WorldWideScience

Sample records for circumstellar disk envelope

  1. An efficient algorithm for two-dimensional radiative transfer in axisymmetric circumstellar envelopes and disks

    CERN Document Server

    Dullemond, C P

    2000-01-01

    We present an algorithm for two-dimensional radiative transfer in axisymmetric, circumstellar media. The formal integration of the transfer equation is performed by a generalization of the short characteristics (SC) method to spherical coordinates. Accelerated Lambda Iteration (ALI) and Ng's algorithm are used to converge towards a solution. By taking a logarithmically spaced radial coordinate grid, the method has the natural capability of treating problems that span several decades in radius, in the most extreme case from the stellar radius up to parsec scale. Flux conservation is guaranteed in spherical coordinates by a particular choice of discrete photon directions and a special treatment of nearly-radially outward propagating radiation. The algorithm works well from zero up to very high optical depth, and can be used for a wide variety of transfer problems, including non-LTE line formation, dust continuum transfer and high temperature processes such as compton scattering. In this paper we focus on multip...

  2. Polarimetric microlensing of circumstellar disks

    CERN Document Server

    Sajadian, Sedighe

    2015-01-01

    We study the benefits of polarimetry observations of microlensing events to detect and characterize circumstellar disks around the microlensed stars located at the Galactic bulge. These disks which are unresolvable from their host stars make a net polarization effect due to their projected elliptical shapes. Gravitational microlensing can magnify these signals and make them be resolved. The main aim of this work is to determine what extra information about these disks can be extracted from polarimetry observations of microlensing events in addition to those given by photometry ones. Hot disks which are closer to their host stars are more likely to be detected by microlensing, owing to more contributions in the total flux. By considering this kind of disks, we show that although the polarimetric efficiency for detecting disks is similar to the photometric observation, but polarimetry observations can help to constraint the disk geometrical parameters e.g. the disk inner radius and the lens trajectory with resp...

  3. The circumstellar disk, envelope, and bi-polar outflow of the Massive Young Stellar Object W33A

    CERN Document Server

    Davies, Ben; Hoare, Melvin G; Oudmaijer, Rene D; de Wit, Willem-Jan

    2009-01-01

    The Young Stellar Object (YSO) W33A is one of the best known examples of a massive star still in the process of forming. Here we present Gemini North ALTAIR/NIFS laser-guide star adaptive-optics assisted K-band integral-field spectroscopy of W33A and its inner reflection nebula. In our data we make the first detections of a rotationally-flattened outer envelope and fast bi-polar jet of a massive YSO at near-infrared wavelengths. The predominant spectral features observed are Br-gamma, H_2, and a combination of emission and absorption from CO gas. We perform a 3-D spectro-astrometric analysis of the line emission, the first study of its kind. We find that the object's Br-gamma emission reveals evidence for a fast bi-polar jet on sub-milliarcsecond scales, which is aligned with the larger-scale outflow. The hybrid CO features can be explained as a combination of hot CO emission arising in a disk close to the central star, while cold CO absorption originates in the cooler outer envelope. Kinematic analysis of th...

  4. Small carbon chains in circumstellar envelopes

    CERN Document Server

    Hargreaves, R J; Bernath, P F

    2014-01-01

    Observations were made for a number of carbon-rich circumstellar envelopes using the Phoenix spectrograph on the Gemini South telescope to determine the abundance of small carbon chain molecules. Vibration-rotation lines of the $\

  5. Circumstellar disks around Herbig Be stars

    CERN Document Server

    Alonso-Albi, T; Bachiller, R; Neri, R; Planesas, P; Testi, L; Berne, O; Joblin, C

    2008-01-01

    We have carried out a search for circumstellar disks around Herbig Be stars using the NRAO Very Large Array (VLA) and the IRAM Plateau de Bure (PdB) interferometers. In this Paper, we present our new VLA and PdBI data on the three objects MWC 297, Z CMa and LKHa 215. We have constructed the SED from near-IR to centimeter wavelengths by adding our millimeter and centimeter data to the available data at other wavelengths, mainly Spitzer images. The whole SED has been fitted using a disk+envelope model. In addition, we have compiled all the disk millimeter observations in the literature and made some statistics. We show that the disk mass is usually only a small percentage (less than 10%) of the mass of the whole envelope in HBe stars. Concerning the disks, there are large source to source variations. Two disks of our sample, R Mon and Z CMa, have similar sizes and masses to those found in T Tauri and Herbig Ae stars. The disks around MWC 1080 and MWC 297 are, however, smaller (rout<100 AU). We have not detec...

  6. The photodissociation of CO in circumstellar envelopes

    Science.gov (United States)

    Mamon, G. A.; Glassgold, A. E.; Huggins, P. J.

    1988-01-01

    The CO photodissociation rate for the unshielded ISM is calculated using recent laboratory results which confirm that photodissociation occurs by way of line absorption. A value of 2.0 x 10 to the -10th/s, an order of magnitude higher than the rate used in the past, is obtained. The new rate and a treatment of the radiative transfer and shielding are used to develop a theory for the CO abundance in the circumstellar envelopes of cool, evolved stars, and results are presented on the spatial variation of CO, C, and C(+). It is shown that these distributions play important roles in determining the observational properties of circumstellar envelopes.

  7. The Structure of Brown Dwarf Circumstellar Disks

    OpenAIRE

    Walker, Christina; Wood, Kenneth; Lada, C. J.; Robitaille, Thomas; Bjorkman, J. E.; Whitney, Barbara

    2004-01-01

    We present synthetic spectra for circumstellar disks that are heated by radiation from a central brown dwarf. Under the assumption of vertical hydrostatic equilibrium, our models yield scaleheights for brown dwarf disks in excess of three times those derived for classical T Tauri (CTTS) disks. If the near-IR excess emission observed from brown dwarfs is indeed due to circumstellar disks, then the large scaleheights we find could have a significant impact on the optical and near-IR detectabili...

  8. The Circumstellar Disk of the Butterfly Star in Taurus

    CERN Document Server

    Wolf, S; Stapelfeldt, K R; Wolf, Sebastian; Padgett, Deborah L.; Stapelfeldt, Karl R.

    2003-01-01

    We present a model of the circumstellar environment of the so-called ``Butterfly Star'' in Taurus (IRAS 04302+2247). The appearance of this young stellar object is dominated by a large circumstellar disk seen edge-on and the light scattering lobes above the disk. The model is based on multi-wavelength continuum observations: Millimeter maps and high-resolution near-infrared images obtained with HST/NICMOS. It was found that the disk and envelope parameters are comparable with those of the circumstellar environment of other young stellar objects. A main result is that the dust properties must be different in the circumstellar disk and in the envelope: While a grain size distribution with grain radii up to 100 micron is required to reproduce the millimeter observations of the disk, the envelope is dominated by smaller grains similar to those of the interstellar medium. Preprint with high figure quality available at: http://spider.ipac.caltech.edu/staff/swolf/homepage/public/preprints/i04302.ps

  9. Modeling Protostar Envelopes and Disks Seen With ALMA

    Science.gov (United States)

    Terebey, Susan; Flores-Rivera, Lizxandra; Willacy, Karen

    2017-01-01

    Thermal continuum emission from protostars comes from both the envelope and circumstellar disk. The dust emits on a variety of spatial scales, ranging from sub-arcseconds for disks to roughly 10 arcseconds for envelopes for nearby protostars. We present models of what ALMA should detect that incorporate a self-consistent collapse solution, radiative transfer, and realistic dust properties.

  10. Hydrogen sulfide in a circumstellar envelope

    Science.gov (United States)

    Ukita, N.; Morris, M.

    1983-01-01

    A search for hydrogen sulfide in the cool circumstellar envelopes of 25 stars was made using the 1(10)-1(01) rotational line at 1.8 mm. It was detected in the bipolar nebula/OH maser OH231.8+4.2, an object having a high rate of mass loss. An approximate analysis indicates that 1/60 of the sulfur in this outflowing envelope is in the form of H2S, a fraction which may be similar to that in the atmosphere of the central star. In addition, the shape of the observed line profile is discussed in terms of a possible variation of the outflow velocity with latitude above the system's equatorial plane.

  11. Sub-Keplerian accretion onto circumstellar disks

    CERN Document Server

    Visser, R

    2010-01-01

    Models of the formation, evolution and photoevaporation of circumstellar disks are an essential ingredient in many theories of the formation of planetary systems. The ratio of disk mass over stellar mass in the circumstellar phase of a disk is largely determined by the angular momentum of the original cloud core from which the system was formed. While full 3D or 2D axisymmetric hydrodynamical models of accretion onto the disk automatically treat all aspects of angular momentum, this is not so trivial for 1D and semi-2D viscous disk models. Since 1D and semi-2D disk models are still very useful for long-term evolutionary modelling of disks with relatively little numerical effort, we investigate how the 2D nature of accretion affects the formation and evolution of the disk in such models. A proper treatment of this problem requires a correction for the sub-Keplerian velocity at which accretion takes place. We develop an update of our semi-2D time-dependent disk evolution model to properly treat the effects of s...

  12. Gravitational Instabilities in Circumstellar Disks

    CERN Document Server

    Kratter, Kaitlin M

    2016-01-01

    [Abridged] Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability, and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability, supplemented with a survey of numerical simulations that aim to capture the non-linear evolution. We emphasize the role of thermodynamics and large scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analyt...

  13. Gravitational Instabilities in Circumstellar Disks

    Science.gov (United States)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  14. Circumstellar Debris Disks: Diagnosing the Unseen Perturber

    CERN Document Server

    Nesvold, Erika R; Vican, Laura; Farr, Will M

    2016-01-01

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles' eccentricities and inclinations via the Kozai-Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai-Lidov excited disk can generate a dust disk via collisions and we compare t...

  15. Magnetic field and early evolution of circumstellar disks

    CERN Document Server

    Tsukamoto, Yusuke

    2016-01-01

    The magnetic field plays a central role in the formation and evolution of circumstellar disks. The magnetic field connects the rapidly rotating central region with the outer envelope and extracts angular momentum from the central region during gravitational collapse of the cloud core. This process is known as magnetic braking. Both analytical and multidimensional simulations have shown that disk formation is strongly suppressed by magnetic braking in moderately magnetized cloud cores in the ideal magnetohydrodynamic limit. On the other hand, recent observations have provided growing evidence of a relatively large disk several tens of astronomical units in size existing in some Class 0 young stellar objects. This introduces a serious discrepancy between the theoretical study and observations. Various physical mechanisms have been proposed to solve the problem of catastrophic magnetic braking, such as misalignment between the magnetic field and the rotation axis, turbulence, and non-ideal effect. In this paper,...

  16. Chemical history of molecules in circumstellar disks

    CERN Document Server

    Visser, Ruud; Doty, Steven D

    2011-01-01

    The chemical composition of a protoplanetary disk is determined not only by in situ chemical processes during the disk phase, but also by the history of the gas and dust before it accreted from the natal envelope. In order to understand the disk's chemical composition at the time of planet formation, especially in the midplane, one has to go back in time and retrace the chemistry to the molecular cloud that collapsed to form the disk and the central star. Here we present a new astrochemical model that aims to do just that. The model follows the core collapse and disk formation in two dimensions, which turns out to be a critical upgrade over older collapse models. We predict chemical stratification in the disk due to different physical conditions encountered along different streamlines. We argue that the disk-envelope accretion shock does not play a significant role for the material in the disk at the end of the collapse phase. Finally, our model suggests that complex organic species are formed on the grain su...

  17. An MCMC Circumstellar Disks Modeling Tool

    Science.gov (United States)

    Wolff, Schuyler; Perrin, Marshall D.; Mazoyer, Johan; Choquet, Elodie; Soummer, Remi; Ren, Bin; Pueyo, Laurent; Debes, John H.; Duchene, Gaspard; Pinte, Christophe; Menard, Francois

    2016-01-01

    We present an enhanced software framework for the Monte Carlo Markov Chain modeling of circumstellar disk observations, including spectral energy distributions and multi wavelength images from a variety of instruments (e.g. GPI, NICI, HST, WFIRST). The goal is to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in the derived properties. This modular code is designed to work with a collection of existing modeling tools, ranging from simple scripts to define the geometry for optically thin debris disks, to full radiative transfer modeling of complex grain structures in protoplanetary disks (using the MCFOST radiative transfer modeling code). The MCMC chain relies on direct chi squared comparison of model images/spectra to observations. We will include a discussion of how best to weight different observations in the modeling of a single disk and how to incorporate forward modeling from PCA PSF subtraction techniques. The code is open source, python, and available from github. Results for several disks at various evolutionary stages will be discussed.

  18. Dust Stratification in Young Circumstellar Disks

    CERN Document Server

    Rettig, T; Simon, T; Gibb, E; Balsara, D S; Tilley, D A; Kulesa, C; Simon, Theodore

    2006-01-01

    We present high-resolution infrared spectra of four YSOs (T Tau N, T Tau S, RNO 91, and HL Tau). The spectra exhibit narrow absorption lines of 12CO, 13CO, and C18O as well as broad emission lines of gas phase12CO. The narrow absorption lines of CO are shown to originate from the colder circumstellar gas. We find that the line of sight gas column densities resulting from the CO absorption lines are much higher than expected for the measured extinction for each source and suggest the gas to dust ratio is measuring the dust settling and/or grain coagulation in these extended disks. We provide a model of turbulence, dust settling and grain growth to explain the results. The techniques presented here allow us to provide some observationally-motivated bounds on accretion disk alpha in protostellar systems.

  19. Photochemistry and molecular ions in carbon-rich circumstellar envelopes

    Science.gov (United States)

    Glassgold, A. E.; Mamon, G. A.; Omont, A.; Lucas, R.

    1987-01-01

    An earlier theory of ionization of C-rich circumstellar envelopes based on the photochemical model is extended to include the temperature dependence of ion-molecule reactions with polar molecules, particularly HCN, and line self-shielding of CO dissociating radiation. The results are applied to the abundances of HCO(+) and HNC in C-rich circumstellar envelopes. With standard parameters for IRC + 10216, the model is found to be consistent with the new upper limit to the antenna temperature of the J = 1-0 line of HCO(+) obtained with the IRAM 30-m telescope. The photochemical model provides a natural explanation of the relatively large ratio of HCN to HNC observed for C-rich circumstellar envelopes, and good agreement is obtained for the H(C-13)N/HNC antenna temperature ratio measured for IRC + 10216.

  20. Rapid disappearance of a warm, dusty circumstellar disk

    CERN Document Server

    Melis, Carl; Rhee, Joseph H; Song, Inseok; Murphy, Simon J; Bessell, Michael S

    2012-01-01

    Stars form with gaseous and dusty circumstellar envelopes, which rapidly settle into disks that eventually give rise to planetary systems. Understanding the process by which these disks evolve is paramount in developing an accurate theory of planet formation that can account for the variety of planetary systems discovered so far. The formation of Earth-like planets through collisional accumulation of rocky objects within a disk has mainly been explored in theoretical and computational work in which post-collision ejecta evolution is typically ignored, although recent work has considered the fate of such material. Here we report observations of a young, Sun-like star (TYC 8241 2652 1) where infrared flux from post-collisional ejecta has decreased drastically, by a factor of about 30, over a period of less than two years. The star seems to have gone from hosting substantial quantities of dusty ejecta, in a region analogous to where the rocky planets orbit in the Solar System, to retaining at most a meagre amoun...

  1. Rapid disappearance of a warm, dusty circumstellar disk

    Science.gov (United States)

    Melis, Carl; Zuckerman, B.; Rhee, Joseph H.; Song, Inseok; Murphy, Simon J.; Bessell, Michael S.

    2012-07-01

    Stars form with gaseous and dusty circumstellar envelopes, which rapidly settle into disks that eventually give rise to planetary systems. Understanding the process by which these disks evolve is paramount in developing an accurate theory of planet formation that can account for the variety of planetary systems discovered so far. The formation of Earth-like planets through collisional accumulation of rocky objects within a disk has mainly been explored in theoretical and computational work in which post-collision ejecta evolution typically is ignored, although recent work has considered the fate of such material. Here we report observations of a young, Sun-like star (TYC 8241 2652 1) where infrared flux from post-collisional ejecta has decreased drastically, by a factor of about 30, over a period of less than two years. The star seems to have gone from hosting substantial quantities of dusty ejecta, in a region analogous to where the rocky planets orbit in the Solar System, to retaining at most a meagre amount of cooler dust. Such a phase of rapid ejecta evolution has not been previously predicted or observed, and no currently available physical model satisfactorily explains the observations.

  2. The Origin and Formation of the Circumstellar Disk

    CERN Document Server

    Machida, Masahiro N

    2010-01-01

    The formation and evolution of the circumstellar disk in the collapsing molecular cloud is investigated from the prestellar stage resolving both the molecular cloud core and the protostar itself. In the collapsing cloud, the first adiabatic core appears prior to the protostar formation. Reflecting the thermodynamics of the collapsing gas, the first core is much more massive than the protostar. When the molecular cloud has no angular momentum, the first core falls onto the protostar and disappears a few years after the protostar formation. On the other hand, when the molecular cloud has an angular momentum, the first core does not disappear even after the protostar formation, and directly evolves into the circumstellar disk with a Keplerian rotation. There are two paths for the formation of the circumstellar disk. When the initial cloud has a considerably small rotational energy, two nested disks appear just after the protostar formation. During the early main accretion phase, the inner disk increases its size...

  3. External Shaping of Circumstellar Envelopes of Evolved Stars

    Science.gov (United States)

    Cox, N. L. J.

    2015-08-01

    The circumstellar envelopes of asymptotic giant branch (AGB) stars and red supergiants (RSGs) are complex chemical and physical environments, and the specifics of their mass-loss history are important for both stellar and galactic evolution. One key aspect in this is to understand how the circumstellar medium of these stars can be shaped and affected by both internal and external mechanisms. These influences can skew our view on the (dust) chemistry and mass-loss history of these stars, and hence their role in the chemical enrichment of galaxies. This contribution focuses on the external mechanism related to the interaction between the slow dusty stellar wind and the local ambient medium. I will discuss what recent observations and hydrodynamical simulations have revealed and how these can help us learn more about AGB stars and RSGs, as well as the interstellar medium (ISM).

  4. The EXoplanetary Circumstellar Environments and Disk Explorer (EXCEDE)

    CERN Document Server

    Guyon, Olivier; Belikov, Ruslan; Tenerelli, Domenick J

    2012-01-01

    We present an overview of the EXoplanetary Circumstellar Environments and Disk Explorer (EXCEDE), selected by NASA for technology development and maturation. EXCEDE will study the formation, evolution and architectures of exoplanetary systems, and characterize circumstellar environments into stellar habitable zones. EXCEDE provides contrast-limited scattered-light detection sensitivities ~ 1000x greater than HST or JWST coronagraphs at a much smaller effective inner working angle (IWA), thus enabling the exploration and characterization of exoplanetary circumstellar disks in currently inaccessible domains. EXCEDE will utilize a laboratory demonstrated high-performance Phase Induced Amplitude Apodized Coronagraph (PIAA-C) integrated with a 70 cm diameter unobscured aperture visible light telescope. The EXCEDE PIAA-C will deliver star-to-disk augmented image contrasts of < 10E-8 and a 1.2 L/D IWA or 140 mas with a wavefront control system utilizing a 2000-element MEMS DM and fast steering mirror. EXCEDE will...

  5. Cepheids at high angular resolution: circumstellar envelope and pulsation

    Science.gov (United States)

    Gallenne, Alexandre

    2011-12-01

    In 2005, interferometric observations with VLTI/VINCI and CHARA/FLUOR revealed the existence of a circumstellar envelope (CSE) around some Cepheids. This surrounding material is particularly interesting for two reasons: it could have an impact on the distance estimates and could be linked to a past or on-going mass loss. The use of Baade-Wesselink methods for independent distance determinations could be significantly biased by the presence of these envelopes. Although their observations are difficult because of the high contrast between the photosphere of the star and the CSE, several observation techniques have the potential to improve our knowledge about their physical properties. In this thesis, I discuss in particular high angular resolution techniques that I applied to the study of several bright Galactic Cepheids. First, I used adaptive optic observations with NACO of the Cepheid RS Puppis, in order to deduce the flux ratio between the CSE and the photosphere of the star. In addition, I could carry out a statistical study of the speckle noise and inspect a possible asymmetry. Secondly, I analysed VISIR data to study the spectral energy distribution of a sample of Cepheids. These diffraction-limited images enabled me to carry out an accurate photometry in the N band and to detect an IR excess linked to the presence of a circumstellar component. On the other hand, applying a Fourier analysis I showed that some components are resolved. I then explored the K' band with the recombination instrument FLUOR for some bright Cepheids. Thanks to new set of data of Y Oph, I improved the study of its circumstellar envelope, using a ring-like model for the CSE. For two other Cepheids, U Vul and S Sge, I applied the interferometric Baade-Wesselink method in order to estimate their distance.

  6. Evidence of Dissipation of Circumstellar Disks from L-band Spectra of Bright Galactic Be Stars

    Science.gov (United States)

    Sabogal, B. E.; Ubaque, K. Y.; García-Varela, A.; Álvarez, M.; Salas, L.

    2017-01-01

    We present L-band spectra of the Be stars γ Cas, ϕ Per, 28 Tau, θ CrB, 66 Oph, o Her, and 28 Cyg, obtained through use of the CID-InSb spectrograph with the 2.1-m telescope at OAN/UNAM San Pedro Martir Observatory. This is the first report of L-band spectra of o Her and θ CrB, and of the data obtained with this spectrograph. We obtain flux ratios of hydrogen lines for these stars, finding that they have optically thin envelopes, except by 66 Oph and θ CrB, which do not show evidence of a circumstellar disk. γ Cas and ϕ Per have flux ratio values of hydrogen lines closer to the optically thick case than the other stars. We use the line flux ratio diagram and optical spectra reported in the literature to study the life cycles of the disks. We find clear evidence of the dissipating process of the envelopes of 66 Oph and 28 Cyg, i.e., they are decaying stars. 28 Tau seems to have passed by a similar process. γ Cas and ϕ Per are stable stars because their circumstellar disks do not show notorious changes for many years. Finally, the stars in a build-up phase, whose envelopes are generated after a decaying phase or for the first time, have not yet been observed in the L-band. It would be useful to monitor more Be stars to observe this class of stars that probably change from a very tenuous envelope to an optically thick circumstellar disk. The line flux ratio diagram seems to confirm that late Be stars have more tenuous disks than early-type Be stars, as they tend to be separated at the left bottom and the top right parts of the diagram, respectively. Larger samples of Be stars are needed to confirm this hypothesis through a statistical analysis.

  7. BF Orionis - Evidence for an infalling circumstellar envelope

    Science.gov (United States)

    Welty, Alan D.; Barden, Samuel C.; Huenemoerder, David P.; Ramsey, Lawrence W.

    1992-01-01

    Analysis of the optical magnitudes and Balmer lines of the Herbig Ae/Be star BF Orionis confirm that the object is an early to mid A-type star, but appears to be below the zero-age main sequence. Enhanced metal-line strengths (once thought to link BF Ori with the Am stars), line asymmetries, and radial velocities are shown to be signatures of an infalling circumstellar envelope. The possibility that BF Ori has a late-type companion is examined, and it is concluded that it does not.

  8. The ionization structure of the circumstellar envelope of Alpha Orionis

    Science.gov (United States)

    Glassgold, A. E.; Huggins, P. J.

    1986-01-01

    The physical processes which affect the ionization of the outer circumstellar envelope of Alpha Ori are analyzed and evaluated. The ultraviolet radiation fields of the chromosphere and the interstellar medium dominate the envelope, and the most common forms of all species are neutral atoms and first ions. Hydrogen recombines just outside the chromosphere, where atoms with smaller ionization potential are essentially fully ionized. The heavier ions gradually recombine with increasing distance from the star, until the interstellar radiation field reverses this trend. The electron fraction in the outer envelope is approximately equal to the abundance of all such heavy atoms, i.e., of the order of 0.0001. The analysis is applied to the case of neutral K, whose density in the envelope has been determined by scattering experiments. The theory predicts that the slope of the K I density distribution should decrease from -1.5 to -3.5 in the outer envelope. The mass loss rate of Alpha Ori implied by the K I scattering experiments is 4 x 10 to the -6th solar mass/yr.

  9. Circumplanetary disk or circumplanetary envelope?

    CERN Document Server

    Szulágyi, J; Lega, E; Crida, A; Morbidelli, A; Guillot, T

    2016-01-01

    We present three-dimensional simulations with nested meshes of the dynamics of the gas around a Jupiter mass planet with the JUPITER and FARGOCA codes. We implemented a radiative transfer module into the JUPITER code to account for realistic heating and cooling of the gas. We focus on the circumplanetary gas flow, determining its characteristics at very high resolution ($80\\%$ of Jupiter's diameter). In our nominal simulation where the temperature evolves freely by the radiative module and reaches 13000 K at the planet, a circumplanetary envelope was formed filling the entire Roche-lobe. Because of our equation of state is simplified and probably overestimates the temperature, we also performed simulations with limited maximal temperatures in the planet region (1000 K, 1500 K, and 2000 K). In these fixed temperature cases circumplanetary disks (CPDs) were formed. This suggests that the capability to form a circumplanetary disk is not simply linked to the mass of the planet and its ability to open a gap. Inste...

  10. Polarization and SEDs from Microlensing of Circumstellar Envelopes

    CERN Document Server

    Ignace, R; Bunker, C

    2008-01-01

    Microlensing surveys have proven to be tremendously fruitful in providing valuable data products for many fields of astrophysics, from eclipse lightcurves for substellar candidates to limb darkening in stellar atmospheres. We report on a program of modeling observables from microlensing of circumstellar envelopes, particularly those of red giant stars that are the most likely to show finite source effects. We will summarize work for how polarization light curves can be used to infer envelope properties and will describe recent modeling of the time dependent spectral energy distributions (SEDs) for microlensing of dusty winds. One of the most exciting developments is the possibility of measuring variable polarization from microlensing in a suitable source using the RINGO polarimeter at La Palma. Also quite interesting is the possibility of probing a dusty wind using IRAC data for a suitable source in the event that Spitzer has a ``warm'' cycle.

  11. Growth of a Protostar and a Young Circumstellar Disk with High Mass Accretion Rate onto the Disk

    CERN Document Server

    Ohtani, Takuya

    2013-01-01

    The growing process of both a young protostar and a circumstellar disk is investigated. Viscous evolution of a disk around a single star is considered with a model where a disk increases its mass by dynamically accreting envelope and simultaneously loses its mass via viscous accretion onto the central star. We focus on the circumstellar disk with high mass accretion rate onto the disk $\\dot{M}=8.512c_{\\rm s}^3/G$ as a result of dynamical collapse of rotating molecular cloud core. We study the origin of the surface density distribution and the origin of the disk-to-star mass ratio by means of numerical calculations of unsteady viscous accretion disk in one-dimensional axisymmetric model. It is shown that the radial profiles of the surface density $\\Sigma$, azimuthal velocity $v_{\\phi}$, and mass accretion rate $\\dot{M}$ in the inner region approach to the quasi-steady state. Profile of the surface density distribution in the quasi-steady state is determined as a result of angular momentum transport rather than...

  12. Grand Design Spiral Arms in A Young Forming Circumstellar Disk

    CERN Document Server

    Tomida, Kengo; Hosokawa, Takashi; Sakurai, Yuya; Lin, Chia Hui

    2016-01-01

    We study formation and long-term evolution of a circumstellar disk in a collapsing molecular cloud core using a resistive magnetohydrodynamic simulation. While the formed circumstellar disk is initially small, it grows as accretion continues and its radius becomes as large as 200 AUs toward the end of the Class-I phase. A pair of grand-design spiral arms form due to gravitational instability in the disk, and they transfer angular momentum in the highly resistive disk. Although the spiral arms disappear in a few rotations as expected in a classical theory, new spiral arms form recurrently as the disk soon becomes unstable again by gas accretion. Such recurrent spiral arms persist throughout the Class-0 and I phase. We then perform synthetic observations and compare our model with a recent high-resolution observation of a young stellar object Elias 2-27, whose circumstellar disk has grand design spiral arms. We find an excellent agreement between our theoretical model and the observation. Our model suggests tha...

  13. Modeling the Circumstellar Disk of $\\zeta$ Tauri

    OpenAIRE

    Carciofi, A. C.; Bjorkman, J. E.

    2004-01-01

    We present a model for the disk of the classical Be star $\\zeta$ Tauri. The model consists of a Keplerian rotating disk with a power-law surface density and a vertical density distribution that follows from the balance between the thermal gas pressure and the z-component of the stellar gravitation. The opening angle of such a disk is not a fixed value but increases with the distance to the star (flared disk). We use a Monte Carlo code that solves simultaneously the thermal equilibrium, the st...

  14. The circumstellar envelope of the C-rich post-AGB star HD 56126

    NARCIS (Netherlands)

    Hony, S; Tielens, AGGM; Waters, LBFM; de Koter, A

    2003-01-01

    We present a detailed study of the circumstellar envelope of the post-asymptotic giant branch "21 mum object" HD 56126. We build a detailed dust radiative transfer model of the circumstellar envelope in order to derive the dust composition and mass, and the mass-loss history of the star. To model th

  15. Detecting circumstellar disks around gravitational microlenses

    CERN Document Server

    Hundertmark, M; Dreizler, S

    2009-01-01

    We investigate the chance of detecting proto-planetary or debris disks in stars that induce microlensing events (lenses). The modification of the light curves shapes due to occultation and extinction by the disks as well as the additional gravitational deflection caused by the additional mass is considered. The magnification of gravitational microlensing events is calculated using the ray shooting method. The occultation is taken into account by neglecting or weighting the images on the lens plane according to a transmission map of the corresponding disk for a point source point lens (PSPL) model. The estimated frequency of events is obtained by taking the possible inclinations and optical depths of the disk into account. We conclude that gravitational microlensing can be used, in principle, as a tool for detecting debris disks beyond 1 kpc, but estimate that each year of the order of 1 debris disk is expected for lens stars of F, G, or K spectral type and of the order of 10 debris disks might have shown sign...

  16. Variable Circumstellar Disks: Prevalence, Timescales, and Physical Mechanisms

    Science.gov (United States)

    Burrow, Anthony; Wisniewski, John P.; Lomax, Jamie R.; Bjorkman, Karen S.; Bjorkman, Jon Eric; Covey, Kevin R.; Gerhartz, Cody; Richardson, Noel; Thao, Pa

    2017-01-01

    Rapidly rotating B-type stars often experience mass ejection that leads to the formation of a circumstellar gas disk, as diagnosed by distinct emission lines present in their spectra. The mass ejection from these stars, known as classical Be stars, sometimes slows or stops, leading to the mass falling back onto the central star and the disk dissipating. The prevalence and time-scale of such disk-loss and disk-replenishment episodes, as well as the underlying physical processes that cause the underlying mass ejection, remain unknown. We are using multi-epoch broad- and narrow-band photometric observations of 12 young open clusters to characterize the prevalence and time-scale of disk-loss and disk-replenishment episodes. We use our observations to gauge which cluster objects exhibit H-alpha emission, which is a primary indicator of Be stars in our clusters. This program is supported by NSF-AST 1411563, 1412110, and 1412135.

  17. Circumstellar disks during various evolutionary stages

    CERN Document Server

    Oudmaijer, Rene D

    2013-01-01

    Disks are ubiquitous in stellar astronomy, and play a crucial role in the formation and evolution of stars. In this contribution we present an overview of the most recent results, with emphasis on high spatial and spectral resolution. We will start with a general discussion on direct versus indirect detection of disks, and then traverse the HR diagram starting with the pre-Main Sequence and ending with evolved stars.

  18. The Velocity Structure of SN 1987A's Outer Circumstellar Envelope

    Science.gov (United States)

    Crotts, A. P. S.; Heathcote, S. R.

    1997-12-01

    We present high-resolution optical spectroscopy, (obtained with the CTIO 4-meter/echelle spectrograph over many epochs between 1989 and 1997) of the circumstellar nebula of SN 1987A, including the outer rings (within 3 arcsec of the SN), the inner (equatorial) ring, and fainter features at larger radii never studied before spectroscopically. We report velocity displacements for portions of the outer rings, up to 26 km s(-1) with respect the SN centroid velocity, with blueshifted components in the location of the southern outer ring and the redshifted portions of the northern outer ring. The largest shifts are near the SN, as predicted by a model in which the outer rings are the crowns of an expanding, bipolar nebula with the inner ring at its waist. We also confirm that the inner ring shows a velocity full-width of about 13 km s(-1) , which, along with the geometry of the rings and our outer ring velocity measurements, allows us to estimate a characteristic timescale of about 20,000 y for each of the three rings, implying that all are coeval. This contrasts with measurements by others of compositional ratios in the inner versus outer rings indicating that they were, perhaps, ejected at different times from the progenitor's star's outer envelope. Additionally, we measure the velocity of low surface brightness features at larger radii indicating that circumstellar material even farther from the SN was ejected up to 400,000 y before the explosion. Finally, we note the presence of transient emission features within the circumstellar nebula and describe their behaviour, and consider what implications our observations may have for the coming transformation of this nebula into Supernova Remnant 1987A.

  19. Molecular content of the circumstellar disk in AB Aur: First detection of SO in a circumstellar disk

    CERN Document Server

    Fuente, A; Agundez, M; Berne, O; Goicoechea, J R; Alonso-Albi, T; Marcelino, N

    2010-01-01

    Very few molecular species have been detected in circumstellar disks surrounding young stellar objects. We are carrying out an observational study of the chemistry of circumstellar disks surrounding T Tauri and Herbig Ae stars. First results of this study are presented in this note. We used the EMIR receivers recently installed at the IRAM 30m telescope to carry a sensitive search for molecular lines in the disks surrounding AB Aur, DM Tau, and LkCa 15. We detected lines of the molecules HCO+, CN, H2CO, SO, CS, and HCN toward AB Aur. In addition, we tentatively detected DCO+ and H2S lines. The line profiles suggest that the CN, HCN, H2CO, CS and SO lines arise in the disk. This makes it the first detection of SO in a circumstellar disk. We have unsuccessfully searched for SO toward DM Tau and LkCa 15, and for c-C3H2 toward AB Aur, DM Tau, and LkCa 15. Our upper limits show that contrary to all the molecular species observed so far, SO is not as abundant in DM Tau as it is in AB Aur. Our results demonstrate th...

  20. Kozai-Lidov Oscillations of Circumstellar Disks

    Science.gov (United States)

    Lubow, Stephen H.; Fu, Wen; Martin, Rebecca G.

    2015-01-01

    It has been known for over 50 years that the orbit of an object in a binary system can undergo strong tilt and eccentricity oscillations. This effect, known as the Kozai-Lidov effect, may explain several observed astronomical phenomena, including the high eccentricities observed for some extra-solar planets. Martin et al. 2014 recently reported simulation results showing that fluid disks can undergo Kozai-Lidov oscillations. Such oscillations can have important consequences on disk and planet evolution. We have continued investigating the conditions for which such oscillations are possible.

  1. The Evolutionary State of Anemic Circumstellar Disks and the Primordial-to-Debris Disk Transition

    CERN Document Server

    Currie, Thayne

    2008-01-01

    We investigate the evolution of $\\sim$ 3 Myr-old MIPS-detected circumstellar disks in IC 348 that may be in an intermediate stage between primordial, optically-thick disks of gas/dust and debris disks characteristic of the final stages of planet formation. We demonstrate that these \\textit{anemic} disks are not a homogenous class of objects corresponding to a unique evolutionary state. Rather, such disks around early (B/A) spectral type stars are most likely warm, terrestrial zone debris disks; MIPS-detected anemic disks around later (M) stars are likely \\textit{evolved primordial disks} such as transition disks in their mid-IR colors, accretion signatures, and disk luminosities. Anemic disks surrounding G and K stars contain both populations. The difference in evolutionary states between anemic disks surrounding early type vs. late-type stars is consistent with a mass-dependent evolution of circumstellar disks from the primordial disk phase through the debris disk phase. Specifically, disks characteristicall...

  2. Spectroscopic diagnostics for circumstellar disks of B[e] supergiants

    CERN Document Server

    Kraus, Michaela

    2016-01-01

    B[e] supergiants (B[e]SGs) are emission-line objects, presumably in a short-lived phase in the post-main sequence evolution of massive stars. Their intense infrared excess emission indicates large amounts of warm circumstellar dust, and the stars were longtime assumed to possess an aspherical wind consisting of a classical line-driven wind in polar direction and a dense, slow equatorial wind dubbed outflowing disk. The general properties obtained for these disks are in line with this scenario, although current theories have considerable difficulties reproducing the observed quantities. Therefore, more sophisticated observational constraints are needed. These follow from combined optical and infrared spectroscopic studies, which delivered the surprising result that the circumstellar material of B[e]SGs is concentrated in multiple rings revolving the stars on stable Keplerian orbits. Such a scenario requires new ideas for the formation mechanism, in which pulsations might play an important role.

  3. Cepheids at high angular resolution: circumstellar envelope and pulsation

    CERN Document Server

    Gallenne, Alexandre

    2011-01-01

    In 2005, interferometric observations with VLTI/VINCI and CHARA/FLUOR revealed the existence of a circumstellar envelope (CSE) around some Cepheids. This surrounding material is particularly interesting for two reasons: it could have an impact on the distance estimates and could be linked to a past or on-going mass loss. The use of Baade-Wesselink methods for independent distance determinations could be significantly biased by the presence of these envelopes. Although their observations are difficult because of the high contrast between the photosphere of the star and the CSE, several observation techniques have the potential to improve our knowledge about their physical properties. In this thesis, I discuss in particular high angular resolution techniques that I applied to the study of several bright Galactic Cepheids. First, I used adaptive optic observations with NACO of the Cepheid RS Puppis, in order to deduce the flux ratio between the CSE and the photosphere of the star. In addition, I could carry out ...

  4. The Circumstellar Disk of the Be Star $o$~Aquarii

    CERN Document Server

    Sigut, T A A; Jansen, B; Zavala, R T

    2015-01-01

    Omicron Aquarii is late-type, Be shell star with a stable and nearly symmetric H$\\alpha$ emission line. We combine H$\\alpha$ interferometric observations obtained with the Navy Precision Optical Interferometer (NPOI) covering 2007 through 2014 with H$\\alpha$ spectroscopic observations over the same period and a 2008 observation of the system's near-infrared spectral energy distribution to constrain the properties of $o$~Aqr's circumstellar disk. All observations are consistent with a circumstellar disk seen at an inclination of $75\\pm\\,3^{\\circ}$ with a position angle on the sky of $110\\pm\\,8^{\\circ}$ measured E from N. From the best-fit disk density model, we find that 90\\% of the H$\\alpha$ emission arises from within $9.5$ stellar radii, and the mass associated with this H$\\alpha$ disk is $\\sim 1.8\\times10^{-10}$ of the stellar mass and the associated angular momentum, assuming Keplerian rotation for the disk, is $\\sim 1.6\\times10^{-8}$ of the total stellar angular momentum. The occurrence of a central quas...

  5. First Evidence of Circumstellar Disks around Blue Straggler Stars

    CERN Document Server

    De Marco, O; Ouellette, J A; Zurek, D R; Shara, M M; Marco, Orsola De; Lanz, Thierry; Ouellette, John A.; Zurek, David; Shara, Michael M.

    2004-01-01

    We present an analysis of optical HST/STIS and HST/FOS spectroscopy of 6 blue stragglers found in the globular clusters M3, NGC6752 and NGC6397. These stars are a subsample of a set of ~50 blue stragglers and stars above the main sequence turn-off in four globular clusters which will be presented in an forthcoming paper. All but the 6 stars presented here can be well fitted with non-LTE model atmospheres. The 6 misfits, on the other hand, possess Balmer jumps which are too large for the effective temperatures implied by their Paschen continua. We find that our data for these stars are consistent with models only if we account for extra absorption of stellar Balmer photons by an ionized circumstellar disk. Column densities of HI and CaII are derived as are the the disks' thicknesses. This is the first time that a circumstellar disk is detected around blue stragglers. The presence of magnetically-locked disks attached to the stars has been suggested as a mechanism to lose the large angular momentum imparted by ...

  6. On the gas temperature in circumstellar disks around A stars

    CERN Document Server

    Kamp, I; Kamp, Inga; Zadelhoff, Gerd-Jan van

    2001-01-01

    In circumstellar disks or shells it is often assumed that gas and dust temperatures are equal where the latter is determined by radiative equilibrium. This paper deals with the question whether this assumption is applicable for tenous circumstellar disks around young A stars. In this paper the thin hydrostatic equilibrium models described by Kamp & Bertoldi (2000) are combined with a detailed heating/cooling balance for the gas. The most important heating and cooling processes are heating through infrared pumping, heating due to the drift velocity of dust grains, and fine structure and molecular line cooling. Throughout the whole disk gas and dust are not efficiently coupled by collisions and hence their temperatures are quite different. Most of the gas in the disk models considered here stays well below 300 K. In the temperature range below 300 K the gas chemistry is not much affected by T_gas and therefore the simplifying approximation T_gas = T_dust can be used for calculating the chemical structure of...

  7. Dust Migration and Morphology in Optically Thin Circumstellar Gas Disks

    CERN Document Server

    Takeuchi, T; Takeuchi, Taku; Artymowicz, Pawel

    2001-01-01

    We analyze the dynamics of gas-dust coupling in the presence of stellar radiation pressure in circumstellar gas disks, which are in a transitional stage between the gas-dominated, optically thick, primordial nebulae, and the dust-dominated, optically thin Vega-type disks. Dust undergo radial migration, seeking a stable equilibrium orbit in corotation with gas. The migration of dust gives rise to radial fractionation of dust and creates a variety of possible observed disk morphologies, which we compute by considering the equilibrium between the dust production and the dust-dust collisions removing particles from their equilibrium orbits. Sand-sized and larger grains are distributed throughout most of the gas disk, with concentration near the gas pressure maximum in the inner disk. Smaller grains (typically in the range of 10 to 200 micron) concentrate in a prominent ring structure in the outer region of the gas disk (presumably at radius 100 AU), where gas density is rapidly declining with radius. The width an...

  8. A WISE survey of circumstellar disks in Taurus

    Energy Technology Data Exchange (ETDEWEB)

    Esplin, T. L.; Luhman, K. L. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Mamajek, E. E., E-mail: taran.esplin@psu.edu [Department of Physics and Astronomy, The University of Rochester, Rochester, NY 14627 (United States)

    2014-04-01

    We have compiled photometry at 3.4, 4.6, 12, and 22 μm from the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) for all known members of the Taurus complex of dark clouds. Using these data and photometry from the Spitzer Space Telescope, we have identified members with infrared excess emission from circumstellar disks and have estimated the evolutionary stages of the detected disks, which include 31 new full disks and 16 new candidate transitional, evolved, evolved transitional, and debris disks. We have also used the WISE All-Sky Source Catalog to search for new disk-bearing members of Taurus based on their red infrared colors. Through optical and near-infrared spectroscopy, we have confirmed 26 new members with spectral types of M1-M7. The census of disk-bearing stars in Taurus should now be largely complete for spectral types earlier than ∼M8 (M ≳ 0.03 M {sub ☉}).

  9. The Structure of the DoAr 25 Circumstellar Disk

    CERN Document Server

    Andrews, Sean M; Wilner, D J; Qi, Chunhua

    2008-01-01

    We present high spatial resolution (< 0.3" = 40$ AU) Submillimeter Array observations of the 865 micron continuum emission from the circumstellar disk around the young star DoAr 25. Despite its bright millimeter emission, this source exhibits only a comparatively small infrared excess and low accretion rate, suggesting that the material and structural properties of the inner disk may be in an advanced state of evolution. A simple model of the physical conditions in the disk is derived from the submillimeter visibilities and the complete spectral energy distribution using a Monte Carlo radiative transfer code. For the standard assumption of a homogeneous grain size distribution at all disk radii, the results indicate a shallow surface density profile, $\\Sigma \\propto r^{-p}$ with p = 0.34, significantly less steep than a steady-state accretion disk (p = 1) or the often adopted minimum mass solar nebula (p = 1.5). Even though the total mass of material is large (M_d = 0.10 M_sun), the densities inferred in t...

  10. ALMA Observations of HD141569's Circumstellar Disk

    CERN Document Server

    White, J A; Hughes, A M; Flaherty, K M; Ford, E; Wilner, D; Corder, S; Payne, M

    2016-01-01

    We present ALMA band 7 (345 GHz) continuum and $^{12}$CO(J = 3-2) observations of the circumstellar disk surrounding HD141569. At an age of about 5 Myr, the disk has a complex morphology that may be best interpreted as a nascent debris system with gas. Our $870\\rm~\\mu m$ ALMA continuum observations resolve a dust disk out to approximately $ 56 ~\\rm au$ from the star (assuming a distance of 116 pc) with $0."38$ resolution and $0.07 ~ \\rm mJy~beam^{-1}$ sensitivity. We measure a continuum flux density for this inner material of $3.8 \\pm 0.4 ~ \\rm mJy$ (including calibration uncertainties). The $^{12}$CO(3-2) gas is resolved kinematically and spatially from about 30 to 210 au. The integrated $^{12}$CO(3-2) line flux density is $15.7 \\pm 1.6~\\rm Jy~km~s^{-1}$. We estimate the mass of the millimeter debris and $^{12}$CO(3-2) gas to be $\\gtrsim0.04~\\rm M_{\\oplus}$ and $\\sim2\\times 10^{-3}~\\rm M_{\\oplus}$, respectively. If the millimeter grains are part of a collisional cascade, then we infer that the inner disk ($&...

  11. Chemical composition of the circumstellar disk around AB Aurigae

    CERN Document Server

    Pacheco-Vázquez, S; Agúndez, M; Pinte, C; Alonso-Albi, T; Neri, R; Cernicharo, J; Goicoechea, J R; Berné, O; Wiesenfeld, L; Bachiller, R; Lefloch, B

    2015-01-01

    Aims. Our goal is to determine the molecular composition of the circumstellar disk around AB Aurigae (hereafter, AB Aur). AB Aur is a prototypical Herbig Ae star and the understanding of its disk chemistry is of paramount importance to understand the chemical evolution of the gas in warm disks. Methods. We used the IRAM 30-m telescope to perform a sensitive search for molecular lines in AB Aur as part of the IRAM Large program ASAI (A Chemical Survey of Sun-like Star-forming Regions). These data were complemented with interferometric observations of the HCO+ 1-0 and C17O 1-0 lines using the IRAM Plateau de Bure Interferometer (PdBI). Single-dish and interferometric data were used to constrain chemical models. Results. Throughout the survey, several lines of CO and its isotopologues, HCO+, H2CO, HCN, CN and CS, were detected. In addition, we detected the SO 54-33 and 56-45 lines, confirming the previous tentative detection. Comparing to other T Tauri's and Herbig Ae disks, AB Aur presents low HCN 3-2/HCO+ 3-2 ...

  12. Evolution of Gas and Dust in Circumstellar Disks

    CERN Document Server

    Körner, D W

    1999-01-01

    A clear understanding of the chemical processing of matter, as it is transferred from a molecular cloud to a planetary system, depends heavily on knowledge of the physical conditions endured by gas and dust as these accrete onto a disk and are incorporated into planetary bodies. Reviewed here are astrophysical observations of circumstellar disks which trace their evolving properties. Accretion disks that are massive enough to produce a solar system like our own are typically larger than 100 AU. This suggests that the chemistry of a large fraction of the infalling material is not radically altered upon contact with a vigorous accretion shock. The mechanisms of accretion onto the star and eventual dispersal are not yet well understood, but timescales for the removal of gas and optically thick dust appear to be a few times 10$^6$ yrs. At later times, tenuous ``debris disks'' of dust remain around stars as old as a few times 10$^8$ yrs. Features in the morphology of the latter, such as inner holes, warps, and azi...

  13. Chemical composition of the circumstellar disk around AB Aurigae

    Science.gov (United States)

    Pacheco-Vázquez, S.; Fuente, A.; Agúndez, M.; Pinte, C.; Alonso-Albi, T.; Neri, R.; Cernicharo, J.; Goicoechea, J. R.; Berné, O.; Wiesenfeld, L.; Bachiller, R.; Lefloch, B.

    2015-06-01

    Aims: Our goal is to determine the molecular composition of the circumstellar disk around AB Aurigae (hereafter, AB Aur). AB Aur is a prototypical Herbig Ae star and the understanding of its disk chemistry is paramount for understanding the chemical evolution of the gas in warm disks. Methods: We used the IRAM 30-m telescope to perform a sensitive search for molecular lines in AB Aur as part of the IRAM Large program ASAI (a chemical survey of Sun-like star-forming regions). These data were complemented with interferometric observations of the HCO+ 1→0 and C17O 1→0 lines using the IRAM Plateau de Bure Interferometer (PdBI). Single-dish and interferometric data were used to constrain chemical models. Results: Throughout the survey, several lines of CO and its isotopologues, HCO+, H2CO, HCN, CN, and CS, were detected. In addition, we detected the SO 54→33 and 56→45 lines, confirming the previously tentative detection. Compared to other T Tauri and Herbig Ae disks, AB Aur presents low HCN 3→2/HCO+ 3→2 and CN 2→1/HCN 3→2 line intensity ratios, similar to other transition disks. AB Aur is the only protoplanetary disk detected in SO thus far, and its detection is consistent with interpretation of this disk being younger than those associated with T Tauri stars. Conclusions: We modeled the line profiles using a chemical model and a radiative transfer 3D code. Our model assumes a flared disk in hydrostatic equilibrium. The best agreement with observations was obtained for a disk with a mass of 0.01 M⊙, Rin = 110 AU, Rout = 550 AU, a surface density radial index of 1.5, and an inclination of 27°. The intensities and line profiles were reproduced within a factor of ˜2 for most lines. This agreement is reasonable considering the simplicity of our model that neglects any structure within the disk. However, the HCN 3→2 and CN 2→1 line intensities were predicted to be more intense by a factor of >10. We discuss several scenarios to explain this

  14. B[e] Supergiants' circumstellar environment: disks or rings?

    CERN Document Server

    Maravelias, G; Aret, A; Cidale, L; Arias, M L; Fernandes, M Borges

    2016-01-01

    B[e] Supergiants are a phase in the evolution of some massive stars for which we have observational evidence but no predictions by any stellar evolution model. The mass-loss during this phase creates a complex circumstellar environment with atomic, molecular, and dust regions usually found in rings or disk-like structures. However, the detailed structure and the formation of the circumstellar environment are not well-understood, requiring further investigation. To address that we initiated an observing campaign to obtain a homogeneous set of high-resolution spectra in both the optical and NIR (using MPG-ESO/FEROS, GEMINI/Phoenix and VLT/CRIRES, respectively). We monitor a number of Galactic B[e] Supergiants, for which we examined the [OI] and [CaII] emission lines and the bandheads of the CO and SiO molecules to probe the structure and the kinematics of their formation regions. We find that the emission from each tracer forms either in a single or in multiple equatorial rings.

  15. B[e] Supergiants' Circumstellar Environment: Disks or Rings?

    Science.gov (United States)

    Maravelias, G.; Kraus, M.; Aret, A.; Cidale, L.; Arias, M. L.; Borges Fernandes, M.

    2017-02-01

    B[e] supergiants are a phase in the evolution of some massive stars for which we have observational evidence but no predictions by any stellar evolution model. The mass-loss during this phase creates a complex circumstellar environment with atomic, molecular, and dust regions usually found in rings or disk-like structures. However, the detailed structure and the formation of the circumstellar environment are not well-understood, requiring further investigation. To address that we initiated an observing campaign to obtain a homogeneous set of high-resolution spectra in both the optical and NIR (using MPG-ESO/FEROS, GEMINI /Phoenix and VLT/CRIRES, respectively). We monitor a number of Galactic B[e] supergiants, for which we examined the [O I] and [Ca II] emission lines and the bandheads of the CO and SiO molecules to probe the structure and the kinematics of their formation regions. We find that the emission from each tracer forms either in a single or multiple equatorial rings.

  16. The detection of heavy metals in the circumstellar envelopes of post-AGB stars

    CERN Document Server

    Klochkova, V G

    2015-01-01

    A new type of peculiarity -- a splitting or asymmetry of strong absorption lines, is found in the optical spectra of selected post-AGB stars with C-rich circumstellar envelopes. The effect is maximal in BaII lines whose profile is split into two-three components. The particular components of the split absorption lines are shown to be formed in a structured circumstellar envelope, suggesting an efficient dredge-up of the heavy metals produced during the preceding evolution of this star into the envelope. We suspect that the splitting (or asymmetry) of the profiles of strongest absorptions with low excitation potential of the low level can be associated with the kinematic and chemical properties of the circumstellar environment and with type of its morphology.

  17. Revealing the inclined circumstellar disk in the UX Ori system KK Ophiuchi

    Science.gov (United States)

    Kreplin, A.; Weigelt, G.; Kraus, S.; Grinin, V.; Hofmann, K.-H.; Kishimoto, M.; Schertl, D.; Tambovtseva, L.; Clausse, J.-M.; Massi, F.; Perraut, K.; Stee, Ph.

    2013-07-01

    We study the inner sub-AU region of the circumstellar environment of the UX Ori type star KK Oph with near-infrared VLTI/AMBER interferometry. We are particularly interested in the inclination of the star-disk system, and we will use this information to test the current standard picture for UX Ori stars. We recorded spectrally dispersed (R˜35) interferograms in the near-infrared H and K bands with the VLTI/AMBER instrument. The derived visibilities, closure phases and the SED of KK Oph were compared with two-dimensional geometric and radiative transfer models (RADMC). We obtained visibilities at four different position angles. Using two-dimensional geometric models, we derive an axis ratio ˜3.0 corresponding to an inclination of ˜70 degree. A fitted inclined ring model leads to a ring radius of 2.8 ± 0.2 mas, corresponding to 0.44 ± 0.03 AU at a distance of 160 pc, which is larger than the dust sublimation radius of ˜0.1 AU predicted for a dust sublimation temperature of 1500 K. Our derived two-dimensional RADMC model consists of a circumstellar disk with an inclination angle of ˜70 degree and an additional dust envelope. The finding of an ˜70 degree inclined disk around KK Oph is consistent with the prediction that UX Ori objects are seen under large inclination angles, and orbiting clouds in the line of sight cause the observed variability. Furthermore, our results suggest that the orbit of the companion KK Oph B and the disk plane are coplanar.

  18. Revealing the inclined circumstellar disk in the UX Orionis system KK Ophiuchi

    Science.gov (United States)

    Kreplin, A.; Weigelt, G.; Kraus, S.; Grinin, V.; Hofmann, K.-H.; Kishimoto, M.; Schertl, D.; Tambovtseva, L.; Clausse, J.-M.; Massi, F.; Perraut, K.; Stee, Ph.

    2013-03-01

    Aims: We study the inner sub-AU region of the circumstellar environment of the UX Ori-type star KK Oph with near-infrared VLTI/AMBER interferometry. We are particularly interested in the inclination of the star-disk system, and we use this information to test the current standard picture for UX Ori stars. Methods: We recorded spectrally dispersed (R ~ 35) interferograms in the near-infrared H and K bands with the VLTI/AMBER instrument. The derived visibilities, closure phases, and the spectral energy distribution of KK Oph were compared with two-dimensional geometric and radiative transfer models (RADMC). Results: We obtained visibilities at four different position angles. Using two-dimensional geometric models, we derive an axis ratio ~3.0 corresponding to an inclination of ~70°. A fitted inclined ring model leads to a ring radius of 2.8 ± 0.2 mas, corresponding to 0.44 ± 0.03 AU at a distance of 160 pc, which is larger than the dust sublimation radius of ~0.1 AU predicted for a dust sublimation temperature of 1500 K. Our derived two-dimensional RADMC model consists of a circumstellar disk with an inclination angle of ~70° and an additional dust envelope. Conclusions: The finding of an ~70° inclined disk around KK Oph is consistent with the prediction that UX Ori objects are seen under large inclination angles, and orbiting clouds in the line of sight cause the observed variability. Furthermore, our results suggest that the orbit of the companion KK Oph B and the disk plane are coplanar. Based on observations made with ESO telescopes at Paranal Observatory under program ID: 083.D-0224(C) and 088.C-0575(A).

  19. Illuminating the Role of Spiral Waves in Circumstellar Disks

    Science.gov (United States)

    Bae, Jaehan; Hartmann, Lee W.

    2017-01-01

    The transport of angular momentum and mass, and the generation of turbulence, play a crucial role in the evolution of a variety of astrophysical disks. Spiral waves, driven for instance by companion bodies or instabilities, have long been recognized as an important means for the aforementioned two processes. In this dissertation talk, I will discuss an instability of spiral waves that I have recently come across. I will begin by presenting the results from a three-dimensional global hydrodynamic simulation which described the growth and saturation of the instability. The spiral wave instability (SWI) arises as inertial modes, natural oscillations in rotating systems, amplify when they resonantly couple to and extract energy from the background spiral waves. This leads to break down of the spiral waves into turbulence when the velocity perturbations caused by unstable inertial modes reach a similar magnitude to those induced by the spiral waves. As an implication of the instability, I will present numerical results and discuss the consequence of the SWI when it acts on the spiral waves driven by a Jupiter-mass planet in a protoplanetary disk. I find that the planet-driven spiral arms are destabilized via the SWI, generating hydrodynamic turbulence and sustained vertical flows that are associated with long wavelength inertial modes. The associated vertical diffusion rate measured from the simulations is such that solid particles with sizes up to a few centimeters are vertically mixed within the first scale height in a protosolar nebula-like disk. Since circumstellar disks are believed to remain laminar, and thus to induce no or very little particle stirring as suggested by recent magnetocentrifugal wind models, the results imply that the SWI can be the mechanism controlling the degree of vertical settling of solid particles in planet-hosting disks. In particular, if accretion of mm- to cm-sized pebbles dominates the growth of terrestrial bodies, the stirring of solid

  20. TW Hya Association Membership and New WISE-detected Circumstellar Disks

    CERN Document Server

    Schneider, Adam; Song, Inseok

    2012-01-01

    We assess the current membership of the nearby, young TW Hydrae Association and examine newly proposed members with the Wide-field Infrared Survey Explorer (WISE) to search for infrared excess indicative of circumstellar disks. Newly proposed members TWA 30A, TWA 30B, TWA 31, and TWA 32 all show excess emission at 12 and 22 \\mum providing clear evidence for substantial dusty circumstellar disks around these low-mass, ~8 Myr old stars that were previously shown to likely be accreting from circumstellar material. TWA 30B shows large amounts of self-extinction, likely due to an edge-on disk geometry. We also confirm previously reported circumstellar disks with WISE, and determine a 22 \\mum excess fraction of 42+/- 9% based on our results.

  1. Photon Bubbles in the Circumstellar Envelopes of Young Massive Stars

    CERN Document Server

    Turner, N J; Yorke, H W

    2007-01-01

    We show that the optically-thick dusty envelopes surrounding young high-mass stars are subject to the photon bubble instability. The infrared radiation passing through the envelope amplifies magnetosonic disturbances, with growth rates in our local numerical radiation MHD calculations that are consistent with a linear analysis. Modes with wavelengths comparable to the gas pressure scale height grow by more than two orders of magnitude in a thousand years, reaching non-linear amplitudes within the envelope lifetime. If the magnetic pressure in the envelope exceeds the gas pressure, the instability develops into trains of propagating shocks. Radiation escapes readily through the low-density material between the shocks, enabling accretion to continue despite the Eddington limit imposed by the dust opacity. The supersonic motions arising from the photon bubble instability can help explain the large velocity dispersions of hot molecular cores, while conditions in the shocked gas are suitable for maser emission. We...

  2. Discovery of a Circumstellar Disk in the Lagoon Nebula

    Science.gov (United States)

    1997-04-01

    Circumstellar disks of gas and dust play a crucial role in the formation of stars and planets. Until now, high-resolution images of such disks around young stars within the Orion Nebula obtained with the Hubble Space Telescope (HST) constituted the most direct proof of their existence. Now, another circumstellar disk has been detected around a star in the Lagoon Nebula - also known as Messier 8 (M8) , a giant complex of interstellar gas and dust with many young stars in the southern constellation of Sagittarius and four times more distant than the Orion Nebula. The observations were carried out by an international team of scientists led by Bringfried Stecklum (Thüringer Landessternwarte, Tautenburg, Germany) [1] who used telescopes located at the ESO La Silla observatory and also observations from the HST archive. These new results are paving the road towards exciting research programmes on star formation which will become possible with the ESO Very Large Telescope. The harsh environment of circumstellar disks The existence of circumstellar disks has been inferred from indirect measurements of young stellar objects, such as the spectral energy distribution, the analysis of the profiles of individual spectral lines and measurements of the polarisation of the emitted light [2]. Impressive images of such disks in the Orion Nebula, known as proplyds (PROto-PLanetarY DiskS), have been obtained by the HST during the recent years. They have confirmed the interpretation of previous ground-based emission-line observations and mapping by radio telescopes. Moreover, they demonstrated that those disks which are located close to hot and massive stars are subject to heating caused by the intense radiation from these stars. Subsequently, the disks evaporate releasing neutral gas which streams off. During this process, shock fronts (regions with increased density) with tails of ionised gas result at a certain distance between the disk and the hot star. These objects appear on

  3. Disk Detective: Discovery of New Circumstellar Disk Candidates through Citizen Science

    Science.gov (United States)

    Kuchner, Marc J.; Silverberg, Steven M.; Bans, Alissa S.; Bhattacharjee, Shambo; Kenyon, Scott J.; Debes, John H.; Currie, Thayne; García, Luciano; Jung, Dawoon; Lintott, Chris; McElwain, Michael; Padgett, Deborah L.; Rebull, Luisa M.; Wisniewski, John P.; Nesvold, Erika; Schawinski, Kevin; Thaller, Michelle L.; Grady, Carol A.; Biggs, Joseph; Bosch, Milton; C̆ernohous, Tadeás̆; Durantini Luca, Hugo A.; Hyogo, Michiharu; Wah, Lily Lau Wan; Piipuu, Art; Piñeiro, Fernanda; Disk Detective Collaboration

    2016-10-01

    The Disk Detective citizen science project aims to find new stars with 22 μm excess emission from circumstellar dust using data from NASA’s Wide-field Infrared Survey Explorer (WISE) mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10 different bands to identify false positives (galaxies, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disks and protoplanetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137, and HD 218546) and a new detection of 22 μm excess around the previously known debris disk host star HD 22128.

  4. Disk Detective: Discovery of New Circumstellar Disk Candidates through Citizen Science

    CERN Document Server

    Kuchner, Marc J; Bans, Alissa S; Bhattacharjee, Shambo; Kenyon, Scott J; Debes, John H; Currie, Thayne; Garcia, Luciano; Jung, Dawoon; Lintott, Chris; McElwain, Michael; Padgett, Deborah L; Rebull, Luisa M; Wisniewski, John P; Nesvold, Erika; Schawinski, Kevin; Thaller, Michelle L; Grady, Carol A; Biggs, Joseph; Bosch, Milton; Cernohous, Tadeás; Luca, Hugo A Durantini; Hyogo, Michiharu; Wah, Lily Lau Wan; Piipuu, Art; Piñeiro, Fernanda

    2016-01-01

    The Disk Detective citizen science project aims to find new stars with 22 micron excess emission from circumstellar dust using data from NASA's WISE mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10 different bands to identify false-positives (galaxies, background stars, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disks and protoplanetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137, and HD 218546) and a new detection o...

  5. Modeling Transiting Circumstellar Disks: Characterizing the Newly Discovered Eclipsing Disk System OGLE LMC-ECL-11893

    CERN Document Server

    Scott, Erin L; Pecaut, Mark J; Quillen, Alice C; Moolekamp, Fred; Bell, Cameron P M

    2014-01-01

    We investigate the nature of the unusual eclipsing star OGLE LMC-ECL-11893 (OGLE J05172127-6900558) in the Large Magellanic Cloud recently reported by Dong et al. 2014. The eclipse period for this star is 468 days, and the eclipses exhibit a minimum of ~1.4 mag, preceded by a plateau of ~0.8 mag. Spectra and optical/IR photometry are consistent with the eclipsed star being a lightly reddened B9III star of inferred age ~150 Myr and mass of ~4 solar masses. The disk appears to have an outer radius of ~0.2 AU with predicted temperatures of ~1100-1400 K. We model the eclipses as being due to either a transiting geometrically thin dust disk or gaseous accretion disk around a secondary object; the debris disk produces a better fit. We speculate on the origin of such a dense circumstellar dust disk structure orbiting a relatively old low-mass companion, and on the similarities of this system to the previously discovered EE Cep.

  6. High-Resolution Near-Infrared Polarimetry of a Circumstellar Disk around UX Tau A

    Science.gov (United States)

    Serabyn, G.; Grady, C. A.; Currie, T.

    2012-01-01

    We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the 0.15" (21 AU) radius coronagraphic mask has revealed a strongly polarized circumstellar disk surrounding UX Tau A which extends to 120 AU, at a spatial resolution of 0.1" (14 AU). It is inclined by 46 degrees plus or minus 2 degrees as the west side is nearest. Although SED modeling and sub-millimeter imagery suggested the presence of a gap in the disk, with the inner edge of the outer disk estimated to be located at 25 - 30 AU, we detect no evidence of a gap at the limit of our inner working angle (23AU) at the near-infrared wavelength. We attribute the observed strong polarization (up to 66 %) to light scattering by dust grains in the disk. However, neither polarization models of the circumstellar disk based on Rayleigh scattering nor Mie scattering approximations were consistent with the observed azimuthal profile of the polarization degrees of the disk. Instead, a geometric optics model of the disk with nonspherical grains with the radii of 30 micrometers is consistent with the observed profile. We suggest that the dust grains have experienced frequent collisional coagulations and have grown in the circumstellar disk of UX Tau A.

  7. High-Resolution Near-Infrared Polarimetry of a Circumstellar Disk around UX Tau A

    Science.gov (United States)

    Tanii, Ryoko; Itoh, Yoichi; Kudo, Tomoyuki; Hioki, Tomonori; Oasa, Yumiko; Gupta, Ranjan; Sen, Asoke K.; Wisniewski, John P.; Muto, Takayuki; Grady, Carol A.; Hashimoto, Jun; Fukagawa, Misato; Mayama, Satoshi; Hornbeck, Jeremy; Sitko, Michael L.; Russell, Ray W.; Werren, Chelsea; Curé, Michel; Currie, Thayne; Ohashi, Nagayoshi; Okamoto, Yoshiko; Momose, Munetake; Honda, Mitsuhiko; Inutsuka, Shu-ichi; Takeuchi, Taku; Dong, Ruobing; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Egner, Sebastian E.; Feldt, Markus; Fukue, Tsubasa; Goto, Miwa; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kusakabe, Nobuhiko; Kuzuhara, Masayuki; Matsuo, Taro; McElwain, Michael W.; Miyama, Shoken; Morino, Jun-ichi; Moro-Martín, Amaya; Nishimura, Tetsuro; Pyo, Tae-Soo; Serabyn, Eugene; Suto, Hiroshi; Suzuki, Ryuji; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Watanabe, Makoto; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2012-12-01

    We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the 0.''15 (21 AU) radius coronagraphic mask has revealed a strongly polarized circumstellar disk surrounding UX Tau A, which extends to 120 AU, at a spatial resolution of 0.''1 (14 AU). It is inclined by 46° ± 2°, since the west side is nearest. Although SED modeling and sub-millimeter imagery have suggested the presence of a gap in the disk, with the inner edge of the outer disk estimated to be located at 25-30 AU, we detect no evidence of a gap at the limit of our inner working angle (23 AU) at the near-infrared wavelength. We attribute the observed strong polarization (up to 66%) to light scattering by dust grains in the disk. However, neither polarization models of the circumstellar disk based on Rayleigh-scattering nor Mie-scattering approximations were consistent with the observed azimuthal profile of the polarization degrees of the disk. Instead, a geometric optics model of the disk with nonspherical grains with radii of 30μm is consistent with the observed profile. We suggest that the dust grains have experienced frequent collisional coagulations, and have grown in the circumstellar disk of UX Tau A.

  8. Oxygen Chemistry in the Circumstellar Envelope of the Carbon-Rich Star IRC+10216

    CERN Document Server

    Agundez, M; Agundez, Marcelino; Cernicharo, Jose

    2006-01-01

    In this paper we study the oxygen chemistry in the C-rich circumstellar shells of IRC+10216. The recent discoveries of oxygen bearing species (water, hydroxyl radical and formaldehyde) toward this source challenge our current understanding of the chemistry in C-rich circumstellar envelopes. The presence of icy comets surrounding the star or catalysis on iron grain surfaces have been invoked to explain the presence of such unexpected species. This detailed study aims at evaluating the chances of producing O-bearing species in the C-rich circumstellar envelope only by gas phase chemical reactions. For the inner hot envelope, it is shown that although most of the oxygen is locked in CO near the photosphere (as expected for a C/O ratio greater than 1), some stellar radii far away species such as H2O and CO2 have large abundances under the assumption of thermochemical equilibrium. It is also shown how non-LTE chemistry makes very difficult the CO-->H2O,CO2 transformation predicted in LTE. Concerning the chemistry ...

  9. Photodissociation and chemistry of N$_2$ in the circumstellar envelope of carbon-rich AGB stars

    CERN Document Server

    Li, Xiaohu; Walsh, Catherine; Heays, Alan N; van Dishoeck, Ewine F

    2014-01-01

    The envelopes of AGB stars are irradiated externally by ultraviolet photons; hence, the chemistry is sensitive to the photodissociation of N$_2$ and CO, which are major reservoirs of nitrogen and carbon, respectively. The photodissociation of N$_2$ has recently been quantified by laboratory and theoretical studies. Improvements have also been made for CO photodissociation. For the first time, we use accurate N$_2$ and CO photodissociation rates and shielding functions in a model of the circumstellar envelope of the carbon-rich AGB star, IRC +10216. We use a state-of-the-art chemical model of an AGB envelope, the latest CO and N$_2$ photodissociation data, and a new method for implementing molecular shielding functions in full spherical geometry with isotropic incident radiation. We compare computed column densities and radial distributions of molecules with observations. The transition of N$_2$ $\\to$ N (also, CO $\\to$ C $\\to$ C$^+$) is shifted towards the outer envelope relative to previous models. This leads...

  10. Differential interferometric phases at high spectral resolution as a sensitive physical diagnostic of circumstellar disks

    CERN Document Server

    Faes, D M; Rivinius, Th; Štefl, S; Baade, D; de Souza, A Domiciano

    2013-01-01

    Context. The circumstellar disks ejected by many rapidly rotating B stars (so-called Be stars) offer the rare opportunity of studying the structure and dynamics of gaseous disks at high spectral as well as angular resolution. Aims. This paper explores a newly identified effect in spectro-interferometric phase that can be used for probing the inner regions of gaseous edge-on disks on a scale of a few stellar radii. Methods. The origin of this effect (dubbed central quasi-emission phase signature, CQE-PS) lies in the velocity-dependent line absorption of photospheric radiation by the circumstellar disk. At high spectral and marginal interferometric resolution, photocenter displacements between star and isovelocity regions in the Keplerian disk reveal themselves through small interferometric phase shifts. To investigate the diagnostic potential of this effect, a series of models are presented, based on detailed radiative transfer calculations in a viscous decretion disk. Results. Amplitude and detailed shape of ...

