ages for some clusters, these timescales increase to 5.75 and 3.75 Myr, respectively, implying a significantly longer typical protoplanetary disk lifetime than previously thought. In both cases, the transitional disk duration, averaged over multiple evolutionary pathways, is ≈1 Myr. Finally, 24 μm excess frequencies for 4-6 M ☉ stars appear lower than for 1-2.5 M ☉ stars in other 10-30 Myr old clusters.

  5. The inner circumstellar disk of the UX Orionis star V1026 Scorpii

    Science.gov (United States)

    Vural, J.; Kreplin, A.; Kishimoto, M.; Weigelt, G.; Hofmann, K.-H.; Kraus, S.; Schertl, D.; Dugué, M.; Duvert, G.; Lagarde, S.; Massi, F.

    2014-04-01

    Context. The UX Ori type variables (named after the prototype of their class) are intermediate-mass pre-main sequence objects. One of the most likely causes of their variability is the obscuration of the central star by orbiting dust clouds. Aims: We investigate the structure of the circumstellar environment of the UX Ori star V1026 Sco (HD 142666) and test whether the disk inclination is large enough to explain the UX Ori variability. Methods: We observed the object in the low-resolution mode of the near-infrared interferometric VLTI/AMBER instrument and derived H- and K-band visibilities and closure phases. We modeled our AMBER observations, published Keck Interferometer observations, archival MIDI/VLTI visibilities, and the spectral energy distribution using geometric and temperature-gradient models. Results: Employing a geometric inclined-ring disk model, we find a ring radius of 0.15 ± 0.06 AU in the H band and 0.18 ± 0.06 AU in the K band. The best-fit temperature-gradient model consists of a star and two concentric, ring-shaped disks. The inner disk has a temperature of 1257+133-53 K at the inner rim and extends from 0.19 ± 0.01 AU to 0.23 ± 0.02 AU. The outer disk begins at 1.35+0.19-0.20 AU and has an inner temperature of 334+35-17 K. The derived inclination of 48.6+2.9-3.6° approximately agrees with the inclination derived with the geometric model (49 ± 5° in the K band and 50 ± 11° in the H band). The position angle of the fitted geometric and temperature-gradient models are 163 ± 9° (K band; 179 ± 17° in the H band) and 169.3+4.2-6.7°, respectively. Conclusions: The narrow width of the inner ring-shaped model disk and the disk gap might be an indication for a puffed-up inner rim shadowing outer parts of the disk. The intermediate inclination of ~50° is consistent with models of UX Ori objects where dust clouds in the inclined disk obscure the central star. Based on observations made with ESO telescopes at the La Silla Paranal Observatory

  6. Mid-infrared sizes of circumstellar disks around Herbig Ae/Be stars measured with MIDI on the VLTI

    NARCIS (Netherlands)

    C. Leinert; R.J.H.M. van Boekel; L.B.F.M. Waters; O. Chesneau; F. Malbet; R. Köhler; W. Jaffe; T. Ratzka; A. Dutrey; T. Preibisch; U. Graser; E. Bakker; G. Chagnon; W.D. Cotton; C. Dominik; C.P. Dullemond; A.W. Glazenborg-Kluttig; A. Glindemann; T. Henning; K.-H. Hofmann; J. de Jong; R. Lenzen; S. Ligori; B. Lopez; J. Meisner; S. Morel; F. Paresce; J.-W. Pel; I. Percheron; G. Perrin; F. Przygodda; A. Richichi; M. Schöller; P. Schuller; B. Stecklum; M.E. van den Ancker; O. von der Lühe; G. Weigelt

    2004-01-01

    We present the first long baseline mid-infrared interferometric observations of the circumstellar disks surrounding Herbig Ae/Be stars. The observations were obtained using the mid-infrared interferometric instrument MIDI at the European Southern Observatory (ESO) Very Large Telescope Interferometer

  7. Recurring Occultations of RW Aurigae by Coagulated Dust in the Tidally Disrupted Circumstellar Disk

    CERN Document Server

    Rodriguez, Joseph E; Siverd, Robert J; Pepper, Joshua; Stassun, Keivan G; Gaudi, B Scott; Weintraub, David A; Beatty, Thomas G; Lund, Michael B; Stevens, Daniel J

    2015-01-01

    We present photometric observations of RW Aurigae, a Classical T Tauri system, that reveal two remarkable dimming events. These events are similar to that which we observed in 2010-2011, which was the first such deep dimming observed in RW Aur in a century's worth of photometric monitoring. We suggested the 2010-2011 dimming was the result of an occultation of the star by its tidally disrupted circumstellar disk. In 2012-2013, the RW Aur system dimmed by ~0.7 mag for ~40 days and in 2014/2015 the system dimmed by ~2 mag for >250 days. The ingress/egress duration measurements of the more recent events agree well with those from the 2010-2011 event, providing strong evidence that the new dimmings are kinematically associated with the same occulting source. Therefore, we suggest that both the 2012-2013 and 2014-2015 dimming events, measured using data from the Kilodegree Extremely Little Telescope and the Kutztown University Observatory, are also occultations of RW Aur A by tidally disrupted circumstellar materi...

  8. Dynamics of Circumstellar Disks III: The case of GG Tau A

    CERN Document Server

    Nelson, Andrew F

    2016-01-01

    (abridged) We present 2-dimensional hydrodynamic simulations using the Smoothed Particle Hydrodynamic (SPH) code, VINE, to model a self-gravitating binary system similar to the GG Tau A system. We simulate systems configured with semi-major axes of either $a=62$~AU (`wide') or $a=32$~AU (`close'), and with eccentricity of either $e=0$ or $e=0.3$. Strong spiral structures are generated with large material streams extending inwards. A small fraction accretes onto the circumstellar disks, with most returning to the torus. Structures also propagate outwards, generating net outwards mass flow and eventually losing coherence at large distances. The torus becomes significantly eccentric in shape. Accretion onto the stars occurs at a rate of a few $\\times10^{-8}$\\msun/yr implying disk lifetimes shorter than $\\sim10^4$~yr, without replenishment. Only wide configurations retain disks by virtue of robust accretion. In eccentric configurations, accretion is episodic, occurs preferentially onto the secondary at wrates pea...

  9. The inner circumstellar disk of the UX Ori star V1026 Sco

    CERN Document Server

    Vural, J; Kishimoto, M; Weigelt, G; Hofmann, K -H; Kraus, S; Schertl, D; Dugué, M; Duvert, G; Lagarde, S; Massi, F

    2014-01-01

    The UX Ori type variables (named after the prototype of their class) are intermediate-mass pre-main sequence objects. One of the most likely causes of their variability is the obscuration of the central star by orbiting dust clouds. We investigate the structure of the circumstellar environment of the UX~Ori star V1026 Sco (HD 142666) and test whether the disk inclination is large enough to explain the UX Ori variability. We observed the object in the low-resolution mode of the near-infrared interferometric VLTI/AMBER instrument and derived H- and K-band visibilities and closure phases. We modeled our AMBER observations, published Keck Interferometer observations, archival MIDI/VLTI visibilities, and the spectral energy distribution using geometric and temperature-gradient models. Employing a geometric inclined-ring disk model, we find a ring radius of 0.15 +- 0.06 AU in the H band and 0.18 +- 0.06 AU in the K band. The best-fit temperature-gradient model consists of a star and two concentric, ring-shaped disk...

  10. Photodissociation Region Models of Photoevaporating Circumstellar Disks and Application to the Proplyds in Orion

    Science.gov (United States)

    Störzer, H.; Hollenbach, D.

    1999-04-01

    We have modeled the neutral flows emerging from circumstellar disks or small clumps of size r0 illuminated by an external source of ultraviolet radiation. The models are applied to the disks (proplyds) in the Orion Nebula, most of which are illuminated by θ1C Ori. Our models improve upon the simpler models of Johnstone, Hollenbach, & Ballyby including the results of both equilibrium and nonequilibrium photodissociation region (PDR) codes, and by treating the flow speed off the disk surface in a more consistent manner. We present a study that delineates the parameter space (G0, r0, and σext) in which far-ultraviolet (FUV)-dominated, as opposed to extreme-ultraviolet (EUV)-dominated, flows exist. G0 is the FUV (6 eVrIF>~2r0, have a shock between the disk surface and IF, and the mass-loss rates are determined by FUV photons. For σext=8×10-22 cm2 and a UV source similar to θ1 C Ori, the FUV-dominated region extends from G0~5×104 to G0~2×107 (or distances from θ1 C Ori of 0.3-0.01 pc), for disk or clump size of r0~1014-1015 cm. Outside this parameter space, hydrogen-ionizing EUV photons dominate the photoevaporation, and the IF is close to the disk surface (rIFrIF, depends mainly on r0, G0, and σext inside the flow region. Using ten objects in Orion for which both r0 and rIF are directly observed, and for which G0 can be estimated from the observed projected distance of the proplyd from θ1C Ori, we find that σext~8×10-22 cm2 best fits the observations. In these models, the disk mass-loss rates are roughly 10-7 Msolar yr-1. We have determined the disk masses for circular and radial proplyd orbits. For circular orbits around θ1C Ori, the disk masses range between 0.005 and 0.04 (ti/105 yr) Msolar, where ti is the illumination timescale. Comparison with millimeter observations of the disk masses (mass and shrink is ~105 yr. If the disks cross the Trapezium cluster on radial orbits, the proplyd masses range between 0.002 and 0.01 Msolar. For radial orbits, the

  11. A SCUBA-2 850-$\\mu$m survey of circumstellar disks in the $\\lambda$ Orionis cluster

    CERN Document Server

    Ansdell, Megan; Cieza, Lucas A

    2015-01-01

    We present results from an 850-$\\mu$m survey of the $\\sim$ 5 Myr old $\\lambda$ Orionis star-forming region. We used the SCUBA-2 camera on the James Clerk Maxwell Telescope to survey a $\\sim$0.5-diameter circular region containing 36 (out of 59) cluster members with infrared excesses indicative of circumstellar disks. We detected only one object at $>3\\sigma$ significance, the Herbig Ae star HD 245185, with a flux density of $\\sim74$ mJy beam$^{-1}$ corresponding to a dust mass of $\\sim150$ M$_{\\oplus}$. Stacking the individually undetected sources did not produce a significant mean signal but gives an upper limit on the average dust mass for $\\lambda$ Orionis disks of $\\sim3$ M$_{\\oplus}$. Our follow-up observations of HD 245185 with the Submillimeter Array found weak CO 2--1 line emission with an integrated flux of $\\sim170$ mJy km s$^{-1}$ but no $^{13}$CO or C$^{18}$O isotopologue emission at 30 mJy km s$^{-1}$ sensitivity, suggesting a gas mass of $\\lesssim1$ M$_{\\rm Jup}$. The implied gas-to-dust ratio i...

  12. CO and H2 Absorption in the AA Tauri Circumstellar Disk

    CERN Document Server

    France, Kevin; Herczeg, Gregory J; Schindhelm, Eric; Yang, Hao; Abgrall, Herve; Roueff, Evelyne; Brown, Alexander; Brown, Joanna; Linsky, Jeffrey L

    2011-01-01

    The direct study of molecular gas in inner protoplanetary disks is complicated by uncertainties in the spatial distribution of the gas, the time-variability of the source, and the comparison of observations across a wide range of wavelengths. Some of these challenges can be mitigated with far-ultraviolet spectroscopy. Using new observations obtained with the HST-Cosmic Origins Spectrograph, we measure column densities and rovibrational temperatures for CO and H2 observed on the line-of-sight through the AA Tauri circumstellar disk. CO A-X absorption bands are observed against the far-UV continuum. The CO absorption is characterized by log(N(^{12}CO)) = 17.5 +/- 0.5 cm^{-2} and T_rot(CO) = 500$^{+500}_{-200} K, although this rotational temperature may underestimate the local kinetic temperature of the CO-bearing gas. We also detect ^{13}CO in absorption with an isotopic ratio of ~20. We do not observe H2 absorption against the continuum; however, hot H2 (v > 0) is detected in absorption against the LyA emissio...

  13. Study of infrared excess from circumstellar disks in binaries with Spitzer/IRAC

    CERN Document Server

    Itoh, Yusuke; Shibai, Hiroshi; Sumi, Takahiro; Yamamoto, Kodai

    2015-01-01

    The presence of excess emission at 3.6--8.0 $\\mu$m was investigated in a sample of 27 binary systems located in two nearby star-forming regions, Taurus and Ophiuchus, by using Spitzer/Infrared Array Camera (IRAC) archival data. Angular (Projected) separations for the binaries are greater than 2"($\\sim$280 AU), which allowed us to perform spatially resolved photometry of individual primary and secondary sources. The measured occurrence of infrared excess suggests that binarity plays a role in the evolution of circumstellar disks, even at such wide binary separations. Most of the binaries have excess emission from both the circumprimary and circumsecondary disks, or show photospheric levels for both components at all four wavelengths of IRAC. On the other hand, four systems ($17^{+11}_{-8}$%, designated by "mixed" systems) exhibit excess emission from a single binary component. This ratio is significantly smaller than that predicted by the random pairing of single stars, suggesting that circumprimary and circum...

  14. Polarization morphology of SiO masers in the circumstellar envelope of the AGB star R Cassiopeiae

    CERN Document Server

    Assaf, K A; Richards, A M S; Gray, M D

    2013-01-01

    Silicon monoxide maser emission has been detected in the circumstellar envelopes of many evolved stars in various vibrationally-excited rotational transitions. It is considered a good tracer of the wind dynamics close to the photosphere of the star. We have investigated the polarization morphology in the circumstellar envelope of an AGB star, R Cas. We mapped the linear and circular polarization of SiO masers in the v=1, J=1-0 transition. The linear polarization is typically a few tens of percent while the circular polarization is a few percent. The fractional polarization tends to be higher for emission of lower total intensity. We found that, in some isolated features the fractional linear polarization appears to exceed 100%. We found the Faraday rotation is not negligible but is ~15 deg., which could produce small scale structure in polarized emission whilst total intensity is smoother and partly resolved out. The polarization angles vary considerably from feature to feature but there is a tendency to favo...

  15. Recurring Occultations of RW Aurigae by Coagulated Dust in the Tidally Disrupted Circumstellar Disk

    Science.gov (United States)

    Rodriguez, Joseph E.; Reed, Phillip A.; Siverd, Robert J.; Pepper, Joshua; Stassun, Keivan G.; Gaudi, B. Scott; Weintraub, David A.; Beatty, Thomas G.; Lund, Michael B.; Stevens, Daniel J.

    2016-02-01

    We present photometric observations of RW Aurigae, a Classical T Tauri system, that reveal two remarkable dimming events. These events are similar to that which we observed in 2010-2011, which was the first such deep dimming observed in RW Aur in a century’s worth of photometric monitoring. We suggested the 2010-2011 dimming was the result of an occultation of the star by its tidally disrupted circumstellar disk. In 2012-2013, the RW Aur system dimmed by ˜0.7 mag for ˜40 days and in 2014/2015 the system dimmed by ˜2 mag for >250 days. The ingress/egress duration measurements of the more recent events agree well with those from the 2010-2011 event, providing strong evidence that the new dimmings are kinematically associated with the same occulting source as the 2010-2011 event. Therefore, we suggest that both the 2012-2013 and 2014-2015 dimming events, measured using data from the Kilodegree Extremely Little Telescope and the Kutztown University Observatory, are also occultations of RW Aur A by the tidally disrupted circumstellar material. Recent hydrodynamical simulations of the eccentric fly-by of RW Aur B suggest the occulting body to be a bridge of material connecting RW Aur A and B. These simulations also suggest the possibility of additional occultations which are supported by the observations presented in this work. The color evolution of the dimmings suggest that the tidally stripped disk material includes dust grains ranging in size from small grains at the leading edge, typical of star-forming regions, to large grains, ices or pebbles producing gray or nearly gray extinction deeper within the occulting material. It is not known whether this material represents arrested planet building prior to the tidal disruption event, or perhaps accelerated planet building as a result of the disruption event, but in any case the evidence suggests the presence of advanced planet building material in the space between the two stars of the RW Aur system.

  16. A chemical route to the formation of water in circumstellar envelopes around carbon-rich asymptotic branch stars: Fischer-Tropsch catalysis

    Science.gov (United States)

    Willacy, K.

    2004-01-01

    Fischer-Tropsch catalysis has been suggested as a means of driving hydrocarbon chemistry in oxygen rich regions such as the protosolar nebula. In addition to producing hydrocarbons, Fischer-Tropsch catalysis also produces water, and it is therefore possible that such processes could account for the recent observations of water in the circumstellar envelope of asymptotic giant branch star IRC +10216.

  17. A low-mass protostar's disk-envelope interface: disk-shadowing evidence from ALMA DCO+ observations of VLA1623

    CERN Document Server

    Murillo, Nadia M; van Dishoeck, Ewine F; Walsh, Catherine; Harsono, Daniel; Lai, Shih-Ping; Fuchs, Christian M

    2015-01-01

    Due to instrumental limitations and a lack of disk detections, the structure between the envelope and the rotationally supported disk has been poorly studied. This is now possible with ALMA through observations of CO isotopologs and tracers of freezeout. Class 0 sources are ideal for such studies given their almost intact envelope and young disk. The structure of the disk-envelope interface of the prototypical Class 0 source, VLA1623A which has a confirmed Keplerian disk, is constrained from ALMA observations of DCO+ 3-2 and C18O 2-1. The physical structure of VLA1623 is obtained from the large-scale SED and continuum radiative transfer. An analytic model using a simple network coupled with radial density and temperature profiles is used as input for a 2D line radiative transfer calculation for comparison with the ALMA Cycle 0 12m array and Cycle 2 ACA observations of VLA1623. DCO+ emission shows a clumpy structure bordering VLA1623A's Keplerian disk, suggesting a cold ring-like structure at the disk-envelope...

  18. Circular Polarization of Water Masers in the Circumstellar Envelopes of Late Type Stars

    CERN Document Server

    Vlemmings, W H T; Van Langevelde, H J

    2002-01-01

    We present circular polarization measurements of circumstellar H_2O masers. The circular polarization detected in the (6_{16}-5_{23}) rotational transition of the H_{2}O maser can be attributed to Zeeman splitting in the intermediate temperature and density regime. The magnetic fields are derived using a general, LTE Zeeman analysis as well as a full radiative transfer method (non-LTE), which includes a treatment of all hyperfine components simultaneously as well as the effects of saturation and unequal populations of the magnetic substates. The differences and relevances of these interpretations are discussed extensively. The field strengths are compared with previous detections of the magnetic field on the SiO and OH masers. We show that the magnetic pressure dominates the thermal pressure by a factor of 20 or more.

  19. THE CIRCUMSTELLAR DISK OF THE Be STAR o AQUARII AS CONSTRAINED BY SIMULTANEOUS SPECTROSCOPY AND OPTICAL INTERFEROMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Sigut, T. A. A. [Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, N6A 3K7 (Canada); Tycner, C.; Jansen, B. [Department of Physics, Central Michigan University, Mount Pleasant, MI 48859 (United States); Zavala, R. T. [US Naval Observatory, Flagstaff Station, 10391 W. Naval Observatory Rd, Flagstaff, AZ 86001 (United States)

    2015-12-01

    Omicron Aquarii is a late-type, Be shell star with a stable and nearly symmetric Hα emission line. We combine Hα interferometric observations obtained with the Navy Precision Optical Interferometer covering 2007 through 2014 with Hα spectroscopic observations over the same period and a 2008 observation of the system's near-infrared spectral energy distribution to constrain the properties of o Aqr's circumstellar disk. All observations are consistent with a circumstellar disk seen at an inclination of 75° ±  3° with a position angle on the sky of 110° ±  8° measured East from North. From the best-fit disk density model, we find that 90% of the Hα emission arises from within 9.5 stellar radii, and the mass associated with this Hα disk is ∼1.8 × 10{sup −10} of the stellar mass, and that the associated angular momentum, assuming Keplerian rotation for the disk, is ∼1.6 × 10{sup −8} of the total stellar angular momentum. The occurrence of a central quasi-emission feature in Mg ii λ4481 is also predicted by this best-fit disk model and the computed profile compares successfully with observations from 1999. To obtain consistency between the Hα line profile modeling and the other constraints, it was necessary in the profile fitting to weight the line core (emission peaks and central depression) more heavily than the line wings, which were not well reproduced by our models. This may reflect the limitation of assuming a single power law for the disk's variation in equatorial density. The best-fit disk density model for o Aqr predicts that Hα is near its maximum strength as a function of disk density, and hence the Hα equivalent width and line profile change only weakly in response to large (factor of ∼5) changes in the disk density. This may in part explain the remarkable observed stability of o Aqr's Hα emission line profile.

  20. The First Circumstellar Disk Imaged in Silhouette with Adaptive Optics: MagAO Imaging of Orion 218-354

    CERN Document Server

    Follette, Katherine B; Males, Jared R; Kopon, Derek; Wu, Ya-Lin; Morzinski, Katie M; Hinz, Philip; Rodigas, Timothy J; Puglisi, Alfio; Esposito, Simone; Riccardi, Armando; Pinna, Enrico; Xompero, Marco; Briguglio, Runa

    2013-01-01

    We present high resolution adaptive optics (AO) corrected images of the silhouette disk Orion 218-354 taken with Magellan AO (MagAO) and its visible light camera, VisAO, in simultaneous differential imaging (SDI) mode at H-alpha. This is the first image of a circumstellar disk seen in silhouette with adaptive optics and is among the first visible light adaptive optics results in the literature. We derive the disk extent, geometry, intensity and extinction profiles and find, in contrast with previous work, that the disk is likely optically-thin at H-alpha. Our data provide an estimate of the column density in primitive, ISM-like grains as a function of radius in the disk. We estimate that only ~10% of the total sub-mm derived disk mass lies in primitive, unprocessed grains. We use our data, Monte Carlo radiative transfer modeling and previous results from the literature to make the first self-consistent multiwavelength model of Orion 218-354. We find that we are able to reproduce the 1-1000micron SED with a ~2...

  1. Photodetachment as destruction mechanism for CN- and C3N- anions in circumstellar envelopes

    CERN Document Server

    Kumar, S S; Jindra, R; Best, T; Roucka, S; Geppert, W D; Millar, T J; Wester, R

    2013-01-01

    Absolute photodetachment cross sections of two anions of astrophysical importance CN- and C3N- were measured to be (1.18 +- (0.03)_stat (0.17)_sys) * 10^-17 cm^2 and (1.43 +- (0.14)_stat (0.37)_sys) * 10^-17 cm^2 respectively at the ultraviolet wavelength of 266 nm (4.66 eV). These relatively large values of the cross sections imply that photodetachment can play a major role in the destruction mechanisms of these anions particularly in photon-dominated regions. We have therefore carried out model calculations using the newly measured cross sections to investigate the abundance of these molecular anions in the cirumstellar envelope of the carbon-rich star IRC+10216. The model predicts the relative importance of the various mechanisms of formation and destruction of these species in different regions of the envelope. UV photodetachment was found to be the major destruction mechanism for both CN- and C3N- anions in those regions of the envelope, where they occur in peak abundance. It was also found that photodet...

  2. The Ionized Circumstellar Envelopes of Orion Source I and the Becklin Neugebauer Object

    CERN Document Server

    Plambeck, R L; Carpenter, J M; Eisner, J A; Lamb, J W; Leitch, E M; Marrone, D P; Muchovej, S J; Perez, L M; Pound, M W; Teuben, P J; Volgenau, N H; Woody, D P; Wright, M C H; Zauderer, B A

    2012-01-01

    The 229 GHz (lambda 1.3mm) radio emission from Orion-KL was mapped with up to 0.14'' angular resolution with CARMA, allowing measurements of the flux densities of Source I ('SrcI') and the Becklin-Neugebauer Object (BN), the 2 most massive stars in this region. We find integrated flux densities of 310 +/- 45 mJy for SrcI and 240 +/- 35 mJy for BN. SrcI is optically thick even at 229 GHz. No trace of the H30alpha recombination line is seen in its spectrum, although the v_2=1, 5(5,0)-6(4,3) transition of H2O, 3450 K above the ground state, is prominent. SrcI is elongated at position angle 140 degrees, as in 43 GHz images. These results are most easily reconciled with models in which the radio emission from SrcI arises via the H- free-free opacity in a T < 4500 K disk, as considered by Reid et al. (2007). By contrast, the radio spectrum of BN is consistent with p+/e- free-free emission from a dense (n_e ~ 5x10^7 cm^{-3}), but otherwise conventional, hypercompact HII region. The source is becoming optically th...

  3. Constraints on the Radial Variation of Grain Growth in the AS 209 Circumstellar Disk

    CERN Document Server

    Pérez, Laura M; Chandler, Claire J; Isella, Andrea; Andrews, Sean M; Ricci, Luca; Calvet, Nuria; Corder, Stuartt A; Deller, Adam T; Dullemond, Cornelis P; Greaves, Jane S; Harris, Robert J; Henning, Thomas; Kwon, Woojin; Lazio, Joseph; Linz, Hendrik; Mundy, Lee G; Sargent, Anneila I; Storm, Shaye; Testi, Leonardo; Wilner, David J

    2012-01-01

    We present dust continuum observations of the protoplanetary disk surrounding the pre-main sequence star AS 209, spanning more than an order of magnitude in wavelength from 0.88 to 9.8 mm. The disk was observed with sub-arcsecond angular resolution (0.2"-0.5") to investigate radial variations in its dust properties. At longer wavelengths, the disk emission structure is notably more compact, providing model-independent evidence for changes in the grain properties across the disk. We find that physical models which reproduce the disk emission require a radial dependence of the dust opacity \\kappa_{\

  4. How Observations of Circumstellar Disk Asymmetries Can Reveal Hidden Planets Pericenter Glow and its Application to the HR 4796 Disk

    CERN Document Server

    Wyatt, M C; Telesco, C M; Fisher, R S; Grogan, K; Holmes, E K; Pina, R K

    1999-01-01

    Recent images of the disks of dust around the young stars HR 4796A and Fomalhaut show, in each case, a double-lobed feature that may be asymmetric (one lobe may be brighter than the other). A symmetric double-lobed structure is that expected from a disk of dust with a central hole that is observed nearly edge-on (i.e., close to the plane of the disk). This paper shows how the gravitational influence of a second body in the system with an eccentric orbit would cause a brightness asymmetry in such a disk by imposing a "forced eccentricity" on the orbits of the constituent dust particles, thus shifting the center of symmetry of the disk away from the star and causing the dust near the forced pericenter of the perturbed disk to glow. Dynamic modeling of the HR 4796 disk shows that its 5% brightness asymmetry could be the result of a forced eccentricity as small as 0.02 imposed on the disk by either the binary companion HR 4796B, or by an unseen planet close to the inner edge of the disk. Since it is likely that a...

  5. Investigating the Nature of the Dust Emission around Massive Protostar NGC 7538 IRS 1: Circumstellar Disk and Outflow?

    CERN Document Server

    De Buizer, J M; Buizer, James M. De; Minier, Vincent

    2005-01-01

    We have obtained high resolution mid-infrared images of the high mass protostar NGC 7538 IRS 1 using Michelle on Gemini North and find that the circumstellar dust associated with this source is extended on both large and small scales. The large-scale mid-infrared emission is asymmetric about the peak of IRS 1, being more extended to the northwest than the southeast. The position angle of the mid-infrared emission is similar to the position angle of the linearly distributed methanol masers at this location which are thought to trace a circumstellar disk. However, this position angle is also very similar to that of the CO outflow in this region which appears to be centered on IRS 1. We suggest that the large-scale extended mid-infrared emission is coming from dust heated on the walls of the outflow cavities near the source. IRS 1 is also elongated in the mid-infrared on a smaller scale, and this elongation is near PERPENDICULAR to the axis of the CO outflow (and the linearly distributed methanol masers). Becaus...

  6. An alternative model for the origin of gaps in circumstellar disks

    CERN Document Server

    Vorobyov, Eduard I; Guedel, Manuel; Lin, D N C

    2016-01-01

    Motivated by recent observational and numerical studies suggesting that collapsing protostellar cores may be replenished from the local environment, we explore the evolution of protostellar cores submerged in the external counter-rotating environment. These models predict the formation of counter-rotating disks with a deep gap in the gas surface density separating the inner disk (corotating with the star) and the outer counter-rotating disk. The properties of these gaps are compared to those of planet-bearing gaps that form in disks hosting giant planets. We employ numerical hydrodynamics simulations of collapsing cores that are replenished from the local counter-rotating environment, as well as numerical hydrodynamic simulations of isolated disks hosting giant planets, to derive the properties of the gaps that form in both cases. Our numerical simulations demonstrate that counter-rotating disks can form for a wide range of mass and angular momentum available in the local environment. The gap that separates b...

  7. The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks. IV. Simulations with Envelope Irradiation

    CERN Document Server

    Cai, Kai; Boley, Aaron C; Pickett, Megan K; Mejia, Annie C

    2007-01-01

    It is generally thought that protoplanetary disks embedded in envelopes are more massive and thus more susceptible to gravitational instabilities (GIs) than exposed disks. We present three-dimensional radiative hydrodynamics simulations of protoplanetary disks with the presence of envelope irradiation. For a disk with a radius of 40 AU and a mass of 0.07 Msun around a young star of 0.5 Msun, envelope irradiation tends to weaken and even suppress GIs as the irradiating flux is increased. The global mass transport induced by GIs is dominated by lower-order modes, and irradiation preferentially suppresses higher-order modes. As a result, gravitational torques and mass inflow rates are actually increased by mild irradiation. None of the simulations produce dense clumps or rapid cooling by convection, arguing against direct formation of giant planets by disk instability, at least in irradiated disks. However, dense gas rings and radial mass concentrations are produced, and these might be conducive to accelerated p...

  8. The JCMT Gould Belt Survey: SCUBA-2 observations of circumstellar disks in L 1495

    CERN Document Server

    Buckle, J V; Greaves, J; Richer, J S; Matthews, B C; Johnstone, D; Kirk, H; Beaulieu, S F; Berry, D S; Broekhoven-Fiene, H; Currie, M J; Fich, M; Hatchell, J; Jenness, T; Mottram, J C; Nutter, D; Pattle, K; Pineda, J E; Salji, C; Tisi, S; Di Francesco, J; Hogerheijde, M R; Ward-Thompson, D; Bastien, P; Butner, H; Chen, M; Chrysostomou, A; Coude, S; Davis, C J; Duarte-Cabral, A; Friberg, P; Friesen, R; Fuller, G A; Graves, S; Gregson, J; Holland, W; Joncas, G; Kirk, J M; Knee, L B G; Mairs, S; Marsh, K; Moriarty-Schieven, G; Rawlings, J; Rosolowsky, E; Rumble, D; Sadavoy, S; Thomas, H; Tothill, N; Viti, S; White, G J; Wilson, C D; Wouterloot, J; Yates, J; Zhu, M

    2015-01-01

    We present 850$\\mu$m and 450$\\mu$m data from the JCMT Gould Belt Survey obtained with SCUBA-2 and characterise the dust attributes of Class I, Class II and Class III disk sources in L1495. We detect 23% of the sample at both wavelengths, with the detection rate decreasing through the Classes from I--III. The median disk mask is 1.6$\\times 10^{-3}$M$_{\\odot}$, and only 7% of Class II sources have disk masses larger than 20 Jupiter masses. We detect a higher proportion of disks towards sources with stellar hosts of spectral type K than spectral type M. Class II disks with single stellar hosts of spectral type K have higher masses than those of spectral type M, supporting the hypothesis that higher mass stars have more massive disks. Variations in disk masses calculated at the two wavelengths suggests there may be differences in dust opacity and/or dust temperature between disks with hosts of spectral types K to those with spectral type M.

  9. CONSTRAINTS ON THE RADIAL VARIATION OF GRAIN GROWTH IN THE AS 209 CIRCUMSTELLAR DISK

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Laura M.; Carpenter, John M.; Isella, Andrea; Ricci, Luca; Sargent, Anneila I. [Astronomy Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Chandler, Claire J. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Andrews, Sean M.; Harris, Robert J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Calvet, Nuria [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Corder, Stuartt A. [Joint ALMA Observatory, Av. Alonso de Cordova 3107, Vitacura, Santiago (Chile); Deller, Adam T. [The Netherlands Institute for Radio Astronomy (ASTRON), 7990-AA Dwingeloo (Netherlands); Dullemond, Cornelis P.; Linz, Hendrik [Center for Astronomy, Heidelberg University, Albert Ueberle Str. 2, D-69120 Heidelberg (Germany); Greaves, Jane S. [School of Physics and Astronomy, University of St. Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Henning, Thomas [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Kwon, Woojin [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Lazio, Joseph [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91106 (United States); Mundy, Lee G.; Storm, Shaye [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Testi, Leonardo [European Southern Observatory, Karl Schwarzschild Str. 2, D-85748 Garching (Germany); and others

    2012-11-20

    We present dust continuum observations of the protoplanetary disk surrounding the pre-main-sequence star AS 209, spanning more than an order of magnitude in wavelength from 0.88 to 9.8 mm. The disk was observed with subarcsecond angular resolution (0.''2-0.''5) to investigate radial variations in its dust properties. At longer wavelengths, the disk emission structure is notably more compact, providing model-independent evidence for changes in the grain properties across the disk. We find that physical models which reproduce the disk emission require a radial dependence of the dust opacity {kappa}{sub {nu}}. Assuming that the observed wavelength-dependent structure can be attributed to radial variations in the dust opacity spectral index ({beta}), we find that {beta}(R) increases from {beta} < 0.5 at {approx}20 AU to {beta} > 1.5 for R {approx}> 80 AU, inconsistent with a constant value of {beta} across the disk (at the 10{sigma} level). Furthermore, if radial variations of {kappa}{sub {nu}} are caused by particle growth, we find that the maximum size of the particle-size distribution (a{sub max}) increases from submillimeter-sized grains in the outer disk (R {approx}> 70 AU) to millimeter- and centimeter-sized grains in the inner disk regions (R {approx}< 70 AU). We compare our observational constraint on a{sub max}(R) with predictions from physical models of dust evolution in protoplanetary disks. For the dust composition and particle-size distribution investigated here, our observational constraints on a{sub max}(R) are consistent with models where the maximum grain size is limited by radial drift.

  10. HST/NICMOS Imaging of Disks and Envelopes Around Very Young Stars

    CERN Document Server

    Padgett, D L; Stapelfeldt, K R; Strom, S E; Terebey, S; Körner, D W; Padgett, Deborah L.; Brandner, Wolfgang; Stapelfeldt, Karl R.; Strom, Stephen E.; Terebey, Susan; Koerner, David

    1999-01-01

    We present HST/NICMOS observations with 0.1" (15 AU) resolution of six young stellar objects in the Taurus star-formation region. The targets of our survey are three Class I IRAS sources (IRAS 04016+2610, IRAS 04248+2612, and IRAS 04302+2247) and three low-luminosity stars (DG Tau B, Haro 6-5B, and CoKu Tau/1) associated with Herbig Haro jets. The broad-band images show that the near-infrared radiation from these sources is dominated by light scattered from dusty circumstellar material distributed in a region 10 - 15 times the size of our solar system. Although the detailed morphologies of the individual objects are unique, the observed young stellar objects share common features. All of the circumstellar reflection nebulae are crossed by dark lanes from 500 - 900 AU in extent and from less than 50 to 350 AU in apparent thickness. The absorption lanes extend perpendicular to known optical and millimeter outflows in these sources. We interpret the dark lanes as optically thick circumstellar disks seen in silho...

  11. Modeling Circumstellar Disks of B-Type Stars with Observations from the Palomar Testbed Interferometer

    Science.gov (United States)

    Grzenia, B. J.; Tycner, C.; Jones, C. E.; Rinehart, S. A.; vanBelle, G. T.; Sigut, T. A. A.

    2013-01-01

    Geometrical (uniform disk) and numerical models were calculated for a set of B-emission (Be) stars observed with the Palomar Testbed Interferometer (PTI). Physical extents have been estimated for the disks of a total of15 stars via uniform disk models. Our numerical non-LTE models used parameters for the B0, B2, B5, and B8spectral classes and following the framework laid by previous studies, we have compared them to infrared K-band interferometric observations taken at PTI. This is the first time such an extensive set of Be stars observed with long-baseline interferometry has been analyzed with self-consistent non-LTE numerical disk models.

  12. Detection of Strong Millimeter Emission from the Circumstellar Dust Disk Around V1094 Sco: Cold and Massive Disk around a T Tauri Star in a Quiescent Accretion Phase?

    CERN Document Server

    Tsukagoshi, Takashi; Kitamura, Yoshimi; Momose, Munetake; Shimajiri, Yoshito; Hiramatsu, Masaaki; Ikeda, Norio; Kamegai, Kazuhisa; Wilson, Grant; Yun, Min S; Scott, Kimberly; Austermann, Jay; Perera, Thushara; Hughes, David; Aretxaga, Itziar; Mauskopf, Philip; Ezawa, Hajime; Kohno, Kotaro; Kawabe, Ryohei

    2010-01-01

    We present the discovery of a cold massive dust disk around the T Tauri star V1094 Sco in the Lupus molecular cloud from the 1.1 millimeter continuum observations with AzTEC on ASTE. A compact ($r\\lesssim$320 AU) continuum emission coincides with the stellar position having a flux density of 272 mJy which is largest among T Tauri stars in Lupus. We also present the detection of molecular gas associated with the star in the five-point observations in $^{12}$CO J=3--2 and $^{13}$CO J=3--2. Since our $^{12}$CO and $^{13}$CO observations did not show any signature of a large-scale outflow or a massive envelope, the compact dust emission is likely to come from a disk around the star. The observed SED of V1094 Sco shows no distinct turnover from near infrared to millimeter wavelengths, which can be well described by a flattened disk for the dust component, and no clear dip feature around 10 $\\micron$ suggestive of absence of an inner hole in the disk. We fit a simple power-law disk model to the observed SED. The es...

  13. Investigating the Circumstellar Disk of the Be Shell Star 48 Librae

    Science.gov (United States)

    Silaj, J.; Jones, C. E.; Carciofi, A. C.; Escolano, C.; Okazaki, A. T.; Tycner, C.; Rivinius, T.; Klement, R.; Bednarski, D.

    2016-07-01

    A global disk oscillation implemented in the viscous decretion disk (VDD) model has been used to reproduce most of the observed properties of the well known Be star ζ Tau. 48 Librae shares several similarities with ζ Tau—they are both early-type Be stars, display shell characteristics in their spectra, and exhibit cyclic V/R variations—but has some marked differences as well, such as a much denser and more extended disk, a much longer V/R cycle, and the absence of the so-called triple-peak features. We aim to reproduce the photometric, polarimetric, and spectroscopic observables of 48 Librae with a self-consistent model, and to test the global oscillation scenario for this target. Our calculations are carried out with the three-dimensional NLTE radiative transfer code HDUST. We employ a rotationally deformed, gravity-darkened central star surrounded by a disk whose unperturbed state is given by the VDD model. A two-dimensional global oscillation code is then used to calculate the disk perturbation and superimpose it on the unperturbed disk. A very good, self-consistent fit to the time-averaged properties of the disk is obtained with the VDD. The calculated perturbation has a period P = 12 years, which agrees with the observed period, and the behavior of the V/R cycle is well reproduced by the perturbed model. The perturbed model improves the fit to the photometric data and reproduces some features of the observed spectroscopic data. Some suggestions to improve the synthesized spectroscopy in a future work are given.

  14. Investigating the Circumstellar Disk of the Be Shell Star 48 Librae

    CERN Document Server

    Silaj, J; Carciofi, A C; Escolano, C; Okazaki, A T; Tycner, C; Rivinius, T; Klement, R; Bednarski, D

    2016-01-01

    A global disk oscillation implemented in the viscous decretion disk (VDD) model has been used to reproduce most of the observed properties of the well known Be star $\\zeta$ Tau. 48 Librae shares several similarities with $\\zeta$ Tau -- they are both early-type Be stars, they display shell characteristics in their spectra, and they exhibit cyclic $V/R$ variations -- but has some marked differences as well, such as a much denser and more extended disk, a much longer $V/R$ cycle, and the absence of the so-called triple-peak features. We aim to reproduce the photometric, polarimetric, and spectroscopic observables of 48 Librae with a self-consistent model, and to test the global oscillation scenario for this target. Our calculations are carried out with the three-dimensional NLTE radiative transfer code HDUST. We employ a rotationally deformed, gravity-darkened central star, surrounded by a disk whose unperturbed state is given by the VDD model. A two-dimensional global oscillation code is then used to calculate ...

  15. SXP 214: An X-Ray Pulsar in the Small Magellanic Cloud, Crossing the Circumstellar Disk of the Companion

    Science.gov (United States)

    Hong, JaeSub; Antoniou, Vallia; Zezas, Andreas; Haberl, Frank; Drake, Jeremy J.; Plucinsky, Paul P.; Gaetz, Terrance; Sasaki, Manami; Williams, Benjamin; Long, Knox S.; Blair, William P.; Winkler, P. Frank; Wright, Nicholas J.; Laycock, Silas; Udalski, Andrzej

    2016-07-01

    Located in the Small Magellanic Cloud (SMC), SXP 214 is an X-ray pulsar in a high mass X-ray binary system with a Be-star companion. A recent survey of the SMC under a Chandra X-ray Visionary program found that the source was in a transition when the X-ray flux was on a steady rise. The Lomb–Scargle periodogram revealed a pulse period of 211.49 ± 0.42 s, which is significantly (>5σ) shorter than the previous measurements made with XMM-Newton and RXTE. This implies that the system has gone through sudden spin-up episodes recently. The pulse profile shows a sharp eclipse-like feature with a modulation amplitude of >95%. The linear rise of the observed X-ray luminosity from ≲2× to 7× {10}35 erg s‑1 is correlated with a steady softening of the X-ray spectrum, which can be described by the changes in the local absorption from N H ∼ 1024 to ≲1020 cm‑2 for an absorbed power-law model. The soft X-ray emission below 2 keV was absent in the early part of the observation when only the pulsating hard X-ray component was observed, whereas at later times, both soft and hard X-ray components were observed to be pulsating. A likely explanation is that the neutron star was initially hidden in the circumstellar disk of the companion, and later came out of the disk with the accreted material that continued fueling the observed pulsation.

  16. Detection of a large Be circumstellar disk during X-ray quiescence of XTE J1946+274

    CERN Document Server

    Arabaci, M Ozbey; Gutierrez-Soto, J; Zurita, C; Nespoli, E; Suso, J; Kiaeerad, F; Garcia-Rojas, J; Kiziloglu, U

    2014-01-01

    We present a multiwavelength study of the Be/X-ray binary system XTE J1946+274 with the main goal of better characterizing its behavior during X-ray quiescence. We aim to shed light on the mechanism which triggers the X-ray activity for this source. XTE J1946+274 was observed by Chandra-ACIS during quiescence in 2013 March 12. In addition, this source has been monitored from the ground-based astronomical observatories of El Teide (Tenerife, Spain), Roque de los Muchachos (La Palma, Spain) and Sierra Nevada (Granada, Spain) since 2011 September, and from the TUBITAK National Observatory (Antalya, Turkey) since 2005 April. We have performed spectral and photometric temporal analyses in order to investigate the quiescent state and transient behavior of this binary system. In 2006, a long mass ejection event took place from the Be star, lasting for about seven years. We also found that a large Be circumstellar disk was present during quiescence, although major X-ray activity was not observed. We made an attempt t...

  17. The young low-mass star ISO-Oph-50: Extreme variability induced by a clumpy, evolving circumstellar disk

    CERN Document Server

    Scholz, Aleks; Geers, Vincent

    2015-01-01

    ISO-Oph-50 is a young low-mass object in the ~Myr old Ophiuchus star forming region undergoing dramatic changes in its optical/near/mid-infrared brightness by 2-4 mag. We present new multi-band photometry and near-infrared spectra, combined with a synopsis of the existing literature data. Based on the spectroscopy, the source is confirmed as a mid M dwarf, with evidence for ongoing accretion. The near-infrared lightcurves show large-scale variations, with 2-4 mag amplitude in the bands IJHK, with the object generally being bluer when faint. Near its brightest state, the object shows colour changes consistent with variable extinction of dAV~7 mag. High-cadence monitoring at 3.6mu reveals quasi-periodic variations with a typical timescale of 1-2 weeks. The best explanation for these characteristics is a low-mass star seen through circumstellar matter, whose complex variability is caused by changing inhomogeneities in the inner parts of the disk. When faint, the direct stellar emission is blocked; the near-infra...

  18. 1.3mm polarized emission in the circumstellar disk of a massive protostar

    CERN Document Server

    Fernández-López, M; Girart, J M; Looney, L; Curiel, S; Segura-Cox, D; Eswaraiah, C; Lai, S -P

    2016-01-01

    We present the first resolved observations of the 1.3mm polarized emission from the disk-like structure surrounding the high-mass protostar Cepheus A HW2. These CARMA data partially resolve the dust polarization, suggesting an uniform morphology of polarization vectors with an average position angle of 57 degrees and an average polarization fraction of 2.0%. The distribution of the polarization vectors can be attributed to (1) the direct emission of magnetically aligned grains of dust by a uniform magnetic field, or (2) the pattern produced by the scattering of an inclined disk. We show that both models can explain the observations, and perhaps a combination of the two mechanisms produce the polarized emission. A third model including a toroidal magnetic field does not match the observations. Assuming scattering is the polarization mechanism, these observations suggest that during the first few 10000 years of high-mass star formation, grain sizes can grow from 1 to several 10s micron.

  19. Nearby Supernova Factory Observations of SN 2005gj: Another Type Ia Supernova in a Massive Circumstellar Envelope

    International Nuclear Information System (INIS)

    We report the independent discovery and follow-up observations of supernova 2005gj by the Nearby Supernova Factory. This is the second confirmed case of a ''hybrid'' Type Ia/IIn supernova, which like the prototype SN 2002ic, we interpret as the explosion of a white dwarf interacting with a circumstellar medium. Our early-phase photometry of SN 2005gj shows that the strength of the interaction between the supernova ejecta and circumstellar material is much stronger than for SN 2002ic. Our .rst spectrum shows a hot continuum with broad and narrow Hα emission. Later spectra, spanning over 4 months from outburst, show clear Type Ia features combined with broad and narrow Hγ, Hβ,Hα and He I λλ5876,7065 in emission. At higher resolution, P Cygni profiles are apparent. Surprisingly, we also observe an inverted P Cygni profile for [O III] λ5007. We find that the lightcurve and measured velocity of the unshocked circumstellar material imply mass loss as recently as 8 years ago. This is in contrast to SN 2002ic, for which an inner cavity in the circumstellar material was inferred. Within the context of the thin-shell approximation, the early lightcurve is well-described by a flat radial density profile for the circumstellar material. However, our decomposition of the spectra into Type Ia and shock emission components allows for little obscuration of the supernova, suggesting an aspherical or clumpy distribution for the circumstellar material. We suggest that the emission line velocity profiles arise from electron scattering rather than the kinematics of the shock. This is supported by the inferred high densities, and the lack of evidence for evolution in the line widths. Ground- and space-based photometry, and Keck spectroscopy, of the host galaxy are used to ascertain that the host galaxy has low metallicity (Z/Z#circledot# < 0.3; 95% confidence) and that this galaxy is undergoing a significant star formation event that began roughly 200 ± 70 Myr ago. We discuss the

  20. Nearby Supernova Factory Observations of SN 2005gj: Another TypeIa Supernova in a Massive Circumstellar Envelope

    Energy Technology Data Exchange (ETDEWEB)

    Aldering, G.; Antilogus, P.; Bailey, S.; Baltay, C.; Bauer, A.; Blanc, N.; Bongard, S.; Copin, Y.; Gangler, E.; Gilles, S.; Kessler, R.; Kocevski, D.; Lee, B.C.; Loken, S.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigaudier, G.; Scalzo, R.; Smadja, G.; Thomas, R.C.; Wang, L.; Weaver, B.A.; Rabinowitz, D.; Bauer, A.

    2006-06-01

    We report the independent discovery and follow-up observations of supernova 2005gj by the Nearby Supernova Factory. This is the second confirmed case of a ''hybrid'' Type Ia/IIn supernova, which like the prototype SN 2002ic, we interpret as the explosion of a white dwarf interacting with a circumstellar medium. Our early-phase photometry of SN 2005gj shows that the strength of the interaction between the supernova ejecta and circumstellar material is much stronger than for SN 2002ic. Our .rst spectrum shows a hot continuum with broad and narrow H{alpha} emission. Later spectra, spanning over 4 months from outburst, show clear Type Ia features combined with broad and narrow H{gamma}, H{beta},H{alpha} and He I {lambda}{lambda}5876,7065 in emission. At higher resolution, P Cygni profiles are apparent. Surprisingly, we also observe an inverted P Cygni profile for [O III] {lambda}5007. We find that the lightcurve and measured velocity of the unshocked circumstellar material imply mass loss as recently as 8 years ago. This is in contrast to SN 2002ic, for which an inner cavity in the circumstellar material was inferred. Within the context of the thin-shell approximation, the early lightcurve is well-described by a flat radial density profile for the circumstellar material. However, our decomposition of the spectra into Type Ia and shock emission components allows for little obscuration of the supernova, suggesting an aspherical or clumpy distribution for the circumstellar material. We suggest that the emission line velocity profiles arise from electron scattering rather than the kinematics of the shock. This is supported by the inferred high densities, and the lack of evidence for evolution in the line widths. Ground- and space-based photometry, and Keck spectroscopy, of the host galaxy are used to ascertain that the host galaxy has low metallicity (Z/Z{sub {circle_dot}} < 0.3; 95% confidence) and that this galaxy is undergoing a significant star

  1. The Role of Evolutionary Age and Metallicity in the Formation of Classical BE Circumstellar Disks II. Assessing the True Nature of Candidate Disk Systems

    Science.gov (United States)

    Wisniewski, J. P.; Bjorkman, K. S.; Magalhaes, A. M.; Bjorkman, J. E.; Meade, M. R.; Pereyra, Antonio

    2007-01-01

    Photometric 2-color diagram (2-CD) surveys of young cluster populations have been used to identify populations of B-type stars exhibiting excess Ha emission. The prevalence of these excess emitters, assumed to be "Be stars". has led to the establishment of links between the onset of disk formation in classical Be stars and cluster age and/or metallicity. We have obtained imaging polarization observations of six SMC and six LMC clusters whose candidate Be populations had been previously identified via 2-CDs. The interstellar polarization (ISP) associated with these data has been identified to facilitate an examination of the circumstellar environments of these candidate Be stars via their intrinsic polarization signatures, hence determine the true nature of these objects. We determined that the ISP associated with the SMC cluster NGC 330 was characterized by a modified Serkowski law with a lambda(sub max) of approx. 4500Angstroms, indicating the presence of smaller than average dust grains. The morphology of the ISP associated with the LMC cluster NGC 2100 suggests that its interstellar environment is characterized by a complex magnetic field. Our intrinsic polarization results confirm the suggestion of Wisniewski et al. that a substantial number of bona-fide classical Be stars are present in clusters of age 5-8 Myr. Hence, our data contradict recent assertions that the Be phenomenon develops in the second half of a B star's main sequence lifetime, i.e. no earlier than 10 Myr. These data imply that a significant number of B-type stars must emerge onto the zero-age-main-sequence rotating at near-critical rotation rates, although we can not rule out the possibility that these data instead reveal the presence of a sub-group of the Be phenomenon characterized by sub-critically rotating objects. Comparing the polarimetric properties of our dataset to a similar survey of Galactic classical Be stars, we find that the prevalence of polarimetric Balmer jump signatures

  2. Complex Organic Materials in the Circumstellar Disk of HR 4796A

    CERN Document Server

    Debes, J H; Schneider, G

    2007-01-01

    We combine HST/NICMOS imaging photometry of the HR 4796A disk at previously unobserved wavelengths between 1.71-2.22\\micron with reprocessed archival observations to produce a measure of the dust's scattering efficiency as a function of wavelength. The spectrum of the dust, synthesized from the seven photometric measures, is characterized by a steep red slope increasing from 0.5 \\micron to 1.6 \\micron followed by a flattening of the spectrum at wavelengths $>$ 1.6 \\micron. We fit the spectrum with a model population of dust grains made of tholins, materials comprised of complex organic materials seen throughout the outer parts of our Solar System. The presence of organic material around a star that may be in the later stages of giant planet formation implies that the basic building blocks for life may be common in planetary systems.

  3. THE FIRST CIRCUMSTELLAR DISK IMAGED IN SILHOUETTE AT VISIBLE WAVELENGTHS WITH ADAPTIVE OPTICS: MagAO IMAGING OF ORION 218-354

    Energy Technology Data Exchange (ETDEWEB)

    Follette, Katherine B.; Close, Laird M.; Males, Jared R.; Wu, Ya-Lin; Morzinski, Katie M.; Hinz, Philip; Rodigas, Timothy J. [Steward Observatory, The University of Arizona, 933 N Cherry Avenue, Tucson, AZ 85721 (United States); Kopon, Derek [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Puglisi, Alfio; Esposito, Simone; Riccardi, Armando; Pinna, Enrico; Xompero, Marco; Briguglio, Runa [INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy)

    2013-09-20

    We present high-resolution adaptive optics (AO) corrected images of the silhouette disk Orion 218-354 taken with Magellan AO (MagAO) and its visible light camera, VisAO, in simultaneous differential imaging mode at Hα. This is the first image of a circumstellar disk seen in silhouette with AO and is among the first visible light AO results in the literature. We derive the disk extent, geometry, intensity, and extinction profiles and find, in contrast with previous work, that the disk is likely optically thin at Hα. Our data provide an estimate of the column density in primitive, ISM-like grains as a function of radius in the disk. We estimate that only ∼10% of the total submillimeter derived disk mass lies in primitive, unprocessed grains. We use our data, Monte Carlo radiative transfer modeling, and previous results from the literature to make the first self-consistent multiwavelength model of Orion 218-354. We find that we are able to reproduce the 1-1000 μm spectral energy distribution with a ∼2-540 AU disk of the size, geometry, small versus large grain proportion, and radial mass profile indicated by our data. This inner radius is a factor of ∼15 larger than the sublimation radius of the disk, suggesting that it is likely cleared in the very interior.

