WorldWideScience

Sample records for circulation cloud structure

  1. View-Angle Dependent AIRS Cloud Radiances and Fluctuations: Implications of Organized Cloud Structures for Tropical Circulations

    Science.gov (United States)

    Wu, Dong L.; Gong, Jie

    2012-01-01

    Interactions between wave dynamics and moisture generate clouds in a wide range of scales. Organized cloud structures produce statistically asymmetric radiances and perturbations in AIRS and AMSU-B measurements. With high resolution (approx.14 km beamwidth) and high-sensitivity instruments, these wave-modulated cloud structures can be readily detected from calibrated Levell radiance data. In this study we analyzed eight-year (2003 - 2010) statistics of AIRS cloud-induced radiances and found that in tropical convective regions the ascending (13:30 LST) measurements reveal higher view-angle asymmetry in cloud radiance than the descending (1:30 LST). The daytime asymmetry suggests 10% more cloudiness when the instrument views east, implying tilted and banded structures in most of the anvil clouds to which AIRS is sensitive. Such banded cloud structures are likely a manifestation of embedded westward propagating gravity waves in tropical convective systems. More importantly, organized cloud structures carry asymmetric momentum fluxes in addition to energy fluxes, which must be taken into account for modeling wave-wave and wave-mean flow interactions in tropical circulations.

  2. How does the latitudinal dependency of the cloud structure change Venus' atmosphere's general circulation?

    Science.gov (United States)

    Garate-Lopez, I.; Lebonnois, S.

    2017-09-01

    Differently to the previous simulation of the LMD/IPSL Venus GCM, we now take into account the latitudinal variation of the clouds' structure and we analyze its impacts on the general circulation of Venus atmosphere. Both solar heating rates and the infrared net-exchange rate matrix used in the radiative transfer code have been modified in that sense. Additional tuning below the clouds has also been performed. The current results show a better agreement with observations in both mean zonal wind and average temperature fields. Moreover, taking into account the latitudinal variation of the clouds has brought along with it the formation of a well defined cold collar poleward of 60º at cloud level. Besides, we have reanalyzed the wave activity present in Venus atmosphere and found new baroclinic mid-latitude waves. However, we do not obtain the gravity waves present in the deep atmosphere in the previous model.

  3. Clouds and the atmospheric circulation response to warming

    Science.gov (United States)

    Ceppi, Paulo; Hartmann, Dennis

    2016-04-01

    We study the effect of clouds on the atmospheric circulation response to CO2 quadrupling in an aquaplanet model with a slab-ocean lower boundary. The cloud effect is isolated by locking the clouds to either the control or 4xCO2 state in the shortwave (SW) or longwave (LW) radiation schemes. In our model, cloud-radiative changes explain more than half of the total poleward expansion of the Hadley cells, midlatitude jets, and storm tracks under CO2 quadrupling, even though they cause only one-fourth of the total global-mean surface warming. The effect of clouds on circulation results mainly from the SW cloud-radiative changes, which strongly enhance the Equator-to-pole temperature gradient at all levels in the troposphere, favoring stronger and poleward-shifted midlatitude eddies. By contrast, quadrupling CO2 while holding the clouds fixed causes strong polar amplification and weakened midlatitude baroclinicity at lower levels, yielding only a small poleward expansion of the circulation. Our results show that (a) the atmospheric circulation responds sensitively to cloud-driven changes in meridional and vertical temperature distribution, and (b) the spatial structure of cloud feedbacks likely plays a dominant role in the circulation response to greenhouse gas forcing. While the magnitude and spatial structure of the cloud feedback are expected to be highly model-dependent, an analysis of 4xCO2 simulations of CMIP5 models shows that the SW cloud feedback likely forces a poleward expansion of the tropospheric circulation in most climate models.

  4. Impacts of the cloud structure's latitudinal variation on the general circulation of the Venus atmosphere as modeled by the LMD-GCM

    Science.gov (United States)

    Garate-Lopez, Itziar; Lebonnois, Sébastien

    2017-04-01

    A new simulation of Venus atmospheric circulation obtained with the LMD Venus GCM is described and the impact of cloud's latitudinal structure on the general circulation is analyzed. The model used here is based on that presented in Lebonnois et al. (2016). However, in the present simulation we consider the latitudinal variation of the cloud structure (Haus et al., 2014) both for the solar heating and to compute the infrared net-exchange rate matrix used in the radiative transfer module. The new cloud treatment affects mainly the balance in the angular momentum and the zonal wind distribution. Consequently, the agreement between the vertical profile of the modeled mean zonal wind and the profiles measured by different probes, is clearly improved from previous simulations in which zonal winds below the clouds were weak (roughly half the observed values). Moreover, the equatorial jet obtained at the base of the cloud deck is now more consistent with the observations. In Lebonnois et al. (2016) it was too strong compared to mid-latitudes, but in the present simulation the equatorial jet is less intense than the mid-latitude jets, in concordance with cloud-tracking measurements (Hueso et al., 2015). Since the atmospheric waves play a crucial role in the angular momentum budget of the Venus's atmospheric circulation, we analyze the wave activity by means of the Fast Fourier Transform technique studying the frequency spectrum of temperature, zonal and meridional wind fields. Modifications in the activity of the different types of waves present in the Venusian atmosphere compared to Lebonnois et al. (2016) are discussed, in terms of horizontal and vertical transport of the angular momentum by diurnal and semi-diurnal tides, barotropic and baroclinic waves, and Rossby and Kelvin type waves. Haus R., Kappel D. and Arnold G., 2014. Atmospheric thermal structure and cloud features in the southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements. Icarus

  5. Treatment of cloud radiative effects in general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.C.; Dudek, M.P.; Liang, X.Z.; Ding, M. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: (1) to improve the general circulation model (GCM) cloud/radiation treatment with a focus on cloud verticle overlapping and layer cloud optical properties, and (2) to study the effects of cloud/radiation-climate interaction on GCM climate simulations. This report summarizes the project progress since the Fourth ARM Science Team meeting February 28-March 4, 1994, in Charleston, South Carolina.

  6. Evolution of the Large Scale Circulation, Cloud Structure and Regional Water Cycle Associated with the South China Sea Monsoon During May-June, 1998

    Science.gov (United States)

    Lau, William K.-M.; Li, Xiao-Fan

    2001-01-01

    In this paper, changes in the large-scale circulation, cloud structures and regional water cycle associated with the evolution of the South China Sea (SCS) monsoon in May-June 1998 were investigated using data from the Tropical Rainfall Measuring Mission (TRMM) and field data from the South China Sea Monsoon Experiment (SCSMEX). Results showed that both tropical and extratropical processes strongly influenced the onset and evolution of the SCS monsoon. Prior to the onset of the SCS monsoon, enhanced convective activities associated with the Madden and Julian Oscillation were detected over the Indian Ocean, and the SCS was under the influence of the West Pacific Anticyclone (WPA) with prevailing low level easterlies and suppressed convection. Establishment of low-level westerlies across Indo-China, following the development of a Bay of Bengal depression played an important role in building up convective available potential energy over the SCS. The onset of SCS monsoon appeared to be triggered by the equatorward penetration of extratropical frontal system, which was established over the coastal region of southern China and Taiwan in early May. Convective activities over the SCS were found to vary inversely with those over the Yangtze River Valley (YRV). Analysis of TRMM microwave and precipitation radar data revealed that during the onset phase, convection over the northern SCS consisted of squall-type rain cell embedded in meso-scale complexes similar to extratropical systems. The radar Z-factor intensity indicated that SCS clouds possessed a bimodal distribution, with a pronounced signal (less than 30dBz) at a height of 2-3 km, and another one (less than 25 dBz) at the 8-10 km level, separated by a well-defined melting level indicated by a bright band at around 5-km level. The stratiform-to-convective cloud ratio was approximately 1:1 in the pre-onset phase, but increased to 5:1 in the active phase. Regional water budget calculations indicated that during the

  7. Climate feedbacks in a general circulation model incorporating prognostic clouds

    Energy Technology Data Exchange (ETDEWEB)

    Colman, R.; Fraser, J. [Bureau of Meteorology Research Centre, Melbourne, Vic. (Australia); Rotstayn, L. [CSIRO Atmospheric Research, Aspendale (Australia)

    2001-11-01

    This study performs a comprehensive feedback analysis on the Bureau of Meteorology Research Centre General Circulation Model, quantifying all important feedbacks operating under an increase in atmospheric CO{sub 2}. The individual feedbacks are analysed in detail, using an offline radiation perturbation method, looking at long- and shortwave components, latitudinal distributions, cloud impacts, non-linearities under 2xCO{sub 2} and 4xCO{sub 2} warmings and at interannual variability. The water vapour feedback is divided into terms due to moisture height and amount changes. The net cloud feedback is separated into terms due to cloud amount, height, water content, water phase, physical thickness and convective cloud fraction. Globally the most important feedbacks were found to be (from strongest positive to strongest negative) those due to water vapour, clouds, surface albedo, lapse rate and surface temperature. For the longwave (LW) response the most important term of the cloud 'optical property' feedbacks is due to the water content. In the shortwave (SW), both water content and water phase changes are important. Cloud amount and height terms are also important for both LW and SW. Feedbacks due to physical cloud thickness and convective cloud fraction are found to be relatively small. All cloud component feedbacks (other than height) produce conflicting LW/SW feedbacks in the model. Furthermore, the optical property and cloud fraction feedbacks are also of opposite sign. The result is that the net cloud feedback is the (relatively small) product of conflicting physical processes. Non-linearities in the feedbacks are found to be relatively small for all but the surface albedo response and some cloud component contributions. The cloud impact on non-cloud feedbacks is also discussed: greatest impact is on the surface albedo, but impact on water vapour feedback is also significant. The analysis method here proves to be a powerful tool for detailing the

  8. Effect of cloud cover and atmospheric circulation patterns on the observed surface solar radiation in Europe

    National Research Council Canada - National Science Library

    Chiacchio, Marc; Vitolo, Renato

    2012-01-01

    ...) in Europe including cloud cover and atmospheric circulation patterns. The role of observed cloud cover on DSW was analyzed through generalized linear models using DSW measurements obtained from the Global Energy Balance Archive during 1971–1996...

  9. Cloud and Circulation Feedbacks in a Near-Global Aquaplanet Cloud-Resolving Model

    Science.gov (United States)

    Narenpitak, P.; Bretherton, C. S.; Khairoutdinov, M.

    2016-12-01

    A near-global aquaplanet cloud-resolving model (CRM) is used to investigate cloud feedbacks due to three climate perturbations: a uniform 4 K increase in sea-surface temperature (SST), a quadrupling of CO2 concentration, and both combined. The CRM has a horizontal resolution of 4 km with no cumulus parameterization. It is a zonally periodic 20480 km-long tropical channel, spanning 46°S-N with rigid walls. An equatorially symmetric QOBS SST distribution is specified for the control simulation. After spin-up, 80 days are analyzed for the control and 4 K SST increase simulations, and 40 days for the simulations with quadrupled CO2. The 4 K SST increase induces a statistically significant increase in subtropical low cloud but decreases midlatitude cloud; its domain-mean shortwave cloud feedbacks are slightly positive. CO2 quadrupling causes a slight shallowing and a statistically insignificant reduction of subtropical low cloud. These results are qualitatively consistent with aquaplanet versions of some conventionally-parameterized climate models [Medeiros et al., 2015, Clim Dyn], and with a superparameterized real-geography version of the Community Atmosphere Model, Version 4 [Bretherton et al., 2014, JAMES], which uses CRMs similar to this study. The geographic structure of warming-induced low cloud changes is strongly correlated with the associated changes in estimated inversion strength (EIS). The EIS increases by 1 K in the subtropics but decreases in the midlatitudes due to poleward jet shifts. Clear-sky boundary-layer radiative cooling plays a key role in the subtropical low cloud increase, as it further destabilizes the cloud layer and produces a positive feedback, in agreement with a hypothesis from Wyant et al. [2009, JAMES]. The subtropical low cloud increase is also associated with stronger vertical velocity variance, although there is little change in the vertical profile of buoyancy flux. The zonal variance of column relative humidity is compared between

  10. Prediction of cloud droplet number in a general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Ghan, S.J.; Leung, L.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-04-01

    We have applied the Colorado State University Regional Atmospheric Modeling System (RAMS) bulk cloud microphysics parameterization to the treatment of stratiform clouds in the National Center for Atmospheric Research Community Climate Model (CCM2). The RAMS predicts mass concentrations of cloud water, cloud ice, rain and snow, and number concnetration of ice. We have introduced the droplet number conservation equation to predict droplet number and it`s dependence on aerosols.