  11. In Search of Circumstellar Disks Around Young Massive Stars

    CERN Document Server

    Zapata, L; Ho, P; Beuther, H; Zhang, Q; Zapata, Luis; Rodriguez, Luis; Ho, Paul; Beuther, Henrik; Zhang, Qizhou

    2005-01-01

    We present 7 mm, 1.3 cm and 3.6 cm continuum observations made with the Very Large Array toward a sample of ten luminous IRAS sources that are believed to be regions of massive star formation. We detect compact 7 mm emission in four of these objects: IRAS 18089-1732(1), IRAS 18182-1433, IRAS 18264-1152 and IRAS 18308-0841 and for the first time find that these IRAS sources are associated with double or triple radio sources separated by a few arcseconds. We discuss the characteristics of these sources based mostly on their spectral indices and find that their nature is diverse. Some features indicate that the 7 mm emission is dominated by dust from disks or envelopes. Toward other components the 7 mm emission appears to be dominated by free-free radiation, both from ionized outflows or from optically thick H II regions. Furthermore, there is evidence of synchrotron contamination in some of these sources. Finally, we found that the sources associated with ionized outflows, or thermal jets are correlated with CH...

  12. The T Tauri star RY Tau as a case study of the inner regions of circumstellar dust disks

    CERN Document Server

    Schegerer, A A; Ratzka, Th; Leinert, Ch

    2007-01-01

    We study the inner region of the circumstellar disk around the TTauri star RY Tau. Our aim is to find a physical description satisfying the available interferometric data, obtained with the mid-infrared interferometric instrument at the Very Large Telescope Interferometer, as well as the spectral energy distribution. We also compare the findings with the results of similar studies, including those of intermediate-mass stars. Our analysis is done within the framework of a passive circumstellar disk, which is optionally supplemented by the effects of accretion and an added envelope. To achieve a more consistent and realistic model, we used our continuum transfer code MC3D. In addition, we studied the shape of the 10um silicate emission feature in terms of the underlying dust population, both for single-dish and for interferometric measurements. We show that a modestly flaring disk model with accretion can explain both the observed spectral energy distribution and the mid-infrared visibilities obtained with the ...

  13. Atomic and molecular hydrogen in the circumstellar envelopes of late-type stars

    Science.gov (United States)

    Glassgold, A. E.; Huggins, P. J.

    1983-01-01

    The distribution of atomic and molecular hydrogen in the expanding circumstellar envelopes of cool evolved stars is discussed. The main concern is to evaluate the effects of photodestruction of H2 by galactic UV radiation, including shielding of the radiation by H2 itself and by dust in the envelope. One of the most important parameters is the H/H2 ratio which is frozen out in the upper atmosphere of the star. For stars with photospheric temperatures greater than about 2500 K, atmospheric models suggest that the outflowing hydrogen is mainly atomic, whereas cooler stars should be substantially molecular. In the latter case, photodissociation of H2 and heavy molecules contribute to the atomic hydrogen content of the outer envelope. The presented estimates indicate that atomic hydrogen is almost at the limit of detection in the C-rich star IRC + 10216, and may be detectable in warmer stars. Failure to detect it would have important implications for the general understanding of circumstellar envelopes.

  14. Chemistry and distribution of daughter species in the circumstellar envelopes of O-rich AGB stars

    Science.gov (United States)

    Li, Xiaohu; Millar, Tom J.; Heays, Alan N.; Walsh, Catherine; van Dishoeck, Ewine F.; Cherchneff, Isabelle

    2016-03-01

    Context. Thanks to the advent of Herschel and ALMA, new high-quality observations of molecules present in the circumstellar envelopes of asymptotic giant branch (AGB) stars are being reported that reveal large differences from the existing chemical models. New molecular data and more comprehensive models of the chemistry in circumstellar envelopes are now available. Aims: The aims are to determine and study the important formation and destruction pathways in the envelopes of O-rich AGB stars and to provide more reliable predictions of abundances, column densities, and radial distributions for potentially detectable species with physical conditions applicable to the envelope surrounding IK Tau. Methods: We use a large gas-phase chemical model of an AGB envelope including the effects of CO and N2 self-shielding in a spherical geometry and a newly compiled list of inner-circumstellar envelope parent species derived from detailed modeling and observations. We trace the dominant chemistry in the expanding envelope and investigate the chemistry as a probe for the physics of the AGB phase by studying variations of abundances with mass-loss rates and expansion velocities. Results: We find a pattern of daughter molecules forming from the photodissociation products of parent species with contributions from ion-neutral abstraction and dissociative recombination. The chemistry in the outer zones differs from that in traditional PDRs in that photoionization of daughter species plays a significant role. With the proper treatment of self-shielding, the N → N2 and C+→ CO transitions are shifted outward by factors of 7 and 2, respectively, compared with earlier models. An upper limit on the abundance of CH4 as a parent species of (≲2.5 × 10-6 with respect to H2) is found for IK Tau, and several potentially observable molecules with relatively simple chemical links to other parent species are determined. The assumed stellar mass-loss rate, in particular, has an impact on the

  15. The infrared spectral features of circumstellar envelope of evolved low-and intermediate-mass stars

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ke; JIANG BiWei

    2008-01-01

    The circumstellar envelope of evolved stars of low-and intermediate-mass is an important site for dust formation. In comparison with the interstellar medium, they have more types of organics and different types of inorganics. Various infrared features in the circumstellar envelope can reveal the composition and abundance of dust, as well as the chemical and physical conditions of the circumstellar shell. Infrared features and their carriers are different in the C-rich or O-rich environment, and the mixed-environment where the C-rich and O-rich circumstellar materials co-exist. The C-rich sources exhibit a series of spectral features which are attrib-uted to organic molecules. They also show two prominent features at 21 μm and 30 μm which emit a large portion of infrared radiation. The O-rich sources exhibit the strong 9.7 μm and 18 μm features attributed to the Si-O bending and O-Si-O stretching modes of amorphous silicate dust. With the ISO/SWS spectrometer, about 50 narrow bands are identified with the crystalline silicate grains, mainly forsterite and enstatite. In addition, a series of features, at 13 μm, 16.8 μm, 19.5 μm and 31.8 μm, appearing to be correlated with each other, are attributed to oxides. Some objects simultaneously show the C-rich and O-rich features, e.g. some C-rich sources have silicate features. There is no well-accepted interpretation for such mixed appearance, though a binary model is suggested.

  16. The infrared spectral features of circumstellar envelope of evolved low- and intermediate-mass stars

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The circumstellar envelope of evolved stars of low- and intermediate-mass is an important site for dust formation. In comparison with the interstellar medium, they have more types of organics and different types of inorganics. Various infrared features in the circumstellar envelope can reveal the composition and abundance of dust, as well as the chemical and physical conditions of the circumstellar shell. Infrared features and their carriers are different in the C-rich or O-rich environment, and the mixed-environment where the C-rich and O-rich circumstellar materials co-exist. The C-rich sources exhibit a series of spectral features which are attrib- uted to organic molecules. They also show two prominent features at 21 μm and 30 μm which emit a large portion of infrared radiation. The O-rich sources exhibit the strong 9.7 μm and 18 μm features attributed to the Si-O bending and O-Si-O stretching modes of amorphous silicate dust. With the ISO/SWS spectrometer, about 50 narrow bands are identified with the crystalline silicate grains, mainly forsterite and enstatite. In addition, a series of features, at 13 μm, 16.8 μm, 19.5 μm and 31.8 μm, appearing to be correlated with each other, are attributed to oxides. Some objects simultaneously show the C-rich and O-rich features, e.g. some C-rich sources have silicate features. There is no well-accepted interpretation for such mixed appearance, though a binary model is suggested.

  17. THE NATURE OF TRANSITION CIRCUMSTELLAR DISKS. II. SOUTHERN MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Gisela A.; Schreiber, Matthias R.; Rebassa-Mansergas, Alberto [Departamento de Fisica y Astronomia, Universidad de Valparaiso, Valparaiso (Chile); Cieza, Lucas A. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Merin, Bruno [Herschel Science Centre, ESAC (ESA), P.O. Box 78, 28691 Villanueva de la Canada, Madrid (Spain); Smith Castelli, Analia V. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Allen, Lori E. [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Morrell, Nidia [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile)

    2012-04-10

    Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate the multiplicity, disk mass, and accretion rate for each object in our sample in order to identify the mechanism potentially responsible for its inner hole. We find that our transition disks show a rich diversity in their spectral energy distribution morphology, have disk masses ranging from {approx}<1 to 10 M{sub JUP}, and accretion rates ranging from {approx}<10{sup -11} to 10{sup -7.7} M{sub Sun} yr{sup -1}. Of the 17 bona fide transition disks in our sample, three, nine, three, and two objects are consistent with giant planet formation, grain growth, photoevaporation, and debris disks, respectively. Two disks could be circumbinary, which offers tidal truncation as an alternative origin of the inner hole. We find the same heterogeneity of the transition disk population in Lupus III, IV, and Corona Australis as in our previous analysis of transition disks in Ophiuchus while all transition disk candidates selected in Lupus V, VI turned out to be contaminating background asymptotic giant branch stars. All transition disks classified as photoevaporating disks have small disk masses, which indicates that photoevaporation must be less efficient than predicted by most recent models. The three systems that are excellent candidates for harboring giant planets potentially represent invaluable laboratories to study planet formation with the Atacama Large Millimeter/Submillimeter Array.

  18. Radiative transfer modeling of three T Tauri stars: selecting candidates for studying circumstellar disk evolution

    Institute of Scientific and Technical Information of China (English)

    Yao Liu; Hong-Chi Wang; Sebastian Wolf; David Madlener

    2013-01-01

    We present modeling work on three young stellar objects that are promising targets for future high-resolution observations to investigate circumstellar disk evolution.The currently available data comprise the spectral energy distribution from optical to millimeter wavelengths which allow constraining the structure of the circumstellar disk using self-consistent radiative transfer models.The results suggest that the assumption of well-mixed dust and gas leads to overestimation of flux in the far-infrared.Observational and theoretical arguments suggest that an overall decrease in far-infrared excess can be explained by dust settling towards the midplane.A new disk model is hence employed to take the effect of dust sedimentation into account.The extended model satisfactorily reproduces all existing observations.The three targets studied here therefore deserve follow-up observations to reveal the evolutionary state of their protoplanetary disks.

  19. Observational Possibility of the "Snow Line" on the Surface of Circumstellar Disks with the Scattered Light

    CERN Document Server

    Inoue, Akio K; Nakamoto, Taishi; Oka, Akinori

    2008-01-01

    We discuss how we obtain the spatial distribution of ice on the surface of the circumstellar disk around young stars. Ice in the disks plays a very important role in various issues, for instance, on the disk structure, on the planet formation, on the isotopic anomaly in meteorites, and on the origin of the sea on the Earth. Therefore, the spatially resolved observation of the condensation/sublimation front of ice, so-called ``snow line'' is strongly required. Here, we propose a new method for obtaining the spatially resolved ``snow line'' on the circumstellar disks by observing 3 \\micron H$_2$O ice feature in the scattered light. Based on radiative transfer considerations, we show that the feature is clearly imprinted in the spectrum of the scattered light from both optically thick and thin circumstellar disks. We also show that the scattered light and the H$_2$O ice feature from protoplanetary disks are detectable and spatially resolvable with the current instruments through a $H_2O$ narrowband filter around...

  20. NG7538 IRS1 N: modeling a circumstellar maser disk

    CERN Document Server

    Pestalozzi, M R; Conway, J; Booth, R

    2004-01-01

    We present an edge-on Keplerian disk model to explain the main component of the 12.2 and 6.7 GHz methanol maser emission detected toward NGC7538-IRS1 N. The brightness distribution and spectrum of the line of bright masers are successfully modeled with high amplification of background radio continuum emission along velocity coherent paths through a maser disk. The bend seen in the position-velocity diagram is a characteristic signature of differentially rotating disks. For a central mass of 30 solar masses, suggested by other observations, our model fixes the masing disk to have inner and outer radii of about 270 AU and 750 AU.

  1. Do water fountain jets really indicate the onset of the morphological metamorphosis of circumstellar envelopes?

    Science.gov (United States)

    Yung, Bosco H. K.; Nakashima, Jun-ichi; Hsia, Chih-Hao; Imai, Hiroshi

    2017-03-01

    Small-scale bipolar jets with short dynamical ages from 'water-fountain' (WF) sources are regarded as an indication of the onset of circumstellar envelope morphological metamorphosis of intermediate-mass stars. Such a process usually happens at the end of the asymptotic giant branch (AGB) phase. However, recent studies found that WFs could be AGB stars or even early planetary nebulae. This fact prompted the idea that WFs may not necessarily be objects at the beginning of the morphological transition process. In the present work, we show that WFs could have different envelope morphologies by studying their spectral energy distribution profiles. Some WFs have spherical envelopes that resemble usual AGB stars, while others have aspherical envelopes, which are more common to post-AGB stars. The results imply that WFs may not represent the earliest stage of morphological metamorphosis. We argue further that the dynamical age of a WF jet, which can be calculated from maser proper motions, may not be the real age of the jet. The dynamical age cannot be used to justify the moment when the envelope begins to become aspherical, nor to tell the concrete evolutionary status of the object. A WF jet could be the innermost part of a larger well-developed jet, which is not necessarily a young jet.

  2. Sulphur molecules in the circumstellar envelopes of M-type AGB stars

    CERN Document Server

    Danilovich, Taissa; Black, J H; Olofsson, H; Justtanont, K

    2016-01-01

    The sulphur compounds SO and SO$_2$ have not been widely studied in the circumstellar envelopes of asymptotic giant branch (AGB) stars. By presenting and modelling a large number of SO and SO$_2$ lines in the low mass-loss rate M-type AGB star R Dor, and modelling the available lines of those molecules in a further four M-type AGB stars, we aim to determine their circumstellar abundances and distributions. We use a detailed radiative transfer analysis based on the accelerated lambda iteration method to model circumstellar SO and SO$_2$ line emission and molecular data files for both SO and SO$_2$ that are more extensive than those previously available. Using 17 SO lines and 98 SO2 lines to constrain our models for R Dor, we find an SO abundance of 6.7x10$^{-6}$ and an SO$_2$ abundance of 5x10$^{-6}$ with both species having high abundances close to the star. We also modelled $^{34}$SO and found an abundance of 3.1x10$^{-7}$, giving an $^{32}$SO/$^{34}$SO ratio of 21.6. We derive similar results for the circum...

  3. Is the HD 15115 circumstellar disk really asymmetrical?

    Science.gov (United States)

    Mazoyer, J.; Boccaletti, A.; Augereau, J.-C.; Lagrange, A.-M.; Galicher, R.; Baudoz, P.

    2014-09-01

    Similarly to beta Pictoris, HD 15115 is a young and nearby (45.2 pc) star that hosts a debris disk. This debris disk was first imaged in 2007 (Kalas et al., 2007) in visible using HST and in H band using the Keck observatory. The disk appeared edge-on and showed an asymmetry between its west and east parts. This detection was later observed in J band using HST / Nicmos data (Debes et al., 2008) and in Ks and L' using LBT (Rodigas et al. 2012). These observations confirmed the asymmetric nature of HD 15115 debris disk. We present here the results of the analysis of data from the Gemini / NICI archival system from 2009 and 2011 in H and K bands. We use newly developed differential treatment algorithms on these data (ADI, LOCI, KLIP) to subtract the light of the star and image the disk up to 1 arc second (30 AU). From this analysis, we find an inclination of 86 (confirming previous conclusions about HD 15115). We derive the disk position angle and spine and photometry and only find a brightness asymmetry in these elements. We also present evidence of an ring at 2 arc seconds (60 AU), with a rather sharp inner edge, and no sign of an asymmetry. With this radius and inclination, we create disk models (Augereau et al. 1999) and put constraints on the disk parameters, using either the position angle, spine and photometry or forward modeling.

  4. Tracing planet-induced structures in circumstellar disks using molecular lines

    CERN Document Server

    Ober, F; Uribe, A L; Klahr, H H

    2015-01-01

    Circumstellar disks are considered to be the birthplace of planets. Specific structures like spiral arms, gaps, and cavities are characteristic indicators of planet-disk interaction. Investigating these structures can provide insights into the growth of protoplanets and the physical properties of the disk. We investigate the feasibility of using molecular lines to trace planet-induced structures in circumstellar disks. Based on 3D hydrodynamic simulations of planet-disk interactions, we perform self-consistent temperature calculations and produce N-LTE molecular line velocity-channel maps and spectra of these disks using our new N-LTE line radiative transfer code Mol3D. Subsequently, we simulate ALMA observations using the CASA simulator. We consider two nearly face-on inclinations, 5 disk masses, 7 disk radii, and 2 different typical pre-main-sequence host stars (T Tauri, Herbig Ae). We calculate up to 141 individual velocity-channel maps for five molecules/isotopoloques in a total of 32 rotational transitio...

  5. Photoevaporation of Circumstellar Disks Revisited: The Dust-Free Case

    CERN Document Server

    Tanaka, Kei E I; Omukai, Kazuyuki

    2013-01-01

    Photoevaporation by stellar ionizing radiation is believed to play an important role in the dispersal of disks around young stars. The mass loss model for dust-free disks developed by Hollenbach et al. is currently regarded as a conventional one and has been used in a wide variety of studies. However, the rate in this model was derived by the crude so-called 1+1D approximation of ionizing radiation transfer, which assumes that diffuse radiation propagates in a direction vertical to the disk. In this study, we revisit the photoevaporation of dust-free disks by solving the 2D axisymmetric radiative transfer for steady-state disks. Unlike that solved by the conventional model, we determine that direct stellar radiation is more important than the diffuse field at the disk surface. The radial density distribution at the ionization boundary is represented by the single power-law with an index -3/2 in contrast to the conventional double power-law. For this distribution, the photoevaporation rate from the entire disk...

  6. The Nature of Transition Circumstellar Disks II. Southern Molecular Clouds

    CERN Document Server

    Romero, Gisela A; Cieza, Lucas A; Rebassa-Mansergas, Alberto; Merín, Bruno; Castelli, Analía V Smith; Allen, Lori E; Morrell, Nidia; 10.1088/0004-637X/749/1/79

    2012-01-01

    Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate the multiplicity, disk mass, and accretion rate for each object in our sample in order to identify the mechanism potentially responsible for its inner hole. We find that our transition disks show a rich diversity in their spectral energy distribution morphology, have disk masses ranging from lsim1 to 10 M JUP, and accretion rates ranging from lsim10-11 to 10-7.7 M \\odot yr-1. Of the 17 bona fide transition disks in our sample, three, nine, three, and two objects are consistent with giant planet formation, grain growth, ph...

  7. On the central symmetry of the circumstellar envelope of RS Cnc

    CERN Document Server

    Nhung, Pham Tuyet; Winters, Jan Martin; Darriulat, Pierre; Gérard, Eric; Bertre, Thibaut Le

    2014-01-01

    We present a phenomenological study of CO(1-0) and CO(2-1) emission from the circumstellar envelope (CSE) of the Asymptotic Giant Branch (AGB) star RS\\,Cnc. It reveals departures from central symmetry that turn out to be efficient tools for the exploration of some of the CSE properties. We use a wind model including a bipolar flow with a typical wind velocity of $\\sim$8 km\\,s$^{-1}$ decreasing to $\\sim$2 km\\,s$^{-1}$ near the equator to describe Doppler velocity spectral maps obtained by merging data collected at the IRAM Plateau de Bure Interferometer and Pico Veleta single dish radio telescope. Parameters describing the wind morphology and kinematics are obtained, together with the radial dependence of the gas temperature in the domain of the circumstellar envelope probed by the CO observations. Significant north-south central asymmetries are revealed by the analysis, which we quantify using a simple phenomenological description. The origin of such asymmetries is unclear.

  8. AGB stars in the LMC: evolution of dust in circumstellar envelopes

    CERN Document Server

    Dell'Agli, F; Schneider, R; Di Criscienzo, M; García-Hernández, D A; Rossi, C; Brocato, E

    2014-01-01

    We calculated theoretical evolutionary sequences of asymptotic giant branch (AGB) stars, including formation and evolution of dust grains in their circumstellar envelope. By considering stellar populations of the Large Magellanic Cloud (LMC), we calculate synthetic colour-colour and colour-magnitude diagrams, which are compared with those obtained by the Spitzer Space Telescope. The comparison between observations and theoretical predictions outlines that extremely obscured carbon-stars and oxygen-rich sources experiencing hot bottom burning (HBB) occupy well defined, distinct regions in the colour-colour ($[3.6]-[4.5]$, $[5.8]-[8.0]$) diagram. The C-rich stars are distributed along a diagonal strip that we interpret as an evolutionary sequence, becoming progressively more obscured as the stellar surface layers enrich in carbon. Their circumstellar envelopes host solid carbon dust grains with size in the range $0.05 2$, are the descendants of stars with initial mass $M_{in} \\sim 2.5 - 3 M_{\\odot}$ in the ver...

  9. The circumstellar envelope of the C-rich post-AGB star HD 56126

    CERN Document Server

    Hony, S; Waters, L B F M; De Koter, A

    2003-01-01

    We present a detailed study of the circumstellar envelope of the post-asymptotic giant branch ``21 micron object'' HD 56126. We build a detailed dust radiative transfer model of the circumstellar envelope in order to derive the dust composition and mass, and the mass-loss history of the star. To model the emission of the dust we use amorphous carbon, hydrogenated amorphous carbon, magnesium sulfide and titanium carbide. We present a detailed parametrisation of the optical properties of hydrogenated amorphous carbon as a function of H/C content. The mid-infrared imaging and spectroscopy is best reproduced by a single dust shell from 1.2 to 2.6 arcsec radius around the central star. This shell originates from a short period during which the mass-loss rate exceeded 10^(-4) M_sun/yr. We find that the strength of the ``21'' micron feature poses a problem for the TiC identification. The low abundance of Ti requires very high absorption cross-sections in the ultraviolet and visible wavelength range to explain the st...

  10. Indicator of Exo-Solar Planet(s) in the Circumstellar Disk Around Beta Pictoris

    CERN Document Server

    Gorkavyi, N; Ozernoy, L M; Taidakova, T; Mather, J; Gorkavyi, Nick; Heap, Sara; Ozernoy, Leonid; Taidakova, Tanya; Mather, John

    2000-01-01

    Our efficient numerical approach has been applied to modeling the asymmetric circumstellar dust disk around Beta Pictoris as observed with the HST/STIS. We present a new model on the origin of the warping of the Beta Pic disk. We suggest that the observed warp is formed by the gravitational influence of a planet with a mass of about 10 masses of Earth, at a distance of 70 AU, and a small inclination ($\\sim 2.5^\\circ$) of the planetary orbit to the main dust disk. Results of our modeling are compared with the STIS observations.

  11. Do Water Fountain Jets Really Indicate the Onset of the Morphological Metamorphosis of Circumstellar Envelopes?

    CERN Document Server

    Yung, Bosco H K; Hsia, Chih-Hao; Imai, Hiroshi

    2016-01-01

    The small-scale bipolar jets having short dynamical ages from "water fountain (WF)" sources are regarded as an indication of the onset of circumstellar envelope morphological metamorphosis of intermediate-mass stars. Such process usually happens at the end of the asymptotic giant branch (AGB) phase. However, recent studies found that WFs could be AGB stars or even early planetary nebulae. This fact prompted the idea that WFs may not necessarily be objects at the beginning of the morphological transition process. In the present work, we show that WFs could have different envelope morphologies by studying their spectral energy distribution profiles. Some WFs have spherical envelopes that resembles usual AGB stars, while others have aspherical envelopes which are more common to post-AGB stars. The results imply that WFs may not represent the earliest stage of the morphological metamorphosis. We further argue that the dynamical age of a WF jet, which can be calculated from maser proper motions, may not be the rea...

  12. Large dust grains in the inner region of circumstellar disks

    CERN Document Server

    Isella, A; Testi, L; Isella, Andrea; Testi, Leonardo

    2006-01-01

    CONTEXT: Simple geometrical ring models account well for near-infrared interferometric observations of dusty disks surrounding pre-main sequence stars of intermediate mass. Such models demonstrate that the dust distribution in these disks has an inner hole and puffed-up inner edge consistent with theoretical expectations. AIMS: In this paper, we reanalyze the available interferometric observations of six intermediate mass pre-main sequence stars (CQ Tau, VV Ser, MWC 480, MWC 758, V1295 Aql and AB Aur) in the framework of a more detailed physical model of the inner region of the dusty disk. Our aim is to verify whether the model will allow us to constrain the disk and dust properties. METHODS: Observed visibilities from the literature are compared with theoretical visibilities from our model. With the assumption that silicates are the most refractory dust species, our model computes self-consistently the shape and emission of the inner edge of the dusty disk (and hence its visibilities for given interferometer...

  13. A SYMMETRIC INNER CAVITY IN THE HD 141569A CIRCUMSTELLAR DISK

    Energy Technology Data Exchange (ETDEWEB)

    Mazoyer, J.; Choquet, É.; Perrin, M. D.; Pueyo, L.; Debes, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21218 (United States); Boccaletti, A. [LESIA, Observatoire de Paris, CNRS, UPMC and Univ. Paris Diderot, 5 place Jules Janssen, F-92190 Meudon (France); Augereau, J.-C.; Lagrange, A.-M. [Univ. Grenoble Alpes, Institut de Planétologie et d´Astrophysique (IPAG) F-38000 Grenoble (France); Wolff, S. G., E-mail: jmazoyer@stsci.edu [Johns Hopkins University, 3400 North Charles Street, Baltimore, MD (United States)

    2016-02-20

    Some circumstellar disks, called transitional or hybrid disks, present characteristics of both protoplanetary disks (significant amount of gas) and debris disks (evolved structures around young main-sequence stars, composed of second generation dust, from collisions between planetesimals). Therefore, they are ideal astrophysical laboratories to witness the last stages of planet formation. The circumstellar disk around HD 141569A was intensively observed and resolved in the past from space, but also from the ground. However, the recent implementation of high contrast imaging systems has opened up new opportunities to re-analyze this object. We analyzed Gemini archival data from the Near-infrared Coronagraphic Imager obtained in 2011 in the H band, using several angular differential imaging techniques (classical ADI, LOCI, KLIP). These images reveal the complex structures of this disk with an unprecedented resolution. We also include archival Hubble Space Telescope images as an independent data set to confirm these findings. Using an analysis of the inner edge of the disk, we show that the inner disk is almost axisymmetrical. The measurement of an offset toward the east observed by previous authors is likely due to the fact that the eastern part of this disk is wider and more complex in substructure. Our precise reanalysis of the eastern side shows several structures, including a splitting of the disk and a small finger detached from the inner edge to the southeast. Finally, we find that the arc at 250 AU is unlikely to be a spiral, at least not at the inclination derived from the first ring, but instead could be interpreted as a third belt at a different inclination. If the very symmetrical inner disk edge is carved by a companion, the data presented here put additional constraints on its position. The observed very complex structures will be confirmed by the new generation of coronagraphic instrument (GPI, SPHERE). However, a full understanding of this system will

  14. Circumstellar disks of the most vigorously accreting young stars.

    Science.gov (United States)

    Liu, Hauyu Baobab; Takami, Michihiro; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M; Karr, Jennifer L; Kusakabe, Nobuhiko; Tsuribe, Toru

    2016-02-01

    Stars may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. Our high-resolution near-infrared imaging has verified the presence of the key associated features, large-scale arms and arcs surrounding four young stellar objects undergoing luminous outbursts. Our hydrodynamics simulations and radiative transfer models show that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation phase. The effect of those tempestuous episodes of disk evolution on star and planet formation remains to be understood.

  15. Probing the Density Structure of 48 Librae's Circumstellar Disk

    Science.gov (United States)

    Silaj, J.; Jones, C. E.; Carciofi, A. C.; Escolano, C.; Tycner, C.

    2016-11-01

    48 Librae is a well-known Be shell star that exhibits spectacular cyclic V/R asymmetries in its Balmer emission lines. In this work, we use the HDUST code to investigate the disk density structure required to produce this signature. By modelling one representative Hα profile, we obtain the two initial densities required to match each peak, and from this we infer the average initial disk density. Furthermore, we investigate the parameters of the central star by modelling the SED, and we constrain the inclination angle of the system with polarization measurements. We find 48 Lib is best represented by a B3V central star surrounded by a very dense disk with an average initial density of 1.1×10-10 g cm-3, and that the system is oriented at 85°.

  16. Gas phase chemical kinetics at high temperature of carbonaceous molecules: application to circumstellar envelopes

    Science.gov (United States)

    Biennier, L.; Gardez, A.; Saidani, G.; Georges, R.; Rowe, B.; Reddy, K. P. J.

    2011-05-01

    Circumstellar shells of evolved stars are a theater of extremely rich physical and chemical processes. More than seventy molecules of varied nature have been identified in the envelopes through their spectral fingerprints in the microwave or far infrared regions. Many of them are carbon chain molecules and radicals and a significant number are unique to the circumstellar medium. However, observational data remain scarce and more than half of the detected species have been observed in only one object, the nearby carbon star IRC + 10216. Chemical kinetic models are needed to describe the formation of molecules in evolved circumstellar outflows. Upcoming terrestrial telescopes such as ALMA will increase the spatial resolution by several orders of magnitude and provide a wealth of data. The determination of relevant laboratory kinetics data is critical to keep up with the development of the observations and of the refinement of chemical models. Today, the majority of reactions studied in the laboratory are the ones involved in combustion and concerning light hydrocarbons. Our objective is to provide the scientific community with rate coefficients of reactions between abundant species in these warm environments. Cyanopolyynes from HC_2N to HC_9N have all been detected in carbon rich circumstellar envelopes in up to 10 sources for HC_3N. Neutral-neutral reactions of the CN radical with unsaturated hydrocarbons could be a dominant route in the formation of cyanopolyynes, even at low temperatures. Our approach aims to bridge the temperature gap between resistively heated flow tubes and shock tubes. The present kinetic measurements are obtained using a new reactor combining a high enthalpy source (Moudens et al. 2011) with a flow tube and a pulsed laser photolysis and laser induced fluorescence system to probe the undergoing chemical reactions. The high enthalpy flow tube has been used to measure the rate constant of the reaction of the CN radical with propane, propene

  17. Effects of stellar flybys on planetary systems: 3D modeling of the circumstellar disk's damping effects

    Science.gov (United States)

    Picogna, G.; Marzari, F.

    2014-04-01

    Context. Stellar flybys in star clusters are suspected of affecting the orbital architecture of planetary systems causing eccentricity excitation and orbital misalignment between the planet orbit and the equatorial plane of the star. Aims: We explore whether the impulsive changes in the orbital elements of planets, caused by a hyperbolic stellar flyby, can be fully damped by the circumstellar disk surrounding the star. The time required to disperse stellar clusters is comparable to the circumstellar disk's lifetime. Since we perform 3D simulations, we can also test the inclination, excitation, and damping. Methods: We have modeled in 3D with the SPH code VINE, a system made of a solar-type star surrounded by a low density disk with a giant planet embedded in it approached on a hyperbolic encounter trajectory by a second star of similar mass and with its own disk. Different inclinations between the disks, planet orbit, and star trajectory have been considered to explore various encounter geometries. We focus on an extreme configuration where a very deep stellar flyby perturbs a Jovian planet on an external orbit. This allows us to test in full the ability of the disk to erase the effects of the stellar encounter. Results: We find that the amount of mass lost by the disk during the stellar flyby is less than in 2D models where a single disk was considered. This is mostly related to the mass exchange between the two disks at the encounter. The damping in eccentricity is slightly faster than in 2D models and it occurs on timescales on the order of a few kyr. During the flyby both the disks are warped owing to the mutual interaction and to the stellar gravitational perturbations, but they quickly relax to a new orbital plane. The planet is quickly dragged back within the disk by the tidal interaction with the gas. The only trace of the flyby left in the planet system, after about 104 yr, is a small misalignment, lower than 9°, between the star equatorial plane and the

  18. Effects of stellar flybys on planetary systems: 3D modeling of the circumstellar disks damping effects

    CERN Document Server

    Picogna, Giovanni

    2014-01-01

    Stellar flybys in star clusters are suspected to affect the orbital architecture of planetary systems causing eccentricity excitation and orbital misalignment between the planet orbit and the equatorial plane of the star. We explore whether the impulsive changes in the orbital elements of planets, caused by an hyperbolic stellar flyby, can be fully damped by the circumstellar disk surrounding the star. The time required to disperse stellar clusters is in fact comparable to circumstellar disk's lifetime. We have modelled in 3D a system made of a solar type star surrounded by a low density disk with a giant planet embedded in it approached on a hyperbolic encounter trajectory by a second star, of similar mass and with its own disk. We focus on extreme configurations where a very deep stellar flyby perturbs a Jovian planet on an external orbit. This allows to test in full the ability of the disk to erase the effects of the stellar encounter. We find that the amount of mass lost by the disk during the stellar fly...

  19. FIRST SCIENCE OBSERVATIONS WITH SOFIA/FORCAST: PROPERTIES OF INTERMEDIATE-LUMINOSITY PROTOSTARS AND CIRCUMSTELLAR DISKS IN OMC-2

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Joseph D.; Herter, Terry L.; Gull, George E.; Henderson, Charles P.; Schoenwald, Justin; Stacey, Gordon [Department of Astronomy, Cornell University, Space Sciences Bldg., Ithaca, NY 14853 (United States); Osorio, Mayra; Macias, Enrique [Instituto de Astrofisica de Andalucia, CSIC, Camino Bajo de Huetor 50, E-18008 Granada (Spain); Thomas Megeath, S.; Fischer, William J. [Department of Physics and Astronomy, University of Toledo, Mailstop 111, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Ali, Babar [NHSC/IPAC/Caltech, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Calvet, Nuria [Department of Astronomy, University of Michigan, 825 Dennison Building, 500 Church St, Ann Arbor, MI 48109 (United States); D' Alessio, Paola [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, 58089 Morelia, Michoacan (Mexico); De Buizer, James M.; Shuping, Ralph Y. [SOFIA-University Space Research Association, NASA Ames Research Center, Mail Stop N211-3, Moffett Field, CA 94035 (United States); Keller, Luke D. [Ithaca College, Physics Department, 264 Ctr for Natural Sciences, Ithaca, NY 14850 (United States); Morris, Mark R. [Department of Physics and Astronomy, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1547 (United States); Remming, Ian S. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Stanke, Thomas [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen (Germany); Stutz, Amelia [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); and others

    2012-04-20

    We examine eight young stellar objects in the OMC-2 star-forming region based on observations from the SOFIA/FORCAST early science phase, the Spitzer Space Telescope, the Herschel Space Observatory, Two Micron All Sky Survey, Atacama Pathfinder Experiment, and other results in the literature. We show the spectral energy distributions (SED) of these objects from near-infrared to millimeter wavelengths, and compare the SEDs with those of sheet collapse models of protostars and circumstellar disks. Four of the objects can be modeled as protostars with infalling envelopes, two as young stars surrounded by disks, and the remaining two objects have double-peaked SEDs. We model the double-peaked sources as binaries containing a young star with a disk and a protostar. The six most luminous sources are found in a dense group within a 0.15 Multiplication-Sign 0.25 pc region; these sources have luminosities ranging from 300 L{sub Sun} to 20 L{sub Sun }. The most embedded source (OMC-2 FIR 4) can be fit by a class 0 protostar model having a luminosity of {approx}50 L{sub Sun} and mass infall rate of {approx}10{sup -4} M{sub Sun} yr{sup -1}.

  20. First Science Observations with SOFIA/FORCAST: Properties of Intermediate-Luminosity Protostars and Circumstellar Disks in OMC-2

    CERN Document Server

    Adams, Joseph D; Osorio, Mayra; Macias, Enrique; Megeath, S Thomas; Fischer, William J; Ali, Babar; Calvet, Nuria; D'Alessio, Paola; De Buizer, James M; Gull, George E; Henderson, Charles P; Keller, Luke D; Morris, Mark R; Remming, Ian S; Schoenwald, Justin; Shuping, Ralph Y; Stacey, Gordon; Stanke, Thomas; Stutz, Amelia; Vacca, William

    2012-01-01

    We examine eight young stellar objects in the OMC-2 star forming region based on observations from the SOFIA/FORCAST early science phase, the Spitzer Space Telescope, the Herschel Space Observatory, 2MASS, APEX, and other results in the literature. We show the spectral energy distributions of these objects from near-infrared to millimeter wavelengths, and compare the SEDs with those of sheet collapse models of protostars and circumstellar disks. Four of the objects can be modelled as protostars with infalling envelopes, two as young stars surrounded by disks, and the remaining two objects have double-peaked SEDs. We model the double-peaked sources as binaries containing a young star with a disk and a protostar. The six most luminous sources are found in a dense group within a 0.15 x 0.25 pc region; these sources have luminosities ranging from 300 L_sun to 20 L_sun. The most embedded source (OMC-2 FIR 4) can be fit by a class 0 protostar model having a luminosity of ~50 L_sun and mass infall rate of ~10^-4 sol...

  1. High spatial resolution infrared imaging of L1551-IRS 5 - Direct observations of its circumstellar envelope

    Science.gov (United States)

    Moneti, Andrea; Forrest, William J.; Pipher, Judith L.; Woodward, Charles E.

    1988-01-01

    Images of L1551-IRS 5 were obtained at 1.65, 2.2, and 3.8 microns using the University of Rochester's Infrared Array Camera. It is found that IRS 5 is spatially resolved, and that it is elongated: the observed FWHM size of IRS 5 is 4.1 x 2.8 arcsec-squared at 2.2 microns. These observations are interpreted in terms of a flattened circumstellar envelope that is viewed from about 18 deg above its equatorial plane, a configuration that has been treated theoretically by Lefevre et al. In this model the central star is not seen directly, but only light scattered toward the observer from the visible polar region, where the envelope is thinnest, is observed. It is deduced that the envelope has a diameter of 1000 AU, a molecular hydrogen density of greater than or approximately equal to 4 x 10 to the 6th/cu cm, and a mass of greater than or approximately equal to 0.02 M solar mass, which results in an extinction of Av greater than about 33 mag to the central source.

  2. Circumstellar Disks of the Most Vigorously Accreting Young Stars

    CERN Document Server

    Liu, Hauyu Baobab; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M; Karr, Jennifer; Kusakabe, Nobuhiko; Tsuribe, Toru

    2016-01-01

    Young stellar objects (YSOs) may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. We report our high angular resolution, coronagraphic near-infrared polarization imaging observations using the High Contrast Instrument for the Subaru Next Generation Adaptive Optics (HiCIAO) of the Subaru 8.2 m Telescope, towards four YSOs which are undergoing luminous accretion outbursts. The obtained infrared images have verified the presence of several hundred AUs scale arms and arcs surrounding these YSOs. In addition, our hydrodynamics simulations and radiative transfer models further demonstrate that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation p...

  3. Far-Ultraviolet H2 Emission from Circumstellar Disks

    CERN Document Server

    Ingleby, Laura; Bergin, Edwin; Yerasi, Ashwin; Espaillat, Catherine; Herczeg, Gregory; Roueff, Evelyne; Abgrall, Herve; Hernandez, Jesus; Briceno, Cesar; Pascucci, Ilaria; Miller, Jon; Fogel, Jeffrey; Hartmann, Lee; Meyer, Michael; Carpenter, John; Crockett, Nathan; McClure, Melissa

    2009-01-01

    We analyze the far-ultraviolet (FUV) spectra of 33 classical T Tauri stars (CTTS), including 20 new spectra obtained with the Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) on the Hubble Space Telescope. Of the sources, 28 are in the ~1 Myr old Taurus-Auriga complex or Orion Molecular Cloud, 4 in the 8-10 Myr old Orion OB1a complex and one, TW Hya, in the 10 Myr old TW Hydrae Association. We also obtained FUV ACS/SBC spectra of 10 non-accreting sources surrounded by debris disks with ages between 10 and 125 Myr. We use a feature in the FUV spectra due mostly to electron impact excitation of \\h2 to study the evolution of the gas in the inner disk. We find that the \\h2 feature is absent in non-accreting sources, but is detected in the spectra of CTTS and correlates with accretion luminosity. Since all young stars have active chromospheres which produce strong X-ray and UV emission capable of exciting \\h2 in the disk, the fact that the non-accreting sources show no \\h2 emission implies that the \\h2 ga...

  4. Discovery of multiple dust shells beyond 1 arcmin in the circumstellar envelope of IRC +10216 using Herschel/PACS

    NARCIS (Netherlands)

    Decin, L.; Royer, P.; Cox, N.L.J.; Vandenbussche, B.; Ottensamer, R.; Blommaert, J.A.D.L.; Groenewegen, M.A.T.; Barlow, M.J.; Lim, T.; Kerschbaum, F.; Posch, T.; Waelkens, C.

    2011-01-01

    We present new Herschel/PACS images at 70, 100, and 160 μm of the well-known, nearby, carbon-rich asymptotic giant branch star IRC+10216 revealing multiple dust shells in its circumstellar envelope. For the first time, dust shells (or arcs) are detected until 320''. The almost spherical shells are n

  5. CO and HI emission from the circumstellar envelopes of some evolved stars

    CERN Document Server

    Diep, P N; Nhung, P T; Tuan-Anh, P; Bertre, T Le; Winters, J M; Matthews, L D; Phuong, N T; Thao, N T; Darriulat, P

    2015-01-01

    Studies of the CO and HI radio emission of some evolved stars are presented using data collected by the IRAM Plateau de Bure interferometer and Pico Veleta telescope, the Nan\\c{c}ay Radio Telescope and the JVLA and ALMA arrays. Approximate axial symmetry of the physical and kinematic properties of the circumstellar envelope (CSE) are observed in CO emission, in particular, from RS Cnc, EP Aqr and the Red Rectangle. A common feature is the presence of a bipolar outflow causing an enhanced wind velocity in the polar directions. HI emission extends to larger radial distances than probed by CO emission and displays features related to the interaction between the stellar outflow and interstellar matter. With its unprecedented sensitivity, FAST will open a new window on such studies. Its potential in this domain is briefly illustrated.

  6. THE PDS 66 CIRCUMSTELLAR DISK AS SEEN IN POLARIZED LIGHT WITH THE GEMINI PLANET IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Schuyler G.; Greenbaum, Alexandra Z. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Perrin, Marshall; Hines, Dean C. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Millar-Blanchaer, Maxwell A. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Nielsen, Eric L. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Wang, Jason; Dong, Ruobing; Duchêne, Gaspard; Graham, James R.; Kalas, Paul [Astronomy Department, University of California, Berkeley, Berkeley, CA 94720 (United States); Cardwell, Andrew [LBT Observatory, University of Arizona, 933 N. Cherry Avenue, Room 552, Tucson, AZ 85721 (United States); Chilcote, Jeffrey [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Draper, Zachary H. [University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Fitzgerald, Michael P.; Hung, Li-Wei [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 (United States); Goodsell, Stephen J. [Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Hartung, Markus; Hibon, Pascale, E-mail: swolff9@jh.edu [Gemini Observatory, Casilla 603, La Serena (Chile); and others

    2016-02-10

    We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physical mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging.

  7. The PDS 66 Circumstellar Disk as seen in Polarized Light with the Gemini Planet Imager

    CERN Document Server

    Wolff, Schuyler G; Millar-Blanchaer, Maxwell A; Nielsen, Eric L; Wang, Jason; Cardwell, Andrew; Chilcote, Jeffrey; Dong, Ruobing; Draper, Zachary H; Duchene, Gaspard; Fitzgerald, Michael P; Goodsell, Stephen J; Grady, Carol A; Graham, James R; Greenbaum, Alexandra Z; Hartung, Markus; Hibon, Pascale; Hines, Dean C; Hung, Li-Wei; Kalas, Paul; Macintosh, Bruce; Marchis, Franck; Marois, Christian; Pueyo, Laurent; Rantakyro, Fredrik T; Schneider, Glenn; Sivaramakrishnan, Anand; Wiktorowicz, Sloane J

    2016-01-01

    We present H and K band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.12'' inner working angle (IWA) in H band, almost 3 times as close to the star as the previous HST observations with NICMOS and STIS (0.35'' effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physical mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the East side of the disk which is inferred to be nearer to us. We also detect a lateral asymmetry in the South possibly due to shadowing from material within the inner working angle. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging.

  8. ALMA Observations of Circumstellar Disks in the Upper Scorpius OB Association

    CERN Document Server

    Barenfeld, Scott A; Ricci, Luca; Isella, Andrea

    2016-01-01

    We present ALMA observations of 106 G-, K-, and M-type stars in the Upper Scorpius OB Association hosting circumstellar disks. With these data, we measure the 0.88 mm continuum and $^{12}$CO $J = 3-2$ line fluxes of disks around low mass ($0.14-1.66$ $M_{\\odot}$) stars at an age of 5-11 Myr. Of the 75 primordial disks in the sample, 53 are detected in the dust continuum and 26 in CO. Of the 31 disks classified as debris/evolved transitional disks, 5 are detected in the continuum and none in CO. The lack of CO emission in approximately half of the disks with detected continuum emission can be explained if CO is optically thick but has a compact emitting area ($\\lesssim 40$ AU), or if the CO is heavily depleted by a factor of at least $\\sim1000$ relative to interstellar medium abundances and is optically thin. The continuum measurements are used to estimate the dust mass of the disks. We find a correlation between disk dust mass and stellar host mass consistent with a power-law relation of $M_{dust}\\propto M_*^...

  9. Circumbinary ring, circumstellar disks, and accretion in the binary system UY Aurigae

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ya-Wen; Ho, Paul T. P. [Academia Sinica, Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Dutrey, Anne; Guilloteau, Stéphane; Di Folco, Emmanuel [Université de Bordeaux, Observatoire Aquitain des Sciences de l' Univers, CNRS, UMR 5804, Laboratoire d' Astrophysique de Bordeaux, 2 rue de l' Observatoire, BP 89, F-33271 Floirac Cedex (France); Piétu, Vincent; Gueth, Fréderic [IRAM, 300 rue de la piscine, F-38406 Saint Martin d' Hères Cedex (France); Beck, Tracy [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Boehler, Yann [Centro de Radioastronomìa y Astrofìsica, UNAM, Apartado Postal 3-72, 58089 Morelia, Michoacàn (Mexico); Bary, Jeff [Department of Physics and Astronomy, Colgate University, 13 Oak Drive, Hamilton, NY 13346 (United States); Simon, Michal, E-mail: ywtang@asiaa.sinica.edu.tw [Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2014-09-20

    Recent exo-planetary surveys reveal that planets can orbit and survive around binary stars. This suggests that some fraction of young binary systems which possess massive circumbinary (CB) disks may be in the midst of planet formation. However, there are very few CB disks detected. We revisit one of the known CB disks, the UY Aurigae system, and probe {sup 13}CO 2-1, C{sup 18}O 2-1, SO 5(6)-4(5) and {sup 12}CO 3-2 line emission and the thermal dust continuum. Our new results confirm the existence of the CB disk. In addition, the circumstellar (CS) disks are clearly resolved in dust continuum at 1.4 mm. The spectral indices between the wavelengths of 0.85 mm and 6 cm are found to be surprisingly low, being 1.6 for both CS disks. The deprojected separation of the binary is 1.''26 based on our 1.4 mm continuum data. This is 0.''07 (10 AU) larger than in earlier studies. Combining the fact of the variation of UY Aur B in R band, we propose that the CS disk of an undetected companion UY Aur Bb obscures UY Aur Ba. A very complex kinematical pattern inside the CB disk is observed due to a mixing of Keplerian rotation of the CB disk, the infall and outflow gas. The streaming gas accreting from the CB ring toward the CS disks and possible outflows are also identified and resolved. The SO emission is found to be at the bases of the streaming shocks. Our results suggest that the UY Aur system is undergoing an active accretion phase from the CB disk to the CS disks. The UY Aur B might also be a binary system, making the UY Aur a triple system.

  10. THE ENVELOPE AND EMBEDDED DISK AROUND THE CLASS 0 PROTOSTAR L1157-mm: DUAL-WAVELENGTH INTERFEROMETRIC OBSERVATIONS AND MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Hsin-Fang; Looney, Leslie W. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Tobin, John J., E-mail: hchiang@ifa.hawaii.edu [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States)

    2012-09-10

    We present dual-wavelength observations and modeling of the nearly edge-on Class 0 young stellar object L1157-mm. Using the Combined Array for Research in Millimeter-wave Astronomy, a nearly spherical structure is seen from the circumstellar envelope at the size scale of 10{sup 2}-10{sup 3} AU in both 1 mm and 3 mm dust emission. Radiative transfer modeling is performed to compare data with theoretical envelope models, including a power-law envelope model and the Terebey-Shu-Cassen model. Bayesian inference is applied for parameter estimation and information criterion is used for model selection. The results prefer the power-law envelope model against the Terebey-Shu-Cassen model. In particular, for the power-law envelope model, a steep density profile with an index of {approx}2 is inferred. Moreover, the dust opacity spectral index {beta} is estimated to be {approx}0.9, implying that grain growth has started at L1157-mm. Also, the unresolved disk component is constrained to be {approx}<40 AU in radius and {approx}<4-25 M{sub Jup} in mass. However, the estimate of the embedded disk component relies on the assumed envelope model.

  11. Location and origin of dust in circumstellar debris disks: A mid-infrared imaging study

    Science.gov (United States)

    Moerchen, Margaret Marie

    Approximately one third of A-type stars host dusty disks beyond the expected timescales for dissipation of the primordial disk material. The primordial dust particles may either be blown out by radiation pressure from the star or they may experience destructive collisions that generate smaller particles that are then blown out of the system. We infer from the sustained presence of the dust that it must be resupplied through collisions of already-formed planets and planetesimals or through the sublimation of cometary bodies, and systems with such dust are called debris disks. Since the 1984 discovery of the debris disk Vega, observations of circumstellar debris disks have revealed the presence planetary systems that would otherwise have remained unknown. In this work, we set out to find asymmetric structures in debris disks that would indicate a physical process sculpting the disk, such as a catastrophic planetesimal collision that generates a bright region of newly-formed dust, or a clumpy pattern comprised of dust that is trapped in an orbital resonance with a giant planet. We obtained high spatial resolution ([Special characters omitted.] 0.5") images of the thermally emitting dust in 21 debris disk candidates (some of which are now known not to be debris disks), and in most cases we did not detect any brightness asymmetry nor was the source even spatially resolved. However, among the resolved disks, we have discovered several structures that may be analogous to those in our own solar system, such as a potential asteroid belts (in z Lep) and a snow line (in HD 32297). One brightness asymmetry is seen, in the disk of 16 HR 4796A, and we have determined that the bright side of the disk is also hotter than the opposite side. We review the possible origins of such a temperature asymmetry in the dust disk, such as pericenter glow and resonant trapping, and this investigation is ongoing. More generally, two disk archetypes are observed among all of the disks in this

  12. Line-driven ablation of circumstellar disks: I. Optically thin decretion disks of classical Oe/Be stars

    CERN Document Server

    Kee, N D; Sundqvist, J O

    2016-01-01

    The extreme luminosities of hot, massive stars drive strong stellar winds through UV line-scattering. For OB stars with an orbiting circumstellar disk, we explore the effect of such line-scattering in ablating disk material, initially focusing on the marginally optically thin decretion disks of classical Oe and Be stars. For this we apply a multi-dimensional radiation-hydrodynamics code, assuming optically thin ray tracing for the stellar continuum and a multi-ray Sobolev treatment of the line transfer. This accounts for desaturation of line-absorption by Keplerian shear in the disk, and associated driving by non-radial photons. Results show dense, intermediate-speed surface ablation, consistent with the strong, blue-shifted absorption seen in UV wind lines of Be shell stars. The asymptotic ablation rate is typically an order-unity factor times the stellar wind mass loss rate, leading to disk destruction times of order months to years for Be disks, consistent with observations. The much stronger radiative for...

  13. From Protoplanetary Disks to Extrasolar Planets: Understanding the Life Cycle of Circumstellar Gas with Ultraviolet Spectroscopy

    CERN Document Server

    France, Kevin; Ardila, David R; Bergin, Edwin A; Brown, Alexander; Burgh, Eric B; Calvet, Nuria; Chiang, Eugene; Cook, Timothy A; Désert, Jean-Michel; Ebbets, Dennis; Froning, Cynthia S; Green, James C; Hillenbrand, Lynne A; Johns-Krull, Christopher M; Koskinen, Tommi T; Linsky, Jeffrey L; Redfield, Seth; Roberge, Aki; Schindhelm, Eric R; Scowen, Paul A; Stapelfeldt, Karl R; Tumlinson, Jason

    2012-01-01

    Few scientific discoveries have captured the public imagination like the explosion of exoplanetary science during the past two decades. This work has fundamentally changed our picture of Earth's place in the Universe and led NASA to make significant investments towards understanding the demographics of exoplanetary systems and the conditions that lead to their formation. The story of the formation and evolution of exoplanetary systems is essentially the story of the circumstellar gas and dust that are initially present in the protostellar environment; in order to understand the variety of planetary systems observed, we need to understand the life cycle of circumstellar gas from its initial conditions in protoplanetary disks to its endpoint as planets and their atmospheres. In this white paper response to NASA's Request for Information "Science Objectives and Requirements for the Next NASA UV/Visible Astrophysics Mission Concepts (NNH12ZDA008L)", we describe scientific programs that would use the unique capabi...

  14. THE GAS/DUST RATIO OF CIRCUMSTELLAR DISKS: TESTING MODELS OF PLANETESIMAL FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Horne, David [New York Center for Astrobiology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180-3590 (United States); Gibb, Erika [Department of Physics and Astronomy, University of Missouri-St. Louis, 8001 Natural Bridge Road, St. Louis, MO 63121 (United States); Rettig, Terrence W.; Tilley, David; Balsara, Dinshaw [Center for Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Brittain, Sean [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978 (United States)

    2012-07-20

    We present high-resolution, near-infrared NIRSPEC observations of CO absorption toward six class II T Tauri stars: AA Tau, DG Tau, IQ Tau, RY Tau, CW Tau, and Haro 6-5b. {sup 12}CO overtone absorption lines originating from the circumstellar disk of each object were used to calculate line-of-sight gas column densities toward each source. We measured the gas/dust ratio as a function of disk inclination, utilizing measured visual extinctions and inclinations for each star. The majority of our sources show further evidence for a correlation between the gas/dust column density ratio and disk inclination similar to that found by Rettig et al.

  15. Ground-based near-infrared imaging of the HD141569 circumstellar disk

    CERN Document Server

    Boccaletti, A; Marchis, F; Hanh, J

    2003-01-01

    We present the first ground-based near-infrared image of the circumstellar disk around the post-Herbig Ae/Be star HD141569A initially detected with the HST. Observations were carried out in the near-IR (2.2 $\\mu$m) at the Palomar 200-inch telescope using the adaptive optics system PALAO. The main large scale asymmetric features of the disk are detected on our ground-based data. In addition, we measured that the surface brightness of the disk is slightly different than that derived by HST observations (at 1.1 $\\mu$m and 1.6 $\\mu$m). We interpret this possible color-effect in terms of dust properties and derive a minimal

  16. ALMA Observations of Circumstellar Disks in the Upper Scorpius OB Association

    Science.gov (United States)

    Barenfeld, Scott A.; Carpenter, John M.; Ricci, Luca; Isella, Andrea

    2016-08-01

    We present ALMA observations of 106 G-, K-, and M-type stars in the Upper Scorpius OB Association hosting circumstellar disks. With these data, we measure the 0.88 mm continuum and 12CO J = 3-2 line fluxes of disks around low-mass (0.14-1.66 M ⊙) stars at an age of 5-11 Myr. Of the 75 primordial disks in the sample, 53 are detected in the dust continuum and 26 in CO. Of the 31 disks classified as debris/evolved transitional disks, five are detected in the continuum and none in CO. The lack of CO emission in approximately half of the disks with detected continuum emission can be explained if CO is optically thick but has a compact emitting area (≲40 au), or if the CO is heavily depleted by a factor of at least ˜1000 relative to interstellar medium abundances and is optically thin. The continuum measurements are used to estimate the dust mass of the disks. We find a correlation between disk dust mass and stellar host mass consistent with a power-law relation of {M}{dust}\\propto {M}* 1.67+/- 0.37. Disk dust masses in Upper Sco are compared to those measured in the younger Taurus star-forming region to constrain the evolution of disk dust mass. We find that the difference in the mean of {log}({M}{dust}/{M}* ) between Taurus and Upper Sco is 0.64 ± 0.09, such that M dust/M * is lower in Upper Sco by a factor of ˜4.5.

  17. A Novel Approach to Constraining the Lifetime of Primordial Gas in Circumstellar Disks

    Science.gov (United States)

    Anderson, Dana; Bergin, Edwin A.; Blake, Geoffrey A.; Zhang, Ke; Carpenter, John M.; Schwarz, Kamber R.

    2016-10-01

    The lifetime of primordial gas in circumstellar disks limits the timescale for gas-giant planet formation, determines the impact of gas-particle dynamics throughout disk evolution, and therefore influences the composition and architecture of planetary systems forming from these disks. Current estimates of the gas lifetime are based mainly on indirect tracers of the primordial gas, predominately IR through sub-mm dust and CO emission, in systems of different ages. However, these conventional gas tracers may be less reliable in older systems where the gas-to-dust ratio is highly uncertain and observations suggest that carbon may be severely depleted from the gas relative to interstellar abundances. Here we investigate the evolution of primordial disk gas using a novel approach based on evidence from our own solar system. The enhanced carbon-to-nitrogen (C/N) ratios in meteorites and comets relative to the solar value suggest that N is less likely than C to be sequestered into the solid phase as the disk evolves. Therefore, observable N-bearing volatile species such as N2H+ may be more accurate tracers of the gas than CO in older disks. N2H+ was detected in two mature, ˜5-11 Myr old, disks in the Upper Scorpious OB Association using ALMA. Comparison with previous CO measurements of these sources by Barenfeld et al. (2016) result in high N2H+/CO flux ratios relative to estimates of comparable measurements for younger, gas-rich disks based on a survey by Öberg et al. (2010, 2011). These preliminary results demonstrate that the mature disks retain primordial gas and may suggest a greater depletion of C relative to N from the gas as the disk evolves. Chemical modeling of these systems will aid in determining molecular column densities and relating the observed emission to the total molecular hydrogen mass.

  18. Hubble and Spitzer Observations of an Edge-on Circumstellar Disk around a Brown Dwarf

    CERN Document Server

    Luhman, K L; D'Alessio, Paola; Calvet, Nuria; McLeod, Kim K; Bohac, J; Forrest, William J; Hartmann, Lee; Sargent, B; Watson, Dan M

    2007-01-01

    We present observations of a circumstellar disk that is inclined close to edge-on around a young brown dwarf in the Taurus star-forming region. Using data obtained with SpeX at the NASA Infrared Telescope Facility, we find that the slope of the 0.8-2.5 um spectrum of the brown dwarf 2MASS J04381486+2611399 cannot be reproduced with a photosphere reddened by normal extinction. Instead, the slope is consistent with scattered light, indicating that circumstellar material is occulting the brown dwarf. By combining the SpeX data with mid-IR photometry and spectroscopy from the Spitzer Space Telescope and previously published millimeter data from Scholz and coworkers, we construct the spectral energy distribution for 2MASS J04381486+2611399 and model it in terms of a young brown dwarf surrounded by an irradiated accretion disk. The presence of both silicate absorption at 10 um and silicate emission at 11 um constrains the inclination of the disk to be ~70 deg, i.e. ~20 deg from edge-on. Additional evidence of the h...

  19. The Nature of Transition Circumstellar Disks I. The Ophiuchus Molecular Cloud

    CERN Document Server

    Cieza, Lucas A; Romero, Gisela A; Mora, Marcelo D; Merin, Bruno; Swift, Jonathan J; Orellana, Mariana; Williams, Jonathan P; Harvey, Paul M; Evans, Neal J

    2010-01-01

    We have obtained millimeter wavelength photometry, high-resolution optical spectroscopy and adaptive optics near-infrared imaging for a sample of 26 Spitzer-selected transition circumstellar disks. All of our targets are located in the Ophiuchus molecular cloud (d ~125 pc) and have Spectral Energy Distributions (SEDs) suggesting the presence of inner opacity holes. We use these ground-based data to estimate the disk mass, multiplicity, and accretion rate for each object in our sample in order to investigate the mechanisms potentially responsible for their inner holes. We find that transition disks are a heterogeneous group of objects, with disk masses ranging from < 0.6 to 40 M_JUP and accretion rates ranging from <1E-11 1E-7 M_solar/yr, but most tend to have much lower masses and accretion rates than "full disks" (i.e., disks without opacity holes). Eight of our targets have stellar companions: 6 of them are binaries and the other 2 are triple systems. In four cases, the stellar companions are close en...

  20. ALMA view of the circumstellar environment of the post-common-envelope-evolution binary system HD101584

    CERN Document Server

    Olofsson, H; Maercker, M; Humphreys, E M L; Lindqvist, M; Nyman, L; Ramstedt, S

    2015-01-01

    We study the circumstellar evolution of the binary HD101584, consisting of a post-AGB star and a low-mass companion, which is most likely a post-common-envelope-evolution system. We used ALMA observations of the 12CO, 13CO, and C18O J=2-1 lines and the 1.3mm continuum to determine the morphology, kinematics, masses, and energetics of the circumstellar environment. The circumstellar medium has a bipolar hour-glass structure, seen almost pole-on, formed by an energetic jet, about 150 km/s. We conjecture that the circumstellar morphology is related to an event that took place about 500 year ago, possibly a capture event where the companion spiraled in towards the AGB star. However, the kinetic energy of the accelerated gas exceeds the released orbital energy, and, taking into account the expected energy transfer efficiency of the process, the observed phenomenon does not match current common-envelope scenarios. This suggests that another process must augment, or even dominate, the ejection process. A significant...

  1. Dynamics of Circumstellar Disks. III. The Case of GG Tau A

    Science.gov (United States)

    Nelson, Andrew F.; Marzari, F.

    2016-08-01

    We present two-dimensional hydrodynamic simulations using the Smoothed Particle Hydrodynamic code, VINE, to model a self-gravitating binary system. We model configurations in which a circumbinary torus+disk surrounds a pair of stars in orbit around each other and a circumstellar disk surrounds each star, similar to that observed for the GG Tau A system. We assume that the disks cool as blackbodies, using rates determined independently at each location in the disk by the time dependent temperature of the photosphere there. We assume heating due to hydrodynamical processes and to radiation from the two stars, using rates approximated from a measure of the radiation intercepted by the disk at its photosphere. We simulate a suite of systems configured with semimajor axes of either a = 62 AU (“wide”) or a = 32 AU (“close”), and with assumed orbital eccentricity of either e = 0 or e = 0.3. Each simulation follows the evolution for ˜6500-7500 yr, corresponding to about three orbits of the torus around the center of mass. Our simulations show that strong, sharply defined spiral structures are generated from the stirring action of the binary and that, in some cases, these structures fragment into 1-2 massive clumps. The torus quickly fragments into several dozen such fragments in configurations in which either the binary is replaced by a single star of equal mass, or radiative heating is neglected. The spiral structures extend inwards to the circumstellar environment as large scale material streams for which most material is found on trajectories that return it to the torus on a timescale of 1-200 yr, with only a small fraction accreting into the circumstellar environment. The spiral structures also propagate outwards through the torus, generating net outwards mass flow, and eventually losing coherence at large distances from the stars. The torus becomes significantly eccentric in shape over most of its evolution. In all configurations, accretion onto the stars

  2. CARMA CO(J = 2 - 1) Observations of the Circumstellar Envelope of Betelgeuse

    CERN Document Server

    O'Gorman, Eamon; Brown, Joanna M; Brown, Alexander; Redfield, Seth; Richter, Matthew J; Requena-Torres, Miguel A

    2012-01-01

    We report radio interferometric observations of the 12C16O 1.3 mm J = 2-1 emission line in the circumstellar envelope of the M supergiant Alpha Ori and have detected and separated both the S1 and S2 flow components for the first time. Observations were made with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) interferometer in the C, D, and E antenna configurations. We obtain good u-v coverage (5-280 klambda) by combining data from all three configurations allowing us to trace spatial scales as small as 0.9\\arcsec over a 32\\arcsec field of view. The high spectral and spatial resolution C configuration line profile shows that the inner S1 flow has slightly asymmetric outflow velocities ranging from -9.0 km s-1 to +10.6 km s-1 with respect to the stellar rest frame. We find little evidence for the outer S2 flow in this configuration because the majority of this emission has been spatially-filtered (resolved out) by the array. We also report a SOFIA-GREAT CO(J= 12-11) emission line profile w...

  3. THE FIRST DETERMINATION OF THE VISCOSITY PARAMETER IN THE CIRCUMSTELLAR DISK OF A Be STAR

    Energy Technology Data Exchange (ETDEWEB)

    Carciofi, Alex C.; Bjorkman, Jon E.; Haubois, Xavier [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, 05508-900, Sao Paulo, SP (Brazil); Otero, Sebastian A. [American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138 (United States); Okazaki, Atsuo T. [Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605 (Japan); Stefl, Stanislav; Rivinius, Thomas [European Organisation for Astronomical Research in the Southern Hemisphere, Casilla 19001, Santiago 19 (Chile); Baade, Dietrich, E-mail: carciofi@usp.br, E-mail: jon@physics.utoledo.edu [European Organisation for Astronomical Research in the Southern Hemisphere, Karl-Schwarzschild-Str. 2, 85748 Garching bei Muenchen (Germany)

    2012-01-15

    Be stars possess gaseous circumstellar decretion disks, which are well described using standard {alpha}-disk theory. The Be star 28 CMa recently underwent a long outburst followed by a long period of quiescence, during which the disk dissipated. Here we present the first time-dependent models of the dissipation of a viscous decretion disk. By modeling the rate of decline of the V-band excess, we determine that the viscosity parameter {alpha} = 1.0 {+-} 0.2, corresponding to a mass injection rate M-dot =(3.5{+-}1.3) Multiplication-Sign 10{sup -8} M{sub Sun} yr{sup -1}. Such a large value of {alpha} suggests that the origin of the turbulent viscosity is an instability in the disk whose growth is limited by shock dissipation. The mass injection rate is more than an order of magnitude larger than the wind mass-loss rate inferred from UV observations, implying that the mass injection mechanism most likely is not the stellar wind, but some other mechanism.

  4. Structure and Composition of Two Transitional Circumstellar Disks in Corona Australis

    CERN Document Server

    Hughes, A M; Wilner, D J; Meyer, M R; Carpenter, J M; Qi, C; Hales, A S; Casassus, S; Hogerheijde, M R; Mamajek, E E; Wolf, S; Henning, T; Silverstone, M D

    2010-01-01

    The late stages of evolution of the primordial circumstellar disks surrounding young stars are poorly understood, yet vital to constrain theories of planet formation. We consider basic structural models for the disks around two ~10 Myr-old members of the nearby RCrA association, RX J1842.9-3532 and RX J1852.3-3700. We present new arcsecond-resolution maps of their 230 GHz continuum emission from the Submillimeter Array and unresolved CO(3-2) spectra from the Atacama Submillimeter Telescope Experiment. By combining these data with broadband fluxes from the literature and infrared fluxes and spectra from the catalog of the Formation and Evolution of Planetary Systems (FEPS) Legacy program on the Spitzer Space Telescope, we assemble a multiwavelength data set probing the gas and dust disks. Using the Monte Carlo radiative transfer code RADMC to model simultaneously the SED and millimeter continuum visibilities, we derive basic dust disk properties and identify an inner cavity of radius 16 AU in the disk around R...

  5. Radiative Transfer Modeling of Passive Circumstellar Disks: Application to HR4796A

    CERN Document Server

    Currie, T; Henning, T; Furlan, E; Herter, T; Henning, Th.

    2003-01-01

    We present a radiative transfer model which computes the spectral energy distribution of a passive, irradiated, circumstellar disk, assuming the grains are in radiative equilibrium. Dependence on radial density profile, grain temperature estimation, and optical depth profiles on the output SED are discussed. The bist fit model for HR4796A has a minimum and maximum spherical grain size of 2.2 and 1000 \\mu$m respectively, a size distribution slightly steeper than the "classical" -3.5 MRN power law, grains composed of silicates, trolite, ice, and organics and a peak radial density of 1.0 x 10^-17 g cm^-2 at 70 AU, yielding a disk mass of roughly 2 M_{oplus}$.

  6. A HOT MOLECULAR CIRCUMSTELLAR DISK AROUND THE MASSIVE PROTOSTAR ORION SOURCE I

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Tomoya; Honma, Mareki [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Kim, Mi Kyoung [Korea Astronomy and Space Science Institute, Hwaam-dong 61-1, Yuseong-gu, Daejeon, 305-348 (Korea, Republic of); Kurono, Yasutaka, E-mail: tomoya.hirota@nao.ac.jp [Chile Observatory, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan)

    2014-02-20

    We report new Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a circumstellar disk around Source I in Orion KL, an archetype of massive protostar candidates. We detected two ortho-H{sub 2}O lines at 321 GHz (10{sub 2,} {sub 9}-9{sub 3,} {sub 6}) and 336 GHz (ν{sub 2} = 1, 5{sub 2,} {sub 3}-6{sub 1,} {sub 6}) for the first time in Source I. The latter one is in a vibrationally excited state at the lower state energy of 2939 K, suggesting evidence of hot molecular gas close to Source I. The integrated intensity map of the 321 GHz line is elongated along the bipolar outflow while the 336 GHz line map is unresolved with a beam size of 0.''4. Both of these maps show velocity gradients perpendicular to the bipolar outflow. The velocity centroid map of the 321 GHz line implies a spatial and velocity structure similar to that of vibrationally excited SiO masers tracing the root of the outflow emanating from the disk surface. In contrast, the 336 GHz line is most likely emitting from the disk midplane with a diameter of 0.''2 (84 AU) as traced by radio continuum emission and a dark lane devoid of the vibrationally excited SiO maser emission. The observed velocity gradient and the spectral profile of the 336 GHz H{sub 2}O line can be reconciled with a model of an edge-on ring-like structure with an enclosed mass of >7 M{sub ☉} and an excitation temperature of >3000 K. The present results provide further evidence of a hot and neutral circumstellar disk rotating around Source I with a diameter of ∼100 AU scale.

  7. A Correlation Between Circumstellar Disks and Rotation in the Upper Scorpius OB Association

    CERN Document Server

    Dahm, S E; White, R J

    2011-01-01

    We present projected rotational velocities for 20 early-type (B8-A9) and 74 late-type (F2-M8) members of the ~5 Myr old Upper Scorpius OB Association derived from high dispersion optical spectra obtained with the High Resolution Echelle Spectrometer (HIRES) on Keck I and the Magellan Inamori Kyocera Echelle (MIKE) on the Magellan Clay telescope. The spectroscopic sample is composed of stars and brown dwarfs with infrared signatures of circumstellar disks, both primordial and debris, and non-excess sources of comparable spectral type. We merge projected rotational velocities, accretion diagnostics, and Spitzer Space Telescope Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) 24 micron photometry to examine the relationship between rotation and circumstellar disks. The rotational velocities are strongly correlated with spectral type, a proxy for mass, such that the median vsini for B8-A9 type stars is: 195(+/-)70 km/s, F2-K4: 37.8(+/-)7.4 km/s, K5-K9: 13.8(+21.3/-8.2) km/s, M0-M5:...