  4. Unveiling the Evolutionary Sequence from Infalling Envelopes to Keplerian Disks around Low-Mass Protostars

    CERN Document Server

    Yen, Hsi-Wei; Ohashi, Nagayoshi; Ho, Paul T P

    2013-01-01

    We performed SMA observations in the C18O (2-1) emission line toward six Class 0 and I protostars, to study rotational motions of their surrounding envelopes and circumstellar material on 100 to 1000 AU scales. C18O (2-1) emission with intensity peaks located at the protostellar positions is detected toward all the six sources. The rotational velocities of the protostellar envelopes as a function of radius were measured from the Position-Velocity diagrams perpendicular to the outflow directions passing through the protostellar positions. Two Class 0 sources, B335 and NGC 1333 IRAS 4B, show no detectable rotational motion, while L1527 IRS (Class 0/I) and L1448-mm (Class 0) exhibit rotational motions with radial profiles of Vrot ~ r^{-1.0+/-0.2} and ~ r^{-1.0+/-0.1}, respectively. The other Class I sources, TMC-1A and L1489 IRS, exhibit the fastest rotational motions among the sample, and their rotational motions have flatter radial profiles of Vrot ~ r^{-0.6+/-0.1} and ~ r^{-0.5+/-0.1}, respectively. The rotat...

  5. Nearby Supernova Factory Observations of SN 2005gj: Another Type Ia Supernova in a Massive Circumstellar Envelope

    CERN Document Server

    Aldering, G; Bailey, S; Baltay, C; Bauer, A; Blanc, N; Bongard, S; Copin, Y; Gangler, E; Gilles, S; Kessler, R; Kocevski, D; Lee, B C; Loken, S; Nugent, P; Pain, R; Pécontal, E; Pereira, R; Perlmutter, S; Rabinowitz, D; Rigaudier, G; Scalzo, R; Smadja, G; Thomas, R C; Wang, L; Weaver, B A

    2006-01-01

    We report Nearby Supernova Factory observations of SN 2005gj, the second confirmed case of a "hybrid" Type Ia/IIn supernova. Our early-phase photometry of SN 2005gj shows that the interaction is much stronger than for the prototype, SN 2002ic. Our first spectrum shows a hot continuum with broad and narrow H-alpha emission. Later spectra, spanning over 4 months from outburst, show clear Type Ia features combined with broad and narrow H-gamma, H-beta, H-alpha and HeI 5876,7065 in emission. At higher resolution, P Cygni profiles are apparent. Surprisingly, we also observe an inverted P Cygni profile for [OIII] 5007. We find that the lightcurve and measured velocity of the unshocked circumstellar material imply mass loss as recently as 8 years ago. The early lightcurve is well-described by a flat radial density profile for the circumstellar material. However, our decomposition of the spectra into Type Ia and shock emission components allows for little obscuration of the supernova, suggesting an aspherical or clum...

  6. Constraining dust properties in Circumstellar Envelopes of C-stars in the Small Magellanic Cloud: optical constants and grain size of Carbon dust

    CERN Document Server

    Nanni, Ambra; Groenewegen, Martin A T; Aringer, Bernhard; Girardi, Léo; Pastorelli, Giada; Bressan, Alessandro; Bladh, Sara

    2016-01-01

    We present a new approach aimed at constraining the typical size and optical properties of carbon dust grains in Circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC). To achieve this goal, we apply our recent dust growth description, coupled with a radiative transfer code to the CSEs of C-stars evolving along the TP-AGB, for which we compute spectra and colors. Then we compare our modeled colors in the near- and mid-infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing several data sets of optical constants for carbon dust available in the literature. Different assumptions adopted in our dust scheme change the typical size of the carbon grains produced. We constrain carbon dust properties by selecting the combination of grain size and optical constants which best reproduces several colors in the NIR and MIR at the same time. The different choices of optical properties and grain size lead to differences i...

  7. Deep 10 and 18 micron Imaging of the HR 4796A Circumstellar Disk Transient Dust Particles & Tentative Evidence for a Brightness Asymmetry

    CERN Document Server

    Telesco, C M; Pina, R K; Knacke, R F; Dermott, S F; Wyatt, M C; Grogan, K; Holmes, E K; Ghez, A M; Prato, L; Hartmann, L W; Jayawardhana, R

    1999-01-01

    We present new 10.8 and 18.2 micron images of HR 4796A, a young A0V star that was recently discovered to have a spectacular, nearly edge-on, circumstellar disk prominent at ~20 microns (Jayawardhana et al. 1998; Koerner et al. 1998). These new images, obtained with OSCIR at Keck II, show that the disk's size at 10 microns is comparable to its size at 18 microns. Therefore, the 18 micron-emitting dust may also emit some, or all, of the 10 micron radiation. Using these multi-wavelength images, we determine a "characteristic" diameter of 2-3 microns for the mid-infrared-emitting dust particles if they are spherical and composed of astronomical silicates. Particles this small are expected to be blown out of the system by radiation pressure in a few hundred years, and therefore these particles are unlikely to be primordial. Dynamical modeling of the disk (Wyatt et al. 2000) indicates that the disk surface density is relatively sharply peaked near 70 AU, which agrees with the mean annular radius deduced by Schneide...

  8. Constraining dust properties in circumstellar envelopes of C-stars in the Small Magellanic Cloud: optical constants and grain size of carbon dust

    Science.gov (United States)

    Nanni, Ambra; Marigo, Paola; Groenewegen, Martin A. T.; Aringer, Bernhard; Girardi, Léo; Pastorelli, Giada; Bressan, Alessandro; Bladh, Sara

    2016-10-01

    We present a new approach aimed at constraining the typical size and optical properties of carbon dust grains in circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC). To achieve this goal, we apply our recent dust growth description, coupled with a radiative transfer code to the CSEs of C-stars evolving along the thermally pulsing asymptotic giant branch, for which we compute spectra and colours. Then, we compare our modelled colours in the near- and mid-infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing several data sets of optical constants for carbon dust available in the literature. Different assumptions adopted in our dust scheme change the typical size of the carbon grains produced. We constrain carbon dust properties by selecting the combination of grain size and optical constants which best reproduce several colours in the NIR and MIR at the same time. The different choices of optical properties and grain size lead to differences in the NIR and MIR colours greater than 2 mag in some cases. We conclude that the complete set of observed NIR and MIR colours are best reproduced by small grains, with sizes between ˜0.035 and ˜0.12 μm, rather than by large grains between ˜0.2 and 0.7 μm. The inability of large grains to reproduce NIR and MIR colours seems independent of the adopted optical data set. We also find a possible trend of the grain size with mass-loss and/or carbon excess in the CSEs of these stars.

  9. Grain Growth in the Circumstellar Disks of the Young Stars CY Tau and DoAr 25

    CERN Document Server

    Pérez, Laura M; Isella, Andrea; Carpenter, John M; Andrews, Sean M; Calvet, Nuria; Corder, Stuartt A; Deller, Adam T; Dullemond, Cornelis P; Greaves, Jane S; Harris, Robert J; Henning, Thomas; Kwon, Woojin; Lazio, Joseph; Linz, Hendrik; Mundy, Lee G; Ricci, Luca; Sargent, Anneila I; Storm, Shaye; Tazzari, Marco; Testi, Leonardo; Wilner, David J

    2015-01-01

    We present new results from the Disks@EVLA program for two young stars: CY Tau and DoAr 25. We trace continuum emission arising from their circusmtellar disks from spatially resolved observations, down to tens of AU scales, at {\\lambda} = 0.9, 2.8, 8.0, and 9.8 mm for DoAr25 and at {\\lambda} = 1.3, 2.8, and 7.1 mm for CY Tau. Additionally, we constrain the amount of emission whose origin is different from thermal dust emission from 5 cm observations. Directly from interferometric data, we find that observations at 7 mm and 1 cm trace emission from a compact disk while millimeter-wave observations trace an extended disk structure. From a physical disk model, where we characterize the disk structure of CY Tau and DoAr 25 at wavelengths shorter than 5 cm, we find that (1) dust continuum emission is optically thin at the observed wavelengths and over the spatial scales studied, (2) a constant value of the dust opacity is not warranted by our observations, and (3) a high-significance radial gradient of the dust op...

  10. Angular momentum loss in the envelope-disk transition region of HH 111 protostellar system: evidence for magnetic braking?

    CERN Document Server

    Lee, Chin-Fei; Li, Zhi-Yun

    2016-01-01

    HH 111 is a Class I protostellar system at a distance of ~ 400 pc, with the central source VLA 1 associated with a rotating disk deeply embedded in a flattened envelope. Here we present the observations of this system at ~ 0.6" (240 AU) resolution in C18O (J=2-1) and 230 GHz continuum obtained with Atacama Large Millimeter/Submillimeter Array, and in SO obtained with Submillimeter Array. The observations show for the first time how a Keplerian rotating disk can be formed inside a flattened envelope. The flattened envelope is detected in C18O, extending out to >~ 2400 AU from the VLA 1 source. It has a differential rotation, with the outer part (>~ 2000 AU) better described by a rotation that has constant specific angular momentum and the innermost part (<~ 160 AU) by a Keplerian rotation. The rotationally supported disk is therefore relatively compact in this system, which is consistent with the dust continuum observations. Most interestingly, if the flow is in steady state, there is a substantial drop in ...

  11. Monte-Carlo radiative transfer simulation of the circumstellar disk of the Herbig Ae star HD 144432

    CERN Document Server

    Chen, L; Weigelt, G; Hofmann, K -H; Schertl, D; Malbet, F; Massi, F; Petrov, R; Stee, Ph

    2015-01-01

    Studies of pre-transitional disks, with a gap region between the inner infrared-emitting region and the outer disk, are important to improving our understanding of disk evolution and planet formation. Previous infrared interferometric observations have shown hints of a gap region in the protoplanetary disk around the Herbig Ae star HD~144432. We study the dust distribution around this star with two-dimensional radiative transfer modeling. We compare the model predictions obtained via the Monte-Carlo radiative transfer code RADMC-3D with infrared interferometric observations and the {\\SED} of HD~144432. The best-fit model that we found consists of an inner optically thin component at $0.21\\enDash0.32~\\AU$ and an optically thick outer disk at $1.4\\enDash10~\\AU$. We also found an alternative model in which the inner sub-AU region consists of an optically thin and an optically thick component. Our modeling suggests an optically thin component exists in the inner sub-AU region, although an optically thick componen...

  12. Formation of a Keplerian disk in the infalling envelope around L1527 IRS: transformation from infalling motions to Kepler motions

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Nagayoshi [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Saigo, Kazuya [Chile Observatory, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Aso, Yusuke; Koyamatsu, Shin [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Aikawa, Yuri [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Machida, Masahiro N. [Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Fukuoka 812-8581 (Japan); Saito, Masao [Joint ALMA Observatory, Ave. Alonso de Cordova 3107, Vitacura, Santiago (Chile); Takahashi, Sanemichi Z. [Department of Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Takakuwa, Shigehisa; Yen, Hsi-Wei [Academia Sinica Institute of Astronomy and Astrophysics, PO Box 23-141, Taipei 10617, Taiwan (China); Tomida, Kengo [Department of Astronomical Science, Princeton University, Princeton, NJ 08544 (United States); Tomisaka, Kohji, E-mail: nohashi@naoj.org [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan)

    2014-12-01

    We report Atacama Large Millimeter/submillimeter Array (ALMA) cycle 0 observations of the C{sup 18}O (J = 2-1), SO (J{sub N} = 6{sub 5}-5{sub 4}), and the 1.3 mm dust continuum toward L1527 IRS, a class 0 solar-type protostar surrounded by an infalling and rotating envelope. C{sup 18}O emission shows strong redshifted absorption against the bright continuum emission associated with L1527 IRS, strongly suggesting infall motions in the C{sup 18}O envelope. The C{sup 18}O envelope also rotates with a velocity mostly proportional to r {sup –1}, where r is the radius, whereas the rotation profile at the innermost radius (∼54 AU) may be shallower than r {sup –1}, suggestive of formation of a Keplerian disk around the central protostar of ∼0.3 M {sub ☉} in dynamical mass. SO emission arising from the inner part of the C{sup 18}O envelope also shows rotation in the same direction as the C{sup 18}O envelope. The rotation is, however, rigid-body-like, which is very different from the differential rotation shown by C{sup 18}O. In order to explain the line profiles and the position-velocity (PV) diagrams of C{sup 18}O and SO observed, simple models composed of an infalling envelope surrounding a Keplerian disk of 54 AU in radius orbiting a star of 0.3 M {sub ☉} are examined. It is found that in order to reproduce characteristic features of the observed line profiles and PV diagrams, the infall velocity in the model has to be smaller than the free-fall velocity yielded by a star of 0.3 M {sub ☉}. Possible reasons for the reduced infall velocities are discussed.

  13. Radiation Magnetohydrodynamic Simulations of Protostellar Collapse: Non-Ideal Magnetohydrodynamic Effects and Early Formation of Circumstellar Disks

    CERN Document Server

    Tomida, Kengo; Machida, Masahiro N

    2015-01-01

    The transport of angular momentum by magnetic fields is a crucial physical process in formation and evolution of stars and disks. Because the ionization degree in star forming clouds is extremely low, non-ideal magnetohydrodynamic (MHD) effects such as ambipolar diffusion and Ohmic dissipation work strongly during protostellar collapse. These effects have significant impacts in the early phase of star formation as they redistribute magnetic flux and suppress angular momentum transport by magnetic fields. We perform three-dimensional nested-grid radiation magnetohydrodynamic (RMHD) simulations including Ohmic dissipation and ambipolar diffusion. Without these effects, magnetic fields transport angular momentum so efficiently that no rotationally supported disk is formed even after the second collapse. Ohmic dissipation works only in a relatively high density region within the first core and suppresses angular momentum transport, enabling formation of a very small rotationally supported disk after the second co...

  14. Radio Imaging of the NGC 1333 IRAS 4A Region: Envelope, Disks, and Outflows of a Protostellar Binary System

    CERN Document Server

    Choi, Minho; Tatematsu, Ken'ichi; Lee, Jeong-Eun; Park, Geumsook

    2011-01-01

    The NGC 1333 IRAS 4A protobinary was observed in the 1.3 cm and 6.9 mm continuum and the ammonia and SiO lines, with an angular resolution of about 0.4 arcseconds. The continuum maps show the circumstellar structures of the two protostars, A1 and A2. The A1 system is brighter and more massive than the A2 system. The ratio of mass, including dense gas and protostar, is about 6. The properties of the circumstellar disks and outflows suggest that A1 may be younger than A2. The deflected part of the northeastern jet of A2 is bright in the SiO line, and the distance between the brightest peak and deflection point suggests that the enhancement of SiO takes about 100 yr after the collision with a dense core. The ammonia maps show a small structure that seems to be a part of the obstructing core. The outflow properties were studied by comparing interferometric maps of SiO, ammonia, formaldehyde, and HCN lines. Their overall structures agree well, suggesting that these species are excited by the same mechanism. Howeve...

  15. Formation of a Keplerian disk in the infalling envelope around L1527 IRS: transformation from infalling motions to Kepler motions

    CERN Document Server

    Ohashi, Nagayoshi; Aso, Yusuke; Aikawa, Yuri; Koyamatsu, Shin; Machida, Masahiro N; Saito, Masao; Takahashi, Sanemichi Z; Takakuwa, Shigehisa; Tomida, Kengo; Tomisaka, Kohji; Yen, Hsi-Wei

    2014-01-01

    We report Atacama Large Millimeter/submillimeter Array (ALMA) cycle 0 observations of C$^{18}$O ($J=2-1$), SO ($J_N= 6_5-5_4$) and 1.3mm dust continuum toward L1527 IRS, a class 0 solar-type protostar surrounded by an infalling and rotating envelope. C$^{18}$O emission shows strong redshifted absorption against the bright continuum emission associated with L1527 IRS, strongly suggesting infall motions in the C$^{18}$O envelope. The C$^{18}$O envelope also rotates with a velocity mostly proportional to $r^{-1}$, where $r$ is the radius, while the rotation profile at the innermost radius (54 AU) may be shallower than $r^{-1}$, suggestive of formation of a Keplerian disk around the central protostar of 0.3 Mo in dynamical mass. SO emission arising from the inner part of the C$^{18}$O envelope also shows rotation in the same direction as the C$^{18}$O envelope. The rotation is, however, rigid-body like which is very different from the differential rotation shown by C$^{18}$O. In order to explain the line profiles...

  16. A unique mechanism of nuclear division in Giardia lamblia involves components of the ventral disk and the nuclear envelope.

    Science.gov (United States)

    Solari, Alberto J; Rahn, Monica I; Saura, Alicia; Lujan, Hugo D

    2003-12-01

    The fine structure of the binucleate, parasitic protist Giardia lamblia during interphase and divisional stages was studied by serial thin sectioning and three-dimensional reconstructions. The earlier sign of nuclear division is the development of a few peripheral areas of densely packed chromatin directly attached to the inner nuclear envelope. An intracytoplasmic sheet of ventral disk components grows from the cell periphery towards one of the nuclei, apparently constricting this nucleus, which becomes located at a ventral bulge. After the basal bodies become duplicated, a full nuclear division occurs in trophozoites, giving two pairs of parent-daughter nuclei. This full division occurs in a dorsal-ventral direction, with the resulting nuclear pairs located at the sides of the two sets of basal bodies. A new ventral disk is formed from the disk-derived sheets in the cell harboring the four nuclei. Cytokinesis is polymorphic, but at early stages is dorsal-to-dorsal. Encysting trophozoites show the development of Golgi cisternae stacks and dense, specific secretory granules. 3-D reconstructions show that cysts contain a single pair of incompletely strangled nuclei. The dividing Giardia lacks a typical, microtubular spindle either inside or outside the nuclei. The nuclear envelope seems to be the only structure involved in the final division of the parent-daughter nuclei.

  17. A unique mechanism of nuclear division in Giardia lamblia involves components of the ventral disk and the nuclear envelope.

    Science.gov (United States)

    Solari, Alberto J; Rahn, Monica I; Saura, Alicia; Lujan, Hugo D

    2003-12-01

    The fine structure of the binucleate, parasitic protist Giardia lamblia during interphase and divisional stages was studied by serial thin sectioning and three-dimensional reconstructions. The earlier sign of nuclear division is the development of a few peripheral areas of densely packed chromatin directly attached to the inner nuclear envelope. An intracytoplasmic sheet of ventral disk components grows from the cell periphery towards one of the nuclei, apparently constricting this nucleus, which becomes located at a ventral bulge. After the basal bodies become duplicated, a full nuclear division occurs in trophozoites, giving two pairs of parent-daughter nuclei. This full division occurs in a dorsal-ventral direction, with the resulting nuclear pairs located at the sides of the two sets of basal bodies. A new ventral disk is formed from the disk-derived sheets in the cell harboring the four nuclei. Cytokinesis is polymorphic, but at early stages is dorsal-to-dorsal. Encysting trophozoites show the development of Golgi cisternae stacks and dense, specific secretory granules. 3-D reconstructions show that cysts contain a single pair of incompletely strangled nuclei. The dividing Giardia lacks a typical, microtubular spindle either inside or outside the nuclei. The nuclear envelope seems to be the only structure involved in the final division of the parent-daughter nuclei. PMID:15002750

  18. SXP 5.05 = IGR J00569-7226 : using X-rays to explore the structure of a Be stars circumstellar disk

    CERN Document Server

    Coe, M J; Bird, A J; Haberl, F; Kennea, J A; McBride, V A; Townsend, L J; Udalski, A

    2014-01-01

    On MJD 56590-1 (2013 Oct 25-26) observations of the Magellanic Clouds by the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) observatory discovered a previously-unreported bright, flaring X-ray source. This source was initially given the identification IGR J00569-7226. Subsequent multi-wavelength observations identified the system as new Be/X-ray binary system in the Small Magellanic Cloud. Follow-up X-ray observations by Swift and XMM-Newton revealed an X-ray pulse period of 5.05s and that the system underwent regular occulation/eclipse behaviour every 17d. This is the first reported eclipsing Be/X-ray binary system in the SMC, and only the second such system known to date. Furthermore, the nature of the occultation makes it possible to use the neutron star to X-ray the circumstellar disk, thereby, for the first time, revealing direct observational evidence for its size and clumpy structure. Swift timing measurements allowed for the binary solution to be calculated from the Doppler shifted X-ray p...

  19. The Role of Evolutionary Age and Metallicity in the Formation of Classical Be Circumstellar Disks II. Assessing the Evolutionary Nature of Candidate Disk Systems

    CERN Document Server

    Wisniewski, John P; Magalhaes, Antonio M; Bjorkman, Jon E; Meade, Marilyn R; Pereyra, Antonio

    2007-01-01

    (Abridged version) We present the first detailed imaging polarization observations of six SMC and six LMC clusters, known to have large populations of B-type stars which exhibit excess H-alpha emission, to constrain the evolutionary status of these stars and hence better establish links between the onset of disk formation in classical Be stars and cluster age and/or metallicity. The wavelength dependence of our intrinsic polarization data provides a diagnostic of the dominant and any secondary polarigenic agents present, enabling us to discriminate pure gas disk systems, i.e. classical Be stars, from composite gas plus dust disk systems, i.e. Herbig Ae/Be or B[e] stars. Our intrinsic polarization results, along with available near-IR color information, strongly supports the suggestion of Wisniewski et al. that classical Be stars are present in clusters of age 5-8 Myr, and contradict assertions that the Be phenomenon only develops in the second half of a B star's main sequence lifetime, i.e. no earlier than 10...

  20. Mid - infrared interferometry of massive young stellar objects II Evidence for a circumstellar disk surrounding the Kleinmann - Wright object

    CERN Document Server

    Follert, R; Stecklum, B; van Boekel, R; Henning, Th; Feldt, M; Herbst, T M; Leinert, Ch

    2010-01-01

    The formation scenario for massive stars is still under discussion. To further constrain current theories, it is vital to spatially resolve the structures from which material accretes onto massive young stellar objects (MYSOs). Due to the small angular extent of MYSOs, one needs to overcome the limitations of conventional thermal infrared imaging, regarding spatial resolution, in order to get observational access to the inner structure of these objects.We employed mid - infrared interferometry, using the MIDI instrument on the ESO /VLTI, to investigate the Kleinmann - Wright Object, a massive young stellar object previously identified as a Herbig Be star precursor. Dispersed visibility curves in the N- band (8 - 13 {\\mu}m) have been obtained at 5 interferometric baselines. We show that the mid - infrared emission region is resolved. A qualitative analysis of the data indicates a non - rotationally symmetric structure, e.g. the projection of an inclined disk. We employed extensive radiative transfer simulation...

  1. HST/WFPC2 Study of the Trapezium Cluster: the Influence of Circumstellar Disks on the Initial Mass Function

    CERN Document Server

    Robberto, M; Carrillo, G M; Beckwith, S V W; Makidon, R B; Panagia, N

    2004-01-01

    We have performed the first measures of mass accretion rates in the core of the Orion Nebula Cluster. Four adjacent fields centered on the Trapezium stars have been imaged in the U- and B-bands using the Wide Field Planetary Camera 2 on board the Hubble Space Telescope. In this paper we focus our attention on a group of 40 stars with known spectral types and complete UBVI WFPC2 photometry. Approximately three quarters of the sources show excess luminosity in the U-band, that we attribute to mass accretion. The known correlation between the U-band excess and the total accretion luminosity allows us to estimate the accretion rates. Overall, mass accretion rates appear lower than those measured by other authors in the Orion flanking fields or in Taurus-Auriga. Mass accretion rates remain low even in the vicinity of the birth line of Palla & Stahler, suggesting that in the core of the Trapezium cluster disk accretion has been recently depressed by an external mechanism. We suggest that the UV radiation genera...

  2. Disk

    NARCIS (Netherlands)

    Boncz, P.A.; Liu, L.; Özsu, M. Tamer

    2008-01-01

    In disk storage, data is recorded on planar, round and rotating surfaces (disks, discs, or platters). A disk drive is a peripheral device of a computer system, connected by some communication medium to a disk controller. The disk controller is a chip, typically connected to the CPU of the computer b

  3. Mapping the 12CO J = 1-0 and J = 2-1 emission in AGB and early post-AGB circumstellar envelopes. I. The COSAS program, first sample

    Science.gov (United States)

    Castro-Carrizo, A.; Quintana-Lacaci, G.; Neri, R.; Bujarrabal, V.; Schöier, F. L.; Winters, J. M.; Olofsson, H.; Lindqvist, M.; Alcolea, J.; Lucas, R.; Grewing, M.

    2010-11-01

    We present COSAS (CO Survey of late AGB Stars), a project to map and analyze the 12CO J = 1-0 and J = 2-1 line emission in a representative sample of circumstellar envelopes around AGB and post-AGB stars. The survey was undertaken with the aim of investigating small- and large-scale morphological and kinematical properties of the molecular environment surrounding stars in the late AGB and early post-AGB phases. For this, COSAS combines the high sensitivity and spatial resolving power of the IRAM Plateau de Bure interferometer with the better capability of the IRAM 30 m telescope to map extended emission. The global sample encompasses 45 stars selected to span a range in chemical type, variability type, evolutionary state, and initial mass. COSAS provides means to quantify variations in the mass-loss rates, assess morphological and kinematical features, and to investigate the appearance of fast aspherical winds in the early post-AGB phase. This paper, which is the first of a series of COSAS papers, presents the results from the analyses of a first sample of 16 selected sources. The envelopes around late AGB stars are found to be mostly spherical, often mingled with features such as concentric arcs (R Cas and TX Cam), a broken spiral density pattern (TX Cam), molecular patches testifying to aspherical mass-loss (WX Psc, IK Tau, V Cyg, and S Cep), and also with well-defined axisymmetric morphologies and kinematical patterns (X Her and RX Boo). The sources span a wide range of angular sizes, from relatively compact (CRL 2362, OH 104.9+2.4 and CRL 2477) to very large (χ Cyg and TX Cam) envelopes, sometimes partially obscured by self-absorption features, which particularly for IK Tau and χ Cyg testifies to the emergence of aspherical winds in the innermost circumstellar regions. Strong axial structures with more or less complex morphologies are detected in four early post-AGB stars (IRAS 20028+3910, IRAS 23321+6545, IRAS 19475+3119 and IRAS 21282+5050) of the sub

  4. Spectroscopic studies of the classical Cepheid ζ Gem: Analysis of the velocity field in the atmosphere and manifestation of the presence of a circumstellar envelope

    Science.gov (United States)

    Usenko, I. A.

    2016-06-01

    with those for the B component of the Hα line, they are all formed in the Cepheid's atmosphere. The formation and passage of a shock wave due to the κ-mechanism at work can be responsible for the stronger scatter of the B1 and B2 components in their velocities at phases after the Cepheid's minimum radius. The averaged velocities of the R1 components also change with pulsation phase and differ only slightly from the remaining ones. On the other hand, the mean velocity estimate for the R component of the Hα line at all phases is +32.72 ± 2.50 km s-1 and differs significantly from the bulk of the velocities, suggesting the formation of this component in the envelope around the Cepheid. The unusual behavior of the mean velocities for the R2 components of the metal absorption lines can also point to their formation in the envelope and can be yet another indicator of its presence around ζ Gem.

  5. Confirmation of circumstellar phosphine

    CERN Document Server

    Agundez, M; Decin, L; Encrenaz, P; Teyssier, D

    2014-01-01

    Phosphine (PH3) was tentatively identified a few years ago in the carbon star envelopes IRC+10216 and CRL2688 from observations of an emission line at 266.9 GHz attributable to the J=1-0 rotational transition. We report the detection of the J=2-1 rotational transition of PH3 in IRC+10216 using the HIFI instrument on board Herschel, which definitively confirms the identification of PH3. Radiative transfer calculations indicate that infrared pumping to excited vibrational states plays an important role in the excitation of PH3 in the envelope of IRC+10216, and that the observed lines are consistent with phosphine being formed anywhere between the star and 100 R* from the star, with an abundance of 1e-8 relative to H2. The detection of PH3 challenges chemical models, none of which offers a satisfactory formation scenario. Although PH3 locks just 2 % of the total available phosphorus in IRC+10216, it is together with HCP, one of the major gas phase carriers of phosphorus in the inner circumstellar layers, suggest...

  6. EFFECT OF PHOTODESORPTION ON THE SNOW LINES AT THE SURFACE OF OPTICALLY THICK CIRCUMSTELLAR DISKS AROUND HERBIG Ae/Be STARS

    International Nuclear Information System (INIS)

    We investigate the effect of photodesorption on the snow line position at the surface of a protoplanetary disk around a Herbig Ae/Be star, motivated by the detection of water ice particles at the surface of the disk around HD142527 by Honda et al. For this aim, we obtain the density and temperature structure in the disk with a 1+1D radiative transfer and determine the distribution of water ice particles in the disk by the balance between condensation, sublimation, and photodesorption. We find that photodesorption induced by far-ultraviolet radiation from the central star depresses the ice-condensation front toward the mid-plane and pushes the surface snow line significantly outward when the stellar effective temperature exceeds a certain critical value. This critical effective temperature depends on the stellar luminosity and mass, the water abundance in the disk, and the yield of photodesorption. We present an approximate analytic formula for the critical temperature. We separate Herbig Ae/Be stars into two groups on the HR diagram according to the critical temperature: one is the disks where photodesorption is effective and from which we may not find ice particles at the surface, and the other is the disks where photodesorption is not effective. We estimate the snow line position at the surface of the disk around HD142527 to be 100-300 AU, which is consistent with the water ice detection at >140 AU in the disk. All the results depend on the dust grain size in a complex way, and this point requires more work in the future.

  7. Embryos grown in the dead zone: Assembling the first protoplanetary cores in low mass self-gravitating circumstellar disks of gas and solids

    OpenAIRE

    Lyra, W.; Johansen, A; Klahr, H.; Piskunov, N.

    2008-01-01

    In the borders of the dead zones of protoplanetary disks, the inflow of gas produces a local density maximum that triggers the Rossby wave instability. The vortices that form are efficient in trapping solids. We aim to assess the possibility of gravitational collapse of the solids within the Rossby vortices. We perform global simulations of the dynamics of gas and solids in a low mass non-magnetized self-gravitating thin protoplanetary disk with the Pencil code. We use multiple particle speci...

  8. The circumstellar disk of FS Tau B - A self-consistent model based on observations in the mid-infrared with NACO -

    CERN Document Server

    Kirchschlager, Florian; Madlener, David

    2016-01-01

    Protoplanetary disks are a byproduct of the star formation process. In the dense mid-plane of these disks, planetesimals and planets are expected to form. The first step in planet formation is the growth of dust particles from submicrometer-sized grains to macroscopic mm-sized aggregates. The grain growth is accompanied by radial drift and vertical segregation of the particles within the disk. To understand this essential evolutionary step, spatially resolved multi-wavelength observations as well as photometric data are necessary which reflect the properties of both disk and dust. We present the first spatially resolved image obtained with NACO at the VLT in the L$_\\text{p}$ band of the near edge-on protoplanetary disk FS Tau B. Based on this new image, a previously published Hubble image in H band and the spectral energy distribution from optical to millimeter wavelengths, we derive constraints on the spatial dust distribution and the progress of grain growth. For this purpose we perform a disk modeling usin...

  9. HD95881 : a gas rich to gas poor transition disk?

    NARCIS (Netherlands)

    Verhoeff, A. P.; Min, M.; Acke, B.; van Boekel, R.; Pantin, E.; Waters, L. B. F. M.; Tielens, A. G. G. M.; van den Ancker, M. E.; Mulders, G. D.; de Koter, A.; Bouwman, J.

    2010-01-01

    Context. Based on the far infrared excess the Herbig class of stars is divided into a group with flaring circumstellar disks (group I) and a group with flat circumstellar disks (group II). Dust sedimentation is generally proposed as an evolution mechanism to transform flaring disks into flat disks.

  10. Disk Instability vs. Core Accretion: Observable Discriminants

    Science.gov (United States)

    Jang-Condell, H.

    2007-06-01

    I will discuss ways to distinguish between disk instability and core accretion, the two competing paradigms for giant planet formation. Disk instability happens when a massive disk fragments into planet-sized self-gravitating clumps. Scattered light from these disks will illuminate high altitude density variations that result from stirring of the disk by the forming planet. These variations will evolve quickly, within several years, but do not correlate with the position of the planet itself. Alternatively, core accretion happens when solid particles collide and coagulate into larger and larger bodies until a body large enough to accrete a gaseous envelope forms -- around 10-20 Earth masses. This process is thought to be more quiescent than gravitational instability, so the disk should appear smooth. Although a 10-20 Earth mass core is insufficiently massive to fully clear an annular gap in the disk, it does perturb the disk material immediately in its vicinity, creating shadows and brightenings at the protoplanet's location. The planet may also begin to clear a partial gap. Shadowing and illumination on this partial gap can alter the thermal structure at the upper layers of the disk on a sufficiently large scale to be observable. Observing the signatures of either disk instability or core accretion requires milliarcsecond resolution and high contrast imaging. Advances in coronography, adaptive optics, and interferometry are bringing us ever closer to begin able to make these detections. Observational confirmation of either process taking place in a young circumstellar disk will help resolve the long-standing debate over how giant planets form.

  11. The Migrating Embryo Model for Disk Evolution

    CERN Document Server

    Basu, Shantanu

    2012-01-01

    A new view of disk evolution is emerging from self-consistent numerical simulation modeling of the formation of circumstellar disks from the direct collapse of prestellar cloud cores. This has implications for many aspects of star and planet formation, including the growth of dust and high-temperature processing of materials. A defining result is that the early evolution of a disk is crucially affected by the continuing mass loading from the core envelope, and is driven into recurrent phases of gravitational instability. Nonlinear spiral arms formed during these episodes fragment to form gaseous clumps in the disk. These clumps generally migrate inward due to gravitational torques arising from their interaction with a trailing spiral arm. Occasionally, a clump can open up a gap in the disk and settle into a stable orbit, revealing a direct pathway to the formation of companion stars, brown dwarfs, or giant planets. At other times, when multiple clumps are present, a low mass clump may even be ejected from the...

  12. Binary Stellar Mergers with Marginally-Bound Ejecta: Excretion Disks, Inflated Envelopes, Outflows, and their Luminous Transients

    CERN Document Server

    Pejcha, Ondrej; Tomida, Kengo

    2016-01-01

    We study mass loss from the outer Lagrange point (L2) in binary stellar mergers and their luminous transients by means of radiative hydrodynamical simulations. Previously, we showed that for binary mass ratios 0.06 0.15. By contrast, for cold L2 mass-loss (\\epsilon 0.8, the equatorial outflow instead remains marginally-bound and falls back to the binary over tens to hundreds of binary orbits, where it experiences additional tidal torqueing and shocking. As the bound gas becomes virialized with the binary, the luminosity of the system increases slowly at approximately constant photosphere radius, causing the temperature to rise. Subsequent evolution depends on the efficiency of radiative cooling. If the bound atmosphere is able to cool efficiently, as quantified by radiative diffusion time being shorter than the advection time (t_diff/t_adv 10 an isotropic wind is formed. Between these two extremes, an inflated envelope transports the heat generated near the binary to the surface by meridional flows. In all...

  13. The complex circumstellar environment of HD142527

    CERN Document Server

    Verhoeff, A P; Pantin, E; Waters, L B F M; Tielens, A G G M; Honda, M; Fujiwara, H; Bouwman, J; van Boekel, R; Dougherty, S M; de Koter, A; Dominik, C; Mulders, G D

    2011-01-01

    The recent findings of gas giant planets around young A-type stars suggest that disks surrounding Herbig Ae/Be stars will develop planetary systems. An interesting case is HD142527, for which previous observations revealed a complex circumstellar environment and an unusually high ratio of infrared to stellar luminosity. Its properties differ considerably from other Herbig Ae/Be stars. This suggests that the disk surrounding HD142527 is in an uncommon evolutionary stage. We aim for a better understanding of the geometry and evolutionary status of the circumstellar material around the Herbig Ae/Be star HD142527. We map the composition and spatial distribution of the dust around HD142527. We analyze SEST and ATCA millimeter data, VISIR N and Q-band imaging and spectroscopy. We gather additional relevant data from the literature. We use the radiative transfer code MCMax to construct a model of the geometry and density structure of the circumstellar matter, which fits all of the observables satisfactorily. We find...

  14. A circumstellar molecular gas structure associated with the massive young star Cepheus A-HW 2

    Science.gov (United States)

    Torrelles, Jose M.; Rodriguez, Luis F.; Canto, Jorge; Ho, Paul T. P.

    1993-01-01

    We report the detection via VLA-D observations of ammonia of a circumstellar high-density molecular gas structure toward the massive young star related to the object Cepheus A-HW 2, a firm candidate for the powering source of the high-velocity molecular outflow in the region. We suggest that the circumstellar molecular gas structure could be related to the circumstellar disk previously suggested from infrared, H2O, and OH maser observations. We consider as a plausible scenario that the double radio continuum source of HW 2 could represent the ionized inner part of the circumstellar disk, in the same way as proposed to explain the double radio source in L1551. The observed motions in the circumstellar molecular gas can be produced by bound motions (e.g., infall or rotation) around a central mass of about 10-20 solar masses (B0.5 V star or earlier).

  15. The enigmatic nature of the circumstellar envelope and bow shock surrounding Betelgeuse as revealed by Herschel. I. Evidence of clumps, multiple arcs, and a linear bar-like structure

    CERN Document Server

    Decin, L; Royer, P; Van Marle, A J; Vandenbussche, B; Ladjal, D; Kerschbaum, F; Ottensamer, R; Barlow, M J; Blommaert, J A D L; Gomez, H L; Groenewegen, M A T; Lim, T; Swinyard, B M; Waelkens, C; Tielens, A G G M; 10.1051/0004-6361/201219792

    2012-01-01

    Context. The interaction between stellar winds and the interstellar medium (ISM) can create complex bow shocks. The photometers on board the Herschel Space Observatory are ideally suited to studying the morphologies of these bow shocks. Aims. We aim to study the circumstellar environment and wind-ISM interaction of the nearest red supergiant, Betelgeuse. Methods. Herschel PACS images at 70, 100, and 160 micron and SPIRE images at 250, 350, and 500 micron were obtained by scanning the region around Betelgeuse. These data were complemented with ultraviolet GALEX data, near-infrared WISE data, and radio 21 cm GALFA-HI data. The observational properties of the bow shock structure were deduced from the data and compared with hydrodynamical simulations. Results. The infrared Herschel images of the environment around Betelgeuse are spectacular, showing the occurrence of multiple arcs at 6-7 arcmin from the central target and the presence of a linear bar at 9 arcmin. Remarkably, no large-scale instabilities are seen ...

  16. Composite circumstellar dust grains

    Science.gov (United States)

    Gupta, Ranjan; Vaidya, Dipak B.; Dutta, Rajeshwari

    2016-10-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5-25 μm. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18 μm. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-type and asymptotic giant branch stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes, shape, composition and dust temperature.

  17. Composite Circumstellar Dust Grains

    CERN Document Server

    Gupta, Ranjan; Dutta, Rajeshwari

    2016-01-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5--25$\\rm \\mu m$. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18$\\rm \\mu m$. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-Type \\& AGB stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes; shape; composition and dust temperature.

  18. The Rich Circumstellar Chemistry of SMP LMC 11

    CERN Document Server

    Malek, Sarah E; Bernard-Salas, Jeronimo

    2011-01-01

    Carbon-rich evolved stars from the asymptotic giant branch to the planetary nebula phase are characterized by a rich and complex carbon chemistry in their circumstellar envelopes. A peculiar object is the preplanetary nebula SMP LMC 11, whose Spitzer-IRS spectrum shows remarkable and diverse molecular absorption bands. To study how the molecular composition in this object compares to our current understanding of circumstellar carbon chemistry, we modeled this molecular absorption. We find high abundances for a number of molecules, perhaps most notably benzene. We also confirm the presence of propyne (CH3C2H) in this spectrum. Of all the cyanopolyynes, only HC3N is evident; we can detect at best a marginal presence of HCN. From comparisons to various chemical models, we can conclude that SMP LMC 11 must have an unusual circumstellar environment (a torus rather than an outflow).

  19. The progenitor of SN 2011ja: Clues from circumstellar interaction

    OpenAIRE

    Chakraborti, Sayan; Ray, Alak; Smith, Randall; Ryder, Stuart; Yadav, Naveen; Sutaria, Firoza; Dwarkadas, Vikram V; Chandra, Poonam; Pooley, David; Roy, Rupak

    2013-01-01

    Massive stars, possibly red supergiants, which retain extended hydrogen envelopes until core collapse, produce Type II Plateau (IIP) supernovae. The ejecta from these explosions shock the circumstellar matter originating from the mass loss of the progenitor during the final phases of its life. This interaction accelerates particles to relativistic energies which then lose energy via synchrotron radiation in the shock-amplified magnetic fields and inverse Compton scattering against optical pho...

  20. THE MAGNETIC FIELD IN THE CLASS 0 PROTOSTELLAR DISK OF L1527

    Energy Technology Data Exchange (ETDEWEB)

    Segura-Cox, Dominique M.; Looney, Leslie W.; Stephens, Ian W.; Fernández-López, Manuel; Crutcher, Richard [Department of Astronomy, University of Illinois, Urbana, IL 61801 (United States); Kwon, Woojin [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen (Netherlands); Tobin, John J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Li, Zhi-Yun, E-mail: segurac2@illinois.edu [Astronomy Department, University of Virginia, Charlottesville, VA 22904 (United States)

    2015-01-01

    We present subarcsecond (∼0.''35) resolved observations of the 1.3 mm dust polarization from the edge-on circumstellar disk around the Class 0 protostar L1527. The inferred magnetic field is consistent with a dominantly toroidal morphology; there is no significantly detected vertical poloidal component to which observations of an edge-on disk are most sensitive. This suggests that angular momentum transport in Class 0 protostars (when large amounts of material are fed down to the disk from the envelope and accreted onto the protostar) is driven mainly by magnetorotational instability rather than magnetocentrifugal winds at 50 AU scales. In addition, with the data to date there is an early, tentative trend that R > 30 AU disks have so far been found in Class 0 systems with average magnetic fields on the 1000 AU scale strongly misaligned with the rotation axis. The absence of such a disk in the aligned case could be due to efficient magnetic braking that disrupts disk formation. If this is the case, this implies that candidate Class 0 disk systems could be identified by the average magnetic field direction at ∼1000 AU spatial scales.

  1. High-resolution near-infrared imaging of the Orion 114-426 silhouette disk

    CERN Document Server

    McCaughrean, M J; Bally, J; Erickson, E; Thompson, R; Rieke, M J; Schneider, G; Stolovy, S; Young, E; Caughrean, Mark J. Mc; Chen, Hua; Bally, John; Erickson, Ed; Thompson, Rodger; Rieke, Marcia; Schneider, Glenn; Stolovy, Susan; Young, Erick

    1997-01-01

    We present the first high-resolution near-infrared images of the edge-on silhouette circumstellar disk, Orion 114-426, made using NICMOS on the Hubble Space Telescope. Images taken against the bright nebular background of the ionized hydrogen Pa$\\alpha$ line at 1.87 micron show the major axis of the disk to be approximately 20% smaller than at 0.6 micron, from which we deduce the structure of the edge of the disk. Continuum images of diffuse polar lobes above and below the plane of the disk show a morphology and evolution with wavelength consistent with predictions for reflection nebulae in a diffuse envelope with large polar cavities, surrounding a thin, massless, Keplerian disk, centered on an otherwise hidden central star. We make use of our observations and reasonable assumptions about the underlying disk structure to show that the disk mass is at least 10 earth masses and plausibly $\\geq 5\\times 10^{-4}$ solar masses.

  2. X-raying circumstellar material around young stars

    CERN Document Server

    Schneider, P C

    2015-01-01

    Young stars are surrounded by copious amounts of circumstellar material. Its composition, in particular its gas-to-dust ratio, is an important parameter. However, measuring this ratio is challenging, because gas mass estimates are often model dependent. X-ray absorption is sensitive to the gas along the line-of-sight while optical/near-IR extinction depends on the dust content. Therefore, the gas-to-dust ratio of an absorber is given by the ratio between X-ray and optical/near-IR extinction. We present three systems where we used X-ray and optical/near-IR data to constrain the gas-to-dust ratio of circumstellar material; from a dust-rich debris disk to gaseous protoplanetary disks.

  3. Interstellar and circumstellar fullerenes

    CERN Document Server

    Bernard-Salas, J; Jones, A P; Peeters, E; Micelotta, E R; Otsuka, M; Sloan, G C; Kemper, F; Groenewegen, M

    2014-01-01

    Fullerenes are a particularly stable class of carbon molecules in the shape of a hollow sphere or ellipsoid that might be formed in the outflows of carbon stars. Once injected into the interstellar medium (ISM), these stable species survive and are thus likely to be widespread in the Galaxy where they contribute to interstellar extinction, heating processes, and complex chemical reactions. In recent years, the fullerene species C60 (and to a lesser extent C70) have been detected in a wide variety of circumstellar and interstellar environments showing that when conditions are favourable, fullerenes are formed efficiently. Fullerenes are the first and only large aromatics firmly identified in space. The detection of fullerenes is thus crucial to provide clues as to the key chemical pathways leading to the formation of large complex organic molecules in space, and offers a great diagnostic tool to describe the environment in which they reside. Since fullerenes share many physical properties with PAHs, understand...

  4. The circumstellar structure around supernovae

    International Nuclear Information System (INIS)

    The time dependent ionization and temperature structure of the circumstellar medium around supernovae has been calculated, in order to interpret recent supernova radio observations. For a stellar wind origin of the circumstellar medium, the authors relate the time of radio turn-on to the progenitor mass loss rate. They also show that large column densities for the UV resonance lines are expected. The results are applied to SN 1979c, SN 1980K and SN 1987A

  5. The Magnetic Field in the Class 0 Protostellar Disk of L1527

    CERN Document Server

    Segura-Cox, Dominique M; Stephens, Ian W; Fernandez-Lopez, Manuel; Kwon, Woojin; Tobin, John J; Li, Zhi-Yun; Crutcher, Richard

    2014-01-01

    We present subarcsecond (~0.35") resolved observations of the 1.3 mm dust polarization from the edge-on circumstellar disk around the Class 0 protostar L1527. The inferred magnetic field is consistent with a dominantly toroidal morphology; there is no significantly detected vertical poloidal component to which observations of an edge-on disk are most sensitive. This suggests that angular momentum transport in Class 0 protostars (when large amounts of material are fed down to the disk from the envelope and accreted onto the protostar) is driven mainly by magnetorotational instability rather than magnetocentrifugal winds at 50 AU scales. In addition, with the data to date there is an early, tentative trend that R>30 AU disks have so far been found in Class 0 systems with average magnetic fields on the 1000 AU scale strongly misaligned with the rotation axis. The absence of such a disk in the aligned case could be due to efficient magnetic braking that disrupts disk formation. If this is the case, this implies t...

  6. Planet formation in transition disks: Modeling, spectroscopy, and theory

    Science.gov (United States)

    Liskowsky, Joseph Paul

    An important field of modern astronomy is the study of planets. Literally for millennia, careful observers of the night sky have tracked these 'wanderers', with their peculiar motions initiating avenues of inquiry not able to elucidated by a study of the stars alone: we have discovered that the planets (as well as Earth) orbit the sun and that the stars are so far away, even their relative positions do not seem to shift perceptibly when Earth's position moves hundreds of millions of miles. With the advent of the telescope, and subsequent improvements upon it over the course of centuries, accelerating to the dramatically immense telescopes available today and those on the horizon, we have been able to continuously probe farther and in more detail than the previous generation of scientists and telescopes allowed. Now, we are just entering the time when detection of planets outside of our own solar system has become possible, and we have found that planets are extraordinarily common in the galaxy (and by extrapolation, the universe). At the time of this document's composition, there are several thousand such examples of planets around other stars (being dubbed 'exoplanets'). We have discovered that planets are plentiful, but multiple open questions remain which are relevant to this work: How do planets form and, when a planet does form from its circumstellar envelope, what are the important processes that influence its formation? This work adds to the understanding of circumstellar disks, the intermediate stage between a cold collapsing cloud (of gas and dust) and a mature planetary system. Specifically, we study circumstellar disks in an evolved state termed 'transition disks'. This state corresponds to a time period where the dust in the disk has either undergone grain growth—where the microscopic grains have clumped together to form far fewer dust particles of much higher mass, or the inner portion (or an inner annulus) of the disk has lost a large amount of gas

  7. Morphology and kinematics of the gas envelope of the variable AGB star $\\pi^1$ Gruis

    CERN Document Server

    Nhung, P T; Diep, P N; Phuong, N T; Thao, N T; Tuan-Anh, P; Darriulat, P

    2016-01-01

    Observations of the $^{12}$CO(3-2) emission of the circumstellar envelope (CSE) of the variable star $\\pi^1$ Gru using the compact array (ACA) of the ALMA observatory have been recently made accessible to the public. An analysis of the morphology and kinematics of the CSE is presented with a result very similar to that obtained earlier for $^{12}$CO(2-1) emission by Chiu et al. (2006) using the Sub-Millimeter Array. A quantitative comparison is made using their flared disk model. A new model is presented that provides a significantly better description of the data, using radial winds and smooth evolutions of the radio emission and wind velocity from the stellar equator to the poles.

  8. Morphology and kinematics of the gas envelope of the variable AGB star π1 Gruis

    Science.gov (United States)

    Tuyet Nhung, Pham; Thi Hoai, Do; Diep, Pham Ngoc; Thi Phuong, Nguyen; Thi Thao, Nguyen; Anh, Pham Tuan; Darriulat, Pierre

    2016-07-01

    Observations of the 12CO(3–2) emission from the circumstellar envelope (CSE) of the variable star π1 Gru using the compact array of the ALMA observatory have been recently made accessible to the public. An analysis of the morphology and kinematics of the CSE is presented with a result very similar to that obtained earlier for 12CO(2–1) emission using the Submillimeter Array. A quantitative comparison is made using their flared disk model. A new model is presented that provides a significantly better description of the data, using radial winds and smooth evolutions of the radio emission and wind velocity from the stellar equator to the poles. ) operated by the NAOJ.

  9. Carbon stars with oxygen-rich circumstellar material

    Science.gov (United States)

    Jura, Michael; Hawkins, I.

    1991-01-01

    The IUE satellite was used to search for companions to two carbon-rich stars with oxygen-rich circumstellar envelopes, EU And and V778 Cyg. Depending upon the amount of interstellar extinction and distances (probably between 1 and 2 kpc from the Sun) to these two stars, upper limits were placed between approx. 1.5 and 6 solar mass to the mass of any main sequence companions. For the 'near' distance of 1 kpc, it seems unlikely that there are white dwarf companions because the detection would be expected of ultraviolet emission from accretion of red giant wind material onto the white dwarf. A new model is proposed to explain the oxygen-rich envelopes. If these stars have a high nitrogen abundance, the carbon that is in excess of the oxygen may be carried in the circumstellar envelopes in HCN rather than C2H2 which is a likely key seed molecule for the formation of carbon grains. Consequently, carbon particles may not form; instead, oxygen-rich silicate dust may nucleate from the SiO present in the outflow.

  10. Circumstellar Debris and Pollution at White Dwarf Stars

    CERN Document Server

    Farihi, J

    2016-01-01

    Circumstellar disks of planetary debris are now known or suspected to closely orbit hundreds of white dwarf stars. To date, both data and theory support disks that are entirely contained within the preceding giant stellar radii, and hence must have been produced during the white dwarf phase. This picture is strengthened by the signature of material falling onto the pristine stellar surfaces; disks are always detected together with atmospheric heavy elements. The physical link between this debris and the white dwarf host abundances enables unique insight into the bulk chemistry of extrasolar planetary systems via their remnants. This review summarizes the body of evidence supporting dynamically active planetary systems at a large fraction of all white dwarfs, the remnants of first generation, main-sequence planetary systems, and hence provide insight into initial conditions as well as long-term dynamics and evolution.

  11. A non-LTE radiative transfer model to study ionized outflows and disks. The case of MWC349A

    CERN Document Server

    Báez-Rubio, Alejandro; Thum, Clemens; Planesas, Pere

    2013-01-01

    Context. The best example of a massive star with an ionized outflow launched from its photoevaporating disk is MWC349A. The large amount of reported radio-continuum and radio-recombination line observations toward this galactic UC-HII region offers a unique possibility to build a model of the ionized envelope of this source. Aims. To understand the physical conditions and kinematics of the ionized region of the circumstellar disk and also of the outflow of MWC349A. Methods. We compared the bulk of radio-continuum maps, radio-recombination line profiles, and the H30alpha centroid map published to date with the predictions of our non-LTE 3D radiative transfer model, MORELI (MOdel for REcombination LInes), which we describe here in detail. Results. Our non-LTE 3D radiative transfer model provides new evidence that the UC-HII region of MWC349A is composed of an ionized circumstellar disk rotating in Keplerian fashion around a star of 38 solar mass, and an ionized outflow expanding with a terminal velocity of 60 k...

  12. Debris disks and the search for life in the universe

    CERN Document Server

    Cataldi, Gianni

    2016-01-01

    Circumstellar debris disks are the extrasolar analogues of the asteroid belt and the Kuiper belt. They consist of comets and leftover planetesimals that continuously collide and produce circumstellar dust that can be observed as infrared excess or in resolved imaging. As an obvious outcome of the planet formation process, debris disks can help us constrain planet formation theories and learn about the history of our own solar system. This thesis presents observational studies of secondary gas in debris disks. It also discusses the astrobiological potential of debris disks created during impact events onto exoplanets.

  13. Light-scattering models applied to circumstellar dust properties

    International Nuclear Information System (INIS)

    Radiation pressure force, Poynting-Robertson effect, and collisions are important to determine the size distribution of dust in circumstellar debris disks with the two former parameters depending on the light-scattering properties of grains. We here present Mie and discrete-dipole approximation (DDA) calculations to describe the optical properties of dust particles around β Pictoris, Vega, and Fomalhaut in order to study the influence of the radiation pressure force. We find that the differences between Mie and DDA calculations are lower than 30% for all porosities. Therefore, Mie calculations can be used to determine the cut-off limits which contribute to the size distribution for the different systems

  14. Silica in Protoplanetary Disks

    CERN Document Server

    Sargent, B A; Tayrien, C; McClure, M K; Li, A; Basu, A R; Manoj, P; Watson, D M; Bohac, C J; Furlan, E; Kim, K H; Green, J D; Sloan, G C

    2008-01-01

    Mid-infrared spectra of a few T Tauri stars (TTS) taken with the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope show prominent narrow emission features indicating silica (crystalline silicon dioxide). Silica is not a major constituent of the interstellar medium; therefore, any silica present in the circumstellar protoplanetary disks of TTS must be largely the result of processing of primitive dust material in the disks surrouding these stars. We model the silica emission features in our spectra using the opacities of various polymorphs of silica and their amorphous versions computed from earth-based laboratory measurements. This modeling indicates that the two polymorphs of silica, tridymite and cristobalite, which form at successively higher temperatures and low pressures, are the dominant forms of silica in the TTS of our sample. These high temperature, low pressure polymorphs of silica present in protoplanetary disks are consistent with a grain composed mostly of tridymite named Ada found...

