WorldWideScience

Sample records for circulation model simulations

  1. Computer Simulation of the Circulation Subsystem of a Library

    Science.gov (United States)

    Shaw, W. M., Jr.

    1975-01-01

    When circulation data are used as input parameters for a computer simulation of a library's circulation subsystem, the results of the simulation provide information on book availability and delays. The model may be used to simulate alternative loan policies. (Author/LS)

  2. Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in Central Europe

    Directory of Open Access Journals (Sweden)

    A. P. van Ulden

    2006-01-01

    Full Text Available The quality of global sea level pressure patterns has been assessed for simulations by 23 coupled climate models. Most models showed high pattern correlations. With respect to the explained spatial variance, many models showed serious large-scale deficiencies, especially at mid-latitudes. Five models performed well at all latitudes and for each month of the year. Three models had a reasonable skill. We selected the five models with the best pressure patterns for a more detailed assessment of their simulations of the climate in Central Europe. We analysed observations and simulations of monthly mean geostrophic flow indices and of monthly mean temperature and precipitation. We used three geostrophic flow indices: the west component and south component of the geostrophic wind at the surface and the geostrophic vorticity. We found that circulation biases were important, and affected precipitation in particular. Apart from these circulation biases, the models showed other biases in temperature and precipitation, which were for some models larger than the circulation induced biases. For the 21st century the five models simulated quite different changes in circulation, precipitation and temperature. Precipitation changes appear to be primarily caused by circulation changes. Since the models show widely different circulation changes, especially in late summer, precipitation changes vary widely between the models as well. Some models simulate severe drying in late summer, while one model simulates significant precipitation increases in late summer. With respect to the mean temperature the circulation changes were important, but not dominant. However, changes in the distribution of monthly mean temperatures, do show large indirect influences of circulation changes. Especially in late summer, two models simulate very strong warming of warm months, which can be attributed to severe summer drying in the simulations by these models. The models differ also

  3. A heuristic simulation model of Lake Ontario circulation and mass balance transport

    Science.gov (United States)

    McKenna, J.E.; Chalupnicki, M.A.

    2011-01-01

    The redistribution of suspended organisms and materials by large-scale currents is part of natural ecological processes in large aquatic systems but can contribute to ecosystem disruption when exotic elements are introduced into the system. Toxic compounds and planktonic organisms spend various lengths of time in suspension before settling to the bottom or otherwise being removed. We constructed a simple physical simulation model, including the influence of major tributaries, to qualitatively examine circulation patterns in Lake Ontario. We used a simple mass balance approach to estimate the relative water input to and export from each of 10 depth regime-specific compartments (nearshore vs. offshore) comprising Lake Ontario. Despite its simplicity, our model produced circulation patterns similar to those reported by more complex studies in the literature. A three-gyre pattern, with the classic large counterclockwise central lake circulation, and a simpler two-gyre system were both observed. These qualitative simulations indicate little offshore transport along the south shore, except near the mouths of the Niagara River and Oswego River. Complex flow structure was evident, particularly near the Niagara River mouth and in offshore waters of the eastern basin. Average Lake Ontario residence time is 8 years, but the fastest model pathway indicated potential transport of plankton through the lake in as little as 60 days. This simulation illustrates potential invasion pathways and provides rough estimates of planktonic larval dispersal or chemical transport among nearshore and offshore areas of Lake Ontario. ?? 2011 Taylor & Francis.

  4. Numerical Simulations of a Multiscale Model of Stratified Langmuir Circulation

    Science.gov (United States)

    Malecha, Ziemowit; Chini, Gregory; Julien, Keith

    2012-11-01

    Langmuir circulation (LC), a prominent form of wind and surface-wave driven shear turbulence in the ocean surface boundary layer (BL), is commonly modeled using the Craik-Leibovich (CL) equations, a phase-averaged variant of the Navier-Stokes (NS) equations. Although surface-wave filtering renders the CL equations more amenable to simulation than are the instantaneous NS equations, simulations in wide domains, hundreds of times the BL depth, currently earn the ``grand challenge'' designation. To facilitate simulations of LC in such spatially-extended domains, we have derived multiscale CL equations by exploiting the scale separation between submesoscale and BL flows in the upper ocean. The numerical algorithm for simulating this multiscale model resembles super-parameterization schemes used in meteorology, but retains a firm mathematical basis. We have validated our algorithm and here use it to perform multiscale simulations of the interaction between LC and upper ocean density stratification. ZMM, GPC, KJ gratefully acknowledge funding from NSF CMG Award 0934827.

  5. Seasonal changes in the atmospheric heat balance simulated by the GISS general circulation model

    Science.gov (United States)

    Stone, P. H.; Chow, S.; Helfand, H. M.; Quirk, W. J.; Somerville, R. C. J.

    1975-01-01

    Tests of the ability of numerical general circulation models to simulate the atmosphere have focussed so far on simulations of the January climatology. These models generally present boundary conditions such as sea surface temperature, but this does not prevent testing their ability to simulate seasonal changes in atmospheric processes that accompany presented seasonal changes in boundary conditions. Experiments to simulate changes in the zonally averaged heat balance are discussed since many simplified models of climatic processes are based solely on this balance.

  6. Simulation of Venus polar vortices with the non-hydrostatic general circulation model

    Science.gov (United States)

    Rodin, Alexander V.; Mingalev, Oleg; Orlov, Konstantin

    2012-07-01

    The dynamics of Venus atmosphere in the polar regions presents a challenge for general circulation models. Numerous images and hyperspectral data from Venus Express mission shows that above 60 degrees latitude atmospheric motion is substantially different from that of the tropical and extratropical atmosphere. In particular, extended polar hoods composed presumably of fine haze particles, as well as polar vortices revealing mesoscale wave perturbations with variable zonal wavenumbers, imply the significance of vertical motion in these circulation elements. On these scales, however, hydrostatic balance commonly used in the general circulation models is no longer valid, and vertical forces have to be taken into account to obtain correct wind field. We present the first non-hydrostatic general circulation model of the Venus atmosphere based on the full set of gas dynamics equations. The model uses uniform grid with the resolution of 1.2 degrees in horizontal and 200 m in the vertical direction. Thermal forcing is simulated by means of relaxation approximation with specified thermal profile and time scale. The model takes advantage of hybrid calculations on graphical processors using CUDA technology in order to increase performance. Simulations show that vorticity is concentrated at high latitudes within planetary scale, off-axis vortices, precessing with a period of 30 to 40 days. The scale and position of these vortices coincides with polar hoods observed in the UV images. The regions characterized with high vorticity are surrounded by series of small vortices which may be caused by shear instability of the zonal flow. Vertical velocity component implies that in the central part of high vorticity areas atmospheric flow is downwelling and perturbed by mesoscale waves with zonal wavenumbers 1-4, resembling observed wave structures in the polar vortices. Simulations also show the existence of areas with strong vertical flow, concentrated in spiral branches extending

  7. Computer simulated modeling of healthy and diseased right ventricular and pulmonary circulation.

    Science.gov (United States)

    Chou, Jody; Rinehart, Joseph B

    2018-01-12

    We have previously developed a simulated cardiovascular physiology model for in-silico testing and validation of novel closed-loop controllers. To date, a detailed model of the right heart and pulmonary circulation was not needed, as previous controllers were not intended for use in patients with cardiac or pulmonary pathology. With new development of controllers for vasopressors, and looking forward, for combined vasopressor-fluid controllers, modeling of right-sided and pulmonary pathology is now relevant to further in-silico validation, so we aimed to expand our existing simulation platform to include these elements. Our hypothesis was that the completed platform could be tuned and stabilized such that the distributions of a randomized sample of simulated patients' baseline characteristics would be similar to reported population values. Our secondary outcomes were to further test the system in representing acute right heart failure and pulmonary artery hypertension. After development and tuning of the right-sided circulation, the model was validated against clinical data from multiple previously published articles. The model was considered 'tuned' when 100% of generated randomized patients converged to stability (steady, physiologically-plausible compartmental volumes, flows, and pressures) and 'valid' when the means for the model data in each health condition were contained within the standard deviations for the published data for the condition. A fully described right heart and pulmonary circulation model including non-linear pressure/volume relationships and pressure dependent flows was created over a 6-month span. The model was successfully tuned such that 100% of simulated patients converged into a steady state within 30 s. Simulation results in the healthy state for central venous volume (3350 ± 132 ml) pulmonary blood volume (405 ± 39 ml), pulmonary artery pressures (systolic 20.8 ± 4.1 mmHg and diastolic 9.4 ± 1.8 mmHg), left

  8. DBSSP - A computer program for simulation of controlled circulation boiler and natural circulation boiler start up behavior

    International Nuclear Information System (INIS)

    Li Bin; Chen Tingkuan; Yang Dong

    2005-01-01

    In this paper, a computer program, Drum Boiler Start-up Simulation Program (DBSSP), is developed for simulating the start up behavior of controlled circulation and natural circulation boilers. The mathematical model developed here is based on the first principles of mass, energy and momentum conservations. In the boiler model, heat transfer in the waterwall, the superheater, the reheater and the economizer is simulated by the distributing parameter method, while heat transfer in the drum and the downcomer is simulated by lumped parameter analysis. The program can provide detailed flow and thermodynamic characteristics of the boiler components. The development of this program is based only on design data, so it can be used for any subcritical, controlled or natural circulation boiler. The simulation results were compared with experimental measurements, and good agreements between them were found. This program is expected to be useful for predicting the characteristics and the performance of controlled circulation and natural circulation boilers during the start up process. It also can be used to optimize a start up system for minimum start up time

  9. Simulated pre-industrial climate in Bergen Climate Model (version 2: model description and large-scale circulation features

    Directory of Open Access Journals (Sweden)

    O. H. Otterå

    2009-11-01

    Full Text Available The Bergen Climate Model (BCM is a fully-coupled atmosphere-ocean-sea-ice model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate. Here, a pre-industrial multi-century simulation with an updated version of BCM is described and compared to observational data. The model is run without any form of flux adjustments and is stable for several centuries. The simulated climate reproduces the general large-scale circulation in the atmosphere reasonably well, except for a positive bias in the high latitude sea level pressure distribution. Also, by introducing an updated turbulence scheme in the atmosphere model a persistent cold bias has been eliminated. For the ocean part, the model drifts in sea surface temperatures and salinities are considerably reduced compared to earlier versions of BCM. Improved conservation properties in the ocean model have contributed to this. Furthermore, by choosing a reference pressure at 2000 m and including thermobaric effects in the ocean model, a more realistic meridional overturning circulation is simulated in the Atlantic Ocean. The simulated sea-ice extent in the Northern Hemisphere is in general agreement with observational data except for summer where the extent is somewhat underestimated. In the Southern Hemisphere, large negative biases are found in the simulated sea-ice extent. This is partly related to problems with the mixed layer parametrization, causing the mixed layer in the Southern Ocean to be too deep, which in turn makes it hard to maintain a realistic sea-ice cover here. However, despite some problematic issues, the pre-industrial control simulation presented here should still be appropriate for climate change studies requiring multi-century simulations.

  10. Climatology of the HOPE-G global ocean general circulation model - Sea ice general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Legutke, S. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Maier-Reimer, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1999-12-01

    The HOPE-G global ocean general circulation model (OGCM) climatology, obtained in a long-term forced integration is described. HOPE-G is a primitive-equation z-level ocean model which contains a dynamic-thermodynamic sea-ice model. It is formulated on a 2.8 grid with increased resolution in low latitudes in order to better resolve equatorial dynamics. The vertical resolution is 20 layers. The purpose of the integration was both to investigate the models ability to reproduce the observed general circulation of the world ocean and to obtain an initial state for coupled atmosphere - ocean - sea-ice climate simulations. The model was driven with daily mean data of a 15-year integration of the atmosphere general circulation model ECHAM4, the atmospheric component in later coupled runs. Thereby, a maximum of the flux variability that is expected to appear in coupled simulations is included already in the ocean spin-up experiment described here. The model was run for more than 2000 years until a quasi-steady state was achieved. It reproduces the major current systems and the main features of the so-called conveyor belt circulation. The observed distribution of water masses is reproduced reasonably well, although with a saline bias in the intermediate water masses and a warm bias in the deep and bottom water of the Atlantic and Indian Oceans. The model underestimates the meridional transport of heat in the Atlantic Ocean. The simulated heat transport in the other basins, though, is in good agreement with observations. (orig.)

  11. Numerical simulation of the circulation of the atmosphere of Titan

    Science.gov (United States)

    Hourdin, F.; Levan, P.; Talagrand, O.; Courtin, Regis; Gautier, Daniel; Mckay, Christopher P.

    1992-01-01

    A three dimensional General Circulation Model (GCM) of Titan's atmosphere is described. Initial results obtained with an economical two dimensional (2D) axisymmetric version of the model presented a strong superrotation in the upper stratosphere. Because of this result, a more general numerical study of superrotation was started with a somewhat different version of the GCM. It appears that for a slowly rotating planet which strongly absorbs solar radiation, circulation is dominated by global equator to pole Hadley circulation and strong superrotation. The theoretical study of this superrotation is discussed. It is also shown that 2D simulations systemically lead to instabilities which make 2D models poorly adapted to numerical simulation of Titan's (or Venus) atmosphere.

  12. Simulations of physics and chemistry of polar stratospheric clouds with a general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, J.

    2005-04-20

    A polar stratospheric cloud submodel has been developed and incorporated in a general circulation model including atmospheric chemistry (ECHAM5/MESSy). The formation and sedimentation of polar stratospheric cloud (PSC) particles can thus be simulated as well as heterogeneous chemical reactions that take place on the PSC particles. For solid PSC particle sedimentation, the need for a tailor-made algorithm has been elucidated. A sedimentation scheme based on first order approximations of vertical mixing ratio profiles has been developed. It produces relatively little numerical diffusion and can deal well with divergent or convergent sedimentation velocity fields. For the determination of solid PSC particle sizes, an efficient algorithm has been adapted. It assumes a monodisperse radii distribution and thermodynamic equilibrium between the gas phase and the solid particle phase. This scheme, though relatively simple, is shown to produce particle number densities and radii within the observed range. The combined effects of the representations of sedimentation and solid PSC particles on vertical H{sub 2}O and HNO{sub 3} redistribution are investigated in a series of tests. The formation of solid PSC particles, especially of those consisting of nitric acid trihydrate, has been discussed extensively in recent years. Three particle formation schemes in accordance with the most widely used approaches have been identified and implemented. For the evaluation of PSC occurrence a new data set with unprecedented spatial and temporal coverage was available. A quantitative method for the comparison of simulation results and observations is developed and applied. It reveals that the relative PSC sighting frequency can be reproduced well with the PSC submodel whereas the detailed modelling of PSC events is beyond the scope of coarse global scale models. In addition to the development and evaluation of new PSC submodel components, parts of existing simulation programs have been

  13. Do downscaled general circulation models reliably simulate historical climatic conditions?

    Science.gov (United States)

    Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight

    2018-01-01

    The accuracy of statistically downscaled (SD) general circulation model (GCM) simulations of monthly surface climate for historical conditions (1950–2005) was assessed for the conterminous United States (CONUS). The SD monthly precipitation (PPT) and temperature (TAVE) from 95 GCMs from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) were used as inputs to a monthly water balance model (MWBM). Distributions of MWBM input (PPT and TAVE) and output [runoff (RUN)] variables derived from gridded station data (GSD) and historical SD climate were compared using the Kolmogorov–Smirnov (KS) test For all three variables considered, the KS test results showed that variables simulated using CMIP5 generally are more reliable than those derived from CMIP3, likely due to improvements in PPT simulations. At most locations across the CONUS, the largest differences between GSD and SD PPT and RUN occurred in the lowest part of the distributions (i.e., low-flow RUN and low-magnitude PPT). Results indicate that for the majority of the CONUS, there are downscaled GCMs that can reliably simulate historical climatic conditions. But, in some geographic locations, none of the SD GCMs replicated historical conditions for two of the three variables (PPT and RUN) based on the KS test, with a significance level of 0.05. In these locations, improved GCM simulations of PPT are needed to more reliably estimate components of the hydrologic cycle. Simple metrics and statistical tests, such as those described here, can provide an initial set of criteria to help simplify GCM selection.

  14. Validation of the HIRHAM-Simulated Indian Summer Monsoon Circulation

    Directory of Open Access Journals (Sweden)

    Stefan Polanski

    2010-01-01

    Full Text Available The regional climate model HIRHAM has been applied over the Asian continent to simulate the Indian monsoon circulation under present-day conditions. The model is driven at the lateral and lower boundaries by European reanalysis (ERA40 data for the period from 1958 to 2001. Simulations with a horizontal resolution of 50 km are carried out to analyze the regional monsoon patterns. The focus in this paper is on the validation of the long-term summer monsoon climatology and its variability concerning circulation, temperature, and precipitation. Additionally, the monsoonal behavior in simulations for wet and dry years has been investigated and compared against several observational data sets. The results successfully reproduce the observations due to a realistic reproduction of topographic features. The simulated precipitation shows a better agreement with a high-resolution gridded precipitation data set over the central land areas of India and in the higher elevated Tibetan and Himalayan regions than ERA40.

  15. PWR hot leg natural circulation modeling with MELCOR code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hong; Lee, Jong In [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1998-12-31

    Previous MELCOR and SCDAP/RELAP5 nodalizations for simulating the counter-current, natural circulation behavior of vapor flow within the RCS hot legs and SG U-tubes when core damage progress can not be applied to the steady state and water-filled conditions during the initial period of accident progression because of the artificially high loss coefficients in the hot legs and SG U-tubes which were chosen from results of COMMIX calculation and the Westinghouse natural circulation experiments in a 1/7-scale facility for simulating steam natural circulation behavior in the vessel and circulation modeling which can be used both for the liquid flow condition at steady state and for the vapor flow condition at the later period of in-vessel core damage. For this, the drag forces resulting from the momentum exchange effects between the two vapor streams in the hot leg was modeled as a pressure drop by pump model. This hot leg natural circulation modeling of MELCOR was able to reproduce similar mass flow rates with those predicted by previous models. 6 refs., 2 figs. (Author)

  16. PWR hot leg natural circulation modeling with MELCOR code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hong; Lee, Jong In [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1997-12-31

    Previous MELCOR and SCDAP/RELAP5 nodalizations for simulating the counter-current, natural circulation behavior of vapor flow within the RCS hot legs and SG U-tubes when core damage progress can not be applied to the steady state and water-filled conditions during the initial period of accident progression because of the artificially high loss coefficients in the hot legs and SG U-tubes which were chosen from results of COMMIX calculation and the Westinghouse natural circulation experiments in a 1/7-scale facility for simulating steam natural circulation behavior in the vessel and circulation modeling which can be used both for the liquid flow condition at steady state and for the vapor flow condition at the later period of in-vessel core damage. For this, the drag forces resulting from the momentum exchange effects between the two vapor streams in the hot leg was modeled as a pressure drop by pump model. This hot leg natural circulation modeling of MELCOR was able to reproduce similar mass flow rates with those predicted by previous models. 6 refs., 2 figs. (Author)

  17. South Atlantic Ocean circulation: Simulation experiments with a quasi-geostrophic model and assimilation of TOPEX/POSEIDON and ERS 1 altimeter data

    Science.gov (United States)

    Florenchie, P.; Verron, J.

    1998-10-01

    Simulation experiments of South Atlantic Ocean circulations are conducted with a 1/6°, four-layered, quasi-geostrophic model. By means of a simple nudging data assimilation procedure along satellite tracks, TOPEX/POSEIDON and ERS 1 altimeter measurements are introduced into the model to control the simulation of the basin-scale circulation for the period from October 1992 to September 1994. The model circulation appears to be strongly influenced by the introduction of altimeter data, offering a consistent picture of South Atlantic Ocean circulations. Comparisons with observations show that the assimilating model successfully simulates the kinematic behavior of a large number of surface circulation components. The assimilation procedure enables us to produce schematic diagrams of South Atlantic circulation in which patterns ranging from basin-scale currents to mesoscale eddies are portrayed in a realistic way, with respect to their complexity. The major features of the South Atlantic circulation are described and analyzed, with special emphasis on the Brazil-Malvinas Confluence region, the Subtropical Gyre with the formation of frontal structures, and the Agulhas Retroflection. The Agulhas eddy-shedding process has been studied extensively. Fourteen eddies appear to be shed during the 2-year experiment. Because of their strong surface topographic signature, Agulhas eddies have been tracked continuously during the assimilation experiment as they cross the South Atlantic basin westward. Other effects of the assimilation procedure are shown, such as the intensification of the Subtropical Gyre, the appearance of a strong seasonal cycle in the Brazil Current transport, and the increase of the mean Brazil Current transport. This last result, combined with the westward oriention of the Agulhas eddies' trajectories, leads to a southward transport of mean eddy kinetic energy across 30°S.

  18. Dynamic simulation of a circulating fluidized bed boiler system part I: Description of the dynamic system and transient behavior of sub-models

    International Nuclear Information System (INIS)

    Kim, Seong Il; Choi, Sang Min; Yang, Jong In

    2016-01-01

    Dynamic performance simulation of a CFB boiler in a commercial-scale power plant is reported. The boiler system was modeled by a finite number of heat exchanger units, which are sub-grouped into the gas-solid circulation loop, the water-steam circulation loop, and the inter-connected heat exchangers blocks of the boiler. This dynamic model is an extension from the previously reported performance simulation model, which was designed to simulate static performance of the same power plant, where heat and mass for each of the heat exchanger units were balanced for the inter-connected heat exchanger network among the fuel combustion system and the water-steam system. Dynamic performance simulation was achieved by calculating the incremental difference from the previous time step, and progressing for the next time step. Additional discretization of the heat exchanger blocks was necessary to accommodate the dynamic response of the water evaporation and natural circulation as well as the transient response of the metal temperature of the heat exchanger elements. Presentation of the simulation modeling is organized into two parts; system configuration of the model plant and the general approach of the simulation are presented along with the transient behavior of the sub-models in Part I. Dynamic sub-models were integrated in terms of the mass flow and the heat transfer for simulating the CFB boiler system. Dynamic simulation for the open loop response was performed to check the integrated system of the water-steam loop and the solid-gas loop of the total boiler system. Simulation of the total boiler system which includes the closed-loop control system blocks is presented in the following Part II

  19. Dynamic simulation of a circulating fluidized bed boiler system part I: Description of the dynamic system and transient behavior of sub-models

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Il; Choi, Sang Min; Yang, Jong In [Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-12-15

    Dynamic performance simulation of a CFB boiler in a commercial-scale power plant is reported. The boiler system was modeled by a finite number of heat exchanger units, which are sub-grouped into the gas-solid circulation loop, the water-steam circulation loop, and the inter-connected heat exchangers blocks of the boiler. This dynamic model is an extension from the previously reported performance simulation model, which was designed to simulate static performance of the same power plant, where heat and mass for each of the heat exchanger units were balanced for the inter-connected heat exchanger network among the fuel combustion system and the water-steam system. Dynamic performance simulation was achieved by calculating the incremental difference from the previous time step, and progressing for the next time step. Additional discretization of the heat exchanger blocks was necessary to accommodate the dynamic response of the water evaporation and natural circulation as well as the transient response of the metal temperature of the heat exchanger elements. Presentation of the simulation modeling is organized into two parts; system configuration of the model plant and the general approach of the simulation are presented along with the transient behavior of the sub-models in Part I. Dynamic sub-models were integrated in terms of the mass flow and the heat transfer for simulating the CFB boiler system. Dynamic simulation for the open loop response was performed to check the integrated system of the water-steam loop and the solid-gas loop of the total boiler system. Simulation of the total boiler system which includes the closed-loop control system blocks is presented in the following Part II.

  20. Simulation of the summer circulation over South America by two regional climate models. Part I: Mean climatology

    Science.gov (United States)

    Fernandez, J. P. R.; Franchito, S. H.; Rao, V. B.

    2006-09-01

    This study investigates the capabilities of two regional models (the ICTP RegCM3 and the climate version of the CPTEC Eta model - EtaClim) in simulating the mean climatological features of the summer quasi-stationary circulations over South America. Comparing the results with the NCEP/DOE reanalysis II data it is seen that the RegCM3 simulates a weaker and southward shifted Bolivian high (BH). But, the Nordeste low (NL) is located close to its climatological position. In the EtaClim the position of the BH is reproduced well, but the NL is shifted towards the interior of the continent. To the east of Andes, the RegCM3 simulates a weaker low level jet and a weaker basic flow from the tropical Atlantic to Amazonia while they are stronger in the EtaClim. In general, the RegCM3 and EtaClim show, respectively a negative and positive bias in the surface temperature in almost all regions of South America. For both models, the correlation coefficients between the simulated precipitation and the GPCP data are high over most of South America. Although the RegCM3 and EtaClim overestimate the precipitation in the Andes region they show a negative bias in general over the entire South America. The simulations of upper and lower level circulations and precipitation fields in EtaClim were better than that of the RegCM3. In central Amazonia both models were unable to simulate the precipitation correctly. The results showed that although the RegCM3 and EtaClim are capable of simulating the main climatological features of the summer climate over South America, there are areas which need improvement. This indicates that the models must be more adequately tuned in order to give reliable predictions in the different regions of South America.

  1. Using a {sigma}-coordinate numerical ocean model for simulating the circulation at Ormen Lange

    Energy Technology Data Exchange (ETDEWEB)

    Eliassen, Inge K.; Berntsen, Jarle

    2000-01-01

    This report describes a numerical model for the simulation of circulation at the Ormen Lange oil field. The model uses a topography following vertical coordinate and time split integration procedure. The model is implemented for a 28 km x 46 km area at Ormen Lange. The equations are given in detail and numerical experiments are discussed. The numerical studies investigate how the flow specified at open boundaries surrounding the Ormen Lange area may be interpolated into the interior domain taking into account the conservation laws that are believed to determine the flow and the local topography.

  2. Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation

    KAUST Repository

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry J.; Bower, Amy S.; Zhai, Ping; Kö hl, Armin; Gopalakrishnan, Ganesh

    2014-01-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using high-resolution MIT general circulation model simulations. In the first part of this study, the vertical and horizontal structure of the summer overturning circulation and its dynamical mechanisms are presented from the model results. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. In addition, during late summer two processes associated, respectively, with latitudinally differential heating and increased salinity in the southern Red Sea act together to cause the reversal of the contrast of the vertical density structure and the cessation of the summer overturning circulation. Dynamically, the subsurface northward pressure gradient force is mainly balanced by vertical viscosity resulting from the vertical shear and boundary friction in the Strait of Bab el Mandeb. Unlike some previous studies, the three-layer summer exchange flows in the Strait of Bab el Mandeb do not appear to be hydraulically controlled.

  3. Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation

    KAUST Repository

    Yao, Fengchao

    2014-04-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using high-resolution MIT general circulation model simulations. In the first part of this study, the vertical and horizontal structure of the summer overturning circulation and its dynamical mechanisms are presented from the model results. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. In addition, during late summer two processes associated, respectively, with latitudinally differential heating and increased salinity in the southern Red Sea act together to cause the reversal of the contrast of the vertical density structure and the cessation of the summer overturning circulation. Dynamically, the subsurface northward pressure gradient force is mainly balanced by vertical viscosity resulting from the vertical shear and boundary friction in the Strait of Bab el Mandeb. Unlike some previous studies, the three-layer summer exchange flows in the Strait of Bab el Mandeb do not appear to be hydraulically controlled.

  4. Modelling the Seasonal Overturning Circulation in the Red Sea

    KAUST Repository

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry; Bower, Amy; Koehl, Armin; Gopalakrishnan, Ganesh

    2015-01-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using 50-year, high-resolution MIT general circulation model simulations. The seasonal water exchange in the Strait of Bab el Mandeb

  5. Modelling the Seasonal Overturning Circulation in the Red Sea

    KAUST Repository

    Yao, Fengchao

    2015-04-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using 50-year, high-resolution MIT general circulation model simulations. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. For the winter overturning circulation, the climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation.

  6. Performance of the general circulation models in simulating temperature and precipitation over Iran

    Science.gov (United States)

    Abbasian, Mohammadsadegh; Moghim, Sanaz; Abrishamchi, Ahmad

    2018-03-01

    General Circulation Models (GCMs) are advanced tools for impact assessment and climate change studies. Previous studies show that the performance of the GCMs in simulating climate variables varies significantly over different regions. This study intends to evaluate the performance of the Coupled Model Intercomparison Project phase 5 (CMIP5) GCMs in simulating temperature and precipitation over Iran. Simulations from 37 GCMs and observations from the Climatic Research Unit (CRU) were obtained for the period of 1901-2005. Six measures of performance including mean bias, root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), linear correlation coefficient (r), Kolmogorov-Smirnov statistic (KS), Sen's slope estimator, and the Taylor diagram are used for the evaluation. GCMs are ranked based on each statistic at seasonal and annual time scales. Results show that most GCMs perform reasonably well in simulating the annual and seasonal temperature over Iran. The majority of the GCMs have a poor skill to simulate precipitation, particularly at seasonal scale. Based on the results, the best GCMs to represent temperature and precipitation simulations over Iran are the CMCC-CMS (Euro-Mediterranean Center on Climate Change) and the MRI-CGCM3 (Meteorological Research Institute), respectively. The results are valuable for climate and hydrometeorological studies and can help water resources planners and managers to choose the proper GCM based on their criteria.

  7. Simulations of future climate with a coupled atmosphere-ocean general circulation model

    International Nuclear Information System (INIS)

    Stendel, M.; Schmith, T.; Hesselbjerg Christensen, J.

    2001-01-01

    A coupled atmosphere/ocean general circulation model to study the time-dependent climate response to changing concentrations of greenhouse gases, chlorofluorocarbons and aerosols according to the new IPCC SRES scenarios A2 and B2 has been used. The results of these experiments are compared to an unforced 300-year control experiment. The changes in the last three decades of the scenario simulations (2071-2100) are furthermore compared to the simulation of present-day climate (1961-1990). In accordance with previous experiments we find that greenhouse warming is reduced when aerosol effects are considered. Sulfur emissions, however, are lower than in the IS92a scenario. Consequently, the greenhouse warming effect, which leads to a bigger temperature increase than in the GSDIO experiment can outweigh the aerosol cooling effect. The result shows that there still are serious difficulties and uncertainties in this type of model simulation. Those are partially due to oversimplifications in the model, concerning the radiative properties of aerosols in particular, and therefore the indirect aerosol effect. Another inherent problem, however, is the uncertainty in the scenarios themselves. This is the case for short-lived substances with an inhomogeneous spatial and temporal distribution, such as aerosols. Therefore, on a decadal horizon, changes in the emissions of those substance can exert a significant effect on anthropogenic climate change. (LN)

  8. Weather regimes in past climate atmospheric general circulation model simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kageyama, M.; Ramstein, G. [CEA Saclay, Gif-sur-Yvette (France). Lab. des Sci. du Climat et de l' Environnement; D' Andrea, F.; Vautard, R. [Laboratoire de Meteorologie Dynamique, Ecole Normale Superieure, Paris (France); Valdes, P.J. [Department of Meteorology, University of Reading (United Kingdom)

    1999-10-01

    We investigate the climates of the present-day, inception of the last glaciation (115000 y ago) and last glacial maximum (21000 y ago) in the extratropical north Atlantic and Europe, as simulated by the laboratoire de Meteorologie dynamique atmospheric general circulation model. We use these simulations to investigate the low-frequency variability of the model in different climates. The aim is to evaluate whether changes in the intraseasonal variability, which we characterize using weather regimes, can help describe the impact of different boundary conditions on climate and give a better understanding of climate change processes. Weather regimes are defined as the most recurrent patterns in the 500 hPa geopotential height, using a clustering algorithm method. The regimes found in the climate simulations of the present-day and inception of the last glaciation are similar in their number and their structure. It is the regimes' populations which are found to be different for these climates, with an increase of the model's blocked regime and a decrease in the zonal regime at the inception of the last glaciation. This description reinforces the conclusions from a study of the differences between the climatological averages of the different runs and confirms the northeastward shift to the tail of the Atlantic storm-track, which would favour more precipitation over the site of growth of the Fennoscandian ice-sheet. On the other hand, the last glacial maximum results over this sector are not found to be classifiable, showing that the change in boundary conditions can be responsible for severe changes in the weather regime and low-frequency dynamics. The LGM Atlantic low-frequency variability appears to be dominated by a large-scale retrogressing wave with a period 40 to 50 days. (orig.)

  9. Results from a 2 x CO2 simulation with the Canadian Climate Centre general circulation model

    International Nuclear Information System (INIS)

    Boer, G.J.

    1990-01-01

    The Canadian Climate Centre's general circulation model (GCM), GCMII, was used to simulate a doubling of atmospheric carbon dioxide concentration. The experiment was a standard greenhouse gas climate change study, using a three-dimensional atmospheric circulation model coupled to a simple 'slab' ocean and a thermodynamic ice model. This standard experiment retains the sophistication and generality of an atmospheric GCM, is straightforward in its use of simplified ocean and ice models, is comparatively economical of computer time, and permits comparison of results from different models. Features of the second generation GCMII include: higher resolution at T32L10 with a transform grid of 3.75 x 3.75 degree; full diurnal and annual cycles; ocean and sea ice treatment involving specification of ocean transports; modified treatment of land surface processes and hydrology; a parameterization of cloud optical feedback; and a retention of the special application data sets of surface parameters for North America and Europe. Results of the simulation were a globally averaged surface temperature increase of 3.5 degree C; a precipitation and evaporation increase of 3%; an average decrease in soil moisture of 6.6%; a decrease in cloud cover of 2.2%; a 66% decrease in mass of sea ice; and marked changes in other quantities in the polar region. 2 refs., 2 figs., 2 tabs

  10. Simulations of a Circulating Fluidized Bed Chemical Looping Combustion System Utilizing Gaseous Fuel; Simulation de la combustion en boucle chimique d'une charge gazeuse dans un lit fluidise circulant

    Energy Technology Data Exchange (ETDEWEB)

    Mahalatkar, K.; Kuhlman, J. [West Virginia University, Dept. of Mechanical and Aerospace Engineering, Morgantown, WV, 26506 (United States); Mahalatkar, K. [ANSYS Inc., 3647 Collins Ferry Road Suite A, Morgantown, WV, 26505 (United States); Kuhlman, J.; Huckaby, E.D.; O' Brien, T. [National Energy Technology Laboratory, 3610 Collins Ferry Road, Morgantown, WV, 26507 (United States)

    2011-03-15

    Numerical studies using Computational Fluid Dynamics (CFD) have been carried out for a complete circulating fluidized bed chemical looping combustor described in the literature (Abad et al., 2006 Fuel 85, 1174-1185). There have been extensive experimental studies in Chemical Looping Combustion (CLC), however CFD simulations of this concept are quite limited. The CLC experiments that were simulated used methane as fuel. A 2-D continuum model was used to describe both the gas and solid phases. Detailed sub-models to account for fluid-particle and particle-particle interaction forces were included. Global models of fuel and carrier chemistry were utilized. The results obtained from CFD were compared with experimental outlet species concentrations, solid circulation rates, solid mass distribution in the reactors, and leakage and dilution rates. The transient CFD simulations provided a reasonable match with the reported experimental data. (authors)

  11. Reynolds-Averaged Navier-Stokes Simulation of a 2D Circulation Control Wind Tunnel Experiment

    Science.gov (United States)

    Allan, Brian G.; Jones, Greg; Lin, John C.

    2011-01-01

    Numerical simulations are performed using a Reynolds-averaged Navier-Stokes (RANS) flow solver for a circulation control airfoil. 2D and 3D simulation results are compared to a circulation control wind tunnel test conducted at the NASA Langley Basic Aerodynamics Research Tunnel (BART). The RANS simulations are compared to a low blowing case with a jet momentum coefficient, C(sub u), of 0:047 and a higher blowing case of 0.115. Three dimensional simulations of the model and tunnel walls show wall effects on the lift and airfoil surface pressures. These wall effects include a 4% decrease of the midspan sectional lift for the C(sub u) 0.115 blowing condition. Simulations comparing the performance of the Spalart Allmaras (SA) and Shear Stress Transport (SST) turbulence models are also made, showing the SST model compares best to the experimental data. A Rotational/Curvature Correction (RCC) to the turbulence model is also evaluated demonstrating an improvement in the CFD predictions.

  12. MERIDIONAL CIRCULATION DYNAMICS FROM 3D MAGNETOHYDRODYNAMIC GLOBAL SIMULATIONS OF SOLAR CONVECTION

    International Nuclear Information System (INIS)

    Passos, Dário; Charbonneau, Paul; Miesch, Mark

    2015-01-01

    The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone at mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 R ⊙ ). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations

  13. Modeling and simulation of enzymatic gluconic acid production using immobilized enzyme and CSTR-PFTR circulation reaction system.

    Science.gov (United States)

    Li, Can; Lin, Jianqun; Gao, Ling; Lin, Huibin; Lin, Jianqiang

    2018-04-01

    Production of gluconic acid by using immobilized enzyme and continuous stirred tank reactor-plug flow tubular reactor (CSTR-PFTR) circulation reaction system. A production system is constructed for gluconic acid production, which consists of a continuous stirred tank reactor (CSTR) for pH control and liquid storage and a plug flow tubular reactor (PFTR) filled with immobilized glucose oxidase (GOD) for gluconic acid production. Mathematical model is developed for this production system and simulation is made for the enzymatic reaction process. The pH inhibition effect on GOD is modeled by using a bell-type curve. Gluconic acid can be efficiently produced by using the reaction system and the mathematical model developed for this system can simulate and predict the process well.

  14. Numerical simulation of terrain-induced mesoscale circulation in the Chiang Mai area, Thailand

    Science.gov (United States)

    Sathitkunarat, Surachai; Wongwises, Prungchan; Pan-Aram, Rudklao; Zhang, Meigen

    2008-11-01

    The regional atmospheric modeling system (RAMS) was applied to Chiang Mai province, a mountainous area in Thailand, to study terrain-induced mesoscale circulations. Eight cases in wet and dry seasons under different weather conditions were analyzed to show thermal and dynamic impacts on local circulations. This is the first study of RAMS in Thailand especially investigating the effect of mountainous area on the simulated meteorological data. Analysis of model results indicates that the model can reproduce major features of local circulation and diurnal variations in temperatures. For evaluating the model performance, model results were compared with observed wind speed, wind direction, and temperature monitored at a meteorological tower. Comparison shows that the modeled values are generally in good agreement with observations and that the model captured many of the observed features.

  15. Numerical model for wind-driven circulation in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Varadachari, V.V.R.

    Wind-driven circulation in the Bay of Bengal, generated by a southwest wind of constant speed (10 m.sec -1) and direction (225 degrees TN), is presented. A non-linear hydrodynamic model is used for the simulation of circulation. Numerical...

  16. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS.

    Directory of Open Access Journals (Sweden)

    Chrispine Nyamweya

    Full Text Available Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May and mixing (June-August. Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.

  17. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS).

    Science.gov (United States)

    Nyamweya, Chrispine; Desjardins, Christopher; Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May) and mixing (June-August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.

  18. The East Asian Atmospheric Water Cycle and Monsoon Circulation in the Met Office Unified Model

    Science.gov (United States)

    Rodríguez, José M.; Milton, Sean F.; Marzin, Charline

    2017-10-01

    In this study the low-level monsoon circulation and observed sources of moisture responsible for the maintenance and seasonal evolution of the East Asian monsoon are examined, studying the detailed water budget components. These observational estimates are contrasted with the Met Office Unified Model (MetUM) climate simulation performance in capturing the circulation and water cycle at a variety of model horizontal resolutions and in fully coupled ocean-atmosphere simulations. We study the role of large-scale circulation in determining the hydrological cycle by analyzing key systematic errors in the model simulations. MetUM climate simulations exhibit robust circulation errors, including a weakening of the summer west Pacific Subtropical High, which leads to an underestimation of the southwesterly monsoon flow over the region. Precipitation and implied diabatic heating biases in the South Asian monsoon and Maritime Continent region are shown, via nudging sensitivity experiments, to have an impact on the East Asian monsoon circulation. By inference, the improvement of these tropical biases with increased model horizontal resolution is hypothesized to be a factor in improvements seen over East Asia with increased resolution. Results from the annual cycle of the hydrological budget components in five domains show a good agreement between MetUM simulations and ERA-Interim reanalysis in northern and Tibetan domains. In simulations, the contribution from moisture convergence is larger than in reanalysis, and they display less precipitation recycling over land. The errors are closely linked to monsoon circulation biases.

  19. Evaluation of rainfall simulations over West Africa in dynamically downscaled CMIP5 global circulation models

    Science.gov (United States)

    Akinsanola, A. A.; Ajayi, V. O.; Adejare, A. T.; Adeyeri, O. E.; Gbode, I. E.; Ogunjobi, K. O.; Nikulin, G.; Abolude, A. T.

    2018-04-01

    This study presents evaluation of the ability of Rossby Centre Regional Climate Model (RCA4) driven by nine global circulation models (GCMs), to skilfully reproduce the key features of rainfall climatology over West Africa for the period of 1980-2005. The seasonal climatology and annual cycle of the RCA4 simulations were assessed over three homogenous subregions of West Africa (Guinea coast, Savannah, and Sahel) and evaluated using observed precipitation data from the Global Precipitation Climatology Project (GPCP). Furthermore, the model output was evaluated using a wide range of statistical measures. The interseasonal and interannual variability of the RCA4 were further assessed over the subregions and the whole of the West Africa domain. Results indicate that the RCA4 captures the spatial and interseasonal rainfall pattern adequately but exhibits a weak performance over the Guinea coast. Findings from the interannual rainfall variability indicate that the model performance is better over the larger West Africa domain than the subregions. The largest difference across the RCA4 simulated annual rainfall was found in the Sahel. Result from the Mann-Kendall test showed no significant trend for the 1980-2005 period in annual rainfall either in GPCP observation data or in the model simulations over West Africa. In many aspects, the RCA4 simulation driven by the HadGEM2-ES perform best over the region. The use of the multimodel ensemble mean has resulted to the improved representation of rainfall characteristics over the study domain.

  20. Simulation of anthropogenic CO2 uptake in the CCSM3.1 ocean circulation-biogeochemical model: comparison with data-based estimates

    Directory of Open Access Journals (Sweden)

    S. Khatiwala

    2012-04-01

    Full Text Available The global ocean has taken up a large fraction of the CO2 released by human activities since the industrial revolution. Quantifying the oceanic anthropogenic carbon (Cant inventory and its variability is important for predicting the future global carbon cycle. The detailed comparison of data-based and model-based estimates is essential for the validation and continued improvement of our prediction capabilities. So far, three global estimates of oceanic Cant inventory that are "data-based" and independent of global ocean circulation models have been produced: one based on the Δ C* method, and two that are based on constraining surface-to-interior transport of tracers, the TTD method and a maximum entropy inversion method (GF. The GF method, in particular, is capable of reconstructing the history of Cant inventory through the industrial era. In the present study we use forward model simulations of the Community Climate System Model (CCSM3.1 to estimate the Cant inventory and compare the results with the data-based estimates. We also use the simulations to test several assumptions of the GF method, including the assumption of constant climate and circulation, which is common to all the data-based estimates. Though the integrated estimates of global Cant inventories are consistent with each other, the regional estimates show discrepancies up to 50 %. The CCSM3 model underestimates the total Cant inventory, in part due to weak mixing and ventilation in the North Atlantic and Southern Ocean. Analyses of different simulation results suggest that key assumptions about ocean circulation and air-sea disequilibrium in the GF method are generally valid on the global scale, but may introduce errors in Cant estimates on regional scales. The GF method should also be used with caution when predicting future oceanic anthropogenic carbon uptake.

  1. Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations

    Science.gov (United States)

    Safaei, Soroush; Blanco, Pablo J.; Müller, Lucas O.; Hellevik, Leif R.; Hunter, Peter J.

    2018-01-01

    We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data. PMID:29551979

  2. Development of an Accident Reproduction Simulator System Using a Hemodialysis Extracorporeal Circulation System

    Science.gov (United States)

    Nishite, Yoshiaki; Takesawa, Shingo

    2016-01-01

    Background: Accidents that occur during dialysis treatment are notified to the medical staff via alarms raised by the dialysis apparatus. Similar to such real accidents, apparatus activation or accidents can be reproduced by simulating a treatment situation. An alarm that corresponds to such accidents can be utilized in the simulation model. Objectives: The aim of this study was to create an extracorporeal circulation system (hereinafter, the circulation system) for dialysis machines so that it sets off five types of alarms for: 1) decreased arterial pressure, 2) increased arterial pressure, 3) decreased venous pressure, 4) increased venous pressure, and 5) blood leakage, according to the five types of accidents chosen based on their frequency of occurrence and the degree of severity. Materials and Methods: In order to verify the alarm from the dialysis apparatus connected to the circulation system and the accident corresponding to it, an evaluation of the alarm for its reproducibility of an accident was performed under normal treatment circumstances. The method involved testing whether the dialysis apparatus raised the desired alarm from the moment of control of the circulation system, and measuring the time it took until the desired alarm was activated. This was tested on five main models from four dialyzer manufacturers that are currently used in Japan. Results: The results of the tests demonstrated successful activation of the alarms by the dialysis apparatus, which were appropriate for each of the five types of accidents. The time between the control of the circulatory system to the alarm signal was as follows, 1) venous pressure lower limit alarm: 7 seconds; 2) venous pressure lower limit: 8 seconds; 3) venous pressure upper limit: 7 seconds; 4) venous pressure lower limit alarm: 2 seconds; and 5) blood leakage alarm: 19 seconds. All alarms were set off in under 20 seconds. Conclusions: Thus, we can conclude that a simulator system using an extracorporeal

  3. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    KAUST Repository

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Lawrence J.; Bower, Amy S.; Kö hl, Armin; Gopalakrishnan, Ganesh; Rivas, David

    2014-01-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented

  4. Simulation of the Low-Level-Jet by general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Ghan, S.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-04-01

    To what degree is the low-level jet climatology and it`s impact on clouds and precipitation being captured by current general circulation models? It is hypothesised that a need for a pramaterization exists. This paper describes this parameterization need.

  5. The new version of the Institute of Numerical Mathematics Sigma Ocean Model (INMSOM) for simulation of Global Ocean circulation and its variability

    Science.gov (United States)

    Gusev, Anatoly; Fomin, Vladimir; Diansky, Nikolay; Korshenko, Evgeniya

    2017-04-01

    In this paper, we present the improved version of the ocean general circulation sigma-model developed in the Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS). The previous version referred to as INMOM (Institute of Numerical Mathematics Ocean Model) is used as the oceanic component of the IPCC climate system model INMCM (Institute of Numerical Mathematics Climate Model (Volodin et al 2010,2013). Besides, INMOM as the only sigma-model was used for simulations according to CORE-II scenario (Danabasoglu et al. 2014,2016; Downes et al. 2015; Farneti et al. 2015). In general, INMOM results are comparable to ones of other OGCMs and were used for investigation of climatic variations in the North Atlantic (Gusev and Diansky 2014). However, detailed analysis of some CORE-II INMOM results revealed some disadvantages of the INMOM leading to considerable errors in reproducing some ocean characteristics. So, the mass transport in the Antarctic Circumpolar Current (ACC) was overestimated. As well, there were noticeable errors in reproducing thermohaline structure of the ocean. After analysing the previous results, the new version of the OGCM was developed. It was decided to entitle is INMSOM (Institute of Numerical Mathematics Sigma Ocean Model). The new title allows one to distingwish the new model, first, from its older version, and second, from another z-model developed in the INM RAS and referred to as INMIO (Institute of Numerical Mathematics and Institute of Oceanology ocean model) (Ushakov et al. 2016). There were numerous modifications in the model, some of them are as follows. 1) Formulation of the ocean circulation problem in terms of full free surface with taking into account water amount variation. 2) Using tensor form of lateral viscosity operator invariant to rotation. 3) Using isopycnal diffusion including Gent-McWilliams mixing. 4) Using atmospheric forcing computation according to NCAR methodology (Large and Yeager 2009). 5

  6. Longitudinal biases in the Seychelles Dome simulated by 35 ocean-atmosphere coupled general circulation models

    Science.gov (United States)

    Nagura, Motoki; Sasaki, Wataru; Tozuka, Tomoki; Luo, Jing-Jia; Behera, Swadhin K.; Yamagata, Toshio

    2013-02-01

    Seychelles Dome refers to the shallow climatological thermocline in the southwestern Indian Ocean, where ocean wave dynamics efficiently affect sea surface temperature, allowing sea surface temperature anomalies to be predicted up to 1-2 years in advance. Accurate reproduction of the dome by ocean-atmosphere coupled general circulation models (CGCMs) is essential for successful seasonal predictions in the Indian Ocean. This study examines the Seychelles Dome as simulated by 35 CGCMs, including models used in phase five of the Coupled Model Intercomparison Project (CMIP5). Among the 35 CGCMs, 14 models erroneously produce an upwelling dome in the eastern half of the basin whereas the observed Seychelles Dome is located in the southwestern tropical Indian Ocean. The annual mean Ekman pumping velocity in these models is found to be almost zero in the southern off-equatorial region. This result is inconsistent with observations, in which Ekman upwelling acts as the main cause of the Seychelles Dome. In the models reproducing an eastward-displaced dome, easterly biases are prominent along the equator in boreal summer and fall, which result in shallow thermocline biases along the Java and Sumatra coasts via Kelvin wave dynamics and a spurious upwelling dome in the region. Compared to the CMIP3 models, the CMIP5 models are even worse in simulating the dome longitudes.

  7. Simulation of performance of centrifugal circulators with vaneless diffuser for GCR applications

    International Nuclear Information System (INIS)

    Tauveron, N.; Dor, I.

    2010-01-01

    In the frame of the international forum GenIV, CEA has selected various innovative concepts of gas-cooled nuclear reactor. Thermal hydraulic performances are a key issue for the design. For transient conditions and decay heat removal situations, the thermal hydraulic performance must remain as high as possible. In this context, all the transient situations, the incidental and accidental scenarii must be evaluated by a validated system code able to correctly describe, in particular, the thermal hydraulics of the whole plant. As concepts use a helium compressor to maintain the flow in the core, a special emphasis must be laid on compressor modelling. Centrifugal circulators with a vaneless diffuser have significant properties in term of simplicity, cost, ability to operate over a wide range of conditions. The objective of this paper is to present a dedicated description of centrifugal compressor, based on a one-dimensional approach. This type of model requires various correlations as input data. The present contribution consists in establishing and validating the numerical simulations (including different sets of correlations) by comparison with representative experimental data. The results obtained show a qualitatively correct behaviour of the model compared to open literature cases of the gas turbine aircraft community and helium circulators of high temperature gas reactors. The model is finally used in a depressurised transient simulation of a small power gas fast reactor (ALLEGRO concept). Advantages of this model versus first preliminary simulations are shown. Further work on modelling and validation are nevertheless needed to have a better confidence in the simulation predictions.

  8. Simulation of performance of centrifugal circulators with vaneless diffuser for GCR applications

    Energy Technology Data Exchange (ETDEWEB)

    Tauveron, N., E-mail: nicolas.tauveron@cea.f [CEA, DEN, DER/SSTH, 17 rue des Martyrs, F-38054 Grenoble (France); Dor, I., E-mail: isabelle.dor@cea.f [CEA, DEN, DER/SSTH, 17 rue des Martyrs, F-38054 Grenoble (France)

    2010-10-15

    In the frame of the international forum GenIV, CEA has selected various innovative concepts of gas-cooled nuclear reactor. Thermal hydraulic performances are a key issue for the design. For transient conditions and decay heat removal situations, the thermal hydraulic performance must remain as high as possible. In this context, all the transient situations, the incidental and accidental scenarii must be evaluated by a validated system code able to correctly describe, in particular, the thermal hydraulics of the whole plant. As concepts use a helium compressor to maintain the flow in the core, a special emphasis must be laid on compressor modelling. Centrifugal circulators with a vaneless diffuser have significant properties in term of simplicity, cost, ability to operate over a wide range of conditions. The objective of this paper is to present a dedicated description of centrifugal compressor, based on a one-dimensional approach. This type of model requires various correlations as input data. The present contribution consists in establishing and validating the numerical simulations (including different sets of correlations) by comparison with representative experimental data. The results obtained show a qualitatively correct behaviour of the model compared to open literature cases of the gas turbine aircraft community and helium circulators of high temperature gas reactors. The model is finally used in a depressurised transient simulation of a small power gas fast reactor (ALLEGRO concept). Advantages of this model versus first preliminary simulations are shown. Further work on modelling and validation are nevertheless needed to have a better confidence in the simulation predictions.

  9. A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting

    Directory of Open Access Journals (Sweden)

    P. Oddo

    2009-10-01

    Full Text Available A new numerical general circulation ocean model for the Mediterranean Sea has been implemented nested within an Atlantic general circulation model within the framework of the Marine Environment and Security for the European Area project (MERSEA, Desaubies, 2006. A 4-year twin experiment was carried out from January 2004 to December 2007 with two different models to evaluate the impact on the Mediterranean Sea circulation of open lateral boundary conditions in the Atlantic Ocean. One model considers a closed lateral boundary in a large Atlantic box and the other is nested in the same box in a global ocean circulation model. Impact was observed comparing the two simulations with independent observations: ARGO for temperature and salinity profiles and tide gauges and along-track satellite observations for the sea surface height. The improvement in the nested Atlantic-Mediterranean model with respect to the closed one is particularly evident in the salinity characteristics of the Modified Atlantic Water and in the Mediterranean sea level seasonal variability.

  10. RELAP5 simulation for one and two-phase natural circulation phenomenon

    International Nuclear Information System (INIS)

    Sabundjian, Gaiane; Andrade, Delvonei Alves de; Umbehaun, Pedro Ernesto; Torres, Walmir Maximo; Castro, Alfredo Jose Alvim de; Braz Filho, Francisco A.; Borges, Eduardo Madeira; Damy. Osvaldo Luiz Almeida; Torres, Eduardo

    2007-01-01

    The objective of this paper is to study the natural circulation phenomenon in one and two-phase regime. There has been a crescent interest in the scientific community in the study of the natural circulation. New generation of compact nuclear reactors uses the natural circulation for residual heat removal in case of accident or shutdown. For this study, the modeling and the simulation of the experimental circuit is performed with the RELAP5 code. The experimental circuit is mounted in the Chemical Engineering Department of the University of Sao Paulo. It is presented in this work the theoretical/experimental comparison for one and two-phase flow. These results will be stored in a database to validate RELAP5 calculations. This work was also used to training some users of RELAP5 from IEAv. (author)

  11. Simulation of stationary and transient geopotential-height eddies in January and July with a spectral general circulation model

    International Nuclear Information System (INIS)

    Malone, R.C.; Pitcher, E.J.; Blackmon, M.L.; Puri, K.; Bourke, W.

    1984-01-01

    We examine the characteristics of stationary and transient eddies in the geopotential-height field as simulated by a spectral general circulation model. The model possessess a realistic, but smootheed, topography. Two simulations with perpetual January and July forcing by climatological sea surface temperatures, sea ice, and insolation were extended to 1200 days, of which the final 600 days were used for the results in this study. We find that the stationary waves are well simulated in both seasons in the Northern Hemisphere, where strong forcing by orography and land-sea thermal contrast exists. However, in the Southern Hemisphere, where no continents are present in midlatitudes, the stationary waves have smaller amplitude than that observed in both seasons. In both hemispheres, the transient eddies are well simulated in the winter season but are too weak in the summer season. The model fails to generate a sufficiently intense summertime midlatitude jet in either hemisphere, and this results in a low level of transient activity. The variance in the tropical troposphere is very well simulated. We examine the geographical distribution and vertical structure of the transient eddies. Fourier analysis in zonal wavenumber and temporal filtering are used to display the wavelength and frequency characteristics of the eddies

  12. Ocean Hydrodynamics Numerical Model in Curvilinear Coordinates for Simulating Circulation of the Global Ocean and its Separate Basins.

    Science.gov (United States)

    Gusev, Anatoly; Diansky, Nikolay; Zalesny, Vladimir

    2010-05-01

    scope of the CMIP-5 (Coupled Model Intercomparison Project). On the base of the complex proposed the Pacific Ocean circulation eddy-resolving model was realized. The integration domain covers the Pacific from Equator to Bering Strait. The model horizontal resolution is 0.125 degree and it has 20 non-uniform sigma-levels in depth. The model adequately reproduces circulation large-scale structure and its variability: Kuroshio meandering, ocean synoptic eddies, frontal zones, etc. Kuroshio high variability is shown. The distribution of contaminant was simulated that is admittedly wasted near Petropavlovsk-Kamchatsky. The results demonstrate contaminant distribution structure and provide us understanding of hydrological fields formation processes in the North-West Pacific.

  13. Natural-circulation-cooling characteristics during PWR accident simulations

    International Nuclear Information System (INIS)

    Adams, J.P.; McCreery, G.E.; Berta, V.T.

    1983-01-01

    A description of natural circulation cooling characteristics is presented. Data were obtained from several pressurized water reactor accident simulations in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). The reliability of natural circulation cooling, its cooling effectiveness, and the effect of changing system conditions are described. Quantitative comparison of flow rates and time constants with theory for both single- and two-phase fluid conditions were made. It is concluded that natural circulation cooling can be relied on in plant recovery procedures in the absence of forced convection whenever the steam generator heat sink is available

  14. Development of an Accident Reproduction Simulator System Using a Hemodialysis Extracorporeal Circulation System

    OpenAIRE

    Nishite, Yoshiaki; Takesawa, Shingo

    2016-01-01

    Background Accidents that occur during dialysis treatment are notified to the medical staff via alarms raised by the dialysis apparatus. Similar to such real accidents, apparatus activation or accidents can be reproduced by simulating a treatment situation. An alarm that corresponds to such accidents can be utilized in the simulation model. Objectives The aim of this study was to create an extracorporeal circulation system (herein...

  15. Simulation and analysis of the mesoscale circulation in the northwestern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    V. Echevin

    Full Text Available The large-scale and mesoscale circulation of the northwestern Mediterranean Sea are simulated with an eddy-resolving primitive-equation regional model (RM of 1/16° resolution embedded in a general circulation model (GM of the Mediterranean Sea of 1/8° resolution. The RM is forced by a monthly climatology of heat fluxes, precipitation and wind stress. The GM, which uses the same atmospheric forcing, provides initial and boundary conditions for the RM. Analysis of the RM results shows that several realistic features of the large-scale and mesoscale circulation are evident in this region. The mean cyclonic circulation is in good agreement with observations. Mesoscale variability is intense along the coasts of Sardinia and Corsica, in the Gulf of Lions and in the Catalan Sea. The length scales of the Northern Current meanders along the Provence coast and in the Gulf of Lions’ shelf are in good agreement with observations. Winter Intermediate Water is formed along most of the north-coast shelves, between the Gulf of Genoa and Cape Creus. Advection of this water by the mean cyclonic circulation generates a complex eddy field in the Catalan Sea. Intense anticyclonic eddies are generated northeast of the Balearic Islands. These results are in good agreement with mesoscale activity inferred from satellite altimetric data. This work demonstrates the feasibility of a down-scaling system composed of a general-circulation, a regional and a coastal model, which is one of the goals of the Mediterranean Forecasting System Pilot Project.

    Key words. Oceanography: physical (currents; eddies and mesoscale processes; general circulation

  16. Dynamical Analysis of the Lorenz-84 Atmospheric Circulation Model

    Directory of Open Access Journals (Sweden)

    Hu Wang

    2014-01-01

    Full Text Available The dynamical behaviors of the Lorenz-84 atmospheric circulation model are investigated based on qualitative theory and numerical simulations. The stability and local bifurcation conditions of the Lorenz-84 atmospheric circulation model are obtained. It is also shown that when the bifurcation parameter exceeds a critical value, the Hopf bifurcation occurs in this model. Then, the conditions of the supercritical and subcritical bifurcation are derived through the normal form theory. Finally, the chaotic behavior of the model is also discussed, the bifurcation diagrams and Lyapunov exponents spectrum for the corresponding parameter are obtained, and the parameter interval ranges of limit cycle and chaotic attractor are calculated in further. Especially, a computer-assisted proof of the chaoticity of the model is presented by a topological horseshoe theory.

  17. Adequacy of power-to-volume scaling philosophy to simulate natural circulation in Integral Test Facilities

    International Nuclear Information System (INIS)

    Nayak, A.K.; Vijayan, P.K.; Saha, D.; Venkat Raj, V.; Aritomi, Masanori

    1998-01-01

    Theoretical and experimental investigations were carried out to study the adequacy of power-to-volume scaling philosophy for the simulation of natural circulation and to establish the scaling philosophy applicable for the design of the Integral Test Facility (ITF-AHWR) for the Indian Advanced Heavy Water Reactor (AHWR). The results indicate that a reduction in the flow channel diameter of the scaled facility as required by the power-to-volume scaling philosophy may affect the simulation of natural circulation behaviour of the prototype plants. This is caused by the distortions due to the inability to simulate the frictional resistance of the scaled facility. Hence, it is recommended that the flow channel diameter of the scaled facility should be as close as possible to the prototype. This was verified by comparing the natural circulation behaviour of a prototype 220 MWe Indian PHWR and its scaled facility (FISBE-1) designed based on power-to-volume scaling philosophy. It is suggested from examinations using a mathematical model and a computer code that the FISBE-1 simulates the steady state and the general trend of transient natural circulation behaviour of the prototype reactor adequately. Finally the proposed scaling method was applied for the design of the ITF-AHWR. (author)

  18. Startup transient simulation for natural circulation boiling water reactors in PUMA facility

    International Nuclear Information System (INIS)

    Kuran, S.; Xu, Y.; Sun, X.; Cheng, L.; Yoon, H.J.; Revankar, S.T.; Ishii, M.; Wang, W.

    2006-01-01

    In view of the importance of instabilities that may occur at low-pressure and -flow conditions during the startup of natural circulation boiling water reactors, startup simulation experiments were performed in the Purdue University Multi-Dimensional Integral Test Assembly (PUMA) facility. The simulations used pressure scaling and followed the startup procedure of a typical natural circulation boiling water reactor. Two simulation experiments were performed for the reactor dome pressures ranging from 55 kPa to 1 MPa, where the instabilities may occur. The experimental results show the signature of condensation-induced oscillations during the single-phase-to-two-phase natural circulation transition. The results also suggest that a rational startup procedure is needed to overcome the startup instabilities in natural circulation boiling water reactor designs

  19. Simulation of mesoscale circulation in the Tatar Strait of the Japan Sea

    Science.gov (United States)

    Ponomarev, V. I.; Fayman, P. A.; Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.

    2018-06-01

    The eddy-resolved ocean circulation model RIAMOM (Lee et al., 2003) is used to analyze seasonal variability of mesoscale circulation in the Tatar Strait of the Japan Sea. The model domain is a vast area including the northern Japan Sea, Okhotsk Sea and adjacent region in the Pacific Ocean. A numerical experiment with a horizontal 1/18° resolution has been carried out under realistic meteorological conditions from the ECMWF ERA-40 reanalysis with restoring of surface temperature and salinity. The simulated seasonal variability of both the current system and mesoscale eddy dynamics in the Tatar Strait is in a good agreement with temperature and salinity distributions of oceanographic observation data collected during various seasons and years. Two general circulation regimes in the Strait have been found. The circulation regime changes from summer to winter due to seasonal change of the North Asian Monsoon. On a synoptic time scale, the similar change of the circulation regime occurs due to change of the southeastern wind to the northwestern one when the meteorological situation with an anticyclone over the Okhotsk Sea changes to that with a strong cyclone. The Lagrangian maps illustrate seasonal changes in direction of the main currents and in polarity and location of mesoscale eddies in the Strait.

  20. An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation: 2. Three-dimensional circulation in the Red Sea

    Science.gov (United States)

    Sofianos, Sarantis S.; Johns, William E.

    2003-03-01

    The three-dimensional circulation of the Red Sea is studied using a set of Miami Isopycnic Coordinate Ocean Model (MICOM) simulations. The model performance is tested against the few available observations in the basin and shows generally good agreement with the main observed features of the circulation. The main findings of this analysis include an intensification of the along-axis flow toward the coasts, with a transition from western intensified boundary flow in the south to eastern intensified flow in the north, and a series of strong seasonal or permanent eddy-like features. Model experiments conducted with different forcing fields (wind-stress forcing only, surface buoyancy forcing only, or both forcings combined) showed that the circulation produced by the buoyancy forcing is stronger overall and dominates the wind-driven part of the circulation. The main circulation pattern is related to the seasonal buoyancy flux (mostly due to the evaporation), which causes the density to increase northward in the basin and produces a northward surface pressure gradient associated with the downward sloping of the sea surface. The response of the eastern boundary to the associated mean cross-basin geostrophic current depends on the stratification and β-effect. In the northern part of the basin this results in an eastward intensification of the northward surface flow associated with the presence of Kelvin waves while in the south the traditional westward intensification due to Rossby waves takes place. The most prominent gyre circulation pattern occurs in the north where a permanent cyclonic gyre is present that is involved in the formation of Red Sea Outflow Water (RSOW). Beneath the surface boundary currents are similarly intensified southward undercurrents that carry the RSOW to the sill to flow out of the basin into the Indian Ocean.

  1. Simulations of a Circulating Fluidized Bed Chemical Looping Combustion System Utilizing Gaseous Fuel Simulation de la combustion en boucle chimique d’une charge gazeuse dans un lit fluidisé circulant

    Directory of Open Access Journals (Sweden)

    Mahalatkar K.

    2011-05-01

    Full Text Available Numerical studies using Computational Fluid Dynamics (CFD have been carried out for a complete circulating fluidized bed chemical looping combustor described in the literature (Abad et al., 2006 Fuel 85, 1174-1185. There have been extensive experimental studies in Chemical Looping Combustion (CLC, however CFD simulations of this concept are quite limited. The CLC experiments that were simulated used methane as fuel. A 2-D continuum model was used to describe both the gas and solid phases. Detailed sub-models to account for fluid-particle and particleparticle interaction forces were included. Global models of fuel and carrier chemistry were utilized. The results obtained from CFD were compared with experimental outlet species concentrations, solid circulation rates, solid mass distribution in the reactors, and leakage and dilution rates. The transient CFD simulations provided a reasonable match with the reported experimental data. Des études numériques de simulation des écoulements (CFD ont été réalisées sur un lit fluidisé circulant opérant en combustion par boucle chimique (CLC décrit dans la littérature (Abad et al., 2006 Fuel 85, 1174-1185. Si de nombreuses études expérimentales ont été conduites pour étudier le procédé CLC, les études concernant la simulation des écoulements par CFD de ce concept sont très limitées. Le système de combustion en boucle chimique simulé dans cette étude concerne la combustion d’une charge gazeuse (méthane. Un modèle 2-D à deux phases continues a été utilisé pour décrire les phases gaz et solide avec des sous-modèles détaillés pour décrire les forces d’interactions entre fluideparticule et particule-particule. Des modèles cinétiques globaux ont été intégrés pour décrire les réactions de combustion et de transformation du matériau transporteur d’oxygène. Les résultats obtenus par CFD ont été comparés aux concentrations expérimentales mesurées des diff

  2. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    Science.gov (United States)

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry J.; Bower, Amy S.; Köhl, Armin; Gopalakrishnan, Ganesh; Rivas, David

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model's winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow.

  3. On a sparse pressure-flow rate condensation of rigid circulation models

    Science.gov (United States)

    Schiavazzi, D. E.; Hsia, T. Y.; Marsden, A. L.

    2015-01-01

    Cardiovascular simulation has shown potential value in clinical decision-making, providing a framework to assess changes in hemodynamics produced by physiological and surgical alterations. State-of-the-art predictions are provided by deterministic multiscale numerical approaches coupling 3D finite element Navier Stokes simulations to lumped parameter circulation models governed by ODEs. Development of next-generation stochastic multiscale models whose parameters can be learned from available clinical data under uncertainty constitutes a research challenge made more difficult by the high computational cost typically associated with the solution of these models. We present a methodology for constructing reduced representations that condense the behavior of 3D anatomical models using outlet pressure-flow polynomial surrogates, based on multiscale model solutions spanning several heart cycles. Relevance vector machine regression is compared with maximum likelihood estimation, showing that sparse pressure/flow rate approximations offer superior performance in producing working surrogate models to be included in lumped circulation networks. Sensitivities of outlets flow rates are also quantified through a Sobol’ decomposition of their total variance encoded in the orthogonal polynomial expansion. Finally, we show that augmented lumped parameter models including the proposed surrogates accurately reproduce the response of multiscale models they were derived from. In particular, results are presented for models of the coronary circulation with closed loop boundary conditions and the abdominal aorta with open loop boundary conditions. PMID:26671219

  4. Midlatitude Forcing Mechanisms for Glacier Mass Balance Investigated Using General Circulation Models

    NARCIS (Netherlands)

    Reichert, B.K.; Bengtsson, L.; Oerlemans, J.

    2001-01-01

    A process-oriented modeling approach is applied in order to simulate glacier mass balance for individual glaciers using statistically downscaled general circulation models (GCMs). Glacier-specific seasonal sensitivity characteristics based on a mass balance model of intermediate complexity are used

  5. Single and two-phase natural circulation in Westinghouse pressurized water reactor simulators: Phenomena, analysis and scaling

    International Nuclear Information System (INIS)

    Schultz, R.R.; Chapman, J.C.; Kukita, Y.; Motley, F.E.; Stumpf, H.; Chen, Y.S.; Tasaka, K.

    1987-01-01

    Natural circulation data obtained in the 1/48 scale W four loop PWR simulator - the Large Scale Test Facility (LSTF) are discussed and summarized. Core cooling modes, the primary fluid state, the primary loop mass flow and localized natural circulation phenomena occurring in the steam generator are presented. TRAC-PF1 LSTF model (using both a 1 U-tube and a 3 U-tube steam generator model) analyses of the LSTF natural circulation data including the SG recirculation patterns are presented and compared to the data. The LSTF data are then compared to similar natural circulation data obtained in the Primarkreislaufe (PKL) and the Semiscale facilities. Based on the 1/48 to 1/1705 scaling range which exists between the facilities, the implications of these data towrard natural circulation behavior in commercial plants are briefly discussed

  6. Design and simulation of self-biased circulators in the ultra high frequency band

    International Nuclear Information System (INIS)

    Wang Jianwei; Geiler, Anton; Mistry, Perhaad; Kaeli, David R.; Harris, Vincent G.; Vittoria, Carmine

    2012-01-01

    Theoretical models were developed to design self-biased Y-junction circulators operating at ultra high frequency (UHF). The proposed circulator designs consist of insulating nanowires of yttrium iron garnet (YIG) embedded in high permittivity barium–strontium titanate (BSTO) substrates. A design with as many as 10 5 or greater wires may be considered in its entirety to determine the electromagnetic scattering S-parameters of a circulator design, thus helping to mitigate the computational limitations of the available finite element method (FEM) tools. The approach seeks to represent the nanowires and the BSTO substrate by an equivalent medium with effective properties inclusive of the average saturation magnetization, dynamic demagnetizing fields, and permittivity. The effective medium approach was validated in comparison with the FEM models. Using the proposed approach, a self-biased junction circulator consisting of YIG nanowires embedded in a BSTO substrate was designed and simulated in which the center frequency insertion loss was calculated to be as low as 0.16 dB with isolation of −42.3 dB at 1 GHz. The 20 dB bandwidth was calculated to be 50 MHz. These results suggest that practical self-biased circulators at the UHF band are feasible. - Highlights: ► Presented a self-biased Y-junction circulator topology on composite substrate with YIG nanowires and high permittivity BSTO. ► Developed an equivalent model to characterize the composite substrate. ► Designed a self-biased junction circulator consisting of YIG nanowires embedded in a BSTO substrate at 1 GHz.