  8. Testing circumstellar disk lifetimes in young embedded clusters associated with the Vela Molecular Ridge

    CERN Document Server

    Massi, Fabrizio; Codella, Claudio; Testi, Leonardo; Vanzi, Leonardo; Gomes, Joana

    2010-01-01

    Context. The Vela Molecular Ridge hosts a number of young embedded star clusters in the same evolutionary stage. Aims. The main aim of the present work is testing whether the fraction of members with a circumstellar disk in a sample of clusters in the cloud D of the Vela Molecular Ridge, is consistent with relations derived for larger samples of star clusters with an age spread. Besides, we want to constrain the age of the young embedded star clusters associated with cloud D. Methods. We carried out L (3.78 microns) photometry on images of six young embedded star clusters associated with cloud D of the Vela Molecular Ridge, taken with ISAAC at the VLT. These data are complemented with the available HKs photometry. The 6 clusters are roughly of the same size and appear to be in the same evolutionary stage. The fraction of stars with a circumstellar disk was measured in each cluster by counting the fraction of sources displaying a NIR excess in colour-colour (HKsL) diagrams. Results. The L photometry allowed us...

  9. V409 Tau As Another AA Tau: Photometric Observations of Stellar Occultations by the Circumstellar Disk

    CERN Document Server

    Rodriguez, Joseph E; Stassun, Keivan G; Siverd, Robert J; Cargile, Phillip; Weintraub, David A; Beatty, Thomas G; Gaudi, B Scott; Mamajek, Eric E; Sanchez, Nicole

    2015-01-01

    AA Tau is a well studied young stellar object that presents many of the photometric characteristics of a Classical T Tauri star (CTTS), including short-timescale stochastic variability attributed to spots and/or accretion as well as long duration dimming events attributed to occultations by vertical features (e.g., warps) in its circumstellar disk. We present new photometric observations of AA Tau from the Kilodegree Extremely Little Telescope North (KELT-North) which reveal a deep, extended dimming event in 2011, which we show supports the interpretation by Bouvier et al. (2013) of an occultation by a high-density feature in the circumstellar disk located >8 AU from the star. We also present KELT-North observations of V409 Tau, a relatively unstudied young stellar object also in Taurus-Auriga, showing short timescale erratic variability, along with two separate long and deep dimming events, one from January 2009 through late October 2010, and the other from March 2012 until at least September 2013. We interp...

  10. BANYAN. VIII. New Low-Mass Stars and Brown Dwarfs with Candidate Circumstellar Disks

    CERN Document Server

    Boucher, Anne; Gagné, Jonathan; Malo, Lison; Faherty, Jacqueline K; Doyon, René; Chen, Christine H

    2016-01-01

    We present the results of a search for new circumstellar disks around low-mass stars and brown dwarfs with spectral types >K5 that are confirmed or candidate members of nearby young moving groups. Our search input sample was drawn from the BANYAN surveys of Malo et al. and Gagn\\'e et al. Two-Micron All-Sky Survey and Wide-field Infrared Survey Explorer data were used to detect near- to mid-infrared excesses that would reveal the presence of circumstellar disks. A total of 13 targets with convincing excesses were identified: four are new and nine were already known in the literature. The new candidates are 2MASS J05010082$-$4337102 (M4.5), J08561384$-$1342242 (M8$\\,\\gamma$), J12474428$-$3816464 (M9$\\,\\gamma$) and J02265658$-$5327032 (L0$\\,\\delta$), and are candidate members of the TW Hya ($\\sim10\\pm 3\\,$Myr), Columba ($\\sim 42^{+6}_{-4}\\,$Myr) and Tucana-Horologium ($\\sim 45\\pm 4\\,$Myr) associations, with masses of $120$ and $13-18\\,M_{\\mathrm{Jup}}$. The M8$-$L0 objects in Columba and Tucana-Horologium are po...

  11. Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    CERN Document Server

    Wolf, Sebastian; Alexander, Richard; Berger, Jean-Philippe; Creech-Eakman, Michelle; Duchene, Gaspard; Dutrey, Anne; Mordasini, Christophe; Pantin, Eric; Pont, Frederic; Pott, Joerg-Uwe; Tatulli, Eric; Testi, Leonardo

    2012-01-01

    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.

  12. Observational constraints for the circumstellar disk of the B[e] star CPD-52 9243

    Science.gov (United States)

    Cidale, L. S.; Borges Fernandes, M.; Andruchow, I.; Arias, M. L.; Kraus, M.; Chesneau, O.; Kanaan, S.; Curé, M.; de Wit, W. J.; Muratore, M. F.

    2012-12-01

    Context. The formation and evolution of gas and dust environments around B[e] supergiants are still open issues. Aims: We intend to study the geometry, kinematics and physical structure of the circumstellar environment (CE) of the B[e] supergiant CPD-52 9243 to provide further insights into the underlying mechanism causing the B[e] phenomenon. Methods: The influence of the different physical mechanisms acting on the CE (radiation pressure, rotation, bi-stability or tidal forces) is somehow reflected in the shape and kinematic properties of the gas and dust regions (flaring, Keplerian, accretion or outflowing disks). To investigate these processes we mainly used quasi-simultaneous observations taken with high spatial resolution optical long-baseline interferometry (VLTI/MIDI), near-IR spectroscopy of CO bandhead features (Gemini/Phoenix and VLT/CRIRES) and optical spectra (CASLEO/REOSC). Results: High angular resolution interferometric measurements obtained with VLTI/MIDI provide strong support for the presence of a dusty disk(ring)-like structure around CPD-52 9243, with an upper limit for its inner edge of ~8 mas (~27.5 AU, considering a distance of 3.44 kpc to the star). The disk has an inclination angle with respect to the line of sight of 46 ± 7°. The study of CO first overtone bandhead evidences a disk structure in Keplerian rotation. The optical spectrum indicates a rapid outflow in the polar direction. Conclusions: The IR emission (CO and warm dust) indicates Keplerian rotation in a circumstellar disk while the optical line transitions of various species are consistent with a polar wind. Both structures appear simultaneously and provide further evidence for the proposed paradigms of the mass-loss in supergiant B[e] stars. The presence of a detached cold CO ring around CPD-52 9243 could be due to a truncation of the inner disk caused by a companion, located possibly interior to the disk rim, clearing the center of the system. More spectroscopic and

  13. Heating the Primordial Soup: X-raying the Circumstellar Disk of T Cha

    Science.gov (United States)

    Principe, David; Huenemoerder, D.; Kastner, J. H.; Bessell, M. S.; Sacco, G.

    2014-01-01

    The classical T Tauri Star (cTTS) T Chamaeleontis (T Cha) presents a unique opportunity to probe pre-main sequence star-disk interactions and late-stage circumstellar disk evolution. T Cha is the only known example of a nearly edge-on, actively accreting star/disk system within ~110 pc, and furthermore may be orbited by a low-mass companion or massive planet that has cleared an inner hole in its disk. The star is characterized by strong variability in the optical 3 magnitudes in the V band) as well as large and variable extinction (AV in the range of 1-5). Like most cTTS, T Cha is also a luminous X-ray source. We present preliminary results of two observations (totaling 150 ks) of T Cha with Chandra’s HETGS. Our motivations are to (a) determine the intrinsic X-ray spectrum of T Cha, so as to establish whether its X-ray emission can be attributed to accretion shocks, coronal emission, or a combination; (b) investigate whether its X-ray flux exhibits modulation that may be related to the stellar rotational period 3.3 days); and (c) take advantage of the nearly-edge-on disk viewing geometry to model the spectrum of X-rays absorbed by the gaseous disk orbiting T Cha. These results will serve as much-needed input to models of magnetospheric accretion and irradiated, planet-forming disks. This research is supported via award number GO3-14022X to RIT issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS803060. Additional support is provided by National Science Foundation grant AST-1108950 to RIT.

  14. First Detection of Near-Infrared Line Emission from Organics in Young Circumstellar Disks

    CERN Document Server

    Mandell, A M; van Dishoeck, E F; Blake, G A; Salyk, C; Mumma, M J; Villanueva, G

    2012-01-01

    We present an analysis of high-resolution spectroscopy of several bright T Tauri stars using the VLT/CRIRES and Keck/NIRSPEC spectrographs, revealing the first detections of emission from HCN and C2H2 in circumstellar disks at near-infrared wavelengths. Using advanced data reduction techniques we achieve a dynamic range with respect to the disk continuum of ~500 at 3 microns, revealing multiple emission features of H2O, OH, HCN, and C2H2. We also present stringent upper limits for two other molecules thought to be abundant in the inner disk, CH4 and NH3. Line profiles for the different detected molecules are broad but centrally peaked in most cases, even for disks with previously determined inclinations of greater than 20 degrees, suggesting that the emission has both a Keplerian and non-Keplerian component as observed previously for CO emission. We apply two different modeling strategies to constrain the molecular abundances and temperatures: we use a simplified single-temperature LTE slab model with a Gauss...

  15. A CHARA Array Survey of Circumstellar Disks around Nearby Be-type Stars

    CERN Document Server

    Touhami, Y; Schaefer, G H; McAlister, H A; Ridgway, S T; Richardson, N D; Matson, R; Grundstrom, E D; Brummelaar, T A ten; Goldfinger, P J; Sturmann, L; Sturmann, J; Turner, N H; Farrington, C

    2013-01-01

    We report on a high angular resolution survey of circumstellar disks around 24 northern sky Be stars. The K-band continuum survey was made using the CHARA Array long baseline interferometer (baselines of 30 to 331 m). The interferometric visibilities were corrected for the flux contribution of stellar companions in those cases where the Be star is a member of a known binary or multiple system. For those targets with good uv coverage, we used a four parameter Gaussian elliptical disk model to fit the visibilities and to determine the axial ratio, position angle, K-band photospheric flux contribution, and angular diameter of the disk major axis. For the other targets with relatively limited uv coverage, we constrained the axial ratio, inclination angle, and or disk position angle where necessary in order to resolve the degeneracy between possible model solutions. We also made fits of the ultraviolet and infrared spectral energy distributions to estimate the stellar angular diameter and infrared flux excess of e...

  16. Line formation in Be star circumstellar disks Shear broadening, shell absorption, stellar obscuration and rotational parameter

    Science.gov (United States)

    Hummel, W.; Vrancken, M.

    2000-07-01

    We improve the theory of Horne & Marsh on shear broadening in accretion disks of CVs and adapt it to Be star circumstellar disks. Stellar obscuration and shell absorption are taken into account in detail. It is shown that shell absorption is already present in those emission lines where the central depression does not drop below the stellar continuum. The model profiles are fitted to observed symmetric Hα net emission lines with low equivalent width. The derived disk radii range from Rd = 5.3 R_* to Rd = 18 R_* and the surface emissivity varies as ~ R-m with 1.6 (1)/(2) with the optically thick Hα profile of HR 5440 rules out the range of j>(1)/(2). This can be understood by the lack of velocity shear in the outer disk regions. We conclude that Keplerian rotation (j=(1)/(2)) is a valid approximation. Based on observations collected at the German-Spanish Astronomical Center (DSAZ), Calar Alto, operated by the Max-Plank-Institut für Astronomie Heidelberg jointly with the Spanish National Commission for Astronomy. Based on observations collected at the Observatoire de Haute-Provence (OHP), CNRS, France.

  17. Far-infrared and sub-millimetre imaging of HD~76582's circumstellar disk

    CERN Document Server

    Marshall, J P; Holland, W S; Matthews, B C; Greaves, J S; Zuckerman, B

    2016-01-01

    Debris disks, the tenuous rocky and icy remnants of planet formation, are believed to be evidence for planetary systems around other stars. The JCMT/SCUBA-2 debris disk legacy survey 'SCUBA-2 Observations of Nearby Stars' (SONS) observed 100 nearby stars, amongst them HD~76582, for evidence of such material. Here we present imaging observations by JCMT/SCUBA-2 and \\textit{Herschel}/PACS at sub-millimetre and far-infrared wavelengths, respectively. We simultaneously model the ensemble of photometric and imaging data, spanning optical to sub-millimetre wavelengths, in a self-consistent manner. At far-infrared wavelengths, we find extended emission from the circumstellar disk providing a strong constraint on the dust spatial location in the outer system, although the angular resolution is too poor to constrain the interior of the system. In the sub-millimetre, photometry at 450 and 850~$\\mu$m reveal a steep fall-off that we interpret as a disk dominated by moderately-sized dust grains ($a_{\\rm min}~=~36~\\mu$m), ...

  18. The Abundance of C2H4 in the Circumstellar Envelope of IRC+10216

    Science.gov (United States)

    Fonfría, J. P.; Hinkle, K. H.; Cernicharo, J.; Richter, M. J.; Agúndez, M.

    2017-01-01

    High spectral resolution mid-IR observations of ethylene (C2H4) towards the AGB star IRC+10216 were obtained using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility (IRTF). Eighty ro-vibrational lines from the 10.5 µm vibrational mode ν7 with J ≲ 30 were detected in absorption. The observed lines are divided into two groups with rotational temperatures of 105 and 400 K (warm and hot lines). The warm lines peak at ≃ −14 km s−1 with respect to the systemic velocity, suggesting that they are mostly formed outwards from ≃ 20R⋆. The hot lines are centered at −10 km s−1 indicating that they come from a shell between 10 and 20R⋆. 35% of the observed lines are unblended and can be fitted with a code developed to model the emission of a spherically symmetric circumstellar envelope. The analysis of several scenarios reveal that the C2H4 abundance relative to H2 in the range 5 − 20R⋆ is 6.9 × 10−8 in average and it could be as high as 1.1 × 10−7. Beyond 20R⋆, it is 8.2 × 10−8. The total column density is (6.5 ± 3.0) × 1015 cm−2. C2H4 is found to be rotationally under local thermodynamical equilibrium (LTE) and vibrationally out of LTE. One of the scenarios that best reproduce the observations suggests that up to 25% of the C2H4 molecules at 20R⋆ could condense onto dust grains. This possible depletion would not influence significantly the gas acceleration although it could play a role in the surface chemistry on the dust grains. PMID:28184097

  19. The Abundance of C2H4 in the Circumstellar Envelope of IRC+10216

    Science.gov (United States)

    Fonfría, J. P.; Hinkle, K. H.; Cernicharo, J.; Richter, M. J.; Agúndez, M.; Wallace, L.

    2017-02-01

    High spectral resolution mid-IR observations of ethylene ({{{C}}}2{{{H}}}4) toward the AGB star IRC+10216 were obtained using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility (IRTF). 80 ro-vibrational lines from the 10.5 μm vibrational mode {ν }7 with J ≲ 30 were detected in absorption. The observed lines are divided into two groups with rotational temperatures of 105 and 400 K (warm and hot lines). The warm lines peak at ≃ ‑14 km s‑1 with respect to the systemic velocity, suggesting that they are mostly formed outwards from ≃ 20{R}\\star . The hot lines are centered at ‑10 km s‑1 indicating that they come from a shell between 10 and 20{\\text{}}{R}\\star . 35% of the observed lines are unblended and can be fitted with a code developed to model the emission of a spherically symmetric circumstellar envelope. The analysis of several scenarios reveals that the {{{C}}}2{{{H}}}4 abundance relative to H2 in the range 5‑20R⋆ is 6.9× {10}-8 on average and it could be as high as 1.1 × 10‑7. Beyond 20{\\text{}}{R}\\star , it is 8.2 × 10‑8. The total column density is (6.5 ± 3.0) × 1015 cm‑2. {{{C}}}2{{{H}}}4 is found to be rotationally under local thermodynamical equilibrium (LTE) and vibrationally out of LTE. One of the scenarios that best reproduce the observations suggests that up to 25% of the {{{C}}}2{{{H}}}4 molecules at 20{\\text{}}{R}\\star could condense onto dust grains. This possible depletion would not significantly influence the gas acceleration although it could play a role in the surface chemistry on the dust grains.

  20. The First 40 Million Years of Circumstellar Disk Evolution: The Signature of Terrestrial Planet Formation

    Science.gov (United States)

    Meng, Huan Y. A.; Rieke, George H.; Su, Kate Y. L.; Gáspár, András

    2017-02-01

    We characterize the first 40 Myr of evolution of circumstellar disks through a unified study of the infrared properties of members of young clusters and associations with ages from 2 Myr up to ∼40 Myr: NGC 1333, NGC 1960, NGC 2232, NGC 2244, NGC 2362, NGC 2547, IC 348, IC 2395, IC 4665, Chamaeleon I, Orion OB1a and OB1b, Taurus, the β Pictoris Moving Group, ρ Ophiuchi, and the associations of Argus, Carina, Columba, Scorpius–Centaurus, and Tucana–Horologium. Our work features: (1) a filtering technique to flag noisy backgrounds; (2) a method based on the probability distribution of deflections, P(D), to obtain statistically valid photometry for faint sources; and (3) use of the evolutionary trend of transitional disks to constrain the overall behavior of bright disks. We find that the fraction of disks three or more times brighter than the stellar photospheres at 24 μm decays relatively slowly initially and then much more rapidly by ∼10 Myr. However, there is a continuing component until ∼35 Myr, probably due primarily to massive clouds of debris generated in giant impacts during the oligarchic/chaotic growth phases of terrestrial planets. If the contribution from primordial disks is excluded, the evolution of the incidence of these oligarchic/chaotic debris disks can be described empirically by a log-normal function with the peak at 12–20 Myr, including ∼13% of the original population, and with a post-peak mean duration of 10–20 Myr.

  1. FIRST DETECTION OF NEAR-INFRARED LINE EMISSION FROM ORGANICS IN YOUNG CIRCUMSTELLAR DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Mandell, Avi M.; Mumma, Michael J.; Villanueva, Geronimo [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bast, Jeanette; Van Dishoeck, Ewine F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Blake, Geoffrey A. [California Institute of Technology, Division of Geological and Planetary Sciences, MS 150-21, Pasadena, CA 91125 (United States); Salyk, Colette, E-mail: Avi.Mandell@nasa.gov [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2012-03-10

    We present an analysis of high-resolution spectroscopy of several bright T Tauri stars using the CRIRES spectrograph on the Very Large Telescope and NIRSPEC spectrograph on the Keck Telescope, revealing the first detections of emission from HCN and C{sub 2}H{sub 2} in circumstellar disks at near-infrared wavelengths. Using advanced data reduction techniques, we achieve a dynamic range with respect to the disk continuum of {approx}500 at 3 {mu}m, revealing multiple emission features of H{sub 2}O, OH, HCN, and C{sub 2}H{sub 2}. We also present stringent upper limits for two other molecules thought to be abundant in the inner disk, CH{sub 4} and NH{sub 3}. Line profiles for the different detected molecules are broad but centrally peaked in most cases, even for disks with previously determined inclinations of greater than 20 Degree-Sign , suggesting that the emission has both a Keplerian and non-Keplerian component as observed previously for CO emission. We apply two different modeling strategies to constrain the molecular abundances and temperatures: we use a simplified single-temperature local thermal equilibrium (LTE) slab model with a Gaussian line profile to make line identifications and determine a best-fit temperature and initial abundance ratios, and we compare these values with constraints derived from a detailed disk radiative transfer model assuming LTE excitation but utilizing a realistic temperature and density structure. Abundance ratios from both sets of models are consistent with each other and consistent with expected values from theoretical chemical models, and analysis of the line shapes suggests that the molecular emission originates from within a narrow region in the inner disk (R < 1 AU).

  2. A deep Spitzer survey of circumstellar disks in the young double cluster, h and χ Persei

    Energy Technology Data Exchange (ETDEWEB)

    Cloutier, Ryan; Currie, Thayne; Jayawardhana, Ray [University of Toronto, 50 St. George Street, Toronto, ON, M5S 2J7 (Canada); Rieke, George H. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Kenyon, Scott J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02140 (United States); Balog, Zoltan, E-mail: cloutier@cita.utoronto.ca, E-mail: currie@astro.utoronto.ca, E-mail: grieke@as.arizona.edu, E-mail: skenyon@cfa.harvard.edu [Max Planck Institute for Astrophysics, Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-12-01

    We analyze very deep Infrared Array Camera and Multiband Imaging Photometer for Spitzer (MIPS) photometry of ∼12, 500 members of the 14 Myr old Double Cluster, h and χ Persei, building upon our earlier, shallower Spitzer Cycle 1 studies. Numerous likely members show infrared (IR) excesses at 8 μm and 24 μm, indicative of circumstellar dust. The frequency of stars with 8 μm excess is at least 2% for our entire sample, slightly lower (higher) for B/A stars (later type, lower mass stars). Optical spectroscopy also identifies gas in about 2% of systems, but with no clear trend between the presence of dust and gas. Spectral energy distribution modeling of 18 sources with detections at optical wavelengths through MIPS 24 μm reveals a diverse set of disk evolutionary states, including a high fraction of transitional disks, though similar data for all disk-bearing members would provide constraints. Using Monte Carlo simulations, we combine our results with those for other young clusters to study the global evolution of dust/gas disks. For nominal cluster ages, the e-folding times (τ{sub 0}) for the frequency of warm dust and gas are 2.75 Myr and 1.75 Myr, respectively. Assuming a revised set of ages for some clusters, these timescales increase to 5.75 and 3.75 Myr, respectively, implying a significantly longer typical protoplanetary disk lifetime than previously thought. In both cases, the transitional disk duration, averaged over multiple evolutionary pathways, is ≈1 Myr. Finally, 24 μm excess frequencies for 4-6 M {sub ☉} stars appear lower than for 1-2.5 M {sub ☉} stars in other 10-30 Myr old clusters.

  3. THE REINCARNATION OF INTERSTELLAR DUST: THE IMPORTANCE OF ORGANIC REFRACTORY MATERIAL IN INFRARED SPECTRA OF COMETARY COMAE AND CIRCUMSTELLAR DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Hiroshi, E-mail: hiroshi_kimura@cps-jp.org [Graduate School of Science, Kobe University, c/o CPS (Center for Planetary Science), Chuo-ku Minatojima Minamimachi 7-1-48, Kobe 650-0047 (Japan)

    2013-09-20

    We consider the reincarnation of interstellar dust to be reborn in protoplanetary disks as aggregates consisting of submicron-sized grains with a crystalline or amorphous silicate core and an organic-rich carbonaceous mantle. We find that infrared spectra of reincarnated interstellar dust reproduce emission peaks at correct wavelengths where the peaks were observed in cometary comae, debris disks, and protoplanetary disks if the volume fraction of organic refractory meets the constraints on elemental abundances. We discuss what we can learn from the infrared spectra of reincarnated interstellar dust in cometary comae and circumstellar disks.

  4. The Reincarnation of Interstellar Dust: The Importance of Organic Refractory Material in Infrared Spectra of Cometary Comae and Circumstellar Disks

    Science.gov (United States)

    Kimura, Hiroshi

    2013-09-01

    We consider the reincarnation of interstellar dust to be reborn in protoplanetary disks as aggregates consisting of submicron-sized grains with a crystalline or amorphous silicate core and an organic-rich carbonaceous mantle. We find that infrared spectra of reincarnated interstellar dust reproduce emission peaks at correct wavelengths where the peaks were observed in cometary comae, debris disks, and protoplanetary disks if the volume fraction of organic refractory meets the constraints on elemental abundances. We discuss what we can learn from the infrared spectra of reincarnated interstellar dust in cometary comae and circumstellar disks.

  5. The inner circumstellar disk of the UX Orionis star V1026 Scorpii

    Science.gov (United States)

    Vural, J.; Kreplin, A.; Kishimoto, M.; Weigelt, G.; Hofmann, K.-H.; Kraus, S.; Schertl, D.; Dugué, M.; Duvert, G.; Lagarde, S.; Massi, F.

    2014-04-01

    Context. The UX Ori type variables (named after the prototype of their class) are intermediate-mass pre-main sequence objects. One of the most likely causes of their variability is the obscuration of the central star by orbiting dust clouds. Aims: We investigate the structure of the circumstellar environment of the UX Ori star V1026 Sco (HD 142666) and test whether the disk inclination is large enough to explain the UX Ori variability. Methods: We observed the object in the low-resolution mode of the near-infrared interferometric VLTI/AMBER instrument and derived H- and K-band visibilities and closure phases. We modeled our AMBER observations, published Keck Interferometer observations, archival MIDI/VLTI visibilities, and the spectral energy distribution using geometric and temperature-gradient models. Results: Employing a geometric inclined-ring disk model, we find a ring radius of 0.15 ± 0.06 AU in the H band and 0.18 ± 0.06 AU in the K band. The best-fit temperature-gradient model consists of a star and two concentric, ring-shaped disks. The inner disk has a temperature of 1257+133-53 K at the inner rim and extends from 0.19 ± 0.01 AU to 0.23 ± 0.02 AU. The outer disk begins at 1.35+0.19-0.20 AU and has an inner temperature of 334+35-17 K. The derived inclination of 48.6+2.9-3.6° approximately agrees with the inclination derived with the geometric model (49 ± 5° in the K band and 50 ± 11° in the H band). The position angle of the fitted geometric and temperature-gradient models are 163 ± 9° (K band; 179 ± 17° in the H band) and 169.3+4.2-6.7°, respectively. Conclusions: The narrow width of the inner ring-shaped model disk and the disk gap might be an indication for a puffed-up inner rim shadowing outer parts of the disk. The intermediate inclination of ~50° is consistent with models of UX Ori objects where dust clouds in the inclined disk obscure the central star. Based on observations made with ESO telescopes at the La Silla Paranal Observatory

  6. HST/STIS results on circumstellar disks and jets, future coronography and technology for IR multi-object spectroscopy

    Science.gov (United States)

    Woodgate, Bruce E.

    2002-01-01

    Results of studies of circumstellar disks and jets obtained by HST/STIS visible coronagraphy and UV spectroscopy, and by ground-based Fabry-Perot coronagraphy will be presented. Future improvements in coronagraphy will be discussed. The development of microshutter arrays as programmable multi-object selectors for the NGST near IR spectrograph will be described.

  7. The Envelope and Embedded Disk around the Class 0 Protostar L1157-mm: Dual-wavelength Interferometric Observations and Modeling

    CERN Document Server

    Chiang, Hsin-Fang; Tobin, John J

    2012-01-01

    We present dual-wavelength observations and modeling of the nearly edge-on Class 0 young stellar object L1157-mm. Using the Combined Array for Research in Millimeter-wave Astronomy, a nearly spherical structure is seen from the circumstellar envelope at the size scale of 10^2 to 10^3 AU in both 1 mm and 3 mm dust emission. Radiative transfer modeling is performed to compare data with theoretical envelope models, including a power-law envelope model and the Terebey-Shu-Cassen model. Bayesian inference is applied for parameter estimation and information criteria is used for model selection. The results prefer the power-law envelope model against the Terebey-Shu-Cassen model. In particular, for the power-law envelope model, a steep density profile with an index of ~2 is inferred. Moreover, the dust opacity spectral index (beta) is estimated to be ~0.9, implying that grain growth has started at L1157-mm. Also, the unresolved disk component is constrained to be < 40 AU in radius and < 4-25 M_Jup in mass. How...

  8. Recurring Occultations of RW Aurigae by Coagulated Dust in the Tidally Disrupted Circumstellar Disk

    CERN Document Server

    Rodriguez, Joseph E; Siverd, Robert J; Pepper, Joshua; Stassun, Keivan G; Gaudi, B Scott; Weintraub, David A; Beatty, Thomas G; Lund, Michael B; Stevens, Daniel J

    2015-01-01

    We present photometric observations of RW Aurigae, a Classical T Tauri system, that reveal two remarkable dimming events. These events are similar to that which we observed in 2010-2011, which was the first such deep dimming observed in RW Aur in a century's worth of photometric monitoring. We suggested the 2010-2011 dimming was the result of an occultation of the star by its tidally disrupted circumstellar disk. In 2012-2013, the RW Aur system dimmed by ~0.7 mag for ~40 days and in 2014/2015 the system dimmed by ~2 mag for >250 days. The ingress/egress duration measurements of the more recent events agree well with those from the 2010-2011 event, providing strong evidence that the new dimmings are kinematically associated with the same occulting source. Therefore, we suggest that both the 2012-2013 and 2014-2015 dimming events, measured using data from the Kilodegree Extremely Little Telescope and the Kutztown University Observatory, are also occultations of RW Aur A by tidally disrupted circumstellar materi...

  9. Dynamics of Circumstellar Disks III: The case of GG Tau A

    CERN Document Server

    Nelson, Andrew F

    2016-01-01

    (abridged) We present 2-dimensional hydrodynamic simulations using the Smoothed Particle Hydrodynamic (SPH) code, VINE, to model a self-gravitating binary system similar to the GG Tau A system. We simulate systems configured with semi-major axes of either $a=62$~AU (`wide') or $a=32$~AU (`close'), and with eccentricity of either $e=0$ or $e=0.3$. Strong spiral structures are generated with large material streams extending inwards. A small fraction accretes onto the circumstellar disks, with most returning to the torus. Structures also propagate outwards, generating net outwards mass flow and eventually losing coherence at large distances. The torus becomes significantly eccentric in shape. Accretion onto the stars occurs at a rate of a few $\\times10^{-8}$\\msun/yr implying disk lifetimes shorter than $\\sim10^4$~yr, without replenishment. Only wide configurations retain disks by virtue of robust accretion. In eccentric configurations, accretion is episodic, occurs preferentially onto the secondary at wrates pea...

  10. The inner circumstellar disk of the UX Ori star V1026 Sco

    CERN Document Server

    Vural, J; Kishimoto, M; Weigelt, G; Hofmann, K -H; Kraus, S; Schertl, D; Dugué, M; Duvert, G; Lagarde, S; Massi, F

    2014-01-01

    The UX Ori type variables (named after the prototype of their class) are intermediate-mass pre-main sequence objects. One of the most likely causes of their variability is the obscuration of the central star by orbiting dust clouds. We investigate the structure of the circumstellar environment of the UX~Ori star V1026 Sco (HD 142666) and test whether the disk inclination is large enough to explain the UX Ori variability. We observed the object in the low-resolution mode of the near-infrared interferometric VLTI/AMBER instrument and derived H- and K-band visibilities and closure phases. We modeled our AMBER observations, published Keck Interferometer observations, archival MIDI/VLTI visibilities, and the spectral energy distribution using geometric and temperature-gradient models. Employing a geometric inclined-ring disk model, we find a ring radius of 0.15 +- 0.06 AU in the H band and 0.18 +- 0.06 AU in the K band. The best-fit temperature-gradient model consists of a star and two concentric, ring-shaped disk...

  11. First correlation between compact object and circumstellar disk in the Be/X-ray binaries

    CERN Document Server

    Zamanov, R K

    2000-01-01

    A remarkable correlation between the H-alpha emission line and the radio behaviour of LSI+61 303 (V615 Cas, GT 0236+610) over its 4 yr modulation is discovered. The radio outburst peak is shifted by a quarter of the 4 yr modulation period (about 400 days) with respect to the equivalent width of the H-alpha emission line variability. The onset of the LSI+61 303 radio outbursts varies in phase with the changes of the H-alpha emission line, at least during the increase of H-alpha equivalent width. This is the first clear correlation between the emission associated to the compact object and the Be circumstellar disk in a Be/X-ray binary system.

  12. CARMA CO(J = 2 - 1) OBSERVATIONS OF THE CIRCUMSTELLAR ENVELOPE OF BETELGEUSE

    Energy Technology Data Exchange (ETDEWEB)

    O' Gorman, Eamon; Harper, Graham M. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Brown, Joanna M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78, Cambridge, MA 02138 (United States); Brown, Alexander [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0389 (United States); Redfield, Seth [Astronomy Department, Van Vleck Observatory, Wesleyan University, Middletown, CT 06459 (United States); Richter, Matthew J. [Physics Department, UC Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Requena-Torres, Miguel A. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany)

    2012-08-15

    We report radio interferometric observations of the {sup 12}C{sup 16}O 1.3 mm J = 2 - 1 emission line in the circumstellar envelope of the M supergiant {alpha} Ori and have detected and separated both the S1 and S2 flow components for the first time. Observations were made with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) interferometer in the C, D, and E antenna configurations. We obtain good u - v coverage (5-280 k{lambda}) by combining data from all three configurations allowing us to trace spatial scales as small as 0.''9 over a 32'' field of view. The high spectral and spatial resolution C configuration line profile shows that the inner S1 flow has slightly asymmetric outflow velocities ranging from -9.0 km s{sup -1} to +10.6 km s{sup -1} with respect to the stellar rest frame. We find little evidence for the outer S2 flow in this configuration because the majority of this emission has been spatially filtered (resolved out) by the array. We also report a SOFIA-GREAT CO(J = 12 - 11) emission line profile, which we associate with this inner higher excitation S1 flow. The outer S2 flow appears in the D and E configuration maps and its outflow velocity is found to be in good agreement with high-resolution optical spectroscopy of K I obtained at the McDonald Observatory. We image both S1 and S2 in the multi-configuration maps and see a gradual change in the angular size of the emission in the high absolute velocity maps. We assign an outer radius of 4'' to S1 and propose that S2 extends beyond CARMA's field of view (32'' at 1.3 mm) out to a radius of 17'', which is larger than recent single-dish observations have indicated. When azimuthally averaged, the intensity falloff for both flows is found to be proportional to R{sup -1}, where R is the projected radius, indicating optically thin winds with {rho}{proportional_to}R{sup -2}.

  13. From Cores to Envelopes to Disks: A Multi-scale View of Magnetized Star Formation

    Science.gov (United States)

    Hull, Charles L. H.

    2014-12-01

    protostellar envelope may be a turning point: at larger scales B-fields may still retain the memory of the global B-field drawn in from the ambient medium; but at smaller scales the B-fields may be affected by the dynamics of both envelope and disk rotation. This sets the stage for ALMA (the Atacama Large Millimeter/submillimeter Array), which will soon reveal the morphology of B-fields in circumstellar disks themselves.

  14. SO and SO2 in mass-loss envelopes of red giants - Probes of nonequilibrium circumstellar chemistry and mass-loss rates

    Science.gov (United States)

    Sahai, Raghvendra; Wannier, Peter G.

    1992-01-01

    SO emission was searched for in one or more of four transitions toward 23 oxygen-rich red giant or supergiant stars and one S star, selected primarily on the basis of their nonmaser SiO emission. SO was detected in a total of 14 circumstellar envelopes, 13 of which are new detections. The circumstellar abundance of SO (and SO2) is significantly enhanced over the equilibrium value achieved in the photospheres of these stars. In general, the SO abundances are significantly larger than predicted by nonequilibrium circumstellar chemistry models. Sulfur cannot be significantly depleted onto circumstellar grains, and probably exists as H2S (and/or SH) in the inner regions of the envelopes. The SO rotational-level population in most circumstellar envelopes observed is characterized by excitation temperatures less than or approximately equal to 50 K. The circumstellar abundance of SO2 is comparable to, or larger than, that of SO, ruling out the 'large' value adopted for the unshielded photodissociation rate for SO2 in recent models.

  15. A Low-Mass H2 Component to the AU Microscopii Circumstellar Disk

    CERN Document Server

    France, Kevin; Lupu, Roxana E; Redfield, Seth; Feldman, Paul D

    2007-01-01

    We present a determination of the molecular gas mass in the AU Microscopii circumstellar disk. Direct detection of a gas component to the AU Mic disk has proven elusive, with upper limits derived from ultraviolet absorption line and submillimeter CO emission studies. Fluorescent emission lines of H2, pumped by the OVI 1032 resonance line through the C-X (1 -- 1) Q(3) 1031.87 \\AA\\ transition, are detected by the Far Ultraviolet Spectroscopic Explorer. These lines are used to derive the H2 column density associated with the AU Mic system. The derived column density is in the range N(H2) = 1.9 x 10^{17} - 2.8 x 10^{15} cm^{-2}, roughly two orders of magnitude lower than the upper limit inferred from absorption line studies. This range of column densities reflects the range of H2 excitation temperature consistent with the observations, T(H2) = 800 -- 2000 K, derived from the presence of emission lines excited by OVI in the absence of those excited by LyA. Within the observational uncertainties, the data are consi...

  16. A SCUBA-2 850-$\\mu$m survey of circumstellar disks in the $\\lambda$ Orionis cluster

    CERN Document Server

    Ansdell, Megan; Cieza, Lucas A

    2015-01-01

    We present results from an 850-$\\mu$m survey of the $\\sim$ 5 Myr old $\\lambda$ Orionis star-forming region. We used the SCUBA-2 camera on the James Clerk Maxwell Telescope to survey a $\\sim$0.5-diameter circular region containing 36 (out of 59) cluster members with infrared excesses indicative of circumstellar disks. We detected only one object at $>3\\sigma$ significance, the Herbig Ae star HD 245185, with a flux density of $\\sim74$ mJy beam$^{-1}$ corresponding to a dust mass of $\\sim150$ M$_{\\oplus}$. Stacking the individually undetected sources did not produce a significant mean signal but gives an upper limit on the average dust mass for $\\lambda$ Orionis disks of $\\sim3$ M$_{\\oplus}$. Our follow-up observations of HD 245185 with the Submillimeter Array found weak CO 2--1 line emission with an integrated flux of $\\sim170$ mJy km s$^{-1}$ but no $^{13}$CO or C$^{18}$O isotopologue emission at 30 mJy km s$^{-1}$ sensitivity, suggesting a gas mass of $\\lesssim1$ M$_{\\rm Jup}$. The implied gas-to-dust ratio i...

  17. CO and H2 Absorption in the AA Tauri Circumstellar Disk

    CERN Document Server

    France, Kevin; Herczeg, Gregory J; Schindhelm, Eric; Yang, Hao; Abgrall, Herve; Roueff, Evelyne; Brown, Alexander; Brown, Joanna; Linsky, Jeffrey L

    2011-01-01

    The direct study of molecular gas in inner protoplanetary disks is complicated by uncertainties in the spatial distribution of the gas, the time-variability of the source, and the comparison of observations across a wide range of wavelengths. Some of these challenges can be mitigated with far-ultraviolet spectroscopy. Using new observations obtained with the HST-Cosmic Origins Spectrograph, we measure column densities and rovibrational temperatures for CO and H2 observed on the line-of-sight through the AA Tauri circumstellar disk. CO A-X absorption bands are observed against the far-UV continuum. The CO absorption is characterized by log(N(^{12}CO)) = 17.5 +/- 0.5 cm^{-2} and T_rot(CO) = 500$^{+500}_{-200} K, although this rotational temperature may underestimate the local kinetic temperature of the CO-bearing gas. We also detect ^{13}CO in absorption with an isotopic ratio of ~20. We do not observe H2 absorption against the continuum; however, hot H2 (v > 0) is detected in absorption against the LyA emissio...

  18. Connecting the evolution of thermally pulsing asymptotic giant branch stars to the chemistry in their circumstellar envelopes - I. Hydrogen cyanide

    Science.gov (United States)

    Marigo, Paola; Ripamonti, Emanuele; Nanni, Ambra; Bressan, Alessandro; Girardi, Léo

    2016-02-01

    We investigate the formation of hydrogen cyanide (HCN) in the inner circumstellar envelopes of thermally pulsing asymptotic giant branch (TP-AGB) stars. A dynamic model for periodically shocked atmospheres, which includes an extended chemo-kinetic network, is for the first time coupled to detailed evolutionary tracks for the TP-AGB phase computed with the COLIBRI code. We carried out a calibration of the main shock parameters (the shock formation radius rs,0 and the effective adiabatic index γ _ad^eff) using the circumstellar HCN abundances recently measured for a populous sample of pulsating TP-AGB stars. Our models recover the range of the observed HCN concentrations as a function of the mass-loss rates, and successfully reproduce the systematic increase of HCN moving along the M-S-C chemical sequence of TP-AGB stars, which traces the increase of the surface C/O ratio. The chemical calibration brings along two important implications for the physical properties of the pulsation-induced shocks: (i) the first shock should emerge very close to the photosphere (rs,0 ≃ 1R), and (ii) shocks are expected to have a dominant isothermal character (γ _ad^eff˜eq 1) in the denser region close to the star (within ˜3-4R), implying that radiative processes should be quite efficient. Our analysis also suggests that the HCN concentrations in the inner circumstellar envelopes are critically affected by the H-H2 chemistry during the post-shock relaxation stages. Given the notable sensitiveness of the results to stellar parameters, this paper shows that such chemo-dynamic analyses may indeed provide a significant contribution to the broader goal of attaining a comprehensive calibration of the TP-AGB evolutionary phase.

  19. The close circumstellar environment of Betelgeuse - III. SPHERE/ZIMPOL visible polarimetry of the inner envelope and photosphere

    CERN Document Server

    Kervella, P; Montargès, M; Ridgway, S T; Chiavassa, A; Haubois, X; Schmid, H -M; Langlois, M; Gallenne, A; Perrin, G

    2016-01-01

    The physical mechanism through which the outgoing material of massive red supergiants is accelerated above the escape velocity is unclear. Thanks to the transparency of its circumstellar envelope, the nearby red supergiant Betelgeuse gives the opportunity to probe the innermost layers of the envelope of a typical red supergiant down to the photosphere, i.e. where the acceleration of the wind is expected to occur. We took advantage of the SPHERE/ZIMPOL adaptive optics imaging polarimeter to resolve the visible photosphere and close envelope of Betelgeuse. We detect an asymmetric gaseous envelope inside a radius of 2 to 3 times the near-infrared photospheric radius of the star (R*), and a significant Halpha emission mostly contained within 3 R*. From the polarimetric signal, we also identify the signature of dust scattering in an asymmetric and incomplete dust shell located at a similar radius. The presence of dust so close to the star may have a significant impact on the wind acceleration through radiative pre...

  20. Resolving the inner regions of the HD 97048 circumstellar disk with VLT/NACO polarimetric differential imaging

    Science.gov (United States)

    Quanz, S. P.; Birkmann, S. M.; Apai, D.; Wolf, S.; Henning, T.

    2012-02-01

    Context. Circumstellar disks are the cradles of planetary systems and their physical and chemical properties directly influence the planet formation process. Because most planets supposedly form in the inner disk regions, i.e., within a few tens of AU, it is crucial to study circumstellar disks on these scales to constrain the conditions for planet formation. Aims: Our aims are to characterize the inner regions of the circumstellar disk around the young Herbig Ae/Be star HD 97048 in polarized light. Methods: We used VLT/NACO to observe HD 97048 in polarimetric differential imaging (PDI) mode in the H and Ks band. This technique offers high-contrast capabilities at very small inner working angles and probes the dust grains on the surface layer of the disk that act as the scattering surface. Results: We spatially resolve the disk around HD 97048 in polarized flux in both filters on scales between ~0.1″-1.0″ corresponding to the inner ~16-160 AU. Fitting isophots to the flux calibrated H-band image between 13-14 mag/arcsec2 and 14-15 mag/arcsec2, we derive an apparent disk inclination angle of 34° ± 5° and 47° ± 2°, respectively. The disk position angle in both brightness regimes is almost identical and roughly 80°. Along the disk major axis the surface brightness of the polarized flux drops from ~11 mag/arcsec2 at ~0.1″ (~16 AU) to ~15.3 mag/arcsec2 at ~ 1.0″ (~160 AU). The brightness profiles along the major axis are fitted with power-laws falling off as ∝ r - 1.78 ± 0.02 in H and ∝ r - 2.34 ± 0.04 in Ks. Because the surface brightness decreases more rapidly in Ks compared to H, the disks becomes relatively bluer at larger separations, possibly indicating changing dust grain properties as a function of radius. Conclusions: We imaged for the first time the inner ~0.1″-1.0″ (~16-160 AU) of the surface layer of the HD 97048 circumstellar disk in scattered light, which demonstrates the power of ground-based imaging polarimetry. Our data fill an

  1. Vertical settling and radial segregation of large dust grains in the circumstellar disk of the Butterfly Star

    CERN Document Server

    Gräfe, Christian; Guilloteau, Stephane; Dutrey, Anne; Stapelfeldt, Karl; Pontoppidan, Klaus; Sauter, Jürgen

    2013-01-01

    Context: Circumstellar disks are considered to be the environment for the formation of planets. The growth of dust grains in these disks is the first step in the core accretion-gas capture planet formation scenario. Indicators and evidence of disk evolution can be traced in spatially resolved images and the spectral energy distribution (SED) of these objects. Aims: We develop a model for the dust phase of the edge-on oriented circumstellar disk of the Butterfly Star which allows one to fit observed multi-wavelength images and the SED simultaneously. Methods: Our model is based on spatially resolved high angular resolution observations at 1.3 mm, 894 micron, 2.07 micron, 1.87 micron, 1.60 micron, and 1.13 micron and an extensively covered SED ranging from 12 micron to 2.7 mm, including a detailed spectrum obtained with the Spitzer Space Telescope in the range from 12 micron to 38 micron. A parameter study based on a grid search method involving the detailed analysis of every parameter was performed to constrai...

  2. Circumstellar gas associated with HL Tauri - evidence for a remnant infalling envelope

    Energy Technology Data Exchange (ETDEWEB)

    Grasdalen, G.L.; Sloan, G.; Stout, N.; Strom, S.E.; Welty, A.D.

    1989-04-01

    Molecular carbon absorption lines in the spectrum of HL Tau has been discovered near 8775 A. These C2 lines have a heliocentric radial velocity of 43 + or - 3 km/s, redshifted by 23 + or - 3 km/s relative to the star and the associated molecular cloud. This velocity difference suggests that the molecular carbon absorption arises in an infalling envelope. Since KI and diffuse interstellar bands are much weaker than expected, the chemical composition and/or excitation conditions in the HL Tau envelope appear to differ substantially from those in the interstellar medium. 19 refs.

  3. Circular Polarization of Water Masers in the Circumstellar Envelopes of Late Type Stars

    CERN Document Server

    Vlemmings, W H T; Van Langevelde, H J

    2002-01-01

    We present circular polarization measurements of circumstellar H_2O masers. The circular polarization detected in the (6_{16}-5_{23}) rotational transition of the H_{2}O maser can be attributed to Zeeman splitting in the intermediate temperature and density regime. The magnetic fields are derived using a general, LTE Zeeman analysis as well as a full radiative transfer method (non-LTE), which includes a treatment of all hyperfine components simultaneously as well as the effects of saturation and unequal populations of the magnetic substates. The differences and relevances of these interpretations are discussed extensively. The field strengths are compared with previous detections of the magnetic field on the SiO and OH masers. We show that the magnetic pressure dominates the thermal pressure by a factor of 20 or more.

  4. THE CIRCUMSTELLAR DISK OF THE Be STAR o AQUARII AS CONSTRAINED BY SIMULTANEOUS SPECTROSCOPY AND OPTICAL INTERFEROMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Sigut, T. A. A. [Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, N6A 3K7 (Canada); Tycner, C.; Jansen, B. [Department of Physics, Central Michigan University, Mount Pleasant, MI 48859 (United States); Zavala, R. T. [US Naval Observatory, Flagstaff Station, 10391 W. Naval Observatory Rd, Flagstaff, AZ 86001 (United States)

    2015-12-01

    Omicron Aquarii is a late-type, Be shell star with a stable and nearly symmetric Hα emission line. We combine Hα interferometric observations obtained with the Navy Precision Optical Interferometer covering 2007 through 2014 with Hα spectroscopic observations over the same period and a 2008 observation of the system's near-infrared spectral energy distribution to constrain the properties of o Aqr's circumstellar disk. All observations are consistent with a circumstellar disk seen at an inclination of 75° ±  3° with a position angle on the sky of 110° ±  8° measured East from North. From the best-fit disk density model, we find that 90% of the Hα emission arises from within 9.5 stellar radii, and the mass associated with this Hα disk is ∼1.8 × 10{sup −10} of the stellar mass, and that the associated angular momentum, assuming Keplerian rotation for the disk, is ∼1.6 × 10{sup −8} of the total stellar angular momentum. The occurrence of a central quasi-emission feature in Mg ii λ4481 is also predicted by this best-fit disk model and the computed profile compares successfully with observations from 1999. To obtain consistency between the Hα line profile modeling and the other constraints, it was necessary in the profile fitting to weight the line core (emission peaks and central depression) more heavily than the line wings, which were not well reproduced by our models. This may reflect the limitation of assuming a single power law for the disk's variation in equatorial density. The best-fit disk density model for o Aqr predicts that Hα is near its maximum strength as a function of disk density, and hence the Hα equivalent width and line profile change only weakly in response to large (factor of ∼5) changes in the disk density. This may in part explain the remarkable observed stability of o Aqr's Hα emission line profile.

  5. Rapid Circumstellar Disk Evolution and an Accelerating Star Formation Rate in the Infrared Dark Cloud M17 SWex

    CERN Document Server

    Povich, Matthew S; Robitaille, Thomas P; Broos, Patrick S; Orbin, Wesley T; King, Robert R; Naylor, Tim; Whitney, Barbara A

    2016-01-01

    We present a catalog of 840 X-ray sources and first results from a 100 ks Chandra X-ray Observatory imaging study of the filamentary infrared dark cloud G014.225$-$00.506, which forms the central regions of a larger cloud complex known as the M17 southwest extension (M17 SWex). In addition to the rich population of protostars and young stellar objects with dusty circumstellar disks revealed by Spitzer Space Telescope archival data, we discover a population of X-ray-emitting, intermediate-mass pre--main-sequence stars (IMPS) that lack infrared excess emission from circumstellar disks. We model the infrared spectral energy distributions of this source population to measure its mass function and place new constraints on the inner dust disk destruction timescales for 2-8 $M_{\\odot}$ stars. We also place a lower limit on the star formation rate (SFR) and find that it is quite high ($\\dot{M}\\ge 0.007~M_{\\odot}$ yr$^{-1}$), equivalent to several Orion Nebula Clusters in G14.225$-$0.506 alone, and likely accelerating...

  6. The First Circumstellar Disk Imaged in Silhouette with Adaptive Optics: MagAO Imaging of Orion 218-354

    CERN Document Server

    Follette, Katherine B; Males, Jared R; Kopon, Derek; Wu, Ya-Lin; Morzinski, Katie M; Hinz, Philip; Rodigas, Timothy J; Puglisi, Alfio; Esposito, Simone; Riccardi, Armando; Pinna, Enrico; Xompero, Marco; Briguglio, Runa

    2013-01-01

    We present high resolution adaptive optics (AO) corrected images of the silhouette disk Orion 218-354 taken with Magellan AO (MagAO) and its visible light camera, VisAO, in simultaneous differential imaging (SDI) mode at H-alpha. This is the first image of a circumstellar disk seen in silhouette with adaptive optics and is among the first visible light adaptive optics results in the literature. We derive the disk extent, geometry, intensity and extinction profiles and find, in contrast with previous work, that the disk is likely optically-thin at H-alpha. Our data provide an estimate of the column density in primitive, ISM-like grains as a function of radius in the disk. We estimate that only ~10% of the total sub-mm derived disk mass lies in primitive, unprocessed grains. We use our data, Monte Carlo radiative transfer modeling and previous results from the literature to make the first self-consistent multiwavelength model of Orion 218-354. We find that we are able to reproduce the 1-1000micron SED with a ~2...

  7. Photodetachment as destruction mechanism for CN- and C3N- anions in circumstellar envelopes

    CERN Document Server

    Kumar, S S; Jindra, R; Best, T; Roucka, S; Geppert, W D; Millar, T J; Wester, R

    2013-01-01

    Absolute photodetachment cross sections of two anions of astrophysical importance CN- and C3N- were measured to be (1.18 +- (0.03)_stat (0.17)_sys) * 10^-17 cm^2 and (1.43 +- (0.14)_stat (0.37)_sys) * 10^-17 cm^2 respectively at the ultraviolet wavelength of 266 nm (4.66 eV). These relatively large values of the cross sections imply that photodetachment can play a major role in the destruction mechanisms of these anions particularly in photon-dominated regions. We have therefore carried out model calculations using the newly measured cross sections to investigate the abundance of these molecular anions in the cirumstellar envelope of the carbon-rich star IRC+10216. The model predicts the relative importance of the various mechanisms of formation and destruction of these species in different regions of the envelope. UV photodetachment was found to be the major destruction mechanism for both CN- and C3N- anions in those regions of the envelope, where they occur in peak abundance. It was also found that photodet...

  8. The circumstellar disc of AB Aurigae: evidence for envelope accretion at late stages of star formation?

    CERN Document Server

    Tang, Ya-Wen; Pietu, Vincent; Dutrey, Anne; Ohashi, Nagayoshi; Ho, Paul T P

    2012-01-01

    The circumstellar disc of AB Aurigae has garnered great attentions due to the apparent existence of spirals at a relatively young stage and also the asymmetric disc traced in thermal dust emission. However, the physical conditions of the spirals are still not well understood. The origin of the asymmetric thermal emission is unclear. We observe the disc at 230 GHz (1.3 mm) in both continuum and the spectral line ^12 CO 2-1 with IRAM 30 m, the PdBI and the SMA to sample all spatial scales from 0.37" to about 50". To combine the data obtained from these telescopes, several methods and calibration issues have been checked and discussed. The 1.3 mm continuum (dust) emission is resolved into inner disc and outer ring. The emission from the dust ring is highly asymmetric in azimuth, with intensity variations by a factor 3. Molecular gas at high velocities traced by the CO line is detected aside the stellar location. The inclination angle of the disc is found to decrease toward the center. At larger scale, based on t...

  9. PROSAC: A Submillimeter Array survey of low-mass protostars. II. The mass evolution of envelopes, disks, and stars from the Class 0 through I stages

    CERN Document Server

    Jorgensen, Jes K; Visser, Ruud; Bourke, Tyler L; Wilner, David J; Lommen, Dave; Hogerheijde, Michiel R; Myers, Philip C

    2009-01-01

    The key question about early protostellar evolution is how matter is accreted from the large-scale molecular cloud, through the circumstellar disk onto the central star. A sample of 20 Class 0 and I protostars has been observed in continuum at (sub)millimeter wavelengths at high angular resolution with the Submillimeter Array. Using detailed dust radiative transfer models, we have developed a framework for disentangling the continuum emission from the envelopes and disks, and from that estimated their masses. For the Class I sources in the sample, HCO+ 3-2 line emission has furthermore been observed with the Submillimeter Array. Four of these sources show signs of Keplerian rotation, constraining the masses of the central stars. Both Class 0 and I protostars are surrounded by disks with typical masses of about 0.05 M_sun. No evidence is found for a correlation between the disk mass and evolutionary stage of the young stellar objects. This contrasts the envelope mass, which decreases sharply from 1 M_sun in th...

  10. Photochemistry in the inner layers of clumpy circumstellar envelopes: formation of water in C-rich objects and of C-bearing molecules in O-rich objects

    CERN Document Server

    Agundez, Marcelino; Guelin, Michel

    2010-01-01

    A mechanism based on the penetration of interstellar ultraviolet photons into the inner layers of clumpy circumstellar envelopes around AGB stars is proposed to explain the non-equilibrium chemistry observed in such objects. We show through a simple modelling approach that in circumstellar envelopes with a certain degree of clumpiness or with moderately low mass loss rates (a few 10^(-7) solar masses per year) a photochemistry can take place in the warm and dense inner layers inducing important changes in the chemical composition. In carbon-rich objects water vapor and ammonia would be formed with abundances of 10^(-8) - 10(^-6) relative to H2, while in oxygen-rich envelopes ammonia and carbon-bearing molecules such as HCN and CS would form with abundances of 10^(-9) - 10^(-7) relative to H2. The proposed mechanism would explain the recent observation of warm water vapor in the carbon-rich envelope IRC +10216 with the Herschel Space Observatory, and predict that H2O should be detectable in other carbon-rich o...

  11. The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks. IV. Simulations with Envelope Irradiation

    CERN Document Server

    Cai, Kai; Boley, Aaron C; Pickett, Megan K; Mejia, Annie C

    2007-01-01

    It is generally thought that protoplanetary disks embedded in envelopes are more massive and thus more susceptible to gravitational instabilities (GIs) than exposed disks. We present three-dimensional radiative hydrodynamics simulations of protoplanetary disks with the presence of envelope irradiation. For a disk with a radius of 40 AU and a mass of 0.07 Msun around a young star of 0.5 Msun, envelope irradiation tends to weaken and even suppress GIs as the irradiating flux is increased. The global mass transport induced by GIs is dominated by lower-order modes, and irradiation preferentially suppresses higher-order modes. As a result, gravitational torques and mass inflow rates are actually increased by mild irradiation. None of the simulations produce dense clumps or rapid cooling by convection, arguing against direct formation of giant planets by disk instability, at least in irradiated disks. However, dense gas rings and radial mass concentrations are produced, and these might be conducive to accelerated p...

  12. Spectral Energy Distributions of T Tauri Stars With Passive Circumstellar Disks

    CERN Document Server

    Chiang, E I

    1997-01-01

    We derive hydrostatic, radiative equilibrium models for passive disks surrounding T Tauri stars. Each disk is encased by an optically thin layer of superheated dust grains. This layer re-emits directly to space about half the stellar energy it absorbs. The other half is emitted inward and regulates the interior temperature of the disk. The heated disk flares. As a consequence, it absorbs more stellar radiation, especially at large radii, than a flat disk would. The portion of the spectral energy distribution contributed by the disk is fairly flat throughout the thermal infrared. At fixed frequency, the contribution from the surface layer exceeds that from the interior by about a factor 3 and is emitted at more than an order of magnitude greater radius. Spectral features from dust grains in the superheated layer appear in emission if the disk is viewed nearly face-on.

  13. An alternative model for the origin of gaps in circumstellar disks

    CERN Document Server

    Vorobyov, Eduard I; Guedel, Manuel; Lin, D N C

    2016-01-01

    Motivated by recent observational and numerical studies suggesting that collapsing protostellar cores may be replenished from the local environment, we explore the evolution of protostellar cores submerged in the external counter-rotating environment. These models predict the formation of counter-rotating disks with a deep gap in the gas surface density separating the inner disk (corotating with the star) and the outer counter-rotating disk. The properties of these gaps are compared to those of planet-bearing gaps that form in disks hosting giant planets. We employ numerical hydrodynamics simulations of collapsing cores that are replenished from the local counter-rotating environment, as well as numerical hydrodynamic simulations of isolated disks hosting giant planets, to derive the properties of the gaps that form in both cases. Our numerical simulations demonstrate that counter-rotating disks can form for a wide range of mass and angular momentum available in the local environment. The gap that separates b...

  14. Revealing the inner circumstellar disk of the T Tauri star S CrA N using the VLTI

    CERN Document Server

    Vural, J; Kraus, S; Weigelt, G; Driebe, T; Benisty, M; Dugué, M; Massi, F; Monin, J -L; Vannier, M

    2012-01-01

    Aims: We investigate the structure of the circumstellar disk of the T Tauri star S CrA N and test whether the observations agree with the standard picture proposed for Herbig Ae stars. Methods: Our observations were carried out with the VLTI/AMBER instrument in the H and K bands with the low spectral resolution mode. For the interpretation of our near-infrared AMBER and archival mid-infrared MIDI visibilities, we employed both geometric and temperature-gradient models. Results: To characterize the disk size, we first fitted geometric models consisting of a stellar point source, a ring-shaped disk, and a halo structure to the visibilities. In the H and K bands, we measured ring-fit radii of 0.73 +- 0.03 mas (corresponding to 0.095 +- 0.018 AU for a distance of 130 pc) and 0.85 +- 0.07 mas (0.111 +- 0.026 AU), respectively. This K-band radius is approximately two times larger than the dust sublimation radius of ~0.05 AU expected for a dust sublimation temperature of 1500 K and gray dust opacities, but approxima...

  15. The Masses of Transition Circumstellar Disks: Observational Support for Photoevaporation Models

    CERN Document Server

    Cieza, Lucas A; Mathews, Geoffrey S; Williams, Jonathan P

    2008-01-01

    We report deep Sub-Millimeter Array observations of 26 pre-main-sequence (PMS) stars with evolved inner disks. These observations measure the mass of the outer disk (r ~20-100 AU) across every stage of the dissipation of the inner disk (r < 10 AU) as determined by the IR spectral energy distributions (SEDs). We find that only targets with high mid-IR excesses are detected and have disk masses in the 1-5 M_Jup range, while most of our objects remain undetected to sensitivity levels of M_DISK ~0.2-1.5 M_Jup. To put these results in a more general context, we collected publicly available data to construct the optical to millimeter wavelength SEDs of over 120 additional PMS stars. We find that the near-IR and mid-IR emission remain optically thick in objects whose disk masses span 2 orders of magnitude (~0.5-50 M_Jup). Taken together, these results imply that, in general, inner disks start to dissipate only after the outer disk has been significantly depleted of mass. This provides strong support for photoevap...

  16. The JCMT Gould Belt Survey: SCUBA-2 observations of circumstellar disks in L 1495

    CERN Document Server

    Buckle, J V; Greaves, J; Richer, J S; Matthews, B C; Johnstone, D; Kirk, H; Beaulieu, S F; Berry, D S; Broekhoven-Fiene, H; Currie, M J; Fich, M; Hatchell, J; Jenness, T; Mottram, J C; Nutter, D; Pattle, K; Pineda, J E; Salji, C; Tisi, S; Di Francesco, J; Hogerheijde, M R; Ward-Thompson, D; Bastien, P; Butner, H; Chen, M; Chrysostomou, A; Coude, S; Davis, C J; Duarte-Cabral, A; Friberg, P; Friesen, R; Fuller, G A; Graves, S; Gregson, J; Holland, W; Joncas, G; Kirk, J M; Knee, L B G; Mairs, S; Marsh, K; Moriarty-Schieven, G; Rawlings, J; Rosolowsky, E; Rumble, D; Sadavoy, S; Thomas, H; Tothill, N; Viti, S; White, G J; Wilson, C D; Wouterloot, J; Yates, J; Zhu, M

    2015-01-01

    We present 850$\\mu$m and 450$\\mu$m data from the JCMT Gould Belt Survey obtained with SCUBA-2 and characterise the dust attributes of Class I, Class II and Class III disk sources in L1495. We detect 23% of the sample at both wavelengths, with the detection rate decreasing through the Classes from I--III. The median disk mask is 1.6$\\times 10^{-3}$M$_{\\odot}$, and only 7% of Class II sources have disk masses larger than 20 Jupiter masses. We detect a higher proportion of disks towards sources with stellar hosts of spectral type K than spectral type M. Class II disks with single stellar hosts of spectral type K have higher masses than those of spectral type M, supporting the hypothesis that higher mass stars have more massive disks. Variations in disk masses calculated at the two wavelengths suggests there may be differences in dust opacity and/or dust temperature between disks with hosts of spectral types K to those with spectral type M.

  17. Can X-rays clear a circumstellar disk in 2 years?

    Science.gov (United States)

    Guenther, Hans

    2013-09-01

    Young stars are born surrounded by primordial disks. Eventually, these proto-planetary disks vanish. Some systems later form a debris disk with small dust grains. Up until May 2008 our target TYC 8241 2652 1 showed strong IR emission from such a disk. Between 2008 and 2010 the IR emission dropped by two orders of magnitude, which means that the dust mass in the inner disk decreased by 90-99%. The cause is unknown, but several hypotheses require high X-ray activity. We propose to observe this target for 10 ks with ACIS-S. This pointing will verify the association of a close-by ROSAT and XMM-Newton slew survey source with TYC 8241 2652 1, confirm the X-ray flux and look for signatures of high X-ray activity such as high plasma temperatures and Ne/Fe abundance ratios.

  18. HST/NICMOS Imaging of Disks and Envelopes Around Very Young Stars

    CERN Document Server

    Padgett, D L; Stapelfeldt, K R; Strom, S E; Terebey, S; Körner, D W; Padgett, Deborah L.; Brandner, Wolfgang; Stapelfeldt, Karl R.; Strom, Stephen E.; Terebey, Susan; Koerner, David

    1999-01-01

    We present HST/NICMOS observations with 0.1" (15 AU) resolution of six young stellar objects in the Taurus star-formation region. The targets of our survey are three Class I IRAS sources (IRAS 04016+2610, IRAS 04248+2612, and IRAS 04302+2247) and three low-luminosity stars (DG Tau B, Haro 6-5B, and CoKu Tau/1) associated with Herbig Haro jets. The broad-band images show that the near-infrared radiation from these sources is dominated by light scattered from dusty circumstellar material distributed in a region 10 - 15 times the size of our solar system. Although the detailed morphologies of the individual objects are unique, the observed young stellar objects share common features. All of the circumstellar reflection nebulae are crossed by dark lanes from 500 - 900 AU in extent and from less than 50 to 350 AU in apparent thickness. The absorption lanes extend perpendicular to known optical and millimeter outflows in these sources. We interpret the dark lanes as optically thick circumstellar disks seen in silho...

  19. Interferometric observations of non-maser SiO emission from circumstellar envelopes of AGB stars - Acceleration regions and SiO depletion

    Science.gov (United States)

    Sahai, Raghvendra; Bieging, John H.

    1993-01-01

    High- and medium-resolution images of SiO J = 2-1(V = 0) from the circumstellar envelopes (CSEs) of three oxygen-rich stars, Chi Cyg, RX Boo, and IK Tau, were obtained. The SIO images were found to be roughly circular, implying that the CSEs are spherically symmetric on angular-size scales of about 3-9 arcsec. The observed angular half-maximum intensity source radius is nearly independent of the LSR velocity for all three CSEs. Chi Cyg and RX Boo are argued to be less than 450 pc distant, and have mass-loss rates larger than about 10 exp -6 solar mass/yr. In Chi Cyg and RX Boo, the line profiles at the peak of the brightness distribution are rounded, typical of optically-thick emission from a spherical envelope expanding with a constant velocity. In the IK Tau line profiles, an additional narrower central component is present, probably a result of emission from an inner circumstellar shell with a significantly smaller expansion velocity than the extended envelope.

  20. CONSTRAINTS ON THE RADIAL VARIATION OF GRAIN GROWTH IN THE AS 209 CIRCUMSTELLAR DISK

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Laura M.; Carpenter, John M.; Isella, Andrea; Ricci, Luca; Sargent, Anneila I. [Astronomy Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Chandler, Claire J. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Andrews, Sean M.; Harris, Robert J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Calvet, Nuria [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Corder, Stuartt A. [Joint ALMA Observatory, Av. Alonso de Cordova 3107, Vitacura, Santiago (Chile); Deller, Adam T. [The Netherlands Institute for Radio Astronomy (ASTRON), 7990-AA Dwingeloo (Netherlands); Dullemond, Cornelis P.; Linz, Hendrik [Center for Astronomy, Heidelberg University, Albert Ueberle Str. 2, D-69120 Heidelberg (Germany); Greaves, Jane S. [School of Physics and Astronomy, University of St. Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Henning, Thomas [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Kwon, Woojin [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Lazio, Joseph [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91106 (United States); Mundy, Lee G.; Storm, Shaye [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Testi, Leonardo [European Southern Observatory, Karl Schwarzschild Str. 2, D-85748 Garching (Germany); and others

    2012-11-20

    We present dust continuum observations of the protoplanetary disk surrounding the pre-main-sequence star AS 209, spanning more than an order of magnitude in wavelength from 0.88 to 9.8 mm. The disk was observed with subarcsecond angular resolution (0.''2-0.''5) to investigate radial variations in its dust properties. At longer wavelengths, the disk emission structure is notably more compact, providing model-independent evidence for changes in the grain properties across the disk. We find that physical models which reproduce the disk emission require a radial dependence of the dust opacity {kappa}{sub {nu}}. Assuming that the observed wavelength-dependent structure can be attributed to radial variations in the dust opacity spectral index ({beta}), we find that {beta}(R) increases from {beta} < 0.5 at {approx}20 AU to {beta} > 1.5 for R {approx}> 80 AU, inconsistent with a constant value of {beta} across the disk (at the 10{sigma} level). Furthermore, if radial variations of {kappa}{sub {nu}} are caused by particle growth, we find that the maximum size of the particle-size distribution (a{sub max}) increases from submillimeter-sized grains in the outer disk (R {approx}> 70 AU) to millimeter- and centimeter-sized grains in the inner disk regions (R {approx}< 70 AU). We compare our observational constraint on a{sub max}(R) with predictions from physical models of dust evolution in protoplanetary disks. For the dust composition and particle-size distribution investigated here, our observational constraints on a{sub max}(R) are consistent with models where the maximum grain size is limited by radial drift.

  1. Modeling Circumstellar Disks of B-Type Stars with Observations from the Palomar Testbed Interferometer

    Science.gov (United States)

    Grzenia, B. J.; Tycner, C.; Jones, C. E.; Rinehart, S. A.; vanBelle, G. T.; Sigut, T. A. A.

    2013-01-01

    Geometrical (uniform disk) and numerical models were calculated for a set of B-emission (Be) stars observed with the Palomar Testbed Interferometer (PTI). Physical extents have been estimated for the disks of a total of15 stars via uniform disk models. Our numerical non-LTE models used parameters for the B0, B2, B5, and B8spectral classes and following the framework laid by previous studies, we have compared them to infrared K-band interferometric observations taken at PTI. This is the first time such an extensive set of Be stars observed with long-baseline interferometry has been analyzed with self-consistent non-LTE numerical disk models.

  2. An ALMA Continuum Survey of Circumstellar Disks in the Upper Scorpius OB Association

    CERN Document Server

    Carpenter, John M; Isella, Andrea

    2014-01-01

    We present ALMA 880 micron continuum observations of 20 K and M-type stars in the Upper Scorpius OB association that are surrounded by protoplanetary disks. These data are used to measure the dust content in disks around low mass stars (0.1-1.6 Msun) at a stellar age of 5-11 Myr. Thirteen sources were detected in the 880 micron dust continuum at >3 sigma with inferred dust masses between 0.3 and 52 Mearth. The dust masses tend to be higher around the more massive stars, but the significance is marginal in that the probability of no correlation is p ~ 0.03. The evolution in the dust content in disks was assessed by comparing the Upper Sco observations with published continuum measurements of disks around ~ 1-2 Myr stars in the Class II stage in the Taurus molecular cloud. While the dust masses in the Upper Sco disks are on average lower than in Taurus, any difference in the dust mass distributions is significant at less than 3sigma. For stellar masses between 0.49 Msun and 1.6 Msun, the mean dust mass in disks...

  3. Detection of Strong Millimeter Emission from the Circumstellar Dust Disk Around V1094 Sco: Cold and Massive Disk around a T Tauri Star in a Quiescent Accretion Phase?