  15. Circumplanetary disks around young giant planets: a comparison between core-accretion and disk instability

    CERN Document Server

    Szulágyi, J; Quinn, T

    2016-01-01

    Circumplanetary disks can be found around forming giant planets, regardless of whether core accretion or gravitational instability built the planet. We carried out state-of-the-art hydrodynamical simulations of the circumplanetary disks for both formation scenarios, using as similar initial conditions as possible to unveil possible intrinsic differences in the circumplanetary disk mass and temperature between the two formation mechanisms. We found that the circumplanetary disks mass linearly scales with the circumstellar disk mass. Therefore, in an equally massive protoplanetary disk, the circumplanetary disks formed in the disk instability model can be only a factor of eight more massive than their core-accretion counterparts. On the other hand, the bulk circumplanetary disk temperature differs by more than an order of magnitude between the two cases. The subdisks around planets formed by gravitational instability have a characteristic temperature below 100 K, while the core accretion circumplanetary disks a...

  16. Imaging the circumstellar environment of the young T Tauri star SU Aurigae

    CERN Document Server

    Jeffers, S V; Canovas, H; Rodenhuis, M; Keller, C U

    2013-01-01

    The circumstellar environments of classical T Tauri stars are challenging to directly image because of their high star-to-disk contrast ratio. One method to overcome this is by using imaging polarimetry where scattered and consequently polarised starlight from the star's circumstellar disk can be separated from the unpolarised light of the central star. We present images of the circumstellar environment of SU Aur, a classical T Tauri star at the transition of T Tauri to Herbig stars. The images directly show that the disk extends out to ~500 au with an inclination angle of $\\sim$ 50$^\\circ$. Using interpretive models, we derived very small grains in the surface layers of its disk, with a very steep size- and surface-density distribution. Additionally, we resolved a large and extended nebulosity in our images that is most likely a remnant of the prenatal molecular cloud. The position angle of the disk, determined directly from our images, rules out a polar outflow or jet as the cause of this large-scale nebulo...

  17. Wind Dynamics and Circumstellar Extinction Variations in the T Tauri Star RY Tau

    CERN Document Server

    Babina, Elena V; Petrov, Peter P

    2016-01-01

    The wind interaction with the dusty environment of the classical T Tauri star RY Tau has been investigated. During two seasons of 2013-2015 we carried out a spectroscopic and photometric (BVR) monitoring of the star. A correlation between the stellar brightness and the radial velocity of the wind determined from the H-alpha and Na D line profiles has been found for the first time. The irregular stellar brightness variations are shown to be caused by extinction in a dusty disk wind at a distance of about 0.2 AU from the star. We suppose, that variations of the circumstellar extinction results from cyclic rearrangements of the stellar magnetosphere and coronal mass ejections, which affect the dusty disk wind near the inner boundary of the circumstellar disk.

  18. The Complex Circumstellar and Circumbinary Environment of V356 Sgr

    CERN Document Server

    Lomax, Jamie R; Malatesta, Michael A; Babler, Brian; Bednarski, Daniel; Berdis, Jodi R; Bjorkman, Karen S; Bjorkman, Jon E; Carciofi, Alex C; Davidson, James W; Keil, Marcus; Meade, Marilyn R; Nordsieck, Kenneth; Scheffler, Matt; Hoffman, Jennifer L; Wisniewski, John P

    2016-01-01

    We analyze 45 spectropolarimetric observations of the eclipsing, interacting binary star V356 Sgr, obtained over a period of 21 years, to characterize the geometry of the system's circumstellar material. After removing interstellar polarization from these data, we find the system exhibits a large intrinsic polarization signature arising from electron scattering. In addition, the lack of repeatable eclipses in the polarization phase curves indicates the presence of a substantial pool of scatterers not occulted by either star. We suggest that these scatterers form either a circumbinary disk coplanar with the gainer's accretion disk or an elongated structure perpendicular to the orbital plane of V356 Sgr, possibly formed by bipolar outflows. We also observe small-scale, cycle-to-cycle variations in the magnitude of intrinsic polarization at individual phases, which we interpret as evidence of variability in the amount of scattering material present within and around the system. This may indicate a mass transfer ...

  19. Circumstellar Nebulae in Young Supernova Remnants

    OpenAIRE

    Chu, Y.-H.

    2000-01-01

    Supernovae descendent from massive stars explode in media that have been modified by their progenitors' mass loss and UV radiation. The supernova ejecta will first interact with the circumstellar material shed by the progenitors at late evolutionary stages, and then interact with the interstellar material. Circumstellar nebulae in supernova remnants can be diagnosed by their small expansion velocities and high [N II]/H$\\alpha$ ratios. The presence of circumstellar nebulae appears ubiquitous a...

  20. Protostellar Disk Formation Enabled by Removal of Small Dust Grains

    CERN Document Server

    Zhao, Bo; Li, Zhi-Yun; Krasnopolsky, Ruben; Shang, Hsien; Nakamura, Fumitaka

    2016-01-01

    It has been shown that a realistic level of magnetization of dense molecular cloud cores can suppress the formation of a rotationally supported disk (RSD) through catastrophic magnetic braking in the axisymmetric ideal MHD limit. In this study, we present conditions for the formation of RSDs through non-ideal MHD effects computed self-consistently from an equilibrium chemical network. We find that removing from the standard MRN distribution the large population of very small grains (VSGs) of ~10 $\\AA$ to few 100 $\\AA$ that dominate the coupling of the bulk neutral matter to the magnetic field increases the ambipolar diffusivity by ~1--2 orders of magnitude at densities below 10$^{10}$ cm$^{-3}$. The enhanced ambipolar diffusion (AD) in the envelope reduces the amount of magnetic flux dragged by the collapse into the circumstellar disk-forming region. Therefore, magnetic braking is weakened and more angular momentum can be retained. With continuous high angular momentum inflow, RSDs of tens of AU are able to f...

  1. ROTATIONAL LINE EMISSION FROM WATER IN PROTOPLANETARY DISKS

    NARCIS (Netherlands)

    Meijerink, R.; Poelman, D. R.; Spaans, M.; Tielens, A. G. G. M.; Glassgold, A. E.

    2008-01-01

    Circumstellar disks provide the material reservoir for the growth of young stars and for planet formation. We combine a high-level radiative transfer program with a thermal-chemical model of a typical T Tauri star disk to investigate the diagnostic potential of the far-infrared lines of water for pr

  2. Binarity as a key factor in protoplanetary disk evolution : Spitzer disk census of the eta Chamaeleontis cluster

    NARCIS (Netherlands)

    Bouwman, J.; Lawson, W. A.; Dominik, C.; Feigelson, E. D.; Henning, Th.; Tielens, A. G. G. M.; Waters, L. B. F. M.

    2006-01-01

    The formation of planets is directly linked to the evolution of the circumstellar (CS) disk from which they are born. The dissipation timescales of CS disks are therefore of direct astrophysical importance in evaluating the time available for planet formation. We employ Spitzer Space Telescope spect

  3. A Circumstellar Disk Observed around a Massive Star

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Although the formation process of low-mass stars like our Sun has been well understood, the birth of high-mass stars with more than eight solar masses still remains a mystery. A recent study by CAS astronomers and their collaborators from Japan and UK offered direct observational evidence for demystifying the puzzle. The work was published in the Sept. 1 issue of Nature.

  4. WISE Circumstellar Disks in the Young Sco-Cen Association

    CERN Document Server

    Rizzuto, Aaron C; Zucker, Daniel B

    2011-01-01

    We present an analysis of the WISE photometric data for 829 stars in the Sco-Cen OB2 association, using the latest high-mass membership probabilities. We detect infrared excesses associated with 135 BAF-type stars, 99 of which are secure Sco-Cen members. There is a clear increase in excess fraction with membership probability, which can be fitted linearly. We infer that 41+-5% of Sco-Cen OB2 BAF stars to have excesses, while the field star excess fraction is consistent with zero. This is the first time that the probability of non-membership has been used in the calculation of excess fractions for young stars. We do not observe any significant change in excess fraction between the three subgroups. Within our sample, we have observed that B-type association members have a significantly smaller excess fraction than A and F-type association members.

  5. DiskJockey: Protoplanetary disk modeling for dynamical mass derivation

    Science.gov (United States)

    Czekala, Ian

    2016-03-01

    DiskJockey derives dynamical masses for T Tauri stars using the Keplerian motion of their circumstellar disks, applied to radio interferometric data from the Atacama Large Millimeter Array (ALMA) and the Submillimeter Array (SMA). The package relies on RADMC-3D (ascl:1202.015) to perform the radiative transfer of the disk model. DiskJockey is designed to work in a parallel environment where the calculations for each frequency channel can be distributed to independent processors. Due to the computationally expensive nature of the radiative synthesis, fitting sizable datasets (e.g., SMA and ALMA) will require a substantial amount of CPU cores to explore a posterior distribution in a reasonable timeframe.

  6. Biomimetic Envelopes

    Directory of Open Access Journals (Sweden)

    Ilaria Mazzoleni

    2010-06-01

    Full Text Available How to translate the lessons learned from the analysis and observation of the animal world is the design learning experience presented in this article. Skin is a complex and incredibly sophisticated organ that performs various functions, including protection, sensation and heat and water regulation. In a similar way building envelopes serve multiple roles, as they are the interface between the building inhabitants and environmental elements. The resulting architectural building envelopes proto-architectural research and design projects here presented, inspired by the study of animal skins, perform and respond; they take into consideration various dynamic local environmental conditions, enhancing and supporting them rather than exploiting them, creating a more sustainable way of building and living.

  7. INTERNAL ENVELOPES

    CERN Multimedia

    Mail Office

    2001-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration.

  8. Circumstellar molecular composition of the oxygen-rich AGB star IK Tau: I. Observations and LTE chemical abundance analysis

    CERN Document Server

    Kim, Hyunjoo; Menten, Karl M; Decin, Leen

    2010-01-01

    The aim of this paper is to study the molecular composition in the circumstellar envelope around the oxygen-rich star IK Tau. We observed IK Tau in several (sub)millimeter bands using the APEX telescope during three observing periods. To determine the spatial distribution of the $\\mathrm{^{12}CO(3-2)}$ emission, mapping observations were performed. To constrain the physical conditions in the circumstellar envelope, multiple rotational CO emission lines were modeled using a non local thermodynamic equilibrium radiative transfer code. The rotational temperatures and the abundances of the other molecules were obtained assuming local thermodynamic equilibrium. An oxygen-rich Asymptotic Giant Branch star has been surveyed in the submillimeter wavelength range. Thirty four transitions of twelve molecular species, including maser lines, were detected. The kinetic temperature of the envelope was determined and the molecular abundance fractions of the molecules were estimated. The deduced molecular abundances were com...

  9. Featured Image: Hubble's New Views of Debris Disks

    Science.gov (United States)

    Kohler, Susanna

    2016-09-01

    The Hubble image of a second circumstellar debris disk, HD 207917, and its best-fit model.This is a new deep observation made by Hubbles Space Telescope Imaging Spectrograph of the tilted debris disk surrounding the star HD 207129. In a recent study led by Glenn Schneider (Seward Observatory, University of Arizona), three known, nearby circumstellar disks were imaged by Hubble in order to gain a better understanding of the disks ring-like structure. The three central stars of these disks are all G-type solar analogs, and the debris rings bear many similarities to our own Kuiper belt. Imaging of debris disks like these can help us to learn more about how solar systems form around stars like our own. For more information, check out the paper below!CitationGlenn Schneider et al 2016 AJ 152 64. doi:10.3847/0004-6256/152/3/64

  10. THE PROGENITOR OF SN 2011ja: CLUES FROM CIRCUMSTELLAR INTERACTION

    International Nuclear Information System (INIS)

    Massive stars, possibly red supergiants, which retain extended hydrogen envelopes until core collapse, produce Type II plateau (IIP) supernovae. The ejecta from these explosions shocks the circumstellar matter originating from the mass loss of the progenitor during the final phases of its life. This interaction accelerates particles to relativistic energies which then lose energy via synchrotron radiation in the shock-amplified magnetic fields and inverse Compton scattering against optical photons from the supernova. These processes produce different signatures in the radio and X-ray parts of the electromagnetic spectrum. Observed together, they allow us to break the degeneracy between shock acceleration and magnetic field amplification. In this work, we use X-rays observations from the Chandra and radio observations from the Australia Telescope Compact Array to study the relative importance of processes which accelerate particles and those which amplify magnetic fields in producing the non-thermal radiation from SN 2011ja. We use radio observations to constrain the explosion date. Multiple Chandra observations allow us to probe the history of variable mass loss from the progenitor. The ejecta expands into a low-density bubble followed by interaction with a higher density wind from a red supergiant consistent with MZAMS ∼> 12 M☉. Our results suggest that a fraction of Type IIP supernovae may interact with circumstellar media set up by non-steady winds

  11. The progenitor of SN 2011ja: Clues from circumstellar interaction

    CERN Document Server

    Chakraborti, Sayan; Smith, Randall; Ryder, Stuart; Yadav, Naveen; Sutaria, Firoza; Dwarkadas, Vikram V; Chandra, Poonam; Pooley, David; Roy, Rupak

    2013-01-01

    Massive stars, possibly red supergiants, which retain extended hydrogen envelopes until the time of core collapse produce Type IIP (Plateau) supernovae. The ejecta from these explosions shock the circumstellar matter originating from the mass loss of the progenitor during the final phases of its life. This interaction accelerates particles to relativistic energies which then lose energy via synchrotron radiation in the shock-amplified magnetic fields and inverse Compton scattering against optical photons from the supernova. These processes produce different signatures in the radio and X-ray part of the electromagnetic spectrum. Observed together, they allow us to break the degeneracy between shock acceleration and magnetic field amplification. In this work we use X-rays observations from the Chandra and radio observations from the ATCA to study the relative importance of particle acceleration and magnetic fields in producing the non-thermal radiation from SN 2011ja. We use radio observations to constrain the ...

  12. Polytype distribution in circumstellar silicon carbide.

    Science.gov (United States)

    Daulton, T L; Bernatowicz, T J; Lewis, R S; Messenger, S; Stadermann, F J; Amari, S

    2002-06-01

    The inferred crystallographic class of circumstellar silicon carbide based on astronomical infrared spectra is controversial. We have directly determined the polytype distribution of circumstellar SiC from transmission electron microscopy of presolar silicon carbide from the Murchison carbonaceous meteorite. Only two polytypes (of a possible several hundred) were observed: cubic 3C and hexagonal 2H silicon carbide and their intergrowths. We conclude that this structural simplicity is a direct consequence of the low pressures in circumstellar outflows and the corresponding low silicon carbide condensation temperatures. PMID:12052956

  13. THE KOZAI-LIDOV MECHANISM IN HYDRODYNAMICAL DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Rebecca G.; Nixon, Chris; Armitage, Philip J. [JILA, University of Colorado and NIST, UCB 440, Boulder, CO 80309 (United States); Lubow, Stephen H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Price, Daniel J. [Monash Centre for Astrophysics (MoCA), School of Mathematical Sciences, Monash University, Clayton, Vic. 3800 (Australia); Doğan, Suzan [Department of Astronomy and Space Sciences, University of Ege, Bornova, 35100 İzmir (Turkey); King, Andrew [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2014-09-10

    We use three-dimensional hydrodynamical simulations to show that a highly misaligned accretion disk around one component of a binary system can exhibit global Kozai-Lidov cycles, where the inclination and eccentricity of the disk are interchanged periodically. This has important implications for accreting systems on all scales, for example, the formation of planets and satellites in circumstellar and circumplanetary disks, outbursts in X-ray binary systems, and accretion onto supermassive black holes.

  14. Shadows cast by a warp in the HD 142527 protoplanetary disk

    CERN Document Server

    Marino, Sebastian; Casassus, Simon

    2014-01-01

    Detailed observations of gaps in protoplanetary disks have revealed structures that drive current research on circumstellar disks. One such feature is the two intensity nulls seen along the outer disk of the HD 142527 system, which are particularly well traced in polarized differential imaging. Here we propose that these are shadows cast by the inner disk. The inner and outer disk are thick, in terms of the unit-opacity surface in H-band, so that the shape and orientation of the shadows inform on the three-dimmensional structure of the system. Radiative transfer predictions on a parametric disk model allow us to conclude that the relative inclination between the inner and outer disks is 70+-5 deg. This finding taps the potential of high-contrast imaging of circumstellar disks, and bears consequences on the gas dynamics of gapped disks, as well as on the physical conditions in the shadowed regions.

  15. SHADOWS CAST BY A WARP IN THE HD 142527 PROTOPLANETARY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Marino, S.; Perez, S.; Casassus, S., E-mail: smarino@das.uchile.cl [Departamento de Astronomía, Universidad de Chile, Casilla 36-D Santiago (Chile)

    2015-01-10

    Detailed observations of gaps in protoplanetary disks have revealed structures that drive current research on circumstellar disks. One such feature is the two intensity nulls seen along the outer disk of the HD 142527 system, which are particularly well traced in polarized differential imaging. Here we propose that these are shadows cast by the inner disk. The inner and outer disk are thick, in terms of the unit-opacity surface in the H band, so that the shape and orientation of the shadows inform on the three-dimensional structure of the system. Radiative transfer predictions on a parametric disk model allow us to conclude that the relative inclination between the inner and outer disks is 70° ± 5°. This finding taps the potential of high-contrast imaging of circumstellar disks, and bears consequences on the gas dynamics of gapped disks, as well as on the physical conditions in the shadowed regions.

  16. Shadows Cast by a Warp in the HD 142527 Protoplanetary Disk

    Science.gov (United States)

    Marino, S.; Perez, S.; Casassus, S.

    2015-01-01

    Detailed observations of gaps in protoplanetary disks have revealed structures that drive current research on circumstellar disks. One such feature is the two intensity nulls seen along the outer disk of the HD 142527 system, which are particularly well traced in polarized differential imaging. Here we propose that these are shadows cast by the inner disk. The inner and outer disk are thick, in terms of the unit-opacity surface in the H band, so that the shape and orientation of the shadows inform on the three-dimensional structure of the system. Radiative transfer predictions on a parametric disk model allow us to conclude that the relative inclination between the inner and outer disks is 70° ± 5°. This finding taps the potential of high-contrast imaging of circumstellar disks, and bears consequences on the gas dynamics of gapped disks, as well as on the physical conditions in the shadowed regions.

  17. SHADOWS CAST BY A WARP IN THE HD 142527 PROTOPLANETARY DISK

    International Nuclear Information System (INIS)

    Detailed observations of gaps in protoplanetary disks have revealed structures that drive current research on circumstellar disks. One such feature is the two intensity nulls seen along the outer disk of the HD 142527 system, which are particularly well traced in polarized differential imaging. Here we propose that these are shadows cast by the inner disk. The inner and outer disk are thick, in terms of the unit-opacity surface in the H band, so that the shape and orientation of the shadows inform on the three-dimensional structure of the system. Radiative transfer predictions on a parametric disk model allow us to conclude that the relative inclination between the inner and outer disks is 70° ± 5°. This finding taps the potential of high-contrast imaging of circumstellar disks, and bears consequences on the gas dynamics of gapped disks, as well as on the physical conditions in the shadowed regions

  18. Molecular gas in young debris disks

    CERN Document Server

    Moór, A; Juhász, A; Kiss, Cs; Pascucci, I; Kóspál, Á; Apai, D; Henning, Th; Csengeri, T; Grady, C

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas, and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J=3-2 survey with Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities...

  19. The Three-Dimensional Circumstellar Environment of SN 1987A

    CERN Document Server

    Sugerman, B E K; Kunkel, W E; Heathcote, S R; Lawrence, S S; Sugerman, Ben E. K.; Crotts, Arlin P. S.; Kunkel, William E.; Heathcote, Stephen R.; Lawrence, Stephen S.

    2005-01-01

    We present the detailed construction and analysis of the most complete map to date of the circumstellar environment around SN 1987A, using ground and space-based imaging from the past 16 years. PSF-matched difference-imaging analyses of data from 1988 through 1997 reveal material between 1 and 28 ly from the SN. Careful analyses allows the reconstruction of the probable circumstellar environment, revealing a richly-structured bipolar nebula. An outer, double-lobed ``Peanut,'' which is believed to be the contact discontinuity between red supergiant and main sequence winds, is a prolate shell extending 28 ly along the poles and 11 ly near the equator. Napoleon's Hat, previously believed to be an independent structure, is the waist of this Peanut, which is pinched to a radius of 6 ly. Interior to this is a cylindrical hourglass, 1 ly in radius and 4 ly long, which connects to the Peanut by a thick equatorial disk. The nebulae are inclined 41\\degr south and 8\\degr east of the line of sight, slightly elliptical in...

  20. Herschel Observations of Dusty Debris Disks

    CERN Document Server

    Vican, Laura; Bryden, Geoff; Melis, Carl; Zuckerman, B; Rhee, Joseph; Song, Inseok

    2016-01-01

    We present results from two Herschel observing programs using the Photodetector Array Camera and Spectrometer. During three separate campaigns, we obtained Herschel data for 24 stars at 70, 100, and 160 microns. We chose stars that were already known or suspected to have circumstellar dust based on excess infrared emission previously measured with IRAS or Spitzer, and used Herschel to examine long-wavelength properties of the dust. Fifteen stars were found to be uncontaminated by background sources, and possess infrared emission most likely due to a circumstellar debris disk. We analyzed the properties of these debris disks to better understand the physical mechanisms responsible for dust production and removal. Seven targets were spatially resolved in the Herschel images. Based on fits to their spectral energy distributions, nine disks appear to have two temperature components. Of these nine, in three cases, the warmer dust component is likely the result of a transient process rather than a steady state coll...

  1. Circumstellar Molecular Spectra towards Evolved Stars

    CERN Document Server

    Bakker, E J

    1997-01-01

    In this paper we discuss the relevance of, and possible scientific gains which can be acquired from studying circumstellar molecular spectra toward evolved stars. Where can we expect circumstellar molecular spectra, why would we want to study these spectra, which molecules might be present, and what can we learn from these studies? We present an overview of reported detections, and discuss some of the results.

  2. Non-isothermal effects on Be disks

    CERN Document Server

    Vieira, Rodrigo G; Bjorkman, Jon E

    2016-01-01

    In the last decade, the viscous decretion disk model has emerged as the new paradigm for Be star disks. In this contribution, we propose a simple analytical model to estimate the continuum infrared excess arising from these circumstellar disks, in the light of the currently accepted scenario. We demonstrate that the disk can be satisfactorily described by a two component system: an inner optically thick region, which we call the pseudo-photosphere, and a diffuse outer part. In particular, a direct connexion between the disk brightness profile and the thermal structure is derived, and then confronted to realistic numerical simulations. This result quantifies how the non-isothermality of the disk ultimately affects both infrared measured fluxes and visibilities.

  3. Tracing Planets in Circumstellar Discs

    Directory of Open Access Journals (Sweden)

    Uribe Ana L.

    2013-04-01

    Full Text Available Planets are assumed to form in circumstellar discs around young stellar objects. The additional gravitational potential of a planet perturbs the disc and leads to characteristic structures, i.e. spiral waves and gaps, in the disc density profile. We perform a large-scale parameter study on the observability of these planet-induced structures in circumstellar discs in the (submm wavelength range for the Atacama Large (SubMillimeter Array (ALMA. On the basis of hydrodynamical and magneto-hydrodynamical simulations of star-disc-planet models we calculate the disc temperature structure and (submm images of these systems. These are used to derive simulated ALMA maps. Because appropriate objects are frequent in the Taurus-Auriga region, we focus on a distance of 140 pc and a declination of ≈ 20°. The explored range of star-disc-planet configurations consists of six hydrodynamical simulations (including magnetic fields and different planet masses, nine disc sizes with outer radii ranging from 9 AU to 225 AU, 15 total disc masses in the range between 2.67·10-7 M⊙ and 4.10·10-2 M⊙, six different central stars and two different grain size distributions, resulting in 10 000 disc models. At almost all scales and in particular down to a scale of a few AU, ALMA is able to trace disc structures induced by planet-disc interaction or the influence of magnetic fields in the wavelength range between 0.4...2.0 mm. In most cases, the optimum angular resolution is limited by the sensitivity of ALMA. However, within the range of typical masses of protoplane tary discs (0.1 M⊙...0.001 M⊙ the disc mass has a minor impact on the observability. At the distance of 140 pc it is possible to resolve discs down to 2.67·10-6 M⊙ and trace gaps in discs with 2.67·10-4 M⊙ with a signal-to-noise ratio greater than three. In general, it is more likely to trace planet-induced gaps in magneto-hydrodynamical disc models, because gaps are wider in the presence of

  4. Dust amorphization in protoplanetary disks

    CERN Document Server

    Glauser, Adrian M; Watson, Dan M; Henning, Thomas; Schegerer, Alexander A; Wolf, Sebastian; Audard, Marc; Baldovin-Saavedra, Carla

    2009-01-01

    High-energy irradiation of the circumstellar material might impact the structure and the composition of a protoplanetary disk and hence the process of planet formation. In this paper, we present a study on the possible influence of the stellar irradiation, indicated by X-ray emission, on the crystalline structure of the circumstellar dust. The dust crystallinity is measured for 42 class II T Tauri stars in the Taurus star-forming region using a decomposition fit of the 10 micron silicate feature, measured with the Spitzer IRS instrument. Since the sample includes objects with disks of various evolutionary stages, we further confine the target selection, using the age of the objects as a selection parameter. We correlate the X-ray luminosity and the X-ray hardness of the central object with the crystalline mass fraction of the circumstellar dust and find a significant anti-correlation for 20 objects within an age range of approx. 1 to 4.5 Myr. We postulate that X-rays represent the stellar activity and consequ...

  5. The innermost astronomical unit of protoplanetary disks

    CERN Document Server

    Kluska, J; Benisty, M

    2016-01-01

    Circumstellar disks around young stars are the birthsites of planets. It is thus fundamental to study the disks in which they form, their structure and the physical conditions therein. The first astronomical unit is of great interest because this is where the terrestrial-planets form and the angular momentum is controled via massloss through winds/jets. With its milli-arcsecond resolution, optical interferometry is the only technic able to spatially resolve the first few astronomical units of the disk. In this review, we will present a broad overview of studies of young stellar objects with interferometry, and discuss prospects for the future.

  6. Prospecting for planets in circumstellar dust - Sifting the evidence from Beta Pictoris

    Science.gov (United States)

    Diner, D. J.; Appleby, J. F.

    1986-01-01

    IRAS and near-IR coronographic data for the A5V star Beta Pic are analyzed for evidence of planetary formation. The light scattered from the central star in the system is integrated along the distance to the star to determine the disk magnitude at various distances from the star. A modified gamma distribution is applied to evaluate the scattering coefficient to test a hypothesis that the inner 30 AU of the disk has been swept out by planets. The scattering from the region around Beta Pic is compared with scattering around other A5V stars. Finally, the IR data at 0.89 micron is compared with scattering at the coronograph wavelengths. No evidence is found to support the hypothesis of clearing in the inner disk, although large particle densities can be found very close to Beta Pic. The study illustrates the effectiveness of using scattered light and IR data to discover and characterize matter distributions circumstellar disks.

  7. Molecular Gas in Young Debris Disks

    Science.gov (United States)

    Moor, A.; Abraham, P.; Juhasz, A.; Kiss, Cs.; Pascucci, I.; Kospal, A.; Apai, D.; Henning, T.; Csengeri, T.; Grady, C.

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old > or approx.8 Myr), gaseous dust disks. From our results, neither primordia1 origin nor steady secondary production from icy planetesima1s can unequivocally explain the presence of CO gas in the disk ofHD21997.

  8. Three-dimensional modeling of radiative disks in binaries

    CERN Document Server

    Picogna, Giovanni

    2013-01-01

    Circumstellar disks in binaries are perturbed by the companion gravity causing significant alterations of the disk morphology. Spiral waves due to the companion tidal force also develop in the vertical direction and affect the disk temperature profile. These effects may significantly influence the process of planet formation. We perform 3D numerical simulations of disks in binaries with different initial dynamical configurations and physical parameters. Our goal is to investigate their evolution and their propensity to grow planets. We use an improved version of the SPH code VINE modified to better account for momentum and energy conservation. The energy equation includes a flux--limited radiative transfer algorithm and the disk cooling is obtained via "boundary particles". We model a system made of star/disk + star/disk where the secondary star (and relative disk) is less massive than the primary. The numerical simulations performed for different values of binary separation and disk density show that the dis...

  9. Modeling water emission from low-mass protostellar envelopes

    OpenAIRE

    van Kempen, T. A.; Doty, S. D.; van Dishoeck, E. F.; Hogerheijde, M.R.; Joergensen, J. K.

    2008-01-01

    Within low-mass star formation, water vapor plays a key role in the chemistry and energy balance of the circumstellar material. The Herschel Space Observatory will open up the possibility to observe water lines originating from a wide range of excitation energies.Our aim is to simulate the emission of rotational water lines from envelopes characteristic of embedded low-mass protostars. A large number of parameters that influence the water line emission are explored: luminosity, density,densit...

  10. Properties of the H-alpha-emitting Circumstellar Regions of Be Stars

    CERN Document Server

    Tycner, C; Hajian, A R; Armstrong, J T; Benson, J A; Gilbreath, G C; Hutter, D J; Pauls, T A; White, N M; Tycner, Christopher; Lester, John B.; Hajian, Arsen R.

    2005-01-01

    Long-baseline interferometric observations obtained with the Navy Prototype Optical Interferometer of the H-alpha-emitting envelopes of the Be stars eta Tauri and beta Canis Minoris are presented. For compatibility with the previously published interferometric results in the literature of other Be stars, circularly symmetric and elliptical Gaussian models were fitted to the calibrated H-alpha observations. The models are sufficient in characterizing the angular distribution of the H-alpha-emitting circumstellar material associated with these Be stars. To study the correlations between the various model parameters and the stellar properties, the model parameters for eta Tau and beta CMi were combined with data for other Be stars from the literature. After accounting for the different distances to the sources and stellar continuum flux levels, it was possible to study the relationship between the net H-alpha emission and the physical extent of the H-alpha-emitting circumstellar region. A clear dependence of the...

  11. Synthetic photometry for carbon-rich giants II. The effects of pulsation and circumstellar dust

    CERN Document Server

    Nowotny, Walter; Höfner, Susanne; Lederer, Michael T

    2011-01-01

    By using self-consistent dynamic model atmospheres which simulate pulsation-enhanced dust-driven winds of AGB stars we studied in detail the influence of (i) pulsations of the stellar interiors, and (ii) the development of dusty stellar winds on the spectral appearance of long period variables with carbon-rich atmospheric chemistry. While the pulsations lead to large-amplitude photometric variability, the dusty envelopes cause pronounced circumstellar reddening. Based on one selected dynamical model which is representative of C-type Mira variables with intermediate mass loss rates, we calculated synthetic spectra and photometry for standard broad-band filters from the visual to the near-infrared. Our modelling allows to investigate in detail the substantial effect of circumstellar dust on the resultant photometry. The pronounced absorption of amorphous carbon dust grains leads to colour indices which are significantly redder than the corresponding ones based on hydrostatic dust-free models. Only if we account...

  12. Polarimetry and the Envelopes of Magellanic B[e] Supergiants

    CERN Document Server

    Magalhães, A M; Melgarejo, R; Pereyra, A

    2006-01-01

    We discuss the nature of the circumstellar envelopes around the B[e] supergiants (B[e]SG) in the Magellanic Clouds (MC). Contrary to those in the Galaxy, the MC B[e]SG have a well defined luminosity and can be considered members of a well defined class. We discuss spectroscopy and optical broadband polarimetry and spectropolarimetry data. These data show for the first time detailed changes in the polarization across several spectral features. We show that the envelopes of the B[e]SG are generally variable. Broadband polarimetry data show that the envelopes are definitely non-spherically symmetric and large non-axisymmetric ejections may occur. In addition to that, spectropolarimetry is coming of age as a tool to study the B[e]SG envelope structure.

  13. Detailed modelling of the circumstellar molecular line emission of the S-type AGB star W Aquilae

    CERN Document Server

    Danilovich, T; Justtanont, K; Lombaert, R; Maercker, M; Olofsson, H; Ramstedt, S; Royer, P

    2014-01-01

    S-type AGB stars have a C/O ratio which suggests that they are transition objects between oxygen-rich M-type stars and carbon-rich C-type stars. As such, their circumstellar compositions of gas and dust are thought to be sensitive to their precise C/O ratio, and it is therefore of particular interest to examine their circumstellar properties. We present new Herschel HIFI and PACS sub-millimetre and far-infrared line observations of several molecular species towards the S-type AGB star W Aql. We use these observations, which probe a wide range of gas temperatures, to constrain the circumstellar properties of W Aql, including mass-loss rate and molecular abundances. We used radiative transfer codes to model the circumstellar dust and molecular line emission to determine circumstellar properties and molecular abundances. We assumed a spherically symmetric envelope formed by a constant mass-loss rate driven by an accelerating wind. Our model includes fully integrated H2O line cooling as part of the solution of th...

  14. Detection of circumstellar CH2CHCN, CH2CN, CH3CCH and H2CS

    CERN Document Server

    Agundez, M; Cernicharo, J; Pardo, J R; Guélin, M

    2007-01-01

    We report on the detection of vinyl cyanide (CH2CHCN), cyanomethyl radical (CH2CN), methylacetylene (CH3CCH) and thioformaldehyde (H2CS) in the C-rich star IRC +10216. These species, which are all known to exist in dark clouds, are detected for the first time in the circumstellar envelope around an AGB star. The four molecules have been detected trough pure rotational transitions in the course of a 3 mm line survey carried out with the IRAM 30-m telescope. The molecular column densities are derived by constructing rotational temperature diagrams. A detailed chemical model of the circumstellar envelope is used to analyze the formation of these molecular species. We have found column densities in the range 5 x 10^(12)- 2 x 10^(13) cm^(-2), which translates to abundances relative to H2 of several 10^(-9). The chemical model is reasonably successful in explaining the derived abundances through gas phase synthesis in the cold outer envelope. We also find that some of these molecules, CH2CHCN and CH2CN, are most pr...

  15. Evolution of Cold Circumstellar Dust Around Solar-Type Stars

    CERN Document Server

    Carpenter, J M; Schreyer, K; Launhardt, R; Henning, T; Carpenter, John M.; Wolf, Sebastian; Schreyer, Katharina; Launhardt, Ralf; Henning, Th.

    2004-01-01

    We present submillimeter (CSO 350um) and millimeter (SEST 1.2 mm, OVRO 3 mm) photometry for 125 solar-type stars from the FEPS Spitzer Legacy program that have masses between ~0.5 and 2.0 Msun and ages from 3 Myr to 3 Gyr. Continuum emission was detected toward four stars with a signal to noise ratio >= 3$: the classical T Tauri stars RX J1842.9-3532, RX J1852.3-3700, and PDS 66 with SEST, and the debris disk system HD 107146 with OVRO. RXJ1842.9-3532 and RXJ1852.3-3700 are located in projection nearby the R CrA molecular cloud with estimated ages of ~10 Myr, while PDS66 is a probable member of the 20 Myr old Lower Centaurus-Crux subgroup of the Sco-Cen OB association. The continuum emission toward these three sources is unresolved at the 24'' SEST resolution and likely originates from circumstellar accretion disks, each with estimated dust masses of ~5x10**-5 Msun. Analysis of the visibility data toward HD107146 (age 80-200 Myr) indicates that the 3 mm continuum emission is centered on the star within the as...

  16. THE EVOLUTION OF PROTOPLANETARY DISKS IN THE ARCHES CLUSTER

    International Nuclear Information System (INIS)

    Most stars form in a cluster environment. These stars are initially surrounded by disks from which potentially planetary systems form. Of all cluster environments, starburst clusters are probably the most hostile for planetary systems in our Galaxy. The intense stellar radiation and extreme density favor rapid destruction of circumstellar disks via photoevaporation and stellar encounters. Evolving a virialized model of the Arches cluster in the Galactic tidal field, we investigate the effect of stellar encounters on circumstellar disks in a prototypical starburst cluster. Despite its proximity to the deep gravitational potential of the Galactic center, only a moderate fraction of members escapes to form an extended pair of tidal tails. Our simulations show that encounters destroy one-third of the circumstellar disks in the cluster core within the first 2.5 Myr of evolution, preferentially affecting the least and most massive stars. A small fraction of these events causes rapid ejection and the formation of a weaker second pair of tidal tails that is overpopulated by disk-poor stars. Two predictions arise from our study. (1) If not destroyed by photoevaporation protoplanetary disks of massive late B- and early O-type stars represent the most likely hosts of planet formation in starburst clusters. (2) Multi-epoch K- and L-band photometry of the Arches cluster would provide the kinematically selected membership sample required to detect the additional pair of disk-poor tidal tails.

  17. The Evolution of Gas and Dust in Protoplanetary Accretion Disks

    CERN Document Server

    Birnstiel, T

    2011-01-01

    Dust constitutes only about one percent of the mass of circumstellar disks, yet it is of crucial importance for the modeling of planet formation, disk chemistry, radiative transfer and observations. The initial growth of dust from sub-micron sized grains to planetesimals and also the radial transport of dust in disks around young stars is the topic of this thesis. Circumstellar dust is subject to radial drift, vertical settling, turbulent mixing, collisional growth, fragmentation and erosion. We approach this subject from three directions: analytical calculations, numerical simulations, and comparison to observations. We describe the physical and numerical concepts that go into a model which is able to simulate the radial and size evolution of dust in a gas disk which is viscously evolving over several million years. The resulting dust size distributions are compared to our analytical predictions and a simple recipe for obtaining steady-state dust size distributions is derived. With the numerical model at han...

  18. The Three-dimensional Circumstellar Environment of SN 1987A

    Science.gov (United States)

    Sugerman, Ben E. K.; Crotts, Arlin P. S.; Kunkel, William E.; Heathcote, Stephen R.; Lawrence, Stephen S.

    2005-07-01

    Surrounding SN 1987A is a three-ring nebula attributed to interacting stellar winds, yet no model has successfully reproduced this system. Fortunately, the progenitor's mass-loss history can be reconstructed using light echoes, in which scattered light from the supernova traces the three-dimensional morphology of its circumstellar dust. In this paper, we construct and analyze the most complete map to date of the progenitor's circumstellar environment, using ground- and space-based imaging from the past 16 years. PSF-matched difference-imaging analyses of data from 1988 through 1997 reveal material between 1 and 28 lt-yr from the SN. Previously known structures, such as an inner hourglass, Napoleon's Hat, and a contact discontinuity, are probed in greater spatial detail than before. Previously unknown features are also discovered, such as a southern counterpart to Napoleon's Hat. Careful analyses of these echoes allows the reconstruction of the probable circumstellar environment, revealing a richly structured bipolar nebula. An outer, double-lobed ``Peanut,'' which is believed to be the contact discontinuity between red supergiant and main-sequence winds, is a prolate shell extending 28 lt-yr along the poles and 11 lt-yr near the equator. Napoleon's Hat, previously believed to be an independent structure, is the waist of this Peanut, which is pinched to a radius of 6 lt-yr. Interior to this is a cylindrical hourglass, 1 lt-yr in radius and 4 lt-yr long, which connects to the Peanut by a thick equatorial disk. The nebulae are inclined 41° south and 8° east of the line of sight, slightly elliptical in cross section, and marginally offset west of the SN. From the hourglass to the large, bipolar lobes, echo fluxes suggest that the gas density drops from 1-3 to >~0.03 cm-3, while the maximum dust-grain size increases from ~0.2 to 2 μm, and the silicate:carbonaceous dust ratio decreases. The nebulae have a total mass of ~1.7 Msolar. The geometry of the three rings is

  19. The composition of circumstellar and interstellar dust

    NARCIS (Netherlands)

    Tielens, AGGM; Woodward, CE; Biscay, MD; Shull, JM

    2001-01-01

    A large number of solid dust components have been identified through analysis of stardust recovered from meteorites, and analysis of IR observations of circumstellar shells and the interstellar medium. These include graphite, hydrogenated amorphous carbon, diamond, PAHs, silicon-, iron-, and titanin

  20. Dipper disks not inclined towards edge-on orbits

    CERN Document Server

    Ansdell, M; Williams, J P; Kennedy, G; Wyatt, M C; LaCourse, D M; Jacobs, T L; Mann, A W

    2016-01-01

    The so-called "dipper" stars host circumstellar disks and have optical and infrared light curves that exhibit quasi-periodic or aperiodic dimming events consistent with extinction by transiting dusty structures orbiting in the inner disk. Most of the proposed mechanisms explaining the dips---i.e., occulting disk warps, vortices, and forming planetesimals---assume nearly edge-on viewing geometries. However, our analysis of the three known dippers with publicly available resolved sub-mm data reveals disks with a range of inclinations, most notably the face-on transition disk J1604-2130 (EPIC 204638512). This suggests that nearly edge-on viewing geometries are not a defining characteristic of the dippers and that additional models should be explored. If confirmed by further observations of more dippers, this would point to inner disk processes that regularly produce dusty structures far above the outer disk midplane in regions relevant to planet formation.

  1. Spectral Energy Distributions of Young Stars in IC 348: The Role of Disks in Angular Momentum Evolution of Young, Low-Mass Stars

    OpenAIRE

    Blanc, Thompson S. Le; Covey, Kevin R.; Stassun, Keivan G.

    2011-01-01

    Theoretical work suggests that a young star's angular momentum and rotation rate may be strongly influenced by magnetic interactions with its circumstellar disk. A generic prediction of these 'disk-locking' (DL) theories is that a disk-locked star will be forced to co-rotate with the Keplerian angular velocity of the inner edge of the disk. These theories have also been interpreted to suggest a correlation between young stars' rotation periods and the structural properties of their disks, suc...

  2. Spectroscopic Evolution of Disintegrating Planetesimals: Minutes to Months Variability in the Circumstellar Gas Associated with WD 1145+017

    CERN Document Server

    Redfield, Seth; Cauley, P Wilson; Parsons, Steven G; Gaensicke, Boris T; Duvvuri, Girish

    2016-01-01

    With the recent discovery of transiting planetary material around WD 1145+017, a critical target has been identified that links the evolution of planetary systems with debris disks and their accretion onto the star. We present a series of observations, five epochs over a year, taken with Keck and the VLT, which for the first time show variability of circumstellar absorption in the gas disk surrounding WD 1145+017 on timescales of minutes to months. Circumstellar absorption is measured in more than 250 lines of 14 ions among ten different elements associated with planetary composition, e.g., O, Mg, Ca, Ti, Cr, Mn, Fe, Ni. Broad circumstellar gas absorption with a velocity spread of 225 km/s is detected, but over the course of a year blue shifted absorption disappears while redshifted absorption systematically increases. A correlation of equivalent width and oscillator strength indicates that the gas is not highly optically thick (median tau approximately 2). We discuss simple models of an eccentric disk couple...

  3. Insights into planet formation from debris disks: I. The solar system as an archetype for planetesimal evolution

    OpenAIRE

    Matthews, Brenda C.; Kavelaars, JJ

    2016-01-01

    Circumstellar disks have long been regarded as windows into planetary systems. The advent of high sensitivity, high resolution imaging in the submillimetre where both the solid and gas components of disks can be detected opens up new possibilities for understanding the dynamical histories of these systems and therefore, a better ability to place our own solar system, which hosts a highly evolved debris disk, in context. Comparisons of dust masses from protoplanetary and debris disks have reve...

  4. Ionization and Dust Charging in Protoplanetary Disks

    CERN Document Server

    Ivlev, A V; Caselli, P

    2016-01-01

    Ionization-recombination balance in dense interstellar and circumstellar environments is a key factor for a variety of important physical processes, such as chemical reactions, dust charging and coagulation, coupling of the gas with magnetic field and the development of magnetorotational instability in protoplanetary disks. We present a self-consistent analytical model which allows us to exactly calculate abundances of charged species in dusty gas, in the regime where the dust-phase recombination dominates over the gas-phase recombination. The model is employed to verify applicability of a conventional approximation of low dust charges in protoplanetary disks, and to discuss the implications for the dust coagulation and the development of the "dead zone" in the disk. Furthermore, the importance of mutually consistent models for the ionization and dust evolution is addressed: These processes are coupled via several mechanisms operating in the disk, and therefore their interplay can be crucial for the ultimate ...

  5. Observations of Solids in Protoplanetary Disks

    CERN Document Server

    Andrews, Sean M

    2015-01-01

    This review addresses the state of research that employs astronomical (remote sensing) observations of solids ("dust") in young circumstellar disks to learn about planet formation. The intention is for it to serve as an accessible, introductory, pedagogical resource for junior scientists interested in the subject. After some historical background and a basic observational primer, the focus is shifted to the three fundamental topics that broadly define the field: (1) demographics -- the relationships between disk properties and the characteristics of their environments and hosts; (2) structure -- the spatial distribution of disk material and its associated physical conditions and composition; and (3) evolution -- the signposts of key changes in disk properties, including the growth and migration of solids and the impact of dynamical interactions with young planetary systems. Based on the state of the art results in these areas, suggestions are made for potentially fruitful lines of work in the near future.

  6. Observations of Solids in Protoplanetary Disks

    Science.gov (United States)

    Andrews, Sean M.

    2015-10-01

    This review addresses the state of research that employs astronomical (remote sensing) observations of solids ("dust") in young circumstellar disks to learn about planet formation. The intention is for it to serve as an accessible, introductory, pedagogical resource for junior scientists interested in the subject. After some historical background and a basic observational primer, the focus is shifted to the three fundamental topics that broadly define the field: (1) demographics—the relationships between disk properties and the characteristics of their environments and hosts; (2) structure—the spatial distribution of disk material and its associated physical conditions and composition; and (3) evolution—the signposts of key changes in disk properties, including the growth and migration of solids and the impact of dynamical interactions with young planetary systems. Based on the state-of-the-art results in these areas, suggestions are made for potentially fruitful lines of work in the near future.

  7. The formation of polycyclic aromatic hydrocarbons in evolved circumstellar environments

    CERN Document Server

    Cherchneff, Isabelle

    2010-01-01

    The formation of Polycyclic Aromatic Hydrocarbons in the circumstellar outflows of evolved stars is reviewed, with an emphasis on carbon stars on the Asymptotic Giant Branch. Evidence for PAHs present in their winds is provided by meteoritic studies and recent observations of the Unidentified Infrared bands. We detail the chemical processes leading to the closure of the first aromatic ring as well as the growth mechanisms leading to amorphous carbon grains. Existing studies on PAH formation in evolved stellar envelopes are reviewed and new results for the modelling of the inner wind of the archetype carbon star IRC+10216 are presented. Benzene, C6H6, forms close to the star, as well as water, H2O, as a result of non-equilibrium chemistry induced by the periodic passage of shocks. The growth process of aromatic rings may thus resemble that active in sooting flames due to the presence of radicals like hydroxyl, OH. Finally, we discuss possible formation processes for PAHs and aromatic compounds in the hydrogen-...

  8. The circumstellar environment of pre-SN Ia systems

    CERN Document Server

    Harvey, E; Boumis, P; Kopsacheili, M; Akras, S; Sabin, L; Jurkic, T

    2016-01-01

    Here we explore the possible preexisting circumstellar debris of supernova type Ia systems. Classical, symbiotic and recurrent novae all accrete onto roughly solar mass white dwarfs from main sequence or Mira type companions and result in thermonuclear runaways and expulsion of the accreted material at high velocity. The expelled material forms a fast moving shell that eventually slows to planetary nebula expansion velocities within several hundred years. All such systems are recurrent and thousands of shells (each of about 0.001 Mo) snow plough into the environment. As these systems involve common envelope binaries the material is distributed in a non-spherical shell. These systems could be progenitors of some SN Ia and thus explode into environments with large amounts of accumulated gas and dust distributed in thin non-spherical shells. Such shells should be observable around 100 years after a SN Ia event in a radio flash as the SN Ia debris meets that of the ejected material of the systems previous incarna...

  9. A symmetric inner cavity in the HD~141569A transitional disk

    CERN Document Server

    Mazoyer, J; Choquet, E; Perrin, M D; Pueyo, L; Augereau, J -C; Lagrange, A -M; Debes, J; Wolff, S G

    2016-01-01

    Some circumstellar disks, called transitional or hybrid disks, present characteristics of both protoplanetary disks (significant amount of gas) and debris disks (evolved structures around young main-sequence stars, composed of second generation dust, from collisions between planetesimals). Therefore, they are an ideal astrophysical laboratory to witness the last stages of planet formation. The circumstellar disk around HD~141569A was intensively observed and resolved in the past from space but also from the ground but the recent implementation of high contrast imaging systems opens new opportunities to re-analyze this object. We analyzed Gemini archival data from the Near-Infrared Coronagraphic Imager (NICI) obtained in 2011 in the H band, using several angular differential imaging techniques (classical ADI, LOCI, KLIP). These images reveal the complex structures of this disk with an unprecedented resolution. We also include archival Hubble Space Telescope (HST) images as an independent dataset to confirm the...

  10. Herschel Studies of Circumstellar Volatile Isotopes: Supporting Observations from the Ground and SOFIA

    Science.gov (United States)

    Milam, Stefanie

    The long standing question of ''What are the origin, evolution, and fate of our Universe and/or Galaxy?" has puzzled humankind for centuries. One approach to answering this question is to gain further understanding of stellar evolution, since stars are fundamental in galaxy development and evolution. A compilation of stellar composition can reveal the age, dynamics, and possibly the evolution of a galaxy. Stars are the factories of heavy elements, including carbon, nitrogen, and oxygen, that are fundamental in chemical complexity associated with planetary systems. Primitive materials have revealed a component of “atypical” isotopic signatures of these fundamental elements denoting a possible stellar origin. Understanding the processes by which these elements derive are essential for astrophysics on cosmochemical, galactic, stellar, and planetary scales. We propose to perform a comprehensive program of radioastronomical and infrared observations in circumstellar envelopes to definitively measure C, N, and O isotope ratios and test current models of photo-selective isotope fractionation vs. nucleosynthetically determined values. These data augment current programs underway with the Herschel Space Observatory. The broad implications for this study include fundamental values necessary for furthering our current understanding of stellar nucleosynthesis, circumstellar chemistry, Galactic chemical evolution, and the origin of presolar grains found in primitive materials. We will focus on isotopologues of species formed in thermochemical equilibrium and trace the natal, nucleosynthetic isotope ratio. We will survey a sample of evolved stars with varying degrees of nuclear processing, evolutionary states, and envelope chemistry (e.g. oxygen-rich vs. carbon-rich). The isotope ratios of 12C/13C, 14N/15N, 16O/17O, and 16O/18O will be obtained and compared to previous studies conducted on species now considered to be affected by chemical effects in the circumstellar shell

  11. A Pulsar and a Disk

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    Recent, unusual X-ray observations from our galactic neighbor, the Small Magellanic Cloud, have led to an interesting model for SXP 214, a pulsar in a binary star system.Artists illustration of the magnetic field lines of a pulsar, a highly magnetized, rotating neutron star. [NASA]An Intriguing BinaryAn X-ray pulsar is a magnetized, rotating neutron star in a binary system with a stellar companion. Material is fed from the companion onto the neutron star, channeled by the objects magnetic fields onto a hotspot thats millions of degrees. This hotspot rotating past our line of sight is what produces the pulsations that we observe from X-ray pulsars.Located in the Small Magellanic Cloud, SXP 214 is a transient X-ray pulsar in a binary with a Be-type star. This star is spinning so quickly that material is thrown off of it to form a circumstellar disk.Recently, a team of authors led by JaeSub Hong (Harvard-Smithsonian Center for Astrophysics) have presented new Chandra X-ray observations of SXP 214, tracking it for 50 ks (~14 hours) in January 2013. These observations reveal some very unexpected behavior for this pulsar.X-ray PuzzleThe energy distribution of the X-ray emission from SXP 214 over time. Dark shades or blue colors indicate high counts, and light shades or yellow colors indicate low counts. Lower-energy X-ray emission appeared only later, after about 20 ks. [Hong et al. 2016]Three interesting pieces of information came from the Chandra observations:SXP 214s rotation period was measured to be 211.5 s an increase in the spin rate since the discovery measurement of a 214-second period. Pulsars usually spin down as they lose angular momentum over time so what caused this one to spin up?Its overall X-ray luminosity steadily increased over the 50 ks of observations.Its spectrum became gradually softer (lower energy) over time; in the first 20 ks, the spectrum only consisted of hard X-ray photons above 3 keV, but after 20 ks, softer X-ray photons below 2 ke

  12. Observing the Circumstellar Environment of the Eruptive FUor/EXor Protostar V1647 Ori with ALMA

    Science.gov (United States)

    Principe, David; Cieza, Lucas A.; Zhu, Zhaohuan; Tobin, John J.; Prieto, Jose Luis

    2016-01-01

    Fu Ori (FUor) and EXor objects represent a short-lived stage of protostellar evolution characterized by intense mass accretion events which cause extreme variability in the form of outbursts. While it is well demonstrated that these objects exhibit sudden outbursts (ΔV~2-6), the mechanism causing such variability is not well understood. High spatial and spectral resolution observations of the circumstellar environment of these objects are essential to distinguish between different outbursting mechanisms. We present ALMA observations of the FUor/EXor object V1647 Ori as part of an ALMA campaign, which has observed a combined eight FUor and EXor type objects. Deeply embedded in the dark cloud LDN 1630 (L1630), V1647 Ori is one of a few FUor/EXor objects to have been extensively studied at multiple wavelengths before, during and after an outburst. We present preliminary results derived from ALMA 12CO, 13CO, C18O and continuum observations of the circumstellar environment of V1647 Ori. By measuring gas/dust masses and gas kinematics of the circumstellar disk, we investigate the potential mechanisms producing variability in these eruptive protostars during an essential, yet rarely observed, stage of pre-main sequence stellar evolution.