  7. The relation between AMOC, gyre circulation, and meridional heat transports in the North Atlantic in model simulations of the last millennium

    Science.gov (United States)

    Jungclaus, Johann; Moreno-Chamarro, Eduardo; Lohmann, Katja

    2016-04-01

    While it is clear that the Atlantic Meridional Overturning Circulation (AMOC) is responsible for meridional heat transfer from the South Atlantic and the tropics to the North Atlantic, the majority of the heat transport in the northern North Atlantic and the Nordic seas is carried by the gyre system. However, the detailed mechanisms determining the interaction between and the temporal modulation of the components of the northward heat transport system are not clear. Long-term climate records and model simulations can help to identify important processes and to provide background for the changes that are presently observed. Multi-centennial proxy records from the subpolar North Atlantic and the Nordic Seas indicate, for example, an out-of-phase behavior of sea surface temperature and gyre circulation between the two regions with consequences for regional climate. Paleoceanographic evidence from Fram Strait shows a pronounced modulation of heat transfer to the Arctic by the Atlantic Water layer during the last 2000 years and reconstructions from the Subpolar North Atlantic suggest a role of ocean circulation in the transition between the Medieval Climate Anomaly and the Little Ice Age. Here we explore a small ensemble of last millennium simulations, carried out with the Max Planck Institute Earth System Model, and analyze mechanisms connecting the AMOC and gyre circulation and their relation to external forcing. Our results support the important role of the Subpolar Gyre strength and the related meridional mass and temperature fluxes. We find that the modulation of the northward heat transport into the Nordic Seas and the Arctic has pronounced impact on sea-ice distribution, ocean-atmosphere interaction, and the surface climate in Scandinavia and Western Europe.

  8. Twentieth century Walker Circulation change: data analysis and model experiments

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingjia [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); Chinese Research Academy of Environmental Sciences, River and Coastal Environment Research Center, Beijing (China); Chinese Academy of Sciences, Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Qingdao (China); Latif, Mojib; Park, Wonsun; Keenlyside, Noel S.; Martin, Thomas [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); Semenov, Vladimir A. [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow (Russian Federation)

    2012-05-15

    Recent studies indicate a weakening of the Walker Circulation during the twentieth century. Here, we present evidence from an atmospheric general circulation model (AGCM) forced by the history of observed sea surface temperature (SST) that the Walker Circulation may have intensified rather than weakened. Observed Equatorial Indo-Pacific Sector SST since 1870 exhibited a zonally asymmetric evolution: While the eastern part of the Equatorial Pacific showed only a weak warming, or even cooling in one SST dataset, the western part and the Equatorial Indian Ocean exhibited a rather strong warming. This has resulted in an increase of the SST gradient between the Maritime Continent and the eastern part of the Equatorial Pacific, one driving force of the Walker Circulation. The ensemble experiments with the AGCM, with and without time-varying external forcing, suggest that the enhancement of the SST gradient drove an anomalous atmospheric circulation, with an enhancement of both Walker and Hadley Circulation. Anomalously strong precipitation is simulated over the Indian Ocean and anomalously weak precipitation over the western Pacific, with corresponding changes in the surface wind pattern. Some sensitivity to the forcing SST, however, is noticed. The analysis of twentieth century integrations with global climate models driven with observed radiative forcing obtained from the Coupled Model Intercomparison Project (CMIP) database support the link between the SST gradient and Walker Circulation strength. Furthermore, control integrations with the CMIP models indicate the existence of strong internal variability on centennial timescales. The results suggest that a radiatively forced signal in the Walker Circulation during the twentieth century may have been too weak to be detectable. (orig.)

  9. Comparison of CFD Simulations of Moderator Circulation Phenomena for a CANDU-6 Reactor and MCT Facility

    International Nuclear Information System (INIS)

    Kim, Hyoung Tae; Cha, Jae Eun Cha; Seo, Han

    2013-01-01

    The Korea Atomic Energy Research Institute is constructing a Moderator Circulation Test (MCT) facility to simulate thermal-hydraulic phenomena in a 1/4 scale-down moderator tank similar to that in a prototype power plant during steady state operation and accident conditions. In the present study, two numerical CFD simulations for the prototype and scaled-down moderator tanks were carried out to check whether the moderator flow and temperature patterns of both the prototype reactor and scaled-down facility are identical. Two different sets of simulations of the moderator circulation phenomena were performed for a CANDU-6 reactor and MCT facility. The results of both simulations were compared to study the effects of scaling on the moderator flow and temperature patterns. There is no significant difference in the results between the prototype and scaled-down model. It was concluded that the present scaling method is properly employed to model the real reactor in the MCT facility

  10. Comparison of CFD Simulations of Moderator Circulation Phenomena for a CANDU-6 Reactor and MCT Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Tae; Cha, Jae Eun Cha; Seo, Han [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The Korea Atomic Energy Research Institute is constructing a Moderator Circulation Test (MCT) facility to simulate thermal-hydraulic phenomena in a 1/4 scale-down moderator tank similar to that in a prototype power plant during steady state operation and accident conditions. In the present study, two numerical CFD simulations for the prototype and scaled-down moderator tanks were carried out to check whether the moderator flow and temperature patterns of both the prototype reactor and scaled-down facility are identical. Two different sets of simulations of the moderator circulation phenomena were performed for a CANDU-6 reactor and MCT facility. The results of both simulations were compared to study the effects of scaling on the moderator flow and temperature patterns. There is no significant difference in the results between the prototype and scaled-down model. It was concluded that the present scaling method is properly employed to model the real reactor in the MCT facility.

  11. Evaluating the skills of isotope-enabled general circulation models against in situ atmospheric water vapor isotope observations

    DEFF Research Database (Denmark)

    Steen-Larsen, Hans Christian; Risi, C.; Werner, M.

    2017-01-01

    The skills of isotope-enabled general circulation models are evaluated against atmospheric water vapor isotopes. We have combined in situ observations of surface water vapor isotopes spanning multiple field seasons (2010, 2011, and 2012) from the top of the Greenland Ice Sheet (NEEM site: 77.45°N......: 2014). This allows us to benchmark the ability to simulate the daily water vapor isotope variations from five different simulations using isotope-enabled general circulation models. Our model-data comparison documents clear isotope biases both on top of the Greenland Ice Sheet (1-11% for δ18O and 4...... boundary layer water vapor isotopes of the Baffin Bay region show strong influence on the water vapor isotopes at the NEEM deep ice core-drilling site in northwest Greenland. Our evaluation of the simulations using isotope-enabled general circulation models also documents wide intermodel spatial...

  12. Adaptation of a general circulation model to ocean dynamics

    Science.gov (United States)

    Turner, R. E.; Rees, T. H.; Woodbury, G. E.

    1976-01-01

    A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.

  13. 3D General Circulation Model of the Middle Atmosphere of Jupiter

    Science.gov (United States)

    Zube, Nicholas Gerard; Zhang, Xi; Li, Cheng; Le, Tianhao

    2017-10-01

    The characteristics of Jupiter’s large-scale stratospheric circulation remain largely unknown. Detailed distributions of temperature and photochemical species have been provided by recent observations [1], but have not yet been accurately reproduced by middle atmosphere general circulation models (GCM). Jupiter’s stratosphere and upper troposphere are influenced by radiative forcing from solar insolation and infrared cooling from hydrogen and hydrocarbons, as well as waves propagating from the underlying troposphere [2]. The relative significance of radiative and mechanical forcing on stratospheric circulation is still being debated [3]. Here we present a 3D GCM of Jupiter’s atmosphere with a correlated-k radiative transfer scheme. The simulation results are compared with observations. We analyze the impact of model parameters on the stratospheric temperature distribution and dynamical features. Finally, we discuss future tracer transport and gravity wave parameterization schemes that may be able to accurately simulate the middle atmosphere dynamics of Jupiter and other giant planets.[1] Kunde et al. 2004, Science 305, 1582.[2] Zhang et al. 2013a, EGU General Assembly, EGU2013-5797-2.[3] Conrath 1990, Icarus, 83, 255-281.

  14. Simulated variability of the Atlantic meridional overturning circulation

    Science.gov (United States)

    Bentsen, M.; Drange, H.; Furevik, T.; Zhou, T.

    To examine the multi-annual to decadal scale variability of the Atlantic Meridional Overturning Circulation (AMOC) we conducted a four-member ensemble with a daily reanalysis forced, medium-resolution global version of the isopycnic coordinate ocean model MICOM, and a 300-years integration with the fully coupled Bergen Climate Model (BCM). The simulations of the AMOC with both model systems yield a long-term mean value of 18 Sv and decadal variability with an amplitude of 1-3 Sv. The power spectrum of the inter-annual to decadal scale variability of the AMOC in BCM generally follows the theoretical red noise spectrum, with indications of increased power near the 20-years period. Comparison with observational proxy indices for the AMOC, e.g. the thickness of the Labrador Sea Water, the strength of the baroclinic gyre circulation in the North Atlantic Ocean, and the surface temperature anomalies along the mean path of the Gulf Stream, shows similar trends and phasing of the variability, indicating that the simulated AMOC variability is robust and real. Mixing indices have been constructed for the Labrador, the Irminger and the Greenland-Iceland-Norwegian (GIN) seas. While convective mixing in the Labrador and the GIN seas are in opposite phase, and linked to the NAO as observations suggest, the convective mixing in the Irminger Sea is in phase with or leads the Labrador Sea. Newly formed deep water is seen as a slow, anomalous cold and fresh, plume flowing southward along the western continental slope of the Atlantic Ocean, with a return flow of warm and saline water on the surface. In addition, fast-travelling topographically trapped waves propagate southward along the continental slope towards equator, where they go east and continue along the eastern rim of the Atlantic. For both types of experiments, the Northern Hemisphere sea level pressure and 2 m temperature anomaly patterns computed based on the difference between climate states with strong and weak AMOC

  15. Improved stratospheric atmosphere forecasts in the general circulation model through a methane oxidation parametrization

    Science.gov (United States)

    Wang, S.; Jun, Z.

    2017-12-01

    Climatic characteristics of tropical stratospheric methane have been well researched using various satellite data, and numerical simulations have furtherly conducted using chemical climatic models, while the impact of stratospheric methane oxidation on distribution of water vapor is not paid enough attention in general circulation models. Simulated values of water vapour in the tropical upper stratosphere, and throughout much of the extratropical stratosphere, were too low. Something must be done to remedy this deficiency in order to producing realistic stratospheric water vapor using a general circulation model including the whole stratosphere. Introduction of a simple parametrization of the upper-stratospheric moisture source due to methane oxidation and a sink due to photolysis in the mesosphere was conducted. Numerical simulations and analysis of the influence of stratospheric methane on the prediction of tropical stratospheric moisture and temperature fields were carried out. This study presents the advantages of methane oxidation parametrization in producing a realistic distribution of water vapour in the tropical stratosphere and analyzes the impact of methane chemical process on the general circulation model using two storm cases including a heavy rain in South China and a typhoon caused tropical storm.It is obvious that general circulation model with methane oxidation parametrization succeeds in simulating the water vapor and temperature in stratosphere. The simulating rain center value of contrast experiment is increased up to 10% than that of the control experiment. Introduction of methane oxidation parametrization has modified the distribution of water vapour and then producing a broadly realistic distribution of temperature. Objective weather forecast verifications have been performed using simulating results of one month, which demonstrate somewhat positive effects on the model skill. There is a certain extent impact of methane oxidation

  16. Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology

    Science.gov (United States)

    The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscal...

  17. Seasonal predictability of Kiremt rainfall in coupled general circulation models

    Science.gov (United States)

    Gleixner, Stephanie; Keenlyside, Noel S.; Demissie, Teferi D.; Counillon, François; Wang, Yiguo; Viste, Ellen

    2017-11-01

    The Ethiopian economy and population is strongly dependent on rainfall. Operational seasonal predictions for the main rainy season (Kiremt, June-September) are based on statistical approaches with Pacific sea surface temperatures (SST) as the main predictor. Here we analyse dynamical predictions from 11 coupled general circulation models for the Kiremt seasons from 1985-2005 with the forecasts starting from the beginning of May. We find skillful predictions from three of the 11 models, but no model beats a simple linear prediction model based on the predicted Niño3.4 indices. The skill of the individual models for dynamically predicting Kiremt rainfall depends on the strength of the teleconnection between Kiremt rainfall and concurrent Pacific SST in the models. Models that do not simulate this teleconnection fail to capture the observed relationship between Kiremt rainfall and the large-scale Walker circulation.

  18. The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations

    Directory of Open Access Journals (Sweden)

    S. L. Weber

    2007-01-01

    Full Text Available This study analyses the response of the Atlantic meridional overturning circulation (AMOC to LGM forcings and boundary conditions in nine PMIP coupled model simulations, including both GCMs and Earth system Models of Intermediate Complexity. Model results differ widely. The AMOC slows down considerably (by 20–40% during the LGM as compared to the modern climate in four models, there is a slight reduction in one model and four models show a substantial increase in AMOC strength (by 10–40%. It is found that a major controlling factor for the AMOC response is the density contrast between Antarctic Bottom Water (AABW and North Atlantic Deep Water (NADW at their source regions. Changes in the density contrast are determined by the opposing effects of changes in temperature and salinity, with more saline AABW as compared to NADW consistently found in all models and less cooling of AABW in all models but one. In only two models is the AMOC response during the LGM directly related to the response in net evaporation over the Atlantic basin. Most models show large changes in the ocean freshwater transports into the basin, but this does not seem to affect the AMOC response. Finally, there is some dependence on the accuracy of the control state.

  19. Idealised modelling of ocean circulation driven by conductive and hydrothermal fluxes at the seabed

    Science.gov (United States)

    Barnes, Jowan M.; Morales Maqueda, Miguel A.; Polton, Jeff A.; Megann, Alex P.

    2018-02-01

    Geothermal heating is increasingly recognised as an important factor affecting ocean circulation, with modelling studies suggesting that this heat source could lead to first-order changes in the formation rate of Antarctic Bottom Water, as well as a significant warming effect in the abyssal ocean. Where it has been represented in numerical models, however, the geothermal heat flux into the ocean is generally treated as an entirely conductive flux, despite an estimated one third of the global geothermal flux being introduced to the ocean via hydrothermal sources. A modelling study is presented which investigates the sensitivity of the geothermally forced circulation to the way heat is supplied to the abyssal ocean. An analytical two-dimensional model of the circulation is described, which demonstrates the effects of a volume flux through the ocean bed. A simulation using the NEMO numerical general circulation model in an idealised domain is then used to partition a heat flux between conductive and hydrothermal sources and explicitly test the sensitivity of the circulation to the formulation of the abyssal heat flux. Our simulations suggest that representing the hydrothermal flux as a mass exchange indeed changes the heat distribution in the abyssal ocean, increasing the advective heat transport from the abyss by up to 35% compared to conductive heat sources. Consequently, we suggest that the inclusion of hydrothermal fluxes can be an important addition to course-resolution ocean models.

  20. Atmospheric circulation in regional climate models over Central Europe: links to surface air temperature and the influence of driving data

    Energy Technology Data Exchange (ETDEWEB)

    Plavcova, Eva [Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic, Prague 4 (Czech Republic); Technical University, Department of Applied Mathematics, Liberec (Czech Republic); Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Kysely, Jan [Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic, Prague 4 (Czech Republic); Technical University, Department of Applied Mathematics, Liberec (Czech Republic)

    2012-10-15

    The study examines simulation of atmospheric circulation, represented by circulation indices (flow direction, strength and vorticity), and links between circulation and daily surface air temperatures in regional climate models (RCMs) over Central Europe. We explore control simulations of five high-resolution RCMs from the ENSEMBLES project driven by re-analysis (ERA-40) and the same global climate model (ECHAM5 GCM) plus of one RCM (RCA) driven by different GCMs. The aims are to (1) identify errors in RCM-simulated distributions of circulation indices in individual seasons, (2) identify errors in simulated temperatures under particular circulation indices, and (3) compare performance of individual RCMs with respect to the driving data. Although most of the RCMs qualitatively reflect observed distributions of the airflow indices, each produces distributions significantly different from the observations. General biases include overestimation of the frequency of strong flow days and of strong cyclonic vorticity. Some circulation biases obviously propagate from the driving data. ECHAM5 and all simulations driven by ECHAM5 underestimate frequency of easterly flow, mainly in summer. Except for HIRHAM, however, all RCMs driven by ECHAM5 improve on the driving GCM in simulating atmospheric circulation. The influence on circulation characteristics in the nested RCM differs between GCMs, as demonstrated in a set of RCA simulations with different driving data. The driving data control on circulation in RCA is particularly weak for the BCM GCM, in which case RCA substantially modifies (but does not improve) the circulation from the driving data in both winter and summer. Those RCMs with the most distorted atmospheric circulation are HIRHAM driven by ECHAM5 and RCA driven by BCM. Relatively strong relationships between circulation indices and surface air temperatures were found in the observed data for Central Europe. The links differ by season and are usually stronger for

  1. Atmospheric circulation in regional climate models over Central Europe: links to surface air temperature and the influence of driving data

    International Nuclear Information System (INIS)

    Plavcova, Eva; Kysely, Jan

    2012-01-01

    The study examines simulation of atmospheric circulation, represented by circulation indices (flow direction, strength and vorticity), and links between circulation and daily surface air temperatures in regional climate models (RCMs) over Central Europe. We explore control simulations of five high-resolution RCMs from the ENSEMBLES project driven by re-analysis (ERA-40) and the same global climate model (ECHAM5 GCM) plus of one RCM (RCA) driven by different GCMs. The aims are to (1) identify errors in RCM-simulated distributions of circulation indices in individual seasons, (2) identify errors in simulated temperatures under particular circulation indices, and (3) compare performance of individual RCMs with respect to the driving data. Although most of the RCMs qualitatively reflect observed distributions of the airflow indices, each produces distributions significantly different from the observations. General biases include overestimation of the frequency of strong flow days and of strong cyclonic vorticity. Some circulation biases obviously propagate from the driving data. ECHAM5 and all simulations driven by ECHAM5 underestimate frequency of easterly flow, mainly in summer. Except for HIRHAM, however, all RCMs driven by ECHAM5 improve on the driving GCM in simulating atmospheric circulation. The influence on circulation characteristics in the nested RCM differs between GCMs, as demonstrated in a set of RCA simulations with different driving data. The driving data control on circulation in RCA is particularly weak for the BCM GCM, in which case RCA substantially modifies (but does not improve) the circulation from the driving data in both winter and summer. Those RCMs with the most distorted atmospheric circulation are HIRHAM driven by ECHAM5 and RCA driven by BCM. Relatively strong relationships between circulation indices and surface air temperatures were found in the observed data for Central Europe. The links differ by season and are usually stronger for

  2. Longitudinal Biases in the Seychelles Dome Simulated by 34 Ocean-Atmosphere Coupled General Circulation Models

    Science.gov (United States)

    Nagura, M.; Sasaki, W.; Tozuka, T.; Luo, J.; Behera, S. K.; Yamagata, T.

    2012-12-01

    The upwelling dome of the southern tropical Indian Ocean is examined by using simulated results from 34 ocean-atmosphere coupled general circulation models (CGCMs) including those from the phase five of the Coupled Model Intercomparison Project (CMIP5). Among the current set of the 34 CGCMs, 12 models erroneously produce the upwelling dome in the eastern half of the basin while the observed Seychelles Dome is located in the southwestern tropical Indian Ocean (Figure 1). The annual mean Ekman pumping velocity is almost zero in the southern off-equatorial region in these models. This is in contrast with the observations that show Ekman upwelling as the cause of the Seychelles Dome. In the models that produce the dome in the eastern basin, the easterly biases are prominent along the equator in boreal summer and fall that cause shallow thermocline biases along the Java and Sumatra coasts via Kelvin wave dynamics and result in a spurious upwelling dome there. In addition, these models tend to overestimate (underestimate) the magnitude of annual (semiannual) cycle of thermocline depth variability in the dome region, which is another consequence of the easterly wind biases in boreal summer-fall. Compared to the CMIP3 models (Yokoi et al. 2009), the CMIP5 models are even worse in simulating the dome longitudes and magnitudes of annual and semiannual cycles of thermocline depth variability in the dome region. Considering the increasing need to understand regional impacts of climate modes, these results may give serious caveats to interpretation of model results and help in further model developments.; Figure 1: The longitudes of the shallowest annual-mean D20 in 5°S-12°S. The open and filled circles are for the observations and the CGCMs, respectively.

  3. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    KAUST Repository

    Yao, Fengchao

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow. Key Points Sinking occurs in a narrow boundary layer along the eastern boundary Surface western boundary current switches into an eastern boundary current Water exchange in the Strait of Bab el Mandeb is not hydraulically controlled © 2014. American Geophysical Union. All Rights Reserved.

  4. ENSO dynamics and seasonal cycle in the tropical Pacific as simulated by the ECHAM4/OPYC3 coupled general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Bacher, A. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Oberhuber, J.M. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Roeckner, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1996-07-01

    The new version of the atmospheric general circulation model, ECHAM4, at the Max Planck Institute for Meteorology, Hamburg, has been coupled to the OPYC3 isopycnic global ocean general circulation and sea ice model (Oberhuber 1993) in a multi-century present-day climate simulation. Nonseasonal constant flux adjustment for heat and freshwater was employed to ensure a long-term annual mean state close to present day climatology. This paper examines the simulated upper ocean seasonal cycle and interannual variability in the tropical Pacific for the first 100 years. The coupled model`s seasonal cycle of tropical Pacific SSTs is in good agreement with the observations with respect to both the warm pool variation and the Central and Eastern Pacific, with significant errors (up to -2 K) only in the cold tongue around April. The cold phase cold tongue extent and strength is as observed, and for this the heat flux adjustment does not play the decisive role; corrections beyond {+-}40 Wm{sup -2} are rare and only occupy small areas, such as near coasts. A well established south Pacific convergence zone is characteristic for the new AGCM version. Apart from extending the south-east trades seasonal maximum to midbasin, windstress pattern and strength are well captured. The subsurface structure is overall consistent with the observed, with a realistically sharp thermocline at about 150 m depth in the west and rising to the surface from 160 W to 100 W.

  5. Computational simulation of the natural circulation occurring in an experimental test section of a pool type research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Francisco R.T. do; Lima Junior, Carlos A.S.; Oliveira, Andre F.S. de; Affonso, Renato R.W.; Faccini, Jose L.H.; Moreira, Maria L., E-mail: rogerio.tdn@gmail.com, E-mail: souzalima_ca@ien.gov.br, E-mail: oliveira.afelipe@gmail.com, E-mail: raoniwa@yahoo.com.br, E-mail: faccini@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The present work presents a computational simulation of the natural circulation phenomenon developing in an experimental test section of a pool type research reactor. The test section has been designed using a reduced scale in height 1:4.7 in relation to a pool type 30 MW research reactor prototype. It comprises a cylindrical vessel, which is opened to atmosphere, and representing the reactor pool; a natural circulation pipe, a lower plenum, and a heater containing electrical resistors in rectangular plate format, which represents the fuel elements, with a chimney positioned on the top of the resistor assembly. In the computational simulation, it was used a commercial CFD software, without any turbulence model. Besides, in the presence of the natural circulation, a laminar flow has been assumed and the equations of the mass conservation, momentum and energy were solved by the finite element method. In addition, the results of the simulation are presented in terms of velocities and temperatures differences, respectively: at inlet and outlet of the heater and of the natural circulation pipe. (author)

  6. Computational simulation of the natural circulation occurring in an experimental test section of a pool type research reactor

    International Nuclear Information System (INIS)

    Nascimento, Francisco R.T. do; Lima Junior, Carlos A.S.; Oliveira, Andre F.S. de; Affonso, Renato R.W.; Faccini, Jose L.H.; Moreira, Maria L.

    2015-01-01

    The present work presents a computational simulation of the natural circulation phenomenon developing in an experimental test section of a pool type research reactor. The test section has been designed using a reduced scale in height 1:4.7 in relation to a pool type 30 MW research reactor prototype. It comprises a cylindrical vessel, which is opened to atmosphere, and representing the reactor pool; a natural circulation pipe, a lower plenum, and a heater containing electrical resistors in rectangular plate format, which represents the fuel elements, with a chimney positioned on the top of the resistor assembly. In the computational simulation, it was used a commercial CFD software, without any turbulence model. Besides, in the presence of the natural circulation, a laminar flow has been assumed and the equations of the mass conservation, momentum and energy were solved by the finite element method. In addition, the results of the simulation are presented in terms of velocities and temperatures differences, respectively: at inlet and outlet of the heater and of the natural circulation pipe. (author)

  7. Impact of an improved shortwave radiation scheme in the MAECHAM5 General Circulation Model

    Directory of Open Access Journals (Sweden)

    J. J. Morcrette

    2007-05-01

    Full Text Available In order to improve the representation of ozone absorption in the stratosphere of the MAECHAM5 general circulation model, the spectral resolution of the shortwave radiation parameterization used in the model has been increased from 4 to 6 bands. Two 20-years simulations with the general circulation model have been performed, one with the standard and the other with the newly introduced parameterization respectively, to evaluate the temperature and dynamical changes arising from the two different representations of the shortwave radiative transfer. In the simulation with the increased spectral resolution in the radiation parameterization, a significant warming of almost the entire model domain is reported. At the summer stratopause the temperature increase is about 6 K and alleviates the cold bias present in the model when the standard radiation scheme is used. These general circulation model results are consistent both with previous validation of the radiation scheme and with the offline clear-sky comparison performed in the current work with a discrete ordinate 4 stream scattering line by line radiative transfer model. The offline validation shows a substantial reduction of the daily averaged shortwave heating rate bias (1–2 K/day cooling that occurs for the standard radiation parameterization in the upper stratosphere, present under a range of atmospheric conditions. Therefore, the 6 band shortwave radiation parameterization is considered to be better suited for the representation of the ozone absorption in the stratosphere than the 4 band parameterization. Concerning the dynamical response in the general circulation model, it is found that the reported warming at the summer stratopause induces stronger zonal mean zonal winds in the middle atmosphere. These stronger zonal mean zonal winds thereafter appear to produce a dynamical feedback that results in a dynamical warming (cooling of the polar winter (summer mesosphere, caused by an

  8. An analytical and experimental investigation of natural circulation transients in a model pressurized water reactor

    International Nuclear Information System (INIS)

    Massoud, M.

    1987-01-01

    Natural Circulation phenomena in a simulated PWR was investigated experimentally and analytically. The experimental investigation included determination of system characteristics as well as system response to the imposed transient under symmetric and asymmetric operations. System characteristics were used to obtain correlation for heat transfer coefficient in heat exchangers, system flow resistance, and system buoyancy heat. Asymmetric transients were imposed to study flow oscillation and possible instability. The analytical investigation encompassed development of mathematical model for single-phase, steady-state and transient natural circulation as well as modification of existing model for two-phase flow analysis of phenomena such as small break LOCA, high pressure coolant injection and pump coast down. The developed mathematical model for single-phase analysis was computer coded to simulate the imposed transients. The computer program, entitled ''Symmetric and Asymmetric Analysis of Single-Phase Flow (SAS),'' were employed to simulate the imposed transients. It closely emulated the system behavior throughout the transient and subsequent steady-state. Modifications for two-phase flow analysis included addition of models for once-through steam generator and electric heater rods. Both programs are faster than real time. Off-line, they can be used for prediction and training applications while on-line they serve for simulation and signal validation. The programs can also be used to determine the sensitivity of natural circulation behavior to variation of inputs such as secondary distribution and power transients

  9. Thermospheric tides simulated by the national center for atmospheric research thermosphere-ionosphere general circulation model at equinox

    International Nuclear Information System (INIS)

    Fesen, C.G.; Roble, R.G.; Ridley, E.C.

    1993-01-01

    The authors use the National Center for Atmospheric Research (NCAR) thermosphere/ionosphere general circulation model (TIGCM) to model tides and dynamics in the thermosphere. This model incorporates the latest advances in the thermosphere general circulation model. Model results emphasized the 70 degree W longitude region to overlap a series of incoherent radar scatter installations. Data and the model are available on data bases. The results of this theoretical modeling are compared with available data, and with prediction of more empirical models. In general there is broad agreement within the comparisons

  10. Numerical simulations of the industrial circulating fluidized bed boiler under air- and oxy-fuel combustion

    International Nuclear Information System (INIS)

    Adamczyk, Wojciech P.; Kozołub, Paweł; Klimanek, Adam; Białecki, Ryszard A.; Andrzejczyk, Marek; Klajny, Marcin

    2015-01-01

    Measured and numerical results of air-fuel combustion process within large scale industrial circulating fluidized bed (CFB) boiler is presented in this paper. For numerical simulations the industrial compact CFB boiler was selected. Numerical simulations were carried out using three-dimensional model where the dense particulate transport phenomenon was simultaneously modelled with combustion process. The fluidization process was modelled using the hybrid Euler-Lagrange approach. The impact of the geometrical model simplification on predicted mass distribution and temperature profiles over CFB boiler combustion chamber two kinds of geometrical models were used, namely the complete model which consist of combustion chamber, solid separators, external solid super-heaters and simplified boiler geometry which was reduced to the combustion chamber. The evaluated temperature and pressure profiles during numerical simulations were compared against measured data collected during boiler air-fuel operation. Collected data was also used for validating numerical model of the oxy-fuel combustion model. Stability of the model and its sensitivity on changes of several input parameters were studied. The comparison of the pressure and temperature profiles for all considered cases gave comparable trends in contrary to measured data. Moreover, some additional test was carried out the check the influence of radiative heat transfer on predicted temperature profile within the CFB boiler. - Highlights: • Hybrid Euler-Lagrange approach was used for modelling particle transport, air- and oxy-fuel combustion process. • Numerical results were validated against measured data. • The influence of different boiler operating conditions on calculated temperature profile was investigated. • New strategy for resolving particle transport in circulating fluidized bed was shown

  11. Balanced and Unbalanced Circulations in a Primitive Equation Simulation of a Midlatitude MCC. Part I: The Numerical Simulation.

    Science.gov (United States)

    Olsson, Peter Q.; Cotton, William R.

    1997-02-01

    A midlatitude mesoscale convective complex (MCC), which occurred over the central United States on 23-24 June 1985, was simulated using the Regional Atmospheric Modeling System (RAMS). The multiply nested-grid simulation agreed reasonably well with surface, upper-air, and satellite observations and ground-based radar plots. The simulated MCC had a typical structure consisting of a leading line of vigorous convection and a trailing region of less intense stratiform rainfall. Several other characteristic MCC circulations were also simulated: a divergent cold pool in the lower troposphere, midlevel convergence coupled with a relatively cool descending rear-inflow jet, and relatively warm updraft structure, and a cold divergent anticyclone in the tropopause region. Early in the MCC simulation, a mesoscale convectively induced vortex (MCV) formed on the eastern edge of the convective line. While frequently associated with MCCs and other mesoscale convective systems (MCSs), MCVs are more typically reported in the mature and decaying stages of the life cycle. Several hours later, a second MCV formed near the opposite end of the convective line, and by the mature phase of the MCC, these MCVs were embedded within a more complex system-wide vortical flow in the lower troposphere.Analysis of the first MCV during its incipient phase indicates that the vortex initially formed near the surface by convergence/stretching of the large low-level ambient vertical vorticity in this region. Vertical advection appeared largely responsible for the upward extension of this MCV to about 3.5 km above the surface, with tilting of horizontal vorticity playing a secondary role. This mechanism of MCV formation is in contrast to recent idealized high-resolution squall line simulations, where MCVs were found to result from the tilting into the vertical of storm-induced horizontal vorticity formed near the top of the cold pool.Another interesting aspect of the simulation was the development of a

  12. Natural circulation in simulated LMFBR fuel assemblies

    International Nuclear Information System (INIS)

    Levin, A.E.; Carbajo, J.J.; Lloyd, D.B.; Montgomery, B.H.; Rose, S.D.; Wantland, J.L.

    1985-01-01

    Natural circulation experiments have been performed using simulated liquid metal fast breeder reactor fuel assemblies in the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility, an engineering-scale sodium loop. Objective of these tests has been to provide experimental data under conditions that might be encountered during a partial or total loss of the shutdown heat removal system (SHRS) in a reactor. The experiments have included single- and two-phase tests under quasi-steady and transient conditions, at both nominal and non-nominal system conditions. Results from these test indicate that the potential for reactor damage during degraded SHRS operation is extremely slight, and that natural circulation can be a major contributor to safe operation of the system in both single- and two-phase flow during such operation

  13. Modeling and Simulation of U-tube Steam Generator

    Science.gov (United States)

    Zhang, Mingming; Fu, Zhongguang; Li, Jinyao; Wang, Mingfei

    2018-03-01

    The U-tube natural circulation steam generator was mainly researched with modeling and simulation in this article. The research is based on simuworks system simulation software platform. By analyzing the structural characteristics and the operating principle of U-tube steam generator, there are 14 control volumes in the model, including primary side, secondary side, down channel and steam plenum, etc. The model depends completely on conservation laws, and it is applied to make some simulation tests. The results show that the model is capable of simulating properly the dynamic response of U-tube steam generator.

  14. Numerical Simulations and Design Optimization of the PHT Loop of Natural Circulation BWR

    Directory of Open Access Journals (Sweden)

    G. V. Durga Prasad

    2008-01-01

    Full Text Available Mathematical modeling and numerical simulation of natural circulation boiling water reactor (NCBWR are very important in order to study its performance for different designs and various off-design conditions and for design optimization. In the present work, parametric studies of the primary heat transport loop of NCBWR have been performed using lumped parameter models and RELAP5/MOD3.4 code. The lumped parameter models are based on the drift flux model and homogeneous equilibrium mixture (HEM model of two-phase flow. Numerical simulations are performed with both models. Compared to the results obtained from the HEM model, those obtained from the drift flux model are closer to RELAP5. The variations of critical heat flux with various geometric parameters and operating conditions are thoroughly investigated. The material required to construct the primary heat transport (PHT loop of NCBWR has been minimized using sequential quadratic programming. The stability of NCBWR has also been verified at the optimum point.

  15. Cascading ocean basins: numerical simulations of the circulation and interbasin exchange in the Azov-Black-Marmara-Mediterranean Seas system

    Science.gov (United States)

    Stanev, Emil Vassilev; Grashorn, Sebastian; Zhang, Yinglong Joseph

    2017-08-01

    In this paper, we use the unstructured grid model SCHISM to simulate the thermohydrodynamics in a chain of baroclinic, interconnected basins. The model shows a good skill in simulating the horizontal circulation and vertical profiles of temperature, salinity, and currents. The magnitude and phases of the seasonal changes of circulation are consistent with earlier observations. Among the mesoscale and subbasin-scale circulation features that are realistically simulated are the anticyclonic coastal eddies, the Sebastopol and Batumi eddies, the Marmara Sea outflow around the southern coast of the Limnos Island, and the pathway of the cold water originating from the shelf. The superiority of the simulations compared to earlier numerical studies is demonstrated with the example of model capabilities to resolve the strait dynamics, gravity currents originating from the straits, high-salinity bottom layer on the shallow shelf, as well as the multiple intrusions from the Bosporus Strait down to 700 m depth. The warm temperature intrusions from the strait produce the warm water mass in the intermediate layers of the Black Sea. One novel result is that the seasonal intensification of circulation affects the interbasin exchange, thus allowing us to formulate the concept of circulation-controlled interbasin exchange. To the best of our knowledge, the present numerical simulations, for the first time, suggest that the sea level in the interior part of the Black Sea can be lower than the sea level in the Marmara Sea and even in some parts of the Aegean Sea. The comparison with observations shows that the timings and magnitude of exchange flows are also realistically simulated, along with the blocking events. The short-term variability of the strait transports is largely controlled by the anomalies of wind. The simulations demonstrate the crucial role of the narrow and shallow strait of Bosporus in separating the two pairs of basins: Aegean-Marmara Seas from one side and Azov

  16. A blood circulation model for reference man

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, R.W.; Eckerman, K.F. [Oak Ridge National Lab., TN (United States); Williams, L.R. [Indiana Univ., South Bend, IN (United States). Div. of Liberal Arts and Sciences

    1996-12-31

    A dynamic blood circulation model that predicts the movement and gradual dispersion of a bolus of material in the circulation after its intravenous injection into an adult human. The main purpose of the model is improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The model partitions the blood volume into 24 separate organs or tissues, right heart chamber, left heart chamber, pulmonary circulation, arterial outflow to the aorta and large arteries, and venous return via the large veins. Model results were compared to data obtained from injection of carbon 11 labeled carbon monoxide or rubidium 86.

  17. A blood circulation model for reference man

    International Nuclear Information System (INIS)

    Leggett, R.W.; Eckerman, K.F.; Williams, L.R.

    1996-01-01

    A dynamic blood circulation model that predicts the movement and gradual dispersion of a bolus of material in the circulation after its intravenous injection into an adult human. The main purpose of the model is improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The model partitions the blood volume into 24 separate organs or tissues, right heart chamber, left heart chamber, pulmonary circulation, arterial outflow to the aorta and large arteries, and venous return via the large veins. Model results were compared to data obtained from injection of carbon 11 labeled carbon monoxide or rubidium 86

  18. Coastal circulation off Ratnagiri, west coast of India during monsoon seasons: a numerical model study.

    Digital Repository Service at National Institute of Oceanography (India)

    Samiksha, S.V.; Sharif, J.; Vethamony, P.

    Present study is the coastal circulation modelling off Ratnagiri under the influence of winds and tides. A two-dimensional hydrodynamic model MIKE 21HD has been used to simulate tides and currents, and model results are in a good agreement...

  19. South Atlantic circulation in a world ocean model

    Directory of Open Access Journals (Sweden)

    M. H. England

    1994-08-01

    Full Text Available The circulation in the South Atlantic Ocean has been simulated within a global ocean general circulation model. Preliminary analysis of the modelled ocean circulation in the region indicates a rather close agreement of the simulated upper ocean flows with conventional notions of the large-scale geostrophic currents in the region. The modelled South Atlantic Ocean witnesses the return flow and export of North Atlantic Deep Water (NADW at its northern boundary, the inflow of a rather barotropic Antarctic Circumpolar Current (ACC through the Drake Passage, and the inflow of warm saline Agulhas water around the Cape of Good Hope. The Agulhas leakage amounts to 8.7 Sv, within recent estimates of the mass transport shed westward at the Agulhas retroflection. Topographic steering of the ACC dominates the structure of flow in the circumpolar ocean. The Benguela Current is seen to be fed by a mixture of saline Indian Ocean water (originating from the Agulhas Current and fresher Subantarctic surface water (originating in the ACC. The Benguela Current is seen to modify its flow and fate with depth; near the surface it flows north-westwards bifurcating most of its transport northward into the North Atlantic Ocean (for ultimate replacement of North Atlantic surface waters lost to the NADW conveyor. Deeper in the water column, more of the Benguela Current is destined to return with the Brazil Current, though northward flows are still generated where the Benguela Current extension encounters the coast of South America. At intermediate levels, these northward currents trace the flow of Antarctic Intermediate Water (AAIW equatorward, though even more AAIW is seen to recirculate poleward in the subtropical gyre. In spite of the model's rather coarse resolution, some subtle features of the Brazil-Malvinas Confluence are simulated rather well, including the latitude at which the two currents meet. Conceptual diagrams of the recirculation and interocean exchange of

  20. South Atlantic circulation in a world ocean model

    Directory of Open Access Journals (Sweden)

    Matthew H. England

    Full Text Available The circulation in the South Atlantic Ocean has been simulated within a global ocean general circulation model. Preliminary analysis of the modelled ocean circulation in the region indicates a rather close agreement of the simulated upper ocean flows with conventional notions of the large-scale geostrophic currents in the region. The modelled South Atlantic Ocean witnesses the return flow and export of North Atlantic Deep Water (NADW at its northern boundary, the inflow of a rather barotropic Antarctic Circumpolar Current (ACC through the Drake Passage, and the inflow of warm saline Agulhas water around the Cape of Good Hope. The Agulhas leakage amounts to 8.7 Sv, within recent estimates of the mass transport shed westward at the Agulhas retroflection. Topographic steering of the ACC dominates the structure of flow in the circumpolar ocean. The Benguela Current is seen to be fed by a mixture of saline Indian Ocean water (originating from the Agulhas Current and fresher Subantarctic surface water (originating in the ACC. The Benguela Current is seen to modify its flow and fate with depth; near the surface it flows north-westwards bifurcating most of its transport northward into the North Atlantic Ocean (for ultimate replacement of North Atlantic surface waters lost to the NADW conveyor. Deeper in the water column, more of the Benguela Current is destined to return with the Brazil Current, though northward flows are still generated where the Benguela Current extension encounters the coast of South America. At intermediate levels, these northward currents trace the flow of Antarctic Intermediate Water (AAIW equatorward, though even more AAIW is seen to recirculate poleward in the subtropical gyre. In spite of the model's rather coarse resolution, some subtle features of the Brazil-Malvinas Confluence are simulated rather well, including the latitude at which the two currents meet. Conceptual diagrams of the recirculation and interocean

  1. An analytical and experimental investigation of natural circulation transients in a model pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Massoud, M

    1987-01-01

    Natural Circulation phenomena in a simulated PWR was investigated experimentally and analytically. The experimental investigation included determination of system characteristics as well as system response to the imposed transient under symmetric and asymmetric operations. System characteristics were used to obtain correlation for heat transfer coefficient in heat exchangers, system flow resistance, and system buoyancy heat. Asymmetric transients were imposed to study flow oscillation and possible instability. The analytical investigation encompassed development of mathematical model for single-phase, steady-state and transient natural circulation as well as modification of existing model for two-phase flow analysis of phenomena such as small break LOCA, high pressure coolant injection and pump coast down. The developed mathematical model for single-phase analysis was computer coded to simulate the imposed transients. The computer program, entitled ''Symmetric and Asymmetric Analysis of Single-Phase Flow (SAS),'' were employed to simulate the imposed transients. It closely emulated the system behavior throughout the transient and subsequent steady-state. Modifications for two-phase flow analysis included addition of models for once-through steam generator and electric heater rods. Both programs are faster than real time. Off-line, they can be used for prediction and training applications while on-line they serve for simulation and signal validation. The programs can also be used to determine the sensitivity of natural circulation behavior to variation of inputs such as secondary distribution and power transients.

  2. Two regimes of the Arctic's circulation from ocean models with ice and contaminants.

    Science.gov (United States)

    Proshutinsky, A Y; Johnson, M

    2001-01-01

    A two-dimensional barotropic, coupled, ocean-ice model with a space resolution of 55.5 km and driven by atmospheric forces, river run-off, and sea-level slope between the Pacific and the Arctic Oceans, has been used to simulate the vertically averaged currents and ice drift in the Arctic Ocean. Results from 43 years of numerical simulations of water and ice motions demonstrate that two wind-driven circulation regimes are possible in the Arctic, a cyclonic and an anti-cyclonic circulation. These two regimes appear to alternate at 5-7 year intervals with the 10-15 year period. It is important to pollution studies to understand which circulation regime prevails at any time. It is anticipated that 1995 is a year with a cyclonic regime, and during this cyclonic phase and possibly during past cyclonic regimes as well, pollutants may reach the Alaskan shelf. The regime shifts demonstrated in this paper are fundamentally important to understanding the Arctic's general circulation and particularly important for estimating pollution transport.

  3. Simulation of barotropic wind-driven circulation in tbe Bay of Bengal and Andaman Sea during premonsoon and postmonsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Bahulayan, N.

    Two-dimensional vertically integrated model has been used to simulate depth-mean wind-driven circulation during premonsoon and postmonsoon seasons in the upper layers of the Bay of Bengal and Andaman Sea. The model is integrated for 365 d, forcEd...

  4. Water tracers in the general circulation model ECHAM

    International Nuclear Information System (INIS)

    Hoffmann, G.; Heimann, M.

    1993-01-01

    We have installed a water tracer model into the ECHAM General Circulation Model (GCM) parameterizing all fractionation processes of the stable water isotopes ( 1 H 2 18 O and 1 H 2 H 16 O). A five year simulation was performed under present day conditions. We focus on the applicability of such a water tracer model to obtain information about the quality of the hydrological cycle of the GCM. The analysis of the simulated 1 H 2 18 O composition of the precipitation indicates too weak fractionated precipitation over the Antarctic and Greenland ice sheets and too strong fractionated precipitation over large areas of the tropical and subtropical land masses. We can show that these deficiencies are connected with problems of model quantities such as the precipitation and the resolution of the orography. The linear relationship between temperature and the δ 18 O value, i.e. the Dansgaard slope, is reproduced quite well in the model. The slope is slightly too flat and the strong correlation between temperature and δ 18 O vanishes at very low temperatures compared to the observations. (orig.)

  5. Statistical analysis of simulated global soil moisture and its memory in an ensemble of CMIP5 general circulation models

    Science.gov (United States)

    Wiß, Felix; Stacke, Tobias; Hagemann, Stefan

    2014-05-01

    Soil moisture and its memory can have a strong impact on near surface temperature and precipitation and have the potential to promote severe heat waves, dry spells and floods. To analyze how soil moisture is simulated in recent general circulation models (GCMs), soil moisture data from a 23 model ensemble of Atmospheric Model Intercomparison Project (AMIP) type simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are examined for the period 1979 to 2008 with regard to parameterization and statistical characteristics. With respect to soil moisture processes, the models vary in their maximum soil and root depth, the number of soil layers, the water-holding capacity, and the ability to simulate freezing which all together leads to very different soil moisture characteristics. Differences in the water-holding capacity are resulting in deviations in the global median soil moisture of more than one order of magnitude between the models. In contrast, the variance shows similar absolute values when comparing the models to each other. Thus, the input and output rates by precipitation and evapotranspiration, which are computed by the atmospheric component of the models, have to be in the same range. Most models simulate great variances in the monsoon areas of the tropics and north western U.S., intermediate variances in Europe and eastern U.S., and low variances in the Sahara, continental Asia, and central and western Australia. In general, the variance decreases with latitude over the high northern latitudes. As soil moisture trends in the models were found to be negligible, the soil moisture anomalies were calculated by subtracting the 30 year monthly climatology from the data. The length of the memory is determined from the soil moisture anomalies by calculating the first insignificant autocorrelation for ascending monthly lags (insignificant autocorrelation folding time). The models show a great spread of autocorrelation length from a few months in

  6. Simulations of the September 1987 lower thermospheric tides with the National Center for Atmospheric Research thermosphere-ionosphere general circulation model

    International Nuclear Information System (INIS)

    Fesen, C.G.; Roble, R.G.

    1991-01-01

    The National Center for Atmospheric Research thermosphere-ionosphere general circulation model (TIGCM) was used to simulate incoherent scatter radar observations of the lower thermosphere tides during the first Lower Thermosphere Coupling Study (LTCS) campaign, September 21-26, 1987. The TIGCM utilized time-varying histories of the model input fields obtained from the World Data Center for the LTCS period. These model inputs included solar flux, total hemispheric power, solar wind data from which the cross-polar-cap potential was derived, and geomagnetic K p index. Calculations were made for the semidiurnal ion temperatures and horizontal neutral winds at locations representative of Arecibo, Millstone Hill, and Sondrestrom. The diurnal tides at Sondrestrom were also simulated. Tidal inputs to the TIGCM lower boundary were obtained from the middle atmosphere model of Forbes and Vial (1989). The TIGCM tidal structures are in fair general agreement with the observations. The amplitudes tended to be better simulated than the phases, and the mid- and high-latitude locations are simulated better than the low-latitude thermosphere. This may indicate a need to incorporate coupling of the neutral atmosphere and ionosphere with the E region dynamo in the equatorial region to obtain a better representation of low-latitude thermospheric tides. The model simulations were used to investigate the daily variability of the tides due to the geomagnetic activity occurring during this period. In general, the ion temperatures were predicted to be affected more than the winds, and the diurnal components more than the semidiurnal. The effects are typically largest at high latitudes and higher altitudes, but discernible differences were produced at low latitudes

  7. Natural Circulation Characteristics at Low-Pressure Conditions through PANDA Experiments and ATHLET Simulations

    Directory of Open Access Journals (Sweden)

    Domenico Paladino

    2008-01-01

    Full Text Available Natural circulation characteristics at low pressure/low power have been studied by performing experimental investigations and numerical simulations. The PANDA large-scale facility was used to provide valuable, high quality data on natural circulation characteristics as a function of several parameters and for a wide range of operating conditions. The new experimental data allow for testing and improving the capabilities of the thermal-hydraulic computer codes to be used for treating natural circulation loops in a range with increased attention. This paper presents a synthesis of a part of the results obtained within the EU-Project NACUSP “natural circulation and stability performance of boiling water reactors.” It does so by using the experimental results produced in PANDA and by showing some examples of numerical simulations performed with the thermal-hydraulic code ATHLET.

  8. Treatment of cloud radiative effects in general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.C.; Dudek, M.P.; Liang, X.Z.; Ding, M. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: (1) to improve the general circulation model (GCM) cloud/radiation treatment with a focus on cloud verticle overlapping and layer cloud optical properties, and (2) to study the effects of cloud/radiation-climate interaction on GCM climate simulations. This report summarizes the project progress since the Fourth ARM Science Team meeting February 28-March 4, 1994, in Charleston, South Carolina.

  9. Dynamic model of YGN 3 and 4 steam generators for natural circulation mode

    International Nuclear Information System (INIS)

    Sohn, Jong Joo

    1995-02-01

    A dynamic model for the secondary side of Yonggwang nuclear power plant units 3 and 4 (YGN 3 and 4) steam generator model is developed to improve the accuracy of the present performance analysis code. The new model is based on the one-dimensional three region model to predict the local quality and void fraction distribution along the U-tube length. The local quality concept is used instead of the Wilson bubble rise correlation to simulate the steam generators in the natural circulation mode. The new model can be applicable to the plants in the power operation modes such as load maneuvering transients in which the steam generator internal flow is maintained in the natural circulation mode. To validate the new model, the code predictions are compared with the actual plant data measured for the selected load maneuvering tests performed during the YGN units 3 power ascension test period. The results from the improved model show better agreement with the plant data than those from the present code. Especially, the new model's capability of accurately simulating the steam generator water level behavior during the fast transients such as a large load rejection event is demonstrated

  10. Dynamics and transport in the stratosphere : Simulations with a general circulation mode

    Science.gov (United States)

    van Aalst, Maarten Krispijn

    2005-01-01

    The middle atmosphere is strongly affected by two of the world's most important environmental problems: global climate change and stratospheric ozone depletion, caused by anthropogenic emissions of greenhouse gases and chlorofluorocarbons (CFCs), respectively. General circulation models with coupled chemistry are a key tool to advance our understanding of the complex interplay between dynamics, chemistry and radiation in the middle atmosphere. A key problem of such models is that they generate their own meteorology, and thus cannot be used for comparisons with instantaneous measurements. This thesis presents the first application of a simple data assimilation method, Newtonian relaxation, to reproduce realistic synoptical conditions in a state-of-the-art middle atmosphere general circulation model, MA-ECHAM. By nudging the model's meteorology slightly towards analyzed observations from a weather forecasting system (ECMWF), we have simulated specific atmospheric processes during particular meteorological episodes, such as the 1999/2000 Arctic winter. The nudging technique is intended to interfere as little as possible with the model's own dynamics. In fact, we found that we could even limit the nudging to the troposphere, leaving the middle atmosphere entirely free. In that setup, the model realistically reproduced many aspects of the instantaneous meteorology of the middle atmosphere, such as the unusually early major warming and breakup of the 2002 Antarctic vortex. However, we found that this required careful interpolation of the nudging data, and a correct choice of nudging parameters. We obtained the best results when we first projected the nudging data onto the model's normal modes so that we could filter out the (spurious) fast components. In a four-year simulation, for which we also introduced an additional nudging of the stratospheric quasi-biennial oscillation, we found that the model reproduced much of the interannual variability throughout the

  11. Development of a butterfly check valve model under natural circulation conditions

    International Nuclear Information System (INIS)

    Rao, Yuxian; Yu, Lei; Fu, Shengwei; Zhang, Fan

    2015-01-01

    Highlights: • Bases on Lim’s swing check valve model, a butterfly check valve model was developed. • The method to quantify the friction torque T F in Li’s model was corrected. • The developed model was implemented into the RELAP5 code and verified. - Abstract: A butterfly check valve is widely used to prevent a reverse flow in the pipe lines of a marine nuclear power plant. Under some conditions, the natural circulation conditions in particular, the fluid velocity through the butterfly check valve might become too low to hold the valve disk fully open, thereby the flow resistance of the butterfly check valve varies with the location of the valve disk and as a result the fluid flow is significantly affected by the dynamic motion of the valve disk. Simulation of a pipe line that includes some butterfly check valves, especially under natural circulation conditions, is thus complicated. This paper focuses on the development of a butterfly check valve model to enhance the capability of the thermal–hydraulic system code and the developed model is implemented into the RELAP5 code. Both steady-state calculations and transient calculations were carried out for the primary loop system of a marine nuclear power plant and the calculation results are compared with the experimental data for verification purpose. The simulation results show an agreement with the experimental data

  12. The balance of kinetic and total energy simulated by the OSU two-level atmospheric general circulation model for January and July

    Science.gov (United States)

    Wang, J.-T.; Gates, W. L.; Kim, J.-W.

    1984-01-01

    A three-year simulation which prescribes seasonally varying solar radiation and sea surface temperature is the basis of the present study of the horizontal structure of the balances of kinetic and total energy simulated by Oregon State University's two-level atmospheric general circulation model. Mechanisms responsible for the local energy changes are identified, and the energy balance requirement's fulfilment is examined. In January, the vertical integral of the total energy shows large amounts of external heating over the North Pacific and Atlantic, together with cooling over most of the land area of the Northern Hemisphere. In July, an overall seasonal reversal is found. Both seasons are also characterized by strong energy flux divergence in the tropics, in association with the poleward transport of heat and momentum.

  13. Climate Simulations from Super-parameterized and Conventional General Circulation Models with a Third-order Turbulence Closure

    Science.gov (United States)

    Xu, Kuan-Man; Cheng, Anning

    2014-05-01

    A high-resolution cloud-resolving model (CRM) embedded in a general circulation model (GCM) is an attractive alternative for climate modeling because it replaces all traditional cloud parameterizations and explicitly simulates cloud physical processes in each grid column of the GCM. Such an approach is called "Multiscale Modeling Framework." MMF still needs to parameterize the subgrid-scale (SGS) processes associated with clouds and large turbulent eddies because circulations associated with planetary boundary layer (PBL) and in-cloud turbulence are unresolved by CRMs with horizontal grid sizes on the order of a few kilometers. A third-order turbulence closure (IPHOC) has been implemented in the CRM component of the super-parameterized Community Atmosphere Model (SPCAM). IPHOC is used to predict (or diagnose) fractional cloudiness and the variability of temperature and water vapor at scales that are not resolved on the CRM's grid. This model has produced promised results, especially for low-level cloud climatology, seasonal variations and diurnal variations (Cheng and Xu 2011, 2013a, b; Xu and Cheng 2013a, b). Because of the enormous computational cost of SPCAM-IPHOC, which is 400 times of a conventional CAM, we decided to bypass the CRM and implement the IPHOC directly to CAM version 5 (CAM5). IPHOC replaces the PBL/stratocumulus, shallow convection, and cloud macrophysics parameterizations in CAM5. Since there are large discrepancies in the spatial and temporal scales between CRM and CAM5, IPHOC used in CAM5 has to be modified from that used in SPCAM. In particular, we diagnose all second- and third-order moments except for the fluxes. These prognostic and diagnostic moments are used to select a double-Gaussian probability density function to describe the SGS variability. We also incorporate a diagnostic PBL height parameterization to represent the strong inversion above PBL. The goal of this study is to compare the simulation of the climatology from these three

  14. Are Hydrostatic Models Still Capable of Simulating Oceanic Fronts

    Science.gov (United States)

    2016-11-10

    Hydrostatic Models Still Capable of Simulating Oceanic Fronts Yalin Fan Zhitao Yu Ocean Dynamics and Prediction Branch Oceanography Division FengYan Shi...OF PAGES 17. LIMITATION OF ABSTRACT Are Hydrostatic Models Still Capable of Simulating Oceanic Fronts? Yalin Fan, Zhitao Yu, and, Fengyan Shi1 Naval...mixed layer and thermocline simulations as well as large scale circulations. Numerical experiments are conducted using hydrostatic (HY) and

  15. Use of circulation types classifications to evaluate AR4 climate models over the Euro-Atlantic region

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, M.A.; Casado, M.J. [Agencia Estatal de Meteorologia (AEMET), Madrid (Spain)

    2012-10-15

    This paper presents an evaluation of the multi-model simulations for the 4th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) in terms of their ability to simulate the ERA40 circulation types over the Euro-Atlantic region in winter season. Two classification schemes, k-means and SANDRA, have been considered to test the sensitivity of the evaluation results to the classification procedure. The assessment allows establishing different rankings attending spatial and temporal features of the circulation types. Regarding temporal characteristics, in general, all AR4 models tend to underestimate the frequency of occurrence. The best model simulating spatial characteristics is the UKMO-HadGEM1 whereas CCSM3, UKMO-HadGEM1 and CGCM3.1(T63) are the best simulating the temporal features, for both classification schemes. This result agrees with the AR4 models ranking obtained when having analysed the ability of the same AR4 models to simulate Euro-Atlantic variability modes. This study has proved the utility of applying such a synoptic climatology approach as a diagnostic tool for models' assessment. The ability of the models to properly reproduce the position of ridges and troughs and the frequency of synoptic patterns, will therefore improve our confidence in the response of models to future climate changes. (orig.)

  16. Modeling the influence of river discharge on salt intrusion and residual circulation in Danshuei River estuary, Taiwan

    Science.gov (United States)

    Liu, W.-C.; Chen, W.-B.; Cheng, R.T.; Hsu, M.-H.; Kuo, A.Y.

    2007-01-01

    A 3-D, time-dependent, baroclinic, hydrodynamic and salinity model was implemented and applied to the Danshuei River estuarine system and the adjacent coastal sea in Taiwan. The model forcing functions consist of tidal elevations along the open boundaries and freshwater inflows from the main stream and major tributaries in the Danshuei River estuarine system. The bottom friction coefficient was adjusted to achieve model calibration and verification in model simulations of barotropic and baroclinic flows. The turbulent diffusivities were ascertained through comparison of simulated salinity time series with observations. The model simulation results are in qualitative agreement with the available field data. The validated model was then used to investigate the influence of freshwater discharge on residual current and salinity intrusion under different freshwater inflow condition in the Danshuei River estuarine system. The model results reveal that the characteristic two-layered estuarine circulation prevails most of the time at Kuan-Du station near the river mouth. Comparing the estuarine circulation under low- and mean flow conditions, the circulation strengthens during low-flow period and its strength decreases at moderate river discharge. The river discharge is a dominating factor affecting the salinity intrusion in the estuarine system. A correlation between the distance of salt intrusion and freshwater discharge has been established allowing prediction of salt intrusion for different inflow conditions. ?? 2007 Elsevier Ltd. All rights reserved.

  17. Simulation of Two-Phase Natural Circulation Loop for Core Cather Cooling Using Air Water

    International Nuclear Information System (INIS)

    Revankar, S. T.; Huang, S. F.; Song, K. W.; Rhee, B. W.; Park, R. J.; Song, J. H.

    2012-01-01

    A closed loop natural circulation system employs thermally induced density gradients in single phase or two-phase liquid form to induce circulation of the working fluid thereby obviating the need for any mechanical moving parts such as pumps and pump controls. This increases the reliability and safety of the cooling system and reduces installation, operation and maintenance costs. That is the reason natural circulation cooling has been considered in advanced reactor core cooling and in engineered safety systems. Natural circulation cooling has been proposed to remove reactor decay heat by external vessel cooling for in-vessel core retention during sever accident scenario. Recently in APR1400 reactor core catcher design natural circulation cooling is proposed to stabilize and cool the corium ejected from the reactor vessel following core melt and breach of reactor vessel. The natural circulation flow is similar to external vessel cooling where water flows through an inclined narrow gap below hot surface and is heated to produce boiling. The two-phase natural circulation enables cooling of the corium pool collected on core catcher. Due to importance of this problem this paper focuses simulation of the two-phase natural circulation through inclined gap using air-water system. Scaling criteria for air-water loop are derived that enable simulation of the flow regimes and natural circulation flow rates in such systems using air-water system

  18. Preliminary model validation for integral stability behavior in molten salt natural circulation

    International Nuclear Information System (INIS)

    Cai Chuangxiong; He Zhaozhong; Chen Kun

    2017-01-01

    Passive safety system is an important characteristic of Fluoride-Salt-Cooled High-Temperature Reactor (FHR). In order to remove the decay heat, a direct reactor auxiliary cooling system (DRACS) which uses the passive safety technology is proposed to the FHR as the ultimate heat sink. The DRACS is relying on the natural circulation, so the study of molten salt natural circulation plays an important role at TMSR. A high-temperature molten salt natural circulation test loop has been designed and constructed at the TMSR center of the Chinese Academy of Sciences (CAS) to understand the characteristics of the natural circulation and verify the design model. It adopts nitrate salt as the working fluid to simulate fluoride salts, and uses air as the ultimate heat sink. The test shows the operation very well and has a very nice performance, the Heat transfer coefficients (salt-salt or salt-air), power of the loop, heat loss of molten salt pool (or molten salt pipe or air cooling tower), starting time of the loop, flow rate that can be verified in this loop. A series of experiments have been done and the results show that the experimental data are well matched with the design data. This paper aims at analyzing the molten salt circulation model, studying the characteristics of the natural circulation, and verifying the Integral stability behavior by three different natural circulation experiments. Also, the experiment is going on, and more experiments will been carry out to study the molten salt natural circulation for optimizing the design. (author)

  19. Clouds and the extratropical circulation response to global warming in a hierarchy of global atmosphere models

    Science.gov (United States)

    Voigt, A.

    2017-12-01

    Climate models project that global warming will lead to substantial changes in extratropical jet streams. Yet, many quantitative aspects of warming-induced jet stream changes remain uncertain, and recent work has indicated an important role of clouds and their radiative interactions. Here, I will investigate how cloud-radiative changes impact the zonal-mean extratropical circulation response under global warming using a hierarchy of global atmosphere models. I will first focus on aquaplanet setups with prescribed sea-surface temperatures (SSTs), which reproduce the model spread found in realistic simulations with interactive SSTs. Simulations with two CMIP5 models MPI-ESM and IPSL-CM5A and prescribed clouds show that half of the circulation response can be attributed to cloud changes. The rise of tropical high-level clouds and the upward and poleward movement of midlatitude high-level clouds lead to poleward jet shifts. High-latitude low-level cloud changes shift the jet poleward in one model but not in the other. The impact of clouds on the jet operates via the atmospheric radiative forcing that is created by the cloud changes and is qualitatively reproduced in a dry Held-Suarez model, although the latter is too sensitive because of its simplified treatment of diabatic processes. I will then show that the aquaplanet results also hold when the models are used in a realistic setup that includes continents and seasonality. I will further juxtapose these prescribed-SST simulations with interactive-SST simulations and show that atmospheric and surface cloud-radiative interactions impact the jet poleward jet shifts in about equal measure. Finally, I will discuss the cloud impact on regional and seasonal circulation changes.

  20. The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere

    Directory of Open Access Journals (Sweden)

    P. Jöckel

    2006-01-01

    Full Text Available The new Modular Earth Submodel System (MESSy describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model setup up to 0.01 hPa was used at spectral T42 resolution to simulate the lower and middle atmosphere. With the high vertical resolution the model simulates the Quasi-Biennial Oscillation. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. In the simulations presented here a Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998–2005. This allows an efficient and direct evaluation with satellite and in-situ data. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated well, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of inter-annual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy

  1. Diversity in the representation of large-scale circulation associated with ENSO-Indian summer monsoon teleconnections in CMIP5 models

    Science.gov (United States)

    Ramu, Dandi A.; Chowdary, Jasti S.; Ramakrishna, S. S. V. S.; Kumar, O. S. R. U. B.

    2018-04-01

    Realistic simulation of large-scale circulation patterns associated with El Niño-Southern Oscillation (ENSO) is vital in coupled models in order to represent teleconnections to different regions of globe. The diversity in representing large-scale circulation patterns associated with ENSO-Indian summer monsoon (ISM) teleconnections in 23 Coupled Model Intercomparison Project Phase 5 (CMIP5) models is examined. CMIP5 models have been classified into three groups based on the correlation between Niño3.4 sea surface temperature (SST) index and ISM rainfall anomalies, models in group 1 (G1) overestimated El Niño-ISM teleconections and group 3 (G3) models underestimated it, whereas these teleconnections are better represented in group 2 (G2) models. Results show that in G1 models, El Niño-induced Tropical Indian Ocean (TIO) SST anomalies are not well represented. Anomalous low-level anticyclonic circulation anomalies over the southeastern TIO and western subtropical northwest Pacific (WSNP) cyclonic circulation are shifted too far west to 60° E and 120° E, respectively. This bias in circulation patterns implies dry wind advection from extratropics/midlatitudes to Indian subcontinent. In addition to this, large-scale upper level convergence together with lower level divergence over ISM region corresponding to El Niño are stronger in G1 models than in observations. Thus, unrealistic shift in low-level circulation centers corroborated by upper level circulation changes are responsible for overestimation of ENSO-ISM teleconnections in G1 models. Warm Pacific SST anomalies associated with El Niño are shifted too far west in many G3 models unlike in the observations. Further large-scale circulation anomalies over the Pacific and ISM region are misrepresented during El Niño years in G3 models. Too strong upper-level convergence away from Indian subcontinent and too weak WSNP cyclonic circulation are prominent in most of G3 models in which ENSO-ISM teleconnections are

  2. The Sensitivity of WRF Daily Summertime Simulations over West Africa to Alternative Parameterizations. Part 1: African Wave Circulation

    Science.gov (United States)

    Noble, Erik; Druyan, Leonard M.; Fulakeza, Matthew

    2014-01-01

    The performance of the NCAR Weather Research and Forecasting Model (WRF) as a West African regional-atmospheric model is evaluated. The study tests the sensitivity of WRF-simulated vorticity maxima associated with African easterly waves to 64 combinations of alternative parameterizations in a series of simulations in September. In all, 104 simulations of 12-day duration during 11 consecutive years are examined. The 64 combinations combine WRF parameterizations of cumulus convection, radiation transfer, surface hydrology, and PBL physics. Simulated daily and mean circulation results are validated against NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) and NCEP/Department of Energy Global Reanalysis 2. Precipitation is considered in a second part of this two-part paper. A wide range of 700-hPa vorticity validation scores demonstrates the influence of alternative parameterizations. The best WRF performers achieve correlations against reanalysis of 0.40-0.60 and realistic amplitudes of spatiotemporal variability for the 2006 focus year while a parallel-benchmark simulation by the NASA Regional Model-3 (RM3) achieves higher correlations, but less realistic spatiotemporal variability. The largest favorable impact on WRF-vorticity validation is achieved by selecting the Grell-Devenyi cumulus convection scheme, resulting in higher correlations against reanalysis than simulations using the Kain-Fritch convection. Other parameterizations have less-obvious impact, although WRF configurations incorporating one surface model and PBL scheme consistently performed poorly. A comparison of reanalysis circulation against two NASA radiosonde stations confirms that both reanalyses represent observations well enough to validate the WRF results. Validation statistics for optimized WRF configurations simulating the parallel period during 10 additional years are less favorable than for 2006.

  3. Theoretical and experimental investigations into natural circulation behaviour in a simulated facility of the Indian PHWR under reduced inventory conditions

    International Nuclear Information System (INIS)

    Satish Kumar, N.V.; Nayak, A.K.; Vijayan, P.K.; Pal, A.K.; Saha, D.; Sinha, R.K.

    2004-01-01

    A theoretical and experimental investigation has been carried out to study natural circulation characteristics of an Indian PHWR under reduced inventory conditions. The theoretical model incorporates a quasi-steady state analysis of natural circulation at different system inventories. It predicts the system flow rate under single-phase and two-phase conditions and the inventory at which reflux condensation occurs. The model predictions were compared with test data obtained from FISBE (facility for integral system behaviour experiments), which simulates the thermal hydraulic behaviour of the Indian 220 MWe PHWR. The experimental results were found to be in close agreement with the predictions. It was also found that the natural circulation could be oscillatory under reduced inventory conditions. (orig.)

  4. Comparison of three-dimensional ocean general circulation models on a benchmark problem

    International Nuclear Information System (INIS)

    Chartier, M.

    1990-12-01

    A french and an american Ocean General Circulation Models for deep-sea disposal of radioactive wastes are compared on a benchmark test problem. Both models are three-dimensional. They solve the hydrostatic primitive equations of the ocean with two different finite difference techniques. Results show that the dynamics simulated by both models are consistent. Several methods for the running of a model from a known state are tested in the French model: the diagnostic method, the prognostic method, the acceleration of convergence and the robust-diagnostic method

  5. Structure and variances of equatorial zonal circulation in a multimodel ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Yu, B. [Environment Canada, Climate Data and Analysis Section, Climate Research Division, Toronto, ON (Canada); Zwiers, F.W. [University of Victoria, Pacific Climate Impacts Consortium, Victoria, BC (Canada); Boer, G.J. [Environment Canada, Canadian Centre for Climate Modeling and Analysis, Climate Research Division, Victoria, BC (Canada); Ting, M.F. [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States)

    2012-11-15

    The structure and variance of the equatorial zonal circulation, as characterized by the atmospheric mass flux in the equatorial zonal plane, is examined and inter-compared in simulations from 9 CMIP3 coupled climate models with multiple ensemble members and the NCEP-NCAR and ERA-40 reanalyses. The climate model simulations analyzed here include twentieth century (20C3M) and twenty-first century (SRES A1B) simulations. We evaluate the 20C3M modeled zonal circulations by comparing them with those in the reanalyses. We then examine the variability of the circulation, its changes with global warming, and the associated thermodynamic maintenance. The tropical zonal circulation involves three major components situated over the Pacific, Indian, and Atlantic oceans. The three cells are supported by the corresponding diabatic heating extending deeply throughout the troposphere, with heating centers apparent in the mid-troposphere. Seasonal features appear in the zonal circulation, including variations in its intensity and longitudinal migration. Most models, and hence the multi-model mean, represent the annual and seasonal features of the circulation and the associated heating reasonably well. The multi-model mean reproduces the observed climatology better than any individual model, as indicated by the spatial pattern correlation and mean square difference of the mass flux and the diabatic heating compared to the reanalysis based values. Projected changes in the zonal circulation under A1B forcing are dominated by mass flux changes over the Pacific and Indian oceans. An eastward shift of the Pacific Walker circulation is clearly evident with global warming, with anomalous rising motion apparent over the equatorial central Pacific and anomalous sinking motions in the west and east, which favors an overall strengthening of the Walker circulation. The zonal circulation weakens and shifts westwards over the Indian Ocean under external forcing, whereas it strengthens and shifts

  6. 3D Visualization of Global Ocean Circulation

    Science.gov (United States)

    Nelson, V. G.; Sharma, R.; Zhang, E.; Schmittner, A.; Jenny, B.