    CERN Document Server

    Tsukagoshi, Takashi; Kitamura, Yoshimi; Momose, Munetake; Shimajiri, Yoshito; Hiramatsu, Masaaki; Ikeda, Norio; Kamegai, Kazuhisa; Wilson, Grant; Yun, Min S; Scott, Kimberly; Austermann, Jay; Perera, Thushara; Hughes, David; Aretxaga, Itziar; Mauskopf, Philip; Ezawa, Hajime; Kohno, Kotaro; Kawabe, Ryohei

    2010-01-01

    We present the discovery of a cold massive dust disk around the T Tauri star V1094 Sco in the Lupus molecular cloud from the 1.1 millimeter continuum observations with AzTEC on ASTE. A compact ($r\\lesssim$320 AU) continuum emission coincides with the stellar position having a flux density of 272 mJy which is largest among T Tauri stars in Lupus. We also present the detection of molecular gas associated with the star in the five-point observations in $^{12}$CO J=3--2 and $^{13}$CO J=3--2. Since our $^{12}$CO and $^{13}$CO observations did not show any signature of a large-scale outflow or a massive envelope, the compact dust emission is likely to come from a disk around the star. The observed SED of V1094 Sco shows no distinct turnover from near infrared to millimeter wavelengths, which can be well described by a flattened disk for the dust component, and no clear dip feature around 10 $\\micron$ suggestive of absence of an inner hole in the disk. We fit a simple power-law disk model to the observed SED. The es...

  4. Investigating the Circumstellar Disk of the Be Shell Star 48 Librae

    Science.gov (United States)

    Silaj, J.; Jones, C. E.; Carciofi, A. C.; Escolano, C.; Okazaki, A. T.; Tycner, C.; Rivinius, T.; Klement, R.; Bednarski, D.

    2016-07-01

    A global disk oscillation implemented in the viscous decretion disk (VDD) model has been used to reproduce most of the observed properties of the well known Be star ζ Tau. 48 Librae shares several similarities with ζ Tau—they are both early-type Be stars, display shell characteristics in their spectra, and exhibit cyclic V/R variations—but has some marked differences as well, such as a much denser and more extended disk, a much longer V/R cycle, and the absence of the so-called triple-peak features. We aim to reproduce the photometric, polarimetric, and spectroscopic observables of 48 Librae with a self-consistent model, and to test the global oscillation scenario for this target. Our calculations are carried out with the three-dimensional NLTE radiative transfer code HDUST. We employ a rotationally deformed, gravity-darkened central star surrounded by a disk whose unperturbed state is given by the VDD model. A two-dimensional global oscillation code is then used to calculate the disk perturbation and superimpose it on the unperturbed disk. A very good, self-consistent fit to the time-averaged properties of the disk is obtained with the VDD. The calculated perturbation has a period P = 12 years, which agrees with the observed period, and the behavior of the V/R cycle is well reproduced by the perturbed model. The perturbed model improves the fit to the photometric data and reproduces some features of the observed spectroscopic data. Some suggestions to improve the synthesized spectroscopy in a future work are given.

  5. Dust in the disk winds from young stars as a source of the circumstellar extinction

    CERN Document Server

    Tambovtseva, L V

    2008-01-01

    We examine a problem of the dust grains survival in the disk wind in T Tauri stars (TTSs). For consideration we choose the disk wind model described by Garcia et al. (2001), where a gas component of the wind is heated by an ambipolar diffusion up to the temperature of the order of 10$^4$ K. It is shown that the dust grains heating due to collisions with the gas atoms and electrons is inefficient in comparison with heating by the stellar radiation, and thus, dust survives even in the hot wind component. Owing to this, the disk wind may be opaque for the ultraviolet and optical radiation of the star and is capable to absorb its noticeable fraction. Calculations show that at the accretion rate $\\dot{M_a} = 10^{-8}-10^{-6} M_\\odot$ per year this fraction for TTSs may range from 20% to 40% of a total luminosity of the star correspondingly. This means that the disk wind in TTSs can play the same role as the puffed inner rim considered in the modern models of accretion disks. In Herbig Ae stars (HAEs) inner regions ...

  6. Young stars and their circumstellar disks in the Sigma Orionis cluster

    CERN Document Server

    Oliveira, J M; Van Loon, J T; Kenyon, M J

    2003-01-01

    The sigma Orionis cluster is a young association evolving under the disruptive influence of its massive O-star namesake. We are analysing this cluster as part of a program to characterise the influence of O-stars on the early stages of stellar evolution. At an age of approximately 4 Myr, this cluster is at a crucial stage in terms of disk evolution and therefore it is a key case to better constrain disk dissipation timescales. We have obtained RI photometry and optical spectroscopy of the sigma Ori cluster; we have analysed the Li I and Na I features to establish cluster membership. We have thus gathered a unique sample of spectroscopically confirmed low-mass cluster members and brown dwarfs. Disk frequencies from K-band excesses from 2MASS suggest that less than 7% of the very low-mass sigma Ori members have disks, in stark contrast with even younger clusters (e.g. Trapezium). However, near-infrared disk frequencies have to be taken with caution. We are currently undertaking an L-band (imaging) and mid-infra...

  7. The circumstellar disc in the Bok globule CB 26. Multi-wavelength observations and modelling of the dust disc and envelope

    Science.gov (United States)

    Sauter, J.; Wolf, S.; Launhardt, R.; Padgett, D. L.; Stapelfeldt, K. R.; Pinte, C.; Duchêne, G.; Ménard, F.; McCabe, C.-E.; Pontoppidan, K.; Dunham, M.; Bourke, T. L.; Chen, J.-H.

    2009-10-01

    Context: Circumstellar discs are expected to be the nursery of planets. Grain growth within such discs is the first step in the planet formation process. The Bok globule CB 26 harbours such a young disc. Aims: We present a detailed model of the edge-on circumstellar disc and its envelope in the Bok globule CB 26. Methods: The model is based on HST near-infrared maps in the I, J, H, and K bands, OVRO and SMA radio maps at 1.1 mm, 1.3 mm and 2.7 mm, and the spectral energy distribution (SED) from 0.9 {μ m} to 3 mm. New photometric and spectroscopic data from the Spitzer Space Telescope and the Caltech Submilimeter Observatory are also part of our analysis. Using the self-consistent radiative transfer code MC3D, the model we construct is able to discriminate between parameter sets and dust properties of both envelope and disc. Results: We find that the data are fit by a disc that has an inner hole with a radius of 45±5 AU. Based on a dust model including silicate and graphite, the maximum grain size needed to reproduce the spectral millimetre index is 2.5 {μ m}. Features seen in the near-infrared images, dominated by scattered light, can be described as a result of a rotating envelope. Conclusions: Successful employment of ISM dust in both the disc and envelope hint that grain growth may not yet play a significant role for the appearance of this system. A large inner hole implies that CB 26 is a circumbinary disc.

  8. The circumstellar disc in the Bok globule CB 26: Multi-wavelength observations and modelling of the dust disc and envelope

    CERN Document Server

    Sauter, J; Launhardt, R; Padgett, D L; Stapelfeldt, K R; Pinte, C; Duchêne, G; Ménard, F; McCabe, C -E; Pontoppidan, K; Dunham, M; Bourke, T -L; Chen, J -H

    2009-01-01

    Circumstellar discs are expected to be the nursery of planets. Grain growth within such discs is the first step in the planet formation process. The Bok globule CB 26 harbours such a young disc. We present a detailed model of the edge-on circumstellar disc and its envelope in the Bok globule CB 26. The model is based on HST near-infrared maps in the I, J, H, and K bands, OVRO and SMA radio maps at 1.1mm, 1.3mm and 2.7mm, and the spectral energy distribution (SED) from 0.9 microns to 3mm. New photometric and spectroscopic data from the Spitzer Space Telescope and the Caltech Submilimeter Observatory have been obtained and are part of our analysis. Using the self-consistent radiative transfer code MC3D, the model we construct is able to discriminate parameter sets and dust properties of both its parts, namely envelope and disc. We find that the disc has an inner hole with a radius of 45 +/- 5 AU. Based on a dust model including silicate and graphite the maximum grain size needed to reproduce the spectral millim...

  9. Investigating the Circumstellar Disk of the Be Shell Star 48 Librae

    CERN Document Server

    Silaj, J; Carciofi, A C; Escolano, C; Okazaki, A T; Tycner, C; Rivinius, T; Klement, R; Bednarski, D

    2016-01-01

    A global disk oscillation implemented in the viscous decretion disk (VDD) model has been used to reproduce most of the observed properties of the well known Be star $\\zeta$ Tau. 48 Librae shares several similarities with $\\zeta$ Tau -- they are both early-type Be stars, they display shell characteristics in their spectra, and they exhibit cyclic $V/R$ variations -- but has some marked differences as well, such as a much denser and more extended disk, a much longer $V/R$ cycle, and the absence of the so-called triple-peak features. We aim to reproduce the photometric, polarimetric, and spectroscopic observables of 48 Librae with a self-consistent model, and to test the global oscillation scenario for this target. Our calculations are carried out with the three-dimensional NLTE radiative transfer code HDUST. We employ a rotationally deformed, gravity-darkened central star, surrounded by a disk whose unperturbed state is given by the VDD model. A two-dimensional global oscillation code is then used to calculate ...

  10. OGLE-BLG182.1.162852: An Eclipsing Binary with a Circumstellar Disk

    CERN Document Server

    Rattenbury, N J; Kostrzewa-Rutkowska, Z; Udalski, A; Kozłowski, S; Szymański, M K; Pietrzyński, G; Soszyński, I; Poleski, R; Ulaczyk, K; Skowron, J; Pietrukowicz, P; Mróz, P; Skowron, D

    2014-01-01

    We present the discovery of a plausible disk-eclipse system OGLE-BLG182.1.162852. The OGLE light curve for OGLE-BLG182.1.162852 shows three episodes of dimming by $I \\simeq 2 - 3$ magnitudes, separated by 1277 days. The shape of the light curve during dimming events is very similar to that of known disk eclipse system OGLE-LMC-ECL-11893 (Dong et al. 2014). The event is presently undergoing a dimming event, predicted to end on December 30th, 2014. We encourage spectroscopic and multi-band photometric observations now. The next dimming episode for OGLE-BLG182.1.162852 is expected to occur in March 2018.

  11. Chemistry of protostellar envelopes and disks: computational testing of 2D abundances

    Science.gov (United States)

    Flores Rivera, Lizxandra; Willacy, Karen; Terebey, Susan

    2017-01-01

    Molecule formation is dynamic during the protostar collapse phase, driven by changes in temperature, density, and UV radiation as gas and dust flows from the envelope onto the forming protoplanetary disk. In this work, we use a chemistry model to generate fractional abundances of water and carbon monoxide using primarily as input parameters the temperature and density profile produced by the dust radiative transfer model HOCHUNK3D (Whitney et al. 2013). Contour maps are presented showing the meridional temperature, density, and fractional abundance at different outer radii. High concentrations of gas phase molecules are found within 5 AU of the star along with high temperatures in the same spatial region. Shielding by the disk leads to colder temperatures outside 10 AU near the disk mid-plane. In this region, CO freezes out onto grains and shows a much reduced abundance. Water remains solid almost everywhere during the infall and evaporates within ~10 AU.

  12. Detection of a large Be circumstellar disk during X-ray quiescence of XTE J1946+274

    CERN Document Server

    Arabaci, M Ozbey; Gutierrez-Soto, J; Zurita, C; Nespoli, E; Suso, J; Kiaeerad, F; Garcia-Rojas, J; Kiziloglu, U

    2014-01-01

    We present a multiwavelength study of the Be/X-ray binary system XTE J1946+274 with the main goal of better characterizing its behavior during X-ray quiescence. We aim to shed light on the mechanism which triggers the X-ray activity for this source. XTE J1946+274 was observed by Chandra-ACIS during quiescence in 2013 March 12. In addition, this source has been monitored from the ground-based astronomical observatories of El Teide (Tenerife, Spain), Roque de los Muchachos (La Palma, Spain) and Sierra Nevada (Granada, Spain) since 2011 September, and from the TUBITAK National Observatory (Antalya, Turkey) since 2005 April. We have performed spectral and photometric temporal analyses in order to investigate the quiescent state and transient behavior of this binary system. In 2006, a long mass ejection event took place from the Be star, lasting for about seven years. We also found that a large Be circumstellar disk was present during quiescence, although major X-ray activity was not observed. We made an attempt t...

  13. The young low-mass star ISO-Oph-50: Extreme variability induced by a clumpy, evolving circumstellar disk

    CERN Document Server

    Scholz, Aleks; Geers, Vincent

    2015-01-01

    ISO-Oph-50 is a young low-mass object in the ~Myr old Ophiuchus star forming region undergoing dramatic changes in its optical/near/mid-infrared brightness by 2-4 mag. We present new multi-band photometry and near-infrared spectra, combined with a synopsis of the existing literature data. Based on the spectroscopy, the source is confirmed as a mid M dwarf, with evidence for ongoing accretion. The near-infrared lightcurves show large-scale variations, with 2-4 mag amplitude in the bands IJHK, with the object generally being bluer when faint. Near its brightest state, the object shows colour changes consistent with variable extinction of dAV~7 mag. High-cadence monitoring at 3.6mu reveals quasi-periodic variations with a typical timescale of 1-2 weeks. The best explanation for these characteristics is a low-mass star seen through circumstellar matter, whose complex variability is caused by changing inhomogeneities in the inner parts of the disk. When faint, the direct stellar emission is blocked; the near-infra...

  14. 1.3 mm Polarized Emission in the Circumstellar Disk of a Massive Protostar

    Science.gov (United States)

    Fernández-López, M.; Stephens, I. W.; Girart, J. M.; Looney, L.; Curiel, S.; Segura-Cox, D.; Eswaraiah, C.; Lai, S.-P.

    2016-12-01

    We present the first resolved observations of the 1.3 mm polarized emission from the disk-like structure surrounding the high-mass protostar Cepheus A HW2. These CARMA data partially resolve the dust polarization, suggesting a uniform morphology of polarization vectors with an average position angle of 57^\\circ +/- 6^\\circ and an average polarization fraction of 2.0 % +/- 0.4 % . The distribution of the polarization vectors can be attributed to (1) the direct emission of magnetically aligned grains of dust by a uniform magnetic field, or (2) the pattern produced by the scattering of an inclined disk. We show that both models can explain the observations, and perhaps a combination of the two mechanisms produces the polarized emission. A third model including a toroidal magnetic field does not match the observations. Assuming scattering is the polarization mechanism, these observations suggest that during the first few 104 years of high-mass star formation, grain sizes can grow from 1 μ {{m}} to several 10s μm.

  15. 1.3mm polarized emission in the circumstellar disk of a massive protostar

    CERN Document Server

    Fernández-López, M; Girart, J M; Looney, L; Curiel, S; Segura-Cox, D; Eswaraiah, C; Lai, S -P

    2016-01-01

    We present the first resolved observations of the 1.3mm polarized emission from the disk-like structure surrounding the high-mass protostar Cepheus A HW2. These CARMA data partially resolve the dust polarization, suggesting an uniform morphology of polarization vectors with an average position angle of 57 degrees and an average polarization fraction of 2.0%. The distribution of the polarization vectors can be attributed to (1) the direct emission of magnetically aligned grains of dust by a uniform magnetic field, or (2) the pattern produced by the scattering of an inclined disk. We show that both models can explain the observations, and perhaps a combination of the two mechanisms produce the polarized emission. A third model including a toroidal magnetic field does not match the observations. Assuming scattering is the polarization mechanism, these observations suggest that during the first few 10000 years of high-mass star formation, grain sizes can grow from 1 to several 10s micron.

  16. Modeling Spitzer observations of VV Ser. I. The circumstellar disk of a UX Orionis star

    CERN Document Server

    Pontoppidan, K M; Blake, G A; Boogert, A C A; Van Dishoeck, E F; Evans, N J; Kessler-Silacci, J; Lahuis, F; Pontoppidan, Klaus M.; Dullemond, Cornelis P.; Blake, Geoffrey A.; Dishoeck, Ewine F. van; Evans, Neal J.; Kessler-Silacci, Jacqueline; Lahuis, Fred

    2006-01-01

    We present mid-infrared Spitzer-IRS spectra of the well-known UX Orionis star VV Ser. We combine the Spitzer data with interferometric and spectroscopic data from the literature covering UV to submillimeter wavelengths. The full set of data are modeled by a two-dimensional axisymmetric Monte Carlo radiative transfer code. The model is used to test the prediction of (Dullemond et al. 2003) that disks around UX Orionis stars must have a self-shadowed shape, and that these disks are seen nearly edge-on, looking just over the edge of a puffed-up inner rim, formed roughly at the dust sublimation radius. We find that a single, relatively simple model is consistent with all the available observational constraints spanning 4 orders of magnitude in wavelength and spatial scales, providing strong support for this interpretation of UX Orionis stars. The grains in the upper layers of the puffed-up inner rim must be small (0.01-0.4 micron) to reproduce the colors (R_V ~ 3.6) of the extinction events, while the shape and s...

  17. Nearby Supernova Factory Observations of SN 2005gj: Another TypeIa Supernova in a Massive Circumstellar Envelope

    Energy Technology Data Exchange (ETDEWEB)

    Aldering, G.; Antilogus, P.; Bailey, S.; Baltay, C.; Bauer, A.; Blanc, N.; Bongard, S.; Copin, Y.; Gangler, E.; Gilles, S.; Kessler, R.; Kocevski, D.; Lee, B.C.; Loken, S.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigaudier, G.; Scalzo, R.; Smadja, G.; Thomas, R.C.; Wang, L.; Weaver, B.A.; Rabinowitz, D.; Bauer, A.

    2006-06-01

    We report the independent discovery and follow-up observations of supernova 2005gj by the Nearby Supernova Factory. This is the second confirmed case of a ''hybrid'' Type Ia/IIn supernova, which like the prototype SN 2002ic, we interpret as the explosion of a white dwarf interacting with a circumstellar medium. Our early-phase photometry of SN 2005gj shows that the strength of the interaction between the supernova ejecta and circumstellar material is much stronger than for SN 2002ic. Our .rst spectrum shows a hot continuum with broad and narrow H{alpha} emission. Later spectra, spanning over 4 months from outburst, show clear Type Ia features combined with broad and narrow H{gamma}, H{beta},H{alpha} and He I {lambda}{lambda}5876,7065 in emission. At higher resolution, P Cygni profiles are apparent. Surprisingly, we also observe an inverted P Cygni profile for [O III] {lambda}5007. We find that the lightcurve and measured velocity of the unshocked circumstellar material imply mass loss as recently as 8 years ago. This is in contrast to SN 2002ic, for which an inner cavity in the circumstellar material was inferred. Within the context of the thin-shell approximation, the early lightcurve is well-described by a flat radial density profile for the circumstellar material. However, our decomposition of the spectra into Type Ia and shock emission components allows for little obscuration of the supernova, suggesting an aspherical or clumpy distribution for the circumstellar material. We suggest that the emission line velocity profiles arise from electron scattering rather than the kinematics of the shock. This is supported by the inferred high densities, and the lack of evidence for evolution in the line widths. Ground- and space-based photometry, and Keck spectroscopy, of the host galaxy are used to ascertain that the host galaxy has low metallicity (Z/Z{sub {circle_dot}} < 0.3; 95% confidence) and that this galaxy is undergoing a significant star

  18. THE FIRST CIRCUMSTELLAR DISK IMAGED IN SILHOUETTE AT VISIBLE WAVELENGTHS WITH ADAPTIVE OPTICS: MagAO IMAGING OF ORION 218-354

    Energy Technology Data Exchange (ETDEWEB)

    Follette, Katherine B.; Close, Laird M.; Males, Jared R.; Wu, Ya-Lin; Morzinski, Katie M.; Hinz, Philip; Rodigas, Timothy J. [Steward Observatory, The University of Arizona, 933 N Cherry Avenue, Tucson, AZ 85721 (United States); Kopon, Derek [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Puglisi, Alfio; Esposito, Simone; Riccardi, Armando; Pinna, Enrico; Xompero, Marco; Briguglio, Runa [INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy)

    2013-09-20

    We present high-resolution adaptive optics (AO) corrected images of the silhouette disk Orion 218-354 taken with Magellan AO (MagAO) and its visible light camera, VisAO, in simultaneous differential imaging mode at Hα. This is the first image of a circumstellar disk seen in silhouette with AO and is among the first visible light AO results in the literature. We derive the disk extent, geometry, intensity, and extinction profiles and find, in contrast with previous work, that the disk is likely optically thin at Hα. Our data provide an estimate of the column density in primitive, ISM-like grains as a function of radius in the disk. We estimate that only ∼10% of the total submillimeter derived disk mass lies in primitive, unprocessed grains. We use our data, Monte Carlo radiative transfer modeling, and previous results from the literature to make the first self-consistent multiwavelength model of Orion 218-354. We find that we are able to reproduce the 1-1000 μm spectral energy distribution with a ∼2-540 AU disk of the size, geometry, small versus large grain proportion, and radial mass profile indicated by our data. This inner radius is a factor of ∼15 larger than the sublimation radius of the disk, suggesting that it is likely cleared in the very interior.

  19. Connecting the evolution of thermally pulsing asymptotic giant branch stars to the chemistry in their circumstellar envelopes -- I. The case of hydrogen cyanide

    CERN Document Server

    Marigo, Paola; Nanni, Ambra; Bressan, Alessandro; Girardi, Leo

    2015-01-01

    We investigate the formation of hydrogen cyanide (HCN) in the inner circumstellar envelopes of thermally pulsing asymptotic giant branch (TP-AGB) stars. A dynamic model for periodically shocked atmospheres, which includes an extended chemo-kinetic network, is for the first time coupled to detailed evolutionary tracks for the TP-AGB phase computed with the COLIBRI code. We carried out a calibration of the main shock parameters (the shock formation radius and the effective adiabatic index) using the circumstellar HCN abundances recently measured for a populous sample of pulsating TP-AGB stars. Our models recover the range of the observed HCN concentrations as a function of the mass-loss rates, and successfully reproduce the systematic increase of HCN moving along the M-S-C chemical sequence of TP-AGB stars, that traces the increase of the surface C/O ratio. The chemical calibration brings along two important implications: i) the first shock should emerge very close to the photosphere, and ii) shocks are expecte...

  20. Nearby Supernova Factory Observations of SN 2005gj: Another Type Ia Supernova in a Massive Circumstellar Envelope

    CERN Document Server

    Aldering, G; Bailey, S; Baltay, C; Bauer, A; Blanc, N; Bongard, S; Copin, Y; Gangler, E; Gilles, S; Kessler, R; Kocevski, D; Lee, B C; Loken, S; Nugent, P; Pain, R; Pécontal, E; Pereira, R; Perlmutter, S; Rabinowitz, D; Rigaudier, G; Scalzo, R; Smadja, G; Thomas, R C; Wang, L; Weaver, B A

    2006-01-01

    We report Nearby Supernova Factory observations of SN 2005gj, the second confirmed case of a "hybrid" Type Ia/IIn supernova. Our early-phase photometry of SN 2005gj shows that the interaction is much stronger than for the prototype, SN 2002ic. Our first spectrum shows a hot continuum with broad and narrow H-alpha emission. Later spectra, spanning over 4 months from outburst, show clear Type Ia features combined with broad and narrow H-gamma, H-beta, H-alpha and HeI 5876,7065 in emission. At higher resolution, P Cygni profiles are apparent. Surprisingly, we also observe an inverted P Cygni profile for [OIII] 5007. We find that the lightcurve and measured velocity of the unshocked circumstellar material imply mass loss as recently as 8 years ago. The early lightcurve is well-described by a flat radial density profile for the circumstellar material. However, our decomposition of the spectra into Type Ia and shock emission components allows for little obscuration of the supernova, suggesting an aspherical or clum...

  1. Constraining dust properties in Circumstellar Envelopes of C-stars in the Small Magellanic Cloud: optical constants and grain size of Carbon dust

    CERN Document Server

    Nanni, Ambra; Groenewegen, Martin A T; Aringer, Bernhard; Girardi, Léo; Pastorelli, Giada; Bressan, Alessandro; Bladh, Sara

    2016-01-01

    We present a new approach aimed at constraining the typical size and optical properties of carbon dust grains in Circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC). To achieve this goal, we apply our recent dust growth description, coupled with a radiative transfer code to the CSEs of C-stars evolving along the TP-AGB, for which we compute spectra and colors. Then we compare our modeled colors in the near- and mid-infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing several data sets of optical constants for carbon dust available in the literature. Different assumptions adopted in our dust scheme change the typical size of the carbon grains produced. We constrain carbon dust properties by selecting the combination of grain size and optical constants which best reproduces several colors in the NIR and MIR at the same time. The different choices of optical properties and grain size lead to differences i...

  2. Deep 10 and 18 micron Imaging of the HR 4796A Circumstellar Disk Transient Dust Particles & Tentative Evidence for a Brightness Asymmetry

    CERN Document Server

    Telesco, C M; Pina, R K; Knacke, R F; Dermott, S F; Wyatt, M C; Grogan, K; Holmes, E K; Ghez, A M; Prato, L; Hartmann, L W; Jayawardhana, R

    1999-01-01

    We present new 10.8 and 18.2 micron images of HR 4796A, a young A0V star that was recently discovered to have a spectacular, nearly edge-on, circumstellar disk prominent at ~20 microns (Jayawardhana et al. 1998; Koerner et al. 1998). These new images, obtained with OSCIR at Keck II, show that the disk's size at 10 microns is comparable to its size at 18 microns. Therefore, the 18 micron-emitting dust may also emit some, or all, of the 10 micron radiation. Using these multi-wavelength images, we determine a "characteristic" diameter of 2-3 microns for the mid-infrared-emitting dust particles if they are spherical and composed of astronomical silicates. Particles this small are expected to be blown out of the system by radiation pressure in a few hundred years, and therefore these particles are unlikely to be primordial. Dynamical modeling of the disk (Wyatt et al. 2000) indicates that the disk surface density is relatively sharply peaked near 70 AU, which agrees with the mean annular radius deduced by Schneide...

  3. DISPERSING ENVELOPE AROUND THE KEPLERIAN CIRCUMBINARY DISK IN L1551 NE AND ITS IMPLICATIONS FOR BINARY GROWTH

    Energy Technology Data Exchange (ETDEWEB)

    Takakuwa, Shigehisa [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Kiyokane, Kazuhiro [Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Saigo, Kazuya [Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Saito, Masao, E-mail: takakuwa@asiaa.sinica.edu.tw [Nobeyama Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Minamisaku, Nagano 384-1805 (Japan)

    2015-12-01

    We performed mapping observations of the Class I protostellar binary system L1551 NE in the C{sup 18}O (J = 3–2), {sup 13}CO (J = 3–2), CS (J = 7–6), and SO (J{sub N} = 7{sub 8}–6{sub 7}) lines with the Atacama Submillimeter Telescope Experiment (ASTE). The ASTE C{sup 18}O data were combined with our previous SMA C{sup 18}O data, which show a r ∼ 300 AU scale Keplerian disk around the protostellar binary system. The C{sup 18}O maps show a ∼20,000 AU scale protostellar envelope surrounding the central Keplerian circumbinary disk. The envelope exhibits a northeast (blue) to southwest (red) velocity gradient along the minor axis, which can be interpreted as a dispersing gas motion with an outward velocity of 0.3 km s{sup −1}, while no rotational motion in the envelope is seen. In addition to the envelope, two ≲4000 AU scale, high-velocity (≳1.3 km s{sup −1}) redshifted {sup 13}CO and CS emission components are found ∼40″ southwest and ∼20″ west of the protostellar binary. These redshifted components are most likely outflow components driven from the neighboring protostellar source L1551 IRS 5, and are colliding with the envelope in L1551 NE. The net momentum, kinetic, and internal energies of the L1551 IRS 5 outflow components are comparable to those of the L1551 NE envelope, and the interactions between the outflows and the envelope are likely to cause the dissipation of the envelope and thus suppression of further growth of the mass and mass ratio of the central protostellar binary in L1551 NE.

  4. GRAIN GROWTH IN THE CIRCUMSTELLAR DISKS OF THE YOUNG STARS CY Tau AND DoAr 25

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Laura M.; Chandler, Claire J. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Isella, Andrea [Rice University, 6100 Main Street, Houston, TX 77005 (United States); Carpenter, John M.; Sargent, Anneila I. [California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125 (United States); Andrews, Sean M.; Ricci, Luca [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Calvet, Nuria [University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Corder, Stuartt A. [Joint ALMA Observatory, Av. Alonso de Córdova 3107, Vitacura, Santiago (Chile); Deller, Adam T. [The Netherlands Institute for Radio Astronomy (ASTRON), 7990-AA Dwingeloo (Netherlands); Dullemond, Cornelis P. [Heidelberg University, Center for Astronomy, Albert Ueberle Str 2, Heidelberg (Germany); Greaves, Jane S. [University of St. Andrews, Physics and Astronomy, North Haugh, St. Andrews KY16 9SS (United Kingdom); Harris, Robert J. [University of Illinois, 1002 West Green St., Urbana, IL 61801 (United States); Henning, Thomas; Linz, Hendrik [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Kwon, Woojin [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Lazio, Joseph [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91106 (United States); Mundy, Lee G.; Storm, Shaye [University of Maryland, College Park, MD 20742 (United States); Tazzari, Marco [European Southern Observatory, Karl Schwarzschild str. 2, D-85748 Garching (Germany); and others

    2015-11-01

    We present new results from the Disks@EVLA program for two young stars: CY Tau and DoAr 25. We trace continuum emission arising from their circusmtellar disks from spatially resolved observations, down to tens of AU scales, at λ = 0.9, 2.8, 8.0, 9.8 mm for DoAr 25 and at λ = 1.3, 2.8, 7.1 mm for CY Tau. Additionally, we constrain the amount of emission whose origin is different from thermal dust emission from 5 cm observations. Directly from interferometric data, we find that observations at 7 mm and 1 cm trace emission from a compact disk while millimeter-wave observations trace an extended disk structure. From a physical disk model, where we characterize the disk structure of CY Tau and DoAr 25 at wavelengths shorter than 5 cm, we find that (1) dust continuum emission is optically thin at the observed wavelengths and over the spatial scales studied, (2) a constant value of the dust opacity is not warranted by our observations, and (3) a high-significance radial gradient of the dust opacity spectral index, β, is consistent with the observed dust emission in both disks, with low-β in the inner disk and high-β in the outer disk. Assuming that changes in dust properties arise solely due to changes in the maximum particle size (a{sub max}), we constrain radial variations of a{sub max} in both disks, from cm-sized particles in the inner disk (R < 40 AU) to millimeter sizes in the outer disk (R > 80 AU). These observational constraints agree with theoretical predictions of the radial-drift barrier, however, fragmentation of dust grains could explain our a{sub max}(R) constraints if these disks have lower turbulence and/or if dust can survive high-velocity collisions.

  5. EXPLORATION OF A RELIC CIRCUMSTELLAR ENVELOPE IN THE ''WATER FOUNTAIN'' SOURCE IRAS 18286-0959

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Hiroshi [Department of Physics and Astronomy, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Nakashima, Jun-ichi; Yung, Bosco H. K.; Kwok, Sun [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (Hong Kong); Deguchi, Shuji [Nobeyama Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Diamond, Philip J., E-mail: hiroimai@sci.kagoshima-u.ac.jp, E-mail: junichi@hku.hk, E-mail: byung@hku.hk, E-mail: sunkwok@hku.hk, E-mail: deguchishuji60@gmail.com, E-mail: diamond@skatelescope.org [SKA Organisation, Jodrell Bank Observatory, Lower Withington, Macclesfield, Cheshire SK11 9DL (United Kingdom)

    2013-07-01

    The water fountain source IRAS 18286-0959 (I18286) was reported as an object exhibiting highly collimated, double-helix stellar jets traced by the H{sub 2}O maser emission. Using the European VLBI Network, we measured the absolute coordinates of the 1612 MHz OH maser emission in I18286, which is very likely associated with a relic of a circumstellar envelope (CSE) developed in the asymptotic giant branch stage of the central star. The location of the OH maser is near the center of the H{sub 2}O maser feature cluster, where one of the originating points of the two jets is located. We also mapped 22.2 GHz H{sub 2}O maser emission in this object using the Very Long Baseline Array in the seasons of 2006-2007 as well as 2008-2009. In the first three epochs in 2006-2007, we detected at least 90 maser features per epoch. In six epochs in 2008-2009, when the observation data had already been published and analyzed to identify the double-helix jets, we newly identified 14 proper motions of H{sub 2}O maser features which could not be measured in the previous analysis due to their short lifetimes. In this paper, together with the OH maser emission, we focus on ''outlier'' H{sub 2}O maser features, which exhibit slow expansion velocities (V{sub exp} {approx}< 30 km s{sup -1}) and are likely associated with either the relic CSE or an equatorial flow of I18286. They were marginally distinguishable from the maser features associated with the jets in I18286.

  6. Constraining dust properties in circumstellar envelopes of C-stars in the Small Magellanic Cloud: optical constants and grain size of carbon dust

    Science.gov (United States)

    Nanni, Ambra; Marigo, Paola; Groenewegen, Martin A. T.; Aringer, Bernhard; Girardi, Léo; Pastorelli, Giada; Bressan, Alessandro; Bladh, Sara

    2016-10-01

    We present a new approach aimed at constraining the typical size and optical properties of carbon dust grains in circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC). To achieve this goal, we apply our recent dust growth description, coupled with a radiative transfer code to the CSEs of C-stars evolving along the thermally pulsing asymptotic giant branch, for which we compute spectra and colours. Then, we compare our modelled colours in the near- and mid-infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing several data sets of optical constants for carbon dust available in the literature. Different assumptions adopted in our dust scheme change the typical size of the carbon grains produced. We constrain carbon dust properties by selecting the combination of grain size and optical constants which best reproduce several colours in the NIR and MIR at the same time. The different choices of optical properties and grain size lead to differences in the NIR and MIR colours greater than 2 mag in some cases. We conclude that the complete set of observed NIR and MIR colours are best reproduced by small grains, with sizes between ˜0.035 and ˜0.12 μm, rather than by large grains between ˜0.2 and 0.7 μm. The inability of large grains to reproduce NIR and MIR colours seems independent of the adopted optical data set. We also find a possible trend of the grain size with mass-loss and/or carbon excess in the CSEs of these stars.

  7. HST/ACS Coronagraphic Observations of the HD 163296 Circumstellar Disk: Evidence of Time-Variable Self-Shadowing?

    Science.gov (United States)

    Wisniewski, J.; Dowling, Lorraine; Clampin, Mark; Grady, C.; Ardila, D.; Golimowski, D.; Illingworth, G.; Krist, J.

    2007-01-01

    We present Hubble Space Telescope Advanced Camera for Surveys (HST/ACS) coronagraphic observations of the Herbig Ae star HD 163296. HD 163296's scattered light disk was resolved in the F606W and F814W filters in observations obtained In 2003 and in the F435W filter in observations obtained in 2004. Analysis of single-epoch data indicates that the disk (V-I) color is redder than the observed stellar (V-I) color. This spatially uniform red disk color might be indicative of either an evolution in the grain size distribution (i.e. grain growth) and/or composition. Both of these processes would be consistent with the observed flat geometry of the outer disk, as diagnosed by the observed r$(exp -3)$ power law behavior of its median azimuthally averaged disk surface brightness, which suggest that grain evolution is occurring. Comparison of ACS and STIS epoch scattered light data reveals differences in the observed disk surface brightnesses, of order 1 mag arcsec$(exp -2)$, in both V and white-light filter bandpasses. Along with the observed variability in the visibility and surface brightness of the ansa(e) in the disk, and spectropolarimetric variability of the system, these results suggest that the resolved scattered light disk is variable, a phenomenon not previously observed in any other Herbig protoplanetary system We speculate that the observed behavior might be attributable to the variable inflation of the scale height of the inner disk wall, which results in variable self-shadowing of the outer disk.

  8. Imaging polarimetry of the potentially planet-forming circumstellar disk HD 142527: The NaCo view

    Science.gov (United States)

    Canovas, H.; Ménard, F.; Hales, A.; Jordán, A.; Schreiber, M. R.; Casassus, S.; Gledhill, T. M.; Pinte, C.

    2014-10-01

    HD 142527 is a unique protoplanetary disk in terms of planet formation. Its high accretion rate combined with its huge inner gap and short age make of it an ideal candidate for harboring forming planets. ALMA cycle-0 observations revealed gap crossing gas streams and showed that the millimeter-sized dust particles are distributed in a horse-shoe shape. Here we present our recent H- and Ks-band imaging polarimetry data of HD 142527 obtained with VLT/NaCo. By means of polarimetry, we remove most of the stellar light, directly imaging the disk's inner regions. Our observations allow us to constrain the dust properties (size and porosity) on the surface of the outer disk. We also detect two regions of the disk with low emission (``nulls") both in polarized and unpolarized light. Intriguingly, one of these nulls is azimuthally coincident with the maximum of the horse-shoe shape detected by ALMA.

  9. The state of protoplanetary material 10 Myr after stellar formation: circumstellar disks in the TW Hydrae association

    CERN Document Server

    Uchida, K I; Hartmann, L; Kemper, F; Forrest, W J; Watson, D M; D'Alessio, P; Chen, C H; Furlan, E; Sargent, B; Brandl, B R; Herter, T L; Morris, P; Myers, P C; Najita, J R; Sloan, G C; Barry, J; Green, J; Keller, L D; Hall, P

    2004-01-01

    We have used the Spitzer Infrared Spectrograph to observe seven members of the TW Hya association, the nearest stellar association whose age ($\\sim$ 10 Myr) is similar to the timescales thought to apply to planet formation and disk dissipation. Only two of the seven targets display infrared excess emission, indicating that substantial amounts of dust still exist closer to the stars than is characteristic of debris disks; however, in both objects we confirm an abrupt short-wavelength edge to the excess, as is seen in disks with cleared-out central regions. The mid-infrared excesses in the spectra of Hen 3-600 and TW Hya include crystalline silicate emission features, indicating that the grains have undergone significant thermal processing. We offer a detailed comparison between the spectra of TW Hya and Hen 3-600, and a model that corroborates the spectral shape and our previous understanding of the radial structure of these protoplanetary disks.

  10. Grain Growth in the Circumstellar Disks of the Young Stars CY Tau and DoAr 25

    CERN Document Server

    Pérez, Laura M; Isella, Andrea; Carpenter, John M; Andrews, Sean M; Calvet, Nuria; Corder, Stuartt A; Deller, Adam T; Dullemond, Cornelis P; Greaves, Jane S; Harris, Robert J; Henning, Thomas; Kwon, Woojin; Lazio, Joseph; Linz, Hendrik; Mundy, Lee G; Ricci, Luca; Sargent, Anneila I; Storm, Shaye; Tazzari, Marco; Testi, Leonardo; Wilner, David J

    2015-01-01

    We present new results from the Disks@EVLA program for two young stars: CY Tau and DoAr 25. We trace continuum emission arising from their circusmtellar disks from spatially resolved observations, down to tens of AU scales, at {\\lambda} = 0.9, 2.8, 8.0, and 9.8 mm for DoAr25 and at {\\lambda} = 1.3, 2.8, and 7.1 mm for CY Tau. Additionally, we constrain the amount of emission whose origin is different from thermal dust emission from 5 cm observations. Directly from interferometric data, we find that observations at 7 mm and 1 cm trace emission from a compact disk while millimeter-wave observations trace an extended disk structure. From a physical disk model, where we characterize the disk structure of CY Tau and DoAr 25 at wavelengths shorter than 5 cm, we find that (1) dust continuum emission is optically thin at the observed wavelengths and over the spatial scales studied, (2) a constant value of the dust opacity is not warranted by our observations, and (3) a high-significance radial gradient of the dust op...

  11. Effect of Photodesorption on Snow Line at the Surface of Optically Thick Circumstellar Disks around Herbig Ae/Be Stars

    CERN Document Server

    Oka, Akinori; Nakamoto, Taishi; Honda, Mitsuhito

    2012-01-01

    We investigate the effect of photodesorption on the snow line position at the surface of a protoplanetary disk around a Herbig Ae/Be star, motivated by the detection of water ice particles at the surface of the disk around HD142527 by Honda et al. For this aim, we obtain the density and temperature structure in the disk with a 1+1D radiative transfer and determine the distribution of water ice particles in the disk by the balance between condensation, sublimation, and photodesorption. We find that photodesorption induced by the far-ultraviolet radiation from the central star depresses the ice-condensation front toward the mid-plane and pushes the surface snow line outward significantly when the stellar effective temperature exceeds a certain critical value. This critical effective temperature depends on the stellar luminosity and mass, the water abundance in the disk, and the yield of photodesorption. We present an approximate analytic formula for the critical temperature. We separate Herbig Ae/Be stars into ...

  12. A unique mechanism of nuclear division in Giardia lamblia involves components of the ventral disk and the nuclear envelope.

    Science.gov (United States)

    Solari, Alberto J; Rahn, Monica I; Saura, Alicia; Lujan, Hugo D

    2003-12-01

    The fine structure of the binucleate, parasitic protist Giardia lamblia during interphase and divisional stages was studied by serial thin sectioning and three-dimensional reconstructions. The earlier sign of nuclear division is the development of a few peripheral areas of densely packed chromatin directly attached to the inner nuclear envelope. An intracytoplasmic sheet of ventral disk components grows from the cell periphery towards one of the nuclei, apparently constricting this nucleus, which becomes located at a ventral bulge. After the basal bodies become duplicated, a full nuclear division occurs in trophozoites, giving two pairs of parent-daughter nuclei. This full division occurs in a dorsal-ventral direction, with the resulting nuclear pairs located at the sides of the two sets of basal bodies. A new ventral disk is formed from the disk-derived sheets in the cell harboring the four nuclei. Cytokinesis is polymorphic, but at early stages is dorsal-to-dorsal. Encysting trophozoites show the development of Golgi cisternae stacks and dense, specific secretory granules. 3-D reconstructions show that cysts contain a single pair of incompletely strangled nuclei. The dividing Giardia lacks a typical, microtubular spindle either inside or outside the nuclei. The nuclear envelope seems to be the only structure involved in the final division of the parent-daughter nuclei.

  13. The Role of Evolutionary Age and Metallicity in the Formation of Classical Be Circumstellar Disks II. Assessing the Evolutionary Nature of Candidate Disk Systems

    CERN Document Server

    Wisniewski, John P; Magalhaes, Antonio M; Bjorkman, Jon E; Meade, Marilyn R; Pereyra, Antonio

    2007-01-01

    (Abridged version) We present the first detailed imaging polarization observations of six SMC and six LMC clusters, known to have large populations of B-type stars which exhibit excess H-alpha emission, to constrain the evolutionary status of these stars and hence better establish links between the onset of disk formation in classical Be stars and cluster age and/or metallicity. The wavelength dependence of our intrinsic polarization data provides a diagnostic of the dominant and any secondary polarigenic agents present, enabling us to discriminate pure gas disk systems, i.e. classical Be stars, from composite gas plus dust disk systems, i.e. Herbig Ae/Be or B[e] stars. Our intrinsic polarization results, along with available near-IR color information, strongly supports the suggestion of Wisniewski et al. that classical Be stars are present in clusters of age 5-8 Myr, and contradict assertions that the Be phenomenon only develops in the second half of a B star's main sequence lifetime, i.e. no earlier than 10...

  14. Radiative transfer models of mid-infrared H2O lines in the Planet-forming Region of Circumstellar Disks

    CERN Document Server

    Meijerink, R; Blake, G A; Poelman, D R; Dullemond, C P

    2009-01-01

    The study of warm molecular gas in the inner regions of protoplanetary disks is of key importance for the study of planet formation and especially for the transport of H2O and organic molecules to the surfaces of rocky planets/satellites. Recent Spitzer observations have shown that the mid-infrared spectra of protoplanetary disks are covered in emission lines due to water and other molecules. Here, we present a non-LTE 2D radiative transfer model of water lines in the 10-36 mum range that can be used to constrain the abundance structure of water vapor, given an observed spectrum, and show that an assumption of local thermodynamic equilibrium (LTE) does not accurately estimate the physical conditions of the water vapor emission zones. By applying the model to published Spitzer spectra we find that: 1) most water lines are subthermally excited, 2) the gas-to-dust ratio must be one to two orders of magnitude higher than the canonical interstellar medium ratio of 100-200, and 3) the gas temperature must be higher...

  15. Planet formation bursts at the borders of the dead zone in 2D numerical simulations of circumstellar disks

    CERN Document Server

    Lyra, W; Zsom, A; Klahr, H; Piskunov, N

    2009-01-01

    As accretion in protoplanetary disks is enabled by turbulent viscosity, the border between active and inactive (dead) zones constitutes a location where there is an abrupt change in the accretion flow. The gas accumulation that ensues triggers the Rossby wave instability, that in turn saturates into anticyclonic vortices. It was suggested that the trapping of solids within them leads to a burst of planet formation on very short timescales. We perform two-dimensional global simulations of the dynamics of gas and solids in a non-magnetized thin protoplanetary disk with the Pencil Code. We use multiple particle species of radius 1, 10, 30, and 100 cm, solving for the particles' gravitational interaction by a particle-mesh method. The dead zone is modeled as a region of low viscosity. Adiabatic and locally isothermal equations of state are used. We find that the Rossby wave instability is triggered under a variety of conditions, thus making vortex formation a robust process. Inside the vortices, fast accumulation...

  16. HST/WFPC2 Study of the Trapezium Cluster: the Influence of Circumstellar Disks on the Initial Mass Function

    CERN Document Server

    Robberto, M; Carrillo, G M; Beckwith, S V W; Makidon, R B; Panagia, N

    2004-01-01

    We have performed the first measures of mass accretion rates in the core of the Orion Nebula Cluster. Four adjacent fields centered on the Trapezium stars have been imaged in the U- and B-bands using the Wide Field Planetary Camera 2 on board the Hubble Space Telescope. In this paper we focus our attention on a group of 40 stars with known spectral types and complete UBVI WFPC2 photometry. Approximately three quarters of the sources show excess luminosity in the U-band, that we attribute to mass accretion. The known correlation between the U-band excess and the total accretion luminosity allows us to estimate the accretion rates. Overall, mass accretion rates appear lower than those measured by other authors in the Orion flanking fields or in Taurus-Auriga. Mass accretion rates remain low even in the vicinity of the birth line of Palla & Stahler, suggesting that in the core of the Trapezium cluster disk accretion has been recently depressed by an external mechanism. We suggest that the UV radiation genera...

  17. Cyclic variability of the circumstellar disk of the Be star zetaTau - I. Long-term monitoring observations

    CERN Document Server

    Stefl, S; Carciofi, A C; LeBouquin, J B; Baade, D; Bjorkman, K S; Hesselbach, E; Hummel, C A; Okazaki, A T; Pollmann, E; Rantakyrö, F; Wisniewski, J P

    2009-01-01

    Emission lines formed in decretion disks of Be stars often undergo long-term cyclic variations, especially in the violet-to-red (V/R) ratio of their primary components. From observations of the bright Be-shell star zeta Tau, the possibly broadest and longest data set illustrating the prototype of this behaviour was compiled from our own and archival observations. It comprises optical and infrared spectra, broad-band polarimetry, and interferometric observations. From 3 V/R cycles between 1997 and 2008, a mean cycle length in H alpha of 1400-1430 days was derived. After each minimum in V/R, the shell absorption weakens and splits into two components, leading to 3 emission peaks. This phase makes the strongest contribution to the variability in cycle length. V/R curves of different lines are shifted in phase. Lines formed on average closer to the central star are ahead of the others. The shell absorption lines fall into 2 categories differing in line width, ionization/excitation potential, and variability of th...

  18. Disk and Envelope Structure in Class 0 Protostars: II. High Resolution Millimeter Mapping of the Serpens Sample

    CERN Document Server

    Enoch, M L; Duchene, G; Bock, D C; Bolatto, A D; Culverhouse, T L; Kwon, W; Lamb, J W; Leitch, E M; Marrone, D P; Muchovej, S J; Perez, L M; Scott, S L; Teuben, P J; Wright, M C H; Zauderer, B A

    2011-01-01

    We present high-resolution CARMA 230 GHz continuum imaging of nine deeply embedded protostars in the Serpens Molecular Cloud, including six of the nine known Class 0 protostars in Serpens. This work is part of a program to characterize disk and envelope properties for a complete sample of Class 0 protostars in nearby low-mass star forming regions. Here we present CARMA maps and visibility amplitudes as a function of uv-distance for the Serpens sample. Observations are made in the B, C, D, and E antenna configurations, with B configuration observations utilizing the CARMA Paired Antenna Calibration System. Combining data from multiple configurations provides excellent uv-coverage (4-500 klam), allowing us to trace spatial scales from 1e2 to 1e4 AU. We find evidence for compact disk components in all of the observed Class 0 protostars, suggesting that disks form at very early times (t 250 AU, but significant evidence of multiplicity on scales <2000 AU is seen in only one source.

  19. Phase-stabilization of the carrier-envelope-offset frequency of a SESAM modelocked thin disk laser.

    Science.gov (United States)

    Klenner, Alexander; Emaury, Florian; Schriber, Cinia; Diebold, Andreas; Saraceno, Clara J; Schilt, Stéphane; Keller, Ursula; Südmeyer, Thomas

    2013-10-21

    We phase-stabilized the carrier-envelope-offset (CEO) frequency of a SESAM modelocked Yb:CaGdAlO₄ (CALGO) thin disk laser (TDL) generating 90-fs pulses at a center wavelength of 1051.6 nm and a repetition rate of 65 MHz. By launching only 2% of its output power into a photonic crystal fiber, we generated a coherent octave-spanning supercontinuum spectrum. Using a standard f-to-2f interferometer for CEO detection, we measured CEO beats with 33 dB signal-to-noise ratio in 100 kHz resolution bandwidth. We achieved a tight lock of the CEO frequency at 26.18 MHz by active feedback to the pump current. The residual in-loop integrated phase noise is 120 mrad (1 Hz-1 MHz). This is, to our knowledge, the first CEO-stabilized SESAM modelocked TDL. Our results show that a reliable lock of the CEO frequency can be achieved using standard techniques in spite of the strongly spatially multimode pumping scheme of TDLs. This opens the door towards fully-stabilized low-noise frequency combs with hundreds of watts of average power from table-top SESAM modelocked thin disk oscillators.

  20. Mapping the 12CO J = 1-0 and J = 2-1 emission in AGB and early post-AGB circumstellar envelopes. I. The COSAS program, first sample

    Science.gov (United States)

    Castro-Carrizo, A.; Quintana-Lacaci, G.; Neri, R.; Bujarrabal, V.; Schöier, F. L.; Winters, J. M.; Olofsson, H.; Lindqvist, M.; Alcolea, J.; Lucas, R.; Grewing, M.

    2010-11-01

    We present COSAS (CO Survey of late AGB Stars), a project to map and analyze the 12CO J = 1-0 and J = 2-1 line emission in a representative sample of circumstellar envelopes around AGB and post-AGB stars. The survey was undertaken with the aim of investigating small- and large-scale morphological and kinematical properties of the molecular environment surrounding stars in the late AGB and early post-AGB phases. For this, COSAS combines the high sensitivity and spatial resolving power of the IRAM Plateau de Bure interferometer with the better capability of the IRAM 30 m telescope to map extended emission. The global sample encompasses 45 stars selected to span a range in chemical type, variability type, evolutionary state, and initial mass. COSAS provides means to quantify variations in the mass-loss rates, assess morphological and kinematical features, and to investigate the appearance of fast aspherical winds in the early post-AGB phase. This paper, which is the first of a series of COSAS papers, presents the results from the analyses of a first sample of 16 selected sources. The envelopes around late AGB stars are found to be mostly spherical, often mingled with features such as concentric arcs (R Cas and TX Cam), a broken spiral density pattern (TX Cam), molecular patches testifying to aspherical mass-loss (WX Psc, IK Tau, V Cyg, and S Cep), and also with well-defined axisymmetric morphologies and kinematical patterns (X Her and RX Boo). The sources span a wide range of angular sizes, from relatively compact (CRL 2362, OH 104.9+2.4 and CRL 2477) to very large (χ Cyg and TX Cam) envelopes, sometimes partially obscured by self-absorption features, which particularly for IK Tau and χ Cyg testifies to the emergence of aspherical winds in the innermost circumstellar regions. Strong axial structures with more or less complex morphologies are detected in four early post-AGB stars (IRAS 20028+3910, IRAS 23321+6545, IRAS 19475+3119 and IRAS 21282+5050) of the sub

  1. CONFIRMATION OF CIRCUMSTELLAR PHOSPHINE

    Energy Technology Data Exchange (ETDEWEB)

    Agúndez, M.; Cernicharo, J. [Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, E-28049 Cantoblanco (Spain); Decin, L. [Sterrenkundig Instituut Anton Pannekoek, University of Amsterdam, Science Park 904, NL-1098 Amsterdam (Netherlands); Encrenaz, P. [LERMA, Observatoire de Paris, 61 Av. de l' Observatoire, F-75014 Paris (France); Teyssier, D. [European Space Astronomy Centre, Urb. Villafranca del Castillo, P.O. Box 50727, E-28080 Madrid (Spain)

    2014-08-01

    Phosphine (PH{sub 3}) was tentatively identified a few years ago in the carbon star envelopes IRC +10216 and CRL 2688 from observations of an emission line at 266.9 GHz attributable to the J = 1-0 rotational transition. We report the detection of the J = 2-1 rotational transition of PH{sub 3} in IRC +10216 using the HIFI instrument on board Herschel, which definitively confirms the identification of PH{sub 3}. Radiative transfer calculations indicate that infrared pumping in excited vibrational states plays an important role in the excitation of PH{sub 3} in the envelope of IRC +10216, and that the observed lines are consistent with phosphine being formed anywhere between the star and 100 R {sub *} from the star, with an abundance of 10{sup –8} relative to H{sub 2}. The detection of PH{sub 3} challenges chemical models, none of which offer a satisfactory formation scenario. Although PH{sub 3} holds just 2% of the total available phosphorus in IRC +10216, it is, together with HCP, one of the major gas phase carriers of phosphorus in the inner circumstellar layers, suggesting that it could also be an important phosphorus species in other astronomical environments. This is the first unambiguous detection of PH{sub 3} outside the solar system, and is a further step toward a better understanding of the chemistry of phosphorus in space.

  2. Confirmation of circumstellar phosphine

    CERN Document Server

    Agundez, M; Decin, L; Encrenaz, P; Teyssier, D

    2014-01-01

    Phosphine (PH3) was tentatively identified a few years ago in the carbon star envelopes IRC+10216 and CRL2688 from observations of an emission line at 266.9 GHz attributable to the J=1-0 rotational transition. We report the detection of the J=2-1 rotational transition of PH3 in IRC+10216 using the HIFI instrument on board Herschel, which definitively confirms the identification of PH3. Radiative transfer calculations indicate that infrared pumping to excited vibrational states plays an important role in the excitation of PH3 in the envelope of IRC+10216, and that the observed lines are consistent with phosphine being formed anywhere between the star and 100 R* from the star, with an abundance of 1e-8 relative to H2. The detection of PH3 challenges chemical models, none of which offers a satisfactory formation scenario. Although PH3 locks just 2 % of the total available phosphorus in IRC+10216, it is together with HCP, one of the major gas phase carriers of phosphorus in the inner circumstellar layers, suggest...

  3. The circumstellar disk of FS Tau B - A self-consistent model based on observations in the mid-infrared with NACO -

    CERN Document Server

    Kirchschlager, Florian; Madlener, David

    2016-01-01

    Protoplanetary disks are a byproduct of the star formation process. In the dense mid-plane of these disks, planetesimals and planets are expected to form. The first step in planet formation is the growth of dust particles from submicrometer-sized grains to macroscopic mm-sized aggregates. The grain growth is accompanied by radial drift and vertical segregation of the particles within the disk. To understand this essential evolutionary step, spatially resolved multi-wavelength observations as well as photometric data are necessary which reflect the properties of both disk and dust. We present the first spatially resolved image obtained with NACO at the VLT in the L$_\\text{p}$ band of the near edge-on protoplanetary disk FS Tau B. Based on this new image, a previously published Hubble image in H band and the spectral energy distribution from optical to millimeter wavelengths, we derive constraints on the spatial dust distribution and the progress of grain growth. For this purpose we perform a disk modeling usin...

  4. The complex circumstellar environment of HD 142527

    NARCIS (Netherlands)

    Verhoeff, A.P.; Min, M.; Pantin, E.; Waters, L.B.F.M.; Tielens, A.G.G.M.; Honda, M.; Fujiwara, H.; Bouwman, J.; van Boekel, R.; Dougherty, S.M.; de Koter, A.; Dominik, C.; Mulders, G.D.

    2011-01-01

    Context. The recent findings of gas giant planets around young A-type stars suggest that disks surrounding Herbig Ae/Be stars will develop planetary systems. An interesting case is HD 142527, for which previous observations revealed a complex circumstellar environment and an unusually high ratio of

  5. The complex circumstellar environment of HD 142527

    NARCIS (Netherlands)

    Verhoeff, A. P.; Min, M.; Pantin, E.; Waters, L.B.F.M.; Tielens, A. G. G. M.; Honda, M.; Fujiwara, H.; Bouwman, J.; Van Boekel, R.; Dougherty, S.M.; de Koter, A.; Dominik, C.; Mulders, G. D.

    2011-01-01

    Context. The recent findings of gas giant planets around young A-type stars suggest that disks surrounding Herbig Ae/Be stars will develop planetary systems. An interesting case is HD142527, for which previous observations revealed a complex circumstellar environment and an unusually high ratio of i

  6. The complex circumstellar environment of HD142527

    NARCIS (Netherlands)

    Verhoeff, A. P.; Min, M.; Pantin, E.; Waters, L. B. F. M.; Tielens, A. G. G. M.; Honda, M.; Fujiwara, H.; Bouwman, J.; van Boekel, R.; Dougherty, S. M.; de Koter, A.; Dominik, C.; Mulders, G. D.

    2011-01-01

    Context. The recent findings of gas giant planets around young A-type stars suggest that disks surrounding Herbig Ae/Be stars will develop planetary systems. An interesting case is HD142527, for which previous observations revealed a complex circumstellar environment and an unusually high ratio of i

  7. Accretion Disks around Young Low Mass Stars

    Directory of Open Access Journals (Sweden)

    Paola D´Alessio

    2001-01-01

    Full Text Available In the past decade, it has become clear that almost half of the low mass pre-main sequence stars are surrounded by disks, which are responsible for the observed infrared and optical-UV excess emission. The characterization of the structure of circumstellar disks is a crucial step towards understanding the early stellar evolution and planet formation. The thesis summarized here presents physical models of the detailed structure of accretion disks surrounding T Tauri stars. The disks are assumed to be in steady state, in vertical hydrostatic equilibrium, and with a turbulent viscosity described by the alpha-prescription. We consider different heating mechanisms: viscous dissipation, heating by cosmic rays and radioactive decay, irradiation by the central star or irradiation by an infalling envelope. The energy is transported in the vertical direction by radiation, convection and the turbulent flux. Give n the disk structure, we calculate its emission by integrating the radiative transfer equation for an arbitrary orientation of the disk relative to the line of sight. Spectral energy distributions (SEDs and images are compared with observations, and disk properties can be inferred or constrained.

  8. HD95881 : a gas rich to gas poor transition disk?

    NARCIS (Netherlands)

    Verhoeff, A. P.; Min, M.; Acke, B.; van Boekel, R.; Pantin, E.; Waters, L. B. F. M.; Tielens, A. G. G. M.; van den Ancker, M. E.; Mulders, G. D.; de Koter, A.; Bouwman, J.

    2010-01-01

    Context. Based on the far infrared excess the Herbig class of stars is divided into a group with flaring circumstellar disks (group I) and a group with flat circumstellar disks (group II). Dust sedimentation is generally proposed as an evolution mechanism to transform flaring disks into flat disks.

  9. Embryos grown in the dead zone: Assembling the first protoplanetary cores in low mass self-gravitating circumstellar disks of gas and solids

    CERN Document Server

    Lyra, W; Klahr, H; Piskunov, N

    2008-01-01

    In the borders of the dead zones of protoplanetary disks, the inflow of gas produces a local density maximum that triggers the Rossby wave instability. The vortices that form are efficient in trapping solids. We aim to assess the possibility of gravitational collapse of the solids within the Rossby vortices. We perform global simulations of the dynamics of gas and solids in a low mass non-magnetized self-gravitating thin protoplanetary disk with the Pencil code. We use multiple particle species of radius 1, 10, 30, and 100 cm. The dead zone is modelled as a region of low viscosity. The Rossby vortices excited in the edges of the dead zone are very efficient particle traps. Within 5 orbits after their appearance, the solids achieve critical density and undergo gravitational collapse into Mars sized objects. The velocity dispersions are of the order of 10 m/s for newly formed embryos, later lowering to less than 1 m/s by drag force cooling. After 200 orbits, 38 gravitationally bound embryos were formed inside t...

  10. The Envelopes of B[e] Supergiants in the Magellanic Clouds as Seen by Polarimetry

    Science.gov (United States)

    Seriacopi, D. B.; Carciofi, A. C.; Magalhães, A. M.

    2017-02-01

    B[e] supergiants (sgB[e]) are rare, massive post-main sequence stars. Their evolutionary status with respect to other objects on the H-R diagram is still unknown. These stars are surrounded by a non-spherically symmetric circumstellar envelope, from which arises a net intrinsic polarization. Therefore, spectropolarimetry is a very useful tool in the study of these objects. Since emission, absorption, and scattering processes are imprinted in the polarized flux, this technique can provide useful information about the circumstellar structure. We present a study of the envelope structure of RMC 82, a sgB[e] in the Large Magellanic Cloud, based on spectropolarimetric data. Our observations were obtained with the 8.2 m VLT/UT1 telescope at the Paranal Observatory (ESO). We analyzed the Balmer line formation loci, and their corresponding physical conditions. The data was modeled by a bimodal wind model of the circumstellar envelope, consisting of a slow, dense equatorial wind and a fast polar wind. The calculations were done with the radiative transfer code HDUST. Our results suggest that this geometry is indeed consistent with the RMC 82 data. Our best fit parameters are an opening angle of the disk of 15° and a total mass loss rate of 1.0×10-5 M⊙ yr-1 sr-1.

  11. High-Contrast Near-Infrared Imaging Polarimetry of the Protoplanetary Disk around RY Tau

    CERN Document Server

    Takami, Michihiro; Hashimoto, Jun; Kim, Hyosun; Wisnewski, John; Henning, Thomas; Grady, Carol A; Kandori, Ryo; Hodapp, Klaus W; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Chou, Mei-Yin; Itoh, Yoichi; Momose, Munetake; Mayama, Satoshi; Currie, Thayne; Follette, Katherine B; Kwon, Jungmi; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D; Carson, Joseph; Egner, Sebastian E; Feldt, Markus; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko; Ishii, Miki; Iye, Masanori; Janson, Markus; Knapp, Gillian R; Kuzuhara, Masayuki; McElwain, Michael W; Matsuo, Taro; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suto, Hiroshi; Suzuki, Ryuji; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L; Watanabe, Makoto; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2013-01-01

    We present near-infrared coronagraphic imaging polarimetry of RY Tau. The scattered light in the circumstellar environment was imaged at H-band at a high resolution (~0".05) for the first time, using Subaru-HiCIAO. The observed polarized intensity (PI) distribution shows a butterfly-like distribution of bright emission with an angular scale similar to the disk observed at millimeter wavelengths. This distribution is offset toward the blueshifted jet, indicating the presence of a geometrically thick disk or a remnant envelope, and therefore the earliest stage of the Class II evolutionary phase. We perform comparisons between the observed PI distribution and disk models with: (1) full radiative transfer code, using the spectral energy distribution (SED) to constrain the disk parameters; and (2) monochromatic simulations of scattered light which explore a wide range of parameters space to constrain the disk and dust parameters. We show that these models cannot consistently explain the observed PI distribution, S...

  12. The Migrating Embryo Model for Disk Evolution

    CERN Document Server

    Basu, Shantanu

    2012-01-01

    A new view of disk evolution is emerging from self-consistent numerical simulation modeling of the formation of circumstellar disks from the direct collapse of prestellar cloud cores. This has implications for many aspects of star and planet formation, including the growth of dust and high-temperature processing of materials. A defining result is that the early evolution of a disk is crucially affected by the continuing mass loading from the core envelope, and is driven into recurrent phases of gravitational instability. Nonlinear spiral arms formed during these episodes fragment to form gaseous clumps in the disk. These clumps generally migrate inward due to gravitational torques arising from their interaction with a trailing spiral arm. Occasionally, a clump can open up a gap in the disk and settle into a stable orbit, revealing a direct pathway to the formation of companion stars, brown dwarfs, or giant planets. At other times, when multiple clumps are present, a low mass clump may even be ejected from the...

  13. Binary Stellar Mergers with Marginally-Bound Ejecta: Excretion Disks, Inflated Envelopes, Outflows, and their Luminous Transients

    CERN Document Server

    Pejcha, Ondrej; Tomida, Kengo

    2016-01-01

    We study mass loss from the outer Lagrange point (L2) in binary stellar mergers and their luminous transients by means of radiative hydrodynamical simulations. Previously, we showed that for binary mass ratios 0.06 0.15. By contrast, for cold L2 mass-loss (\\epsilon 0.8, the equatorial outflow instead remains marginally-bound and falls back to the binary over tens to hundreds of binary orbits, where it experiences additional tidal torqueing and shocking. As the bound gas becomes virialized with the binary, the luminosity of the system increases slowly at approximately constant photosphere radius, causing the temperature to rise. Subsequent evolution depends on the efficiency of radiative cooling. If the bound atmosphere is able to cool efficiently, as quantified by radiative diffusion time being shorter than the advection time (t_diff/t_adv 10 an isotropic wind is formed. Between these two extremes, an inflated envelope transports the heat generated near the binary to the surface by meridional flows. In all...

  14. Protonated acetylene - An important circumstellar and interstellar ion

    Science.gov (United States)

    Glassgold, A. E.; Omont, A.; Guelin, M.

    1992-01-01

    In a circumstellar envelope, a substantial amount of acetylene is transported in a wind to the outer envelope, where it can be photoionized by interstellar radiation and then converted into C2H3(+) by a low-temperature reaction with H2. New chemical modeling calculations indicate that sufficient C2H3(+) may be produced in the outer envelope of IRC + 10216 to be observable. Similar considerations suggest that C2H3(+) should also be detectable in interstellar clouds, provided its rotational spectrum has been measured accurately in the laboratory.

  15. A circumstellar molecular gas structure associated with the massive young star Cepheus A-HW 2

    Science.gov (United States)

    Torrelles, Jose M.; Rodriguez, Luis F.; Canto, Jorge; Ho, Paul T. P.

    1993-01-01

    We report the detection via VLA-D observations of ammonia of a circumstellar high-density molecular gas structure toward the massive young star related to the object Cepheus A-HW 2, a firm candidate for the powering source of the high-velocity molecular outflow in the region. We suggest that the circumstellar molecular gas structure could be related to the circumstellar disk previously suggested from infrared, H2O, and OH maser observations. We consider as a plausible scenario that the double radio continuum source of HW 2 could represent the ionized inner part of the circumstellar disk, in the same way as proposed to explain the double radio source in L1551. The observed motions in the circumstellar molecular gas can be produced by bound motions (e.g., infall or rotation) around a central mass of about 10-20 solar masses (B0.5 V star or earlier).

  16. High-Contrast Near-Infrared Imaging Polarimetry of the Protoplanetary Disk around RY Tau

    Science.gov (United States)

    Takami, Michihiro; Karr, Jennifer L.; Hashimoto, Jun; Kim, Hyosun; Wisenewski, John; Henning, Thomas; Grady, Carol; Kandori, Ryo; Hodapp, Klaus W.; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Chou, Mei-yin; Itoh, Yoichi; Momose, Mumetake; Mayama, Satoshi; Currie, Thayne; Follette, Katherine B.; Kwon, Jungmi; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Egner, Sebastian E.; McElwain, Michael W.; Serabyn, Eugene

    2013-01-01

    We present near-infrared coronagraphic imaging polarimetry of RY Tau. The scattered light in the circumstellar environment was imaged at H-band at a high resolution (approx. 0.05) for the first time, using Subaru-HiCIAO. The observed polarized intensity (PI) distribution shows a butterfly-like distribution of bright emission with an angular scale similar to the disk observed at millimeter wavelengths. This distribution is offset toward the blueshifted jet, indicating the presence of a geometrically thick disk or a remnant envelope, and therefore the earliest stage of the Class II evolutionary phase. We perform comparisons between the observed PI distribution and disk models with: (1) full radiative transfer code, using the spectral energy distribution (SED) to constrain the disk parameters; and (2) monochromatic simulations of scattered light which explore a wide range of parameters space to constrain the disk and dust parameters. We show that these models cannot consistently explain the observed PI distribution, SED, and the viewing angle inferred by millimeter interferometry. We suggest that the scattered light in the near-infrared is associated with an optically thin and geometrically thick layer above the disk surface, with the surface responsible for the infrared SED. Half of the scattered light and thermal radiation in this layer illuminates the disk surface, and this process may significantly affect the thermal structure of the disk.

  17. The photochemistry of carbon-rich circumstellar shells

    Science.gov (United States)

    Huggins, P. J.; Glassgold, A. E.

    1982-01-01

    The effect of ambient ultraviolet photons on the chemical structure of carbon-rich, circumstellar envelopes is investigated with a simple formulation of the time-dependent, photochemical rate equations valid for optically thick shells. Molecules injected into the shielded inner envelope are broken down when they reach the outer regions where ambient ultraviolet photons can penetrate. A quantitative description of the abundance variations is obtained for the case of uniform expansion by detailed consideration of the shielding of the radiation by the dust and molecules of the envelope. Representative results are presented to illustrate the role of shielding in defining the extent of molecular envelopes, the formation of C I and C II shells by photodestruction of carbon-bearing molecules, and the development of layered chemical structures from the photobreakup of polyatomic molecules. Photochemistry makes the outer parts of thick, carbon-rich envelopes into complex regions containing radicals, ions, and atoms which are of considerable observational and theoretical interest.

  18. Disks and Outflows in CO Rovibrational Emission from Embedded, Low-Mass Young Stellar Objects

    CERN Document Server

    Herczeg, Gregory J; van Dishoeck, Ewine F; Pontoppidan, Klaus M

    2011-01-01

    Young circumstellar disks that are still embedded in dense molecular envelopes may differ from their older counterparts, but are historically difficult to study because emission from a disk can be confused with envelope or outflow emission. CO fundamental emission is a potentially powerful probe of the disk/wind structure within a few AU of young protostars. In this paper, we present high spectral (R=90,000) and spatial (0.3") resolution VLT/CRIRES M-band spectra of 18 low-mass young stellar objects (YSOs) with dense envelopes in nearby star-froming regions to explore the utility of CO fundamental 4.6 micron emission as a probe of very young disks. CO fundamental emission is detected from 14 of the YSOs in our sample. The emission line profiles show a range of strengths and shapes, but can generally be classified into a broad, warm component and a narrow, cool component. The broad CO emission is detected more frequently from YSOs with bolometric luminosities of 15 Lsun, and as with CO emission from CTTSs is a...

  19. Composite circumstellar dust grains

    Science.gov (United States)

    Gupta, Ranjan; Vaidya, Dipak B.; Dutta, Rajeshwari

    2016-10-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5-25 μm. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18 μm. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-type and asymptotic giant branch stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes, shape, composition and dust temperature.

  20. Composite Circumstellar Dust Grains

    CERN Document Server

    Gupta, Ranjan; Dutta, Rajeshwari

    2016-01-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5--25$\\rm \\mu m$. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18$\\rm \\mu m$. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-Type \\& AGB stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes; shape; composition and dust temperature.