  13. Indirect Detection of Forming Protoplanets via Chemical Asymmetries in Disks

    CERN Document Server

    Cleeves, L Ilsedore; Harries, Tim J

    2015-01-01

    We examine changes in the molecular abundances resulting from increased heating due to a self-luminous planetary companion embedded within a narrow circumstellar disk gap. Using 3D models that include stellar and planetary irradiation, we find that luminous young planets locally heat up the parent circumstellar disk by many tens of Kelvin, resulting in efficient thermal desorption of molecular species that are otherwise locally frozen out. Furthermore, the heating is deposited over large regions of the disk, $\\pm5$ AU radially and spanning $\\lesssim60^\\circ$ azimuthally. From the 3D chemical models, we compute rotational line emission models and full ALMA simulations, and find that the chemical signatures of the young planet are detectable as chemical asymmetries in $\\sim10h$ observations. HCN and its isotopologues are particularly clear tracers of planetary heating for the models considered here, and emission from multiple transitions of the same species is detectable, which encodes temperature information i...

  14. Long-term Evolution of Photoevaporating Protoplanetary Disks

    CERN Document Server

    Bae, Jaehan; Zhu, Zhaohuan; Gammie, Clarles

    2013-01-01

    We perform calculations of our one-dimensional, two-zone disk model to study the long-term evolution of the circumstellar disk. In particular, we adopt published photoevaporation prescriptions and examine whether the photoevaporative loss alone, coupled with a range of initial angular momenta of the protostellar cloud, can explain the observed decline of the frequency of optically-thick dusty disks with increasing age. In the parameter space we explore, disks have accreting and/or non-accreting transitional phases lasting of $\\lesssim20 %$ of their lifetime, which is in reasonable agreement with observed statistics. Assuming that photoevaporation controls disk clearing, we find that initial angular momentum distribution of clouds needs to be weighted in favor of slowly rotating protostellar cloud cores. Again, assuming inner disk dispersal by photoevaporation, we conjecture that this skewed angular momentum distribution is a result of fragmentation into binary or multiple stellar systems in rapidly-rotating c...

  15. Disk Chemistry*

    OpenAIRE

    Thi Wing-Fai

    2015-01-01

    The chemical species in protoplanetary disks react with each other. The chemical species control part of the thermal balance in those disks. How the chemistry proceeds in the varied conditions encountered in disks relies on detailed microscopic understanding of the reactions through experiments or theoretical studies. This chapter strives to summarize and explain in simple terms the different types of chemical reactions that can lead to complex species. The first part of the chapter deals wit...

  16. Shadows cast by a warp in the HD 142527 protoplanetary disk

    OpenAIRE

    Marino, Sebastian; Perez, Sebastian; Casassus, Simon

    2014-01-01

    Detailed observations of gaps in protoplanetary disks have revealed structures that drive current research on circumstellar disks. One such feature is the two intensity nulls seen along the outer disk of the HD 142527 system, which are particularly well traced in polarized differential imaging. Here we propose that these are shadows cast by the inner disk. The inner and outer disk are thick, in terms of the unit-opacity surface in H-band, so that the shape and orientation of the shadows infor...

  17. The Effects on Supernova Shock Breakout and Swift Light Curves Due to the Mass of the Hydrogen-Rich Envelope

    CERN Document Server

    Bayless, Amanda J; Frey, Lucille H; Fryer, Chris L; Roming, Peter W A; Young, Patrick A

    2014-01-01

    Mass loss remains one of the primary uncertainties in stellar evolution. In the most massive stars, mass loss dictates the circumstellar medium and can significantly alter the fate of the star. Mass loss is caused by a variety of wind mechanisms and also through binary interactions. Supernovae are excellent probes of this mass loss, both the circumstellar material and the reduced mass of the hydrogen-rich envelope. In this paper, we focus on the effects of reducing the hydrogen-envelope mass on the supernova light curve, studying both the shock breakout and peak light curve emission for a wide variety of mass loss scenarios. Even though the trends of this mass loss will be masked somewhat by variations caused by different progenitors, explosion energies, and circumstellar media, these trends have significant effects on the supernova light-curves that should be seen in supernova surveys. We conclude with a comparison of our results to a few key observations.

  18. Disk Galaxies and Galaxy Disks

    CERN Document Server

    Funes, J G

    2000-01-01

    The conference Galaxy Disks and Disk Galaxies, sponsored by the Vatican Observatory, was held in June 12-16, 2000 at the Pontifical Gregorian University, in Rome (Italy). The meeting hosted about 230 participants coming from 30 countries. The very full program consisted of 29 review papers, 34 invited talks, and more than 180 posters. The meeting covered topics regarding the structure, formation and evolution of galaxies with disks. Particular attention was dedicated to the stellar and gaseous disk of the Milky Way, the global characteristics of galaxy disks, their structure, morphology and dynamics, the gaseous components, star formation, and chemical evolution, the interactions, accretion, mergers and starbursts, the dark and luminous matter, the establishment of the scaling laws, and the formation and evolution of disk galaxies from a theoretical and observational point of view.

  19. Astrophysical disks Collective and Stochastic Phenomena

    CERN Document Server

    Fridman, Alexei M; Kovalenko, Ilya G

    2006-01-01

    The book deals with collective and stochastic processes in astrophysical discs involving theory, observations, and the results of modelling. Among others, it examines the spiral-vortex structure in galactic and accretion disks , stochastic and ordered structures in the developed turbulence. It also describes sources of turbulence in the accretion disks, internal structure of disk in the vicinity of a black hole, numerical modelling of Be envelopes in binaries, gaseous disks in spiral galaxies with shock waves formation, observation of accretion disks in a binary system and mass distribution of luminous matter in disk galaxies. The editors adaptly brought together collective and stochastic phenomena in the modern field of astrophysical discs, their formation, structure, and evolution involving the methodology to deal with, the results of observation and modelling, thereby advancing the study in this important branch of astrophysics and benefiting Professional Researchers, Lecturers, and Graduate Students.

  20. POLARIMETRY WITH THE GEMINI PLANET IMAGER: METHODS, PERFORMANCE AT FIRST LIGHT, AND THE CIRCUMSTELLAR RING AROUND HR 4796A

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, Marshall D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Duchene, Gaspard; Graham, James R.; Kalas, Paul G. [Astronomy Department, University of California, Berkeley, Hearst Field Annex B-20, Berkeley, CA 94720-3411 (United States); Millar-Blanchaer, Max [Department of Astronomy and Astrophysics, University of Toronto, Toronto ON M5S 3H4 (Canada); Fitzgerald, Michael P.; Chilcote, Jeffrey [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Wiktorowicz, Sloane J.; Dillon, Daren; Gavel, Donald [Department of Astronomy, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Macintosh, Bruce; Bauman, Brian [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94040 (United States); Cardwell, Andrew; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale [Gemini Observatory, Casilla 603 La Serena (Chile); De Rosa, Robert J. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287 (United States); Doyon, René [Department de Physique, Université de Montréal, Montréal QC H3C 3J7 (Canada); Dunn, Jennifer; Erikson, Darren [National Research Council of Canada Herzberg, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); and others

    2015-02-01

    We present the first results from the polarimetry mode of the Gemini Planet Imager (GPI), which uses a new integral field polarimetry architecture to provide high contrast linear polarimetry with minimal systematic biases between the orthogonal polarizations. We describe the design, data reduction methods, and performance of polarimetry with GPI. Point-spread function (PSF) subtraction via differential polarimetry suppresses unpolarized starlight by a factor of over 100, and provides sensitivity to circumstellar dust reaching the photon noise limit for these observations. In the case of the circumstellar disk around HR 4796A, GPI's advanced adaptive optics system reveals the disk clearly even prior to PSF subtraction. In polarized light, the disk is seen all the way in to its semi-minor axis for the first time. The disk exhibits surprisingly strong asymmetry in polarized intensity, with the west side ≳ 9 times brighter than the east side despite the fact that the east side is slightly brighter in total intensity. Based on a synthesis of the total and polarized intensities, we now believe that the west side is closer to us, contrary to most prior interpretations. Forward scattering by relatively large silicate dust particles leads to the strong polarized intensity on the west side, and the ring must be slightly optically thick in order to explain the lower brightness in total intensity there. These findings suggest that the ring is geometrically narrow and dynamically cold, perhaps shepherded by larger bodies in the same manner as Saturn's F ring.

  1. Polarimetry with the Gemini Planet Imager: methods, performance at first light, and the circumstellar ring around HR 4796A

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, Marshall D.; Duchene, Gaspard; Millar-Blanchaer, Max; Fitzgerald, Michael P.; Graham, James R.; Wiktorowicz, Sloane J.; Kalas, Paul G.; Macintosh, Bruce; Bauman, Brian; Cardwell, Andrew; Chilcote, Jeffrey; De Rosa, Robert J.; Dillon, Daren; Doyon, René; Dunn, Jennifer; Erikson, Darren; Gavel, Donald; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Ingraham, Patrick; Kerley, Daniel; Konapacky, Quinn; Larkin, James E.; Maire, Jérôme; Marchis, Franck; Marois, Christian; Mittal, Tushar; Morzinski, Katie M.; Oppenheimer, B. R.; Palmer, David W.; Patience, Jennifer; Poyneer, Lisa; Pueyo, Laurent; Rantakyrö, Fredrik T.; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Soummer, Rémi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J. Kent; Wang, Jason J.; Wolff, Schuyler G.

    2015-01-28

    We present the first results from the polarimetry mode of the Gemini Planet Imager (GPI), which uses a new integral field polarimetry architecture to provide high contrast linear polarimetry with minimal systematic biases between the orthogonal polarizations. We describe the design, data reduction methods, and performance of polarimetry with GPI. Point spread function subtraction via di erential polarimetry suppresses unpolarized starlight by a factor of over 100, and provides sensitivity to circumstellar dust reaching the photon noise limit for these observations. In the case of the circumstellar disk around HR 4796A, GPI's advanced adaptive optics system reveals the disk clearly even prior to PSF subtraction. In polarized light, the disk is seen all the way in to its semi-minor axis for the first time. The disk exhibits surprisingly strong asymmetry in polarized intensity, with the west side ≳ 9 times brighter than the east side despite the fact that the east side is slightly brighter in total intensity. Based on a synthesis of the total and polarized intensities, we now believe that the west side is closer to us, contrary to most prior interpretations. Forward scattering by relatively large silicate dust particles leads to the strong polarized intensity on the west side, and the ring must be slightly optically thick in order to explain the lower brightness in total intensity there. These findings suggest that the ring is geometrically narrow and dynamically cold, perhaps shepherded by larger bodies in the same manner as Saturn's F ring.

  2. The effects of viscosity on circumplanetary disks

    Institute of Scientific and Technical Information of China (English)

    De-Fu Bu; Hsien Shang; Feng Yuan

    2013-01-01

    The effects of viscosity on the circumplanetary disks residing in the vicinity of protoplanets are investigated through two-dimensional hydrodynamical simulations with the shearing sheet model.We find that viscosity can considerably affect properties of the circumplanetary disk when the mass of the protoplanet Mp (<) 33 M(⊙),where M(⊙) is the Earth's mass.However,effects of viscosity on the circumplanetary disk are negligibly small when the mass of the protoplanet Mp(>) 33 M(⊙).We find that when Mp(<) 33 M(⊙),viscosity can markedly disrupt the spiral structure of the gas around the planet and smoothly distribute the gas,which weakens the torques exerted on the protoplanet.Thus,viscosity can slow the migration speed of a protoplanet.After including viscosity,the size of the circumplanetary disk can be decreased by a factor of (>) 20%.Viscosity helps to transport gas into the circumplanetary disk from the differentially rotating circumstellar disk.The mass of the circumplanetary disk can be increased by a factor of 50% after viscosity is taken into account when Mp(<) 33 M(⊙).Effects of viscosity on the formation of planets and satellites are briefly discussed.

  3. Signatures of Planet Formation in Gravitationally Unstable Disks

    CERN Document Server

    Boss, H J C A P

    2007-01-01

    In this paper, we calculate simulated scattered light images of a circumstellar disk in which a planet is forming by gravitational instability. The simulated images bear no correlation to the vertically integrated surface density of the disk, but rather trace the density structure in the tenuous upper layers of the disk. Although the density at high altitudes does not bear a direct relation to activity at the midplane, the very existence of structure at high altitudes along with high time variability is an indicator of gravitational instability within the disk. The timescale for variations is much shorter than the orbital period of the planet, which facilitates observation of the phenomenon. Scattered light images may not necessarily be able to tell us where exactly a planet might be forming in a disk, but can still be a useful probe of active planet formation within a circumstellar disk. Although these phenomena are unlikely to be observable by current telescopes, future large telescopes, such as the Giant M...

  4. Envelopes of Commutative Rings

    Institute of Scientific and Technical Information of China (English)

    Rafael PARRA; Manuel SAOR(I)N

    2012-01-01

    Given a significative class F of commutative rings,we study the precise conditions under which a commutative ring R has an F-envelope.A full answer is obtained when.F is the class of fields,semisimple commutative rings or integral domains.When F is the class of Noetherian rings,we give a full answer when the Krull dimension of R is zero and when the envelope is required to be epimorphic.The general problem is reduced to identifying the class of non-Noetherian rings having a monomorphic Noetherian envelope,which we conjecture is the empty class.

  5. High-resolution near-infrared imaging of the Orion 114-426 silhouette disk

    OpenAIRE

    McCaughrean, Mark J.; Chen, Hua; Bally, John; Erickson, Ed; Thompson, Rodger; Rieke, Marcia; Schneider, Glenn; Stolovy, Susan; Young, Erick

    1997-01-01

    We present the first high-resolution near-infrared images of the edge-on silhouette circumstellar disk, Orion 114-426, made using NICMOS on the Hubble Space Telescope. Images taken against the bright nebular background of the ionized hydrogen Pa$\\alpha$ line at 1.87 micron show the major axis of the disk to be approximately 20% smaller than at 0.6 micron, from which we deduce the structure of the edge of the disk. Continuum images of diffuse polar lobes above and below the plane of the disk s...

  6. The kinematic relationship between disk and jet in the DG Tauri system

    CERN Document Server

    Testi, L; Sargent, A I; Ray, T P; Eislöffel, J

    2002-01-01

    We present high angular resolution millimeter wavelength continuum and 13CO(2-1) observations of the circumstellar disk surrounding the TTauri star DG Tauri. We show that the velocity pattern in the inner regions of the disk is consistent with Keplerian rotation about a central 0.67 Msun star. The disk rotation is also consistent with the toroidal velocity pattern in the initial channel of the optical jet, as inferred from HST spectra of the first de-projected 100 AU from the source. Our observations support the tight relationship between disk and jet kinematics postulated by the popular magneto-centrifugal models for jet formation and collimation.

  7. The Structure and Evolution of Protoplanetary Disks: an infrared and submillimeter view

    CERN Document Server

    Cieza, Lucas A

    2015-01-01

    Circumstellar disks are the sites of planet formation, and the very high incidence of extrasolar planets implies that most of them actually form planetary systems. Studying the structure and evolution of protoplanetary disks can thus place important constraints on the conditions, timescales, and mechanisms associated with the planet formation process. In this review, we discuss observational results from infrared and submillimeter wavelength studies. We review disk lifetimes, transition objects, disk demographics, and highlight a few remarkable results from ALMA Early Science observations. We finish with a brief discussion of ALMA's potential to transform the field in near future.

  8. Morphologically complex protostellar envelopes : structure and kinematics

    Science.gov (United States)

    Tobin, John J.

    I present an in-depth study of protostars and their surrounding envelopes of dense gas and dust, using a multitude of observational methods to reveal new details of the star formation process. I use mid-infrared imaging from the Spitzer Space Telescope, combined with photometry spanning the near-infrared to millimeter wavelengths, to construct a model of the L1527 protostellar system. I modeled both the spectral energy distribution and resolved scattered light images to determine physical properties of the protostellar system. The nature of the apparent central point source in the Spitzer images was uncertain until high-resolution L-band imaging from the Gemini observatory resolved the point source into a disk in scattered light, having a radius of 200 AU. Protostellar envelopes are also often found to cast shadows against the 8 micron Galactic background in Spitzer imaging, enabling direct probes of envelope structure. The shadow images show that the dense envelopes around twenty-two Class 0 protostars are generally morphologically complex from 0.1 pc scales down to ˜1000 AU; they are often filamentary, and frequently non-axisymmetric. The observed envelope structure indicates a likely origin in turbulent cloud structure rather than a quasi-static/equilibrium formation. The complex envelope structure also may indicate an increased likelihood of fragmentation during collapse, forming close binaries. To further characterize these envelopes, I have observed them in the dense molecular gas tracers nthp and nht, both of which closely follow the 8 micron extinction morphology. The magnitude of the velocity gradients and envelope complexity on ˜10000 AU scales indicates that the velocity structure may reflect large-scale infall in addition to the often assumed rotation. Comparisons with three-dimensional filamentary and symmetric rotating collapse models reinforce the interpretation of velocities reflecting large-scale infall, showing that the structure of the envelope

  9. Molecular anions in circumstellar envelopes, interstellar clouds and planetary atmospheres: quantum dynamics of formation and evolution

    CERN Document Server

    Carelli, Fabio

    2012-01-01

    For decades astronomers and astrophysicists believed that only positively charged ions were worthy of relevance in drawing the networks for possible chemical reactions in the interstellar medium, as well as in modeling the physical conditions in most of astrophysical environments. Thus, molecular negative ions received minor attention until their possible existence was observationally confirmed (discovery of the first interstellar anion, C6H-), about thirty years after the first physically reasonable proposal on their actual detection was theoretically surmised by E.Herbst. In an astrophysical context, their role should be then found in their involvement in the charge balance as well as in the chemical evolution of the considered environment: depending on their amount and on the global gas density, in fact, the possible evolutive scenario could be susceptible of marked variations on the estimated time needed for reaching the steady state, their presence having thus also important repercussions on the final ch...

  10. The structure of SN 1987A's outer circumstellar envelope as probed by light echoes

    Science.gov (United States)

    Crotts, Arlin; Sugerman, Ben; Lawrence, Stephen; Kunkel, William

    2001-05-01

    We present ground-based and HST images processed by image subtraction to highlight transient reflection nebulae or ``light echoes'' of the maximum light pulse of the explosion of SN 1987A from surrounding material. Along with numerous structures already discussed elsewhere, we have found (in multiple epochs of data) a new feature opposite the SN from the mysterious ``Napoleon's Hat'' which indicates a symmetric structure due to shocks internal to the SN's red supergiant wind and probably caused by the pile-up of gas due to differential velocities within the outflow. We also show how echoes betray the ram pressure distribution of the progenitor mass loss flow. .

  11. Molecular anions in circumstellar envelopes, interstellar clouds and planetary atmospheres: quantum dynamics of formation and evolution

    OpenAIRE

    Carelli, Fabio

    2011-01-01

    Nowadays, it is a well known fact that most of the matter in our Solar System, in our Galaxy and, probably, within the whole Universe, exists in the form of ionized particles. For decades astronomers and astrophysicists believed that only positively charged ions were worthy of relevance in drawing the networks for possible chemical reactions in the interstellar medium, as well as in modeling the physical conditions in most of astrophysical environments. Thus, negative ions (and especially mol...

  12. The WIRED Survey. IV. New Dust Disks from the McCook & Sion White Dwarf Catalog

    CERN Document Server

    Hoard, D W; Wachter, Stefanie; Leisawitz, David T; Cohen, Martin

    2013-01-01

    We have compiled photometric data from the Wide-field Infrared Survey Explorer All Sky Survey and other archival sources for the more than 2200 objects in the original McCook & Sion Catalog of Spectroscopically Identified White Dwarfs. We applied color-selection criteria to identify 28 targets whose infrared spectral energy distributions depart from the expectation for the white dwarf photosphere alone. Seven of these are previously known white dwarfs with circumstellar dust disks, five are known central stars of planetary nebulae, and six were excluded for being known binaries or having possible contamination of their infrared photometry. We fit white dwarf models to the spectral energy distributions of the remaining ten targets, and find seven new candidates with infrared excess suggesting the presence of a circumstellar dust disk. We compare the model dust disk properties for these new candidates with a comprehensive compilation of previously published parameters for known white dwarfs with dust disks....

  13. c2d Spitzer IRS spectra of disks around T Tauri stars. III. [Ne II], [Fe I], and H-2 gas-phase lines

    NARCIS (Netherlands)

    Lahuis, Fred; van Dishoeck, Ewine F.; Blake, Geoffrey A.; Evans, Neal J.; Kessler-Silacci, Jacqueline E.; Pontoppidan, Klaus M.

    2007-01-01

    We present a survey of mid-infrared gas-phase lines toward a sample of 76 circumstellar disks around low-mass pre-main-sequence stars from the Spitzer "Cores to Disks" legacy program. We report the first detections of [ Ne II] and [ Fe I] toward classical T Tauri stars in similar to 20% and similar

  14. Circumstellar water vapour in M-type AGB stars: Radiative transfer models, abundances and predictions for HIFI

    CERN Document Server

    Maercker, Matthias; Olofsson, Hans; Bergman, Per; Ramstedt, Sofia

    2008-01-01

    Aims: By performing a detailed radiative transfer analysis, we determine fractional abundances of circumstellar H2O in the envelopes around six M-type asymptotic giant branch stars. The models are also used to predict H2O spectral line emission for the upcoming Herschel/HIFI mission. Methods: We use Infrared space observatory long wavelength spectrometer spectra to constrain the circumstellar fractional abundance distribution of ortho-H2O, using a non-local thermal equilibrium, and non-local, radiative transfer code based on the accelerated lambda iteration formalism. The mass-loss rates and kinetic temperature structures for the sample stars are determined through radiative transfer modelling of CO line emission based on the Monte-Carlo method. The density and temperature profiles of the circumstellar dust grains are determined through spectral energy distribution modelling using the publicly available code Dusty. Results: The determined ortho-H2O abundances lie between 1e-4 and 1.5e-3 relative to H2, with t...

  15. A New View of the Circumstellar Environment of SN 1987A

    Science.gov (United States)

    Sugerman, Ben E. K.; Crotts, Arlin P. S.; Kunkel, William E.; Heathcote, Stephen R.; Lawrence, Stephen S.

    2005-07-01

    We summarize the analysis of a uniform set of both previously known and newly discovered scattered-light echoes, detected within 30" of SN 1987A in 10 years of optical imaging, and with which we have constructed the most complete three-dimensional model of the progenitor's circumstellar environment. Surrounding the SN is a richly structured bipolar nebula. An outer, double-lobed ``peanut,'' which we believe is the contact discontinuity between the red supergiant and main-sequence winds, is a prolate shell extending 28 lt-yr along the poles and 11 lt-yr near the equator. Napoleon's Hat, previously believed to be an independent structure, is the waist of this peanut, which is pinched to a radius of 6 lt-yr. Interior, the innermost circumstellar material lies along a cylindrical hourglass, 1 lt-yr in radius and 4 lt-yr long, which connects to the peanut by a thick equatorial disk. The nebulae are inclined 41° south and 8° east of the line of sight, slightly elliptical in cross section, and marginally offset west of the SN. The three-dimensional geometry of the three circumstellar rings is studied, suggesting the northern and southern rings are located 1.3 and 1.0 lt-yr from the SN, while the equatorial ring is elliptical (b/a~0.03 cm-3 the maximum dust-grain size increases from ~0.2 to 2 μm and the silicate:carbonaceous dust ratio decreases. The nebulae have a total mass of ~1.7 Msolar, yielding a red-supergiant mass loss around 5×10-6 Msolar yr-1. We compare these results to current formation models and find that no model has successfully reproduced this system. However, our results suggest a heuristic evolutionary sequence in which the progenitor evolves through two ``blue loops,'' perhaps accompanied by a close binary companion.

  16. Two-dimensional Distributions and Column Densities of Gaseous Molecules in Protoplanetary Disks II

    OpenAIRE

    Y. Aikawa; Herbst, E.

    2002-01-01

    We have investigated the two-dimensional (R,Z) distribution of deuterated molecular species in circumstellar disks around young stellar objects. The abundance ratios between singly deuterated and normal molecules (``D/H ratios'') in disks evolve in a similar way as in molecular clouds. Fractionation is caused by rapid exchange reactions that are exothermic because of energy differences between deuterated and normal species. In the midplane region, where molecules are heavily depleted onto gra...

  17. ALMA imaging of the CO snowline of the HD 163296 disk with DCO

    NARCIS (Netherlands)

    Mathews, G. S.; Klaassen, P. D.; Juhasz, A.; Harsono, D.; Chapillon, E.; van Dishoeck, E. F.; Espada, D.; de Gregorio-Monsalvo, I.; Hales, A.; Hogerheijde, M. R.; Mottram, J. C.; Rawlings, M. G.; Takahashi, S.; Testi, L.

    2013-01-01

    Context. The high spatial resolution and line sensitivity of the Atacama Large Millimeter/submillimeter Array (ALMA) opens the possibility of resolving emission from molecules in large samples of circumstellar disks. With an understanding of the conditions under which these molecules can have high a

  18. A New View of the Circumstellar Environment of SN 1987A

    CERN Document Server

    Sugerman, B E K; Kunkel, W E; Heathcote, S R; Lawrence, S S; Sugerman, Ben E. K.; Crotts, Arlin P. S.; Kunkel, William E.; Heathcote, Stephen R.; Lawrence, Stephen S.

    2005-01-01

    We summarize the analysis of a uniform set of both previously-known and newly-discovered scattered-light echoes, detected within 30" of SN 1987A in ten years of optical imaging, and with which we have constructed the most complete three-dimensional model of the progenitor's circumstellar environment. Surrounding the SN is a richly-structured bipolar nebula. An outer, double-lobed ``peanut,'' which we believe is the contact discontinuity between the red supergiant and main sequence winds, is a prolate shell extending 28 ly along the poles and 11 ly near the equator. Napoleon's Hat, previously believed to be an independent structure, is the waist of this peanut, which is pinched to a radius of 6 ly. Interior, the innermost circumstellar material lies along a cylindrical hourglass, 1 ly in radius and 4 ly long, which connects to the peanut by a thick equatorial disk. The nebulae are inclined 41o south and 8o east of the line of sight, slightly elliptical in cross section, and marginally offset west of the SN. Th...

  19. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R. D. [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Srinivasan, S.; Kemper, F.; Ling, B. [Academia Sinica, Institute of Astronomy and Astrophysics, 11F of Astronomy-Mathematics Building, NTU/AS, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Volk, K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.

  20. Spitzer SAGE-Spec: Near Infrared Spectroscopy, Dust Shells, and Cool Envelopes in Extreme Large Magellanic Cloud Asymptotic Giant Branch Stars

    Science.gov (United States)

    Blum, R. D.; Srinivasan, S.; Kemper, F.; Ling, B.; Volk, K.

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ``tip" of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ``stellar" cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  1. Analysis of the circumstellar environment of the B[e] star HD 45677 (FS CMa)

    CERN Document Server

    Muratorio, G; Friedjung, M; Rossi, Corinne; Friedjung, Michael

    2006-01-01

    We studied the circumstellar environment of the B[e] star HD 45677 through the analysis of the emission lines from ionized metals. We used the statistical approach of the self absorption curve method (SAC) to derive physical parameters of the line emitting region. The Fe II and Cr II double-peaked emission line structure is explained by the presence of a thin absorption component red shifted by ~3 km/s. This absorption component can be interpreted geometricaly as being due to infalling material perpendicularly to the disk seen nearly pole-on, as indicated by the emission line structure. The Cr II and Fe II emission lines have a complex structure with two (narrow and broad) components, of 45 and 180 km/s FWHM for the permitted lines and 25 and 100 km/s FWHM for the forbidden ones, respectively. We argue that the narrow components are principaly emitted by an optically thin disk seen nearly pole-on, in a region whose minimum radius is estimated to be 4 10^12 cm, while the broad ones are formed in a disk-linked ...

  2. Synthetic Spectra and Light Curves of Interacting Binaries and Exoplanets with Circumstellar Material: SHELLSPEC

    Science.gov (United States)

    Budaj, Ján

    2012-04-01

    Program SHELLSPEC is designed to calculate light-curves, spectra and images of interacting binaries and extrasolar planets immersed in a moving circumstellar environment which is optically thin. It solves simple radiative transfer along the line of sight in moving media. The assumptions include LTE and optional known state quantities and velocity fields in 3D. Optional (non)transparent objects such as a spot, disc, stream, jet, shell or stars may be defined (embedded) in 3D and their composite synthetic spectrum calculated. The Roche model can be used as a boundary condition for the radiative transfer. Recently, a new model of the reflection effect, dust and Mie scattering were incorporated into the code. ɛ Aurigae is one of the most mysterious objects on the sky. Prior modeling of its light-curve assumed a dark, inclined, disk of dust with a central hole to explain the light-curve with a sharp mid-eclipse brightening. Our model consists of two geometrically thick flared disks: an internal optically thick disk and an external optically thin disk which absorbs and scatters radiation. Shallow mid-eclipse brightening may result from eclipses by nearly edge-on flared (dusty or gaseous) disks. Mid-eclipse brightening may also be due to strong forward scattering and optical properties of the dust which can have an important effect on the light-curves. There are many similarities between interacting binary stars and transiting extrasolar planets. The reflection effect which is briefly reviewed is one of them. The exact Roche shape and temperature distributions over the surface of all currently known transiting extrasolar planets have been determined. In some cases (HAT-P-32b, WASP-12b, WASP-19b), departures from the spherical shape can reach 7-15%.

  3. Radiative Ablation of Disks Around Massive Stars

    CERN Document Server

    Kee, N D

    2015-01-01

    Hot, massive stars (spectral types O and B) have extreme luminosities ($10^4 -10^6 L_\\odot$) that drive strong stellar winds through UV line-scattering. Some massive stars also have disks, formed by either decretion from the star (as in the rapidly rotating "Classical Be stars"), or accretion during the star's formation. This dissertation examines the role of stellar radiation in driving (ablating) material away from these circumstellar disks. A key result is that the observed month to year decay of Classical Be disks can be explained by line-driven ablation without, as previously done, appealing to anomalously strong viscous diffusion. Moreover, the higher luminosity of O stars leads to ablation of optically thin disks on dynamical timescales of order a day, providing a natural explanation for the lack of observed Oe stars. In addition to the destruction of Be disks, this dissertation also introduces a model for their formation by coupling observationally inferred non-radial pulsation modes and rapid stellar...

  4. Radiative Transfer on Perturbations in Protoplanetary Disks

    CERN Document Server

    Jang-Condell, H; Jang-Condell, Hannah; Sasselov, Dimitar D.

    2003-01-01

    We present a method for calculating the radiative tranfer on a protoplanetary disk perturbed by a protoplanet. We apply this method to determine the effect on the temperature structure within the photosphere of a passive circumstellar disk in the vicinity of a small protoplanet of up to 20 Earth masses. The gravitational potential of a protoplanet induces a compression of the disk material near it, resulting in a decrement in the density at the disk's surface. Thus, an isodensity contour at the height of the photosphere takes on the shape of a well. When such a well is illuminated by stellar irradiation at grazing incidence, it results in cooling in a shadowed region and heating in an exposed region. For typical stellar and disk parameters relevant to the epoch of planet formation, we find that the temperature variation due to a protoplanet at 1 AU separation from its parent star is about 4% (5 K) for a planet of 1 Earth mass, about 14% (19 K) for planet of 10 Earth masses, and about 18% (25 K) for planet of ...

  5. Accretion disks in luminous young stellar objects

    CERN Document Server

    Beltran, M T

    2015-01-01

    An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and therefore predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.

  6. Binarity as a key factor in protoplanetary disk evolution: Spitzer disk census of the eta Chamaeleontis cluster

    CERN Document Server

    Bouwman, J; Dominik, C; Feigelson, E D; Henning, T; Tielens, A G G M; Waters, L B F M; Henning, Th.

    2006-01-01

    The formation of planets is directly linked to the evolution of the circumstellar (CS) disk from which they are born. The dissipation timescales of CS disks are, therefore, of direct astrophysical importance in evaluating the time available for planet formation. We employ Spitzer Space Telescope spectra to complete the CS disk census for the late-type members of the ~8 Myr-old eta Chamaeleontis star cluster. Of the 15 K- and M-type members, eight show excess emission. We find that the presence of a CS disk is anti-correlated with binarity, with all but one disk associated with single stars. With nine single stars in total, about 80% retain a CS disk. Of the six known or suspected close binaries the only CS disk is associated with the primary of RECX 9. No circumbinary disks have been detected. We also find that stars with disks are slow rotators with surface values of specific angular momentum j = 2-15 j_sun. All high specific angular momentum systems with j = 20-30 j_sun are confined to the primary stars of ...

  7. A database of circumstellar OH masers

    CERN Document Server

    Engels, D

    2015-01-01

    We present a new database of circumstellar OH masers at 1612, 1665, and 1667 MHz in the Milky Way galaxy. The database (version 2.4) contains 13655 observations and 2341 different stars detected in at least one transition. Detections at 1612\\,MHz are considered to be complete until the end of 2014 as long as they were published in refereed papers. Detections of the main lines (1665 and 1667 MHz) and non-detections in all transitions are included only if published after 1983. The database contains flux densities and velocities of the two strongest maser peaks, the expansion velocity of the shell, and the radial velocity of the star. Links are provided for about 100 stars ($<$5\\% of all stars with OH masers) to interferometric observations and monitoring programs of the maser emission published since their beginnings in the 1970s. Access to the database is possible over the Web (www.hs.uni-hamburg.de/maserdb), allowing cone searches for individual sources and lists of sources. A general search is possible in...

  8. The circumstellar matter of supernova 2014J and the core-degenerate scenario

    CERN Document Server

    Soker, Noam

    2015-01-01

    I show that the circumstellar matter (CSM) of the type Ia supernova 2014J is too massive and its momentum too large to be accounted for by any but the core-degenerate (CD) scenario for type Ia supernovae. Assuming the absorbing gas is of CSM origin, the several shells responsible of the absorption potassium lines are accounted for by a mass loss episode from a massive asymptotic giant branch star during a common envelope phase with a white dwarf companion. The time-varying potassium lines can be accounted for by ionization of neutral potassium and the Na-from-dust absorption (NaDA) model. Before explosion some of the potassium resides in the gas phase and some in dust. Weakening in absorption strength is caused by potassium-ionizing radiation of the supernova, while release of atomic potassium from dust increases the absorption. I conclude that if the absorbing gas originated from the progenitor of SN 2014J, then a common envelope phase took place about 15,000 years ago, leading to the merging of the core wit...

  9. Resolving the inner disk of UX Orionis

    Science.gov (United States)

    Kreplin, A.; Madlener, D.; Chen, L.; Weigelt, G.; Kraus, S.; Grinin, V.; Tambovtseva, L.; Kishimoto, M.

    2016-05-01

    Aims: The cause of the UX Ori variability in some Herbig Ae/Be stars is still a matter of debate. Detailed studies of the circumstellar environment of UX Ori objects (UXORs) are required to test the hypothesis that the observed drop in photometry might be related to obscuration events. Methods: Using near- and mid-infrared interferometric AMBER and MIDI observations, we resolved the inner circumstellar disk region around UX Ori. Results: We fitted the K-, H-, and N-band visibilities and the spectral energy distribution (SED) of UX Ori with geometric and parametric disk models. The best-fit K-band geometric model consists of an inclined ring and a halo component. We obtained a ring-fit radius of 0.45 ± 0.07 AU (at a distance of 460 pc), an inclination of 55.6 ± 2.4°, a position angle of the system axis of 127.5 ± 24.5°, and a flux contribution of the over-resolved halo component to the total near-infrared excess of 16.8 ± 4.1%. The best-fit N-band model consists of an elongated Gaussian with a HWHM ~ 5 AU of the semi-major axis and an axis ration of a/b ~ 3.4 (corresponding to an inclination of ~72°). With a parametric disk model, we fitted all near- and mid-infrared visibilities and the SED simultaneously. The model disk starts at an inner radius of 0.46 ± 0.06 AU with an inner rim temperature of 1498 ± 70 K. The disk is seen under an nearly edge-on inclination of 70 ± 5°. This supports any theories that require high-inclination angles to explain obscuration events in the line of sight to the observer, for example, in UX Ori objects where orbiting dust clouds in the disk or disk atmosphere can obscure the central star. Based on observations made with ESO telescopes at Paranal Observatory under program IDs: 090.C-0769, 074.C-0552.

  10. Cooling Requirements for the Vertical Shear Instability in Protoplanetary Disks

    CERN Document Server

    Lin, Min-Kai

    2015-01-01

    It is difficult to understand how cold circumstellar disks accrete onto their central stars. A hydrodynamic mechanism, the vertical shear instability (VSI), offers a means to drive angular momentum transport in cold accretion disks such as protoplanetary disks (PPDs). The VSI is driven by a weak vertical gradient in the disk's orbital motion. In order to grow, the VSI must overcome vertical buoyancy, a strongly stabilizing influence in cold disks, where heating is dominated by external irradiation. Rapid cooling, via radiative losses, reduces the effective buoyancy and allows the VSI to operate. In this paper, we quantify the cooling timescale, $t_c$, needed for growth of the VSI. We perform a linear analysis of the VSI with cooling in vertically global and radially local disk models. For irradiated disks, we find that the VSI is most vigorous for rapid cooling with $t_c < \\Omega_\\mathrm{K}^{-1} h |q| / (\\gamma -1)$ in terms of the Keplerian orbital frequency, $\\Omega_\\mathrm{K}$, the disk's aspect ratio, ...

  11. Thermal Activated Envelope

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Pasold, Anke

    2015-01-01

    search procedure, the combination of materials and their bonding temperature is found in relation to the envelope effect on a thermal environment inside a defined space. This allows the designer to articulate dynamic composites with time-based thermal functionality, related to the material dynamics...

  12. Elliptic stable envelope

    CERN Document Server

    Aganagic, Mina

    2016-01-01

    We construct stable envelopes in equivariant elliptic cohomology of Nakajima quiver varieties. In particular, this gives an elliptic generalization of the results of arXiv:1211.1287. We apply them to the computation of the monodromy of $q$-difference equations arising the enumerative K-theory of rational curves in Nakajima varieties, including the quantum Knizhnik-Zamolodchikov equations.

  13. A disk asymmetry in motion around the B[e] star MWC158

    CERN Document Server

    Kluska, J; Soulez, F; Berger, J -P; Bouquin, J -B Le; Malbet, F; Lazareff, B; Thiébaut, E

    2016-01-01

    MWC158 is a star with the B[e] phenomenon that shows strong spectrophotometric variability (in lines and in UV and visible continuum) attributed to phases of shell ejection. The evolutionary stage of this star was never clearly determined. Previous interferometric, spectropolarimetric and spectro-interferometric studies suggest a disk morphology for its environment. We investigate the origin of the variability within the inner astronomical unit of the central star using near-infrared interferometric observations with PIONIER at the VLTI over a two-year period. We performed an image reconstruction of the circumstellar environment using the SPARCO method. We discovered that the morphology of the circumstellar environment could vary on timescales of weeks or days. We carried out a parametric fit of the data with a model consisting of a star, a disk and a bright spot that represents a brighter emission in the disk. We detect strong morphological changes in the first astronomical unit around the star, that happen ...

  14. Dust disks around old Pre Main-Sequence stars HST\\/NICMOS2 scattered light images and modeling

    CERN Document Server

    Augereau, J C; Mouillet, D; Ménard, F

    2000-01-01

    We present recent near-infrared detections of circumstellar disks around the two old PMS Herbig stars HD 141569 and HD 100546 obtained with the HST/NICMOS2 camera. They reveal extended structures larger than 350-400 AU in radius. While the HD 100546 disk appears as a continuous disk down to 40 AU, the HD 141569 environment seems more complex, splitted at least into two dust populations. As a convincing example, the full modeling of the disk surrounding HR 4796, another old PMS star, is detailed and confronted with more recent observations.

  15. HOPS 136: An edge-on orion protostar near the end of envelope infall

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, William J.; Megeath, S. Thomas [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Tobin, John J. [National Radio Astronomy Observatory, Charlottesville, VA (United States); Hartmann, Lee; Kounkel, Marina [Department of Astronomy, University of Michigan, Ann Arbor, MI (United States); Stutz, Amelia M. [Max-Planck-Institut für Astronomie, Heidelberg (Germany); Poteet, Charles A. [New York Center for Astrobiology, Rensselaer Polytechnic Institute, Troy, NY (United States); Ali, Babar [NHSC/IPAC/Caltech, Pasadena, CA (United States); Osorio, Mayra [Instituto de Astrofísica de Andalucía, CSIC, Granada (Spain); Manoj, P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai (India); Remming, Ian [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL (United States); Stanke, Thomas [ESO, Garching bei München (Germany); Watson, Dan M., E-mail: wjfischer@gmail.com [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States)

    2014-02-01

    Edge-on protostars are valuable for understanding the disk and envelope properties of embedded young stellar objects, since the disk, envelope, and envelope cavities are all distinctly visible in resolved images and well constrained in modeling. Comparing Two Micron All Sky Survey, Wide-field Infrared Survey Explorer, Spitzer, Herschel, and APEX photometry and an IRAM limit from 1.2 to 1200 μm, Spitzer spectroscopy from 5 to 40 μm, and high-resolution Hubble imaging at 1.60 and 2.05 μm to radiative transfer modeling, we determine envelope and disk properties for the Class I protostar HOPS 136, an edge-on source in Orion's Lynds 1641 region. The source has a bolometric luminosity of 0.8 L {sub ☉}, a bolometric temperature of 170 K, and a ratio of submillimeter to bolometric luminosity of 0.8%. Via modeling, we find a total luminosity of 4.7 L {sub ☉} (larger than the observed luminosity due to extinction by the disk), an envelope mass of 0.06 M {sub ☉}, and a disk radius and mass of 450 AU and 0.002 M {sub ☉}. The stellar mass is highly uncertain but is estimated to fall between 0.4 and 0.5 M {sub ☉}. To reproduce the flux and wavelength of the near-infrared scattered-light peak in the spectral energy distribution, we require 5.4 × 10{sup –5} M {sub ☉} of gas and dust in each cavity. The disk has a large radius and a mass typical of more evolved T Tauri disks in spite of the significant remaining envelope. HOPS 136 appears to be a key link between the protostellar and optically revealed stages of star formation.

  16. Imaging the dust sublimation front of a circumbinary disk

    Science.gov (United States)

    Hillen, M.; Kluska, J.; Le Bouquin, J.-B.; Van Winckel, H.; Berger, J.-P.; Kamath, D.; Bujarrabal, V.

    2016-04-01

    Aims: We present the first near-IR milli-arcsecond-scale image of a post-AGB binary that is surrounded by hot circumbinary dust. Methods: A very rich interferometric data set in six spectral channels was acquired of IRAS 08544-4431 with the new RAPID camera on the PIONIER beam combiner at the Very Large Telescope Interferometer (VLTI). A broadband image in the H-band was reconstructed by combining the data of all spectral channels using the SPARCO method. Results: We spatially separate all the building blocks of the IRAS 08544-4431 system in our milliarcsecond-resolution image. Our dissection reveals a dust sublimation front that is strikingly similar to that expected in early-stage protoplanetary disks, as well as an unexpected flux signal of ~4% from the secondary star. The energy output from this companion indicates the presence of a compact circum-companion accretion disk, which is likely the origin of the fast outflow detected in Hα. Conclusions: Our image provides the most detailed view into the heart of a dusty circumstellar disk to date. Our results demonstrate that binary evolution processes and circumstellar disk evolution can be studied in detail in space and over time. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 094.D-0865.

  17. Chemistry in disks. X. The molecular content of protoplanetary disks in Taurus

    Science.gov (United States)

    Guilloteau, S.; Reboussin, L.; Dutrey, A.; Chapillon, E.; Wakelam, V.; Piétu, V.; Di Folco, E.; Semenov, D.; Henning, Th.

    2016-08-01

    Aims: We attempt to determine the molecular composition of disks around young low-mass stars. Methods: We used the IRAM 30 m radio telescope to perform a sensitive wideband survey of 30 stars in the Taurus Auriga region known to be surrounded by gaseous circumstellar disks. We simultaneously observed HCO+(3-2), HCN(3-2), C2H(3-2), CS(5-4), and two transitions of SO. We combined the results with a previous survey that observed 13CO (2-1), CN(2-1), two o-H2CO lines, and another transition of SO. We used available interferometric data to derive excitation temperatures of CN and C2H in several sources. We determined characteristic sizes of the gas disks and column densities of all molecules using a parametric power-law disk model. Our study is mostly sensitive to molecules at 200-400 au from the stars. We compared the derived column densities to the predictions of an extensive gas-grain chemical disk model under conditions representative of T Tauri disks. Results: This survey provides 20 new detections of HCO+ in disks, 18 in HCN, 11 in C2H, 8 in CS, and 4 in SO. HCO+ is detected in almost all sources and its J = 3-2 line is essentially optically thick, providing good estimates of the disk radii. The other transitions are (at least partially) optically thin. Large variations of the column density ratios are observed, but do not correlate with any specific property of the star or disk. Disks around Herbig Ae stars appear less rich in molecules than those around T Tauri stars, although the sample remains small. SO is only found in the (presumably younger) embedded objects, perhaps reflecting an evolution of the S chemistry due to increasing depletion with time. Overall, the molecular column densities, and in particular the CN/HCN and CN/C2H ratios, are well reproduced by gas-grain chemistry in cold disks. Conclusions: This study provides a comprehensive census of simple molecules in disks of radii >200-300 au. Extending that to smaller disks, or searching for less

  18. (Quasi-)Poisson enveloping algebras

    OpenAIRE

    Yang, Yan-Hong; Yuan YAO; Ye, Yu

    2010-01-01

    We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.

  19. Disks, Jets and the dawn of planets, Proceedings of the 2nd JEDI meeting

    CERN Document Server

    Alcala', J M; Biazzo, K; Bacciotti, F; Bianchi, E; Bonito, R; Codella, C; Fedele, D; Fontani, F; Frasca, A; Giannini, T; Manara, C; Nisini, B; Podio, L; Rigliaco, E; Tazzari, M

    2015-01-01

    This booklet contains a collection of contributions to the meeting of the JEts and Disks at INAF (JEDI) group, which took place at the Capodimonte Observatory during 9-10 April 2015. Scope of the meeting was to bring together the JEDI researchers of the Italian Istituto Nazionale di Astrofisica (INAF) working in the field of circumstellar disks and jets in young stars, to discuss together the different agents affecting the structure and the evolution of disks, namely accretion, jets and winds. More information on the JEDI group and its activities can be found at \\texttt{http://www.oa-roma.inaf.it/irgroup/JEDI}.

  20. Cold CO gas in the disk of the young eruptive star EX Lup

    OpenAIRE

    Kóspál, Ágnes; Ábrahám, Péter; Csengeri, Timea; Gorti, Uma; Henning, Thomas; Moór, Attila; Semenov, Dmitry A.; Szűcs, László; Güsten, Rolf

    2016-01-01

    EX Lupi-type objects (EXors) form a sub-class of T Tauri stars, defined by sudden sporadic flare-ups of 1-5 magnitudes at optical wavelengths. These eruptions are attributed to enhanced mass accretion from the circumstellar disk to the star, and may constitute important events in shaping the structure of the inner disk and the forming planetary system. Although disk properties must play a fundamental role in driving the outbursts, they are surprisingly poorly known. In order to characterize t...

  1. CO gas inside the protoplanetary disk cavity in HD 142527: disk structure from ALMA

    CERN Document Server

    Perez, Sebastian; Ménard, F; Roman, P; van der Plas, G; Cieza, L; Pinte, C; Christiaens, V; Hales, A S

    2014-01-01

    Inner cavities and annular gaps in circumstellar disks are possible signposts of giant planet formation. The young star HD 142527 hosts a massive protoplanetary disk with a large cavity that extends up to 140 au from the central star, as seen in continuum images at infrared and millimeter wavelengths. Estimates of the survival of gas inside disk cavities are needed to discriminate between clearing scenarios. We present a spatially and spectrally resolved carbon monoxide isotopologue observations of the gas-rich disk HD 142527, in the J=2-1 line of 12CO, 13CO and C18O, obtained with the Atacama Large Millimeter Array (ALMA). We detect emission coming from inside the dust-depleted cavity in all three isotopologues. Based on our analysis of the gas in the dust cavity, the 12CO emission is optically thick, while 13CO and C18O emission are both optically thin. The total mass of residual gas inside the cavity is about 1.5-2 Jupiter masses. We model the gas with an axisymmetric disk model. Our best fit model shows t...

  2. The Circumstellar Medium of Massive Stars in Motion

    CERN Document Server

    Mackey, Jonathan; Meyer, Dominique M -A; Gvaramadze, Vasilii V; Mohamed, Shazrene; Neilson, Hilding R; Mignone, Andrea

    2014-01-01

    The circumstellar medium around massive stars is strongly impacted by stellar winds, radiation, and explosions. We use numerical simulations of these interactions to constrain the current properties and evolutionary history of various stars by comparison with observed circumstellar structures. Two- and three-dimensional simulations of bow shocks around red supergiant stars have shown that Betelgeuse has probably only recently evolved from a blue supergiant to a red supergiant, and hence its bow shock is very young and has not yet reached a steady state. We have also for the first time investigated the magnetohydrodynamics of the photoionised H II region around the nearby runaway O star Zeta Oph. Finally, we have calculated a grid of models of bow shocks around main sequence and evolved massive stars that has general application to many observed bow shocks, and which forms the basis of future work to model the explosions of these stars into their pre-shaped circumstellar medium.

  3. Laboratory Studies Of Circumstellar Carbonaceous Grain Formation

    Science.gov (United States)

    Contreras, Cesar; Sciamma-O'Brien, Ella; Salama, Farid

    2014-06-01

    The study of the formation processes of dust is essential to understand the budget of extraterrestrial organic molecules. Although dust with all its components plays an important role in the evolution of interstellar (IS) chemistry and in the formation of organic molecules, little is known on the formation processes of carbonaceous dust. We report the progress that was recently achieved in this domain using NASA Ames’ COSmIC facility (Contreras & Salama 2013, ApJS, 208, 6). PAHs are important chemical building blocks of IS dust. They are detected in IDPs and in meteoritic samples. Additionally, observational, laboratory, and theoretical studies have shown that PAHs are an important, ubiquitous component of the ISM. The formation of PAHs from smaller molecules has not been extensively studied. Therefore, we have performed laboratory experiments to study the dynamic processes of carbon grain formation, starting from the smallest hydrocarbon molecules into the formation of larger PAH and further into nanograins. Studies of IS dust analogs formed from a variety of PAH and hydrocarbon precursors as well as species that include the atoms O, N, and S, have recently been performed in our laboratory using the COSmIC facility to provide conditions that simulate IS and circumstellar environments. The species formed in the COSmiC chamber through a pulsed discharge nozzle plasma source are detected and characterized with a cavity ringdown spectrometer coupled to a time-of-flight mass spectrometer, thus providing both spectroscopic and ion mass information in-situ. Analysis of solid soot particles was also conducted using scanning electron microscopy at the UCSC/NASA Ames’ MACS facility. The SEM analysis of the deposition of soot from methane and acetylene precursors seeded in argon plasmas provide examples on the types of nanoparticles and micrograins that are produced in these gas mixtures under our experimental conditions. From these measurements, we derive information on

  4. Synthetic Spectra and Light Curves of Interacting Binaries and Exoplanets with Circumstellar Material: SHELLSPEC

    CERN Document Server

    Budaj, Jan

    2011-01-01

    Program SHELLSPEC is designed to calculate light-curves, spectra and images of interacting binaries and extrasolar planets immersed in a moving circumstellar environment which is optically thin. It solves simple radiative transfer along the line of sight in moving media. The assumptions include LTE and optional known state quantities and velocity fields in 3D. Optional (non)transparent objects such as a spot, disc, stream, jet, ufo, shell or stars may be defined (embedded) in 3D and their composite synthetic spectrum calculated. Roche model can be used as a boundary condition for the radiative transfer. Recently a new model of the reflection effect, dust and Mie scattering were incorporated into the code. $\\epsilon$ Aurigae is one of the most mysterious objects on the sky. Prior modeling of its light-curve assumed dark, inclined, disk of dust with the central hole to explain the light-curve with a sharp mid-eclipse brightening. Our model consists of two geometrically thick flared disks. Internal optically thi...

  5. Secure Disk Mixed System

    Directory of Open Access Journals (Sweden)

    Myongchol Ri

    2013-01-01

    Full Text Available We propose a disk encryption method, called Secure Disk Mixed System (SDMS in this paper, for data protection of disk storages such as USB flash memory, USB hard disk and CD/DVD. It is aimed to solve temporal and spatial limitations of existing disk encryption methods and to control security performance flexibly according to the security requirement of system.

  6. URGENT - Internal Mail Envelopes

    CERN Multimedia

    2007-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration. Mail Office

  7. Internal mail envelopes

    CERN Multimedia

    2003-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unusual stock could deposit them in their mail box, after attaching them together with an elastic band or piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration. Mail Office

  8. Data envelopment analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This review introduces the history and present status of data envelopment analysis (DEA) research, particularly the evaluation process. And extensions of some DEA models are also described. It is pointed out that mathematics, economics and management science are the main forces in the DEA development, optimization provides the fundamental method for the DEA research, and the wide range of applications enforces the rapid development of DEA.

  9. INTERNAL MAIL ENVELOPES

    CERN Multimedia

    Mail Office

    2001-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration.

  10. INTERNAL MAIL ENVELOPES

    CERN Multimedia

    Mail Office

    2002-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration. Mail Office

  11. INTERNAL MAIL ENVELOPES

    CERN Multimedia

    Mail Office

    2002-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration.   Mail Office

  12. INTERNAL MAIL ENVELOPES

    CERN Multimedia

    Mail Office

    2002-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration.

  13. INTERNAL CIRCULATION ENVELOPES

    CERN Multimedia

    Mail Office

    2001-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or a piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration.