    2015-12-01

    Advanced 3D visualization techniques are seldom used to explore the dynamic behavior of ocean circulation. Streamlines are an effective method for visualization of flow, and they can be designed to clearly show the dynamic behavior of a fluidic system. We employ vector field editing and extraction software to examine the topology of velocity vector fields generated by a 3D global circulation model coupled to a one-layer atmosphere model simulating preindustrial and last glacial maximum (LGM) conditions. This results in a streamline-based visualization along multiple density isosurfaces on which we visualize points of vertical exchange and the distribution of properties such as temperature and biogeochemical tracers. Previous work involving this model examined the change in the energetics driving overturning circulation and mixing between simulations of LGM and preindustrial conditions. This visualization elucidates the relationship between locations of vertical exchange and mixing, as well as demonstrates the effects of circulation and mixing on the distribution of tracers such as carbon isotopes.

  7. Application of blocking diagnosis methods to general circulation models. Part II: model simulations

    Energy Technology Data Exchange (ETDEWEB)

    Barriopedro, D.; Trigo, R.M. [Universidade de Lisboa, CGUL-IDL, Faculdade de Ciencias, Lisbon (Portugal); Garcia-Herrera, R.; Gonzalez-Rouco, J.F. [Universidad Complutense de Madrid, Departamento de Fisica de la Tierra II, Facultad de C.C. Fisicas, Madrid (Spain)

    2010-12-15

    A previously defined automatic method is applied to reanalysis and present-day (1950-1989) forced simulations of the ECHO-G model in order to assess its performance in reproducing atmospheric blocking in the Northern Hemisphere. Unlike previous methodologies, critical parameters and thresholds to estimate blocking occurrence in the model are not calibrated with an observed reference, but objectively derived from the simulated climatology. The choice of model dependent parameters allows for an objective definition of blocking and corrects for some intrinsic model bias, the difference between model and observed thresholds providing a measure of systematic errors in the model. The model captures reasonably the main blocking features (location, amplitude, annual cycle and persistence) found in observations, but reveals a relative southward shift of Eurasian blocks and an overall underestimation of blocking activity, especially over the Euro-Atlantic sector. Blocking underestimation mostly arises from the model inability to generate long persistent blocks with the observed frequency. This error is mainly attributed to a bias in the basic state. The bias pattern consists of excessive zonal winds over the Euro-Atlantic sector and a southward shift at the exit zone of the jet stream extending into in the Eurasian continent, that are more prominent in cold and warm seasons and account for much of Euro-Atlantic and Eurasian blocking errors, respectively. It is shown that other widely used blocking indices or empirical observational thresholds may not give a proper account of the lack of realism in the model as compared with the proposed method. This suggests that in addition to blocking changes that could be ascribed to natural variability processes or climate change signals in the simulated climate, attention should be paid to significant departures in the diagnosis of phenomena that can also arise from an inappropriate adaptation of detection methods to the climate of the

  8. Results of an interactively coupled atmospheric chemistry - general circulation model. Comparison with observations

    Energy Technology Data Exchange (ETDEWEB)

    Hein, R.; Dameris, M.; Schnadt, C. [and others

    2000-01-01

    An interactively coupled climate-chemistry model which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks is presented. This is the first model, which interactively combines a general circulation model based on primitive equations with a rather complex model of stratospheric and tropospheric chemistry, and which is computational efficient enough to allow long-term integrations with currently available computer resources. The applied model version extends from the Earth's surface up to 10 hPa with a relatively high number (39) of vertical levels. We present the results of a present-day (1990) simulation and compare it to available observations. We focus on stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. The current model version ECHAM4.L39(DLR)/CHEM can realistically reproduce stratospheric dynamics in the Arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to formerly applied model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their interhemispheric differences are reproduced. The consideration of the chemistry feedback on dynamics results in an improved representation of the spatial distribution of stratospheric water vapor concentrations, i.e., the simulated meriodional water vapor gradient in the stratosphere is realistic. The present model version constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic trace gas emissions, and the future evolution of the ozone layer. (orig.)

  9. Using Green's Functions to initialize and adjust a global, eddying ocean biogeochemistry general circulation model

    Science.gov (United States)

    Brix, H.; Menemenlis, D.; Hill, C.; Dutkiewicz, S.; Jahn, O.; Wang, D.; Bowman, K.; Zhang, H.

    2015-11-01

    The NASA Carbon Monitoring System (CMS) Flux Project aims to attribute changes in the atmospheric accumulation of carbon dioxide to spatially resolved fluxes by utilizing the full suite of NASA data, models, and assimilation capabilities. For the oceanic part of this project, we introduce ECCO2-Darwin, a new ocean biogeochemistry general circulation model based on combining the following pre-existing components: (i) a full-depth, eddying, global-ocean configuration of the Massachusetts Institute of Technology general circulation model (MITgcm), (ii) an adjoint-method-based estimate of ocean circulation from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project, (iii) the MIT ecosystem model "Darwin", and (iv) a marine carbon chemistry model. Air-sea gas exchange coefficients and initial conditions of dissolved inorganic carbon, alkalinity, and oxygen are adjusted using a Green's Functions approach in order to optimize modeled air-sea CO2 fluxes. Data constraints include observations of carbon dioxide partial pressure (pCO2) for 2009-2010, global air-sea CO2 flux estimates, and the seasonal cycle of the Takahashi et al. (2009) Atlas. The model sensitivity experiments (or Green's Functions) include simulations that start from different initial conditions as well as experiments that perturb air-sea gas exchange parameters and the ratio of particulate inorganic to organic carbon. The Green's Functions approach yields a linear combination of these sensitivity experiments that minimizes model-data differences. The resulting initial conditions and gas exchange coefficients are then used to integrate the ECCO2-Darwin model forward. Despite the small number (six) of control parameters, the adjusted simulation is significantly closer to the data constraints (37% cost function reduction, i.e., reduction in the model-data difference, relative to the baseline simulation) and to independent observations (e.g., alkalinity). The adjusted air-sea gas

  10. Tracer water transport and subgrid precipitation variation within atmospheric general circulation models

    Science.gov (United States)

    Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.

    1988-03-01

    A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.

  11. Tracer water transport and subgrid precipitation variation within atmospheric general circulation models

    Science.gov (United States)

    Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.

    1988-01-01

    A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.

  12. BIM-Enabled Conceptual Modelling and Representation of Building Circulation

    Directory of Open Access Journals (Sweden)

    Jin Kook Lee

    2014-08-01

    Full Text Available This paper describes how a building information modelling (BIM-based approach for building circulation enables us to change the process of building design in terms of its computational representation and processes, focusing on the conceptual modelling and representation of circulation within buildings. BIM has been designed for use by several BIM authoring tools, in particular with the widely known interoperable industry foundation classes (IFCs, which follow an object-oriented data modelling methodology. Advances in BIM authoring tools, using space objects and their relations defined in an IFC's schema, have made it possible to model, visualize and analyse circulation within buildings prior to their construction. Agent-based circulation has long been an interdisciplinary topic of research across several areas, including design computing, computer science, architectural morphology, human behaviour and environmental psychology. Such conventional approaches to building circulation are centred on navigational knowledge about built environments, and represent specific circulation paths and regulations. This paper, however, places emphasis on the use of ‘space objects’ in BIM-enabled design processes rather than on circulation agents, the latter of which are not defined in the IFCs' schemas. By introducing and reviewing some associated research and projects, this paper also surveys how such a circulation representation is applicable to the analysis of building circulation-related rules.

  13. A new analytical model for conduction heating during the SAGD circulation phase

    Energy Technology Data Exchange (ETDEWEB)

    Duong, A.N. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[ConocoPhillips Canada Resources Corp., Calgary, AB (Canada); Tomberlin, T.A. [ConocoPhillips Canada Resources Corp., Calgary, AB (Canada); Cyrot, M. [Total E and P Canada Ltd., Calgary, AB (Canada)

    2008-10-15

    The steam assisted gravity drainage (SAGD) process has become the common procedure to recover bitumen from Alberta's oilsands. Inter-well communication must be initiated during the start-up phase of a SAGD process. The shape of an initial steam chamber that develops during the circulation phase influences the efficiency of bitumen recovery. As such, the heating conformance distributed along the horizontal wellbores must be well understood. The duration of the start-up phase varies with the characteristics of the oilsand formation and the distance between the wellbores, but it is typically a month to several months. This paper presented a newly developed analytical model that predicts the initial steam chamber. The model improves bitumen recovery efficiency by predicting the mid-point temperature front and heating efficiency of a wellpair during the SAGD circulation phase. The Excel-based model uses the exponential integral solution for radial heating in a long cylinder and superposition in space for multi-heating sources. It can predict the temperature profile if the steam temperatures or pressures are known during the circulation period. Wellbore modeling that includes any variation in distances between the wellbores is critical to both circulation time and heating conformance. This model has an advantage over numerical simulation in terms of reducing computational time and accurately modelling any variation in distance between wellbores. The results can be optimized under various operational conditions, wellbore profiles, tubing sizes and convection flow effects. This easy to use model is currently being used by ConocoPhillips Canada to optimize, predict and guide oilsands projects during the start-up phase of a SAGD process. 5 refs., 13 figs.

  14. Numerical simulation of a full-loop circulating fluidized bed under different operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yupeng [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Musser, Jordan M. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Li, Tingwen [National Energy Technology Lab. (NETL), Morgantown, WV (United States); AECOM, Morgantown, WV (United States); Rogers, William A. [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2017-10-17

    Both experimental and computational studies of the fluidization of high-density polyethylene (HDPE) particles in a small-scale full-loop circulating fluidized bed are conducted. Experimental measurements of pressure drop are taken at different locations along the bed. The solids circulation rate is measured with an advanced Particle Image Velocimetry (PIV) technique. The bed height of the quasi-static region in the standpipe is also measured. Comparative numerical simulations are performed with a Computational Fluid Dynamics solver utilizing a Discrete Element Method (CFD-DEM). This paper reports a detailed and direct comparison between CFD-DEM results and experimental data for realistic gas-solid fluidization in a full-loop circulating fluidized bed system. The comparison reveals good agreement with respect to system component pressure drop and inventory height in the standpipe. In addition, the effect of different drag laws applied within the CFD simulation is examined and compared with experimental results.

  15. The ability of general circulation models to simulate tropical cyclones and their precursors over the North Atlantic main development region

    Energy Technology Data Exchange (ETDEWEB)

    Daloz, Anne Sophie; Chauvin, Fabrice [Groupe de Modelisation Grande Echelle et Climat, CNRM-GAME, Meteo-France, Toulouse Cedex 1 (France); Walsh, Kevin [University of Melbourne, School of Earth Sciences, Melbourne, VIC (Australia); Lavender, Sally; Abbs, Deborah [CSIRO Atmospheric and Marine Research, Aspendale, VIC (Australia); Roux, Frank [Universite de Toulouse and Centre National de la Recherche Scientifique, Laboratoire d' Aerologie, Toulouse (France)

    2012-10-15

    The ability of General Circulation Models (GCMs) to generate Tropical Cyclones (TCs) over the North Atlantic Main Development Region (MDR; 10-20 N, 20-80 W; Goldenberg and Shapiro in J Clim 9:1169-1187, 1996) is examined through a subset of ocean-atmosphere coupled simulations from the World Climate Research Programme (WCRP) Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel data set and a high-resolution (0.5 ) Sea Surface Temperature (SST)-forced simulation from the Australian Conformal-Cubic Atmospheric Model GCM. The results are compared with National Center for Environmental Prediction (NCEP-2) and European Center for Medium Range Weather Forecasts Re-Analysis (ERA-40) reanalyses over a common period from 1980 to 1998. Important biases in the representation of the TC activity are encountered over the MDR. This study emphasizes the strong link in the GCMs between African Easterly Waves (AEWs) and TC activity in this region. However, the generation of AEWs is not a sufficient condition alone for the models to produce TCs. Precipitation over the Sahel, especially rainfall over the Fouta Djallon highlands (cf. Fig. 1), is playing a role in the generation of TCs over the MDR. The influence of large-scale fields such as SST, vertical wind shear and tropospheric humidity on TC genesis is also examined. The ability of TC genesis indices, such as the Genesis Potential Index and the Convective Yearly Genesis Potential, to represent TC activity over the MDR in simulations at low to high spatial resolutions is analysed. These indices are found to be a reasonable method for comparing cyclogenesis in different models, even though other factors such as AEW activity should also be considered. (orig.)

  16. Simulations of the general circulation of the Martian atmosphere. I - Polar processes

    Science.gov (United States)

    Pollack, James B.; Haberle, Robert M.; Schaeffer, James; Lee, Hilda

    1990-01-01

    Numerical simulations of the Martian atmosphere general circulation are carried out for 50 simulated days, using a three-dimensional model, based on the primitive equations of meteorology, which incorporated the radiative effects of atmospheric dust on solar and thermal radiation. A large number of numerical experiments were conducted for alternative choices of seasonal date and dust optical depth. It was found that, as the dust content of the winter polar region increased, the rate of atmospheric CO2 condensation increased sharply. It is shown that the strong seasonal variation in the atmospheric dust content observed might cause a number of hemispheric asymmetries. These asymmetries include the greater prevalence of polar hoods in the northern polar region during winter, the lower albedo of the northern polar cap during spring, and the total dissipation of the northern CO2 ice cap during the warmer seasons.

  17. Coupled atmosphere ocean climate model simulations in the Mediterranean region: effect of a high-resolution marine model on cyclones and precipitation

    Directory of Open Access Journals (Sweden)

    A. Sanna

    2013-06-01

    Full Text Available In this study we investigate the importance of an eddy-permitting Mediterranean Sea circulation model on the simulation of atmospheric cyclones and precipitation in a climate model. This is done by analyzing results of two fully coupled GCM (general circulation models simulations, differing only for the presence/absence of an interactive marine module, at very high-resolution (~ 1/16°, for the simulation of the 3-D circulation of the Mediterranean Sea. Cyclones are tracked by applying an objective Lagrangian algorithm to the MSLP (mean sea level pressure field. On annual basis, we find a statistically significant difference in vast cyclogenesis regions (northern Adriatic, Sirte Gulf, Aegean Sea and southern Turkey and in lifetime, giving evidence of the effect of both land–sea contrast and surface heat flux intensity and spatial distribution on cyclone characteristics. Moreover, annual mean convective precipitation changes significantly in the two model climatologies as a consequence of differences in both air–sea interaction strength and frequency of cyclogenesis in the two analyzed simulations.

  18. Computational fluid dynamics simulation for chemical looping combustion of coal in a dual circulation fluidized bed

    International Nuclear Information System (INIS)

    Su, Mingze; Zhao, Haibo; Ma, Jinchen

    2015-01-01

    Highlights: • CFD simulation of a 5 kW_t_h CLC reactor of coal was conducted. • Gas leakage, flow pattern and combustion efficiency of the reactor was analyzed. • Optimal condition was achieved based on operation characteristics understanding. - Abstract: A dual circulation fluidized bed system is widely accepted for chemical looping combustion (CLC) for enriching CO_2 from the utilization of fossil fuels. Due to the limitations of the measurement, the details of multiphase reactive flows in the interconnected fluidized bed reactors are difficult to obtain. Computational Fluid Dynamics (CFD) simulation provides a promising method to understand the hydrodynamics, chemical reaction, and heat and mass transfers in CLC reactors, which are very important for the rational design, optimal operation, and scaling-up of the CLC system. In this work, a 5 kW_t_h coal-fired CLC dual circulation fluidized bed system, which was developed by our research group, was first simulated for understanding gas leakage, flow pattern and combustion efficiency. The simulation results achieved good agreement with the experimental measurements, which validates the simulation model. Subsequently, to improve the combustion efficiency, a new operation condition was simulated by increasing the reactor temperature and decreasing the coal feeding. An improvement in the combustion efficiency was attained, and the simulation results for the new operation condition were also validated by the experimental measurements in the same CLC combustor. All of the above processes demonstrated the validity and usefulness of the simulation results to improve the CLC reactor operation.

  19. Preformed and regenerated phosphate in ocean general circulation models: can right total concentrations be wrong?

    Directory of Open Access Journals (Sweden)

    O. Duteil

    2012-05-01

    Full Text Available Phosphate distributions simulated by seven state-of-the-art biogeochemical ocean circulation models are evaluated against observations of global ocean nutrient distributions. The biogeochemical models exhibit different structural complexities, ranging from simple nutrient-restoring to multi-nutrient NPZD type models. We evaluate the simulations using the observed volume distribution of phosphate. The errors in these simulated volume class distributions are significantly larger when preformed phosphate (or regenerated phosphate rather than total phosphate is considered. Our analysis reveals that models can achieve similarly good fits to observed total phosphate distributions for a~very different partitioning into preformed and regenerated nutrient components. This has implications for the strength and potential climate sensitivity of the simulated biological carbon pump. We suggest complementing the use of total nutrient distributions for assessing model skill by an evaluation of the respective preformed and regenerated nutrient components.

  20. Steam generator and circulator model for the HELAP code

    International Nuclear Information System (INIS)

    Ludewig, H.

    1975-07-01

    An outline is presented of the work carried out in the 1974 fiscal year on the GCFBR safety research project consisting of the development of improved steam generator and circulator (steam turbine driven helium compressor) models which will eventually be inserted in the HELAP (1) code. Furthermore, a code was developed which will be used to generate steady state input for the primary and secondary sides of the steam generator. The following conclusions and suggestions for further work are made: (1) The steam-generator and circulator model are consistent with the volume and junction layout used in HELAP, (2) with minor changes these models, when incorporated in HELAP, could be used to simulate a direct cycle plant, (3) an explicit control valve model is still to be developed and would be very desirable to control the flow to the turbine during a transient (initially this flow will be controlled by using the existing check valve model); (4) the friction factor in the laminar flow region is computed inaccurately, this might cause significant errors in loss-of-flow accidents; and (5) it is felt that HELAP will still use a large amount of computer time and will thus be limited to design basis accidents without scram or loss of flow transients with and without scram. Finally it may also be used as a test bed for the development of prototype component models which would be incorporated in a more sophisticated system code, developed specifically for GCFBR's

  1. Basic natural circulation characteristics of SBWR

    International Nuclear Information System (INIS)

    Kuran, S.; Soekmen, C. N.

    2001-01-01

    Natural circulation is an important passive heat removal mechanism for both existing and next generation light water reactors. Simplified Boiling Water Reactor (SBWR) is one of the advanced light water reactors that rely on natural circulation for normal as well as emergency core cooling. In this study, basic natural circulation characteristics of this reactor are examined on a flow loop that simulates the operation of SBWR. On this model, effect of system operating parameters on the steady state natural circulation characteristics inside the loop is studied via solving the transcendental equation for loop flow rate

  2. Influence of sea ice cover and icebergs on circulation and water mass formation in a numerical circulation model of the Ross Sea, Antarctica

    Science.gov (United States)

    Dinniman, Michael S.; Klinck, John M.; Smith, Walker O.

    2007-11-01

    Satellite imagery shows that there was substantial variability in the sea ice extent in the Ross Sea during 2001-2003. Much of this variability is thought to be due to several large icebergs that moved through the area during that period. The effects of these changes in sea ice on circulation and water mass distributions are investigated with a numerical general circulation model. It would be difficult to simulate the highly variable sea ice from 2001 to 2003 with a dynamic sea ice model since much of the variability was due to the floating icebergs. Here, sea ice concentration is specified from satellite observations. To examine the effects of changes in sea ice due to iceberg C-19, simulations were performed using either climatological ice concentrations or the observed ice for that period. The heat balance around the Ross Sea Polynya (RSP) shows that the dominant term in the surface heat budget is the net exchange with the atmosphere, but advection of oceanic warm water is also important. The area average annual basal melt rate beneath the Ross Ice Shelf is reduced by 12% in the observed sea ice simulation. The observed sea ice simulation also creates more High-Salinity Shelf Water. Another simulation was performed with observed sea ice and a fixed iceberg representing B-15A. There is reduced advection of warm surface water during summer from the RSP into McMurdo Sound due to B-15A, but a much stronger reduction is due to the late opening of the RSP in early 2003 because of C-19.

  3. Identifying a key physical factor sensitive to the performance of Madden-Julian oscillation simulation in climate models

    Science.gov (United States)

    Kim, Go-Un; Seo, Kyong-Hwan

    2018-01-01

    A key physical factor in regulating the performance of Madden-Julian oscillation (MJO) simulation is examined by using 26 climate model simulations from the World Meteorological Organization's Working Group for Numerical Experimentation/Global Energy and Water Cycle Experiment Atmospheric System Study (WGNE and MJO-Task Force/GASS) global model comparison project. For this, intraseasonal moisture budget equation is analyzed and a simple, efficient physical quantity is developed. The result shows that MJO skill is most sensitive to vertically integrated intraseasonal zonal wind convergence (ZC). In particular, a specific threshold value of the strength of the ZC can be used as distinguishing between good and poor models. An additional finding is that good models exhibit the correct simultaneous convection and large-scale circulation phase relationship. In poor models, however, the peak circulation response appears 3 days after peak rainfall, suggesting unfavorable coupling between convection and circulation. For an improving simulation of the MJO in climate models, we propose that this delay of circulation in response to convection needs to be corrected in the cumulus parameterization scheme.

  4. X-band COSMO-SkyMed wind field retrieval, with application to coastal circulation modeling

    Directory of Open Access Journals (Sweden)

    A. Montuori

    2013-02-01

    Full Text Available In this paper, X-band COSMO-SkyMed© synthetic aperture radar (SAR wind field retrieval is investigated, and the obtained data are used to force a coastal ocean circulation model. The SAR data set consists of 60 X-band Level 1B Multi-Look Ground Detected ScanSAR Huge Region COSMO-SkyMed© SAR data, gathered in the southern Tyrrhenian Sea during the summer and winter seasons of 2010. The SAR-based wind vector field estimation is accomplished by resolving both the SAR-based wind speed and wind direction retrieval problems independently. The sea surface wind speed is retrieved by means of a SAR wind speed algorithm based on the azimuth cut-off procedure, while the sea surface wind direction is provided by means of a SAR wind direction algorithm based on the discrete wavelet transform multi-resolution analysis. The obtained wind fields are compared with ground truth data provided by both ASCAT scatterometer and ECMWF model wind fields. SAR-derived wind vector fields and ECMWF model wind data are used to construct a blended wind product regularly sampled in both space and time, which is then used to force a coastal circulation model of a southern Tyrrhenian coastal area to simulate wind-driven circulation processes. The modeling results show that X-band COSMO-SkyMed© SAR data can be valuable in providing effective wind fields for coastal circulation modeling.

  5. Forcing mechanisms of the Bay of Bengal circulation

    Digital Repository Service at National Institute of Oceanography (India)

    Vinayachandran, P.N.; Shetye, S.R.; Sengupta, D.; Gadgil, S.

    A state-of-the-art ocean general circulation model, set up for the North Indian Ocean and driven by climatological wind stress simulates most of the observed features of the near-surface circulation of the Bay of Bengal. The prominent features...

  6. Modeling of flashing-induced instabilities in the start-up phase of natural-circulation BWRs using the two-phase flow code FLOCAL

    Energy Technology Data Exchange (ETDEWEB)

    Manera, A. [Forschungszentrum Rossendorf e.V. (FZR), Institute of Safety Research, P.O.B. 510119, D-01324 Dresden (Germany) and Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)]. E-mail: a.manera@fz-rossendorf.de; Rohde, U. [Forschungszentrum Rossendorf e.V. (FZR), Institute of Safety Research, P.O.B. 510119, D-01324 Dresden (Germany); Prasser, H.-M. [Forschungszentrum Rossendorf e.V. (FZR), Institute of Safety Research, P.O.B. 510119, D-01324 Dresden (Germany); Hagen, T.H.J.J. van der [Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2005-06-01

    This paper reports on the modeling and simulation of flashing-induced instabilities in natural-circulation systems, with special emphasis on natural-circulation boiling water reactors (BWRs). For the modeling the 4-equation two-phase model FLOCAL [Rohde, U., 1986. Ein teoretisches Modell fur Zweiphasen-stromungen in wassergekulthen Kernreaktoren und seine Anwendung zur Analyse des Naturumlaufs im Heizreaktor AST-500. Ph.D. dissertation, Akademie der Wissenschaften der DDR, Dresden], developed at the Forschungszentrum Rossendorf (FZR, Germany), has been used. The model allows for the liquid and vapor to be in thermal non-equilibrium and, via drift-flux models, to have different velocities. The phenomenology of the instability has been studied and the dominating physical effects have been determined. The results of the simulations have been compared qualitatively and quantitatively with experiments [Manera, A., van der Hagen, T.H.J.J., 2003. Stability of natural-circulation-cooled boiling water reactor during start up: experimental results. Nuc. Technol., 143] that have been carried out within the framework of a European project (NACUSP) on the CIRCUS facility. The facility, built at the Delft University of Technology in The Netherlands, is a water/steam 1:1 height-scaled loop of a typical natural-circulation-cooled BWR.

  7. Variations of the Atlantic meridional overturning circulation in control and transient simulations of the last millennium

    Directory of Open Access Journals (Sweden)

    D. Hofer

    2011-02-01

    Full Text Available The variability of the Atlantic meridional overturing circulation (AMOC strength is investigated in control experiments and in transient simulations of up to the last millennium using the low-resolution Community Climate System Model version 3. In the transient simulations the AMOC exhibits enhanced low-frequency variability that is mainly caused by infrequent transitions between two semi-stable circulation states which amount to a 10 percent change of the maximum overturning. One transition is also found in a control experiment, but the time-varying external forcing significantly increases the probability of the occurrence of such events though not having a direct, linear impact on the AMOC. The transition from a high to a low AMOC state starts with a reduction of the convection in the Labrador and Irminger Seas and goes along with a changed barotropic circulation of both gyres in the North Atlantic and a gradual strengthening of the convection in the Greenland-Iceland-Norwegian (GIN Seas. In contrast, the transition from a weak to a strong overturning is induced by decreased mixing in the GIN Seas. As a consequence of the transition, regional sea surface temperature (SST anomalies are found in the midlatitude North Atlantic and in the convection regions with an amplitude of up to 3 K. The atmospheric response to the SST forcing associated with the transition indicates a significant impact on the Scandinavian surface air temperature (SAT in the order of 1 K. Thus, the changes of the ocean circulation make a major contribution to the Scandinavian SAT variability in the last millennium.

  8. Modelling the climate of the last millennium: what causes the differences between simulations?

    NARCIS (Netherlands)

    Goosse, H.; Crowley, T.J.; Zorita, E.; Ammann, C.M.; Renssen, H.; Driesschaert, E.

    2005-01-01

    An ensemble of simulations performed with a coarse resolution 3-D climate model driven by various combinations of external forcing is used to investigate possible causes for differences noticed in two recent simulations of the climate of the past millennium using General Circulation Models (GCMs).

  9. Simulation of performance of centrifugal circulators with vane-less diffuser for GCR applications - HTR2008-58166

    International Nuclear Information System (INIS)

    Tauveron, N.

    2008-01-01

    In the frame of the international forum Gen lV, CEA has selected various innovative concepts of Gas cooled Nuclear Reactor. Among them, an indirect-cycle gas reactor is under consideration. Thermal hydraulic performances are a key issue for the design. For transient conditions and decay heat removal situations, the thermal hydraulic performance must remain as high as possible. In this context, all the transient situations, the incidental and accidental scenarios must be evaluated by a validated sys-tem code able to correctly describe, in particular, the thermal-hydraulics of the whole plant. As concepts use a helium compressor to maintain the flow in the core, a special emphasis must be laid on compressor modelling. Centrifugal circulators with a vane-less diffuser have significant properties in term of simplicity, cost, ability to operate over a wide range of conditions. The objective of this paper is to present a dedicated description of centrifugal compressor, based on a one dimensional approach. This type of model requires various correlations as input data. The present contribution consists in establishing and validating the numerical simulations (including different sets of correlations) by comparison with representative experimental data. The results obtained show a qualitatively correct behaviour of the model compared to open literature cases of the gas turbine aircraft community and helium circulators of High Temperature Gas Reactors. Further work on modelling and validation are nevertheless needed to have a better confidence in the simulation predictions. (authors)

  10. Large scale atmospheric tropical circulation changes and consequences during global warming

    International Nuclear Information System (INIS)

    Gastineau, G.

    2008-01-01

    The changes of the tropical large scale circulation during climate change can have large impacts on human activities. In a first part, the meridional atmospheric tropical circulation was studied in the different coupled models. During climate change, we find, on the one hand, that the Hadley meridional circulation and the subtropical jet are significantly shifted poleward, and on the other hand, that the intensity of the tropical circulation weakens. The slow down of the atmospheric circulation results from the dry static stability changes affecting the tropical troposphere. Secondly, idealized simulations are used to explain the tropical circulation changes. Ensemble simulation using the model LMDZ4 are set up to study the results from the coupled model IPSLCM4. The weakening of the large scale tropical circulation and the poleward shift of the Hadley cells are explained by both the uniform change and the meridional gradient change of the sea surface temperature. Then, we used the atmospheric model LMDZ4 in an aqua-planet configuration. The Hadley circulation changes are explained in a simple framework by the required poleward energy transport. In a last part, we focus on the water vapor distribution and feedback in the climate models. The Hadley circulation changes were shown to have a significant impact on the water vapour feedback during climate change. (author)

  11. Natural Circulation Characteristics at Low-Pressure Conditions through PANDA Experiments and ATHLET Simulations

    OpenAIRE

    Paladino, Domenico; Huggenberger, Max; Schäfer, Frank

    2008-01-01

    Natural circulation characteristics at low pressure/low power have been studied by performing experimental investigations and numerical simulations. The PANDA large-scale facility was used to provide valuable, high quality data on natural circulation characteristics as a function of several parameters and for a wide range of operating conditions. The new experimental data allow for testing and improving the capabilities of the thermal-hydraulic computer codes to be used for treating natural c...

  12. performance simulation of a natural circulation solar air

    African Journals Online (AJOL)

    User

    in a single glazed flat plate natural circulation solar a prepared in modules .... Nigerian Journal of Technology, used instead of ... boundary associated with the melting the phase ...... Mathematical Modeling of the Thin Layer Drying of Sweet ...

  13. Circulation and microplastic dispersion in the Chiemsee (Germany) investigated with numerical modeling.

    Science.gov (United States)

    Marcello Falcieri, Francesco; Laforsch, Christian; Piehl, Sarah; Ricchi, Antonio; Atwood, Elizabeth C.; Carniel, Sandro; Sclavo, Mauro

    2017-04-01

    The Chiemsee (measuring about 80 km2 and a maximum depth of 73 m) is a NATURA 2000 site and one of the major German lakes and plays a significant environmental role for the region. Moreover it is an important touristic destination, making its beaches and water quality highly valuable from a socio-economical viewpoint. As for most inland European aquatic environments, the Chiemsee was recently found to be contaminated by microplastic (i.e. plastic fragments smaller than 0.5 mm). Two main microplastics sources were identified in the Chiemsee: riverine inputs, and degradation of litter from touristic beaches. Hence, it is of interest to study lake circulation and the resulting microplastic dispersion from these sources in order to support activities to achieve a good environmental status. Here we present the first attempt to characterize the hydrodynamic processes of the Chiemsee with a high resolution 3D implementation of the Regional Ocean Modeling System (ROMS). The simulations were forced with observed riverine inputs and modeled atmospherical fields computed with a local implementation of the Weather Research and Forecasting (WRF) model. Modeling results provide a first insight into the Chiemsee circulation system and contribute to understanding the dispersion pathways of microplastic particles from different sources. Furthermore, results can be used to highlight coastlines with higher risk of microplastic accumulation, identified using a set of Lagrangian simulations. The work was partially supported by the CNR Short Term Mobility grant.

  14. Exploring the Circulation Dynamics of Mississippi Sound and Bight Using the CONCORDE Synthesis Model

    Science.gov (United States)

    Pan, C.; Dinniman, M. S.; Fitzpatrick, P. J.; Lau, Y.; Cambazoglu, M. K.; Parra, S. M.; Hofmann, E. E.; Dzwonkowski, B.; Warner, S. J.; O'Brien, S. J.; Dykstra, S. L.; Wiggert, J. D.

    2017-12-01

    As part of the modeling effort of the GOMRI (Gulf of Mexico Research Initiative)-funded CONCORDE consortium, a high resolution ( 400 m) regional ocean model is implemented for the Mississippi (MS) Sound and Bight. The model is based on the Coupled Ocean Atmosphere Wave Sediment Transport Modeling System (COAWST), with initial and lateral boundary conditions drawn from data assimilative 3-day forecasts of the 1km-resolution Gulf of Mexico Navy Coastal Ocean Model (GOM-NCOM). The model initiates on 01/01/2014 and runs for 3 years. The model results are validated with available remote sensing data and with CONCORDE's moored and ship-based in-situ observations. Results from a three-year simulation (2014-2016) show that ocean circulation and water properties of the MS Sound and Bight are sensitive to meteorological forcing. A low resolution surface forcing, drawn from the North America Regional Reanalysis (NARR), and a high resolution forcing, called CONCORDE Meteorological Analysis (CMA) ) that resolves the diurnal sea breeze, are used to drive the model to examine the sensitivity of the circulation to surface forcing. The model responses to the low resolution NARR forcing and to the high resolution CMA are compared in detail for the CONCORDE Fall and Spring field campaigns when contemporaneous in situ data are available, with a focus on how simulated exchanges between MS Sound and MS Bight are impacted. In most cases, the model shows higher simulation skill when it is driven by CMA. Freshwater plumes of the MS River, MS Sound and Mobile Bay influence the shelf waters of the MS Bight in terms of material budget and dynamics. Drifters and dye experiments near Mobile Bay demonstrate that material exchanges between Mobile Bay and the Sound, and between the Sound and Bight, are sensitive to the wind strength and direction. A model - data comparison targeting the Mobile Bay plume suggests that under both northerly and southerly wind conditions the model is capable of

  15. Benchmark Simulation of Natural Circulation Cooling System with Salt Working Fluid Using SAM

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, K. K.; Scarlat, R. O.; Hu, R.

    2017-09-03

    Liquid salt-cooled reactors, such as the Fluoride Salt-Cooled High-Temperature Reactor (FHR), offer passive decay heat removal through natural circulation using Direct Reactor Auxiliary Cooling System (DRACS) loops. The behavior of such systems should be well-understood through performance analysis. The advanced system thermal-hydraulics tool System Analysis Module (SAM) from Argonne National Laboratory has been selected for this purpose. The work presented here is part of a larger study in which SAM modeling capabilities are being enhanced for the system analyses of FHR or Molten Salt Reactors (MSR). Liquid salt thermophysical properties have been implemented in SAM, as well as properties of Dowtherm A, which is used as a simulant fluid for scaled experiments, for future code validation studies. Additional physics modules to represent phenomena specific to salt-cooled reactors, such as freezing of coolant, are being implemented in SAM. This study presents a useful first benchmark for the applicability of SAM to liquid salt-cooled reactors: it provides steady-state and transient comparisons for a salt reactor system. A RELAP5-3D model of the Mark-1 Pebble-Bed FHR (Mk1 PB-FHR), and in particular its DRACS loop for emergency heat removal, provides steady state and transient results for flow rates and temperatures in the system that are used here for code-to-code comparison with SAM. The transient studied is a loss of forced circulation with SCRAM event. To the knowledge of the authors, this is the first application of SAM to FHR or any other molten salt reactors. While building these models in SAM, any gaps in the code’s capability to simulate such systems are identified and addressed immediately, or listed as future improvements to the code.

  16. Modelling the water mass circulation in the Aegean Sea. Part I: wind stresses, thermal and haline fluxes

    Directory of Open Access Journals (Sweden)

    I. A. Valioulis

    1994-07-01

    Full Text Available The aim of this work is to develop a computer model capable of simulating the water mass circulation in the Aegean Sea. There is historical, phenomenological and recent experimental evidence of important hydrographical features whose causes have been variably identified as the highly complex bathymetry, the extreme seasonal variations in temperature, the considerable fresh water fluxes, and the large gradients in salinity or temperature across neighbouring water masses (Black Sea and Eastern Mediterranean. In the approach taken here, physical processes are introduced into the model one by one. This method reveals the parameters responsible for permanent and seasonal features of the Aegean Sea circulation. In the first part of the work reported herein, wind-induced circulation appears to be seasonally invariant. This yearly pattern is overcome by the inclusion of baroclinicity in the model in the form of surface thermohaline fluxes. The model shows an intricate pattern of sub-basin gyres and locally strong currents, permanent or seasonal, in accord with the experimental evidence.

  17. Modelling the water mass circulation in the Aegean Sea. Part I: wind stresses, thermal and haline fluxes

    Directory of Open Access Journals (Sweden)

    I. A. Valioulis

    Full Text Available The aim of this work is to develop a computer model capable of simulating the water mass circulation in the Aegean Sea. There is historical, phenomenological and recent experimental evidence of important hydrographical features whose causes have been variably identified as the highly complex bathymetry, the extreme seasonal variations in temperature, the considerable fresh water fluxes, and the large gradients in salinity or temperature across neighbouring water masses (Black Sea and Eastern Mediterranean. In the approach taken here, physical processes are introduced into the model one by one. This method reveals the parameters responsible for permanent and seasonal features of the Aegean Sea circulation. In the first part of the work reported herein, wind-induced circulation appears to be seasonally invariant. This yearly pattern is overcome by the inclusion of baroclinicity in the model in the form of surface thermohaline fluxes. The model shows an intricate pattern of sub-basin gyres and locally strong currents, permanent or seasonal, in accord with the experimental evidence.

  18. The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna

    Science.gov (United States)

    Molod, Andrea; Takacs, Lawrence; Suarez, Max; Bacmeister, Julio; Song, In-Sun; Eichmann, Andrew

    2012-01-01

    This report is a documentation of the Fortuna version of the GEOS-5 Atmospheric General Circulation Model (AGCM). The GEOS-5 AGCM is currently in use in the NASA Goddard Modeling and Assimilation Office (GMAO) for simulations at a wide range of resolutions, in atmosphere only, coupled ocean-atmosphere, and data assimilation modes. The focus here is on the development subsequent to the version that was used as part of NASA s Modern-Era Retrospective Analysis for Research and Applications (MERRA). We present here the results of a series of 30-year atmosphere-only simulations at different resolutions, with focus on the behavior of the 1-degree resolution simulation. The details of the changes in parameterizations subsequent to the MERRA model version are outlined, and results of a series of 30-year, atmosphere-only climate simulations at 2-degree resolution are shown to demonstrate changes in simulated climate associated with specific changes in parameterizations. The GEOS-5 AGCM presented here is the model used for the GMAO s atmosphere-only and coupled CMIP-5 simulations.

  19. Hemodynamic Effects of Ventricular Assist Device Implantation on Norwood, Glenn, and Fontan Circulation: A Simulation Study.

    Science.gov (United States)

    Di Molfetta, Arianna; Amodeo, Antonio; Gagliardi, Maria G; Trivella, Maria G; Fresiello, Libera; Filippelli, Sergio; Toscano, Alessandra; Ferrari, Gianfranco

    2016-01-01

    The growing population of failing single-ventricle (SV) patients might benefit from ventricular assist device (VAD) support as a bridge to heart transplantation. However, the documented experience is limited to isolated case reports. Considering the complex and different physiopathology of Norwood, Glenn, and Fontan patients and the lack of established experience, the aim of this work is to realize and test a lumped parameter model of the cardiovascular system able to simulate SV hemodynamics and VAD implantation effects to support clinical decision. Hemodynamic and echocardiographic data of 30 SV patients (10 Norwood, 10 Glenn, and 10 Fontan) were retrospectively collected and used to simulate patients' baseline. Then, the effects of VAD implantation were simulated. Simulation results suggest that the implantation of VAD: (i) increases the cardiac output and the mean arterial systemic pressure in all the three palliation conditions (Norwood 77.2 and 19.7%, Glenn 38.6 and 32.2%, and Fontan 17.2 and 14.2%); (ii) decreases the SV external work (Norwood 55%, Glenn 35.6%, and Fontan 41%); (iii) decreases the pressure pulsatility index (Norwood 65.2%, Glenn 81.3%, and Fontan 64.8%); (iv) increases the pulmonary arterial pressure in particular in the Norwood circulation (Norwood 39.7%, Glenn 12.1% and Fontan 3%); and (v) decreases the atrial pressure (Norwood 2%, Glenn 10.6%, and Fontan 8.6%). Finally, the VAD work is lower in the Norwood circulation (30.4 mL·mm Hg) in comparison with Fontan (40.3 mL·mm Hg) and to Glenn (64.5 mL·mm Hg) circulations. The use of VAD in SV physiology could be helpful to bridge patients to heart transplantations by increasing the CO and unloading the SV with a decrement of the atrial pressure and the SV external work. The regulation of the pulmonary flow is challenging because the Pap is increased by the presence of VAD. The hemodynamic changes are different in the different SV palliation step. The use of numerical models

  20. Simulation of natural circulation on an integral type experimental facility, MASLWR

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Youngjong; Lim, Sungwon; Ha, Jaejoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The OSU MASLWR test facility was reconfigured to eliminate a recurring grounding problem and improve facility reliability in anticipation of conducting an IAEA International Collaborative Standard Problem (ICSP). The purpose of ICSP is to provide experimental data on flow instability phenomena under natural circulation conditions and coupled containment/reactor vessel behavior in integral-type reactors, and to evaluate system code capabilities to predict natural circulation phenomena for integral type PWR, by simulating an integrated experiment. A natural circulation in the primary side during various core powers is analyzed using TASS/SMR code for the integral type experimental facility. The calculation results show higher steady state primary flow than experiment. If it matches the initial flow with experiment, it shows lower primary flow than experiment according to the increase of power. The code predictions may be improved by applying a Reynolds number dependent form loss coefficient to accurately account for unrecoverable pressure losses.

  1. A January angular momentum balance in the OSU two-level atmospheric general circulation model

    Science.gov (United States)

    Kim, J.-W.; Grady, W.

    1982-01-01

    The present investigation is concerned with an analysis of the atmospheric angular momentum balance, based on the simulation data of the Oregon State University two-level atmospheric general circulation model (AGCM). An attempt is also made to gain an understanding of the involved processes. Preliminary results on the angular momentum and mass balance in the AGCM are shown. The basic equations are examined, and questions of turbulent momentum transfer are investigated. The methods of analysis are discussed, taking into account time-averaged balance equations, time and longitude-averaged balance equations, mean meridional circulation, the mean meridional balance of relative angular momentum, and standing and transient components of motion.

  2. Seasonal variability of salinity and circulation in a silled estuarine fjord: A numerical model study

    Science.gov (United States)

    Kawase, Mitsuhiro; Bang, Bohyun

    2013-12-01

    A three-dimensional hydrodynamic model is used to study seasonal variability of circulation and hydrography in Hood Canal, Washington, United States, an estuarine fjord that develops seasonally hypoxic conditions. The model is validated with data from year 2006, and is shown to be capable of quantitatively realistic simulation of hydrographic variability. Sensitivity experiments show the largest cause of seasonal variability to be that of salinity at the mouth of the fjord, which drives an annual deep water renewal in late summer-early autumn. Variability of fresh water input from the watershed also causes significant but secondary changes, especially in winter. Local wind stress has little effect over the seasonal timescale. Further experiments, in which one forcing parameter is abruptly altered while others are kept constant, show that outside salinity change induces an immediate response in the exchange circulation that, however, decays as a transient as the system equilibrates. In contrast, a change in the river input initiates gradual adjustment towards a new equilibrium value for the exchange transport. It is hypothesized that the spectral character of the system response to river variability will be redder than to salinity variability. This is demonstrated with a stochastically forced, semi-analytical model of fjord exchange circulation. While the exchange circulation in Hood Canal appears less sensitive to the river variability than to the outside hydrography at seasonal timescales, at decadal and longer timescales both could become significant factors in affecting the exchange circulation.

  3. Development of a transient calculation model for a closed sodium natural circulation loop

    International Nuclear Information System (INIS)

    Chang, Won Pyo; Ha, Kwi Seok; Jeong, Hae Yong; Heo, Sun; Lee, Yong Bum

    2003-09-01

    A natural circulation loop has usually adopted for a Liquid Metal Reactor (LMR) because of its high reliability. Up-rating of the current KALIMER capacity requires an additional PDRC to the existing PVCS to remove its decay heat under an accident. As the system analysis code currently used for LMR in Korea does not feature a stand alone capability to simulate a closed natural circulation loop, it is not eligible to be applied to PDRC. To supplement its limitation, a steady state calculation model had been developed during the first phase, and development of the transient model has successively carried out to close the present study. The developed model will then be coupled with the system analysis code, SSC-K to assess a long term cooling for the new conceptual design. The incompressibility assumption of sodium which allows the circuit to be modeled with a single loop flow, makes the model greatly simplified comparing with LWR. Some thermal-hydraulic models developed during this study can be effectively applied to other system analysis codes which require such component models, and the present development will also contribute to establishment of a code system for the LMR analysis

  4. Impact of cloud microphysics on cloud-radiation interactions in the CSU general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, L.D.; Randall, D.A.

    1995-04-01

    Our ability to study and quantify the impact of cloud-radiation interactions in studying global scale climate variations strongly relies upon the ability of general circulation models (GCMs) to simulate the coupling between the spatial and temporal variations of the model-generated cloudiness and atmospheric moisture budget components. In particular, the ability of GCMs to reproduce the geographical distribution of the sources and sinks of the planetary radiation balance depends upon their representation of the formation and dissipation of cloudiness in conjunction with cloud microphysics processes, and the fractional amount and optical characteristics of cloudiness in conjunction with the mass of condensate stored in the atmosphere. A cloud microphysics package which encompasses five prognostic variables for the mass of water vapor, cloud water, cloud ice, rain, and snow has been implemented in the Colorado State University General Circulation Model (CSU GCM) to simulate large-scale condensation processes. Convection interacts with the large-scale environment through the detrainment of cloud water and cloud ice at the top of cumulus towers. The cloud infrared emissivity and cloud optical depth of the model-generated cloudiness are interactive and depend upon the mass of cloud water and cloud ice suspended in the atmosphere. The global atmospheric moisture budget and planetary radiation budget of the CSU GCM obtained from a perpetual January simulation are discussed. Geographical distributions of the atmospheric moisture species are presented. Global maps of the top-of-atmosphere outgoing longwave radiation and planetary albedo are compared against Earth Radiation Budget Experiment (ERBE) satellite data.

  5. SIMULATION MODELLING OF VITÓRIA-MINAS CLOSED-LOOP RAIL NETWORK

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Fernandes de FARIA

    2015-12-01

    Full Text Available This paper presents a closed loop simulation model that represents the mining logistics chain of the Vitória Minas Railway (VMR, Brazil. The simulator includes the loading process, circulation of loaded trains, unloading of ores for external and internal markets and the distribution of empty trains for new loads. General cargo and passengers trains are also included in the model, which, along with the queues formed in the circulation and the preventive and corrective maintenance of rolling stock, tracks and equipment, interfere with the transportation of iron ore. The primary objective of the iron ore transport is to meet the daily loading and unloading schedules and minimize queues by maximizing the operations at the loading and unloading points. The VMR simulator developed uses macro-mesoscopic approach with Monte Carlo simulation. To validate the simulator, we used actual data of the railway and compared with reality. We obtained a very good adhesion to the value of 2.9% for the validation scenario (Scenario 1 and 3.4% for the scenario with reducing the number of lots of wagons (Scenario 2. We concluded with this simulation that it is possible to reduce the number of GDE wagons without reducing the current level of productivity of the rail system.

  6. Numerical simulation and analysis of impact of non-orographic gravity waves drag of middle atmosphere in framework of a general circulation model

    Science.gov (United States)

    Zhao, J.; Wang, S.

    2017-12-01

    Gravity wave drag (GWD) is among the drivers of meridional overturning in the middle atmosphere, also known as the Brewer-Dobson Circulation, and of the quasi-biennial oscillation (QBO). The small spatial scales and complications due to wave breaking require their effects to be parameterised. GWD parameterizations are usually divided into two parts, orographic and non-orographic. The basic dynamical and physical processes of the middle atmosphere and the mechanism of the interactions between the troposphere and the middle atmosphere were studied in the frame of a general circulation model. The model for the troposphere was expanded to a global model considering middle atmosphere with the capability of describing the basic processes in the middle atmosphere and the troposphere-middle atmosphere interactions. Currently, it is too costly to include full non-hydrostatic and rotational wave dynamics in an operational parameterization. The hydrostatic non-rotational wave dynamics which allow an efficient implementation that is suitably fast for operation. The simplified parameterization of non-orographic GWD follows from the WM96 scheme in which a framework is developed using conservative propagation of gravity waves, critical level filtering, and non-linear dissipation. In order to simulate and analysis the influence of non-orographic GWD on the stratospheric wind and temperature fields, experiments using Stratospheric Sudden Warming (SSW) event case occurred in January 2013 were carried out, and results of objective weather forecast verifications of the two months period were compared in detail. The verification of monthly mean of forecast anomaly correlation (ACC) and root mean square (RMS) errors shows consistently positive impact of non-orographic GWD on skill score of forecasting for the three to eight days, both in the stratosphere and troposphere, and visible positive impact on prediction of the stratospheric wind and temperature fields. Numerical simulation

  7. Roadmap for cardiovascular circulation model

    Science.gov (United States)

    Bradley, Christopher P.; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R.; Omholt, Stig W.; Chase, J. Geoffrey; Müller, Lucas O.; Watanabe, Sansuke M.; Blanco, Pablo J.; de Bono, Bernard; Hunter, Peter J.

    2016-01-01

    Abstract Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well‐established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo‐skeletal system. The computational infrastructure for the cardiovascular model should provide for near real‐time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. PMID:27506597

  8. Modeling of hydrothermal circulation applied to active volcanic areas. The case of Vulcano (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Todesco, M. [Dip. Scienze della Terra, Posa (Italy)

    1995-03-01

    Modeling of fluid and heat flows through porous media has been diffusely applied up to date to the study of geothermal reservoirs. Much less has been done to apply the same methodology to the study of active volcanoes and of the associated volcanic hazard. Hydrothermal systems provide direct information on dormant eruptive centers and significant insights on their state of activity and current evolution. For this reason, the evaluation of volcanic hazard is also based on monitoring of hydrothermal activity. Such monitoring, however, provides measurements of surface parameters, such as fluid temperature or composition, that often are only representative of the shallower portion of the system. The interpretation of these data in terms of global functioning of the hydrothermal circulation can therefore be highly misleading. Numerical modeling of hydrothermal activity provides a physical approach to the description of fluid circulation and can contribute to its understanding and to the interpretation of monitoring data. In this work, the TOUGH2 simulator has been applied to study the hydrothermal activity at Vulcano (Italy). Simulations involved an axisymmetric domain heated from below, and focused on the effects of permeability distribution and carbon dioxide. Results are consistent with the present knowledge of the volcanic system and suggest that permeability distribution plays a major role in the evolution of fluid circulation. This parameter should be considered in the interpretation of monitoring data and in the evaluation of volcanic hazard at Vulcano.

  9. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions

    KAUST Repository

    Driscoll, Simon; Bozzo, Alessio; Gray, Lesley J.; Robock, Alan; Stenchikov, Georgiy L.

    2012-01-01

    The ability of the climate models submitted to the Coupled Model Intercomparison Project 5 (CMIP5) database to simulate the Northern Hemisphere winter climate following a large tropical volcanic eruption is assessed. When sulfate aerosols are produced by volcanic injections into the tropical stratosphere and spread by the stratospheric circulation, it not only causes globally averaged tropospheric cooling but also a localized heating in the lower stratosphere, which can cause major dynamical feedbacks. Observations show a lower stratospheric and surface response during the following one or two Northern Hemisphere (NH) winters, that resembles the positive phase of the North Atlantic Oscillation (NAO). Simulations from 13 CMIP5 models that represent tropical eruptions in the 19th and 20th century are examined, focusing on the large-scale regional impacts associated with the large-scale circulation during the NH winter season. The models generally fail to capture the NH dynamical response following eruptions. They do not sufficiently simulate the observed post-volcanic strengthened NH polar vortex, positive NAO, or NH Eurasian warming pattern, and they tend to overestimate the cooling in the tropical troposphere. The findings are confirmed by a superposed epoch analysis of the NAO index for each model. The study confirms previous similar evaluations and raises concern for the ability of current climate models to simulate the response of a major mode of global circulation variability to external forcings. This is also of concern for the accuracy of geoengineering modeling studies that assess the atmospheric response to stratosphere-injected particles.

  10. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions

    KAUST Repository

    Driscoll, Simon

    2012-09-16

    The ability of the climate models submitted to the Coupled Model Intercomparison Project 5 (CMIP5) database to simulate the Northern Hemisphere winter climate following a large tropical volcanic eruption is assessed. When sulfate aerosols are produced by volcanic injections into the tropical stratosphere and spread by the stratospheric circulation, it not only causes globally averaged tropospheric cooling but also a localized heating in the lower stratosphere, which can cause major dynamical feedbacks. Observations show a lower stratospheric and surface response during the following one or two Northern Hemisphere (NH) winters, that resembles the positive phase of the North Atlantic Oscillation (NAO). Simulations from 13 CMIP5 models that represent tropical eruptions in the 19th and 20th century are examined, focusing on the large-scale regional impacts associated with the large-scale circulation during the NH winter season. The models generally fail to capture the NH dynamical response following eruptions. They do not sufficiently simulate the observed post-volcanic strengthened NH polar vortex, positive NAO, or NH Eurasian warming pattern, and they tend to overestimate the cooling in the tropical troposphere. The findings are confirmed by a superposed epoch analysis of the NAO index for each model. The study confirms previous similar evaluations and raises concern for the ability of current climate models to simulate the response of a major mode of global circulation variability to external forcings. This is also of concern for the accuracy of geoengineering modeling studies that assess the atmospheric response to stratosphere-injected particles.

  11. The epistemological status of general circulation models

    Science.gov (United States)

    Loehle, Craig

    2018-03-01

    Forecasts of both likely anthropogenic effects on climate and consequent effects on nature and society are based on large, complex software tools called general circulation models (GCMs). Forecasts generated by GCMs have been used extensively in policy decisions related to climate change. However, the relation between underlying physical theories and results produced by GCMs is unclear. In the case of GCMs, many discretizations and approximations are made, and simulating Earth system processes is far from simple and currently leads to some results with unknown energy balance implications. Statistical testing of GCM forecasts for degree of agreement with data would facilitate assessment of fitness for use. If model results need to be put on an anomaly basis due to model bias, then both visual and quantitative measures of model fit depend strongly on the reference period used for normalization, making testing problematic. Epistemology is here applied to problems of statistical inference during testing, the relationship between the underlying physics and the models, the epistemic meaning of ensemble statistics, problems of spatial and temporal scale, the existence or not of an unforced null for climate fluctuations, the meaning of existing uncertainty estimates, and other issues. Rigorous reasoning entails carefully quantifying levels of uncertainty.

  12. The Madden-Julian Oscillation in NCEP Coupled Model Simulation

    Directory of Open Access Journals (Sweden)

    Wanqiu Wang Kyong-Hwan Seo

    2009-01-01

    Full Text Available This study documents a detailed analysis on the Madden-Julian Oscillation (MJO simulated by the National Centers for Environmental Prediction (NCEP using the Global Forecast System (GFS model version 2003 coupled with the Climate Forecast System model (CFS consisting of the 2003 version of GFS and the Geophysical Fluid Dynamics Laboratory (GFDL Modular Ocean Model V.3 (MOM3. The analyses are based upon a 21-year simulation of AMIP-type with GFS and CMIP-type with CFS. It is found that air-sea coupling in CFS is shown to improve the coherence between convection and large-scale circulation associated with the MJO. The too fast propagation of convection from the Indian Ocean to the maritime continents and the western Pacific in GFS is improved (slowed down in CFS. Both GFS and CFS produce too strong intraseasonal convective heating and circulation anomalies in the central-eastern Pacific; further, the air-sea coupling in CFS enhances this unrealistic feature. The simulated mean slow phase speed of east ward propagating low-wavenumber components shown in the wavenumber-frequency spectra is due to the slow propagation in the central-eastern Pacific in both GFS and CFS. Errors in model climatology may have some effect upon the simulated MJO and two possible influences are: (i CFS fails to simulate the westerlies over maritime continents and western Pacific areas, resulting in an unrealistic representation of surface latent heat flux associated with the MJO; and (ii vertical easterly wind shear from the Indian Ocean to the western Pacific in CFS is much weaker than that in the observation and in GFS, which may adversely affect the eastward propagation of the simulated MJO.

  13. Surface energy balances of three general circulation models: Current climate and response to increasing atmospheric CO2

    International Nuclear Information System (INIS)

    Gutowski, W.J.; Gutzler, D.S.; Portman, D.; Wang, W.C.

    1988-04-01

    The surface energy balance simulated by state-of-the-art general circulation models at GFDL, GISS and NCAR for climates with current levels of atmospheric CO 2 concentration (control climate) and with twice the current levels. The work is part of an effort sponsored by the US Department of Energy to assess climate simulations produced by these models. The surface energy balance enables us to diagnose differences between models in surface temperature climatology and sensitivity to doubling CO 2 in terms of the processes that control surface temperature. Our analysis compares the simulated balances by averaging the fields of interest over a hierarchy of spatial domains ranging from the entire globe down to regions a few hundred kilometers across

  14. Modelling of circulation and dispersion of radioactive pollutants in the Japan sea

    International Nuclear Information System (INIS)

    Cetina, M.; Rajar, R.; Povinec, P.

    2000-01-01

    A large amount of radioactive waste was deposited in the Japan Sea, at a depth of about 3 000 m by the former Soviet Union. Research was carried out to determine to what extent the surface waters could be contaminated by possible leakage from the dumped containers. A three-dimensional, non-linear, baro-clinic model was used to determine the circulation and pollutant dispersion. The computations were carried out in the diagnostic mode, taking into account data on winter and summer temperature and salinity distribution. Thermohaline forcing due to strong temperatures and salinity gradients is the main forcing factor influencing the bottom circulation. Wind forcing and the inflow/outflow surface currents were also taken into account. The simulated velocity fields show relatively good agreement with observed surface currents and with some measurements of bottom currents. The simulated hydrodynamic field is in visibly closer agreement with the observed surface circulation when topographic stress is taken into account. After the release of radionuclides at the sea bottom, the first very small contamination would reach the surface layers after 3 years. The maximum concentrations of about 10 -3 Bq m -3 would be attained after 30 years. But everywhere the predicted radionuclide concentrations would be about two orders of magnitude smaller than the background values, caused by global fallout from nuclear weapons tests. Therefore, it will be impossible to determine the effect of leakage of wastes from the dumping sites over the present background levels. (authors)

  15. Verification of RBMK-1500 reactor main circulation circuit model with Cathare V1.3L

    International Nuclear Information System (INIS)

    Jasiulevicius, A.

    2001-01-01

    Among other computer codes, French code CATHARE is also applied for RBMK reactor calculations. In this paper results of such application for Ignalina NPP reactor (RBMK-1500 type) main circulation circuit are presented. Three transients calculations were performed: all main circulation pumps (MCP) trip, trip of one main circulation pump and trip of one main circulation pump without a closure of check valve on the pump line. Calculation results were compared to data from the Ignalina NPP, where all these transients were recorded in the years 1986, 1996 and 1998. The presented studies prove the capability of the CATHARE code to treat thermal-hydraulic transients with a reactor scram in the RBMK, in case of single or multiple pump trips. However, the presented model needs further improvements in order to simulate loss of coolant accidents. For this reason, emergency core cooling system should be included in the model. Additional model improvement is also needed in order to gain more independent pressure behavior in both loops. Also, flow rates through the reactor channels should be modeled by dividing channels into several groups, referring to channel power (in RBMK power produced in a channel, located in different parts of the core is not the same). The point-neutron kinetic model of the CATHARE code is not suitable to predict transients when the reactor is operating at a nominal power level. Such transients would require the use of 3D-neutron kinetics model to describe properly the strong space-time effect on the power distribution in the reactor core

  16. Evaluation of water vapor distribution in general circulation models using satellite observations

    Science.gov (United States)

    Soden, Brian J.; Bretherton, Francis P.

    1994-01-01

    This paper presents a comparison of the water vapor distribution obtained from two general circulation models, the European Centre for Medium-Range Weather Forecasts (ECMWF) model and the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM), with satellite observations of total precipitable water (TPW) from Special Sensor Microwave/Imager (SSM/I) and upper tropospheric relative humidity (UTH) from GOES. Overall, both models are successful in capturing the primary features of the observed water vapor distribution and its seasonal variation. For the ECMWF model, however, a systematic moist bias in TPW is noted over well-known stratocumulus regions in the eastern subtropical oceans. Comparison with radiosonde profiles suggests that this problem is attributable to difficulties in modeling the shallowness of the boundary layer and large vertical water vapor gradients which characterize these regions. In comparison, the CCM is more successful in capturing the low values of TPW in the stratocumulus regions, although it tends to exhibit a dry bias over the eastern half of the subtropical oceans and a corresponding moist bias in the western half. The CCM also significantly overestimates the daily variability of the moisture fields in convective regions, suggesting a problem in simulating the temporal nature of moisture transport by deep convection. Comparison of the monthly mean UTH distribution indicates generally larger discrepancies than were noted for TPW owing to the greater influence of large-scale dynamical processes in determining the distribution of UTH. In particular, the ECMWF model exhibits a distinct dry bias along the Intertropical Convergence Zone (ITCZ) and a moist bias over the subtropical descending branches of the Hadley cell, suggesting an underprediction in the strength of the Hadley circulation. The CCM, on the other hand, demonstrates greater discrepancies in UTH than are observed for the ECMWF model, but none that are as

  17. Results of an interactively coupled atmospheric chemistry – general circulation model: Comparison with observations

    Directory of Open Access Journals (Sweden)

    R. Hein

    Full Text Available The coupled climate-chemistry model ECHAM4.L39(DLR/CHEM is presented which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks. This is the first model which interactively combines a general circulation model with a chemical model, employing most of the important reactions and species necessary to describe the stratospheric and upper tropospheric ozone chemistry, and which is computationally fast enough to allow long-term integrations with currently available computer resources. This is possible as the model time-step used for the chemistry can be chosen as large as the integration time-step for the dynamics. Vertically the atmosphere is discretized by 39 levels from the surface up to the top layer which is centred at 10 hPa, with a relatively high vertical resolution of approximately 700 m near the extra-tropical tropopause. We present the results of a control simulation representing recent conditions (1990 and compare it to available observations. The focus is on investigations of stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. ECHAM4.L39(DLR/CHEM reproduces main features of stratospheric dynamics in the arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to earlier model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their inter-hemispheric differences are reproduced. Considering methane oxidation as part of the dynamic-chemistry feedback results in an improved representation of the spatial distribution of stratospheric water vapour concentrations. The current model constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic

  18. Vermont Yankee simulator BOP model upgrade

    International Nuclear Information System (INIS)

    Alejandro, R.; Udbinac, M.J.

    2006-01-01

    The Vermont Yankee simulator has undergone significant changes in the 20 years since the original order was placed. After the move from the original Unix to MS Windows environment, and upgrade to the latest version of SimPort, now called MASTER, the platform was set for an overhaul and replacement of major plant system models. Over a period of a few months, the VY simulator team, in partnership with WSC engineers, replaced outdated legacy models of the main steam, condenser, condensate, circulating water, feedwater and feedwater heaters, and main turbine and auxiliaries. The timing was ideal, as the plant was undergoing a power up-rate, so the opportunity was taken to replace the legacy models with industry-leading, true on-line object oriented graphical models. Due to the efficiency of design and ease of use of the MASTER tools, VY staff performed the majority of the modeling work themselves with great success, with only occasional assistance from WSC, in a relatively short time-period, despite having to maintain all of their 'regular' simulator maintenance responsibilities. This paper will provide a more detailed view of the VY simulator, including how it is used and how it has benefited from the enhancements and upgrades implemented during the project. (author)

  19. Adaptive subdomain modeling: A multi-analysis technique for ocean circulation models

    Science.gov (United States)

    Altuntas, Alper; Baugh, John

    2017-07-01

    Many coastal and ocean processes of interest operate over large temporal and geographical scales and require a substantial amount of computational resources, particularly when engineering design and failure scenarios are also considered. This study presents an adaptive multi-analysis technique that improves the efficiency of these computations when multiple alternatives are being simulated. The technique, called adaptive subdomain modeling, concurrently analyzes any number of child domains, with each instance corresponding to a unique design or failure scenario, in addition to a full-scale parent domain providing the boundary conditions for its children. To contain the altered hydrodynamics originating from the modifications, the spatial extent of each child domain is adaptively adjusted during runtime depending on the response of the model. The technique is incorporated in ADCIRC++, a re-implementation of the popular ADCIRC ocean circulation model with an updated software architecture designed to facilitate this adaptive behavior and to utilize concurrent executions of multiple domains. The results of our case studies confirm that the method substantially reduces computational effort while maintaining accuracy.

  20. Effect of land model ensemble versus coupled model ensemble on the simulation of precipitation climatology and variability

    Science.gov (United States)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Yang, Zong-Liang; Chen, Haishan

    2017-10-01

    Through a series of model simulations with an atmospheric general circulation model coupled to three different land surface models, this study investigates the impacts of land model ensembles and coupled model ensemble on precipitation simulation. It is found that coupling an ensemble of land models to an atmospheric model has a very minor impact on the improvement of precipitation climatology and variability, but a simple ensemble average of the precipitation from three individually coupled land-atmosphere models produces better results, especially for precipitation variability. The generally weak impact of land processes on precipitation should be the main reason that the land model ensembles do not improve precipitation simulation. However, if there are big biases in the land surface model or land surface data set, correcting them could improve the simulated climate, especially for well-constrained regional climate simulations.

  1. A numerical three-dimensional ocean general circulation and radionuclides dispersion model

    International Nuclear Information System (INIS)

    Chartier, M.; Marti, O.

    1988-01-01

    The dispersion of radioactive waste disposed of in the deep-sea or transferred from the atmosphere is a complex hydrodynamic problem concerned by space scales as large as the world ocean. The recent development in the high-speed computers has led to significant progress in ocean modelling and now allows a thorough improvement in the accuracy of the simulations of the nuclides dispersion in the sea. A three-dimensional ocean general circulation model has been recently developed in France for research and engineering purposes. The model solves the primitive equation of the ocean hydrodynamics and the advection-diffusion equation for any dissolved tracer. The code has been fully vectorized and multitasked on 1 to 4 processors of the CRAY-2

  2. Dynamic simulation of a forced circulation evaporating system

    International Nuclear Information System (INIS)

    Lee, J.S.; Lee, K.J.

    1993-01-01

    A dynamic simulation program has been developed to simulate the forced circulation evaporating system of the Kori PWR Power Plant in Korea which is used to treat liquid waste containing boric acid. Energy and mass balances for the vapor and liquid phases are used to describe the interaction among system components such as the vapor body, heater jacket and condenser. In order to simulate entrainment carryover in the sieve tray column and wire mesh pad, Kister's and Carpenter-Othmer's correlations are adopted, respectively. A new correlation formula is also suggested to simulate the geometric effect of the vapor body. A fuzzy heuristic controller and conventional controllers such as P (proportional), PI (proportional-integral) and PID (proportional-integral-derivative) controls are incorporated to observe their responses to a given disturbance. The simulations show good agreement with the real operation data. It is also identified that the vapor velocity or flow rate in the sieve tray column determines the system decontamination factor (DF), and that the longer the vapor body is, the less entrainment carryover occurs out of the vapor body. In addition, the wire mesh pad is identified as maintaining very high deentrainment efficiency even though the vapor velocity may show large fluctuations. With respect to system control, the fuzzy heuristic controller approaches a new steady state faster than conventional controllers. Also the fuzzy controller maintains higher DF during transients and is stronger against time delay in the control components. (Author)

  3. Interannual modes of variability of Southern Hemisphere atmospheric circulation in CMIP3 models

    International Nuclear Information System (INIS)

    Grainger, S; Frederiksen, C S; Zheng, X

    2010-01-01

    The atmospheric circulation acts as a bridge between large-scale sources of climate variability, and climate variability on regional scales. Here a statistical method is applied to monthly mean Southern Hemisphere 500hPa geopotential height to separate the interannual variability of the seasonal mean into intraseasonal and slowly varying (time scales of a season or longer) components. Intraseasonal and slow modes of variability are estimated from realisations of models from the Coupled Model Intercomparison Project Phase 3 (CMIP3) twentieth century coupled climate simulation (20c3m) and are evaluated against those estimated from reanalysis data. The intraseasonal modes of variability are generally well reproduced across all CMIP3 20c3m models for both Southern Hemisphere summer and winter. The slow modes are in general less well reproduced than the intraseasonal modes, and there are larger differences between realisations than for the intraseasonal modes. New diagnostics are proposed to evaluate model variability. It is found that differences between realisations from each model are generally less than inter-model differences. Differences between model-mean diagnostics are found. The results obtained are applicable to assessing the reliability of changes in atmospheric circulation variability in CMIP3 models and for their suitability for further studies of regional climate variability.

  4. NATBWR: a steady-state model for natural circulation in boiling-water reactors

    International Nuclear Information System (INIS)

    Healzer, J.M.; Abdollahian, D.