  1. Timescales of Disk Evolution and Planet Formation

    CERN Document Server

    Jayawarhana, R

    2000-01-01

    It has been suggested that circumstellar disks evolve from dense, actively accreting structures to low-mass, replenished remnants. During this transition, grains may assemble into planetesimals, or the disk may be cleared by newborn planets. Recently identified nearby groups of young stars provide valuable laboratories for probing disk evolution. I discuss the properties of dust disks in the TW Hydrae Association and the MBM 12 cloud, and compare the results to other studies of disk evolution and planet formation timescales.

  2. Observations of Circumstellar Thermochemical Equilibrium: The Case of Phosphorus

    Science.gov (United States)

    Milam, Stefanie N.; Charnley, Steven B.

    2011-01-01

    We will present observations of phosphorus-bearing species in circumstellar envelopes, including carbon- and oxygen-rich shells 1. New models of thermochemical equilibrium chemistry have been developed to interpret, and constrained by these data. These calculations will also be presented and compared to the numerous P-bearing species already observed in evolved stars. Predictions for other viable species will be made for observations with Herschel and ALMA.

  3. The Circumstellar Environments of NML Cyg and the Cool Hypergiants

    CERN Document Server

    Schuster, M T; Marengo, M; Schuster, Michael T.; Humphreys, Roberta M.; Marengo, Massimo

    2005-01-01

    We present high-resolution HST WFPC2 images of compact nebulosity surrounding the cool M-type hypergiants NML Cyg, VX Sgr and S Per. The powerful OH/IR source NML Cyg exhibits a peculiar bean-shaped asymmetric nebula that is coincident with the distribution of its H2O vapor masers. We show that NML Cyg's circumstellar envelope is likely shaped by photo-dissociation from the powerful, nearby association Cyg OB2 inside the Cygnus X superbubble. The OH/IR sources VX Sgr and S Per have marginally resolved envelopes. S Per's circumstellar nebula appears elongated in a NE/SW orientation similar to that for its OH and H2O masers, while VX Sgr is embedded in a spheroidal envelope. We find no evidence for circumstellar nebulosity around the intermediate-type hypergiants rho Cas, HR 8752, HR 5171a, nor the normal M-type supergiant mu Cep. We conclude that there is no evidence for high mass loss events prior to 500-1000 yrs ago for these four stars.

  4. Interstellar and circumstellar fullerenes

    CERN Document Server

    Bernard-Salas, J; Jones, A P; Peeters, E; Micelotta, E R; Otsuka, M; Sloan, G C; Kemper, F; Groenewegen, M

    2014-01-01

    Fullerenes are a particularly stable class of carbon molecules in the shape of a hollow sphere or ellipsoid that might be formed in the outflows of carbon stars. Once injected into the interstellar medium (ISM), these stable species survive and are thus likely to be widespread in the Galaxy where they contribute to interstellar extinction, heating processes, and complex chemical reactions. In recent years, the fullerene species C60 (and to a lesser extent C70) have been detected in a wide variety of circumstellar and interstellar environments showing that when conditions are favourable, fullerenes are formed efficiently. Fullerenes are the first and only large aromatics firmly identified in space. The detection of fullerenes is thus crucial to provide clues as to the key chemical pathways leading to the formation of large complex organic molecules in space, and offers a great diagnostic tool to describe the environment in which they reside. Since fullerenes share many physical properties with PAHs, understand...

  5. Planet formation in transition disks: Modeling, spectroscopy, and theory

    Science.gov (United States)

    Liskowsky, Joseph Paul

    An important field of modern astronomy is the study of planets. Literally for millennia, careful observers of the night sky have tracked these 'wanderers', with their peculiar motions initiating avenues of inquiry not able to elucidated by a study of the stars alone: we have discovered that the planets (as well as Earth) orbit the sun and that the stars are so far away, even their relative positions do not seem to shift perceptibly when Earth's position moves hundreds of millions of miles. With the advent of the telescope, and subsequent improvements upon it over the course of centuries, accelerating to the dramatically immense telescopes available today and those on the horizon, we have been able to continuously probe farther and in more detail than the previous generation of scientists and telescopes allowed. Now, we are just entering the time when detection of planets outside of our own solar system has become possible, and we have found that planets are extraordinarily common in the galaxy (and by extrapolation, the universe). At the time of this document's composition, there are several thousand such examples of planets around other stars (being dubbed 'exoplanets'). We have discovered that planets are plentiful, but multiple open questions remain which are relevant to this work: How do planets form and, when a planet does form from its circumstellar envelope, what are the important processes that influence its formation? This work adds to the understanding of circumstellar disks, the intermediate stage between a cold collapsing cloud (of gas and dust) and a mature planetary system. Specifically, we study circumstellar disks in an evolved state termed 'transition disks'. This state corresponds to a time period where the dust in the disk has either undergone grain growth—where the microscopic grains have clumped together to form far fewer dust particles of much higher mass, or the inner portion (or an inner annulus) of the disk has lost a large amount of gas

  6. Morphology and kinematics of the gas envelope of the variable AGB star $\\pi^1$ Gruis

    CERN Document Server

    Nhung, P T; Diep, P N; Phuong, N T; Thao, N T; Tuan-Anh, P; Darriulat, P

    2016-01-01

    Observations of the $^{12}$CO(3-2) emission of the circumstellar envelope (CSE) of the variable star $\\pi^1$ Gru using the compact array (ACA) of the ALMA observatory have been recently made accessible to the public. An analysis of the morphology and kinematics of the CSE is presented with a result very similar to that obtained earlier for $^{12}$CO(2-1) emission by Chiu et al. (2006) using the Sub-Millimeter Array. A quantitative comparison is made using their flared disk model. A new model is presented that provides a significantly better description of the data, using radial winds and smooth evolutions of the radio emission and wind velocity from the stellar equator to the poles.

  7. The Birth of Disks Around Protostars

    Science.gov (United States)

    Kohler, Susanna

    2017-03-01

    The dusty disks around young stars make the news regularly due to their appeal as the birthplace of early exoplanets. But how do disks like these first form and evolve around their newly born protostars? New observations from the Atacama Large Millimeter/submillimeter Array (ALMA) are helping us to better understand this process.Formation from CollapseStars are born from the gravitational collapse of a dense cloud of molecular gas. Long before they start fusing hydrogen at their centers when they are still just hot overdensities in the process of contracting we call them protostars. These low-mass cores are hidden at the hearts of the clouds of molecular gas from which they are born.Aerial image of the Atacama Large Millimeter/submillimeter Array. [EFE/Ariel Marinkovic]During this contraction phase, before a protostar transitions to a pre-main-sequence star (which it does by blowing away its outer gas envelope, halting the stars growth), much of the collapsing material will spin into a centrifugally supported Keplerian disk that surrounds the young protostar. Later, these circumstellar disks will become the birthplace for young planets something for which weve seen observational evidence in recent years.But how do these Keplerian disks which eventually have scales of hundreds of AU first form and grow around protostars? We need observations of these disks in their early stages of formation to understand their birth and evolution a challenging prospect, given the obscuring molecular gas that hides them at these stages. ALMA, however, is up to the task: it can peer through to the center of the gas clouds to see the emission from protostellar cores and their surroundings.ALMA observations of the protostar Lupus 3 MMS. The molecular outflows from the protostar are shown in panel a. Panel b shows the continuum emission, which has a compact component that likely traces a disk surrounding the protostar. [Adapted from Yen et al. 2017]New Disks Revealed?In a recent

  8. The Circumstellar Environments of Exoplanet Host Stars

    Science.gov (United States)

    Chen, Christine

    The WFIRST-AFTA mission currently includes the provision for a high contrast imaging instrument with a primary goal of discovering new, low mass exoplanets and characterizing their atmospheres. To date, eight exoplanetary systems have been discovered via direct imaging using the current generation of ground-based high-contrast facilities. Five of those systems, including the iconic beta Pictoris and HR 8799 systems, possess infrared excesses, indicative of the presence of circumstellar dust. Detailed studies of dust and gas morphology in the beta Pictoris disk provided the impetus for searching for, and eventually imaging the planet. These studies further suggest that additional planets orbit the star, but are below current detection thresholds. Such systems will be prime targets for WFIRST-AFTA, which will obtain visual spectroscopy of several spectral features from molecules in the exoplanet atmospheres including CH4, H2O, and CO2. We propose to: (1) model the dust in exoplanetary systems with well characterized planets and infrared excesses to better constrain the dust geometry and particle properties; (2) generate synthetic WFIRST-AFTA images of these disks with embedded known and putative planets using point-spread-functions generated by JPL, and run our simulations though a WFIRST-AFTA pipeline; and (3) evaluate the sensitivity of WFIRST-AFTA to known and putative planets that have a range of masses and distances from their host stars. The proposed simulations will also assist the community in understanding how WFIRST-AFTA will contribute to our knowledge of debris disks and the role that minor bodies play in the delivery of water into the terrestrial planet zone. The proposed project is complementary to the efforts currently being carried out by the Science Definition Team (SDT), which focus on simulating planets embedded in tenuous disks, analogous to the Zodiacal dust system in our Solar System, the Earth s resonant dust ring, and the HR 4796 dust ring

  9. Proper Motions of Water Masers in Circumstellar Shells

    Science.gov (United States)

    Marvel, K. B.; Diamond, P. J.; Kemball, A. J.

    We present proper motion measurements of circumstellar water masers obtained with the VLBA. The objects observed include S Persei, VX Sagittarii, U Herculis, VY Canis Majoris, NML Cygni, IK Tauri and RX Bootis. Results of the observations and modeling indicate that the water masers exist in a kinematically complex region of the circumstellar envelope, which is not well fit by the standard model of a uniformly expanding spherical wind. Attempts at fitting an ellipsoidal geometric distribution with a variety of kinematic models are presented. Estimates for the distances of the stars are also discussed. A change in position of the maser spots as a function of velocity has been measured. This effect may be used to place limits on accelerations in the masing gas.

  10. Cold disks : Spitzer spectroscopy of disks around young stars with large gaps

    NARCIS (Netherlands)

    Blake, G. A.; Dullemond, C. P.; Merin, B.; Augereau, J. C.; Boogert, A. C. A.; Evans, N. J.; Geers, V. C.; Lahuis, F.; Kessler-Silacci, J. E.; Pontoppidan, K. M.; van Dishoeck, E. F.; Brown, J.M.

    2007-01-01

    We have identified four circumstellar disks with a deficit of dust emission from their inner 15-50 AU. All four stars have F-G spectral type and were uncovered as part of the Spitzer Space Telescope "Cores to Disks" Legacy Program Infrared Spectrograph (IRS) first-look survey of similar to 100 pre -

  11. Circumstellar Debris and Pollution at White Dwarf Stars

    CERN Document Server

    Farihi, J

    2016-01-01

    Circumstellar disks of planetary debris are now known or suspected to closely orbit hundreds of white dwarf stars. To date, both data and theory support disks that are entirely contained within the preceding giant stellar radii, and hence must have been produced during the white dwarf phase. This picture is strengthened by the signature of material falling onto the pristine stellar surfaces; disks are always detected together with atmospheric heavy elements. The physical link between this debris and the white dwarf host abundances enables unique insight into the bulk chemistry of extrasolar planetary systems via their remnants. This review summarizes the body of evidence supporting dynamically active planetary systems at a large fraction of all white dwarfs, the remnants of first generation, main-sequence planetary systems, and hence provide insight into initial conditions as well as long-term dynamics and evolution.

  12. An interferometric view of hot star disks

    CERN Document Server

    Faes, Daniel Moser

    2015-01-01

    Optical long baseline interferometry was recently established as a technique capable of resolving stars and their circumstellar environments at the milliarcsecond (mas) resolution level. This high-resolution opens an entire new window to the study of astrophysical systems, providing information inaccessible by other techniques. Astrophysical disks are observed in a wide variety of systems, from galaxies up to planetary rings, commonly sharing similar physical processes. Two particular disk like systems are studied in the thesis: (i) B He-rich stars that exhibits magnetic fields in order of kG and that trap their winds in structures called magnetospheres; and (ii) Be stars, fast rotating stars that create circumstellar viscous disks. This study uses the interferometric technique to investigate both the photosphere proper and the circumstellar environment of these stars. The objective is to combine interferometry with other observational techniques (such as spectroscopy and polarimetry) to perform a complete an...

  13. Debris disks and the search for life in the universe

    CERN Document Server

    Cataldi, Gianni

    2016-01-01

    Circumstellar debris disks are the extrasolar analogues of the asteroid belt and the Kuiper belt. They consist of comets and leftover planetesimals that continuously collide and produce circumstellar dust that can be observed as infrared excess or in resolved imaging. As an obvious outcome of the planet formation process, debris disks can help us constrain planet formation theories and learn about the history of our own solar system. This thesis presents observational studies of secondary gas in debris disks. It also discusses the astrobiological potential of debris disks created during impact events onto exoplanets.

  14. Mapping H-band Scattered Light Emission in the Mysterious SR21Transitional Disk

    Science.gov (United States)

    Follette, Katherine B.; Motohide, Tamura; Hashimoto, Jun; Whitney, Barbara; Grady, Carol; Close, Laird; Andrews, Sean M.; Kwon, Jungmi; Wisniewski, John; Brandt, Timothy D.; Mayama, Satoshi; Kandori, Ryo; Dong, Ruobing; Abe, Lyu; Brandner, Wolfgang; Carson, Joseph; Currie, Thayne; Egner, Sebastian E.; Feldt, Markus; Goto, Miwa; Guyon, Olivier.; Hayano, Yutaka; McElwain, Michael W.; Hayashi, Masahiko; Hayashi, Saeko

    2013-01-01

    We present the first near infrared (NIR) spatially resolved images of the circumstellar transitional disk around SR21. These images were obtained with the Subaru HiCIAO camera, adaptive optics, and the polarized differential imaging technique. We resolve the disk in scattered light at H-band for stellocentric 0.1 < or approx. r < or approx. 0.6 (12 < or approx. r < or approx. 75AU). We compare our results with previously published spatially resolved 880 micron continuum Submillimeter Array images that show an inner r < or approx. 36AU cavity in SR21. Radiative transfer models reveal that the large disk depletion factor invoked to explain SR21's sub-mm cavity cannot be "universal" for all grain sizes. Even significantly more moderate depletions (delta = 0.1, 0.01 relative to an undepleted disk) than those that reproduce the sub-mm cavity (delta approx. 10(exp -6) are inconsistent with our H-band images when they are assumed to carry over to small grains, suggesting that surface grains scattering in the NIR either survive or are generated by whatever mechanism is clearing the disk midplane. In fact, the radial polarized intensity profile of our H-band observations is smooth and steeply inwardly-increasing (r(sup -3), with no evidence of a break at the 36AU sub-mm cavity wall. We hypothesize that this profile is dominated by an optically thin disk envelope or atmosphere component.We also discuss the compatibility of our data with the previously postulated existence of a sub-stellar companion to SR21 at r approx. 10-20AU, and find that we can neither exclude nor verify this scenario. This study demonstrates the power of multiwavelength imaging of transitional disks to inform modeling efforts, including the debate over precisely what physical mechanism is responsible for clearing these disks of their large midplane grains.

  15. Filamentary Star Formation: Observing the Evolution toward Flattened Envelopes

    CERN Document Server

    Lee, Katherine; Johnstone, Doug; Tobin, John

    2012-01-01

    Filamentary structures are ubiquitous from large-scale molecular clouds (few parsecs) to small-scale circumstellar envelopes around Class 0 sources (~1000 AU to ~0.1 pc). In particular, recent observations with the Herschel Space Observatory emphasize the importance of large-scale filaments (few parsecs) and star formation. The small-scale flattened envelopes around Class 0 sources are reminiscent of the large-scale filaments. We propose an observationally derived scenario for filamentary star formation that describes the evolution of filaments as part of the process for formation of cores and circumstellar envelopes. If such a scenario is correct, small-scale filamentary structures (0.1 pc in length) with higher densities embedded in starless cores should exist, although to date almost all the interferometers have failed to observe such structures. We perform synthetic observations of filaments at the prestellar stage by modeling the known Class 0 flattened envelope in L1157 using both the Combined Array for...

  16. Circumplanetary disks around young giant planets: a comparison between core-accretion and disk instability

    CERN Document Server

    Szulágyi, J; Quinn, T

    2016-01-01

    Circumplanetary disks can be found around forming giant planets, regardless of whether core accretion or gravitational instability built the planet. We carried out state-of-the-art hydrodynamical simulations of the circumplanetary disks for both formation scenarios, using as similar initial conditions as possible to unveil possible intrinsic differences in the circumplanetary disk mass and temperature between the two formation mechanisms. We found that the circumplanetary disks mass linearly scales with the circumstellar disk mass. Therefore, in an equally massive protoplanetary disk, the circumplanetary disks formed in the disk instability model can be only a factor of eight more massive than their core-accretion counterparts. On the other hand, the bulk circumplanetary disk temperature differs by more than an order of magnitude between the two cases. The subdisks around planets formed by gravitational instability have a characteristic temperature below 100 K, while the core accretion circumplanetary disks a...

  17. Silica in Protoplanetary Disks

    CERN Document Server

    Sargent, B A; Tayrien, C; McClure, M K; Li, A; Basu, A R; Manoj, P; Watson, D M; Bohac, C J; Furlan, E; Kim, K H; Green, J D; Sloan, G C

    2008-01-01

    Mid-infrared spectra of a few T Tauri stars (TTS) taken with the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope show prominent narrow emission features indicating silica (crystalline silicon dioxide). Silica is not a major constituent of the interstellar medium; therefore, any silica present in the circumstellar protoplanetary disks of TTS must be largely the result of processing of primitive dust material in the disks surrouding these stars. We model the silica emission features in our spectra using the opacities of various polymorphs of silica and their amorphous versions computed from earth-based laboratory measurements. This modeling indicates that the two polymorphs of silica, tridymite and cristobalite, which form at successively higher temperatures and low pressures, are the dominant forms of silica in the TTS of our sample. These high temperature, low pressure polymorphs of silica present in protoplanetary disks are consistent with a grain composed mostly of tridymite named Ada found...

  18. High Resolution Spectroscopy of Vega-like Stars: Abundances and Circumstellar Gas

    Science.gov (United States)

    Dunkin, S. K.; Barlow, M. J.; Ryan, Sean G.

    1996-01-01

    Vega-like stars are main-sequence stars exhibiting excess infrared emission. In an effort to improve the information available on this class of star, 13 stars have been analyzed which have been classed as Vega-like, or have an infra-red excess attributable to dust in their circumstellar environment. In a separate paper stellar properties such as effective temperature and log g have been derived and in this poster we highlight the results of the photospheric abundance analysis also carried out during this work. King recently drew attention to the possible link between Vega-like stars and the photospheric metal-depleted class of A-stars, the Lambda Bootis stars. Since Vega-like stars are thought to have disks of dust, it might be expected that accretion of depleted gas onto the surface of these stars may cause this same phenomenon. In the 6 stars studied for depletions, none showed the extreme underabundance patterns observed in Lambda Bootis stars. However, depletions of silicon and magnesium were found in two of the sample, suggesting that these elements are in silicate dust grains in the circumstellar environment of these stars. Absorption lines attributed to circumstellar gas have been positively identified in three stars in our sample. Individual cases show evidence either of high-velocity outflowing gas, variability in the circumstellar lines observed, or evidence of circumstellar gas in excited lines of Fe II. No previous identification of circumstellar material has been made for two of the stars in question.

  19. High spatial resolution IR observations of young stellar objects - A possible disk surrounding HL Tauri

    Science.gov (United States)

    Grasdalen, G. L.; Strom, S. E.; Strom, K. M.; Capps, R. W.; Thompson, D.; Castelaz, M.

    1984-01-01

    High spatial resolution images of the T Tauri star HL Tau were obtained at 1.6 microns and 2.2 microns. The original images as well as maximum entropy image reconstructions reveal a circumstellar envelope structure, similar at both wavelenghts, and extended along P.A. = 112 deg; the 10 percent width of the structure is 1.9 sec (300 AU at 160 pc). The extended structure is interpreted as light scattered toward earth by dust in a disk surrounding this young stellar object. Polarization measurements made at 2.2 microns support this hypothesis. The total solid particle mass is, at minimum, 5 x 10 to the -7th solar mass.

  20. Imaging the circumstellar environment of the young T Tauri star SU Aurigae

    CERN Document Server

    Jeffers, S V; Canovas, H; Rodenhuis, M; Keller, C U

    2013-01-01

    The circumstellar environments of classical T Tauri stars are challenging to directly image because of their high star-to-disk contrast ratio. One method to overcome this is by using imaging polarimetry where scattered and consequently polarised starlight from the star's circumstellar disk can be separated from the unpolarised light of the central star. We present images of the circumstellar environment of SU Aur, a classical T Tauri star at the transition of T Tauri to Herbig stars. The images directly show that the disk extends out to ~500 au with an inclination angle of $\\sim$ 50$^\\circ$. Using interpretive models, we derived very small grains in the surface layers of its disk, with a very steep size- and surface-density distribution. Additionally, we resolved a large and extended nebulosity in our images that is most likely a remnant of the prenatal molecular cloud. The position angle of the disk, determined directly from our images, rules out a polar outflow or jet as the cause of this large-scale nebulo...

  1. Wind Dynamics and Circumstellar Extinction Variations in the T Tauri Star RY Tau

    CERN Document Server

    Babina, Elena V; Petrov, Peter P

    2016-01-01

    The wind interaction with the dusty environment of the classical T Tauri star RY Tau has been investigated. During two seasons of 2013-2015 we carried out a spectroscopic and photometric (BVR) monitoring of the star. A correlation between the stellar brightness and the radial velocity of the wind determined from the H-alpha and Na D line profiles has been found for the first time. The irregular stellar brightness variations are shown to be caused by extinction in a dusty disk wind at a distance of about 0.2 AU from the star. We suppose, that variations of the circumstellar extinction results from cyclic rearrangements of the stellar magnetosphere and coronal mass ejections, which affect the dusty disk wind near the inner boundary of the circumstellar disk.

  2. Protostellar Disk Formation Enabled by Removal of Small Dust Grains

    CERN Document Server

    Zhao, Bo; Li, Zhi-Yun; Krasnopolsky, Ruben; Shang, Hsien; Nakamura, Fumitaka

    2016-01-01

    It has been shown that a realistic level of magnetization of dense molecular cloud cores can suppress the formation of a rotationally supported disk (RSD) through catastrophic magnetic braking in the axisymmetric ideal MHD limit. In this study, we present conditions for the formation of RSDs through non-ideal MHD effects computed self-consistently from an equilibrium chemical network. We find that removing from the standard MRN distribution the large population of very small grains (VSGs) of ~10 $\\AA$ to few 100 $\\AA$ that dominate the coupling of the bulk neutral matter to the magnetic field increases the ambipolar diffusivity by ~1--2 orders of magnitude at densities below 10$^{10}$ cm$^{-3}$. The enhanced ambipolar diffusion (AD) in the envelope reduces the amount of magnetic flux dragged by the collapse into the circumstellar disk-forming region. Therefore, magnetic braking is weakened and more angular momentum can be retained. With continuous high angular momentum inflow, RSDs of tens of AU are able to f...

  3. The Complex Circumstellar and Circumbinary Environment of V356 Sgr

    CERN Document Server

    Lomax, Jamie R; Malatesta, Michael A; Babler, Brian; Bednarski, Daniel; Berdis, Jodi R; Bjorkman, Karen S; Bjorkman, Jon E; Carciofi, Alex C; Davidson, James W; Keil, Marcus; Meade, Marilyn R; Nordsieck, Kenneth; Scheffler, Matt; Hoffman, Jennifer L; Wisniewski, John P

    2016-01-01

    We analyze 45 spectropolarimetric observations of the eclipsing, interacting binary star V356 Sgr, obtained over a period of 21 years, to characterize the geometry of the system's circumstellar material. After removing interstellar polarization from these data, we find the system exhibits a large intrinsic polarization signature arising from electron scattering. In addition, the lack of repeatable eclipses in the polarization phase curves indicates the presence of a substantial pool of scatterers not occulted by either star. We suggest that these scatterers form either a circumbinary disk coplanar with the gainer's accretion disk or an elongated structure perpendicular to the orbital plane of V356 Sgr, possibly formed by bipolar outflows. We also observe small-scale, cycle-to-cycle variations in the magnitude of intrinsic polarization at individual phases, which we interpret as evidence of variability in the amount of scattering material present within and around the system. This may indicate a mass transfer ...

  4. Submillimeter Structure of the Disk of the Butterfly Star

    CERN Document Server

    Wolf, S; Beuther, H; Padgett, D L; Stapelfeldt, K R

    2008-01-01

    We present a spatially resolved 894 micron map of the circumstellar disk of the Butterfly star in Taurus (IRAS 04302+2247), obtained with the Submillimeter Array (SMA). The predicted and observed radial brightness profile agree well in the outer disk region, but differ in the inner region with an outer radius of ~80-120 AU. In particular, we find a local minimum of the radial brightness distribution at the center, which can be explained by an increasing density / optical depth combined with the decreasing vertical extent of the disk towards the center. Our finding indicates that young circumstellar disks can be optically thick at wavelengths as long as 894 micron. While earlier modeling lead to general conclusions about the global disk structure and, most importantly, evidence for grain growth in the disk (Wolf, Padgett, & Stapelfeldt 2003), the presented SMA observations provide more detailed constraints for the disk structure and dust grain properties in the inner, potentially planet-forming region (ins...

  5. The Complex Circumstellar and Circumbinary Environment of V356 Sgr

    Science.gov (United States)

    Fullard, Andrew; Lomax, Jamie R.; Malatesta, Michael A.; Babler, Brian L.; Bednarski, Daniel; Berdis, Jodi; Bjorkman, Karen S.; Bjorkman, Jon Eric; Carciofi, Alex C.; Davidson, James W.; Keil, Marcus; Meade, Marilyn; Nordsieck, Kenneth H.; Scheffler, Matt; Hoffman, Jennifer L.; Wisniewski, John P.

    2017-01-01

    The eclipsing, interacting binary star V356 Sgr is a particularly exciting object for analysis due to its probable nonconservative mass loss and the possible progenitor link between Roche-lobe overflow systems and core-collapse supernovae. We present the results of 45 spectropolarimetric observations of V356 Sgr taken over 21 years, which we used to characterize the geometry of the system's circumstellar material. We find that V356 Sgr exhibits a large intrinsic polarization signature arising from electron scattering. The lack of repeatable eclipses in the polarization phase curves indicates the presence of a substantial pool of scatterers not occulted by either star. We suggest that these scatterers form either a circumbinary disk coplanar with the gainer's accretion disk, or an elongated structure perpendicular to the orbital plane of V356 Sgr, possibly formed by bipolar outflows.We also observe small-scale, cycle-to-cycle variations in the magnitude of intrinsic polarization at individual phases. These may indicate a mass transfer or mass loss rate that varies on the time-scale of the system's orbital period. Finally, we present a comparison of V356 Sgr with the well studied beta Lyr system; the significant differences observed between the two systems suggests diversity in the basic circumstellar geometry of Roche-lobe overflow binaries.

  6. Binarity as a key factor in protoplanetary disk evolution : Spitzer disk census of the eta Chamaeleontis cluster

    NARCIS (Netherlands)

    Bouwman, J.; Lawson, W. A.; Dominik, C.; Feigelson, E. D.; Henning, Th.; Tielens, A. G. G. M.; Waters, L. B. F. M.

    2006-01-01

    The formation of planets is directly linked to the evolution of the circumstellar (CS) disk from which they are born. The dissipation timescales of CS disks are therefore of direct astrophysical importance in evaluating the time available for planet formation. We employ Spitzer Space Telescope spect

  7. A dense disk of dust around the born-again Sakurai's object

    CERN Document Server

    Chesneau, Olivier; Lykou, F; De Marco, O; Hummel, Ch; Kerber, F; Lagadec, E; Nordhaus, J; Zijlstra, A A; Evans, A

    2008-01-01

    In 1996, Sakurai's object (V4334 Sgr) suddenly brightened in the centre of a faint Planetary Nebula (PN). This very rare event was interpreted as the reignition of a hot white dwarf that caused a rapid evolution back to the cool giant phase. From 1998 on, a copious amount of dust has formed continuously, screening out the star which has remained embedded in this expanding high optical depth envelope. The new observations, reported here, are used to study the morphology of the circumstellar dust in order to investigate the hypothesis that Sakurai's Object is surrounded by a thick spherical envelope of dust. We have obtained unprecedented, high-angular resolution spectro-interferometric observations, taken with the mid-IR interferometer MIDI/VLTI, which resolve the dust envelope of Sakurai's object. We report the discovery of a unexpectedly compact (30 x 40 milliarcsec, 105 x 140 AU assuming a distance of 3.5 kpc), highly inclined, dust disk. We used Monte Carlo radiative-transfer simulations of a stratified di...

  8. Millimeter emission from protoplanetary disks : dust, cold gas, and relativistic electrons

    NARCIS (Netherlands)

    Salter, Demerese Marie

    2010-01-01

    Star formation occurs when a dense cloud of interstellar gas and dust gravitationally collapses. Rotation during this collapse leads naturally to the formation of a flattened circumstellar disk around the forming star. These disks are additionally known as protoplanetary disks because the orbiting c

  9. Far-IR Observations of Gas and Dust in the Unusual 49 Ceti Disk

    NARCIS (Netherlands)

    Roberge, Aki; Kamp, I.; Augereau, J.; Montesinos, B.; Meeus, G.; Olofsson, J.; Donaldson, J.; Howard, C. D.; Eiroa, C.; Dent, B.

    2013-01-01

    We present Herschel Space Observatory far-IR imaging and spectroscopy of 49 Cet, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. Photometry was obtained at 7

  10. Herschel Observations of Gas and Dust in the Unusual 49 Ceti Debris Disk

    NARCIS (Netherlands)

    Roberge, A.; Kamp, I.; Montesinos, B.; Dent, W. R. F.; Meeus, G.; Donaldson, J. K.; Olofsson, J.; Moór, A.; Augereau, J.-C.; Howard, C.; Eiroa, C.; Thi, W.-F.; Ardila, D. R.; Sandell, G.; Woitke, P.

    2013-01-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space

  11. A Circumstellar Disk Observed around a Massive Star

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Although the formation process of low-mass stars like our Sun has been well understood, the birth of high-mass stars with more than eight solar masses still remains a mystery. A recent study by CAS astronomers and their collaborators from Japan and UK offered direct observational evidence for demystifying the puzzle. The work was published in the Sept. 1 issue of Nature.

  12. Properties of the $\\delta$ Scorpii Circumstellar Disk from Continuum Modeling

    OpenAIRE

    Carciofi, A. C.; Miroshnichenko, A. S.; Kusakin, A. V.; Bjorkman, J. E.; Bjorkman, K. S.; Marang, F.; Kuratov, K.S.; a-Lario, P. Garcí; Calderón, J. V. Perea; Fabregat, J.; Magalhães, A.M.

    2006-01-01

    We present optical $WBVR$ and infrared $JHKL$ photometric observations of the Be binary system $\\delta$ Sco, obtained in 2000--2005, mid-infrared (10 and $18 \\mu$m) photometry and optical ($\\lambda\\lambda$ 3200--10500 \\AA) spectropolarimetry obtained in 2001. Our optical photometry confirms the results of much more frequent visual monitoring of $\\delta$ Sco. In 2005, we detected a significant decrease in the object's brightness, both in optical and near-infrared brightness, which is associate...

  13. CIRCUMSTELLAR AND CIRCUMBINARY DISKS IN ECCENTRIC STELLAR BINARIES

    Directory of Open Access Journals (Sweden)

    L. A. Aguilar

    2008-01-01

    Full Text Available Investigamos la existencia de trayectorias estables, donde el gas puede acumularse y formar discos de acreción, alrededor de estrellas que forman parte de sistemas binarios de órbitas excéntricas. Dado que el potencial depende del tiempo, no existen órbitas fijas, cerradas y periódicas. En su lugar, buscamos lazos invariantes: curvas cerradas cuya forma varía en sincronía con la fase orbital del sistema binario. Los lazos invariantes que no se auto-intersectan, pueden formar el armazón sobre el que se puede tener discos circunestelares y circumbinarios en estos sistemas. Estudiamos la extensión de las regiones en espacio fase donde estos lazos invariantes sin intersección existen y encontramos que ésta depende de la razón de masa de las estrellas y la excentricidad orbital, con una fuerte dependencia del segundo factor. El descubrimiento reciente de planetas en sistemas binarios de separación pequeña hace que el presente trabajo tenga una gran relevancia.

  14. The magnetic field around late-type stars revealed by the circumstellar H2O masers

    CERN Document Server

    Vlemmings, W H T; Diamond, P J

    2005-01-01

    Through polarization observations, circumstellar masers are excellent probes of the magnetic field in the envelopes of late-type stars. Whereas observations of the polarization of the SiO masers close to the star and on the OH masers much further out were fairly commonplace, observations of the magnetic field strength in the intermediate density and temperature region where the 22 GHz water masers occur have only recently become possible. Here we present the analysis of the circular polarization, due to Zeeman splitting, of the water masers around the Mira variable stars U Her and U Ori and the supergiant VX Sgr. We present an upper limit of the field around U Her that is lower but consistent with previous measurements, reflecting possible changes in the circumstellar envelope. The field strengths around U Ori and VX Sgr are shown to be of the order of several Gauss. Moreover, we show for the first time that large scale magnetic fields permeate the circumstellar envelopes of an evolved star; the polarization ...

  15. Polarimetry with the Gemini Planet Imager: Methods, Performance at First Light, and the Circumstellar Ring around HR 4796A

    CERN Document Server

    Perrin, Marshall D; Millar-Blanchaer, Max; Fitzgerald, Michael P; Graham, James R; Wiktorowicz, Sloane J; Kalas, Paul G; Macintosh, Bruce; Bauman, Brian; Cardwell, Andrew; Chilcote, Jeffrey; De Rosa, Robert J; Dillon, Daren; Doyon, René; Dunn, Jennifer; Gavel, Donald; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Ingraham, Patrick; Kerley, Daniel; Konapacky, Quinn; Larkin, James E; Maire, Jérôme; Marchis, Franck; Marois, Christian; Mittal, Tushar; Morzinski, Katie M; Oppenheimer, B R; Palmer, David W; Patience, Jennifer; Poyneer, Lisa; Pueyo, Laurent; Rantakyrö, Fredrik T; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Soummer, Rémi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J Kent; Wang, Jason J; Wolff, Schuyler G

    2014-01-01

    We present the first results from the polarimetry mode of the Gemini Planet Imager (GPI), which uses a new integral field polarimetry architecture to provide high contrast linear polarimetry with minimal systematic biases between the orthogonal polarizations. We describe the design, data reduction methods, and performance of polarimetry with GPI. Point spread function subtraction via differential polarimetry suppresses unpolarized starlight by a factor of over 100, and provides sensitivity to circumstellar dust reaching the photon noise limit for these observations. In the case of the circumstellar disk around HR 4796A, GPI's advanced adaptive optics system reveals the disk clearly even prior to PSF subtraction. In polarized light, the disk is seen all the way in to its semi-minor axis for the first time. The disk exhibits surprisingly strong asymmetry in polarized intensity, with the west side >9 times brighter than the east side despite the fact that the east side is slightly brighter in total intensity. Ba...

  16. Disk Detective Follow-Up Program

    Science.gov (United States)

    Kuchner, Marc

    As new data on exoplanets and young stellar associations arrive, we will want to know: which of these planetary systems and young stars have circumstellar disks? The vast allsky database of 747 million infrared sources from NASA's Wide-field Infrared Survey Explorer (WISE) mission can supply answers. WISE is a discovery tool intended to find targets for JWST, sensitive enough to detect circumstellar disks as far away as 3000 light years. The vast WISE archive already serves us as a roadmap to guide exoplanet searches, provide information on disk properties as new planets are discovered, and teach us about the many hotly debated connections between disks and exoplanets. However, because of the challenges of utilizing the WISE data, this resource remains underutilized as a tool for disk and planet hunters. Attempts to use WISE to find disks around Kepler planet hosts were nearly scuttled by confusion noise. Moreover, since most of the stars with WISE infrared excesses were too red for Hipparcos photometry, most of the disks sensed by WISE remain obscure, orbiting stars unlisted in the usual star databases. To remedy the confusion noise problem, we have begun a massive project to scour the WISE data archive for new circumstellar disks. The Disk Detective project (Kuchner et al. 2016) engages layperson volunteers to examine images from WISE, NASA's Two Micron All-Sky Survey (2MASS) and optical surveys to search for new circumstellar disk candidates via the citizen science website DiskDetective.org. Fueled by the efforts of > 28,000 citizen scientists, Disk Detective is the largest survey for debris disks with WISE. It has already uncovered 4000 disk candidates worthy of follow-up. However, most host stars of the new Disk Detective disk candidates have no known spectral type or distance, especially those with red colors: K and M stars and Young Stellar Objects. Others require further observations to check for false positives. The Disk Detective project is supported by

  17. THE KOZAI-LIDOV MECHANISM IN HYDRODYNAMICAL DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Rebecca G.; Nixon, Chris; Armitage, Philip J. [JILA, University of Colorado and NIST, UCB 440, Boulder, CO 80309 (United States); Lubow, Stephen H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Price, Daniel J. [Monash Centre for Astrophysics (MoCA), School of Mathematical Sciences, Monash University, Clayton, Vic. 3800 (Australia); Doğan, Suzan [Department of Astronomy and Space Sciences, University of Ege, Bornova, 35100 İzmir (Turkey); King, Andrew [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2014-09-10

    We use three-dimensional hydrodynamical simulations to show that a highly misaligned accretion disk around one component of a binary system can exhibit global Kozai-Lidov cycles, where the inclination and eccentricity of the disk are interchanged periodically. This has important implications for accreting systems on all scales, for example, the formation of planets and satellites in circumstellar and circumplanetary disks, outbursts in X-ray binary systems, and accretion onto supermassive black holes.

  18. Molecular gas in young debris disks

    CERN Document Server

    Moór, A; Juhász, A; Kiss, Cs; Pascucci, I; Kóspál, Á; Apai, D; Henning, Th; Csengeri, T; Grady, C

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas, and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J=3-2 survey with Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities...

  19. Infrared observations of circumstellar ammonia in OH/IR supergiants

    Science.gov (United States)

    Mclaren, R. A.; Betz, A. L.

    1980-01-01

    Ammonia has been detected in the circumstellar envelopes of VY Canis Majoris, VX Sagittarii, and IRC +10420 by means of several absorption lines in the nu-2 vibration-rotation band near 950 kaysers. The line profiles are well resolved (0.2 km/sec resolution) and show the gas being accelerated to terminal expansion velocities near 30 km/sec. The observations reveal a method for determining the position of the central star on VLBI maps of OH maser emission to an accuracy of approximately 0.2 arcsec. A firm lower limit of 2 x 10 to the 15th/sq cm is obtained for the NH3 column density in VY Canis Majoris.

  20. The progenitor of SN 2011ja: Clues from circumstellar interaction

    CERN Document Server

    Chakraborti, Sayan; Smith, Randall; Ryder, Stuart; Yadav, Naveen; Sutaria, Firoza; Dwarkadas, Vikram V; Chandra, Poonam; Pooley, David; Roy, Rupak

    2013-01-01

    Massive stars, possibly red supergiants, which retain extended hydrogen envelopes until the time of core collapse produce Type IIP (Plateau) supernovae. The ejecta from these explosions shock the circumstellar matter originating from the mass loss of the progenitor during the final phases of its life. This interaction accelerates particles to relativistic energies which then lose energy via synchrotron radiation in the shock-amplified magnetic fields and inverse Compton scattering against optical photons from the supernova. These processes produce different signatures in the radio and X-ray part of the electromagnetic spectrum. Observed together, they allow us to break the degeneracy between shock acceleration and magnetic field amplification. In this work we use X-rays observations from the Chandra and radio observations from the ATCA to study the relative importance of particle acceleration and magnetic fields in producing the non-thermal radiation from SN 2011ja. We use radio observations to constrain the ...

  1. Why all stars should possess circumstellar temperature inversions

    Science.gov (United States)

    Scudder, Jack D.

    1992-01-01

    The paper shows that the circumstellar temperature inversions possessed by all stars are the consequence of the 'velocity filtration' process described by Scudder (1992), according to which a stellar envelope is hotter than its underlying layers. The filtration scenario relies on the theoretically predicted and experimentally determined non-Maxwellian velocity distributions of ions and/or electrons in other sampled astrophysical plasmas and the transition region. The most immediate consequence is that the temperature and quasi-neutral plasma density become anticorrelated with increasing radius in a thin transition region, leaving the temperature profile inverted in excess of 10 exp 6 K up into a corona, without depositing a wave of magnetic field energy into the gas above the base of the transition region.

  2. Herschel Observations of Dusty Debris Disks

    CERN Document Server

    Vican, Laura; Bryden, Geoff; Melis, Carl; Zuckerman, B; Rhee, Joseph; Song, Inseok

    2016-01-01

    We present results from two Herschel observing programs using the Photodetector Array Camera and Spectrometer. During three separate campaigns, we obtained Herschel data for 24 stars at 70, 100, and 160 microns. We chose stars that were already known or suspected to have circumstellar dust based on excess infrared emission previously measured with IRAS or Spitzer, and used Herschel to examine long-wavelength properties of the dust. Fifteen stars were found to be uncontaminated by background sources, and possess infrared emission most likely due to a circumstellar debris disk. We analyzed the properties of these debris disks to better understand the physical mechanisms responsible for dust production and removal. Seven targets were spatially resolved in the Herschel images. Based on fits to their spectral energy distributions, nine disks appear to have two temperature components. Of these nine, in three cases, the warmer dust component is likely the result of a transient process rather than a steady state coll...

  3. Molecular Gas in Young Debris Disks

    Science.gov (United States)

    Moór, Attila; Kóspál, Ágnes; Ábrahám, Péter; Juhász, Attila; Apai, Dániel; Csengeri, Timea; Grady, Carol; Henning, Thomas; Kiss, Csaba; Pascucci, Ilaria

    2013-07-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. So far only a very few debris disks with measurable gas component have been known. We carried out a survey with the APEX radio telescope to detect molecular gas at millimeter wavelengths in 28 infrared-luminous young debris disks, and discovered two new systems with substantial amount of CO. Motivated to understand the origin, physics, and evolutionary status of the gas in these systems we observed one of them, HD 21997, with ALMA and Herschel. Our results suggest that HD 21997 may be a hybrid system where secondary debris dust and residual primordial gas coexist. This poses a serious question to the current paradigm, since the age of the system (30 Myr) significantly exceeds model predictions for disk clearing and the ages of the oldest transitional disks.

  4. Non-isothermal effects on Be disks

    CERN Document Server

    Vieira, Rodrigo G; Bjorkman, Jon E

    2016-01-01

    In the last decade, the viscous decretion disk model has emerged as the new paradigm for Be star disks. In this contribution, we propose a simple analytical model to estimate the continuum infrared excess arising from these circumstellar disks, in the light of the currently accepted scenario. We demonstrate that the disk can be satisfactorily described by a two component system: an inner optically thick region, which we call the pseudo-photosphere, and a diffuse outer part. In particular, a direct connexion between the disk brightness profile and the thermal structure is derived, and then confronted to realistic numerical simulations. This result quantifies how the non-isothermality of the disk ultimately affects both infrared measured fluxes and visibilities.

  5. The innermost astronomical unit of protoplanetary disks

    CERN Document Server

    Kluska, J; Benisty, M

    2016-01-01

    Circumstellar disks around young stars are the birthsites of planets. It is thus fundamental to study the disks in which they form, their structure and the physical conditions therein. The first astronomical unit is of great interest because this is where the terrestrial-planets form and the angular momentum is controled via massloss through winds/jets. With its milli-arcsecond resolution, optical interferometry is the only technic able to spatially resolve the first few astronomical units of the disk. In this review, we will present a broad overview of studies of young stellar objects with interferometry, and discuss prospects for the future.

  6. Properties of Be Star Disks at High Spatial Resolution Invited Review

    Science.gov (United States)

    Schaefer, G. H.

    2016-11-01

    This paper presents an observational overview of the properties of Be star disks. The presence of circumstellar gas around Be stars can be inferred from observations of the double-peaked emission line profiles, infrared excesses, and linear polarization. High spatial resolution interferometric observations have confirmed that the gas exists in a flattened disk. The geometry and angular size of the disks at different wavelengths can be used to probe the density structure. The combination of spectroscopy and interferometry can be used to study the kinematics of the rotating disks and investigate asymmetries that arise from one-armed density waves in the circumstellar material.

  7. The First Detailed Look at a Brown Dwarf Disk

    CERN Document Server

    Pascucci, I; Henning, T; Dullemond, C P; Henning, Th.

    2003-01-01

    The combination of mid-infrared and recent submm/mm measurements allows us to set up the first comprehensive spectral energy distribution (SED) of the circumstellar material around a young Brown Dwarf. Simple arguments suggest that the dust is distributed in the form of a disk. We compare basic models to explore the disk parameters. The modeling shows that a flat disk geometry fits well the observations. A flared disk explains the SED only if it has a puffed-up inner rim and an inner gap much larger than the dust sublimation radius. Similarities and differences with disks around T Tauri stars are discussed.

  8. Dust amorphization in protoplanetary disks

    CERN Document Server

    Glauser, Adrian M; Watson, Dan M; Henning, Thomas; Schegerer, Alexander A; Wolf, Sebastian; Audard, Marc; Baldovin-Saavedra, Carla

    2009-01-01

    High-energy irradiation of the circumstellar material might impact the structure and the composition of a protoplanetary disk and hence the process of planet formation. In this paper, we present a study on the possible influence of the stellar irradiation, indicated by X-ray emission, on the crystalline structure of the circumstellar dust. The dust crystallinity is measured for 42 class II T Tauri stars in the Taurus star-forming region using a decomposition fit of the 10 micron silicate feature, measured with the Spitzer IRS instrument. Since the sample includes objects with disks of various evolutionary stages, we further confine the target selection, using the age of the objects as a selection parameter. We correlate the X-ray luminosity and the X-ray hardness of the central object with the crystalline mass fraction of the circumstellar dust and find a significant anti-correlation for 20 objects within an age range of approx. 1 to 4.5 Myr. We postulate that X-rays represent the stellar activity and consequ...

  9. SAFEGUARDS ENVELOPE

    Energy Technology Data Exchange (ETDEWEB)

    Duc Cao; Richard Metcalf

    2010-07-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters within which nuclear facilities may operate to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details advanced statistical techniques that will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). In a simulation based on this data, multi-tank and multi-attribute correlations were tested against synthetic diversion scenarios. Kernel regression smoothing was used to fit a curve to the historical data, and multivariable, residual analysis and cumulative sum techniques set parameters for operating conditions. Diversion scenarios were created and tested, showing improved results when compared with a previous study utilizing only one-variable Z-testing. A brief analysis of the impact of the safeguards optimization on the rest of plant efficiency, criticality concerns, and overall requirements is presented.

  10. The Three-Dimensional Circumstellar Environment of SN 1987A

    CERN Document Server

    Sugerman, B E K; Kunkel, W E; Heathcote, S R; Lawrence, S S; Sugerman, Ben E. K.; Crotts, Arlin P. S.; Kunkel, William E.; Heathcote, Stephen R.; Lawrence, Stephen S.

    2005-01-01

    We present the detailed construction and analysis of the most complete map to date of the circumstellar environment around SN 1987A, using ground and space-based imaging from the past 16 years. PSF-matched difference-imaging analyses of data from 1988 through 1997 reveal material between 1 and 28 ly from the SN. Careful analyses allows the reconstruction of the probable circumstellar environment, revealing a richly-structured bipolar nebula. An outer, double-lobed ``Peanut,'' which is believed to be the contact discontinuity between red supergiant and main sequence winds, is a prolate shell extending 28 ly along the poles and 11 ly near the equator. Napoleon's Hat, previously believed to be an independent structure, is the waist of this Peanut, which is pinched to a radius of 6 ly. Interior to this is a cylindrical hourglass, 1 ly in radius and 4 ly long, which connects to the Peanut by a thick equatorial disk. The nebulae are inclined 41\\degr south and 8\\degr east of the line of sight, slightly elliptical in...

  11. Three-dimensional modeling of radiative disks in binaries

    CERN Document Server

    Picogna, Giovanni

    2013-01-01

    Circumstellar disks in binaries are perturbed by the companion gravity causing significant alterations of the disk morphology. Spiral waves due to the companion tidal force also develop in the vertical direction and affect the disk temperature profile. These effects may significantly influence the process of planet formation. We perform 3D numerical simulations of disks in binaries with different initial dynamical configurations and physical parameters. Our goal is to investigate their evolution and their propensity to grow planets. We use an improved version of the SPH code VINE modified to better account for momentum and energy conservation. The energy equation includes a flux--limited radiative transfer algorithm and the disk cooling is obtained via "boundary particles". We model a system made of star/disk + star/disk where the secondary star (and relative disk) is less massive than the primary. The numerical simulations performed for different values of binary separation and disk density show that the dis...

  12. Circumstellar Molecular Spectra towards Evolved Stars

    CERN Document Server

    Bakker, E J

    1997-01-01

    In this paper we discuss the relevance of, and possible scientific gains which can be acquired from studying circumstellar molecular spectra toward evolved stars. Where can we expect circumstellar molecular spectra, why would we want to study these spectra, which molecules might be present, and what can we learn from these studies? We present an overview of reported detections, and discuss some of the results.

  13. SPH simulations of structures in protoplanetary disks

    Science.gov (United States)

    Demidova, T. V.; Grinin, V. P.

    2017-02-01

    Using the GADGET-2 code modified by us, we have computed hydrodynamic models of a protoplanetary disk perturbed by a low-mass companion. We have considered the cases of circular and eccentric orbits coplanar with the disk and inclined relative to its midplane. During our simulations we computed the column density of test particles on the line of sight between the central star and observer. On this basis we computed the column density of circumstellar dust by assuming the dust and gas to be well mixed with a mass ratio of 1: 100. To study the influence of the disk orientation relative to the observer on the interstellar extinction, we performed our computations for four inclinations of the line of sight to the disk plane and eight azimuthal directions. The column densities in the circumstellar disk of the central star and the circumbinary disk were computed separately. Our computations have shown that periodic column density oscillations can arise in both inner and circumbinary disks. The amplitude and shape of these oscillations depend on the system's parameters (the orbital eccentricity and inclination, the component mass ratio) and its orientation in space. The results of our simulations can be used to explain the cyclic brightness variations of young UX Ori stars.

  14. Tracing Planets in Circumstellar Discs

    Directory of Open Access Journals (Sweden)

    Uribe Ana L.

    2013-04-01

    Full Text Available Planets are assumed to form in circumstellar discs around young stellar objects. The additional gravitational potential of a planet perturbs the disc and leads to characteristic structures, i.e. spiral waves and gaps, in the disc density profile. We perform a large-scale parameter study on the observability of these planet-induced structures in circumstellar discs in the (submm wavelength range for the Atacama Large (SubMillimeter Array (ALMA. On the basis of hydrodynamical and magneto-hydrodynamical simulations of star-disc-planet models we calculate the disc temperature structure and (submm images of these systems. These are used to derive simulated ALMA maps. Because appropriate objects are frequent in the Taurus-Auriga region, we focus on a distance of 140 pc and a declination of ≈ 20°. The explored range of star-disc-planet configurations consists of six hydrodynamical simulations (including magnetic fields and different planet masses, nine disc sizes with outer radii ranging from 9 AU to 225 AU, 15 total disc masses in the range between 2.67·10-7 M⊙ and 4.10·10-2 M⊙, six different central stars and two different grain size distributions, resulting in 10 000 disc models. At almost all scales and in particular down to a scale of a few AU, ALMA is able to trace disc structures induced by planet-disc interaction or the influence of magnetic fields in the wavelength range between 0.4...2.0 mm. In most cases, the optimum angular resolution is limited by the sensitivity of ALMA. However, within the range of typical masses of protoplane tary discs (0.1 M⊙...0.001 M⊙ the disc mass has a minor impact on the observability. At the distance of 140 pc it is possible to resolve discs down to 2.67·10-6 M⊙ and trace gaps in discs with 2.67·10-4 M⊙ with a signal-to-noise ratio greater than three. In general, it is more likely to trace planet-induced gaps in magneto-hydrodynamical disc models, because gaps are wider in the presence of

  15. The Discovery of a Photoevaporation-Driven Molecular Outflow from the T Tauri Transitional Disk GM Aur

    NARCIS (Netherlands)

    Hornbeck, Jeremy; Grady, C. A.; Brown, A.; Ayres, T.; Apai, D.; Brittain, S.; Brown, J. M.; Hamaguchi, K.; Henning, T.; Herczeg, G.; Kamp, I.; Perrin, M.; Petre, R.; Schneider, G.; Sitko, M.; Walter, F.; Williger, G.; Wisniewski, J.; Woodgate, B.

    2011-01-01

    Circumstellar disks are not only a byproduct of star formation, but are also the place where planets form and migrate. The dominant gas-phase constituent of disks early in their evolution is H2, and its lifetime in the disk limits the time available for gas giant planet formation and migration. A nu

  16. Numerical Investigation of Circumplanetary Disks

    Science.gov (United States)

    Mitchell, Tyler R.; Stewart, G. R.

    2012-10-01

    The regular satellites of Jupiter and Saturn are believed to have formed in circumplanetary disks that were present during the late stages of giant planet formation. At present, there is a large amount of uncertainly in both the structure of these disks and the nature of angular momentum transport within them. In circumstellar disks, magnetorotational rotational instability (MRI) is generally invoked as a mechanism to transfer angular momentum and drive accretion. It is unclear whether circumplanetary disks are sufficiently ionized for the MRI to be active. In an effort to better understand the physical nature of circumplanetary disks, we present 1+1D numerical models of Jovian and Saturnian circumplanetary disks. Our models include viscous diffusion, infall from the solar nebula and external photoevaporation. The combination of these three processes allow for steady-state, truncated disks roughly consistent with the present state of the regular satellite systems of Jupiter and Saturn (Mitchell & Stewart, 2011). Unlike recent models of tidal truncation (Martin & Lubow, 2010), our initial models showed that photoevaporation is able to truncate circumplanetary disks to a small fraction of the Hill radius. One goal of this work is to verify our previous results and confirm that truncated disks can be formed using models with more realistic viscous processes. In order to simplify the problem, our initial models employed a viscosity that was linearly dependent on radius. Our current disk models use a viscosity that is calculated locally based on the midplane temperature that is determined from detailed vertical structure calculations. These models are used to conduct an initial investigation of the viability of an active MRI as well as baroclinic instability and other instabilities that may exist.

  17. Polarimetry and the Envelopes of Magellanic B[e] Supergiants

    CERN Document Server

    Magalhães, A M; Melgarejo, R; Pereyra, A

    2006-01-01

    We discuss the nature of the circumstellar envelopes around the B[e] supergiants (B[e]SG) in the Magellanic Clouds (MC). Contrary to those in the Galaxy, the MC B[e]SG have a well defined luminosity and can be considered members of a well defined class. We discuss spectroscopy and optical broadband polarimetry and spectropolarimetry data. These data show for the first time detailed changes in the polarization across several spectral features. We show that the envelopes of the B[e]SG are generally variable. Broadband polarimetry data show that the envelopes are definitely non-spherically symmetric and large non-axisymmetric ejections may occur. In addition to that, spectropolarimetry is coming of age as a tool to study the B[e]SG envelope structure.

  18. Synthetic photometry for carbon-rich giants II. The effects of pulsation and circumstellar dust

    CERN Document Server

    Nowotny, Walter; Höfner, Susanne; Lederer, Michael T

    2011-01-01

    By using self-consistent dynamic model atmospheres which simulate pulsation-enhanced dust-driven winds of AGB stars we studied in detail the influence of (i) pulsations of the stellar interiors, and (ii) the development of dusty stellar winds on the spectral appearance of long period variables with carbon-rich atmospheric chemistry. While the pulsations lead to large-amplitude photometric variability, the dusty envelopes cause pronounced circumstellar reddening. Based on one selected dynamical model which is representative of C-type Mira variables with intermediate mass loss rates, we calculated synthetic spectra and photometry for standard broad-band filters from the visual to the near-infrared. Our modelling allows to investigate in detail the substantial effect of circumstellar dust on the resultant photometry. The pronounced absorption of amorphous carbon dust grains leads to colour indices which are significantly redder than the corresponding ones based on hydrostatic dust-free models. Only if we account...

  19. CIRCUMSTELLAR MAGNETITE FROM THE LAP 031117 CO3.0 CHONDRITE

    Energy Technology Data Exchange (ETDEWEB)

    Zega, Thomas J. [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd, Tucson, AZ 85721-0092 (United States); Haenecour, Pierre; Floss, Christine [Laboratory for Space Sciences and Physics Department, Washington University, One Brookings Drive, Campus Box 1105, St. Louis, MO 63130 (United States); Stroud, Rhonda M., E-mail: tzega@lpl.arizona.edu [Materials Science and Technology Division, Code 6366, Naval Research Laboratory, 4555 Overlook Ave, SW Washington, DC 20375 (United States)

    2015-07-20

    We report the first microstructural confirmation of circumstellar magnetite, identified in a petrographic thin section of the LaPaz Icefield 031117 CO3.0 chondrite. The O-isotopic composition of the grain indicates an origin in a low-mass (∼2.2 M{sub ⊙}), approximately solar metallicity red/asymptotic giant branch (RGB/AGB) star undergoing first dredge-up. The magnetite is a single crystal measuring 750 × 670 nm, is free of defects, and is stoichiometric Fe{sub 3}O{sub 4}. We hypothesize that the magnetite formed via oxidation of previously condensed Fe dust within the circumstellar envelope of its progenitor star. Using an empirically derived rate constant for this reaction, we calculate that such oxidation could have occurred over timescales ranging from approximately ∼9000–500,000 years. This timescale is within the lifetime of estimates for dust condensation within RGB/AGB stars.

  20. Detailed modelling of the circumstellar molecular line emission of the S-type AGB star W Aquilae

    CERN Document Server

    Danilovich, T; Justtanont, K; Lombaert, R; Maercker, M; Olofsson, H; Ramstedt, S; Royer, P

    2014-01-01

    S-type AGB stars have a C/O ratio which suggests that they are transition objects between oxygen-rich M-type stars and carbon-rich C-type stars. As such, their circumstellar compositions of gas and dust are thought to be sensitive to their precise C/O ratio, and it is therefore of particular interest to examine their circumstellar properties. We present new Herschel HIFI and PACS sub-millimetre and far-infrared line observations of several molecular species towards the S-type AGB star W Aql. We use these observations, which probe a wide range of gas temperatures, to constrain the circumstellar properties of W Aql, including mass-loss rate and molecular abundances. We used radiative transfer codes to model the circumstellar dust and molecular line emission to determine circumstellar properties and molecular abundances. We assumed a spherically symmetric envelope formed by a constant mass-loss rate driven by an accelerating wind. Our model includes fully integrated H2O line cooling as part of the solution of th...

  1. A Spitzer-IRS Detection of Crystalline Silicates in a Protostellar Envelope

    CERN Document Server

    Poteet, Charles A; Watson, Dan M; Calvet, Nuria; Remming, Ian S; McClure, Melissa K; Sargent, Benjamin A; Fischer, William J; Furlan, Elise; Allen, Lori E; Bjorkman, Jon E; Hartmann, Lee; Muzerolle, James; Tobin, John J; Ali, Babar

    2011-01-01

    We present the Spitzer Space Telescope Infrared Spectrograph spectrum of the Orion A protostar HOPS-68. The mid-infrared spectrum reveals crystalline substructure at 11.1, 16.1, 18.8, 23.6, 27.9, and 33.6 microns superimposed on the broad 9.7 and 18 micron amorphous silicate features; the substructure is well matched by the presence of the olivine end-member forsterite. Crystalline silicates are often observed as infrared emission features around the circumstellar disks of Herbig Ae/Be stars and T Tauri stars. However, this is the first unambiguous detection of crystalline silicate absorption in a cold, infalling, protostellar envelope. We estimate the crystalline mass fraction along the line-of-sight by first assuming that the crystalline silicates are located in a cold absorbing screen and secondly by utilizing radiative transfer models. The resulting crystalline mass fractions of 0.14 and 0.17, respectively, are significantly greater than the upper limit found in the interstellar medium (< 0.02-0.05). W...

  2. Morphology and kinematics of the gas envelope of the variable AGB star π1 Gruis

    Science.gov (United States)

    Nhung, Pham Tuyet; Hoai, Do Thi; Diep, Pham Ngoc; Phuong, Nguyen Thi; Thao, Nguyen Thi; Anh, Pham Tuan; Darriulat, Pierre

    2016-07-01

    Observations of the 12CO(3-2) emission from the circumstellar envelope (CSE) of the variable star π1 Gru using the compact array of the ALMA observatory have been recently made accessible to the public. An analysis of the morphology and kinematics of the CSE is presented with a result very similar to that obtained earlier for 12CO(2-1) emission using the Submillimeter Array. A quantitative comparison is made using their flared disk model. A new model is presented that provides a significantly better description of the data, using radial winds and smooth evolutions of the radio emission and wind velocity from the stellar equator to the poles. This paper makes use of the following ALMA data: ADS/JAO.ALMA# . ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), and KASI (Republic of Korea) in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The data are retrieved from the JVO portal (http://jvo.nao.ac.jp/portal) operated by the NAOJ.

  3. Detection of circumstellar CH2CHCN, CH2CN, CH3CCH and H2CS

    CERN Document Server

    Agundez, M; Cernicharo, J; Pardo, J R; Guélin, M

    2007-01-01

    We report on the detection of vinyl cyanide (CH2CHCN), cyanomethyl radical (CH2CN), methylacetylene (CH3CCH) and thioformaldehyde (H2CS) in the C-rich star IRC +10216. These species, which are all known to exist in dark clouds, are detected for the first time in the circumstellar envelope around an AGB star. The four molecules have been detected trough pure rotational transitions in the course of a 3 mm line survey carried out with the IRAM 30-m telescope. The molecular column densities are derived by constructing rotational temperature diagrams. A detailed chemical model of the circumstellar envelope is used to analyze the formation of these molecular species. We have found column densities in the range 5 x 10^(12)- 2 x 10^(13) cm^(-2), which translates to abundances relative to H2 of several 10^(-9). The chemical model is reasonably successful in explaining the derived abundances through gas phase synthesis in the cold outer envelope. We also find that some of these molecules, CH2CHCN and CH2CN, are most pr...

  4. Conditions for circumstellar disc formation - II. Effects of initial cloud stability and mass accretion rate

    Science.gov (United States)

    Machida, Masahiro N.; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro

    2016-12-01

    Disc formation in strongly magnetized cloud cores is investigated using a three-dimensional magnetohydrodynamic simulation with a focus on the effects of the initial cloud stability and the mass accretion rate. The initial cloud stability greatly alters the disc formation process even for prestellar clouds with the same mass-to-flux ratio. A high mass accretion rate on to the disc-forming region is realized in initially unstable clouds, and a large angular momentum is introduced into the circumstellar region in a short time. The region around the protostar has both a thin infalling envelope and a weak magnetic field, which both weaken the effect of magnetic braking. The growth of the rotation-supported disc is promoted in such unstable clouds. Conversely, clouds in an initially near-equilibrium state show lower accretion rates of mass and angular momentum. The angular momentum is transported to the outer envelope before protostar formation. After protostar formation, the circumstellar region has a thick infalling envelope and a strong magnetic field that effectively brakes the disc. As a result, disc formation is suppressed when the initial cloud is in a nearly stable state. The density distribution of the initial cloud also affects the disc formation process. Disc growth strongly depends on the initial conditions when the prestellar cloud has a uniform density, whereas there is no significant difference in the disc formation process in prestellar clouds with non-uniform densities.

  5. Evolution of Cold Circumstellar Dust Around Solar-Type Stars

    CERN Document Server

    Carpenter, J M; Schreyer, K; Launhardt, R; Henning, T; Carpenter, John M.; Wolf, Sebastian; Schreyer, Katharina; Launhardt, Ralf; Henning, Th.

    2004-01-01

    We present submillimeter (CSO 350um) and millimeter (SEST 1.2 mm, OVRO 3 mm) photometry for 125 solar-type stars from the FEPS Spitzer Legacy program that have masses between ~0.5 and 2.0 Msun and ages from 3 Myr to 3 Gyr. Continuum emission was detected toward four stars with a signal to noise ratio >= 3$: the classical T Tauri stars RX J1842.9-3532, RX J1852.3-3700, and PDS 66 with SEST, and the debris disk system HD 107146 with OVRO. RXJ1842.9-3532 and RXJ1852.3-3700 are located in projection nearby the R CrA molecular cloud with estimated ages of ~10 Myr, while PDS66 is a probable member of the 20 Myr old Lower Centaurus-Crux subgroup of the Sco-Cen OB association. The continuum emission toward these three sources is unresolved at the 24'' SEST resolution and likely originates from circumstellar accretion disks, each with estimated dust masses of ~5x10**-5 Msun. Analysis of the visibility data toward HD107146 (age 80-200 Myr) indicates that the 3 mm continuum emission is centered on the star within the as...

  6. The Evolution of Gas and Dust in Protoplanetary Accretion Disks

    CERN Document Server

    Birnstiel, T

    2011-01-01

    Dust constitutes only about one percent of the mass of circumstellar disks, yet it is of crucial importance for the modeling of planet formation, disk chemistry, radiative transfer and observations. The initial growth of dust from sub-micron sized grains to planetesimals and also the radial transport of dust in disks around young stars is the topic of this thesis. Circumstellar dust is subject to radial drift, vertical settling, turbulent mixing, collisional growth, fragmentation and erosion. We approach this subject from three directions: analytical calculations, numerical simulations, and comparison to observations. We describe the physical and numerical concepts that go into a model which is able to simulate the radial and size evolution of dust in a gas disk which is viscously evolving over several million years. The resulting dust size distributions are compared to our analytical predictions and a simple recipe for obtaining steady-state dust size distributions is derived. With the numerical model at han...

  7. Mapping H-band Scattered Light Emission in the Mysterious SR21 Transitional Disk

    NARCIS (Netherlands)

    Follette, K.B.; Tamura, M.; Hashimoto, J.; Whitney, B.; Grady, C.; Close, L.; Andrews, S.M.; Kwon, J.; Wisniewski, J.; Brandt, T.D.; Mayama, S.; Kandori, R.; Dong, R.; Abe, L.; Brandner, W.; Carson, J.; Currie, T.; Egner, S.E.; Feldt, M.; Goto, M.; Guyon, O.; Hayano, Y.; Hayashi, M.; Hayashi, S.; Henning, T.; Hodapp, K.; Ishii, M.; Iye, M.; Janson, M.; Knapp, G.R.; Kudo, T.; Kusakabe, N.; Kuzuhara, M.; McElwain, M.W.; Matsuo, T.; Miyama, S.; Morino, J.-I.; Moro-Martin, A.; Nishimura, T.; Pyo, T.-S.; Serabyn, E.; Suto, H.; Suzuki, R.; Takami, M.; Takato, N.; Terada, H.; Thalmann, C.; Tomono, D.; Turner, E.L.; Watanabe, M.; Yamada, T.; Takami, H.; Usuda, T.

    2013-01-01

    We present the first near infrared (NIR) spatially resolved images of the circumstellar transitional disk around SR21. These images were obtained with the Subaru HiCIAO camera, adaptive optics, and the polarized differential imaging technique. We resolve the disk in scattered light at H-band for ste

  8. Using Disk Eclipsing Systems to Understand Planet Formation and Evolution

    Science.gov (United States)

    Rodriguez, Joseph E.; Osborn, Hugh P.; Shappee, Benjamin John; KELT Collaboration

    2017-01-01

    The circumstellar environments of young stellar objects (YSOs) involve complex dynamical interactions between dust and gas that directly influence the formation of planets. However, our understanding of the evolution from the material in the circumstellar disk to the thousands of planetary systems discovered to date, is limited. One means to better constrain the size, mass, and composition of this planet-forming material is to observe a YSO being eclipsed by its circumstellar disk. Unfortunately, such events are rare but have already led to such insights as dense planet-forming structures within the tidally disrupted disk of a young binary star system, Saturn-like rings and gaps in the disk surrounding a young planet, stratified dust coagulation within a young protoplanetary disk, and an evolved binary star system with remnant planet-building material. Fortunately, the advent of wide-field time domain surveys provides a ideal tool to search for rare eclipse events. Using time-series photometry from the KELT project we are conducting the Disk Eclipse Search with KELT (DESK) survey to look for disk eclipsing events, specifically in young stellar associations. In addition, we are collaborating with the SuperWASP and ASAS-SN surveys which have already led to additional discoveries. This survey has already doubled the number of “disk eclipsing” systems known and will provide a framework for discovering such systems in future surveys such as LSST. I will describe a few of our recent discoveries and their impact on our understanding of circumstellar evolution.KELT is a joint collaboration between the Ohio State University, Vanderbilt University, and Lehigh University. This work was partially supported by NSF CAREER grant AST-1056524. J.E.R. is supported by a Harvard Future Faculty Leaders Postdoctoral Fellowship.

  9. The Three-dimensional Circumstellar Environment of SN 1987A

    Science.gov (United States)

    Sugerman, Ben E. K.; Crotts, Arlin P. S.; Kunkel, William E.; Heathcote, Stephen R.; Lawrence, Stephen S.

    2005-07-01

    Surrounding SN 1987A is a three-ring nebula attributed to interacting stellar winds, yet no model has successfully reproduced this system. Fortunately, the progenitor's mass-loss history can be reconstructed using light echoes, in which scattered light from the supernova traces the three-dimensional morphology of its circumstellar dust. In this paper, we construct and analyze the most complete map to date of the progenitor's circumstellar environment, using ground- and space-based imaging from the past 16 years. PSF-matched difference-imaging analyses of data from 1988 through 1997 reveal material between 1 and 28 lt-yr from the SN. Previously known structures, such as an inner hourglass, Napoleon's Hat, and a contact discontinuity, are probed in greater spatial detail than before. Previously unknown features are also discovered, such as a southern counterpart to Napoleon's Hat. Careful analyses of these echoes allows the reconstruction of the probable circumstellar environment, revealing a richly structured bipolar nebula. An outer, double-lobed ``Peanut,'' which is believed to be the contact discontinuity between red supergiant and main-sequence winds, is a prolate shell extending 28 lt-yr along the poles and 11 lt-yr near the equator. Napoleon's Hat, previously believed to be an independent structure, is the waist of this Peanut, which is pinched to a radius of 6 lt-yr. Interior to this is a cylindrical hourglass, 1 lt-yr in radius and 4 lt-yr long, which connects to the Peanut by a thick equatorial disk. The nebulae are inclined 41° south and 8° east of the line of sight, slightly elliptical in cross section, and marginally offset west of the SN. From the hourglass to the large, bipolar lobes, echo fluxes suggest that the gas density drops from 1-3 to >~0.03 cm-3, while the maximum dust-grain size increases from ~0.2 to 2 μm, and the silicate:carbonaceous dust ratio decreases. The nebulae have a total mass of ~1.7 Msolar. The geometry of the three rings is

  10. Dipper disks not inclined towards edge-on orbits

    CERN Document Server

    Ansdell, M; Williams, J P; Kennedy, G; Wyatt, M C; LaCourse, D M; Jacobs, T L; Mann, A W

    2016-01-01

    The so-called "dipper" stars host circumstellar disks and have optical and infrared light curves that exhibit quasi-periodic or aperiodic dimming events consistent with extinction by transiting dusty structures orbiting in the inner disk. Most of the proposed mechanisms explaining the dips---i.e., occulting disk warps, vortices, and forming planetesimals---assume nearly edge-on viewing geometries. However, our analysis of the three known dippers with publicly available resolved sub-mm data reveals disks with a range of inclinations, most notably the face-on transition disk J1604-2130 (EPIC 204638512). This suggests that nearly edge-on viewing geometries are not a defining characteristic of the dippers and that additional models should be explored. If confirmed by further observations of more dippers, this would point to inner disk processes that regularly produce dusty structures far above the outer disk midplane in regions relevant to planet formation.