  11. Evaluation of a stratiform cloud parameterization for general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Ghan, S.J.; Leung, L.R. [Pacific Northwest National Lab., Richland, WA (United States); McCaa, J. [Univ. of Washington, Seattle, WA (United States)

    1996-04-01

    To evaluate the relative importance of horizontal advection of cloud versus cloud formation within the grid cell of a single column model (SCM), we have performed a series of simulations with our SCM driven by a fixed vertical velocity and various rates of horizontal advection.

  12. MEASURING THE FRACTAL STRUCTURE OF INTERSTELLAR CLOUDS

    NARCIS (Netherlands)

    VOGELAAR, MGR; WAKKER, BP; SCHWARZ, UJ

    1991-01-01

    To study the structure of interstellar clouds we used the so-called perimeter-area relation to estimate fractal dimensions. We studied the reliability of the method by applying it to artificial fractals and discuss some of the problems and pitfalls. Results for two different cloud types

  13. Simulation of Coastal Circulation in the Eastern Mediterranean Using a Spectral Microphysics Cloud Ensemble Model.

    Science.gov (United States)

    Khain, Alexander P.; Sednev, Igor; Khvorostyanov, V.

    1996-12-01

    The interaction of the cold season land breeze with the background flow in the Eastern Mediterranean and its influence on the climatic distribution of convective precipitation is studied using a 2D nonhydrostatic cloud ensemble model with the spectral approach in the description of cloud microphysics. The model microphysics is based on solving two kinetic equations for the size distribution functions for water droplets and ice particles. Each function is described using 33 mass categories. The model takes into account the following microphysical processes: nucleation of cloud condensation nuclei; nucleation of ice nuclei., condensational growth/evaporation of drops; growth/sublimation of ice due to accretion; freezing of droplets; melting of ice particles; and coalescence of drops, drops and ice, and ice particles themselves. The computational domain (200 km by 12 km) is covered by a finite-difference grid consisting of 129 × 31 grid points. It is shown that the model is able to reproduce wind velocity and the distribution and intensity of precipitation. Results indicate that the interaction of the winter land breeze and the background flow determine to a great extent the climatic distribution of convective-type precipitation in the Eastern Mediterranean. The background wind substantially influences both the amount and distribution of precipitation. It determines the width of the zone of convective activity and its location relative to the seashore. It is also shown that latent heat release greatly increases both the intensity of thermally induced circulation and its vertical and horizontal spreading. It is indicated that deep convection triggered by the boundary layer circulation not only increases the intensity of breeze circulation but changes the thermodynamic structure through an increase of the temperature gradients between the areas of intense convection and surrounding areas. These gradients seem to maintain the breeze front location over the sea in case

  14. EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation

    Science.gov (United States)

    Bony, Sandrine; Stevens, Bjorn; Ament, Felix; Bigorre, Sebastien; Chazette, Patrick; Crewell, Susanne; Delanoë, Julien; Emanuel, Kerry; Farrell, David; Flamant, Cyrille; Gross, Silke; Hirsch, Lutz; Karstensen, Johannes; Mayer, Bernhard; Nuijens, Louise; Ruppert, James H.; Sandu, Irina; Siebesma, Pier; Speich, Sabrina; Szczap, Frédéric; Totems, Julien; Vogel, Raphaela; Wendisch, Manfred; Wirth, Martin

    2017-11-01

    Trade-wind cumuli constitute the cloud type with the highest frequency of occurrence on Earth, and it has been shown that their sensitivity to changing environmental conditions will critically influence the magnitude and pace of future global warming. Research over the last decade has pointed out the importance of the interplay between clouds, convection and circulation in controling this sensitivity. Numerical models represent this interplay in diverse ways, which translates into different responses of trade-cumuli to climate perturbations. Climate models predict that the area covered by shallow cumuli at cloud base is very sensitive to changes in environmental conditions, while process models suggest the opposite. To understand and resolve this contradiction, we propose to organize a field campaign aimed at quantifying the physical properties of trade-cumuli (e.g., cloud fraction and water content) as a function of the large-scale environment. Beyond a better understanding of clouds-circulation coupling processes, the campaign will provide a reference data set that may be used as a benchmark for advancing the modelling and the satellite remote sensing of clouds and circulation. It will also be an opportunity for complementary investigations such as evaluating model convective parameterizations or studying the role of ocean mesoscale eddies in air-sea interactions and convective organization.

  15. EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation

    Science.gov (United States)

    Bony, Sandrine; Stevens, Bjorn; Ament, Felix; Bigorre, Sebastien; Chazette, Patrick; Crewell, Susanne; Delanoë, Julien; Emanuel, Kerry; Farrell, David; Flamant, Cyrille; Gross, Silke; Hirsch, Lutz; Karstensen, Johannes; Mayer, Bernhard; Nuijens, Louise; Ruppert, James H.; Sandu, Irina; Siebesma, Pier; Speich, Sabrina; Szczap, Frédéric; Totems, Julien; Vogel, Raphaela; Wendisch, Manfred; Wirth, Martin

    2017-09-01

    Trade-wind cumuli constitute the cloud type with the highest frequency of occurrence on Earth, and it has been shown that their sensitivity to changing environmental conditions will critically influence the magnitude and pace of future global warming. Research over the last decade has pointed out the importance of the interplay between clouds, convection and circulation in controling this sensitivity. Numerical models represent this interplay in diverse ways, which translates into different responses of trade-cumuli to climate perturbations. Climate models predict that the area covered by shallow cumuli at cloud base is very sensitive to changes in environmental conditions, while process models suggest the opposite. To understand and resolve this contradiction, we propose to organize a field campaign aimed at quantifying the physical properties of trade-cumuli (e.g., cloud fraction and water content) as a function of the large-scale environment. Beyond a better understanding of clouds-circulation coupling processes, the campaign will provide a reference data set that may be used as a benchmark for advancing the modelling and the satellite remote sensing of clouds and circulation. It will also be an opportunity for complementary investigations such as evaluating model convective parameterizations or studying the role of ocean mesoscale eddies in air-sea interactions and convective organization.

  16. Radiative Impacts of Cloud Heterogeneity and Overlap in an Atmospheric General Circulation Model

    Science.gov (United States)

    Oreopoulos, L.; Lee, D.; Sud, Y. C.; Suarez, M. J.

    2012-01-01

    The radiative impacts of introducing horizontal heterogeneity of layer cloud condensate, and vertical overlap of condensate and cloud fraction are examined with the aid of a new radiation package operating in the GEOS-5 Atmospheric General Circulation Model. The impacts are examined in terms of diagnostic top-of-the-atmosphere shortwave (SW) and longwave (LW) cloud radiative effect (CRE) calculations for a range of assumptions and parameter specifications about the overlap. The investigation is conducted for two distinct cloud schemes, the one that comes with the standard GEOS-5 distribution, and another which has been recently used experimentally for its enhanced GEOS-5 distribution, and another which has been recently used experimentally for its enhanced cloud microphysical capabilities; both are coupled to a cloud generator allowing arbitrary cloud overlap specification. We find that cloud overlap radiative impacts are significantly stronger for the operational cloud scheme for which a change of cloud fraction overlap from maximum-random to generalized results to global changes of SW and LW CRE of approximately 4 Watts per square meter, and zonal changes of up to approximately 10 Watts per square meter. This is because of fewer occurrences compared to the other scheme of large layer cloud fractions and of multi-layer situations with large numbers of atmospheric being simultaneously cloudy, conditions that make overlap details more important. The impact on CRE of the details of condensate distribution overlap is much weaker. Once generalized overlap is adopted, both cloud schemes are only modestly sensitive to the exact values of the overlap parameters. We also find that if one of the CRE components is overestimated and the other underestimated, both cannot be driven towards observed values by adjustments to cloud condensate heterogeneity and overlap alone.

  17. First Views of North Polar Clouds and Circulation on Uranus

    Science.gov (United States)

    Sromovsky, Lawrence A.; Fry, P. M.; Hammel, H. B.; de Pater, I.; Rages, K. A.

    2012-10-01

    Post-equinox high S/N imaging of Uranus, by HST in 2009-10 and by Keck and Gemini telescopes in 2011, provide the first detailed views of its high northern latitudes. These images reveal numerous small cloud features from which we were able to extend the zonal wind profile of Uranus into its north polar region and accurately characterize its 60° N 250-m/s prograde jet. We also found a large N-S asymmetry in the morphology of polar cloud features (Sromovsky et al. 2012, Icarus 220, 694-712). The variation of wind speed with latitude in the north polar region is consistent with solid body rotation at a rate of 4.3°/h relative to the interior. When new measurements are combined with measurements from 1997 onward, there remains a small but significant asymmetry at middle latitudes, peaking near 35°, where southern hemisphere winds are 20 m/s more westward than corresponding northern hemisphere winds. The discovery of polar discrete cloud features is significant because of their possible connection to large scale meridional mass flows. Analysis of 2002 HST STIS spectra shows that the southern high latitudes are depleted of methane in the upper troposphere (Karkoschka & Tomasko 2009 Icarus 202 287-309; Sromovsky et al. 2011, Icarus 215, 292-312), suggesting an upper tropospheric downwelling in the south polar region that would tend to depress convective cloud formation there. Indeed, no comparable features have ever been seen in high southern latitudes. On the other hand, the existence of numerous small, possibly convective, features at high northern latitudes suggests that the predominant meridional flow there is not downwelling and that CH4 may not yet be depleted there. New HST STIS observations are expected to resolve this issue. This research was supported by grants from NASA Planetary Atmospheres and Astronomy programs, and from the Space Telescope Science Institute.

  18. Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations

    NARCIS (Netherlands)

    Nuijens, Louise; Emanuel, Kerry; Masunaga, Hirohiko; L’Ecuyer, Tristan

    2017-01-01

    Space-borne observations reveal that 20–40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of warm rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column

  19. CESM cloud feedback: connections to the storm tracks and tropical circulation

    Science.gov (United States)

    Wagman, B. M.; Jackson, C. S.

    2014-12-01

    Differences in the way that climate models simulate changes in low tropical clouds account for the majority of the inter-model spread in cloud feedback. However, the Community Earth System Model (CESM1) and its predecessors CCSM4 and CCSM3 show uncommon sensitivity to the shortwave cloud feedback in the storm tracks rather than the tropics. The storm track feedback is coupled to aspects of the meridional overturning circulation in both CESM and its predecessors, so these effects are somehow linked but the connection is poorly understood. In order to further explore the connection between climate sensitivity and circulation in CESM, an ensemble is being conducted using a slab ocean, perturbed atmospheric convection parameters, and the spectral element dycore. The ensemble is controlled by the Multiple Ensemble Control System (MECS), which stochastically samples the uncertainty in convection parameters using very fast simulated annealing (VFSA) to converge on an approximation of the posterior probability distribution of uncertain parameters.