    1983-02-01

    This report documents the NATBWR steady-state BWR natural-circulation model and activities under EPRI Project RP1561-1 to gather data and predict the natural-circulation operation of the BWR. The report is organized into two parts, with the first part describing the NATBWR model and applications of the model to available BWR natural-circulation data and the second part providing user and programming information about the model. Five different operating BWR's were selected to demonstrate the application of the NATBWR model, one of each type from BWR/1 through BWR/4. For each operating plant, the available natural circulation data has been compared to model predictions. In addition to the data predictions, the behavior of the BWR system at reduced inventory, where the system is isolated and scrammed, and cooling provided by natural circulation has been analyzed. Finally, included as an appendix to Part 1 of this report is a discussion of the stability of the BWR system at natural-circulation conditions

  5. Modeling the Middle Jurassic ocean circulation

    Directory of Open Access Journals (Sweden)

    Maura Brunetti

    2015-10-01

    Full Text Available We present coupled ocean–sea-ice simulations of the Middle Jurassic (∼165 Ma when Laurasia and Gondwana began drifting apart and gave rise to the formation of the Atlantic Ocean. Since the opening of the Proto-Caribbean is not well constrained by geological records, configurations with and without an open connection between the Proto-Caribbean and Panthalassa are examined. We use a sea-floor bathymetry obtained by a recently developed three-dimensional (3D elevation model which compiles geological, palaeogeographical and geophysical data. Our original approach consists in coupling this elevation model, which is based on detailed reconstructions of oceanic realms, with a dynamical ocean circulation model. We find that the Middle Jurassic bathymetry of the Central Atlantic and Proto-Caribbean seaway only allows for a weak current of the order of 2 Sv in the upper 1000 m even if the system is open to the west. The effect of closing the western boundary of the Proto-Caribbean is to increase the transport related to barotropic gyres in the southern hemisphere and to change water properties, such as salinity, in the Neo-Tethys. Weak upwelling rates are found in the nascent Atlantic Ocean in the presence of this superficial current and we discuss their compatibility with deep-sea sedimentological records in this region.

  6. Harmonic currents circulation in electrical networks simulation and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Em-Mamlouk, W.M. [MEP, Cairo (Egypt); El-Sharkawy, M.A. [Shams Univ., Cairo (Egypt). Dept. of Electrical Power and Machines; Mostafa, H.E. [Jazan Univ., Jazan (Saudi Arabia). Electrical Dept.

    2009-07-01

    A detailed harmonic flow analysis for a 13-bus balanced industrial distribution system was presented. The aim of the study was to determine the influence of harmonic sources in various branches of the system on voltage and current waveforms before disruptions to the utility supply system occurred. The current harmonic contents of an adjustable speed drive (ASD) were studied under various loading conditions. The test system was simulated using a standard study test system. Harmonic effects from multiple sources were investigated, and voltage distortion on the different buses was monitored. The study demonstrated that while the harmonic loads circulated harmonic currents in all system branches, no harmonic source was directly connected to the system buses. Many of the investigated cases exceeded allowable voltage total harmonic distortion and or current total harmonic distortion standards set by the Institute of Electrical and Electronic Engineers (IEEE). It was concluded that active harmonic filters should be used to prevent the effects of harmonic current circulation at different buses on neighbouring loads within a system. 8 refs., 11 tabs., 15 figs.

  7. EOP MIT General Circulation Model (MITgcm)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains a regional implementation of the Massachusetts Institute of Technology general circulation model (MITgcm) at a 1-km spatial resolution for the...

  8. Secular trends and climate drift in coupled ocean-atmosphere general circulation models

    Science.gov (United States)

    Covey, Curt; Gleckler, Peter J.; Phillips, Thomas J.; Bader, David C.

    2006-02-01

    Coupled ocean-atmosphere general circulation models (coupled GCMs) with interactive sea ice are the primary tool for investigating possible future global warming and numerous other issues in climate science. A long-standing problem with such models is that when different components of the physical climate system are linked together, the simulated climate can drift away from observation unless constrained by ad hoc adjustments to interface fluxes. However, 11 modern coupled GCMs, including three that do not employ flux adjustments, behave much better in this respect than the older generation of models. Surface temperature trends in control run simulations (with external climate forcing such as solar brightness and atmospheric carbon dioxide held constant) are small compared with observed trends, which include 20th century climate change due to both anthropogenic and natural factors. Sea ice changes in the models are dominated by interannual variations. Deep ocean temperature and salinity trends are small enough for model control runs to extend over 1000 simulated years or more, but trends in some regions, most notably the Arctic, differ substantially among the models and may be problematic. Methods used to initialize coupled GCMs can mitigate climate drift but cannot eliminate it. Lengthy "spin-ups" of models, made possible by increasing computer power, are one reason for the improvements this paper documents.

  9. A Three-Box Model of Thermohaline Circulation under the Energy Constraint

    International Nuclear Information System (INIS)

    Shen Yang; Guan Yu-Ping; Liang Chu-Jin; Chen Da-Ke

    2011-01-01

    The driving mechanism of thermohaline circulation is still a controversial topic in physical oceanography. Classic theory is based on Stommel's two-box model under buoyancy constraint. Recently, Guan and Huang proposed a new viewpoint in the framework of energy constraint with a two-box model. We extend it to a three-box model, including the effect of wind-driven circulation. Using this simple model, we further study how ocean mixing impacts on thermohaline circulation under the energy constraint. (geophysics, astronomy, and astrophysics)

  10. Computational simulation of flow and heat transfer in single-phase natural circulation loops

    International Nuclear Information System (INIS)

    Pinheiro, Larissa Cunha

    2017-01-01

    Passive decay heat removal systems based on natural circulation are essential assets for the new Gen III+ nuclear power reactors and nuclear spent fuel pools. The aim of the present work is to study both laminar and turbulent flow and heat transfer in single-phase natural circulation systems through computational fluid dynamics simulations. The working fluid is considered to be incompressible with constant properties. In the way, the Boussinesq Natural Convection Hypothesis was applied. The model chosen for the turbulence closure problem was the k -- εThe commercial computational fluid dynamics code ANSYS CFX 15.0 was used to obtain the numerical solution of the governing equations. Two single-phase natural circulation circuits were studied, a 2D toroidal loop and a 3D rectangular loop, both with the same boundary conditions of: prescribed heat flux at the heater and fixed wall temperature at the cooler. The validation and verification was performed with the numerical data provided by DESRAYAUD et al. [1] and the experimental data provided by MISALE et al. [2] and KUMAR et al. [3]. An excellent agreement between the Reynolds number (Re) and the modified Grashof number (Gr_m), independently of Prandtl Pr number was observed. However, the convergence interval was observed to be variable with Pr, thus indicating that Pr is a stability governing parameter for natural circulation. Multiple steady states was obtained for Pr = 0,7. Finally, the effect of inclination was studied for the 3D circuit, both in-plane and out-of-plane inclinations were verified for the steady state laminar regime. As a conclusion, the Re for the out-of-plane inclination was in perfect agreement with the correlation found for the zero inclination system, while for the in-plane inclined system the results differ from that of the corresponding vertical loop. (author)

  11. A zonally symmetric model for the monsoon-Hadley circulation with stochastic convective forcing

    Science.gov (United States)

    De La Chevrotière, Michèle; Khouider, Boualem

    2017-02-01

    the other advective part is a nilpotent matrix, which is solved via the method of lines. Validation tests using a synthetic exact solution are presented, and formal second-order convergence under grid refinement is demonstrated. Moreover, the model is tested under realistic monsoon conditions, and the ability of the model to simulate key features of the monsoon circulation is illustrated in two distinct parameter regimes.

  12. Capability of the RELAP5 code to simulate natural circulation behaviour in test facilities

    International Nuclear Information System (INIS)

    Mangal, Amit; Jain, Vikas; Nayak, A.K.

    2011-01-01

    In the present study, one of the extensively used best estimate code RELAP5 has been used for simulation of steady state, transient and stability behavior of natural circulation based experimental facilities, such as the High-Pressure Natural Circulation Loop (HPNCL) and the Parallel Channel Loop (PCL) installed and operating at BARC. The test data have been generated for a range of pressure, power and subcooling conditions. The computer code RELAP5/MOD3.2 was applied to predict the transient natural circulation characteristics under single-phase and two-phase conditions, thresholds of flow instability, amplitude and frequency of flow oscillations for different operating conditions of the loops. This paper presents the effect of nodalisation in prediction of natural circulation behavior in test facilities and a comparison of experimental data in with that of code predictions. The errors associated with the predictions are also characterized

  13. Simulation of glacial ocean biogeochemical tracer and isotope distributions based on the PMIP3 suite of climate models

    Science.gov (United States)

    Khatiwala, Samar; Muglia, Juan; Kvale, Karin; Schmittner, Andreas

    2016-04-01

    In the present climate system, buoyancy forced convection at high-latitudes together with internal mixing results in a vigorous overturning circulation whose major component is North Atlantic Deep Water. One of the key questions of climate science is whether this "mode" of circulation persisted during glacial periods, and in particular at the Last Glacial Maximum (LGM; 21000 years before present). Resolving this question is both important for advancing our understanding of the climate system, as well as a critical test of numerical models' ability to reliably simulate different climates. The observational evidence, based on interpreting geochemical tracers archived in sediments, is conflicting, as are simulations carried out with state-of-the-art climate models (e.g., as part of the PMIP3 suite), which, due to the computational cost involved, do not by and large include biogeochemical and isotope tracers that can be directly compared with proxy data. Here, we apply geochemical observations to evaluate the ability of several realisations of an ocean model driven by atmospheric forcing from the PMIP3 suite of climate models to simulate global ocean circulation during the LGM. This results in a wide range of circulation states that are then used to simulate biogeochemical tracer and isotope (13C, 14C and Pa/Th) distributions using an efficient, "offline" computational scheme known as the transport matrix method (TMM). One of the key advantages of this approach is the use of a uniform set of biogeochemical and isotope parameterizations across all the different circulations based on the PMIP3 models. We compare these simulated distributions to both modern observations and data from LGM ocean sediments to identify similarities and discrepancies between model and data. We find, for example, that when the ocean model is forced with wind stress from the PMIP3 models the radiocarbon age of the deep ocean is systematically younger compared with reconstructions. Changes in

  14. Stochastic characterization of regional circulation patterns for climate model diagnosis and estimation of local precipitation

    International Nuclear Information System (INIS)

    Zorita, E.; Hughes, J.P.

    1993-01-01

    Two statistical approaches for linking large-scale atmospheric circulation patterns and daily local rainfall are described and applied to several GCM (general circulation model) climate simulations. The ultimate objective is to simulate local precipitation associated with alternative climates. The index stations are located near the West and East North American coasts. The first method is based on CART analysis (Classification and Regression trees). It finds the classification of observed daily SLR (sea level pressure) fields in weather types that are most strongly associated with the presence/absence of rainfall in a set of index stations. The best results were obtained for winter rainfall for the West Coast, where a set of physically reasonable weather types could be identified, whereas for the East Coast the rainfall process seemed to be spatially less coherent. The GCM simulations were validated against observations in terms of probability of occurrence and survival time of these weather states. Some discrepancies werefound but there was no systematic bias, indicating that this behavior depends on the particular dynamics of each model. This classification method was then used for the generation of daily rainfall time series from the daily SLP fields from historical observation and from the GCM simulations. Whereas the mean rainfall and probability distributions were rather well replicated, the simulated dry periods were in all cases shorter than in the rainfall observations. The second rainfall generator is based on the analog method and uses information on the evolution of the SLP field in several previous days. It was found to perform reasonably well, although some downward bias in the simulated rainfall persistence was still present. Rainfall changes in a 2xCO 2 climate were investigated by applying both methods to the output of a greenhouse-gas experiment. The simulated precipitation changes were small. (orig.)

  15. A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model.

    Science.gov (United States)

    Miura, Hiroaki; Satoh, Masaki; Nasuno, Tomoe; Noda, Akira T; Oouchi, Kazuyoshi

    2007-12-14

    A Madden-Julian Oscillation (MJO) is a massive weather event consisting of deep convection coupled with atmospheric circulation, moving slowly eastward over the Indian and Pacific Oceans. Despite its enormous influence on many weather and climate systems worldwide, it has proven very difficult to simulate an MJO because of assumptions about cumulus clouds in global meteorological models. Using a model that allows direct coupling of the atmospheric circulation and clouds, we successfully simulated the slow eastward migration of an MJO event. Topography, the zonal sea surface temperature gradient, and interplay between eastward- and westward-propagating signals controlled the timing of the eastward transition of the convective center. Our results demonstrate the potential making of month-long MJO predictions when global cloud-resolving models with realistic initial conditions are used.

  16. Three-pattern decomposition of global atmospheric circulation: part I—decomposition model and theorems

    Science.gov (United States)

    Hu, Shujuan; Chou, Jifan; Cheng, Jianbo

    2018-04-01

    In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.

  17. Simulation of barotropic wind-driven circulation in the upper layers of Bay of Bengal and Andaman Sea during the southwest and northeast monsoon seasons using observed winds

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Unnikrishnan, A.S.

    A two-dimensional, nonlinear, vertically integrated model was used to simulate depth-mean wind-driven circulation in the upper Ekman layers of the Bay of Bengal and Andaman Sea. The model resolution was one third of a degree in the latitude...

  18. Atmospheric effects of nuclar war aerosols in general circulation model simulations: Influence of smoke optical properties

    International Nuclear Information System (INIS)

    Thompson, S.L.; Ramaswamy, V.; Covey, C.

    1987-01-01

    A global atmospheric general circulation model (GCM) is modified to include radiative transfer parameterizations for the absorption and scattering of solar radiation and the absorption of thermal infrared (IR) radiation by smoke aerosols. The solar scattering modifications include a parameterization for diagnosing smoke optical properties as a function of the time- and space-dependent smoke particle radii. The aerosol IR modifications allow for both the ''grey'' absorber approximation and a broadband approximation that resolves the aerosol absorption in four spectral intervals. We examine the sensitivity of some GCM-simulated atmospheric and climatic effects to the optical properties and radiative transfer parameterizations used in studies of massive injections of smoke. Specifically, we test the model response to solar scattering versus nonscattering smoke, variations in prescribed smoke single scattering albedo and IR specific absorption, and interactive versus fixed smoke optical properties. Hypothetical nuclear war created smoke scenarios assume the July injection of 60 or 180 Tg of smoke over portions of the mid-latitude land areas of the northern hemisphere. Atmospheric transport and scavenging of the smoke are included. Nonscattering smoke cases produce roughly 40 Wm/sup -2/ more Earth-atmosphere solar irradiance absorption over the northern hemisphere, when compared to scattering smoke cases having equivalent specific absorption efficiencies. Varying the elemental carbon content of smoke over a plausible range produces a 4 0 --6 0 C change in average mid-latitude land surface temperature, and a variation of about 0.1 in zonally averaged planetary albedo in the northern hemisphere

  19. Simulations of NLC formation using a microphysical model driven by three-dimensional dynamics

    Science.gov (United States)

    Kirsch, Annekatrin; Becker, Erich; Rapp, Markus; Megner, Linda; Wilms, Henrike

    2014-05-01

    Noctilucent clouds (NLCs) represent an optical phenomenon occurring in the polar summer mesopause region. These clouds have been known since the late 19th century. Current physical understanding of NLCs is based on numerous observational and theoretical studies, in recent years especially observations from satellites and by lidars from ground. Theoretical studies based on numerical models that simulate NLCs with the underlying microphysical processes are uncommon. Up to date no three-dimensional numerical simulations of NLCs exist that take all relevant dynamical scales into account, i.e., from the planetary scale down to gravity waves and turbulence. Rather, modeling is usually restricted to certain flow regimes. In this study we make a more rigorous attempt and simulate NLC formation in the environment of the general circulation of the mesopause region by explicitly including gravity waves motions. For this purpose we couple the Community Aerosol and Radiation Model for Atmosphere (CARMA) to gravity-wave resolving dynamical fields simulated beforehand with the Kuehlungsborn Mechanistic Circulation Model (KMCM). In our case, the KMCM is run with a horizontal resolution of T120 which corresponds to a minimum horizontal wavelength of 350 km. This restriction causes the resolved gravity waves to be somewhat biased to larger scales. The simulated general circulation is dynamically controlled by these waves in a self-consitent fashion and provides realistic temperatures and wind-fields for July conditions. Assuming a water vapor mixing ratio profile in agreement with current observations results in reasonable supersaturations of up to 100. In a first step, CARMA is applied to a horizontal section covering the Northern hemisphere. The vertical resolution is 120 levels ranging from 72 to 101 km. In this paper we will present initial results of this coupled dynamical microphysical model focussing on the interaction of waves and turbulent diffusion with NLC-microphysics.

  20. Distributed parameter modeling and simulation for the evaporation system of a controlled circulation boiler based on 3-D combustion monitoring

    International Nuclear Information System (INIS)

    Chu Yuntao; Lou Chun; Cheng Qiang; Zhou Huaichun

    2008-01-01

    In this paper, a dynamic, distributed parameter model for the evaporation system of a controlled circulation boiler was developed. As an essential basis, the 3-D temperature distribution and the average emissivity of the particle phase inside its furnace can be got by a flame image processing technique from multiple, visible flame image detectors in a real-time combustion monitoring system. Then the transient, 2-D radiation flux can be obtained by solving a set of energy balance equations for the water wall elements, which serves as a distributed boundary condition for the dynamic, distributed parameter model proposed for the evaporation system. For large change of the boiler load, two important parameters, the correction factor of equivalent flame emissivity and the coefficient of the steam mass flow rate at the outlet of the drum, were determined using the operation data from a 300 MW boiler. The model was validated by comparing the simulation results for some main steam parameters of the system with those from measurements. Besides that, the transient distributions of the parameters, such as the steam quality and the mass velocity, were predicted by the model. This model can be used for on-line calculation or off-line prediction of the local abnormal phenomena occurring on the water walls, forming an important basis to effectively evaluate the security and the reliability of a power plant boiler

  1. Simulating Mars' Dust Cycle with a Mars General Circulation Model: Effects of Water Ice Cloud Formation on Dust Lifting Strength and Seasonality

    Science.gov (United States)

    Kahre, Melinda A.; Haberle, Robert; Hollingsworth, Jeffery L.

    2012-01-01

    The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere [1,2,3]. Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer [4]. Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across [5]. Regional storm activity is enhanced before northern winter solstice (Ls200 degrees - 240 degrees), and after northern solstice (Ls305 degrees - 340 degrees ), which produces elevated atmospheric dust loadings during these periods [5,6,7]. These pre- and post- solstice increases in dust loading are thought to be associated with transient eddy activity in the northern hemisphere with cross-equatorial transport of dust leading to enhanced dust lifting in the southern hemisphere [6]. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles [8,9,10]. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading.

  2. THE MEAN-FIELD SOLAR DYNAMO WITH A DOUBLE CELL MERIDIONAL CIRCULATION PATTERN

    Energy Technology Data Exchange (ETDEWEB)

    Pipin, V. V. [Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Irkutsk, 664033 (Russian Federation); Kosovichev, A. G. [Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2013-10-10

    Recent helioseismology findings, as well as advances in direct numerical simulations of global dynamics of the Sun, have indicated that in each solar hemisphere meridional circulation may form more than one cell along the radius in the convection zone. In particular, recent helioseismology results revealed a double-cell structure of the meridional circulation. We investigate properties of a mean-field solar dynamo with such double-cell meridional circulation. The dynamo model also includes the realistic profile of solar differential rotation (including the tachocline and subsurface shear layer) and takes into account effects of turbulent pumping, anisotropic turbulent diffusivity, and conservation of magnetic helicity. Contrary to previous flux-transport dynamo models, we find that the dynamo model can robustly reproduce the basic properties of the solar magnetic cycles for a wide range of model parameters and circulation speeds. The best agreement with observations is achieved when the surface meridional circulation speed is about 12 m s{sup –1}. For this circulation speed, the simulated sunspot activity shows good synchronization with the polar magnetic fields. Such synchronization was indeed observed during previous sunspot Cycles 21 and 22. We compare theoretical and observed phase diagrams of the sunspot number and the polar field strength and discuss the peculiar properties of Cycle 23.

  3. Influence of various forcings on global climate in historical times using a coupled atmosphere-ocean general circulation model

    DEFF Research Database (Denmark)

    Stendel, Martin; Mogensen, Irene A.; Christensen, Jens H.

    2006-01-01

    The results of a simulation of the climate of the last five centuries with a state-of-the-art coupled atmosphere-ocean general circulation model are presented. The model has been driven with most relevant forcings, both natural (solar variability, volcanic aerosol) and anthropogenic (greenhouse...... gases, sulphate aerosol, land-use changes). In contrast to previous GCM studies, we have taken into account the latitudinal dependence of volcanic aerosol and the changing land cover for a period covering several centuries. We find a clear signature of large volcanic eruptions in the simulated...

  4. Integrated cumulus ensemble and turbulence (ICET): An integrated parameterization system for general circulation models (GCMs)

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.L.; Frank, W.M.; Young, G.S. [Pennsylvania State Univ., University Park, PA (United States)

    1996-04-01

    Successful simulations of the global circulation and climate require accurate representation of the properties of shallow and deep convective clouds, stable-layer clouds, and the interactions between various cloud types, the boundary layer, and the radiative fluxes. Each of these phenomena play an important role in the global energy balance, and each must be parameterized in a global climate model. These processes are highly interactive. One major problem limiting the accuracy of parameterizations of clouds and other processes in general circulation models (GCMs) is that most of the parameterization packages are not linked with a common physical basis. Further, these schemes have not, in general, been rigorously verified against observations adequate to the task of resolving subgrid-scale effects. To address these problems, we are designing a new Integrated Cumulus Ensemble and Turbulence (ICET) parameterization scheme, installing it in a climate model (CCM2), and evaluating the performance of the new scheme using data from Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Testbed (CART) sites.

  5. Intercomparison of the seasonal cycle of tropical surface stress in 17 AMIP atmospheric general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Saji, N.H.; Goswami, B.N. [Indian Inst. of Sci., Bangalore (India). Centre for Atmos. and Oceanic Sci.

    1997-08-01

    The mean state of the tropical atmosphere is important as the nature of the coupling between the ocean and the atmosphere depends nonlinearly on the basic state of the coupled system. The simulation of the annual cycle of the tropical surface wind stress by 17 atmospheric general circulation models (AGCMs) is examined and intercompared. The models considered were part of the atmospheric model intercomparison project (AMIP) and were integrated with observed sea surface temperature (SST) for the decade 1979-1988. Several measures have been devised to intercompare the performance of the 17 models on global tropical as well as regional scales. Within the limits of observational uncertainties, the models under examination simulate realistic tropical area-averaged zonal and meridional annual mean stresses. This is a noteworthy improvement over older generation low resolution models which were noted for their simulation of surface stresses considerably weaker than the observations. The models also simulate realistic magnitudes of the spatial distribution of the annual mean surface stress field and are seen to reproduce realistically its observed spatial pattern. Similar features are observed in the simulations of the annual variance field. The models perform well over almost all the tropical regions apart from a few. Of these, the simulations over Somali are interesting. Over this region, the models are seen to underestimate the annual mean zonal and meridional stresses. There is also wide variance between the different models in simulating these quantities. 44 refs.

  6. BIM-enabled Conceptual Modelling and Representation of Building Circulation

    OpenAIRE

    Lee, Jin Kook; Kim, Mi Jeong

    2014-01-01

    This paper describes how a building information modelling (BIM)-based approach for building circulation enables us to change the process of building design in terms of its computational representation and processes, focusing on the conceptual modelling and representation of circulation within buildings. BIM has been designed for use by several BIM authoring tools, in particular with the widely known interoperable industry foundation classes (IFCs), which follow an object-oriented data modelli...

  7. Modelling of hydrothermal fluid circulation in a heterogeneous medium: Application to the Rainbow Vent site (Mid-Atlantic-Ridge, 36°14N)

    Science.gov (United States)

    Perez, F.; Mügler, C.; Jean-Baptiste, P.; Charlou, J. L.

    2012-04-01

    Hydrothermal activity at the axis of mid-ocean ridges is a key driver for energy and matter transfer from the interior of the Earth to the ocean floor. At mid-ocean ridges, seawater penetrates through the permeable young crust, warms at depth and exchanges chemicals with the surrounding rocks. This hot fluid focuses and flows upwards, then is expelled from the crust at hydrothermal vent sites in the form of black or white smokers completed by diffusive emissions. We developed a new numerical tool in the Cast3M software framework to model such hydrothermal circulations. Thermodynamic properties of one-phase pure water were calculated from the IAPWS formulation. This new numerical tool was validated on several test cases of convection in closed-top and open-top boxes. Simulations of hydrothermal circulation in a homogeneous-permeability porous medium also gave results in good agreement with already published simulations. We used this new numerical tool to construct a geometric and physical model configuration of the Rainbow Vent site at 36°14'N on the Mid-Atlantic Ridge. In this presentation, several configurations will be discussed, showing that high temperatures and high mass fluxes measured at the Rainbow site cannot be modelled with hydrothermal circulation in a homogeneous-permeability porous medium. We will show that these high values require the presence of a fault or a preferential pathway right below the venting site. We will propose and discuss a 2-D one-path model that allows us to simulate both high temperatures and high mass fluxes. This modelling of the hydrothermal circulation at the Rainbow site constitutes a first but necessary step to understand the origin of high concentrations of hydrogen issued from this ultramafic-hosted vent field.

  8. Using a Gravity Model to Predict Circulation in a Public Library System.

    Science.gov (United States)

    Ottensmann, John R.

    1995-01-01

    Describes the development of a gravity model based upon principles of spatial interaction to predict the circulation of libraries in the Indianapolis-Marion County Public Library (Indiana). The model effectively predicted past circulation figures and was tested by predicting future library circulation, particularly for a new branch library.…

  9. Application of a circulation model in waters, based in the difference method, for bays

    International Nuclear Information System (INIS)

    Rosa, P.A.C.

    1985-01-01

    The Knowledge of circulation of water in bays, in addition to the possibility of simulation future conditions, can be of great interest in solving problems related to the cooling water for Nuclear Power Plants, study of sediments and water polution, in addition to the study of civil engineering works planned in bays. A Numerical Circulation Model of water in bays, is applied to the conditions of Sepetiba Bay at Rio de Janeiro coast. This System of Partial Differential Equations that constitute the Model, were solved by the Finite Difference Method, using a uniform cartesian grid for uniform time steps generating a bi-dimensional flow measurement of depth. The results obtained by comparing the values of the Model and measurements taken a bay were satisfactory, assuring its credibility and efficiency. A programming code was developed for the application providing outputing at any preditermined time steps, with discrimination of 30 seconds, the average levels, flows, velocities and depths of water of each grid spacing along the length of the bay in addition to a graphic of the flow. (Author) [pt

  10. Analysis and Modeling of Circulating Current in Two Parallel-Connected Inverters

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand

    2015-01-01

    Parallel-connected inverters are gaining attention for high power applications because of the limited power handling capability of the power modules. Moreover, the parallel-connected inverters may have low total harmonic distortion of the ac current if they are operated with the interleaved pulse...... this model, the circulating current between two parallel-connected inverters is analysed in this study. The peak and root mean square (rms) values of the normalised circulating current are calculated for different PWM methods, which makes this analysis a valuable tool to design a filter for the circulating......-width modulation (PWM). However, the interleaved PWM causes a circulating current between the inverters, which in turn causes additional losses. A model describing the dynamics of the circulating current is presented in this study which shows that the circulating current depends on the common-mode voltage. Using...

  11. A Cross-Scale Model for 3D Baroclinic Circulation in Estuary-Plume-Shelf Systems. 2. Application to the Columbia River

    National Research Council Canada - National Science Library

    Baptista, Antonio M; Zhang, Yinglong; Chawla, Arun; Zulauf, Mike; Seaton, Charles; Myers, III, Edward P; Kindle, John; Wilkin, Michael; Burla, Michaela; Turner, Paul J

    2005-01-01

    This article is the second of a two-part paper on ELCIRC, an Eulerian-Lagrangian finite difference/finite volume model designed to simulate 3D baroclinic circulation across river-to-ocean scales. In part one (Zhang et al., 2004...

  12. Evaluating the Credibility of Transport Processes in Simulations of Ozone Recovery using the Global Modeling Initiative Three-dimensional Model

    Science.gov (United States)

    Strahan, Susan E.; Douglass, Anne R.

    2004-01-01

    The Global Modeling Initiative (GMI) has integrated two 36-year simulations of an ozone recovery scenario with an offline chemistry and tra nsport model using two different meteorological inputs. Physically ba sed diagnostics, derived from satellite and aircraft data sets, are d escribed and then used to evaluate the realism of temperature and transport processes in the simulations. Processes evaluated include barri er formation in the subtropics and polar regions, and extratropical w ave-driven transport. Some diagnostics are especially relevant to sim ulation of lower stratospheric ozone, but most are applicable to any stratospheric simulation. The global temperature evaluation, which is relevant to gas phase chemical reactions, showed that both sets of me teorological fields have near climatological values at all latitudes and seasons at 30 hPa and below. Both simulations showed weakness in upper stratospheric wave driving. The simulation using input from a g eneral circulation model (GMI(GCM)) showed a very good residual circulation in the tropics and Northern Hemisphere. The simulation with inp ut from a data assimilation system (GMI(DAS)) performed better in the midlatitudes than it did at high latitudes. Neither simulation forms a realistic barrier at the vortex edge, leading to uncertainty in the fate of ozone-depleted vortex air. Overall, tracer transport in the offline GML(GCM) has greater fidelity throughout the stratosphere tha n it does in the GMI(DAS)

  13. Numerical modeling of supercritical CO{sub 2} natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Archana, V., E-mail: archanav@barc.gov.in [Homi Bhabha National Institute, Mumbai, Maharashtra 400 094 (India); Vaidya, A.M., E-mail: avaidya@barc.gov.in [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400 085 (India); Vijayan, P.K., E-mail: vijayanp@barc.gov.in [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400 085 (India)

    2015-11-15

    Highlights: • Supercritical CO{sub 2} natural circulation loop is modeled by in-house developed 1D and 2D axi-symmetric CFD codes. • Steady state characteristics of VHVC configuration of supercritical CO{sub 2} natural circulation loop are studied over a range of power. • Improved accuracy of predictions by 2D axi-symmetric formulation over 1D formulation is demonstrated. • The validity of correlations used in 1D model such as friction factor and heat transfer correlations is analyzed. • Simulation results shows normal, enhanced and deteriorated heat transfer regimes in supercritical CO{sub 2} natural circulation loop. - Abstract: The objective of this research project is to estimate steady state characteristics of supercritical natural circulation loop (SCNCL) using computational methodology and to compliment on-going experimental investigation of the same at the authors’ organization. For computational investigation, a couple of in-house codes are developed. At first, formulation and a corresponding computer program for the SCNCL based on conservation equations written in 1D framework is developed. Comparison of 1D code results with experimental data showed that, under some operating conditions, there is deviation between computed results and experimental data. To improve predictive capability, it was thought to model the SCNCL using conservation equations in 2D axi-symmetric framework. An existing 2D axi-symmetric code (named NAFA), which was developed and validated for supercritical fluid flow in pipes, is modified for natural circulation loop (NCL) geometry. The modified code, named NAFA-Loop, is subsequently used to compute the steady state characteristics of the SCNCL. These results are compared with experimental data. The steady state characteristics such as the variation of mass flow rate with power, velocity and temperature profiles in heater and cooler are studied using NAFA-Loop. The computed velocity and temperature fields show that the

  14. The Donders model of the circulation in normo- and pathophysiology

    DEFF Research Database (Denmark)

    Noordergraaf, Gerrit J.; Ottesen, Johnny T.; Kortsmit, Wil J.P.M.

    2006-01-01

    the continuum of physiological conditions to cardiopulmonary resuscitation effects within the circulation.   Within the model, Harvey's view of the circulation has been broadened to include impedance-defined flow as a unifying concept. The cardiac function curve, the relation between ventricular filling...... and output, changes during exercise. First, it rotates counterclockwise and stretches along the output axis, second, it shifts along the filling axis. The first is induced by sympathetic control, the second by respiratory control. The model shows that depth of respiration, sympathetic stimulation of cardiac......A model of the closed human cardiovascular loop is developed. This model, using one set of 88 equations, allows variations from normal resting conditions to exercise, as well as to the extreme condition of a circulation following cardiac arrest. The principal purpose of the model is to evaluate...

  15. Component and system simulation models for High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sozer, A.

    1989-08-01

    Component models for the High Flux Isotope Reactor (HFIR) have been developed. The models are HFIR core, heat exchangers, pressurizer pumps, circulation pumps, letdown valves, primary head tank, generic transport delay (pipes), system pressure, loop pressure-flow balance, and decay heat. The models were written in FORTRAN and can be run on different computers, including IBM PCs, as they do not use any specific simulation languages such as ACSL or CSMP. 14 refs., 13 figs

  16. Validation of advanced NSSS simulator model for loss-of-coolant accidents

    Energy Technology Data Exchange (ETDEWEB)

    Kao, S.P.; Chang, S.K.; Huang, H.C. [Nuclear Training Branch, Northeast Utilities, Waterford, CT (United States)

    1995-09-01

    The replacement of the NSSS (Nuclear Steam Supply System) model on the Millstone 2 full-scope simulator has significantly increased its fidelity to simulate adverse conditions in the RCS. The new simulator NSSS model is a real-time derivative of the Nuclear Plant Analyzer by ABB. The thermal-hydraulic model is a five-equation, non-homogeneous model for water, steam, and non-condensible gases. The neutronic model is a three-dimensional nodal diffusion model. In order to certify the new NSSS model for operator training, an extensive validation effort has been performed by benchmarking the model performance against RELAP5/MOD2. This paper presents the validation results for the cases of small-and large-break loss-of-coolant accidents (LOCA). Detailed comparisons in the phenomena of reflux-condensation, phase separation, and two-phase natural circulation are discussed.

  17. The stability of the thermohaline circulation in a coupled ocean-atmosphere general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, A. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Mikolajewicz, U. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    1996-02-01

    The stability of the Atlantic thermohaline circulation against meltwater input is investigated in a coupled ocean-atmosphere general circulation model. The meltwater input to the Labrador Sea is increased linearly for 250 years to a maximum input of 0.625 Sv and then reduced again to 0 (both instantaneously and slowly decreasing over 250 years). The resulting freshening forces a shutdown of the formation of North Atlantic deepwater and a subsequent reversal of the thermohaline circulation of the Atlantic, filling the deep Atlantic with Antarctic bottom water. The change in the overturning pattern causes a drastic reduction of the Atlantic northward heat transport, resulting in a strong cooling with maximum amplitude over the northern North Atlantic and a southward shift of the sea-ice margin in the Atlantic. Due to the increased meridional temperature gradient, the Atlantic intertropical convergence zone is displaced southward and the westerlies in the northern hemisphere gain strength. We identify four main feedbacks affecting the stability of the thermohaline circulation: the change in the overturning circulation of the Atlantic leads to longer residence times of the surface waters in high northern latitudes, which allows them to accumulate more precipitation and runoff from the continents, which results in an increased stability in the North Atlantic.

  18. Computer simulation of stochastic processes through model-sampling (Monte Carlo) techniques.

    Science.gov (United States)

    Sheppard, C W.

    1969-03-01

    A simple Monte Carlo simulation program is outlined which can be used for the investigation of random-walk problems, for example in diffusion, or the movement of tracers in the blood circulation. The results given by the simulation are compared with those predicted by well-established theory, and it is shown how the model can be expanded to deal with drift, and with reflexion from or adsorption at a boundary.

  19. The LGM surface climate and atmospheric circulation over East Asia and the North Pacific in the PMIP2 coupled model simulations

    Directory of Open Access Journals (Sweden)

    W. Yanase

    2007-07-01

    Full Text Available The surface conditions and atmospheric circulation over East Asia and the North Pacific during the last glacial maximum have been investigated using outputs from several coupled atmosphere-ocean general circulation model in the PMIP2 database. During the boreal summer, the weakening of the high pressure system over the North Pacific and less precipitation over East Asia are found in most models. The latter can be attributed to reduced moisture transport. During the boreal winter, an intensification of the Aleutian low and southward shift of the westerly jet stream in the upper troposphere are found in most models.

    Some of the results in the present study seem to be consistent with the paleoclimatic reconstructions in the previous studies: pollen and lake-status records suggest dry climate over East Asia during the last glacial maximum, and part of the dust record has a signal that the East Asian winter monsoon was more strong and the westerly jet stream in the upper troposphere was further south during the last glacial maximum than at the present day. This result confirms that a coupled atmosphere-ocean general circulation model is a promising tool to understand not only the global climate but also the regional climate in the past.

  20. Regional model simulations of New Zealand climate

    Science.gov (United States)

    Renwick, James A.; Katzfey, Jack J.; Nguyen, Kim C.; McGregor, John L.

    1998-03-01

    Simulation of New Zealand climate is examined through the use of a regional climate model nested within the output of the Commonwealth Scientific and Industrial Research Organisation nine-level general circulation model (GCM). R21 resolution GCM output is used to drive a regional model run at 125 km grid spacing over the Australasian region. The 125 km run is used in turn to drive a simulation at 50 km resolution over New Zealand. Simulations with a full seasonal cycle are performed for 10 model years. The focus is on the quality of the simulation of present-day climate, but results of a doubled-CO2 run are discussed briefly. Spatial patterns of mean simulated precipitation and surface temperatures improve markedly as horizontal resolution is increased, through the better resolution of the country's orography. However, increased horizontal resolution leads to a positive bias in precipitation. At 50 km resolution, simulated frequency distributions of daily maximum/minimum temperatures are statistically similar to those of observations at many stations, while frequency distributions of daily precipitation appear to be statistically different to those of observations at most stations. Modeled daily precipitation variability at 125 km resolution is considerably less than observed, but is comparable to, or exceeds, observed variability at 50 km resolution. The sensitivity of the simulated climate to changes in the specification of the land surface is discussed briefly. Spatial patterns of the frequency of extreme temperatures and precipitation are generally well modeled. Under a doubling of CO2, the frequency of precipitation extremes changes only slightly at most locations, while air frosts become virtually unknown except at high-elevation sites.

  1. Tsengwen Reservoir Watershed Hydrological Flood Simulation Under Global Climate Change Using the 20 km Mesh Meteorological Research Institute Atmospheric General Circulation Model (MRI-AGCM

    Directory of Open Access Journals (Sweden)

    Nobuaki Kimura

    2014-01-01

    Full Text Available Severe rainstorms have occurred more frequently in Taiwan over the last decade. To understand the flood characteristics of a local region under climate change, a hydrological model simulation was conducted for the Tsengwen Reservoir watershed. The model employed was the Integrated Flood Analysis System (IFAS, which has a conceptual, distributed rainfall-runoff analysis module and a GIS data-input function. The high-resolution rainfall data for flood simulation was categorized into three terms: 1979 - 2003 (Present, 2015 - 2039 (Near-future, and 2075 - 2099 (Future, provided by the Meteorological Research Institute atmospheric general circulation model (MRI-AGCM. Ten extreme rainfall (top ten events were selected for each term in descending order of total precipitation volume. Due to the small watershed area the MRI-AGCM3.2S data was downsized into higher resolution data using the Weather Research and Forecasting Model. The simulated discharges revealed that most of the Near-future and Future peaks caused by extreme rainfall increased compared to the Present peak. These ratios were 0.8 - 1.6 (Near-future/Present and 0.9 - 2.2 (Future/Present, respectively. Additionally, we evaluated how these future discharges would affect the reservoir¡¦s flood control capacity, specifically the excess water volume required to be stored while maintaining dam releases up to the dam¡¦s spillway capacity or the discharge peak design for flood prevention. The results for the top ten events show that the excess water for the Future term exceeded the reservoir¡¦s flood control capacity and was approximately 79.6 - 87.5% of the total reservoir maximum capacity for the discharge peak design scenario.

  2. Interannual Tropical Rainfall Variability in General Circulation Model Simulations Associated with the Atmospheric Model Intercomparison Project.

    Science.gov (United States)

    Sperber, K. R.; Palmer, T. N.

    1996-11-01

    The interannual variability of rainfall over the Indian subcontinent, the African Sahel, and the Nordeste region of Brazil have been evaluated in 32 models for the period 1979-88 as part of the Atmospheric Model Intercomparison Project (AMIP). The interannual variations of Nordeste rainfall are the most readily captured, owing to the intimate link with Pacific and Atlantic sea surface temperatures. The precipitation variations over India and the Sahel are less well simulated. Additionally, an Indian monsoon wind shear index was calculated for each model. Evaluation of the interannual variability of a wind shear index over the summer monsoon region indicates that the models exhibit greater fidelity in capturing the large-scale dynamic fluctuations than the regional-scale rainfall variations. A rainfall/SST teleconnection quality control was used to objectively stratify model performance. Skill scores improved for those models that qualitatively simulated the observed rainfall/El Niño- Southern Oscillation SST correlation pattern. This subset of models also had a rainfall climatology that was in better agreement with observations, indicating a link between systematic model error and the ability to simulate interannual variations.A suite of six European Centre for Medium-Range Weather Forecasts (ECMWF) AMIP runs (differing only in their initial conditions) have also been examined. As observed, all-India rainfall was enhanced in 1988 relative to 1987 in each of these realizations. All-India rainfall variability during other years showed little or no predictability, possibly due to internal chaotic dynamics associated with intraseasonal monsoon fluctuations and/or unpredictable land surface process interactions. The interannual variations of Nordeste rainfall were best represented. The State University of New York at Albany/National Center for Atmospheric Research Genesis model was run in five initial condition realizations. In this model, the Nordeste rainfall

  3. Plausible Effect of Weather on Atlantic Meridional Overturning Circulation with a Coupled General Circulation Model

    Science.gov (United States)

    Liu, Zedong; Wan, Xiuquan

    2018-04-01

    The Atlantic meridional overturning circulation (AMOC) is a vital component of the global ocean circulation and the heat engine of the climate system. Through the use of a coupled general circulation model, this study examines the role of synoptic systems on the AMOC and presents evidence that internally generated high-frequency, synoptic-scale weather variability in the atmosphere could play a significant role in maintaining the overall strength and variability of the AMOC, thereby affecting climate variability and change. Results of a novel coupling technique show that the strength and variability of the AMOC are greatly reduced once the synoptic weather variability is suppressed in the coupled model. The strength and variability of the AMOC are closely linked to deep convection events at high latitudes, which could be strongly affected by the weather variability. Our results imply that synoptic weather systems are important in driving the AMOC and its variability. Thus, interactions between atmospheric weather variability and AMOC may be an important feedback mechanism of the global climate system and need to be taken into consideration in future climate change studies.

  4. Empirical justification of the elementary model of money circulation

    Science.gov (United States)

    Schinckus, Christophe; Altukhov, Yurii A.; Pokrovskii, Vladimir N.

    2018-03-01

    This paper proposes an elementary model describing the money circulation for a system, composed by a production system, the government, a central bank, commercial banks and their customers. A set of equations for the system determines the main features of interaction between the production and the money circulation. It is shown, that the money system can evolve independently of the evolution of production. The model can be applied to any national economy but we will illustrate our claim in the context of the Russian monetary system.

  5. Effect of natural circulation on RCS depressurization strategy in PWR NPP

    International Nuclear Information System (INIS)

    Zhang Kun; Tong Lili; Cao Xuewu

    2009-01-01

    The natural circulation model of Chinese Qinshan Nuclear Power Plant (NPP) Unit 2 is built using SCDAP/RELAP5 code. Selecting TMLB' accident as the base sequence, this paper analyzes the natural circulation phenomena in high-pressure core melt severe accident. In order to study the effect of natural circulation on RCS depressurization strategy, the accident progressions of RCS depressurization with and without natural circulation are simulated, respectively. According to the results, the natural circulation can delay the initiation of RCS depressurization and the whole accident progression, but it does not evidently influence the results of RCS depressurization. (authors)

  6. High-resolution nested model simulations of the climatological circulation in the southeastern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    S. Brenner

    2003-01-01

    Full Text Available As part of the Mediterranean Forecasting System Pilot Project (MFSPP we have implemented a high-resolution (2 km horizontal grid, 30 sigma levels version of the Princeton Ocean Model for the southeastern corner of the Mediterranean Sea. The domain extends 200 km offshore and includes the continental shelf and slope, and part of the open sea. The model is nested in an intermediate resolution (5.5 km grid model that covers the entire Levantine, Ionian, and Aegean Sea. The nesting is one way so that velocity, temperature, and salinity along the boundaries are interpolated from the relevant intermediate model variables. An integral constraint is applied so that the net mass flux across the open boundaries is identical to the net flux in the intermediate model. The model is integrated for three perpetual years with surface forcing specified from monthly mean climatological wind stress and heat fluxes. The model is stable and spins up within the first year to produce a repeating seasonal cycle throughout the three-year integration period. While there is some internal variability evident in the results, it is clear that, due to the relatively small domain, the results are strongly influenced by the imposed lateral boundary conditions. The results closely follow the simulation of the intermediate model. The main improvement is in the simulation over the narrow shelf region, which is not adequately resolved by the coarser grid model. Comparisons with direct current measurements over the shelf and slope show reasonable agreement despite the limitations of the climatological forcing. The model correctly simulates the direction and the typical speeds of the flow over the shelf and slope, but has difficulty properly re-producing the seasonal cycle in the speed.Key words. Oceanography: general (continental shelf processes; numerical modelling; ocean prediction

  7. Validation of the RELAP5 code for the modeling of flashing-induced instabilities under natural-circulation conditions using experimental data from the CIRCUS test facility

    Energy Technology Data Exchange (ETDEWEB)

    Kozmenkov, Y. [Helmholtz-Zentrum Dresden-Rossendorf e.V. (FZD), Institute of Safety Research, P.O.B. 510119, D-01324 Dresden (Germany); Institute of Physics and Power Engineering, Obninsk (Russian Federation); Rohde, U., E-mail: U.Rohde@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf e.V. (FZD), Institute of Safety Research, P.O.B. 510119, D-01324 Dresden (Germany); Manera, A. [Paul Scherrer Institute (Switzerland)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer We report about the simulation of flashing-induced instabilities in natural circulation systems. Black-Right-Pointing-Pointer Flashing-induced instabilities are of relevance for operation of pool-type reactors of small power at low pressure. Black-Right-Pointing-Pointer The RELAP5 code is validated against measurement data from natural circulation experiments. Black-Right-Pointing-Pointer The magnitude and frequency of the oscillations were reproduced in good agreement with the measurement data. - Abstract: This paper reports on the use of the RELAP5 code for the simulation of flashing-induced instabilities in natural circulation systems. The RELAP 5 code is intended to be used for the simulation of transient processes in the Russian RUTA reactor concept operating at atmospheric pressure with forced convection of coolant. However, during transient processes, natural circulation with flashing-induced instabilities might occur. The RELAP5 code is validated against measurement data from natural circulation experiments performed within the framework of a European project (NACUSP) on the CIRCUS facility. The facility, built at the Delft University of Technology in The Netherlands, is a water/steam 1:1 height-scaled loop of a typical natural-circulation-cooled BWR. It was shown that the RELAP5 code is able to model all relevant phenomena related to flashing induced instabilities. The magnitude and frequency of the oscillations were reproduced in a good agreement with the measurement data. The close correspondence to the experiments was reached by detailed modeling of all components of the CIRCUS facility including the heat exchanger, the buffer vessel and the steam dome at the top of the facility.

  8. Numerical study comparing RANS and LES approaches on a circulation control airfoil

    International Nuclear Information System (INIS)

    Rumsey, Christopher L.; Nishino, Takafumi

    2011-01-01

    Highlights: → RANS compared with LES for circulation control airfoil. → RANS turbulence models need to account for streamline curvature. → RANS models yield higher lift than LES in spite of predicting similar jet separation. - Abstract: A numerical study over a nominally two-dimensional circulation control airfoil is performed using a large-eddy simulation code and two Reynolds-averaged Navier-Stokes codes. Different Coanda jet blowing conditions are investigated. In addition to investigating the influence of grid density, a comparison is made between incompressible and compressible flow solvers. The incompressible equations are found to yield negligible differences from the compressible equations up to at least a jet exit Mach number of 0.64. The effects of different turbulence models are also studied. Models that do not account for streamline curvature effects tend to predict jet separation from the Coanda surface too late, and can produce non-physical solutions at high blowing rates. Three different turbulence models that account for streamline curvature are compared with each other and with large eddy simulation solutions. All three models are found to predict the Coanda jet separation location reasonably well, but one of the models predicts specific flow field details near the Coanda surface prior to separation much better than the other two. All Reynolds-averaged Navier-Stokes computations produce higher circulation than large eddy simulation computations, with different stagnation point location and greater flow acceleration around the nose onto the upper surface. The precise reasons for the higher circulation are not clear, although it is not solely a function of predicting the jet separation location correctly.

  9. Numerical study comparing RANS and LES approaches on a circulation control airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Rumsey, Christopher L., E-mail: c.l.rumsey@nasa.gov [Computational AeroSciences Branch, NASA Langley Research Center, Hampton, VA 23681-2199 (United States); Nishino, Takafumi [Advanced Supercomputing Division, NASA Ames Research Center, Moffett Field, CA 94035-1000 (United States)

    2011-10-15

    Highlights: > RANS compared with LES for circulation control airfoil. > RANS turbulence models need to account for streamline curvature. > RANS models yield higher lift than LES in spite of predicting similar jet separation. - Abstract: A numerical study over a nominally two-dimensional circulation control airfoil is performed using a large-eddy simulation code and two Reynolds-averaged Navier-Stokes codes. Different Coanda jet blowing conditions are investigated. In addition to investigating the influence of grid density, a comparison is made between incompressible and compressible flow solvers. The incompressible equations are found to yield negligible differences from the compressible equations up to at least a jet exit Mach number of 0.64. The effects of different turbulence models are also studied. Models that do not account for streamline curvature effects tend to predict jet separation from the Coanda surface too late, and can produce non-physical solutions at high blowing rates. Three different turbulence models that account for streamline curvature are compared with each other and with large eddy simulation solutions. All three models are found to predict the Coanda jet separation location reasonably well, but one of the models predicts specific flow field details near the Coanda surface prior to separation much better than the other two. All Reynolds-averaged Navier-Stokes computations produce higher circulation than large eddy simulation computations, with different stagnation point location and greater flow acceleration around the nose onto the upper surface. The precise reasons for the higher circulation are not clear, although it is not solely a function of predicting the jet separation location correctly.

  10. Direct weakening of tropical circulations from masked CO2 radiative forcing.

    Science.gov (United States)

    Merlis, Timothy M

    2015-10-27

    Climate models robustly simulate weakened mean circulations of the tropical atmosphere in direct response to increased carbon dioxide (CO2). The direct response to CO2, defined by the response to radiative forcing in the absence of changes in sea surface temperature, affects tropical precipitation and tropical cyclone genesis, and these changes have been tied to the weakening of the mean tropical circulation. The mechanism underlying this direct CO2-forced circulation change has not been elucidated. Here, I demonstrate that this circulation weakening results from spatial structure in CO2's radiative forcing. In regions of ascending circulation, such as the intertropical convergence zone, the CO2 radiative forcing is reduced, or "masked," by deep-convective clouds and high humidity; in subsiding regions, such as the subtropics, the CO2 radiative forcing is larger because the atmosphere is drier and deep-convective clouds are infrequent. The spatial structure of the radiative forcing reduces the need for the atmosphere to transport energy. This, in turn, weakens the mass overturning of the tropical circulation. The previously unidentified mechanism is demonstrated in a hierarchy of atmospheric general circulation model simulations with altered radiative transfer to suppress the cloud masking of the radiative forcing. The mechanism depends on the climatological distribution of clouds and humidity, rather than uncertain changes in these quantities. Masked radiative forcing thereby offers an explanation for the robustness of the direct circulation weakening under increased CO2.

  11. Understanding variability of the Southern Ocean overturning circulation in CORE-II models

    Science.gov (United States)

    Downes, S. M.; Spence, P.; Hogg, A. M.

    2018-03-01

    The current generation of climate models exhibit a large spread in the steady-state and projected Southern Ocean upper and lower overturning circulation, with mechanisms for deep ocean variability remaining less well understood. Here, common Southern Ocean metrics in twelve models from the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) are assessed over a 60 year period. Specifically, stratification, surface buoyancy fluxes, and eddies are linked to the magnitude of the strengthening trend in the upper overturning circulation, and a decreasing trend in the lower overturning circulation across the CORE-II models. The models evolve similarly in the upper 1 km and the deep ocean, with an almost equivalent poleward intensification trend in the Southern Hemisphere westerly winds. However, the models differ substantially in their eddy parameterisation and surface buoyancy fluxes. In general, models with a larger heat-driven water mass transformation where deep waters upwell at the surface ( ∼ 55°S) transport warmer waters into intermediate depths, thus weakening the stratification in the upper 2 km. Models with a weak eddy induced overturning and a warm bias in the intermediate waters are more likely to exhibit larger increases in the upper overturning circulation, and more significant weakening of the lower overturning circulation. We find the opposite holds for a cool model bias in intermediate depths, combined with a more complex 3D eddy parameterisation that acts to reduce isopycnal slope. In summary, the Southern Ocean overturning circulation decadal trends in the coarse resolution CORE-II models are governed by biases in surface buoyancy fluxes and the ocean density field, and the configuration of the eddy parameterisation.

  12. Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models

    Science.gov (United States)

    Xu, L.

    1994-01-01

    A simple two-layer variable infiltration capacity (VIC-2L) land surface model suitable for incorporation in general circulation models (GCMs) is described. The model consists of a two-layer characterization of the soil within a GCM grid cell, and uses an aerodynamic representation of latent and sensible heat fluxes at the land surface. The effects of GCM spatial subgrid variability of soil moisture and a hydrologically realistic runoff mechanism are represented in the soil layers. The model was tested using long-term hydrologic and climatalogical data for Kings Creek, Kansas to estimate and validate the hydrological parameters. Surface flux data from three First International Satellite Land Surface Climatology Project Field Experiments (FIFE) intensive field compaigns in the summer and fall of 1987 in central Kansas, and from the Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) in Brazil were used to validate the mode-simulated surface energy fluxes and surface temperature.

  13. Simulation of the sea breeze front with a model of moist convection

    NARCIS (Netherlands)

    Berg, L.C.J. van de; Oerlemans, J.

    1985-01-01

    Although in general the sea breeze can be considered as a mesoscale atmospheric circulation, the sea-breeze front has a much smaller scale. Simulation of the development of a sea-breeze front should therefore be preferably done with a non-hydrostatic model, with high spatial resolution (grid

  14. Ocean bio-geophysical modeling using mixed layer-isopycnal general circulation model coupled with photosynthesis process

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; Saito, H.; Muneyama, K.; Sato, T.; PrasannaKumar, S.; Kumar, A.; Frouin, R.

    -chemical system that supports steady carbon circulation in geological time scale in the world ocean using Mixed Layer-Isopycnal ocean General Circulation model with remotely sensed Coastal Zone Color Scanner (CZCS) chlorophyll pigment concentration....

  15. Weakened tropical circulation and reduced precipitation in response to geoengineering

    International Nuclear Information System (INIS)

    Ferraro, Angus J; Highwood, Eleanor J; Charlton-Perez, Andrew J

    2014-01-01

    Geoengineering by injection of reflective aerosols into the stratosphere has been proposed as a way to counteract the warming effect of greenhouse gases by reducing the intensity of solar radiation reaching the surface. Here, climate model simulations are used to examine the effect of geoengineering on the tropical overturning circulation. The strength of the circulation is related to the atmospheric static stability and has implications for tropical rainfall. The tropical circulation is projected to weaken under anthropogenic global warming. Geoengineering with stratospheric sulfate aerosol does not mitigate this weakening of the circulation. This response is due to a fast adjustment of the troposphere to radiative heating from the aerosol layer. This effect is not captured when geoengineering is modelled as a reduction in total solar irradiance, suggesting caution is required when interpreting model results from solar dimming experiments as analogues for stratospheric aerosol geoengineering. (letter)

  16. Circulation shedding in viscous starting flow past a flat plate

    International Nuclear Information System (INIS)

    Nitsche, Monika; Xu, Ling

    2014-01-01

    Numerical simulations of viscous flow past a flat plate moving in the direction normal to itself reveal details of the vortical structure of the flow. At early times, most of the vorticity is attached to the plate. This paper introduces a definition of the shed circulation at all times and shows that it indeed represents vorticity that separates and remains separated from the plate. During a large initial time period, the shed circulation satisfies the scaling laws predicted for self-similar inviscid separation. Various contributions to the circulation shedding rate are presented. The results show that during this initial time period, viscous diffusion of vorticity out of the vortex is significant but appears to be independent of the value of the Reynolds number. At later times, the departure of the shed circulation from its large Reynolds number behaviour is significantly affected by diffusive loss of vorticity through the symmetry axis. A timescale is proposed that describes when the viscous loss through the axis becomes relevant. The simulations provide benchmark results to evaluate simpler separation models such as point vortex and vortex sheet models. A comparison with vortex sheet results is included. (paper)

  17. Circulation Modeling for Proposed Port Facility at Ponce and Guayanilla, Puerto Rico

    National Research Council Canada - National Science Library

    Scheffner, Norman

    2002-01-01

    ... of Ponce and Guayanilla, Puerto Rico. Impacts of the proposed construction were determined by conducting numerical simulations of tidal and storm surge circulation at the project sites using with and without the proposed port facilities...

  18. Passive tracers in a general circulation model of the Southern Ocean

    Directory of Open Access Journals (Sweden)

    I. G. Stevens

    Full Text Available Passive tracers are used in an off-line version of the United Kingdom Fine Resolution Antarctic Model (FRAM to highlight features of the circulation and provide information on the inter-ocean exchange of water masses. The use of passive tracers allows a picture to be built up of the deep circulation which is not readily apparent from examination of the velocity or density fields. Comparison of observations with FRAM results gives good agreement for many features of the Southern Ocean circulation. Tracer distributions are consistent with the concept of a global "conveyor belt" with a return path via the Agulhas retroflection region for the replenishment of North Atlantic Deep Water.

    Key words. Oceanography: general (numerical modeling; water masses · Oceanography: physical (general circulation

  19. Computer simulation of natural circulation in FFTF secondary loops

    International Nuclear Information System (INIS)

    Beaver, T.R.; Turner, D.M.; Additon, S.L.

    1979-07-01

    A thermal/hydraulic model of the FFTF secondary heat transport loop has been calibrated against transient natural circulation test data collected March to May 1979. The tests verified that the transition to natural convective flow could be effected from near isothermal conditions without excessive cooling at the air dump heat exchangers. Key empirical parameters of pressure drop and heat loss were found to be at 88% and 81% of pretest estimates, respectively. Pretest piping thermal transport and flow calculational models required no further revision to produce good agreement with test data

  20. A multimodel comparison of centennial Atlantic meridional overturning circulation variability

    Energy Technology Data Exchange (ETDEWEB)

    Menary, Matthew B.; Vellinga, Michael; Palmer, Matthew D. [Met Office Hadley Centre, Exeter, Devon (United Kingdom); Park, Wonsun; Latif, Mojib [IFM-GEOMAR, Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); Lohmann, Katja; Jungclaus, Johann H. [Max Planck Inst Meteorol, Hamburg (Germany)

    2012-06-15

    A mechanism contributing to centennial variability of the Atlantic Meridional Overturning Circulation (AMOC) is tested with multi-millennial control simulations of several coupled general circulation models (CGCMs). These are a substantially extended integration of the 3rd Hadley Centre Coupled Climate Model (HadCM3), the Kiel Climate Model (KCM), and the Max Plank Institute Earth System Model (MPI-ESM). Significant AMOC variability on time scales of around 100 years is simulated in these models. The centennial mechanism links changes in the strength of the AMOC with oceanic salinities and surface temperatures, and atmospheric phenomena such as the Intertropical Convergence Zone (ITCZ). 2 of the 3 models reproduce all aspects of the mechanism, with the third (MPI-ESM) reproducing most of them. A comparison with a high resolution paleo-proxy for Sea Surface Temperatures (SSTs) north of Iceland over the last 4,000 years, also linked to the ITCZ, suggests that elements of this mechanism may also be detectable in the real world. (orig.)

  1. The development of natural circulation operation support program for ship nuclear power machinery

    International Nuclear Information System (INIS)

    Hao, Jianli; Chen, Wenzhen; Chen, Zhiyun

    2012-01-01

    Highlights: ► The natural circulation under various ocean and ship motion conditions is studied. ► A natural circulation operation support computer program (NCOSP) is developed with Simulink. ► The NCOSP program has the merit of easy input preparation, fast and accurate simulation. ► The NCOSP is suitable for the fast parameter simulation of ship nuclear power machinery. -- Abstract: The existing simulation program of ship nuclear power machinery (SNPM) cannot adequately deal with the natural circulation (NC) operation and the effects of various ocean conditions and ship motion. Aiming at the problem, the natural circulation operation support computer program for SNPM is developed, in which the momentum conservation equation of the primary loop, some heat transfer and flow resistance models and equations are modified for the various ocean conditions and ship motion. The additional pressure loss model and effective height model for the control volume in the gyration movement, simple harmonic rolling and pitching movements are also discussed in the paper. Furthermore, the transient response to load change under NC conditions is analyzed by the developed program. The results are compared with those predicted by the modified RELAP5/mod3.2 code. It is shown that the natural circulation operation support program (NCOSP) is simple in the input preparation, runs fast and has a satisfactory precision, and is therefore very suitable for the operating field support of SNPM under the conditions of NC.

  2. Modeling the Dynamics of the Atmospheric Boundary Layer Over the Antarctic Plateau With a General Circulation Model

    Science.gov (United States)

    Vignon, Etienne; Hourdin, Frédéric; Genthon, Christophe; Van de Wiel, Bas J. H.; Gallée, Hubert; Madeleine, Jean-Baptiste; Beaumet, Julien

    2018-01-01

    Observations evidence extremely stable boundary layers (SBL) over the Antarctic Plateau and sharp regime transitions between weakly and very stable conditions. Representing such features is a challenge for climate models. This study assesses the modeling of the dynamics of the boundary layer over the Antarctic Plateau in the LMDZ general circulation model. It uses 1 year simulations with a stretched-grid over Dome C. The model is nudged with reanalyses outside of the Dome C region such as simulations can be directly compared to in situ observations. We underline the critical role of the downward longwave radiation for modeling the surface temperature. LMDZ reasonably represents the near-surface seasonal profiles of wind and temperature but strong temperature inversions are degraded by enhanced turbulent mixing formulations. Unlike ERA-Interim reanalyses, LMDZ reproduces two SBL regimes and the regime transition, with a sudden increase in the near-surface inversion with decreasing wind speed. The sharpness of the transition depends on the stability function used for calculating the surface drag coefficient. Moreover, using a refined vertical grid leads to a better reversed "S-shaped" relationship between the inversion and the wind. Sudden warming events associated to synoptic advections of warm and moist air are also well reproduced. Near-surface supersaturation with respect to ice is not allowed in LMDZ but the impact on the SBL structure is moderate. Finally, climate simulations with the free model show that the recommended configuration leads to stronger inversions and winds over the ice-sheet. However, the near-surface wind remains underestimated over the slopes of East-Antarctica.

  3. Numerical simulations of local circulations and pollution transport over Reunion Island

    Directory of Open Access Journals (Sweden)

    D. Lesouëf

    2011-01-01

    Full Text Available A series of high-resolution (1 km numerical simulations with a limited-area numerical model has been performed over Reunion Island. In the dynamical context of a regular maritime flow perturbed by a major topographic obstacle such as Reunion Island, the objectives are to identify the main atmospheric circulations at local-scale over the island and to improve the understanding of local-scale transport and dispersion of pollutants emitted from local sources. To investigate the effects of topography and land surface heating on low-level flows over the island, simulations representative of austral winter were performed in idealized conditions keeping the radiative forcing plus a background east-south-easterly synoptic flux of varying strengths, typical of the prevailing trade-wind conditions. The numerical experiments show mainly that flow splitting of the trade-wind occurs around the island, with enhanced winds blowing along the coast lines parallel to the synoptic flux, due to the lateral constriction of the flow by the island and resulting Venturi effect. Blocking occurs on the island side facing the trade-wind. The north-western area on the leeside is screened from the trade-wind by high mountains, and this enables the development of diurnal thermally-induced circulations, combining downslope and land-breeze at night, and upslope and sea breeze at daytime. Flow splitting is modulated by radiative convergence toward the island at daytime, and divergence from the island at night. Stronger winds than the large-scale trade-wind occur along the coast at daytime (Venturi effect, whereas at night, the trade-wind flow is pushed few kilometres offshore by divergence of cooled air from the land. At night, the trade-wind flow is pushed few kilometres offshore by divergence of cooled air from the land. Consequently, a number of processes of pollution transport and dispersion have been identified. Vortices in the wake of the island were found to cause

  4. Numerical simulations of local circulations and pollution transport over Reunion Island

    Energy Technology Data Exchange (ETDEWEB)

    Lesouef, D.; Delmas, R. [La Reunion Univ., CNRS/INSU UMR8105 (France). Lab. de l' Atmosphere et des Cyclones; Gheusi, F.; Escobar, J. [Toulouse III Univ., CNRS/INSU UMR5560 (France). Lab. d' Aerologie

    2011-07-01

    A series of high-resolution (1 km) numerical simulations with a limited-area numerical model has been performed over Reunion Island. In the dynamical context of a regular maritime flow perturbed by a major topographic obstacle such as Reunion Island, the objectives are to identify the main atmospheric circulations at local-scale over the island and to improve the understanding of local-scale transport and dispersion of pollutants emitted from local sources. To investigate the effects of topography and land surface heating on low-level flows over the island, simulations representative of austral winter were performed in idealized conditions keeping the radiative forcing plus a background east-south-easterly synoptic flux of varying strengths, typical of the prevailing trade-wind conditions. The numerical experiments show mainly that flow splitting of the trade-wind occurs around the island, with enhanced winds blowing along the coast lines parallel to the synoptic flux, due to the lateral constriction of the flow by the island and resulting Venturi effect. Blocking occurs on the island side facing the trade-wind. The north-western area on the leeside is screened from the trade-wind by high mountains, and this enables the development of diurnal thermally-induced circulations, combining downslope and land-breeze at night, and upslope and sea breeze at daytime. Flow splitting is modulated by radiative convergence toward the island at daytime, and divergence from the island at night. Stronger winds than the large-scale trade-wind occur along the coast at daytime (Venturi effect), whereas at night, the trade-wind flow is pushed few kilometres offshore by divergence of cooled air from the land. At night, the trade-wind flow is pushed few kilometres offshore by divergence of cooled air from the land. Consequently, a number of processes of pollution transport and dispersion have been identified. Vortices in the wake of the island were found to cause counterflow circulation

  5. Some lessons and thoughts from development of an old-fashioned high-resolution atmospheric general circulation model

    Science.gov (United States)

    Ohfuchi, Wataru; Enomoto, Takeshi; Yoshioka, Mayumi K.; Takaya, Koutarou

    2014-05-01

    Some high-resolution simulations with a conventional atmospheric general circulation model (AGCM) were conducted right after the first Earth Simulator started operating in the spring of 2002. More simulations with various resolutions followed. The AGCM in this study, AFES (Agcm For the Earth Simulator), is a primitive equation spectral transform method model with a cumulus convection parameterization. In this presentation, some findings from comparisons between high and low-resolution simulations, and some future perspectives of old-fashioned AGCMs will be discussed. One obvious advantage of increasing resolution is capability of resolving the fine structures of topography and atmospheric flow. By increasing resolution from T39 (about 320 km horizontal grid interval) to T79 (160 km), to T159 (80 km) to T319 (40 km), topographic precipitation over Japan becomes increasingly realistic. This feature is necessary for climate and weather studies involving both global and local aspects. In order to resolve submesoscale (about 100 km horizontal scale) atmospheric circulation, about 10-km grid interval is necessary. Comparing T1279 (10 km) simulations with T319 ones, it is found that, for example, the intensity of heavy rain associated with Baiu front and the central pressure of typhoon become more realistic. These realistic submesoscale phenomena should have impact on larger-sale flow through dynamics and thermodynamics. An interesting finding by increasing horizontal resolution of a conventional AGCM is that some cumulus convection parameterizations, such as Arakawa-Schubert type scheme, gradually stop producing precipitation, while some others, such as Emanuel type, do not. With the former, the grid condensation increases with the model resolution to compensate. Which characteristics are more desirable is arguable but it is an important feature one has to consider when developing a high-resolution conventional AGCM. Many may think that conventional primitive equation

  6. Technique for Simulation of Black Sea Circulation with Increased Resolution in the Area of the IO RAS Polygon

    Science.gov (United States)

    Gusev, A. V.; Zalesny, V. B.; Fomin, V. V.

    2017-11-01

    A numerical technique is presented for simulating the hydrophysical fields of the Black Sea on a variable-step grid with refinement in the area of IO RAS polygon. Model primitive equations are written in spherical coordinates with an arbitrary arrangement of poles. In order to increase the horizontal resolution of the coastal zone in the area of the IO RAS polygon in the northeastern part of the sea near Gelendzhik, one of the poles is placed at a land point (38.35° E, 44.75° N). The model horizontal resolution varies from 150 m in the area of the IO RAS polygon to 4.6 km in the southwestern part of the Black Sea. The numerical technique makes it possible to simulate a large-scale structure of Black Sea circulation as well as the meso- and submesoscale dynamics of the coastal zone. In order to compute the atmospheric forcing, the results of the regional climate model WRF with a resolution of about 10 km in space and 1 h in time are used. In order to demonstrate the technique, Black Sea hydrophysical fields for 2011-2012 and a passive tracer transport representing self-cleaning of Gelendzhik Bay in July 2012 are simulated.

  7. Prediction to natural circulation in semiscale SBLOCA test, S-NC-8B

    International Nuclear Information System (INIS)

    Bang, Young Seok; Seul, Kwang Won; Lee, Sukho; Kim, Hho Jung

    1995-01-01

    Natural circulation and the associated thermal-hydraulic behavior are predicted by RELAP5/MOD3.1 code against the test S-NC-8B, which simulated 0.1% equivalent SBLOCA in PWR. The Semiscale Mod-2A facility and the test-specific initial/boundary condition are modeled. The calculation result is compared with the experiment data in terms of natural circulation characteristic and the code predictability is evaluated on natural circulation. As a result, flow rate during single-and two-phase natural circulation modes is well predicted and slightly overpredicted with oscillation in transition and reflux regimes. Additional sensitivity calculations are attempted with different discharge coefficient and break modeling to investigate the break flow effect

  8. Simulated climate change during the last 1,000 years: comparing the ECHO-G general circulation model with the MAGICC simple climate model

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Timothy J.; Briffa, Keith R. [University of East Anglia, Climatic Research Unit, School of Environmental Sciences, Norwich (United Kingdom); Raper, Sarah C.B. [University of East Anglia, Climatic Research Unit, School of Environmental Sciences, Norwich (United Kingdom); Manchester Metropolitan University, Dalton Research Institute, Manchester (United Kingdom)

    2006-08-15

    An intercomparison of eight climate simulations, each driven with estimated natural and anthropogenic forcings for the last millennium, indicates that the so-called ''Erik'' simulation of the ECHO-G coupled ocean-atmosphere climate model exhibits atypical behaviour. The ECHO-G simulation has a much stronger cooling trend from 1000 to 1700 and a higher rate of warming since 1800 than the other simulations, with the result that the overall amplitude of millennial-scale temperature variations in the ECHO-G simulation is much greater than in the other models. The MAGICC (Model for the Assessment of Greenhouse-gas-Induced Climate Change) simple climate model is used to investigate possible causes of this atypical behaviour. It is shown that disequilibrium in the initial conditions probably contributes spuriously to the cooling trend in the early centuries of the simulation, and that the omission of tropospheric sulphate aerosol forcing is the likely explanation for the anomalously large recent warming. The simple climate model results are used to adjust the ECHO-G Erik simulation to mitigate these effects, which brings the simulation into better agreement with the other seven models considered here and greatly reduces the overall range of temperature variations during the last millennium simulated by ECHO-G. Smaller inter-model differences remain which can probably be explained by a combination of the particular forcing histories and model sensitivities of each experiment. These have not been investigated here, though we have diagnosed the effective climate sensitivity of ECHO-G to be 2.39{+-}0.11 K for a doubling of CO{sub 2}. (orig.)