  14. URGENT - Internal Mail Envelopes

    CERN Multimedia

    Mail Office

    2004-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration. Mail Office

  15. DYNAMICAL EVOLUTION OF VISCOUS DISKS AROUND Be STARS. I. PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Haubois, X.; Carciofi, A. C. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, Sao Paulo, SP 05508-900 (Brazil); Rivinius, Th. [European Organisation for Astronomical Research in the Southern Hemisphere, Casilla 19001, Santiago 19 (Chile); Okazaki, A. T. [Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605 (Japan); Bjorkman, J. E., E-mail: xhaubois@astro.iag.usp.br [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States)

    2012-09-10

    Be stars possess gaseous circumstellar disks that modify in many ways the spectrum of the central B star. Furthermore, they exhibit variability at several timescales and for a large number of observables. Putting the pieces together of this dynamical behavior is not an easy task and requires a detailed understanding of the physical processes that control the temporal evolution of the observables. There is an increasing body of evidence that suggests that Be disks are well described by standard {alpha}-disk theory. This paper is the first of a series that aims at studying the possibility of inferring several disk and stellar parameters through the follow-up of various observables. Here we study the temporal evolution of the disk density for different dynamical scenarios, including the disk build-up as a result of a long and steady mass injection from the star, the disk dissipation that occurs after mass injection is turned off, as well as scenarios in which active periods are followed by periods of quiescence. For those scenarios, we investigate the temporal evolution of continuum photometric observables using a three-dimensional non-LTE radiative transfer code. We show that light curves for different wavelengths are specific of a mass loss history, inclination angle, and {alpha} viscosity parameter. The diagnostic potential of those light curves is also discussed.

  16. THE LONG-TERM EVOLUTION OF PHOTOEVAPORATING PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    We perform calculations of our one-dimensional, two-zone disk model to study the long-term evolution of the circumstellar disk. In particular, we adopt published photoevaporation prescriptions and examine whether the photoevaporative loss alone, coupled with a range of initial angular momenta of the protostellar cloud, can explain the observed decline of the frequency of optically thick dusty disks with increasing age. In the parameter space we explore, disks have accreting and/or non-accreting transitional phases lasting for ∼wall plane, which possibly explains the different observed properties between the two populations. However, we further find that scaling the photoevaporation rates downward by a factor of 10 makes it difficult to clear the disks on the observed timescales, showing that the precise value of the photoevaporative loss is crucial to setting the clearing times. While our results apply only to pure photoevaporative loss (plus disk accretion), there may be implications for models in which planets clear disks preferentially at radii of the order of 10 AU

  17. Intermediate luminosity optical transients during the grazing envelope evolution (GEE)

    Science.gov (United States)

    Soker, Noam

    2016-08-01

    By comparing photon diffusion time with gas outflow time, I argue that a large fraction of the energy carried by the jets during the grazing envelope evolution (GEE) might end in radiation, hence leading to an intermediate luminosity optical transient (ILOT). In the GEE a companion orbiting near the outskirts of the larger primary star accretes mass through an accretion disk, and launches jets that efficiently remove the envelope gas from the vicinity of the secondary star. In cases of high mass accretion rates onto the stellar companion the energy carried by the jets surpass the recombination energy from the ejected mass, and when the primary star is a giant this energy surpasses also the gravitational binding energy of the binary system. Some future ILOTs of giant stars might be better explained by the GEE than by merger and common envelope evolution without jets.

  18. Intermediate luminosity optical transients during the grazing envelope evolution (GEE)

    CERN Document Server

    Soker, Noam

    2016-01-01

    By comparing photon diffusion time with gas outflow time, I argue that a large fraction of the energy carried by the jets during the grazing envelope evolution (GEE) might end in radiation, hence leading to an intermediate luminosity optical transient (ILOT). In the GEE a companion orbiting near the outskirts of the larger primary star accretes mass through an accretion disk, and launches jets that efficiently remove the envelope gas in the vicinity of the secondary star. In cases of high mass accretion rates onto the stellar companion the energy carried by the jets surpass the recombination energy from the ejected mass, and when the primary star is a giant this energy surpasses also the gravitational energy of the binary system. Some future ILOTs of giant stars might be better explained by the GEE than by merger and common envelope evolution without jets.

  19. Misaligned Disks in the Binary Protostar IRS 43

    CERN Document Server

    Brinch, Christian; Hogerheijde, Michiel R; Nelson, Richard P; Gressel, Oliver

    2016-01-01

    Recent high angular resolution ($\\sim$0.2") ALMA observations of the 1.1 mm continuum and of HCO+ J=3-2 and HCN J=3-2 gas towards the binary protostar IRS 43 reveal multiple Keplerian disks which are significantly misaligned ($\\gt$ 60$^\\circ$), both in inclination and position angle and also with respect to the binary orbital plane. Each stellar component has an associated circumstellar disk while the binary is surrounded by a circumbinary disk. Together with archival VLA measurements of the stellar positions over 25 years, and assuming a circular orbit, we use our continuum measurements to determine the binary separation, a = 74 $\\pm$ 4 AU, and its inclination, i $\\lt$ 30$^\\circ$. The misalignment in this system suggests that turbulence has likely played a major role in the formation of IRS 43.

  20. Dippers and Dusty Disks Edges: A Unified Model

    CERN Document Server

    Bodman, Eva H L; Ansdell, Megan; Hippke, Michael; Boyajian, Tabetha S; Mamajek, Eric E; Blackman, Eric G; Rizzuto, Aaron; Kastner, Joel H

    2016-01-01

    A search for dips in observed stellar flux in the Upper Scorpius and $\\rho$ Ophiuchus star formation regions with the Kepler mission by Ansdell et al. primarily identified young, low mass stars (dippers) with low accretion rates and hosting moderately evolved dusty circumstellar disks. These young stars likely exhibit rotating star spots that cause quasi-periodic photometric variations. However, a separate period associated with the dips is not evident in spectrograms constructed from the light curves. The material causing the dips in most of these light curves must be approximately corotating with the star. We find that disk temperatures computed at the disk corotation radius are cool enough that dust should not sublimate. Dippers are preferentially associated with young, low mass stars as they have low enough luminosities to allow dust to survive within a few stellar radii. Crude estimates for stellar magnetic field strengths and accretion rates are consistent with magnetospheric truncation near the corotat...

  1. Circumstellar and explosion properties of Type Ibn supernovae

    CERN Document Server

    Moriya, Takashi J

    2016-01-01

    We investigate circumstellar and explosion properties of Type Ibn supernovae (SNe) by analyzing their bolometric light curves. Bolometric light curves of Type Ibn SNe generally have a large contrast between peak luminosity and late-phase luminosity, which is much larger than those of 56Ni-powered SNe. Thus, most of them are likely powered by the interaction between SN ejecta and dense circumstellar media. In addition, Type Ibn SNe decline much faster than Type IIn SNe, and this indicates that the interaction in Type Ibn SNe ceases earlier than in Type IIn SNe. Thus, we argue that Type Ibn SN progenitors experience high mass-loss rates in a short period just before explosion, while Type IIn SN progenitors have high mass-loss rates sustained for a long time. Furthermore, we show that rise time and peak luminosity of Type Ibn and Type IIn SNe are similar and thus, they have similar explosion properties and circumstellar density. The similar circumstellar density in the two kinds of SNe may indicate that mass-los...

  2. Near-Infrared Imaging Polarimetry of Inner Region of GG Tau A Disk

    CERN Document Server

    Yang, Yi; Hayashi, Saeko S; Tamura, Motohide; Mayama, Satoshi; Rafikov, Roman; Akiyama, Eiji; Carson, Joseph C; Janson, Markus; Kwon, Jungmi; de Leon, Jerome; Oh, Daehyeon; Takami, Michihiro; Tang, Ya-wen; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D; Egner, Sebastian; Feldt, Markus; Goto, Miwa; Grady, Carol A; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Henning, Thomas; Hodapp, Klaus W; Ishi, Miki; Iye, Masanori; Kandori, Ryo; Knapp, Gillian R; Kuzuhara, Masayuki; Matsuo, Taro; Mcelwain, Michael W; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Turner, Edwin L; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Takami, Hideki; Usuda, Tomonori

    2016-01-01

    By performing non-masked polarization imaging with Subaru/HiCIAO, polarized scattered light from the inner region of the disk around the GG Tau A system was successfully detected in the $H$ band with a spatial resolution of approximately 0.07$\\arcsec$, revealing the complicated inner disk structures around this young binary. This paper reports the observation of an arc-like structure to the north of GG Tau Ab and part of a circumstellar structure that is noticeable around GG Tau Aa extending to a distance of approximately 28 AU from the primary star. The speckle noise around GG Tau Ab constrains its disk radius to <13 AU. Based on the size of the circumbinary ring and the circumstellar disk around GG Tau Aa, the semi-major axis of the binary's orbit is likely to be 62 AU. A comparison of the present observations with previous ALMA and near-infrared (NIR) H$_2$ emission observations suggests that the north arc could be part of a large streamer flowing from the circumbinary ring to sustain the circumstellar ...

  3. A cavity and further radial substructures in the disk around HD~97048

    CERN Document Server

    van der Plas, G; Ménard, F; Casassus, S; Canovas, H; Pinte, C; Maddison, S T; Maaskant, K; Avenhaus, H; Cieza, L; Perez, S; Ubach, C

    2016-01-01

    Context: Gaps, cavities and rings in circumstellar disks are signposts of disk evolution and planet-disk interactions. We follow the recent suggestion that Herbig Ae/Be disks with a flared disk harbour a cavity, and investigate the disk around HD~97048. Aims: We aim to resolve the 34$\\pm$ 4 au central cavity predicted by Maaskant et al. (2013) and to investigate the structure of the disk. Methods: We image the disk around HD~97048 using ALMA at 0.85~mm and 2.94~mm, and ATCA (multiple frequencies) observations. Our observations also include the 12CO J=1-0, 12CO J=3-2 and HCO+ J=4-3 emission lines. Results: A central cavity in the disk around HD~97048 is resolved with a 40-46 au radius. Additional radial structure present in the surface brightness profile can be accounted for either by an opacity gap at ~90 au or by an extra emitting ring at ~150 au. The continuum emission tracing the dust in the disk is detected out to 355 au. The 12CO J=3-2 disk is detected 2.4 times farther out. The 12CO emission can be trac...

  4. High-resolution 25 \\mu m imaging of the disks around Herbig Ae/Be stars

    CERN Document Server

    Honda, M; Okamoto, Y K; Kataza, H; Yamashita, T; Miyata, T; Sako, S; Fujiyoshi, T; Sakon, I; Fujiwara, H; Kamizuka, T; Mulders, G D; Lopez-Rodriguez, E; Packham, C; Onaka, T

    2015-01-01

    We imaged circumstellar disks around 22 Herbig Ae/Be stars at 25 \\mu m using Subaru/COMICS and Gemini/T-ReCS. Our sample consists of equal numbers of objects belonging to the two categories defined by Meeus et al. (2001); 11 group I (flaring disk) and II (at disk) sources. We find that group I sources tend to show more extended emission than group II sources. Previous studies have shown that the continuous disk is hard to be resolved with 8 meter class telescopes in Q-band due to the strong emission from the unresolved innermost region of the disk. It indicates that the resolved Q-band sources require a hole or gap in the disk material distribution to suppress the contribution from the innermost region of the disk. As many group I sources are resolved at 25 \\mu m, we suggest that many, not all, group I Herbig Ae/Be disks have a hole or gap and are (pre-)transitional disks. On the other hand, the unresolved nature of many group II sources at 25 \\mu m supports that group II disks have continuous at disk geometr...

  5. Uncertain data envelopment analysis

    CERN Document Server

    Wen, Meilin

    2014-01-01

    This book is intended to present the milestones in the progression of uncertain Data envelopment analysis (DEA). Chapter 1 gives some basic introduction to uncertain theories, including probability theory, credibility theory, uncertainty theory and chance theory. Chapter 2 presents a comprehensive review and discussion of basic DEA models. The stochastic DEA is introduced in Chapter 3, in which the inputs and outputs are assumed to be random variables. To obtain the probability distribution of a random variable, a lot of samples are needed to apply the statistics inference approach. Chapter 4

  6. Metamorphosis of SN 2014C: Delayed Interaction Between a Hydrogen Poor Core-collapse Supernova and a Nearby Circumstellar Shell

    CERN Document Server

    Milisavljevic, D; Kamble, A; Patnaude, D; Raymond, J; Eldridge, J; Fong, W; Bietenholz, M; Challis, P; Chornock, R; Drout, M; Fransson, C; Fesen, R; Grindlay, J; Kirshner, R; Lunnan, R; Mackey, J; Miller, G; Parrent, J; Sanders, N; Soderberg, A; Zauderer, B

    2015-01-01

    We present optical observations of supernova SN 2014C, which underwent an unprecedented slow metamorphosis from H-poor type Ib to H-rich type IIn over the course of one year. The observed spectroscopic evolution is consistent with the supernova having exploded in a cavity before encountering a massive shell of the progenitor star's stripped hydrogen envelope. Possible origins for the circumstellar shell include a brief Wolf-Rayet fast wind phase that overtook a slower red supergiant wind, eruptive ejection, or confinement of circumstellar material by external influences of neighboring stars. An extended high velocity Halpha absorption feature seen in near-maximum light spectra implies that the progenitor star was not completely stripped of hydrogen at the time of core collapse. Archival pre-explosion Subaru Telescope Suprime-Cam and Hubble Space Telescope Wide Field Planetary Camera 2 images of the region obtained in 2009 show a coincident source that is most likely a compact massive star cluster in NGC 7331 ...

  7. A white dwarf explodes inside a dense circumstellar disk peeking at a puzzling supernova with spectropolarimetry

    CERN Multimedia

    2004-01-01

    "By measuring polarized light from an unusual exploding star, an international team of astrophysicists and astronomers has worked out the first detailed picture of a Type Ia supernova and the distinctive star system in which it exploded" (2 pages)

  8. Improving signal-to-noise in the direct imaging of exoplanets and circumstellar disks with MLOCI

    Science.gov (United States)

    Wahhaj, Zahed; Cieza, Lucas A.; Mawet, Dimitri; Yang, Bin; Canovas, Hector; de Boer, Jozua; Casassus, Simon; Ménard, François; Schreiber, Matthias R.; Liu, Michael C.; Biller, Beth A.; Nielsen, Eric L.; Hayward, Thomas L.

    2015-09-01

    We present a new algorithm designed to improve the signal-to-noise ratio (S/N) of point and extended source detections around bright stars in direct imaging data.One of our innovations is that we insert simulated point sources into the science images, which we then try to recover with maximum S/N. This improves the S/N of real point sources elsewhere in the field. The algorithm, based on the locally optimized combination of images (LOCI) method, is called Matched LOCI or MLOCI. We show with Gemini Planet Imager (GPI) data on HD 135344 B and Near-Infrared Coronagraphic Imager (NICI) data on several stars that the new algorithm can improve the S/N of point source detections by 30-400% over past methods. We also find no increase in false detections rates. No prior knowledge of candidate companion locations is required to use MLOCI. On the other hand, while non-blind applications may yield linear combinations of science images that seem to increase the S/N of true sources by a factor >2, they can also yield false detections at high rates. This is a potential pitfall when trying to confirm marginal detections or to redetect point sources found in previous epochs. These findings are relevant to any method where the coefficients of the linear combination are considered tunable, e.g., LOCI and principal component analysis (PCA). Thus we recommend that false detection rates be analyzed when using these techniques. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (USA), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  9. Improving Signal to Noise in the Direct Imaging of Exoplanets and Circumstellar Disks

    CERN Document Server

    Wahhaj, Zahed; Mawet, Dimitri; Yang, Bin; Canovas, Hector; De Boer, Jos; Casassus, Simon; Menard, Francois; Schreiber, Matthias R; Liu, Michael C; Biller, Beth A; Nielsen, Eric L; Hayward, Thomas L

    2015-01-01

    We present a new algorithm designed to improve the signal to noise ratio (SNR) of point and extended source detections in direct imaging data. The novel part of our method is that it finds the linear combination of the science images that best match counterpart images with signal removed from suspected source regions. The algorithm, based on the Locally Optimized Combination of Images (LOCI) method, is called Matched LOCI or MLOCI. We show using data obtained with the Gemini Planet Imager (GPI) and Near-Infrared Coronagraphic Imager (NICI) that the new algorithm can improve the SNR of point source detections by 30-400% over past methods. We also find no increase in false detections rates. No prior knowledge of candidate companion locations is required to use MLOCI. While non-blind applications may yield linear combinations of science images which seem to increase the SNR of true sources by a factor > 2, they can also yield false detections at high rates. This is a potential pitfall when trying to confirm marg...

  10. Observations, Modeling and Theory of Debris Disks

    CERN Document Server

    Matthews, Brenda C; Wyatt, Mark C; Bryden, Geoff; Eiroa, Carlos

    2014-01-01

    Main sequence stars, like the Sun, are often found to be orbited by circumstellar material that can be categorized into two groups, planets and debris. The latter is made up of asteroids and comets, as well as the dust and gas derived from them, which makes debris disks observable in thermal emission or scattered light. These disks may persist over Gyrs through steady-state evolution and/or may also experience sporadic stirring and major collisional breakups, rendering them atypically bright for brief periods of time. Most interestingly, they provide direct evidence that the physical processes (whatever they may be) that act to build large oligarchs from micron-sized dust grains in protoplanetary disks have been successful in a given system, at least to the extent of building up a significant planetesimal population comparable to that seen in the Solar System's asteroid and Kuiper belts. Such systems are prime candidates to host even larger planetary bodies as well. The recent growth in interest in debris dis...

  11. 41Ca in Circumstellar Graphite from Supernovae

    Science.gov (United States)

    Amari, S.; Zinner, E.; Lewis, R. S.

    1995-09-01

    anomalies (Fig. 1), with patterns that are consistent with that predicted for the O-rich zones of a 25 (sub)Solar Mass supernova [4] (shown as broad lines in the figure). Thus, ^41Ca in these two grains is likely to have been produced by neutron capture in these zones. One grain (KE3c-242) has a ^44Ca excess due to the decay of ^44Ti (T(sub)1/2=52a), with an inferred ^44Ti/^48Ti ratio of (3.6+/-1.4) x 10^-2. The presence of ^41Ca together with Ca isotopic anomalies in circumstellar graphite grains is evidence for mixing between the C-rich and O-rich zones. Furthermore, evidence for ^44Ti in a few low density graphite grains [6] strongly suggests contributions from the innermost zone to the ejecta from which the grains formed. Observations of SN 1987A [e.g., 7] and hydrodynamic calculations [e.g., 8] indicate the existence of clumps of variable compositions in SN ejecta. The large variety of isotopic compositions in low density graphite grains is evidence for extensive and heterogeneous mixing of SN ejecta, confirming the astronomical observations and the theoretical calculations. References: [1] Amari S. et al. (1994) LPS XXV, 27-28. [2] Zinner E. et al. (1995) LPS XXVI, 1561-1562. [3] Travaglio C. et al. (1995) in preparation. [4] Meyer B. S. et al. (1995) Meteoritics, 30, 319-324. [5] Woosley S. E. and Weaver T. A. (1995) Astrophys. J. Suppl., in press. [6] Amari S. et al. (1995) LPS XXVI, 37-38. [7] Hass M. R. et al. (1990) Astrophys. J., 360, 257-266. [8] Herant M. and Benz W. (1992) Astrophys. J., 387, 294-308.

  12. Cold CO gas in the disk of the young eruptive star EX Lup

    CERN Document Server

    Kóspál, Ágnes; Csengeri, Timea; Gorti, Uma; Henning, Thomas; Moór, Attila; Semenov, Dmitry A; Szűcs, László; Güsten, Rolf

    2016-01-01

    EX Lupi-type objects (EXors) form a sub-class of T Tauri stars, defined by sudden sporadic flare-ups of 1-5 magnitudes at optical wavelengths. These eruptions are attributed to enhanced mass accretion from the circumstellar disk to the star, and may constitute important events in shaping the structure of the inner disk and the forming planetary system. Although disk properties must play a fundamental role in driving the outbursts, they are surprisingly poorly known. In order to characterize the dust and gas components of EXor disks, here we report on observations of the $^{12}$CO J=3-2 and 4-3 lines, and the $^{13}$CO 3-2 line in EX Lup, the prototype of the EXor class. We reproduce the observed line fluxes and profiles with a line radiative transfer model, and compare the obtained parameters with corresponding ones of other T Tauri disks.

  13. COLD CO GAS IN THE DISK OF THE YOUNG ERUPTIVE STAR EX LUP

    Energy Technology Data Exchange (ETDEWEB)

    Kóspál, Á.; Ábrahám, P.; Moór, A. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, 1525 Budapest (Hungary); Csengeri, T.; Güsten, R. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Gorti, U. [SETI Institute, Mountain View, CA (United States); Henning, Th.; Semenov, D. A. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Szűcs, L., E-mail: kospal@konkoly.hu [Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching (Germany)

    2016-04-10

    EX Lupi-type objects (EXors) form a sub-class of T Tauri stars, defined by sudden sporadic flare-ups of 1–5 mag at optical wavelengths. These eruptions are attributed to enhanced mass accretion from the circumstellar disk to the star, and may constitute important events in shaping the structure of the inner disk and the forming planetary system. Although disk properties must play a fundamental role in driving the outbursts, they are surprisingly poorly known. In order to characterize the dust and gas components of EXor disks, here we report on observations of the {sup 12}CO J = 3−2 and 4–3 lines, and the {sup 13}CO 3–2 line in EX Lup, the prototype of the EXor class. We reproduce the observed line fluxes and profiles with a line radiative transfer model and compare the obtained parameters with corresponding ones of other T Tauri disks.

  14. First Results from the Disk Eclipse Search with KELT (DESK) Survey

    CERN Document Server

    Rodriguez, Joseph E; Stassun, Keivan G

    2015-01-01

    Using time-series photometry from the Kilodegree Extremely Little Telescope (KELT) exoplanet survey, we are looking for eclipses of stars by their protoplanetary disks, specifically in young stellar associations. To date, we have discovered two previously unknown, large dimming events around the young stars RW Aurigae and V409 Tau. We attribute the dimming of RW Aurigae to an occultation by its tidally disrupted disk, with the disruption perhaps resulting from a recent flyby of its binary companion. Even with the dynamical environment of RW Aurigae, the distorted disk material remains very compact and presumably capable of forming planets. This system also shows that strong binary interactions with disks can also influence planet and core composition by stirring up and mixing materials during planet formation. We interpret the dimming of V409 Tau to be due to a feature, possibly a warp or perturbation, lying at least 10 AU from the host star in its nearly edge-on circumstellar disk.

  15. Galaxy Disks are Submaximal

    NARCIS (Netherlands)

    Bershady, Matthew A.; Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.

    2011-01-01

    We measure the contribution of galaxy disks to the overall gravitational potential of 30 nearly face-on intermediate-to-late-type spirals from the DiskMass Survey. The central vertical velocity dispersion of the disk stars (sigma(disk)(z,R=0)) is related to the maximum rotation speed (V-max) as sigm

  16. The Disk and Wind of HD 104237

    Science.gov (United States)

    Danks, Anthony

    2000-07-01

    STIS GTO studies of intermediate-mass stars have revealed circumstellar disks and associated nebulosities in 44% of our sample. The largest-scale nebulosity is seen in those systems with emission in the unidentified infrared bands, which have been interpreted as being associated with C-H stretch and bend modes in small organic grains {sometimes interpreted as polycyclic aromatic hydrocarbons}. We wish to test this hypothesis with coronagraphic observations of the nearby Herbig Ae star, HD 104237 {d=115pc} which shows UIB features in its ISO SWS spectrum. This system is also known to have lyman alpha in emission, and is thus a prime candidate for mapping the spatial extent of the wind and to search for the presence of a collimated outflow similar to that seen in HD 163296. We will follow up on the coronagraphic imaging with a G140M long slit spectrum at Lyman alpha, and a G140L spectrum.

  17. Circumstellar Dust Shells: Clues to the Evolution of R Coronae Borealis Stars

    Science.gov (United States)

    Montiel, Edward J.; Clayton, Geoffrey C.

    2016-06-01

    R Coronae Borealis (RCB) stars are an exotic group of extremely hydrogen- deficient, carbon-rich supergiants that are known for their spectacular declines in brightness (up to 8 mags) at irregular intervals. Two scenarios are currently competing to explain the origins of these stars. One suggests that RCB stars are the products after a binary white dwarf (WD) system merges. The other takes a single, evolved star and has it undergo a final, helium-shell flash (FF) and becoming a cool giant. Recently, observations of elemental abundances in RCB stars have strongly swung the argument in favor of the WD merger model. The FF scenario has maintained its relevancy by seemingly being the only model able to offer a suitable explanation for one RCB feature that merger model has historically struggled with explaining: the presence of cold, circumstellar dust envelopes which might be fossil planetary nebulae (PNe). In reality, the shells could actually be fossil PNe, material left over from the WD merger, or mass lost during the RCB phase, itself. I will present the results of my dissertation, which is to try and discern the nature and history of the far-IR dust shells around RCB stars to help understand the origin of these enigmatic stars. I will discuss our efforts to determine the mass, size, temperature, and morphology of these diffuse structures surrounding a sample of RCB stars using multi-wavelength observations ranging from the ultraviolet to the submillimeter. These observations have provided unprecedented wavelength coverage for both the central stars and their CSM. They have been examined by eye for morphology and have been used in the construction of maximum-light spectral energy distributions (SEDs). I will present the results of our Monte Carlo radiative transfer of the maximum-light SEDs. Finally, I will highlight our work investigating the HI abundance of the envelope of R Coronae Borealis, itself, using archival 21—cm observations from the Arecibo

  18. Discovery of an Inner Disk Component Around HD 141569 A

    Science.gov (United States)

    Konishi, Mihoko; Grady, Carol A.; Schneider, Glenn; Shibai, Hiroshi; McElwain, Michael W.; Nesvold, Erika R.; Kuchner, Marc J.; Carson, Joseph; Debes, John H.; Gaspar, Andras; Serabyn, Eugene

    2016-01-01

    We report the discovery of a scattering component around the HD 141569 A circumstellar debris system, interior to the previously known inner ring. The discovered inner disk component, obtained in broadband optical light with Hubble Space Telescope/Space Telescope Imaging Spectrograph coronagraphy, was imaged with an inner working angle of 0 25 arcseconds, and can be traced from 0 4 seconds (approximately 46 atomic units) to 1.0 arcseconds (approximately 116 atomic units) after deprojection using inclination = 55 degrees. The inner disk component is seen to forward scatter in a manner similar to the previously known rings, has a pericenter offset of approximately 6 atomic units, and break points where the slope of the surface brightness changes. It also has a spiral arm trailing in the same sense as other spiral arms and arcs seen at larger stellocentric distances. The inner disk spatially overlaps with the previously reported warm gas disk seen in thermal emission. We detect no point sources within 2 arcseconds (approximately 232 atomic units), in particular in the gap between the inner disk component and the inner ring. Our upper limit of 9 plus or minus 3 mass Jupiter (M (sub J)) is augmented by a new dynamical limit on single planetary mass bodies in the gap between the inner disk component and the inner ring of 1 mass Jupiter, which is broadly consistent with previous estimates.

  19. Discovery of an Inner Disk Component around HD 141569 A

    Science.gov (United States)

    Konishi, Mihoko; Grady, Carol A.; Schneider, Glenn; Shibai, Hiroshi; McElwain, Michael W.; Nesvold, Erika R.; Kuchner, Marc J.; Carson, Joseph; Debes, John. H.; Gaspar, Andras; Henning, Thomas K.; Hines, Dean C.; Hinz, Philip M.; Jang-Condell, Hannah; Moro-Martín, Amaya; Perrin, Marshall; Rodigas, Timothy J.; Serabyn, Eugene; Silverstone, Murray D.; Stark, Christopher C.; Tamura, Motohide; Weinberger, Alycia J.; Wisniewski, John. P.

    2016-02-01

    We report the discovery of a scattering component around the HD 141569 A circumstellar debris system, interior to the previously known inner ring. The discovered inner disk component, obtained in broadband optical light with Hubble Space Telescope/Space Telescope Imaging Spectrograph coronagraphy, was imaged with an inner working angle of 0.″25, and can be traced from 0.″4 (∼46 AU) to 1.″0 (∼116 AU) after deprojection using i = 55°. The inner disk component is seen to forward scatter in a manner similar to the previously known rings, has a pericenter offset of ∼6 AU, and break points where the slope of the surface brightness changes. It also has a spiral arm trailing in the same sense as other spiral arms and arcs seen at larger stellocentric distances. The inner disk spatially overlaps with the previously reported warm gas disk seen in thermal emission. We detect no point sources within 2″ (∼232 AU), in particular in the gap between the inner disk component and the inner ring. Our upper limit of 9 ± 3 MJ is augmented by a new dynamical limit on single planetary mass bodies in the gap between the inner disk component and the inner ring of 1 MJ, which is broadly consistent with previous estimates. Based on data collected by the Hubble Space Telescope, operated by the Space Telescope Science Institute.

  20. DISCOVERY OF AN INNER DISK COMPONENT AROUND HD 141569 A

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Mihoko; Shibai, Hiroshi [Department of Earth and Space Science, Graduate School of Science, Osaka University, Osaka (Japan); Grady, Carol A.; Silverstone, Murray D. [Eureka Scientific, Oakland, CA (United States); Schneider, Glenn; Gaspar, Andras; Hinz, Philip M. [The University of Arizona, Tucson, AZ (United States); McElwain, Michael W.; Kuchner, Marc J. [Goddard Space Flight Center, Greenbelt, MD (United States); Nesvold, Erika R.; Rodigas, Timothy J. [Carnegie Institution of Washington, Washington, DC (United States); Carson, Joseph [College of Charleston, Charleston, SC (United States); Debes, John H.; Hines, Dean C.; Moro-Martin, Amaya; Perrin, Marshall; Stark, Christopher C. [Space Telescope Science Institute, Baltimore, MD (United States); Henning, Thomas K. [Max Planck Institute for Astronomy, Heidelberg (Germany); Jang-Condell, Hannah [University of Wyoming, Laramie, WY (United States); Serabyn, Eugene, E-mail: konishi@iral.ess.sci.osaka-u.ac.jp [Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA (United States); and others

    2016-02-20

    We report the discovery of a scattering component around the HD 141569 A circumstellar debris system, interior to the previously known inner ring. The discovered inner disk component, obtained in broadband optical light with Hubble Space Telescope/Space Telescope Imaging Spectrograph coronagraphy, was imaged with an inner working angle of 0.″25, and can be traced from 0.″4 (∼46 AU) to 1.″0 (∼116 AU) after deprojection using i = 55°. The inner disk component is seen to forward scatter in a manner similar to the previously known rings, has a pericenter offset of ∼6 AU, and break points where the slope of the surface brightness changes. It also has a spiral arm trailing in the same sense as other spiral arms and arcs seen at larger stellocentric distances. The inner disk spatially overlaps with the previously reported warm gas disk seen in thermal emission. We detect no point sources within 2″ (∼232 AU), in particular in the gap between the inner disk component and the inner ring. Our upper limit of 9 ± 3 M{sub J} is augmented by a new dynamical limit on single planetary mass bodies in the gap between the inner disk component and the inner ring of 1 M{sub J}, which is broadly consistent with previous estimates.

  1. VLT imaging of the {\\beta} Pictoris gas disk

    CERN Document Server

    Nilsson, R; Olofsson, G; Fathi, K; Thébault, Ph; Liseau, R

    2012-01-01

    Circumstellar debris disks older than a few Myr should be largely devoid of primordial gas remaining from the protoplanetary disk phase. Tracing the origin of observed atomic gas in Keplerian rotation in the edge-on debris disk surrounding the ~12 Myr old star {\\beta} Pictoris requires more detailed information about its spatial distribution than has previously been acquired by limited slit spectroscopy. Especially indications of asymmetries and presence of Ca II gas at high disk latitudes call for additional investigation. We set out to recover a complete image of the Fe I and Ca II gas emission around {\\beta} Pic by spatially resolved, high-resolution spectroscopic observations to better understand the morphology and origin of the gaseous disk component. The multiple fiber facility FLAMES/GIRAFFE at the VLT, with the large IFU ARGUS, was used to obtain spatially resolved optical spectra in four regions covering the northeast and southwest side of the disk. Emission lines from Fe I and Ca II were mapped and ...

  2. Sculpting the disk around T Cha: an interferometric view

    CERN Document Server

    Olofsson, Johan; Bouquin, Jean-Baptiste Le; Berger, Jean-Philippe; Lacour, Sylvestre; Ménard, François; Henning, Thomas; Crida, Aurélien; Burtscher, Leonard; Meeus, Gwendolyn; Ratzka, Thorsten; Pinte, Christophe; Augereau, Jean-Charles; Malbet, Fabien; Lazareff, Bernard; Traub, Wesley A

    2013-01-01

    (Abridged) Circumstellar disks are believed to be the birthplace of planets and are expected to dissipate on a timescale of a few Myr. The processes responsible for the removal of the dust and gas will strongly modify the radial distribution of the dust and consequently the SED. In particular, a young planet will open a gap, resulting in an inner disk dominating the near-IR emission and an outer disk emitting mostly in the far-IR. We analyze a full set of data (including VLTI/Pionier, VLTI/Midi, and VLT/NaCo/Sam) to constrain the structure of the transition disk around TCha. We used the Mcfost radiative transfer code to simultaneously model the SED and the interferometric observations. We find that the dust responsible for the emission in excess in the near-IR must have a narrow temperature distribution with a maximum close to the silicate sublimation temperature. This translates into a narrow inner dusty disk (0.07-0.11 AU). We find that the outer disk starts at about 12 AU and is partially resolved by the P...

  3. The Importance of Disk Structure in Stalling Type I Migration

    CERN Document Server

    Kretke, Katherine A

    2012-01-01

    As planets form they tidally interact with their natal disks. Though the tidal perturbation induced by Earth and super-Earth mass planets is generally too weak to significantly modify the structure of the disk, the interaction is potentially strong enough to cause the planets to undergo rapid type I migration. This physical process may provide a source of short-period super-Earths, though it may also pose a challenge to the emergence and retention of cores on long-period orbits with sufficient mass to evolve into gas giants. Previous numerical simulations have shown that the type I migration rate sensitively depends upon the circumstellar disk's properties, particularly the temperature and surface density gradients. Here, we derive these structure parameters for 1) a self-consistent viscous-disk model based on a constant \\alpha-prescription, 2) an irradiated disk model that takes into account heating due to the absorption of stellar photons, and 3) a layered-accretion disk model with variable \\alpha-parameter...

  4. Debris disks: seeing dust, thinking of planetesimals and planets

    Institute of Scientific and Technical Information of China (English)

    Alexander V.Krivov

    2010-01-01

    Debris disks are optically thin, almost gas-free dusty disks observed around a significant fraction of main-sequence stars older than about 10Myr. Since the circumstellar dust is short-lived, the very existence of these disks is considered as evidence that dust-producing planetesimals are still present in mature systems, in which planets have formed-or failed to form-a long time ago. It is inferred that these planetesimals orbit their host stars at asteroid to Kuiper-belt distances and continually supply fresh dust through mutual collisions. This review outlines observational techniques and results on debris disks, summarizes their essential physics and theoretical models, and then places them into the general context of planetary systems, uncovering interrelations between the disks, dust parent bodies, and planets. It is shown that debris disks can serve as tracers of planetesimals and planets and shed light on the planetesimal and planet formation processes that operated in these systems in the past.

  5. A Spitzer view of protoplanetary disks in the gamma Velorum cluster

    CERN Document Server

    Hernandez, Jesus; Calvet, Nuria; Jeffries, R D; Gutermuth, R; Muzerolle, J; Stauffer, J

    2008-01-01

    We present new Spitzer Space Telescope observations of stars in the young ~5 Myr gamma Velorum stellar cluster. Combining optical and 2MASS photometry, we have selected 579 stars as candidate members of the cluster. With the addition of the Spitzer mid-infrared data, we have identified 5 debris disks around A-type stars, and 5-6 debris disks around solar-type stars, indicating that the strong radiation field in the cluster does not completely suppress the production of planetesimals in the disks of cluster members. However, we find some evidence that the frequency of circumstellar primordial disks is lower, and the IR flux excesses are smaller than for disks around stellar populations with similar ages. This could be evidence for a relatively fast dissipation of circumstellar dust by the strong radiation field from the highest mass star(s) in the cluster. Another possibility is that gamma Velorum stellar cluster is slightly older than reported ages and the the low frequency of primordial disks reflects the fa...

  6. Direct detection of scattered light gaps in the transitional disk around HD 97048 with VLT/SPHERE

    CERN Document Server

    Ginski, C; Pinilla, P; Dominik, C; Boccaletti, A; de Boer, J; Benisty, M; Biller, B; Feldt, M; Garufi, A; Keller, C U; Kenworthy, M; Maire, A L; Ménard, F; Mesa, D; Milli, J; Min, M; Pinte, C; Quanz, S P; van Boekel, R; Bonnefoy, M; Chauvin, G; Desidera, S; Gratton, R; Girard, J H V; Keppler, M; Kopytova, T; Lagrange, A -M; Langlois, M; Rouan, D; Vigan, A

    2016-01-01

    We studied the well known circumstellar disk around the Herbig Ae/Be star HD 97048 with high angular resolution to reveal undetected structures in the disk, which may be indicative of disk evolutionary processes such as planet formation. We used the IRDIS near-IR subsystem of the extreme adaptive optics imager SPHERE at the ESO/VLT to study the scattered light from the circumstellar disk via high resolution polarimetry and angular differential imaging. We imaged the disk in unprecedented detail and revealed four ring-like brightness enhancements and corresponding gaps in the scattered light from the disk surface with radii between 39 au and 341 au. We derived the inclination and position angle as well as the height of the scattering surface of the disk from our observational data. We found that the surface height profile can be described by a single power law up to a separation ~270 au. Using the surface height profile we measured the scattering phase function of the disk and found that it is well consistent ...

  7. A CO survey in planet-forming disks: characterizing the gas content in the epoch of planet formation

    CERN Document Server

    Hales, A S; Montesinos, B; Casassus, S; Dent, W F R; Dougados, C; Eiroa, C; Hughes, A M; Garay, G; Mardones, D; Ménard, F; Palau, Aina; Pérez, S; Phillips, N; Torrelles, J M; Wilner, D

    2014-01-01

    We carried out a 12CO(3-2) survey of 52 southern stars with a wide range of IR excesses (LIR/L*) using the single dish telescopes APEX and ASTE. The main aims were (1) to characterize the evolution of molecular gas in circumstellar disks using LIR/L* values as a proxy of disk dust evolution, and (2) to identify new gas-rich disk systems suitable for detailed study with ALMA. About 60% of the sample (31 systems) have LIR/L* > 0.01 typical of T-Tauri or Herbig AeBe stars, and the rest (21 systems) have LIR/L* 0.01. However, the spectra of only four of the newly detected systems appear free of contamination from background or foreground emission from molecular clouds. These include the early-type stars HD 104237 (A4/5V, 116 pc) and HD 98922 (A2 III, 507 pc, as determined in this work), where our observations reveal the presence of CO-rich circumstellar disks for the first time. Of the other detected sources, many could harbor gaseous circumstellar disks, but our data are inconclusive. For these two newly discov...

  8. LABORATORY INVESTIGATIONS OF POLYCYCLIC AROMATIC HYDROCARBON FORMATION AND DESTRUCTION IN THE CIRCUMSTELLAR OUTFLOWS OF CARBON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Cesar S.; Salama, Farid, E-mail: cesar.contreras@nasa.gov, E-mail: Farid.Salama@nasa.gov [Space Science and Astrobiology Division, NASA-Ames Research Center, Moffett Field, CA 94035 (United States)

    2013-09-15

    The formation and destruction mechanisms of interstellar dust analogs formed from a variety of polycyclic aromatic hydrocarbon (PAH) and hydrocarbon molecular precursors are studied in the laboratory. We used the newly developed facility COSmIC, which simulates interstellar and circumstellar environments, to investigate both PAHs and species that include the cosmically abundant atoms O, N, and S. The species generated in a discharge plasma are detected, monitored, and characterized in situ using highly sensitive techniques that provide both spectral and ion mass information. We report here the first series of measurements obtained in these experiments which focus on the characterization of the most efficient molecular precursors in the chemical pathways that eventually lead to the formation of carbonaceous grains in the stellar envelopes of carbon stars. We compare and discuss the relative efficiencies of the various molecular precursors that lead to the formation of the building blocks of carbon grains. We discuss the most probable molecular precursors in terms of size and structure and the implications for the expected growth and destruction processes of interstellar carbonaceous dust.

  9. LABORATORY INVESTIGATIONS OF POLYCYCLIC AROMATIC HYDROCARBON FORMATION AND DESTRUCTION IN THE CIRCUMSTELLAR OUTFLOWS OF CARBON STARS

    International Nuclear Information System (INIS)

    The formation and destruction mechanisms of interstellar dust analogs formed from a variety of polycyclic aromatic hydrocarbon (PAH) and hydrocarbon molecular precursors are studied in the laboratory. We used the newly developed facility COSmIC, which simulates interstellar and circumstellar environments, to investigate both PAHs and species that include the cosmically abundant atoms O, N, and S. The species generated in a discharge plasma are detected, monitored, and characterized in situ using highly sensitive techniques that provide both spectral and ion mass information. We report here the first series of measurements obtained in these experiments which focus on the characterization of the most efficient molecular precursors in the chemical pathways that eventually lead to the formation of carbonaceous grains in the stellar envelopes of carbon stars. We compare and discuss the relative efficiencies of the various molecular precursors that lead to the formation of the building blocks of carbon grains. We discuss the most probable molecular precursors in terms of size and structure and the implications for the expected growth and destruction processes of interstellar carbonaceous dust

  10. The 0.5-2.22-micron Scattered Light Spectrum of the Disk Around TW Hya: Detection of a Partially Filled Disk Gap at 80 AU

    CERN Document Server

    Debes, J H; Weinberger, A J; Roberge, A; Schneider, G

    2013-01-01

    We present a 0.5-2.2 micron scattered light spectrum of the circumstellar disk around TW Hya from a combination of spatially resolved HST STIS spectroscopy and NICMOS coronagraphic images of the disk. We investigate the morphology of the disk at distances > 40 AU over this wide range of wavelengths, and identify the presence of a depression in surface brightness at ~80 AU that could be caused by a gap in the disk. Additionally, we quantify the surface brightness, azimuthal symmetry, and spectral character of the disk as a function of radius. Our analysis shows that the scattering efficiency of the dust is largely neutral to blue over the observed wavelengths. We model the disk as a steady alpha-disk with an ad hoc gap structure. The thermal properties of the disk are self-consistently calculated using a three-dimensional radiative transfer code that uses ray-tracing to model the heating of the disk interior and scattered light images. We find a good fit to the data over a wide range of distances from the star...

  11. A CO survey in planet-forming disks: Characterizing the gas content in the epoch of planet formation

    Energy Technology Data Exchange (ETDEWEB)

    Hales, A. S.; De Gregorio-Monsalvo, I.; Dent, W. F. R.; Phillips, N. [Atacama Large Millimeter/Submillimeter Array, Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355 Santiago (Chile); Montesinos, B. [Department of Astrophysics, Centre for Astrobiology (CAB, CSIC-INTA), ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Casassus, S.; Garay, G.; Mardones, D.; Pérez, S. [Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago (Chile); Dougados, C.; Ménard, F. [UMI-FCA, CNRS/INSU, France (UMI 3386) (France); Eiroa, C. [Departamento de Física Teórica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Hughes, A. M. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Palau, Aina [Institut de Ciéncies de l' Espai (CSIC-IEEC), Campus UAB-Facultat de Ciéncies, Torre C5-parell 2, E-08193 Bellaterra, Catalunya (Spain); Torrelles, J. M. [Institut de Ciències de l' Espai (CSIC-IEEC) and Institut de Ciències del Cosmos (UB-IEEC), Martí i Franquès 1, E-08028 Barcelona (Spain); Wilner, D., E-mail: ahales@alma.cl [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2014-09-01

    We carried out a {sup 12}CO(3-2) survey of 52 southern stars with a wide range of IR excesses (L {sub IR}/L {sub *}) using the single-dish telescopes APEX and ASTE. The main aims were (1) to characterize the evolution of molecular gas in circumstellar disks using L {sub IR}/L {sub *} values as a proxy of disk dust evolution, and (2) to identify new gas-rich disk systems suitable for detailed study with ALMA. About 60% of the sample (31 systems) have L {sub IR}/L {sub *} > 0.01, typical of T Tauri or Herbig AeBe stars, and the rest (21 systems) have L {sub IR}/L {sub *} < 0.01, typical of debris disks. We detect CO(3-2) emission from 20 systems, and 18 (90%) of these have L {sub IR}/L {sub *} > 0.01. However, the spectra of only four of the newly detected systems appear free of contamination from background or foreground emission from molecular clouds. These include the early-type stars HD 104237 (A4/5V, 116 pc) and HD 98922 (A2 III, 507 pc, as determined in this work), where our observations reveal the presence of CO-rich circumstellar disks for the first time. Of the other detected sources, many could harbor gaseous circumstellar disks, but our data are inconclusive. For these two newly discovered gas-rich disks, we present radiative transfer models that simultaneously reproduce their spectral energy distributions and the {sup 12}CO(3-2) line profiles. For both of these systems, the data are fit well by geometrically flat disks, placing them in the small class of non-flaring disks with significant molecular gas reservoirs.

  12. Sculpting the disk around T Chamaeleontis: an interferometric view

    Science.gov (United States)

    Olofsson, J.; Benisty, M.; Le Bouquin, J.-B.; Berger, J.-P.; Lacour, S.; Ménard, F.; Henning, Th.; Crida, A.; Burtscher, L.; Meeus, G.; Ratzka, T.; Pinte, C.; Augereau, J.-C.; Malbet, F.; Lazareff, B.; Traub, W.

    2013-04-01

    Context. Circumstellar disks are believed to be the birthplace of planets and are expected to dissipate on a timescale of a few Myr. The processes responsible for the removal of the dust and gas will strongly modify the radial distribution of the circumstellar matter and consequently the spectral energy distribution. In particular, a young planet will open a gap, resulting in an inner disk dominating the near-IR emission and an outer disk emitting mostly in the far-infrared. Aims: We analyze a full set of data involving new near-infrared data obtained with the 4-telescope combiner (VLTI/PIONIER), new mid-infrared interferometric VLTI/MIDI data, literature photometric and archival data from VLT/NaCo/SAM to constrain the structure of the transition disk around T Cha. Methods: After a preliminary analysis with a simple geometric model, we used the MCFOST radiative transfer code to simultaneously model the SED and the interferometric observables from raytraced images in the H-, L'-, and N-bands. Results: We find that the dust responsible for the strong emission in excess in the near-IR must have a narrow temperature distribution with a maximum close to the silicate sublimation temperature. This translates into a narrow inner dusty disk (0.07-0.11 AU), with a significant height (H/r ~ 0.2) to increase the geometric surface illuminated by the central star. We find that the outer disk starts at about 12 AU and is partially resolved by the PIONIER, SAM, and MIDI instruments. We discuss the possibility of a self-shadowed inner disk, which can extend to distances of several AU. Finally, we show that the SAM closure phases, interpreted as the signature of a candidate companion, may actually trace the asymmetry generated by forward scattering by dust grains in the upper layers of the outer disk. These observations help constrain the inclination and position angle of the disk to about + 58° and - 70°, respectively. Conclusions: The circumstellar environment of T Cha appears

  13. Adaptive Architectural Envelope

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Kirkegaard, Poul Henning

    2010-01-01

    Recent years have seen an increasing variety of applications of adaptive architectural structures for improvement of structural performance by recognizing changes in their environments and loads, adapting to meet goals, and using past events to improve future performance or maintain serviceability....... The general scopes of this paper are to develop a new adaptive kinetic architectural structure, particularly a reconfigurable architectural structure which can transform body shape from planar geometries to hyper-surfaces using different control strategies, i.e. a transformation into more than one or two...... different shape alternatives. The adaptive structure is a proposal for a responsive building envelope which is an idea of a first level operational framework for present and future investigations towards performance based responsive architectures through a set of responsive typologies. A mock- up concept...

  14. Thermal Responsive Envelope

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Pasold, Anke

    2015-01-01

    The paper presents an architectural computational method and model, which, through additive and subtractive processes, create composite elements with bending behaviour based on thermal variations in the surrounding climatic environment. The present effort is focused on the manipulation of assembly...... composite layers and their relative layer lengths thereby embedding the merged material effect to create a responsive behavioural architectural envelope. Copper and polypropylene are used as base materials for the composite structure due to their high differences in thermal expansion, surface emissivity...... alterations, their respective durability and copper’s architectural (visual and transformative) aesthetic qualities. Through the use of an evolutionary solver, the composite structure of the elements are organised to find the bending behaviour specified by and for the thermal environments. The entire model...

  15. Effects of Turbulence on Cosmic Ray Propagation in Protostars and Young Star/Disk Systems

    CERN Document Server

    Fatuzzo, Marco

    2014-01-01

    The magnetic fields associated with young stellar objects are expected to have an hour-glass geometry, i.e., the magnetic field lines are pinched as they thread the equatorial plane surrounding the forming star but merge smoothly onto a background field at large distances. With this field configuration, incoming cosmic rays experience both a funneling effect that acts to enhance the flux impinging on the circumstellar disk and a magnetic mirroring effect that acts to reduce that flux. To leading order, these effects nearly cancel out for simple underlying magnetic field structures. However, the environments surrounding young stellar objects are expected to be highly turbulent. This paper shows how the presence of magnetic field fluctuations affects the process of magnetic mirroring, and thereby changes the flux of cosmic rays striking circumstellar disks. Turbulence has two principle effects: 1) The (single) location of the magnetic mirror point found in the absence of turbulence is replaced with a wide distr...

  16. Formation of Jupiter's Core and Early Stages of Envelope Accretion

    Science.gov (United States)

    D'Angelo, G.; Weidenschilling, S.; Lissauer, J. J.; Bodenheimer, P.; Hubickyj, O.

    2012-12-01

    We are performing calculations of the formation of Jupiter via core nucleated accretion and gas capture. The core starts as a seed body of a few hundred kilometers in radius and orbits within a swarm of planetesimals whose initial size distribution ranges from ~10 m to ~100 km. The planetesimals are immersed in a gaseous disk, representative of an early solar nebula. The evolution of the swarm of planetesimals accounts for collisions and gravitational stirring due to mutual interactions among bodies, and for migration and velocity damping due to interactions with the nebula gas. Collisions among planetesimals lead to growth and/or fragmentation, altering the size distribution of the swarm over time. Collisions of planetesimals with the seed body lead to its growth, resulting in the formation of a planetary core. Gas capture by the core leads to the accumulation of a tenuous atmosphere, which later becomes a massive envelope, increasing the size-dependent effective cross-section of the planet for planetesimals' accretion. Planetesimals that travel through the core's envelope release energy, affecting the thermal budget of the envelope, and deliver mass, affecting the opacity of the envelope. The calculation of dust opacity, which is especially important for envelope contraction, is performed self-consistently, accounting for coagulation and sedimentation of dust and small particles that are released in the envelope as passing planetesimals are ablated. We find that, in a disk of planetesimals with a surface density of about 10 g/cm2 at 5.2 AU, a one Earth mass core accumulates in less than 1e5 years, and that it takes over 1.5e6 years to accumulate a core of 3 Earth masses, when the core's geometrical cross-section is used for the accretion of planetesimals. Gas drag in the core's envelope increases the ability of the planet to accrete planetesimals. Smaller planetesimals are affected to a greater extent than are larger planetesimals. We find that the effective

  17. Signatures of Gravitational Instability in Resolved Images of Protostellar Disks

    CERN Document Server

    Dong, Ruobing; Pavlyuchenkov, Yaroslav; Chiang, Eugene; Liu, Hauyu Baobab

    2016-01-01

    Protostellar (class 0/I) disks, having masses comparable to those of their nascent host stars, and fed continuously from their natal infalling envelopes, are prone to gravitational instability (GI). Motivated by advances in near-infrared (NIR) adaptive optics imaging and mm-wave interferometry, we explore the observational signatures of GI in disks, using hydrodynamical and Monte Carlo radiative transfer simulations to synthesize NIR scattered light images and mm dust continuum maps. Spiral arms induced by GI, located at disk radii of hundreds of AUs, are local overdensities and have their photospheres displaced to higher altitudes above the disk midplane, arms therefore scatter more NIR light from their central stars than inter-arm regions, and are detectable at distances up to 1 kpc by Gemini/GPI, VLT/SPHERE, and Subaru/HiCIAO/SCExAO. By contrast, collapsed clumps formed by disk fragmentation have such strong local gravitational fields that their scattering photospheres are at lower altitudes, such fragment...

  18. Multitechnique testing of the viscous decretion disk model I. The stable and tenuous disk of the late-type Be star $\\beta$ CMi

    CERN Document Server

    Klement, R; Rivinius, T; Panoglou, D; Vieira, R G; Bjorkman, J E; Štefl, S; Tycner, C; Faes, D M; Korčáková, D; Müller, A; Zavala, R T; Curé, M

    2015-01-01

    The viscous decretion disk (VDD) model is able to explain most of the currently observable properties of the circumstellar disks of Be stars. However, more stringent tests, focusing on reproducing multitechnique observations of individual targets via physical modeling, are needed to study the predictions of the VDD model under specific circumstances. In the case of nearby, bright Be star $\\beta$ CMi, these circumstances are a very stable low-density disk and a late-type (B8Ve) central star. The aim is to test the VDD model thoroughly, exploiting the full diagnostic potential of individual types of observations, in particular, to constrain the poorly known structure of the outer disk if possible, and to test truncation effects caused by a possible binary companion using radio observations. We use the Monte Carlo radiative transfer code HDUST to produce model observables, which we compare with a very large set of multitechnique and multiwavelength observations that include ultraviolet and optical spectra, photo...

  19. Categories with envelopes and imprints

    CERN Document Server

    Akbarov, Sergei

    2011-01-01

    An envelope in a category is a construction generalizing operations of "exterior completion", like completion of a locally convex space. Dually, an imprint generalizes operations of "interior enrichment", like saturation of a locally convex space. We give abstract definition for envelopes and imprints, prove existence of these objects in the categories of stereotype spaces and of stereotype algebras, and give some examples.