  20. MEASURING THE FRACTAL STRUCTURE OF INTERSTELLAR CLOUDS

    NARCIS (Netherlands)

    VOGELAAR, MGR; WAKKER, BP

    1994-01-01

    To study the structure of interstellar matter we have applied the concept of fractal curves to the brightness contours of maps of interstellar clouds and from these estimated the fractal dimension for some of them. We used the so-called perimeter-area relation as the basis for these estimates. We

  1. The Mars Dust Cycle: Investigating the Effects of Radiatively Active Water Ice Clouds on Surface Stresses and Dust Lifting Potential with the NASA Ames Mars General Circulation Model

    Science.gov (United States)

    Kahre, Melinda A.; Hollingsworth, Jeffery

    2012-01-01

    The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.

  2. Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations

    Science.gov (United States)

    Nuijens, Louise; Emanuel, Kerry; Masunaga, Hirohiko; L'Ecuyer, Tristan

    2017-11-01

    Space-borne observations reveal that 20-40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of warm rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column radiative-convective model of hydrostatic, nonlinear flow on a non-rotating sphere, with parameterized convection and radiation, and review ongoing efforts in high-resolution modeling and observations of warm rain. The model experiments investigate the response of convection and circulation to sea surface temperature (SST) gradients between the columns and to changes in a parameter that controls the conversion of cloud condensate to rain. Convection over the cold ocean collapses to a shallow mode with tops near 850 hPa, but a congestus mode with tops near 600 hPa can develop at small SST differences when warm rain formation is more efficient. Here, interactive radiation and the response of the circulation are crucial: along with congestus a deeper moist layer develops, which leads to less low-level radiative cooling, a smaller buoyancy gradient between the columns, and therefore a weaker circulation and less subsidence over the cold ocean. The congestus mode is accompanied with more surface precipitation in the subsiding column and less surface precipitation in the deep convecting column. For the shallow mode over colder oceans, circulations also weaken with more efficient warm rain formation, but only marginally. Here, more warm rain reduces convective tops and the boundary layer depth—similar to Large-Eddy Simulation (LES) studies—which reduces the integrated buoyancy gradient. Elucidating the impact of warm rain can benefit from large-domain high-resolution simulations and observations. Parameterizations of warm rain may be constrained through collocated cloud and rain profiling from ground, and concurrent changes in convection and rain in subsiding and convecting branches of

  3. Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations

    Science.gov (United States)

    Nuijens, Louise; Emanuel, Kerry; Masunaga, Hirohiko; L'Ecuyer, Tristan

    2017-09-01

    Space-borne observations reveal that 20-40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of warm rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column radiative-convective model of hydrostatic, nonlinear flow on a non-rotating sphere, with parameterized convection and radiation, and review ongoing efforts in high-resolution modeling and observations of warm rain. The model experiments investigate the response of convection and circulation to sea surface temperature (SST) gradients between the columns and to changes in a parameter that controls the conversion of cloud condensate to rain. Convection over the cold ocean collapses to a shallow mode with tops near 850 hPa, but a congestus mode with tops near 600 hPa can develop at small SST differences when warm rain formation is more efficient. Here, interactive radiation and the response of the circulation are crucial: along with congestus a deeper moist layer develops, which leads to less low-level radiative cooling, a smaller buoyancy gradient between the columns, and therefore a weaker circulation and less subsidence over the cold ocean. The congestus mode is accompanied with more surface precipitation in the subsiding column and less surface precipitation in the deep convecting column. For the shallow mode over colder oceans, circulations also weaken with more efficient warm rain formation, but only marginally. Here, more warm rain reduces convective tops and the boundary layer depth—similar to Large-Eddy Simulation (LES) studies—which reduces the integrated buoyancy gradient. Elucidating the impact of warm rain can benefit from large-domain high-resolution simulations and observations. Parameterizations of warm rain may be constrained through collocated cloud and rain profiling from ground, and concurrent changes in convection and rain in subsiding and convecting branches of

  4. Snow and cloud feedbacks modelled by an atmospheric general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Colman, R.A.; McAvaney, B.J.; Fraser, J.R. [Bureau of Meteorology Research Center, Victoria (Austria)] [and others

    1994-01-01

    One of the most important parametrizations in general circulation models used for climate change experiments is that of the surface albedo. The results an albedo feedback experiment carried out under the auspices of the US Department of Energy are presented. An analysis of long and short wave components of the model response shows that short wave response dominates changes in fixed to variable albedo experiments, but that long wave response dominates in clear to cloudy sky changes. Cloud distribution chances are also discussed and are related to changes in global sensitivity. At the surface, the heat balance change for perturbed sea surface temperatures is dominated by changes in latent heat flux and downward long wave radiation. If albedo is freed up however, the major contrast lies in the change in surface reflected short wave radiation, amplified by changes in downward short wave radiation caused by cloud amount changes. 14 refs., 7 figs., 6 tabs.

  5. Progress in Understanding the Impacts of 3-D Cloud Structure on MODIS Cloud Property Retrievals for Marine Boundary Layer Clouds

    Science.gov (United States)

    Zhang, Zhibo; Werner, Frank; Miller, Daniel; Platnick, Steven; Ackerman, Andrew; DiGirolamo, Larry; Meyer, Kerry; Marshak, Alexander; Wind, Galina; Zhao, Guangyu

    2016-01-01

    Theory: A novel framework based on 2-D Tayler expansion for quantifying the uncertainty in MODIS retrievals caused by sub-pixel reflectance inhomogeneity. (Zhang et al. 2016). How cloud vertical structure influences MODIS LWP retrievals. (Miller et al. 2016). Observation: Analysis of failed MODIS cloud property retrievals. (Cho et al. 2015). Cloud property retrievals from 15m resolution ASTER observations. (Werner et al. 2016). Modeling: LES-Satellite observation simulator (Zhang et al. 2012, Miller et al. 2016).

  6. 1 Vertical structure of orographic precipitating clouds observed over ...

    Indian Academy of Sciences (India)

    11

    present study is to understand the vertical structure of precipitating clouds associated with orographic precipitation in South Asia during the June to September period. Cumulus congestus clouds coexist with deep convective clouds in a mesoscale convective system (MCS, e.g., Houze 2004) which is embedded in a synoptic ...

  7. New insights about cloud vertical structure from CloudSat and CALIPSO observations

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin

    2017-09-01

    Active cloud observations from A-Train's CloudSat and CALIPSO satellites offer new opportunities to examine the vertical structure of hydrometeor layers. We use the 2B-CLDCLASS-LIDAR merged CloudSat-CALIPSO product to examine global aspects of hydrometeor vertical stratification. We group the data into major cloud vertical structure (CVS) classes based on our interpretation of how clouds in three standard atmospheric layers overlap and provide their global frequency of occurrence. The two most frequent CVS classes are single-layer (per our definition) low and high clouds that represent 53% of cloudy skies, followed by high clouds overlying low clouds, and vertically extensive clouds that occupy near-contiguously a large portion of the troposphere. The prevalence of these configurations changes seasonally and geographically, between daytime and nighttime, and between continents and oceans. The radiative effects of the CVS classes reveal the major radiative warmers and coolers from the perspective of the planet as a whole, the surface, and the atmosphere. Single-layer low clouds dominate planetary and atmospheric cooling and thermal infrared surface warming. We also investigate the consistency between passive and active views of clouds by providing the CVS breakdowns of Moderate Resolution Imaging Spectroradiometer cloud regimes for spatiotemporally coincident MODIS-Aqua (also on the A-Train) and CloudSat-CALIPSO daytime observations. When the analysis is expanded for a more in-depth look at the most heterogeneous of the MODIS cloud regimes, it ultimately confirms previous interpretations of their makeup that did not have the benefit of collocated active observations.

  8. Modelling seasonal circulation and thermohaline structure of the Caspian Sea

    Directory of Open Access Journals (Sweden)

    M. Gunduz

    2014-06-01

    Full Text Available The wind- and buoyancy-driven seasonal circulation of the Caspian Sea is investigated for a better understanding of its basin-wide and mesoscale dynamics, mixing and transport. The model successfully reproduces the following basic elements of the circulation: the southward-flowing current systems along the eastern and western coasts, the upwelling along the eastern coast, the cyclonic circulation in the Middle Caspian Sea (MCS, especially in winter, and the cyclonic and anticyclonic cells of circulation in the South Caspian Sea (SCS. The observed seasonal variability of sea level and sea surface temperature (SST is well reproduced. Mesoscale structures, not always evident from hydrographic observations, are identified.

  9. Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat

    Science.gov (United States)

    Yuan, J.; Houze, R. A., Jr.; Heymsfield, A.

    2011-01-01

    A global study of the vertical structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud Profiling Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6--8 and 1--3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with observations at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.

  10. Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat

    Science.gov (United States)

    Hence, Deanna A.; Houze, Robert A.

    2011-01-01

    A global study of the vertical structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud Profiling Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6 8 and 1 3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with observations at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.

  11. Simulations of physics and chemistry of polar stratospheric clouds with a general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, J.

    2005-04-20

    A polar stratospheric cloud submodel has been developed and incorporated in a general circulation model including atmospheric chemistry (ECHAM5/MESSy). The formation and sedimentation of polar stratospheric cloud (PSC) particles can thus be simulated as well as heterogeneous chemical reactions that take place on the PSC particles. For solid PSC particle sedimentation, the need for a tailor-made algorithm has been elucidated. A sedimentation scheme based on first order approximations of vertical mixing ratio profiles has been developed. It produces relatively little numerical diffusion and can deal well with divergent or convergent sedimentation velocity fields. For the determination of solid PSC particle sizes, an efficient algorithm has been adapted. It assumes a monodisperse radii distribution and thermodynamic equilibrium between the gas phase and the solid particle phase. This scheme, though relatively simple, is shown to produce particle number densities and radii within the observed range. The combined effects of the representations of sedimentation and solid PSC particles on vertical H{sub 2}O and HNO{sub 3} redistribution are investigated in a series of tests. The formation of solid PSC particles, especially of those consisting of nitric acid trihydrate, has been discussed extensively in recent years. Three particle formation schemes in accordance with the most widely used approaches have been identified and implemented. For the evaluation of PSC occurrence a new data set with unprecedented spatial and temporal coverage was available. A quantitative method for the comparison of simulation results and observations is developed and applied. It reveals that the relative PSC sighting frequency can be reproduced well with the PSC submodel whereas the detailed modelling of PSC events is beyond the scope of coarse global scale models. In addition to the development and evaluation of new PSC submodel components, parts of existing simulation programs have been

  12. Can CFMIP2 models reproduce the leading modes of cloud vertical structure in the CALIPSO-GOCCP observations?

    Science.gov (United States)

    Wang, Fang; Yang, Song

    2017-02-01

    Using principal component (PC) analysis, three leading modes of cloud vertical structure (CVS) are revealed by the GCM-Oriented CALIPSO Cloud Product (GOCCP), i.e. tropical high, subtropical anticyclonic and extratropical cyclonic cloud modes (THCM, SACM and ECCM, respectively). THCM mainly reflect the contrast between tropical high clouds and clouds in middle/high latitudes. SACM is closely associated with middle-high clouds in tropical convective cores, few-cloud regimes in subtropical anticyclonic clouds and stratocumulus over subtropical eastern oceans. ECCM mainly corresponds to clouds along extratropical cyclonic regions. Models of phase 2 of Cloud Feedback Model Intercomparison Project (CFMIP2) well reproduce the THCM, but SACM and ECCM are generally poorly simulated compared to GOCCP. Standardized PCs corresponding to CVS modes are generally captured, whereas original PCs (OPCs) are consistently underestimated (overestimated) for THCM (SACM and ECCM) by CFMIP2 models. The effects of CVS modes on relative cloud radiative forcing (RSCRF/RLCRF) (RSCRF being calculated at the surface while RLCRF at the top of atmosphere) are studied in terms of principal component regression method. Results show that CFMIP2 models tend to overestimate (underestimated or simulate the opposite sign) RSCRF/RLCRF radiative effects (REs) of ECCM (THCM and SACM) in unit global mean OPC compared to observations. These RE biases may be attributed to two factors, one of which is underestimation (overestimation) of low/middle clouds (high clouds) (also known as stronger (weaker) REs in unit low/middle (high) clouds) in simulated global mean cloud profiles, the other is eigenvector biases in CVS modes (especially for SACM and ECCM). It is suggested that much more attention should be paid on improvement of CVS, especially cloud parameterization associated with particular physical processes (e.g. downwelling regimes with the Hadley circulation, extratropical storm tracks and others), which

  13. The South China Sea Thermohaline Structure and Circulation

    National Research Council Canada - National Science Library

    Chu, Peter C; Ma, Binbing; Chen, Yuchun

    2002-01-01

    ...), consisting of 116,019 temperature and 9,617 salinity profiles, during 1968-1984 to investigate the temporal and spatial variabilities of South China Sea thermohaline structures and circulation...