  9. Modeling growth of Atlantic cod larvae on the southern flank of Georges Bank in the tidal-front circulation during May 1999

    Science.gov (United States)

    Lough, R. G.; Broughton, E. A.; Buckley, L. J.; Incze, L. S.; Pehrson Edwards, K.; Converse, R.; Aretxabaleta, A.; Werner, F. E.

    2006-11-01

    Cruises were conducted in spring 1999 to describe the interaction between tidal-front processes and the transport, retention, and growth of cod larvae and their prey during the seasonal transition to a stratified water-column along the southern flank of Georges Bank. All the physical and biological observations were integrated in coupled circulation-trophodynamic simulations. The three-dimensional circulation fields were modeled using data assimilation methods described in Aretxabaleta et al. [2005. Data assimilative hindcast on the Southern Flank of Georges Bank during May 1999: frontal circulation and implications. Continental Shelf Research 25, 849-874]. The individual-based model (IBM) of Lough et al. [2005. A general biophysical model of larval cod growth applied to populations on Georges Bank. Fisheries Oceanography 14, 241-262] was used to consider trophodynamic effects on the growth and survival of larval cod. Prey fields were specified for mixed and stratified water columns from field surveys and allowed to adjust in the circulation model. Encounter and ingestion rates of larvae were functions of prey concentration, larval search patterns, light, swimming speeds of predator and prey, and turbulence. Model outputs provide hourly depth-dependent estimates of growth rates, prey biomass ingested, and larval length and weight. Simulations were conducted along a 2-D transect across the tidal front, from mixed to stratified water columns, before and after a wind event. Pre-storm, observed larval cod growth rates, based on RNA-DNA analysis, were highest in the surface 20 m at the stratified and front stations. Post-storm, larval growth rates decreased 1-2% d -1 at the stratified and front stations, corresponding with a <1 °C decrease in temperature. At the mixed station, there was no apparent difference in growth rates with depth, either before or after the storm. Simulations indicate that maximum larval growth rates can occur at the tidal-mixing front due to the

  10. Modelling Nd-isotopes with a coarse resolution ocean circulation model: Sensitivities to model parameters and source/sink distributions

    International Nuclear Information System (INIS)

    Rempfer, Johannes; Stocker, Thomas F.; Joos, Fortunat; Dutay, Jean-Claude; Siddall, Mark

    2011-01-01

    The neodymium (Nd) isotopic composition (Nd) of seawater is a quasi-conservative tracer of water mass mixing and is assumed to hold great potential for paleo-oceanographic studies. Here we present a comprehensive approach for the simulation of the two neodymium isotopes 143 Nd, and 144 Nd using the Bern3D model, a low resolution ocean model. The high computational efficiency of the Bern3D model in conjunction with our comprehensive approach allows us to systematically and extensively explore the sensitivity of Nd concentrations and ε Nd to the parametrisation of sources and sinks. Previous studies have been restricted in doing so either by the chosen approach or by computational costs. Our study thus presents the most comprehensive survey of the marine Nd cycle to date. Our model simulates both Nd concentrations as well as ε Nd in good agreement with observations. ε Nd co-varies with salinity, thus underlining its potential as a water mass proxy. Results confirm that the continental margins are required as a Nd source to simulate Nd concentrations and ε Nd consistent with observations. We estimate this source to be slightly smaller than reported in previous studies and find that above a certain magnitude its magnitude affects ε Nd only to a small extent. On the other hand, the parametrisation of the reversible scavenging considerably affects the ability of the model to simulate both, Nd concentrations and ε Nd . Furthermore, despite their small contribution, we find dust and rivers to be important components of the Nd cycle. In additional experiments, we systematically varied the diapycnal diffusivity as well as the Atlantic-to-Pacific freshwater flux to explore the sensitivity of Nd concentrations and its isotopic signature to the strength and geometry of the overturning circulation. These experiments reveal that Nd concentrations and ε Nd are comparatively little affected by variations in diapycnal diffusivity and the Atlantic-to-Pacific freshwater flux

  11. Modeling of atmospheric circulation at mid- and high latitudes of the northern hemisphere - evaluation studies using ARPEGE

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yongjia

    2007-03-15

    In the present thesis the author evaluate experiments with the atmospheric part of BCM (Bergen climate model), named ARPEGE, performed for present day climate during the last 50 years. The objectives have been to evaluate the ability of ARPEGE to simulate the general circulation at mid- and high northern latitudes in winter. Particular emphasis is put on the dependence of systematic errors on the horizontal resolution in the model, the climatology and variability of storm tracks, the poleward energy transport and the North Atlantic winter circulation expressed by the North Atlantic Oscillation (NAO; e.g. Hurrell 1995). In addition, use of ARPEGE for downscaling purposes has been evaluated. The work on storm tracks, poleward energy transport and the variability of the NAO include pure observational studies, mainly based on reanalyses, bringing forward new knowledge on extratropical storm tracks, heat transport variations and links between Eurasian snow cover and wintertime NAO

  12. Links between circulation types and precipitation in Central Europe in the observed data and regional climate model simulations

    Czech Academy of Sciences Publication Activity Database

    Plavcová, Eva; Kyselý, Jan; Štěpánek, P.

    2014-01-01

    Roč. 34, č. 9 (2014), s. 2885-2898 ISSN 0899-8418 R&D Projects: GA ČR GAP209/10/2265 Grant - others:FP6 ENSEMBLES(XE) 505539 Program:FP6 Institutional support: RVO:68378289 Keywords : precipitation * atmospheric circulation * regional climate models * ENSEMBLES * Central Europe Subject RIV: DG - Athmosphere Sciences, Meteorology; DG - Athmosphere Sciences, Meteorology (UEK-B) Impact factor: 3.157, year: 2014

  13. A finite element simulation of tidal circulation in the Gulf of Kutch, India

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Luick, J.L.

    difference model for the same region. The results were found to be consistent, with the fe model providing improved resolution in key areas. Residual circulation evaluated by forcing the fe model with Md2 tide and winds (those typical of the southwest monsoon...

  14. A regional climate model for northern Europe: model description and results from the downscaling of two GCM control simulations

    Science.gov (United States)

    Rummukainen, M.; Räisänen, J.; Bringfelt, B.; Ullerstig, A.; Omstedt, A.; Willén, U.; Hansson, U.; Jones, C.

    This work presents a regional climate model, the Rossby Centre regional Atmospheric model (RCA1), recently developed from the High Resolution Limited Area Model (HIRLAM). The changes in the HIRLAM parametrizations, necessary for climate-length integrations, are described. A regional Baltic Sea ocean model and a modeling system for the Nordic inland lake systems have been coupled with RCA1. The coupled system has been used to downscale 10-year time slices from two different general circulation model (GCM) simulations to provide high-resolution regional interpretation of large-scale modeling. A selection of the results from the control runs, i.e. the present-day climate simulations, are presented: large-scale free atmospheric fields, the surface temperature and precipitation results and results for the on-line simulated regional ocean and lake surface climates. The regional model modifies the surface climate description compared to the GCM simulations, but it is also substantially affected by the biases in the GCM simulations. The regional model also improves the representation of the regional ocean and the inland lakes, compared to the GCM results.

  15. A regional climate model for northern Europe: model description and results from the downscaling of two GCM control simulations

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, M.; Raeisaenen, J.; Bringfelt, B.; Ullerstig, A.; Omstedt, A.; Willen, U.; Hansson, U.; Jones, C. [Rossby Centre, Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)

    2001-03-01

    This work presents a regional climate model, the Rossby Centre regional Atmospheric model (RCA1), recently developed from the High Resolution Limited Area Model (HIRLAM). The changes in the HIRLAM parametrizations, necessary for climate-length integrations, are described. A regional Baltic Sea ocean model and a modeling system for the Nordic inland lake systems have been coupled with RCA1. The coupled system has been used to downscale 10-year time slices from two different general circulation model (GCM) simulations to provide high-resolution regional interpretation of large-scale modeling. A selection of the results from the control runs, i.e. the present-day climate simulations, are presented: large-scale free atmospheric fields, the surface temperature and precipitation results and results for the on-line simulated regional ocean and lake surface climates. The regional model modifies the surface climate description compared to the GCM simulations, but it is also substantially affected by the biases in the GCM simulations. The regional model also improves the representation of the regional ocean and the inland lakes, compared to the GCM results. (orig.)

  16. Numerical simulation of shell-side heat transfer and flow of natural circulation heat exchanger

    International Nuclear Information System (INIS)

    Xue Ruojun; Deng Chengcheng; Li Chaojun; Wang Mingyuan

    2012-01-01

    In order to analyze the influence on the heat transfer and flow characteristics of the heat exchanger model of different solving models and structures, a variety of transformation to the model equivalent for the heat exchanger was studied. In this paper, Fluent software was used to simulate the temperature-field and flow-field of the equivalent model, and investigate its heat-transferring and flow characteristics. Through comparative analysis of the distribution of temperature-field and flow-field for different models, the heat-transferring process and natural convection situation of heat exchanger were deeply understood. The results show that the temperature difference between the inside and outside of the natural circulation heat exchanger tubes is larger and the flow is more complex, so the turbulence model is the more reasonable choice. Asymmetry of tubes position makes the flow and heat transfer of the fluid on both sides to be dissymmetrical and makes the fluid interaction, and increases the role of natural convection. The complex structure of heat exchanger makes the flow and heat transfer of the fluid on both sides to be irregular to some extent when straight tubes into C-bent are transformed, and all these make the turbulence intensity increase and improve the effect of heat transfer. (authors)

  17. The GEM-Mars general circulation model for Mars: Description and evaluation

    Science.gov (United States)

    Neary, L.; Daerden, F.

    2018-01-01

    GEM-Mars is a gridpoint-based three-dimensional general circulation model (GCM) of the Mars atmosphere extending from the surface to approximately 150 km based on the GEM (Global Environmental Multiscale) model, part of the operational weather forecasting and data assimilation system for Canada. After the initial modification for Mars, the model has undergone considerable changes. GEM-Mars is now based on GEM 4.2.0 and many physical parameterizations have been added for Mars-specific atmospheric processes and surface-atmosphere exchange. The model simulates interactive carbon dioxide-, dust-, water- and atmospheric chemistry cycles. Dust and water ice clouds are radiatively active. Size distributed dust is lifted by saltation and dust devils. The model includes 16 chemical species (CO2, Argon, N2, O2, CO, H2O, CH4, O3, O(1D), O, H, H2, OH, HO2, H2O2 and O2(a1Δg)) and has fully interactive photochemistry (15 reactions) and gas-phase chemistry (31 reactions). GEM-Mars provides a good simulation of the water and ozone cycles. A variety of other passive tracers can be included for dedicated studies, such as the emission of methane. The model has both a hydrostatic and non-hydrostatic formulation, and together with a flexible grid definition provides a single platform for simulations on a variety of horizontal scales. The model code is fully parallelized using OMP and MPI. Model results are evaluated by comparison to a selection of observations from instruments on the surface and in orbit, relating to atmosphere and surface temperature and pressure, dust and ice content, polar ice mass, polar argon, and global water and ozone vertical columns. GEM-Mars will play an integral part in the analysis and interpretation of data that is received by the NOMAD spectrometer on the ESA-Roskosmos ExoMars Trace Gas Orbiter. The present paper provides an overview of the current status and capabilities of the GEM-Mars model and lays the foundations for more in-depth studies in support

  18. Mechanism of ENSO influence on the South Asian monsoon rainfall in global model simulations

    Science.gov (United States)

    Joshi, Sneh; Kar, Sarat C.

    2018-02-01

    Coupled ocean atmosphere global climate models are increasingly being used for seasonal scale simulation of the South Asian monsoon. In these models, sea surface temperatures (SSTs) evolve as coupled air-sea interaction process. However, sensitivity experiments with various SST forcing can only be done in an atmosphere-only model. In this study, the Global Forecast System (GFS) model at T126 horizontal resolution has been used to examine the mechanism of El Niño-Southern Oscillation (ENSO) forcing on the monsoon circulation and rainfall. The model has been integrated (ensemble) with observed, climatological and ENSO SST forcing to document the mechanism on how the South Asian monsoon responds to basin-wide SST variations in the Indian and Pacific Oceans. The model simulations indicate that the internal variability gets modulated by the SSTs with warming in the Pacific enhancing the ensemble spread over the monsoon region as compared to cooling conditions. Anomalous easterly wind anomalies cover the Indian region both at 850 and 200 hPa levels during El Niño years. The locations and intensity of Walker and Hadley circulations are altered due to ENSO SST forcing. These lead to reduction of monsoon rainfall over most parts of India during El Niño events compared to La Niña conditions. However, internally generated variability is a major source of uncertainty in the model-simulated climate.

  19. A Statistical Evaluation of Atmosphere-Ocean General Circulation Models: Complexity vs. Simplicity

    OpenAIRE

    Robert K. Kaufmann; David I. Stern

    2004-01-01

    The principal tools used to model future climate change are General Circulation Models which are deterministic high resolution bottom-up models of the global atmosphere-ocean system that require large amounts of supercomputer time to generate results. But are these models a cost-effective way of predicting future climate change at the global level? In this paper we use modern econometric techniques to evaluate the statistical adequacy of three general circulation models (GCMs) by testing thre...

  20. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    A model for optimizing the dynamic performance of boiler have been developed. Design variables related to the size of the boiler and its dynamic performance have been defined. The object function to be optimized takes the weight of the boiler and its dynamic capability into account. As constraints...... for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the flue gas side, a model for the evaporator circuit and a model for the drum....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level fluctuations in the drum. The dynamic model has been...

  1. Short ensembles: An Efficient Method for Discerning Climate-relevant Sensitivities in Atmospheric General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Hui; Rasch, Philip J.; Zhang, Kai; Qian, Yun; Yan, Huiping; Zhao, Chun

    2014-09-08

    This paper explores the feasibility of an experimentation strategy for investigating sensitivities in fast components of atmospheric general circulation models. The basic idea is to replace the traditional serial-in-time long-term climate integrations by representative ensembles of shorter simulations. The key advantage of the proposed method lies in its efficiency: since fewer days of simulation are needed, the computational cost is less, and because individual realizations are independent and can be integrated simultaneously, the new dimension of parallelism can dramatically reduce the turnaround time in benchmark tests, sensitivities studies, and model tuning exercises. The strategy is not appropriate for exploring sensitivity of all model features, but it is very effective in many situations. Two examples are presented using the Community Atmosphere Model version 5. The first example demonstrates that the method is capable of characterizing the model cloud and precipitation sensitivity to time step length. A nudging technique is also applied to an additional set of simulations to help understand the contribution of physics-dynamics interaction to the detected time step sensitivity. In the second example, multiple empirical parameters related to cloud microphysics and aerosol lifecycle are perturbed simultaneously in order to explore which parameters have the largest impact on the simulated global mean top-of-atmosphere radiation balance. Results show that in both examples, short ensembles are able to correctly reproduce the main signals of model sensitivities revealed by traditional long-term climate simulations for fast processes in the climate system. The efficiency of the ensemble method makes it particularly useful for the development of high-resolution, costly and complex climate models.

  2. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristjansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2009-04-10

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on Nd

  3. Validation of SSC using the FFTF natural-circulation tests

    International Nuclear Information System (INIS)

    Horak, W.C.; Guppy, J.G.; Kennett, R.J.

    1982-01-01

    As part of the Super System Code (SSC) validation program, the 100% power FFTF natural circulation test has been simulated using SSC. A detailed 19 channel, 2 loop model was used in SSC. Comparisons showed SSC calculations to be in good agreement with the Fast Flux Test Facility (FFTF), test data. Simulation of the test was obtained in real time

  4. Development of a cerebral circulation model for the automatic control of brain physiology.

    Science.gov (United States)

    Utsuki, T

    2015-01-01

    In various clinical guidelines of brain injury, intracranial pressure (ICP), cerebral blood flow (CBF) and brain temperature (BT) are essential targets for precise management for brain resuscitation. In addition, the integrated automatic control of BT, ICP, and CBF is required for improving therapeutic effects and reducing medical costs and staff burden. Thus, a new model of cerebral circulation was developed in this study for integrative automatic control. With this model, the CBF and cerebral perfusion pressure of a normal adult male were regionally calculated according to cerebrovascular structure, blood viscosity, blood distribution, CBF autoregulation, and ICP. The analysis results were consistent with physiological knowledge already obtained with conventional studies. Therefore, the developed model is potentially available for the integrative control of the physiological state of the brain as a reference model of an automatic control system, or as a controlled object in various control simulations.

  5. Simulation of a pool type research reactor

    International Nuclear Information System (INIS)

    Oliveira, Andre Felipe da Silva de; Moreira, Maria de Lourdes

    2011-01-01

    Computational fluid dynamic is used to simulate natural circulation condition after a research reactor shutdown. A benchmark problem was used to test the viability of usage such code to simulate the reactor model. A model which contains the core, the pool, the reflector tank, the circulation pipes and chimney was simulated. The reactor core contained in the full scale model was represented by a porous media. The parameters of porous media were obtained from a separate CFD analysis of the full core model. Results demonstrate that such studies can be carried out for research and test of reactors design. (author)

  6. Simulation of Synoptic Scale Circulation Features over Southern Africa Using GCMS

    International Nuclear Information System (INIS)

    Browne, Nana Ama Kum; Abiodun, Babatunde Joseph; Tadross, Mark; Hewitson, Bruce

    2009-11-01

    Two global models (HadAM3: The Hadley Centre Atmospheric Model version 3 and CAM3: The Community Atmospheric model version 3) have been studied regarding their capabilities in reproducing the small scale features over southern Africa compared with the NCEP reanalysis. In this study, geopotential height at 500hPa and 850hPa pressure levels are used to investigate the variability of small scale circulation features over southern Africa. The investigation took into consideration the magnitude of the models standard deviations. Most of the results were linked with rainfall and temperature over the region. It was found that the standardized anomalies in the geopotential height at the 500hPa pressure level are in phase with that of rainfall. In contrast, the standardized anomalies of 850hPa pressure level geopotential height are out of phase with the standardized anomalies of rainfall and temperature. In addition, the models are able to capture the variation in the mean cut-off lows, number of days with deep tropical lows and number of days with Tropical Temperate Troughs (TTTs) quite well. However, the models could not capture the number of days with temperate lows very well. Generally, the models are able to reproduce the synoptic scale circulation features which are crucial for reliable seasonal forecast over southern Africa. (author)

  7. Numerical Models of Human Circulatory System under Altered Gravity: Brain Circulation

    Science.gov (United States)

    Kim, Chang Sung; Kiris, Cetin; Kwak, Dochan; David, Tim

    2003-01-01

    A computational fluid dynamics (CFD) approach is presented to model the blood flow through the human circulatory system under altered gravity conditions. Models required for CFD simulation relevant to major hemodynamic issues are introduced such as non-Newtonian flow models governed by red blood cells, a model for arterial wall motion due to fluid-wall interactions, a vascular bed model for outflow boundary conditions, and a model for auto-regulation mechanism. The three-dimensional unsteady incompressible Navier-Stokes equations coupled with these models are solved iteratively using the pseudocompressibility method and dual time stepping. Moving wall boundary conditions from the first-order fluid-wall interaction model are used to study the influence of arterial wall distensibility on flow patterns and wall shear stresses during the heart pulse. A vascular bed modeling utilizing the analogy with electric circuits is coupled with an auto-regulation algorithm for multiple outflow boundaries. For the treatment of complex geometry, a chimera overset grid technique is adopted to obtain connectivity between arterial branches. For code validation, computed results are compared with experimental data for steady and unsteady non-Newtonian flows. Good agreement is obtained for both cases. In sin-type Gravity Benchmark Problems, gravity source terms are added to the Navier-Stokes equations to study the effect of gravitational variation on the human circulatory system. This computational approach is then applied to localized blood flows through a realistic carotid bifurcation and two Circle of Willis models, one using an idealized geometry and the other model using an anatomical data set. A three- dimensional anatomical Circle of Willis configuration is reconstructed from human-specific magnetic resonance images using an image segmentation method. The blood flow through these Circle of Willis models is simulated to provide means for studying gravitational effects on the brain

  8. Transient analysis of a U-tube natural circulation steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Gaikwad, A J; Kumar, Rajesh; Bhadra, Anu; Chakraborty, G; Venkat Raj, V [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    A computer code has been developed, for transient thermal-hydraulic analysis of proposed 500 MWe PHWR steam generator. The transient behaviour of a nuclear power plant is very much dependent on the steam generator performance, as it provides a thermal linkage between the primary and secondary systems. Study of dynamics of steam generator is essential for over all power plant dynamics as well as design of control systems for steam generator. A mathematical model has been developed for the simulation of thermal-hydraulic phenomena in a U tube natural circulation steam generator. Fluid model is based on one dimensional, nonlinear, single fluid conservation equations of mass, momentum, energy and equation of state. This model includes coupled two phase flow heat transfer and natural circulation. The model accounts for both compressibility and thermal expansion effects. The process simulation and results obtained for transients such as step change in load and total loss of feed water are presented. (author). 5 refs., 7 figs.

  9. Circulation controls on southern African precipitation in coupled models: The role of the Angola Low

    Science.gov (United States)

    Munday, Callum; Washington, Richard

    2017-01-01

    In southern Africa, models from the latest Coupled Model Intercomparison Project produce a wide variety of rainfall climatologies. Differences between models in rainfall amount reach 70% in the rainy season (December-February; DJF), and the median model overestimates rainfall by between 15 and 40% throughout the annual cycle. This paper investigates the role of an understudied regional circulation feature, the Angola Low, in differentiating between model estimates of precipitation. In austral spring, the Angola Low is a heat low, driven by strong surface heating whereas in DJF it is more similar to a tropical low and is associated with moist instability. In the austral summer, we find that the simulated strength of the Angola Low is associated with between 40 and 60% of the intermodel variability in model mean rainfall across the subcontinent. The relationship is particularly strong along a northwest, southeast axis aligned from Angola down to the Mozambican Channel. Along this axis, models with stronger Angola Lows simulate enhanced, by up to 50 g kg-1 ms-1, northeasterly and northwesterly moisture transport. The enhanced southward moisture flux in models with relatively deep Angola Lows increases the rate of moisture convergence in central areas of the subcontinent and reduces moisture divergence across the Mozambican coast. The results highlight the need to better understand the links between the Angola Low and southern African rainfall and suggest that improving the simulation of the Angola Low can help to constrain model estimates of southern African rainfall.

  10. Ocean circulation drifts in multi-millennial climate simulations: the role of salinity corrections and climate feedbacks

    Science.gov (United States)

    Dentith, Jennifer E.; Ivanovic, Ruza F.; Gregoire, Lauren J.; Tindall, Julia C.; Smith, Robin S.

    2018-05-01

    Low-resolution, complex general circulation models (GCMs) are valuable tools for studying the Earth system on multi-millennial timescales. However, slowly evolving salinity drifts can cause large shifts in climatic and oceanic regimes over thousands of years. We test two different schemes for neutralising unforced salinity drifts in the FAMOUS GCM: surface flux correction and volumetric flux correction. Although both methods successfully maintain a steady global mean salinity, local drifts and subsequent feedbacks promote cooling (≈ 4 °C over 6000 years) and freshening (≈ 2 psu over 6000 years) in the North Atlantic Ocean, and gradual warming (≈ 0.2 °C per millennium) and salinification (≈ 0.15 psu per millennium) in the North Pacific Ocean. Changes in the surface density in these regions affect the meridional overturning circulation (MOC), such that, after several millennia, the Atlantic MOC (AMOC) is in a collapsed state, and there is a strong, deep Pacific MOC (PMOC). Furthermore, the AMOC exhibits a period of metastability, which is only identifiable with run lengths in excess of 1500 years. We also compare simulations with two different land surface schemes, demonstrating that small biases in the surface climate may cause regional salinity drifts and significant shifts in the MOC (weakening of the AMOC and the initiation then invigoration of PMOC), even when the global hydrological cycle has been forcibly closed. Although there is no specific precursor to the simulated AMOC collapse, the northwest North Pacific and northeast North Atlantic are important areas that should be closely monitored for trends arising from such biases.

  11. A BABCOCK–LEIGHTON SOLAR DYNAMO MODEL WITH MULTI-CELLULAR MERIDIONAL CIRCULATION IN ADVECTION- AND DIFFUSION-DOMINATED REGIMES

    Energy Technology Data Exchange (ETDEWEB)

    Belucz, Bernadett; Forgács-Dajka, Emese [Eötvös University, Department of Astronomy, 1518 Budapest, Pf. 32 (Hungary); Dikpati, Mausumi, E-mail: bbelucz@astro.elte.hu, E-mail: dikpati@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green, Boulder, CO 80307-3000 (United States)

    2015-06-20

    Babcock–Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock–Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterfly diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed.

  12. A BABCOCK–LEIGHTON SOLAR DYNAMO MODEL WITH MULTI-CELLULAR MERIDIONAL CIRCULATION IN ADVECTION- AND DIFFUSION-DOMINATED REGIMES

    International Nuclear Information System (INIS)

    Belucz, Bernadett; Forgács-Dajka, Emese; Dikpati, Mausumi

    2015-01-01

    Babcock–Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock–Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterfly diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed

  13. Natural Circulation Phenomena and Modelling for Advanced Water Cooled Reactors

    International Nuclear Information System (INIS)

    2012-03-01

    The role of natural circulation in advanced water cooled reactor design has been extended with the adoption of passive safety systems. Some designs utilize natural circulation to remove core heat during normal operation. Most passive safety systems used in evolutionary and innovative water cooled reactor designs are driven by natural circulation. The use of passive systems based on natural circulation can eliminate the costs associated with the installation, maintenance and operation of active systems that require multiple pumps with independent and redundant electric power supplies. However, considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to ensure that the systems perform their intended functions. Several IAEA Member States with advanced reactor development programmes are actively conducting investigations of natural circulation to support the development of advanced water cooled reactor designs with passive safety systems. To foster international collaboration on the enabling technology of passive systems that utilize natural circulation, in 2004 the IAEA initiated a coordinated research project (CRP) on Natural Circulation Phenomena, Modelling and Reliability of Passive Systems that Utilize Natural Circulation. Three reports were published within the framework of this CRP. The first report (IAEA-TECDOC-1474) contains the material developed for the first IAEA training course on natural circulation in water cooled nuclear power plants. The second report (IAEA-TECDOC-1624) describes passive safety systems in a wide range of advanced water cooled nuclear power plant designs, with the goal of gaining insights into system design, operation and reliability. This third, and last, report summarizes the research studies completed by participating institutes during the CRP period.

  14. Prognostic cloud water in the Los Alamos general circulation model

    International Nuclear Information System (INIS)

    Kristjansson, J.E.; Kao, C.Y.J.

    1993-01-01

    Most of today's general circulation models (GCMS) have a greatly simplified treatment of condensation and clouds. Recent observational studies of the earth's radiation budget have suggested cloud-related feedback mechanisms to be of tremendous importance for the issue of global change. Thus, there has arisen an urgent need for improvements in the treatment of clouds in GCMS, especially as the clouds relate to radiation. In the present paper, we investigate the effects of introducing pregnostic cloud water into the Los Alamos GCM. The cloud water field, produced by both stratiform and convective condensation, is subject to 3-dimensional advection and vertical diffusion. The cloud water enters the radiation calculations through the long wave emissivity calculations. Results from several sensitivity simulations show that realistic cloud water and precipitation fields can be obtained with the applied method. Comparisons with observations show that the most realistic results are obtained when more sophisticated schemes for moist convection are introduced at the same time. The model's cold bias is reduced and the zonal winds become stronger, due to more realistic tropical convection

  15. Prognostic cloud water in the Los Alamos general circulation model

    International Nuclear Information System (INIS)

    Kristjansson, J.E.; Kao, C.Y.J.

    1994-01-01

    Most of today's general circulation models (GCMs) have a greatly simplified treatment of condensation and clouds. Recent observational studies of the earth's radiation budget have suggested cloud-related feedback mechanisms to be of tremendous importance for the issue of global change. Thus, an urgent need for improvements in the treatment of clouds in GCMs has arisen, especially as the clouds relate to radiation. In this paper, we investigate the effects of introducing prognostic cloud water into the Los Alamos GCM. The cloud water field, produced by both stratiform and convective condensation, is subject to 3-dimensional advection and vertical diffusion. The cloud water enters the radiation calculations through the longwave emissivity calculations. Results from several sensitivity simulations show that realistic water and precipitation fields can be obtained with the applied method. Comparisons with observations show that the most realistic results are obtained when more sophisticated schemes for moist convection are introduced at the same time. The model's cold bias is reduced and the zonal winds becomes stronger because of more realistic tropical convection

  16. Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model

    Science.gov (United States)

    2012-05-31

    paper aooo not violate: any Oisclosur~,;·of trade• secrets or suggestions of outside individuals on::oncams whiCh have· beE !n communicated 1.o...fully three- dimensional global ocean circulation model, we will provide an internal tide capability everywhere, and allow nested models to include

  17. The characteristics of local atmospheric circulation around the Wolsung NPP in Korea

    International Nuclear Information System (INIS)

    Lee, G.B.; Lee, M.C.; Song, Y.I.

    1998-01-01

    The transport of air pollutants in coastal regions has been known to be strongly affected by the mesoscale atmospheric circulations such as sea-land breezes. These mesoscale atmospheric circulations depend on synoptic weather conditions. In this study, a three-dimensional sea-land breeze model was developed to evaluate the effects of the sea and land breezes on the atmospheric dispersion of radioactive materials released from nuclear power plants in Korea. In the model, the hydrostatic primitive equations in the terrain-following coordinate system were used. The mesoscale atmospheric circulation simulation were carried out under various synoptic weather conditions for all seasons around the Wolsung nuclear power plant site

  18. Improved simulation of two types of El Niño in CMIP5 models

    International Nuclear Information System (INIS)

    Kug, Jong-Seong; Ham, Yoo-Geun; Lee, June-Yi; Jin, Fei-Fei

    2012-01-01

    Using the coupled general circulation models (CGCMs) participating in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5), simulations of the two types of El Niño event are evaluated. Previous studies using CMIP3 models pointed out that most of the models tend to simulate a single type of El Niño, and have serious problems in simulating the two types of El Niño independently. On the average, the CGCMs in CMIP5 have slightly better performance in simulating the two types of El Niño event independently with more distinct spatial patterns, compared to those in CMIP3. It is demonstrated that the precipitation response to Cold Tongue El Niño is one of the important factors in simulating the two types of El Niño independently in coupled models, and this precipitation response is closely related to the dry bias over the equatorial eastern Pacific. (letter)

  19. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection

    Energy Technology Data Exchange (ETDEWEB)

    Hourdin, Frederic; Musat, Ionela; Bony, Sandrine; Codron, Francis; Dufresne, Jean-Louis; Fairhead, Laurent; Grandpeix, Jean-Yves; LeVan, Phu; Li, Zhao-Xin; Lott, Francois [CNRS/UPMC, Laboratoire de Meteorologie Dynamique (LMD/IPSL), Paris Cedex 05 (France); Braconnot, Pascale; Friedlingstein, Pierre [Laboratoire des Sciences du Climat et de l' Environnement (LSCE/IPSL), Saclay (France); Filiberti, Marie-Angele [Institut Pierre Simon Laplace (IPSL), Paris (France); Krinner, Gerhard [Laboratoire de Glaciologie et Geophysique de l' Environnement, Grenoble (France)

    2006-12-15

    The LMDZ4 general circulation model is the atmospheric component of the IPSL-CM4 coupled model which has been used to perform climate change simulations for the 4th IPCC assessment report. The main aspects of the model climatology (forced by observed sea surface temperature) are documented here, as well as the major improvements with respect to the previous versions, which mainly come form the parametrization of tropical convection. A methodology is proposed to help analyse the sensitivity of the tropical Hadley-Walker circulation to the parametrization of cumulus convection and clouds. The tropical circulation is characterized using scalar potentials associated with the horizontal wind and horizontal transport of geopotential (the Laplacian of which is proportional to the total vertical momentum in the atmospheric column). The effect of parametrized physics is analysed in a regime sorted framework using the vertical velocity at 500 hPa as a proxy for large scale vertical motion. Compared to Tiedtke's convection scheme, used in previous versions, the Emanuel's scheme improves the representation of the Hadley-Walker circulation, with a relatively stronger and deeper large scale vertical ascent over tropical continents, and suppresses the marked patterns of concentrated rainfall over oceans. Thanks to the regime sorted analyses, these differences are attributed to intrinsic differences in the vertical distribution of convective heating, and to the lack of self-inhibition by precipitating downdraughts in Tiedtke's parametrization. Both the convection and cloud schemes are shown to control the relative importance of large scale convection over land and ocean, an important point for the behaviour of the coupled model. (orig.)

  20. Simulation of the effects of proposed tide gates on circulation, flushing, and water quality in residential canals, Cape Coral Florida

    Science.gov (United States)

    Goodwin, Carl R.

    1991-01-01

    Decades of dredging and filling of Florida's low-lying coastal wetlands have produced thousands of miles of residential tidal canals and adjacent waterfront property. Typically, these canals are poorly flushed, and over time, accumulated organic-rich bottom materials, contribute to an increasingly severe degraded water quality. One-dimensional hydrodynamic and constituent-transport models were applied to two dead-end canal systems to determine the effects of canal system interconnection using tide gates on water circulation and constituent flushing. The model simulates existing and possible future circulation and flushing conditions in about 29 miles of the approximately 130 miles of tidally influenced canals in Cape Coral, located on the central west coast of peninsular Florida. Model results indicate that tidal water-level differences between the two canal systems can be converted to kinetic energy, in the form of increased water circulation, but the use of one-way tide gate interconnections. Computations show that construction of from one to four tide gates will cause replacement of a volume of water equivalent to the total volume of canals in both systems in 15 to 9 days, respectively. Because some canals flush faster than others, 47 and 21 percent of the original canal water will remain in both systems 50 days after start of operation of one and four tide gates, respectively. Some of the effects that such increased flushing are expected to have include reduced density stratification and associated dissolved-oxygen depletion in canal bottom waters, increased localized reaeration, and more efficient discharge of stormwater runoff entering the canals.

  1. Upper-Ocean Heat Balance Processes and the Walker Circulation in CMIP5 Model Projections

    Science.gov (United States)

    Robertson, F. R.; Roberts, J. B.; Funk, C.; Lyon, B.; Ricciardulli, L.

    2012-01-01

    Considerable uncertainty remains as to the importance of mechanisms governing decadal and longer variability of the Walker Circulation, its connection to the tropical climate system, and prospects for tropical climate change in the face of anthropogenic forcing. Most contemporary climate models suggest that in response to elevated CO2 and a warmer but more stratified atmosphere, the required upward mass flux in tropical convection will diminish along with the Walker component of the tropical mean circulation as well. Alternatively, there is also evidence to suggest that the shoaling and increased vertical stratification of the thermocline in the eastern Pacific will enable a muted SST increase there-- preserving or even enhancing some of the dynamical forcing for the Walker cell flow. Over the past decade there have been observational indications of an acceleration in near-surface easterlies, a strengthened Pacific zonal SST gradient, and globally-teleconnected dislocations in precipitation. But is this evidence in support of an ocean dynamical thermostat process posited to accompany anthropogenic forcing, or just residual decadal fluctuations associated with variations in warm and cold ENSO events and other stochastic forcing? From a modeling perspective we try to make headway on this question by examining zonal variations in surface energy fluxes and dynamics governing tropical upper ocean heat content evolution in the WCRP CMIP5 model projections. There is some diversity among model simulations; for example, the CCSM4 indicates net ocean warming over the IndoPacific region while the CSIRO model concentrates separate warming responses over the central Pacific and Indian Ocean regions. The models, as with observations, demonstrate strong local coupling between variations in column water vapor, downward surface longwave radiation and SST; but the spatial patterns of changes in the sign of this relationship differ among models and, for models as a whole, with

  2. Modeling of circulating nuclear fuels with Comsol Multiphysics

    International Nuclear Information System (INIS)

    Cammi, A.; Di Marcello, V.; Luzzi, L.

    2007-01-01

    This paper presents multi-physics modelling of circulating nuclear fuel in a simple geometry by means of COMSOL 3.3. Among the Circulating Fuel Reactors (CFR), the most promising is the Molten Salt Reactor (MSR). Physics of such circulating nuclear fuel requires five coupled equations of conservation laws: the momentum balance, the energy balance, the neutron balance and the precursors balance. In this complex field, represented by the coupling of thermal-hydrodynamics with neutronics, the highly non linear regime and the wide disparity of time scales, COMSOL was used to investigate the region of reactor that comprises only the flowing fluid, and a parametric study was performed by varying the size of the analyzed region and the inlet velocity of fluid. This study is sufficient to achieve a preliminary evaluation of the thermo-physical behaviour of the system and paves the way for further progress concerning a more complex and realistic MSR geometry. (authors)

  3. Dynamics and transport in the stratosphere : Simulations with a general circulation mode

    NARCIS (Netherlands)

    Aalst, M.K. (Maarten Krispijn) van

    2005-01-01

    The middle atmosphere is strongly affected by two of the world's most important environmental problems: global climate change and stratospheric ozone depletion, caused by anthropogenic emissions of greenhouse gases and chlorofluorocarbons (CFCs), respectively. General circulation models with

  4. Models development for natural circulation and its transition process in nuclear power plant

    International Nuclear Information System (INIS)

    Yu Lei; Cai Qi; Cai Zhangsheng; Xie Haiyan

    2008-01-01

    On the basis of nuclear power plant (NPP) best-estimate transient analysis code RELAP5/MOD3, the point reactor kinetics model in RELAP5/MOD3 was replaced by the two-group, 3-D space and time dependent neutron kinetic model, in order to exactly analyze the responses of key parameters in natural circulation and its transition process considering the reactivity feedback. The coupled model for three-dimensional physics and thermohydraulics was established and corresponding computing code was developed. Using developed code, natural circulation of NPP and its transiton process were calculated and analyzed. Compared with the experiment data, the calculated results show that its high precise avoids the shortage that the point reactor equation can not reflect the reactivity exactly. This code can be a computing and analysis tool for forced circulation and natural circulation and their transitions. (authors)

  5. Red Sea circulation during marine isotope stage 5e

    Science.gov (United States)

    Siccha, Michael; Biton, Eli; Gildor, Hezi

    2015-04-01

    We have employed a regional Massachusetts Institute of Technology oceanic general circulation model of the Red Sea to investigate its circulation during marine isotope stage (MIS) 5e, the peak of the last interglacial, approximately 125 ka before present. Compared to present-day conditions, MIS 5e was characterized by higher Northern Hemisphere summer insolation, accompanied by increases in air temperature of more than 2°C and global sea level approximately 8 m higher than today. As a consequence of the increased seasonality, intensified monsoonal conditions with increased winds, rainfall, and humidity in the Red Sea region are evident in speleothem records and supported by model simulations. To assess the dominant factors responsible for the observed changes, we conducted several sensitivity experiments in which the MIS 5 boundary conditions or forcing parameters were used individually. Overall, our model simulation for the last interglacial maximum reconstructs a Red Sea that is colder, less ventilated and probably more oligotrophic than at present day. The largest alteration in Red Sea circulation and properties was found for the simulation of the northward displacement and intensification of the African tropical rain belt during MIS 5e, leading to a notable increase in the fresh water flux into the Red Sea. Such an increase significantly reduced the Red Sea salinity and exchange volume of the Red Sea with the Gulf of Aden. The Red Sea reacted to the MIS 5e insolation forcing by the expected increase in seasonal sea surface temperature amplitude and overall cooling caused by lower temperatures during deep water formation in winter.

  6. Large-Scale Atmospheric Circulation Patterns Associated with Temperature Extremes as a Basis for Model Evaluation: Methodological Overview and Results

    Science.gov (United States)

    Loikith, P. C.; Broccoli, A. J.; Waliser, D. E.; Lintner, B. R.; Neelin, J. D.

    2015-12-01

    Anomalous large-scale circulation patterns often play a key role in the occurrence of temperature extremes. For example, large-scale circulation can drive horizontal temperature advection or influence local processes that lead to extreme temperatures, such as by inhibiting moderating sea breezes, promoting downslope adiabatic warming, and affecting the development of cloud cover. Additionally, large-scale circulation can influence the shape of temperature distribution tails, with important implications for the magnitude of future changes in extremes. As a result of the prominent role these patterns play in the occurrence and character of extremes, the way in which temperature extremes change in the future will be highly influenced by if and how these patterns change. It is therefore critical to identify and understand the key patterns associated with extremes at local to regional scales in the current climate and to use this foundation as a target for climate model validation. This presentation provides an overview of recent and ongoing work aimed at developing and applying novel approaches to identifying and describing the large-scale circulation patterns associated with temperature extremes in observations and using this foundation to evaluate state-of-the-art global and regional climate models. Emphasis is given to anomalies in sea level pressure and 500 hPa geopotential height over North America using several methods to identify circulation patterns, including self-organizing maps and composite analysis. Overall, evaluation results suggest that models are able to reproduce observed patterns associated with temperature extremes with reasonable fidelity in many cases. Model skill is often highest when and where synoptic-scale processes are the dominant mechanisms for extremes, and lower where sub-grid scale processes (such as those related to topography) are important. Where model skill in reproducing these patterns is high, it can be inferred that extremes are

  7. Computational models of the pulmonary circulation: Insights and the move towards clinically directed studies

    Science.gov (United States)

    Tawhai, Merryn H.; Clark, Alys R.; Burrowes, Kelly S.

    2011-01-01

    Biophysically-based computational models provide a tool for integrating and explaining experimental data, observations, and hypotheses. Computational models of the pulmonary circulation have evolved from minimal and efficient constructs that have been used to study individual mechanisms that contribute to lung perfusion, to sophisticated multi-scale and -physics structure-based models that predict integrated structure-function relationships within a heterogeneous organ. This review considers the utility of computational models in providing new insights into the function of the pulmonary circulation, and their application in clinically motivated studies. We review mathematical and computational models of the pulmonary circulation based on their application; we begin with models that seek to answer questions in basic science and physiology and progress to models that aim to have clinical application. In looking forward, we discuss the relative merits and clinical relevance of computational models: what important features are still lacking; and how these models may ultimately be applied to further increasing our understanding of the mechanisms occurring in disease of the pulmonary circulation. PMID:22034608

  8. Simulating the Agulhas system in global ocean models - nesting vs. multi-resolution unstructured meshes

    Science.gov (United States)

    Biastoch, Arne; Sein, Dmitry; Durgadoo, Jonathan V.; Wang, Qiang; Danilov, Sergey

    2018-01-01

    Many questions in ocean and climate modelling require the combined use of high resolution, global coverage and multi-decadal integration length. For this combination, even modern resources limit the use of traditional structured-mesh grids. Here we compare two approaches: A high-resolution grid nested into a global model at coarser resolution (NEMO with AGRIF) and an unstructured-mesh grid (FESOM) which allows to variably enhance resolution where desired. The Agulhas system around South Africa is used as a testcase, providing an energetic interplay of a strong western boundary current and mesoscale dynamics. Its open setting into the horizontal and global overturning circulations also requires global coverage. Both model configurations simulate a reasonable large-scale circulation. Distribution and temporal variability of the wind-driven circulation are quite comparable due to the same atmospheric forcing. However, the overturning circulation differs, owing each model's ability to represent formation and spreading of deep water masses. In terms of regional, high-resolution dynamics, all elements of the Agulhas system are well represented. Owing to the strong nonlinearity in the system, Agulhas Current transports of both configurations and in comparison with observations differ in strength and temporal variability. Similar decadal trends in Agulhas Current transport and Agulhas leakage are linked to the trends in wind forcing.

  9. Simulation of optimal arctic routes using a numerical sea ice model based on an ice-coupled ocean circulation method

    Directory of Open Access Journals (Sweden)

    Jong-Ho Nam

    2013-06-01

    Full Text Available Ever since the Arctic region has opened its mysterious passage to mankind, continuous attempts to take advantage of its fastest route across the region has been made. The Arctic region is still covered by thick ice and thus finding a feasible navigating route is essential for an economical voyage. To find the optimal route, it is necessary to establish an efficient transit model that enables us to simulate every possible route in advance. In this work, an enhanced algorithm to determine the optimal route in the Arctic region is introduced. A transit model based on the simulated sea ice and environmental data numerically modeled in the Arctic is developed. By integrating the simulated data into a transit model, further applications such as route simulation, cost estimation or hindcast can be easily performed. An interactive simulation system that determines the optimal Arctic route using the transit model is developed. The simulation of optimal routes is carried out and the validity of the results is discussed.

  10. Natural circulation in pressurized water reactors

    International Nuclear Information System (INIS)

    Bastos, J.L.F.; Loureiro, L.V.; Rocha, R.T.V. da; Umbehaun, P.E.

    1992-01-01

    Several analytical modelling have been done for steady-state and slow transients conditions, besides more sophisticated studies considering two and three dimensional effects in a very simple geometry. Under severe accident conditions for PWR a code to analyse natural circulation has been developed by Westinghouse. This paper discusses the problem of natural circulation in a complex geometry similar to that of nuclear power plants. A first experiment has been done at the integral test facility of 'Co-ordination of Special Projects-Ministry of Naval Affairs' (Coordenadoria para Projetos Especiais -Ministerio da Marinha, COPESP) for several flux conditions. The results obtained were compared with numerical simulations for the steady-state regime. 09 refs, 05 figs, 01 tab. (B.C.A.)

  11. Can preferred atmospheric circulation patterns over the North-Atlantic-Eurasian region be associated with arctic sea ice loss?

    Science.gov (United States)

    Crasemann, Berit; Handorf, Dörthe; Jaiser, Ralf; Dethloff, Klaus; Nakamura, Tetsu; Ukita, Jinro; Yamazaki, Koji

    2017-12-01

    In the framework of atmospheric circulation regimes, we study whether the recent Arctic sea ice loss and Arctic Amplification are associated with changes in the frequency of occurrence of preferred atmospheric circulation patterns during the extended winter season from December to March. To determine regimes we applied a cluster analysis to sea-level pressure fields from reanalysis data and output from an atmospheric general circulation model. The specific set up of the two analyzed model simulations for low and high ice conditions allows for attributing differences between the simulations to the prescribed sea ice changes only. The reanalysis data revealed two circulation patterns that occur more frequently for low Arctic sea ice conditions: a Scandinavian blocking in December and January and a negative North Atlantic Oscillation pattern in February and March. An analysis of related patterns of synoptic-scale activity and 2 m temperatures provides a synoptic interpretation of the corresponding large-scale regimes. The regimes that occur more frequently for low sea ice conditions are resembled reasonably well by the model simulations. Based on those results we conclude that the detected changes in the frequency of occurrence of large-scale circulation patterns can be associated with changes in Arctic sea ice conditions.

  12. A RELAP5 study to identify flow regime in natural circulation phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Sabundjian, Gaiane; Torres, Walmir M.; Macedo, Luiz A.; Mesquita, Roberto N.; Andrade, Delvonei A.; Umbehaun, Pedro E.; Conti, Thadeu N.; Masotti, Paulo H.F.; Belchior Junior, Antonio; Angelo, Gabriel, E-mail: gdjian@ipen.b, E-mail: umbehaun@ipen.b, E-mail: wmtorres@ipen.b, E-mail: tnconti@ipen.b, E-mail: rnavarro@ipen.b, E-mail: lamacedo@ipen.b, E-mail: pmasotti@ipen.b, E-mail: abelchior@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    There has been a crescent interest in the scientific community in the study of natural circulation phenomenon. New generation of compact nuclear reactors uses the natural circulation of the fluid as a system of cooling and of residual heat removal in case of accident or shutdown. The objective of this paper is to compare the flow patterns of experimental data and numerical simulation for the natural circulation phenomenon in two-phase flow regime. An experimental circuit built with glass tubes is used for the experiments. Thus, it allows the thermal hydraulic phenomena visualization. There is an electric heater as the heat source, a heat exchanger as the heat sink and an expansion tank to accommodate fluid density excursions. The circuit instrumentation consists of thermocouples and pressure meters to better keep track of the flow and heat transfer phenomena. Data acquisition is performed through a computer interface developed with LABVIEW. The characteristic of the regime is identified using photography techniques. Numerical modeling and simulation is done with the thermal hydraulic code RELAP5, which is widely used for this purpose. This numerical simulation is capable to reproduce some of the flow regimes which are present in the circuit for the natural circulation phenomenon. Comparison between experimental and numerical simulation is presented in this work. (author)

  13. Numerical Modeling of Ocean Circulation

    Science.gov (United States)

    Miller, Robert N.

    2007-01-01

    The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details

  14. Simulations of anthropogenic change in the strength of the Brewer-Dobson circulation

    Energy Technology Data Exchange (ETDEWEB)

    Butchart, N. [Met Office, Exeter, Devon (United Kingdom); Scaife, A.A. [Met Office, Hadley Centre, Exeter (United Kingdom); Bourqui, M. [University of Reading, Department of Meteorology, Reading (United Kingdom); McGill University, Montreal (Canada); Grandpre, J. de [McGill University, Montreal (Canada); Hare, S.H.E. [University of Reading, Department of Meteorology, Reading (United Kingdom); Kettleborough, J. [British Atmospheric Data Centre, Rutherford Laboratory, Didcot (United Kingdom); Langematz, U. [Freie Universitaet of Berlin, Berlin (Germany); Manzini, E. [National Institute for Geophysics and Volcanology, Bologna (Italy); Sassi, F. [National Center for Atmospheric Research, Boulder, CO (United States); Shibata, K. [Meteorological Research Institute, Tsukuba (Japan); Shindell, D. [NASA-Goddard Institute for Space Studies, New York (United States); Sigmond, M. [University of Toronto, Toronto (Canada)

    2006-12-15

    The effect of climate change on the Brewer-Dobson circulation and, in particular, the large-scale seasonal-mean transport between the troposphere and stratosphere is compared in a number of middle atmosphere general circulation models. All the models reproduce the observed upwelling across the tropical tropopause balanced by downwelling in the extra tropics, though the seasonal cycle in upwelling in some models is more semi-annual than annual. All the models also consistently predict an increase in the mass exchange rate in response to growing greenhouse gas concentrations, irrespective of whether or not the model includes interactive ozone chemistry. The mean trend is 11 kt s{sup -1} year{sup -1} or about 2% per decade but varies considerably between models. In all but one of the models the increase in mass exchange occurs throughout the year though, generally, the trend is larger during the boreal winter. On average, more than 60% of the mean mass fluxes can be explained by the EP-flux divergence using the downward control principle. Trends in the annual mean mass fluxes derived from the EP-flux divergence also explain about 60% of the trend in the troposphere-to-stratosphere mass exchange rate when averaged over all the models. Apart from two models the interannual variability in the downward control derived and actual mass fluxes were generally well correlated, for the annual mean. (orig.)

  15. Numerical simulation of the two-phase flows in a hydraulic coupling by solving VOF model

    International Nuclear Information System (INIS)

    Luo, Y; Zuo, Z G; Liu, S H; Fan, H G; Zhuge, W L

    2013-01-01

    The flow in a partially filled hydraulic coupling is essentially a gas-liquid two-phase flow, in which the distribution of two phases has significant influence on its characteristics. The interfaces between the air and the liquid, and the circulating flows inside the hydraulic coupling can be simulated by solving the VOF two-phase model. In this paper, PISO algorithm and RNG k–ε turbulence model were employed to simulate the phase distribution and the flow field in a hydraulic coupling with 80% liquid fill. The results indicate that the flow forms a circulating movement on the torus section with decreasing speed ratio. In the pump impeller, the air phase mostly accumulates on the suction side of the blades, while liquid on the pressure side; in turbine runner, air locates in the middle of the flow passage. Flow separations appear near the blades and the enclosing boundaries of the hydraulic coupling

  16. Short ensembles: an efficient method for discerning climate-relevant sensitivities in atmospheric general circulation models

    Directory of Open Access Journals (Sweden)

    H. Wan

    2014-09-01

    Full Text Available This paper explores the feasibility of an experimentation strategy for investigating sensitivities in fast components of atmospheric general circulation models. The basic idea is to replace the traditional serial-in-time long-term climate integrations by representative ensembles of shorter simulations. The key advantage of the proposed method lies in its efficiency: since fewer days of simulation are needed, the computational cost is less, and because individual realizations are independent and can be integrated simultaneously, the new dimension of parallelism can dramatically reduce the turnaround time in benchmark tests, sensitivities studies, and model tuning exercises. The strategy is not appropriate for exploring sensitivity of all model features, but it is very effective in many situations. Two examples are presented using the Community Atmosphere Model, version 5. In the first example, the method is used to characterize sensitivities of the simulated clouds to time-step length. Results show that 3-day ensembles of 20 to 50 members are sufficient to reproduce the main signals revealed by traditional 5-year simulations. A nudging technique is applied to an additional set of simulations to help understand the contribution of physics–dynamics interaction to the detected time-step sensitivity. In the second example, multiple empirical parameters related to cloud microphysics and aerosol life cycle are perturbed simultaneously in order to find out which parameters have the largest impact on the simulated global mean top-of-atmosphere radiation balance. It turns out that 12-member ensembles of 10-day simulations are able to reveal the same sensitivities as seen in 4-year simulations performed in a previous study. In both cases, the ensemble method reduces the total computational time by a factor of about 15, and the turnaround time by a factor of several hundred. The efficiency of the method makes it particularly useful for the development of

  17. Revisiting Gill's Circulation. Dynamic Response to Diabatic Heating of Different Horizontal Extents

    Science.gov (United States)

    Reboredo, B.; Bellon, G.

    2017-12-01

    The horizontal extent of diabatic heating associated with the MJO is thought to be crucial to its development, and the inability of GCMs to simulate the spatial, horizontal organization of clouds is considered a leading hypothesis to explain their limited capacity to simulate MJO events. This prevents the MJO large-circulation response from developing and feeding back on the development of clouds. We apply mid-tropospheric heating of different size in simple linear and non-linear models of the tropical atmosphere following Gill's seminal work on heat-induced tropical circulations. Results show that there is a scale for which the characteristic circulation {Γ c} for the vertical advection of moisture to produce the latent heat mean {Q} gives a rough estimate of the real world MJO scale. Overturning circulation flow rates above {Γ c} account for a circulation that transports more moisture than necessary to be maintained, and below {Γ c}, circulation would not transport enough moisture to maintain circulation. This dynamic scale might constrain the size of the spatially-organised convection necessary to the development of an MJO event. However, other effects are expected to modulate this scale, such as vertical advection of moisture anomalies, horizontal advection, evaporation, radiative heating, and sensible heat fluxes.

  18. Influence of savanna fire on Australian monsoon season precipitation and circulation as simulated using a distributed computing environment

    Science.gov (United States)

    Lynch, Amanda H.; Abramson, David; Görgen, Klaus; Beringer, Jason; Uotila, Petteri

    2007-10-01

    Fires in the Australian savanna have been hypothesized to affect monsoon evolution, but the hypothesis is controversial and the effects have not been quantified. A distributed computing approach allows the development of a challenging experimental design that permits simultaneous variation of all fire attributes. The climate model simulations are distributed around multiple independent computer clusters in six countries, an approach that has potential for a range of other large simulation applications in the earth sciences. The experiment clarifies that savanna burning can shape the monsoon through two mechanisms. Boundary-layer circulation and large-scale convergence is intensified monotonically through increasing fire intensity and area burned. However, thresholds of fire timing and area are evident in the consequent influence on monsoon rainfall. In the optimal band of late, high intensity fires with a somewhat limited extent, it is possible for the wet season to be significantly enhanced.

  19. Wind Speed Retrieval by Means of X-Band Cosmo-Skymed SAR Data with Application to Coastel Circulation Modeling

    Science.gov (United States)

    Montuori, Antonio; de Ruggiero, Paola; Migliaccio, Maurizio; Pierini, Stefano

    2012-03-01

    In this paper, the capabilities of X-band COSMOSkyMed SAR data are investigated for both wind speed estimation purposes and for the improvement of coastal circulation modeling. The data set consists of 60 X-band Level 1B Multi-Look Ground Detected ScanSAR HugeRegion COSMO-SkyMed SAR data, gathered in the Southern Tyrrhenian Sea during the summer and winter seasons of 2010. Wind speed is estimated by means of a SAR wind speed retrieval based on the azimuth cut-off procedure. Wind direction is provided by means of a SAR retrieval approach based on Discrete Wavelet Transform. After comparison with the provided ground truth data, SAR-derived wind fields and ECMWF data are used to construct a blended wind product regularly sampled in both space and time. The resulting wind field will be used to force the Princeton Ocean Model, which has been implemented in a Southern Tyrrhenian Sea coastal area to simulate wind-driven costal circulation processes.

  20. Ocean circulation generated magnetic signals

    DEFF Research Database (Denmark)

    Manoj, C.; Kuvshinov, A.; Maus, S.

    2006-01-01

    Conducting ocean water, as it flows through the Earth's magnetic field, generates secondary electric and magnetic fields. An assessment of the ocean-generated magnetic fields and their detectability may be of importance for geomagnetism and oceanography. Motivated by the clear identification...... of ocean tidal signatures in the CHAMP magnetic field data we estimate the ocean magnetic signals of steady flow using a global 3-D EM numerical solution. The required velocity data are from the ECCO ocean circulation experiment and alternatively from the OCCAM model for higher resolution. We assume...... of the magnetic field, as compared to the ECCO simulation. Besides the expected signatures of the global circulation patterns, we find significant seasonal variability of ocean magnetic signals in the Indian and Western Pacific Oceans. Compared to seasonal variation, interannual variations produce weaker signals....

  1. NUMERICAL MODEL APPLICATION IN ROWING SIMULATOR DESIGN

    Directory of Open Access Journals (Sweden)

    Petr Chmátal

    2016-04-01

    Full Text Available The aim of the research was to carry out a hydraulic design of rowing/sculling and paddling simulator. Nowadays there are two main approaches in the simulator design. The first one includes a static water with no artificial movement and counts on specially cut oars to provide the same resistance in the water. The second approach, on the other hand uses pumps or similar devices to force the water to circulate but both of the designs share many problems. Such problems are affecting already built facilities and can be summarized as unrealistic feeling, unwanted turbulent flow and bad velocity profile. Therefore, the goal was to design a new rowing simulator that would provide nature-like conditions for the racers and provide an unmatched experience. In order to accomplish this challenge, it was decided to use in-depth numerical modeling to solve the hydraulic problems. The general measures for the design were taken in accordance with space availability of the simulator ́s housing. The entire research was coordinated with other stages of the construction using BIM. The detailed geometry was designed using a numerical model in Ansys Fluent and parametric auto-optimization tools which led to minimum negative hydraulic phenomena and decreased investment and operational costs due to the decreased hydraulic losses in the system.

  2. Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change

    Science.gov (United States)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-01-01

    Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  3. The Madden-Julian oscillation in ECHAM4 coupled and uncoupled general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Sperber, Kenneth R. [Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison, Livermore, CA (United States); Gualdi, Silvio [National Institute of Geophysics and Volcanology, Bologna (Italy); Legutke, Stephanie; Gayler, Veronika [Max Planck Institute of Meteorology, Models and Data Group, Hamburg (Germany)

    2005-08-01

    The Madden-Julian oscillation (MJO) dominates tropical variability on timescales of 30-70 days. During the boreal winter/spring, it is manifested as an eastward propagating disturbance, with a strong convective signature over the eastern hemisphere. The space-time structure of the MJO is analyzed using simulations with the ECHAM4 atmospheric general circulation model run with observed monthly mean sea-surface temperatures (SSTs), and coupled to three different ocean models. The coherence of the eastward propagation of MJO convection is sensitive to the ocean model to which ECHAM4 is coupled. For ECHAM4/OPYC and ECHO-G, models for which 100 years of daily data is available, Monte Carlo sampling indicates that their metrics of eastward propagation are different at the 1% significance level. The flux-adjusted coupled simulations, ECHAM4/OPYC and ECHO-G, maintain a more realistic mean-state, and have a more realistic MJO simulation than the nonadjusted scale interaction experiment (SINTEX) coupled runs. The SINTEX model exhibits a cold bias in Indian Ocean and tropical West Pacific Ocean sea-surface temperature of 0.5 C. This cold bias affects the distribution of time-mean convection over the tropical eastern hemisphere. Furthermore, the eastward propagation of MJO convection in this model is not as coherent as in the two models that used flux adjustment or when compared to an integration of ECHAM4 with prescribed observed SST. This result suggests that simulating a realistic basic state is at least as important as air-sea interaction for organizing the MJO. While all of the coupled models simulate the warm (cold) SST anomalies that precede (succeed) the MJO convection, the interaction of the components of the net surface heat flux that lead to these anomalies are different over the Indian Ocean. The ECHAM4/OPYC model in which the atmospheric model is run at a horizontal resolution of T42, has eastward propagating zonal wind anomalies and latent heat flux anomalies

  4. Angular circulation speed of tablets in a vibratory tablet coating pan.

    Science.gov (United States)

    Kumar, Rahul; Wassgren, Carl

    2013-03-01

    In this work, a single tablet model and a discrete element method (DEM) computer simulation are developed to obtain the angular circulation speed of tablets in a vibratory tablet coating pan for range of vibration frequencies and amplitudes. The models identify three important dimensionless parameters that influence the speed of the tablets: the dimensionless amplitude ratio (a/R), the Froude number (aω2/g), and the tablet-wall friction coefficient, where a is the peak vibration amplitude at the drum center, ω is the vibration angular frequency, R is the drum radius, and g is the acceleration due to gravity. The models predict that the angular circulation speed of tablets increases with an increase in each of these parameters. The rate of increase in the angular circulation speed is observed to decrease for larger values of a/R. The angular circulation speed reaches an asymptote beyond a tablet-wall friction coefficient value of about 0.4. Furthermore, it is found that the Froude number should be greater than one for the tablets to start circulating. The angular circulation speed increases as Froude number increases but then does not change significantly at larger values of the Froude number. Period doubling, where the motion of the bed is repeated every two cycles, occurs at a Froude number larger than five. The single tablet model, although much simpler than the DEM model, is able to predict the maximum circulation speed (the limiting case for a large value of tablet-wall friction coefficient) as well as the transition to period doubling.

  5. A global mean ocean circulation estimation using goce gravity models - the DTU12MDT mean dynamic topography model

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar

    2012-01-01

    The Gravity and Ocean Circulation Experiment - GOCE satellite mission measure the Earth gravity field with unprecedented accuracy leading to substantial improvements in the modelling of the ocean circulation and transport. In this study of the performance of GOCE, a newer gravity model have been...... combined with the DTU10MSS mean sea surface model to construct a global mean dynamic topography model named DTU10MDT. The results of preliminary analyses using preliminary GOCE gravity models clearly demonstrated the potential of GOCE mission. Both the resolution and the estimation of the surface currents...... have been improved significantly compared to results obtained using pre-GOCE gravity field models. The results of this study show that geostrophic surface currents associated with the mean circulation have been further improved and that currents having speeds down to 5 cm/s have been recovered....

  6. Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM

    OpenAIRE

    Basu, Shabari; Wilson, John; Richardson, Mark; Ingersoll, Andrew

    2006-01-01

    We report on the successful simulation of global dust storms in a general circulation model. The simulated storms develop spontaneously in multiyear simulations and exhibit significant interannual variability. The simulated storms produce dramatic increases in atmospheric dustiness, global-mean air temperatures, and atmospheric circulation intensity, in accord with observations. As with observed global storms, spontaneous initiation of storms in the model occurs in southern spring and summer,...

  7. Numerical simulation of losses along a natural circulation helium loop

    Energy Technology Data Exchange (ETDEWEB)

    Knížat, Branislav, E-mail: branislav.knizat@stuba.sk; Urban, František, E-mail: frantisek.urban@stuba.sk; Mlkvik, Marek, E-mail: marek.mlkvik@stuba.sk; Ridzoň, František, E-mail: frantisek.ridzon@stuba.sk; Olšiak, Róbert, E-mail: robert.olsiak@stuba.sk [Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Nám. slobody 17, 812 31 Bratislava, Slovak Republik (Slovakia)

    2016-06-30

    A natural circulation helium loop appears to be a perspective passive method of a nuclear reactor cooling. When designing this device, it is important to analyze the mechanism of an internal flow. The flow of helium in the loop is set in motion due to a difference of hydrostatic pressures between cold and hot branch. Steady flow at a requested flow rate occurs when the buoyancy force is adjusted to resistances against the flow. Considering the fact that the buoyancy force is proportional to a difference of temperatures in both branches, it is important to estimate the losses correctly in the process of design. The paper deals with the calculation of losses in branches of the natural circulation helium loop by methods of CFD. The results of calculations are an important basis for the hydraulic design of both exchangers (heater and cooler). The analysis was carried out for the existing model of a helium loop of the height 10 m and nominal heat power 250 kW.

  8. The Role of Rough Topography in Mediating Impacts of Bottom Drag in Eddying Ocean Circulation Models.

    Science.gov (United States)

    Trossman, David S; Arbic, Brian K; Straub, David N; Richman, James G; Chassignet, Eric P; Wallcraft, Alan J; Xu, Xiaobiao

    2017-08-01

    Motivated by the substantial sensitivity of eddies in two-layer quasi-geostrophic (QG) turbulence models to the strength of bottom drag, this study explores the sensitivity of eddies in more realistic ocean general circulation model (OGCM) simulations to bottom drag strength. The OGCM results are interpreted using previous results from horizontally homogeneous, two-layer, flat-bottom, f-plane, doubly periodic QG turbulence simulations and new results from two-layer β -plane QG turbulence simulations run in a basin geometry with both flat and rough bottoms. Baroclinicity in all of the simulations varies greatly with drag strength, with weak drag corresponding to more barotropic flow and strong drag corresponding to more baroclinic flow. The sensitivity of the baroclinicity in the QG basin simulations to bottom drag is considerably reduced, however, when rough topography is used in lieu of a flat bottom. Rough topography reduces the sensitivity of the eddy kinetic energy amplitude and horizontal length scales in the QG basin simulations to bottom drag to an even greater degree. The OGCM simulation behavior is qualitatively similar to that in the QG rough bottom basin simulations in that baroclinicity is more sensitive to bottom drag strength than are eddy amplitudes or horizontal length scales. Rough topography therefore appears to mediate the sensitivity of eddies in models to the strength of bottom drag. The sensitivity of eddies to parameterized topographic internal lee wave drag, which has recently been introduced into some OGCMs, is also briefly discussed. Wave drag acts like a strong bottom drag in that it increases the baroclinicity of the flow, without strongly affecting eddy horizontal length scales.

  9. Simulated warm polar currents during the middle Permian

    Energy Technology Data Exchange (ETDEWEB)

    Winguth, A M.E.; Kutzbach, J E [Wisconsin Univ., Madison, WI (USA). Center for Climatic Research; Heinze, C; Maier-Reimer, E; Mikolajewicz, U [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Rowley, D; Rees, A; Ziegler, A M [Chicago Univ., IL (United States). Dept. of Geophysical Sciences

    2001-05-01

    During Permian Stage 6 (Wordian, Kazanian) the Pangaean supercontinent was surrounded by a superocean - Panthalassa. An ocean general circulation model has been coupled to an atmospheric energy balance model to simulate the sensitivity of the Wordian climate ({proportional_to}265 million years ago) to changes in greenhouse gas concentrations, high latitude geography, and Earth orbital configurations. The model shows a high sensitivity of the ocean circulation to changes in the greenhouse gas forcing, ranging from a forceful southern circulation at low CO{sub 2} concentration (present level) to a more symmetric circulation cell with deep water formation in both hemispheres at high CO{sub 2} concentration (8 x present level). The simulated climate with 4 x present level CO{sub 2} concentration agrees generally well with climate-sensitive sediments and phytogeographic patterns. In this experiment, the model simulates strong subtropical gyres with similarities to the modern South Pacific circulation and moderate surface temperatures on the southern continent Gondwana, resulting from a strong poleward heat transport in the ocean. An even more moderate climate can be generated if high latitude land is removed so that ocean currents can penetrate into the polar regions or if orbital configurations favor high summer insolation over Gondwana. (orig.)

  10. Optimisation of a parallel ocean general circulation model

    OpenAIRE

    M. I. Beare; D. P. Stevens

    1997-01-01

    International audience; This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by...

  11. Hurricane-type vortices in a general circulation model. Pt. 1

    International Nuclear Information System (INIS)

    Bengtsson, L.; Botzet, M.; Esch, M.

    1994-01-01

    A very high resolution atmospheric general circulation model, T106-L19, has been used for the simulation of hurricanes in a multi-year numerical experiment. Individual storms as well as their geographical and seasonal distribution agree remarkably well with observations. In spite of the fact that only the thermal and dynamical structure of the storms have been used as criteria of their identification, practically all of them occur in areas where the sea surface temperature is higher or equal to 26 C. There are some variations from year to year in the number of storms in spite of the fact that there are no interannual variations in the SST pattern. It is found that the number of storms in particular areas depend on the intensity of the Hadley-Walker cell. The result is clearly resolution dependant. At lower horizonal resolution, T42, for example, the intensity of the storms is significantly reduced and their overall structure is less realistic, including their vertical form and extention. (orig.)

  12. Functional end-arterial circulation of the choroid assessed by using fat embolism and electric circuit simulation.

    Science.gov (United States)

    Lee, Ji Eun; Ahn, Ki Su; Park, Keun Heung; Pak, Kang Yeun; Kim, Hak Jin; Byon, Ik Soo; Park, Sung Who

    2017-05-30

    The discrepancy in the choroidal circulation between anatomy and function has remained unsolved for several decades. Postmortem cast studies revealed extensive anastomotic channels, but angiographic studies indicated end-arterial circulation. We carried out experimental fat embolism in cats and electric circuit simulation. Perfusion defects were observed in two categories. In the scatter perfusion defects suggesting an embolism at the terminal arterioles, fluorescein dye filled the non-perfused lobule slowly from the adjacent perfused lobule. In the segmental perfusion defects suggesting occlusion of the posterior ciliary arteries, the hypofluorescent segment became perfused by spontaneous resolution of the embolism without subsequent smaller infarction. The angiographic findings could be simulated with an electric circuit. Although electric currents flowed to the disconnected lobule, the level was very low compared with that of the connected ones. The choroid appeared to be composed of multiple sectors with no anastomosis to other sectors, but to have its own anastomotic arterioles in each sector. Blood flows through the continuous choriocapillaris bed in an end-arterial nature functionally to follow a pressure gradient due to the drainage through the collector venule.