  11. The Recent Disk Evolution of Achernar

    Science.gov (United States)

    Faes, D. M.; Carciofi, A. C.; Domiciano de Souza, A.

    2016-11-01

    Achernar is a key star to investigate the Be phemonemon. Its importance derives from the possibility of investigating in detail its photospheric and circumstellar emission due to its proximity. Since early 2013 the star entered a new outburst phase, having since then formed a large disk. Here we report our first results to model the recent disk evolution based on a recent precise photospheric characterization. The analysis combine multi-technique data, including broadband polarimetry (OPD/LNA), spectroscopy (FEROS and others) and interferometry (VLTI/AMBER and PIONIER). The radiative transfer problem is solved by the HDUST code. The preliminary results indicate that the circumstellar disk was not formed by a constant mass injection, as indicated by the large variability in small temporal scales seen in polarization. Also, the forming disk manifests noticeable azimuthal asymmetries, as seen by the V/R variations in Hα, which suggests that mass ejection from the star is also non-axisymmetric. These elements offer a rare opportunity to evaluate the evolution of a just formed Be disk in detail and derive relevant physical quantities governing the system.

  12. The composition of circumstellar and interstellar dust

    NARCIS (Netherlands)

    Tielens, AGGM; Woodward, CE; Biscay, MD; Shull, JM

    2001-01-01

    A large number of solid dust components have been identified through analysis of stardust recovered from meteorites, and analysis of IR observations of circumstellar shells and the interstellar medium. These include graphite, hydrogenated amorphous carbon, diamond, PAHs, silicon-, iron-, and titanin

  13. Isothermal Circumstellar Dust Shell Model for Teaching

    Science.gov (United States)

    Robinson, G.; Towers, I. N.; Jovanoski, Z.

    2009-01-01

    We introduce a model of radiative transfer in circumstellar dust shells. By assuming that the shell is both isothermal and its thickness is small compared to its radius, the model is simple enough for students to grasp and yet still provides a quantitative description of the relevant physical features. The isothermal model can be used in a…

  14. Ionization and Dust Charging in Protoplanetary Disks

    CERN Document Server

    Ivlev, A V; Caselli, P

    2016-01-01

    Ionization-recombination balance in dense interstellar and circumstellar environments is a key factor for a variety of important physical processes, such as chemical reactions, dust charging and coagulation, coupling of the gas with magnetic field and the development of magnetorotational instability in protoplanetary disks. We present a self-consistent analytical model which allows us to exactly calculate abundances of charged species in dusty gas, in the regime where the dust-phase recombination dominates over the gas-phase recombination. The model is employed to verify applicability of a conventional approximation of low dust charges in protoplanetary disks, and to discuss the implications for the dust coagulation and the development of the "dead zone" in the disk. Furthermore, the importance of mutually consistent models for the ionization and dust evolution is addressed: These processes are coupled via several mechanisms operating in the disk, and therefore their interplay can be crucial for the ultimate ...

  15. Observations of Solids in Protoplanetary Disks

    CERN Document Server

    Andrews, Sean M

    2015-01-01

    This review addresses the state of research that employs astronomical (remote sensing) observations of solids ("dust") in young circumstellar disks to learn about planet formation. The intention is for it to serve as an accessible, introductory, pedagogical resource for junior scientists interested in the subject. After some historical background and a basic observational primer, the focus is shifted to the three fundamental topics that broadly define the field: (1) demographics -- the relationships between disk properties and the characteristics of their environments and hosts; (2) structure -- the spatial distribution of disk material and its associated physical conditions and composition; and (3) evolution -- the signposts of key changes in disk properties, including the growth and migration of solids and the impact of dynamical interactions with young planetary systems. Based on the state of the art results in these areas, suggestions are made for potentially fruitful lines of work in the near future.

  16. A symmetric inner cavity in the HD~141569A transitional disk

    CERN Document Server

    Mazoyer, J; Choquet, E; Perrin, M D; Pueyo, L; Augereau, J -C; Lagrange, A -M; Debes, J; Wolff, S G

    2016-01-01

    Some circumstellar disks, called transitional or hybrid disks, present characteristics of both protoplanetary disks (significant amount of gas) and debris disks (evolved structures around young main-sequence stars, composed of second generation dust, from collisions between planetesimals). Therefore, they are an ideal astrophysical laboratory to witness the last stages of planet formation. The circumstellar disk around HD~141569A was intensively observed and resolved in the past from space but also from the ground but the recent implementation of high contrast imaging systems opens new opportunities to re-analyze this object. We analyzed Gemini archival data from the Near-Infrared Coronagraphic Imager (NICI) obtained in 2011 in the H band, using several angular differential imaging techniques (classical ADI, LOCI, KLIP). These images reveal the complex structures of this disk with an unprecedented resolution. We also include archival Hubble Space Telescope (HST) images as an independent dataset to confirm the...

  17. Relatively Flat Envelopes

    Institute of Scientific and Technical Information of China (English)

    丁南庆

    1994-01-01

    The aim of this paper is to investigate relatively flat envelopes. A necessary and sufficient condition is given for a relatively-finitely presented module to have a (mono-morphic or epic) relatively flat envelope. Then those rings are characterized whose every relatively-finitely presented module has a relatively flat envelope which coincides with its in-jective envelope. Some known results are obtained as corollaries.

  18. A Pulsar and a Disk

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    Recent, unusual X-ray observations from our galactic neighbor, the Small Magellanic Cloud, have led to an interesting model for SXP 214, a pulsar in a binary star system.Artists illustration of the magnetic field lines of a pulsar, a highly magnetized, rotating neutron star. [NASA]An Intriguing BinaryAn X-ray pulsar is a magnetized, rotating neutron star in a binary system with a stellar companion. Material is fed from the companion onto the neutron star, channeled by the objects magnetic fields onto a hotspot thats millions of degrees. This hotspot rotating past our line of sight is what produces the pulsations that we observe from X-ray pulsars.Located in the Small Magellanic Cloud, SXP 214 is a transient X-ray pulsar in a binary with a Be-type star. This star is spinning so quickly that material is thrown off of it to form a circumstellar disk.Recently, a team of authors led by JaeSub Hong (Harvard-Smithsonian Center for Astrophysics) have presented new Chandra X-ray observations of SXP 214, tracking it for 50 ks (~14 hours) in January 2013. These observations reveal some very unexpected behavior for this pulsar.X-ray PuzzleThe energy distribution of the X-ray emission from SXP 214 over time. Dark shades or blue colors indicate high counts, and light shades or yellow colors indicate low counts. Lower-energy X-ray emission appeared only later, after about 20 ks. [Hong et al. 2016]Three interesting pieces of information came from the Chandra observations:SXP 214s rotation period was measured to be 211.5 s an increase in the spin rate since the discovery measurement of a 214-second period. Pulsars usually spin down as they lose angular momentum over time so what caused this one to spin up?Its overall X-ray luminosity steadily increased over the 50 ks of observations.Its spectrum became gradually softer (lower energy) over time; in the first 20 ks, the spectrum only consisted of hard X-ray photons above 3 keV, but after 20 ks, softer X-ray photons below 2 ke

  19. Spectroscopic Evolution of Disintegrating Planetesimals: Minutes to Months Variability in the Circumstellar Gas Associated with WD 1145+017

    CERN Document Server

    Redfield, Seth; Cauley, P Wilson; Parsons, Steven G; Gaensicke, Boris T; Duvvuri, Girish

    2016-01-01

    With the recent discovery of transiting planetary material around WD 1145+017, a critical target has been identified that links the evolution of planetary systems with debris disks and their accretion onto the star. We present a series of observations, five epochs over a year, taken with Keck and the VLT, which for the first time show variability of circumstellar absorption in the gas disk surrounding WD 1145+017 on timescales of minutes to months. Circumstellar absorption is measured in more than 250 lines of 14 ions among ten different elements associated with planetary composition, e.g., O, Mg, Ca, Ti, Cr, Mn, Fe, Ni. Broad circumstellar gas absorption with a velocity spread of 225 km/s is detected, but over the course of a year blue shifted absorption disappears while redshifted absorption systematically increases. A correlation of equivalent width and oscillator strength indicates that the gas is not highly optically thick (median tau approximately 2). We discuss simple models of an eccentric disk couple...

  20. The circumstellar environment of IRAS 16293-2422. ISO-LWS and SCUBA observations

    Science.gov (United States)

    Correia, J. C.; Griffin, M.; Saraceno, P.

    2004-05-01

    We present far-infrared (FIR) continuum observations of the deeply embedded source IRAS 16293-2422 performed with the Long Wavelength Spectrometer (LWS) on-board the Infrared Space Observatory (ISO). We also report 450 and 850 μm mapping observations done with the Submillimetre Common-User Bolometer Array (SCUBA) at the James Clerk Maxwell Telescope (JCMT). We combined these observations with IRAS and other JCMT data available in the literature to construct a complete spectral energy distribution (SED) of the source. A spherically symmetric dusty envelope model was used to reproduce the SED and to characterize the circumstellar matter around the object. We call attention to the fact that when using models such as the one presented here, one needs spatial information about the object to distinguish between different possible fits to the SED. A comparison between the intensity profiles at 450 and 850 μm obtained from the SCUBA observations and the profiles predicted by the model allowed us to constrain the size of the envelope and its density distribution. The SED and the 850 μm intensity profile of the source are consistent with a centrally peaked power law dust density distribution of the form ρ(r) ∝ r-p with p = 1.5-2, with a radius Renv = 3000-3250 AU, defining a very compact circumstellar envelope. We estimate a bolometric luminosity Lbol = 36 L⊙, an envelope mass Menv = 3.4 M⊙, and a submillimetre to bolometric luminosity ratio Lsubmm/Lbol = 1.9%, confirming that the source shows a submillimetre excess characteristic of Class 0 sources.

  1. The circumstellar environment of pre-SN Ia systems

    CERN Document Server

    Harvey, E; Boumis, P; Kopsacheili, M; Akras, S; Sabin, L; Jurkic, T

    2016-01-01

    Here we explore the possible preexisting circumstellar debris of supernova type Ia systems. Classical, symbiotic and recurrent novae all accrete onto roughly solar mass white dwarfs from main sequence or Mira type companions and result in thermonuclear runaways and expulsion of the accreted material at high velocity. The expelled material forms a fast moving shell that eventually slows to planetary nebula expansion velocities within several hundred years. All such systems are recurrent and thousands of shells (each of about 0.001 Mo) snow plough into the environment. As these systems involve common envelope binaries the material is distributed in a non-spherical shell. These systems could be progenitors of some SN Ia and thus explode into environments with large amounts of accumulated gas and dust distributed in thin non-spherical shells. Such shells should be observable around 100 years after a SN Ia event in a radio flash as the SN Ia debris meets that of the ejected material of the systems previous incarna...

  2. The formation of polycyclic aromatic hydrocarbons in evolved circumstellar environments

    CERN Document Server

    Cherchneff, Isabelle

    2010-01-01

    The formation of Polycyclic Aromatic Hydrocarbons in the circumstellar outflows of evolved stars is reviewed, with an emphasis on carbon stars on the Asymptotic Giant Branch. Evidence for PAHs present in their winds is provided by meteoritic studies and recent observations of the Unidentified Infrared bands. We detail the chemical processes leading to the closure of the first aromatic ring as well as the growth mechanisms leading to amorphous carbon grains. Existing studies on PAH formation in evolved stellar envelopes are reviewed and new results for the modelling of the inner wind of the archetype carbon star IRC+10216 are presented. Benzene, C6H6, forms close to the star, as well as water, H2O, as a result of non-equilibrium chemistry induced by the periodic passage of shocks. The growth process of aromatic rings may thus resemble that active in sooting flames due to the presence of radicals like hydroxyl, OH. Finally, we discuss possible formation processes for PAHs and aromatic compounds in the hydrogen-...

  3. Lidov-Kozai Mechanism in Hydrodynamical Disks: Linear Stability Analysis

    Science.gov (United States)

    Zanazzi, J. J.; Lai, Dong

    2017-01-01

    Recent SPH simulations by Martin et al. (2014) suggest a circumstellar gaseous disk may exhibit coherent eccentricity-inclination oscillations due to the tidal forcing of an inclined binary companion, in a manner that resembles Lidov-Kozai oscillations in hierarchical triple systems. We carry out linear stability analysis for the eccentricity growth of circumstellar disks in binaries, including the effects of gas pressure and viscosity and secular (orbital-averaged) tidal force from the inclined companion. We find that the growth of disk eccentricity depends on the dimensionless ratio (S) between c_s^2 (the disk sound speed squared) and the tidal torque acting on the disk (per unit mass) from the companion. For S ≪ 1, the standard Lidov-Kozai result is recovered for a thin disk annulus: eccentricity excitation occurs when the mutual inclination I between the disk and binary lies between 39° and 141°. As S increases, the inclination window for eccentricity growth generally becomes narrower. For S ≳ a few, eccentricity growth is suppressed for all inclination angles. Surprisingly, we find that for S ˜ 1 and certain disk density/pressure profiles, eccentricity excitation can occur even when I is much less than 39°.

  4. Indirect Detection of Forming Protoplanets via Chemical Asymmetries in Disks

    CERN Document Server

    Cleeves, L Ilsedore; Harries, Tim J

    2015-01-01

    We examine changes in the molecular abundances resulting from increased heating due to a self-luminous planetary companion embedded within a narrow circumstellar disk gap. Using 3D models that include stellar and planetary irradiation, we find that luminous young planets locally heat up the parent circumstellar disk by many tens of Kelvin, resulting in efficient thermal desorption of molecular species that are otherwise locally frozen out. Furthermore, the heating is deposited over large regions of the disk, $\\pm5$ AU radially and spanning $\\lesssim60^\\circ$ azimuthally. From the 3D chemical models, we compute rotational line emission models and full ALMA simulations, and find that the chemical signatures of the young planet are detectable as chemical asymmetries in $\\sim10h$ observations. HCN and its isotopologues are particularly clear tracers of planetary heating for the models considered here, and emission from multiple transitions of the same species is detectable, which encodes temperature information i...

  5. Long-term Evolution of Photoevaporating Protoplanetary Disks

    CERN Document Server

    Bae, Jaehan; Zhu, Zhaohuan; Gammie, Clarles

    2013-01-01

    We perform calculations of our one-dimensional, two-zone disk model to study the long-term evolution of the circumstellar disk. In particular, we adopt published photoevaporation prescriptions and examine whether the photoevaporative loss alone, coupled with a range of initial angular momenta of the protostellar cloud, can explain the observed decline of the frequency of optically-thick dusty disks with increasing age. In the parameter space we explore, disks have accreting and/or non-accreting transitional phases lasting of $\\lesssim20 %$ of their lifetime, which is in reasonable agreement with observed statistics. Assuming that photoevaporation controls disk clearing, we find that initial angular momentum distribution of clouds needs to be weighted in favor of slowly rotating protostellar cloud cores. Again, assuming inner disk dispersal by photoevaporation, we conjecture that this skewed angular momentum distribution is a result of fragmentation into binary or multiple stellar systems in rapidly-rotating c...

  6. Six White Dwarfs with Circumstellar Silicates

    CERN Document Server

    Jura, M; Zuckerman, B

    2008-01-01

    Spitzer Space Telescope spectra reveal 10 micron silicate emission from circumstellar dust orbiting six externally-polluted white dwarfs. Micron-size glasses with an olivine stoichiometry can account for the distinctively broad wings that extend to 12 microns; these particles likely are produced by tidal-disruption of asteroids. The absence of infrared PAH features is consistent with a scenario where extrasolar rocky planets are assembled from carbon-poor solids.

  7. Destruction of Be star disk by large scale magnetic fields

    Science.gov (United States)

    Ud-Doula, Asif; Owocki, Stanley P.; Kee, Nathaniel; Vanyo, Michael

    2017-01-01

    Classical Be stars are rapidly rotating stars with circumstellar disks that come and go on time scale of years. Recent observational data strongly suggests that these stars lack the ~10% incidence of global magnetic fields observed in other main-sequence B stars. Such an apparent lack of magnetic fields may indicate that Be disks are fundamentally incompatible with a significant large scale magnetic field. In this work, using numerical magnetohydrodynamics (MHD) simulations, we show that a dipole field of only 100G can lead to the quick disruption of a Be disk. Such a limit is in line with the observational upper limits for these objects.

  8. The circumstellar structure of the Be shell star phi Per. I. Data analysis

    Science.gov (United States)

    Štefl, S.; Hummel, W.; Rivinius, Th.

    2000-06-01

    We present new phase resolved observations of emission lines of the Be binary phi Per. Analyzing the orbital phase variations in the He I emission features we find strong arguments that the feature as a whole originates in the outer parts of the disk around the primary star. In addition to the He I 6678 and 5876 lines, the emission features with orbital phase variations were detected in three more He I lines. The observations are in agreement with the scenario of Poeckert and others, in which the outer parts of an axisymmetric disk are illuminated by the radiation of the secondary. The observations after 1996 are consistent with a growing global density inhomogeneity in the circumprimary disk as it occurs in disks of single Be stars. The combination of the illumination effect and the increasing density inhomogeneity make phi Per an ideal laboratory to study density perturbations of circumstellar disks of Be stars in more detail. Based on observations collected at the Ond\\v{r}ejov Observatory (of the Academy of Sciences of the Czech Republic), Heidelberg Observatory, German-Spanish Astronomical Center (DSAZ) - Calar Alto (operated by the Max-Plank-Institut für Astronomie Heidelberg jointly with the Spanish National Commission for Astronomy) and Observatoire de Haute-Provence (OHP; CNRS, France)}

  9. Placing Limits on the Mass of the DH Tau b Circumplanetary Disk

    Science.gov (United States)

    Wolff, Schuyler G.; Menard, Francois; Caceres, Claudio; Lefevre, Charlene

    2017-01-01

    We present a circumplanetary disk mass limit for the DH Tau b planetary mass companion. NOEMA observations in the millimeter allow us to place constraints on the disk mass for both DH Tau b and the primary in a regime where the disks will appear optically thin. We find a conservative disk mass upper limit of 0.31 $M_{\\oplus}$ for DH Tau b, assuming that the disk temperature is dominated by irradiation from the central star. However, given the environment of the circumplanetary disk, variable illumination from the primary or the equilibrium temperature of the surrounding cloud would lead to even lower disk mass estimates. The circumstellar disk of DH Tau A is unresolved in our observations, with an estimated disk mass of $\\sim 40 \\, M_{\\oplus}$.

  10. X-ray Emission from Strongly Asymmetric Circumstellar Material in the Remnant of Kepler's Supernova

    CERN Document Server

    Burkey, Mary T; Borkowski, Kazimierz J; Blondin, John M

    2012-01-01

    Kepler's supernova remnant resulted from a thermonuclear explosion, but is interacting with circumstellar material (CSM) lost from the progenitor system. We describe a statistical technique for isolating X-ray emission due to CSM from that due to shocked ejecta. Shocked CSM coincides well in position with 24 $\\mu$m emission seen by {\\sl Spitzer}. We find most CSM to be distributed along the bright north rim, but substantial concentrations are also found projected against the center of the remnant, roughly along a diameter with position angle $\\sim 100^\\circ$. We interpret this as evidence for a disk distribution of CSM before the SN, with the line of sight to the observer roughly in the disk plane. We present 2-D hydrodynamic simulations of this scenario, in qualitative agreement with the observed CSM morphology. Our observations require Kepler to have originated in a close binary system with an AGB star companion.

  11. Binarity as a Key Factor in Protoplanetary Disk Evolution: Spitzer Disk Census of the η Chamaeleontis Cluster

    Science.gov (United States)

    Bouwman, J.; Lawson, W. A.; Dominik, C.; Feigelson, E. D.; Henning, Th.; Tielens, A. G. G. M.; Waters, L. B. F. M.

    2006-12-01

    The formation of planets is directly linked to the evolution of the circumstellar (CS) disk from which they are born. The dissipation timescales of CS disks are therefore of direct astrophysical importance in evaluating the time available for planet formation. We employ Spitzer Space Telescope spectra to complete the CS disk census for the late-type members of the ~=8 Myr old η Chamaeleontis star cluster. Of the 15 K- and M-type members, eight show excess emission. We find that the presence of a CS disk is anticorrelated with binarity, with all but one disk associated with single stars. With nine single stars in total, about 80% retain a CS disk. Of the six known or suspected close binaries, the only CS disk is associated with the primary of RECX 9. No circumbinary disks have been detected. We also find that stars with disks are slow rotators with surface values of specific angular momentum j=2-15jsolar. All high specific angular momentum systems with j=20-30jsolar are confined to the primary stars of binaries. This provides novel empirical evidence for rotational disk locking and again demonstrates the much shorter disk lifetimes in close binary systems compared to single-star systems. We estimate the characteristic mean disk dissipation timescale to be ~5 and ~9 Myr for the binary and single-star systems, respectively.

  12. Astrophysical disks Collective and Stochastic Phenomena

    CERN Document Server

    Fridman, Alexei M; Kovalenko, Ilya G

    2006-01-01

    The book deals with collective and stochastic processes in astrophysical discs involving theory, observations, and the results of modelling. Among others, it examines the spiral-vortex structure in galactic and accretion disks , stochastic and ordered structures in the developed turbulence. It also describes sources of turbulence in the accretion disks, internal structure of disk in the vicinity of a black hole, numerical modelling of Be envelopes in binaries, gaseous disks in spiral galaxies with shock waves formation, observation of accretion disks in a binary system and mass distribution of luminous matter in disk galaxies. The editors adaptly brought together collective and stochastic phenomena in the modern field of astrophysical discs, their formation, structure, and evolution involving the methodology to deal with, the results of observation and modelling, thereby advancing the study in this important branch of astrophysics and benefiting Professional Researchers, Lecturers, and Graduate Students.

  13. The effects of viscosity on circumplanetary disks

    Institute of Scientific and Technical Information of China (English)

    De-Fu Bu; Hsien Shang; Feng Yuan

    2013-01-01

    The effects of viscosity on the circumplanetary disks residing in the vicinity of protoplanets are investigated through two-dimensional hydrodynamical simulations with the shearing sheet model.We find that viscosity can considerably affect properties of the circumplanetary disk when the mass of the protoplanet Mp (<) 33 M(⊙),where M(⊙) is the Earth's mass.However,effects of viscosity on the circumplanetary disk are negligibly small when the mass of the protoplanet Mp(>) 33 M(⊙).We find that when Mp(<) 33 M(⊙),viscosity can markedly disrupt the spiral structure of the gas around the planet and smoothly distribute the gas,which weakens the torques exerted on the protoplanet.Thus,viscosity can slow the migration speed of a protoplanet.After including viscosity,the size of the circumplanetary disk can be decreased by a factor of (>) 20%.Viscosity helps to transport gas into the circumplanetary disk from the differentially rotating circumstellar disk.The mass of the circumplanetary disk can be increased by a factor of 50% after viscosity is taken into account when Mp(<) 33 M(⊙).Effects of viscosity on the formation of planets and satellites are briefly discussed.

  14. FILAMENTARY STAR FORMATION: OBSERVING THE EVOLUTION TOWARD FLATTENED ENVELOPES

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Katherine; Looney, Leslie [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green St, Urbana, IL 61801 (United States); Johnstone, Doug [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8W 3P6 (Canada); Tobin, John, E-mail: ijlee9@illinois.edu, E-mail: lwl@illinois.edu, E-mail: Douglas.Johnstone@nrc-cnrc.gc.ca, E-mail: jtobin@nrao.edu [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States)

    2012-12-20

    Filamentary structures are ubiquitous from large-scale molecular clouds (a few parsecs) to small-scale circumstellar envelopes around Class 0 sources ({approx}1000 AU to {approx}0.1 pc). In particular, recent observations with the Herschel Space Observatory emphasize the importance of large-scale filaments (a few parsecs) and star formation. The small-scale flattened envelopes around Class 0 sources are reminiscent of the large-scale filaments. We propose an observationally derived scenario for filamentary star formation that describes the evolution of filaments as part of the process for formation of cores and circumstellar envelopes. If such a scenario is correct, small-scale filamentary structures (0.1 pc in length) with higher densities embedded in starless cores should exist, although to date almost all the interferometers have failed to observe such structures. We perform synthetic observations of filaments at the prestellar stage by modeling the known Class 0 flattened envelope in L1157 using both the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the Atacama Large Millimeter/Submillimeter Array (ALMA). We show that with reasonable estimates for the column density through the flattened envelope, the CARMA D array at 3 mm wavelengths is not able to detect such filamentary structure, so previous studies would not have detected them. However, the substructures may be detected with the CARMA D+E array at 3 mm and the CARMA E array at 1 mm as a result of more appropriate resolution and sensitivity. ALMA is also capable of detecting the substructures and showing the structures in detail compared to the CARMA results with its unprecedented sensitivity. Such detection will confirm the new proposed paradigm of non-spherical star formation.

  15. From Disks To Planets: A Theoretical Perspective

    Science.gov (United States)

    Bromley, Ben

    2016-07-01

    Circumstellar disks of gas and dust naturally produce planets. Observations of young stellar systems tell us the starting conditions, while planet surveys reveal an amazing diversity of outcomes. Theory tries to connect the dots with ideas on how planets emerge from dust within an evolving gas disk. Here I give a broad-brush view of planet formation from a theoretical perspective, noting recent ideas and successes. I also consider the challenges. The conversion of primordial dust into planetesimals is uncertain. Even the mass budget in solids is a problem, since the total mass in dust observed around young stars seems insufficient to account for the census of full-fledged planets. Toward resolving these issues, the Atacama Large Millimeter Array and the Karl G. Jansky Very Large Array are playing key roles in illuminating how disks become planets.

  16. Polarimetry with the Gemini Planet Imager: methods, performance at first light, and the circumstellar ring around HR 4796A

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, Marshall D.; Duchene, Gaspard; Millar-Blanchaer, Max; Fitzgerald, Michael P.; Graham, James R.; Wiktorowicz, Sloane J.; Kalas, Paul G.; Macintosh, Bruce; Bauman, Brian; Cardwell, Andrew; Chilcote, Jeffrey; De Rosa, Robert J.; Dillon, Daren; Doyon, René; Dunn, Jennifer; Erikson, Darren; Gavel, Donald; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Ingraham, Patrick; Kerley, Daniel; Konapacky, Quinn; Larkin, James E.; Maire, Jérôme; Marchis, Franck; Marois, Christian; Mittal, Tushar; Morzinski, Katie M.; Oppenheimer, B. R.; Palmer, David W.; Patience, Jennifer; Poyneer, Lisa; Pueyo, Laurent; Rantakyrö, Fredrik T.; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Soummer, Rémi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J. Kent; Wang, Jason J.; Wolff, Schuyler G.

    2015-01-28

    We present the first results from the polarimetry mode of the Gemini Planet Imager (GPI), which uses a new integral field polarimetry architecture to provide high contrast linear polarimetry with minimal systematic biases between the orthogonal polarizations. We describe the design, data reduction methods, and performance of polarimetry with GPI. Point spread function subtraction via di erential polarimetry suppresses unpolarized starlight by a factor of over 100, and provides sensitivity to circumstellar dust reaching the photon noise limit for these observations. In the case of the circumstellar disk around HR 4796A, GPI's advanced adaptive optics system reveals the disk clearly even prior to PSF subtraction. In polarized light, the disk is seen all the way in to its semi-minor axis for the first time. The disk exhibits surprisingly strong asymmetry in polarized intensity, with the west side ≳ 9 times brighter than the east side despite the fact that the east side is slightly brighter in total intensity. Based on a synthesis of the total and polarized intensities, we now believe that the west side is closer to us, contrary to most prior interpretations. Forward scattering by relatively large silicate dust particles leads to the strong polarized intensity on the west side, and the ring must be slightly optically thick in order to explain the lower brightness in total intensity there. These findings suggest that the ring is geometrically narrow and dynamically cold, perhaps shepherded by larger bodies in the same manner as Saturn's F ring.

  17. POLARIMETRY WITH THE GEMINI PLANET IMAGER: METHODS, PERFORMANCE AT FIRST LIGHT, AND THE CIRCUMSTELLAR RING AROUND HR 4796A

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, Marshall D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Duchene, Gaspard; Graham, James R.; Kalas, Paul G. [Astronomy Department, University of California, Berkeley, Hearst Field Annex B-20, Berkeley, CA 94720-3411 (United States); Millar-Blanchaer, Max [Department of Astronomy and Astrophysics, University of Toronto, Toronto ON M5S 3H4 (Canada); Fitzgerald, Michael P.; Chilcote, Jeffrey [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Wiktorowicz, Sloane J.; Dillon, Daren; Gavel, Donald [Department of Astronomy, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Macintosh, Bruce; Bauman, Brian [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94040 (United States); Cardwell, Andrew; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale [Gemini Observatory, Casilla 603 La Serena (Chile); De Rosa, Robert J. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287 (United States); Doyon, René [Department de Physique, Université de Montréal, Montréal QC H3C 3J7 (Canada); Dunn, Jennifer; Erikson, Darren [National Research Council of Canada Herzberg, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); and others

    2015-02-01

    We present the first results from the polarimetry mode of the Gemini Planet Imager (GPI), which uses a new integral field polarimetry architecture to provide high contrast linear polarimetry with minimal systematic biases between the orthogonal polarizations. We describe the design, data reduction methods, and performance of polarimetry with GPI. Point-spread function (PSF) subtraction via differential polarimetry suppresses unpolarized starlight by a factor of over 100, and provides sensitivity to circumstellar dust reaching the photon noise limit for these observations. In the case of the circumstellar disk around HR 4796A, GPI's advanced adaptive optics system reveals the disk clearly even prior to PSF subtraction. In polarized light, the disk is seen all the way in to its semi-minor axis for the first time. The disk exhibits surprisingly strong asymmetry in polarized intensity, with the west side ≳ 9 times brighter than the east side despite the fact that the east side is slightly brighter in total intensity. Based on a synthesis of the total and polarized intensities, we now believe that the west side is closer to us, contrary to most prior interpretations. Forward scattering by relatively large silicate dust particles leads to the strong polarized intensity on the west side, and the ring must be slightly optically thick in order to explain the lower brightness in total intensity there. These findings suggest that the ring is geometrically narrow and dynamically cold, perhaps shepherded by larger bodies in the same manner as Saturn's F ring.

  18. Galaxy Disks

    CERN Document Server

    van der Kruit, P C

    2011-01-01

    The formation and evolution of galactic disks is particularly important for understanding how galaxies form and evolve, and the cause of the variety in which they appear to us. Ongoing large surveys, made possible by new instrumentation at wavelengths from the ultraviolet (GALEX), via optical (HST and large groundbased telescopes) and infrared (Spitzer) to the radio are providing much new information about disk galaxies over a wide range of redshift. Although progress has been made, the dynamics and structure of stellar disks, including their truncations, are still not well understood. We do now have plausible estimates of disk mass-to-light ratios, and estimates of Toomre's $Q$ parameter show that they are just locally stable. Disks are mostly very flat and sometimes very thin, and have a range in surface brightness from canonical disks with a central surface brightness of about 21.5 $B$-mag arcsec$^{-2}$ down to very low surface brightnesses. It appears that galaxy disks are not maximal, except possibly in ...

  19. Protoplanetary Disks in Multiple Star Systems

    Science.gov (United States)

    Harris, Robert J.

    Most stars are born in multiple systems, so the presence of a stellar companion may commonly influence planet formation. Theory indicates that companions may inhibit planet formation in two ways. First, dynamical interactions can tidally truncate circumstellar disks. Truncation reduces disk lifetimes and masses, leaving less time and material for planet formation. Second, these interactions might reduce grain-coagulation efficiency, slowing planet formation in its earliest stages. I present three observational studies investigating these issues. First is a spatially resolved Submillimeter Array (SMA) census of disks in young multiple systems in the Taurus-Auriga star-forming region to study their bulk properties. With this survey, I confirmed that disk lifetimes are preferentially decreased in multiples: single stars have detectable millimeter-wave continuum emission twice as often as components of multiples. I also verified that millimeter luminosity (proportional to disk mass) declines with decreasing stellar separation. Furthermore, by measuring resolved-disk radii, I quantitatively tested tidal-truncation theories: results were mixed, with a few disks much larger than expected. I then switch focus to the grain-growth properties of disks in multiple star systems. By combining SMA, Combined Array for Research in Millimeter Astronomy (CARMA), and Jansky Very Large Array (VLA) observations of the circumbinary disk in the UZ Tau quadruple system, I detected radial variations in the grain-size distribution: large particles preferentially inhabit the inner disk. Detections of these theoretically predicted variations have been rare. I related this to models of grain coagulation in gas disks and find that our results are consistent with growth limited by radial drift. I then present a study of grain growth in the disks of the AS 205 and UX Tau multiple systems. By combining SMA, Atacama Large Millimeter/submillimeter Array (ALMA), and VLA observations, I detected radial

  20. The End of Protoplanetary Disk Evolution: An ALMA Survey of Upper Scorpius

    Science.gov (United States)

    Barenfeld, Scott A.; Carpenter, John M.; Sargent, Anneila I.; Ricci, Luca; Isella, Andrea

    2017-01-01

    The evolution of the mass of solids in circumstellar disks is a key factor in determining how planets form. Infrared observations have established that the dust in primordial disks vanishes around the majority of stars by an age of 5-10 Myr. However, how this disappearance proceeds is poorly constrained. Only with longer wavelength observations, where the dust emission is optically thin, is it possible to measure disk dust mass and how it varies as a function of age. To this end, we have obtained ALMA 0.88 mm observations of over 100 sources with suspected circumstellar disks in the Upper Scorpius OB Association (Upper Sco). The 5-11 Myr age of Upper Sco suggests that any such disks will be quite evolved, making this association an ideal target to compare to systems of younger disks in order to study evolution. With ALMA, we achieve an order of magnitude improvement in sensitivity over previous (sub)millimeter surveys of Upper Sco and detect 58 disks in the continuum. We calculate the total dust masses of these disks and compare their masses to those of younger disks in Taurus, Lupus, and Chamaeleon. We find strong evidence for a decline in disk dust mass between these 1-3 Myr old systems and the 5-11 Myr old Upper Sco. Our results represent the first definitive measurement of a decline in disk dust mass with age.

  1. The Disk Population of the Upper Scorpius Association

    Science.gov (United States)

    Luhman, K. L.; Mamajek, E. E.

    2012-10-01

    We present photometry at 3-24 μm for all known members of the Upper Scorpius association (τ ~ 11 Myr) based on all images of these objects obtained with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer. We have used these data to identify the members that exhibit excess emission from circumstellar disks and estimate the evolutionary stages of these disks. Through this analysis, we have found ~50 new candidates for transitional, evolved, and debris disks. The fraction of members harboring inner primordial disks is 1.2 M ⊙) and increases with later types to a value of ~25% at gsimM5 (M survive for at least ~10 Myr. Finally, we demonstrate that the distribution of excess sizes in Upper Sco and the much younger Taurus star-forming region (τ ~ 1 Myr) is consistent with the same, brief timescale for clearing of inner disks.

  2. HD 95881: A gas rich to gas poor transition disk?

    CERN Document Server

    Verhoeff, A P; Acke, B; van Boekel, R; Pantin, E; Waters, L B F M; Tielens, A G G M; Ancker, M E van den; Mulders, G D; de Koter, A; Bouwman, J

    2010-01-01

    Context. Based on the far infrared excess the Herbig class of stars is divided into a group with flaring circumstellar disks (group I) and a group with flat circumstellar disks (group II). Dust sedimentation is generally proposed as an evolution mechanism to transform flaring disks into flat disks. Theory predicts that during this process the disks preserve their gas content, however observations of group II Herbig Ae stars demonstrate a lack of gas. Aims. We map the spatial distribution of the gas and dust around the group II Herbig Ae star HD 95881. Methods. We analyze optical photometry, Q-band imaging, infrared spectroscopy, and K and N-band interferometric spectroscopy. We use a Monte Carlo radiative transfer code to create a model for the density and temperature structure which quite accurately reproduces all the observables. Results. We derive a consistent picture in which the disk consists of a thick puffed up inner rim and an outer region which has a flaring gas surface and is relatively void of 'vis...

  3. Detection of an inner gaseous component in a Herbig Be star accretion disk: Near- and mid-infrared spectro-interferometry and radiative transfer modeling of MWC 147

    CERN Document Server

    Kraus, Stefan; Ohnaka, Keiichi

    2007-01-01

    We study the geometry and the physical conditions in the inner (AU-scale) circumstellar region around the young Herbig Be star MWC 147 using long-baseline spectro-interferometry in the near-infrared (NIR K-band, VLTI/AMBER observations and PTI archive data) as well as the mid-infrared (MIR N-band, VLTI/MIDIobservations). The emission from MWC 147 is clearly resolved and has a characteristic physical size of approx. 1.3 AU and 9 AU at 2.2 micron and 11 micron respectively (Gaussian diameter). The spectrally dispersed AMBER and MIDI interferograms both show a strong increase in the characteristic size towards longer wavelengths, much steeper than predicted by analytic disk models assuming power-law radial temperature distributions. We model the interferometric data and the spectral energy distribution of MWC 147 with 2-D, frequency-dependent radiation transfer simulations. This analysis shows that models of spherical envelopes or passive irradiated Keplerian disks (with vertical or curved puffed-up inner rim) c...

  4. Envelopes of Commutative Rings

    Institute of Scientific and Technical Information of China (English)

    Rafael PARRA; Manuel SAOR(I)N

    2012-01-01

    Given a significative class F of commutative rings,we study the precise conditions under which a commutative ring R has an F-envelope.A full answer is obtained when.F is the class of fields,semisimple commutative rings or integral domains.When F is the class of Noetherian rings,we give a full answer when the Krull dimension of R is zero and when the envelope is required to be epimorphic.The general problem is reduced to identifying the class of non-Noetherian rings having a monomorphic Noetherian envelope,which we conjecture is the empty class.

  5. Morphologically complex protostellar envelopes : structure and kinematics

    Science.gov (United States)

    Tobin, John J.

    I present an in-depth study of protostars and their surrounding envelopes of dense gas and dust, using a multitude of observational methods to reveal new details of the star formation process. I use mid-infrared imaging from the Spitzer Space Telescope, combined with photometry spanning the near-infrared to millimeter wavelengths, to construct a model of the L1527 protostellar system. I modeled both the spectral energy distribution and resolved scattered light images to determine physical properties of the protostellar system. The nature of the apparent central point source in the Spitzer images was uncertain until high-resolution L-band imaging from the Gemini observatory resolved the point source into a disk in scattered light, having a radius of 200 AU. Protostellar envelopes are also often found to cast shadows against the 8 micron Galactic background in Spitzer imaging, enabling direct probes of envelope structure. The shadow images show that the dense envelopes around twenty-two Class 0 protostars are generally morphologically complex from 0.1 pc scales down to ˜1000 AU; they are often filamentary, and frequently non-axisymmetric. The observed envelope structure indicates a likely origin in turbulent cloud structure rather than a quasi-static/equilibrium formation. The complex envelope structure also may indicate an increased likelihood of fragmentation during collapse, forming close binaries. To further characterize these envelopes, I have observed them in the dense molecular gas tracers nthp and nht, both of which closely follow the 8 micron extinction morphology. The magnitude of the velocity gradients and envelope complexity on ˜10000 AU scales indicates that the velocity structure may reflect large-scale infall in addition to the often assumed rotation. Comparisons with three-dimensional filamentary and symmetric rotating collapse models reinforce the interpretation of velocities reflecting large-scale infall, showing that the structure of the envelope

  6. The kinematic relationship between disk and jet in the DG Tauri system

    CERN Document Server

    Testi, L; Sargent, A I; Ray, T P; Eislöffel, J

    2002-01-01

    We present high angular resolution millimeter wavelength continuum and 13CO(2-1) observations of the circumstellar disk surrounding the TTauri star DG Tauri. We show that the velocity pattern in the inner regions of the disk is consistent with Keplerian rotation about a central 0.67 Msun star. The disk rotation is also consistent with the toroidal velocity pattern in the initial channel of the optical jet, as inferred from HST spectra of the first de-projected 100 AU from the source. Our observations support the tight relationship between disk and jet kinematics postulated by the popular magneto-centrifugal models for jet formation and collimation.

  7. The WIRED Survey. IV. New Dust Disks from the McCook & Sion White Dwarf Catalog

    CERN Document Server

    Hoard, D W; Wachter, Stefanie; Leisawitz, David T; Cohen, Martin

    2013-01-01

    We have compiled photometric data from the Wide-field Infrared Survey Explorer All Sky Survey and other archival sources for the more than 2200 objects in the original McCook & Sion Catalog of Spectroscopically Identified White Dwarfs. We applied color-selection criteria to identify 28 targets whose infrared spectral energy distributions depart from the expectation for the white dwarf photosphere alone. Seven of these are previously known white dwarfs with circumstellar dust disks, five are known central stars of planetary nebulae, and six were excluded for being known binaries or having possible contamination of their infrared photometry. We fit white dwarf models to the spectral energy distributions of the remaining ten targets, and find seven new candidates with infrared excess suggesting the presence of a circumstellar dust disk. We compare the model dust disk properties for these new candidates with a comprehensive compilation of previously published parameters for known white dwarfs with dust disks....

  8. Thermal Responsive Envelope

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Pasold, Anke

    2015-01-01

    composite layers and their relative layer lengths thereby embedding the merged material effect to create a responsive behavioural architectural envelope. Copper and polypropylene are used as base materials for the composite structure due to their high differences in thermal expansion, surface emissivity...... create ‘programmed’ responsive composite architectural envelopes and that the organisational method of nested modular elements with nested responsive composites enables a modular building method with embedded dynamic responsive properties....

  9. Molecular anions in circumstellar envelopes, interstellar clouds and planetary atmospheres: quantum dynamics of formation and evolution

    CERN Document Server

    Carelli, Fabio

    2012-01-01

    For decades astronomers and astrophysicists believed that only positively charged ions were worthy of relevance in drawing the networks for possible chemical reactions in the interstellar medium, as well as in modeling the physical conditions in most of astrophysical environments. Thus, molecular negative ions received minor attention until their possible existence was observationally confirmed (discovery of the first interstellar anion, C6H-), about thirty years after the first physically reasonable proposal on their actual detection was theoretically surmised by E.Herbst. In an astrophysical context, their role should be then found in their involvement in the charge balance as well as in the chemical evolution of the considered environment: depending on their amount and on the global gas density, in fact, the possible evolutive scenario could be susceptible of marked variations on the estimated time needed for reaching the steady state, their presence having thus also important repercussions on the final ch...

  10. Molecular anions in circumstellar envelopes, interstellar clouds and planetary atmospheres: quantum dynamics of formation and evolution

    OpenAIRE

    Carelli, Fabio

    2011-01-01

    Nowadays, it is a well known fact that most of the matter in our Solar System, in our Galaxy and, probably, within the whole Universe, exists in the form of ionized particles. For decades astronomers and astrophysicists believed that only positively charged ions were worthy of relevance in drawing the networks for possible chemical reactions in the interstellar medium, as well as in modeling the physical conditions in most of astrophysical environments. Thus, negative ions (and especially mol...

  11. The structure of SN 1987A's outer circumstellar envelope as probed by light echoes

    Science.gov (United States)

    Crotts, Arlin; Sugerman, Ben; Lawrence, Stephen; Kunkel, William

    2001-05-01

    We present ground-based and HST images processed by image subtraction to highlight transient reflection nebulae or ``light echoes'' of the maximum light pulse of the explosion of SN 1987A from surrounding material. Along with numerous structures already discussed elsewhere, we have found (in multiple epochs of data) a new feature opposite the SN from the mysterious ``Napoleon's Hat'' which indicates a symmetric structure due to shocks internal to the SN's red supergiant wind and probably caused by the pile-up of gas due to differential velocities within the outflow. We also show how echoes betray the ram pressure distribution of the progenitor mass loss flow. .

  12. Composite grains: Application to circumstellar dust

    Directory of Open Access Journals (Sweden)

    D. B. Vaidya

    2011-09-01

    Full Text Available Using the discrete dipole approximation (DDA we calculate the absorption efficiency of the composite grain, made up of a host silicate spheroid and inclusions of graphite, in the spectral region 5.0-25.0μm. We study the absorption as a function of the voulume fraction of the inclusions. In particular, we study the variation in the 10.0μm and 18.0μm emission features with the volume fraction of the inclusions. Using the extinction efficiencies, of the composite grains we calculate the infrared fluxes at several dust temperatures and compare the model curves with the observed infrared emission curves (IRAS-LRS, obtained for circumstellar dust shells around oxygen rich M-type stars.

  13. Rapid planetesimal formation in turbulent circumstellar discs

    CERN Document Server

    Johansen, Anders; Mac Low, Mordecai-Mark; Klahr, Hubert; Henning, Thomas; Youdin, Andrew

    2007-01-01

    The initial stages of planet formation in circumstellar gas discs proceed via dust grains that collide and build up larger and larger bodies (Safronov 1969). How this process continues from metre-sized boulders to kilometre-scale planetesimals is a major unsolved problem (Dominik et al. 2007): boulders stick together poorly (Benz 2000), and spiral into the protostar in a few hundred orbits due to a head wind from the slower rotating gas (Weidenschilling 1977). Gravitational collapse of the solid component has been suggested to overcome this barrier (Safronov 1969, Goldreich & Ward 1973, Youdin & Shu 2002). Even low levels of turbulence, however, inhibit sedimentation of solids to a sufficiently dense midplane layer (Weidenschilling & Cuzzi 1993, Dominik et al. 2007), but turbulence must be present to explain observed gas accretion in protostellar discs (Hartmann 1998). Here we report the discovery of efficient gravitational collapse of boulders in locally overdense regions in the midplane. The bou...

  14. ALMA imaging of the CO snowline of the HD 163296 disk with DCO

    NARCIS (Netherlands)

    Mathews, G. S.; Klaassen, P. D.; Juhasz, A.; Harsono, D.; Chapillon, E.; van Dishoeck, E. F.; Espada, D.; de Gregorio-Monsalvo, I.; Hales, A.; Hogerheijde, M. R.; Mottram, J. C.; Rawlings, M. G.; Takahashi, S.; Testi, L.

    2013-01-01

    Context. The high spatial resolution and line sensitivity of the Atacama Large Millimeter/submillimeter Array (ALMA) opens the possibility of resolving emission from molecules in large samples of circumstellar disks. With an understanding of the conditions under which these molecules can have high a

  15. Stirring up the dust: a dynamical model for halo-like dust clouds in transitional disks

    NARCIS (Netherlands)

    Krijt, S.; Dominik, C.

    2011-01-01

    Context. A small number of young stellar objects show signs of a halo-like structure of optically thin dust, in addition to a circumstellar disk. This halo or torus is located within a few AU of the star, but its origin has not yet been understood. Aims. A dynamically excited cloud of planetesimals

  16. OCCULTATION OF THE T TAURI STAR RW AURIGAE A BY ITS TIDALLY DISRUPTED DISK

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Joseph E.; Stassun, Keivan G. [Department of Physics, Fisk University, 1000 17th Avenue North, Nashville, TN 37208 (United States); Pepper, Joshua; Siverd, Robert J.; Cargile, Phillip [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235 (United States); Beatty, Thomas G.; Gaudi, B. Scott [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States)

    2013-11-01

    RW Aur A is a classical T Tauri star, believed to have undergone a reconfiguration of its circumstellar environment as a consequence of a recent flyby of its stellar companion, RW Aur B. This interaction stripped away part of the circumstellar disk of RW Aur A, leaving a tidally disrupted ''arm'' and a short truncated circumstellar disk. We present photometric observations of the RW Aur system from the Kilodegree Extremely Little Telescope survey showing a long and deep dimming that occurred from 2010 September until 2011 March. The dimming has a depth of ∼2 mag, a duration of ∼180 days, and was confirmed by archival observations from American Association of Variable Star Observers. We suggest that this event is the result of a portion of the tidally disrupted disk occulting RW Aur A, specifically a fragment of the tidally disrupted arm. The calculated transverse linear velocity of the occulter is in excellent agreement with the measured relative radial velocity of the tidally disrupted arm. Using simple kinematic and geometric arguments, we show that the occulter cannot be a feature of the RW Aur A circumstellar disk, and we consider and discount other hypotheses. We also place constraints on the thickness and semimajor axis of the portion of the arm that occulted the star.

  17. A New View of the Circumstellar Environment of SN 1987A

    Science.gov (United States)

    Sugerman, Ben E. K.; Crotts, Arlin P. S.; Kunkel, William E.; Heathcote, Stephen R.; Lawrence, Stephen S.

    2005-07-01

    We summarize the analysis of a uniform set of both previously known and newly discovered scattered-light echoes, detected within 30" of SN 1987A in 10 years of optical imaging, and with which we have constructed the most complete three-dimensional model of the progenitor's circumstellar environment. Surrounding the SN is a richly structured bipolar nebula. An outer, double-lobed ``peanut,'' which we believe is the contact discontinuity between the red supergiant and main-sequence winds, is a prolate shell extending 28 lt-yr along the poles and 11 lt-yr near the equator. Napoleon's Hat, previously believed to be an independent structure, is the waist of this peanut, which is pinched to a radius of 6 lt-yr. Interior, the innermost circumstellar material lies along a cylindrical hourglass, 1 lt-yr in radius and 4 lt-yr long, which connects to the peanut by a thick equatorial disk. The nebulae are inclined 41° south and 8° east of the line of sight, slightly elliptical in cross section, and marginally offset west of the SN. The three-dimensional geometry of the three circumstellar rings is studied, suggesting the northern and southern rings are located 1.3 and 1.0 lt-yr from the SN, while the equatorial ring is elliptical (b/a~0.03 cm-3 the maximum dust-grain size increases from ~0.2 to 2 μm and the silicate:carbonaceous dust ratio decreases. The nebulae have a total mass of ~1.7 Msolar, yielding a red-supergiant mass loss around 5×10-6 Msolar yr-1. We compare these results to current formation models and find that no model has successfully reproduced this system. However, our results suggest a heuristic evolutionary sequence in which the progenitor evolves through two ``blue loops,'' perhaps accompanied by a close binary companion.

  18. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R. D. [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Srinivasan, S.; Kemper, F.; Ling, B. [Academia Sinica, Institute of Astronomy and Astrophysics, 11F of Astronomy-Mathematics Building, NTU/AS, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Volk, K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.

  19. Spitzer SAGE-Spec: Near Infrared Spectroscopy, Dust Shells, and Cool Envelopes in Extreme Large Magellanic Cloud Asymptotic Giant Branch Stars

    Science.gov (United States)

    Blum, R. D.; Srinivasan, S.; Kemper, F.; Ling, B.; Volk, K.

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ``tip" of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ``stellar" cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  20. Carbon Monoxide Emissions in Middle Aged Debris Disks

    Science.gov (United States)

    Henderson, Morgan; Gorti, Uma; Hales, Antonio; Carpenter, John M.; Hughes, A. Meredith

    2017-01-01

    Circumstellar disks greater than 10 Myr old, referred to as debris disks, are expected to be gas poor. The original gas and dust in these disks is thought to be accreted onto the host stars, used up in the formation of planets and other bodies, or blown out of the disks via stellar radiation. However, recent ALMA observations at millimeter wavelengths have led to the detection of carbon monoxide (J=2-1) emission in a few debris disks, prompting further investigation.Using ALMA data, two separate models of gas genesis were tested against observations of the CO emissions in the disks around HIP 73145, HIP 76310, and HIP 84881 in the Upper Sco association. One of these models was built on the hypothesis that the gas in these debris disks is left over from stellar formation and has persisted over uncommonly long periods of time. The other model is built on the hypothesis that this gas is of secondary nature, produced by collisions between planetary bodies in the debris disks. Model emissions were calculated using the Line Modeling Engine (LIME) radiative transfer code and were compared with observational data to infer gas masses under both production scenarios. The implications of the masses of carbon monoxide in the disks suggested by each of the two models are discussed.

  1. Demographics Of Protoplanetary Disks In Nearby Molecular Clouds (A Submm View)

    Science.gov (United States)

    Cieza, Lucas

    2016-07-01

    Recent observations from ALMA and extreme AO near-IR imagers are revolutionizing our view of disk evolution and planet formation. Resolved disk observations show intriguing features, such as spiral arms, rings, narrow gaps, and asymmetries. These features are often interpreted as evidence for planet formation processes. However, resolved studies have so far been very biased toward the brightest systems and/or transition objects (protoplanetary disks with inner holes and gaps), which are clearly not representative of the entire disk population. Since current statistics on extrasolar planets imply that most circumstellar disks should be forming planets (big or small), it is important to investigate the full distribution of disk properties present in star-forming regions. In this talk, I will review the results from demographic studies in nearby molecular clouds and the constraints they impose to both disk evolution and planet formation theory.

  2. Radiative Ablation of Disks Around Massive Stars

    CERN Document Server

    Kee, N D

    2015-01-01

    Hot, massive stars (spectral types O and B) have extreme luminosities ($10^4 -10^6 L_\\odot$) that drive strong stellar winds through UV line-scattering. Some massive stars also have disks, formed by either decretion from the star (as in the rapidly rotating "Classical Be stars"), or accretion during the star's formation. This dissertation examines the role of stellar radiation in driving (ablating) material away from these circumstellar disks. A key result is that the observed month to year decay of Classical Be disks can be explained by line-driven ablation without, as previously done, appealing to anomalously strong viscous diffusion. Moreover, the higher luminosity of O stars leads to ablation of optically thin disks on dynamical timescales of order a day, providing a natural explanation for the lack of observed Oe stars. In addition to the destruction of Be disks, this dissertation also introduces a model for their formation by coupling observationally inferred non-radial pulsation modes and rapid stellar...

  3. Ionization and Dust Charging in Protoplanetary Disks

    Science.gov (United States)

    Ivlev, A. V.; Akimkin, V. V.; Caselli, P.

    2016-12-01

    Ionization-recombination balance in dense interstellar and circumstellar environments is a key factor for a variety of important physical processes, such as chemical reactions, dust charging and coagulation, coupling of the gas with magnetic field, and development of instabilities in protoplanetary disks. We determine a critical gas density above which the recombination of electrons and ions on the grain surface dominates over the gas-phase recombination. For this regime, we present a self-consistent analytical model, which allows us to calculate exactly the abundances of charged species in dusty gas, without making assumptions on the grain charge distribution. To demonstrate the importance of the proposed approach, we check whether the conventional approximation of low grain charges is valid for typical protoplanetary disks, and discuss the implications for dust coagulation and development of the “dead zone” in the disk. The presented model is applicable for arbitrary grain-size distributions and, for given dust properties and conditions of the disk, has only one free parameter—the effective mass of the ions, shown to have a small effect on the results. The model can be easily included in numerical simulations following the dust evolution in dense molecular clouds and protoplanetary disks.

  4. Accretion disks in luminous young stellar objects

    CERN Document Server

    Beltran, M T

    2015-01-01

    An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and therefore predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.

  5. Binarity as a key factor in protoplanetary disk evolution: Spitzer disk census of the eta Chamaeleontis cluster

    CERN Document Server

    Bouwman, J; Dominik, C; Feigelson, E D; Henning, T; Tielens, A G G M; Waters, L B F M; Henning, Th.

    2006-01-01

    The formation of planets is directly linked to the evolution of the circumstellar (CS) disk from which they are born. The dissipation timescales of CS disks are, therefore, of direct astrophysical importance in evaluating the time available for planet formation. We employ Spitzer Space Telescope spectra to complete the CS disk census for the late-type members of the ~8 Myr-old eta Chamaeleontis star cluster. Of the 15 K- and M-type members, eight show excess emission. We find that the presence of a CS disk is anti-correlated with binarity, with all but one disk associated with single stars. With nine single stars in total, about 80% retain a CS disk. Of the six known or suspected close binaries the only CS disk is associated with the primary of RECX 9. No circumbinary disks have been detected. We also find that stars with disks are slow rotators with surface values of specific angular momentum j = 2-15 j_sun. All high specific angular momentum systems with j = 20-30 j_sun are confined to the primary stars of ...

  6. A New View of the Circumstellar Environment of SN 1987A

    CERN Document Server

    Sugerman, B E K; Kunkel, W E; Heathcote, S R; Lawrence, S S; Sugerman, Ben E. K.; Crotts, Arlin P. S.; Kunkel, William E.; Heathcote, Stephen R.; Lawrence, Stephen S.

    2005-01-01

    We summarize the analysis of a uniform set of both previously-known and newly-discovered scattered-light echoes, detected within 30" of SN 1987A in ten years of optical imaging, and with which we have constructed the most complete three-dimensional model of the progenitor's circumstellar environment. Surrounding the SN is a richly-structured bipolar nebula. An outer, double-lobed ``peanut,'' which we believe is the contact discontinuity between the red supergiant and main sequence winds, is a prolate shell extending 28 ly along the poles and 11 ly near the equator. Napoleon's Hat, previously believed to be an independent structure, is the waist of this peanut, which is pinched to a radius of 6 ly. Interior, the innermost circumstellar material lies along a cylindrical hourglass, 1 ly in radius and 4 ly long, which connects to the peanut by a thick equatorial disk. The nebulae are inclined 41o south and 8o east of the line of sight, slightly elliptical in cross section, and marginally offset west of the SN. Th...

  7. Synthetic Spectra and Light Curves of Interacting Binaries and Exoplanets with Circumstellar Material: SHELLSPEC

    Science.gov (United States)

    Budaj, Ján

    2012-04-01

    Program SHELLSPEC is designed to calculate light-curves, spectra and images of interacting binaries and extrasolar planets immersed in a moving circumstellar environment which is optically thin. It solves simple radiative transfer along the line of sight in moving media. The assumptions include LTE and optional known state quantities and velocity fields in 3D. Optional (non)transparent objects such as a spot, disc, stream, jet, shell or stars may be defined (embedded) in 3D and their composite synthetic spectrum calculated. The Roche model can be used as a boundary condition for the radiative transfer. Recently, a new model of the reflection effect, dust and Mie scattering were incorporated into the code. ɛ Aurigae is one of the most mysterious objects on the sky. Prior modeling of its light-curve assumed a dark, inclined, disk of dust with a central hole to explain the light-curve with a sharp mid-eclipse brightening. Our model consists of two geometrically thick flared disks: an internal optically thick disk and an external optically thin disk which absorbs and scatters radiation. Shallow mid-eclipse brightening may result from eclipses by nearly edge-on flared (dusty or gaseous) disks. Mid-eclipse brightening may also be due to strong forward scattering and optical properties of the dust which can have an important effect on the light-curves. There are many similarities between interacting binary stars and transiting extrasolar planets. The reflection effect which is briefly reviewed is one of them. The exact Roche shape and temperature distributions over the surface of all currently known transiting extrasolar planets have been determined. In some cases (HAT-P-32b, WASP-12b, WASP-19b), departures from the spherical shape can reach 7-15%.

  8. The photoproduction of circumstellar OH maser shells

    Science.gov (United States)

    Huggins, P. J.; Glassgold, A. E.

    1982-01-01

    The structure of OH shells formed from the photodestruction of H2O by ambient UV photons in the thick, expanding envelopes around cool evolved stars is investigated. The properties of the shells are governed mainly by the envelope shielding which in turn is primarily controlled by the mass-loss rate M. The peak OH densities and column densities through the shells are, respectively, slowly decreasing and increasing functions of M. The characteristic radii of the shells also depend on M, increasing from about 4(15) cm for M = 1(-6) solar mass/yr to about 1(17) cm for M = 1(-4) solar mass/yr; this dependence is well matched by recent observational data, and lends support to the OH photoproduction mechanism.

  9. Linac Envelope Optics

    CERN Document Server

    Baartman, Rick

    2015-01-01

    I develop the formalism that allows calculation of beam envelopes through a linear accelerator given its on-axis electric field. Space charge can naturally be added using Sacherer formalism. A complicating feature is that the reference particle's energy-time coordinates are not known a priori. Since first order matrix formalism applies to deviations from the reference particle, this means the reference particle's time and energy must be calculated simultaneously with the beam envelope and transfer matrix. The code TRANSOPTR is used to track envelopes for general elements whose infinitesimal transfer matrices are known, and in the presence of space charge. Incorporation of the linac algorithm into TRANSOPTR is described, and some examples given.

  10. Morphology of the very inclined debris disk around HD 32297

    Science.gov (United States)

    Boccaletti, A.; Augereau, J.-C.; Lagrange, A.-M.; Milli, J.; Baudoz, P.; Mawet, D.; Mouillet, D.; Lebreton, J.; Maire, A.-L.

    2012-08-01

    Context. Direct imaging of circumstellar disks at high angular resolution is mandatory to provide morphological information that constrains their properties, in particular the spatial distribution of dust. For a long time, this challenging objective was, in most cases, only within the realm of space telescopes from the visible to the infrared. New techniques combining observing strategy and data processing now allow very high-contrast imaging with 8-m class ground-based telescopes (10-4 to 10-5 at ~1'') and complement space telescopes while improving angular resolution at near infrared wavelengths. Aims: We present the results of a program carried out at the VLT with NACO to image known debris disks with higher angular resolution in the near-infrared than ever before in order to study morphological properties and ultimately detect the signpost of planets. Methods: The observing method makes use of advanced techniques of adaptive optics, coronagraphy, and differential imaging, a combination designed to directly image exoplanets with the upcoming generation of "planet finders" such as GPI (Gemini Planet Imager) and SPHERE (Spectro-Polarimetric High contrast Exoplanet REsearch). Applied to extended objects such as circumstellar disks, the method is still successful but produces significant biases in terms of photometry and morphology. We developed a new model-matching procedure to correct for these biases and hence provide constraints on the morphology of debris disks. Results: From our program, we present new images of the disk around the star HD 32297 obtained in the H (1.6 μm) and Ks (2.2 μm) bands with an unprecedented angular resolution (~65 mas). The images show an inclined thin disk detected at separations larger than 0.5-0.6″. The modeling stage confirms a very high inclination (i = 88°) and the presence of an inner cavity inside r0 ≈ 110 AU. We also find that the spine (line of maximum intensity along the midplane) of the disk is curved, which we

  11. Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes

    Science.gov (United States)

    Artymowicz, Pawel; Lubow, Stephen H.

    1994-01-01

    We investigate the gravitational interaction of a generally eccentric binary star system with circumbinary and circumstellar gaseous disks. The disks are assumed to be coplanar with the binary, geometrically thin, and primarily governed by gas pressure and (turbulent) viscosity but not self-gravity. Both ordinary and eccentric Lindblad resonances are primarily responsible for truncating the disks in binaries with arbitrary eccentricity and nonextreme mass ratio. Starting from a smooth disk configuration, after the gravitational field of the binary truncates the disk on the dynamical timescale, a quasi-equilibrium is achieved, in which the resonant and viscous torques balance each other and any changes in the structure of the disk (e.g., due to global viscous evolution) occur slowly, preserving the average size of the gap. We analytically compute the approximate sizes of disks (or disk gaps) as a function of binary mass ratio and eccentricity in this quasi-equilibrium. Comparing the gap sizes with results of direct simulations using the smoothed particle hydrodynamics (SPH), we obtain a good agreement. As a by-product of the computations, we verify that standard SPH codes can adequately represent the dynamics of disks with moderate viscosity, Reynolds number R approximately 10(exp 3). For typical viscous disk parameters, and with a denoting the binary semimajor axis, the inner edge location of a circumbinary disk varies from 1.8a to 2.6a with binary eccentricity increasing from 0 to 0.25. For eccentricities 0 less than e less than 0.75, the minimum separation between a component star and the circumbinary disk inner edge is greater than a. Our calculations are relevant, among others, to protobinary stars and the recently discovered T Tau pre-main-sequence binaries. We briefly examine the case of a pre-main-sequence spectroscopic binary GW Ori and conclude that circumbinary disk truncation to the size required by one proposed spectroscopic model cannot be due to

  12. Resolving the inner disk of UX Orionis

    Science.gov (United States)

    Kreplin, A.; Madlener, D.; Chen, L.; Weigelt, G.; Kraus, S.; Grinin, V.; Tambovtseva, L.; Kishimoto, M.

    2016-05-01

    Aims: The cause of the UX Ori variability in some Herbig Ae/Be stars is still a matter of debate. Detailed studies of the circumstellar environment of UX Ori objects (UXORs) are required to test the hypothesis that the observed drop in photometry might be related to obscuration events. Methods: Using near- and mid-infrared interferometric AMBER and MIDI observations, we resolved the inner circumstellar disk region around UX Ori. Results: We fitted the K-, H-, and N-band visibilities and the spectral energy distribution (SED) of UX Ori with geometric and parametric disk models. The best-fit K-band geometric model consists of an inclined ring and a halo component. We obtained a ring-fit radius of 0.45 ± 0.07 AU (at a distance of 460 pc), an inclination of 55.6 ± 2.4°, a position angle of the system axis of 127.5 ± 24.5°, and a flux contribution of the over-resolved halo component to the total near-infrared excess of 16.8 ± 4.1%. The best-fit N-band model consists of an elongated Gaussian with a HWHM ~ 5 AU of the semi-major axis and an axis ration of a/b ~ 3.4 (corresponding to an inclination of ~72°). With a parametric disk model, we fitted all near- and mid-infrared visibilities and the SED simultaneously. The model disk starts at an inner radius of 0.46 ± 0.06 AU with an inner rim temperature of 1498 ± 70 K. The disk is seen under an nearly edge-on inclination of 70 ± 5°. This supports any theories that require high-inclination angles to explain obscuration events in the line of sight to the observer, for example, in UX Ori objects where orbiting dust clouds in the disk or disk atmosphere can obscure the central star. Based on observations made with ESO telescopes at Paranal Observatory under program IDs: 090.C-0769, 074.C-0552.

  13. Dust Evolution in Protoplanetary Disks

    Science.gov (United States)

    Testi, L.; Birnstiel, T.; Ricci, L.; Andrews, S.; Blum, J.; Carpenter, J.; Dominik, C.; Isella, A.; Natta, A.; Williams, J. P.; Wilner, D. J.

    In the core-accretion scenario for the formation of planetary rocky cores, the first step toward planet formation is the growth of dust grains into larger and larger aggregates and eventually planetesimals. Although dust grains are thought to grow up to micrometer-sized particles in the dense regions of molecular clouds, the growth to pebbles and kilometer-sized bodies must occur at the high densities within protoplanetary disks. This critical step is the last stage of solids evolution that can be observed directly in extrasolar systems before the appearance of large planetary-sized bodies. In this chapter we review the constraints on the physics of grain-grain collisions as they have emerged from laboratory experiments and numerical computations. We then review the current theoretical understanding of the global processes governing the evolution of solids in protoplanetary disks, including dust settling, growth, and radial transport. The predicted observational signatures of these processes are summarized. We briefly discuss grain growth in molecular cloud cores and in collapsing envelopes of protostars, as these likely provide the initial conditions for the dust in protoplanetary disks. We then review the observational constraints on grain growth in disks from millimeter surveys, as well as the very recent evidence for radial variations of the dust properties in disks. We also include a brief discussion on the small end of the grain size distribution and dust settling as derived from optical, near-, and mid-infrared observations. Results are discussed in the context of global dust-evolution models; in particular, we focus on the emerging evidence for a very efficient early growth of grains and the radial distribution of maximum grain sizes as the result of growth barriers. We also highlight the limits of the current models of dust evolution in disks, including the need to slow the radial drift of grains to overcome the migration/fragmentation barrier.

  14. The effects of circumstellar gas on terrestrial planet formation: Theory and observation

    Science.gov (United States)

    Mandell, Avram M.

    Our understanding of the evolution of circumstellar material from dust and gas to fully-formed planets has taken dramatic steps forward in the last decade, driven by rapid improvements in our ability to study gas- and dust-rich disks around young stars and the discovery of more than 200 extra-solar planetary systems around other stars. In addition, our ability to model the formation of both terrestrial and giant planets has improved significantly due to new computing techniques and the continued exponential increase in computing power. In this dissertation I expand on existing theories of terrestrial planet formation to include systems similar to those currently being detected around nearby stars, and I develop new observational techniques to probe the chemistry of gas-rich circumstellar disks where such planetary systems may be forming. One of the most significant characteristics of observed extrasolar planetary systems is the presence of giant planets located much closer to their parent star than was thought to be possible. The presence of "Hot Jupiters", Jovian-mass planets with very short orbital periods detected around nearby main sequence stars, has been proposed to be primarily due to the inward migration of planets formed in orbits initially much further from the parent star. Close-in giant planets are thought to have formed in the cold outer regions of planetary systems and migrated inward, passing through the orbital parameter space occupied by the terrestrial planets in our own Solar System; the migration of these planets would have profound effects on the evolution of inner terrestrial planets in these systems. I first explore this scenario with numerical simulations showing that a significant fraction of terrestrial planets could survive the migration process; damping forces could then eventually re-circularize the orbits at distances relatively close to their original positions. Calculations suggest that the final orbits of a significant fraction of

  15. Cooling Requirements for the Vertical Shear Instability in Protoplanetary Disks

    CERN Document Server

    Lin, Min-Kai

    2015-01-01

    It is difficult to understand how cold circumstellar disks accrete onto their central stars. A hydrodynamic mechanism, the vertical shear instability (VSI), offers a means to drive angular momentum transport in cold accretion disks such as protoplanetary disks (PPDs). The VSI is driven by a weak vertical gradient in the disk's orbital motion. In order to grow, the VSI must overcome vertical buoyancy, a strongly stabilizing influence in cold disks, where heating is dominated by external irradiation. Rapid cooling, via radiative losses, reduces the effective buoyancy and allows the VSI to operate. In this paper, we quantify the cooling timescale, $t_c$, needed for growth of the VSI. We perform a linear analysis of the VSI with cooling in vertically global and radially local disk models. For irradiated disks, we find that the VSI is most vigorous for rapid cooling with $t_c < \\Omega_\\mathrm{K}^{-1} h |q| / (\\gamma -1)$ in terms of the Keplerian orbital frequency, $\\Omega_\\mathrm{K}$, the disk's aspect ratio, ...