  14. DSaaS: A cloud service for persistent data structures

    CSIR Research Space (South Africa)

    Le Roux, PB

    2016-04-01

    Full Text Available 2CSIR/SU Centre for Artificial Intelligence Research pierrebleroux@gmail.com, kroon@sun.ac.za, whkbester@cs.sun.ac.za Keywords: DaaS, SaaS, Cloud Computing, Persistent Data Structure, Version...

  15. Vulnerability Assessment for Various Types of Cloud Structures

    Directory of Open Access Journals (Sweden)

    Anatoly Valerievich Tsaregorodtsev

    2014-12-01

    Full Text Available Today organizations increasingly consider cloud computing as an alternative way of using information technology. At the same time, the use of different vulnerabilities of infrastructure components, network services and applications remains are the major threat to the cloud. The article proposes a methodology for vulnerability assessment for any type of cloud structures, which will allow to determine the coefficient of counter to possible attacks and to correlate the amount of damage to the total cost of ownership of organization IT-infrastructure.

  16. Using a cloud electrification model to study relationships between lightning activity and cloud microphysical structure

    Directory of Open Access Journals (Sweden)

    M. Formenton

    2013-04-01

    Full Text Available In this study a one-dimensional numerical cloud electrification model, called the Explicit Microphysics Thunderstorm Model (EMTM, is used to find quantitative relationships between the simulated electrical activity and microphysical properties in convective clouds. The model, based on an explicit microphysics scheme coupled to an ice–ice noninductive electrification scheme, allows us to interpret the connection of cloud microphysical structure with charge density distribution within the cloud, and to study the full evolution of the lightning activity (intracloud and cloud-to-ground in relation to different environmental conditions. Thus, we apply the model to a series of different case studies over continental Europe and the Mediterranean region. We first compare, for selected case studies, the simulated lightning activity with the data provided by the ground-based Lightning Detection Network (LINET in order to verify the reliability of the model and its limitations, and to assess its ability to reproduce electrical activity consistent with the observations. Then, using all simulations, we find a correlation between some key microphysical properties and cloud electrification, and derive quantitative relationships relating simulated flash rates to minimum thresholds of graupel mass content and updrafts. Finally, we provide outlooks on the use of such relationships and comments on the future development of this study.

  17. Electric field changes and cloud electrical structure

    Science.gov (United States)

    Krider, E. Philip

    1989-09-01

    The NASA Kennedy Space Center and Cape Canaveral Air Force Station are currently operating a large network of electric field mills to detect lightning and electrified clouds that might present hazards to ground operations, launches, and landings. Here we summarize recent results of least squares analyses of multistation measurements of field changes that were produced by cloud-to-ground (Q model) and intracloud (P model) lightning. The values of the optimum parameters of 113 lightning events that occurred in one small storm on July 11, 1978, and a portion of a large storm on July 6, 1978, are tabulated and graphed. We note that, in both storms, there is considerable symmetry in the direction of P vectors around the Q region and that this pattern is consistent with the classic double-dipole model of thundercloud charges. We note also that the vertical separation of the Q and P regions depends on the storm intensity.

  18. Characterising the Structure of Molecular Clouds

    Science.gov (United States)

    Wong, Graeme Francis

    The Interstellar Medium contains the building blocks of matter in our Galaxy and plays a vital role in the evolution of low mass star formation. The poorly studied molecular clouds of Lupus and Chamaeleon contain ongoing low mass star formation, and are in close proximity to our Solar System. While on the other hand the Carina molecular cloud, poorly observed in radio wavelength, is an active region of star formation and host some of the brightest stars known within our Galaxy. Using tracers like carbon monoxide, atomic neutral carbon, and ammonia, we are able to measure the temperature and density of the gas cloud. This information allows us to understand the initial conditions of the formation of low mass stars. Observations conducted with the 22-m Mopra radio telescope (located at the edge of the Warrumbungle Mountains near Coonabarabran), in the Carbon monoxide (CO) isotopologues 12 CO, 13 CO, C17O, and C18O (1-0) transitions, have mapped the Chamaeleon II cloud, an intermediate mass cloud within the Chamaeleon. Through the sub-arcminute maps, comparisons have been made to previous low resolution (2.5') maps which have been to resolve some of the dense clumps previously identified. Optical depth, column density, and excitation temperature derived from the CO maps, are consistent with previous results. A detailed comparison between identified C18O clumps have shown the different conditions occurring within the clumps, some of which contain or are located near a population of young stellar objects. The Northern region of the Carina Nebular Complex, was observed with NANTEN2, a 4-m radio telescope (located in the Chilean Atacama desert), in the 12CO (4-3) and [C I] 3P1-3P0 emission lines. Previous observations towards this region has either been at poor resolution or had limited coverage. The presented observations, strike a balance between the two; observing in sub-arcmin resolution (0.6') and with an area of 0.9° X 0.5° mapped. Excitation temperature of the 12

  19. Cloud structure and feedback effects in the Carina Nebula Complex

    Science.gov (United States)

    Roccatagliata, Veronica; Preibisch, Thomas; Gaczkowski, Benjamin; Ratzka, Thorsten

    2013-07-01

    The star formation process in large clusters/associations can be strongly influenced by the feedback from high mass stars. Whether the resulting net effect of the feedback is predominantly negative (cloud dispersal) or positive (triggering of star formation due to cloud compression) is still an open question. The Carina Nebula complex (CNC) represents one of the most massive star-forming regions in our Galaxy. We use our Herschel far-infrared observations to study the properties of the clouds over the entire CNC and LABOCA/APEX telescope on the central part of the CNC.Our Herschel maps resolve, for the first time, the small-scale structure of the dense clouds over the entire spatial extent of the CNC. Several particularly interesting regions, including the prominent pillars south of eta Car, are analyzed in detail. Our maps also reveal a peculiar 'wave'-like pattern in the northern part of the Carina Nebula. The total mass of the clouds seen by Herschel in the central region is about 656 000 Msun. We derive the global spectral energy distribution in the mid-infrared to mm wavelength range and derive a total mass of stars, rather than random turbulence. Comparing the cloud mass and the star formation rate derived for the CNC to other Galactic star forming regions suggests that the CNC is forming stars very efficiently. We suggest this to be a consequence of triggered star formation by radiative cloud compression.In our LABOCA sub-mm map, we identify about 600 individual clumps. We analyze and interpret the clump initial mass function (CIMF) as signature of turbulent pre-stellar clouds or star-forming clouds.

  20. The Spectral Signature of Cloud Spatial Structure in Shortwave Radiation

    Science.gov (United States)

    Song, Shi

    In this thesis, we aim to systematically understand the relationship between cloud spatial structure and its radiation imprints, i.e., three-dimensional (3D) cloud effects, with the ultimate goal of deriving accurate radiative energy budget estimates from space, aircraft, or ground-based observations under spatially inhomogeneous conditions. By studying the full spectral information in the measured and modeled shortwave radiation fields of heterogeneous cloud scenes sampled during aircraft field experiments, we find evidence that cloud spatial structure reveals itself through spectral signatures in the associated irradiance and radiance fields in the near-ultraviolet and visible spectral range. The spectral signature of 3D cloud effects in irradiances is apparent as a domain- wide, consistent correlation between the magnitude and spectral dependence of net horizontal photon transport. The physical mechanism of this phenomenon is molecular scattering in conjunction with cloud heterogeneity. A simple parameterization with a single parameter epsilon is developed, which holds for individual pixels and the domain as a whole. We then investigate the impact of scene parameters on the discovered correlation and find that it is upheld for a wide range of scene conditions, although the value of epsilon varies from scene to scene. The spectral signature of 3D cloud effects in radiances manifests itself as a distinct relationship between the magnitude and spectral dependence of reflectance, which cannot be reproduced in the one-dimensional (1D) radiative transfer framework. Using the spectral signature in radiances and irradiances, it is possible to infer information on net horizontal photon transport from spectral radiance perturbations on the basis of pixel populations in sub-domains of a cloud scene. We show that two different biases need to be considered when attempting radiative closure between measured and modeled irradiance fields below inhomogeneous cloud fields: the

  1. The structure of the clouds distributed operating system

    Science.gov (United States)

    Dasgupta, Partha; Leblanc, Richard J., Jr.

    1989-01-01

    A novel system architecture, based on the object model, is the central structuring concept used in the Clouds distributed operating system. This architecture makes Clouds attractive over a wide class of machines and environments. Clouds is a native operating system, designed and implemented at Georgia Tech. and runs on a set of generated purpose computers connected via a local area network. The system architecture of Clouds is composed of a system-wide global set of persistent (long-lived) virtual address spaces, called objects that contain persistent data and code. The object concept is implemented at the operating system level, thus presenting a single level storage view to the user. Lightweight treads carry computational activity through the code stored in the objects. The persistent objects and threads gives rise to a programming environment composed of shared permanent memory, dispensing with the need for hardware-derived concepts such as the file systems and message systems. Though the hardware may be distributed and may have disks and networks, the Clouds provides the applications with a logically centralized system, based on a shared, structured, single level store. The current design of Clouds uses a minimalist philosophy with respect to both the kernel and the operating system. That is, the kernel and the operating system support a bare minimum of functionality. Clouds also adheres to the concept of separation of policy and mechanism. Most low-level operating system services are implemented above the kernel and most high level services are implemented at the user level. From the measured performance of using the kernel mechanisms, we are able to demonstrate that efficient implementations are feasible for the object model on commercially available hardware. Clouds provides a rich environment for conducting research in distributed systems. Some of the topics addressed in this paper include distributed programming environments, consistency of persistent data

  2. GNSS Polarimetric Radio Occultations: Thermodynamical Structure of pecipitating clouds

    Science.gov (United States)

    De La Torre Juarez, M.; Padulles, R.; Cardellach, E.; Turk, F. J.; Tomás, S.; Ao, C. O.