  20. Red giant-disk encounters food for quasars?

    CERN Document Server

    Armitage, P J; Davies, M B

    1996-01-01

    We explore the role that red giants might play in the central regions of Active Galactic Nuclei. Due to their large radii and the low binding energy of the stellar envelope, giants are vulnerable to envelope stripping from collisions with the accretion disk. Using hydrodynamic simulations we show that such collisions will typically deposit a substantial fraction of the envelope mass into the disk on each passage. Repeated encounters will then lead to the complete destruction of the star save for the dense core. We estimate the rate of fuel supply by this mechanism using simple models for the AGN disk and central stellar cluster. If the central stellar density is of order 10^7 solar masses per cubic pc, then stripping of giants could account for the activity of typical AGN provided that the accretion disk extends beyond 0.1 pc. For AGN with smaller disks, or clusters of lower central density, giant stripping could be an important source of gas enriched via stellar nucleosynthesis.

  1. Circumstellar absorption in double detonation Type Ia supernovae

    CERN Document Server

    Shen, Ken J; Foley, Ryan J

    2013-01-01

    Upon formation, degenerate He core white dwarfs are surrounded by a radiative H-rich layer primarily supported by ideal gas pressure. In this Letter, we examine the effect of this H-rich layer on mass transfer in He-C/O double white dwarf binaries that will eventually merge and possibly yield a Type Ia supernova (SN Ia) in the double detonation scenario. Because its thermal profile and equation of state differ from the underlying He core, the H-rich layer is transferred stably onto the C/O white dwarf prior to the He core's tidal disruption. We find that this material is ejected from the binary system and sweeps up the surrounding interstellar medium hundreds to thousands of years before the SN Ia. The close match between the resulting circumstellar medium profiles and values inferred from recent observations of circumstellar absorption in SNe Ia gives further credence to the resurgent double detonation scenario.

  2. CIRCUMSTELLAR ABSORPTION IN DOUBLE DETONATION TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Upon formation, degenerate He core white dwarfs are surrounded by a radiative H-rich layer primarily supported by ideal gas pressure. In this Letter, we examine the effect of this H-rich layer on mass transfer in He+C/O double white dwarf binaries that will eventually merge and possibly yield a Type Ia supernova (SN Ia) in the double detonation scenario. Because its thermal profile and equation of state differ from the underlying He core, the H-rich layer is transferred stably onto the C/O white dwarf prior to the He core's tidal disruption. We find that this material is ejected from the binary system and sweeps up the surrounding interstellar medium hundreds to thousands of years before the SN Ia. The close match between the resulting circumstellar medium profiles and values inferred from recent observations of circumstellar absorption in SNe Ia gives further credence to the resurgent double detonation scenario.

  3. CIRCUMSTELLAR ABSORPTION IN DOUBLE DETONATION TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ken J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Guillochon, James [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Foley, Ryan J., E-mail: kenshen@astro.berkeley.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-06-20

    Upon formation, degenerate He core white dwarfs are surrounded by a radiative H-rich layer primarily supported by ideal gas pressure. In this Letter, we examine the effect of this H-rich layer on mass transfer in He+C/O double white dwarf binaries that will eventually merge and possibly yield a Type Ia supernova (SN Ia) in the double detonation scenario. Because its thermal profile and equation of state differ from the underlying He core, the H-rich layer is transferred stably onto the C/O white dwarf prior to the He core's tidal disruption. We find that this material is ejected from the binary system and sweeps up the surrounding interstellar medium hundreds to thousands of years before the SN Ia. The close match between the resulting circumstellar medium profiles and values inferred from recent observations of circumstellar absorption in SNe Ia gives further credence to the resurgent double detonation scenario.

  4. Optical Evidence for Circumstellar Interaction Around SN 1993J

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Feng; ZHANG Tian-Meng; ZHOU Xu; LI Zong-Wei

    2004-01-01

    We study the circumstellar interaction around SN 1993J by its intermediate-band light curves obtained by the 60/90 cm Schmidt telescope at Xinglong station. The optical emission showed a slow decay of 0.05±0.02 mag/100 d in the period from 1995 to 2003, invoking a main energy contribution from SN-circumstellar interaction at late times. The relatively flat power law SN density model fits better with the observations. In particular, the line ratio of [O Ⅲ]λλ4959, 5007 and Na I D relative to Hα are well reproduced by the model. Moreover, the Hα light curve displayed obvious bump structures at some epochs, which is probably attributed to the density fluctuations in the ambient material that surrounds the reverse shockwave.

  5. A HIFI view on circumstellar H2O in M-type AGB stars: radiative transfer, velocity profiles, and H2O line cooling

    CERN Document Server

    Maercker, M; Olofsson, H; De Beck, E; Justtanont, K; Lombaert, R; Royer, P

    2016-01-01

    We aim to constrain the temperature and velocity structures, and H2O abundances in the winds of a sample of M-type AGB stars. We further aim to determine the effect of H2O line cooling on the energy balance in the inner circumstellar envelope. We use two radiative-transfer codes to model molecular emission lines of CO and H2O towards four M-type AGB stars. We focus on spectrally resolved observations of CO and H2O from HIFI. The observations are complemented by ground-based CO observations, and spectrally unresolved CO and H2O observations with PAC. The observed line profiles constrain the velocity structure throughout the circumstellar envelopes (CSEs), while the CO intensities constrain the temperature structure in the CSEs. The H2O observations constrain the o-H2O and p-H2O abundances relative to H2. Finally, the radiative-transfer modelling allows to solve the energy balance in the CSE, in principle including also H2O line cooling. The fits to the line profiles only set moderate constraints on the velocit...

  6. Fine Structure in the Circumstellar Environment of a Young, Solar-like Star the Unique Eclipses of KH 15D

    CERN Document Server

    Herbst, W; Vrba, F J; Ibrahimov, M A; Bailer-Jones, C A L; Mundt, R; Lamm, M J; Mazeh, T; Webster, Z T; Haisch, K E; Williams, E C; Rhodes, A H; Balonek, T J; Riffeser, A; Herbst, William; Hamilton, Catrina M.; Vrba, Frederick J.; Ibrahimov, Mansur A.; Bailer-Jones, Coryn A.L.; Mundt, Reinhard; Lamm, Markus; Mazeh, Tsevi; Webster, Zodiac T.; Haisch, Karl E.; Williams, Eric C.; Rhodes, Andrew H.; Balonek, Thomas J.; Riffeser, Alexander Scholz and Arno

    2002-01-01

    Results of an international campaign to photometrically monitor the unique pre-main sequence eclipsing object KH 15D are reported. An updated ephemeris for the eclipse is derived that incorporates a slightly revised period of 48.36 d. There is some evidence that the orbital period is actually twice that value, with two eclipses occurring per cycle. The extraordinary depth (~3.5 mag) and duration (~18 days) of the eclipse indicate that it is caused by circumstellar matter, presumably the inner portion of a disk. The eclipse has continued to lengthen with time and the central brightness reversals are not as extreme as they once were. V-R and V-I colors indicate that the system is slightly bluer near minimum light. Ingress and egress are remarkably well modeled by the passage of a knife-edge across a limb-darkened star. Possible models for the system are briefly discussed.

  7. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  8. Probing for Exoplanets Hiding in Dusty Debris Disks: Disk Imaging, Characterization, and Exploration with HST-STIS Multi-roll Coronagraphy

    Science.gov (United States)

    Schneider, Glenn; Grady, Carol A.; Hines, Dean C.; Stark, Christopher C.; Debes, John; Carson, Joe; Kuchner, Marc J.; Perrin, Marshall; Weinberger, Alycia; Wisniewski, John P.; Silverstone, Murray D.; Jang-Condell, Hannah; Henning, Thomas; Bruce E. Woodgate; Serabyn, Eugene; Moro-Martin, Amaya; Tamura, Motohide; Hinz, Phillip M.; Rodigas, Timothy J.

    2014-01-01

    Spatially resolved scattered-light images of circumstellar debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, the systemic architectures, and forces perturbing the starlight-scattering circumstellar material. Using HST/STIS broadband optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in a sample of ten circumstellar debris systems, and one "mature" protoplanetrary disk all with HST pedigree, using PSF-subtracted multi-roll coronagraphy. These observations probe stellocentric distances greater than or equal to 5 AU for the nearest systems, and simultaneously resolve disk substructures well beyond corresponding to the giant planet and Kuiper belt regions within our own Solar System. They also disclose diffuse very low-surface brightness dust at larger stellocentric distances. Herein we present new results inclusive of fainter disks such as HD92945 (F (sub disk) /F (sub star) = 5x10 (sup -5) confirming, and better revealing, the existence of a narrow inner debris ring within a larger diffuse dust disk. Other disks with ring-like sub-structures and significant asymmetries and complex morphologies include: HD181327 for which we posit a spray of ejecta from a recent massive collision in an exo-Kuiper belt; HD61005 suggested to be interacting with the local ISM; HD15115 and HD32297, discussed also in the context of putative environmental interactions. These disks, and HD15745, suggest that debris system evolution cannot be treated in isolation. For AU Mic's edge-on disk we find out-of-plane surface brightness asymmetries at greater than or equal to 5 AU that may implicate the existence of one or more planetary perturbers. Time resolved images of the MP Mus proto-planetary disk provide spatially resolved temporal variability in the disk illumination. These and other new images from our HST

  9. Probing for exoplanets hiding in dusty debris disks: Disk imaging, characterization, and exploration with HST/STIS multi-roll coronagraphy

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Glenn; Hinz, Phillip M. [Steward Observatory and the Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Hines, Dean C.; Debes, John H.; Perrin, Marshall D.; Moro-Martin, Amaya [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Stark, Christopher C.; Kuchner, Marc J.; Woodgate, Bruce E. [NASA/Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Carson, Joe [Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, SC 29424 (United States); Weinberger, Alycia J.; Rodigas, Timothy J. [Department of Terrestrial Magnetism, Carnegie Institute of Washington, 5241 Branch Road, NW, Washington, DC 20015 (United States); Wisniewski, John P. [H. L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Silverstone, Murray D. [Department of Physics and Astronomy, University of Alabama, P.O. Box 870324, Tuscaloosa, AL 35487-0324 (United States); Jang-Condell, Hannah [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Henning, Thomas [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Serabyn, Eugene [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Tamura, Motohide, E-mail: gschneider@as.arizona.edu [The University of Tokyo, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2014-10-01

    Spatially resolved scattered-light images of circumstellar debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, the systemic architectures, and forces perturbing the starlight-scattering circumstellar material. Using Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) broadband optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in a sample of 10 circumstellar debris systems and 1 'mature' protoplanetrary disk, all with HST pedigree, using point-spread-function-subtracted multi-roll coronagraphy. These observations probe stellocentric distances ≥5 AU for the nearest systems, and simultaneously resolve disk substructures well beyond corresponding to the giant planet and Kuiper Belt regions within our own solar system. They also disclose diffuse very low-surface-brightness dust at larger stellocentric distances. Herein we present new results inclusive of fainter disks such as HD 92945 (F {sub disk}/F {sub star} = 5 × 10{sup –5}), confirming, and better revealing, the existence of a narrow inner debris ring within a larger diffuse dust disk. Other disks with ring-like substructures and significant asymmetries and complex morphologies include HD 181327, for which we posit a spray of ejecta from a recent massive collision in an exo-Kuiper Belt; HD 61005, suggested to be interacting with the local interstellar medium; and HD 15115 and HD 32297, also discussed in the context of putative environmental interactions. These disks and HD 15745 suggest that debris system evolution cannot be treated in isolation. For AU Mic's edge-on disk, we find out-of-plane surface brightness asymmetries at ≥5 AU that may implicate the existence of one or more planetary perturbers. Time-resolved images of the MP Mus protoplanetary disk provide spatially resolved

  10. Planet formation from the ejecta of common envelopes

    CERN Document Server

    Schleicher, Dominik R G

    2013-01-01

    The close binary system NN Serpentis must have gone through a common envelope phase before the formation of its white dwarf. During this phase, a substantial amount of mass was lost from the envelope. The recently detected orbits of circumbinary planets were suggested to be inconsistent with planet formation before the mass loss. We explore whether new planets may have formed from the ejecta of the common envelope, and derive the expected planetary mass as a function of radius. We employ the model of \\citet{Kashi11} to estimate the amount of mass that is retained during the ejection event, and infer the properties of the resulting disk from the conservation of mass and angular momentum. The resulting planetary masses are estimated from models with and without radiative feedback. We show that the observed planetary masses can be reproduced for appropriate model parameters. Photoheating can stabilize the disks in the interior, potentially explaining the observed planetary orbits on scales of a few AU. We compar...

  11. Warped accretion disks and the unification of Active Galactic Nuclei

    CERN Document Server

    Nayakshin, S

    2004-01-01

    Orientation of parsec-scale accretion disks in AGN is likely to be nearly random for different black hole feeding episodes. Since AGN accretion disks are unstable to self-gravity on parsec scales, star formation in these disks will create young stellar disks, similar to those recently discovered in our Galactic Center. The disks blend into the quasi-spherical star cluster enveloping the AGN on time scales much longer than a likely AGN lifetime. Therefore, the gravitational potential within the radius of the black hole influence is at best axi-symmetric rather than spherically symmetric. Here we show that as a result, a newly formed accretion disk will be warped. For the simplest case of a potential resulting from a thin stellar ring, we calculate the disk precession rates, and the time dependent shape. We find that, for a realistic parameter range, the disk becomes strongly warped in few hundred orbital times. We suggest that this, and possibly other mechanisms of accretion disk warping, have a direct relevan...

  12. The nearby population of M dwarfs with WISE: A search for warm circumstellar dust

    CERN Document Server

    Avenhaus, Henning; Meyer, Michael R

    2012-01-01

    Circumstellar debris disks are important for their connection to planetary systems. An efficient way to identify such systems is through their infrared excess. Most studies so far concentrated on early-type or solar-type stars, but less effort has gone into M dwarfs. We characterize the mid-infrared photometric behavior of M dwarfs and search for infrared excess in nearby M dwarfs taken from the volume-limited RECONS sample using data from the WISE satellite and the 2MASS catalog. Our sample consists of 85 sources encompassing 103 M dwarfs. We derive empirical infrared colors from these data and discuss their errors. From this, we check the stars for infrared excess and discuss the minimum excess we would be able to detect. Other than the M8.5 dwarf SCR 1845-6357 A, where the excess is produced by a known T6 companion, we detect no excesses in any of our sample stars. The limits we derive for the 22um excess are slightly larger than the usual detection limit of 10-15% for Spitzer studies, but the inclusion of...

  13. A SEMI-ANALYTICAL DESCRIPTION FOR THE FORMATION AND GRAVITATIONAL EVOLUTION OF PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Sanemichi Z.; Inutsuka, Shu-ichiro [Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 (Japan); Machida, Masahiro N., E-mail: takahashi.sanemichi@a.mbox.nagoya-u.ac.jp, E-mail: inutsuka@nagoya-u.jp, E-mail: sanemichi@tap.scphys.kyoto-u.ac.jp, E-mail: machida.masahiro.018@m.kyushu-u.ac.jp [Department of Earth and Planetary Science, Kyushu University, Higashi-ku, Fukuoka 812-8581 (Japan)

    2013-06-10

    We investigate the formation process of self-gravitating protoplanetary disks in unmagnetized molecular clouds. The angular momentum is redistributed by the action of gravitational torques in the massive disk during its early formation. We develop a simplified one-dimensional accretion disk model that takes into account the infall of gas from the envelope onto the disk and the transfer of angular momentum in the disk with an effective viscosity. First we evaluate the gas accretion rate from the cloud core onto the disk by approximately estimating the effects of gas pressure and gravity acting on the cloud core. We formulate the effective viscosity as a function of the Toomre Q parameter that measures the local gravitational stability of the rotating thin disk. We use a function for viscosity that changes sensitively with Q when the disk is gravitationally unstable. We find a strong self-regulation mechanism in the disk evolution. During the formation stage of protoplanetary disks, the evolution of the surface density does not depend on the other details of the modeling of effective viscosity, such as the prefactor of the viscosity coefficient. Next, to verify our model, we compare the time evolution of the disk calculated with our formulation with that of three-dimensional hydrodynamical simulations. The structures of the resultant disks from the one-dimensional accretion disk model agree well with those of the three-dimensional simulations. Our model is a useful tool for the further modeling of chemistry, radiative transfer, and planet formation in protoplanetary disks.

  14. A resolved debris disk around the candidate planet-hosting star HD95086

    OpenAIRE

    Moór, A.; Ábrahám, P.; Kóspál, Á.; Szabó, Gy. M.; Apai, D.; Balog, Z.; Csengeri, T.; Grady, C; Henning, Th.; Juhász, A.; Kiss, Cs; Pascucci, I.; Szulágyi, J.; Vavrek, R.

    2013-01-01

    Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD95086. The strong infrared excess of the system indicates that, similarly to HR8799, {\\ss} Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared and millimeter observations. We detected no CO emission,...

  15. Multifamily Envelope Leakage Model

    Energy Technology Data Exchange (ETDEWEB)

    Faakye, Omari [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Griffiths, Dianne [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-05-08

    “The cost for blower testing is high, because it is labor intensive, and it may disrupt occupants in multiple units. This high cost and disruption deter program participants, and dissuade them from pursuing energy improvements that would trigger air leakage testing, such as improvements to the building envelope.” This statement found in a 2012 report by Heschong Mahone Group for several California interests emphasizes the importance of reducing the cost and complexity of blower testing in multifamily buildings. Energy efficiency opportunities are being bypassed. The cost of single blower testing is on the order of $300. The cost for guarded blower door testing—the more appropriate test for assessing energy savings opportunities—could easily be six times that, and that’s only if you have the equipment and simultaneous access to multiple apartments. Thus, the proper test is simply not performed. This research seeks to provide an algorithm for predicting the guarded blower door test result based upon a single, total blower door test.

  16. Herschel survey of brown dwarf disks in ρ Ophiuchi

    Science.gov (United States)

    Alves de Oliveira, C.; Ábrahám, P.; Marton, G.; Pinte, C.; Kiss, Cs.; Kun, M.; Kóspál, Á.; André, P.; Könyves, V.

    2013-11-01

    Context. Young brown dwarfs are known to possess circumstellar disks, a characteristic that is fundamental to the understanding of their formation process, and raises the possibility that these objects harbour planets. Aims: We want to characterise the far-IR emission of disks around the young brown dwarf population of the ρ Ophiuchi cluster in LDN 1688. Methods: Recent observations of the ρ Ophiuchi cluster with the Herschel Space Observatory allow us to probe the spectral energy distribution (SED) of the brown dwarf population in the far-IR, where the disk emission peaks. We performed aperture photometry at 70, 100, and 160 μm, and constructed SEDs for all previously known brown dwarfs detected. These were complemented with ancillary photometry at shorter wavelengths. We compared the observed SEDs to a grid of synthetic disks produced with the radiative transfer code MCFOST, and used the relative figure of merit estimated from the Bayesian inference of each disk parameter to analyse the structural properties. Results: We detected 12 Class II brown dwarfs with Herschel, which corresponds to one-third of all currently known brown dwarf members of ρ Ophiuchi. We did not detect any of the known Class III brown dwarfs. Comparison to models reveals that the disks are best described by an inner radius between 0.01 and 0.07 AU, and a flared disk geometry with a flaring index between 1.05 and 1.2. Furthermore, we can exclude values of the disk scale-height lower than 10 AU (measured at a fiducial radius of 100 AU). We combined the Herschel data with recent ALMA observations of the brown dwarf GY92 204 (ISO-Oph 102), and by comparing its SED to the same grid of disk models, we derived an inner disk radius of 0.035 AU, a scale height of 15 AU with a flaring index of β ~ 1.15, an exponent for dust settling of -1.5, and a disk mass of 0.001 M⊙. This corresponds to a disk-to-central object mass ratio of ~1%. Conclusions: The structural parameters constrained by the

  17. Magnetic Braking and Protostellar Disk Formation: The Ideal MHD Limit

    Science.gov (United States)

    Mellon, Richard R.; Li, Zhi-Yun

    2008-07-01

    Magnetic fields are usually considered dynamically important in star formation when the dimensionless mass-to-flux ratio is close to, or less than, unity (λ lesssim 1). We show that, in disk formation, the requirement is far less stringent. This conclusion is drawn from a set of 2D (axisymmetric) simulations of the collapse of rotating, singular isothermal cores magnetized to different degrees. We find that a weak field corresponding to λ ~ 100 can begin to disrupt the rotationally supported disk through magnetic braking, by creating regions of rapid, supersonic collapse in the disk. These regions are separated by one or more centrifugal barriers, where the rapid infall is temporarily halted. The number of centrifugal barriers increases with the mass-to-flux ratio λ. When λ gtrsim 100, they merge together to form a more or less contiguous, rotationally supported disk. Even though the magnetic field in such a case is extremely weak on the scale of dense cores, it is amplified by collapse and differential rotation, to the extent that its pressure dominates the thermal pressure in both the disk and its surrounding region. For relatively strongly magnetized cores with λ lesssim 10, the disk formation is suppressed completely, as found previously. A new feature is that the mass accretion is highly episodic, due to reconnection of the magnetic field lines accumulated near the center. For rotationally supported disks to appear during the protostellar mass accretion phase of star formation in dense cores with realistic field strengths, the powerful magnetic brake must be weakened, perhaps through nonideal MHD effects. Another possibility is to remove, through protostellar winds, the material that acts to brake the disk rotation. We discuss the possibility of observing a generic product of the magnetic braking, an extended circumstellar region that is supported by a combination of toroidal magnetic field and rotation—a "magnetogyrosphere"—interferometrically.

  18. FIRST IMAGES OF DEBRIS DISKS AROUND TWA 7, TWA 25, HD 35650, AND HD 377

    Energy Technology Data Exchange (ETDEWEB)

    Choquet, Élodie; Perrin, Marshall D.; Chen, Christine H.; Soummer, Rémi; Pueyo, Laurent; Hagan, James B.; Gofas-Salas, Elena; Golimowski, David A.; Hines, Dean C.; Mazoyer, Johan; Debes, John; Stark, Christopher C.; N’Diaye, Mamadou [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Rajan, Abhijith [Arizona State University, Phoenix, AZ 85004 (United States); Schneider, Glenn [Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Augereau, Jean-Charles [Univ. Grenoble Alpes, IPAG, F-38000 Grenoble (France); Wolff, Schuyler; Hsiao, Kevin, E-mail: choquet@stsci.edu [Johns Hopkins University, 3400 North Charles Street, Baltimore MD 21218 (United States)

    2016-01-20

    We present the first images of four debris disks observed in scattered light around the young (4–250 Myr old) M dwarfs TWA 7 and TWA 25, the K6 star HD 35650, and the G2 star HD 377. We obtained these images by reprocessing archival Hubble Space Telescope NICMOS coronagraph data with modern post-processing techniques as part of the Archival Legacy Investigation of Circumstellar Environments program. All four disks appear faint and compact compared with other debris disks resolved in scattered light. The disks around TWA 25, HD 35650, and HD 377 appear very inclined, while TWA 7's disk is viewed nearly face-on. The surface brightness of HD 35650's disk is strongly asymmetric. These new detections raise the number of disks resolved in scattered light around M and late-K stars from one (the AU Mic system) to four. This new sample of resolved disks enables comparative studies of heretofore scarce debris disks around low-mass stars relative to solar-type stars.

  19. Discovery of an Inner Disk Component around HD 141569 A

    CERN Document Server

    Konishi, Mihoko; Schneider, Glenn; Shibai, Hiroshi; McElwain, Michael W; Nesvold, Erika R; Kuchner, Marc J; Carson, Joseph; Debes, John H; Gaspar, Andras; Henning, Thomas K; Hines, Dean C; Hinz, Philip M; Jang-Condell, Hannah; Moro-Martin, Amaya; Perrin, Marshall; Rodigas, Timothy J; Serabyn, Eugene; Silverstone, Murray D; Stark, Christopher C; Tamura, Motohide; Weinberger, Alycia J; Wisniewski, John P

    2016-01-01

    We report the discovery of a scattering component around the HD 141569 A circumstellar debris system, interior to the previously known inner ring. The discovered inner disk component, obtained in broadband optical light with HST/STIS coronagraphy, was imaged with an inner working angle of 0".25, and can be traced from 0".4 (~46 AU) to 1".0 (~116 AU) after deprojection using i=55deg. The inner disk component is seen to forward scatter in a manner similar to the previously known rings, has a pericenter offset of ~6 AU, and break points where the slope of the surface brightness changes. It also has a spiral arm trailing in the same sense as other spiral arms and arcs seen at larger stellocentric distances. The inner disk spatially overlaps with the previously reported warm gas disk seen in thermal emission. We detect no point sources within 2" (~232 AU), in particular in the gap between the inner disk component and the inner ring. Our upper limit of 9+/-3 M_J is augmented by a new dynamical limit on single plane...

  20. WFPC2 Images of a Face-on Disk Surrounding TW Hydrae

    Science.gov (United States)

    Krist, John E.; Stapelfeldt, Karl R.; Ménard, François; Padgett, Deborah L.; Burrows, Christopher J.

    2000-08-01

    Hubble Space Telescope observations of the isolated T Tauri star TW Hydrae reveal the presence of a compact circumstellar nebula. After subtraction of a reference point-spread function (PSF), a smooth, symmetrical, circular halo can be seen in both R- and I-band WFPC2 images. Its intensity declines with radius until reaching an outer sensitivity limit at 3.5" (~200 AU). Numerical experiments show that PSF subtraction artifacts cannot account for the halo's brightness distribution. Instead, the most likely explanation is that the halo is a face-on circumstellar disk. The radial brightness profile of the halo is complex and can be described with multiple, contiguous zones with individual power-law intensity relations. The halo appears slightly blue relative to the star, especially in the outer zones. We compare the TW Hya halo to single-scattering models of face-on disks with multiple radial zones. While optically thin disk models with vertical optical depth τv~10-2 can reproduce the relative brightness of the nebula and star, we find that such models have large midplane optical depths and are therefore not self-consistent. We present an optically thick disk model that matches the radial brightness profile self-consistently and has a dust mass close to that implied by submillimeter continuum measurements. The zonal structure found in the disk could arise from radial variations in the dust properties that determine the local equilibrium temperature or perhaps via dynamical effects of unseen companions.

  1. Braking the Gas in the beta Pictoris Disk

    CERN Document Server

    Fern'andez, R; Wu, Y; Brandeker, Alexis; Fern\\'andez, Rodrigo

    2006-01-01

    (Abridged) The main sequence star beta Pictoris hosts the best studied circumstellar disk to date. Nonetheless, a long-standing puzzle has been around since the detection of metallic gas in the disk: radiation pressure from the star should blow the gas away, yet the observed motion is consistent with Keplerian rotation. In this work we search for braking mechanisms that can resolve this discrepancy. We find that all species affected by radiation force are heavily ionized and dynamically coupled into a single fluid by Coulomb collisions, reducing the radiation force on species feeling the strongest acceleration. For a gas of solar composition, the resulting total radiation force still exceeds gravity, while a gas of enhanced carbon abundance could be self-braking. We also explore two other braking agents: collisions with dust grains and neutral gas. Grains surrounding beta Pic are photoelectrically charged to a positive electrostatic potential. If a significant fraction of the grains are carbonaceous (10% in t...

  2. High mass accretion disks: ATCA's potential for deep impact II

    Science.gov (United States)

    Walsh, Andrew; Beuther, Henrik; Longmore, Steven; Fallscheer, Cassandra

    2010-10-01

    The understanding of accretion processes and in particular of massive accretion disks is one of the most important topics in high-mass star formation. Based on our successful ATCA disk studies of high mass star formation, we now propose to investigate higher J inversion transitions of NH3 at high angular resolution (~1'') to complement our NH3 (4,4) and (5,5) data obtained last year. Last year's data showed a number of regions with clear rotational profiles, but no flattened structures that would indicate an edge-on accretion disk. We interpret our results to show rotating surrounding envelopes of any accretion disks. We were not able to see the accretion disks themselves because the (4,4) and (5,5) lines are optically thick. With observations of NH3 (7,7) and (8,8), which occur under even more extreme conditions than (4,4) or (5,5), we hope to peer through the surrounding envelope to see the accretion disks.

  3. Accretion disk electrodynamics

    Science.gov (United States)

    Coroniti, F. V.

    1985-01-01

    Accretion disk electrodynamic phenomena are separable into two classes: (1) disks and coronas with turbulent magnetic fields; (2) disks and black holes which are connected to a large-scale external magnetic field. Turbulent fields may originate in an alpha-omega dynamo, provide anomalous viscous transport, and sustain an active corona by magnetic buoyancy. The large-scale field can extract energy and angular momentum from the disk and black hole, and be dynamically configured into a collimated relativistic jet.

  4. Galactic Disk Warps

    NARCIS (Netherlands)

    Kuijken, K.; García, I.

    2000-01-01

    Abstract: This review addresses recent developments in the field of disk galaxy warps. Both results from a new HI survey of edgeon disk galaxies, and of simulations of the interaction between a disk+halo and an orbiting satelite, will be discussed.

  5. Galactic Disk Warps

    CERN Document Server

    Kuijken, K; Kuijken, Konrad; Garcia, Inigo

    2000-01-01

    This review addresses recent developments in the field of disk galaxy warps. Both results from a new HI survey of edgeon disk galaxies, and of simulations of the interaction between a disk+halo and an orbiting satelite, will be discussed.

  6. Chemistry in Protoplanetary Disks

    CERN Document Server

    Henning, Thomas

    2013-01-01

    This comprehensive review summarizes our current understanding of the evolution of gas, solids and molecular ices in protoplanetary disks. Key findings related to disk physics and chemistry, both observationally and theoretically, are highlighted. We discuss which molecular probes are used to derive gas temperature, density, ionization state, kinematics, deuterium fractionation, and study organic matter in protoplanetary disks.

  7. ALMA observations of the Th 28 protostellar disk - A new exemple of counter-rotation between disk and optical jet

    CERN Document Server

    Louvet, F; Cabrit, S; Hales, A; Pinte, C; Menard, F; Bacciotti, F; Coffey, D; Mardones, D; Bronfman, L; Gueth, F

    2016-01-01

    Differences in Doppler shifts across the base of four close classical T-Tauri star jets have been detected with the HST in optical and NUV emission lines, and interpreted as rotation signatures under the assumption of steady state flow. To support this interpretation, it is necessary that the underlying disks rotate in the same sense. Agreement between disk rotation and jet rotation determined from optical lines has been verified in two cases and rejected in one. We propose here to perform this test on the fourth system, Th 28. We present ALMA high angular resolution Band 7 continuum, 12CO(2-1) and 13CO(2-1) observations of the circumstellar disk around the T-Tauri star Th 28. The sub-arcsecond angular resolution (0.46"x0.37") and high-sensitivity reached enable us to detect in CO and continuum clear signatures of a disk in Keplerian rotation around Th28. The 12CO emission allows us to derive estimates of disk position angle and inclination. The large velocity separation of the peaks in 12CO combined with the...

  8. Herschel-PACS observation of the 10 Myr old T Tauri disk TW Hya: Constraining the disk gas mass

    CERN Document Server

    Thi, W F; Ménard, F; Woitke, P; Meeus, G; Riviere-Marichalar, P; Pinte, C; Howard, C D; Roberge, A; Sandell, G; Pascucci, I; Riaz, B; Grady, C A; Dent, W R F; Kamp, I; Duchêne, G; Augereau, J C; Pantin, E; Vandenbussche, B; Tilling, I; Williams, J P; Eiroa, C; Barrado, D; Alacid, J M; Andrews, S; Ardila, D R; Aresu, G; Brittain, S; Ciardi, D R; Danchi, W; Fedele, D; de Gregorio-Monsalvo, I; Heras, A; Huelamo, N; Krivov, A; Lebreton, J; Liseau, R; Martin-Zaidi, C; Mendigutía, I; Montesinos, B; Mora, A; Morales-Calderon, M; Nomura, H; Phillips, N; Podio, L; Poelman, D R; Ramsay, S; Rice, K; Solano, E; Walker, H; White, G J; Wright, G

    2010-01-01

    Planets are formed in disks around young stars. With an age of ~10 Myr, TW Hya is one of the nearest T Tauri stars that is still surrounded by a relatively massive disk. In addition a large number of molecules has been found in the TW Hya disk, making TW Hya the perfect test case in a large survey of disks with Herschel-PACS to directly study their gaseous component. We aim to constrain the gas and dust mass of the circumstellar disk around TW Hya. We observed the fine-structure lines of [OI] and [CII] as part of the Open-time large program GASPS. We complement this with continuum data and ground-based 12CO 3-2 and 13CO 3-2 observations. We simultaneously model the continuum and the line fluxes with the 3D Monte-Carlo code MCFOST and the thermo-chemical code ProDiMo to derive the gas and dust masses. We detect the [OI] line at 63 micron. The other lines that were observed, [OI] at 145 micron and [CII] at 157 micron, are not detected. No extended emission has been found. Preliminary modeling of the photometric...

  9. Unveiling the structure and kinematics of B[e] stars' disks from FEROS and CRIRES spectra

    CERN Document Server

    Muratore, M F; Kraus, M; Aret, A; Cidale, L S; Fernandes, M Borges; Oudmaijer, R D; Wheelwright, H E

    2012-01-01

    We are investigating the circumstellar material for a sample of B[e] stars using high spectral resolution data taken in the optical and near-infrared regions with ESO/FEROS and ESO/CRIRES spectrographs, respectively. B[e] stars are surrounded by dense disks of still unknown origin. While optical emission lines from [O I] and [Ca II] reflect the disk conditions close to the star (few stellar radii), the near-infrared data, especially the CO band emission, mirror the characteristics in the molecular part of the disk farther away from the star (several AU). Based on our high resolution spectroscopic data, we seek to derive the density and temperature structure of the disks, as well as their kinematics. This will allow us to obtain a better understanding of their structure, formation history and evolution. Here we present our preliminary results.

  10. Mid-IR Observations of T Tauri stars: Probing the Star-Disk Connection in Rotational Evolution

    CERN Document Server

    Kundurthy, P; Robberto, M; Beckwith, S V W; Herbst, T; Kundurthy, Praveen; Meyer, Michael R.; Robberto, Massimo; Beckwith, Steven V.W.; Herbst, Tom

    2006-01-01

    We present mid-IR N-band $(\\lambda_{eff} = 10.2\\micron)$ photometry of a carefully selected sample of T Tauri stars thought to be single from the Taurus-Auriga molecular cloud. Infrared excesses in these stars are generally attributed to circumstellar dust-disks. Combining observations at 2.16$\\micron$ (K$_{s}$-band) and 10.2$\\micron$ (N-band) we probe a region in the circumstellar dust-disk from a few stellar radii through the terrestrial planet zone (0.02-1.0AU). By analyzing the distribution of the $(K_{s}-N)$ color index with respect to previously measured photometric rotation periods we investigate what role circumstellar disks play in the rotational evolution of the central star. The resulting positive correlation between these two variables is consistent with the notion that a star-disk interaction facilitates the regulation of angular momentum during the T Tauri stage. We also demonstrate, how including non-single stars in such an analysis will \\textit{weaken} any correlation in the relation between $...

  11. Analysis of star-disk interaction in young stellar systems

    Directory of Open Access Journals (Sweden)

    Fonseca N.N.J.

    2014-01-01

    Full Text Available We present preliminary results of the study of star-disk interaction in the classical T Tauri star V354 Mon, a member of the young stellar cluster NGC 2264. As part of an international campaign of observation of NGC 2264 organized from December 2011 to February 2012, high resolution photometric and spectroscopic data of this object were obtained simultaneously with the Chandra, CoRoT and Spitzer satellites, and ground-based telescopes, as CFHT and VLT at ESO. The optical and infrared light curves of V354 Mon show periodic brightness minima that vary in depth and width every rotational cycle. We found evidence that the Hα emission line profile changes according to the period of photometric variations, indicating that the same phenomenon causes both modulations. Such a correlation between emission line variability and light curve modulation was also identified in a previous observational campaign on the same object, where we concluded that material non-uniformly distributed in the inner part of the disk is the main cause of the photometric modulation. This assumption is supported by the fact that the system is seen at high inclination. It is believed that this distortion of the inner part of the disk results from the dynamical interaction between the stellar magnetosphere, inclined with respect to the rotation axis, and the circumstellar disk, as also observed in the classical T Tauri star AA Tau, and predicted by magnetohydrodynamic numerical simulations. A model of occultation by circumstellar material was applied to the photometric data in order to determine the parameters of the obscuring material during both observational campaigns, thus providing an investigation of its stability on a timescale of a few years.

  12. Disks and Outflows Around Young Stars

    Science.gov (United States)

    Beckwith, Steven; Staude, Jakob; Quetz, Axel; Natta, Antonella

    The subject of the book, the ubiquitous circumstellar disks around very young stars and the corresponding jets of outflowing matter, has recently become one of the hottest areas in astrophysics. The disks are thought to be precursors to planetary systems, and the outflows are thought to be a necessary phase in the formation of a young star, helping the star to get rid of angular momentum and energy as it makes its way onto the main sequence. The possible connections to planetary systems and stellar astrophysics makes these topics especially broad, appealing to generalists and specialists alike. The CD not only contains papers that could not be printed in the book but allows the authors to include a fair amount of data, often displayed as color images. The CD-ROM contains all the contributions printed in the corresponding book (Lecture Notes in Physics Vol. 465) and, in addition, those presented exclusively in digital form. Each contribution consists of a file in portable document format (PDF). The electronic version allows full-text searching within each file using Adobe's Acrobat Reader providing instructions for installation on Unix (Sun), PC and Macintosh computers, respectively. All contributions can be printed out; the color diagrams and color frames, which are printed in black and white in the book, can be viewed in color on screen.

  13. The LHC in an envelope

    CERN Document Server

    2007-01-01

    The series of envelopes featuring CERN issued this summer was a huge success. The French postal services of the Pays de Gex will shortly be launching the second set of pre-paid envelopes issued in collaboration with the Laboratory this year, this time highlighting the LHC. Five thousand envelopes describing the accelerator’s capabilities will go on sale on 12 November, and some of the packs will even contain a small sample of the cables from the heart of the LHC magnets. The sets of ten pre-paid envelopes will tell you everything about CERN’s flagship accelerator, from its astounding technical capabilities to its spin-offs in the fields of technology and human resources. Each envelope will feature a different attribute or spin-off of the LHC. People will be invited to consult CERN’s public website for more detailed explanations if they want to know more. The new envelopes will be available from five post offices in the Pays de Gex (Ferney-Voltaire, Prévessin...

  14. The LHC on an envelope

    CERN Multimedia

    2007-01-01

    The series of envelopes featuring CERN issued this summer was a huge success. The French postal services of the Pays de Gex will shortly be launching the second set of pre-paid envelopes issued in collaboration with the Laboratory this year, this time highlighting the LHC. Five thousand envelopes describing the accelerator’s capabilities will go on sale on 12 November, and some of the packs will even contain a small sample of the cables from the heart of the LHC magnets. The sets of ten pre-paid envelopes will tell you everything about CERN’s flagship accelerator, from its astounding technical capabilities to its spin-offs in the fields of technology and human resources. Each envelope will feature a different attribute or spin-off of the LHC. People will be invited to consult CERN’s public website for more detailed explanations if they want to know more. The new envelopes will be available from five post offices in the Pays ...

  15. ON THE EFFECTS OF OPTICALLY THICK GAS (DISKS) AROUND MASSIVE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, Rolf; Yorke, Harold W., E-mail: Rolf.Kuiper@jpl.nasa.gov, E-mail: Harold.W.Yorke@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2013-02-15

    Numerical simulations have shown that the often cited radiation pressure barrier to accretion onto massive stars can be circumvented, when the radiation field is highly anisotropic in the presence of a circumstellar accretion disk with high optical depth. Here, these studies of the so-called flashlight effect are expanded by including the opacity of the innermost dust-free but potentially optically thick gas regions around forming massive stars. In addition to frequency-dependent opacities for the dust grains, we use temperature- and density-dependent Planck and Rosseland mean opacities for the gas. The simulations show that the innermost dust-free parts of the accretion disks are optically thick to the stellar radiation over a substantial fraction of the solid angle above and below the disk's midplane. The temperature in the shielded disk region decreases faster with radius than in a comparison simulation with a lower constant gas opacity, and the dust sublimation front is shifted to smaller radii. The shielding by the dust-free gas in the inner disk thus contributes to an enhanced flashlight effect, which ultimately results in a smaller opening angle of the radiation pressure driven outflow and in a much longer timescale of sustained feeding of the circumstellar disk by the molecular cloud core. We conclude that it is necessary to properly account for the opacity of the inner dust-free disk regions around forming massive stars in order to correctly assess the effectiveness of the flashlight effect, the opening angle of radiation pressure driven outflows, and the lifetime and morphological evolution of the accretion disk.

  16. THE CIRCUMSTELLAR ENVIRONMENT OF R CORONAE BOREALIS: WHITE DWARF MERGER OR FINAL-HELIUM-SHELL FLASH?

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Geoffrey C.; Andrews, J. E. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Sugerman, Ben E. K. [Department of Physics and Astronomy, Goucher College, 1021 Dulaney Valley Rd., Baltimore, MD 21204 (United States); Adam Stanford, S. [IGPP, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Whitney, B. A. [Space Science Institute, 4750 Walnut St. Suite 205, Boulder, CO 80301 (United States); Honor, J.; Babler, B. [Department of Astronomy, 475 North Charter St., University of Wisconsin, Madison, WI 53706 (United States); Barlow, M. J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Gordon, K. D.; Bond, Howard E.; Matsuura, M. [STScI, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Geballe, T. R. [Gemini Observatory, 670 N. A' ohoku Place, Hilo, HI 96720 (United States); De Marco, O. [Department of Physics, Macquarie University, Sydney, NSW 2109 (Australia); Lawson, W. A. [School of PEMS, University of New South Wales, ADFA, P.O. Box 7916, Canberra, ACT 2610 (Australia); Sibthorpe, B. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Olofsson, G. [Department of Astronomy, Stockholm University, AlbaNova University Center, Roslagstullsbacken 21, SE-10691 Stockholm (Sweden); Polehampton, E. [Space Science and Technology Department, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Gomez, H. L.; Hargrave, P. C. [School of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff, Wales CF24 3YB (United Kingdom); Ivison, R. J., E-mail: gclayton@phys.lsu.edu, E-mail: jandrews@phys.lsu.edu, E-mail: ben.sugerman@goucher.edu, E-mail: stanford@physics.ucdavis.edu, E-mail: bwhitney@spacescience.org, E-mail: jhonor@astro.wisc.edu, E-mail: brian@astro.wisc.edu, E-mail: mjb@star.ucl.ac.uk [UK Astronomy Technology Centre, ROE, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); and others

    2011-12-10

    In 2007, R Coronae Borealis (R CrB) went into a historically deep and long decline. In this state, the dust acts like a natural coronagraph at visible wavelengths, allowing faint nebulosity around the star to be seen. Imaging has been obtained from 0.5 to 500 {mu}m with Gemini/GMOS, Hubble Space Telescope/WFPC2, Spitzer/MIPS, and Herschel/SPIRE. Several of the structures around R CrB are cometary globules caused by wind from the star streaming past dense blobs. The estimated dust mass of the knots is consistent with their being responsible for the R CrB declines if they form along the line of sight to the star. In addition, there is a large diffuse shell extending up to 4 pc away from the star containing cool 25 K dust that is detected all the way out to 500 {mu}m. The spectral energy distribution of R CrB can be well fitted by a 150 AU disk surrounded by a very large diffuse envelope which corresponds to the size of the observed nebulosity. The total masses of the disk and envelope are 10{sup -4} and 2 M{sub Sun }, respectively, assuming a gas-to-dust ratio of 100. The evidence pointing toward a white dwarf merger or a final-helium-shell flash origin for R CrB is contradictory. The shell and the cometary knots are consistent with a fossil planetary nebula. Along with the fact that R CrB shows significant lithium in its atmosphere, this supports the final-helium-shell flash. However, the relatively high inferred mass of R CrB and its high fluorine abundance support a white dwarf merger.

  17. The Earliest Stages of Star and Planet Formation: Core Collapse, and the Formation of Disks and Outflows

    CERN Document Server

    Li, Zhi-Yun; Pudritz, Ralph E; Jørgensen, Jes K; Shang, Hsien; Krasnopolsky, Ruben; Maury, Anaëlle

    2014-01-01

    (Abridged) In this review we focus on the observations and theory of the formation of early disks and outflows, and their connections with the first phases of planet formation. Large rotationally supported circumstellar disks, although common around more evolved young stellar objects, are rarely detected during the earliest, "Class 0" phase; however, a few excellent candidates have been discovered recently around both low and high mass protostars. In this early phase, prominent outflows are ubiquitously observed; they are expected to be associated with at least small magnetized disks. Disk formation - once thought to be a simple consequence of the conservation of angular momentum during hydrodynamic core collapse - is far more subtle in magnetized gas. In this case, the rotation can be strongly magnetically braked. Indeed, both analytic arguments and numerical simulations have shown that disk formation is suppressed in the strict ideal magnetohydrodynamic (MHD) limit for the observed level of core magnetizati...

  18. Photoevaporation of Disks and Clumps by Nearby Massive Stars: Application to Disk Destruction in the Orion Nebula

    Science.gov (United States)

    Johnstone, Doug; Hollenbach, David; Bally, John

    1998-05-01

    We present a model for the photoevaporation of circumstellar disks or dense clumps of gas by an external source of ultraviolet radiation. Our model includes the thermal and dynamic effects of 6-13.6 eV far-ultraviolet (FUV) photons and Lyman continuum EUV photons incident upon disks or clumps idealized as spheres of radius rd and enclosed mass M*. For sufficiently large values of rd/M*, the radiation field evaporates the surface gas and dust. Analytical and numerical approximations to the resulting flows are presented; the model depends on rd, M*, the flux of FUV and EUV photons, and the column density of neutral gas heated by FUV photons to high temperatures. Application of this model shows that the circumstellar disks (rd ~ 1014-1015 cm) in the Orion Nebula (``proplyds'') are rapidly destroyed by the external UV radiation field. Close (d mass-loss rate, and the ionization front (IF) is approximately coincident with the disk surface. Gas evaporated from the cold disk moves subsonically through a relatively thin photodissociation region (PDR) dominated by FUV photons and heated to ~1000 K. As the distance from θ1 Ori C increases, the Lyman continuum flux declines, the PDR thickens, and the IF moves away from the disk surface. At d ~ 3 × 1017 cm, the thickness of the PDR becomes comparable to the disk radius. Between 3 × 1017 cm rIF >~ 2.5rd. In this regime, the mass-loss rate is determined by the incident FUV photon flux and not the ionizing flux. However, at very large distances, d >~ 1018 cm, the FUV photon flux drops to values that cannot maintain the disk surface temperature at ~103 K. As the PDR temperature drops, the pressure of the FUV-powered flow declines with increasing distance from θ1 Ori C, and again the EUV ionizing photons can penetrate close to the disk surface and dominate the evaporation rate. Radio, Hα, and [O III] observations of externally illuminated young stellar objects in the Trapezium region are used to determine rIF and the projected

  19. Magnetically Self-regulated Formation of Early Protoplanetary Disks

    Science.gov (United States)

    Hennebelle, Patrick; Commerçon, Benoît; Chabrier, Gilles; Marchand, Pierre

    2016-10-01

    The formation of protoplanetary disks during the collapse of molecular dense cores is significantly influenced by angular momentum transport, notably by the magnetic torque. In turn, the evolution of the magnetic field is determined by dynamical processes and non-ideal MHD effects such as ambipolar diffusion. Considering simple relations between various timescales characteristic of the magnetized collapse, we derive an expression for the early disk radius, r≃ 18 {au} {({η }{AD}/0.1{{s}})}2/9{({B}z/0.1{{G}})}-4/9{(M/0.1{M}ȯ )}1/3, where M is the total disk plus protostar mass, {η }{AD} is the ambipolar diffusion coefficient, and B z is the magnetic field in the inner part of the core. This is significantly smaller than the disks that would form if angular momentum was conserved. The analytical predictions are confronted against a large sample of 3D, non-ideal MHD collapse calculations covering variations of a factor 100 in core mass, a factor 10 in the level of turbulence, a factor 5 in rotation, and magnetic mass-to-flux over critical mass-to-flux ratios 2 and 5. The disk radius estimates are found to agree with the numerical simulations within less than a factor 2. A striking prediction of our analysis is the weak dependence of circumstellar disk radii upon the various relevant quantities, suggesting weak variations among class-0 disk sizes. In some cases, we note the onset of large spiral arms beyond this radius.

  20. Spirals in protoplanetary disks from photon travel time

    CERN Document Server

    Kama, M; Heays, A N

    2016-01-01

    Spiral structures are a common feature in scattered-light images of protoplanetary disks, and of great interest as possible tracers of the presence of planets. However, other mechanisms have been put foward to explain them, including self-gravity, disk-envelope interactions, and dead zone boundaries. These mechanisms explain many spirals very well, but are unable to easily account for very loosely wound spirals and single spiral arms. We study the effect of light travel time on the shape of a shadow cast by a clump orbiting close (within ${\\sim}1\\,$au) of the central star, where there can be significant orbital motion during the light travel time from the clump to the outer disk and then to the sky plane. This delay in light rays reaching the sky plane gives rise to a variety of spiral- and arc-shaped shadows, which we describe with a general fitting formula for a flared, inclined disk.

  1. Integrability of motion around galactic razor-thin disks

    CERN Document Server

    Vieira, Ronaldo S S

    2016-01-01

    We consider the three-dimensional bounded motion of a test particle around razor-thin disk configurations, by focusing on the adiabatic invariance of the vertical action associated with disk-crossing orbits. We find that it leads to an approximate third integral of motion predicting envelopes of the form $Z(R)\\propto[\\Sigma(R)]^{-1/3}$, where $R$ is the radial galactocentric coordinate, $Z$ is the z-amplitude (vertical amplitude) of the orbit and $\\Sigma$ represents the surface mass density of the thin disk. This third integral, which was previously formulated for the case of flattened 3D configurations, is tested for a variety of trajectories in different thin-disk models.

  2. The HST/ACS Atlas of Protoplanetary Disks in the Great Orion Nebula

    CERN Document Server

    Ricci, Luca; Soderblom, David R

    2008-01-01

    We present the atlas of protoplanetary disks in the Orion Nebula based on the ACS/WFC images obtained for the HST Treasury Program on the Orion Nebula Cluster. The observations have been carried out in 5 photometric filters nearly equivalent to the standard B, V, Halpha, I, and z passbands. Our master catalog lists 178 externally ionized proto-planetary disks (proplyds), 28 disks seen only in absorption against the bright nebular background (silhouette disks), 8 disks seen only as dark lanes at the midplane of extended polar emission (bipolar nebulae or reflection nebulae) and 5 sources showing jet emission with no evidence of neither external ionized gas emission nor dark silhouette disks. Many of these disks are associated with jets seen in Halpha and circumstellar material detected through reflection emission in our broad-band filters; approximately 2/3 have identified counterparts in x-rays. A total of 47 objects (29 proplyds, 7 silhouette disks, 6 bipolar nebulae, 5 jets with no evidence of proplyd emiss...

  3. Possible Molecular Spiral Arms in the Protoplanetary Disk of AB Aur

    CERN Document Server

    Lin, S Y; Ho, P T P; Lim, J; Ohashi, N; Tamura, M; Fukagawa, Misato; Ho, Paul T.P.; Lim, Jeremy; Lin, Shin-Yi; Ohashi, Nagayoshi; Tamura, Motohide

    2006-01-01

    The circumstellar dust disk of the Herbig Ae star AB Aur has been found to exhibit complex spiral-like structures in the near-IR image obtained with the Subaru Telescope. We present maps of the disk in both 12CO (3-2) and dust continuum at 345 GHz with the SMA at an angular resolution of 1.0"x0.7" (144AU x 100AU). The continuum emission traces a dust disk with a central depression and a maximum overall dimension of 450AU (FWHM). This dust disk exhibits several distinct peaks that appear to coincide with bright features in the near-IR image, in particular the brightest inner spiral arm. The CO emission traces a rotating gas disk of size 530AU x 330AU with a deprojected maximum velocity of 2.8km/s at 450AU. In contrast to the dust disk, the gas disk exhibits an intensity peak at the stellar position. Furthermore, the CO emission in several velocity channels traces the innermost spiral arm seen in the near-IR. We compare the observed spatial-kinematic structure of the CO emission to a simple model of a disk in K...

  4. Galaxy Disks are Submaximal

    CERN Document Server

    Bershady, Matthew A; Verheijen, Marc A W; Westfall, Kyle B; Andersen, David R; Swaters, Rob A

    2011-01-01

    We measure the contribution of galaxy disks to the overall gravitational potential of 30 nearly face-on intermediate-to-late-type spirals from the DiskMass Survey. The central vertical velocity dispersion of the disk stars, sigma(z,R=0), is related to the maximum rotation speed (Vmax) as sigma(z,R=0) ~ 0.26 Vmax, consistent with previous measurements for edge-on disk galaxies and a mean stellar velocity ellipsoid axial ratio sigma(z) / sigma(R) = 0.6. For reasonable values of disk oblateness, this relation implies these galaxy disks are submaximal. We find disks in our sample contribute only 15% to 30% of the dynamical mass within 2.2 disk scale-lengths (hR), with percentages increasing systematically with luminosity, rotation speed and redder color. These trends indicate the mass ratio of disk-to-total matter remains at or below 50% at 2.2 hR even for the most extreme, fast-rotating disks (Vmax > 300 km/s), of the reddest rest-frame, face-on color (B-K ~ 4 mag), and highest luminosity (M(K)<-26.5 mag). Th...

  5. The 43GHz SiO maser in the circumstellar envelope of the AGB star R Cassiopeiae

    CERN Document Server

    Assaf, K A; Richards, A M S; Gray, M D

    2011-01-01

    We present multi-epoch, total intensity, high-resolution images of 43GHz, v=1, J=1-0 SiO maser emission toward the Mira variable R Cas. In total we have 23 epochs of data for R Cas at approximate monthly intervals over an optical pulsation phase range from 0.158 to 1.78. These maps show a ring-like distribution of the maser features in a shell, which is assumed to be centred on the star at a radius of 1.6 to 2.3 times the stellar radii. It is clear from these images that the maser emission is significantly extended around the star. At some epochs a faint outer arc can be seen at 2.2 stellar radii. The intensity of the emission waxes and wanes during the stellar phase. Some maser features are seen infalling as well as outflowing. We have made initial comparisons of our data with models by Gray et. al. (2009).