  16. THE DISK POPULATION OF THE UPPER SCORPIUS ASSOCIATION

    Energy Technology Data Exchange (ETDEWEB)

    Luhman, K. L. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Mamajek, E. E., E-mail: kluhman@astro.psu.edu [Cerro Tololo Inter-American Observatory, Casilla 603, La Serena (Chile)

    2012-10-10

    We present photometry at 3-24 {mu}m for all known members of the Upper Scorpius association ({tau} {approx} 11 Myr) based on all images of these objects obtained with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer. We have used these data to identify the members that exhibit excess emission from circumstellar disks and estimate the evolutionary stages of these disks. Through this analysis, we have found {approx}50 new candidates for transitional, evolved, and debris disks. The fraction of members harboring inner primordial disks is {approx}< 10% for B-G stars (M > 1.2 M{sub Sun }) and increases with later types to a value of {approx}25% at {approx}>M5 (M {approx}< 0.2 M{sub Sun }), in agreement with the results of previous disk surveys of smaller samples of Upper Sco members. These data indicate that the lifetimes of disks are longer at lower stellar masses and that a significant fraction of disks of low-mass stars survive for at least {approx}10 Myr. Finally, we demonstrate that the distribution of excess sizes in Upper Sco and the much younger Taurus star-forming region ({tau} {approx} 1 Myr) is consistent with the same, brief timescale for clearing of inner disks.

  17. Subaru Imaging of Asymmetric Features in a Transitional Disk in Upper Scorpius

    CERN Document Server

    Mayama, S; Muto, T; Tsukagoshi, T; Kusakabe, N; Kuzuhara, M; Takahashi, Y; Kudo, T; Dong, R; Fukagawa, M; Takami, M; Momose, M; Wisniewski, J P; Follette, K; Abe, L; Akiyama, E; Brandner, W; Brandt, T; Carson, J; Egner, S; Feldt, M; Goto, M; Grady, C A; Guyon, O; Hayano, Y; Hayashi, M; Hayashi, S; Henning, T; Hodapp, K W; Ishii, M; Iye, M; Janson, M; Kandori, R; Kwon, J; Knapp, G R; Matsuo, T; McElwain, M W; Miyama, S; Morino, J -I; Moro-Martin, A; Nishimura, T; Pyo, T -S; Serabyn, E; Suto, H; Suzuki, R; Takato, N; Terada, H; Thalmann, C; Tomono, D; Turner, E L; Watanabe, M; Yamada, T; Takami, H; Usuda, T; Tamura, M

    2012-01-01

    We report high-resolution (0.07 arcsec) near-infrared polarized intensity images of the circumstellar disk around the star 2MASS J16042165-2130284 obtained with HiCIAO mounted on the Subaru 8.2 m telescope. We present our $H$-band data, which clearly exhibits a resolved, face-on disk with a large inner hole for the first time at infrared wavelengths. We detect the centrosymmetric polarization pattern in the circumstellar material as has been observed in other disks. Elliptical fitting gives the semimajor axis, semiminor axis, and position angle (P.A.) of the disk as 63 AU, 62 AU, and -14 $^{\\circ}$, respectively. The disk is asymmetric, with one dip located at P.A.s of $\\sim85^{\\circ}$. Our observed disk size agrees well with a previous study of dust and CO emission at submillimeter wavelength with Submillimeter Array. Hence, the near-infrared light is interpreted as scattered light reflected from the inner edge of the disk. Our observations also detect an elongated arc (50 AU) extending over the disk inner h...

  18. X-RAY EMISSION FROM STRONGLY ASYMMETRIC CIRCUMSTELLAR MATERIAL IN THE REMNANT OF KEPLER'S SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Burkey, Mary T.; Reynolds, Stephen P.; Borkowski, Kazimierz J.; Blondin, John M., E-mail: reynolds@ncsu.edu [Department of Physics, North Carolina State University, Raleigh NC 27695-8202 (United States)

    2013-02-10

    Kepler's supernova remnant resulted from a thermonuclear explosion, but is interacting with circumstellar material (CSM) lost from the progenitor system. We describe a statistical technique for isolating X-ray emission due to CSM from that due to shocked ejecta. Shocked CSM coincides well in position with 24 {mu}m emission seen by Spitzer. We find most CSM to be distributed along the bright north rim, but substantial concentrations are also found projected against the center of the remnant, roughly along a diameter with position angle {approx}100 Degree-Sign . We interpret this as evidence for a disk distribution of CSM before the supernova, with the line of sight to the observer roughly in the disk plane. We present two-dimensional hydrodynamic simulations of this scenario in qualitative agreement with the observed CSM morphology. Our observations require Kepler to have originated in a close binary system with an asymptotic giant branch star companion.

  19. The circumstellar matter of supernova 2014J and the core-degenerate scenario

    CERN Document Server

    Soker, Noam

    2015-01-01

    I show that the circumstellar matter (CSM) of the type Ia supernova 2014J is too massive and its momentum too large to be accounted for by any but the core-degenerate (CD) scenario for type Ia supernovae. Assuming the absorbing gas is of CSM origin, the several shells responsible of the absorption potassium lines are accounted for by a mass loss episode from a massive asymptotic giant branch star during a common envelope phase with a white dwarf companion. The time-varying potassium lines can be accounted for by ionization of neutral potassium and the Na-from-dust absorption (NaDA) model. Before explosion some of the potassium resides in the gas phase and some in dust. Weakening in absorption strength is caused by potassium-ionizing radiation of the supernova, while release of atomic potassium from dust increases the absorption. I conclude that if the absorbing gas originated from the progenitor of SN 2014J, then a common envelope phase took place about 15,000 years ago, leading to the merging of the core wit...

  20. Near-infrared Imaging Polarimetry of Inner Region of GG Tau A Disk

    Science.gov (United States)

    Yang, Yi; Hashimoto, Jun; Hayashi, Saeko S.; Tamura, Motohide; Mayama, Satoshi; Rafikov, Roman; Akiyama, Eiji; Carson, Joseph C.; Janson, Markus; Kwon, Jungmi; de Leon, Jerome; Oh, Daehyeon; Takami, Michihiro; Tang, Ya-wen; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Egner, Sebastian; Feldt, Markus; Goto, Miwa; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Kandori, Ryo; Knapp, Gillian R.; Kuzuhara, Masayuki; Matsuo, Taro; Mcelwain, Michael W.; Miyama, Shoken; Morino, Jun-Ichi; Moro-martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Turner, Edwin L.; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Takami, Hideki; Usuda, Tomonori

    2017-01-01

    By performing non-masked polarization imaging with Subaru/HiCIAO, polarized scattered light from the inner region of the disk around the GG Tau A system was successfully detected in the H band, with a spatial resolution of approximately 0.″07, revealing the complicated inner disk structures around this young binary. This paper reports the observation of an arc-like structure to the north of GG Tau Ab, and part of a circumstellar structure that is noticeable around GG Tau Aa, extending to a distance of approximately 28 au from the primary star. The speckle noise around GG Tau Ab constrains its disk radius to north arc could be part of a large streamer flowing from the circumbinary ring to sustain the circumstellar disks. According to the previous studies, the circumstellar disk around GG Tau Aa has enough mass and can sustain itself for a duration sufficient for planet formation; thus, our study indicates that planets can form within close (separation ≲ 100 au) young binary systems.

  1. A disk asymmetry in motion around the B[e] star MWC158

    CERN Document Server

    Kluska, J; Soulez, F; Berger, J -P; Bouquin, J -B Le; Malbet, F; Lazareff, B; Thiébaut, E

    2016-01-01

    MWC158 is a star with the B[e] phenomenon that shows strong spectrophotometric variability (in lines and in UV and visible continuum) attributed to phases of shell ejection. The evolutionary stage of this star was never clearly determined. Previous interferometric, spectropolarimetric and spectro-interferometric studies suggest a disk morphology for its environment. We investigate the origin of the variability within the inner astronomical unit of the central star using near-infrared interferometric observations with PIONIER at the VLTI over a two-year period. We performed an image reconstruction of the circumstellar environment using the SPARCO method. We discovered that the morphology of the circumstellar environment could vary on timescales of weeks or days. We carried out a parametric fit of the data with a model consisting of a star, a disk and a bright spot that represents a brighter emission in the disk. We detect strong morphological changes in the first astronomical unit around the star, that happen ...

  2. HOPS 136: An edge-on orion protostar near the end of envelope infall

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, William J.; Megeath, S. Thomas [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Tobin, John J. [National Radio Astronomy Observatory, Charlottesville, VA (United States); Hartmann, Lee; Kounkel, Marina [Department of Astronomy, University of Michigan, Ann Arbor, MI (United States); Stutz, Amelia M. [Max-Planck-Institut für Astronomie, Heidelberg (Germany); Poteet, Charles A. [New York Center for Astrobiology, Rensselaer Polytechnic Institute, Troy, NY (United States); Ali, Babar [NHSC/IPAC/Caltech, Pasadena, CA (United States); Osorio, Mayra [Instituto de Astrofísica de Andalucía, CSIC, Granada (Spain); Manoj, P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai (India); Remming, Ian [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL (United States); Stanke, Thomas [ESO, Garching bei München (Germany); Watson, Dan M., E-mail: wjfischer@gmail.com [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States)

    2014-02-01

    Edge-on protostars are valuable for understanding the disk and envelope properties of embedded young stellar objects, since the disk, envelope, and envelope cavities are all distinctly visible in resolved images and well constrained in modeling. Comparing Two Micron All Sky Survey, Wide-field Infrared Survey Explorer, Spitzer, Herschel, and APEX photometry and an IRAM limit from 1.2 to 1200 μm, Spitzer spectroscopy from 5 to 40 μm, and high-resolution Hubble imaging at 1.60 and 2.05 μm to radiative transfer modeling, we determine envelope and disk properties for the Class I protostar HOPS 136, an edge-on source in Orion's Lynds 1641 region. The source has a bolometric luminosity of 0.8 L {sub ☉}, a bolometric temperature of 170 K, and a ratio of submillimeter to bolometric luminosity of 0.8%. Via modeling, we find a total luminosity of 4.7 L {sub ☉} (larger than the observed luminosity due to extinction by the disk), an envelope mass of 0.06 M {sub ☉}, and a disk radius and mass of 450 AU and 0.002 M {sub ☉}. The stellar mass is highly uncertain but is estimated to fall between 0.4 and 0.5 M {sub ☉}. To reproduce the flux and wavelength of the near-infrared scattered-light peak in the spectral energy distribution, we require 5.4 × 10{sup –5} M {sub ☉} of gas and dust in each cavity. The disk has a large radius and a mass typical of more evolved T Tauri disks in spite of the significant remaining envelope. HOPS 136 appears to be a key link between the protostellar and optically revealed stages of star formation.

  3. Dust disks around old Pre Main-Sequence stars HST\\/NICMOS2 scattered light images and modeling

    CERN Document Server

    Augereau, J C; Mouillet, D; Ménard, F

    2000-01-01

    We present recent near-infrared detections of circumstellar disks around the two old PMS Herbig stars HD 141569 and HD 100546 obtained with the HST/NICMOS2 camera. They reveal extended structures larger than 350-400 AU in radius. While the HD 100546 disk appears as a continuous disk down to 40 AU, the HD 141569 environment seems more complex, splitted at least into two dust populations. As a convincing example, the full modeling of the disk surrounding HR 4796, another old PMS star, is detailed and confronted with more recent observations.

  4. a GEMINI/HOKUPA`A Polarimetric Search for Disks in MBM12

    Science.gov (United States)

    Potter, Daniel

    Young stellar members of the MBM-12 association were observed in the near infrared using the Hokupa`a/Gemini North adaptive optics system in series with a Wollaston prism based dual imaging polarimeter. Resolved polarization signatures indicative of circumstellar dust illuminated by a central star were found around 3 of the 7 targets observed. These polarimetry data sensitive to scattered light from circumstellar dust are compared with thermally sensitive millimeter observations to estimate physical properties of the dust around the MBM-12 assocaition stars observed. In addition I present a high resolution polarization map of the recently discovered edge-on disk nearby LkHa 263.

  5. Disks, Jets and the dawn of planets, Proceedings of the 2nd JEDI meeting

    CERN Document Server

    Alcala', J M; Biazzo, K; Bacciotti, F; Bianchi, E; Bonito, R; Codella, C; Fedele, D; Fontani, F; Frasca, A; Giannini, T; Manara, C; Nisini, B; Podio, L; Rigliaco, E; Tazzari, M

    2015-01-01

    This booklet contains a collection of contributions to the meeting of the JEts and Disks at INAF (JEDI) group, which took place at the Capodimonte Observatory during 9-10 April 2015. Scope of the meeting was to bring together the JEDI researchers of the Italian Istituto Nazionale di Astrofisica (INAF) working in the field of circumstellar disks and jets in young stars, to discuss together the different agents affecting the structure and the evolution of disks, namely accretion, jets and winds. More information on the JEDI group and its activities can be found at \\texttt{http://www.oa-roma.inaf.it/irgroup/JEDI}.

  6. Secure Disk Mixed System

    Directory of Open Access Journals (Sweden)

    Myongchol Ri

    2013-01-01

    Full Text Available We propose a disk encryption method, called Secure Disk Mixed System (SDMS in this paper, for data protection of disk storages such as USB flash memory, USB hard disk and CD/DVD. It is aimed to solve temporal and spatial limitations of existing disk encryption methods and to control security performance flexibly according to the security requirement of system.

  7. Close stellar binary systems by grazing envelope evolution

    CERN Document Server

    Soker, Noam

    2014-01-01

    I suggest a spiral-in process by which a stellar companion graze the envelope of a giant star while both the orbital separation and the giant radius shrink simultaneously, and a close binary system is formed. The binary system might be viewed as evolving in a constant state of `just entering a common envelope (CE) phase'. In cases where this process takes place it can be an alternative to the CE evolution where the secondary star is immerses in the giant's envelope. The grazing envelope evolution (GEE) is made possible only if the companion manages to accreted mass at a high rate and launch jets that remove the outskirts of the giant envelope, hence preventing the formation of a CE . The high accretion rate is made possible by the accretion disk that launches jets that efficiently carry the excess angular momentum and energy from the accreted mass. Mass loss through the second Lagrangian point can carry additional angular momentum and envelope mass. The GEE lasts for tens to hundreds of years. The high accret...

  8. Internal mail envelopes

    CERN Multimedia

    2003-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unusual stock could deposit them in their mail box, after attaching them together with an elastic band or piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration. Mail Office

  9. URGENT - Internal Mail Envelopes

    CERN Multimedia

    2007-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration. Mail Office

  10. Data envelopment analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This review introduces the history and present status of data envelopment analysis (DEA) research, particularly the evaluation process. And extensions of some DEA models are also described. It is pointed out that mathematics, economics and management science are the main forces in the DEA development, optimization provides the fundamental method for the DEA research, and the wide range of applications enforces the rapid development of DEA.

  11. Thermal Activated Envelope

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Pasold, Anke

    2015-01-01

    search procedure, the combination of materials and their bonding temperature is found in relation to the envelope effect on a thermal environment inside a defined space. This allows the designer to articulate dynamic composites with time-based thermal functionality, related to the material dynamics......, environmental dynamics and occupancy dynamics. Lastly, a physical prototype is created, which illustrates the physical expression of the bi-materials and the problems related to manufacturing of these composite structures....

  12. DYNAMICAL EVOLUTION OF VISCOUS DISKS AROUND Be STARS. I. PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Haubois, X.; Carciofi, A. C. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, Sao Paulo, SP 05508-900 (Brazil); Rivinius, Th. [European Organisation for Astronomical Research in the Southern Hemisphere, Casilla 19001, Santiago 19 (Chile); Okazaki, A. T. [Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605 (Japan); Bjorkman, J. E., E-mail: xhaubois@astro.iag.usp.br [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States)

    2012-09-10

    Be stars possess gaseous circumstellar disks that modify in many ways the spectrum of the central B star. Furthermore, they exhibit variability at several timescales and for a large number of observables. Putting the pieces together of this dynamical behavior is not an easy task and requires a detailed understanding of the physical processes that control the temporal evolution of the observables. There is an increasing body of evidence that suggests that Be disks are well described by standard {alpha}-disk theory. This paper is the first of a series that aims at studying the possibility of inferring several disk and stellar parameters through the follow-up of various observables. Here we study the temporal evolution of the disk density for different dynamical scenarios, including the disk build-up as a result of a long and steady mass injection from the star, the disk dissipation that occurs after mass injection is turned off, as well as scenarios in which active periods are followed by periods of quiescence. For those scenarios, we investigate the temporal evolution of continuum photometric observables using a three-dimensional non-LTE radiative transfer code. We show that light curves for different wavelengths are specific of a mass loss history, inclination angle, and {alpha} viscosity parameter. The diagnostic potential of those light curves is also discussed.

  13. The Disk Population of the Upper Scorpius Association

    CERN Document Server

    Luhman, K L

    2012-01-01

    We present photometry at 3-24um for all known members of the Upper Scorpius association (~11 Myr) based on all images of these objects obtained with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer. We have used these data to identify the members that exhibit excess emission from circumstellar disks and estimate the evolutionary stages of these disks. Through this analysis, we have found ~50 new candidates for transitional, evolved, and debris disks. The fraction of members harboring inner primordial disks is 1.2 Msun) and increases with later types to a value of ~25% at >=M5 (M<=0.2 Msun), in agreement with the results of previous disk surveys of smaller samples of Upper Sco members. These data indicate that the lifetimes of disks are longer at lower stellar masses, and that a significant fraction of disks of low-mass stars survive for at least ~10 Myr. Finally, we demonstrate that the distribution of excess sizes in Upper Sco and the much younger Taurus star-forming region (~1 Myr)...

  14. Final common envelope ejection by migration and jets

    CERN Document Server

    Soker, Noam

    2014-01-01

    I summarize recent analytical and numerical studies of the common envelope (CE) process and suggest to replace the commonly used alpha-prescription for the CE ejection by a prescription based on final migration and jets launched by the companion or the core of the giant stellar primary. In the migration process the core-companion binary systems is surrounded by a highly oblate (flatten) envelope, a thick circumbinary disk, formed by the large angular momentum transferred from the core-companion system to the envelope. I then show that the energy that can be released by an accreting main sequence companion can surpass the mutual gravitational energy of the core and the companion. An efficient channel to leash the accretion energy to expel the CE is through jets operating via a feedback mechanism (JFM).

  15. Similarities in the structure of the circumstellar environments of B[e] supergiants and yellow hypergiants

    CERN Document Server

    Aret, Anna; Kraus, Michaela; Maravelias, Grigoris

    2016-01-01

    Yellow Hypergiants (YHGs) and B[e] supergiants (B[e]SGs), though in different phases in their evolution, display many features in common. This is partly due to the fact that both types of objects undergo strong, often asymmetric mass loss, and the ejected material accumulates in shells, rings, or disk-like structures, giving rise to emission from warm molecules and dust. We performed an optical spectroscopic survey of northern Galactic emission-line stars aimed at identifying tracers for the structure and kinematics of circumstellar environments. We identified two sets of lines, [O I] and [Ca II], which originate from the discs of B[e]SGs. The same set of lines is observed in V1302 Aql and V509 Cas, which are both hot YHGs. While V1302 Aql is known to have a disc-like structure, the kinematical broadening of the lines in V509 Cas suggest a Keplerian disk or ring around this star alike their hotter B[e]SG counterparts.

  16. Synthetic Spectra and Light Curves of Interacting Binaries and Exoplanets with Circumstellar Material: SHELLSPEC

    CERN Document Server

    Budaj, Jan

    2011-01-01

    Program SHELLSPEC is designed to calculate light-curves, spectra and images of interacting binaries and extrasolar planets immersed in a moving circumstellar environment which is optically thin. It solves simple radiative transfer along the line of sight in moving media. The assumptions include LTE and optional known state quantities and velocity fields in 3D. Optional (non)transparent objects such as a spot, disc, stream, jet, ufo, shell or stars may be defined (embedded) in 3D and their composite synthetic spectrum calculated. Roche model can be used as a boundary condition for the radiative transfer. Recently a new model of the reflection effect, dust and Mie scattering were incorporated into the code. $\\epsilon$ Aurigae is one of the most mysterious objects on the sky. Prior modeling of its light-curve assumed dark, inclined, disk of dust with the central hole to explain the light-curve with a sharp mid-eclipse brightening. Our model consists of two geometrically thick flared disks. Internal optically thi...

  17. The WIRED Survey. IV. New Dust Disks from the McCook & Sion White Dwarf Catalog

    Science.gov (United States)

    Hoard, D. W.; Debes, John H.; Wachter, Stefanie; Leisawitz, David T.; Cohen, Martin

    2013-06-01

    We have compiled photometric data from the Wide-field Infrared Survey Explorer All Sky Survey and other archival sources for the more than 2200 objects in the original McCook & Sion Catalog of Spectroscopically Identified White Dwarfs. We applied color-selection criteria to identify 28 targets whose infrared spectral energy distributions depart from the expectation for the white dwarf (WD) photosphere alone. Seven of these are previously known WDs with circumstellar dust disks, five are known central stars of planetary nebulae, and six were excluded for being known binaries or having possible contamination of their infrared photometry. We fit WD models to the spectral energy distributions of the remaining ten targets, and find seven new candidates with infrared excess suggesting the presence of a circumstellar dust disk. We compare the model dust disk properties for these new candidates with a comprehensive compilation of previously published parameters for known WDs with dust disks. It is possible that the current census of WDs with dust disks that produce an excess detectable at K-band and shorter wavelengths is close to complete for the entire sample of known WDs to the detection limits of existing near-IR all-sky surveys. The WD dust disk candidates now being found using longer wavelength infrared data are drawn from a previously underrepresented region of parameter space, in which the dust disks are overall cooler, narrower in radial extent, and/or contain fewer emitting grains.

  18. The WIRED Survey. IV. New Dust Disks from the McCook & Sion White Dwarf Catalog

    Science.gov (United States)

    Hoard, D.W.; Debes, John H.; Wachter, Stefanie; Leisawitz, David T.; Cohen, Martin

    2013-01-01

    We have compiled photometric data from the Wide-field Infrared Survey Explorer All Sky Survey and other archival sources for the more than 2200 objects in the original McCook & Sion Catalog of Spectroscopically Identified White Dwarfs. We applied color-selection criteria to identify 28 targets whose infrared spectral energy distributions depart from the expectation for the white dwarf photosphere alone. Seven of these are previously known white dwarfs with circumstellar dust disks, five are known central stars of planetary nebulae, and six were excluded for being known binaries or having possible contamination of their infrared photometry. We fit white dwarf models to the spectral energy distributions of the remaining ten targets, and find seven new candidates with infrared excess suggesting the presence of a circumstellar dust disk. We compare the model dust disk properties for these new candidates with a comprehensive compilation of previously published parameters for known white dwarfs with dust disks. It is possible that the current census of white dwarfs with dust disks that produce an excess detectable at K-band and shorter wavelengths is close to complete for the entire sample of known WDs to the detection limits of existing near-IR all-sky surveys. The white dwarf dust disk candidates now being found using longer wavelength infrared data are drawn from a previously underrepresented region of parameter space, in which the dust disks are overall cooler, narrower in radial extent, and/or contain fewer emitting grains.

  19. Nucleation studies under the conditions of carbon-rich AGB star envelopes: TiC

    CERN Document Server

    Patzer, A Beate C; Chang, Christian; Sülzle, Detlev

    2011-01-01

    Many studies of especially dust nucleation in winds of carbon-rich AGB stars consider primarily carbon as dust forming material. But dust grains formed in such circumstellar envelopes are rather a mixture of several chemical elements such as titanium or silicon in addition to the main component carbon as verified by many investigations of pre-solar grains enclosed in meteorites, for example. In this contribution we focus on the study of the nucleation of titanium carbide particles from the gas phase. Therefore, the necessary properties of molecular titanium carbide clusters have been estimated within density functional approaches and first implications on the homogeneous nucleation of TiC are studied for conditions being representative for circumstellar dust shells around carbon-rich AGB stars.

  20. The structure of protostellar envelopes derived from submillimeter continuum images

    CERN Document Server

    Chandler, C J; Chandler, Claire J.; Richer, John S.

    1999-01-01

    High dynamic range imaging of submillimeter dust emission from the envelopes of eight young protostars in the Taurus and Perseus star-forming regions has been carried out using the SCUBA submillimeter camera on the James Clerk Maxwell Telescope. Good correspondence between the spectral classifications of the protostars and the spatial distributions of their dust emission is observed, in the sense that those with cooler spectral energy distributions also have a larger fraction of the submillimeter flux originating in an extended envelope compared with a disk. This results from the cool sources having more massive envelopes rather than warm sources having larger disks. Azimuthally-averaged radial profiles of the dust emission are used to derive the power-law index of the envelope density distributions, p (defined by rho proportional to r^-p), and most of the sources are found to have values of p consistent with those predicted by models of cloud collapse. However, the youngest protostars in our sample, L1527 an...

  1. The Circumstellar Medium of Massive Stars in Motion

    CERN Document Server

    Mackey, Jonathan; Meyer, Dominique M -A; Gvaramadze, Vasilii V; Mohamed, Shazrene; Neilson, Hilding R; Mignone, Andrea

    2014-01-01

    The circumstellar medium around massive stars is strongly impacted by stellar winds, radiation, and explosions. We use numerical simulations of these interactions to constrain the current properties and evolutionary history of various stars by comparison with observed circumstellar structures. Two- and three-dimensional simulations of bow shocks around red supergiant stars have shown that Betelgeuse has probably only recently evolved from a blue supergiant to a red supergiant, and hence its bow shock is very young and has not yet reached a steady state. We have also for the first time investigated the magnetohydrodynamics of the photoionised H II region around the nearby runaway O star Zeta Oph. Finally, we have calculated a grid of models of bow shocks around main sequence and evolved massive stars that has general application to many observed bow shocks, and which forms the basis of future work to model the explosions of these stars into their pre-shaped circumstellar medium.

  2. Dippers and Dusty Disks Edges: A Unified Model

    CERN Document Server

    Bodman, Eva H L; Ansdell, Megan; Hippke, Michael; Boyajian, Tabetha S; Mamajek, Eric E; Blackman, Eric G; Rizzuto, Aaron; Kastner, Joel H

    2016-01-01

    A search for dips in observed stellar flux in the Upper Scorpius and $\\rho$ Ophiuchus star formation regions with the Kepler mission by Ansdell et al. primarily identified young, low mass stars (dippers) with low accretion rates and hosting moderately evolved dusty circumstellar disks. These young stars likely exhibit rotating star spots that cause quasi-periodic photometric variations. However, a separate period associated with the dips is not evident in spectrograms constructed from the light curves. The material causing the dips in most of these light curves must be approximately corotating with the star. We find that disk temperatures computed at the disk corotation radius are cool enough that dust should not sublimate. Dippers are preferentially associated with young, low mass stars as they have low enough luminosities to allow dust to survive within a few stellar radii. Crude estimates for stellar magnetic field strengths and accretion rates are consistent with magnetospheric truncation near the corotat...

  3. Misaligned Disks in the Binary Protostar IRS 43

    CERN Document Server

    Brinch, Christian; Hogerheijde, Michiel R; Nelson, Richard P; Gressel, Oliver

    2016-01-01

    Recent high angular resolution ($\\sim$0.2") ALMA observations of the 1.1 mm continuum and of HCO+ J=3-2 and HCN J=3-2 gas towards the binary protostar IRS 43 reveal multiple Keplerian disks which are significantly misaligned ($\\gt$ 60$^\\circ$), both in inclination and position angle and also with respect to the binary orbital plane. Each stellar component has an associated circumstellar disk while the binary is surrounded by a circumbinary disk. Together with archival VLA measurements of the stellar positions over 25 years, and assuming a circular orbit, we use our continuum measurements to determine the binary separation, a = 74 $\\pm$ 4 AU, and its inclination, i $\\lt$ 30$^\\circ$. The misalignment in this system suggests that turbulence has likely played a major role in the formation of IRS 43.

  4. Misaligned disks in the binary protostar IRS 43

    DEFF Research Database (Denmark)

    Brinch, Christian; Jørgensen, Jes Kristian; Hogerheijde, Michiel R.

    2016-01-01

    Recent high angular resolution (∼ 0\\buildrel{\\prime\\prime}\\over{.} 2) ALMA observations of the 1.1 mm continuum and of HCO+ J = 3–2 and HCN J = 3–2 gas toward the binary protostar IRS 43 reveal multiple Keplerian disks that are significantly misaligned (\\gt 60^\\circ ), both in inclination...... and position angle and also with respect to the binary orbital plane. Each stellar component has an associated circumstellar disk while the binary is surrounded by a circumbinary disk. Together with archival VLA measurements of the stellar positions over 25 years, and assuming a circular orbit, we use our...... continuum measurements to determine the binary separation, a=74+/- 4 {au}, and its inclination, i\\lt 30^\\circ . The misalignment in this system suggests that turbulence has likely played a major role in the formation of IRS 43....

  5. Laboratory Studies Of Circumstellar Carbonaceous Grain Formation

    Science.gov (United States)

    Contreras, Cesar; Sciamma-O'Brien, Ella; Salama, Farid

    2014-06-01

    The study of the formation processes of dust is essential to understand the budget of extraterrestrial organic molecules. Although dust with all its components plays an important role in the evolution of interstellar (IS) chemistry and in the formation of organic molecules, little is known on the formation processes of carbonaceous dust. We report the progress that was recently achieved in this domain using NASA Ames’ COSmIC facility (Contreras & Salama 2013, ApJS, 208, 6). PAHs are important chemical building blocks of IS dust. They are detected in IDPs and in meteoritic samples. Additionally, observational, laboratory, and theoretical studies have shown that PAHs are an important, ubiquitous component of the ISM. The formation of PAHs from smaller molecules has not been extensively studied. Therefore, we have performed laboratory experiments to study the dynamic processes of carbon grain formation, starting from the smallest hydrocarbon molecules into the formation of larger PAH and further into nanograins. Studies of IS dust analogs formed from a variety of PAH and hydrocarbon precursors as well as species that include the atoms O, N, and S, have recently been performed in our laboratory using the COSmIC facility to provide conditions that simulate IS and circumstellar environments. The species formed in the COSmiC chamber through a pulsed discharge nozzle plasma source are detected and characterized with a cavity ringdown spectrometer coupled to a time-of-flight mass spectrometer, thus providing both spectroscopic and ion mass information in-situ. Analysis of solid soot particles was also conducted using scanning electron microscopy at the UCSC/NASA Ames’ MACS facility. The SEM analysis of the deposition of soot from methane and acetylene precursors seeded in argon plasmas provide examples on the types of nanoparticles and micrograins that are produced in these gas mixtures under our experimental conditions. From these measurements, we derive information on

  6. The missing cavities in the SEEDS polarized scattered light images of transitional protoplanetary disks: a generic disk model

    CERN Document Server

    Dong, R; Zhu, Z; Hartmann, L; Whitney, B; Brandt, T; Muto, T; Hashimoto, J; Grady, C; Follette, K; Kuzuhara, M; Tanii, R; Itoh, Y; Thalmann, C; Wisniewski, J; Mayama, S; Janson, M; Abe, L; Brandner, W; Carson, J; Egner, S; Feldt, M; Goto, M; Guyon, O; Hayano, Y; Hayashi, M; Hayashi, S; Henning, T; Hodapp, K W; Honda, M; Inutsuka, S; Ishii, M; Iye, M; Kandori, R; Knapp, G R; Kudo, T; Kusakabe, N; Matsuo, T; McElwain, M W; Miyama, S; Morino, J -I; Moro-Martin, A; Nishimura, T; Pyo, T -S; Suto, H; Suzuki, R; Takami, M; Takato, N; Terada, H; Tomono, D; Turner, E L; Watanabe, M; Yamada, T; Takami, H; Usuda, T; Tamura, M

    2012-01-01

    Transitional circumstellar disks around young stellar objects have a distinctive infrared deficit around 10 microns in their Spectral Energy Distributions (SED), recently measured by the Spitzer Infrared Spectrograph (IRS), suggesting dust depletion in the inner regions. These disks have been confirmed to have giant central cavities by imaging of the submillimeter (sub-mm) continuum emission using the Submillimeter Array (SMA). However, the polarized near-infrared scattered light images for most objects in a systematic IRS/SMA cross sample, obtained by HiCIAO on the Subaru telescope, show no evidence for the cavity, in clear contrast with SMA and Spitzer observations. Radiative transfer modeling indicates that many of these scattered light images are consistent with a smooth spatial distribution for micron-sized grains, with little discontinuity in the surface density of the micron-sized grains at the cavity edge. Here we present a generic disk model that can simultaneously account for the general features in...

  7. A cavity and further radial substructures in the disk around HD~97048

    CERN Document Server

    van der Plas, G; Ménard, F; Casassus, S; Canovas, H; Pinte, C; Maddison, S T; Maaskant, K; Avenhaus, H; Cieza, L; Perez, S; Ubach, C

    2016-01-01

    Context: Gaps, cavities and rings in circumstellar disks are signposts of disk evolution and planet-disk interactions. We follow the recent suggestion that Herbig Ae/Be disks with a flared disk harbour a cavity, and investigate the disk around HD~97048. Aims: We aim to resolve the 34$\\pm$ 4 au central cavity predicted by Maaskant et al. (2013) and to investigate the structure of the disk. Methods: We image the disk around HD~97048 using ALMA at 0.85~mm and 2.94~mm, and ATCA (multiple frequencies) observations. Our observations also include the 12CO J=1-0, 12CO J=3-2 and HCO+ J=4-3 emission lines. Results: A central cavity in the disk around HD~97048 is resolved with a 40-46 au radius. Additional radial structure present in the surface brightness profile can be accounted for either by an opacity gap at ~90 au or by an extra emitting ring at ~150 au. The continuum emission tracing the dust in the disk is detected out to 355 au. The 12CO J=3-2 disk is detected 2.4 times farther out. The 12CO emission can be trac...

  8. High-resolution 25 \\mu m imaging of the disks around Herbig Ae/Be stars

    CERN Document Server

    Honda, M; Okamoto, Y K; Kataza, H; Yamashita, T; Miyata, T; Sako, S; Fujiyoshi, T; Sakon, I; Fujiwara, H; Kamizuka, T; Mulders, G D; Lopez-Rodriguez, E; Packham, C; Onaka, T

    2015-01-01

    We imaged circumstellar disks around 22 Herbig Ae/Be stars at 25 \\mu m using Subaru/COMICS and Gemini/T-ReCS. Our sample consists of equal numbers of objects belonging to the two categories defined by Meeus et al. (2001); 11 group I (flaring disk) and II (at disk) sources. We find that group I sources tend to show more extended emission than group II sources. Previous studies have shown that the continuous disk is hard to be resolved with 8 meter class telescopes in Q-band due to the strong emission from the unresolved innermost region of the disk. It indicates that the resolved Q-band sources require a hole or gap in the disk material distribution to suppress the contribution from the innermost region of the disk. As many group I sources are resolved at 25 \\mu m, we suggest that many, not all, group I Herbig Ae/Be disks have a hole or gap and are (pre-)transitional disks. On the other hand, the unresolved nature of many group II sources at 25 \\mu m supports that group II disks have continuous at disk geometr...

  9. Near-Infrared Imaging Polarimetry of Inner Region of GG Tau A Disk

    CERN Document Server

    Yang, Yi; Hayashi, Saeko S; Tamura, Motohide; Mayama, Satoshi; Rafikov, Roman; Akiyama, Eiji; Carson, Joseph C; Janson, Markus; Kwon, Jungmi; de Leon, Jerome; Oh, Daehyeon; Takami, Michihiro; Tang, Ya-wen; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D; Egner, Sebastian; Feldt, Markus; Goto, Miwa; Grady, Carol A; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Henning, Thomas; Hodapp, Klaus W; Ishi, Miki; Iye, Masanori; Kandori, Ryo; Knapp, Gillian R; Kuzuhara, Masayuki; Matsuo, Taro; Mcelwain, Michael W; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Turner, Edwin L; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Takami, Hideki; Usuda, Tomonori

    2016-01-01

    By performing non-masked polarization imaging with Subaru/HiCIAO, polarized scattered light from the inner region of the disk around the GG Tau A system was successfully detected in the $H$ band with a spatial resolution of approximately 0.07$\\arcsec$, revealing the complicated inner disk structures around this young binary. This paper reports the observation of an arc-like structure to the north of GG Tau Ab and part of a circumstellar structure that is noticeable around GG Tau Aa extending to a distance of approximately 28 AU from the primary star. The speckle noise around GG Tau Ab constrains its disk radius to <13 AU. Based on the size of the circumbinary ring and the circumstellar disk around GG Tau Aa, the semi-major axis of the binary's orbit is likely to be 62 AU. A comparison of the present observations with previous ALMA and near-infrared (NIR) H$_2$ emission observations suggests that the north arc could be part of a large streamer flowing from the circumbinary ring to sustain the circumstellar ...

  10. Adaptive Architectural Envelope

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Kirkegaard, Poul Henning

    2010-01-01

    . The general scopes of this paper are to develop a new adaptive kinetic architectural structure, particularly a reconfigurable architectural structure which can transform body shape from planar geometries to hyper-surfaces using different control strategies, i.e. a transformation into more than one or two...... different shape alternatives. The adaptive structure is a proposal for a responsive building envelope which is an idea of a first level operational framework for present and future investigations towards performance based responsive architectures through a set of responsive typologies. A mock- up concept...

  11. Uncertain data envelopment analysis

    CERN Document Server

    Wen, Meilin

    2014-01-01

    This book is intended to present the milestones in the progression of uncertain Data envelopment analysis (DEA). Chapter 1 gives some basic introduction to uncertain theories, including probability theory, credibility theory, uncertainty theory and chance theory. Chapter 2 presents a comprehensive review and discussion of basic DEA models. The stochastic DEA is introduced in Chapter 3, in which the inputs and outputs are assumed to be random variables. To obtain the probability distribution of a random variable, a lot of samples are needed to apply the statistics inference approach. Chapter 4

  12. Studies of circumstellar shells in AGB stars by multifrequency (sub)mm-VLBI observations of maser emission

    Science.gov (United States)

    Colomer, F.; Desmurs, J. F.; Bujarrabal, V.; Baudry, A.; de Vicente, P.; Soria-Ruiz, R.; Alcolea, J.; Diaz-Pulido, A.; Gómez, M.

    2017-03-01

    VLBI observations of maser emission are a basic tool to study the circumstellar envelopes (CSEs) around evolved stars, mainly around AGB and post-AGB stars. The maser lines of water and silicon monoxide are particularly intense. They provide us with high spatial resolution data on the very inner CSEs around AGB stars, including the pulsating layers previous to grain formation and outer regions where the fast expansion characteristic of such envelopes is already present. The analysis of the pumping mechanism of SiO masers and of the physical conditions in the emitting clumps requires accurate maps of the various lines, which show different excitation requirements. A large observational effort is being done to obtain (quasi-)simultaneous multiline data at the highest spatial resolution, using VLBI techniques, which makes possible to compare the relative distribution of the maser lines. We present the state-of-the-art in the field, and discuss preliminary results of SiO masers observed with the Global Millimeter VLBI Array (GMVA) which provide a new view into the physics of these AGB envelopes. The participation of ALMA in these VLBI arrays will boost the study of these masers, at higher frequencies.

  13. Observations, Modeling and Theory of Debris Disks

    CERN Document Server

    Matthews, Brenda C; Wyatt, Mark C; Bryden, Geoff; Eiroa, Carlos

    2014-01-01

    Main sequence stars, like the Sun, are often found to be orbited by circumstellar material that can be categorized into two groups, planets and debris. The latter is made up of asteroids and comets, as well as the dust and gas derived from them, which makes debris disks observable in thermal emission or scattered light. These disks may persist over Gyrs through steady-state evolution and/or may also experience sporadic stirring and major collisional breakups, rendering them atypically bright for brief periods of time. Most interestingly, they provide direct evidence that the physical processes (whatever they may be) that act to build large oligarchs from micron-sized dust grains in protoplanetary disks have been successful in a given system, at least to the extent of building up a significant planetesimal population comparable to that seen in the Solar System's asteroid and Kuiper belts. Such systems are prime candidates to host even larger planetary bodies as well. The recent growth in interest in debris dis...

  14. A Spitzer IRS Study of Debris Disks Around Planet-Host Stars

    CERN Document Server

    Dodson-Robinson, Sarah E; Carpenter, John M; Bryden, Geoffrey

    2010-01-01

    Since giant planets scatter planetesimals within a few tidal radii of their orbits, the locations of existing planetesimal belts indicate regions where giant planet formation failed in bygone protostellar disks. Infrared observations of circumstellar dust produced by colliding planetesimals are therefore powerful probes of the formation histories of known planets. Here we present new Spitzer IRS spectrophotometry of 111 Solar-type stars, including 105 planet hosts. Our observations reveal 11 debris disks, including two previously undetected debris disks orbiting HD 108874 and HD 130322. Combining our 32 micron spectrophotometry with previously published MIPS photometry, we find that the majority of debris disks around planet hosts have temperatures in the range 60 < T < 100 K. Assuming a dust temperature T = 70 K, which is representative of the nine debris disks detected by both IRS and MIPS, we find that debris rings surrounding Sunlike stars orbit between 15 and 240 AU, depending on the mean particle ...

  15. Cold CO gas in the disk of the young eruptive star EX Lup

    CERN Document Server

    Kóspál, Ágnes; Csengeri, Timea; Gorti, Uma; Henning, Thomas; Moór, Attila; Semenov, Dmitry A; Szűcs, László; Güsten, Rolf

    2016-01-01

    EX Lupi-type objects (EXors) form a sub-class of T Tauri stars, defined by sudden sporadic flare-ups of 1-5 magnitudes at optical wavelengths. These eruptions are attributed to enhanced mass accretion from the circumstellar disk to the star, and may constitute important events in shaping the structure of the inner disk and the forming planetary system. Although disk properties must play a fundamental role in driving the outbursts, they are surprisingly poorly known. In order to characterize the dust and gas components of EXor disks, here we report on observations of the $^{12}$CO J=3-2 and 4-3 lines, and the $^{13}$CO 3-2 line in EX Lup, the prototype of the EXor class. We reproduce the observed line fluxes and profiles with a line radiative transfer model, and compare the obtained parameters with corresponding ones of other T Tauri disks.

  16. Rings of C2H in the Molecular Disks Orbiting TW Hya and V4046 Sgr

    CERN Document Server

    Kastner, J H; Gorti, U; Hily-Blant, P; Oberg, K; Forveille, T; Andrews, S; Wilner, D

    2015-01-01

    We have used the Submillimeter Array to image, at ~1" resolution, C2H(3-2) emission from the molecule-rich circumstellar disks orbiting the nearby, classical T Tauri star systems TW Hya and V4046 Sgr. The SMA imaging reveals that the C2H emission exhibits a ring-like morphology within each disk, the inner hole radius of the C2H ring within the V4046 Sgr disk (~70 AU) is somewhat larger than than of its counterpart within the TW Hya disk (~45 AU). We suggest that, in each case, the C2H emission likely traces irradiation of the tenuous surface layers of the outer disks by high-energy photons from the central stars.

  17. Cold CO Gas in the Disk of the Young Eruptive Star EX Lup

    Science.gov (United States)

    Kóspál, Á.; Ábrahám, P.; Csengeri, T.; Gorti, U.; Henning, Th.; Moór, A.; Semenov, D. A.; Szűcs, L.; Güsten, R.

    2016-04-01

    EX Lupi-type objects (EXors) form a sub-class of T Tauri stars, defined by sudden sporadic flare-ups of 1-5 mag at optical wavelengths. These eruptions are attributed to enhanced mass accretion from the circumstellar disk to the star, and may constitute important events in shaping the structure of the inner disk and the forming planetary system. Although disk properties must play a fundamental role in driving the outbursts, they are surprisingly poorly known. In order to characterize the dust and gas components of EXor disks, here we report on observations of the 12CO J = 3-2 and 4-3 lines, and the 13CO 3-2 line in EX Lup, the prototype of the EXor class. We reproduce the observed line fluxes and profiles with a line radiative transfer model and compare the obtained parameters with corresponding ones of other T Tauri disks.

  18. COLD CO GAS IN THE DISK OF THE YOUNG ERUPTIVE STAR EX LUP

    Energy Technology Data Exchange (ETDEWEB)

    Kóspál, Á.; Ábrahám, P.; Moór, A. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, 1525 Budapest (Hungary); Csengeri, T.; Güsten, R. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Gorti, U. [SETI Institute, Mountain View, CA (United States); Henning, Th.; Semenov, D. A. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Szűcs, L., E-mail: kospal@konkoly.hu [Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching (Germany)

    2016-04-10

    EX Lupi-type objects (EXors) form a sub-class of T Tauri stars, defined by sudden sporadic flare-ups of 1–5 mag at optical wavelengths. These eruptions are attributed to enhanced mass accretion from the circumstellar disk to the star, and may constitute important events in shaping the structure of the inner disk and the forming planetary system. Although disk properties must play a fundamental role in driving the outbursts, they are surprisingly poorly known. In order to characterize the dust and gas components of EXor disks, here we report on observations of the {sup 12}CO J = 3−2 and 4–3 lines, and the {sup 13}CO 3–2 line in EX Lup, the prototype of the EXor class. We reproduce the observed line fluxes and profiles with a line radiative transfer model and compare the obtained parameters with corresponding ones of other T Tauri disks.

  19. First Results from the Disk Eclipse Search with KELT (DESK) Survey

    CERN Document Server

    Rodriguez, Joseph E; Stassun, Keivan G

    2015-01-01

    Using time-series photometry from the Kilodegree Extremely Little Telescope (KELT) exoplanet survey, we are looking for eclipses of stars by their protoplanetary disks, specifically in young stellar associations. To date, we have discovered two previously unknown, large dimming events around the young stars RW Aurigae and V409 Tau. We attribute the dimming of RW Aurigae to an occultation by its tidally disrupted disk, with the disruption perhaps resulting from a recent flyby of its binary companion. Even with the dynamical environment of RW Aurigae, the distorted disk material remains very compact and presumably capable of forming planets. This system also shows that strong binary interactions with disks can also influence planet and core composition by stirring up and mixing materials during planet formation. We interpret the dimming of V409 Tau to be due to a feature, possibly a warp or perturbation, lying at least 10 AU from the host star in its nearly edge-on circumstellar disk.

  20. Galaxy Disks are Submaximal

    NARCIS (Netherlands)

    Bershady, Matthew A.; Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.

    2011-01-01

    We measure the contribution of galaxy disks to the overall gravitational potential of 30 nearly face-on intermediate-to-late-type spirals from the DiskMass Survey. The central vertical velocity dispersion of the disk stars (sigma(disk)(z,R=0)) is related to the maximum rotation speed (V-max) as sigm

  1. A white dwarf explodes inside a dense circumstellar disk peeking at a puzzling supernova with spectropolarimetry

    CERN Multimedia

    2004-01-01

    "By measuring polarized light from an unusual exploding star, an international team of astrophysicists and astronomers has worked out the first detailed picture of a Type Ia supernova and the distinctive star system in which it exploded" (2 pages)

  2. Improving signal-to-noise in the direct imaging of exoplanets and circumstellar disks with MLOCI

    Science.gov (United States)

    Wahhaj, Zahed; Cieza, Lucas A.; Mawet, Dimitri; Yang, Bin; Canovas, Hector; de Boer, Jozua; Casassus, Simon; Ménard, François; Schreiber, Matthias R.; Liu, Michael C.; Biller, Beth A.; Nielsen, Eric L.; Hayward, Thomas L.

    2015-09-01

    We present a new algorithm designed to improve the signal-to-noise ratio (S/N) of point and extended source detections around bright stars in direct imaging data.One of our innovations is that we insert simulated point sources into the science images, which we then try to recover with maximum S/N. This improves the S/N of real point sources elsewhere in the field. The algorithm, based on the locally optimized combination of images (LOCI) method, is called Matched LOCI or MLOCI. We show with Gemini Planet Imager (GPI) data on HD 135344 B and Near-Infrared Coronagraphic Imager (NICI) data on several stars that the new algorithm can improve the S/N of point source detections by 30-400% over past methods. We also find no increase in false detections rates. No prior knowledge of candidate companion locations is required to use MLOCI. On the other hand, while non-blind applications may yield linear combinations of science images that seem to increase the S/N of true sources by a factor >2, they can also yield false detections at high rates. This is a potential pitfall when trying to confirm marginal detections or to redetect point sources found in previous epochs. These findings are relevant to any method where the coefficients of the linear combination are considered tunable, e.g., LOCI and principal component analysis (PCA). Thus we recommend that false detection rates be analyzed when using these techniques. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (USA), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  3. Improving Signal to Noise in the Direct Imaging of Exoplanets and Circumstellar Disks

    CERN Document Server

    Wahhaj, Zahed; Mawet, Dimitri; Yang, Bin; Canovas, Hector; De Boer, Jos; Casassus, Simon; Menard, Francois; Schreiber, Matthias R; Liu, Michael C; Biller, Beth A; Nielsen, Eric L; Hayward, Thomas L

    2015-01-01

    We present a new algorithm designed to improve the signal to noise ratio (SNR) of point and extended source detections in direct imaging data. The novel part of our method is that it finds the linear combination of the science images that best match counterpart images with signal removed from suspected source regions. The algorithm, based on the Locally Optimized Combination of Images (LOCI) method, is called Matched LOCI or MLOCI. We show using data obtained with the Gemini Planet Imager (GPI) and Near-Infrared Coronagraphic Imager (NICI) that the new algorithm can improve the SNR of point source detections by 30-400% over past methods. We also find no increase in false detections rates. No prior knowledge of candidate companion locations is required to use MLOCI. While non-blind applications may yield linear combinations of science images which seem to increase the SNR of true sources by a factor > 2, they can also yield false detections at high rates. This is a potential pitfall when trying to confirm marg...

  4. Metamorphosis of SN 2014C: Delayed Interaction Between a Hydrogen Poor Core-collapse Supernova and a Nearby Circumstellar Shell

    CERN Document Server

    Milisavljevic, D; Kamble, A; Patnaude, D; Raymond, J; Eldridge, J; Fong, W; Bietenholz, M; Challis, P; Chornock, R; Drout, M; Fransson, C; Fesen, R; Grindlay, J; Kirshner, R; Lunnan, R; Mackey, J; Miller, G; Parrent, J; Sanders, N; Soderberg, A; Zauderer, B

    2015-01-01

    We present optical observations of supernova SN 2014C, which underwent an unprecedented slow metamorphosis from H-poor type Ib to H-rich type IIn over the course of one year. The observed spectroscopic evolution is consistent with the supernova having exploded in a cavity before encountering a massive shell of the progenitor star's stripped hydrogen envelope. Possible origins for the circumstellar shell include a brief Wolf-Rayet fast wind phase that overtook a slower red supergiant wind, eruptive ejection, or confinement of circumstellar material by external influences of neighboring stars. An extended high velocity Halpha absorption feature seen in near-maximum light spectra implies that the progenitor star was not completely stripped of hydrogen at the time of core collapse. Archival pre-explosion Subaru Telescope Suprime-Cam and Hubble Space Telescope Wide Field Planetary Camera 2 images of the region obtained in 2009 show a coincident source that is most likely a compact massive star cluster in NGC 7331 ...

  5. Discovery of an Inner Disk Component Around HD 141569 A

    Science.gov (United States)

    Konishi, Mihoko; Grady, Carol A.; Schneider, Glenn; Shibai, Hiroshi; McElwain, Michael W.; Nesvold, Erika R.; Kuchner, Marc J.; Carson, Joseph; Debes, John H.; Gaspar, Andras; Serabyn, Eugene

    2016-01-01

    We report the discovery of a scattering component around the HD 141569 A circumstellar debris system, interior to the previously known inner ring. The discovered inner disk component, obtained in broadband optical light with Hubble Space Telescope/Space Telescope Imaging Spectrograph coronagraphy, was imaged with an inner working angle of 0 25 arcseconds, and can be traced from 0 4 seconds (approximately 46 atomic units) to 1.0 arcseconds (approximately 116 atomic units) after deprojection using inclination = 55 degrees. The inner disk component is seen to forward scatter in a manner similar to the previously known rings, has a pericenter offset of approximately 6 atomic units, and break points where the slope of the surface brightness changes. It also has a spiral arm trailing in the same sense as other spiral arms and arcs seen at larger stellocentric distances. The inner disk spatially overlaps with the previously reported warm gas disk seen in thermal emission. We detect no point sources within 2 arcseconds (approximately 232 atomic units), in particular in the gap between the inner disk component and the inner ring. Our upper limit of 9 plus or minus 3 mass Jupiter (M (sub J)) is augmented by a new dynamical limit on single planetary mass bodies in the gap between the inner disk component and the inner ring of 1 mass Jupiter, which is broadly consistent with previous estimates.

  6. DISCOVERY OF AN INNER DISK COMPONENT AROUND HD 141569 A

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Mihoko; Shibai, Hiroshi [Department of Earth and Space Science, Graduate School of Science, Osaka University, Osaka (Japan); Grady, Carol A.; Silverstone, Murray D. [Eureka Scientific, Oakland, CA (United States); Schneider, Glenn; Gaspar, Andras; Hinz, Philip M. [The University of Arizona, Tucson, AZ (United States); McElwain, Michael W.; Kuchner, Marc J. [Goddard Space Flight Center, Greenbelt, MD (United States); Nesvold, Erika R.; Rodigas, Timothy J. [Carnegie Institution of Washington, Washington, DC (United States); Carson, Joseph [College of Charleston, Charleston, SC (United States); Debes, John H.; Hines, Dean C.; Moro-Martin, Amaya; Perrin, Marshall; Stark, Christopher C. [Space Telescope Science Institute, Baltimore, MD (United States); Henning, Thomas K. [Max Planck Institute for Astronomy, Heidelberg (Germany); Jang-Condell, Hannah [University of Wyoming, Laramie, WY (United States); Serabyn, Eugene, E-mail: konishi@iral.ess.sci.osaka-u.ac.jp [Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA (United States); and others

    2016-02-20

    We report the discovery of a scattering component around the HD 141569 A circumstellar debris system, interior to the previously known inner ring. The discovered inner disk component, obtained in broadband optical light with Hubble Space Telescope/Space Telescope Imaging Spectrograph coronagraphy, was imaged with an inner working angle of 0.″25, and can be traced from 0.″4 (∼46 AU) to 1.″0 (∼116 AU) after deprojection using i = 55°. The inner disk component is seen to forward scatter in a manner similar to the previously known rings, has a pericenter offset of ∼6 AU, and break points where the slope of the surface brightness changes. It also has a spiral arm trailing in the same sense as other spiral arms and arcs seen at larger stellocentric distances. The inner disk spatially overlaps with the previously reported warm gas disk seen in thermal emission. We detect no point sources within 2″ (∼232 AU), in particular in the gap between the inner disk component and the inner ring. Our upper limit of 9 ± 3 M{sub J} is augmented by a new dynamical limit on single planetary mass bodies in the gap between the inner disk component and the inner ring of 1 M{sub J}, which is broadly consistent with previous estimates.

  7. Sculpting the disk around T Cha: an interferometric view

    CERN Document Server

    Olofsson, Johan; Bouquin, Jean-Baptiste Le; Berger, Jean-Philippe; Lacour, Sylvestre; Ménard, François; Henning, Thomas; Crida, Aurélien; Burtscher, Leonard; Meeus, Gwendolyn; Ratzka, Thorsten; Pinte, Christophe; Augereau, Jean-Charles; Malbet, Fabien; Lazareff, Bernard; Traub, Wesley A

    2013-01-01

    (Abridged) Circumstellar disks are believed to be the birthplace of planets and are expected to dissipate on a timescale of a few Myr. The processes responsible for the removal of the dust and gas will strongly modify the radial distribution of the dust and consequently the SED. In particular, a young planet will open a gap, resulting in an inner disk dominating the near-IR emission and an outer disk emitting mostly in the far-IR. We analyze a full set of data (including VLTI/Pionier, VLTI/Midi, and VLT/NaCo/Sam) to constrain the structure of the transition disk around TCha. We used the Mcfost radiative transfer code to simultaneously model the SED and the interferometric observations. We find that the dust responsible for the emission in excess in the near-IR must have a narrow temperature distribution with a maximum close to the silicate sublimation temperature. This translates into a narrow inner dusty disk (0.07-0.11 AU). We find that the outer disk starts at about 12 AU and is partially resolved by the P...

  8. Debris disks: seeing dust, thinking of planetesimals and planets

    Institute of Scientific and Technical Information of China (English)

    Alexander V.Krivov

    2010-01-01

    Debris disks are optically thin, almost gas-free dusty disks observed around a significant fraction of main-sequence stars older than about 10Myr. Since the circumstellar dust is short-lived, the very existence of these disks is considered as evidence that dust-producing planetesimals are still present in mature systems, in which planets have formed-or failed to form-a long time ago. It is inferred that these planetesimals orbit their host stars at asteroid to Kuiper-belt distances and continually supply fresh dust through mutual collisions. This review outlines observational techniques and results on debris disks, summarizes their essential physics and theoretical models, and then places them into the general context of planetary systems, uncovering interrelations between the disks, dust parent bodies, and planets. It is shown that debris disks can serve as tracers of planetesimals and planets and shed light on the planetesimal and planet formation processes that operated in these systems in the past.

  9. VLT imaging of the {\\beta} Pictoris gas disk

    CERN Document Server

    Nilsson, R; Olofsson, G; Fathi, K; Thébault, Ph; Liseau, R

    2012-01-01

    Circumstellar debris disks older than a few Myr should be largely devoid of primordial gas remaining from the protoplanetary disk phase. Tracing the origin of observed atomic gas in Keplerian rotation in the edge-on debris disk surrounding the ~12 Myr old star {\\beta} Pictoris requires more detailed information about its spatial distribution than has previously been acquired by limited slit spectroscopy. Especially indications of asymmetries and presence of Ca II gas at high disk latitudes call for additional investigation. We set out to recover a complete image of the Fe I and Ca II gas emission around {\\beta} Pic by spatially resolved, high-resolution spectroscopic observations to better understand the morphology and origin of the gaseous disk component. The multiple fiber facility FLAMES/GIRAFFE at the VLT, with the large IFU ARGUS, was used to obtain spatially resolved optical spectra in four regions covering the northeast and southwest side of the disk. Emission lines from Fe I and Ca II were mapped and ...

  10. The Importance of Disk Structure in Stalling Type I Migration

    CERN Document Server

    Kretke, Katherine A

    2012-01-01

    As planets form they tidally interact with their natal disks. Though the tidal perturbation induced by Earth and super-Earth mass planets is generally too weak to significantly modify the structure of the disk, the interaction is potentially strong enough to cause the planets to undergo rapid type I migration. This physical process may provide a source of short-period super-Earths, though it may also pose a challenge to the emergence and retention of cores on long-period orbits with sufficient mass to evolve into gas giants. Previous numerical simulations have shown that the type I migration rate sensitively depends upon the circumstellar disk's properties, particularly the temperature and surface density gradients. Here, we derive these structure parameters for 1) a self-consistent viscous-disk model based on a constant \\alpha-prescription, 2) an irradiated disk model that takes into account heating due to the absorption of stellar photons, and 3) a layered-accretion disk model with variable \\alpha-parameter...

  11. Direct detection of scattered light gaps in the transitional disk around HD 97048 with VLT/SPHERE

    CERN Document Server

    Ginski, C; Pinilla, P; Dominik, C; Boccaletti, A; de Boer, J; Benisty, M; Biller, B; Feldt, M; Garufi, A; Keller, C U; Kenworthy, M; Maire, A L; Ménard, F; Mesa, D; Milli, J; Min, M; Pinte, C; Quanz, S P; van Boekel, R; Bonnefoy, M; Chauvin, G; Desidera, S; Gratton, R; Girard, J H V; Keppler, M; Kopytova, T; Lagrange, A -M; Langlois, M; Rouan, D; Vigan, A

    2016-01-01

    We studied the well known circumstellar disk around the Herbig Ae/Be star HD 97048 with high angular resolution to reveal undetected structures in the disk, which may be indicative of disk evolutionary processes such as planet formation. We used the IRDIS near-IR subsystem of the extreme adaptive optics imager SPHERE at the ESO/VLT to study the scattered light from the circumstellar disk via high resolution polarimetry and angular differential imaging. We imaged the disk in unprecedented detail and revealed four ring-like brightness enhancements and corresponding gaps in the scattered light from the disk surface with radii between 39 au and 341 au. We derived the inclination and position angle as well as the height of the scattering surface of the disk from our observational data. We found that the surface height profile can be described by a single power law up to a separation ~270 au. Using the surface height profile we measured the scattering phase function of the disk and found that it is well consistent ...

  12. A CO survey in planet-forming disks: Characterizing the gas content in the epoch of planet formation

    Energy Technology Data Exchange (ETDEWEB)

    Hales, A. S.; De Gregorio-Monsalvo, I.; Dent, W. F. R.; Phillips, N. [Atacama Large Millimeter/Submillimeter Array, Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355 Santiago (Chile); Montesinos, B. [Department of Astrophysics, Centre for Astrobiology (CAB, CSIC-INTA), ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Casassus, S.; Garay, G.; Mardones, D.; Pérez, S. [Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago (Chile); Dougados, C.; Ménard, F. [UMI-FCA, CNRS/INSU, France (UMI 3386) (France); Eiroa, C. [Departamento de Física Teórica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Hughes, A. M. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Palau, Aina [Institut de Ciéncies de l' Espai (CSIC-IEEC), Campus UAB-Facultat de Ciéncies, Torre C5-parell 2, E-08193 Bellaterra, Catalunya (Spain); Torrelles, J. M. [Institut de Ciències de l' Espai (CSIC-IEEC) and Institut de Ciències del Cosmos (UB-IEEC), Martí i Franquès 1, E-08028 Barcelona (Spain); Wilner, D., E-mail: ahales@alma.cl [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2014-09-01

    We carried out a {sup 12}CO(3-2) survey of 52 southern stars with a wide range of IR excesses (L {sub IR}/L {sub *}) using the single-dish telescopes APEX and ASTE. The main aims were (1) to characterize the evolution of molecular gas in circumstellar disks using L {sub IR}/L {sub *} values as a proxy of disk dust evolution, and (2) to identify new gas-rich disk systems suitable for detailed study with ALMA. About 60% of the sample (31 systems) have L {sub IR}/L {sub *} > 0.01, typical of T Tauri or Herbig AeBe stars, and the rest (21 systems) have L {sub IR}/L {sub *} < 0.01, typical of debris disks. We detect CO(3-2) emission from 20 systems, and 18 (90%) of these have L {sub IR}/L {sub *} > 0.01. However, the spectra of only four of the newly detected systems appear free of contamination from background or foreground emission from molecular clouds. These include the early-type stars HD 104237 (A4/5V, 116 pc) and HD 98922 (A2 III, 507 pc, as determined in this work), where our observations reveal the presence of CO-rich circumstellar disks for the first time. Of the other detected sources, many could harbor gaseous circumstellar disks, but our data are inconclusive. For these two newly discovered gas-rich disks, we present radiative transfer models that simultaneously reproduce their spectral energy distributions and the {sup 12}CO(3-2) line profiles. For both of these systems, the data are fit well by geometrically flat disks, placing them in the small class of non-flaring disks with significant molecular gas reservoirs.

  13. A CO survey in planet-forming disks: characterizing the gas content in the epoch of planet formation

    CERN Document Server

    Hales, A S; Montesinos, B; Casassus, S; Dent, W F R; Dougados, C; Eiroa, C; Hughes, A M; Garay, G; Mardones, D; Ménard, F; Palau, Aina; Pérez, S; Phillips, N; Torrelles, J M; Wilner, D

    2014-01-01

    We carried out a 12CO(3-2) survey of 52 southern stars with a wide range of IR excesses (LIR/L*) using the single dish telescopes APEX and ASTE. The main aims were (1) to characterize the evolution of molecular gas in circumstellar disks using LIR/L* values as a proxy of disk dust evolution, and (2) to identify new gas-rich disk systems suitable for detailed study with ALMA. About 60% of the sample (31 systems) have LIR/L* > 0.01 typical of T-Tauri or Herbig AeBe stars, and the rest (21 systems) have LIR/L* 0.01. However, the spectra of only four of the newly detected systems appear free of contamination from background or foreground emission from molecular clouds. These include the early-type stars HD 104237 (A4/5V, 116 pc) and HD 98922 (A2 III, 507 pc, as determined in this work), where our observations reveal the presence of CO-rich circumstellar disks for the first time. Of the other detected sources, many could harbor gaseous circumstellar disks, but our data are inconclusive. For these two newly discov...

  14. Signatures of Gravitational Instability in Resolved Images of Protostellar Disks

    CERN Document Server

    Dong, Ruobing; Pavlyuchenkov, Yaroslav; Chiang, Eugene; Liu, Hauyu Baobab

    2016-01-01

    Protostellar (class 0/I) disks, having masses comparable to those of their nascent host stars, and fed continuously from their natal infalling envelopes, are prone to gravitational instability (GI). Motivated by advances in near-infrared (NIR) adaptive optics imaging and mm-wave interferometry, we explore the observational signatures of GI in disks, using hydrodynamical and Monte Carlo radiative transfer simulations to synthesize NIR scattered light images and mm dust continuum maps. Spiral arms induced by GI, located at disk radii of hundreds of AUs, are local overdensities and have their photospheres displaced to higher altitudes above the disk midplane, arms therefore scatter more NIR light from their central stars than inter-arm regions, and are detectable at distances up to 1 kpc by Gemini/GPI, VLT/SPHERE, and Subaru/HiCIAO/SCExAO. By contrast, collapsed clumps formed by disk fragmentation have such strong local gravitational fields that their scattering photospheres are at lower altitudes, such fragment...

  15. Effects of Turbulence on Cosmic Ray Propagation in Protostars and Young Star/Disk Systems

    CERN Document Server

    Fatuzzo, Marco

    2014-01-01

    The magnetic fields associated with young stellar objects are expected to have an hour-glass geometry, i.e., the magnetic field lines are pinched as they thread the equatorial plane surrounding the forming star but merge smoothly onto a background field at large distances. With this field configuration, incoming cosmic rays experience both a funneling effect that acts to enhance the flux impinging on the circumstellar disk and a magnetic mirroring effect that acts to reduce that flux. To leading order, these effects nearly cancel out for simple underlying magnetic field structures. However, the environments surrounding young stellar objects are expected to be highly turbulent. This paper shows how the presence of magnetic field fluctuations affects the process of magnetic mirroring, and thereby changes the flux of cosmic rays striking circumstellar disks. Turbulence has two principle effects: 1) The (single) location of the magnetic mirror point found in the absence of turbulence is replaced with a wide distr...

  16. An accretion disks in the high-mass star forming region IRA 23151+5912

    Science.gov (United States)

    Migenes, Victor; Rodríguez-Esnard, T.; Trinidad, M. A.

    2014-01-01

    We present observations of radio continuum emission at 1.3 and 3.6 cm and H2O masers toward the high-mass star-forming regions IRA 23151+5912 carried out with the VLA-EVLA. We detected one continuum source at 1.3 cm and 13 water maser spots which are distributed in three groups aligned along the northeast-southwest direction. Our results suggest that the 1.3 cm emission is consistent with an HC HII region, probably with an embedded zero-age main sequence star of type B2. In particular, we find that this radio continuum source is probably associated with a circumstellar disk of about 68 AU, as traced by water masers. Furthermore, the masers of the second group are probably describing another circumstellar disk of about 86 AU, whose central protostar is still undetected. We discuss this results in the light of more recent high-resolution observations.

  17. Red giant-disk encounters food for quasars?

    CERN Document Server

    Armitage, P J; Davies, M B

    1996-01-01

    We explore the role that red giants might play in the central regions of Active Galactic Nuclei. Due to their large radii and the low binding energy of the stellar envelope, giants are vulnerable to envelope stripping from collisions with the accretion disk. Using hydrodynamic simulations we show that such collisions will typically deposit a substantial fraction of the envelope mass into the disk on each passage. Repeated encounters will then lead to the complete destruction of the star save for the dense core. We estimate the rate of fuel supply by this mechanism using simple models for the AGN disk and central stellar cluster. If the central stellar density is of order 10^7 solar masses per cubic pc, then stripping of giants could account for the activity of typical AGN provided that the accretion disk extends beyond 0.1 pc. For AGN with smaller disks, or clusters of lower central density, giant stripping could be an important source of gas enriched via stellar nucleosynthesis.

  18. Herschel/HIFI⋆ observations of the circumstellar ammonia lines in IRC+10216

    Science.gov (United States)

    Schmidt, M. R.; He, J. H.; Szczerba, R.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Decin, L.; Justtanont, K.; Teyssier, D.; Menten, K. M.; Neufeld, D. A.; Olofsson, H.; Planesas, P.; Marston, A. P.; Sobolev, A. M.; de Koter, A.; Schöier, F. L.

    2016-01-01

    Context A discrepancy exists between the abundance of ammonia (NH3) derived previously for the circumstellar envelope (CSE) of IRC+10216 from far-IR submillimeter rotational lines and that inferred from radio inversion or mid-infrared (MIR) absorption transitions. Aims To address the discrepancy described above, new high-resolution far-infrared (FIR) observations of both ortho- and para-NH3 transitions toward IRC+10216 were obtained with Herschel, with the goal of determining the ammonia abundance and constraining the distribution of NH3 in the envelope of IRC+10216. Methods We used the Heterodyne Instrument for the Far Infrared (HIFI) on board Herschel to observe all rotational transitions up to the J = 3 level (three ortho- and six para-NH3 lines). We conducted non-LTE multilevel radiative transfer modelling, including the effects of near-infrared (NIR) radiative pumping through vibrational transitions. The computed emission line profiles are compared with the new HIFI data, the radio inversion transitions, and the MIR absorption lines in the ν2 band taken from the literature. Results We found that NIR pumping is of key importance for understanding the excitation of rotational levels of NH3. The derived NH3 abundances relative to molecular hydrogen were (2.8 ± 0.5) × 10−8 for ortho-NH3 and (3.2−0.6+0.7)×10−8 for para-NH3, consistent with an ortho/para ratio of 1. These values are in a rough agreement with abundances derived from the inversion transitions, as well as with the total abundance of NH3 inferred from the MIR absorption lines. To explain the observed rotational transitions, ammonia must be formed near to the central star at a radius close to the end of the wind acceleration region, but no larger than about 20 stellar radii (1σ confidence level). PMID:28065983

  19. Circumstellar Dust Shells: Clues to the Evolution of R Coronae Borealis Stars

    Science.gov (United States)

    Montiel, Edward J.; Clayton, Geoffrey C.