  13. Tidal circulation and salinity distribution in the Mandovi and Zuari estuaries: Case study

    Digital Repository Service at National Institute of Oceanography (India)

    Manoj, N.T.; Unnikrishnan, A.S.

    was to study the intraseasonal variations of salinity during the breaks in the southwest monsoon. A hybrid network numerical model was used for the present study to simulate the tidal circulation and the salinity distribution in these estuaries. The model...

  14. Evaluation method for core thermohydraulics during natural circulation in fast reactors numerical predictions of inter-wrapper flow

    International Nuclear Information System (INIS)

    Kamide, H.; Kimura, N.; Miyakoshi, H.; Nagasawa, K.

    2001-01-01

    Decay heat removal using natural circulation is one of the important functions for the safety of fast reactors. As a decay heat removal system, direct reactor auxiliary cooling system has been selected in current designs of fast reactors. In this design, dumped heat exchanger provides cold sodium and it covers the reactor core outlet. The cold sodium can penetrate into the gap region between the subassemblies. This gap flow is referred as inter-wrapper flow (IWF). A numerical estimation method for such natural circulation phenomena in a reactor core has been developed, which models each subassembly as a rectangular duct with gap region between the subassemblies and also the upper plenum in a reactor vessel. This numerical simulation method was verified based on experimental data of a sodium test using 7- subassembly core model and also a water test which simulates IWF using the 1/12 sector model of a reactor core. We applied the estimation method to the natural circulation in a 600 MW class fast reactor. The temperature in the core strongly depended on IWF, flow redistribution in the core, and inter-subassembly heat transfer. It is desired for prediction methods on the natural circulation to simulate these phenomena. (author)

  15. Simulation of single phase instability behaviour in a rectangular natural circulation loop using RELAP5/ MOD 3.2 computer code

    International Nuclear Information System (INIS)

    Sharma, Manish; Pilkhwal, D.S.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2002-06-01

    Occurrence of instability in natural circulation loops can lead to problems in control and occurrence of critical heat flux (CHF) during low flow periods. Remaining within an identified stable zone operation is therefore desirable. Natural circulation loops can pass through an unstable zone during start-up and power raising. In the present work RELAPS / MOD 3.2 computer code has been used to simulate the unstable oscillatory behavior observed in a rectangular natural circulation loop having horizontal heater and horizontal cooler (HHHC) orientation. The results were compared with the experimental data. This report describes the nodalization scheme adopted tor this work and results of the analysis in detail. (author)

  16. Dynamics and transport in the stratosphere : Simulations with a general circulation mode

    OpenAIRE

    Aalst, M.K. (Maarten Krispijn) van

    2005-01-01

    The middle atmosphere is strongly affected by two of the world's most important environmental problems: global climate change and stratospheric ozone depletion, caused by anthropogenic emissions of greenhouse gases and chlorofluorocarbons (CFCs), respectively. General circulation models with coupled chemistry are a key tool to advance our understanding of the complex interplay between dynamics, chemistry and radiation in the middle atmosphere. A key problem of such models is that they generat...

  17. Evaluation and uncertainties of global climate models as simulated in East Asia and China

    International Nuclear Information System (INIS)

    Zhao, Z.C.

    1994-01-01

    The assessments and uncertainties of the general circulation models (GCMs) as simulated in East Asia and China (15-60 N, 70-140 E) have been investigated by using seven GCMs. Four methods of assessment have been chosen. The variables for the validations for the GCMs include the annual, seasonal and monthly mean temperatures and precipitation. The assessments indicated that: (1) the simulations of seven GCMs for temperature are much better than those for precipitation; (2) the simulations in winter are much better than those in summer; (3) the simulations in eastern parts are much better than those in Western parts for both temperature and precipitation; (4) the best GCM for simulated temperature is the GISS model, and the best GCM for simulated precipitation is the UKMO-H model. The seven GCMs' means for both simulated temperature and precipitation provided good results. The range of uncertainties in East Asia and China due to human activities are presented. The differences between the GCMs for temperature and precipitation before the year 2050 are much smaller than those after the year 2050

  18. Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records

    KAUST Repository

    Scott, Robert B.

    2010-01-01

    We compare the total kinetic energy (TKE) in four global eddying ocean circulation simulations with a global dataset of over 5000, quality controlled, moored current meter records. At individual mooring sites, there was considerable scatter between models and observations that was greater than estimated statistical uncertainty. Averaging over all current meter records in various depth ranges, all four models had mean TKE within a factor of two of observations above 3500. m, and within a factor of three below 3500. m. With the exception of observations between 20 and 100. m, the models tended to straddle the observations. However, individual models had clear biases. The free running (no data assimilation) model biases were largest below 2000. m. Idealized simulations revealed that the parameterized bottom boundary layer tidal currents were not likely the source of the problem, but that reducing quadratic bottom drag coefficient may improve the fit with deep observations. Data assimilation clearly improved the model-observation comparison, especially below 2000. m, despite assimilated data existing mostly above this depth and only south of 47°N. Different diagnostics revealed different aspects of the comparison, though in general the models appeared to be in an eddying-regime with TKE that compared reasonably well with observations. © 2010 Elsevier Ltd.

  19. The Hamburg oceanic carbon cycle circulation model. Cycle 1

    International Nuclear Information System (INIS)

    Maier-Reimer, E.; Heinze, C.

    1992-02-01

    The carbon cycle model calculates the prognostic fields of oceanic geochemical carbon cycle tracers making use of a 'frozen' velocity field provided by a run of the LSG oceanic circulation model (see the corresponding manual, LSG=Large Scale Geostrophic). The carbon cycle model includes a crude approximation of interactions between sediment and bottom layer water. A simple (meridionally diffusive) one layer atmosphere model allows to calculate the CO 2 airborne fraction resulting from the oceanic biogeochemical interactions. (orig.)

  20. A model study of present-day Hall-effect circulators

    International Nuclear Information System (INIS)

    Placke, B.; Bosco, S.; DiVincenzo, D.P.

    2017-01-01

    Stimulated by the recent implementation of a three-port Hall-effect microwave circulator of Mahoney et al. (MEA), we present model studies of the performance of this device. Our calculations are based on the capacitive-coupling model of Viola and DiVincenzo (VD). Based on conductance data from a typical Hall-bar device obtained from a two-dimensional electron gas (2DEG) in a magnetic field, we numerically solve the coupled field-circuit equations to calculate the expected performance of the circulator, as determined by the S parameters of the device when coupled to 50Ω ports, as a function of frequency and magnetic field. Above magnetic fields of 1.5 T, for which a typical 2DEG enters the quantum Hall regime (corresponding to a Landau-level filling fraction ν of 20), the Hall angle θ_H = tan"-"1 σ_x_y/σ_x_x always remains close to 90 , and the S parameters are close to the analytic predictions of VD for θ_H = π/2. As anticipated by VD, MEA find the device to have rather high (kΩ) impedance, and thus to be extremely mismatched to 50Ω, requiring the use of impedance matching. We incorporate the lumped matching circuits of MEA in our modeling and confirm that they can produce excellent circulation, although confined to a very small bandwidth. We predict that this bandwidth is significantly improved by working at lower magnetic field when the Landau index is high, e.g. ν = 20, and the impedance mismatch is correspondingly less extreme. Our modeling also confirms the observation of MEA that parasitic port-to-port capacitance can produce very interesting countercirculation effects. (orig.)

  1. Numerical simulation on dimension decrease for annular casing of one centrifugal boiler circulation pump

    International Nuclear Information System (INIS)

    Fan, Y Z; Zuo, Z G; Liu, S H; Wu, Y L; Sha, Y J

    2012-01-01

    Primary formulation derivation indicates that the dimension of one existing centrifugal boiler circulation pump casing is too large. As great manufacture cost can be saved by dimension decrease, a numerical simulation research is developed in this paper on dimension decrease for annular casing of this pump with a specific speed equaling to 189, which aims at finding an appropriately smaller dimension of the casing while hydraulic performance and strength performance will hardly be changed according to the requirements of the cooperative company. The research object is one existing centrifugal pump with a diffuser and a semi-spherical annular casing, working as the boiler circulation pump for (ultra) supercritical units in power plants. Dimension decrease, the modification method, is achieved by decreasing the existing casing's internal radius (marked as R i0 ) while keeping the wall thickness. The research analysis is based on primary formulation derivation, CFD (Computational Fluid Dynamics) simulation and FEM (Finite Element Method) simulation. Primary formulation derivation estimates that a design casing's internal radius should be less than 0.75 R i0 . CFD analysis indicates that smaller casing with 0.75 R i0 has a worse hydraulic performance when working at large flow rates and a better hydraulic performance when working at small flow rates. In consideration of hydraulic performance and dimension decrease, an appropriate casing's internal radius is determined, which equals to 0.875 R i0 . FEM analysis then confirms that modified pump casing has nearly the same strength performance as the existing pump casing. It is concluded that dimension decrease can be an economical method as well as a practical method for large pumps in engineering fields.

  2. Numerical simulation on dimension decrease for annular casing of one centrifugal boiler circulation pump

    Science.gov (United States)

    Fan, Y. Z.; Zuo, Z. G.; Liu, S. H.; Wu, Y. L.; Sha, Y. J.

    2012-11-01

    Primary formulation derivation indicates that the dimension of one existing centrifugal boiler circulation pump casing is too large. As great manufacture cost can be saved by dimension decrease, a numerical simulation research is developed in this paper on dimension decrease for annular casing of this pump with a specific speed equaling to 189, which aims at finding an appropriately smaller dimension of the casing while hydraulic performance and strength performance will hardly be changed according to the requirements of the cooperative company. The research object is one existing centrifugal pump with a diffuser and a semi-spherical annular casing, working as the boiler circulation pump for (ultra) supercritical units in power plants. Dimension decrease, the modification method, is achieved by decreasing the existing casing's internal radius (marked as "Ri0") while keeping the wall thickness. The research analysis is based on primary formulation derivation, CFD (Computational Fluid Dynamics) simulation and FEM (Finite Element Method) simulation. Primary formulation derivation estimates that a design casing's internal radius should be less than 0.75 Ri0. CFD analysis indicates that smaller casing with 0.75 Ri0 has a worse hydraulic performance when working at large flow rates and a better hydraulic performance when working at small flow rates. In consideration of hydraulic performance and dimension decrease, an appropriate casing's internal radius is determined, which equals to 0.875 Ri0. FEM analysis then confirms that modified pump casing has nearly the same strength performance as the existing pump casing. It is concluded that dimension decrease can be an economical method as well as a practical method for large pumps in engineering fields.

  3. A continuum model for pressure-flow relationship in human pulmonary circulation.

    Science.gov (United States)

    Huang, Wei; Zhou, Qinlian; Gao, Jian; Yen, R T

    2011-06-01

    A continuum model was introduced to analyze the pressure-flow relationship for steady flow in human pulmonary circulation. The continuum approach was based on the principles of continuum mechanics in conjunction with detailed measurement of vascular geometry, vascular elasticity and blood rheology. The pulmonary arteries and veins were considered as elastic tubes and the "fifth-power law" was used to describe the pressure-flow relationship. For pulmonary capillaries, the "sheet-flow" theory was employed and the pressure-flow relationship was represented by the "fourth-power law". In this paper, the pressure-flow relationship for the whole pulmonary circulation and the longitudinal pressure distribution along the streamlines were studied. Our computed data showed general agreement with the experimental data for the normal subjects and the patients with mitral stenosis and chronic bronchitis in the literature. In conclusion, our continuum model can be used to predict the changes of steady flow in human pulmonary circulation.

  4. Study on the phenomena of natural circulation in LMFBR

    International Nuclear Information System (INIS)

    Takeda, Hirofumi; Koga, Tomonari

    1993-01-01

    Decay heat removal with natural circulation is to be introduced to the LMFBR operation under loss of the electric power supply. The natural circulation is highly reliable, but the phenomenon is essentially unstable and subtle, which makes fine prediction difficult. The difficulties of experimental prediction are explained by facts that the phenomena are ruled by the delicate balance between the buoyancy force and the low pressure loss and are influenced by the various parameters such as local geometry, heat capacity and so on. Therefore the similarity rule for the natural circulation has not been fully understood. This study has been conducted to establish the simulation method for the natural circulation phenomena and the detailed phenomena have been reviewed. For the natural circulation in an LMFBR plant, there are no readily available reference velocity and temperature. These values are related only with the heating and cooling rate, the characteristic length and physical properties of the testing fluid. Basic equations were transformed by these values, and dimensionless equations were derived and then two dimensionless numbers, the Gr' number and the Bo' number, were identified. In order to examine the similarity rule for natural circulation we performed experiments using the different scale water models, a 1/20th and a 1/6th model. The temperatures and velocities at typical points were measured in the transient condition with various heating rate as a parameter. Measured temperatures and velocities were transformed to dimensionless forms for comparison and the effects of the Bo' number and the Gr' number were examined. As a result, it was clarified that the effect of the Gr' number is negligibly small but the effect of Bo' number still remained in our experimental range. The Bo' number of an actual plant is within the range of this experiment. Accordingly similitude of the Bo' number becomes important in an experiment to simulate an actual plant. (author)

  5. Numerical modeling of the thermoelectric cooler with a complementary equation for heat circulation in air gaps

    Science.gov (United States)

    Fang, En; Wu, Xiaojie; Yu, Yuesen; Xiu, Junrui

    2017-03-01

    In this paper, a numerical model is developed by combining thermodynamics with heat transfer theory. Taking inner and external multi-irreversibility into account, it is with a complementary equation for heat circulation in air gaps of a steady cooling system with commercial thermoelectric modules operating in refrigeration mode. With two modes concerned, the equation presents the heat flowing through air gaps which forms heat circulations between both sides of thermoelectric coolers (TECs). In numerical modelling, a TEC is separated as two temperature controlled constant heat flux reservoirs in a thermal resistance network. In order to obtain the parameter values, an experimental apparatus with a commercial thermoelectric cooler was built to characterize the performance of a TEC with heat source and sink assembly. At constant power dissipation, steady temperatures of heat source and both sides of the thermoelectric cooler were compared with those in a standard numerical model. The method displayed that the relationship between Φf and the ratio Φ_{c}'/Φ_{c} was linear as expected. Then, for verifying the accuracy of proposed numerical model, the data in another system were recorded. It is evident that the experimental results are in good agreement with simulation(proposed model) data at different heat transfer rates. The error is small and mainly results from the instabilities of thermal resistances with temperature change and heat flux, heat loss of the device vertical surfaces and measurements.

  6. Aspect of ECMWF downscaled Regional Climate Modeling in simulating Indian summer monsoon rainfall and dependencies on lateral boundary conditions

    Science.gov (United States)

    Ghosh, Soumik; Bhatla, R.; Mall, R. K.; Srivastava, Prashant K.; Sahai, A. K.

    2018-03-01

    Climate model faces considerable difficulties in simulating the rainfall characteristics of southwest summer monsoon. In this study, the dynamical downscaling of European Centre for Medium-Range Weather Forecast's (ECMWF's) ERA-Interim (EIN15) has been utilized for the simulation of Indian summer monsoon (ISM) through the Regional Climate Model version 4.3 (RegCM-4.3) over the South Asia Co-Ordinated Regional Climate Downscaling EXperiment (CORDEX) domain. The complexities of model simulation over a particular terrain are generally influenced by factors such as complex topography, coastal boundary, and lack of unbiased initial and lateral boundary conditions. In order to overcome some of these limitations, the RegCM-4.3 is employed for simulating the rainfall characteristics over the complex topographical conditions. For reliable rainfall simulation, implementations of numerous lower boundary conditions are forced in the RegCM-4.3 with specific horizontal grid resolution of 50 km over South Asia CORDEX domain. The analysis is considered for 30 years of climatological simulation of rainfall, outgoing longwave radiation (OLR), mean sea level pressure (MSLP), and wind with different vertical levels over the specified region. The dependency of model simulation with the forcing of EIN15 initial and lateral boundary conditions is used to understand the impact of simulated rainfall characteristics during different phases of summer monsoon. The results obtained from this study are used to evaluate the activity of initial conditions of zonal wind circulation speed, which causes an increase in the uncertainty of regional model output over the region under investigation. Further, the results showed that the EIN15 zonal wind circulation lacks sufficient speed over the specified region in a particular time, which was carried forward by the RegCM output and leads to a disrupted regional simulation in the climate model.

  7. Development and implementation of a Variable Infiltration Capacity model of surface hydrology into the General Circulation Model

    International Nuclear Information System (INIS)

    Lettenmaier, D.P.; Stamm, J.F.; Wood, E.F.

    1993-04-01

    A Variable Infiltration Capacity (VIC) model is described for the representation of land surface hydrology in General Circulation Models (GCMs). The VIC model computes runoff as a function of the distribution of soil moisture capacity within a GCM grid cell. The major distinguishing feature of the VIC model relative to the bucket model currently used to represent the land surface in many GCMs is that it parameterizes the nonlinearity of the fraction of precipitation that infiltrates over a large area (hence the production of direct runoff) as a function of spatial average soil moisture storage, and that it models subsurface runoff between storms via a simple recession mechanism. The VIC model was incorporated into the Geophysical Fluid Dynamics Laboratory (GFDL) GCM at R15 resolution (roughly 4.5 degrees latitude by 7.5 degrees longitude). Ten-year simulations of global climate were produced using the GFDL GCM with both VIC land surface hydrology, and, for comparison purposes, the standard bucket representation. Comparison of the ten year runs using the VIC model with those using bucket hydrology showed that for the VIC run, global average runoff increased, soil moisture decreased, evaporation decreased, land surface temperature increased, and precipitation decreased. As expected, changes in precipitation occurred primarily over the continents, especially in the northern hemisphere. Changes in the surface water balance for Africa, Australia, and South America were much less than for North American and Eurasia. Both VIC and bucket simulations of surface air temperature and precipitation were compared with gridded monthly average observation fields. These comparisons indicated that the VIC hydrology reproduced winter temperatures better, and summer temperatures worse, than the bucket model. The VIC hydrology better represented global precipitation, primarily as a result of partially reducing the upward bias in precipitation associated with the GFDL R15 bucket runs

  8. Changes in present and future circulation types frequency in northwest Iberian Peninsula.

    Directory of Open Access Journals (Sweden)

    María N Lorenzo

    Full Text Available The aim of the work described herein was to study projection scenarios in order to find changes in the synoptic variability of the northwest Iberian Peninsula in the 21st century. To this end, we investigated the changes in the frequency of the different circulation types computed for the study area using three different models used in the IPCC 4(th assessment report. The circulation types were computed using the procedure known as Lamb circulation types. The control simulation for the late 20th century was evaluated objectively from the results obtained using data from the NCEP/NCAR reanalysis, as to evaluate the ability of the model to reproduce the present climate. We have compared not only seasonal mean sea level pressure fields but also the mean seasonal frequency of circulation types. The results for the end of the 21st century show a decrease in the frequency of cyclonic, W, and SW circulation types in the spring and summer months. This trend also appears in the autumn, with a concomitant increase in the anticyclonic types.

  9. Changes in present and future circulation types frequency in northwest Iberian Peninsula.

    Science.gov (United States)

    Lorenzo, María N; Ramos, Alexandre M; Taboada, Juan J; Gimeno, Luis

    2011-01-21

    The aim of the work described herein was to study projection scenarios in order to find changes in the synoptic variability of the northwest Iberian Peninsula in the 21st century. To this end, we investigated the changes in the frequency of the different circulation types computed for the study area using three different models used in the IPCC 4(th) assessment report. The circulation types were computed using the procedure known as Lamb circulation types. The control simulation for the late 20th century was evaluated objectively from the results obtained using data from the NCEP/NCAR reanalysis, as to evaluate the ability of the model to reproduce the present climate. We have compared not only seasonal mean sea level pressure fields but also the mean seasonal frequency of circulation types. The results for the end of the 21st century show a decrease in the frequency of cyclonic, W, and SW circulation types in the spring and summer months. This trend also appears in the autumn, with a concomitant increase in the anticyclonic types.

  10. An Exospheric Temperature Model Based On CHAMP Observations and TIEGCM Simulations

    Science.gov (United States)

    Ruan, Haibing; Lei, Jiuhou; Dou, Xiankang; Liu, Siqing; Aa, Ercha

    2018-02-01

    In this work, thermospheric densities from the accelerometer measurement on board the CHAMP satellite during 2002-2009 and the simulations from the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) are employed to develop an empirical exospheric temperature model (ETM). The two-dimensional basis functions of the ETM are first provided from the principal component analysis of the TIEGCM simulations. Based on the exospheric temperatures derived from CHAMP thermospheric densities, a global distribution of the exospheric temperatures is reconstructed. A parameterization is conducted for each basis function amplitude as a function of solar-geophysical and seasonal conditions. Thus, the ETM can be utilized to model the thermospheric temperature and mass density under a specified condition. Our results showed that the averaged standard deviation of the ETM is generally less than 10% than approximately 30% in the MSIS model. Besides, the ETM reproduces the global thermospheric evolutions including the equatorial thermosphere anomaly.

  11. Experimental study of the natural circulation phenomena

    International Nuclear Information System (INIS)

    Sabundjian, Gaiane; Andrade, Delvonei Alves de; Umbehaun, Pedro E.; Torres, Walmir M.; Castro, Alfredo Jose Alvim de; Belchior Junior, Antonio; Rocha, Ricardo Takeshi Vieira da; Damy, Osvaldo Luiz de Almeida; Torres, Eduardo

    2006-01-01

    The objective of this paper is to study the natural circulation in experimental loops and extend the results to nuclear facilities. New generation of compact nuclear power plants use the natural circulation as cooling and residual heat removal systems in case of accidents or shutdown. Lately the interest in this phenomenon, by scientific community, has increased. The experimental loop, described in this paper, was assembled at Escola Politecnica - USP at the Chemical Engineering Department. It is the goal to generate information to help with the understanding of the one and two phase natural circulation phenomena. Some experiments were performed with different levels of heat power and different flow of the cooling water at the secondary circuit. The data generated from these experiments are going to be used to validate some computational thermal hydraulic codes. Experimental results for one and two phase regimes are presented as well as the proposed model to simulate the flow regimes with the RELAP5 code. (author)

  12. A report on workshops: General circulation model study of climate- chemistry interaction

    International Nuclear Information System (INIS)

    Wei-Chyung, Wang; Isaksen, I.S.A.

    1993-01-01

    This report summarizes the discussion on General Circulation Model Study of Climate-Chemistry Interaction from two workshops, the first held 19--21 August 1992 at Oslo, Norway and the second 26--27 May 1993 at Albany, New York, USA. The workshops are the IAMAP activities under the Trace Constituent Working Group. The main objective of the two workshops was to recommend specific general circulation model (GCM) studies of the ozone distribution and the climatic effect of its changes. The workshops also discussed the climatic implications of increasing sulfate aerosols because of its importance to regional climate. The workshops were organized into four working groups: observation of atmospheric O 3 ; modeling of atmospheric chemical composition; modeling of sulfate aerosols; and aspects of climate modeling

  13. Mechanisms for decadal scale variability in a simulated Atlantic meridional overturning circulation

    Energy Technology Data Exchange (ETDEWEB)

    Medhaug, I.; Eldevik, T.; Furevik, T. [University of Bergen, Geophysical Institute, Bergen (Norway); Bjerknes Centre for Climate Research, Bergen (Norway); Langehaug, H.R. [Nansen Environmental and Remote Sensing Center, Bergen (Norway); Bjerknes Centre for Climate Research, Bergen (Norway); Bentsen, M. [Uni Bjerknes Centre, Uni Research, Bergen (Norway); Bjerknes Centre for Climate Research, Bergen (Norway)

    2012-07-15

    Variability in the Atlantic Meridional Overturning Circulation (AMOC) has been analysed using a 600-year pre-industrial control simulation with the Bergen Climate Model. The typical AMOC variability has amplitudes of 1 Sverdrup (1 Sv = 10{sup 6} m{sup 3} s{sup -1}) and time scales of 40-70 years. The model is reproducing the observed dense water formation regions and has very realistic ocean transports and water mass distributions. The dense water produced in the Labrador Sea (1/3) and in the Nordic Seas, including the water entrained into the dense overflows across the Greenland-Scotland Ridge (GSR; 2/3), are the sources of North Atlantic Deep Water (NADW) forming the lower limb of the AMOC's northern overturning. The variability in the Labrador Sea and the Nordic Seas convection is driven by decadal scale air-sea fluxes in the convective region that can be related to opposite phases of the North Atlantic Oscillation. The Labrador Sea convection is directly linked to the variability in AMOC. Linkages between convection and water mass transformation in the Nordic Seas are more indirect. The Scandinavian Pattern, the third mode of atmospheric variability in the North Atlantic, is a driver of the ocean's poleward heat transport (PHT), the overall constraint on northern water mass transformation. Increased PHT is both associated with an increased water mass exchange across the GSR, and a stronger AMOC. (orig.)

  14. Combined simulation of carbon and water isotopes in a global ocean model

    Science.gov (United States)

    Paul, André; Krandick, Annegret; Gebbie, Jake; Marchal, Olivier; Dutkiewicz, Stephanie; Losch, Martin; Kurahashi-Nakamura, Takasumi; Tharammal, Thejna

    2013-04-01

    Carbon and water isotopes are included as passive tracers in the MIT general circulation model (MITgcm). The implementation of the carbon isotopes is based on the existing MITgcm carbon cycle component and involves the fractionation processes during photosynthesis and air-sea gas exchange. Special care is given to the use of a real freshwater flux boundary condition in conjunction with the nonlinear free surface of the ocean model. The isotopic content of precipitation and water vapor is obtained from an atmospheric GCM (the NCAR CAM3) and mapped onto the MITgcm grid system, but the kinetic fractionation during evaporation is treated explicitly in the ocean model. In a number of simulations, we test the sensitivity of the carbon isotope distributions to the formulation of fractionation during photosynthesis and compare the results to modern observations of δ13C and Δ14C from GEOSECS, WOCE and CLIVAR. Similarly, we compare the resulting distribution of oxygen isotopes to modern δ18O data from the NASA GISS Global Seawater Oxygen-18 Database. The overall agreement is good, but there are discrepancies in the carbon isotope composition of the surface water and the oxygen isotope composition of the intermediate and deep waters. The combined simulation of carbon and water isotopes in a global ocean model will provide a framework for studying present and past states of ocean circulation such as postulated from deep-sea sediment records.

  15. Tracer simulation using a global general circulation model: Results from a midlatitude instantaneous source experiment

    International Nuclear Information System (INIS)

    Mahlman, J.D.; Moxim, W.J.

    1978-01-01

    An 11-level general circulation model with seasonal variation is used to perform an experiment on the dispersion of passive tracers. Specially constructed time-dependent winds from this model are used as input to a separate tracer model. The methodologies employed to construct the tracer model are described.The experiment presented is the evolution of a hypothetical instantaneous source of tracer on 1 Janaury with maximum initial concentration at 65 mb, 36 0 N, 180 0 E. The tracer is assumed to have no sources or sinks in the stratosphere, but is subject to removal processes in the lower troposphere.The experimental results reveal a number of similarities to observed tracer behavior, including the average poleward-downward slope of mixing ratio isopleths, strong tracer gradients across the tropopause, intrusion of tracer into the Southern Hemisphere lower stratosphere, and the long-term interhemispheric exchange rate. The model residence times show behavior intermediate to those exhibited for particulate radioactive debris and gaseous C 14 O 2 . This suggests that caution should be employed when either radioactive debris or C 14 O 2 data are used to develop empirical models for prediction of gaseous tracers which are efficiently removed in the troposphere.In this experiment, the tracer mixing ratio and potential vorticity evolve to very high correlations. Mechanisms for this correlation are discussed. The zonal mean tracer balances exhibit complex behavior among the various transport terms. At early stages, the tracer evolution is dominated by eddy effects. Later, a very large degree of self-cancellation between mean cell and eddy effects is observed. During seasonal transitions, however, this self-cancellation diminishes markedly, leading to significant changes in the zonal mean tracer distribution. A possible theoretical explanation is presented

  16. Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Grandey, Benjamin; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2010-03-12

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong f{sub cld} - {tau}{sub a} relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between {tau}{sub a} and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - {tau}{sub a} relationship show a strong positive correlation between {tau}{sub a} and f{sub cld} The short-wave total aerosol radiative forcing as simulated by the GCMs is

  17. A model study of present-day Hall-effect circulators

    Energy Technology Data Exchange (ETDEWEB)

    Placke, B. [RWTH Aachen University, Institute for Quantum Information, Aachen (Germany); Bosco, S. [RWTH Aachen University, Institute for Quantum Information, Aachen (Germany); Juelich-Aachen Research Alliance (JARA), Fundamentals of Future Information Technologiesh, Juelich (Germany); DiVincenzo, D.P. [RWTH Aachen University, Institute for Quantum Information, Aachen (Germany); Juelich-Aachen Research Alliance (JARA), Fundamentals of Future Information Technologiesh, Juelich (Germany); Peter Gruenberg Institute, Theoretical Nanoelectronics, Forschungszentrum Juelich, Juelich (Germany)

    2017-12-15

    Stimulated by the recent implementation of a three-port Hall-effect microwave circulator of Mahoney et al. (MEA), we present model studies of the performance of this device. Our calculations are based on the capacitive-coupling model of Viola and DiVincenzo (VD). Based on conductance data from a typical Hall-bar device obtained from a two-dimensional electron gas (2DEG) in a magnetic field, we numerically solve the coupled field-circuit equations to calculate the expected performance of the circulator, as determined by the S parameters of the device when coupled to 50Ω ports, as a function of frequency and magnetic field. Above magnetic fields of 1.5 T, for which a typical 2DEG enters the quantum Hall regime (corresponding to a Landau-level filling fraction ν of 20), the Hall angle θ{sub H} = tan{sup -1} σ{sub xy}/σ{sub xx} always remains close to 90 , and the S parameters are close to the analytic predictions of VD for θ{sub H} = π/2. As anticipated by VD, MEA find the device to have rather high (kΩ) impedance, and thus to be extremely mismatched to 50Ω, requiring the use of impedance matching. We incorporate the lumped matching circuits of MEA in our modeling and confirm that they can produce excellent circulation, although confined to a very small bandwidth. We predict that this bandwidth is significantly improved by working at lower magnetic field when the Landau index is high, e.g. ν = 20, and the impedance mismatch is correspondingly less extreme. Our modeling also confirms the observation of MEA that parasitic port-to-port capacitance can produce very interesting countercirculation effects. (orig.)

  18. The impact of changes in parameterizations of surface drag and vertical diffusion on the large-scale circulation in the Community Atmosphere Model (CAM5)

    Science.gov (United States)

    Lindvall, Jenny; Svensson, Gunilla; Caballero, Rodrigo

    2017-06-01

    Simulations with the Community Atmosphere Model version 5 (CAM5) are used to analyze the sensitivity of the large-scale circulation to changes in parameterizations of orographic surface drag and vertical diffusion. Many GCMs and NWP models use enhanced turbulent mixing in stable conditions to improve simulations, while CAM5 cuts off all turbulence at high stabilities and instead employs a strong orographic surface stress parameterization, known as turbulent mountain stress (TMS). TMS completely dominates the surface stress over land and reduces the near-surface wind speeds compared to simulations without TMS. It is found that TMS is generally beneficial for the large-scale circulation as it improves zonal wind speeds, Arctic sea level pressure and zonal anomalies of the 500-hPa stream function, compared to ERA-Interim. It also alleviates atmospheric blocking frequency biases in the Northern Hemisphere. Using a scheme that instead allows for a modest increase of turbulent diffusion at higher stabilities only in the planetary boundary layer (PBL) appears to in some aspects have a similar, although much smaller, beneficial effect as TMS. Enhanced mixing throughout the atmospheric column, however, degrades the CAM5 simulation. Evaluating the simulations in comparison with detailed measurements at two locations reveals that TMS is detrimental for the PBL at the flat grassland ARM Southern Great Plains site, giving too strong wind turning and too deep PBLs. At the Sodankylä forest site, the effect of TMS is smaller due to the larger local vegetation roughness. At both sites, all simulations substantially overestimate the boundary layer ageostrophic flow.

  19. TEMPERATURE STRUCTURE AND ATMOSPHERIC CIRCULATION OF DRY TIDALLY LOCKED ROCKY EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Koll, Daniel D. B.; Abbot, Dorian S., E-mail: dkoll@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States)

    2016-07-10

    Next-generation space telescopes will observe the atmospheres of rocky planets orbiting nearby M-dwarfs. Understanding these observations will require well-developed theory in addition to numerical simulations. Here we present theoretical models for the temperature structure and atmospheric circulation of dry, tidally locked rocky exoplanets with gray radiative transfer and test them using a general circulation model (GCM). First, we develop a radiative-convective (RC) model that captures surface temperatures of slowly rotating and cool atmospheres. Second, we show that the atmospheric circulation acts as a global heat engine, which places strong constraints on large-scale wind speeds. Third, we develop an RC-subsiding model which extends our RC model to hot and thin atmospheres. We find that rocky planets develop large day–night temperature gradients at a ratio of wave-to-radiative timescales up to two orders of magnitude smaller than the value suggested by work on hot Jupiters. The small ratio is due to the heat engine inefficiency and asymmetry between updrafts and subsidence in convecting atmospheres. Fourth, we show, using GCM simulations, that rotation only has a strong effect on temperature structure if the atmosphere is hot or thin. Our models let us map out atmospheric scenarios for planets such as GJ 1132b, and show how thermal phase curves could constrain them. Measuring phase curves of short-period planets will require similar amounts of time on the James Webb Space Telescope as detecting molecules via transit spectroscopy, so future observations should pursue both techniques.

  20. Effects of land cover change on the tropical circulation in a GCM

    Science.gov (United States)

    Jonko, Alexandra Karolina; Hense, Andreas; Feddema, Johannes Jan

    2010-09-01

    Multivariate statistics are used to investigate sensitivity of the tropical atmospheric circulation to scenario-based global land cover change (LCC), with the largest changes occurring in the tropics. Three simulations performed with the fully coupled Parallel Climate Model (PCM) are compared: (1) a present day control run; (2) a simulation with present day land cover and Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 greenhouse gas (GHG) projections; and (3) a simulation with SRES A2 land cover and GHG projections. Dimensionality of PCM data is reduced by projection onto a priori specified eigenvectors, consisting of Rossby and Kelvin waves produced by a linearized, reduced gravity model of the tropical circulation. A Hotelling T 2 test is performed on projection amplitudes. Effects of LCC evaluated by this method are limited to diabatic heating. A statistically significant and recurrent signal is detected for 33% of all tests performed for various combinations of parameters. Taking into account uncertainties and limitations of the present methodology, this signal can be interpreted as a Rossby wave response to prescribed LCC. The Rossby waves are shallow, large-scale motions, trapped at the equator and most pronounced in boreal summer. Differences in mass and flow fields indicate a shift of the tropical Walker circulation patterns with an anomalous subsidence over tropical South America.

  1. Computational simulation of natural circulation and rewetting experiments using the TRAC/PF1 code

    International Nuclear Information System (INIS)

    Silva, J.D. da.

    1994-05-01

    In this work the TRAC code was used to simulate experiments of natural circulation performed in the first Brazilian integral test facility at (COPESP), Sao Paulo and a rewetting experiment in a single tube test section carried out at CDTN, Belo Horizonte, Brazil. In the first simulation the loop behavior in two transient conditions with different thermal power, namely 20 k W and 120 k W, was verified in the second one the quench front propagation, the liquid mass collected in the carry over measuring tube and the wall temperature at different elevations during the flooding experiment was measured. A comparative analysis, for code consistency, shows a good agreement between the code results and experimental data, except for the quench from velocity. (author). 15 refs, 19 figs, 12 tabs

  2. Simulation and Sensitivity in a Nested Modeling System for South America. Part II: GCM Boundary Forcing.

    Science.gov (United States)

    Rojas, Maisa; Seth, Anji

    2003-08-01

    of this study, the RegCM's ability to simulate circulation and rainfall observed in the two extreme seasons was demonstrated when driven at the lateral boundaries by reanalyzed forcing. Seasonal integrations with the RegCM driven by GCM ensemble-derived lateral boundary forcing demonstrate that the nested model responds well to the SST forcing, by capturing the major features of the circulation and rainfall differences between the two years. The GCM-driven model also improves upon the monthly evolution of rainfall compared with that from the GCM. However, the nested model rainfall simulations for the two seasons are degraded compared with those from the reanalyses-driven RegCM integrations. The poor location of the Atlantic intertropical convergence zone (ITCZ) in the GCM leads to excess rainfall in Nordeste in the nested model.An expanded domain was tested, wherein the RegCM was permitted more internal freedom to respond to SST and regional orographic forcing. Results show that the RegCM is able to improve the location of the ITCZ, and the seasonal evolution of rainfall in Nordeste, the Amazon region, and the southeastern region of Brazil. However, it remains that the limiting factor in the skill of the nested modeling system is the quality of the lateral boundary forcing provided by the global model.

  3. A Wind Tunnel Model to Explore Unsteady Circulation Control for General Aviation Applications

    Science.gov (United States)

    Cagle, Christopher M.; Jones, Gregory S.

    2002-01-01

    Circulation Control airfoils have been demonstrated to provide substantial improvements in lift over conventional airfoils. The General Aviation Circular Control model is an attempt to address some of the concerns of this technique. The primary focus is to substantially reduce the amount of air mass flow by implementing unsteady flow. This paper describes a wind tunnel model that implements unsteady circulation control by pulsing internal pneumatic valves and details some preliminary results from the first test entry.

  4. Influence of cloud radiative effects on tropical circulation and hydrological cycle in the Mid-Holocene

    Science.gov (United States)

    Izumi, Kenji; Kageyama, Masa; Bony, Sandrine; Braconnot, Pascale

    2016-04-01

    Paleoenvironmental data in particular, vegetation and lake-status at mid-Holocene (6,000 years ago) in Sahara shows that African monsoon extended much further north than today. Much of this change results from the changes in insolation driven by precession of the Earth's orbit, but in the state-of-the-art climate models, this factor alone is insufficient to explain the magnitude of the change. Previous studies showed that ocean and vegetation feedbacks affect the mid-Holocene monsoon and that the incorporation of these feedbacks in models improves the simulation of the hydrological cycle. However, it is not sufficient to reduce the discrepancies between simulated and reconstructed surface climates. In this study, we investigate the extent to which the simulation of cloud-radiative effects matters for the simulation of paleo-climatic changes, and past changes in the position and strength of the tropical rain belts in particular. This is done by running a general circulation model with and without clouds-radiation interactions using the IPSL model. The impact of cloud -radiative effects, which prevents the precipitation band to move north, on the tropical circulation and precipitation changes in mid-Holocene experiments will be discussed. Additionally, we will show the simulated effects of land cover change over Sahara.

  5. Response of an ocean general circulation model to wind and ...

    Indian Academy of Sciences (India)

    The stretched-coordinate ocean general circulation model has been designed to study the observed variability due to wind and thermodynamic forcings. The model domain extends from 60°N to 60°S and cyclically continuous in the longitudinal direction. The horizontal resolution is 5° × 5° and 9 discrete vertical levels.

  6. An efficient mode-splitting method for a curvilinear nearshore circulation model

    Science.gov (United States)

    Shi, Fengyan; Kirby, James T.; Hanes, Daniel M.

    2007-01-01

    A mode-splitting method is applied to the quasi-3D nearshore circulation equations in generalized curvilinear coordinates. The gravity wave mode and the vorticity wave mode of the equations are derived using the two-step projection method. Using an implicit algorithm for the gravity mode and an explicit algorithm for the vorticity mode, we combine the two modes to derive a mixed difference–differential equation with respect to surface elevation. McKee et al.'s [McKee, S., Wall, D.P., and Wilson, S.K., 1996. An alternating direction implicit scheme for parabolic equations with mixed derivative and convective terms. J. Comput. Phys., 126, 64–76.] ADI scheme is then used to solve the parabolic-type equation in dealing with the mixed derivative and convective terms from the curvilinear coordinate transformation. Good convergence rates are found in two typical cases which represent respectively the motions dominated by the gravity mode and the vorticity mode. Time step limitations imposed by the vorticity convective Courant number in vorticity-mode-dominant cases are discussed. Model efficiency and accuracy are verified in model application to tidal current simulations in San Francisco Bight.

  7. Seasonal variability of water transport through the Straits of Gibraltar, Sicily and Corsica, derived from a high-resolution model of the Mediterranean circulation

    Science.gov (United States)

    Béranger, K.; Mortier, L.; Crépon, M.

    2005-08-01

    The variability of the water transport through three major straits of the Mediterranean Sea (Gibraltar, Sicily and Corsica) was investigated using a high-resolution model. This model of the Mediterranean circulation was developed in the context of the Mercator project. The region of interest is the western Mediterranean between the Strait of Gibraltar and the Strait of Sicily. The major water masses and the winter convection in the Gulf of Lions were simulated. The model reproduced the meso-scale and large-scale patterns of the circulation in very good agreement with recent observations. The western and the eastern gyres of the Alboran Sea were observed but high interannual variability was noticed. The Algerian Current splits into several branches at the longitude of the Strait of Sicily level, forming the Tyrrhenian branch, and, the Atlantic Ionian Stream and the Atlantic Tunisian Current in the eastern Mediterranean. The North Current retroflexed north of the Balearic Islands and a dome structure was observed in the Gulf of Lions. The cyclonic barotropic Algerian gyre, which was recently observed during the MATER and ELISA experiment, was evidenced in the simulation. From time-series of 10-day mean transport, the three straits presented a high variability at short time-scales. The transport was generally maximum, in April for the Strait of Gibraltar, in November for the Strait of Sicily, and in January for the Strait of Corsica. The amplitudes of the transport through the Straits of Gibraltar (0.11 Sv) and Sicily (0.30 Sv) presented a weaker seasonal variability than that of the Strait of Corsica (0.70 Sv). The study of the relation between transport and wind forcing showed that the transport through the Strait of Gibraltar is dependent on local zonal wind over short time-scales (70%), which was not the case for the other straits (less than 30%). The maximum (minimum) of the transport occurred for an eastward (westward) wind stress in the strait. An interannual

  8. Equivalent Circulation Density Analysis of Geothermal Well by Coupling Temperature

    Directory of Open Access Journals (Sweden)

    Xiuhua Zheng

    2017-02-01

    Full Text Available The accurate control of the wellbore pressure not only prevents lost circulation/blowout and fracturing formation by managing the density of the drilling fluid, but also improves productivity by mitigating reservoir damage. Calculating the geothermal pressure of a geothermal well by constant parameters would easily bring big errors, as the changes of physical, rheological and thermal properties of drilling fluids with temperature are neglected. This paper researched the wellbore pressure coupling by calculating the temperature distribution with the existing model, fitting the rule of density of the drilling fluid with the temperature and establishing mathematical models to simulate the wellbore pressures, which are expressed as the variation of Equivalent Circulating Density (ECD under different conditions. With this method, the temperature and ECDs in the wellbore of the first medium-deep geothermal well, ZK212 Yangyi Geothermal Field in Tibet, were determined, and the sensitivity analysis was simulated by assumed parameters, i.e., the circulating time, flow rate, geothermal gradient, diameters of the wellbore, rheological models and regimes. The results indicated that the geothermal gradient and flow rate were the most influential parameters on the temperature and ECD distribution, and additives added in the drilling fluid should be added carefully as they change the properties of the drilling fluid and induce the redistribution of temperature. To ensure the safe drilling and velocity of pipes tripping into the hole, the depth and diameter of the wellbore are considered to control the surge pressure.

  9. Numerical simulation of the gas-solid flow in a square circulating fluidized bed with secondary air injection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengyang [Harbin Institute of Technology, Harbin (China). Post-doctor Station of Civil Engineering; Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.; Sun, Shaozeng; Zhao, Ningbo; Wu, Shaohua [Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.; Tan, Yufei [Harbin Institute of Technology, Harbin (China). School of Municipal and Environmental Engineering

    2013-07-01

    The dynamic behavior of gas-solid flow in an experimental square circulating fluidized bed setup (0.25 m x 0.25 m x 6.07 m) is predicted with numerical simulation based on the theory of Euler-Euler gas-solid two-phase flow and the kinetic theory of granular flows. The simulation includes the operation cases with secondary injection and without air-staging. The pressure drop profile, local solids concentration and particle velocity was compared with experimental results. Both simulation and experimental results show that solids concentration increases significantly below the secondary air injection ports when air-staging is adopted. Furthermore, the flow asymmetry in the solid entrance region of the bed was investigated based on the particle concentration/velocity profile. The simulation results are in agreement with the experimental results qualitatively.

  10. High-Reynolds Number Circulation Control Testing in the National Transonic Facility

    Science.gov (United States)

    Milholen, William E., II; Jones, Gregory S.; Chan, David T.; Goodliff, Scott L.

    2012-01-01

    A new capability to test active flow control concepts and propulsion simulations at high Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center is being developed. The first active flow control experiment was completed using the new FAST-MAC semi-span model to study Reynolds number scaling effects for several circulation control concepts. Testing was conducted over a wide range of Mach numbers, up to chord Reynolds numbers of 30 million. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. Preliminary analysis of the uncorrected lift data showed that the circulation control increased the low-speed maximum lift coefficient by 33%. At transonic speeds, the circulation control was capable of positively altering the shockwave pattern on the upper wing surface and reducing flow separation. Furthermore, application of the technique to only the outboard portion of the wing demonstrated the feasibility of a pneumatic based roll control capability.

  11. A DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS: UNIFYING KINEMATIC DYNAMO MODELS AND SURFACE FLUX-TRANSPORT SIMULATIONS

    International Nuclear Information System (INIS)

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu; Yeates, Anthony R.

    2010-01-01

    The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed α-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithm for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.

  12. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    Science.gov (United States)

    Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; hide

    2017-01-01

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth's, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn's moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.

  13. Turbulent circulation above the surface heat source in stably stratified atmosphere

    Science.gov (United States)

    Kurbatskii, A. F.; Kurbatskaya, L. I.

    2016-10-01

    The 3-level RANS approach for simulating a turbulent circulation over the heat island in a stably stratified environment under nearly calm conditions is formulated. The turbulent kinetic energy its spectral consumption (dissipation) and the dispersion of turbulent fluctuations of temperature are found from differential equations, thus the correct modeling of transport processes in the interface layer with the counter-gradient heat flux is assured. The three-parameter turbulence RANS approach minimizes difficulties in simulating the turbulent transport in a stably stratified environment and reduces efforts needed for the numerical implementation of the 3-level RANS approach. Numerical simulation of the turbulent structure of the penetrative convection over the heat island under conditions of stably stratified atmosphere demonstrates that the three-equation model is able to predict the thermal circulation induced by the heat island. The temperature distribution, root-mean-square fluctuations of the turbulent velocity and temperature fields and spectral turbulent kinetic energy flux are in good agreement with the experimental data. The model describes such thin physical effects, as a crossing of vertical profiles of temperature of a thermal plume with the formation of the negative buoyancy area testifying to development of the dome-shaped form at the top part of a plume in the form of "hat".

  14. Simulating Storm Surge Impacts with a Coupled Atmosphere-Inundation Model with Varying Meteorological Forcing

    Directory of Open Access Journals (Sweden)

    Alexandra N. Ramos Valle

    2018-04-01

    Full Text Available Storm surge events have the potential to cause devastating damage to coastal communities. The magnitude of their impacts highlights the need for increased accuracy and real-time forecasting and predictability of storm surge. In this study, we assess two meteorological forcing configurations to hindcast the storm surge of Hurricane Sandy, and ultimately support the improvement of storm surge forecasts. The Weather Research and Forecasting (WRF model is coupled to the ADvanced CIRCulation Model (ADCIRC to determine water elevations. We perform four coupled simulations and compare storm surge estimates resulting from the use of a parametric vortex model and a full-physics atmospheric model. One simulation is forced with track-based meteorological data calculated from WRF, while three simulations are forced with the full wind and pressure field outputs from WRF simulations of varying resolutions. Experiments were compared to an ADCIRC simulation forced by National Hurricane Center best track data, as well as to station observations. Our results indicated that given accurate meteorological best track data, a parametric vortex model can accurately forecast maximum water elevations, improving upon the use of a full-physics coupled atmospheric-surge model. In the absence of a best track, atmospheric forcing in the form of full wind and pressure field from a high-resolution atmospheric model simulation prove reliable for storm surge forecasting.

  15. Symmetry Reductions of a 1.5-Layer Ocean Circulation Model

    International Nuclear Information System (INIS)

    Huang Fei; Lou Senyue

    2007-01-01

    The (2+1)-dimensional nonlinear 1.5-layer ocean circulation model without external wind stress forcing is analyzed by using the classical Lie group approach. Some Lie point symmetries and their corresponding two-dimensional reduction equations are obtained.

  16. Assessment and simulation of global terrestrial latent heat flux by synthesis of CMIP5 climate models and surface eddy covariance observations

    Science.gov (United States)

    Yunjun Yao; Shunlin Liang; Xianglan Li; Shaomin Liu; Jiquan Chen; Xiaotong Zhang; Kun Jia; Bo Jiang; Xianhong Xie; Simon Munier; Meng Liu; Jian Yu; Anders Lindroth; Andrej Varlagin; Antonio Raschi; Asko Noormets; Casimiro Pio; Georg Wohlfahrt; Ge Sun; Jean-Christophe Domec; Leonardo Montagnani; Magnus Lund; Moors Eddy; Peter D. Blanken; Thomas Grunwald; Sebastian Wolf; Vincenzo Magliulo

    2016-01-01

    The latent heat flux (LE) between the terrestrial biosphere and atmosphere is a major driver of the globalhydrological cycle. In this study, we evaluated LE simulations by 45 general circulation models (GCMs)in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by a comparison...

  17. Tests of Parameterized Langmuir Circulation Mixing in the Oceans Surface Mixed Layer II

    Science.gov (United States)

    2017-08-11

    inertial oscillations in the ocean are governed by three-dimensional processes that are not accounted for in a one-dimensional simulation , and it was...Unlimited 52 Paul Martin (228) 688-5447 Recent large-eddy simulations (LES) of Langmuir circulation (LC) within the surface mixed layer (SML) of...used in the Navy Coastal Ocean Model (NCOM) and tested for (a) a simple wind-mixing case, (b) simulations of the upper ocean thermal structure at Ocean

  18. Control-Oriented Models for Real-Time Simulation of Automotive Transmission Systems

    Directory of Open Access Journals (Sweden)

    Cavina N.

    2015-01-01

    Full Text Available A control-oriented model of a Dual Clutch Transmission (DCT was developed for real-time Hardware In the Loop (HIL applications, to support model-based development of the DCT controller and to systematically test its performance. The model is an innovative attempt to reproduce the fast dynamics of the actuation system while maintaining a simulation step size large enough for real-time applications. The model comprehends a detailed physical description of hydraulic circuit, clutches, synchronizers and gears, and simplified vehicle and internal combustion engine sub-models. As the oil circulating in the system has a large bulk modulus, the pressure dynamics are very fast, possibly causing instability in a real-time simulation; the same challenge involves the servo valves dynamics, due to the very small masses of the moving elements. Therefore, the hydraulic circuit model has been modified and simplified without losing physical validity, in order to adapt it to the real-time simulation requirements. The results of offline simulations have been compared to on-board measurements to verify the validity of the developed model, which was then implemented in a HIL system and connected to the Transmission Control Unit (TCU. Several tests have been performed on the HIL simulator, to verify the TCU performance: electrical failure tests on sensors and actuators, hydraulic and mechanical failure tests on hydraulic valves, clutches and synchronizers, and application tests comprehending all the main features of the control actions performed by the TCU. Being based on physical laws, in every condition the model simulates a plausible reaction of the system. A test automation procedure has finally been developed to permit the execution of a pattern of tests without the interaction of the user; perfectly repeatable tests can be performed for non-regression verification, allowing the testing of new software releases in fully automatic mode.

  19. Three-pattern decomposition of global atmospheric circulation: part II—dynamical equations of horizontal, meridional and zonal circulations

    Science.gov (United States)

    Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan

    2018-04-01

    The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional

  20. Dynamic model for the control system simulation and design of a 200 MW nuclear heating reactor

    International Nuclear Information System (INIS)

    Zhang Yuai; Liu Longzhi; Ma Changwen

    1999-01-01

    The author develops a nonlinear dynamic model used in a wide range control system simulation for a 200 MW Nuclear Heating Reactor (NHR-200). Besides a one-point neutron kinetics equation and temperature feedback based on the lumped fuel and coolant temperature, which are the usual methods used in modeling of PWR, two other factors are also considered in order to suit the wide range operation. The first consideration is the natural circulation in the primary loop because it affects the heat transfer coefficients in the core and in the primary heat exchanger (PHE). The second consideration is the flow rate variation in the secondary loop which leads to some nonlinear properties. The simulation results show that the model is accurate enough for control system simulation. Some model reduction basis can be obtained through the dynamic analysis

  1. Variational Data Assimilative Modeling of the Gulf of Maine Circulation in Spring and Summer 2010

    OpenAIRE

    Li, Yizhen; He, Ruoying; Chen, Ke; McGillicuddy, Dennis J.

    2015-01-01

    A data assimilative ocean circulation model is used to hindcast the Gulf of Maine (GOM) circulation in spring and summer 2010. Using the recently developed incremental strong constraint 4D Variational data assimilation algorithm, the model assimilates satellite sea surface temperature and in situ temperature and salinity profiles measured by expendable bathythermograph, Argo floats, and shipboard CTD casts. Validation against independent observations shows that the model skill is significantl...

  2. On the intra-seasonal variability within the extratropics in a general circulation model and observational data

    International Nuclear Information System (INIS)

    May, W.; Bengtsson, L.

    1994-01-01

    There are various phenomena on different spatial and temporal scales contributing to the intra-seasonal variability within the extratropics. One may notice higher-frequency baroclinic disturbances affecting the day-to-day variability of the atmosphere. But one finds also low-frequency fluctuations on a typical time scale of a few weeks. Blocking anticyclones are probably the most prominent example of such features. These fluctuations on different scales, however, are influencing each other, in particular the temporal evolution and spatial distribution. There has been observational work on various phenomena contributing to the intra-seasonal variability for a long time. In the last decade or so, however, with the increasing importance of General Circulation Models there have been some studies dealing with the intra-seasonal variability as simulated by these models

  3. Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records

    KAUST Repository

    Scott, Robert B.; Arbic, Brian K.; Chassignet, Eric P.; Coward, Andrew C.; Maltrud, Mathew; Merryfield, William J.; Srinivasan, Ashwanth; Varghese, Anson

    2010-01-01

    We compare the total kinetic energy (TKE) in four global eddying ocean circulation simulations with a global dataset of over 5000, quality controlled, moored current meter records. At individual mooring sites, there was considerable scatter between

  4. Theoretical analysis of effect of ocean condition on natural circulation flow

    International Nuclear Information System (INIS)

    Gong Houjun; Yang Xingtuan; Jiang Shengyao; Liu Zhiyong

    2010-01-01

    According to the simulation loop of Integrated natural circulation reactor,the mathematical model of natural circulation in non-inertial reference system is established, and the influence mechanism of ocean condition upon natural circulation is analyzed. Software is programmed to investigate the behaviors in the cases of rolling without heating power, static state with different power and rolling with heating power, and calculation results show that: the inertia force added by rolling causes the periodical fluctuating of the flow rate of channels, but it is not the direct reason of core flow fluctuation. The heave changes the driving head, and causes the same flow rate fluctuation of all channels. Inclining makes the core flow rate decrease, but the change of flow rate of different channels is different.(authors)

  5. MODELING THE AMBIENT CONDITION EFFECTS OF AN AIR-COOLED NATURAL CIRCULATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui; Lisowski, Darius D.; Bucknor, Matthew; Kraus, Adam R.; Lv, Qiuping

    2017-07-02

    empirical model was also implemented in the computational models of the NSTF using both RELAP5-3D and STARCCM+ codes. Accounting for the effects of ambient conditions, simulations from both codes predicted the natural circulation flow rates very well.

  6. Evaluation of stratospheric temperature simulation results by the global GRAPES model

    Science.gov (United States)

    Liu, Ningwei; Wang, Yangfeng; Ma, Xiaogang; Zhang, Yunhai

    2017-12-01

    Global final analysis (FNL) products and the general circulation spectral model (ECHAM) were used to evaluate the simulation of stratospheric temperature by the global assimilation and prediction system (GRAPES). Through a series of comparisons, it was shown that the temperature variations at 50 hPa simulated by GRAPES were significantly elevated in the southern hemisphere, whereas simulations by ECHAM and FNL varied little over time. The regional warming predicted by GRAPES seemed to be too distinct and uncontrolled to be reasonable. The temperature difference between GRAPES and FNL (GRAPES minus FNL) was small at the start time on the global scale. Over time, the positive values became larger in more locations, especially in parts of the southern hemisphere, where the warming predicted by GRAPES was dominant, with a maximal value larger than 24 K. To determine the reasons for the stratospheric warming, we considered the model initial conditions and ozone data to be possible factors; however, a comparison and sensitivity test indicated that the errors produced by GRAPES were not significantly related to either factor. Further research focusing on the impact of factors such as vapor, heating rate, and the temperature tendency on GRAPES simulations will be conducted.

  7. Transient modelling of a natural circulation loop under variable pressure

    International Nuclear Information System (INIS)

    Vianna, Andre L.B.; Faccini, Jose L.H.; Su, Jian; Instituto de Engenharia Nuclear

    2017-01-01

    The objective of the present work is to model the transient operation of a natural circulation loop, which is one-tenth scale in height to a typical Passive Residual Heat Removal system (PRHR) of an Advanced Pressurized Water Nuclear Reactor and was designed to meet the single and two-phase flow similarity criteria to it. The loop consists of a core barrel with electrically heated rods, upper and lower plena interconnected by hot and cold pipe legs to a seven-tube shell heat exchanger of countercurrent design, and an expansion tank with a descending tube. A long transient characterized the loop operation, during which a phenomenon of self-pressurization, without self-regulation of the pressure, was experimentally observed. This represented a unique situation, named natural circulation under variable pressure (NCVP). The self-pressurization was originated in the air trapped in the expansion tank and compressed by the loop water dilatation, as it heated up during each experiment. The mathematical model, initially oriented to the single-phase flow, included the heat capacity of the structure and employed a cubic polynomial approximation for the density, in the buoyancy term calculation. The heater was modelled taking into account the different heat capacities of the heating elements and the heater walls. The heat exchanger was modelled considering the coolant heating, during the heat exchanging process. The self-pressurization was modelled as an isentropic compression of a perfect gas. The whole model was computationally implemented via a set of finite difference equations. The corresponding computational algorithm of solution was of the explicit, marching type, as for the time discretization, in an upwind scheme, regarding the space discretization. The computational program was implemented in MATLAB. Several experiments were carried out in the natural circulation loop, having the coolant flow rate and the heating power as control parameters. The variables used in the

  8. Transient modelling of a natural circulation loop under variable pressure

    Energy Technology Data Exchange (ETDEWEB)

    Vianna, Andre L.B.; Faccini, Jose L.H.; Su, Jian, E-mail: avianna@nuclear.ufrj.br, E-mail: sujian@nuclear.ufrj.br, E-mail: faccini@ien.gov.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2017-07-01

    The objective of the present work is to model the transient operation of a natural circulation loop, which is one-tenth scale in height to a typical Passive Residual Heat Removal system (PRHR) of an Advanced Pressurized Water Nuclear Reactor and was designed to meet the single and two-phase flow similarity criteria to it. The loop consists of a core barrel with electrically heated rods, upper and lower plena interconnected by hot and cold pipe legs to a seven-tube shell heat exchanger of countercurrent design, and an expansion tank with a descending tube. A long transient characterized the loop operation, during which a phenomenon of self-pressurization, without self-regulation of the pressure, was experimentally observed. This represented a unique situation, named natural circulation under variable pressure (NCVP). The self-pressurization was originated in the air trapped in the expansion tank and compressed by the loop water dilatation, as it heated up during each experiment. The mathematical model, initially oriented to the single-phase flow, included the heat capacity of the structure and employed a cubic polynomial approximation for the density, in the buoyancy term calculation. The heater was modelled taking into account the different heat capacities of the heating elements and the heater walls. The heat exchanger was modelled considering the coolant heating, during the heat exchanging process. The self-pressurization was modelled as an isentropic compression of a perfect gas. The whole model was computationally implemented via a set of finite difference equations. The corresponding computational algorithm of solution was of the explicit, marching type, as for the time discretization, in an upwind scheme, regarding the space discretization. The computational program was implemented in MATLAB. Several experiments were carried out in the natural circulation loop, having the coolant flow rate and the heating power as control parameters. The variables used in the

  9. Atmospheric circulation and storm events in the Black Sea and Caspian Sea

    Science.gov (United States)

    Surkova, Galina V.; Arkhipkin, Victor S.; Kislov, Alexander V.

    2013-12-01

    Extreme sea storms are dangerous and a potential source of damage. In this study, we examine storm events in the Black Sea and Caspian Sea, the atmosphere circulation patterns associated with the sea storm events, and their changes in the present (1961-2000) and future (2046-2065) climates. A calendar of storms for the present climate is derived from results of wave model SWAN (Simulating WAves Nearshore) experiments. On the basis of this calendar, a catalog of atmospheric sea level pressure (SLP) fields was prepared from the NCEP/NCAR reanalysis dataset for 1961-2000. The SLP fields were subjected to a pattern recognition algorithm which employed empirical orthogonal decomposition followed by cluster analysis. The NCEP/NCAR reanalysis data is used to evaluate the occurring circulation types (CTs) within the ECHAM5-MPI/OM Atmosphere and Ocean Global Circulation Model (AOGCM) for the period 1961-2000. Our analysis shows that the ECHAM5-MPI/OM model is capable of reproducing circulation patterns for the storm events. The occurrence of present and future ECHAM5-MPI/OM CTs is investigated. It is shown that storm CTs are expected to occur noticeably less frequently in the middle of the 21st century.

  10. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  11. A large ozone-circulation feedback and its implications for global warming assessments

    Science.gov (United States)

    Abraham, N. Luke; Maycock, Amanda C.; Braesicke, Peter; Gregory, Jonathan M.; Joshi, Manoj M.; Osprey, Annette; Pyle, John A.

    2014-01-01

    State-of-the-art climate models now include more climate processes which are simulated at higher spatial resolution than ever1. Nevertheless, some processes, such as atmospheric chemical feedbacks, are still computationally expensive and are often ignored in climate simulations1,2. Here we present evidence that how stratospheric ozone is represented in climate models can have a first order impact on estimates of effective climate sensitivity. Using a comprehensive atmosphere-ocean chemistry-climate model, we find an increase in global mean surface warming of around 1°C (~20%) after 75 years when ozone is prescribed at pre-industrial levels compared with when it is allowed to evolve self-consistently in response to an abrupt 4×CO2 forcing. The difference is primarily attributed to changes in longwave radiative feedbacks associated with circulation-driven decreases in tropical lower stratospheric ozone and related stratospheric water vapour and cirrus cloud changes. This has important implications for global model intercomparison studies1,2 in which participating models often use simplified treatments of atmospheric composition changes that are neither consistent with the specified greenhouse gas forcing scenario nor with the associated atmospheric circulation feedbacks3-5. PMID:25729440

  12. Seasonal Water Transport in the Atmosphere of Mars: Applications of a Mars General Circulation Model Using Mars Global Surveyor Data

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1999-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. We present below a summary of progress made during the duration of this JRI. The focus of this JRI has been to investigate seasonal water vapor transport in the atmosphere of Mars and its effects on the planet's present climate. To this end, the primary task has been to adapt a new dynamical processor for the adiabatic tendencies of the atmospheric circulation into the NASA Ames Mars general circulation model (MGCM). Using identical boundary and initial conditions, several comparative tests between the new and old MGCMs have been performed and the nature of the simulated circulations have been diagnosed. With confidence that the updated version of the Ames MGCM produces quite similar mean and eddy circulation statistics, the new climate model is well poised as a tool to pursue fundamental questions related to the spatial and seasonal variations of atmospheric water vapor on Mars, and to explore exchanges of water with non-atmospheric reservoirs and transport within its atmosphere. In particular, the role of surface sources and sinks can be explored, the range of water-vapor saturation altitudes can be investigated, and plausible precipitation mechanisms can be studied, for a range of atmospheric dust loadings. Such future investigations can contribute to a comprehensive study of surface inventories, exchange mechanisms, and the relative importance of atmospheric transport Mars' water cycle. A listing of presentations made and manuscripts submitted during the course of this project is provided.

  13. Impact of atmospheric model resolution on simulation of ENSO feedback processes: a coupled model study

    Science.gov (United States)

    Hua, Lijuan; Chen, Lin; Rong, Xinyao; Su, Jingzhi; Wang, Lu; Li, Tim; Yu, Yongqiang

    2018-03-01

    This study examines El Niño-Southern Oscillation (ENSO)-related air-sea feedback processes in a coupled general circulation model (CGCM) to gauge model errors and pin down their sources in ENSO simulation. Three horizontal resolutions of the atmospheric component (T42, T63 and T106) of the CGCM are used to investigate how the simulated ENSO behaviors are affected by the resolution. We find that air-sea feedback processes in the three experiments mainly differ in terms of both thermodynamic and dynamic feedbacks. We also find that these processes are simulated more reasonably in the highest resolution version than in the other two lower resolution versions. The difference in the thermodynamic feedback arises from the difference in the shortwave-radiation (SW) feedback. Due to the severely (mildly) excessive cold tongue in the lower (higher) resolution version, the SW feedback is severely (mildly) underestimated. The main difference in the dynamic feedback processes lies in the thermocline feedback and the zonal-advection feedback, both of which are caused by the difference in the anomalous thermocline response to anomalous zonal wind stress. The difference in representing the anomalous thermocline response is attributed to the difference in meridional structure of zonal wind stress anomaly in the three simulations, which is linked to meridional resolution.

  14. Black carbon ageing in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model

    Directory of Open Access Journals (Sweden)

    B. Croft

    2005-01-01

    Full Text Available Black carbon (BC particles in the atmosphere have important impacts on climate. The amount of BC in the atmosphere must be carefully quantified to allow evaluation of the climate effects of this type of aerosol. In this study, we present the treatment of BC aerosol in the developmental version of the 4th generation Canadian Centre for Climate modelling and analysis (CCCma atmospheric general circulation model (AGCM. The focus of this work is on the conversion of insoluble BC to soluble/mixed BC by physical and chemical ageing. Physical processes include the condensation of sulphuric and nitric acid onto the BC aerosol, and coagulation with more soluble aerosols such as sulphates and nitrates. Chemical processes that may age the BC aerosol include the oxidation of organic coatings by ozone. Four separate parameterizations of the ageing process are compared to a control simulation that assumes no ageing occurs. These simulations use 1 an exponential decay with a fixed 24h half-life, 2 a condensation and coagulation scheme, 3 an oxidative scheme, and 4 a linear combination of the latter two ageing treatments. Global BC burdens are 2.15, 0.15, 0.11, 0.21, and 0.11TgC for the control run, and four ageing schemes, respectively. The BC lifetimes are 98.1, 6.6, 5.0, 9.5, and 4.9 days, respectively. The sensitivity of modelled BC burdens, and concentrations to the factor of two uncertainty in the emissions inventory is shown to be greater than the sensitivity to the parameterization used to represent the BC ageing, except for the oxidation based parameterization. A computationally efficient parameterization that represents the processes of condensation, coagulation, and oxidation is shown to simulate BC ageing well in the CCCma AGCM. As opposed to the globally fixed ageing time scale, this treatment of BC ageing is responsive to varying atmospheric composition.

  15. The Hamburg large scale geostrophic ocean general circulation model. Cycle 1

    International Nuclear Information System (INIS)

    Maier-Reimer, E.; Mikolajewicz, U.

    1992-02-01

    The rationale for the Large Scale Geostrophic ocean circulation model (LSG-OGCM) is based on the observations that for a large scale ocean circulation model designed for climate studies, the relevant characteristic spatial scales are large compared with the internal Rossby radius throughout most of the ocean, while the characteristic time scales are large compared with the periods of gravity modes and barotropic Rossby wave modes. In the present version of the model, the fast modes have been filtered out by a conventional technique of integrating the full primitive equations, including all terms except the nonlinear advection of momentum, by an implicit time integration method. The free surface is also treated prognostically, without invoking a rigid lid approximation. The numerical scheme is unconditionally stable and has the additional advantage that it can be applied uniformly to the entire globe, including the equatorial and coastal current regions. (orig.)

  16. Anelastic Models of Fully-Convective Stars: Differential Rotation, Meridional Circulation and Residual Entropy

    Science.gov (United States)

    Sainsbury-Martinez, Felix; Browning, Matthew; Miesch, Mark; Featherstone, Nicholas A.

    2018-01-01

    Low-Mass stars are typically fully convective, and as such their dynamics may differ significantly from sun-like stars. Here we present a series of 3D anelastic HD and MHD simulations of fully convective stars, designed to investigate how the meridional circulation, the differential rotation, and residual entropy are affected by both varying stellar parameters, such as the luminosity or the rotation rate, and by the presence of a magnetic field. We also investigate, more specifically, a theoretical model in which isorotation contours and residual entropy (σ‧ = σ ‑ σ(r)) are intrinsically linked via the thermal wind equation (as proposed in the Solar context by Balbus in 2009). We have selected our simulation parameters in such as way as to span the transition between Solar-like differential rotation (fast equator + slow poles) and ‘anti-Solar’ differential rotation (slow equator + fast poles), as characterised by the convective Rossby number and △Ω. We illustrate the transition from single-celled to multi-celled MC profiles, and from positive to negative latitudinal entropy gradients. We show that an extrapolation involving both TWB and the σ‧/Ω link provides a reasonable estimate for the interior profile of our fully convective stars. Finally, we also present a selection of MHD simulations which exhibit an almost unsuppressed differential rotation profile, with energy balances remaining dominated by kinetic components.

  17. Response of Mediterranean circulation to Miocene shoaling and closure of the Indian Gateway : A model study

    NARCIS (Netherlands)

    De La Vara, Alba; Meijer, Paul

    2016-01-01

    In this regional ocean model study, we explore the effect of the Early to Middle Miocene shoaling and closure of the Indian Gateway on Mediterranean circulation and its exchange with the adjacent oceans. For this we use the regional ocean circulation model "sbPOM" and a collection of bathymetries

  18. RETRAN-02 analysis of upper head cooling during controlled natural circulation cooldown of Yankee Nuclear Power Station

    International Nuclear Information System (INIS)

    Fujita, N.; Helrich, R.E.; Bergeron, P.A.