    2016-12-01

    Recent analysis of changes in the hydrological sensitivity during a recent weakening of transient warming show that the representation of the processes linking the condensation of water vapor and the growth and invigoration of convective precipitation produce the greatest disparities between cloud resolving models and current observations of convective cloud systems. The temperature and moisture structure of a cloud environment is the main control on the thermodynamical processes leading to the development of precipitation. The surrounding environmental state acts as the broader sink and source for moisture exchange between clouds and their surroundings. As precipitation develops, water vapor condensation leads to an evolving 3D temperature and moisture structure in and near clouds different from the larger scale structure or the clear-sky environment. Yet there is a gap in existing space-based observations since conventional IR and microwave sounding data are degraded in the presence of clouds and precipitation. GNSS radio occultations (RO) are a low-cost approach to sounding the global atmosphere with high precision, accuracy and vertical resolution inside clouds and across land-ocean boundaries. GNSS provides reliable, sustained signal sources. While current RO provide no direct information on the associated precipitation state, a recently studied concept of Polarimetric RO (PRO) can characterize the moist thermodynamics within precipitating systems. Since precipitation-sized hydrometeors are non-spherically shaped, precipitation induces a cross-polarized component during propagation through clouds, recorded by a dual-channel RO receiver as a differential phase shift. Theoretical analysis performed using coincident TRMM Precipitation Radar and COSMIC observations shows that the polarimetric phase shift is sensitive to the path-integrated rain rate. Based on the expected signal-to-noise ratio (SNR) of simulated PRO measurements, the precision of the differential

  3. CHARACTERISTIC STRUCTURE OF STAR-FORMING CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Philip C., E-mail: pmyers@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-06-20

    This paper presents a new method to diagnose the star-forming potential of a molecular cloud region from the probability density function of its column density (N-pdf). This method provides expressions for the column density and mass profiles of a symmetric filament having the same N-pdf as a filamentary region. The central concentration of this characteristic filament can distinguish regions and can quantify their fertility for star formation. Profiles are calculated for N-pdfs which are pure lognormal, pure power law, or a combination. In relation to models of singular polytropic cylinders, characteristic filaments can be unbound, bound, or collapsing depending on their central concentration. Such filamentary models of the dynamical state of N-pdf gas are more relevant to star-forming regions than are spherical collapse models. The star formation fertility of a bound or collapsing filament is quantified by its mean mass accretion rate when in radial free fall. For a given mass per length, the fertility increases with the filament mean column density and with its initial concentration. In selected regions the fertility of their characteristic filaments increases with the level of star formation.

  4. Late Posthemorrhagic Structural and Functional Changes in Pulmonary Circulation Arteries

    Directory of Open Access Journals (Sweden)

    S. A. Andreyeva

    2008-01-01

    Full Text Available Objective: to reveal the major regularities and mechanisms of morphological changes in the rat pulmonary circulation arteries in the late posthemorrhagic period and to compare them with age-related features of the vessels. Materials and methods: experiments to generate graduated hemorrhagic hypotension with the blood pressure being maintained at 40 mm Hg were carried out on young (5—6-month albino male Wistar rats. Throughout hypotension and 60 days after blood loss, the blood was tested to determine low and average molecular-weight substances by spectrophotometry and the pro- and antioxidative systems by chemiluminescence. Pulmonary circulation arteries were morphologically studied in young animals, rats in the late posthemorrhagic period and old (24—25-month rats. Results. Sixty-minute hemorrhagic hypotension leads to the development of endotoxemia and imbalance of the pro- and antioxidative systems, the signs of which are observed in the late periods (2 months after hypotension. At the same time, the posthemorrhagic period is marked by the significant pulmonary circulation arterial morphological changes comparable with their age-related alterations in old rat. This shows up mainly in the reorganization of a connective tissue component in the vascular wall: the elevated levels of individual collagen fibers, their structural changes, elastic medial membrane destruction and deformity. At the same time, there is a change in the morphometric parameters of vessels at all study stages while their lowered flow capacity is only characteristic for intraorgan arteries. Conclusion: The increased activity of free radical oxidation and endotoxemia may be believed to be one of the causes of morphological changes in pulmonary circulation arteries in the late posthemorrhagic period, which is similar to age-related vascular alterations. Key words: hemorrhagic hypotension, pulmonary circulation arteries, free radical oxidation, endotoxemia, remodeling, late

  5. Molecular Clouds in the North American and Pelican Nebulae: Structures

    Science.gov (United States)

    Zhang, Shaobo; Xu, Ye; Yang, Ji

    2014-03-01

    We present observations of a 4.25 deg2 area toward the North American and Pelican Nebulae in the J = 1-0 transitions of 12CO, 13CO, and C18O. Three molecules show different emission areas with their own distinct structures. These different density tracers reveal several dense clouds with a surface density of over 500 M ⊙ pc-2 and a mean H2 column density of 5.8, 3.4, and 11.9 × 1021 cm-2 for 12CO, 13CO, and C18O, respectively. We obtain a total mass of 5.4 × 104 M ⊙ (12CO), 2.0 × 104 M ⊙ (13CO), and 6.1 × 103 M ⊙ (C18O) in the complex. The distribution of excitation temperature shows two phases of gas: cold gas (~10 K) spreads across the whole cloud; warm gas (>20 K) outlines the edge of the cloud heated by the W80 H II region. The kinetic structure of the cloud indicates an expanding shell surrounding the ionized gas produced by the H II region. There are six discernible regions in the cloud: the Gulf of Mexico, Caribbean Islands and Sea, and Pelican's Beak, Hat, and Neck. The areas of 13CO emission range within 2-10 pc2 with mass of (1-5) × 103 M ⊙ and line width of a few km s-1. The different line properties and signs of star-forming activity indicate they are in different evolutionary stages. Four filamentary structures with complicated velocity features are detected along the dark lane in LDN 935. Furthermore, a total of 611 molecular clumps within the 13CO tracing cloud are identified using the ClumpFind algorithm. The properties of the clumps suggest that most of the clumps are gravitationally bound and at an early stage of evolution with cold and dense molecular gas.

  6. Modelling microphysical and meteorological controls on precipitation and cloud cellular structures in Southeast Pacific stratocumulus

    Directory of Open Access Journals (Sweden)

    H. Wang

    2010-07-01

    Full Text Available Microphysical and meteorological controls on the formation of open and closed cellular structures in the Southeast Pacific are explored using model simulations based on aircraft observations during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx. The effectiveness of factors such as boundary-layer moisture and temperature perturbations, surface heat and moisture fluxes, large-scale vertical motion and solar heating in promoting drizzle and open cell formation for prescribed aerosol number concentrations is explored. For the case considered, drizzle and subsequent open cell formation over a broad region are more sensitive to the observed boundary-layer moisture and temperature perturbations (+0.9 g kg−1; −1 K than to a five-fold decrease in aerosol number concentration (150 vs. 30 mg−1. When embedding the perturbations in closed cells, local drizzle and pockets of open cell (POC formation respond faster to the aerosol reduction than to the moisture increase, but the latter generates stronger and more persistent drizzle. A local negative perturbation in temperature drives a mesoscale circulation that prevents local drizzle formation but promotes it in a remote area where lower-level horizontal transport of moisture is blocked and converges to enhance liquid water path. This represents a potential mechanism for POC formation in the Southeast Pacific stratocumulus region whereby the circulation is triggered by strong precipitation in adjacent broad regions of open cells. A simulation that attempts to mimic the influence of a coastally induced upsidence wave results in an increase in cloud water but this alone is insufficient to initiate drizzle. An increase of surface sensible heat flux is also effective in triggering local drizzle and POC formation.

    Both open and closed cells simulated with observed initial conditions exhibit distinct diurnal variations in cloud properties. A

  7. Precipitation and cloud cellular structures in marine stratocumulus over the southeast pacific: model simulations

    Science.gov (United States)

    Wang, H.; Feingold, G.; Wood, R.; Kazil, J.

    2010-03-01

    Microphysical and meteorological controls on the formation of open and closed cellular structures in the Southeast Pacific are explored using model simulations based on aircraft observations during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx). The effectiveness of factors such as boundary-layer moisture and temperature perturbations, surface heat and moisture fluxes, large-scale vertical motion and solar heating in promoting drizzle and open cell formation for prescribed aerosol number concentrations is explored. For the case considered, drizzle and subsequent open cell formation over a broad region are more sensitive to the observed boundary-layer moisture and temperature perturbations (=0.9 g kg-1; -1 K) than to a five-fold decrease in aerosol number concentrations (150 vs. 30 mg-1). When embedding the perturbations in closed cells, local drizzle and pockets of open cells (POCs) formation respond faster to the aerosol reduction than to the moisture increase, but the latter generate stronger and more persistent drizzle. The local negative perturbation in temperature drives a mesoscale circulation that prevents local drizzle formation but promotes it in a remote area where lower-level horizontal transport of moisture is blocked and converges to enhance liquid water path. This represents a potential mechanism for POC formation in the Southeast Pacific stratocumulus region whereby the circulation is triggered by strong precipitation in adjacent broad regions of open cells. A simulation that attempts to mimic the influence of a coastally induced upsidence wave results in an increase in cloud water but this alone is insufficient to initiate drizzle. An increase of surface sensible heat flux is also effective in triggering local drizzle and POC formation. Both open and closed cells simulated with observed initial conditions exhibit distinct diurnal variations in cloud properties. A stratocumulus deck that breaks up due solely to solar

  8. Modelling microphysical and meteorological controls on precipitation and cloud cellular structures in Southeast Pacific stratocumulus

    Science.gov (United States)

    Wang, H.; Feingold, G.; Wood, R.; Kazil, J.

    2010-07-01

    Microphysical and meteorological controls on the formation of open and closed cellular structures in the Southeast Pacific are explored using model simulations based on aircraft observations during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx). The effectiveness of factors such as boundary-layer moisture and temperature perturbations, surface heat and moisture fluxes, large-scale vertical motion and solar heating in promoting drizzle and open cell formation for prescribed aerosol number concentrations is explored. For the case considered, drizzle and subsequent open cell formation over a broad region are more sensitive to the observed boundary-layer moisture and temperature perturbations (+0.9 g kg-1; -1 K) than to a five-fold decrease in aerosol number concentration (150 vs. 30 mg-1). When embedding the perturbations in closed cells, local drizzle and pockets of open cell (POC) formation respond faster to the aerosol reduction than to the moisture increase, but the latter generates stronger and more persistent drizzle. A local negative perturbation in temperature drives a mesoscale circulation that prevents local drizzle formation but promotes it in a remote area where lower-level horizontal transport of moisture is blocked and converges to enhance liquid water path. This represents a potential mechanism for POC formation in the Southeast Pacific stratocumulus region whereby the circulation is triggered by strong precipitation in adjacent broad regions of open cells. A simulation that attempts to mimic the influence of a coastally induced upsidence wave results in an increase in cloud water but this alone is insufficient to initiate drizzle. An increase of surface sensible heat flux is also effective in triggering local drizzle and POC formation. Both open and closed cells simulated with observed initial conditions exhibit distinct diurnal variations in cloud properties. A stratocumulus deck that breaks up due solely to solar heating

  9. Implementation of a Parallel Protein Structure Alignment Service on Cloud

    Science.gov (United States)

    Hung, Che-Lun; Lin, Yaw-Ling

    2013-01-01

    Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform. PMID:23671842

  10. Implementation of a Parallel Protein Structure Alignment Service on Cloud

    Directory of Open Access Journals (Sweden)

    Che-Lun Hung

    2013-01-01

    Full Text Available Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform.

  11. Structured star formation in the Magellanic inter-Cloud region

    Science.gov (United States)

    Mackey, A. D.; Koposov, S. E.; Da Costa, G. S.; Belokurov, V.; Erkal, D.; Fraternali, F.; McClure-Griffiths, N. M.; Fraser, M.

    2017-12-01

    We use a new contiguous imaging survey conducted using the Dark Energy Camera to investigate the distribution and properties of young stellar populations in the Magellanic inter-Cloud region. These young stars are strongly spatially clustered, forming a narrow chain of low-mass associations that trace the densest HI gas in the Magellanic Bridge and extend, in projection, from the SMC to the outer disk of the LMC. The associations in our survey footprint have ages $\\lesssim 30$ Myr, masses in the range $\\sim 100-1200\\,{\\rm M}_\\odot$, and very diffuse structures with half-light radii of up to $\\sim 100$ pc. The two most populous are strongly elliptical, and aligned to $\\approx 10^{{\\rm o}}$ with the axis joining the centres of the LMC and SMC. These observations strongly suggest that the young inter-Cloud populations formed in situ, likely due to the compression of gas stripped during the most recent close LMC-SMC encounter. The associations lie at distances intermediate between the two Clouds, and we find no evidence for a substantial distance gradient across the imaged area. Finally, we identify a vast shell of young stars surrounding a central association, that is spatially coincident with a low column density bubble in the HI distribution. The properties of this structure are consistent with a scenario where stellar winds and supernova explosions from massive stars in the central cluster swept up the ambient gas into a shell, triggering a new burst of star formation. This is a prime location for studying stellar feedback in a relatively isolated environment.