  6. Rotationally-supported disks around Class I sources in Taurus: disk formation constraints

    CERN Document Server

    Harsono, Daniel; van Dishoeck, Ewine F; Hogerheijde, Michiel R; Bruderer, Simon; Persson, Magnus V; Mottram, Joseph C

    2013-01-01

    (Abridged) Disks are observed around pre-main sequence stars, but how and when they form is still heavily debated. While disks around young stellar objects have been identified through thermal dust emission, spatially and spectrally resolved molecular line observations are needed to determine their nature. We present subarcsecond observations of dust and gas toward four Class I low-mass young stellar objects in Taurus. The 13CO and C18O J=2-1 transitions at 220 GHz were observed with the Plateau de Bure Interferometer at a spatial resolution of ~0.8'' and analyzed using uv-space position velocity diagrams to determine the nature of their observed velocity radient. Rotationally supported disks (RSDs) are detected around 3 of the 4 Class I sources studied. The derived masses identify them as Stage I objects; i.e., their stellar mass is higher than their envelope and disk masses. The outer radii of the Keplerian disks toward our sample of Class I sources are 100 AU around these sources are dominated by infallin...

  7. An energetic stellar outburst accompanied by circumstellar light echoes

    CERN Document Server

    Bond, H E; Levay, Z G; Panagia, N; Sparks, W B; Starrfield, S; Wagner, R M; Corradi, R L M; Munari, U; Bond, Howard E.; Henden, Arne; Levay, Zoltan G.; Panagia, Nino; Sparks, William B.; Starrfield, Sumner

    2003-01-01

    Some classes of stars, including supernovae and novae, undergo explosive outbursts that eject stellar material into space. In 2002, the previously unknown variable star V838 Monocerotis brightened suddenly by a factor of about 10^4. Unlike a supernova or nova, V838 Mon did not explosively eject its outer layers; rather, it simply expanded to become a cool supergiant with a moderate-velocity stellar wind. Superluminal light echoes were discovered as light from the outburst propagated into surrounding, pre-existing circumstellar dust. Here we report high-resolution imaging and polarimetry of the light echoes, which allow us to set direct geometric distance limits to the object. At a distance of >6 kpc, V838 Mon at its maximum brightness was temporarily the brightest star in the Milky Way. The presence of the circumstellar dust implies that previous eruptions have occurred, and spectra show it to be a binary system. When combined with the high luminosity and unusual outburst behavior, these characteristics indic...

  8. Probing for Exoplanets Hiding in Dusty Debris Disks: Disk Imaging, Characterization, and Exploration with HST/STIS Multi-Roll Coronagraphy

    CERN Document Server

    Schneider, Glenn; Hines, Dean C; Stark, Christopher C; Debes, John H; Carson, Joe; Kuchner, Mark J; Perrin, Marshall D; Weinberger, Alycia J; Wisniewski, John P; Silverstone, Murray D; Jang-Condell, Hannah; Henning, Thomas; Woodgate, Bruce E; Serabyn, Eugene; Moro-Martin, Amaya; Tamura, Motohide; Hinz, Phillip M; Rodigas, Timothy J

    2014-01-01

    Spatially resolved scattered-light images of circumstellar (CS) debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, systemic architectures, and forces perturbing starlight-scattering CS material. Using HST/STIS optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in ten CS debris systems, and one "mature" protoplanetrary disk all with HST pedigree, using PSF-subtracted multi-roll coronagraphy. These observations probe stellocentric distances > 5 AU for the nearest stars, and simultaneously resolve disk substructures well beyond, corresponding to the giant planet and Kuiper belt regions in our Solar System. They also disclose diffuse very low-surface brightness dust at larger stellocentric distances. We present new results inclusive of fainter disks such as HD92945 confirming, and better revealing, the existence of a narrow inner...

  9. DISK EVOLUTION IN THE THREE NEARBY STAR-FORMING REGIONS OF TAURUS, CHAMAELEON, AND OPHIUCHUS

    International Nuclear Information System (INIS)

    We analyze samples of Spitzer Infrared Spectrograph spectra of T Tauri stars in the Ophiuchus, Taurus, and Chamaeleon I star-forming regions, whose median ages lie in the <1-2 Myr range. The median mid-infrared spectra of objects in these three regions are similar in shape, suggesting, on average, similar disk structures. When normalized to the same stellar luminosity, the medians follow each other closely, implying comparable mid-infrared excess emission from the circumstellar disks. We use the spectral index between 13 and 31 μm and the equivalent width of the 10 μm silicate emission feature to identify objects whose disk configuration departs from that of a continuous, optically thick accretion disk. Transitional disks, whose steep 13-31 μm spectral slope and near-IR flux deficit reveal inner disk clearing, occur with about the same frequency of a few percent in all three regions. Objects with unusually large 10 μm equivalent widths are more common (20%-30%); they could reveal the presence of disk gaps filled with optically thin dust. Based on their medians and fraction of evolved disks, T Tauri stars in Taurus and Chamaeleon I are very alike. Disk evolution sets in early, since already the youngest region, the Ophiuchus core (L1688), has more settled disks with larger grains. Our results indicate that protoplanetary disks show clear signs of dust evolution at an age of a few Myr, even as early as ∼1 Myr, but age is not the only factor determining the degree of evolution during the first few million years of a disk's lifetime.

  10. Herschel/HIFI observations of the circumstellar ammonia lines in IRC+10216

    Science.gov (United States)

    Schmidt, M. R.; He, J. H.; Szczerba, R.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Decin, L.; Justtanont, K.; Teyssier, D.; Menten, K. M.; Neufeld, D. A.; Olofsson, H.; Planesas, P.; Marston, A. P.; Sobolev, A. M.; de Koter, A.; Schöier, F. L.

    2016-08-01

    Context. A discrepancy exists between the abundance of ammonia (NH3) derived previously for the circumstellar envelope (CSE) of IRC+10216 from far-IR submillimeter rotational lines and that inferred from radio inversion or mid-infrared (MIR) absorption transitions. Aims: To address the discrepancy described above, new high-resolution far-infrared (FIR) observations of both ortho- and para-NH3 transitions toward IRC+10216 were obtained with Herschel, with the goal of determining the ammonia abundance and constraining the distribution of NH3 in the envelope of IRC+10216. Methods: We used the Heterodyne Instrument for the Far Infrared (HIFI) on board Herschel to observe all rotational transitions up to the J = 3 level (three ortho- and six para-NH3 lines). We conducted non-LTE multilevel radiative transfer modelling, including the effects of near-infrared (NIR) radiative pumping through vibrational transitions. The computed emission line profiles are compared with the new HIFI data, the radio inversion transitions, and the MIR absorption lines in the ν2 band taken from the literature. Results: We found that NIR pumping is of key importance for understanding the excitation of rotational levels of NH3. The derived NH3 abundances relative to molecular hydrogen were (2.8 ± 0.5) × 10-8 for ortho-NH3 and for para-NH3, consistent with an ortho/para ratio of 1. These values are in a rough agreement with abundances derived from the inversion transitions, as well as with the total abundance of NH3 inferred from the MIR absorption lines. To explain the observed rotational transitions, ammonia must be formed near to the central star at a radius close to the end of the wind acceleration region, but no larger than about 20 stellar radii (1σ confidence level). Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. HIFI is the Herschel Heterodyne Instrument for the Far

  11. A photospheric metal line profile analysis of hot DA white dwarfs with circumstellar material

    CERN Document Server

    Dickinson, Nathan J; Welsh, Barry Y

    2012-01-01

    Some hot DA white dwarfs have circumstellar high ion absorption features in their spectra, in addition to those originating in the photosphere. In many cases, the line profiles of these absorbing components are unresolved. Given the importance of the atmospheric composition of white dwarfs to studies of stellar evolution, extra-solar planetary systems and the interstellar medium, we examine the effect of including circumstellar line profiles in the abundance estimates of photospheric metals in six DA stars. The photospheric C and Si abundances are reduced in five cases where the circumstellar contamination is strong, though the relative weakness of the circumstellar Si IV absorption introduces minimal contamination, resulting in a small change in abundance. The inability of previous, approximate models to reproduce the photospheric line profiles here demonstrates the need for a technique that accounts for the physical line profiles of both the circumstellar and photospheric lines when modelling these blended ...

  12. REMARKS ON JOHN DISKS

    Institute of Scientific and Technical Information of China (English)

    Chu Yuming; Cheng Jinfa; Wang Gendi

    2009-01-01

    Let D R2 be a Jordan domain, D* = -R2 \\ -D, the exterior of D. In this article, the authors obtained the following results: (1) If D is a John disk, then D is an outer linearly locally connected domain; (2) If D* is a John disk, then D is an inner linearly locally connected domain; (3) A homeomorphism f: R2→R2 is a quasiconformal mapping if and only if f(D) is a John disk for any John disk D(∈)R2; and (4) If D is a bounded quasidisk, then D is a John disk, and there exists an unbounded quasidisk which is not a John disk.

  13. New Debris Disks in Nearby Young Moving Groups

    Science.gov (United States)

    Moór, A.; Kóspál, Á.; Ábrahám, P.; Balog, Z.; Csengeri, T.; Henning, Th.; Juhász, A.; Kiss, Cs.

    2016-08-01

    A significant fraction of nearby young moving group members harbor circumstellar debris dust disks. Due to their proximity and youth, these disks are attractive targets for studying the early evolution of debris dust and planetesimal belts. Here we present 70 and 160 μm observations of 31 systems in the β Pic moving group, and in the Tucana–Horologium, Columba, Carina, and Argus associations, using the Herschel Space Observatory. None of these stars were observed at far-infrared wavelengths before. Our Herschel measurements were complemented by photometry from the WISE satellite for the whole sample, and by submillimeter/millimeter continuum data for one source, HD 48370. We identified six stars with infrared excess, four of them are new discoveries. By combining our new findings with results from the literature, we examined the incidence and general characteristics of debris disks around Sun-like members of the selected groups. With their dust temperatures of groups. In terms of dust content, they resemble the hypothesized debris disk of the ancient solar system.

  14. The Impact of Stellar Model Spectra in Disk Detection

    CERN Document Server

    Sinclair, J A; Greaves, J S

    2010-01-01

    We present a study of the impact of different model groups in the detection of circumstellar debris disks. Almost all previous studies in this field have used Kurucz model spectra to predict the stellar contribution to the flux at the wavelength of observation thus determining the existence of a disk excess. Only recently have other model groups or families like Marcs and NextGen-Phoenix become available to the same extent. This study aims to determine whether the predicted stellar flux of a disk target can change with the choice of model family - can a disk excess be present in the use of one model family whilst being absent from another? A simple comparison of Kurucz model spectra with Mrcs and NextGen model spectra of identical stellar parameters was conducted and differences were present at near-infrared wavelengths. Model spectra often do not extend in wavelength to that of observation and therefore extrapolation of the spectrum is required. In extrapolation of model spectra to the Spitzer MIPS passbands...

  15. New debris disks in nearby young moving groups

    CERN Document Server

    Moór, A; Ábrahám, P; Balog, Z; Csengeri, T; Henning, Th; Juhász, A; Kiss, Cs

    2016-01-01

    A significant fraction of nearby young moving group members harbor circumstellar debris dust disks. Due to their proximity and youth, these disks are attractive targets for studying the early evolution of debris dust and planetesimal belts. Here we present 70 and 160$\\mu$m observations of 31 systems in the $\\beta$ Pic moving group, and in the Tucana-Horologium, Columba, Carina and Argus associations, using the Herschel Space Observatory. None of these stars were observed at far-infrared wavelengths before. Our Herschel measurements were complemented by photometry from the WISE satellite for the whole sample, and by submillimeter/millimeter continuum data for one source, HD 48370. We identified six stars with infrared excess, four of them are new discoveries. By combining our new findings with results from the literature, we examined the incidence and general characteristics of debris disks around Sun-like members of the selected groups. With their dust temperatures of <45 K the newly identified disks aroun...

  16. Parasitic Events in Envelope Analysis

    Directory of Open Access Journals (Sweden)

    J. Doubek

    2001-01-01

    Full Text Available Envelope analysis allows fast fault location of individual gearboxes and parts of bearings by repetition frequency determination of the mechanical catch of an amplitude-modulated signal. Systematic faults arise when using envelope analysis on a signal with strong changes. The source of these events is the range of function definition of used in convolution integral definition. This integral is used for Hilbert image calculation of analyzed signal. Overshoots (almost similar to Gibbs events on a synthetic signal using the Fourier series are result from these faults. Overshoots are caused by parasitic spectral lines in the frequency domain, which can produce faulty diagnostic analysis.This paper describes systematic arising during faults rising by signal numerical calculation using envelope analysis with Hilbert transform. It goes on to offer a mathematical analysis of these systematic faults.

  17. The reliability of approximate radiation transport methods for irradiated disk studies

    CERN Document Server

    Kuiper, Rolf

    2013-01-01

    Context: Dynamical studies of irradiated circumstellar disks require an accurate treatment of radiation transport to, for example, properly determine cooling and fragmentation properties. The radiation transport algorithm should be as fast as the (magneto-) hydrodynamics to allow for an efficient usage of computing resources. Methods: We use a setup of a central star and a slightly flared circumstellar disk. We perform simulations for a wide range of optical depths of the disk's midplane from tau(550nm) = 0.1 up to tau(810nm) = 1 million. We check the accuracy of the gray flux-limited diffusion (FLD) approximation and a gray and frequency-dependent ray-tracing plus FLD approximation. Results: 1. For moderate optical depths, a gray approximation of the stellar irradiation yields a slightly hotter inner rim and a slightly cooler midplane of the disk at larger radii, but is otherwise in agreement with the frequency-dependent treatment. 2. The gray FLD approximation fails to compute an appropriate temperature pro...

  18. Rotation-disk connection for very low mass and substellar objects in the Orion Nebula Cluster

    CERN Document Server

    Rodriguez-Ledesma, Maria V; Eislöffel, Jochen

    2010-01-01

    Angular momentum loss requires magnetic interaction between the forming star and both the circumstellar disk and the magnetically driven outflows. In order to test these predictions many authors have investigated a rotation-disk connection in pre-main sequence objects with masses larger than about 0.4Msun. For brown dwarfs this connection was not investigated as yet because there are very few samples available. We aim to extend this investigation well down into the substellar regime for our large sample of BDs in the Orion Nebula Cluster, for which we have recently measured rotational periods. In order to investigate a rotation-disk correlation, we derived near-infrared (NIR) excesses for a sample of 732 periodic variables in the Orion Nebula Cluster with masses ranging between 1.5-0.02 Msun and whose IJHK colors are available. Circumstellar NIR excesses were derived from the Delta[I-K] index. We performed our analysis in three mass bins.We found a rotation-disk correlation in the high and intermediate mass r...

  19. Detection of C3O in IRC+10216: Oxygen-Carbon chain chemistry in the outer envelope

    OpenAIRE

    Tenenbaum, E. D.; Apponi, A. J.; Ziurys, L. M.; Agúndez, Marcelino; Cernicharo, José; Pardo Carrión, Juan Ramón; Guélin, Michel

    2006-01-01

    The oxygen-bearing species C3O has been identified in the circumstellar envelope of the carbon star IRC +10216. The J = 8-->7, 9-->8, 10-->9, 14-->13, and 15-->14 transitions were detected at 2 and 3 mm using the Arizona Radio Observatory’s 12 m telescope. Measurements of the J = 9-->8, 10-->9, and 12-->11 lines were simultaneously conducted at the IRAM 30 m telescope. The line profiles of C3O are roughly U-shaped, indicating an extended shell distribution for this molecule in IRC +10216. The...

  20. Isolated unilateral disk edema

    OpenAIRE

    Varner P

    2011-01-01

    Paul VarnerJohn J Pershing VAMC, Poplar Bluff, MO, USAAbstract: Isolated unilateral disk edema is a familiar clinical presentation with myriad associations. Related, non-consensus terminology is a barrier to understanding a common pathogenesis. Mechanisms for the development of disk edema are reviewed, and a new framework for clinical differentiation of medical associations is presented.Keywords: disk edema, axoplasmic flow, clinical multiplier, optic neuritis, ischemic optic neuropathy, papi...

  1. Moisture dynamics in building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Peuhkuri, R.

    2003-07-01

    The overall scope of this Thesis 'Moisture dynamics in building envelopes' has been to characterise how the various porous insulation materials investigated performed hygro thermally under conditions similar to those in a typical building envelope. As a result of the changing temperature and moisture conditions in the exterior weather and indoor climate the materials dynamically absorb and release moisture. The complexity of the impact of these conditions on the resulting moisture transport and content of the materials has been studied in this Thesis with controlled laboratory tests. (au)

  2. Fast pulsars with disks

    Energy Technology Data Exchange (ETDEWEB)

    Michel, F.C.; Dessler, A.J.

    1983-05-05

    The observed properties of the pulsar PSR1937+214 are compared with predictions of the disk model. It is assumed that an isolated magnetized rotating neutron star is ringed by a fluid disk with a 0.00001 solar mass, and relative rotations of the star and the disk produce potential differences across the disk. A Faraday disk dynamo is also formed between the disk and the star, and allows the polar cap current to return from the disk to the star through auroral arcing. Preferential regions of the star are recipients of a return current controlled by the surface magnetic field structure, which configures the pulsing emissions. The disk model predicts the average luminosity to be 10 to the 31st erg/sec, and an emission of 3 x 10 to the 30th erg/sec was detected. Only one-millionth of the output of the emissions is in the radio region, and the X and gamma ray emissions are in the normal range for pulsars. It is concluded that PSR1937+214 behaves within the predictions of the disk model and is not a new kind of object. 9 references.

  3. HNC in Protoplanetary Disks

    CERN Document Server

    Graninger, Dawn; Qi, Chunhua; Kastner, Joel

    2015-01-01

    The distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3--2 towards the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3--2, and IRAM 30m observations of HCN and HNC 1--0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1--0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. To realize the fu...

  4. Water vapor in the protoplanetary disk of DG Tau

    CERN Document Server

    Podio, L; Codella, C; Cabrit, S; Nisini, B; Dougados, C; Sandell, G; Williams, J P; Testi, L; Thi, W -F; Woitke, P; Meijerink, R; Spaans, M; Aresu, G; Menard, F; Pinte, C

    2013-01-01

    Water is key in the evolution of protoplanetary disks and the formation of comets and icy/water planets. While high excitation water lines originating in the hot inner disk have been detected in several T Tauri stars (TTSs), water vapor from the outer disk, where most of water ice reservoir is stored, was only reported in the closeby TTS TW Hya. We present spectrally resolved Herschel/HIFI observations of the young TTS DG Tau in the ortho- and para- water ground-state transitions at 557, 1113 GHz. The lines show a narrow double-peaked profile, consistent with an origin in the outer disk, and are ~19-26 times brighter than in TW Hya. In contrast, CO and [C II] lines are dominated by emission from the envelope/outflow, which makes H2O lines a unique tracer of the disk of DG Tau. Disk modeling with the thermo-chemical code ProDiMo indicates that the strong UV field, due to the young age and strong accretion of DG Tau, irradiates a disk upper layer at 10-90 AU from the star, heating it up to temperatures of 600 K...

  5. A SELF-CONSISTENT MODEL OF THE CIRCUMSTELLAR DEBRIS CREATED BY A GIANT HYPERVELOCITY IMPACT IN THE HD 172555 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B. C.; Melosh, H. J. [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Lisse, C. M. [JHU-APL, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Chen, C. H. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Wyatt, M. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Thebault, P. [LESIA, Observatoire de Paris, F-92195 Meudon Principal Cedex (France); Henning, W. G. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Gaidos, E. [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Elkins-Tanton, L. T. [Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015 (United States); Bridges, J. C. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Morlok, A., E-mail: johns477@purdue.edu [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2012-12-10

    Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 10{sup 19} kg of submicron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at {approx}6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris disk in less than one year. However, the system's mid-infrared photometric flux, dominated by submicron grains, has been stable within 4% over the last 27 years, from the Infrared Astronomical Satellite (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that {approx}10{sup 47} molecules of SiO vapor are needed to explain an emission feature at {approx}8 {mu}m in the Spitzer IRS spectrum of HD 172555. We find that unless there are {approx}10{sup 48} atoms or 0.05 M{sub Circled-Plus} of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the {approx}8 {mu}m feature can be emission from solid SiO, which naturally occurs in submicron silicate ''smokes'' created by quickly condensing vaporized silicate.

  6. Herschel's "Cold Debris Disks": Background Galaxies or Quiescent Rims of Planetary Systems?

    Science.gov (United States)

    Krivov, A. V.; Eiroa, C.; Loehne, T.; Marshall, J. P.; Montesinos, B.; DelBurgo, C.; Absil, O.; Ardila, D.; Augereau, J.-C.; Bayo, A.; Bryden, G.; Danchi, W.; Ertel, S.; Lebreton, J.; Liseau, R.; Mora, A.; Mustill, A. J.; Mutschke, H.; Neuhaeuser, R.; Pilbratt, G. L.; Roberge, A.; Schmidt, T. O. B.; Stapelfeldt, K. R.; Thebault, Ph.; Vitense, Ch.; White, G. J.; Wolf, S.

    2013-01-01

    Infrared excesses associated with debris disk host stars detected so far peak at wavelengths around approx, 100 micron or shorter. However, 6 out of 31 excess sources studied in the Herschel Open Time Key Programme, DUNES, have been seen to show significant-and in some cases extended-excess emission at 160 micron, which is larger than the 100 micron excess. This excess emission has been attributed to circumstellar dust and has been suggested to stem from debris disks colder than those known previously. Since the excess emission of the cold disk candidates is extremely weak, challenging even the unrivaled sensitivity of Herschel, it is prudent to carefully consider whether some or even all of them may represent unrelated galactic or extragalactic emission, or even instrumental noise. We re-address these issues using several distinct methods and conclude that it is highly unlikely that none of the candidates represents a true circumstellar disk. For true disks, both the dust temperatures inferred from the spectral energy distributions and the disk radii estimated from the images suggest that the dust is nearly as cold as a blackbody. This requires the grains to be larger than approx. 100 micron, even if they are rich in ices or are composed of any other material with a low absorption in the visible. The dearth of small grains is puzzling, since collisional models of debris disks predict that grains of all sizes down to several times the radiation pressure blowout limit should be present. We explore several conceivable scenarios: transport-dominated disks, disks of low dynamical excitation, and disks of unstirred primordial macroscopic grains. Our qualitative analysis and collisional simulations rule out the first two of these scenarios, but show the feasibility of the third one. We show that such disks can indeed survive for gigayears, largely preserving the primordial size distribution. They should be composed of macroscopic solids larger than millimeters, but

  7. First spectro-interferometric survey of Be stars I. Observations and constraints on the disks geometry and kinematics

    CERN Document Server

    Meilland, Anthony; Kanaan, Samer; Stee, Philippe; Petrov, Romain

    2011-01-01

    Context. Classical Be stars are hot non-supergiant stars surrounded by a gaseous circumstellar disk responsible for the observed infrared-excess and emission lines. The phenomena involved in the disk formation still remain highly debated. Aims. To progress in the understanding of the physical process or processes responsible for the mass-ejection and test the hypothesis that they depends on the stellar parameters, we initiate a survey on the circumstellar environment of the brightest Be stars. Methods. To achieve this goal, we used spectro-interferometry, the only technique combining high spectral (R=12000) and high spatial (\\thetamin=4mas) resolutions. Observations were carried out at Paranal observatory with the VLTI/AMBER instrument. We concentrate our observations on the Br{\\gamma} emission line to be able to study the kinematics within the circumstellar disk. Our sample is composed of eight bright classical Be stars : \\alph Col, \\kappa CMa, \\omega Car, p Car, \\delta Cen, \\mu Cen, \\alpha Ara, and o Aqr. R...

  8. Sintering-induced Dust Ring Formation in Protoplanetary Disks: Application to the HL Tau Disk

    CERN Document Server

    Okuzumi, Satoshi; Sirono, Sin-iti; Kobayashi, Hiroshi; Tanaka, Hidekazu

    2015-01-01

    The latest observation of HL Tau by ALMA revealed spectacular concentric dust rings in its circumstellar disk. We attempt to explain the multiple ring structure as a consequence of aggregate sintering. Sintering is a process that reduces the sticking efficiency of dust aggregates, and takes place where the temperature is slightly below the sublimation point of some constituent material. We here present a dust growth model that incorporates sintering, and use it to simulate global dust evolution in a modeled HL Tau disk taking into account coagulation, fragmentation, and radial inward drift. We show that the aggregates collisionally disrupt and pile up at multiple locations where different volatiles cause sintering. At wavelengths of 0.87--1.3 mm, these "sintering zones" appear as bright, optically thick rings with spectral slope $\\approx$ 2, whereas the non-sintering zones as darker, optically thinner rings of spectral slope $\\approx$ 2.3--2.5, consistent with major bright and dark rings found in the HL Tau d...

  9. Apparent disk-mass reduction and planetesimal formation in gravitationally unstable disks in Class 0/I YSOs

    CERN Document Server

    Tsukamoto, Y; Kataoka, A

    2016-01-01

    We investigate the dust structure of gravitationally unstable gas disks undergoing mass accretion from the envelope, envisioning application to Class 0/I YSOs. We compute evolution of the surface density and dust size by taking into account dust collisional growth and radial drift. We find that the dust disk quickly settles into the steady state and the dust mass in the steady-state disk decreases by a factor of 1/2 to 1/3, while the radiative flux of the dust thermal emission also decreases by a factor of 1/3 to 1/5, both compared to that for a disk with ISM dust-to-gas mass ratio and micron-sized dust. We suggest that the disk mass in the Class 0/I YSOs is underestimated by factor of 1/3 to 1/5 when it is calculated from the dust thermal emission assuming an ISM dust-to-gas mass ratio and micron-sized dust opacity, and that a larger fraction of the disks in Class 0/I YSOs is gravitationally unstable than previously considered. We derive an empirical formula for the disk-mass reduction rate, which can be use...

  10. The SPHERE view of the planet-forming disk around HD 100546

    Science.gov (United States)

    Garufi, A.; Quanz, S. P.; Schmid, H. M.; Mulders, G. D.; Avenhaus, H.; Boccaletti, A.; Ginski, C.; Langlois, M.; Stolker, T.; Augereau, J.-C.; Benisty, M.; Lopez, B.; Dominik, C.; Gratton, R.; Henning, T.; Janson, M.; Ménard, F.; Meyer, M. R.; Pinte, C.; Sissa, E.; Vigan, A.; Zurlo, A.; Bazzon, A.; Buenzli, E.; Bonnefoy, M.; Brandner, W.; Chauvin, G.; Cheetham, A.; Cudel, M.; Desidera, S.; Feldt, M.; Galicher, R.; Kasper, M.; Lagrange, A.-M.; Lannier, J.; Maire, A. L.; Mesa, D.; Mouillet, D.; Peretti, S.; Perrot, C.; Salter, G.; Wildi, F.

    2016-04-01

    Context. The mechanisms governing planet formation are not fully understood. A new era of high-resolution imaging of protoplanetary disks has recently started, thanks to new instruments such as SPHERE, GPI, and ALMA. The planet formation process can now be directly studied by imaging both planetary companions embedded in disks and their effect on disk morphology. Aims: We image disk features that could be potential signs of planet-disk interaction with unprecedented spatial resolution and sensitivity. Two companion candidates have been claimed in the disk around the young Herbig Ae/Be star HD 100546. Thus, this object serves as an excellent target for our investigation of the natal environment of giant planets. Methods: We exploit the power of extreme adaptive optics operating in conjunction with the new high-contrast imager SPHERE to image HD 100546 in scattered light. We obtained the first polarized light observations of this source in the visible (with resolution as fine as 2 AU) and new H and K band total intensity images that we analyzed with the pynpoint package. Results: The disk shows a complex azimuthal morphology, where multiple scattering of photons most likely plays an important role. High brightness contrasts and arm-like structures are ubiquitous in the disk. A double-wing structure (partly due to angular differential imaging processing) resembles a morphology newly observed in inclined disks. Given the cavity size in the visible (11 AU), the CO emission associated to the planet candidate c might arise from within the circumstellar disk. We find an extended emission in the K band at the expected location of b. The surrounding large-scale region is the brightest in scattered light. There is no sign of any disk gap associated to b. Based on data collected at the European Southern Observatory, Chile (ESO Programs 095.C-0273(A) and 095.C-0298(A)).

  11. Energy efficiency of building envelope

    OpenAIRE

    V.M. Yakubson

    2014-01-01

    November, 12-13th, in Saint-Petersburg the 7th International congress "Energy efficiency. XXI century" took place. The reports were done in breakuo groups according to the various aspects of energy efficiency challenge: HVAC systems, water supply and sewerage systems, gas supply, energy metering. One of the grourps was devoted to thermophysics of buildings and energy effective design of building envelope.

  12. Outliers In Data Envelopment Analysis

    Directory of Open Access Journals (Sweden)

    Shaik Khaleel Ahamed

    2015-06-01

    Full Text Available Data Envelopment Analysis is a linear programming technique that assigns efficiency scores to firms engaged in producing similar outputs employing similar inputs. Extremely efficient firms are potential Outliers. The method developed detects Outliers, implementing Stochastic Threshold Value, with computational ease. It is useful in data filtering in BIG DATA problems.

  13. Exploring the circumstellar environment of the young eruptive star V2492 Cygni

    Science.gov (United States)

    Kóspál, Á.; Ábrahám, P.; Acosta-Pulido, J. A.; Arévalo Morales, M. J.; Balog, Z.; Carnerero, M. I.; Szegedi-Elek, E.; Farkas, A.; Henning, Th.; Kelemen, J.; Kovács, T.; Kun, M.; Marton, G.; Mészáros, Sz.; Moór, A.; Pál, A.; Sárneczky, K.; Szakáts, R.; Szalai, N.; Szing, A.; Tóth, I.; Turner, N. J.; Vida, K.

    2013-03-01

    Context. V2492 Cyg is a young eruptive star that went into outburst in 2010. The near-infrared color changes observed since the outburst peak suggest that the source belongs to a newly defined sub-class of young eruptive stars, where time-dependent accretion and variable line-of-sight extinction play a combined role in the flux changes. Aims: In order to learn about the origin of the light variations and to explore the circumstellar and interstellar environment of V2492 Cyg, we monitored the source at ten different wavelengths, between 0.55 μm and 2.2 μm from the ground and between 3.6 μm and 160 μm from space. Methods: We analyze the light curves and study the color-color diagrams via comparison with the standard reddening path. We examine the structure of the molecular cloud hosting V2492 Cyg by computing temperature and optical depth maps from the far-infrared data. Results: We find that the shapes of the light curves at different wavelengths are strictly self-similar and that the observed variability is related to a single physical process, most likely variable extinction. We suggest that the central source is episodically occulted by a dense dust cloud in the inner disk and, based on the invariability of the far-infrared fluxes, we propose that it is a long-lived rather than a transient structure. In some respects, V2492 Cyg can be regarded as a young, embedded analog of UX Orionis-type stars. Conclusions: The example of V2492 Cyg demonstrates that the light variations of young eruptive stars are not exclusively related to changing accretion. The variability provided information on an azimuthally asymmetric structural element in the inner disk. Such an asymmetric density distribution in the terrestrial zone may also have consequences for the initial conditions of planet formation. This work is based on observations made with the Herschel Space Observatory and with the Spitzer Space Telescope. Herschel is an ESA space observatory with science instruments

  14. Comparative Spectra of Oxygen-Rich vs. Carbon-Rich Circumstellar Shells: VY Canis Majoris and IRC+10216 at 215-285 GHz

    CERN Document Server

    Tenenbaum, E D; Milam, S N; Woolf, N J; Ziurys, L M

    2010-01-01

    A sensitive (1{\\sigma} rms at 1 MHz resolution ~3 mK) 1 mm spectral line survey (214.5-285.5 GHz) of VY Canis Majoris (VY CMa) and IRC+10216 has been conducted to compare the chemistries of oxygen and carbon-rich circumstellar envelopes. This study was carried out using the Submillimeter Telescope (SMT) of the Arizona Radio Observatory (ARO) with a new ALMA-type receiver. This survey is the first to chemically characterize an O-rich circumstellar shell at millimeter wavelengths. In VY CMa, 128 emission features were detected arising from 18 different molecules, and in IRC+10216, 720 lines were observed, assigned to 32 different species. The 1 mm spectrum of VY CMa is dominated by SO2 and SiS; in IRC +10216, C4H and SiC2 are the most recurrent species. Ten molecules were common to both sources: CO, SiS, SiO, CS, CN, HCN, HNC, NaCl, PN, and HCO+. Sulfur plays an important role in VY CMa, but saturated/unsaturated carbon dominates the molecular content of IRC+10216, producing CH2NH, for example. Although the mol...

  15. Flash-Heating of Circumstellar Clouds by $\\gamma$ Ray Bursts

    CERN Document Server

    Dermer, C D; Dermer, Charles D.; Boettcher, Markus

    2000-01-01

    The blast-wave model for gamma-ray bursts (GRBs) has been called intoquestion by observations of spectra from GRBs that are harder than can beproduced through optically thin synchrotron emission. If GRBs originate fromthe collapse of massive stars, then circumstellar clouds near burst sourceswill be illuminated by intense gamma radiation, and the electrons in theseclouds will be rapidly scattered to energies as large as several hundred keV.Low-energy photons that subsequently pass through the hot plasma will bescattered to higher energies, hardening the intrisic spectrum. This effectresolves the "line-of-death" objection to the synchrotron shock model.Illuminated clouds near GRBs will form relativistic plasmas containing largenumbers of electron-positron pairs that can be detected within ~ 1-2 days ofthe explosion before expanding and dissipating. Localized regions of pairannihilation radiation in the Galaxy would reveal past GRB explosions.

  16. Archival Legacy Investigation of Circumstellar Environments (ALICE). Survey results

    Science.gov (United States)

    Soummer, Remi; Choquet, Elodie; Pueyo, Laurent; Brendan Hagan, J.; Gofas-Salas, Elena; Rajan, Abhijith; Chen, Christine; Perrin, Marshall D.; Debes, John H.; Golimowski, David A.; Hines, Dean C.; N'Diaye, Mamadou; Schneider, Glenn; Mawet, Dimitri; Marois, Christian

    2016-01-01

    We report on the status of the ALICE project (Archival Legacy Investigation of Circumstellar Environments. HST/AR-12652), which consists in a consistent reanalysis of the entire HST-NICMOS coronagraphic archive with advanced post-processing techniques. Over the last two years, we have developed a sophisticated pipeline able to handle the data of the 400 stars of the archive. We present the results of the overall reduction campaign and discuss the first statistical analysis of the candidate detections. As we will deliver high-level science products to the STScI MAST archive, we are defining a new standard format for high-contrast science products, which will be compatible with every new high-contrast imaging instrument and used by the JWST coronagraphs. We present here an update and overview of the specifications of this standard.

  17. Modeling water emission from low-mass protostellar envelopes

    CERN Document Server

    van Kempen, T A; Van Dishoeck, E F; Hogerheijde, M R; Jørgensen, J K

    2008-01-01

    Within low-mass star formation, water vapor plays a key role in the chemistry and energy balance of the circumstellar material. The Herschel Space Observatory will open up the possibility to observe water lines originating from a wide range of excitation energies.Our aim is to simulate the emission of rotational water lines from envelopes characteristic of embedded low-mass protostars. A large number of parameters that influence the water line emission are explored: luminosity, density,density slope and water abundances.Both dust and water emission are modelled using full radiative transfer in spherical symmetry. The temperature profile is calculated for a given density profile. The H2O level populations and emission profiles are in turn computed with a non-LTE line code. The results are analyzed to determine the diagnostic value of different lines, and are compared with existing observations. Lines can be categorized in: (i) optically thick lines, including ground-state lines, mostly sensitive to the cold ou...

  18. Forming an O Star via Disk Accretion?

    Science.gov (United States)

    Qiu, Keping; Zhang, Qizhou; Beuther, Henrik; Fallscheer, Cassandra

    2012-09-01

    We present a study of outflow, infall, and rotation in a ~105 L ⊙ star-forming region, IRAS 18360-0537, with Submillimeter Array and IRAM 30 m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of ~80 M ⊙ and harbors two condensations, MM1 and MM2. The CO (2-1) and SiO (5-4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320 ± 50 K and a mass of ~13 M ⊙. The outflow has a gas mass of 54 M ⊙ and a dynamical timescale of 8 × 103 yr. The kinematics of the HMC are probed by high-excitation CH3OH and CH3CN lines, which are detected at subarcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P Cygni profile, and the estimated mass infall rate, 1.5 × 10-3 M ⊙ yr-1, is well comparable to that inferred from the mass outflow rate. A more detailed investigation of the kinematics of the dense gas around the HMC is obtained from the 13CO and C18O (2-1) lines; the position-velocity diagrams of the two lines are consistent with the model of a free-falling and Keplerian-like rotating envelope. The observations suggest that the protostar of a current mass ~10 M ⊙ embedded within MM1 will develop into an O star via disk accretion and envelope infall.

  19. FORMING AN O STAR VIA DISK ACCRETION?

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Keping [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Zhang Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Beuther, Henrik; Fallscheer, Cassandra, E-mail: kqiu@mpifr-bonn.mpg.de [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-09-10

    We present a study of outflow, infall, and rotation in a {approx}10{sup 5} L{sub Sun} star-forming region, IRAS 18360-0537, with Submillimeter Array and IRAM 30 m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of {approx}80 M{sub Sun} and harbors two condensations, MM1 and MM2. The CO (2-1) and SiO (5-4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320 {+-} 50 K and a mass of {approx}13 M{sub Sun }. The outflow has a gas mass of 54 M{sub Sun} and a dynamical timescale of 8 Multiplication-Sign 10{sup 3} yr. The kinematics of the HMC are probed by high-excitation CH{sub 3}OH and CH{sub 3}CN lines, which are detected at subarcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P Cygni profile, and the estimated mass infall rate, 1.5 Multiplication-Sign 10{sup -3} M{sub Sun} yr{sup -1}, is well comparable to that inferred from the mass outflow rate. A more detailed investigation of the kinematics of the dense gas around the HMC is obtained from the {sup 13}CO and C{sup 18}O (2-1) lines; the position-velocity diagrams of the two lines are consistent with the model of a free-falling and Keplerian-like rotating envelope. The observations suggest that the protostar of a current mass {approx}10 M{sub Sun} embedded within MM1 will develop into an O star via disk accretion and envelope infall.

  20. The Milky Way disk

    Science.gov (United States)

    Carraro, G.

    2015-08-01

    This review summarises the invited presentation I gave on the Milky Way disc. The idea underneath was to touch those topics that can be considered hot nowadays in the Galactic disk research: the reality of the thick disk, the spiral structure of the Milky Way, and the properties of the outer Galactic disk. A lot of work has been done in recent years on these topics, but a coherent and clear picture is still missing. Detailed studies with high quality spectroscopic data seem to support a dual Galactic disk, with a clear separation into a thin and a thick component. Much confusion and very discrepant ideas still exist concerning the spiral structure of the Milky Way. Our location in the disk makes it impossible to observe it, and we can only infer it. This process of inference is still far from being mature, and depends a lot on the selected tracers, the adopted models and their limitations, which in many cases are neither properly accounted for, nor pondered enough. Finally, there are very different opinions on the size (scale length, truncation radius) of the Galactic disk, and on the interpretation of the observed outer disk stellar populations in terms either of external entities (Monoceros, Triangulus-Andromeda, Canis Major), or as manifestations of genuine disk properties (e.g., warp and flare).

  1. A NEW DIAGNOSTIC OF THE RADIAL DENSITY STRUCTURE OF Be DISKS

    International Nuclear Information System (INIS)

    We analyze the intrinsic polarization of two classical Be stars in the process of losing their circumstellar disks via a Be to normal B star transition originally reported by Wisniewski et al. During each of five polarimetric outbursts which interrupt these disk-loss events, we find that the ratio of the polarization across the Balmer jump (BJ+/BJ-) versus the V-band polarization traces a distinct loop structure as a function of time. Since the polarization change across the Balmer jump is a tracer of the innermost disk density whereas the V-band polarization is a tracer of the total scattering mass of the disk, we suggest that such correlated loop structures in Balmer jump-V-band polarization diagrams (BJV diagrams) provide a unique diagnostic of the radial distribution of mass within Be disks. We use the three-dimensional Monte Carlo radiation transfer code HDUST to reproduce the observed clockwise loops simply by turning 'on/off' the mass decretion from the disk. We speculate that counterclockwise loop structures we observe in BJV diagrams might be caused by the mass decretion rate changing between subsequent 'on/off' sequences. Applying this new diagnostic to a larger sample of Be disk systems will provide insight into the time-dependent nature of each system's stellar decretion rate.

  2. Probing the structure and dynamics of B[e] supergiant stars' disks

    Science.gov (United States)

    Kraus, M.

    2016-08-01

    B[e] supergiants are a group of evolved massive stars in a short-lived transition phase. During this phase, these objects eject large amounts of material, which accumulates in a circumstellar ring or disk-like structure, revolving around the star on Keplerian orbits. In most objects, the disks seem to be stable over many decades. This guarantees these disks as ideal chemical laboratories to study molecule formation and dust condensation. Combining high-resolution optical and infrared spectroscopic data allows to search for emission features that trace the disk structure, kinematics, and chemical composition at different distances from the star. Certain forbidden emission lines of singly ionized or neutral metals, such as [Caii] and [Oi], are ideal tracers for the innermost gaseous (atomic) regions. Farther out, molecules form. While first-overtone bands of carbon monoxide (CO) mark the hot, inner rim of the molecular disk, more molecules are expected to form and to fill the space between the CO emitting region and the dust condensation zone. Observing campaigns have been initiated to search for these molecules and their emission features, in order to construct a global picture of the properties of the disks around B[e] supergiants. This paper presents an overview of the status of our knowledge about the structure and kinematics of B[e] supergiant stars' disks, based on currently available information from different observational tracers.

  3. Planetesimals in Debris Disks

    CERN Document Server

    Youdin, Andrew N

    2015-01-01

    Planetesimals form in gas-rich protoplanetary disks around young stars. However, protoplanetary disks fade in about 10 Myr. The planetesimals (and also many of the planets) left behind are too dim to study directly. Fortunately, collisions between planetesimals produce dusty debris disks. These debris disks trace the processes of terrestrial planet formation for 100 Myr and of exoplanetary system evolution out to 10 Gyr. This chapter begins with a summary of planetesimal formation as a prelude to the epoch of planetesimal destruction. Our review of debris disks covers the key issues, including dust production and dynamics, needed to understand the observations. Our discussion of extrasolar debris keeps an eye on similarities to and differences from Solar System dust.

  4. Radio pulsar disk electrodynamics

    Science.gov (United States)

    Michel, F. C.

    1983-01-01

    Macroscopic physics are discussed for the case of a disk close to an isolated, magnetized, rotating neutron star that acts as a Faraday disk dynamo, while the disk acts as both a load and a neutral sheet. This sheet allows the polar cap current to return to the neutron star, splitting a dipolar field into two monopolar halves. The dominant energy loss is from the stellar wind torque, and the next contribution is dissipation in the auroral zones, where the current returns to the star in a 5 cm-thick sheet. The disk itself may be a source of visible radiation comparable to that in pulsed radio frequency emission. As the pulsar ages, the disk expands and narrows into a ring which, it is suggested, may lead to a cessation of pulsed emission at periods of a few sec.

  5. Disk formation in oblate B[e] stars

    CERN Document Server

    Araya, I; Curé, M

    2016-01-01

    We investigate the possible role of line-driven winds in the circumstellar envelope in B[e] stars, mainly the role of the $\\Omega$-slow wind solution, which is characterized by a slower terminal velocity and higher mass-loss rate, in comparison with the standard (m-CAK) wind solution. In this work, we assume two scenarios: 1) a spherically symmetric star and 2) a scenario that considers the oblate shape, considering only the oblate correction factor. For certain values of the line force parameters (according to previous works), we obtain in both scenarios a density contrast $\\gtrsim10^{2}$ between equatorial and polar densities, characterized for a fast polar wind and a slow and denser wind when the $\\Omega$-slow wind solution is obtained. All this properties are enhanced when the oblate correction factor is included in our calculations.

  6. Thermodynamics of Giant Planet Formation: Shocking Hot Surfaces on Circumplanetary Disks

    CERN Document Server

    Szulágyi, J

    2016-01-01

    The luminosity of young giant planets can inform about their formation and accretion history. The directly imaged planets detected so far are consistent with the "hot-start" scenario of high entropy and luminosity. If nebular gas passes through a shock front before being accreted into a protoplanet, the entropy can be substantially altered. To investigate this, we present high resolution, 3D radiative hydrodynamic simulations of accreting giant planets. The accreted gas is found to fall with supersonic speed in the gap from the circumstellar disk's upper layers onto the surface of the circumplanetary disk and polar region of the protoplanet. There it shocks, creating an extended hot supercritical shock surface. This shock front is optically thick, therefore, it can conceal the planet's intrinsic luminosity beneath. The gas in the vertical influx has high entropy which when passing through the shock front decreases significantly while the gas becomes part of the disk and protoplanet. This shows that circumplan...

  7. THE EVOLUTION OF CIRCUMPLANETARY DISKS AROUND PLANETS IN WIDE ORBITS: IMPLICATIONS FOR FORMATION THEORY, OBSERVATIONS, AND MOON SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Shabram, Megan; Boley, Aaron C. [Department of Astronomy, University of Florida, 211 Bryant Space Center, Gainesville, FL 32611 (United States)

    2013-04-10

    Using radiation hydrodynamics simulations, we explore the evolution of circumplanetary disks around wide-orbit proto-gas giants. At large distances from the star ({approx}100 AU), gravitational instability followed by disk fragmentation can form low-mass substellar companions (massive gas giants and/or brown dwarfs) that are likely to host large disks. We examine the initial evolution of these subdisks and their role in regulating the growth of their substellar companions, as well as explore consequences of their interactions with circumstellar material. We find that subdisks that form in the context of GIs evolve quickly from a very massive state. Long-term accretion rates from the subdisk onto the proto-gas giant reach {approx}0.3 Jupiter masses kyr{sup -1}. We also find consistency with previous simulations, demonstrating that subdisks are truncated at {approx}1/3 of the companion's Hill radius and are thick, with (h/r) of {approx}> 0.2. The thickness of subdisks draws to question the use of thin-disk approximations for understanding the behavior of subdisks, and the morphology of subdisks has implications for the formation and extent of satellite systems. These subdisks create heating events in otherwise cold regions of the circumstellar disk and serve as planet formation beacons that can be detected by instruments such as ALMA.

  8. M Stars in the TW Hya Association: Stellar X-Rays and Disk Dissipation

    Science.gov (United States)

    Kastner, Joel H.; Principe, David A.; Punzi, Kristina; Stelzer, Beate; Gorti, Uma; Pascucci, Ilaria; Argiroffi, Costanza

    2016-07-01

    To investigate the potential connection between the intense X-ray emission from young low-mass stars and the lifetimes of their circumstellar planet-forming disks, we have compiled the X-ray luminosities (L X ) of M stars in the ∼8 Myr old TW Hya Association (TWA) for which X-ray data are presently available. Our investigation includes analysis of archival Chandra data for the TWA binary systems TWA 8, 9, and 13. Although our study suffers from poor statistics for stars later than M3, we find a trend of decreasing {L}X/{L}{bol} with decreasing T eff for TWA M stars, wherein the earliest-type (M0–M2) stars cluster near {log}({L}X/{L}{bol})≈ -3.0 and then {log}({L}X/{L}{bol}) decreases, and its distribution broadens, for types M4 and later. The fraction of TWA stars that display evidence for residual primordial disk material also sharply increases in this same (mid-M) spectral type regime. This apparent anticorrelation between the relative X-ray luminosities of low-mass TWA stars and the longevities of their circumstellar disks suggests that primordial disks orbiting early-type M stars in the TWA have dispersed rapidly as a consequence of their persistent large X-ray fluxes. Conversely, the disks orbiting the very lowest-mass pre-MS stars and pre-MS brown dwarfs in the Association may have survived because their X-ray luminosities and, hence, disk photoevaporation rates are very low to begin with, and then further decline relatively early in their pre-MS evolution.

  9. Role of the disk environment in the gamma-ray emission from the binary system PSR B1259-63/LS 2883

    CERN Document Server

    Sushch, Iurii

    2015-01-01

    PSR B1259-63/LS 2883 is a very high energy (VHE; E > 100 GeV) gamma-ray emitting binary consisting of a 48 ms pulsar orbiting around a Be star with a period of 3.4 years. The Be star features a circumstellar disk which is inclined with respect to the orbit in such a way that the pulsar crosses it twice every orbit. The circumstellar disk provides an additional field of target photons which may contribute to inverse Compton scattering and gamma-gamma absorption, leaving a characteristic imprint in the observed spectrum and light curve of the high energy emission. We study the signatures of Compton-supported, VHE gamma-ray induced pair cascades in the circumstellar disc of the Be star and their possible contribution to the GeV flux. We also study a possible impact of the gamma-gamma absorption in the disk on the observed TeV light curve. We show that the cumulative absorption of VHE gamma-rays in stellar and disk photon fields can explain the modulation of the flux at the periastron passage.

  10. Truncations in stellar disks

    CERN Document Server

    Van der Kruit, P C

    2000-01-01

    The presence of radial truncations in stellar disks is reviewed. There is ample evidence that many disk galaxies have relatively shaprt truncations in their disks. These often are symmetric and independent of the wavelength band of the observations. The ratio of the truncation radius R_{max} to the disk scalelength h appears often less then 4.5, as expected on a simple model for the disk collapse. Current samples of galaxies observed may however not be representative and heavily biased towards sisks witht he largest scalelengths. Many spiral galaxies also have HI warps and these generally start at the truncation radius of the stellar disk. The HI surface density suddenly becomes much flatter with radius. In some galaxies the start of the warp and the position of the disk truncation radius is accompanied by a drop in the rotation velocity. In the regiosn beyond the dis truncation in the HI layer some star formation does occur, but the heavy element abundance and the dust content are very low. All evidence is c...

  11. Origin of apparent period variations in eclipsing post-common-envelope binaries

    CERN Document Server

    Zorotovic, M

    2012-01-01

    Apparent period variations detected in several eclipsing, close-compact binaries are frequently interpreted as being caused by circumbinary giant planets. This interpretation raises the question of the origin of the potential planets that must have either formed in the primordial circumbinary disk, together with the host binary star, and survived its evolution into a close-compact binary or formed in a post-common-envelope circumbinary disk that remained bound to the post-common-envelope binary (PCEB). Here we combine current knowledge of planet formation and the statistics of giant planets around primordial and evolved binary stars with the theory of close-compact binary star evolution aiming to derive new constraints on possible formation scenarios. We compiled a comprehensive list of observed eclipsing PCEBs, estimated the fraction of systems showing apparent period variations, reconstructed the evolutionary history of the PCEBs, and performed binary population models of PCEBs to characterize their main se...

  12. Setting the Stage for Circumstellar Interaction in Core-Collapse Supernovae II: Wave-Driven Mass Loss in Supernova Progenitors

    CERN Document Server

    Shiode, Joshua H

    2013-01-01

    Supernovae (SNe) powered by interaction with circumstellar material provide evidence for intense stellar mass loss during the final years leading up to core collapse. We have argued that during and after core neon burning, internal gravity waves excited by core convection can tap into the core fusion power and transport a super-Eddington energy flux out to the stellar envelope, potentially unbinding up to ~ 1 solar mass of material. In this work, we explore the internal conditions of SN progenitors using the MESA 1-D stellar evolution code, in search of those most susceptible to wave-driven mass loss. We focus on simple, order of magnitude considerations applicable to a wide range of progenitors. Wave-driven mass loss during core neon and oxygen fusion happens preferentially in either lower mass (<~ 20 solar mass ZAMS) stars or massive, sub-solar metallicity stars. Roughly 20 per cent of the SN progenitors we survey can excite ~ 10^46 - 10^48 erg of energy in waves that can potentially drive mass loss with...

  13. New observations and models of circumstellar CO line emission of AGB stars in the Herschel SUCCESS programme

    CERN Document Server

    Danilovich, Taissa; Justtanont, K; Olofsson, H; Cerrigone, L; Bujarrabal, V; Alcolea, J; Cernicharo, J; Castro-Carrizo, A; Garcia-Lario, P; Marston, A

    2015-01-01

    CONTEXT: Asymptotic giant branch (AGB) stars are in one of the latest evolutionary stages of low to intermediate-mass stars. Their vigorous mass loss has a significant effect on the stellar evolution, and is a significant source of heavy elements and dust grains for the interstellar medium. The mass-loss rate can be well traced by carbon monoxide (CO) line emission. AIMS: We present new Herschel HIFI and IRAM 30m telescope CO line data for a sample of 53 galactic AGB stars. The lines cover a fairly large range of excitation energy from the $J=1\\to0$ line to the $J=9\\to8$ line, and even the $J=14\\to13$ line in a few cases. We perform radiative transfer modelling for 38 of these sources to estimate their mass-loss rates. METHODS: We used a radiative transfer code based on the Monte Carlo method to model the CO line emission. We assume spherically symmetric circumstellar envelopes that are formed by a constant mass-loss rate through a smoothly accelerating wind. RESULTS: We find models that are consistent across...

  14. Moisture Dynamics in Building Envelopes

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele

    2003-01-01

    and moisture conditions in the exterior weather and indoor climate the materials dynamically absorb and release moisture. The complexity of the impact of these conditions on the resulting moisture transport and content of the materials has been studied in this Thesis with controlled laboratory tests. The first...... part of the Thesis consists of a theory and literature review on the moisture storage and transport processes (Chapter 2), on the non-Fickian moisture transport (Chapter 3)and on the methods for determining the moisture properties (Chapter 4). In the second part, the conducted experimental work......The overall scope of this Thesis "Moisture dynamics in building envelopes" has been to characterise how the various porous insulation materials investigated performed hygrothermally under conditions similar to those in a typical building envelope. As a result of the changing temperature...