    1982-01-01

    RETRAN-02 is particularly well-suited for investigating the fluid conditions in the upper head during a natural circulation cooldown. The RETRAN input model was developed with four basic objectives: (1) accurate description of the upper head cooling mechanisms; (2) proper simulation of natural circulation; (3) respresentations of operator actions required to proceed from full-power to shutdown-cooling-system conditions using both automatic and manual controls; and (4) reduction of the computer cost of simulating this evolution of approximately 10-hour duration. The response of the upper head fluid temperature calculated by RETRAN was in close agreement with measured data obtained from a natural circulation cooldown experiment performed for the Connecticut Yankee Plant, whose design is very similar to the Yankee Nuclear Power Station

  19. Numerical modelling 2 D and 3 D of circulating fluidized bed: application to the realization of regime diagrams; Modelisation numerique 2D et 3D de lit fluidise circulant: application a la realisation du diagramme des regimes

    Energy Technology Data Exchange (ETDEWEB)

    Begis, J.; Balzer, G.

    1997-02-01

    The numerical modelling of internal CFB boilers flows faced with complex phenomenons due to the flows un-stationariness, the heterogeneousness of the particle size distribution, and interactions between the two phases and the walls. Our study consisted in applying numerical models to the experimental configuration of cold circulating fluidized bed studied at the Cerchar. Special attention was given to the analysis of particles - wall interactions models, stemming from Jenkins (1992) and Louge`s (1994) theories, as well as the influence of the particles on fluid turbulence. In order to realize numerical simulations, we have used Eulerian two-phases flow codes developed at NHL medolif(2D), ESTET-ASTRID(3D). From different tests we have deducted that the most appropriate model for the realization of CFB`s prediction is the model taking in account the influence of particles on fluid turbulence. Then, to evaluate the validity limits of this model, we have built the regime diagram, and we have compared it with the experimental diagram. We have concluded that the simulation allows to describe the different CFB`s working regimes, and especially transitions. We have also noticed the importance of the choice of the mean diameter of the simulated particles. In this way, making a correction of the simulated particles` diameter in comparison with Sauter mean particle diameter, we obtained numerical results in good agreement with experimental data. (authors) 13 refs.

  20. Cloud-turbulence interactions: Sensitivity of a general circulation model to closure assumptions

    International Nuclear Information System (INIS)

    Brinkop, S.; Roeckner, E.

    1993-01-01

    Several approaches to parameterize the turbulent transport of momentum, heat, water vapour and cloud water for use in a general circulation model (GCM) have been tested in one-dimensional and three-dimensional model simulations. The schemes differ with respect to their closure assumptions (conventional eddy diffusivity model versus turbulent kinetic energy closure) and also regarding their treatment of cloud-turbulence interactions. The basis properties of these parameterizations are discussed first in column simulations of a stratocumulus-topped atmospheric boundary layer (ABL) under a strong subsidence inversion during the KONTROL experiment in the North Sea. It is found that the K-models tend to decouple the cloud layer from the adjacent layers because the turbulent activity is calculated from local variables. The higher-order scheme performs better in this respect because internally generated turbulence can be transported up and down through the action of turbulent diffusion. Thus, the TKE-scheme provides not only a better link between the cloud and the sub-cloud layer but also between the cloud and the inversion as a result of cloud-top entrainment. In the stratocumulus case study, where the cloud is confined by a pronounced subsidence inversion, increased entrainment favours cloud dilution through enhanced evaporation of cloud droplets. In the GCM study, however, additional cloud-top entrainment supports cloud formation because indirect cloud generating processes are promoted through efficient ventilation of the ABL, such as the enhanced moisture supply by surface evaporation and the increased depth of the ABL. As a result, tropical convection is more vigorous, the hydrological cycle is intensified, the whole troposphere becomes warmer and moister in general and the cloudiness in the upper part of the ABL is increased. (orig.)

  1. A general circulation model (GCM) parameterization of Pinatubo aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lacis, A.A.; Carlson, B.E.; Mishchenko, M.I. [NASA Goddard Institute for Space Studies, New York, NY (United States)

    1996-04-01

    The June 1991 volcanic eruption of Mt. Pinatubo is the largest and best documented global climate forcing experiment in recorded history. The time development and geographical dispersion of the aerosol has been closely monitored and sampled. Based on preliminary estimates of the Pinatubo aerosol loading, general circulation model predictions of the impact on global climate have been made.

  2. Scaling and Numerical Model Evaluation of Snow-Cover Effects on the Generation and Modification of Daytime Mesoscale Circulations.

    Science.gov (United States)

    Segal, M.; Garratt, J. R.; Pielke, R. A.; Ye, Z.

    1991-04-01

    Consideration of the sensible heat flux characteristics over a snow surface suggests a significant diminution in the magnitude of the flux, compared to that over a snow-free surface under the same environmental conditions. Consequently, the existence of snow-covered mesoscale areas adjacent to snow-free areas produces horizontal thermal gradients in the lower atmosphere during the daytime, possibly resulting in a `snow breeze.' In addition, suppression of the daytime thermally induced upslope flow over snow-covered slopes is likely to occur. The present paper provides scaling and modeling evaluations of these situations, with quantification of the generated and modified circulations. These evaluations suggest that under ideal situations involved with uniform snow cover over large areas, particularly in late winter and early spring, a noticeable `snow breeze' is likely to develop. Additionally: suppression of the daytime thermally induced upslope flow is significant and may even result in a daytime drainage flow. The effects of bare ground patchiness in the snow cover on these circulations are also explored, both for flat terrain and slope-flow situations. A patchiness fraction greater than 0.5 is found to result in a noticeably reduced snow-breeze circulation, while a patchiness fraction of only 0.1 caused the simulated daytime drainage flow over slopes to he reversed.

  3. Circulation in a Short Cylindrical Couette System

    Energy Technology Data Exchange (ETDEWEB)

    Akira Kageyama; Hantao Ji; Jeremy Goodman

    2003-07-08

    In preparation for an experimental study of magnetorotational instability (MRI) in liquid metal, we explore Couette flows having height comparable to the gap between cylinders, centrifugally stable rotation, and high Reynolds number. Experiments in water are compared with numerical simulations. The flow is very different from that of an ideal, infinitely long Couette system. Simulations show that endcaps co-rotating with the outer cylinder drive a strong poloidal circulation that redistributes angular momentum. Predicted toroidal flow profiles agree well with experimental measurements. Spin-down times scale with Reynolds number as expected for laminar Ekman circulation; extrapolation from two-dimensional simulations at Re less than or equal to 3200 agrees remarkably well with experiment at Re approximately equal to 106. This suggests that turbulence does not dominate the effective viscosity. Further detailed numerical studies reveal a strong radially inward flow near both endcaps. After turning vertically along the inner cylinder, these flows converge at the midplane and depart the boundary in a radial jet. To minimize this circulation in the MRI experiment, endcaps consisting of multiple, differentially rotating rings are proposed. Simulations predict that an adequate approximation to the ideal Couette profile can be obtained with a few rings.

  4. Circulation in a Short Cylindrical Couette System

    International Nuclear Information System (INIS)

    Akira Kageyama; Hantao Ji; Jeremy Goodman

    2003-01-01

    In preparation for an experimental study of magnetorotational instability (MRI) in liquid metal, we explore Couette flows having height comparable to the gap between cylinders, centrifugally stable rotation, and high Reynolds number. Experiments in water are compared with numerical simulations. The flow is very different from that of an ideal, infinitely long Couette system. Simulations show that endcaps co-rotating with the outer cylinder drive a strong poloidal circulation that redistributes angular momentum. Predicted toroidal flow profiles agree well with experimental measurements. Spin-down times scale with Reynolds number as expected for laminar Ekman circulation; extrapolation from two-dimensional simulations at Re less than or equal to 3200 agrees remarkably well with experiment at Re approximately equal to 106. This suggests that turbulence does not dominate the effective viscosity. Further detailed numerical studies reveal a strong radially inward flow near both endcaps. After turning vertically along the inner cylinder, these flows converge at the midplane and depart the boundary in a radial jet. To minimize this circulation in the MRI experiment, endcaps consisting of multiple, differentially rotating rings are proposed. Simulations predict that an adequate approximation to the ideal Couette profile can be obtained with a few rings

  5. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    International Nuclear Information System (INIS)

    Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Genio, A. D. Del; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; Tsigaridis, K.; Clune, T. L.

    2017-01-01

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.

  6. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    Energy Technology Data Exchange (ETDEWEB)

    Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Genio, A. D. Del; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; Tsigaridis, K. [NASA Goddard Institute for Space Studies, New York, NY 10025 (United States); Clune, T. L. [Global Modeling and Assimilation Office, NASA Goddard Space Flight Center (United States)

    2017-07-01

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.

  7. Using Transport Diagnostics to Understand Chemistry Climate Model Ozone Simulations

    Science.gov (United States)

    Strahan, S. E.; Douglass, A. R.; Stolarski, R. S.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Butchart, N.; Chipperfield, M. P.; Cugnet, D.; Dhomse, S.; hide

    2010-01-01

    We demonstrate how observations of N2O and mean age in the tropical and midlatitude lower stratosphere (LS) can be used to identify realistic transport in models. The results are applied to 15 Chemistry Climate Models (CCMs) participating in the 2010 WMO assessment. Comparison of the observed and simulated N2O/mean age relationship identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. The use of this process-oriented N2O/mean age diagnostic identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. We compare the diagnosed model transport behavior with a model's ability to produce realistic LS O3 profiles in the tropics and midlatitudes. Models with the greatest tropical transport problems show the poorest agreement with observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the SPARC CCMVal Report (2010) to explain the range of CCM predictions for the return-to-1980 dates for global (60 S-60 N) and Antarctic column ozone. Later (earlier) Antarctic return dates are generally correlated to higher (lower) vortex Cl(sub y) levels in the LS, and vortex Cl(sub y) is generally correlated with the model's circulation although model Cl(sub y) chemistry or Cl(sub y) conservation can have a significant effect. In both regions, models that have good LS transport produce a smaller range of predictions for the return-to-1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily large due to identifiable model transport deficiencies.

  8. A high resolution hydrodynamic 3-D model simulation of the malta shelf area

    Directory of Open Access Journals (Sweden)

    A. F. Drago

    2003-01-01

    Full Text Available The seasonal variability of the water masses and transport in the Malta Channel and proximity of the Maltese Islands have been simulated by a high resolution (1.6 km horizontal grid on average, 15 vertical sigma layers eddy resolving primitive equation shelf model (ROSARIO-I. The numerical simulation was run with climatological forcing and includes thermohaline dynamics with a turbulence scheme for the vertical mixing coefficients on the basis of the Princeton Ocean Model (POM. The model has been coupled by one-way nesting along three lateral boundaries (east, south and west to an intermediate coarser resolution model (5 km implemented over the Sicilian Channel area. The fields at the open boundaries and the atmospheric forcing at the air-sea interface were applied on a repeating "perpetual" year climatological cycle. The ability of the model to reproduce a realistic circulation of the Sicilian-Maltese shelf area has been demonstrated. The skill of the nesting procedure was tested by model-modelc omparisons showing that the major features of the coarse model flow field can be reproduced by the fine model with additional eddy space scale components. The numerical results included upwelling, mainly in summer and early autumn, along the southern coasts of Sicily and Malta; a strong eastward shelf surface flow along shore to Sicily, forming part of the Atlantic Ionian Stream, with a presence throughout the year and with significant seasonal modulation, and a westward winter intensified flow of LIW centered at a depth of around 280 m under the shelf break to the south of Malta. The seasonal variability in the thermohaline structure of the domain and the associated large-scale flow structures can be related to the current knowledge on the observed hydrography of the area. The level of mesoscale resolution achieved by the model allowed the spatial and temporal evolution of the changing flow patterns, triggered by internal dynamics, to be followed in

  9. A high resolution hydrodynamic 3-D model simulation of the malta shelf area

    Directory of Open Access Journals (Sweden)

    A. F. Drago

    Full Text Available The seasonal variability of the water masses and transport in the Malta Channel and proximity of the Maltese Islands have been simulated by a high resolution (1.6 km horizontal grid on average, 15 vertical sigma layers eddy resolving primitive equation shelf model (ROSARIO-I. The numerical simulation was run with climatological forcing and includes thermohaline dynamics with a turbulence scheme for the vertical mixing coefficients on the basis of the Princeton Ocean Model (POM. The model has been coupled by one-way nesting along three lateral boundaries (east, south and west to an intermediate coarser resolution model (5 km implemented over the Sicilian Channel area. The fields at the open boundaries and the atmospheric forcing at the air-sea interface were applied on a repeating "perpetual" year climatological cycle.

    The ability of the model to reproduce a realistic circulation of the Sicilian-Maltese shelf area has been demonstrated. The skill of the nesting procedure was tested by model-modelc omparisons showing that the major features of the coarse model flow field can be reproduced by the fine model with additional eddy space scale components. The numerical results included upwelling, mainly in summer and early autumn, along the southern coasts of Sicily and Malta; a strong eastward shelf surface flow along shore to Sicily, forming part of the Atlantic Ionian Stream, with a presence throughout the year and with significant seasonal modulation, and a westward winter intensified flow of LIW centered at a depth of around 280 m under the shelf break to the south of Malta. The seasonal variability in the thermohaline structure of the domain and the associated large-scale flow structures can be related to the current knowledge on the observed hydrography of the area. The level of mesoscale resolution achieved by the model allowed the spatial and temporal evolution of the changing flow patterns, triggered by

  10. Desenvolvimento de um modelo numérico hidrodinâmico tri-dimensional linear, para a simulação e a previsão da circulação na plataforma brasileira, entre 23ºe 26ºS A three-dimensional linear hydrodynamical numerical model for the simulation and forecasting of circulation on the Brazilian shelf between 23º - 26º S

    Directory of Open Access Journals (Sweden)

    Joseph Harari

    1985-01-01

    Full Text Available A three-dimensional linear hydrodynamical numerical model, Heaps type, was developed and applied to the southeastern Brazilian continental shelf, to simulate motions in the sea due to astronomical and meteorological effects. The first experiment of the model reproduced the propagation of the principal lunar tidal component (M2, allowing the plotting of its cotidal lines and current ellipses. In the second experiment, the circulation generated by astronomical factors only was simulated. And in the third experiment, the effect of the principal astronomical tidal components and meteorological effects observed in the area were reproduced, representing the total circulation in the shelf, in a period of high tidal elevations in the coast, due to the incursion of a deep cold front in this region.

  11. Interannual Variation of Surface Circulation in the Japan/East Sea due to External Forcings and Intrinsic Variability

    Science.gov (United States)

    Choi, Byoung-Ju; Cho, Seong Hun; Jung, Hee Seok; Lee, Sang-Ho; Byun, Do-Seong; Kwon, Kyungman

    2018-03-01

    The interannual variation of surface ocean currents can be as large as seasonal variation in the Japan/East Sea (JES). To identify the major factors that cause such interannual variability of surface ocean circulation in the JES, surface circulation was simulated from 1998 to 2009 using a three-dimensional model. Contributions of atmospheric forcing (ATM), open boundary data (OBC), and intrinsic variability (ITV) of the surface flow in the JES on the interannual variability of surface ocean circulation were separately examined using numerical simulations. Variability in surface circulation was quantified in terms of variance in sea surface height, 100-m depth water temperature, and surface currents. ITV was found to be the dominant factor that induced interannual variabilities of surface circulation, the main path of the East Korea Warm Current (EKWC), and surface kinetic energy on a time scale of 2-4 years. OBC and ATM were secondary factors contributing to the interannual variation of surface circulation. Interannual variation of ATM changed the separation latitude of EKWC and increased the variability of surface circulation in the Ulleung Basin. Interannual variation of OBC enhanced low-frequency changes in surface circulation and eddies in the Yamato Basin. It also modulated basin-wide uniform oscillations of sea level. This study suggests that precise estimation of initial conditions using data assimilation is essential for long-term prediction of surface circulation in the JES.

  12. Simulation of the phenomenon of single-phase and two-phase natural circulation

    International Nuclear Information System (INIS)

    Castrillo, Lazara Silveira

    1998-02-01

    Natural convection phenomenon is often used to remove the residual heat from the surfaces of bodies where the heat is generated e.g. during accidents or transients of nuclear power plants. Experimental study of natural circulation can be done in small scale experimental circuits and the results can be extrapolated for larger operational facilities. The numerical analysis of transients can be carried out by using large computational codes that simulate the thermohydraulic behavior in such facilities. The computational code RELAP5/MOD2, (Reactor Excursion and Leak Analysis Program) was developed by U.S. Nuclear Regulatory Commissions's. Division of Reactor Safety Research with the objective of analysis of transients and postulated accidents in the light water reactor (LWR) systems, including small and large ruptures with loss of coolant accidents (LOCA's). The results obtained by the simulation of single-phase and two-phase natural circulation, using the RELAP5/MOD2, are presented in this work. The study was carried out using the experimental circuit built at the 'Departamento de Engenharia Quimica da Escola Politecnica da Universidade de Sao Paulo'. In the circuit, two experiments were carried out with different conditions of power and mass flow, obtaining a single-phase regime with a level of power of 4706 W and flow of 5.10 -5 m 3 /s (3 l/min) and a two-phase regime with a level of power of 6536 W and secondary flow 2,33.10 -5 m 3 /s (1,4 l/min). The study allowed tio evaluate the capacity of the code for representing such phenomena as well as comparing the transients obtained theoretically with the experimental results. The comparative analysis shows that the code represents fairly well the single-phase transient, but the results for two-phase transients, starting from the nodalization and calibration used for the case single-phase transient, did not reproduce faithfully some experimental results. (author)

  13. Modeling the Effects of Inhomogeneous Aerosols on the Hot Jupiter Kepler-7b’s Atmospheric Circulation

    Science.gov (United States)

    Roman, Michael; Rauscher, Emily

    2017-11-01

    Motivated by observational evidence of inhomogeneous clouds in exoplanetary atmospheres, we investigate how proposed simple cloud distributions can affect atmospheric circulations and infrared emission. We simulated temperatures and winds for the hot Jupiter Kepler-7b using a three-dimensional atmospheric circulation model that included a simplified aerosol radiative transfer model. We prescribed fixed cloud distributions and scattering properties based on results previously inferred from Kepler-7b optical phase curves, including inhomogeneous aerosols centered along the western terminator and hypothetical cases in which aerosols additionally extended across much of the planet’s nightside. In all cases, a strong jet capable of advecting aerosols from a cooler nightside to dayside was found to persist, but only at the equator. Colder temperatures at mid and polar latitudes might permit aerosol to form on the dayside without the need for advection. By altering the deposition and redistribution of heat, aerosols along the western terminator produced an asymmetric heating that effectively shifts the hottest spot further east of the substellar point than expected for a uniform distribution. The addition of opaque high clouds on the nightside can partly mitigate this enhanced shift by retaining heat that contributes to warming west of the hotspot. These expected differences in infrared phase curves could place constraints on proposed cloud distributions and their infrared opacities for brighter hot Jupiters.

  14. Skills of General Circulation and Earth System Models in reproducing streamflow to the ocean: the case of Congo river

    Science.gov (United States)

    Santini, M.; Caporaso, L.

    2017-12-01

    Although the importance of water resources in the context of climate change, it is still difficult to correctly simulate the freshwater cycle over the land via General Circulation and Earth System Models (GCMs and ESMs). Existing efforts from the Climate Model Intercomparison Project 5 (CMIP5) were mainly devoted to the validation of atmospheric variables like temperature and precipitation, with low attention to discharge.Here we investigate the present-day performances of GCMs and ESMs participating to CMIP5 in simulating the discharge of the river Congo to the sea thanks to: i) the long-term availability of discharge data for the Kinshasa hydrological station representative of more than 95% of the water flowing in the whole catchment; and ii) the River's still low influence by human intervention, which enables comparison with the (mostly) natural streamflow simulated within CMIP5.Our findings suggest how most of models appear overestimating the streamflow in terms of seasonal cycle, especially in the late winter and spring, while overestimation and variability across models are lower in late summer. Weighted ensemble means are also calculated, based on simulations' performances given by several metrics, showing some improvements of results.Although simulated inter-monthly and inter-annual percent anomalies do not appear significantly different from those in observed data, when translated into well consolidated indicators of drought attributes (frequency, magnitude, timing, duration), usually adopted for more immediate communication to stakeholders and decision makers, such anomalies can be misleading.These inconsistencies produce incorrect assessments towards water management planning and infrastructures (e.g. dams or irrigated areas), especially if models are used instead of measurements, as in case of ungauged basins or for basins with insufficient data, as well as when relying on models for future estimates without a preliminary quantification of model biases.

  15. A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4

    Science.gov (United States)

    Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas

    2018-04-01

    In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.

  16. Boron dilution transients during natural circulation flow in PWR-Experiments and CFD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, Thomas [Forschungszentrum Dresden-Rossendorf (FZD)-Institute of Safety Research, P.O. Box 510119, D-01314 Dresden (Germany)], E-mail: T.Hoehne@fzd.de; Kliem, Soeren; Rohde, Ulrich; Weiss, Frank-Peter [Forschungszentrum Dresden-Rossendorf (FZD)-Institute of Safety Research, P.O. Box 510119, D-01314 Dresden (Germany)

    2008-08-15

    Coolant mixing in the cold leg, downcomer and the lower plenum of pressurized water reactors is an important phenomenon mitigating the reactivity insertion into the core. Therefore, mixing of the de-borated slugs with the ambient coolant in the reactor pressure vessel was investigated at the four loops 1:5 scaled Rossendorf coolant mixing model (ROCOM) mixing test facility. In particular thermal hydraulics analyses have shown, that weakly borated condensate can accumulate in the pump loop seal of those loops, which do not receive a safety injection. After refilling of the primary circuit, natural circulation in the stagnant loops can re-establish simultaneously and the de-borated slugs are shifted towards the reactor pressure vessel (RPV). In the ROCOM experiments, the length of the flow ramp and the initial density difference between the slugs and the ambient coolant was varied. From the test matrix experiments with 0 resp. 2% density difference between the de-borated slugs and the ambient coolant were used to validate the CFD software ANSYS CFX. To model the effects of turbulence on the mean flow a higher order Reynolds stress turbulence model was employed and a mesh consisting of 6.4 million hybrid elements was utilized. Only the experiments and CFD calculations with modeled density differences show stratification in the downcomer. Depending on the degree of density differences the less dense slugs flow around the core barrel at the top of the downcomer. At the opposite side, the lower borated coolant is entrained by the colder safety injection water and transported to the core. The validation proves that ANSYS CFX is able to simulate appropriately the flow field and mixing effects of coolant with different densities.

  17. Glacial climate sensitivity to different states of the Atlantic Meridional Overturning Circulation: results from the IPSL model

    Directory of Open Access Journals (Sweden)

    M. Kageyama

    2009-09-01

    Full Text Available Paleorecords from distant locations on the globe show rapid and large amplitude climate variations during the last glacial period. Here we study the global climatic response to different states of the Atlantic Meridional Overturning Circulation (AMOC as a potential explanation for these climate variations and their possible connections. We analyse three glacial simulations obtained with an atmosphere-ocean coupled general circulation model and characterised by different AMOC strengths (18, 15 and 2 Sv resulting from successive ~0.1 Sv freshwater perturbations in the North Atlantic. These AMOC states suggest the existence of a freshwater threshold for which the AMOC collapses. A weak (18 to 15 Sv AMOC decrease results in a North Atlantic and European cooling. This cooling is not homogeneous, with even a slight warming over the Norwegian Sea. Convection in this area is active in both experiments, but surprisingly stronger in the 15 Sv simulation, which appears to be related to interactions with the atmospheric circulation and sea-ice cover. Far from the North Atlantic, the climatic response is not significant. The climate differences for an AMOC collapse (15 to 2 Sv are much larger and of global extent. The timing of the climate response to this AMOC collapse suggests teleconnection mechanisms. Our analyses focus on the North Atlantic and surrounding regions, the tropical Atlantic and the Indian monsoon region. The North Atlantic cooling associated with the AMOC collapse induces a cyclonic atmospheric circulation anomaly centred over this region, which modulates the eastward advection of cold air over the Eurasian continent. This can explain why the cooling is not as strong over western Europe as over the North Atlantic. In the Tropics, the southward shift of the Inter-Tropical Convergence Zone appears to be strongest over the Atlantic and Eastern Pacific and results from an adjustment of the atmospheric and oceanic heat transports. Finally, the

  18. Dependence of stratocumulus-topped boundary-layer entrainment on cloud-water sedimentation: Impact on global aerosol indirect effect in GISS ModelE3 single column model and global simulations

    Science.gov (United States)

    Ackerman, A. S.; Kelley, M.; Cheng, Y.; Fridlind, A. M.; Del Genio, A. D.; Bauer, S.

    2017-12-01

    Reduction in cloud-water sedimentation induced by increasing droplet concentrations has been shown in large-eddy simulations (LES) and direct numerical simulation (DNS) to enhance boundary-layer entrainment, thereby reducing cloud liquid water path and offsetting the Twomey effect when the overlying air is sufficiently dry, which is typical. Among recent upgrades to ModelE3, the latest version of the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), are a two-moment stratiform cloud microphysics treatment with prognostic precipitation and a moist turbulence scheme that includes an option in its entrainment closure of a simple parameterization for the effect of cloud-water sedimentation. Single column model (SCM) simulations are compared to LES results for a stratocumulus case study and show that invoking the sedimentation-entrainment parameterization option indeed reduces the dependence of cloud liquid water path on increasing aerosol concentrations. Impacts of variations of the SCM configuration and the sedimentation-entrainment parameterization will be explored. Its impact on global aerosol indirect forcing in the framework of idealized atmospheric GCM simulations will also be assessed.

  19. A local-circulation model for Darrieus vertical-axis wind turbines

    Science.gov (United States)

    Masse, B.

    1986-04-01

    A new computational model for the aerodynamics of the vertical-axis wind turbine is presented. Based on the local-circulation method generalized for curved blades, combined with a wake model for the vertical-axis wind turbine, it differs markedly from current models based on variations in the streamtube momentum and vortex models using the lifting-line theory. A computer code has been developed to calculate the loads and performance of the Darrieus vertical-axis wind turbine. The results show good agreement with experimental data and compare well with other methods.

  20. Vertical circulation and thermospheric composition: a modelling study

    OpenAIRE

    H. Rishbeth; I. C. F. Müller-Wodarg; I. C. F. Müller-Wodarg

    1999-01-01

    The coupled thermosphere-ionosphere-plasmasphere model CTIP is used to study the global three-dimensional circulation and its effect on neutral composition in the midlatitude F-layer. At equinox, the vertical air motion is basically up by day, down by night, and the atomic oxygen/molecular nitrogen [O/N2] concentration ratio is symmetrical about the equator. At solstice there is a summer-to-winter flow of air, with downwelling at subauroral latitudes in winter that produc...

  1. Validation of a two-fluid model used for the simulation of dense fluidized beds; Validation d`un modele a deux fluides applique a la simulation des lits fluidises denses

    Energy Technology Data Exchange (ETDEWEB)

    Boelle, A.

    1997-02-17

    A two-fluid model applied to the simulation of gas-solid dense fluidized beds is validated on micro scale and on macro scale. Phase coupling is carried out in the momentum and energy transport equation of both phases. The modeling is built on the kinetic theory of granular media in which the gas action has been taken into account in order to get correct expressions of transport coefficients. A description of hydrodynamic interactions between particles in high Stokes number flow is also incorporated in the model. The micro scale validation uses Lagrangian numerical simulations viewed as numerical experiments. The first validation case refers to a gas particle simple shear flow. It allows to validate the competition between two dissipation mechanisms: drag and particle collisions. The second validation case is concerted with sedimenting particles in high Stokes number flow. It allows to validate our approach of hydrodynamic interactions. This last case had led us to develop an original Lagrangian simulation with a two-way coupling between the fluid and the particles. The macro scale validation uses the results of Eulerian simulations of dense fluidized bed. Bed height, particles circulation and spontaneous created bubbles characteristics are studied and compared to experimental measurement, both looking at physical and numerical parameters. (author) 159 refs.

  2. Optimisation of a parallel ocean general circulation model

    Science.gov (United States)

    Beare, M. I.; Stevens, D. P.

    1997-10-01

    This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.

  3. The Dynamics of Hadley Circulation Variability and Change

    Science.gov (United States)

    Davis, Nicholas Alexander

    The Hadley circulation exerts a dominant control on the surface climate of earth's tropical belt. Its converging surface winds fuel the tropical rains, while subsidence in the subtropics dries and stabilizes the atmosphere, creating deserts on land and stratocumulus decks over the oceans. Because of the strong meridional gradients in temperature and precipitation in the subtropics, any shift in the Hadley circulation edge could project as major changes in surface climate. While climate model simulations predict an expansion of the Hadley cells in response to greenhouse gas forcings, the mechanisms remain elusive. An analysis of the climatology, variability, and response of the Hadley circulation to radiative forcings in climate models and reanalyses illuminates the broader landscape in which Hadley cell expansion is realized. The expansion is a fundamental response of the atmosphere to increasing greenhouse gas concentrations as it scales with other key climate system changes, including polar amplification, increasing static stability, stratospheric cooling, and increasing global-mean surface temperatures. Multiple measures of the Hadley circulation edge latitudes co-vary with the latitudes of the eddy-driven jets on all timescales, and both exhibit a robust poleward shift in response to forcings. Further, across models there is a robust coupling between the eddy-driving on the Hadley cells and their width. On the other hand, the subtropical jet and tropopause break latitudes, two common observational proxies for the tropical belt edges, lack a strong statistical relationship with the Hadley cell edges and have no coherent response to forcings. This undermines theories for the Hadley cell width predicated on angular momentum conservation and calls for a new framework for understanding Hadley cell expansion. A numerical framework is developed within an idealized general circulation model to isolate the mean flow and eddy responses of the global atmosphere to

  4. Transient computational fluid dynamics analysis of emergency core cooling injection at natural circulation conditions

    International Nuclear Information System (INIS)

    Scheuerer, Martina; Weis, Johannes

    2012-01-01

    Highlights: ► Pressurized thermal shocks are important phenomena for plant life extension and aging. ► The thermal-hydraulics of PTS have been studied experimentally and numerically. ► In the Large Scale Test Facility a loss of coolant accident was investigated. ► CFD software is validated to simulate the buoyancy driven flow after ECC injection. - Abstract: Within the framework of the European Nuclear Reactor Integrated Simulation Project (NURISP), computational fluid dynamics (CFD) software is validated for the simulation of the thermo-hydraulics of pressurized thermal shocks. A proposed validation experiment is the test series performed within the OECD ROSA V project in the Large Scale Test Facility (LSTF). The LSTF is a 1:48 volume-scaled model of a four-loop Westinghouse pressurized water reactor (PWR). ROSA V Test 1-1 investigates temperature stratification under natural circulation conditions. This paper describes calculations which were performed with the ANSYS CFD software for emergency core cooling injection into one loop at single-phase flow conditions. Following the OECD/NEA CFD Best Practice Guidelines (Mahaffy, 2007) the influence of grid resolution, discretisation schemes, and turbulence models (shear stress transport and Reynolds stress model) on the mixing in the cold leg were investigated. A half-model was used for these simulations. The transient calculations were started from a steady-state solution at natural circulation conditions. The final calculations were obtained in a complete model of the downcomer. The results are in good agreement with data.

  5. Diurnal circulations and their multi-scale interaction leading to rainfall over the South China Sea upstream of the Philippines during intraseasonal monsoon westerly wind bursts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Myung-Sook; Elsberry, Russell L. [Naval Postgraduate School, Department of Meteorology, Monterey, CA (United States); Ho, Chang-Hoi [Seoul National University, School of Earth and Environmental Sciences, Seoul (Korea, Republic of); Kim, Jinwon [University of California in Los Angeles, Department of Meteorology, Berkeley, CA (United States)

    2011-10-15

    The morning diurnal precipitation maximum over the coastal sea upstream of the Philippines during intraseasonal westerly wind bursts is examined from observations and numerical model simulations. A well-defined case of precipitation and large-scale circulation over the coastal sea west of the Philippines during 17-27 June 2004 is selected as a representative case. The hypothesis is that the mesoscale diurnal circulation over the Philippines and a large-scale diurnal circulation that is induced by large-scale differential heating over Asian continent and the surrounding ocean interact to produce the offshore precipitation maximum during the morning. Three-hourly combined satellite microwave and infrared rainfall retrievals define the morning rainfall peak during this period, and then later the stratiform rain area extends toward the open sea. A control numerical simulation in which a grid-nudging four-dimensional data assimilation (FDDA) is applied to force the large-scale diurnal circulation represents reasonably well the morning rainfall maximum. An enhanced low-level convergence similar to observations is simulated due to the interaction of the local- and large-scale diurnal circulations. The essential role of the local-scale diurnal circulation is illustrated in a sensitivity test in which the solar zenith angle is fixed at 7 am to suppress this diurnal circulation. The implication for climate diagnosis or modeling of such upstream coastal sea precipitation maxima is that the diurnal variations of both the local- and the large-scale circulations must be taken into consideration. (orig.)

  6. Development of the APR1400 model for countercurrent natural circulation in hot leg and steam generator under station blackout

    International Nuclear Information System (INIS)

    Park, Sang Gil; Kim, Han Chul

    2012-01-01

    In order to analyze severe accident phenomena, Korea Institute of Nuclear Safety (KINS) made a MELCOR model for APR1400 to examine natural circulation and creep rupture failure in the Reactor Coolant System (RCS) under station blackout (SBO). In this study, we are trying to advance the former model to describe natural circulation more accurately. After Fukushima accident, the concerns of severe accident management, assuring the heat removal capability, has risen for the case when the SBO is happened and there are no more electric powers to cool down decay heat. Under SBO there are three kinds of natural circulation which can delay the core heatup. One is in vessel natural circulation in the upper plenum of reactor vessel and the second is countercurrent natural circulation in hot leg through steam generator tubes and the last is full loop natural circulation when the reactor coolant pump loop seal is cleared and reactor coolant pump sealing is damaged by high temperature and high pressure. Among them this study focuses on the countercurrent natural circulation model using MELCOR1.8.6

  7. Going with the flow: the role of ocean circulation in global marine ecosystems under a changing climate.

    Science.gov (United States)

    van Gennip, Simon J; Popova, Ekaterina E; Yool, Andrew; Pecl, Gretta T; Hobday, Alistair J; Sorte, Cascade J B

    2017-07-01

    Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO 2 . However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high-resolution global ocean model run under the IPCC RCP 8.5 scenario. The ¼ degree model resolution allows improved regional realism of the ocean circulation beyond that of available CMIP5-class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present-day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification. © 2017 John Wiley & Sons Ltd.

  8. 3D full-loop simulation of an industrial-scale circulating fluidized boiler

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bona; Zhang, Nan; Wang, Wei; Li, Jinghai [Chinese Academy of Sciences, Beijing (China). State Key Lab. of Multi-phase Complex Systems

    2013-07-01

    In this study, 3D full-loop simulations of a CFB boiler are carried out. FLUENT {sup registered} 6.3 is used as the solver, where an Eulerian multiphase model with EMMS-based drag model is employed. The wide particle size distribution are considered and divided into several groups to better represent the polydisperse behavior of ash particles. The simulation shows that, compared to the conventional drag model, EMMS-based model predicts more reasonable pressure drop of furnace and larger slip velocity at the lower elevations of the furnace. Further work is under way to improve the full-loop simulation.

  9. An elementary model of money circulation

    Science.gov (United States)

    Pokrovskii, Vladimir N.; Schinckus, Christophe

    2016-12-01

    This paper investigates money circulation for a system, consisting of a production system, the government, a central bank, commercial banks and many customers of the commercial banks. A set of equations for the system is written; the theory determines the main features of interaction between production and money circulation. Investigation of the equations in a steady-state situation reveals some relationship among output of the production system and monetary variables. The relation of quantity theory of money is confirmed, whereas a new concept of the efficiency of the system is introduced.

  10. Modeling Local Monetary Flows in Poor Regions: A Research Setup to Simulate the Multiplier Effect in Local Economies

    Directory of Open Access Journals (Sweden)

    Henk van Arkel

    2007-10-01

    Full Text Available In poor regions, lack of local monetary circulation is one of the key elements causing underdevelopment. The more incoming money is passed from hand to hand, the more the local economy will be stimulated. However, in most poor areas money is spent outside the community before circulating locally, reducing the effectiveness of money inflow dramatically.Development programs would increase their effectiveness if knowledge was available on how spending money could lead to optimized and prolonged local circulation. To gain this knowledge a simulation tool will be created, which is able to analyze financial flows, to evaluate the potency of specific actions aimed on local development, and to monitor a development scheme during the execution phase.The basic model will be developed through a multi-agent approach, where each agent represents one (or more family/households belonging to one of several socio-economic groups. A Social Accounting Matrix (SAM of the local economy will be used as a basis to set up a spendings matrix for each agent, defining its spending priorities. Artificial Intelligence techniques will be used to give the agent the possibility to make decisions on how to satisfy these spending priorities. Also, social dynamics, the simulation of strategic planning behavior, learning, and exchange in limited networks will be addressed.The simulation application will consist of a common user interface allowing the user to “play” the simulation. This user interface layer will be “pluggable” with the underlying programming layer responsible for the calculations on the simulation, so that different plug-ins may be used for different simulation techniques.

  11. Simulating the evolution of the Amundsen Sea Sector with a coupled ice-ocean model

    Science.gov (United States)

    Seroussi, H. L.; Nakayama, Y.; Menemenlis, D.; Larour, E. Y.; Morlighem, M.; Rignot, E. J.

    2017-12-01

    Ice shelves and floating glacier termini play an important role in the stability of ice sheets and interact strongly with the ocean. They account for much of the buttressing against the flow of inland glaciers that drain the Antarctic ice sheet. Changes in their geometry due to ice-front retreat, thinning or even collapse profoundly affect the flow of their tributary glaciers, which in turn affects the volume of grounded ice carried by these tributary glaciers into the ocean, and the extent of resulting sea level rise. Recent simulations of glaciers in Antarctica show that the largest climatic impact on ice dynamics is the rate of ice shelf melting, which rapidly affects glaciers' speed over several hundreds of kilometers upstream of the grounding line. These melting rates, however, as well as their spatial and temporal evolution remain largely unknown. In the absence of direct long-term observations, coupled ice-ocean models are the best available approach to address this question. In a previous study, we simulated the coupled ice-ocean system near Thwaites Glacier using a new two-way coupled system between the Massachusetts Institute of Technology general circulation model (MITgcm) and the Ice Sheet System Model (ISSM). Our results highlighted the impact of ocean conditions on glacier evolution and demonstrated the importance of simulating the coupled ice-ocean system to produce accurate melting rates under the ice shelf and at the grounding line. In this study, we focus on the entire Amundsen Sea sector, a region that experienced glacier acceleration, thinning and grounding line retreat over the past three decades. We investigate the feedbacks between changes in the ice and ocean, and the dynamic response of the glacier to changes in the ocean circulation. The simulations suggest that this region is likely to undergo substantial changes in the coming decades. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a

  12. The Ozone Budget in the Upper Troposphere from Global Modeling Initiative (GMI)Simulations

    Science.gov (United States)

    Rodriquez, J.; Duncan, Bryan N.; Logan, Jennifer A.

    2006-01-01

    Ozone concentrations in the upper troposphere are influenced by in-situ production, long-range tropospheric transport, and influx of stratospheric ozone, as well as by photochemical removal. Since ozone is an important greenhouse gas in this region, it is particularly important to understand how it will respond to changes in anthropogenic emissions and changes in stratospheric ozone fluxes.. This response will be determined by the relative balance of the different production, loss and transport processes. Ozone concentrations calculated by models will differ depending on the adopted meteorological fields, their chemical scheme, anthropogenic emissions, and treatment of the stratospheric influx. We performed simulations using the chemical-transport model from the Global Modeling Initiative (GMI) with meteorological fields from (It)h e NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), (2) the atmospheric GCM from NASA's Global Modeling and Assimilation Office(GMAO), and (3) assimilated winds from GMAO . These simulations adopt the same chemical mechanism and emissions, and adopt the Synthetic Ozone (SYNOZ) approach for treating the influx of stratospheric ozone -. In addition, we also performed simulations for a coupled troposphere-stratosphere model with a subset of the same winds. Simulations were done for both 4degx5deg and 2degx2.5deg resolution. Model results are being tested through comparison with a suite of atmospheric observations. In this presentation, we diagnose the ozone budget in the upper troposphere utilizing the suite of GMI simulations, to address the sensitivity of this budget to: a) the different meteorological fields used; b) the adoption of the SYNOZ boundary condition versus inclusion of a full stratosphere; c) model horizontal resolution. Model results are compared to observations to determine biases in particular simulations; by examining these comparisons in conjunction with the derived budgets, we may pinpoint

  13. Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations

    Science.gov (United States)

    Nuijens, Louise; Emanuel, Kerry; Masunaga, Hirohiko; L'Ecuyer, Tristan

    2017-11-01

    Space-borne observations reveal that 20-40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of warm rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column radiative-convective model of hydrostatic, nonlinear flow on a non-rotating sphere, with parameterized convection and radiation, and review ongoing efforts in high-resolution modeling and observations of warm rain. The model experiments investigate the response of convection and circulation to sea surface temperature (SST) gradients between the columns and to changes in a parameter that controls the conversion of cloud condensate to rain. Convection over the cold ocean collapses to a shallow mode with tops near 850 hPa, but a congestus mode with tops near 600 hPa can develop at small SST differences when warm rain formation is more efficient. Here, interactive radiation and the response of the circulation are crucial: along with congestus a deeper moist layer develops, which leads to less low-level radiative cooling, a smaller buoyancy gradient between the columns, and therefore a weaker circulation and less subsidence over the cold ocean. The congestus mode is accompanied with more surface precipitation in the subsiding column and less surface precipitation in the deep convecting column. For the shallow mode over colder oceans, circulations also weaken with more efficient warm rain formation, but only marginally. Here, more warm rain reduces convective tops and the boundary layer depth—similar to Large-Eddy Simulation (LES) studies—which reduces the integrated buoyancy gradient. Elucidating the impact of warm rain can benefit from large-domain high-resolution simulations and observations. Parameterizations of warm rain may be constrained through collocated cloud and rain profiling from ground, and concurrent changes in convection and rain in subsiding and convecting branches of

  14. The Double ITCZ Syndrome in GCMs: A Coupled Problem among Convection, Atmospheric and Ocean Circulations

    Science.gov (United States)

    Zhang, G. J.; Song, X.

    2017-12-01

    The double ITCZ bias has been a long-standing problem in coupled atmosphere-ocean models. A previous study indicates that uncertainty in the projection of global warming due to doubling of CO2 is closely related to the double ITCZ biases in global climate models. Thus, reducing the double ITCZ biases is not only important to getting the current climate features right, but also important to narrowing the uncertainty in future climate projection. In this work, we will first review the possible factors contributing to the ITCZ problem. Then, we will focus on atmospheric convection, presenting recent progress in alleviating the double ITCZ problem and its sensitivity to details of convective parameterization, including trigger conditions for convection onset, convective memory, entrainment rate, updraft model and closure in the NCAR CESM1. These changes together can result in dramatic improvements in the simulation of ITCZ. Results based on both atmospheric only and coupled simulations with incremental changes of convection scheme will be shown to demonstrate the roles of convection parameterization and coupled interaction between convection, atmospheric circulation and ocean circulation in the simulation of ITCZ.

  15. A stratiform cloud parameterization for General Circulation Models

    International Nuclear Information System (INIS)

    Ghan, S.J.; Leung, L.R.; Chuang, C.C.; Penner, J.E.; McCaa, J.

    1994-01-01

    The crude treatment of clouds in General Circulation Models (GCMs) is widely recognized as a major limitation in the application of these models to predictions of global climate change. The purpose of this project is to develop a paxameterization for stratiform clouds in GCMs that expresses stratiform clouds in terms of bulk microphysical properties and their subgrid variability. In this parameterization, precipitating cloud species are distinguished from non-precipitating species, and the liquid phase is distinguished from the ice phase. The size of the non-precipitating cloud particles (which influences both the cloud radiative properties and the conversion of non-precipitating cloud species to precipitating species) is determined by predicting both the mass and number concentrations of each species

  16. Optimisation of a parallel ocean general circulation model

    Directory of Open Access Journals (Sweden)

    M. I. Beare

    1997-10-01

    Full Text Available This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.

  17. Optimisation of a parallel ocean general circulation model

    Directory of Open Access Journals (Sweden)

    M. I. Beare

    Full Text Available This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.

  18. Influence of Last Glacial Maximum boundary conditions on the global water isotope distribution in an atmospheric general circulation model

    Directory of Open Access Journals (Sweden)

    T. Tharammal

    2013-03-01

    Full Text Available To understand the validity of δ18O proxy records as indicators of past temperature change, a series of experiments was conducted using an atmospheric general circulation model fitted with water isotope tracers (Community Atmosphere Model version 3.0, IsoCAM. A pre-industrial simulation was performed as the control experiment, as well as a simulation with all the boundary conditions set to Last Glacial Maximum (LGM values. Results from the pre-industrial and LGM simulations were compared to experiments in which the influence of individual boundary conditions (greenhouse gases, ice sheet albedo and topography, sea surface temperature (SST, and orbital parameters were changed each at a time to assess their individual impact. The experiments were designed in order to analyze the spatial variations of the oxygen isotopic composition of precipitation (δ18Oprecip in response to individual climate factors. The change in topography (due to the change in land ice cover played a significant role in reducing the surface temperature and δ18Oprecip over North America. Exposed shelf areas and the ice sheet albedo reduced the Northern Hemisphere surface temperature and δ18Oprecip further. A global mean cooling of 4.1 °C was simulated with combined LGM boundary conditions compared to the control simulation, which was in agreement with previous experiments using the fully coupled Community Climate System Model (CCSM3. Large reductions in δ18Oprecip over the LGM ice sheets were strongly linked to the temperature decrease over them. The SST and ice sheet topography changes were responsible for most of the changes in the climate and hence the δ18Oprecip distribution among the simulations.

  19. Impact of ocean model resolution on CCSM climate simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kirtman, Ben P.; Rousset, Clement; Siqueira, Leo [University of Miami, Rosenstiel School for Marine and Atmospheric Science, Coral Gables, FL (United States); Bitz, Cecilia [University of Washington, Department of Atmospheric Science, Seattle, WA (United States); Bryan, Frank; Dennis, John; Hearn, Nathan; Loft, Richard; Tomas, Robert; Vertenstein, Mariana [National Center for Atmospheric Research, Boulder, CO (United States); Collins, William [University of California, Berkeley, Berkeley, CA (United States); Kinter, James L.; Stan, Cristiana [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); George Mason University, Fairfax, VA (United States)

    2012-09-15

    The current literature provides compelling evidence suggesting that an eddy-resolving (as opposed to eddy-permitting or eddy-parameterized) ocean component model will significantly impact the simulation of the large-scale climate, although this has not been fully tested to date in multi-decadal global coupled climate simulations. The purpose of this paper is to examine how resolved ocean fronts and eddies impact the simulation of large-scale climate. The model used for this study is the NCAR Community Climate System Model version 3.5 (CCSM3.5) - the forerunner to CCSM4. Two experiments are reported here. The control experiment is a 155-year present-day climate simulation using a 0.5 atmosphere component (zonal resolution 0.625 meridional resolution 0.5 ; land surface component at the same resolution) coupled to ocean and sea-ice components with zonal resolution of 1.2 and meridional resolution varying from 0.27 at the equator to 0.54 in the mid-latitudes. The second simulation uses the same atmospheric and land-surface models coupled to eddy-resolving 0.1 ocean and sea-ice component models. The simulations are compared in terms of how the representation of smaller scale features in the time mean ocean circulation and ocean eddies impact the mean and variable climate. In terms of the global mean surface temperature, the enhanced ocean resolution leads to a ubiquitous surface warming with a global mean surface temperature increase of about 0.2 C relative to the control. The warming is largest in the Arctic and regions of strong ocean fronts and ocean eddy activity (i.e., Southern Ocean, western boundary currents). The Arctic warming is associated with significant losses of sea-ice in the high-resolution simulation. The sea surface temperature gradients in the North Atlantic, in particular, are better resolved in the high-resolution model leading to significantly sharper temperature gradients and associated large-scale shifts in the rainfall. In the extra-tropics, the

  20. The ECHAM3 atmospheric general circulation model

    International Nuclear Information System (INIS)

    1993-09-01

    The ECHAM model has been developed from the ECMWF model (cycle 31, November 1988). It contains several changes, mostly in the parameterization, in order to adjust the model for climate simulations. The technical details of the ECHAM operational model are described. (orig./KW)

  1. Application of blocking diagnosis methods to general circulation models. Part I: a novel detection scheme

    Energy Technology Data Exchange (ETDEWEB)

    Barriopedro, D. [Universidade de Lisboa, CGUL-IDL, Faculdade de Ciencias, Ed. C-8, Lisbon (Portugal); Universidad de Extremadura, Departamento de Fisica, Facultad de Ciencias, Badajoz (Spain); Garcia-Herrera, R. [Universidad Complutense de Madrid, Departamento de Fisica de la Tierra II, Facultad de C.C. Fisicas, Madrid (Spain); Trigo, R.M. [Universidade de Lisboa, CGUL-IDL, Faculdade de Ciencias, Ed. C-8, Lisbon (Portugal)

    2010-12-15

    to General Circulation Models where observational thresholds may be unsuitable due to the presence of model bias. Part II of this study deals with a specific implementation of this novel method to simulations of the ECHO-G global climate model. (orig.)

  2. Sensitivity of modeled estuarine circulation to spatial and temporal resolution of input meteorological forcing of a cold frontal passage

    Science.gov (United States)

    Weaver, Robert J.; Taeb, Peyman; Lazarus, Steven; Splitt, Michael; Holman, Bryan P.; Colvin, Jeffrey

    2016-12-01

    In this study, a four member ensemble of meteorological forcing is generated using the Weather Research and Forecasting (WRF) model in order to simulate a frontal passage event that impacted the Indian River Lagoon (IRL) during March 2015. The WRF model is run to provide high and low, spatial (0.005° and 0.1°) and temporal (30 min and 6 h) input wind and pressure fields. The four member ensemble is used to force the Advanced Circulation model (ADCIRC) coupled with Simulating Waves Nearshore (SWAN) and compute the hydrodynamic and wave response. Results indicate that increasing the spatial resolution of the meteorological forcing has a greater impact on the results than increasing the temporal resolution in coastal systems like the IRL where the length scales are smaller than the resolution of the operational meteorological model being used to generate the forecast. Changes in predicted water elevations are due in part to the upwind and downwind behavior of the input wind forcing. The significant wave height is more sensitive to the meteorological forcing, exhibited by greater ensemble spread throughout the simulation. It is important that the land mask, seen by the meteorological model, is representative of the geography of the coastal estuary as resolved by the hydrodynamic model. As long as the temporal resolution of the wind field captures the bulk characteristics of the frontal passage, computational resources should be focused so as to ensure that the meteorological model resolves the spatial complexities, such as the land-water interface, that drive the land use responsible for dynamic downscaling of the winds.

  3. Isentropic Analysis of a Simulated Hurricane

    Science.gov (United States)

    Mrowiec, Agnieszka A.; Pauluis, Olivier; Zhang, Fuqing

    2016-01-01

    Hurricanes, like many other atmospheric flows, are associated with turbulent motions over a wide range of scales. Here the authors adapt a new technique based on the isentropic analysis of convective motions to study the thermodynamic structure of the overturning circulation in hurricane simulations. This approach separates the vertical mass transport in terms of the equivalent potential temperature of air parcels. In doing so, one separates the rising air parcels at high entropy from the subsiding air at low entropy. This technique filters out oscillatory motions associated with gravity waves and separates convective overturning from the secondary circulation. This approach is applied here to study the flow of an idealized hurricane simulation with the Weather Research and Forecasting (WRF) Model. The isentropic circulation for a hurricane exhibits similar characteristics to that of moist convection, with a maximum mass transport near the surface associated with a shallow convection and entrainment. There are also important differences. For instance, ascent in the eyewall can be readily identified in the isentropic analysis as an upward mass flux of air with unusually high equivalent potential temperature. The isentropic circulation is further compared here to the Eulerian secondary circulation of the simulated hurricane to show that the mass transport in the isentropic circulation is much larger than the one in secondary circulation. This difference can be directly attributed to the mass transport by convection in the outer rainband and confirms that, even for a strongly organized flow like a hurricane, most of the atmospheric overturning is tied to the smaller scales.

  4. Forced circulation type steam generator simulation code: HT4

    International Nuclear Information System (INIS)

    Okamoto, Masaharu; Tadokoro, Yoshihiro

    1982-08-01

    The purpose of this code is a understanding of dynamic characteristics of the steam generator, which is a component of High-temperature Heat Transfer Components Test Unit. This unit is a number 4th test section of Helium Engineering Demonstration Loop (HENDEL). Features of this report are as follows, modeling of the steam generator, a basic relationship for the continuity equation, numerical analysis techniques of a non-linear simultaneous equation and computer graphics output techniques. Forced circulation type steam generator with strait tubes and horizontal cut baffles, applied in this code, have be designed at the Over All System Design of the VHTRex. The code is for use with JAERI's digital computer FACOM M200. About 1.5 sec required for each time step reiteration, then about 40 sec cpu time required for a standard problem. (author)

  5. Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS

    Science.gov (United States)

    Haas, Kevin A.; Warner, John C.

    2009-01-01

    Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales.

  6. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

    International Nuclear Information System (INIS)

    Ishii, M.; Kataoka, I.

    1983-03-01

    Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained

  7. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, M.; Kataoka, I.

    1983-03-01

    Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained.

  8. An ocean circulation model in σS- z- σB hybrid coordinate and its validation

    Science.gov (United States)

    Zhuang, Zhanpeng; Yuan, Yeli; Yang, Guangbing

    2018-02-01

    A 3D, two-time-level, σS- z- σB hybrid-coordinate Marine Science and Numerical Modeling numerical ocean circulation model (HyMOM) is developed in this paper. In HyMOM, the σ coordinate is employed in the surface and bottom regions, and the z coordinate is used in the intermediate layers. This method can overcome problems with vanishing surface cells and minimize the unwanted deviation in representing bottom topography. The connection between the σ and z layers vertically includes an expanded "ghost" method and the linear interpolation. The governing equations in the σS- z- σB hybrid coordinate based on the complete Reynolds-averaged Navier-Stokes equations are derived in detail. The two-level time staggered and Eulerian forward and backward schemes, which are of second-order of accuracy, are adopted for the temporal difference in internal and external mode, respectively. The computation of the baroclinic gradient force is tested in an analytic test problem; the errors for two methods in HyMOM, which are relatively large only in the bottom layers, are obviously smaller than those in the pure σ and z models in almost all of the vertical layers. A quasi-global climatologic numerical experiment is constructed to test the simulation performance of HyMOM. With the monthly mean Levitus climatology data as reference, the HyMOM can improve the simulating accuracy compared with its pure z or σ coordinate implementation.

  9. Simulations of radiocarbon in a coarse-resolution world ocean model 2. Distributions of bomb-produced Carbon 14

    International Nuclear Information System (INIS)

    Toggweiler, J.R.; Dixon, K.; Bryan, K.

    1989-01-01

    Part 1 of this study examined the ability of the Geophysical Fluid Dynamics Laboratory (GFDL) primitive equation ocean general circulation model to simulate the steady state distribution of naturally produced 14 C in the ocean prior to the nuclear bomb tests of the 1950's and early 1960's. In part 2 begin with the steady state distributions of part 1 and subject the model to the pulse of elevated atmospheric 14 C concentrations observed since the 1950's

  10. Aluminium in an ocean general circulation model compared with the West Atlantic Geotraces cruises

    CSIR Research Space (South Africa)

    Van Hulten, M

    2013-10-01

    Full Text Available A model of aluminium has been developed and implemented in an Ocean General Circulation Model (NEMO-PISCES). In the model, aluminium enters the ocean by means of dust deposition. The internal oceanic processes are described by advection, mixing...

  11. Summer monsoon circulation and precipitation over the tropical Indian Ocean during ENSO in the NCEP climate forecast system

    Science.gov (United States)

    Chowdary, J. S.; Chaudhari, H. S.; Gnanaseelan, C.; Parekh, Anant; Suryachandra Rao, A.; Sreenivas, P.; Pokhrel, S.; Singh, P.

    2014-04-01

    This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a

  12. THOR: A NEW AND FLEXIBLE GLOBAL CIRCULATION MODEL TO EXPLORE PLANETARY ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, João M.; Grimm, Simon L.; Grosheintz, Luc; Heng, Kevin, E-mail: joao.mendonca@csh.unibe.ch, E-mail: kevin.heng@csh.unibe.ch [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012, Bern (Switzerland)

    2016-10-01

    We have designed and developed, from scratch, a global circulation model (GCM) named THOR that solves the three-dimensional nonhydrostatic Euler equations. Our general approach lifts the commonly used assumptions of a shallow atmosphere and hydrostatic equilibrium. We solve the “pole problem” (where converging meridians on a sphere lead to increasingly smaller time steps near the poles) by implementing an icosahedral grid. Irregularities in the grid, which lead to grid imprinting, are smoothed using the “spring dynamics” technique. We validate our implementation of spring dynamics by examining calculations of the divergence and gradient of test functions. To prevent the computational time step from being bottlenecked by having to resolve sound waves, we implement a split-explicit method together with a horizontally explicit and vertically implicit integration. We validate our GCM by reproducing the Earth and hot-Jupiter-like benchmark tests. THOR was designed to run on graphics processing units (GPUs), which allows for physics modules (radiative transfer, clouds, chemistry) to be added in the future, and is part of the open-source Exoclimes Simulation Platform (www.exoclime.org).

  13. THOR: A NEW AND FLEXIBLE GLOBAL CIRCULATION MODEL TO EXPLORE PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Mendonça, João M.; Grimm, Simon L.; Grosheintz, Luc; Heng, Kevin

    2016-01-01

    We have designed and developed, from scratch, a global circulation model (GCM) named THOR that solves the three-dimensional nonhydrostatic Euler equations. Our general approach lifts the commonly used assumptions of a shallow atmosphere and hydrostatic equilibrium. We solve the “pole problem” (where converging meridians on a sphere lead to increasingly smaller time steps near the poles) by implementing an icosahedral grid. Irregularities in the grid, which lead to grid imprinting, are smoothed using the “spring dynamics” technique. We validate our implementation of spring dynamics by examining calculations of the divergence and gradient of test functions. To prevent the computational time step from being bottlenecked by having to resolve sound waves, we implement a split-explicit method together with a horizontally explicit and vertically implicit integration. We validate our GCM by reproducing the Earth and hot-Jupiter-like benchmark tests. THOR was designed to run on graphics processing units (GPUs), which allows for physics modules (radiative transfer, clouds, chemistry) to be added in the future, and is part of the open-source Exoclimes Simulation Platform (www.exoclime.org).

  14. SimLife a new model of simulation using a pulsated revascularized and reventilated cadaver for surgical education.

    Science.gov (United States)

    Delpech, P O; Danion, J; Oriot, D; Richer, J P; Breque, C; Faure, J P

    2017-02-01

    Alike becoming a pilot requires competences, acquisition of technical skills is essential to become a surgeon. Halsted's theory on surgical education "See one, do one, and teach one" is not currently compatible with the reality of socio-economic constraints of the operating room, the patient's safety demand and the reduction of residents' work hours. In all countries, this brings mandatory to simulation education for surgery resident's training. Many models are available: video trainers or pelvi-trainers, computed simulator, animal models or human cadaver… Human cadaveric dissection has long been used to teach surgical anatomy. Surgery on human cadaveric model brings greatest accuracy to the haptic characteristics of surgical procedures. Learning in an appropriate and realistic simulation context increases the level of acquisition of the residents' skills and reduces stress and anxiety when performing real procedures. We present a technique of perfusion and ventilation of a fresh human cadaver that restores pulsatile circulation and respiratory movements of the model. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Transient computational fluid dynamics analysis of emergency core cooling injection at natural circulation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Scheuerer, Martina, E-mail: Martina.Scheuerer@grs.de [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Forschungsinstitute, 85748 Garching (Germany); Weis, Johannes, E-mail: Johannes.Weis@grs.de [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Forschungsinstitute, 85748 Garching (Germany)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Pressurized thermal shocks are important phenomena for plant life extension and aging. Black-Right-Pointing-Pointer The thermal-hydraulics of PTS have been studied experimentally and numerically. Black-Right-Pointing-Pointer In the Large Scale Test Facility a loss of coolant accident was investigated. Black-Right-Pointing-Pointer CFD software is validated to simulate the buoyancy driven flow after ECC injection. - Abstract: Within the framework of the European Nuclear Reactor Integrated Simulation Project (NURISP), computational fluid dynamics (CFD) software is validated for the simulation of the thermo-hydraulics of pressurized thermal shocks. A proposed validation experiment is the test series performed within the OECD ROSA V project in the Large Scale Test Facility (LSTF). The LSTF is a 1:48 volume-scaled model of a four-loop Westinghouse pressurized water reactor (PWR). ROSA V Test 1-1 investigates temperature stratification under natural circulation conditions. This paper describes calculations which were performed with the ANSYS CFD software for emergency core cooling injection into one loop at single-phase flow conditions. Following the OECD/NEA CFD Best Practice Guidelines (Mahaffy, 2007) the influence of grid resolution, discretisation schemes, and turbulence models (shear stress transport and Reynolds stress model) on the mixing in the cold leg were investigated. A half-model was used for these simulations. The transient calculations were started from a steady-state solution at natural circulation conditions. The final calculations were obtained in a complete model of the downcomer. The results are in good agreement with data.

  16. An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation, 1. Exchange between the Red Sea and the Indian Ocean

    Science.gov (United States)

    Sofianos, Sarantis S.; Johns, William E.

    2002-11-01

    The mechanisms involved in the seasonal exchange between the Red Sea and the Indian Ocean are studied using an Oceanic General Circulation Model (OGCM), namely the Miami Isopycnic Coordinate Ocean Model (MICOM). The model reproduces the basic characteristics of the seasonal circulation observed in the area of the strait of Bab el Mandeb. There is good agreement between model results and available observations on the strength of the exchange and the characteristics of the water masses involved, as well as the seasonal flow pattern. During winter, this flow consists of a typical inverse estuarine circulation, while during summer, the surface flow reverses, there is an intermediate inflow of relatively cold and fresh water, and the hypersaline outflow at the bottom of the strait is significantly reduced. Additional experiments with different atmospheric forcing (seasonal winds, seasonal thermohaline air-sea fluxes, or combinations) were performed in order to assess the role of the atmospheric forcing fields in the exchange flow at Bab el Mandeb. The results of both the wind- and thermohaline-driven experiments exhibit a strong seasonality at the area of the strait, which is in phase with the observations. However, it is the combination of both the seasonal pattern of the wind stress and the seasonal thermohaline forcing that can reproduce the observed seasonal variability at the strait. The importance of the seasonal cycle of the thermohaline forcing on the exchange flow pattern is also emphasized by these results. In the experiment where the thermohaline forcing is represented by its annual mean, the strength of the exchange is reduced almost by half.

  17. Money creation and circulation in a credit economy

    Science.gov (United States)

    Xiong, Wanting; Fu, Han; Wang, Yougui

    2017-01-01

    This paper presents a multi-agent model describing the main mechanisms of money creation and money circulation in a credit economy. Our special attention is paid to the role of debt in the two processes. With the agent-based modeling approach, macro phenomena are well founded in micro-based causalities. A hypothetical economy composed of a banking system and multiple traders is proposed. Instead of being a pure financial intermediary, the banking system is viewed as the center of money creation and an accelerator of money circulation. Agents finance their expenditures not only by their own savings but also through bank loans. Through mathematical calculations and numerical simulation, we identify the determinants of money multiplier and those of velocity of money. In contrast to the traditional money creation model, the money multiplier is determined not only by the behavior of borrowing but also by the behavior of repayment as well. The velocity of money is found to be influenced by both money-related factors such as the expenditure habits of agents with respect to their income and wealth and debt-related factors such as borrowing and repayment behaviors of debtors and the reserve requirements faced by banks.

  18. Climate simulations for the last interglacial period by means of climate models of different complexity

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M L [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    1999-07-01

    Climatic conditions during the lst interglacial (125,000 years before present) are investigated with two climate models of different complexity: The atmosphere-ocean general circulation model ECHAM-1/LSG and the climate system model of intermediate complexity CLIMBER-2. In particular the role of vegetation at the last interglacial maximum, and its importance for a consistent simulation of the Mid-Holocene climate, has been investigated (EU project ASPEN: Air-Sea Wave Processes in Climate Change Models). Comparison of the results of the two models reveals a broad agreement in most large-scale features. Nevertheless, discrepancies are also detected. Essentially, the models differ in their ocean circulation responses. Profiting of the fast turnaround time of CLIMBER-2, a number of sensitivity experiments have been performed to try to explain the possible reasons for these differences, and to analyze additional effects not included in the previous simulations. In particular, the role of vegetation at the last interglacial maximum has been investigated. Comparison of the simulated responses against CLIMAP reconstructed SSTs for Marine Isotope Stage 5e shows a satisfactory agreement within the data uncertainties. (orig.) [German] Die klimatischen Bedingungen waehrend der letzten interglazialen Periode (vor 125 000 Jahren) werden anhand zweier Klimamodelle unterschiedlicher Komplexitaet untersucht: Dem Ozean-Atmosphaere gekoppelten allgemeinen Zirkulationsmodell ECHAM-1/LSG und dem Klimasystemmodell mittlerer Komplexitaet CLIMBER-2. Inbesondere wurde die Rolle der Vegetation in der letzten interglazialen Periode und ihre Bedeutung fuer eine konsistente Simulation des mittelholozaenischen Klimas untersucht (EU-Projekt ASPEN: Air-Sea Wave Processes in Climate Change Models - 'Klimavariationen in historischen Zeiten'). Der Vergleich der Ergebnisse beider Modelle zeigt eine gute Uebereinstimmung der meisten der grossskaligen Eigenschaften, allerdings zeigen sich auch

  19. Climate simulations for the last interglacial period by means of climate models of different complexity

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M.L. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    1999-07-01

    Climatic conditions during the lst interglacial (125,000 years before present) are investigated with two climate models of different complexity: The atmosphere-ocean general circulation model ECHAM-1/LSG and the climate system model of intermediate complexity CLIMBER-2. In particular the role of vegetation at the last interglacial maximum, and its importance for a consistent simulation of the Mid-Holocene climate, has been investigated (EU project ASPEN: Air-Sea Wave Processes in Climate Change Models). Comparison of the results of the two models reveals a broad agreement in most large-scale features. Nevertheless, discrepancies are also detected. Essentially, the models differ in their ocean circulation responses. Profiting of the fast turnaround time of CLIMBER-2, a number of sensitivity experiments have been performed to try to explain the possible reasons for these differences, and to analyze additional effects not included in the previous simulations. In particular, the role of vegetation at the last interglacial maximum has been investigated. Comparison of the simulated responses against CLIMAP reconstructed SSTs for Marine Isotope Stage 5e shows a satisfactory agreement within the data uncertainties. (orig.) [German] Die klimatischen Bedingungen waehrend der letzten interglazialen Periode (vor 125 000 Jahren) werden anhand zweier Klimamodelle unterschiedlicher Komplexitaet untersucht: Dem Ozean-Atmosphaere gekoppelten allgemeinen Zirkulationsmodell ECHAM-1/LSG und dem Klimasystemmodell mittlerer Komplexitaet CLIMBER-2. Inbesondere wurde die Rolle der Vegetation in der letzten interglazialen Periode und ihre Bedeutung fuer eine konsistente Simulation des mittelholozaenischen Klimas untersucht (EU-Projekt ASPEN: Air-Sea Wave Processes in Climate Change Models - 'Klimavariationen in historischen Zeiten'). Der Vergleich der Ergebnisse beider Modelle zeigt eine gute Uebereinstimmung der meisten der grossskaligen Eigenschaften, allerdings zeigen sich

  20. Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Part 2

    Science.gov (United States)

    Jones, Gregory S. (Editor); Joslin, Ronald D. (Editor)

    2005-01-01

    Workshop, CFD practitioners were invited to compute a two-dimensional benchmark problem for which geometry, flow conditions, grids, and experimental data were available before the workshop. The purpose was to accumulate a database of simulations for a single problem using a range of CFD codes, turbulence models, and grid strategies so as to expand knowledge of model performance/requirements and guide simulation of practical CC configurations.

  1. The Mars Dust Cycle: Investigating the Effects of Radiatively Active Water Ice Clouds on Surface Stresses and Dust Lifting Potential with the NASA Ames Mars General Circulation Model

    Science.gov (United States)

    Kahre, Melinda A.; Hollingsworth, Jeffery

    2012-01-01

    The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.

  2. Analysis of reverse flow in inverted U-tubes of steam generator under natural circulation condition

    International Nuclear Information System (INIS)

    Yang Ruichang; Liu Ruolei; Liu Jinggong; Qin Shiwei

    2008-01-01

    In this paper, we report on the analysis of reverse flow in inverted U-tubes of a steam generator under natural circulation condition. The mechanism of reverse flow in inverted U-tubes of the steam generator with natural circulation is graphically analyzed by using the full-range characteristic curve of parallel U-tubes. The mathematical model and numerical calculation method for analyzing the reverse flow in inverted U-tubes of the steam generator with natural circulation have been developed. The reverse flow in an inverted U-tube steam generator of a simulated pressurized water reactor with natural circulation in analyzed. Through the calculation, the mass flow rates of normal and reverse flows in individual U-tubes are obtained. The predicted sharp drop of the fluid temperature in the inlet plenum of the steam generator due to reverse flow agrees very well with the experimental data. This indicates that the developed mathematical model and solution method can be used to correctly predict the reverse flow in the inverted U-tubes of the steam generator with natural circulation. The obtained results also show that in the analysis of natural circulation flow in the primary circuit, the reverse flow in the inverted U-tubes of the steam generator must be taken into account. (author)

  3. Design and study of Engineering Test Facility - Helium Circulator

    International Nuclear Information System (INIS)

    Jiang Huijing; Ye Ping; Zhao Gang; Geng Yinan; Wang Jie

    2015-01-01

    Helium circulator is one of the key equipment of High-temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM). In order to simulate most normal and accident operating conditions of helium circulator in HTR-PM, a full scale, rated flow rate and power, engineering test loop, which was called Engineering Test Facility - Helium Circulator (ETF-HC), was designed and established. Two prototypes of helium circulator, which was supported by Active Magnetic Bearing (AMB) or sealed by dry gas seals, would be tested on ETF-HC. Therefore, special interchangeable design was under consideration. ETF-HC was constructed compactly, which consisted of eleven sub-systems. In order to reduce the flow resistance of the circuit, special ducts, elbows, valves and flowmeters were selected. Two stages of heat exchange loops were designed and a helium - high pressure pure water heat exchanger was applied to ensure water wouldn't be vaporized while simulating accident conditions. Commissioning tests were carried out and operation results showed that ETF-HC meets the requirement of helium circulator operation. On this test facility, different kinds of experiments were supposed to be held, including mechanical and aerodynamic performance tests, durability tests and so on. These tests would provide the features and performance of helium circulator and verify its feasibility, availability and reliability. (author)

  4. An efficiency booster for energy conversion in natural circulation loops

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqing, E-mail: wangdongqing@stu.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Jiang, Jin, E-mail: jjiang@eng.uwo.ca [Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Beijing Computational Science Research Center, Beijing 100084 (China)

    2016-08-01

    Highlights: • Low driving power conversion efficiency of natural circulation loops is proved. • The low conversion efficiency leads to low heat transfer capacity of such loops. • An efficiency booster is designed with turbine to increase the efficiency. • Performance of the proposed booster has been numerically simulated. • The booster drastically enhances heat transfer capacity of such loops. - Abstract: In this paper, the capacity of a natural circulation loop for transferring heat from a heat source to a heat sink has been analyzed. It is concluded that the capacity of the natural circulation loop depends on the conversion efficiency of the thermal energy from the heat source to the driving force for the circulation of the flow. The low conversion efficiency leading to weak driving force in such loops has been demonstrated analytically and validated through simulation results. This issue has resulted in a low heat transfer capacity in the circulation loop. To increase the heat transfer capacity, one has to improve this efficiency. To meet such a need, a novel efficiency booster has been developed in this paper. The booster essentially increases the flow driving force and hence significantly improves the overall heat transfer capacity. Design and analysis of this booster have been performed in detail. The performance has been examined through extensive computer simulations. It is concluded that the booster can indeed drastically improve the heat transfer capacity of the natural circulation loop.