  12. Thermal structure of intense convective clouds derived from GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Randel, W. J.; Ho, S.-P.

    2011-01-01

    Thermal structure associated with deep convective clouds is investigated using Global Positioning System (GPS) radio occultation measurements. GPS data are insensitive to the presence of clouds, and provide high vertical resolution and high accuracy measurements to identify associated temperature...... behavior. Deep convective systems are identified using International Satellite Cloud Climatology Project (ISCCP) satellite data, and cloud tops are accurately measured using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO) lidar observations; we focus on 53 cases of near-coincident GPS...... occultations with CALIPSO profiles over deep convection. Results show a sharp spike in GPS bending angle highly correlated to the top of the clouds, corresponding to anomalously cold temperatures within the clouds. Above the clouds the temperatures return to background conditions, and there is a strong...

  13. Thermal structure of intense convective clouds derived from GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Randel, W. J.; Ho, S. -P.

    2012-01-01

    Thermal structure associated with deep convective clouds is investigated using Global Positioning System (GPS) radio occultation measurements. GPS data are insensitive to the presence of clouds, and provide high vertical resolution and high accuracy measurements to identify associated temperature...... behavior. Deep convective systems are identified using International Satellite Cloud Climatology Project (ISCCP) satellite data, and cloud tops are accurately measured using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO) lidar observations; we focus on 53 cases of near-coincident GPS...... occultations with CALIPSO profiles over deep convection. Results show a sharp spike in GPS bending angle highly correlated to the top of the clouds, corresponding to anomalously cold temperatures within the clouds. Above the clouds the temperatures return to background conditions, and there is a strong...

  14. The giant molecular cloud Monoceros R2. 1: Shell structure

    Science.gov (United States)

    Xie, Taoling; Goldsmith, Paul F.

    1994-01-01

    We have obtained a 45 sec resolution, Nyquist-sampled map in CO J = 1-0 covering approximately a 3 deg x 3 deg region of the giant molecular cloud Monoceros R2. The map consists of 167,000 spectra observed with the 15 element focal-plane array system on the FCRAO 14 m telescope. The data reveal that the large-scale structure of Mon R2 is dominated by a is approximately 30 pc diameter largely hemispherical shell containing approximately 4 x 10(exp 4) solar mass of molecular material and expanding at approximately 3-4 km s(exp -1) with symmetric axis roughly along the line of sight. The dynamical timescale of the shell is estimated to be approximately 4 x 10(exp 6) yr, which is consistent with the age of main-sequence stars powering the clusters of reflection nebulea in this region. There is no evidence for a redshifted shell on the far side of the interior 'bubble,' which is largely devoid of molecular material. Distortions of the shell are obvious, suggesting inhomogeneity of the cloud and possible presence of a magnetic field prior to its formation. Dense clumps in Mon R2, including the main core and the GGD 12-15 core, appear to be condensations located on the large shell. The reflection nebulea with their illuminating stars as well as embedded IRAS sources suggest that triggered star formation has taken place over a large part of the Mon R2 shell.

  15. Performance of McRAS-AC in the GEOS-5 AGCM: aerosol-cloud-microphysics, precipitation, cloud radiative effects, and circulation

    Directory of Open Access Journals (Sweden)

    Y. C. Sud

    2013-01-01

    Full Text Available A revised version of the Microphysics of clouds with Relaxed Arakawa-Schubert and Aerosol-Cloud interaction scheme (McRAS-AC including, among others, a new ice nucleation parameterization, is implemented in the GEOS-5 AGCM. Various fields from a 10-yr-long integration of the AGCM with McRAS-AC are compared with their counterparts from an integration of the baseline GEOS-5 AGCM, as well as satellite observations. Generally McRAS-AC simulations have smaller biases in cloud fields and cloud radiative effects over most of the regions of the Earth than the baseline GEOS-5 AGCM. Two systematic biases are identified in the McRAS-AC runs: one is underestimation of cloud particle numbers around 40° S–60° S, and one is overestimate of cloud water path during the Northern Hemisphere summer over the Gulf Stream and North Pacific. Sensitivity tests show that these biases potentially originate from biases in the aerosol input. The first bias is largely eliminated in a test run using 50% smaller radius of sea-salt aerosol particles, while the second bias is substantially reduced when interactive aerosol chemistry is turned on. The main weakness of McRAS-AC is the dearth of low-level marine stratus clouds, a probable outcome of lack of explicit dry-convection in the cloud scheme. Nevertheless, McRAS-AC largely simulates realistic clouds and their optical properties that can be improved further with better aerosol input. An assessment using the COSP simulator in a 1-yr integration provides additional perspectives for understanding cloud optical property differences between the baseline and McRAS-AC simulations and biases against satellite data. Overall, McRAS-AC physically couples aerosols, the microphysics and macrophysics of clouds, and their radiative effects and thereby has better potential to be a valuable tool for climate modeling research.

  16. Changes in atmospheric circulation and the Arctic Oscillation preserved within a millennial length reconstruction of summer cloud cover from northern Fennoscandia

    Energy Technology Data Exchange (ETDEWEB)

    Young, Giles H.F.; McCarroll, Danny; Loader, Neil J.; Gagen, Mary H.; Demmler, Joanne C. [Swansea University, Department of Geography, Swansea (United Kingdom); Kirchhefer, Andreas J. [University of Tromsoe, Department of Arctic and Marine Biology, Tromsoe (Norway); Dendrooekologen, Tromsoe (Norway)

    2012-07-15

    Cloud cover currently represents the single greatest source of uncertainty in General Circulation Models. Stable carbon isotope ratios ({delta}{sup 13}C) from tree-rings, in areas of low moisture stress, are likely to be primarily controlled by photosynthetically active radiation (PAR), and therefore should provide a proxy record for cloud cover or sunshine; indeed this association has previously been demonstrated experimentally for Scots pine in Fennoscandia, with sunlight explaining ca 90% of the variance in photosynthesis and temperature only ca 4%. We present a statistically verifiable 1011-year reconstruction of cloud cover from a well replicated, annually-resolved {delta}{sup 13}C record from Forfjord in coastal northwestern Norway. This reconstruction exhibits considerable variability in cloud cover over the past millennium, including extended sunny periods during the cool seventeenth and eighteenth centuries and warm cloudy periods during the eleventh, early fifteenth and twentieth centuries. We find that while a generally positive relationship persists between sunshine and temperature at high-frequency, at lower (multi-decadal) frequencies the relationship is more often a negative one, with cool periods being sunny (most notably the Little Ice Age period from 1600 to 1750 CE) and warm periods more cloudy (e.g. the mediaeval and the twentieth century). We conclude that these long-term changes may be caused by changes in the dominant circulation mode, likely to be associated with the Arctic Oscillation. There is also strong circumstantial evidence that prolonged periods of high summer cloud cover, with low PAR and probably high precipitation, may be in part responsible for major European famines caused by crop failures. (orig.)

  17. View-Angle Dependent AIRS Cloud Radiances: Implication for Tropical Gravity Waves and Anvil Structures

    Science.gov (United States)

    Wu, Dong L.; Gong, Jie

    2011-01-01

    Tropical anvil clouds play important roles in redistributing energy, water in the troposphere. Interacting with dynamics at a wide range of spatial and temporal scales, they can become organized internally and form structured cells, transporting momentum vertically and laterally. To quantify small-scale structures inside cirrus and anvils, we study view-dependence of the cloud-induced radiance from Atmospheric Infrared Sounder (AIRS) using channels near CO2 absorption line. The analysis of tropical eight-year (30degS-30degN, 2003-2010) data suggests that AIRS east-views observe 10% more anvil clouds than westviews during day (13:30 LST), whereas east-views and westviews observe equally amount of clouds at midnight (1 :30 LST). For entire tropical averages, AIRS oblique views observe more anvils than the nadir views, while the opposite is true for deep convective clouds. The dominance of cloudiness in the east-view cannot be explained by AIRS sampling and cloud microphysical differences. Tilted and banded anvil structures from convective scale to mesoscale are likely the cause of the observed view-dependent cloudiness, and gravity wave-cloud interaction is a plausible explanation for the observed structures. Effects of the tilted and banded cloud features need to be further evaluated and taken into account potentially in large-scale model parameterizations because of the vertical momentum transport through cloud wave breaking.

  18. Why do general circulation models overestimate the aerosol cloud lifetime effect? A case study comparing CAM5 and a CRM

    OpenAIRE

    Zhou, C.; J. E. Penner

    2017-01-01

    Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 27 May 2011 at the southern Great Plains (SGP) measurement site established by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program using a single-column version of a global climate model (Community Atmosphe...

  19. Why do general circulation models overestimate the aerosol cloud lifetime effect? A case study comparing CAM5 and a CRM

    Science.gov (United States)

    Zhou, Cheng; Penner, Joyce E.

    2017-01-01

    Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 27 May 2011 at the southern Great Plains (SGP) measurement site established by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program using a single-column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP in CAM is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near the cloud top, resulting in an overall decrease in LWP. Our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.

  20. Vertical structure of orographic precipitating clouds observed over ...

    Indian Academy of Sciences (India)

    Shailendra Kumar

    2017-11-23

    Nov 23, 2017 ... Orography profoundly influences seasonal rainfall amount in several places in south Asia by affecting rain intensity and duration. One of the fundamental questions concerning orographic rainfall is nature of the associated precipitating clouds in the absence of synoptic forcing. It is believed that these clouds.

  1. How chemistry influences cloud structure, star formation, and the IMF

    NARCIS (Netherlands)

    Hocuk, S.; Cazaux, S.; Spaans, M.; Caselli, P.

    2016-01-01

    In the earliest phases of star-forming clouds, stable molecular species, such as CO, are important coolants in the gas phase. Depletion of these molecules on dust surfaces affects the thermal balance of molecular clouds and with that their whole evolution. For the first time, we study the effect of

  2. Three-dimensional radiative effects on cloud variability and structural inhomogeneity as observed by satellites

    Science.gov (United States)

    Dim, J. R.; Takamura, T.; Okada, I.; Nakajima, T. Y.; Takenaka, H.

    2005-10-01

    Geostationary satellites are well suited for radiation budget computations due to their high temporal resolution. In order to validate satellite observations and the radiative properties derived from the GMS-5/SVISSR, we compared its cloud optical depth (COD) with that from the polar orbiting satellite, TERRA/MODIS. It appears that there's a good agreement between both COD sets in thin cloud areas while, major differences (MODIS COD higher) occur in thick cloud regions. Factors affecting accurate observations of clouds by satellites range from the solar and satellites geometries to the sun-cloud scale of interaction. This study focuses on the latter effect, as the solar and satellite zenith angles are relatively low in the area and time selected. The sun-cloud interactions refer here to the three-dimensional radiative effects (e.g. asymmetry, smoothing) due to the horizontal spatial variability of clouds and their structural inhomogeneity. These are analyzed through the IR thermal gradient and small areas' standard deviation (STDEV) respectively. By combining these two parameters, it is possible to reasonably explain the differences in cloud physical and optical properties noticed between both satellites. Results show that, asymmetry and smoothing effects seem to be stronger for SVISSR data than MODIS. At the sides of the clouds SVISSR observed cloud properties are more or less comparable to MODIS data. At the top of the clouds, SVISSR data are systematically lower and do not match MODIS data. SVISSR observations fail to detect cloud inhomogeneity mostly at the top of the clouds, and therefore seem to underestimate the cloud optical properties.