  15. Chemical Models of Collapsing Envelopes

    CERN Document Server

    Bergin, E A

    1999-01-01

    We discuss recent models of chemical evolution in the developing and collapsing protostellar envelopes associated with low-mass star formation. In particular, the effects of depletion of gas-phase molecules onto grain surfaces is considered. We show that during the middle to late evolutionary stages, prior to the formation of a protostar, various species selectively deplete from the gas phase. The principal pattern of selective depletions is the depletion of sulfur-bearing molecules relative to nitrogen-bearing species: NH3 and N2H+. This pattern is shown to be insensitive to the details of the dynamics and marginally sensitive to whether the grain mantle is dominated by polar or non-polar molecules. Based on these results we suggest that molecular ions are good tracers of collapsing envelopes. The effects of coupling chemistry and dynamics on the resulting physical evolution are also examined. Particular attention is paid to comparisons between models and observations.

  16. Safeguards Envelope Progress FY08

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Richard Metcalf; Aaron Bevill

    2008-09-01

    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant’s large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis.

  17. The Disk and Extraplanar Regions of NGC 55

    CERN Document Server

    Davidge, T J

    2005-01-01

    The stellar content of the nearby SB(s)m galaxy NGC 55 is investigated using images covering the visible and near-infrared wavelength regions. A well-defined plume, which stellar evolution models suggest contains stars with masses near the RSG - AGB transition, is detected in CMDs of the disk, and it is concluded that star formation in the thin disk of NGC 55 has ocurred at a significant rate for at least the past 0.1 - 0.2 Gyr. The disk also contains a large population of old (log(t_yr) ~ 10) stars, and it is argued that a stable disk has been in place in NGC 55 for a significant fraction of the age of the Universe. At projected distances in excess of 2 kpc off of the disk plane the brightest AGB stars have ages 10(+3)(-2) Gyr. Thus, despite indications that dust and gas are present in the envelope surrounding the NGC 55 disk, the AGB content suggests that recently formed stars do not occur in large numbers in the extraplanar region. The mean metallicity of extraplanar RGB stars is in excellent agreement wit...

  18. Massive accretion disks: ATCA's potential for deep impact

    Science.gov (United States)

    Beuther, Henrik; Longmore, Steven; Walsh, Andrew; Fallscheer, Cassandra

    2008-04-01

    The understanding of accretion processes and in particular of massive accretion disks is one of the most important topics in high-mass star formation. Based on our successful ATCA disk-pilot study of IRAS18089-1732 (Beuther & Walsh, ApJL in press), we now propose to investigate a larger sample of eleven disk candidates at high angular resolution (<1'') in the highly excited NH3(4,4)/(5,5) lines. These lines trace the densest and warmest regions and are hence well suited to isolate the accretion disks from their envelopes. The observation will reveal the kinematics of the rotating structures and allow us to differentiate whether the expected disks are in Keplerian rotation like their low-mass counterparts or not. Furthermore, the chosen line pair is well suited to investigate the temperature structure of the regions. Combining the kinematic and temperature information, we will derive detailed physical models of the rotation structures in young massive star-forming regions. Investigating a larger sample is the only way to characterize massive disks in a general way important for a comprehensive understanding of massive star formation. The ATCA with its excellent spatial resolution and sensitivity has the potential to make considerable impact in this field.

  19. Testing protostellar disk formation models with ALMA observations

    CERN Document Server

    Harsono, Daniel; Bruderer, Simon; Li, Zhi-Yun; Jorgensen, Jes

    2015-01-01

    Abridged: Recent simulations have explored different ways to form accretion disks around low-mass stars. We aim to present observables to differentiate a rotationally supported disk from an infalling rotating envelope toward deeply embedded young stellar objects and infer their masses and sizes. Two 3D magnetohydrodynamics (MHD) formation simulations and 2D semi-analytical model are studied. The dust temperature structure is determined through continuum radiative transfer RADMC3D modelling. A simple temperature dependent CO abundance structure is adopted and synthetic spectrally resolved submm rotational molecular lines up to $J_{\\rm u} = 10$ are simulated. All models predict similar compact components in continuum if observed at the spatial resolutions of 0.5-1$"$ (70-140 AU) typical of the observations to date. A spatial resolution of $\\sim$14 AU and high dynamic range ($> 1000$) are required to differentiate between RSD and pseudo-disk in the continuum. The peak-position velocity diagrams indicate that the...

  20. Disk-satellite interaction in disks with density gaps

    CERN Document Server

    Petrovich, Cristobal

    2012-01-01

    Gravitational coupling between a gaseous disk and an orbiting perturber leads to angular momentum exchange between them which can result in gap opening by planets in protoplanetary disks and clearing of gas by binary supermassive black holes (SMBHs) embedded in accretion disks. Understanding the co-evolution of the disk and the orbit of the perturber in these circumstances requires knowledge of the spatial distribution of the torque exerted by the latter on a highly nonuniform disk. Here we explore disk-satellite interaction in disks with gaps in linear approximation both in Fourier and in physical space, explicitly incorporating the disk non-uniformity in the fluid equations. Density gradients strongly displace the positions of Lindblad resonances in the disk (which often occur at multiple locations), and the waveforms of modes excited close to the gap edge get modified compared to the uniform disk case. The spatial distribution of the excitation torque density is found to be quite different from the existin...

  1. ABSENCE OF SIGNIFICANT COOL DISKS IN YOUNG STELLAR OBJECTS EXHIBITING REPETITIVE OPTICAL OUTBURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hauyu Baobab; Hirano, Naomi; Takami, Michihiro; Dong, Ruobing [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Galván-Madrid, Roberto; Rodríguez, Luis F.; Carrasco-González, Carlos [Instituto de Radioastronomía y Astrofísica, UNAM, A.P. 3-72, Xangari, Morelia, 58089 (Mexico); Vorobyov, Eduard I. [Department of Astrophysics, University of Vienna, Tuerkenschanzstrasse 17, A-1180, Vienna (Austria); Kóspál, Ágnes [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, 1525 Budapest (Hungary); Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States); Henning, Thomas [Max-Planck-Institut für Astronomie Königstuhl, 17 D-69117 Heidelberg (Germany); Hashimoto, Jun [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 Japan (Japan); Hasegawa, Yasuhiro, E-mail: baobabyoo@gmail.com [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2016-01-10

    We report Submillimeter Array 1.3 mm high angular resolution observations toward the four EXor-type outbursting young stellar objects VY Tau, V1118 Ori, V1143 Ori, and NY Ori. The data mostly show low dust masses M{sub dust} in the associated circumstellar disks. Among the sources, NY Ori possesses a relatively massive disk with M{sub dust} ∼ 9 × 10{sup −4}M{sub ⊙}. V1118 Ori has a marginal detection equivalent to M{sub dust} ∼ 6 × 10{sup −5}M{sub ⊙}. V1143 Ori has a non-detection also equivalent to M{sub dust} < 6 × 10{sup −5}M{sub ⊙}. For the nearest source, VY Tau, we get a surprising non-detection that provides a stringent upper limit M{sub dust} < 6 × 10{sup −6}M{sub ⊙}. We interpret our findings as suggesting that the gas and dust reservoirs that feed the short-duration, repetitive optical outbursts seen in some EXors may be limited to the small-scale, innermost region of their circumstellar disks. This hot dust may have escaped our detection limits. Follow-up, more sensitive millimeter observations are needed to improve our understanding of the triggering mechanisms of EXor-type outbursts.

  2. UV Spectroscopy of Star-Grazing Comets within the 49 Ceti Debris Disk

    CERN Document Server

    Miles, Brittany E; Welsh, Barry

    2015-01-01

    We present analysis of time-variable, shifted absorption features in far-UV spectra of the unusual 49 Ceti debris disk. This nearly edge-on disk is one of the brightest known, and is one of the very few containing detectable amounts of circumstellar gas as well as dust. In our two visits of Hubble Space Telescope STIS spectra, variable absorption features are seen on the wings of lines arising from C II and C IV, but not for any of the other circumstellar absorption lines. Similar variable features have long been seen in spectra of the well-studied $\\beta$ Pictoris debris disk and attributed to the transits of star-grazing comets. We calculate the velocity ranges and apparent column densities of the 49 Cet variable gas, which appears to be moving at velocities of tens to hundreds of km s$^{-1}$ relative to the central star. The velocities of the gas in the redshifted variable event in Visit 2 show that the maximum distances of the infalling gas at the time of transit are about 0.05 to 0.2 AU from the central ...

  3. More approximation on disks

    OpenAIRE

    Paepe, de, P.J.I.M.; Wiegerinck, J.J.O.O.

    2007-01-01

    Abstract: In this article we study the function algebra generated by z2 and g2 on a small closed disk centred at the origin of the complex plane. We prove, using a biholomorphic change of coordinates and already developed techniques in this area, that for a large class of functions g this algebra consists of all continuous functions on the disk. Keywords: 2000 Mathematics Subject Classifications: 46J10; 32E20

  4. DETECTION OF N{sub 2}D{sup +} IN A PROTOPLANETARY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jane; Öberg, Karin I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-08-20

    Observations of deuterium fractionation in the solar system, and in interstellar and circumstellar material, are commonly used to constrain the formation environment of volatiles. Toward protoplanetary disks, this approach has been limited by the small number of detected deuterated molecules, i.e., DCO{sup +} and DCN. Based on ALMA Cycle 2 observations toward the disk around the T Tauri star AS 209, we report the first detection of N{sub 2}D{sup +} (J = 3–2) in a protoplanetary disk. These data are used together with previous Submillimeter Array observations of N{sub 2}H{sup +} (J = 3–2) to estimate a disk-averaged D/H ratio of 0.3–0.5, an order of magnitude higher than disk-averaged ratios previously derived for DCN/HCN and DCO{sup +}/HCO{sup +} around other young stars. The high fractionation in N{sub 2}H{sup +} is consistent with model predictions. The presence of abundant N{sub 2}D{sup +} toward AS 209 also suggests that N{sub 2}D{sup +} and the N{sub 2}D{sup +}/N{sub 2}H{sup +} ratio can be developed into effective probes of deuterium chemistry, kinematics, and ionization processes outside the CO snow line of disks.

  5. Five Debris Disks Newly Revealed in Scattered Light from the HST NICMOS Archive

    CERN Document Server

    Soummer, Rémi; Pueyo, Laurent; Choquet, Élodie; Chen, Christine; Golimowski, David A; Hagan, J Brendan; Mittal, Tushar; Moerchen, Margaret; N'Diaye, Mamadou; Rajan, Abhijith; Wolff, Schuyler; Debes, John; Hines, Dean C; Schneider, Glenn

    2014-01-01

    We have spatially resolved five debris disks (HD 30447, HD 35841, HD 141943, HD 191089, and HD 202917) for the first time in near-infrared scattered light by reanalyzing archival Hubble Space Telescope (HST)/NICMOS coronagraphic images obtained between 1999 and 2006. One of these disks (HD 202917) was previously resolved at visible wavelengths using HST/Advanced Camera for Surveys. To obtain these new disk images, we performed advanced point-spread function subtraction based on the Karhunen-Loeve Image Projection (KLIP) algorithm on recently reprocessed NICMOS data with improved detector artifact removal (Legacy Archive PSF Library And Circumstellar Environments Legacy program). Three of the disks (HD 30447, HD 35841, and HD 141943) appear edge-on, while the other two (HD 191089 and HD 202917) appear inclined. The inclined disks have been sculpted into rings; in particular, the disk around HD 202917 exhibits strong asymmetries. All five host stars are young (8-40 Myr), nearby (40-100 pc) F and G stars, and on...

  6. Modeling the HD 32297 Debris Disk With Far-Infrared Herschel Data

    Science.gov (United States)

    Donaldson, J.K.; Lebreton, J.; Roberge, A.; Augereau, J.-C.; Krivov, A. V.

    2013-01-01

    HD 32297 is a young A-star (approx. 30 Myr) 112 pc away with a bright edge-on debris disk that has been resolved in scattered light. We observed the HD 32297 debris disk in the far-infrared and sub-millimeter with the Herschel Space Observatory PACS and SPIRE instruments, populating the spectral energy distribution (SED) from 63 to 500 micron..We aimed to determine the composition of dust grains in the HD 32297 disk through SED modeling, using geometrical constraints from the resolved imaging to break the degeneracies inherent in SED modeling. We found the best fitting SED model has two components: an outer ring centered around 110 AU, seen in the scattered light images, and an inner disk near the habitable zone of the star. The outer disk appears to be composed of grains>2 micron consisting of silicates, carbonaceous material, and water ice with an abundance ratio of 1:2:3 respectively and 90% porosity. These grains appear consistent with cometary grains, implying the underlying planetesimal population is dominated by comet-like bodies. We also discuss the 3.7 sigma detection of [C ii] emission at 158 micron with the Herschel PACS instrument, making HD 32297 one of only a handful of debris disks with circumstellar gas detected

  7. ALMA continuum observations of a 30 Myr old gaseous debris disk around HD 21997

    CERN Document Server

    Moór, A; Kóspál, Á; Ábrahám, P; Apai, D; Csengeri, T; Grady, C; Henning, Th; Hughes, A M; Kiss, Cs; Pascucci, I; Schmalzl, M; Gabányi, K

    2013-01-01

    Circumstellar disks around stars older than 10 Myr are expected to be gas-poor. There are, however, two examples of old (30-40 Myr) debris-like disks containing a detectable amount of cold CO gas. Here we present ALMA and Herschel Space Observatory observations of one of these disks, around HD 21997, and study the distribution and origin of the dust and its connection to the gas. Our ALMA continuum images at 886um clearly resolve a broad ring of emission within a diameter of ~4.5 arcsec, adding HD 21997 to the dozen debris disks resolved at (sub)millimeter wavelengths. Modeling the morphology of the ALMA image with a radiative transfer code suggests inner and outer radii of ~55 and ~150 AU, and a dust mass of 0.09 M_Earth. Our data and modeling hints at an extended cold outskirt of the ring. Comparison with the morphology of the CO gas in the disk reveals an inner dust-free hole where gas nevertheless can be detected. Based on dust grain lifetimes, we propose that the dust content of this gaseous disk is of s...

  8. The Herschel/PACS view of disks around low-mass stars in Chamaleon-I

    CERN Document Server

    Olofsson, J; Henning, Th; Linz, H; Pascucci, I; Joergens, V

    2013-01-01

    Circumstellar disks are expected to be the birthplaces of planets. The potential for forming one or more planets of various masses is essentially driven by the initial mass of the disks. We present and analyze Herschel/PACS observations of disk-bearing M-type stars that belong to the young ~2 Myr old Chamaleon-I star forming region. We used the radiative transfer code RADMC to successfully model the SED of 17 M-type stars detected at PACS wavelengths. We first discuss the relatively low detection rates of M5 and later spectral type stars with respect to the PACS sensitivity, and argue their disks masses, or flaring indices, are likely to be low. For M0 to M3 stars, we find a relatively broad range of disk masses, scale heights, and flaring indices. Via a parametrization of dust stratification, we can reproduce the peak fluxes of the 10 $\\mu$m emission feature observed with Spitzer/IRS, and find that disks around M-type stars may display signs of dust sedimentation. The Herschel/PACS observations of low-mass s...

  9. Protoplanetary Disks of T T Binary Systems in the Orion Nebula Cluster

    CERN Document Server

    Daemgen, Sebastian; Petr-Gotzens, Monika G

    2012-01-01

    We present a study of protoplanetary disks in spatially resolved low-mass binary stars in the well-known Orion Nebula Cluster (ONC) in order to assess the impact of binarity on the properties of circumstellar disks and its relation to the cluster environment. This is the currently largest such study in a clustered high stellar density star forming environment. We particularly aim at determining the presence of magnetospheric accretion and dust disks for each binary component, and at measuring the overall disk frequency. We carried out spatially resolved Adaptive Optics assisted near-IR photometry and spectroscopy of 26 binaries in the ONC, and determine stellar parameters such as effective temperatures and spectral types, luminosities, masses, as well as accretion properties and near-infrared excess for individual binary components. A fraction of 40(+10/-9)% of the binary components in the sample can be inferred to be T Tauri stars possesing an accretion disk. This is marginally lower than the disk fraction o...

  10. Massive collision of planetesimals in the asymmetric disk around HD61005

    CERN Document Server

    Olofsson, J; Avenhaus, H; Caceres, C; Henning, Th; Moor, A; Milli, J; Canovas, H; Quanz, S; Schreiber, M R; Augereau, J -C; Bayo, A; Bazzon, A; Beuzit, J -L; Boccaletti, A; Buenzli, E; Casassus, S; Chauvin, G; Dominik, C; Desidera, S; Feldt, M; Gratton, R; Janson, M; Lagrange, A -M; Langlois, M; Lannier, J; Maire, A -L; Mesa, D; Pinte, C; Rouan, D; Salter, G; Thalmann, C; Vigan, A

    2016-01-01

    Debris disks offer valuable insights into the latest stages of circumstellar disk evolution, and can possibly trace the outcomes of planetary formation processes. In the age range 10 to 100 Myr, most of the gas is expected to have been removed from the system, giant planets (if any) must have already been formed, and the formation of terrestrial planets may be on-going. Pluto-sized planetesimals, and their debris released in a collisional cascade, are under their mutual gravitational influence, which may result into non-axisymmetric structures in the debris disk. High angular resolution observations are required to investigate these effects and constrain the dynamical evolution of debris disks. Furthermore, multi-wavelength observations can provide information about the dust dynamics by probing different grain sizes. Here we present new VLT/SPHERE and ALMA observations of the debris disk around the 40 Myr old solar-type star HD 61005. We resolve the disk at unprecedented resolution both in the near-infrared (...

  11. THE MASS DEPENDENCE BETWEEN PROTOPLANETARY DISKS AND THEIR STELLAR HOSTS

    International Nuclear Information System (INIS)

    We present a substantial extension of the millimeter (mm) wave continuum photometry catalog for circumstellar dust disks in the Taurus star-forming region, based on a new ''snapshot'' λ = 1.3 mm survey with the Submillimeter Array. Combining these new data with measurements in the literature, we construct a mm-wave luminosity distribution, f(Lmm), for Class II disks that is statistically complete for stellar hosts with spectral types earlier than M8.5 and has a 3σ depth of roughly 3 mJy. The resulting census eliminates a longstanding selection bias against disks with late-type hosts, and thereby demonstrates that there is a strong correlation between Lmm and the host spectral type. By translating the locations of individual stars in the Hertzsprung-Russell diagram into masses and ages, and adopting a simple conversion between Lmm and the disk mass, Md , we confirm that this correlation corresponds to a statistically robust relationship between the masses of dust disks and the stars that host them. A Bayesian regression technique is used to characterize these relationships in the presence of measurement errors, data censoring, and significant intrinsic scatter: the best-fit results indicate a typical 1.3 mm flux density of ∼25 mJy for 1 M☉ hosts and a power-law scaling Lmm∝M*1.5-2.0. We suggest that a reasonable treatment of dust temperature in the conversion from Lmm to Md favors an inherently linear Md ∝M* scaling, with a typical disk-to-star mass ratio of ∼0.2%-0.6%. The measured rms dispersion around this regression curve is ±0.7 dex, suggesting that the combined effects of diverse evolutionary states, dust opacities, and temperatures in these disks imprint a full width at half-maximum range of a factor of ∼40 on the inferred Md (or Lmm) at any given host mass. We argue that this relationship between Md and M* likely represents the origin of the inferred correlation between giant planet frequency and host star mass in the exoplanet population, and

  12. Secular resonances in circumstellar systems in binary stars

    Science.gov (United States)

    Bazso, A.; Pilat-Lohinger, E.; Eggl, S.; Funk, B.; Bancelin, D.

    2016-02-01

    Planet formation around single stars is already a complicated matter, but extrasolar planets are also present in binary and multiple star systems. We investigate circumstellar planets in binary star systems with stellar separations below 100 astronomical units. For a selection of 11 systems with at least one detected giant planet we determine the location and extension of the habitable zone (HZ), subject to the incident stellar flux from both stars. We work out the stability of additional hypothetical terrestrial planets in or close to the HZ in these systems. To study the secular dynamics we apply a semi-analytical method. This method employs a first-order perturbation theory to determine the secular frequencies of objects moving under the gravitational influence of two much more massive perturbers. The other part uses a single numerical integration of the equations of motion and a frequency analysis of the obtained time-series to determine the apsidal precession frequencies of the massive bodies. By combining these two parts we are able to find the location of the most important secular resonances and the regions of chaotic motion. We demonstrate that terrestrial planets interior to the giant planet’s orbit may suffer from a linear secular resonance that could prevent the existence of habitable planets. Contrary to this, close-in giant planets are less of a problem, but one has to take into account the general relativistic precession of the pericenter that can also lead to resonances.

  13. Supernova spectra below strong circum-stellar interaction

    CERN Document Server

    Leloudas, G; Johansson, J; Maeda, K; Moriya, T J; Nordin, J; Petrushevska, T; Silverman, J M; Sollerman, J; Stritzinger, M D; Taddia, F; Xu, D

    2013-01-01

    (abridged) We construct spectra of supernovae interacting strongly with a circum-stellar medium (CSM) by adding SN templates, a black-body continuum and an emission-line spectrum. In a Monte Carlo simulation we generate 500 spectra, distribute them to 10 different classifiers, and study how the different simulation parameters affect the appearance of the spectra. SNe IIn showing some structure over the continuum were characterized as 'SNe IInS'. It is demonstrated that the flux ratio of the underlying SN to the continuum fv is the most important parameter determining the spectral classification. Thermonuclear SNe get progressively classified as Ia-CSM, IInS and IIn as fv decreases. The transition between Ia-CSM and IInS occurs at fv~0.2-0.3. It is shown that SNe Ia-CSM are found at the magnitude range -19.5 > M > -21.6, in good agreement with observations, and that the faintest SN IIn that can hide a SN Ia has M = -20.1. The sample of SNe Ia-CSM shows an association with 91T-like SNe Ia. Our experiment does n...

  14. Circumstellar Dust Created by Terrestrial Planet Formation in HD 113766

    CERN Document Server

    Lisse, C M; Wyatt, M C; Morlok, A

    2007-01-01

    We present an analysis of the gas-poor circumstellar material in the HD 113766 binary system (F3/F5, 10 - 16 Myr), recently observed by the Spitzer Space Telescope. For our study we have used the infrared mineralogical model derived from observations of the Deep Impact experiment. We find the dust dominated by warm, fine (~1 um) particles, abundant in Mg-rich olivine, crystalline pyroxenes, amorphous silicates, Fe-rich sulfides, amorphous carbon, and colder water-ice. The warm dust material mix is akin to an inner main belt asteroid of S-type composition. The ~440 K effective temperature of the warm dust implies that the bulk of the observed material is in a narrow belt ~1.8 AU from the 4.4 L_solar central source, in the terrestrial planet-forming region and habitable zone of the system (equivalent to 0.9 AU in the solar system). The icy dust lies in 2 belts, located at 4-9 AU and at 30 - 80 AU. The lower bound of warm dust mass in 0.1 - 20 um, dn/da ~ a^-3.5 particles is very large, at least 3 x 10^20 kg, eq...

  15. A statistical analysis of circumstellar material in Type Ia supernovae

    CERN Document Server

    Maguire, Kate; Patat, Ferdinando; Gal-Yam, Avishay; Hook, Isobel M; Dhawan, Suhail; Howell, D Andrew; Mazzali, Paolo; Nugent, Peter E; Pan, Yen-Chen; Podsiadlowski, Philipp; Simon, Joshua D; Sternberg, Assaf; Valenti, Stefano; Baltay, Charles; Bersier, David; Blagorodnova, Nadejda; Chen, Ting-Wan; Ellman, Nancy; Feindt, Ulrich; Förster, Francisco; Fraser, Morgan; González-Gaitán, Santiago; Graham, Melissa L; Gutiérrez, Claudia; Hachinger, Stephan; Hadjiyska, Elena; Inserra, Cosimo; Knapic, Cristina; Laher, R R; Leloudas, Giorgos; Margheim, Steven; McKinnon, Ryan; Molinaro, Marco; Morrell, Nidia; Ofek, Eran O; Rabinowitz, David; Rest, Armin; Sand, David; Smareglia, Riccardo; Smartt, Stephen J; Taddia, Francesco; Walker, Emma S; Walton, Nicholas A; Young, David R

    2013-01-01

    A key tracer of the elusive progenitor systems of Type Ia supernovae (SNe Ia) is the detection of narrow blueshifted time-varying Na I D absorption lines, interpreted as evidence of circumstellar material (CSM) surrounding the progenitor system. The origin of this material is controversial, but the simplest explanation is that it results from previous mass loss in a system containing a white dwarf and a non-degenerate companion star. We present new single-epoch intermediate-resolution spectra of 17 low-redshift SNe Ia taken with XShooter on the ESO Very Large Telescope. Combining this sample with events from the literature, we confirm an excess (~20 per cent) of SNe Ia displaying blueshifted narrow Na I D absorption features compared to non-blueshifted Na I D features. The host galaxies of SNe Ia displaying blueshifted absorption profiles are skewed towards later-type galaxies, compared to SNe Ia that show no Na I D absorption, and SNe Ia displaying blueshifted narrow Na I D absorption features have broader l...

  16. Polarization of circumstellar bow shocks due to electron scattering

    Science.gov (United States)

    Shrestha, Manisha; Hoffman, J. L.; Neilson, H.; Ignace, R.

    2014-01-01

    Circumstellar material (CSM) provides a link between interacting supernovae and their massive progenitor stars. This CSM arises from stellar winds, outflows, or eruptions from a massive star before it explodes and can be detected around stars or supernovae with polarimetric observations. We use a Monte Carlo based radiative transfer code (SLIP) to investigate the polarization created by different models for the CSM surrounding a central source such as supernovae or massive stars. We vary parameters such as the shape, optical depth, temperature, and brightness of the CSM and compare the simulated flux and polarization behavior with observational data. We present results from new simulations that assume a bow shock shape for the CSM. Bow shocks are commonly observed around massive stars; this shape forms when a star moving more quickly than the speed of sound in the local interstellar medium emits a stellar wind that drives a shock wave into the ISM. Since a bow shock projects an aspherical shape onto the sky, light from the central source that scatters in the shock region becomes polarized. We present electron-scattering polarization maps for this geometry and discuss the behavior of observed polarization with viewing angle in the unresolved case.

  17. Unveiling the circumstellar environment towards a massive young stellar object

    CERN Document Server

    Paron, S; Ortega, M E

    2013-01-01

    As a continuation of a previous work, in which we found strong evidence of massive molecular outflows towards a massive star forming site, we present a new study of this region based on very high angular resolution observations with the aim of discovering the outflow driven mechanism. Using near-IR data acquired with Gemini-NIRI at the broad H- and Ks-bands, we study a region of 22" x 22" around the UCHII region G045.47+0.05, a massive star forming site at the distance of about 8 kpc. To image the source with the highest spatial resolution possible we employed the adaptative optic system ALTAIR, achieving an angular resolution of about 0.15". We discovered a cone-like shape nebula with an opening angle of about 90 degree extending eastwards the IR source 2MASS J19142564+1109283, a very likely MYSO. This morphology suggests a cavity that was cleared in the circumstellar material and its emission may arise from scattered continuum light, warm dust, and likely emission lines from shock-excited gas. The nebula, p...

  18. A dynamical study of the circumstellar gas in UX Orionis

    CERN Document Server

    Mora, A; Eiroa, C; Grady, C A; De Winter, D; Davies, J K; Ferlet, R; Harris, A W; Montesinos, B; Oudmaijer, R D; Palacios, J; Quirrenbach, Andreas G; Rauer, H; Alberdi, A; Cameron, A; Deeg, H J; Garzón, F; Horne, K; Merin, B; Penny, A; Schneider, J; Solano, E; Tsapras, Y; Wesselius, P R

    2002-01-01

    We present the results of a high spectral resolution study of the circumstellar (CS) gas around the intermediate mass, pre-main sequence star UX Ori. The results are based on a set of 10 echelle spectra, monitoring the star on time scales of months, days and hours. A large number of transient blueshifted and redshifted absorption features are detected in the Balmer and in many metallic lines. A multigaussian fit is applied to determine for each transient absorption the velocity, v, dispersion velocity, Delta v, and the parameter R, which provides a measure of the absorption strength of the CS gas. The time evolution of those parameters is presented and discussed. A comparison of intensity ratios among the transient absorptions suggests a solar-like composition of the CS gas. This confirms previous results and excludes a very metal-rich environment as the cause of the transient features in UX Ori. The features can be grouped by their similar velocities into 24 groups, of which 17 are redshifted and 7 blueshift...

  19. Optical Signatures of Circumstellar Interaction in Type IIP Supernovae

    CERN Document Server

    Chugai, N N; Utrobin, V P; Chugai, Nikolai N.; Chevalier, Roger A.; Utrobin, Victor P.

    2007-01-01

    We propose new diagnostics for circumstellar interaction in Type IIP supernovae by the detection of high velocity (HV) absorption features in Halpha and He I 10830 A lines during the photospheric stage. To demonstrate the method, we compute the ionization and excitation of H and He in supernova ejecta taking into account time-dependent effects and X-ray irradiation. We find that the interaction with a typical red supergiant wind should result in the enhanced excitation of the outer layers of unshocked ejecta and the emergence of corresponding HV absorption, i.e. a depression in the blue absorption wing of Halpha and a pronounced absorption of He I 10830 A at a radial velocity of about -10,000 km/s. We identify HV absorption in Halpha and He I 10830 A lines of SN 1999em and in Halpha of SN 2004dj as being due to this effect. The derived mass loss rate is close to 10^{-6} Msun/yr for both supernovae, assuming a wind velocity 10 km/s. We argue that, in addition to the HV absorption formed in the unshocked ejecta...

  20. Probing the circumstellar structure of pre-main sequence stars

    CERN Document Server

    Vink, J S; Harries, T J; Oudmaijer, R D; Oudmaijer, Rene D.

    2003-01-01

    We present Halpha spectropolarimetry of a large sample of pre-main sequence (PMS) stars of low and intermediate mass, and argue that the technique is a powerful tool in studying the circumstellar geometry around these objects. For the intermediate mass (2 -- 15 Msun) Herbig Ae/Be stars we find that 16 out of 23 show a line effect, which immediately implies that flattening is common among these objects. Furthermore, we find a significant difference in Halpha spectropolarimetry behaviour between the Herbig Be and Ae groups. For the Herbig Be stars, the concept of an electron scattering disc is shown to be a useful concept to explain the depolarizations seen in this spectral range. At lower masses, more complex Halpha polarimetry behaviour starts to appear. The concept of a compact source of Halpha emission that is formed close to the stellar surface, for instance by hot spots due to magnetospheric accretion, is postulated as a working hypothesis to qualitatively explain the Halpha spectropolarimetry behaviour a...

  1. Observation of Circumstellar Gas in the Neighborhood of RZ Psc

    Science.gov (United States)

    Potravnov, I. S.; Grinin, V. P.; Ilyin, I. V.

    2013-12-01

    The first evidence is found of the existence of circumstellar gas in the nearest surroundings of the UX Ori star RZ Psc. Spectra obtained at the Terskol Observatory, Special Astrophysical Observatory (SAO), and the Nordic Optical Telescope (NOT) reveal a strong variability in the sodium doublet lines that is indicative of a sporadic outflow of matter. Weak variability was also observed in the core of the Hα line. One nontrivial feature of this discovery is that RZ Psc is of spectral class K0 IV. This means that the star has no intrinsic energy resources for creating the observed outflow of matter. There are no emission lines in the star's spectrum which might indicate that matter is falling into the star so that the observed outflow could be related to an accretion process. We suggest, nevertheless, that the ejection of gas is related to residual (slow) accretion and is driven by a propeller mechanism. The latter is possible if the star has a sufficiently high (on the order of 103 G) magnetic field.

  2. Unifying Type II Supernova Light Curves with Dense Circumstellar Material

    CERN Document Server

    Morozova, Viktoriya; Valenti, Stefano

    2016-01-01

    A longstanding problem in the study of supernovae (SNe) has been the relationship between the Type IIP and Type IIL subclasses. Whether they come from distinct progenitors or they are from similar stars with some property that smoothly transitions from one class to another has been the subject of much debate. Here we show using one-dimensional radiation-hydrodynamic SN models that the multi-band light curves of SNe IIL are well fit by ordinary red supergiants surrounded by dense circumstellar material (CSM). The inferred extent of this material, coupled with a typical wind velocity of ~10-100 km/s, suggests enhanced activity by these stars during the last ~months to ~years of their lives, which may be connected with advanced stages of nuclear burning. Furthermore, we find that even for more plateau-like SNe that dense CSM provides a better fit to the first ~20 days of their light curves, indicating that the presence of such material may be more widespread than previously appreciated. Here we choose to model t...

  3. Excess C/O and C/H in outer protoplanetary disk gas

    CERN Document Server

    Oberg, Karin I

    2016-01-01

    The compositions of nascent planets depend on the compositions of their birth disks. In particular, the elemental compositions of Gas Giant gaseous envelopes depend on the elemental composition of the disk gas from which the envelope is accreted. Previous models demonstrated that sequential freeze-out of O and C-bearing volatiles in disks will result in an supersolar C/O ratios and subsolar C/H ratios in the gas between water and CO snowlines. This result does not take into account, however, the expected grain growth and radial drift of pebbles in disks, and the accompanying re-distribution of volatiles from the outer to the inner disk. Using a toy model we demonstrate that when drift is considered, CO is enhanced between the water and CO snowline, resulting in both supersolar C/O and C/H ratios in the disk gas in the Gas Giant formation zone. This result appears robust to the details of the disk model as long as there is substantial pebble drift across the CO snowline, and the efficiency of CO vapor diffusio...

  4. An asymmetry detected in the disk of Kappa CMa with the AMBER/VLTI

    OpenAIRE

    Meilland, Anthony; Millour, Florentin; Stee, Philippe; Domiciano De Souza, Armando; Petrov, Romain; Mourard, Denis; Jankov, Slobodan; Robbe-Dubois, Sylvie; Spang, Alain; Arisitidi, Eric; Antonelli, P.; Beckmann, U.; Bresson, Y.; Chelli, A.; Dugué, M.

    2006-01-01

    Aims. We study the geometry and kinematics of the circumstellar environment of the Be star Kappa CMa in the Br gamma emission line and its nearby continuum. Methods. We use the VLTI/AMBER instrument operating in the K band which provides a spatial resolution of about 6 mas with a spectral resolution of 1500 to study the kinematics within the disk and to infer its rotation law. In order to obtain more kinematical constraints we also use an high spectral resolution Pa beta line profile obtain i...

  5. KINEMATICS OF THE CO GAS IN THE INNER REGIONS OF THE TW Hya DISK

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfeld, Katherine A.; Qi Chunhua; Andrews, Sean M.; Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Corder, Stuartt A. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Dullemond, C. P. [Institut fuer Theoretische Astrophysik, Universitaet Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Lin Shinyi [Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Hughes, A. M. [Department of Astronomy, University of California at Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); D' Alessio, Paola [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 72-3 (Xangari), 58089 Morelia, Michoacan (Mexico); Ho, P. T. P. [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2012-10-01

    We present a detailed analysis of the spatially and spectrally resolved {sup 12}CO J = 2-1 and J = 3-2 emission lines from the TW Hya circumstellar disk, based on science verification data from the Atacama Large Millimeter/submillimeter Array (ALMA). These lines exhibit substantial emission in their high-velocity wings (with projected velocities out to 2.1 km s{sup -1}, corresponding to intrinsic orbital velocities >20 km s{sup -1}) that trace molecular gas as close as 2 AU from the central star. However, we are not able to reproduce the intensity of these wings and the general spatio-kinematic pattern of the lines with simple models for the disk structure and kinematics. Using three-dimensional non-local thermodynamic equilibrium molecular excitation and radiative transfer calculations, we construct some alternative models that successfully account for these features by modifying either (1) the temperature structure of the inner disk (inside the dust-depleted disk cavity; r < 4 AU), (2) the intrinsic (Keplerian) disk velocity field, or (3) the distribution of disk inclination angles (a warp). The latter approach is particularly compelling because a representative warped disk model qualitatively reproduces the observed azimuthal modulation of optical light scattered off the disk surface. In any model scenario, the ALMA data clearly require a substantial molecular gas reservoir located inside the region where dust optical depths are known to be substantially diminished in the TW Hya disk, in agreement with previous studies based on infrared spectroscopy. The results from these updated model prescriptions are discussed in terms of their potential physical origins, which might include dynamical perturbations from a low-mass companion with an orbital separation of a few AU.

  6. KINEMATICS OF THE CO GAS IN THE INNER REGIONS OF THE TW Hya DISK

    International Nuclear Information System (INIS)

    We present a detailed analysis of the spatially and spectrally resolved 12CO J = 2-1 and J = 3-2 emission lines from the TW Hya circumstellar disk, based on science verification data from the Atacama Large Millimeter/submillimeter Array (ALMA). These lines exhibit substantial emission in their high-velocity wings (with projected velocities out to 2.1 km s–1, corresponding to intrinsic orbital velocities >20 km s–1) that trace molecular gas as close as 2 AU from the central star. However, we are not able to reproduce the intensity of these wings and the general spatio-kinematic pattern of the lines with simple models for the disk structure and kinematics. Using three-dimensional non-local thermodynamic equilibrium molecular excitation and radiative transfer calculations, we construct some alternative models that successfully account for these features by modifying either (1) the temperature structure of the inner disk (inside the dust-depleted disk cavity; r < 4 AU), (2) the intrinsic (Keplerian) disk velocity field, or (3) the distribution of disk inclination angles (a warp). The latter approach is particularly compelling because a representative warped disk model qualitatively reproduces the observed azimuthal modulation of optical light scattered off the disk surface. In any model scenario, the ALMA data clearly require a substantial molecular gas reservoir located inside the region where dust optical depths are known to be substantially diminished in the TW Hya disk, in agreement with previous studies based on infrared spectroscopy. The results from these updated model prescriptions are discussed in terms of their potential physical origins, which might include dynamical perturbations from a low-mass companion with an orbital separation of a few AU.

  7. PHOTOIONIZATION MODELS OF THE INNER GASEOUS DISK OF THE HERBIG BE STAR BD+65 1637

    Energy Technology Data Exchange (ETDEWEB)

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D., E-mail: ppatel54@uwo.ca [Department of Physics and Astronomy, The University of Western Ontario, London, Ontario Canada N6A 3K7 (Canada)

    2016-01-20

    We attempt to constrain the physical properties of the inner, gaseous disk of the Herbig Be star BD+65 1637 using non-LTE, circumstellar disk codes and observed spectra (3700–10500 Å) from the ESPaDOnS instrument on the Canada–France–Hawaii Telescope. The photoionizing radiation of the central star is assumed to be the sole source of input energy for the disk. We model optical and near-infrared emission lines that are thought to form in this region using standard techniques that have been successful in modeling the spectra of classical Be stars. By comparing synthetic line profiles of hydrogen, helium, iron, and calcium with the observed line profiles, we try to constrain the geometry, density structure, and kinematics of the gaseous disk. Reasonable matches have been found for all line profiles individually; however, no disk density model based on a single power law for the equatorial density was able to simultaneously fit all of the observed emission lines. Among the emission lines, the metal lines, especially the Ca ii IR triplet, seem to require higher disk densities than the other lines. Excluding the Ca ii lines, a model in which the equatorial disk density falls as 10{sup −10} (R{sub *}/R){sup 3} g cm{sup −3} seen at an inclination of 45° for a 50 R{sub *} disk provides reasonable matches to the overall line shapes and strengths. The Ca ii lines seem to require a shallower drop-off as 10{sup −10} (R{sub *}/R){sup 2} g cm{sup −3} to match their strength. More complex disk density models are likely required to refine the match to the BD+65 1637 spectrum.

  8. New Circumstellar Structure in the T Tauri System

    CERN Document Server

    Kasper, M; Herbst, T M; Köhler, R

    2016-01-01

    The immediate vicinity of T Tauri was observed with the new high-contrast imaging instrument SPHERE at the VLT to resolve remaining mysteries of the system, such as the putative small edge-on disk around T Tauri Sa, and the assignment of the complex outflow patterns to the individual stars. We used SPHERE IRDIS narrow-band classical imaging in Pa$\\beta$, Br$\\gamma$, and the $\

  9. Introducing the Adaptive Convex Enveloping

    CERN Document Server

    Yu, Sheng

    2011-01-01

    Convexity, though extremely important in mathematical programming, has not drawn enough attention in the field of dynamic programming. This paper gives conditions for verifying convexity of the cost-to-go functions, and introduces an accurate, fast and reliable algorithm for solving convex dynamic programs with multivariate continuous states and actions, called Adaptive Convex Enveloping. This is a short introduction of the core technique created and used in my dissertation, so it is less formal, and misses some parts, such as literature review and reference, compared to a full journal paper.

  10. Pulsar disk systems

    Energy Technology Data Exchange (ETDEWEB)

    Michel, F.C.; Dessler, A.J.

    1981-12-15

    We argue that the radio pulsars and the X-ray pulsars differ mainly in the fact that the latter are surrounded by an accretion disk, while the former are surrounded by a fossil collapse disk presumably left over from the formation event. We attribute the difference between these two types of pulsars to a strong interaction (enforced accretion) of the X-ray pulsars with their disks as opposed to a relatively weak interaction (and negligible accretion) in the case of the radio pulsars. A number of observational problems (e.g., role of alignment, ion confinement, nulling, drifting subpulses, braking index, residuals, and the supernova association) are readily addressed in terms of the disk model. Moreover, the model is consistent with a ''hollow cone'' type of emission pattern. Rough estimates here suggest that pulsars with disks could function with magnetic fields at the neutron star surface as low as 10/sup 9/ gauss, far below that often assumed; conventional field strengths of 10/sup 12/ gauss are not excluded, however.

  11. Safeguards Envelope Progress FY10

    Energy Technology Data Exchange (ETDEWEB)

    Richard Metcalf

    2010-10-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters within which nuclear facilities may operate to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details the additions to the advanced operating techniques that will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). Research this year focused on combining disparate pieces of data together to maximize operating time with minimal downtime due to safeguards. A Chi-Square and Croiser's cumulative sum were both included as part of the new analysis. Because of a major issue with the original data, the implementation of the two new tests did not add to the existing set of tests, though limited one-variable optimization made a small increase in detection probability. Additional analysis was performed to determine if prior analysis would have caused a major security or safety operating envelope issue. It was determined that a safety issue would have resulted from the prior research, but that the security may have been increased under certain conditions.

  12. Circumplanetary disc or circumplanetary envelope?

    Science.gov (United States)

    Szulágyi, J.; Masset, F.; Lega, E.; Crida, A.; Morbidelli, A.; Guillot, T.

    2016-08-01

    We present three-dimensional simulations with nested meshes of the dynamics of the gas around a Jupiter mass planet with the JUPITER and FARGOCA codes. We implemented a radiative transfer module into the JUPITER code to account for realistic heating and cooling of the gas. We focus on the circumplanetary gas flow, determining its characteristics at very high resolution (80 per cent of Jupiter's diameter). In our nominal simulation where the temperature evolves freely by the radiative module and reaches 13000 K at the planet, a circumplanetary envelope was formed filling the entire Roche lobe. Because of our equation of state is simplified and probably overestimates the temperature, we also performed simulations with limited maximal temperatures in the planet region (1000, 1500, and 2000 K). In these fixed temperature cases circumplanetary discs (CPDs) were formed. This suggests that the capability to form a CPD is not simply linked to the mass of the planet and its ability to open a gap. Instead, the gas temperature at the planet's location, which depends on its accretion history, plays also fundamental role. The CPDs in the simulations are hot and cooling very slowly, they have very steep temperature and density profiles, and are strongly sub-Keplerian. Moreover, the CPDs are fed by a strong vertical influx, which shocks on the CPD surfaces creating a hot and luminous shock-front. In contrast, the pressure supported circumplanetary envelope is characterized by internal convection and almost stalled rotation.

  13. Evolution of envelope solitons of ionization waves

    International Nuclear Information System (INIS)

    The time evolution of a particle-like envelope soliton of ionization waves in plasma was investigated theoretically. The hydrodynamic equations of one spatial dimension were solved and the nonlinear dispersion relation was derived. For the amplitude of the wave the nonlinear Schroedinger equation was derived. Its soliton solution was interpreted as the envelope soliton which was experimentally found. The damping rate of the envelope soliton was estimated. (D.Gy.)

  14. XMM-NEWTON MONITORING OF THE CLOSE PRE-MAIN-SEQUENCE BINARY AK SCO. EVIDENCE OF TIDE-DRIVEN FILLING OF THE INNER GAP IN THE CIRCUMBINARY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Gomez de Castro, Ana Ines [S. D. Astronomia y Geodesia and Instituto de Matematica Interdisciplinar, Fac. de CC Matematicas, Universidad Complutense, E-28040 Madrid (Spain); Lopez-Santiago, Javier [Departamento de Astrofisica, Fac de CC Fisicas, Universidad Complutense, E-28040 Madrid (Spain); Talavera, Antonio [European Space Astronomy Center, Villanueva de la Canada, E-28691, Madrid (Spain); Sytov, A. Yu.; Bisikalo, D. [Institute of Astronomy of the Russian Academy of Sciences, Pyatnitskaya St. 48, 109017 Moscow (Russian Federation)

    2013-03-20

    AK Sco stands out among pre-main-sequence binaries because of its prominent ultraviolet excess, the high eccentricity of its orbit, and the strong tides driven by it. AK Sco consists of two F5-type stars that get as close as 11 R{sub *} at periastron passage. The presence of a dense (n{sub e} {approx} 10{sup 11} cm{sup -3}) extended envelope has been unveiled recently. In this article, we report the results from an XMM-Newton-based monitoring of the system. We show that at periastron, X-ray and UV fluxes are enhanced by a factor of {approx}3 with respect to the apastron values. The X-ray radiation is produced in an optically thin plasma with T {approx} 6.4 Multiplication-Sign 10{sup 6} K and it is found that the N{sub H} column density rises from 0.35 Multiplication-Sign 10{sup 21} cm{sup -2} at periastron to 1.11 Multiplication-Sign 10{sup 21} cm{sup -2} at apastron, in good agreement with previous polarimetric observations. The UV emission detected in the Optical Monitor band seems to be caused by the reprocessing of the high-energy magnetospheric radiation on the circumstellar material. Further evidence of the strong magnetospheric disturbances is provided by the detection of line broadening of 278.7 km s{sup -1} in the N V line with Hubble Space Telescope/Space Telescope Imaging Spectrograph. Numerical simulations of the mass flow from the circumbinary disk to the components have been carried out. They provide a consistent scenario with which to interpret AK Sco observations. We show that the eccentric orbit acts like a gravitational piston. At apastron, matter is dragged efficiently from the inner disk border, filling the inner gap and producing accretion streams that end as ring-like structures around each component of the system. At periastron, the ring-like structures come into contact, leading to angular momentum loss, and thus producing an accretion outburst.

  15. Chemistry in Protoplanetary Disks

    CERN Document Server

    Semenov, Dmitry

    2010-01-01

    Protoplanetary disks (PPDs) surrounding young stars are short-lived (~0.3-10 Myr), compact (~10-1000 AU) rotating reservoirs of gas and dust. PPDs are believed to be birthplaces of planetary systems, where tiny grains are assembled into pebbles, then rocks, planetesimals, and eventually planets, asteroids, and comets. Strong variations of physical conditions (temperature, density, ionization rate, UV/X-rays intensities) make a variety of chemical processes active in disks, producing simple molecules in the gas phase and complex polyatomic (organic) species on the surfaces of dust particles. In this entry, we summarize the major modern observational methods and theoretical paradigms used to investigate disk chemical composition and evolution, and present the most important results. Future research directions that will become possible with the advent of the Atacama Large Millimeter Array (ALMA) and other forthcoming observational facilities are also discussed.

  16. Supersized Disk (Artist's Concept)

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Annotated ImageData Graph This illustration compares the size of a gargantuan star and its surrounding dusty disk (top) to that of our solar system. Monstrous disks like this one were discovered around two 'hypergiant' stars by NASA's Spitzer Space Telescope. Astronomers believe these disks might contain the early 'seeds' of planets, or possibly leftover debris from planets that already formed. The hypergiant stars, called R 66 and R 126, are located about 170,000 light-years away in our Milky Way's nearest neighbor galaxy, the Large Magellanic Cloud. The stars are about 100 times wider than the sun, or big enough to encompass an orbit equivalent to Earth's. The plump stars are heavy, at 30 and 70 times the mass of the sun, respectively. They are the most massive stars known to sport disks. The disks themselves are also bloated, with masses equal to several Jupiters. The disks begin at a distance approximately 120 times greater than that between Earth and the sun, or 120 astronomical units, and terminate at a distance of about 2,500 astronomical units. Hypergiant stars are the puffed-up, aging descendants of the most massive class of stars, called 'O' stars. The stars are so massive that their cores ultimately collapse under their own weight, triggering incredible explosions called supernovae. If any planets circled near the stars during one of these blasts, they would most likely be destroyed. The orbital distances in this picture are plotted on a logarithmic scale. This means that a given distance shown here represents proportionally larger actual distances as you move to the right. The sun and planets in our solar system have been scaled up in size for better viewing. Little Dust Grains in Giant Stellar Disks The graph above of data from NASA's Spitzer Space Telescope shows the composition of a monstrous disk of what may be planet-forming dust circling the colossal 'hypergiant' star called R 66. The disk contains

  17. Adaptive Flight Envelope Estimation and Protection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Impact Technologies, in collaboration with the Georgia Institute of Technology, proposes to develop and demonstrate an innovative flight envelope estimation and...

  18. Transitional Disks Associated with Intermediate-Mass Stars: Results of the SEEDS YSO Survey

    Science.gov (United States)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; McElwain, M.; Muto, T.; Kotani, T.; Kusakabe, N. B.; Follette, K.; Bonnefoy, M.; Feldt, M.; Sitko, M.; Takami, M.; Karr, J.; Tamura, M.

    2014-01-01

    Protoplanetary disks are where planets form, grow, and migrate to produce the diversity of exoplanet systems we observe in mature systems. Disks where this process has advanced to the stage of gap opening, and in some cases central cavity formation, have been termed pre-transitional and transitional disks in the hope that they represent intermediate steps toward planetary system formation. Recent reviews have focussed on disks where the star is of solar or sub-solar mass. In contrast to the sub-millimeter where cleared central cavities predominate, at H-band some T Tauri star transitional disks resemble primordial disks in having no indication of clearing, some show a break in the radial surface brightness profile at the inner edge of the outer disk, while others have partially to fully cleared gaps or central cavities. Recently, the Meeus Group I Herbig stars, intermediate-mass PMS stars with IR spectral energy distributions often interpreted as flared disks, have been proposed to have transitional and pre-transitional disks similar to those associated with solar-mass PMS stars, based on thermal-IR imaging, and sub-millimeter interferometry. We have investigated their appearance in scattered light as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS), obtaining H-band polarimetric imagery of 10 intermediate-mass stars with Meeus Group I disks. Augmented by other disks with imagery in the literature, the sample is now sufficiently large to explore how these disks are similar to and differ from T Tauri star disks. The disk morphologies seen in the Tauri disks are also found for the intermediate-mass star disks, but additional phenomena are found; a hallmark of these disks is remarkable individuality and diversity which does not simply correlate with disk mass or stellar properties, including age, including spiral arms in remnant envelopes, arms in the disk, asymmetrically and potentially variably shadowed outer disks, gaps, and one disk

  19. The Rise and Fall of Debris Disks: MIPS Observations of h and chi Persei and the Evolution of Mid-IR Emission from Planet Formation

    CERN Document Server

    Currie, Thayne; Balog, Zoltan; Rieke, George; Bragg, Ann; Bromley, Ben

    2007-01-01

    We describe Spitzer/MIPS observations of the double cluster, h and $\\chi$ Persei, covering a $\\sim$ 0.6 square-degree area surrounding the cores of both clusters. The data are combined with IRAC and 2MASS data to investigate $\\sim$ 616 sources from 1.25-24 $\\mu m$. We use the long-baseline $K_{s}$-[24] color to identify two populations with IR excess indicative of circumstellar material: Be stars with 24 $\\mu m$ excess from optically-thin free free emission and 17 fainter sources (J$\\sim$ 14-15) with [24] excess consistent with a circumstellar disk. The frequency of IR excess for the fainter sources increases from 4.5 $\\mu m$ through 24 $\\mu m$. The IR excess is likely due to debris from the planet formation process. The wavelength-dependent behavior is consistent with an inside-out clearing of circumstellar disks. A comparison of the 24 $\\mu m$ excess population in h and $\\chi$ Per sources with results for other clusters shows that 24 $\\mu m$ emission from debris disks 'rises' from 5 to 10 Myr, peaks at $\\si...

  20. Early Phases of Jupiter's Formation from an Evolving Disk of Solids

    Science.gov (United States)

    D'Angelo, G.; Weidenschilling, S. J.; Lissauer, J. J.; Bodenheimer, P.

    2014-12-01

    We are performing calculations of the formation of Jupiter via core nucleated accretion and gas capture. The calculations model the growth of a solid core from an evolving disk of planetesimals and the growth of a contracting gaseous envelope. We present results of the early phases of formation. The evolution of the solids accounts for growth and fragmentation, viscous and gravitational stirring, and for drag-assisted migration and velocity damping operated by the disk's gas. The envelope structure accounts for mass and energy deposition due to the ablation of planetesimals that move through the envelope. The envelope's opacity takes into account coagulation and sedimentation of dust particles released by ablating planetesimals. The core starts as a seed body of 350 km in radius, orbiting at 5.2 AU in a disk of planetesimals whose initial radii range from 15 m to 50 km. The initial surface density of the solids is 10 g/cm^2 at the seed's location. During the evolution of the solids, most of the mass resides in bodies of several tens of km in radius. These are also the planetesimals that provide most of the solids accretion to the planet. By comparing results with a calculation that does not account for the envelope bound to the core, we find that the size-dependent cross-section of the planet for the accretion of planetesimals is substantially enhanced by a low-mass, but voluminous envelope. The calculation without the envelope produces a core of 4.4 Earth masses (Mearth) after about 1 Myr, and an extrapolated mass of about 5 Mearth after 6 Myr. The full calculation with envelope yields a core of 7.3 Mearth and an envelope of 0.15 Mearth after about 0.4 Myr. At this point of the planet's evolution, the envelope accretion rate exceeds that of the core. Over the following 1 Myr, the core mass reaches about 8 Mearth and the envelope mass grows to about 4 Mearth. Support from NASA Outer Planets Research Program is gratefully acknowledged.