    2016-06-01

    R Coronae Borealis (RCB) stars are an exotic group of extremely hydrogen- deficient, carbon-rich supergiants that are known for their spectacular declines in brightness (up to 8 mags) at irregular intervals. Two scenarios are currently competing to explain the origins of these stars. One suggests that RCB stars are the products after a binary white dwarf (WD) system merges. The other takes a single, evolved star and has it undergo a final, helium-shell flash (FF) and becoming a cool giant. Recently, observations of elemental abundances in RCB stars have strongly swung the argument in favor of the WD merger model. The FF scenario has maintained its relevancy by seemingly being the only model able to offer a suitable explanation for one RCB feature that merger model has historically struggled with explaining: the presence of cold, circumstellar dust envelopes which might be fossil planetary nebulae (PNe). In reality, the shells could actually be fossil PNe, material left over from the WD merger, or mass lost during the RCB phase, itself. I will present the results of my dissertation, which is to try and discern the nature and history of the far-IR dust shells around RCB stars to help understand the origin of these enigmatic stars. I will discuss our efforts to determine the mass, size, temperature, and morphology of these diffuse structures surrounding a sample of RCB stars using multi-wavelength observations ranging from the ultraviolet to the submillimeter. These observations have provided unprecedented wavelength coverage for both the central stars and their CSM. They have been examined by eye for morphology and have been used in the construction of maximum-light spectral energy distributions (SEDs). I will present the results of our Monte Carlo radiative transfer of the maximum-light SEDs. Finally, I will highlight our work investigating the HI abundance of the envelope of R Coronae Borealis, itself, using archival 21—cm observations from the Arecibo

  20. Multitechnique testing of the viscous decretion disk model I. The stable and tenuous disk of the late-type Be star $\\beta$ CMi

    CERN Document Server

    Klement, R; Rivinius, T; Panoglou, D; Vieira, R G; Bjorkman, J E; Štefl, S; Tycner, C; Faes, D M; Korčáková, D; Müller, A; Zavala, R T; Curé, M

    2015-01-01

    The viscous decretion disk (VDD) model is able to explain most of the currently observable properties of the circumstellar disks of Be stars. However, more stringent tests, focusing on reproducing multitechnique observations of individual targets via physical modeling, are needed to study the predictions of the VDD model under specific circumstances. In the case of nearby, bright Be star $\\beta$ CMi, these circumstances are a very stable low-density disk and a late-type (B8Ve) central star. The aim is to test the VDD model thoroughly, exploiting the full diagnostic potential of individual types of observations, in particular, to constrain the poorly known structure of the outer disk if possible, and to test truncation effects caused by a possible binary companion using radio observations. We use the Monte Carlo radiative transfer code HDUST to produce model observables, which we compare with a very large set of multitechnique and multiwavelength observations that include ultraviolet and optical spectra, photo...

  1. Categories with envelopes and imprints

    CERN Document Server

    Akbarov, Sergei

    2011-01-01

    An envelope in a category is a construction generalizing operations of "exterior completion", like completion of a locally convex space. Dually, an imprint generalizes operations of "interior enrichment", like saturation of a locally convex space. We give abstract definition for envelopes and imprints, prove existence of these objects in the categories of stereotype spaces and of stereotype algebras, and give some examples.

  2. H12CN and H13CN excitation analysis in the circumstellar outflow of R Sculptoris

    Science.gov (United States)

    Saberi, M.; Maercker, M.; De Beck, E.; Vlemmings, W. H. T.; Olofsson, H.; Danilovich, T.

    2017-03-01

    Context. The 12CO/13CO isotopologue ratio in the circumstellar envelope (CSE) of asymptotic giant branch (AGB) stars has been extensively used as the tracer of the photospheric 12C/13C ratio. However, spatially-resolved ALMA observations of R Scl, a carbon rich AGB star, have shown that the 12CO/13CO ratio is not consistent over the entire CSE. Hence, it can not necessarily be used as a tracer of the 12C/13C ratio. The most likely hypothesis to explain the observed discrepancy between the 12CO/13CO and 12C/13C ratios is CO isotopologue selective photodissociation by UV radiation. Unlike the CO isotopologue ratio, the HCN isotopologue ratio is not affected by UV radiation. Therefore, HCN isotopologue ratios can be used as the tracer of the atomic C ratio in UV irradiated regions. Aims: We aim to present ALMA observations of H13CN(4-3) and APEX observations of H12CN(2-1), H13CN(2-1, 3-2) towards R Scl. These new data, combined with previously published observations, are used to determine abundances, ratio, and the sizes of line-emitting regions of the aforementioned HCN isotopologues. Methods: We have performed a detailed non-LTE excitation analysis of circumstellar H12CN(J = 1-0, 2-1, 3-2, 4-3) and H13CN(J = 2-1, 3-2, 4-3) line emission around R Scl using a radiative transfer code based on the accelerated lambda iteration (ALI) method. The spatial extent of the molecular distribution for both isotopologues is constrained based on the spatially resolved H13CN(4-3) ALMA observations. Results: We find fractional abundances of H12CN/H2 = (5.0 ± 2.0) × 10-5 and H13CN/H2 = (1.9 ± 0.4) × 10-6 in the inner wind (r ≤ (2.0 ± 0.25) ×1015 cm) of R Scl. The derived circumstellar isotopologue ratio of H12CN/H13CN = 26.3 ± 11.9 is consistent with the photospheric ratio of 12C/13C 19 ± 6. Conclusions: We show that the circumstellar H12CN/H13CN ratio traces the photospheric 12C/13C ratio. Hence, contrary to the 12CO/13CO ratio, the H12CN/H13CN ratio is not affected by UV

  3. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  4. Thermal testing of building envelopes

    Science.gov (United States)

    Lebedev, O.; Kirzhanov, D.; Avramenko, V.; Budadin, O.

    2006-04-01

    Averaged heat transfer resistance of the building envelope is the primary parameter that determines the energy saving characteristics of the building. At the phase of the building design it is usually taken into account that building must preserve heat effectively. It is mostly important in northern countries where cold seasons last for more than a half of year. Usually infrared methods are used to find mechanical defects of the building envelope. In this article an alternative way to describe the building envelope using infrared camera is presented. The method includes the determination of local heat engineering characteristics of the envelope using contact measurements and the determination of averaged heat transfer resistance of the buildings envelope using its infrared image.

  5. Fast Moreau envelope computation I

    Science.gov (United States)

    Lucet, Yves

    2006-11-01

    The present article summarizes the state of the art algorithms to compute the discrete Moreau envelope, and presents a new linear-time algorithm, named NEP for NonExpansive Proximal mapping. Numerical comparisons between the NEP and two existing algorithms: The Linear-time Legendre Transform (LLT) and the Parabolic Envelope (PE) algorithms are performed. Worst-case time complexity, convergence results, and examples are included. The fast Moreau envelope algorithms first factor the Moreau envelope as several one-dimensional transforms and then reduce the brute force quadratic worst-case time complexity to linear time by using either the equivalence with Fast Legendre Transform algorithms, the computation of a lower envelope of parabolas, or, in the convex case, the non expansiveness of the proximal mapping.

  6. Exploring the multifaceted circumstellar environment of the luminous blue variable HR Carinae

    Science.gov (United States)

    Buemi, C. S.; Trigilio, C.; Leto, P.; Umana, G.; Ingallinera, A.; Cavallaro, F.; Cerrigone, L.; Agliozzo, C.; Bufano, F.; Riggi, S.; Molinari, S.; Schillirò, F.

    2017-03-01

    We present a multiwavelength study of the Galactic luminous blue variable HR Carinae, based on new high-resolution mid-infrared (IR) and radio images obtained with the Very Large Telescope (VLT) and the Australia Telescope Compact Array (ATCA), which have been complemented by far-infrared Herschel-Photodetector Array Camera and Spectrometer (PACS) observations and ATCA archive data. The Herschel images reveal the large-scale distribution of the dusty emitting nebula, which extends mainly to the north-east direction, up to 70 arcsec from the central star, and is oriented along the direction of the space motion of the star. In the mid-infrared images, the brightness distribution is characterized by two arc-shaped structures, tracing an inner envelope surrounding the central star more closely. At radio wavelengths, the ionized gas emission lies on the opposite side of the cold dust with respect to the position of the star, as if the ionized front were confined by the surrounding medium in the north-south direction. Comparison with previous data indicates significant changes in the radio nebula morphology and in the mass-loss rate from the central star, which has increased from 6.1 × 10-6 M⊙ yr-1 in 1994-1995 to 1.17 × 10-5 M⊙ yr-1 in 2014. We investigate possible scenarios that could have generated the complex circumstellar environment revealed by our multiwavelength data.

  7. Circumstellar HI and CO around the carbon stars V1942 Sgr and V CrB

    CERN Document Server

    Libert, Y; Thum, C; Winters, J M; Matthews, L D; Bertre, T Le

    2009-01-01

    Context. The majority of stars that leave the main sequence are undergoing extensive mass loss, in particular during the asymptotic giant branch (AGB) phase of evolution. Observations show that the rate at which this phenomenon develops differs highly from source to source, so that the time-integrated mass loss as a function of the initial conditions (mass, metallicity, etc.) and of the stage of evolution is presently not well understood. Aims. We are investigating the mass loss history of AGB stars by observing the molecular and atomic emissions of their circumstellar envelopes. Methods. In this work we have selected two stars that are on the thermally pulsing phase of the AGB (TP-AGB) and for which high quality data in the CO rotation lines and in the atomic hydrogen line at 21 cm could be obained. Results. V1942 Sgr, a carbon star of the Irregular variability type, shows a complex CO line profile that may originate from a long-lived wind at a rate of ~ 10^-7 Msol/yr, and from a young (< 10^4 years) fast...

  8. LABORATORY INVESTIGATIONS OF POLYCYCLIC AROMATIC HYDROCARBON FORMATION AND DESTRUCTION IN THE CIRCUMSTELLAR OUTFLOWS OF CARBON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Cesar S.; Salama, Farid, E-mail: cesar.contreras@nasa.gov, E-mail: Farid.Salama@nasa.gov [Space Science and Astrobiology Division, NASA-Ames Research Center, Moffett Field, CA 94035 (United States)

    2013-09-15

    The formation and destruction mechanisms of interstellar dust analogs formed from a variety of polycyclic aromatic hydrocarbon (PAH) and hydrocarbon molecular precursors are studied in the laboratory. We used the newly developed facility COSmIC, which simulates interstellar and circumstellar environments, to investigate both PAHs and species that include the cosmically abundant atoms O, N, and S. The species generated in a discharge plasma are detected, monitored, and characterized in situ using highly sensitive techniques that provide both spectral and ion mass information. We report here the first series of measurements obtained in these experiments which focus on the characterization of the most efficient molecular precursors in the chemical pathways that eventually lead to the formation of carbonaceous grains in the stellar envelopes of carbon stars. We compare and discuss the relative efficiencies of the various molecular precursors that lead to the formation of the building blocks of carbon grains. We discuss the most probable molecular precursors in terms of size and structure and the implications for the expected growth and destruction processes of interstellar carbonaceous dust.

  9. Probing for exoplanets hiding in dusty debris disks: Disk imaging, characterization, and exploration with HST/STIS multi-roll coronagraphy

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Glenn; Hinz, Phillip M. [Steward Observatory and the Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Hines, Dean C.; Debes, John H.; Perrin, Marshall D.; Moro-Martin, Amaya [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Stark, Christopher C.; Kuchner, Marc J.; Woodgate, Bruce E. [NASA/Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Carson, Joe [Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, SC 29424 (United States); Weinberger, Alycia J.; Rodigas, Timothy J. [Department of Terrestrial Magnetism, Carnegie Institute of Washington, 5241 Branch Road, NW, Washington, DC 20015 (United States); Wisniewski, John P. [H. L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Silverstone, Murray D. [Department of Physics and Astronomy, University of Alabama, P.O. Box 870324, Tuscaloosa, AL 35487-0324 (United States); Jang-Condell, Hannah [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Henning, Thomas [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Serabyn, Eugene [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Tamura, Motohide, E-mail: gschneider@as.arizona.edu [The University of Tokyo, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2014-10-01

    Spatially resolved scattered-light images of circumstellar debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, the systemic architectures, and forces perturbing the starlight-scattering circumstellar material. Using Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) broadband optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in a sample of 10 circumstellar debris systems and 1 'mature' protoplanetrary disk, all with HST pedigree, using point-spread-function-subtracted multi-roll coronagraphy. These observations probe stellocentric distances ≥5 AU for the nearest systems, and simultaneously resolve disk substructures well beyond corresponding to the giant planet and Kuiper Belt regions within our own solar system. They also disclose diffuse very low-surface-brightness dust at larger stellocentric distances. Herein we present new results inclusive of fainter disks such as HD 92945 (F {sub disk}/F {sub star} = 5 × 10{sup –5}), confirming, and better revealing, the existence of a narrow inner debris ring within a larger diffuse dust disk. Other disks with ring-like substructures and significant asymmetries and complex morphologies include HD 181327, for which we posit a spray of ejecta from a recent massive collision in an exo-Kuiper Belt; HD 61005, suggested to be interacting with the local interstellar medium; and HD 15115 and HD 32297, also discussed in the context of putative environmental interactions. These disks and HD 15745 suggest that debris system evolution cannot be treated in isolation. For AU Mic's edge-on disk, we find out-of-plane surface brightness asymmetries at ≥5 AU that may implicate the existence of one or more planetary perturbers. Time-resolved images of the MP Mus protoplanetary disk provide spatially resolved

  10. Planet formation from the ejecta of common envelopes

    CERN Document Server

    Schleicher, Dominik R G

    2013-01-01

    The close binary system NN Serpentis must have gone through a common envelope phase before the formation of its white dwarf. During this phase, a substantial amount of mass was lost from the envelope. The recently detected orbits of circumbinary planets were suggested to be inconsistent with planet formation before the mass loss. We explore whether new planets may have formed from the ejecta of the common envelope, and derive the expected planetary mass as a function of radius. We employ the model of \\citet{Kashi11} to estimate the amount of mass that is retained during the ejection event, and infer the properties of the resulting disk from the conservation of mass and angular momentum. The resulting planetary masses are estimated from models with and without radiative feedback. We show that the observed planetary masses can be reproduced for appropriate model parameters. Photoheating can stabilize the disks in the interior, potentially explaining the observed planetary orbits on scales of a few AU. We compar...

  11. AK Sco: evidence of tide driven filling of the inner gap in the circumbinary disk

    Science.gov (United States)

    Gomez de Castro, Ana I.; Lopez-Santiago, Javier; Talavera, Antonio; Sytov, A. Yu.; Bisikalo, Dmitri

    2013-07-01

    AK Sco stands out among pre-main sequence binaries because of its prominent ultraviolet excess, the high eccentricity of its orbit and the strong tides driven by it. AK Sco is made of two F5 type stars that get as close as 11R* at periastron passage. The presence of a dense (ne ~ 1011 cm-3) extended envelope has been unveiled recently. In this article, we report the results from a XMM-Newton based, monitoring of the system. We show that at periastron, X-ray and UV fluxes are enhanced by a factor of ~3 with respect to the apastron values. The X-ray radiation is produced in an optically thin plasma with T~6.4 MK and it is found that the NH column rises from 0.35 1021 cm-2 at periastron to 1.11 1021 cm-2 at apastron, in good agreement with previous polarimetric observations. The UV emission detected in the OM band seems to be caused by the reprocessing of the high energy magnetospheric radiation on the circumstellar material. Moreover, further evidence of the strong magnetospheric disturbances is provided by the detection of line broadening of 279 km s-1 in the N V line with HST/STIS. Numerical simulations of the mass flow from the circumbinary disk to the components have been carried out. They provide a consistent scenario to interpret AK Sco observations. We show that the eccentric orbit acts like a gravitational piston. At apastron, matter is dragged efficiently from the inner disk border, filling the inner gap and producing accretion streams that end as ring-like structures around each component of the system. At periastron, the ring-like structures get in contact, leading to angular momentum annihilation, and thus producing an accretion outburst. These results are published in Gómez de Castro et al. 2013, ApJ, 766, 62 We have also discovered a 780 s period oscillation in the UV continuum light curve triggered at periastron passage (Gómez de Castro, Lopez-Santiago & Talavera, 2013, MNRAS, 429, L1).

  12. Herschel Observations of Gas and Dust in the Unusual 49 Ceti Debris Disk

    Science.gov (United States)

    Roberge, A.; Kamp, I.; Montesinos, B.; Dent, W. R. F.; Meeus, G.; Donaldson, J. K.; Olofsson, J.; Moor, A.; Augereau, J.-C.; Howard, C.; Eiroa, C.; Thi, W.-F.; Ardila, D. R.; Sandell, G.; Woitke, P.

    2013-01-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the “Gas in Protoplanetary Systems” (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 micron; 49 Cet is significantly extended in the 70 micron image, spatially resolving the outer dust disk for the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O i] 63 micron and [C ii] 158 micron. The C ii line was detected at the 5 sigma level—the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the Oi line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C ii emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.

  13. HERSCHEL OBSERVATIONS OF GAS AND DUST IN THE UNUSUAL 49 Ceti DEBRIS DISK

    Energy Technology Data Exchange (ETDEWEB)

    Roberge, A. [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Kamp, I. [Kapteyn Astronomical Institute, University of Groningen, 9700 AV Groningen (Netherlands); Montesinos, B. [Departamento de Astrofisica, Centro de Astrobiologia (INTA-CSIC), ESAC Campus, PO Box 78, E-28691 Villanueva de la Canada, Madrid (Spain); Dent, W. R. F. [ALMA, Avda Apoquindo 3846, Piso 19, Edificio Alsacia, Las Condes, Santiago (Chile); Meeus, G.; Eiroa, C. [Departmento Fisica Teorica, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Donaldson, J. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Olofsson, J. [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117, Heidelberg (Germany); Moor, A. [Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest (Hungary); Augereau, J.-C.; Thi, W.-F. [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique de Grenoble, UMR 5274, F-38041, Grenoble (France); Howard, C.; Sandell, G. [SOFIA-USRA, NASA Ames Research Center, Building N232, PO Box 1, Moffett Field, CA 94035 (United States); Ardila, D. R. [NASA Herschel Science Center, California Institute of Technology, 1200 E. California Blvd., Mail Stop 220-6, Pasadena, CA 91125 (United States); Woitke, P., E-mail: Aki.Roberge@nasa.gov [University of Vienna, Department of Astronomy, Tuerkenschanzstr. 17, A-1180, Vienna (Austria)

    2013-07-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the ''Gas in Protoplanetary Systems'' (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 {mu}m; 49 Cet is significantly extended in the 70 {mu}m image, spatially resolving the outer dust disk for the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O I] 63 {mu}m and [C II] 158 {mu}m. The C II line was detected at the 5{sigma} level-the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the O I line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C II emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.

  14. Fine Structure in the Circumstellar Environment of a Young, Solar-like Star the Unique Eclipses of KH 15D

    CERN Document Server

    Herbst, W; Vrba, F J; Ibrahimov, M A; Bailer-Jones, C A L; Mundt, R; Lamm, M J; Mazeh, T; Webster, Z T; Haisch, K E; Williams, E C; Rhodes, A H; Balonek, T J; Riffeser, A; Herbst, William; Hamilton, Catrina M.; Vrba, Frederick J.; Ibrahimov, Mansur A.; Bailer-Jones, Coryn A.L.; Mundt, Reinhard; Lamm, Markus; Mazeh, Tsevi; Webster, Zodiac T.; Haisch, Karl E.; Williams, Eric C.; Rhodes, Andrew H.; Balonek, Thomas J.; Riffeser, Alexander Scholz and Arno

    2002-01-01

    Results of an international campaign to photometrically monitor the unique pre-main sequence eclipsing object KH 15D are reported. An updated ephemeris for the eclipse is derived that incorporates a slightly revised period of 48.36 d. There is some evidence that the orbital period is actually twice that value, with two eclipses occurring per cycle. The extraordinary depth (~3.5 mag) and duration (~18 days) of the eclipse indicate that it is caused by circumstellar matter, presumably the inner portion of a disk. The eclipse has continued to lengthen with time and the central brightness reversals are not as extreme as they once were. V-R and V-I colors indicate that the system is slightly bluer near minimum light. Ingress and egress are remarkably well modeled by the passage of a knife-edge across a limb-darkened star. Possible models for the system are briefly discussed.

  15. CIRCUMSTELLAR ABSORPTION IN DOUBLE DETONATION TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ken J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Guillochon, James [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Foley, Ryan J., E-mail: kenshen@astro.berkeley.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-06-20

    Upon formation, degenerate He core white dwarfs are surrounded by a radiative H-rich layer primarily supported by ideal gas pressure. In this Letter, we examine the effect of this H-rich layer on mass transfer in He+C/O double white dwarf binaries that will eventually merge and possibly yield a Type Ia supernova (SN Ia) in the double detonation scenario. Because its thermal profile and equation of state differ from the underlying He core, the H-rich layer is transferred stably onto the C/O white dwarf prior to the He core's tidal disruption. We find that this material is ejected from the binary system and sweeps up the surrounding interstellar medium hundreds to thousands of years before the SN Ia. The close match between the resulting circumstellar medium profiles and values inferred from recent observations of circumstellar absorption in SNe Ia gives further credence to the resurgent double detonation scenario.

  16. Circumstellar Shells in Absorption in Type Ia Supernovae

    CERN Document Server

    Borkowski, K J; Reynolds, S P

    2009-01-01

    Progenitors of Type Ia supernovae (SNe) have been predicted to modify their ambient circumstellar (CSM) and interstellar environments through the action of their powerful winds. While there is X-ray and optical evidence for circumstellar interaction in several remnants of Type Ia SNe, widespread evidence for such interaction in Type Ia SNe themselves has been lacking. We consider prospects for detection of CSM shells that have been predicted to be common around Type Ia SNe. Such shells are most easily detected in Na I absorption lines. Variable (declining) absorption is expected to occur soon after the explosion, primarily during the SN rise time, for shells located within 1 - 10 pc of a SN. The distance of the shell from the SN can be determined by measuring the time scale for line variability.

  17. Mean gas opacity for circumstellar environments and equilibrium temperature degeneracy

    CERN Document Server

    Malygin, M G; Klahr, H; Dullemond, C P; Henning, Th

    2014-01-01

    In a molecular cloud dust opacity typically dominates over gas opacity, yet in the vicinities of forming stars dust is depleted, and gas is the sole provider of opacity. In the optically thin circumstellar environments the radiation temperature cannot be assumed to be equal to the gas temperature, hence the two-temperature Planck means are necessary to calculate the radiative equilibrium. By using the two-temperature mean opacity one does obtain the proper equilibrium gas temperature in a circumstellar environment, which is in a chemical equilibrium. A careful consideration of a radiative transfer problem reveals that the equilibrium temperature solution can be degenerate in an optically thin gaseous environment. We compute mean gas opacities based on the publicly available code DFSYNTHE by Kurucz and Castelli. We performed the calculations assuming local thermodynamic equilibrium and an ideal gas equation of state. The values were derived by direct integration of the high-resolution opacity spectrum. We prod...

  18. Optical Evidence for Circumstellar Interaction Around SN 1993J

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Feng; ZHANG Tian-Meng; ZHOU Xu; LI Zong-Wei

    2004-01-01

    We study the circumstellar interaction around SN 1993J by its intermediate-band light curves obtained by the 60/90 cm Schmidt telescope at Xinglong station. The optical emission showed a slow decay of 0.05±0.02 mag/100 d in the period from 1995 to 2003, invoking a main energy contribution from SN-circumstellar interaction at late times. The relatively flat power law SN density model fits better with the observations. In particular, the line ratio of [O Ⅲ]λλ4959, 5007 and Na I D relative to Hα are well reproduced by the model. Moreover, the Hα light curve displayed obvious bump structures at some epochs, which is probably attributed to the density fluctuations in the ambient material that surrounds the reverse shockwave.

  19. Masonry building envelope analysis

    Science.gov (United States)

    McMullan, Phillip C.

    1993-04-01

    Over the past five years, infrared thermography has proven an effective tool to assist in required inspections on new masonry construction. However, with more thermographers providing this inspection service, establishing a standard for conducting these inspections is imperative. To attempt to standardize these inspections, it is important to understand the nature of the inspection as well as the context in which the inspection is typically conducted. The inspection focuses on evaluating masonry construction for compliance with the design specifications with regard to structural components and thermal performance of the building envelope. The thermal performance of the building includes both the thermal resistance of the material as well as infiltration/exfiltration characteristics. Given that the inspections occur in the 'field' rather than the controlled environment of a laboratory, there are numerous variables to be considered when undertaking this type of inspection. Both weather and site conditions at the time of the inspection can vary greatly. In this paper we will look at the variables encountered during recent inspections. Additionally, the author will present the standard which was employed in collecting this field data. This method is being incorporated into a new standard to be included in the revised version of 'Guidelines for Specifying and Performing Infrared Inspections' developed by the Infraspection Institute.

  20. Envelope glycoprotein of arenaviruses.

    Science.gov (United States)

    Burri, Dominique J; da Palma, Joel Ramos; Kunz, Stefan; Pasquato, Antonella

    2012-10-17

    Arenaviruses include lethal human pathogens which pose serious public health threats. So far, no FDA approved vaccines are available against arenavirus infections, and therapeutic options are limited, making the identification of novel drug targets for the development of efficacious therapeutics an urgent need. Arenaviruses are comprised of two RNA genome segments and four proteins, the polymerase L, the envelope glycoprotein GP, the matrix protein Z, and the nucleoprotein NP. A crucial step in the arenavirus life-cycle is the biosynthesis and maturation of the GP precursor (GPC) by cellular signal peptidases and the cellular enzyme Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P) yielding a tripartite mature GP complex formed by GP1/GP2 and a stable signal peptide (SSP). GPC cleavage by SKI-1/S1P is crucial for fusion competence and incorporation of mature GP into nascent budding virion particles. In a first part of our review, we cover basic aspects and newer developments in the biosynthesis of arenavirus GP and its molecular interaction with SKI-1/S1P. A second part will then highlight the potential of SKI-1/S1P-mediated processing of arenavirus GPC as a novel target for therapeutic intervention to combat human pathogenic arenaviruses.

  1. Envelope Glycoprotein of Arenaviruses

    Directory of Open Access Journals (Sweden)

    Antonella Pasquato

    2012-10-01

    Full Text Available Arenaviruses include lethal human pathogens which pose serious public health threats. So far, no FDA approved vaccines are available against arenavirus infections, and therapeutic options are limited, making the identification of novel drug targets for the development of efficacious therapeutics an urgent need. Arenaviruses are comprised of two RNA genome segments and four proteins, the polymerase L, the envelope glycoprotein GP, the matrix protein Z, and the nucleoprotein NP. A crucial step in the arenavirus life-cycle is the biosynthesis and maturation of the GP precursor (GPC by cellular signal peptidases and the cellular enzyme Subtilisin Kexin Isozyme-1 (SKI-1/Site-1 Protease (S1P yielding a tripartite mature GP complex formed by GP1/GP2 and a stable signal peptide (SSP. GPC cleavage by SKI-1/S1P is crucial for fusion competence and incorporation of mature GP into nascent budding virion particles. In a first part of our review, we cover basic aspects and newer developments in the biosynthesis of arenavirus GP and its molecular interaction with SKI-1/S1P. A second part will then highlight the potential of SKI-1/S1P-mediated processing of arenavirus GPC as a novel target for therapeutic intervention to combat human pathogenic arenaviruses.

  2. Multifamily Envelope Leakage Model

    Energy Technology Data Exchange (ETDEWEB)

    Faakye, Omari [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Griffiths, Dianne [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-05-08

    “The cost for blower testing is high, because it is labor intensive, and it may disrupt occupants in multiple units. This high cost and disruption deter program participants, and dissuade them from pursuing energy improvements that would trigger air leakage testing, such as improvements to the building envelope.” This statement found in a 2012 report by Heschong Mahone Group for several California interests emphasizes the importance of reducing the cost and complexity of blower testing in multifamily buildings. Energy efficiency opportunities are being bypassed. The cost of single blower testing is on the order of $300. The cost for guarded blower door testing—the more appropriate test for assessing energy savings opportunities—could easily be six times that, and that’s only if you have the equipment and simultaneous access to multiple apartments. Thus, the proper test is simply not performed. This research seeks to provide an algorithm for predicting the guarded blower door test result based upon a single, total blower door test.

  3. THE WIRED SURVEY. IV. NEW DUST DISKS FROM THE McCOOK and SION WHITE DWARF CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Hoard, D. W.; Wachter, Stefanie [Max Planck Institut fuer Astronomie, D-69117 Heidelberg (Germany); Debes, John H. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Leisawitz, David T. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Cohen, Martin, E-mail: hoard@mpia.de [Monterey Institute for Research in Astronomy, Marina, CA 93933 (United States)

    2013-06-10

    We have compiled photometric data from the Wide-field Infrared Survey Explorer All Sky Survey and other archival sources for the more than 2200 objects in the original McCook and Sion Catalog of Spectroscopically Identified White Dwarfs. We applied color-selection criteria to identify 28 targets whose infrared spectral energy distributions depart from the expectation for the white dwarf (WD) photosphere alone. Seven of these are previously known WDs with circumstellar dust disks, five are known central stars of planetary nebulae, and six were excluded for being known binaries or having possible contamination of their infrared photometry. We fit WD models to the spectral energy distributions of the remaining ten targets, and find seven new candidates with infrared excess suggesting the presence of a circumstellar dust disk. We compare the model dust disk properties for these new candidates with a comprehensive compilation of previously published parameters for known WDs with dust disks. It is possible that the current census of WDs with dust disks that produce an excess detectable at K-band and shorter wavelengths is close to complete for the entire sample of known WDs to the detection limits of existing near-IR all-sky surveys. The WD dust disk candidates now being found using longer wavelength infrared data are drawn from a previously underrepresented region of parameter space, in which the dust disks are overall cooler, narrower in radial extent, and/or contain fewer emitting grains.

  4. FIRST IMAGES OF DEBRIS DISKS AROUND TWA 7, TWA 25, HD 35650, AND HD 377

    Energy Technology Data Exchange (ETDEWEB)

    Choquet, Élodie; Perrin, Marshall D.; Chen, Christine H.; Soummer, Rémi; Pueyo, Laurent; Hagan, James B.; Gofas-Salas, Elena; Golimowski, David A.; Hines, Dean C.; Mazoyer, Johan; Debes, John; Stark, Christopher C.; N’Diaye, Mamadou [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Rajan, Abhijith [Arizona State University, Phoenix, AZ 85004 (United States); Schneider, Glenn [Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Augereau, Jean-Charles [Univ. Grenoble Alpes, IPAG, F-38000 Grenoble (France); Wolff, Schuyler; Hsiao, Kevin, E-mail: choquet@stsci.edu [Johns Hopkins University, 3400 North Charles Street, Baltimore MD 21218 (United States)

    2016-01-20

    We present the first images of four debris disks observed in scattered light around the young (4–250 Myr old) M dwarfs TWA 7 and TWA 25, the K6 star HD 35650, and the G2 star HD 377. We obtained these images by reprocessing archival Hubble Space Telescope NICMOS coronagraph data with modern post-processing techniques as part of the Archival Legacy Investigation of Circumstellar Environments program. All four disks appear faint and compact compared with other debris disks resolved in scattered light. The disks around TWA 25, HD 35650, and HD 377 appear very inclined, while TWA 7's disk is viewed nearly face-on. The surface brightness of HD 35650's disk is strongly asymmetric. These new detections raise the number of disks resolved in scattered light around M and late-K stars from one (the AU Mic system) to four. This new sample of resolved disks enables comparative studies of heretofore scarce debris disks around low-mass stars relative to solar-type stars.

  5. Disk masses in the embedded and T Tauri phases of stellar evolution

    CERN Document Server

    Vorobyov, E I

    2008-01-01

    (Abridged). Motivated by a growing concern that masses of circumstellar disks may have been systematically underestimated by conventional observational methods, we present a numerical hydrodynamics study of time-averaged disk masses () around low-mass Class 0, Class I, and Class II objects. Mean disk masses (\\overline{M}_d}) are then calculated by weighting the time-averaged disk masses according to the corresponding stellar masses using a power-law weight function with a slope typical for the Kroupa initial mass function of stars. Two distinct types of disks are considered: self-gravitating disks, in which mass and angular momentum are redistributed exclusively by gravitational torques, and viscous disks, in which both the gravitational and viscous torques are at work. We find that self-gravitating disks have mean masses that are slowly increasing along the sequence of stellar evolution phases. More specifically, Class 0/I/II self-gravitating disks have mean masses \\overline{M}_d=0.09, 0.10, and 0.12 M_sun, ...

  6. High mass accretion disks: ATCA's potential for deep impact II

    Science.gov (United States)

    Walsh, Andrew; Beuther, Henrik; Longmore, Steven; Fallscheer, Cassandra

    2010-10-01

    The understanding of accretion processes and in particular of massive accretion disks is one of the most important topics in high-mass star formation. Based on our successful ATCA disk studies of high mass star formation, we now propose to investigate higher J inversion transitions of NH3 at high angular resolution (~1'') to complement our NH3 (4,4) and (5,5) data obtained last year. Last year's data showed a number of regions with clear rotational profiles, but no flattened structures that would indicate an edge-on accretion disk. We interpret our results to show rotating surrounding envelopes of any accretion disks. We were not able to see the accretion disks themselves because the (4,4) and (5,5) lines are optically thick. With observations of NH3 (7,7) and (8,8), which occur under even more extreme conditions than (4,4) or (5,5), we hope to peer through the surrounding envelope to see the accretion disks.

  7. Discovery of an Inner Disk Component around HD 141569 A

    CERN Document Server

    Konishi, Mihoko; Schneider, Glenn; Shibai, Hiroshi; McElwain, Michael W; Nesvold, Erika R; Kuchner, Marc J; Carson, Joseph; Debes, John H; Gaspar, Andras; Henning, Thomas K; Hines, Dean C; Hinz, Philip M; Jang-Condell, Hannah; Moro-Martin, Amaya; Perrin, Marshall; Rodigas, Timothy J; Serabyn, Eugene; Silverstone, Murray D; Stark, Christopher C; Tamura, Motohide; Weinberger, Alycia J; Wisniewski, John P

    2016-01-01

    We report the discovery of a scattering component around the HD 141569 A circumstellar debris system, interior to the previously known inner ring. The discovered inner disk component, obtained in broadband optical light with HST/STIS coronagraphy, was imaged with an inner working angle of 0".25, and can be traced from 0".4 (~46 AU) to 1".0 (~116 AU) after deprojection using i=55deg. The inner disk component is seen to forward scatter in a manner similar to the previously known rings, has a pericenter offset of ~6 AU, and break points where the slope of the surface brightness changes. It also has a spiral arm trailing in the same sense as other spiral arms and arcs seen at larger stellocentric distances. The inner disk spatially overlaps with the previously reported warm gas disk seen in thermal emission. We detect no point sources within 2" (~232 AU), in particular in the gap between the inner disk component and the inner ring. Our upper limit of 9+/-3 M_J is augmented by a new dynamical limit on single plane...

  8. Is the HD 15115 inner disk really asymmetrical ?

    CERN Document Server

    Mazoyer, J; Augereau, J -C; Lagrange, A -M; Galicher, R; Baudoz, P

    2014-01-01

    Context. Debris disks are intrinsically connected to the planetary system's formation and evolution. The development of high-contrast imaging techniques in the past 20 years is now allowing the detection of faint material around bright stars with high angular resolution, hence opening an avenue to study in detail the structures of circumstellar disks and their relation to planetary formation. Aims. The purpose of this paper is to revisit the morphology of the almost edge-on debris disk around HD 15115. Methods. We analyzed data from the Gemini science archive obtained in 2009 and 2011 with the Near-Infrared Coronagraphic Imager instrument in the H and Ks bands using coronagraphy and angular differential imaging tech- niques. Results. We resolved the disk in both the H and Ks bands. We confirmed the position angles inferred by previous authors, as well as the brightness asymmetry, which is the origin of the object's nickname, the blue needle. We were able to detect the bow-like shape of the disk suspected from...

  9. Dispersal of Gaseous Circumstellar Discs around High-Mass Stars

    CERN Document Server

    Shen, Y; Shen, Yue; Lou, Yu-Qing

    2006-01-01

    We study the dispersal of a gaseous disc surrounding a central high-mass stellar core once this circumstellar disc becomes fully ionized. If the stellar and surrounding EUV and X-ray radiations are so strong as to rapidly heat up and ionize the entire circumstellar disc as further facilitated by disc magnetohydrodynamic (MHD) turbulence, a shock can be driven to travel outward in the fully ionized disc, behind which the disc expands and thins. For an extremely massive and powerful stellar core, the ionized gas pressure overwhelms the centrifugal and gravitational forces in the disc. In this limit, we construct self-similar shock solutions for such an expansion and depletion phase. As a significant amount of circumstellar gas being removed, the relic disc becomes vulnerable to strong stellar winds and fragments into clumps. We speculate that disc disappearance happens rapidly, perhaps on a timescale of $\\sim 10^3-10^4\\hbox{yr}$ once the disc becomes entirely ionized sometime after the onset of thermal nuclear ...

  10. Braking the Gas in the beta Pictoris Disk

    CERN Document Server

    Fern'andez, R; Wu, Y; Brandeker, Alexis; Fern\\'andez, Rodrigo

    2006-01-01

    (Abridged) The main sequence star beta Pictoris hosts the best studied circumstellar disk to date. Nonetheless, a long-standing puzzle has been around since the detection of metallic gas in the disk: radiation pressure from the star should blow the gas away, yet the observed motion is consistent with Keplerian rotation. In this work we search for braking mechanisms that can resolve this discrepancy. We find that all species affected by radiation force are heavily ionized and dynamically coupled into a single fluid by Coulomb collisions, reducing the radiation force on species feeling the strongest acceleration. For a gas of solar composition, the resulting total radiation force still exceeds gravity, while a gas of enhanced carbon abundance could be self-braking. We also explore two other braking agents: collisions with dust grains and neutral gas. Grains surrounding beta Pic are photoelectrically charged to a positive electrostatic potential. If a significant fraction of the grains are carbonaceous (10% in t...

  11. Morphology of the very inclined debris disk around HD 32297

    CERN Document Server

    Boccaletti, Anthony; Lagrange, Anne-Marie; Milli, Julien; Baudoz, Pierre; Mawet, Dimitri; Mouillet, David; Lebreton, Jeremy; Maire, Anne-Lise

    2012-01-01

    Direct imaging of circumstellar disks at high angular resolution is mandatory to provide morphological information that bring constraints on their properties, in particular the spatial distribution of dust. New techniques combining observing strategy and data processing now allow very high contrast imaging with 8-m class ground-based telescopes (10^-4 to 10^-5 at ~1") and complement space telescopes while improving angular resolution at near infrared wavelengths. We carried out a program at the VLT with NACO to image known debris disks with higher angular resolution in the near IR than ever before in order to study morphological properties and ultimately to detect signpost of planets. The observing method makes use of advanced techniques: Adaptive Optics, Coronagraphy and Differential Imaging, a combination designed to directly image exoplanets with the upcoming generation of "planet finders" like GPI (Gemini Planet Imager) and SPHERE (Spectro-Polarimetric High contrast Exoplanet REsearch). Applied to extende...

  12. The nearby population of M dwarfs with WISE: A search for warm circumstellar dust

    CERN Document Server

    Avenhaus, Henning; Meyer, Michael R

    2012-01-01

    Circumstellar debris disks are important for their connection to planetary systems. An efficient way to identify such systems is through their infrared excess. Most studies so far concentrated on early-type or solar-type stars, but less effort has gone into M dwarfs. We characterize the mid-infrared photometric behavior of M dwarfs and search for infrared excess in nearby M dwarfs taken from the volume-limited RECONS sample using data from the WISE satellite and the 2MASS catalog. Our sample consists of 85 sources encompassing 103 M dwarfs. We derive empirical infrared colors from these data and discuss their errors. From this, we check the stars for infrared excess and discuss the minimum excess we would be able to detect. Other than the M8.5 dwarf SCR 1845-6357 A, where the excess is produced by a known T6 companion, we detect no excesses in any of our sample stars. The limits we derive for the 22um excess are slightly larger than the usual detection limit of 10-15% for Spitzer studies, but the inclusion of...

  13. Stellar and circumstellar properties of visual binaries in the Orion Nebula Cluster

    CERN Document Server

    Correia, S; Reipurth, B; Zinnecker, H; Daemgen, S; Petr-Gotzens, M G; Koehler, R; Ratzka, Th; Aspin, C; Konopacky, Q M; Ghez, A M

    2013-01-01

    Our general understanding of multiple star and planet formation is primarily based on observations of young multiple systems in low density regions like Tau-Aur and Oph. Since many, if not most, of the stars are born in clusters, observational constraints from young binaries in those environments are fundamental for understanding both the formation of multiple systems and planets in multiple systems throughout the Galaxy. We build upon the largest survey for young binaries in the Orion Nebula Cluster (ONC) which is based on Hubble Space Telescope observations to derive both stellar and circumstellar properties of newborn binary systems in this cluster environment. We present Adaptive Optics spatially-resolved JHKL'-band photometry and K-band R$\\sim$\\,5000 spectra for a sample of 8 ONC binary systems from this database. We characterize the stellar properties of binary components and obtain a census of protoplanetary disks through K-L' color excess. For a combined sample of ONC binaries including 7 additional s...

  14. Chemistry in Protoplanetary Disks

    CERN Document Server

    Henning, Thomas

    2013-01-01

    This comprehensive review summarizes our current understanding of the evolution of gas, solids and molecular ices in protoplanetary disks. Key findings related to disk physics and chemistry, both observationally and theoretically, are highlighted. We discuss which molecular probes are used to derive gas temperature, density, ionization state, kinematics, deuterium fractionation, and study organic matter in protoplanetary disks.

  15. Galactic Disk Warps

    CERN Document Server

    Kuijken, K; Kuijken, Konrad; Garcia, Inigo

    2000-01-01

    This review addresses recent developments in the field of disk galaxy warps. Both results from a new HI survey of edgeon disk galaxies, and of simulations of the interaction between a disk+halo and an orbiting satelite, will be discussed.

  16. Galactic Disk Warps

    NARCIS (Netherlands)

    Kuijken, K.; García, I.

    2000-01-01

    Abstract: This review addresses recent developments in the field of disk galaxy warps. Both results from a new HI survey of edgeon disk galaxies, and of simulations of the interaction between a disk+halo and an orbiting satelite, will be discussed.

  17. ALMA observations of the Th 28 protostellar disk - A new exemple of counter-rotation between disk and optical jet

    CERN Document Server

    Louvet, F; Cabrit, S; Hales, A; Pinte, C; Menard, F; Bacciotti, F; Coffey, D; Mardones, D; Bronfman, L; Gueth, F

    2016-01-01

    Differences in Doppler shifts across the base of four close classical T-Tauri star jets have been detected with the HST in optical and NUV emission lines, and interpreted as rotation signatures under the assumption of steady state flow. To support this interpretation, it is necessary that the underlying disks rotate in the same sense. Agreement between disk rotation and jet rotation determined from optical lines has been verified in two cases and rejected in one. We propose here to perform this test on the fourth system, Th 28. We present ALMA high angular resolution Band 7 continuum, 12CO(2-1) and 13CO(2-1) observations of the circumstellar disk around the T-Tauri star Th 28. The sub-arcsecond angular resolution (0.46"x0.37") and high-sensitivity reached enable us to detect in CO and continuum clear signatures of a disk in Keplerian rotation around Th28. The 12CO emission allows us to derive estimates of disk position angle and inclination. The large velocity separation of the peaks in 12CO combined with the...

  18. Herschel-PACS observation of the 10 Myr old T Tauri disk TW Hya: Constraining the disk gas mass

    CERN Document Server

    Thi, W F; Ménard, F; Woitke, P; Meeus, G; Riviere-Marichalar, P; Pinte, C; Howard, C D; Roberge, A; Sandell, G; Pascucci, I; Riaz, B; Grady, C A; Dent, W R F; Kamp, I; Duchêne, G; Augereau, J C; Pantin, E; Vandenbussche, B; Tilling, I; Williams, J P; Eiroa, C; Barrado, D; Alacid, J M; Andrews, S; Ardila, D R; Aresu, G; Brittain, S; Ciardi, D R; Danchi, W; Fedele, D; de Gregorio-Monsalvo, I; Heras, A; Huelamo, N; Krivov, A; Lebreton, J; Liseau, R; Martin-Zaidi, C; Mendigutía, I; Montesinos, B; Mora, A; Morales-Calderon, M; Nomura, H; Phillips, N; Podio, L; Poelman, D R; Ramsay, S; Rice, K; Solano, E; Walker, H; White, G J; Wright, G

    2010-01-01

    Planets are formed in disks around young stars. With an age of ~10 Myr, TW Hya is one of the nearest T Tauri stars that is still surrounded by a relatively massive disk. In addition a large number of molecules has been found in the TW Hya disk, making TW Hya the perfect test case in a large survey of disks with Herschel-PACS to directly study their gaseous component. We aim to constrain the gas and dust mass of the circumstellar disk around TW Hya. We observed the fine-structure lines of [OI] and [CII] as part of the Open-time large program GASPS. We complement this with continuum data and ground-based 12CO 3-2 and 13CO 3-2 observations. We simultaneously model the continuum and the line fluxes with the 3D Monte-Carlo code MCFOST and the thermo-chemical code ProDiMo to derive the gas and dust masses. We detect the [OI] line at 63 micron. The other lines that were observed, [OI] at 145 micron and [CII] at 157 micron, are not detected. No extended emission has been found. Preliminary modeling of the photometric...

  19. Unveiling the structure and kinematics of B[e] stars' disks from FEROS and CRIRES spectra

    CERN Document Server

    Muratore, M F; Kraus, M; Aret, A; Cidale, L S; Fernandes, M Borges; Oudmaijer, R D; Wheelwright, H E

    2012-01-01

    We are investigating the circumstellar material for a sample of B[e] stars using high spectral resolution data taken in the optical and near-infrared regions with ESO/FEROS and ESO/CRIRES spectrographs, respectively. B[e] stars are surrounded by dense disks of still unknown origin. While optical emission lines from [O I] and [Ca II] reflect the disk conditions close to the star (few stellar radii), the near-infrared data, especially the CO band emission, mirror the characteristics in the molecular part of the disk farther away from the star (several AU). Based on our high resolution spectroscopic data, we seek to derive the density and temperature structure of the disks, as well as their kinematics. This will allow us to obtain a better understanding of their structure, formation history and evolution. Here we present our preliminary results.

  20. Debris Disks in Nearby Young Moving Groups in the ALMA Era

    CERN Document Server

    Kóspál, Á

    2015-01-01

    Many members of nearby young moving groups exhibit infrared excess attributed to circumstellar debris dust, formed via erosion of planetesimals. With their proximity and well-dated ages, these groups are excellent laboratories for studying the early evolution of debris dust and of planetesimal belts. ALMA can spatially resolve the disk emission, revealing the location and extent of these belts, putting constraints on planetesimal evolution models, and allowing us to study planet-disk interactions. While the main trends of dust evolution in debris disks are well-known, there is almost no information on the evolution of gas. During the transition from protoplanetary to debris state, even the origin of gas is dubious. Here we review the exciting new results ALMA provided by observing young debris disks, and discuss possible future research directions.

  1. SI-BEARING MOLECULES TOWARD IRC+10216: ALMA UNVEILS THE MOLECULAR ENVELOPE OF CWLEO.

    Science.gov (United States)

    Prieto, L Velilla; Cernicharo, J; Quintana-Lacaci, G; Agúndez, M; Castro-Carrizo, A; Fonfŕia, J P; Marcelino, N; Zúñiga, J; Requena, A; Bastida, A; Lique, F; Guélin, M

    2015-06-01

    We report the detection of SiS rotational lines in high-vibrational states as well as SiO and SiC2 lines in their ground vibrational state toward IRC+10216 during the Atacama Large Millimeter Array Cycle 0. The spatial distribution of these molecules shows compact emission for SiS and a more extended emission for SiO and SiC2, and also proves the existence of an increase in the SiC2 emission at the outer shells of the circumstellar envelope. We analyze the excitation conditions of the vibrationally excited SiS using the population diagram technique, and we use a large velocity gradient model to compare with the observations. We found moderate discrepancies between the observations and the models that could be explained if SiS lines detected are optically thick. Additionally, the line profiles of the detected rotational lines in the high energy vibrational states show a decreasing linewidth with increasing energy levels. This may be evidence that these lines could be excited only in the inner shells, i.e., the densest and hottest, of the circumstellar envelope of IRC+10216.

  2. Mid-IR Observations of T Tauri stars: Probing the Star-Disk Connection in Rotational Evolution

    CERN Document Server

    Kundurthy, P; Robberto, M; Beckwith, S V W; Herbst, T; Kundurthy, Praveen; Meyer, Michael R.; Robberto, Massimo; Beckwith, Steven V.W.; Herbst, Tom

    2006-01-01

    We present mid-IR N-band $(\\lambda_{eff} = 10.2\\micron)$ photometry of a carefully selected sample of T Tauri stars thought to be single from the Taurus-Auriga molecular cloud. Infrared excesses in these stars are generally attributed to circumstellar dust-disks. Combining observations at 2.16$\\micron$ (K$_{s}$-band) and 10.2$\\micron$ (N-band) we probe a region in the circumstellar dust-disk from a few stellar radii through the terrestrial planet zone (0.02-1.0AU). By analyzing the distribution of the $(K_{s}-N)$ color index with respect to previously measured photometric rotation periods we investigate what role circumstellar disks play in the rotational evolution of the central star. The resulting positive correlation between these two variables is consistent with the notion that a star-disk interaction facilitates the regulation of angular momentum during the T Tauri stage. We also demonstrate, how including non-single stars in such an analysis will \\textit{weaken} any correlation in the relation between $...

  3. The LHC on an envelope

    CERN Multimedia

    2007-01-01

    The series of envelopes featuring CERN issued this summer was a huge success. The French postal services of the Pays de Gex will shortly be launching the second set of pre-paid envelopes issued in collaboration with the Laboratory this year, this time highlighting the LHC. Five thousand envelopes describing the accelerator’s capabilities will go on sale on 12 November, and some of the packs will even contain a small sample of the cables from the heart of the LHC magnets. The sets of ten pre-paid envelopes will tell you everything about CERN’s flagship accelerator, from its astounding technical capabilities to its spin-offs in the fields of technology and human resources. Each envelope will feature a different attribute or spin-off of the LHC. People will be invited to consult CERN’s public website for more detailed explanations if they want to know more. The new envelopes will be available from five post offices in the Pays ...

  4. The LHC in an envelope

    CERN Multimedia

    2007-01-01

    The series of envelopes featuring CERN issued this summer was a huge success. The French postal services of the Pays de Gex will shortly be launching the second set of pre-paid envelopes issued in collaboration with the Laboratory this year, this time highlighting the LHC. Five thousand envelopes describing the accelerator’s capabilities will go on sale on 12 November, and some of the packs will even contain a small sample of the cables from the heart of the LHC magnets. The sets of ten pre-paid envelopes will tell you everything about CERN’s flagship accelerator, from its astounding technical capabilities to its spin-offs in the fields of technology and human resources. Each envelope will feature a different attribute or spin-off of the LHC. People will be invited to consult CERN’s public website for more detailed explanations if they want to know more. The new envelopes will be available from five post offices in the Pays de Gex (Ferney-Voltaire, Prévessin...

  5. A planet on an inclined orbit as an explanation of the warp in the $\\beta$ Pictoris disk

    CERN Document Server

    Mouillet, D; Papaloizou, J C B; Lagrange, A M

    1997-01-01

    We consider the deformation that has recently been observed in the inner part of the circumstellar disk around Beta Pictoris with the HST. Our recent ground based adaptive optics coronographic observations confirm that the inner disk is warped. We investigate the hypothesis that a yet undetected planet is responsible for the observed warp, through simulations of the effect of the gravitational perturbation due to a massive companion on the disk. The physical processes assumed in the simulations are discussed: since the observed particles do not survive collisions, the apparent disk shape is driven by the underlying collisionless parent population. The resulting possible parameters for the planet that are consistent with the observed disk deformation are reviewed.

  6. Spirals in protoplanetary disks from photon travel time

    CERN Document Server

    Kama, M; Heays, A N

    2016-01-01

    Spiral structures are a common feature in scattered-light images of protoplanetary disks, and of great interest as possible tracers of the presence of planets. However, other mechanisms have been put foward to explain them, including self-gravity, disk-envelope interactions, and dead zone boundaries. These mechanisms explain many spirals very well, but are unable to easily account for very loosely wound spirals and single spiral arms. We study the effect of light travel time on the shape of a shadow cast by a clump orbiting close (within ${\\sim}1\\,$au) of the central star, where there can be significant orbital motion during the light travel time from the clump to the outer disk and then to the sky plane. This delay in light rays reaching the sky plane gives rise to a variety of spiral- and arc-shaped shadows, which we describe with a general fitting formula for a flared, inclined disk.

  7. Integrability of motion around galactic razor-thin disks

    CERN Document Server

    Vieira, Ronaldo S S

    2016-01-01

    We consider the three-dimensional bounded motion of a test particle around razor-thin disk configurations, by focusing on the adiabatic invariance of the vertical action associated with disk-crossing orbits. We find that it leads to an approximate third integral of motion predicting envelopes of the form $Z(R)\\propto[\\Sigma(R)]^{-1/3}$, where $R$ is the radial galactocentric coordinate, $Z$ is the z-amplitude (vertical amplitude) of the orbit and $\\Sigma$ represents the surface mass density of the thin disk. This third integral, which was previously formulated for the case of flattened 3D configurations, is tested for a variety of trajectories in different thin-disk models.

  8. Magnetically Self-regulated Formation of Early Protoplanetary Disks

    Science.gov (United States)

    Hennebelle, Patrick; Commerçon, Benoît; Chabrier, Gilles; Marchand, Pierre

    2016-10-01

    The formation of protoplanetary disks during the collapse of molecular dense cores is significantly influenced by angular momentum transport, notably by the magnetic torque. In turn, the evolution of the magnetic field is determined by dynamical processes and non-ideal MHD effects such as ambipolar diffusion. Considering simple relations between various timescales characteristic of the magnetized collapse, we derive an expression for the early disk radius, r≃ 18 {au} {({η }{AD}/0.1{{s}})}2/9{({B}z/0.1{{G}})}-4/9{(M/0.1{M}⊙ )}1/3, where M is the total disk plus protostar mass, {η }{AD} is the ambipolar diffusion coefficient, and B z is the magnetic field in the inner part of the core. This is significantly smaller than the disks that would form if angular momentum was conserved. The analytical predictions are confronted against a large sample of 3D, non-ideal MHD collapse calculations covering variations of a factor 100 in core mass, a factor 10 in the level of turbulence, a factor 5 in rotation, and magnetic mass-to-flux over critical mass-to-flux ratios 2 and 5. The disk radius estimates are found to agree with the numerical simulations within less than a factor 2. A striking prediction of our analysis is the weak dependence of circumstellar disk radii upon the various relevant quantities, suggesting weak variations among class-0 disk sizes. In some cases, we note the onset of large spiral arms beyond this radius.

  9. The HST/ACS Atlas of Protoplanetary Disks in the Great Orion Nebula

    CERN Document Server

    Ricci, Luca; Soderblom, David R

    2008-01-01

    We present the atlas of protoplanetary disks in the Orion Nebula based on the ACS/WFC images obtained for the HST Treasury Program on the Orion Nebula Cluster. The observations have been carried out in 5 photometric filters nearly equivalent to the standard B, V, Halpha, I, and z passbands. Our master catalog lists 178 externally ionized proto-planetary disks (proplyds), 28 disks seen only in absorption against the bright nebular background (silhouette disks), 8 disks seen only as dark lanes at the midplane of extended polar emission (bipolar nebulae or reflection nebulae) and 5 sources showing jet emission with no evidence of neither external ionized gas emission nor dark silhouette disks. Many of these disks are associated with jets seen in Halpha and circumstellar material detected through reflection emission in our broad-band filters; approximately 2/3 have identified counterparts in x-rays. A total of 47 objects (29 proplyds, 7 silhouette disks, 6 bipolar nebulae, 5 jets with no evidence of proplyd emiss...

  10. An interferometric study of the post-AGB binary 89 Herculis I Spatially resolving the continuum circumstellar environment at optical and near-IR wavelengths with the VLTI, NPOI, IOTA, PTI, and the CHARA Array

    CERN Document Server

    Hillen, M; Van Winckel, H; Chesneau, O; Hummel, C A; Monnier, J D; Farrington, C; Tycner, C; Mourard, D; Brummelaar, T ten; Banerjee, D P K; Zavala, R T

    2013-01-01

    Binary post-AGB stars are interesting laboratories to study both the evolution of binaries as well as the structure of circumstellar disks. A multiwavelength high angular resolution study of the prototypical object 89 Herculis is performed with the aim of identifying and locating the different emission components seen in the SED. A large interferometric data set, collected over the past decade and covering optical and near-IR wavelengths, is analyzed with simple geometric models. Combining the interferometric constraints with the photometry and the optical spectra, we reassess the energy budget of the post-AGB star and its circumstellar environment. We report the first (direct) detection of a large (35-40%) optical circumstellar flux contribution and spatially resolve its emission region. Given this large amount of reprocessed and/or redistributed optical light, the fitted size of the emission region is rather compact and fits with(in) the inner rim of the circumbinary dust disk. This rim dominates our K band...

  11. Rotationally-supported disks around Class I sources in Taurus: disk formation constraints

    CERN Document Server

    Harsono, Daniel; van Dishoeck, Ewine F; Hogerheijde, Michiel R; Bruderer, Simon; Persson, Magnus V; Mottram, Joseph C

    2013-01-01

    (Abridged) Disks are observed around pre-main sequence stars, but how and when they form is still heavily debated. While disks around young stellar objects have been identified through thermal dust emission, spatially and spectrally resolved molecular line observations are needed to determine their nature. We present subarcsecond observations of dust and gas toward four Class I low-mass young stellar objects in Taurus. The 13CO and C18O J=2-1 transitions at 220 GHz were observed with the Plateau de Bure Interferometer at a spatial resolution of ~0.8'' and analyzed using uv-space position velocity diagrams to determine the nature of their observed velocity radient. Rotationally supported disks (RSDs) are detected around 3 of the 4 Class I sources studied. The derived masses identify them as Stage I objects; i.e., their stellar mass is higher than their envelope and disk masses. The outer radii of the Keplerian disks toward our sample of Class I sources are 100 AU around these sources are dominated by infallin...

  12. THE CIRCUMSTELLAR ENVIRONMENT OF R CORONAE BOREALIS: WHITE DWARF MERGER OR FINAL-HELIUM-SHELL FLASH?

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Geoffrey C.; Andrews, J. E. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Sugerman, Ben E. K. [Department of Physics and Astronomy, Goucher College, 1021 Dulaney Valley Rd., Baltimore, MD 21204 (United States); Adam Stanford, S. [IGPP, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Whitney, B. A. [Space Science Institute, 4750 Walnut St. Suite 205, Boulder, CO 80301 (United States); Honor, J.; Babler, B. [Department of Astronomy, 475 North Charter St., University of Wisconsin, Madison, WI 53706 (United States); Barlow, M. J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Gordon, K. D.; Bond, Howard E.; Matsuura, M. [STScI, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Geballe, T. R. [Gemini Observatory, 670 N. A' ohoku Place, Hilo, HI 96720 (United States); De Marco, O. [Department of Physics, Macquarie University, Sydney, NSW 2109 (Australia); Lawson, W. A. [School of PEMS, University of New South Wales, ADFA, P.O. Box 7916, Canberra, ACT 2610 (Australia); Sibthorpe, B. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Olofsson, G. [Department of Astronomy, Stockholm University, AlbaNova University Center, Roslagstullsbacken 21, SE-10691 Stockholm (Sweden); Polehampton, E. [Space Science and Technology Department, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Gomez, H. L.; Hargrave, P. C. [School of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff, Wales CF24 3YB (United Kingdom); Ivison, R. J., E-mail: gclayton@phys.lsu.edu, E-mail: jandrews@phys.lsu.edu, E-mail: ben.sugerman@goucher.edu, E-mail: stanford@physics.ucdavis.edu, E-mail: bwhitney@spacescience.org, E-mail: jhonor@astro.wisc.edu, E-mail: brian@astro.wisc.edu, E-mail: mjb@star.ucl.ac.uk [UK Astronomy Technology Centre, ROE, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); and others

    2011-12-10

    In 2007, R Coronae Borealis (R CrB) went into a historically deep and long decline. In this state, the dust acts like a natural coronagraph at visible wavelengths, allowing faint nebulosity around the star to be seen. Imaging has been obtained from 0.5 to 500 {mu}m with Gemini/GMOS, Hubble Space Telescope/WFPC2, Spitzer/MIPS, and Herschel/SPIRE. Several of the structures around R CrB are cometary globules caused by wind from the star streaming past dense blobs. The estimated dust mass of the knots is consistent with their being responsible for the R CrB declines if they form along the line of sight to the star. In addition, there is a large diffuse shell extending up to 4 pc away from the star containing cool 25 K dust that is detected all the way out to 500 {mu}m. The spectral energy distribution of R CrB can be well fitted by a 150 AU disk surrounded by a very large diffuse envelope which corresponds to the size of the observed nebulosity. The total masses of the disk and envelope are 10{sup -4} and 2 M{sub Sun }, respectively, assuming a gas-to-dust ratio of 100. The evidence pointing toward a white dwarf merger or a final-helium-shell flash origin for R CrB is contradictory. The shell and the cometary knots are consistent with a fossil planetary nebula. Along with the fact that R CrB shows significant lithium in its atmosphere, this supports the final-helium-shell flash. However, the relatively high inferred mass of R CrB and its high fluorine abundance support a white dwarf merger.

  13. VLT imaging of the β Pictoris gas disk

    Science.gov (United States)

    Nilsson, R.; Brandeker, A.; Olofsson, G.; Fathi, K.; Thébault, Ph.; Liseau, R.

    2012-08-01

    Context. Circumstellar debris disks older than a few Myr should be largely devoid of primordial gas remaining from the protoplanetary disk phase. Tracing the origin of observed atomic gas in Keplerian rotation in the edge-on debris disk surrounding the ~12 Myr old star β Pictoris requires more detailed information about its spatial distribution than has previously been acquired by limited slit spectroscopy. Especially indications of asymmetries and presence of Ca ii gas at high disk latitudes call for additional investigation to exclude or confirm its connection to observed dust structures or suggested cometary bodies on inclined eccentric orbits. Aims: We set out to recover a complete image of the Fe i and Ca ii gas emission around β Pic by spatially resolved, high-resolution spectroscopic observations to better understand the morphology and origin of the gaseous disk component. Methods: The multiple fiber facility FLAMES/GIRAFFE at the Very Large Telescope (VLT), with the large integral-field-unit ARGUS, was used to obtain spatially resolved optical spectra (from 385.9 to 404.8 nm) in four regions covering the northeast and southwest side of the disk. Emission lines from Fe i (at 386.0 nm) and Ca ii (at 393.4 and 396.8 nm) were mapped and could be used to fit a parametric function for the disk gas distribution, using a gas-ionisation code for gas-poor debris disks. Results: Both Fe i and Ca ii emission are clearly detected, with the former dominating along the disk midplane, and the latter revealing vertically more extended gas. The surface intensity of the Fe i emission is lower but more extended in the northeast (reaching the 210 AU limit of our observations) than in the southwest, while Ca ii shows the opposite asymmetry. The modelled Fe gas disk profile shows a linear increase in scale height with radius, and a vertical profile that suggests dynamical interaction with the dust. We also qualitatively demonstrate that the Ca ii emission profile can be

  14. HIGH-RESOLUTION 25 μM IMAGING OF THE DISKS AROUND HERBIG AE/BE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Honda, M. [Department of Mathematics and Physics, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan); Maaskant, K. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Okamoto, Y. K. [Institute of Astrophysics and Planetary Sciences, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Kataza, H. [Department of Infrared Astrophysics, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Yamashita, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Miyata, T.; Sako, S.; Kamizuka, T. [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Fujiyoshi, T.; Fujiwara, H. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, Hawaii 96720 (United States); Sakon, I.; Onaka, T. [Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Mulders, G. D. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Lopez-Rodriguez, E.; Packham, C. [Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States)

    2015-05-10

    We imaged circumstellar disks around 22 Herbig Ae/Be stars at 25 μm using Subaru/COMICS and Gemini/T-ReCS. Our sample consists of an equal number of objects from each of the two categories defined by Meeus et al.; 11 group I (flaring disk) and II (flat disk) sources. We find that group I sources tend to show more extended emission than group II sources. Previous studies have shown that the continuous disk is difficult to resolve with 8 m class telescopes in the Q band due to the strong emission from the unresolved innermost region of the disk. This indicates that the resolved Q-band sources require a hole or gap in the disk material distribution to suppress the contribution from the innermost region of the disk. As many group I sources are resolved at 25 μm, we suggest that many, but not all, group I Herbig Ae/Be disks have a hole or gap and are (pre-)transitional disks. On the other hand, the unresolved nature of many group II sources at 25 μm supports the idea that group II disks have a continuous flat disk geometry. It has been inferred that group I disks may evolve into group II through the settling of dust grains into the mid-plane of the protoplanetary disk. However, considering the growing evidence for the presence of a hole or gap in the disk of group I sources, such an evolutionary scenario is unlikely. The difference between groups I and II may reflect different evolutionary pathways of protoplanetary disks.

  15. Protoplanetary Disk Masses from Stars to Brown Dwarfs

    CERN Document Server

    Mohanty, Subhanjoy; Mortlock, Daniel; Pascucci, Ilaria; Scholz, Aleks; Thompson, Mark; Apai, Daniel; Lodato, Giuseppe; Looper, Dagny

    2013-01-01

    We present SCUBA-2 850um observations for 7 very low mass stars (VLMS) and brown dwarfs (BDs): 3 in Taurus, 4 in the TWA, and all classical T Tauri (cTT) analogs. We detect 2 of the 3 Taurus disks, but none of the TWA ones. Our 3sigma limits correspond to a dust mass of 1.2 MEarth in Taurus and a mere 0.2 MEarth in the TWA (3--10x deeper than previous work). We combine our data with other sub-mm/mm surveys of Taurus, rho Oph and the TWA to investigate trends in disk mass and grain growth during the cTT phase. We find : (1) The minimum disk outer radius required to explain the upper envelope of sub-mm/mm fluxes is 100 AU for intermediate-mass stars, solar-types and VLMS, and 20 AU for BDs. (2) While the upper envelope of disk masses increases with Mstar from BDs to VLMS to solar-types, no increase is seen from solar-type to intermediate-mass stars. We propose this is due to enhanced photoevaporation around intermediate masses. (3) Many disks around Taurus and rho Oph intermediate-mass and solar-type stars evin...

  16. The circumstellar medium of the peculiar supernova SN1997ab

    CERN Document Server

    Salamanca, I M; Tenorio-Tagle, G; Telles, E; Terlevich, R J; Muñoz-Tunón, C; Salamanca, Isabel; Cid-Fernandes, Roberto; Tenorio-Tagle, Guillermo; Telles, Eduardo; Terlevich, Roberto J.; Munoz-Tunon, Casiana

    1998-01-01

    We report the detection of the slow moving wind into which the compact supernova remnant SN 1997ab is expanding. Echelle spectroscopy provides clear evidence for a well resolved narrow (Full Width at Zero Intensity, FWZI ~ 180 km/s) P-Cygni profile, both in Ha and Hb, superimposed on the broad emission lines of this compact supernova remnant. From theoretical arguments we know that the broad and strong emission lines imply a circumstellar density (n ~ 10^7 cm^-3). This, together with our detection, implies a massive and slow stellar wind experienced by the progenitor star shortly prior to the explosion.

  17. Circumstellar Environments of MYSOs Revealed by IFU Spectroscopy

    Science.gov (United States)

    Navarete, F.; Damineli, A.; Barbosa, C. L.; Blum, R. D.

    2015-01-01

    Formation of massive stars (M > 8 M ⊙) is still not well understood and lacks of observational constraints. We observed 7 MYSO candidates using the NIFS spectrometer at Gemini North Telescope to study the accretion process at high angular resolution (~ 50 mas) and very closer to the central star. Preliminary results for 2 sources have revealed circumstellar structures traced by Brackett-Gamma, CO lines and extended H2 emission. Both sources present kinematics in the CO absorption lines, suggesting rotating structures. The next step will derive the central mass of each source by applying a keplerian model for these CO features.

  18. REMARKS ON JOHN DISKS

    Institute of Scientific and Technical Information of China (English)

    Chu Yuming; Cheng Jinfa; Wang Gendi

    2009-01-01

    Let D R2 be a Jordan domain, D* = -R2 \\ -D, the exterior of D. In this article, the authors obtained the following results: (1) If D is a John disk, then D is an outer linearly locally connected domain; (2) If D* is a John disk, then D is an inner linearly locally connected domain; (3) A homeomorphism f: R2→R2 is a quasiconformal mapping if and only if f(D) is a John disk for any John disk D(∈)R2; and (4) If D is a bounded quasidisk, then D is a John disk, and there exists an unbounded quasidisk which is not a John disk.

  19. Photoevaporation of Disks and Clumps by Nearby Massive Stars: Application to Disk Destruction in the Orion Nebula

    Science.gov (United States)

    Johnstone, Doug; Hollenbach, David; Bally, John

    1998-05-01

    We present a model for the photoevaporation of circumstellar disks or dense clumps of gas by an external source of ultraviolet radiation. Our model includes the thermal and dynamic effects of 6-13.6 eV far-ultraviolet (FUV) photons and Lyman continuum EUV photons incident upon disks or clumps idealized as spheres of radius rd and enclosed mass M*. For sufficiently large values of rd/M*, the radiation field evaporates the surface gas and dust. Analytical and numerical approximations to the resulting flows are presented; the model depends on rd, M*, the flux of FUV and EUV photons, and the column density of neutral gas heated by FUV photons to high temperatures. Application of this model shows that the circumstellar disks (rd ~ 1014-1015 cm) in the Orion Nebula (``proplyds'') are rapidly destroyed by the external UV radiation field. Close (d Gas evaporated from the cold disk moves subsonically through a relatively thin photodissociation region (PDR) dominated by FUV photons and heated to ~1000 K. As the distance from θ1 Ori C increases, the Lyman continuum flux declines, the PDR thickens, and the IF moves away from the disk surface. At d ~ 3 × 1017 cm, the thickness of the PDR becomes comparable to the disk radius. Between 3 × 1017 cm gas moves subsonically through a stationary D-type IF. The IF is moved away from the disk surface to a standoff distance rIF >~ 2.5rd. In this regime, the mass-loss rate is determined by the incident FUV photon flux and not the ionizing flux. However, at very large distances, d >~ 1018 cm, the FUV photon flux drops to values that cannot maintain the disk surface temperature at ~103 K. As the PDR temperature drops, the pressure of the FUV-powered flow declines with increasing distance from θ1 Ori C, and again the EUV ionizing photons can penetrate close to the disk surface and dominate the evaporation rate. Radio, Hα, and [O III] observations of externally illuminated young stellar objects in the Trapezium region are used to

  20. Parasitic Events in Envelope Analysis

    Directory of Open Access Journals (Sweden)

    J. Doubek

    2001-01-01

    Full Text Available Envelope analysis allows fast fault location of individual gearboxes and parts of bearings by repetition frequency determination of the mechanical catch of an amplitude-modulated signal. Systematic faults arise when using envelope analysis on a signal with strong changes. The source of these events is the range of function definition of used in convolution integral definition. This integral is used for Hilbert image calculation of analyzed signal. Overshoots (almost similar to Gibbs events on a synthetic signal using the Fourier series are result from these faults. Overshoots are caused by parasitic spectral lines in the frequency domain, which can produce faulty diagnostic analysis.This paper describes systematic arising during faults rising by signal numerical calculation using envelope analysis with Hilbert transform. It goes on to offer a mathematical analysis of these systematic faults.