  3. Eastern Mediterranean Sea Spatial and Temporal Variability of Thermohaline Structure and Circulation Identified from Observational (T, S) Profiles

    Science.gov (United States)

    2015-12-01

    MEDITERRANEAN SEA SPATIAL AND TEMPORAL VARIABILITY OF THERMOHALINE STRUCTURE AND CIRCULATION IDENTIFIED FROM OBSERVATIONAL (T, S) PROFILES by Nuri...MEDITERRANEAN SEA SPATIAL AND TEMPORAL VARIABILITY OF THERMOHALINE STRUCTURE AND CIRCULATION IDENTIFIED FROM OBSERVATIONAL (T, S) PROFILES 5. FUNDING NUMBERS...variability of thermohaline structure and circulation were investigated. Surface depth shows high seasonal temperature variability through the year

  4. Learning Bayesian network structure using a cloud-based adaptive immune genetic algorithm

    Science.gov (United States)

    Song, Qin; Lin, Feng; Sun, Wei; Chang, KC

    2011-06-01

    A new BN structure learning method using a cloud-based adaptive immune genetic algorithm (CAIGA) is proposed. Since the probabilities of crossover and mutation in CAIGA are adaptively varied depending on X-conditional cloud generator, it could improve the diversity of the structure population and avoid local optimum. This is due to the stochastic nature and stable tendency of the cloud model. Moreover, offspring structure population is simplified by using immune theory to reduce its computational complexity. The experiment results reveal that this method can be effectively used for BN structure learning.

  5. Simulation of the Bohai Sea Circulation and Thermohaline Structure Using COHERENS Model

    National Research Council Canada - National Science Library

    Obino, Rodrigo

    2002-01-01

    The goals of this work are to simulate the Bohai Sea circulation and thermohaline structure and to Investigate the physical mechanisms using the Coupled Hydrodynamical-Ecological Model for Regional and Shelf Seas (COHERENS...

  6. Vertical structure of orographic precipitating clouds observed over ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 8. Vertical ... The Western Ghats contains the highest fraction of the shallow echo-top clouds followed by the adjacent eastern Arabian Sea, while the Khasi Hills in Meghalaya and Cardamom Mountains in Cambodia contain the least fraction of them.

  7. Modelling atmospheric structure, cloud and their response to CCN in the central Arctic: ASCOS case studies

    Directory of Open Access Journals (Sweden)

    C. E. Birch

    2012-04-01

    Full Text Available Observations made during late summer in the central Arctic Ocean, as part of the Arctic Summer Cloud Ocean Study (ASCOS, are used to evaluate cloud and vertical temperature structure in the Met Office Unified Model (MetUM. The observation period can be split into 5 regimes; the first two regimes had a large number of frontal systems, which were associated with deep cloud. During the remainder of the campaign a layer of low-level cloud occurred, typical of central Arctic summer conditions, along with two periods of greatly reduced cloud cover. The short-range operational NWP forecasts could not accurately reproduce the observed variations in near-surface temperature. A major source of this error was found to be the temperature-dependant surface albedo parameterisation scheme. The model reproduced the low-level cloud layer, though it was too thin, too shallow, and in a boundary-layer that was too frequently well-mixed. The model was also unable to reproduce the observed periods of reduced cloud cover, which were associated with very low cloud condensation nuclei (CCN concentrations (<1 cm−3. As with most global NWP models, the MetUM does not have a prognostic aerosol/cloud scheme but uses a constant CCN concentration of 100 cm−3 over all marine environments. It is therefore unable to represent the low CCN number concentrations and the rapid variations in concentration frequently observed in the central Arctic during late summer. Experiments with a single-column model configuration of the MetUM show that reducing model CCN number concentrations to observed values reduces the amount of cloud, increases the near-surface stability, and improves the representation of both the surface radiation fluxes and the surface temperature. The model is shown to be sensitive to CCN only when number concentrations are less than 10–20 cm−3.

  8. East Sea Spatial and Temporal Variability of Thermohaline Structure and Circulation Identified From Observational (T, S) Profiles

    Science.gov (United States)

    2015-12-01

    VARIABILITY OF THERMOHALINE STRUCTURE AND CIRCULATION IDENTIFIED FROM OBSERVATIONAL (T, S) PROFILES by Hyewon Choi December 2015 Thesis Advisor...the gridded data, seasonal and inter-annual variability of thermohaline structure and circulation of the East Sea were analyzed. Found was a low...unlimited EAST SEA SPATIAL AND TEMPORAL VARIABILITY OF THERMOHALINE STRUCTURE AND CIRCULATION IDENTIFIED FROM OBSERVATIONAL (T, S) PROFILES Hyewon Choi

  9. Cloud vertical structures detected by lidar and its statistical results at HeRO site in Hefei, China

    Science.gov (United States)

    Sun, Lu; Liu, Dong; Wang, Zhien; Wang, Zhenzhu; Wu, Decheng; Bo, Guangyu; Wang, Yingjian

    2014-11-01

    Extensive studies have illustrated the importance of obtaining exact vertical structures of clouds and aerosols for satellite and relevant climate simulations. However, challenging exists, for example, in distinguishing clouds from aerosols at times. Accurate cloud vertical profiles are mainly determined by cloud bases and heights. Based on the ground-based lidar observations in Hefei Radiation Observatory (HeRO), the vertical structures of clouds and aerosols in Hefei area(31.89°N 117.17°E) during May 2012-May 2014 have been investigated. The results show that the cloud fraction in the autumn and winter is less than that in the summer and spring, and is largest in the spring followed by the summer. The cloud fractions in the autumn and winter are comparable. The low cloud accounts for the most portion of the total. Compared with the cloud of the other heights, the high cloud is the least in the winter. Nearly 50% of the total vertical profiles can be detected by lidar as clouds and the proportion of the cloud of different heights seems to be stable annually. The fraction of low cloud is nearly 45%, medium cloud is nearly 35%, and high cloud is nearly 20%. In comparison with the results derived from CALIPSO, it is found that high cloud is usually missed for the ground-based lidar, while low cloud is usually omitted for the satellite observations. A combination of ground-based and space-borne lidar could lead to more reliable results. Further analysis will be performed in future studies.

  10. Jupiter's Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes

    Science.gov (United States)

    Bjoraker, G. L.; Wong, M.H.; de Pater, I.; Adamkovics, M.

    2015-01-01

    Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use: a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and b) pressure- broadened line profiles of deuterated methane (CH3D) at 4.66 meters to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiter's 5-meter spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the deep cloud structure even when upper clouds are present. We find that Hot Spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that Hot Spots in the North and South Equatorial Belts (NEB, SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32 degrees South has an opaque cloud top between 4 and 5 bars. From thermochemical models this must be a water cloud. We measured the variation of the equivalent width of CH3D with latitude for comparison with Jupiter's belt-zone structure. We also constrained the vertical profile of H2O in an SEB Hot Spot and in the STZ. The Hot Spot is very dry for a probability less than 4.5 bars and then follows the H2O profile observed by the Galileo Probe. The STZ has a saturated H2O profile above its cloud top between 4 and 5 bars.

  11. Impact of Cloud Model Microphysics on Passive Microwave Retrievals of Cloud Properties. Part II: Uncertainty in Rain, Hydrometeor Structure, and Latent Heating Retrievals

    Science.gov (United States)

    Seo, Eun-Kyoung; Biggerstaff, Michael I.

    2006-07-01

    The impact of model microphysics on the retrieval of cloud properties based on passive microwave observations was examined using a three-dimensional, nonhydrostatic, adaptive-grid cloud model to simulate a mesoscale convective system over ocean. Two microphysical schemes, based on similar bulk two-class liquid and three-class ice parameterizations, were used to simulate storms with differing amounts of supercooled cloud water typical of both the tropical oceanic environment, in which there is little supercooled cloud water, and midlatitude continental environments in which supercooled cloud water is more plentiful. For convective surface-level rain rates, the uncertainty varied between 20% and 60% depending on which combination of passive and active microwave observations was used in the retrieval. The uncertainty in surface rain rate did not depend on the microphysical scheme or the parameter settings except for retrievals over stratiform regions based on 85-GHz brightness temperatures TB alone or 85-GHz TB and radar reflectivity combined. In contrast, systematic differences in the treatment of the production of cloud water, cloud ice, and snow between the parameterization schemes coupled with the low correlation between those properties and the passive microwave TB examined here led to significant differences in the uncertainty in retrievals of those cloud properties and latent heating. The variability in uncertainty of hydrometeor structure and latent heating associated with the different microphysical parameterizations exceeded the inherent variability in TB cloud property relations. This was true at the finescales of the cloud model as well as at scales consistent with satellite footprints in which the inherent variability in TB cloud property relations are reduced by area averaging.

  12. An Analysis of Titan's Tropical Clouds

    Science.gov (United States)

    Griffith, Caitlin; Penteado, Paulo; Le Mouelic, Stéphane

    2008-09-01

    For the past 8 years, methane clouds have appeared primarily within 30 degrees of the south pole, and in a band centered at 40S latitude, where updrafts are predicted in Titan's circulation. The association of clouds with rising circulation branches is also seen on Earth. But unlike Earth, Titan's circulation is expected to change dramatically with season, with the roughly pole-to-pole circulation flipping such that rising branches occur in the summer hemisphere. Titan is currently approaching equinox, which will occur in 2010. Ground-based and Cassini observations indicate an increasingly greater prevalence of clouds in Titan's tropical atmosphere. These clouds are of interest not only because they are newcomers, and may manifest seasonal variations in Titan's atmosphere, but also because they occur very close to the Huygens landing site, where the methane and temperature profiles have been determined. Here we discuss radiative transfer derivation of the structure of Titan's tropical clouds, detected from VIMS observations, in concert with the structural information of the atmosphere, determined from Huygens observations, to understand the clouds' origins.

  13. Land cover, landscape structure, and West Nile virus circulation in southern France.

    Science.gov (United States)

    Pradier, S; Leblond, A; Durand, B

    2008-04-01

    The transmission of West Nile virus (WNV) is strongly influenced by environmental factors. In France, two endemic areas for WNV have been identified: Camargue and Var. The objective of our study was to test whether landscape characteristics could be associated with the risk of endemic circulation of WNV in these two ecologically different areas. Equine serological data collected during outbreaks in Var (2003) and Camargue (2004) were used. Both areas were marked out in cells of 5 km(2), and data were aggregated for each cell. Sixteen cells, classified as "high" level viral circulation, and 28 cells, classified as "low" level viral circulation were used for the analysis. The Corine Land Cover database (European Environment Agency) was used to evaluate, for each geographic cell, the area covered by 12 land cover classes, as well as the value of 5 landscape metrics (patch richness and density, edge density, the Shannon's diversity index, and interspersion and juxtaposition index (IJI). Multivariate linear generalized regression showed that IJI as well as the surface covered by heterogeneous agricultural areas were significantly higher in high level WNV circulation cells than in low level ones (p = 0.01 and 0.05 respectively). Both variables are indicators of a complex spatial biotope configuration that may favor the co-existence of competent vectors and reservoir hosts: the structure of the landscape thus appeared as a key element in WNV circulation. An internal validation was performed and the model was used to compute a risk map for the French Mediterranean coast. Cells with a probability > 0.8 of having a high level of viral circulation were found near Aix-en-Provence, Beziers, and Perpignan, areas where no serological study has yet been conducted. Equine cases reported in 2006 were all located in the neighborhood of cells having a > 0.8 probability for high WNV circulation status.