  5. An efficiency booster for energy conversion in natural circulation loops

    International Nuclear Information System (INIS)

    Wang, Dongqing; Jiang, Jin

    2016-01-01

    Highlights: • Low driving power conversion efficiency of natural circulation loops is proved. • The low conversion efficiency leads to low heat transfer capacity of such loops. • An efficiency booster is designed with turbine to increase the efficiency. • Performance of the proposed booster has been numerically simulated. • The booster drastically enhances heat transfer capacity of such loops. - Abstract: In this paper, the capacity of a natural circulation loop for transferring heat from a heat source to a heat sink has been analyzed. It is concluded that the capacity of the natural circulation loop depends on the conversion efficiency of the thermal energy from the heat source to the driving force for the circulation of the flow. The low conversion efficiency leading to weak driving force in such loops has been demonstrated analytically and validated through simulation results. This issue has resulted in a low heat transfer capacity in the circulation loop. To increase the heat transfer capacity, one has to improve this efficiency. To meet such a need, a novel efficiency booster has been developed in this paper. The booster essentially increases the flow driving force and hence significantly improves the overall heat transfer capacity. Design and analysis of this booster have been performed in detail. The performance has been examined through extensive computer simulations. It is concluded that the booster can indeed drastically improve the heat transfer capacity of the natural circulation loop.

  6. Simulated changes in vegetation distribution, land carbon storage, and atmospheric CO{sub 2} in response to a collapse of the North Atlantic thermohaline circulation

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Peter [Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany); Joos, Fortunat [University of Bern (Switzerland). Climate and Environmental Physics Institute; Gerber, Stefan [University of Bern (Switzerland). Climate and Environmental Physics Institute; Princeton University, NJ (United States); Knutti, Reto [University of Bern (Switzerland). Climate and Environmental Physics Institute; National Center for Atmospheric Research, Boulder, CO (United States)

    2005-12-01

    It is investigated how abrupt changes in the North Atlantic (NA) thermohaline circulation (THC) affect the terrestrial carbon cycle. The Lund-Potsdam-Jena Dynamic Global Vegetation Model is forced with climate perturbations from glacial freshwater experiments with the ECBILT-CLIO ocean-atmosphere-sea ice model. A reorganisation of the marine carbon cycle is not addressed. Modelled NA THC collapses and recovers after about a millennium in response to prescribed freshwater forcing. The initial cooling of several Kelvin over Eurasia causes a reduction of extant boreal and temperate forests and a decrease in carbon storage in high northern latitudes, whereas improved growing conditions and slower soil decomposition rates lead to enhanced storage in mid-latitudes. The magnitude and evolution of global terrestrial carbon storage in response to abrupt THC changes depends sensitively on the initial climate conditions. These were varied using results from time slice simulations with the Hadley Centre model HadSM3 for different periods over the past 21 kyr. Changes in terrestrial storage vary between -67 and +50 PgC for the range of experiments with different initial conditions. Simulated peak-to-peak differences in atmospheric CO{sub 2} are 6 and 13 ppmv for glacial and late Holocene conditions. Simulated changes in {delta}{sup 13}C are between 0.15 and 0.25 permille. These simulated carbon storage anomalies during a NA THC collapse depend on their magnitude on the CO{sub 2} fertilisation feedback mechanism. The CO{sub 2} changes simulated for glacial conditions are compatible with available evidence from marine studies and the ice core CO{sub 2} record. The latter shows multi-millennial CO{sub 2} variations of up to 20 ppmv broadly in parallel with the Antarctic warm events A1 to A4 in the South and cooling in the North. (orig.)

  7. A stratiform cloud parameterization for general circulation models

    International Nuclear Information System (INIS)

    Ghan, S.J.; Leung, L.R.; Chuang, C.C.; Penner, J.E.; McCaa, J.

    1994-01-01

    The crude treatment of clouds in general circulation models (GCMs) is widely recognized as a major limitation in applying these models to predictions of global climate change. The purpose of this project is to develop in GCMs a stratiform cloud parameterization that expresses clouds in terms of bulk microphysical properties and their subgrid variability. Various clouds variables and their interactions are summarized. Precipitating cloud species are distinguished from non-precipitating species, and the liquid phase is distinguished from the ice phase. The size of the non-precipitating cloud particles (which influences both the cloud radiative properties and the conversion of non-precipitating cloud species to precipitating species) is determined by predicting both the mass and number concentrations of each species

  8. Unsteady flow model for circulation-control airfoils

    Science.gov (United States)

    Rao, B. M.

    1979-01-01

    An analysis and a numerical lifting surface method are developed for predicting the unsteady airloads on two-dimensional circulation control airfoils in incompressible flow. The analysis and the computer program are validated by correlating the computed unsteady airloads with test data and also with other theoretical solutions. Additionally, a mathematical model for predicting the bending-torsion flutter of a two-dimensional airfoil (a reference section of a wing or rotor blade) and a computer program using an iterative scheme are developed. The flutter program has a provision for using the CC airfoil airloads program or the Theodorsen hard flap solution to compute the unsteady lift and moment used in the flutter equations. The adopted mathematical model and the iterative scheme are used to perform a flutter analysis of a typical CC rotor blade reference section. The program seems to work well within the basic assumption of the incompressible flow.

  9. General circulation model study of atmospheric carbon monoxide

    International Nuclear Information System (INIS)

    Pinto, J.P.; Yung, Y.L.; Rind, D.; Russell, G.L.; Lerner, J.A.; Hansen, J.E.; Hameed, S.

    1983-01-01

    The carbon monoxide cycle is studied by incorporating the known and hypothetical sources and sinks in a tracer model that uses the winds generated by a general circulation model. Photochemical production and loss terms, which depend on OH radical concentrations, are calculated in an interactive fashion. The computed global distribution and seasonal variations of CO are compared with observations to obtain constraints on the distribution and magnitude of the sources and sinks of CO, and on the tropospheric abundance of OH. The simplest model that accounts for available observations requires a low latitude plant source of about 1.3 x 10 15 g yr -1 , in addition to sources from incomplete combustion of fossil fuels and oxidation of methane. The globally averaged OH concentration calculated in the model is 7 x 10 5 cm -3 . Models that calculate globally averaged OH concentrations much lower than our nominal value are not consistent with the observed variability of CO. Such models are also inconsistent with measurements of CO isotopic abundances, which imply the existence of plant sources

  10. Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations

    Science.gov (United States)

    Miguez-Macho, Gonzalo; Stenchikov, Georgiy L.; Robock, Alan

    2004-07-01

    It is well known that regional climate simulations are sensitive to the size and position of the domain chosen for calculations. Here we study the physical mechanisms of this sensitivity. We conducted simulations with the Regional Atmospheric Modeling System (RAMS) for June 2000 over North America at 50 km horizontal resolution using a 7500 km × 5400 km grid and NCEP/NCAR reanalysis as boundary conditions. The position of the domain was displaced in several directions, always maintaining the U.S. in the interior, out of the buffer zone along the lateral boundaries. Circulation biases developed a large scale structure, organized by the Rocky Mountains, resulting from a systematic shifting of the synoptic wave trains that crossed the domain. The distortion of the large-scale circulation was produced by interaction of the modeled flow with the lateral boundaries of the nested domain and varied when the position of the grid was altered. This changed the large-scale environment among the different simulations and translated into diverse conditions for the development of the mesoscale processes that produce most of precipitation for the Great Plains in the summer season. As a consequence, precipitation results varied, sometimes greatly, among the experiments with the different grid positions. To eliminate the dependence of results on the position of the domain, we used spectral nudging of waves longer than 2500 km above the boundary layer. Moisture was not nudged at any level. This constrained the synoptic scales to follow reanalysis while allowing the model to develop the small-scale dynamics responsible for the rainfall. Nudging of the large scales successfully eliminated the variation of precipitation results when the grid was moved. We suggest that this technique is necessary for all downscaling studies with regional models with domain sizes of a few thousand kilometers and larger embedded in global models.

  11. Study on scaling law of PWR natural circulation with motion condition

    International Nuclear Information System (INIS)

    Lu Donghua; Xiao Zejun; Chen Bingde

    2009-01-01

    For some nuclear reactors installed on automobiles, boats or deep sea vehicles, it is an important way to investigate their system safety by performing natural circulation experiments under motion condition. This paper studied the natural circulation on moving plants based on work of static natural circulation scaling method. With rigid motion theory, acceleration at each point was obtained on primary system and introduced to momentum equation. Thus a set of motion similar criteria were obtained. Furthermore, equal and unequal height simulation were analyzed. As to the unequal one, non isochronous simulation was needed for displacement and angular acceleration. (authors)

  12. Numerical Modeling of Hydrothermal Circulation at the Longqi-1 Field: Southwest Indian Ridge

    Science.gov (United States)

    Guo, Z.; Lowell, R. P.; Tao, C.; Rupke, L.; Lewis, K. C.

    2017-12-01

    The Longqi-1(Dragon Flag) hydrothermal field is the first high-temperature hydrothermal system observed on the ultra-slow spreading Southwest Indian Ridge. Hydrothermal vents with temperatures near 380 °C are localized by detachment faulting within which extensional deformation likely increases permeability to provide preferred pathways for hydrothermal discharge. To better understand the Longqi-1 circulation system, we construct a 2-D numerical simulations in a NaCl- H2O fluid constrained by key observational data, such as vent temperature and heat output, crust structure derived from seismic data, and fault zone geometry deduced from seismicity. Heat output from AUV surveys is estimated to be » 300 ± 100 MW, and this value, in conjunction with vent temperature was used with the single-pass modeling approach to obtain an average permeability of 10-13 m-2 within the fault zone. In analogy with other fault-controlled hydrothermal systems such as Logatchev-1 we assume a lower background permeability of 10-14 m-2. The top boundary of the system is permeable and maintained at constant seafloor pressure, which is divided into two parts by the detachment fault. The pressure of the southern part is lower than the northern part to simulate the effect of the seafloor topography. The top boundary is upstream weighted to allow high temperature fluid to exit, while recharging fluid is maintained at 10°C. The bottom boundary is impermeable and is given a fixed temperature distribution at a depth of 7 km below the seafloor. The highest value Tmax is maintained over a distance given lateral distance and decreases linearly towards two ends to 300 °C. The salinity is set to 3.2 wt. % NaCl, and the simulations are assumed to be single phase. The results show that with a 7 km deep circulation system, Tmax = 550 oC gives a reasonable temperature and heat output of venting plume.We infer that the observed high salinity results from serpentinization reactions. Assuming all salinity

  13. Design base transient analysis using the real-time nuclear reactor simulator model

    International Nuclear Information System (INIS)

    Tien, K.K.; Yakura, S.J.; Morin, J.P.; Gregory, M.V.

    1987-01-01

    A real-time simulation model has been developed to describe the dynamic response of all major systems in a nuclear process reactor. The model consists of a detailed representation of all hydraulic components in the external coolant circulating loops consisting of piping, valves, pumps and heat exchangers. The reactor core is described by a three-dimensional neutron kinetics model with detailed representation of assembly coolant and moderator thermal hydraulics. The models have been developed to support a real-time training simulator, therefore, they reproduce system parameters characteristic of steady state normal operation with high precision. The system responses for postulated severe transients such as large pipe breaks, loss of pumping power, piping leaks, malfunctions in control rod insertion, and emergency injection of neutron absorber are calculated to be in good agreement with reference safety analyses. Restrictions were imposed by the requirement that the resulting code be able to run in real-time with sufficient spare time to allow interfacing with secondary systems and simulator hardware. Due to hardware set-up and real plant instrumentation, simplifications due to symmetry were not allowed. The resulting code represents a coarse-node engineering model in which the level of detail has been tailored to the available computing power of a present generation super-minicomputer. Results for several significant transients, as calculated by the real-time model, are compared both to actual plant data and to results generated by fine-mesh analysis codes

  14. Design base transient analysis using the real-time nuclear reactor simulator model

    International Nuclear Information System (INIS)

    Tien, K.K.; Yakura, S.J.; Morin, J.P.; Gregory, M.V.

    1987-01-01

    A real-time simulation model has been developed to describe the dynamic response of all major systems in a nuclear process reactor. The model consists of a detailed representation of all hydraulic components in the external coolant circulating loops consisting of piping, valves, pumps and heat exchangers. The reactor core is described by a three-dimensional neutron kinetics model with detailed representation of assembly coolant and mode-rator thermal hydraulics. The models have been developed to support a real-time training simulator, therefore, they reproduce system parameters characteristic of steady state normal operation with high precision. The system responses for postulated severe transients such as large pipe breaks, loss of pumping power, piping leaks, malfunctions in control rod insertion, and emergency injection of neutron absorber are calculated to be in good agreement with reference safety analyses. Restrictions were imposed by the requirement that the resulting code be able to run in real-time with sufficient spare time to allow interfacing with secondary systems and simulator hardware. Due to hardware set-up and real plant instrumentation, simplifications due to symmetry were not allowed. The resulting code represents a coarse-node engineering model in which the level of detail has been tailored to the available computing power of a present generation super-minicomputer. Results for several significant transients, as calculated by the real-time model, are compared both to actual plant data and to results generated by fine-mesh analysis codes

  15. Ability of the CCSR-NIES atmospheric general circulation model in the stratosphere. Chapter 3

    International Nuclear Information System (INIS)

    Sugata, S.

    1997-01-01

    A quantitative evaluation of climate change such as global warming is impossible without a high-quality numerical model which describes the dynamics of the climate system and the circulation of energy and materials. The Center for Climate Research - National Institute for Environmental Studies (CCSR-NIES) atmospheric general circulation model (hereafter, GCM for a general circulation model) has been developed to obtain such a high-quality model. The emphasis of the development has been laid on the troposphere and the lower stratosphere below about 30 km altitude. This is natural because human beings live on the Earth's surface and the condition of the lower atmosphere directly affects human life. However, the stratosphere and the upper atmosphere beyond it have recently been the focus even in investigations of climate change, because they are relevant to many issues which relate closely to tropospheric climate change, such as the ozone hole, material exchange between the stratosphere and the troposphere, and physical interaction between the stratosphere and troposphere. This study extended the region of the CCSR-NIES GCM to the lower mesosphere (about 70 km from the surface). This is our first attempt to investigate this GCM's climatology in the upper atmosphere, although some studies for QBO in the middle and lower stratosphere had been done with the GCM

  16. Evaluation of cloud-resolving model simulations of midlatitude cirrus with ARM and A-train observations

    Science.gov (United States)

    Muhlbauer, A.; Ackerman, T. P.; Lawson, R. P.; Xie, S.; Zhang, Y.

    2015-07-01

    Cirrus clouds are ubiquitous in the upper troposphere and still constitute one of the largest uncertainties in climate predictions. This paper evaluates cloud-resolving model (CRM) and cloud system-resolving model (CSRM) simulations of a midlatitude cirrus case with comprehensive observations collected under the auspices of the Atmospheric Radiation Measurements (ARM) program and with spaceborne observations from the National Aeronautics and Space Administration A-train satellites. The CRM simulations are driven with periodic boundary conditions and ARM forcing data, whereas the CSRM simulations are driven by the ERA-Interim product. Vertical profiles of temperature, relative humidity, and wind speeds are reasonably well simulated by the CSRM and CRM, but there are remaining biases in the temperature, wind speeds, and relative humidity, which can be mitigated through nudging the model simulations toward the observed radiosonde profiles. Simulated vertical velocities are underestimated in all simulations except in the CRM simulations with grid spacings of 500 m or finer, which suggests that turbulent vertical air motions in cirrus clouds need to be parameterized in general circulation models and in CSRM simulations with horizontal grid spacings on the order of 1 km. The simulated ice water content and ice number concentrations agree with the observations in the CSRM but are underestimated in the CRM simulations. The underestimation of ice number concentrations is consistent with the overestimation of radar reflectivity in the CRM simulations and suggests that the model produces too many large ice particles especially toward the cloud base. Simulated cloud profiles are rather insensitive to perturbations in the initial conditions or the dimensionality of the model domain, but the treatment of the forcing data has a considerable effect on the outcome of the model simulations. Despite considerable progress in observations and microphysical parameterizations, simulating

  17. Development and verification of a space-dependent dynamic model of a natural circulation steam generator

    International Nuclear Information System (INIS)

    Mewdell, C.G.; Harrison, W.C.; Hawley, E.H.

    1980-01-01

    This paper describes the development and verification of a Non-Linear Space-Dependent Dynamic Model of a Natural Circulation Steam Generator typical of boilers used in CANDU nuclear power stations. The model contains a detailed one-dimensional dynamic description of both the primary and secondary sides of an integral pre-heater natural circulation boiler. Two-phase flow effects on the primary side are included. The secondary side uses a drift-flux model in the boiling sections and a detailed non-equilibrium point model for the steam drum. The paper presents the essential features of the final model called BOILER-2, its solution scheme, the RD-12 loop and test boiler, the boiler steady-state and transient experiments, and the comparison of the model predictions with experimental results. (author)

  18. Exploring the sensitivity of global ocean circulation to future ice loss from Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Condron, Alan [Univ. of Massachusetts, Amherst, MA (United States); Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA (United States)

    2017-09-30

    The sensitivity of the global ocean circulation and climate to large increases in iceberg calving and meltwater discharges from the Antarctic Ice Sheet (AIS) are rarely studied and poorly understood. The requirement to investigate this topic is heightened by growing evidence that the West Antarctic Ice Sheet (WAIS) is vulnerable to rapid retreat and collapse on multidecadal-to-centennial timescales. Observations collected over the last 30 years indicate that the WAIS is now losing mass at an accelerated and that a collapse may have already begun in the Amundsen Sea sector. In addition, some recent future model simulations of the AIS show the potential for rapid ice sheet retreat in the next 50 – 300 years. Such a collapse would be associated with the discharge of enormous volumes of ice and meltwater to the Southern Ocean. This project funds PI Condron to begin assessing the sensitivity of the global ocean circulation to projected increases in meltwater discharge and iceberg calving from the AIS for the next 50 – 100 years. A series of climate model simulations will determine changes in ocean circulation and temperature at the ice sheet grounding line, the role of mesoscale ocean eddies in mixing and transporting freshwater away from the continent to deep water formation regions, and the likely impact on the northward transport of heat to Europe and North America.

  19. Influence of inter-annual variations of stratospheric dynamics in model simulations of ozone losses by aircraft emissions

    Energy Technology Data Exchange (ETDEWEB)

    Jadin, E.A. [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1997-12-31

    The questions of model predictions of aircraft emission impacts on the ozone variations are considered. Using the NMC data it is shown that the stratospheric circulation underwent the abrupt transition to a new regime in summer 1980. The strong correlations are found between the monthly mean total ozone and stratospheric angular momentum anomalies during 1979-1991. The natural long-term changes of transport processes are necessary to take into account in model simulations of anthropogenic impacts on the ozone layer. (author) 12 refs.

  20. Influence of inter-annual variations of stratospheric dynamics in model simulations of ozone losses by aircraft emissions

    Energy Technology Data Exchange (ETDEWEB)

    Jadin, E A [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1998-12-31

    The questions of model predictions of aircraft emission impacts on the ozone variations are considered. Using the NMC data it is shown that the stratospheric circulation underwent the abrupt transition to a new regime in summer 1980. The strong correlations are found between the monthly mean total ozone and stratospheric angular momentum anomalies during 1979-1991. The natural long-term changes of transport processes are necessary to take into account in model simulations of anthropogenic impacts on the ozone layer. (author) 12 refs.

  1. The Influence of Ice-Ocean Interactions on Europa's Overturning Circulation

    Science.gov (United States)

    Zhu, P.; Manucharyan, G. E.; Thompson, A. F.; Goodman, J. C.; Vance, S.

    2016-12-01

    Jupiter's moon Europa appears to have a global liquid ocean, which is located beneath an ice shell that covers the moon's entire surface. Linking ocean dynamics and ice-ocean interactions is crucial to understanding observed surface features on Europa as well as other satellite measurements. Ocean properties and circulation may also provide clues as to whether the moon has the potential to support extraterrestrial life through chemical transport governed by ice-ocean interactions. Previous studies have identified a Hadley cell-like overturning circulation extending from the equator to mid latitudes. However, these model simulations do not consider ice-ocean interactions. In this study, our goal is to investigate how the ocean circulation may be affected by ice. We study two ice-related processes by building idealized models. One process is horizontal convection driven by an equator-to-pole buoyancy difference due to latitudinal ice transport at the ocean surface, which is found to be much weaker than the convective overturning circulation. The second process we consider is the freshwater layer formed by ice melting at the equator. A strong buoyancy contrast between the freshwater layer and the underlying water suppresses convection and turbulent mixing, which may modify the surface heat flux from the ocean to the bottom of the ice. We find that the salinity of the ocean below the freshwater layer tends to be homogeneous both vertically and horizontally with the presence of an overturning circulation. Critical values of circulation strength constrain the freshwater layer depth, and this relationship is sensitive to the average salinity of the ocean. Further coupling of temperature and salinity of the ice and the ocean that includes mutual influences between the surface heat flux and the freshwater layer may provide additional insights into the ice-ocean feedback, and its influence on the latitudinal difference of heat transport.

  2. Climate forcings and climate sensitivities diagnosed from atmospheric global circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce T. [Boston University, Department of Geography and Environment, Boston, MA (United States); Knight, Jeff R.; Ringer, Mark A. [Met Office Hadley Centre, Exeter (United Kingdom); Deser, Clara; Phillips, Adam S. [National Center for Atmospheric Research, Boulder, CO (United States); Yoon, Jin-Ho [University of Maryland, Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, College Park, MD (United States); Cherchi, Annalisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2010-12-15

    Understanding the historical and future response of the global climate system to anthropogenic emissions of radiatively active atmospheric constituents has become a timely and compelling concern. At present, however, there are uncertainties in: the total radiative forcing associated with changes in the chemical composition of the atmosphere; the effective forcing applied to the climate system resulting from a (temporary) reduction via ocean-heat uptake; and the strength of the climate feedbacks that subsequently modify this forcing. Here a set of analyses derived from atmospheric general circulation model simulations are used to estimate the effective and total radiative forcing of the observed climate system due to anthropogenic emissions over the last 50 years of the twentieth century. They are also used to estimate the sensitivity of the observed climate system to these emissions, as well as the expected change in global surface temperatures once the climate system returns to radiative equilibrium. Results indicate that estimates of the effective radiative forcing and total radiative forcing associated with historical anthropogenic emissions differ across models. In addition estimates of the historical sensitivity of the climate to these emissions differ across models. However, results suggest that the variations in climate sensitivity and total climate forcing are not independent, and that the two vary inversely with respect to one another. As such, expected equilibrium temperature changes, which are given by the product of the total radiative forcing and the climate sensitivity, are relatively constant between models, particularly in comparison to results in which the total radiative forcing is assumed constant. Implications of these results for projected future climate forcings and subsequent responses are also discussed. (orig.)

  3. Application of Improved Radiation Modeling to General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  4. Future changes in the climatology of the Great Plains low-level jet derived from fine resolution multi-model simulations.

    Science.gov (United States)

    Tang, Ying; Winkler, Julie; Zhong, Shiyuan; Bian, Xindi; Doubler, Dana; Yu, Lejiang; Walters, Claudia

    2017-07-10

    The southerly Great Plains low-level jet (GPLLJ) is one of the most significant circulation features of the central U.S. linking large-scale atmospheric circulation with the regional climate. GPLLJs transport heat and moisture, contribute to thunderstorm and severe weather formation, provide a corridor for the springtime migration of birds and insects, enhance wind energy availability, and disperse air pollution. We assess future changes in GPLLJ frequency using an eight member ensemble of dynamically-downscaled climate simulations for the mid-21st century. Nocturnal GPLLJ frequency is projected to increase in the southern plains in spring and in the central plains in summer, whereas current climatological patterns persist into the future for daytime and cool season GPLLJs. The relationship between future GPLLJ frequency and the extent and strength of anticyclonic airflow over eastern North America varies with season. Most simulations project a westward shift of anticyclonic airflow in summer, but uncertainty is larger for spring with only half of the simulations suggesting a westward expansion. The choice of regional climate model and the driving lateral boundary conditions have a large influence on the projected future changes in GPLLJ frequency and highlight the importance of multi-model ensembles to estimate the uncertainty surrounding the future GPLLJ climatology.

  5. Modelling surface radioactive spill dispersion in the Alboran Sea

    International Nuclear Information System (INIS)

    Perianez, R.

    2006-01-01

    The Strait of Gibraltar and the Alboran Sea are the only connection between the Atlantic Ocean and the Mediterranean Sea. Intense shipping activities occur in the area, including transport of waste radionuclides and transit of nuclear submarines. Thus, it is relevant to have a dispersion model that can be used in an emergency situation after an accident, to help the decision-making process. Such dispersion model requires an appropriate description of the physical oceanography of the region of interest, with simulations of tides and residual (average) circulation. In this work, a particle-tracking dispersion model that can be used to simulate the dispersion of radionuclides in the system Strait of Gibraltar-Alboran Sea is described. Tides are simulated using a barotropic model and for the average circulation a reduced-gravity model is applied. This model is able to reproduce the main features of the Alboran circulation (the well known Western Alboran Gyre, WAG, and the coastal circulation mode). The dispersion model is run off-line, using previously computed tidal and residual currents. The contamination patch is simulated by a number of particles whose individual paths are computed; diffusion and decay being modelled using a Monte Carlo method. Radionuclide concentrations may be obtained from the density of particles per water volume unit. Results from the hydrodynamic models have been compared with observations in the area. Several examples of dispersion computations under different wind and circulation conditions are presented

  6. Study on thermalhydraulics of natural circulation decay heat removal in FBR. Experiment with water of typical reactor trip in the demonstration FBR

    International Nuclear Information System (INIS)

    Koga, Tomonari; Murakami, Takahiro; Eguchi, Yuzuru

    2010-01-01

    Intending to enhance safety and to reduce costs, an FBR plant is being developed in Japan. In relies solely on natural circulation of the primary cooling loop to remove a decay heat of the core after reactor trips. A water test was carried out to advance the development. The test used a 1/10 reduced scale model simulating the core and cooling systems. The experiments simulated representative accidents from steady state to decay heat removal through reactor trip and clarified thermal-hydraulic issues on the thermal circulation performance. Some modifications of the system design were proposed for solving serious problems of natural circulation. An improved design complying with the suggestions will make it possible for natural circulation of the cooling systems to remove the decay heat of the core without causing and unstable or unpredictable change. (author)

  7. Evaluation of a present-day climate simulation with a new coupled atmosphere-ocean model GENMOM

    Directory of Open Access Journals (Sweden)

    J. R. Alder

    2011-02-01

    Full Text Available We present a new, non-flux corrected AOGCM, GENMOM, that combines the GENESIS version 3 atmospheric GCM (Global Environmental and Ecological Simulation of Interactive Systems and MOM2 (Modular Ocean Model version 2 nominally at T31 resolution. We evaluate GENMOM by comparison with reanalysis products (e.g., NCEP2 and three models used in the IPCC AR4 assessment. GENMOM produces a global temperature bias of 0.6 °C. Atmospheric features such as the jet stream structure and major semi-permanent sea level pressure centers are well simulated as is the mean planetary-scale wind structure that is needed to produce the correct position of stormtracks. Most ocean surface currents are reproduced except where they are not resolvable at T31 resolution. Overall, GENMOM captures reasonably well the observed gradients and spatial distributions of annual surface temperature and precipitation and the simulations are on par with other AOGCMs. Deficiencies in the GENMOM simulations include a warm bias in the surface temperature over the southern oceans, a split in the ITCZ and weaker-than-observed overturning circulation.

  8. The Aqua-Planet Experiment (APE): CONTROL SST Simulation

    Science.gov (United States)

    Blackburn, Michael; Williamson, David L.; Nakajima, Kensuke; Ohfuchi, Wataru; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki; Nakamura, Hisashi; Ishiwatari, Masaki; Mcgregor, John L.; Borth, Hartmut; hide

    2013-01-01

    Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface temperature varying only in latitude. The idealised configuration is designed to expose differences in the circulation simulated by different models. Basic features of the aqua-planet climate are characterised by comparison with Earth. The models display a wide range of behaviour. The balanced component of the tropospheric mean flow, and mid-latitude eddy covariances subject to budget constraints, vary relatively little among the models. In contrast, differences in damping in the dynamical core strongly influence transient eddy amplitudes. Historical uncertainty in modelled lower stratospheric temperatures persists in APE.Aspects of the circulation generated more directly by interactions between the resolved fluid dynamics and parameterized moist processes vary greatly. The tropical Hadley circulation forms either a single or double inter-tropical convergence zone (ITCZ) at the equator, with large variations in mean precipitation. The equatorial wave spectrum shows a wide range of precipitation intensity and propagation characteristics. Kelvin mode-like eastward propagation with remarkably constant phase speed dominates in most models. Westward propagation, less dispersive than the equatorial Rossby modes, dominates in a few models or occurs within an eastward propagating envelope in others. The mean structure of the ITCZ is related to precipitation variability, consistent with previous studies.The aqua-planet global energy balance is unknown but the models produce a surprisingly large range of top of atmosphere global net flux, dominated by differences in shortwave reflection by clouds. A number of newly developed models, not optimised for Earth climate, contribute to this. Possible reasons for differences in the optimised models are discussed.The aqua-planet configuration is intended as one component of an

  9. Albedo and heat transport in 3-D model simulations of the early Archean climate

    Directory of Open Access Journals (Sweden)

    H. Kienert

    2013-08-01

    Full Text Available At the beginning of the Archean eon (ca. 3.8 billion years ago, the Earth's climate state was significantly different from today due to the lower solar luminosity, smaller continental fraction, higher rotation rate and, presumably, significantly larger greenhouse gas concentrations. All these aspects play a role in solutions to the "faint young Sun paradox" which must explain why the ocean surface was not fully frozen at that time. Here, we present 3-D model simulations of climate states that are consistent with early Archean boundary conditions and have different CO2 concentrations, aiming at an understanding of the fundamental characteristics of the early Archean climate system. In order to do so, we have appropriately modified an intermediate complexity climate model that couples a statistical-dynamical atmosphere model (involving parameterizations of the dynamics to an ocean general circulation model and a thermodynamic-dynamic sea-ice model. We focus on three states: one of them is ice-free, one has the same mean surface air temperature of 288 K as today's Earth and the third one is the coldest stable state in which there is still an area with liquid surface water (i.e. the critical state at the transition to a "snowball Earth". We find a reduction in meridional heat transport compared to today, which leads to a steeper latitudinal temperature profile and has atmospheric as well as oceanic contributions. Ocean surface velocities are largely zonal, and the strength of the atmospheric meridional circulation is significantly reduced in all three states. These aspects contribute to the observed relation between global mean temperature and albedo, which we suggest as a parameterization of the ice-albedo feedback for 1-D model simulations of the early Archean and thus the faint young Sun problem.

  10. The influence of atmospheric grid resolution in a climate model-forced ice sheet simulation

    Science.gov (United States)

    Lofverstrom, Marcus; Liakka, Johan

    2018-04-01

    Coupled climate-ice sheet simulations have been growing in popularity in recent years. Experiments of this type are however challenging as ice sheets evolve over multi-millennial timescales, which is beyond the practical integration limit of most Earth system models. A common method to increase model throughput is to trade resolution for computational efficiency (compromise accuracy for speed). Here we analyze how the resolution of an atmospheric general circulation model (AGCM) influences the simulation quality in a stand-alone ice sheet model. Four identical AGCM simulations of the Last Glacial Maximum (LGM) were run at different horizontal resolutions: T85 (1.4°), T42 (2.8°), T31 (3.8°), and T21 (5.6°). These simulations were subsequently used as forcing of an ice sheet model. While the T85 climate forcing reproduces the LGM ice sheets to a high accuracy, the intermediate resolution cases (T42 and T31) fail to build the Eurasian ice sheet. The T21 case fails in both Eurasia and North America. Sensitivity experiments using different surface mass balance parameterizations improve the simulations of the Eurasian ice sheet in the T42 case, but the compromise is a substantial ice buildup in Siberia. The T31 and T21 cases do not improve in the same way in Eurasia, though the latter simulates the continent-wide Laurentide ice sheet in North America. The difficulty to reproduce the LGM ice sheets in the T21 case is in broad agreement with previous studies using low-resolution atmospheric models, and is caused by a substantial deterioration of the model climate between the T31 and T21 resolutions. It is speculated that this deficiency may demonstrate a fundamental problem with using low-resolution atmospheric models in these types of experiments.

  11. The impact of resolution on the adjustment and decadal variability of the Atlantic meridional overturning circulation in a coupled climate model

    Energy Technology Data Exchange (ETDEWEB)

    Hodson, Daniel L.R.; Sutton, Rowan T. [University of Reading, NCAS-Climate, Department of Meteorology, Earley Gate, PO Box 243, Reading (United Kingdom)

    2012-12-15

    Variations in the Atlantic meridional overturning circulation (MOC) exert an important influence on climate, particularly on decadal time scales. Simulation of the MOC in coupled climate models is compromised, to a degree that is unknown, by their lack of fidelity in resolving some of the key processes involved. There is an overarching need to increase the resolution and fidelity of climate models, but also to assess how increases in resolution influence the simulation of key phenomena such as the MOC. In this study we investigate the impact of significantly increasing the (ocean and atmosphere) resolution of a coupled climate model on the simulation of MOC variability by comparing high and low resolution versions of the same model. In both versions, decadal variability of the MOC is closely linked to density anomalies that propagate from the Labrador Sea southward along the deep western boundary. We demonstrate that the MOC adjustment proceeds more rapidly in the higher resolution model due the increased speed of western boundary waves. However, the response of the Atlantic sea surface temperatures to MOC variations is relatively robust - in pattern if not in magnitude - across the two resolutions. The MOC also excites a coupled ocean-atmosphere response in the tropical Atlantic in both model versions. In the higher resolution model, but not the lower resolution model, there is evidence of a significant response in the extratropical atmosphere over the North Atlantic 6 years after a maximum in the MOC. In both models there is evidence of a weak negative feedback on deep density anomalies in the Labrador Sea, and hence on the MOC (with a time scale of approximately ten years). Our results highlight the need for further work to understand the decadal variability of the MOC and its simulation in climate models. (orig.)

  12. An evaluation of WRF's ability to reproduce the surface wind over complex terrain based on typical circulation patterns.

    NARCIS (Netherlands)

    Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Montávez, J.P.; Garcia-Bustamante, E.; Navarro, J.; Vilà-Guerau de Arellano, J.; Munoz-Roldán, A.

    2013-01-01

    [1] The performance of the Weather Research and Forecasting (WRF) model to reproduce the surface wind circulations over complex terrain is examined. The atmospheric evolution is simulated using two versions of the WRF model during an over 13¿year period (1992 to 2005) over a complex terrain region

  13. Status of the IAEA coordinated research project on natural circulation phenomena, modelling, and reliability of passive systems that utilize natural circulation

    International Nuclear Information System (INIS)

    Reyes, J.N. Jr.; Cleveland, J.; Aksan, N.

    2004-01-01

    The International Atomic Energy Agency (IAEA) has established a Coordinated Research Project (CRP) titled ''Natural Circulation Phenomena, Modelling and Reliability of Passive Safety Systems that Utilize Natural Circulation. '' This work has been organized within the framework of the IAEA Department of Nuclear Energy's Technical Working Groups for Advanced Technologies for Light Water Reactors and Heavy Water Reactors (the TWG-LWR and the TWG-HWR). This CRP is part of IAEA's effort to foster international collaborations that strive to improve the economic performance of future water-cooled nuclear power plants while meeting stringent safety requirements. Thus far, IAEA has established 12 research agreements with organizations from industrialized Member States and 3 research contracts with organizations from developing Member States. The objective of the CRP is to enhance our understanding of natural circulation phenomena in water-cooled reactors and passive safety systems. The CRP participants are particularly interested in establishing a natural circulation and passive safety system thermal hydraulic database that can be used to benchmark computer codes for advanced reactor systems design and safety analysis. An important aspect of this CRP relates to developing methodologies to assess the reliability of passive safety systems in advanced reactor designs. This paper describes the motivation and objectives of the CRP, the research plan, and the role of each of the participating organizations. (author)

  14. Dynamics of the water circulations in the southern South China Sea and its seasonal transports

    DEFF Research Database (Denmark)

    Daryabor, Farshid; Ooi, See Hai Ooi; Samah, Azizan Abu

    2016-01-01

    -analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast......A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re...... of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic...

  15. Exploring the Impact of Students' Learning Approach on Collaborative Group Modeling of Blood Circulation

    Science.gov (United States)

    Lee, Shinyoung; Kang, Eunhee; Kim, Heui-Baik

    2015-01-01

    This study aimed to explore the effect on group dynamics of statements associated with deep learning approaches (DLA) and their contribution to cognitive collaboration and model development during group modeling of blood circulation. A group was selected for an in-depth analysis of collaborative group modeling. This group constructed a model in a…

  16. Validation, Optimization and Simulation of a Solar Thermoelectric Generator Model

    Science.gov (United States)

    Madkhali, Hadi Ali; Hamil, Ali; Lee, HoSung

    2017-12-01

    This study explores thermoelectrics as a viable option for small-scale solar thermal applications. Thermoelectric technology is based on the Seebeck effect, which states that a voltage is induced when a temperature gradient is applied to the junctions of two differing materials. This research proposes to analyze, validate, simulate, and optimize a prototype solar thermoelectric generator (STEG) model in order to increase efficiency. The intent is to further develop STEGs as a viable and productive energy source that limits pollution and reduces the cost of energy production. An empirical study (Kraemer et al. in Nat Mater 10:532, 2011) on the solar thermoelectric generator reported a high efficiency performance of 4.6%. The system had a vacuum glass enclosure, a flat panel (absorber), thermoelectric generator and water circulation for the cold side. The theoretical and numerical approach of this current study validated the experimental results from Kraemer's study to a high degree. The numerical simulation process utilizes a two-stage approach in ANSYS software for Fluent and Thermal-Electric Systems. The solar load model technique uses solar radiation under AM 1.5G conditions in Fluent. This analytical model applies Dr. Ho Sung Lee's theory of optimal design to improve the performance of the STEG system by using dimensionless parameters. Applying this theory, using two cover glasses and radiation shields, the STEG model can achieve a highest efficiency of 7%.

  17. CISOCUR - Hydrodynamic circulation in the Curonian Lagoon inferred through stable isotope measurements and numerical modelling

    Science.gov (United States)

    Umgiesser, Georg; Razinkovas-Baziukas, Arturas; Barisevičiūtė, Ruta; Baziukė, Dalia; Ertürk, Ali; Gasiūnaitė, Jovita; Gulbinskas, Saulius; Lubienė, Irma; Maračkinaite, Jurgita; Petkuvienė, Jolita; Pilkaitytė, Renata; Ruginis, Tomas; Zemlys, Petras; Žilius, Mindaugas

    2013-04-01

    The spatial pattern of the hydrodynamic circulation of the Curonian lagoon, the largest European coastal lagoon, is still little understood. In absence of automatic current registration data all the existing models relied mostly on such data as water levels leaving high level of uncertainty. Here we present CISOCUR, a new project financed by the European Social Fund under the Global Grant measure. The project applies a new methodology that uses the carbon stable isotope (SI) ratio of C12 and C13 that characterize different water sources entering the lagoon and may be altered by internal kinetic processes. Through the tracing of these isotope ratios different water masses can be identified. This gives the possibility to validate several hypotheses of water circulation and validate hydrodynamic models. In particular it will be possible to 1) trace water masses entering the lagoon through the Nemunas and the Klaipeda strait; 2) test the hypothesis of sediment transport mechanisms inside the lagoon; 3) evaluate the importance of physical forcing on the lagoon circulation. The use of a hydrodynamic finite element model, coupled with the SI method, will allow for a realistic description of the transport processes inside the Curonian lagoon. So the main research goal is to apply the stable isotope tracers and a finite element model to determine the circulation patterns in the Curonian lagoon. Overall, the project will develop according to 4 main phases: 1) A pilot study to measure the isotope composition of different carbon compounds (dissolved and suspended) in different water bodies that feed water into the central lagoon. Through this pilot study the optimal study sites for the seasonal campaign will be identified as well. 2) Seasonal field campaigns in the monitoring stations identified in phase 1 to measure the carbon isotope ratio. 3) Development of a model that describes the kinetics of carbon isotopes and its transformation. 4) Application of a hydrodynamic model

  18. The annual cycle of stratospheric water vapor in a general circulation model

    Science.gov (United States)

    Mote, Philip W.

    1995-01-01

    The application of general circulation models (GCM's) to stratospheric chemistry and transport both permits and requires a thorough investigation of stratospheric water vapor. The National Center for Atmospheric Research has redesigned its GCM, the Community Climate Model (CCM2), to enable studies of the chemistry and transport of tracers including water vapor; the importance of water vapor to the climate and chemistry of the stratosphere requires that it be better understood in the atmosphere and well represented in the model. In this study, methane is carried as a tracer and converted to water; this simple chemistry provides an adequate representation of the upper stratospheric water vapor source. The cold temperature bias in the winter polar stratosphere, which the CCM2 shares with other GCM's, produces excessive dehydration in the southern hemisphere, but this dry bias can be ameliorated by setting a minimum vapor pressure. The CCM2's water vapor distribution and seasonality compare favorably with observations in many respects, though seasonal variations including the upper stratospheric semiannual oscillation are generally too small. Southern polar dehydration affects midlatitude water vapor mixing ratios by a few tenths of a part per million, mostly after the demise of the vortex. The annual cycle of water vapor in the tropical and northern midlatitude lower stratosphere is dominated by drying at the tropical tropopause. Water vapor has a longer adjustment time than methane and had not reached equilibrium at the end of the 9 years simulated here.

  19. A regional model simulation of the 1991 severe precipitation event over the Yangtze-Huai River Valley. Part 2: Model bias

    Energy Technology Data Exchange (ETDEWEB)

    Gong, W.; Wang, W.C.

    2000-01-01

    This is the second part of a study investigating the 1991 severe precipitation event over the Uangtze-Huai River valley (YHRV) in China using both observations and regional model simulations. While Part 1 reported on the Mei-yu front and its association with large-scale circulation, this study documents the biases associated with the treatment of the lateral boundary in the regional model. Two aspects of the biases were studied: the driving field, which provides large-scale boundary forcing, and the coupling scheme, which specified how the forcing is adopted by the model. The former bias is defined as model uncertainty because it is not related to the model itself, while the latter bias (as well as those biases attributed to other sources) is referred to as model error. These two aspects were examined by analyzing the regional model simulations of the 1991 summer severe precipitation event over YHRV using different driving fields (ECMWF-TOGA objective analysis, ECMWF reanalysis, and NCEP-NCAR reanalysis) and coupling scheme (distribution function of the nudging coefficient and width of the buffer zone). Spectral analysis was also used to study the frequency distribution of the bias.

  20. The global marine phosphorus cycle: sensitivity to oceanic circulation

    Directory of Open Access Journals (Sweden)

    C. P. Slomp

    2007-01-01

    Full Text Available A new mass balance model for the coupled marine cycles of phosphorus (P and carbon (C is used to examine the relationships between oceanic circulation, primary productivity, and sedimentary burial of reactive P and particulate organic C (POC, on geological time scales. The model explicitly represents the exchanges of water and particulate matter between the continental shelves and the open ocean, and it accounts for the redox-dependent burial of POC and the various forms of reactive P (iron(III-bound P, particulate organic P (POP, authigenic calcium phosphate, and fish debris. Steady state and transient simulations indicate that a slowing down of global ocean circulation decreases primary production in the open ocean, but increases that in the coastal ocean. The latter is due to increased transfer of soluble P from deep ocean water to the shelves, where it fuels primary production and causes increased reactive P burial. While authigenic calcium phosphate accounts for most reactive P burial ocean-wide, enhanced preservation of fish debris may become an important reactive P sink in deep-sea sediments during periods of ocean anoxia. Slower ocean circulation globally increases POC burial, because of enhanced POC preservation under anoxia in deep-sea depositional environments and higher primary productivity along the continental margins. In accordance with geological evidence, the model predicts increased accumulation of reactive P on the continental shelves during and following periods of ocean anoxia.

  1. Natural circulation in water cooled nuclear power plants: Phenomena, models, and methodology for system reliability assessments

    International Nuclear Information System (INIS)

    2005-11-01

    In recent years it has been recognized that the application of passive safety systems (i.e. those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. Further, the IAEA Conference on The Safety of Nuclear Power: Strategy for the Future which was convened in 1991 noted that for new plants 'the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate'. Considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to assure that the systems perform their intended functions. To support the development of advanced water cooled reactor designs with passive systems, investigations of natural circulation are an ongoing activity in several IAEA Member States. Some new designs also utilize natural circulation as a means to remove core power during normal operation. In response to the motivating factors discussed above, and to foster international collaboration on the enabling technology of passive systems that utilize natural circulation, an IAEA Coordinated Research Project (CRP) on Natural Circulation Phenomena, Modelling and Reliability of Passive Systems that Utilize Natural Circulation was started in early 2004. Building on the shared expertise within the CRP, this publication presents extensive information on natural circulation phenomena, models, predictive tools and experiments that currently support design and analyses of natural circulation systems and highlights areas where additional research is needed. Therefore, this publication serves both to provide a description of the present state of knowledge on natural circulation in water cooled nuclear power plants and to guide the planning and conduct of the CRP in

  2. Computer modelling of anterior circulation stroke: Proof of concept in Cerebrovascular Occlusion

    Directory of Open Access Journals (Sweden)

    THANH G PHAN

    2014-09-01

    Full Text Available Background: Current literature emphasizes the role of the Circle of Willis (CoW in salvaging ischemic brain tissue but not that of leptomeningeal anastomoses (LA. We developed a computational model of the cerebral circulation to 1 evaluate the roles of the CoW and LA in restoring flow to the superficial compartment of the middle cerebral artery territory and 2 estimate the size of the LA required to maintain flow above the critical ischemic threshold (>30% of baseline under simulated occlusion. Methods: Cerebral vasculature was modelled as a network of junctions connected by cylindrical pipes. The experiments included occlusion of successive distal branches of the intracranial arteries while the diameters of LA were varied. Results: The model showed that the region of reduced flow became progressively smaller as the site of occlusion was moved from the large proximal to the smaller distal arteries. There was no improvement in flow in the MCA territory when the diameters of the inter-territorial LA were varied from 0.0625 mm to 0.5 mm while keeping the intra-territorial LA constant. By contrast, the diameter of the inter-territorial LA needed to be greater than 1.0 mm in order to provide adequate (>30% flow to selected arteries in the occluded MCA territory. Conclusions: The CoW and inter-territorial LA together play important supportive roles in intracranial artery occlusion. Computational modelling provides the ability to experimentally investigate the effect of arterial occlusion on CoW and LA function.

  3. A regional ocean circulation model for the mid-Cretaceous North Atlantic Basin: implications for black shale formation

    Directory of Open Access Journals (Sweden)

    R. P. M. Topper

    2011-03-01

    Full Text Available High concentrations of organic matter accumulated in marine sediments during Oceanic Anoxic Events (OAEs in the Cretaceous. Model studies examining these events invariably make use of global ocean circulation models. In this study, a regional model for the North Atlantic Basin during OAE2 at the Cenomanian-Turonian boundary has been developed. A first order check of the results has been performed by comparison with the results of a recent global Cenomanian CCSM3 run, from which boundary and initial conditions were obtained. The regional model is able to maintain tracer patterns and to produce velocity patterns similar to the global model. The sensitivity of the basin tracer and circulation patterns to changes in the geometry of the connections with the global ocean is examined with three experiments with different bathymetries near the sponges. Different geometries turn out to have little effect on tracer distribution, but do affect circulation and upwelling patterns. The regional model is also used to test the hypothesis that ocean circulation may have been behind the deposition of black shales during OAEs. Three scenarios are tested which are thought to represent pre-OAE, OAE and post-OAE situations. Model results confirm that Pacific intermediate inflow together with coastal upwelling could have enhanced primary production during OAE2. A low sea level in the pre-OAE scenario could have inhibited large scale black shale formation, as could have the opening of the Equatorial Atlantic Seaway in the post-OAE scenario.

  4. The medium precipitation in Colombia by the light of the observations, the climatic simulation and the tropical medium circulation

    International Nuclear Information System (INIS)

    Montoya Gaviria, Gerardo de Jesus; Eslava R, Jesus Antonio; Pabon Caicedo, Jose Daniel

    2001-01-01

    An analysis of the physical mechanisms governing the annual precipitation cycle formation over the Colombian territory is made. This analysis is carried out using climate simulations, means Reanalysis values and is supported by the existing theory about the mean tropical circulation. Some results are: Judging by the wind discontinuity; the Inter tropical Convergence Zone (ITCZ) is fractionated over the South American Continent and remains all the year in the northern hemisphere in both oceans: Pacific and Atlantic. The low pressure system which forms in middle latitudes over the South American Continent during the Austral summer, deep penetrates onto tropical latitudes where, probably merges with the equatorial low of this season. There is a strong influence of the north eastern trades over the north eastern region of South America specially from December to February. As these winds enter onto the South American Continent, they associate with a current, does not yet mentioned in the existing literature, witch bounds the eastern side of the Andes and deep penetrates until middle latitudes in South America during this season. It is confirmed by the Reanalysis that seasonal migration of the ITCZ over Colombia may be used to explain the annual cycle precipitation formation over the most Colombia Territory. The results of this study are useful to have a more precise understanding of the tropical circulation over the Colombia Territory and can also be used in meteorological a hydrological modelling validation studies

  5. A computational model of the fetal circulation to quantify blood redistribution in intrauterine growth restriction.

    Directory of Open Access Journals (Sweden)

    Patricia Garcia-Canadilla

    2014-06-01

    Full Text Available Intrauterine growth restriction (IUGR due to placental insufficiency is associated with blood flow redistribution in order to maintain delivery of oxygenated blood to the brain. Given that, in the fetus the aortic isthmus (AoI is a key arterial connection between the cerebral and placental circulations, quantifying AoI blood flow has been proposed to assess this brain sparing effect in clinical practice. While numerous clinical studies have studied this parameter, fundamental understanding of its determinant factors and its quantitative relation with other aspects of haemodynamic remodeling has been limited. Computational models of the cardiovascular circulation have been proposed for exactly this purpose since they allow both for studying the contributions from isolated parameters as well as estimating properties that cannot be directly assessed from clinical measurements. Therefore, a computational model of the fetal circulation was developed, including the key elements related to fetal blood redistribution and using measured cardiac outflow profiles to allow personalization. The model was first calibrated using patient-specific Doppler data from a healthy fetus. Next, in order to understand the contributions of the main parameters determining blood redistribution, AoI and middle cerebral artery (MCA flow changes were studied by variation of cerebral and peripheral-placental resistances. Finally, to study how this affects an individual fetus, the model was fitted to three IUGR cases with different degrees of severity. In conclusion, the proposed computational model provides a good approximation to assess blood flow changes in the fetal circulation. The results support that while MCA flow is mainly determined by a fall in brain resistance, the AoI is influenced by a balance between increased peripheral-placental and decreased cerebral resistances. Personalizing the model allows for quantifying the balance between cerebral and peripheral

  6. Multiyear Simulations of the Martian Water Cycle with the Ames General Circulation Model

    Science.gov (United States)

    Haberle, R. M.; Schaeffer, J. R.; Nelli, S. M.; Murphy, J. R.

    2003-01-01

    Mars atmosphere is carbon dioxide dominated with non-negligible amounts of water vapor and suspended dust particles. The atmospheric dust plays an important role in the heating and cooling of the planet through absorption and emission of radiation. Small dust particles can potentially be carried to great altitudes and affect the temperatures there. Water vapor condensing onto the dust grains can affect the radiative properties of both, as well as their vertical extent. The condensation of water onto a dust grain will change the grain s fall speed and diminish the possibility of dust obtaining high altitudes. In this capacity, water becomes a controlling agent with regard to the vertical distribution of dust. Similarly, the atmosphere s water vapor holding capacity is affected by the amount of dust in the atmosphere. Dust is an excellent green house catalyst; it raises the temperature of the atmosphere, and thus, its water vapor holding capacity. There is, therefore, a potentially significant interplay between the Martian dust and water cycles. Previous research done using global, 3-D computer modeling to better understand the Martian atmosphere treat the dust and the water cycles as two separate and independent processes. The existing Ames numerical model will be employed to simulate the relationship between the Martian dust and water cycles by actually coupling the two cycles. Water will condense onto the dust, allowing the particle's radiative characteristics, fall speeds, and as a result, their vertical distribution to change. Data obtained from the Viking, Mars Pathfinder, and especially the Mars Global Surveyor missions will be used to determine the accuracy of the model results.

  7. Impact of Tropical Volcanic Eruptions on Hadley Circulation Using a High-Resolution AGCM

    KAUST Repository

    Dogar, Muhammad Mubashar

    2018-03-31

    The direct radiative effects of volcanic eruptions resulting in solar dimming, stratospheric warming, global surface cooling and reduction in rainfall are well documented. However, eruptions also cause indirect climatic impacts that are not well understood. For example, solar dimming induced by volcanic aerosols could cause changes in tropical Hadley circulation that in turn largely affect evaporation and precipitation patterns. Therefore, understanding the sensitivity of HC to volcanism is essential, as this circulation is directly related to precipitation changes in the tropics and with other large-scale circulations. Hence, to better understand the post-eruption sensitivity of HC and associated changes in the hydrologic cycle, simulations for the El Chichón and Pinatubo tropical eruptions were conducted using a high-resolution atmospheric model (HIRAM), effectively at 25 and 50 km grid spacing. The model simulated results are then compared with observational and reanalysis products. Both the model and observational analysis show posteruption weakening, shrinking and equatorward displacement of the updraft branch of HC caused by the equatorward shift of midlatitude jets and hemispheric land-sea thermal gradient. The Intertropical Convergence Zone (ITCZ) is tightly coupled to the rising branch of HC, hence, post-eruption weakening and equatorward displacement of HC cause weakening of ITCZ that adversely affects rainfall distribution in the monsoon-fed regions, especially the South Asian and African tropical rain-belt regions. The modelproduced post-eruption distribution of cloud contents suggests a southward shift of ITCZ. The HIRAM results are largely in agreement with the reanalysis, observations and previous studies indicating that this model performs reasonably well in reproducing the global and regional-scale dynamic changes caused by volcanic radiative forcing.

  8. Impact of Tropical Volcanic Eruptions on Hadley Circulation Using a High-Resolution AGCM

    KAUST Repository

    Dogar, Muhammad Mubashar

    2018-01-01

    The direct radiative effects of volcanic eruptions resulting in solar dimming, stratospheric warming, global surface cooling and reduction in rainfall are well documented. However, eruptions also cause indirect climatic impacts that are not well understood. For example, solar dimming induced by volcanic aerosols could cause changes in tropical Hadley circulation that in turn largely affect evaporation and precipitation patterns. Therefore, understanding the sensitivity of HC to volcanism is essential, as this circulation is directly related to precipitation changes in the tropics and with other large-scale circulations. Hence, to better understand the post-eruption sensitivity of HC and associated changes in the hydrologic cycle, simulations for the El Chichón and Pinatubo tropical eruptions were conducted using a high-resolution atmospheric model (HIRAM), effectively at 25 and 50 km grid spacing. The model simulated results are then compared with observational and reanalysis products. Both the model and observational analysis show posteruption weakening, shrinking and equatorward displacement of the updraft branch of HC caused by the equatorward shift of midlatitude jets and hemispheric land-sea thermal gradient. The Intertropical Convergence Zone (ITCZ) is tightly coupled to the rising branch of HC, hence, post-eruption weakening and equatorward displacement of HC cause weakening of ITCZ that adversely affects rainfall distribution in the monsoon-fed regions, especially the South Asian and African tropical rain-belt regions. The modelproduced post-eruption distribution of cloud contents suggests a southward shift of ITCZ. The HIRAM results are largely in agreement with the reanalysis, observations and previous studies indicating that this model performs reasonably well in reproducing the global and regional-scale dynamic changes caused by volcanic radiative forcing.

  9. Distensibility and pressure-flow relationship of the pulmonary circulation. II. Multibranched model.

    Science.gov (United States)

    Bshouty, Z; Younes, M

    1990-04-01

    The contribution of distensibility and recruitment to the distinctive behavior of the pulmonary circulation is not known. To examine this question we developed a multibranched model in which an arterial vascular bed bifurcates sequentially up to 8 parallel channels that converge and reunite at the venous side to end in the left atrium. Eight resistors representing the capillary bed separate the arterial and venous beds. The elastic behavior of capillaries and extra-alveolar vessels was modeled after Fung and Sobin (Circ. Res. 30: 451-490, 1972) and Smith and Mitzner (J. Appl. Physiol. 48: 450-467, 1980), respectively. Forces acting on each component are modified and calculated individually, thus enabling the user to explore the effects of parallel and longitudinal heterogeneities in applied forces (e.g., gravity, vasomotor tone). Model predictions indicate that the contribution of distensibility to nonlinearities in the pressure-flow (P-F) and atrial-pulmonary arterial pressure (Pla-Ppa) relationships is substantial, whereas gravity-related recruitment contributes very little to these relationships. In addition, Pla-Ppa relationships, obtained at a constant flow, have no discriminating ability in identifying the presence or absence of a waterfall along the circulation. The P-F relationship is routinely shifted in a parallel fashion, within the physiological flow range, whenever extra forces (e.g., lung volume, tone) are applied uniformly at one or more branching levels, regardless of whether a waterfall is created. For a given applied force, the magnitude of parallel shift varies with proportion of the circulation subjected to the added force and with Pla.

  10. Simulation modeling and arena

    CERN Document Server

    Rossetti, Manuel D

    2015-01-01

    Emphasizes a hands-on approach to learning statistical analysis and model building through the use of comprehensive examples, problems sets, and software applications With a unique blend of theory and applications, Simulation Modeling and Arena®, Second Edition integrates coverage of statistical analysis and model building to emphasize the importance of both topics in simulation. Featuring introductory coverage on how simulation works and why it matters, the Second Edition expands coverage on static simulation and the applications of spreadsheets to perform simulation. The new edition als

  11. Fluid-to-fluid scaling for a gravity- and flashing-driven natural circulation loop

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Zeller, M.

    1994-01-01

    In certain natural-circulation reactor systems proposed recently, vapor generation takes place by flashing in an adiabatic riser above the core. A step-by-step facility design procedure was used to define suitable scaling criteria for a refrigerant-113 (R-113) experiment simulating the dynamics and stability of such a loop. The fact that vapor generation does not normally take place in the core allows additional flexibility in designing the model; almost perfect simulation can be achieved, mainly by reducing the height of the facility according to the liquid density ratio and scaling for similar void fraction distributions in the prototype and the model. ((orig.))

  12. Vertical circulation and thermospheric composition: a modelling study

    Directory of Open Access Journals (Sweden)

    H. Rishbeth

    1999-06-01

    Full Text Available The coupled thermosphere-ionosphere-plasmasphere model CTIP is used to study the global three-dimensional circulation and its effect on neutral composition in the midlatitude F-layer. At equinox, the vertical air motion is basically up by day, down by night, and the atomic oxygen/molecular nitrogen [O/N2] concentration ratio is symmetrical about the equator. At solstice there is a summer-to-winter flow of air, with downwelling at subauroral latitudes in winter that produces regions of large [O/N2] ratio. Because the thermospheric circulation is influenced by the high-latitude energy inputs, which are related to the geometry of the Earth's magnetic field, the latitude of the downwelling regions varies with longitude. The downwelling regions give rise to large F2-layer electron densities when they are sunlit, but not when they are in darkness, with implications for the distribution of seasonal and semiannual variations of the F2-layer. It is also found that the vertical distributions of O and N2 may depart appreciably from diffusive equilibrium at heights up to about 160 km, especially in the summer hemisphere where there is strong upwelling. Atmospheric composition and structure (thermosphere · composition and chemistry · Ionosphere (ionosphere · atmosphere interactions

  13. Reevaluation of Kori Unit 4 Natural Circulation Test

    Energy Technology Data Exchange (ETDEWEB)

    Yassin, Nassir [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Woo, Sweng Woong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    The simulation results showed that the natural circulation flow developed by density difference was capable of removing decay heat from the fuel rod. The maximum pellet centerline temperature of the hot channel showed large margin to the pellet melting temperature. The maximum coolant temperature in the hot channel was well below the saturation temperature. If steam generators provide heat sink to the primary coolant system and thus natural circulation is maintained, the integrity of the fuel in the core can be sustained with large margin. Passive cooling of reactor is inevitable in case of failures in forced cooling system such as loss of electric power for cooling pumps. Fukushima accident showed the importance of the passive core cooling. During the commissioning test of PWRs, natural circulation test is performed to demonstrate the passive core cooling by natural convection. The driving force for coolant flow is developed by the density deference along the loop multiplied by the gravitation. Using the data from 'natural circulation test' and 'RCS flow coast down test' of Kori Unit 4, fuel behavior was reevaluated by FRAPTRAN code. RCS natural circulation test of Kori Unit 4 was reevaluated by FRAPTYRAN simulation to study the fuel behavior during the flow coast down transient and at the equilibrium condition in which decay heat transport and RCS flow were stabilized.

  14. A coarse resolution North Atlantic ocean circulation model: an intercomparison study with a paleoceanographic example

    Directory of Open Access Journals (Sweden)

    Dan Seidov

    Full Text Available Paleoreconstructions suggest that during the Last Glacial Maximum (LGM the North Atlantic circulation was noticeably different from its present state. However, the glacial salt conveyor belt is believed to be similar to the present-day's conveyor, albeit weaker and shallower because of an increased freshwater flux in high-latitudes. We present here the investigation of the conveyor operation based on ocean circulation modelling using two numerical models in parallel. The GFDL primitive equation model and a planetary geostrophic model are employed to address the problem of the paleocirculation modelling in cases of uncertain and sparse data comprising the glacial surface boundary conditions. The role of different simplifications that may be used in the ocean climate studies, including the role of grid resolution, bottom topography, coast-line, etc., versus glacial-interglacial changes of the ocean surface climatology is considered. The LGM reverse conveyor gyre appeared to be the most noticeable feature of the glacial-to-interglacial alteration of the ocean circulation. The reversed upper-ocean conveyor, weaker and subducting 'normal' conveyor in the intermediate depths, and the change of the deep-ocean return flow route are robust signatures of the glacial North Atlantic climate. The results are found to be 'model-independent' and fairly insensitive to all factors other than the onset of the glacial surface conditions.

  15. A coarse resolution North Atlantic ocean circulation model: an intercomparison study with a paleoceanographic example

    Directory of Open Access Journals (Sweden)

    D. Seidov

    1996-02-01

    Full Text Available Paleoreconstructions suggest that during the Last Glacial Maximum (LGM the North Atlantic circulation was noticeably different from its present state. However, the glacial salt conveyor belt is believed to be similar to the present-day's conveyor, albeit weaker and shallower because of an increased freshwater flux in high-latitudes. We present here the investigation of the conveyor operation based on ocean circulation modelling using two numerical models in parallel. The GFDL primitive equation model and a planetary geostrophic model are employed to address the problem of the paleocirculation modelling in cases of uncertain and sparse data comprising the glacial surface boundary conditions. The role of different simplifications that may be used in the ocean climate studies, including the role of grid resolution, bottom topography, coast-line, etc., versus glacial-interglacial changes of the ocean surface climatology is considered. The LGM reverse conveyor gyre appeared to be the most noticeable feature of the glacial-to-interglacial alteration of the ocean circulation. The reversed upper-ocean conveyor, weaker and subducting 'normal' conveyor in the intermediate depths, and the change of the deep-ocean return flow route are robust signatures of the glacial North Atlantic climate. The results are found to be 'model-independent' and fairly insensitive to all factors other than the onset of the glacial surface conditions.

  16. Testing the 231Pa/230Th paleo-circulation proxy: A data versus 2D model comparison

    International Nuclear Information System (INIS)

    Lippold, Jorg; Gherardi, Jeanne-Marie; Luo, Yiming

    2011-01-01

    Variations of the Atlantic Meridional Overturning Circulation (AMOC) are believed to have crucially influenced Earth's climate due to its key role in the inter-hemispheric redistribution of heat and carbon. To assess its past strength, the sedimentary 231 Pa/ 230 Th proxy has been developed and improved but also contested due to its sensitivity to other factors beyond ocean circulation. In order to provide a better basis for the understanding of the Atlantic 231 Pa/ 230 Th system, and therefore to shed light on the controversy, we compare new measurements of Holocene sediments from the north Brazilian margin to water column data and the output of a two-dimensional scavenging-circulation model, based on modern circulation patterns and reversible scavenging parameters. We show that sedimentary 231 Pa/ 230 Th data from one specific area of the Atlantic are in very good agreement with model results suggesting that sedimentary 231 Pa/ 230 Th is predominantly driven by the AMOC. Therefore, 231 Pa/ 230 Th represents an appropriate method to reconstruct past AMOC at least qualitatively along the western margin. (authors)

  17. The Michigan Titan Thermospheric General Circulation Model (TTGCM)

    Science.gov (United States)

    Bell, J. M.; Bougher, S. W.; de Lahaye, V.; Waite, J. H.

    2005-12-01

    The Cassini flybys of Titan since late October, 2004 have provided data critical to better understanding its chemical and thermal structures. With this in mind, a 3-D TGCM of Titan's atmosphere from 600km to the exobase (~1450km) has been developed. This paper presents the first results from the partially operational code. Currently, the TTGCM includes static background chemistry (Lebonnois et al 2001, Vervack et al 2004) coupled with thermal conduction routines. The thermosphere remains dominated by solar EUV forcing and HCN rotational cooling, which is calculated by a full line-by-line radiative transfer routine along the lines of Yelle (1991) and Mueller-Wodarg (2000, 2002). In addition, an approximate treatment of magnetospheric heating is explored. This paper illustrates the model's capabilities as well as some initial results from the Titan Thermospheric General Circulation model that will be compared with both the Cassini INMS data and the model of Mueller-Wodarg (2000,2002).

  18. The computation of the post-stall behavior of a circulation controlled airfoil

    Science.gov (United States)

    Linton, Samuel W.

    1993-01-01

    The physics of the circulation controlled airfoil is complex and poorly understood, particularly with regards to jet stall, which is the eventual breakdown of lift augmentation by the jet at some sufficiently high blowing rate. The present paper describes the numerical simulation of stalled and unstalled flows over a two-dimensional circulation controlled airfoil using a fully implicit Navier-Stokes code, and the comparison with experimental results. Mach numbers of 0.3 and 0.5 and jet total to freestream pressure ratios of 1.4 and 1.8 are investigated. The Baldwin-Lomax and k-epsilon turbulence models are used, each modified to include the effect of strong streamline curvature. The numerical solutions of the post-stall circulation controlled airfoil show a highly regular unsteady periodic flowfield. This is the result of an alternation between adverse pressure gradient and shock induced separation of the boundary layer on the airfoil trailing edge.

  19. Influence of Atlantic SST anomalies on the atmospheric circulation in the Atlantic-European sector

    Directory of Open Access Journals (Sweden)

    E. Kestenare

    2003-06-01

    Full Text Available Recent studies of observational data suggest that Sea Surface Temperature (SST anomalies in the Atlantic Ocean have a significant influence on the atmospheric circulation in the Atlantic-European sector in early winter and in spring. After reviewing this work and showing that the spring signal is part of a global air-sea interaction, we analyze for comparison an ensemble of simulations with the ECHAM4 atmospheric general circulation model in T42 resolution forced by the observed distribution of SST and sea ice, and a simulation with the ECHAM4/OPA8 coupled model in T30 resolution. In the two cases, a significant influence of the Atlantic on the atmosphere is detected in the Atlantic-European sector. In the forced mode, ECHAM4 responds to SST anomalies from early spring to late summer, and also in early winter. The forcing involves SST anomalies not only in the tropical Atlantic, but also in the whole tropical band, suggesting a strong ENSO influence. The modeled signal resembles that seen in the observations in spring, but not in early winter. In the coupled mode, the Atlantic SST only has a significant influence on the atmosphere in summer. Although the SST anomaly is confined to the Atlantic, the summer signal shows some similarity with that seen in the forced simulations. However, there is no counterpart in the observations.

  20. Results of two-phase natural circulation in hot-leg U-bend simulation experiments

    International Nuclear Information System (INIS)

    Ishii, M.; Lee, S.Y.; Abou El-Seoud, S.

    1987-01-01

    In order to study the two-phase natural circulation and flow termination during a small break loss of coolant accident in LWR, simulation experiments have been performed using two different thermal-hydraulic loops. The main focus of the experiment was the two-phase flow behavior in the hot-leg U-bend typical of BandW LWR systems. The first group of experiments was carried out in the nitrogen gas-water adiabatic simulation loop and the second in the Freon 113 boiling and condensation loop. Both of the loops have been designed as a flow visualization facility and built according to the two-phase flow scaling criteria developed under this program. The nitrogen gas-water system has been used to isolate key hydrodynamic phenomena such as the phase distribution, relative velocity between phases, two-phase flow regimes and flow termination mechanisms, whereas the Freon loop has been used to study the effect of fluid properties, phase changes and coupling between hydrodynamic and heat transfer phenomena. Significantly different behaviors have been observed due to the non-equilibrium phase change phenomena such as the flashing and condensation in the Freon loop. The phenomena created much more unstable hydrodynamic conditions which lead to cyclic or oscillatory flow behaviors