  14. STRUCTURAL AND FUNCTIONAL MODEL OF CLOUD ORIENTED LEARNING ENVIRONMENT FOR BACHELORS OF INFORMATICS TRAINING

    Directory of Open Access Journals (Sweden)

    Tetiana A. Vakaliuk

    2017-06-01

    Full Text Available The article summarizes the essence of the category "model". There are presented the main types of models used in educational research: structural, functional, structural and functional model as well as basic requirements for building these types of models. The national experience in building models and designing cloud-based learning environment of educational institutions (both higher and secondary is analyzed. It is presented structural and functional model of cloud-based learning environment for Bachelor of Informatics. Also we describe each component of cloud-based learning environment model for bachelors of informatics training: target, managerial, organizational, content and methodical, communication, technological and productive. It is summarized, that COLE should solve all major tasks that relate to higher education institutions.

  15. Experimental study of critical heat flux enhancement with hypervapotron structure under natural circulation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Fangxin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Chang, Huajian [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Zhao, Yufeng, E-mail: zhaoyufeng@snptc.com.cn [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Zhang, Ming; Gao, Tianfang [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Chen, Peipei [State Power Investment Corporation, Beijing (China)

    2017-05-15

    Highlights: • Natural circulation tests are performed to study the effect of hypervapotron on CHF. • Hypervapotron structure improves CHF under natural circulation conditions. • Visualization data illustrate vapor blanket behavior under subcooled flow conditions. - Abstract: The enhancement of critical heat flux with a hypervapotron structure under natural circulation conditions is investigated in this study. Subcooled flow boiling CHF experiments are performed using smooth and hypervapotron surfaces at different inclination angles under natural circulation conditions. The experimental facility, TESEC (Test of External Vessel Surface with Enhanced Cooling), is designed to conduct CHF experiments in a 30 mm by 61 mm rectangular flow channel with a 200 mm long heated surface along the flow direction. The two-phase flow of subcooled flow boiling on both smooth and hypervapotron heating plates is observed and analyzed by the high-speed visualization technology. The results show that both smooth surface and hypervapotron surface CHF data exhibit a similar trend against inclination angles compared with the CHF results under forced flow condition on the same facility in earlier studies. However, the CHF enhancement of the hypervapotron structure is evidently more significant than the one under forced flow conditions. The experiments also indicate that the natural flow rates are higher with hypervapotron structure. The initiation of CHF is analyzed under transient subcooling and flow rate conditions for both smooth and hypervapotron heating surfaces. An explanation is given for the significant enhancement effect caused by the hypervapotron surface under natural circulation conditions. The visualization data are exhibited to demonstrate the behavior of the vapor blanket at various inclination angles and on different surfaces. The geometric data of the vapor blanket are quantified by an image post-processing method. It is found that the thickness of the vapor blanket

  16. Venus cloud structure and water vapor abundance from Mariner 10 observations

    Science.gov (United States)

    Taylor, F. W.

    1976-01-01

    Observations of the Venus atmosphere with the infrared radiometer on Mariner 10 have been analyzed by Taylor (1975) in terms of the vertical distribution of opacity at wavelengths near 11 microns and 45 microns in the thermal infrared. In this paper, we discuss models of the Venus atmosphere which are consistent with the inferred opacity structure. Either a two-layer cloud structure, or a single cloud deck overlaid by a layer containing approximately 40 precipitable microns of water vapor, would have the required limb-darkening characteristics at the wavelengths of observation.

  17. Ocean circulation model predicts high genetic structure observed in a long-lived pelagic developer.

    Science.gov (United States)

    Sunday, J M; Popovic, I; Palen, W J; Foreman, M G G; Hart, M W

    2014-10-01

    Understanding the movement of genes and individuals across marine seascapes is a long-standing challenge in marine ecology and can inform our understanding of local adaptation, the persistence and movement of populations, and the spatial scale of effective management. Patterns of gene flow in the ocean are often inferred based on population genetic analyses coupled with knowledge of species' dispersive life histories. However, genetic structure is the result of time-integrated processes and may not capture present-day connectivity between populations. Here, we use a high-resolution oceanographic circulation model to predict larval dispersal along the complex coastline of western Canada that includes the transition between two well-studied zoogeographic provinces. We simulate dispersal in a benthic sea star with a 6-10 week pelagic larval phase and test predictions of this model against previously observed genetic structure including a strong phylogeographic break within the zoogeographical transition zone. We also test predictions with new genetic sampling in a site within the phylogeographic break. We find that the coupled genetic and circulation model predicts the high degree of genetic structure observed in this species, despite its long pelagic duration. High genetic structure on this complex coastline can thus be explained through ocean circulation patterns, which tend to retain passive larvae within 20-50 km of their parents, suggesting a necessity for close-knit design of Marine Protected Area networks. © 2014 John Wiley & Sons Ltd.

  18. Structure analysis of interstellar clouds - II. Applying the Delta-variance method to interstellar turbulence

    NARCIS (Netherlands)

    Ossenkopf, V.; Krips, M.; Stutzki, J.

    Context. The Delta-variance analysis is an efficient tool for measuring the structural scaling behaviour of interstellar turbulence in astronomical maps. It has been applied both to simulations of interstellar turbulence and to observed molecular cloud maps. In Paper I we proposed essential

  19. Venus cloud top structure seen by the coordinated Subaru and Akatsuki observations

    Science.gov (United States)

    Sato, T. M.; Sagawa, H.; Kouyama, T.; Taguchi, M.; Lee, Y. J.; Peralta, J.; Takagi, M.; Hashimoto, G. L.; Satoh, T.; Kasaba, Y.; Aoki, S.; Fukuhara, T.; Yamazaki, A.; Imamura, T.; Nakamura, M.

    2017-09-01

    The coordinated Subaru and Akatsuki observations of Venus cloud top were conducted during the period of January 11-14, 2017. By using a large-aperture ground-based telescope, we could confirm that a stationary bow-shaped structure as seen in Akatsuki/LIR images has been fixed in a position above the highland (Maat Mons).

  20. Cloud optics

    CERN Document Server

    Kokhanovsky, A

    2006-01-01

    Clouds affect the climate of the Earth, and they are an important factor in the weather. Therefore, their radiative properties must be understood in great detail. This book summarizes current knowledge on cloud optical properties, for example their ability to absorb, transmit, and reflect light, which depends on the clouds' geometrical and microphysical characteristics such as sizes of droplets and crystals, their shapes, and structures. In addition, problems related to the image transfer through clouds and cloud remote sensing are addressed in this book in great detail. This book can be an im

  1. SUNYA Regional Climate Model Simulations of East Asia Summer Monsoon: Effects of Cloud Vertical Structure on the Surface Energy Balance

    Directory of Open Access Journals (Sweden)

    Wei Gong and Wei-Chyung Wang

    2007-01-01

    -seasonal variation of shortwave CRF, indicating the importance of cloud vertical structure. The strong negative feedbacks from the responses of latent and sensible heat flux tend to limit the effects of low clouds on the surface temperature simulations, as evidently the surface air temperatures bias of only _ in the EASM simulations while the variances of the surface radiative fluxes and heat fluxes are, respectively, in the ranges of 100 - 200 and 60 - 110 Wm-2 when total cloud cover are all near 80%. Therefore, it is also concluded that surface air temperature, precipitation, and total cloud cover, which are three frequently examined variables for climate models, are not sufficient for model evaluation, but instead the cloud vertical structure needs to be examined.

  2. Geographic variations of the bird-borne structural risk of West Nile virus circulation in Europe.

    Directory of Open Access Journals (Sweden)

    Benoit Durand

    Full Text Available The structural risk of West Nile Disease results from the usual functioning of the socio-ecological system, which may favour the introduction of the pathogen, its circulation and the occurrence of disease cases. Its geographic variations result from the local interactions between three components: (i reservoir hosts, (ii vectors, both characterized by their diversity, abundance and competence, (iii and the socio-economic context that impacts the exposure of human to infectious bites. We developed a model of bird-borne structural risk of West Nile Virus (WNV circulation in Europe, and analysed the association between the geographic variations of this risk and the occurrence of WND human cases between 2002 and 2014. A meta-analysis of WNV serosurveys conducted in wild bird populations was performed to elaborate a model of WNV seropositivity in European bird species, considered a proxy for bird exposure to WNV. Several eco-ethological traits of bird species were linked to seropositivity and the statistical model adequately fitted species-specific seropositivity data (area under the ROC curve: 0.85. Combined with species distribution maps, this model allowed deriving geographic variations of the bird-borne structural risk of WNV circulation. The association between this risk, and the occurrence of WND human cases across the European Union was assessed. Geographic risk variations of bird-borne structural risk allowed predicting WND case occurrence in administrative districts of the EU with a sensitivity of 86% (95% CI: 0.79-0.92, and a specificity of 68% (95% CI: 0.66-0.71. Disentangling structural and conjectural health risks is important for public health managers as risk mitigation procedures differ according to risk type. The results obtained show promise for the prevention of WND in Europe. Combined with analyses of vector-borne structural risk, they should allow designing efficient and targeted prevention measures.

  3. THE DEPENDENCE OF PRESTELLAR CORE MASS DISTRIBUTIONS ON THE STRUCTURE OF THE PARENTAL CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Parravano, Antonio [Centro De Fisica Fundamental, Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Sanchez, Nestor [S. D. Astronomia y Geodesia, Fac. CC. Matematicas, Universidad Complutense de Madrid (Spain); Alfaro, Emilio J. [Instituto de Astrofisica de Andalucia (CSIC), Granada (Spain)

    2012-08-01

    The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle and Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloud structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle and Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root N statistical fluctuations, increasing with H.

  4. Numerical modeling of general circulation, thermohaline structure, and residence time in Gorgan Bay, Iran

    Science.gov (United States)

    Ranjbar, Mohammad Hassan; Hadjizadeh Zaker, Nasser

    2017-11-01

    Gorgan Bay is a semi-enclosed basin located in the southeast of the Caspian Sea, Iran. The bay is recognized as a resting place for migratory birds as well as a spawning habitat for native fish. However, apparently, no detailed research on its physical processes has previously been conducted. In this study, a 3D coupled hydrodynamic and solute transport model was used to investigate general circulation, thermohaline structure, and residence time in Gorgan Bay. Model outputs were validated against a set of field observations. Bottom friction and attenuation coefficient of light intensity were tuned in order to achieve optimum agreement with the observations. Results revealed that, due to the interaction between bathymetry and prevailing winds, a barotropic double-gyre circulation, dominating the general circulation, existed during all seasons in Gorgan Bay. Furthermore, temperature and salinity fluctuations in the bay were seasonal, due to the seasonal variability of atmospheric fluxes. Results also indicated that under the prevailing winds, the domain-averaged residence time in Gorgan Bay would be approximately 95 days. The rivers discharging into Gorgan Bay are considered as the main sources of nutrients in the bay. Since their mouths are located in the area with a residence time of over 100 days, Gorgan Bay could be at risk of eutrophication; it is necessary to adopt preventive measures against water quality degradation.

  5. Numerical modeling of general circulation, thermohaline structure, and residence time in Gorgan Bay, Iran

    Science.gov (United States)

    Ranjbar, Mohammad Hassan; Hadjizadeh Zaker, Nasser

    2018-01-01

    Gorgan Bay is a semi-enclosed basin located in the southeast of the Caspian Sea, Iran. The bay is recognized as a resting place for migratory birds as well as a spawning habitat for native fish. However, apparently, no detailed research on its physical processes has previously been conducted. In this study, a 3D coupled hydrodynamic and solute transport model was used to investigate general circulation, thermohaline structure, and residence time in Gorgan Bay. Model outputs were validated against a set of field observations. Bottom friction and attenuation coefficient of light intensity were tuned in order to achieve optimum agreement with the observations. Results revealed that, due to the interaction between bathymetry and prevailing winds, a barotropic double-gyre circulation, dominating the general circulation, existed during all seasons in Gorgan Bay. Furthermore, temperature and salinity fluctuations in the bay were seasonal, due to the seasonal variability of atmospheric fluxes. Results also indicated that under the prevailing winds, the domain-averaged residence time in Gorgan Bay would be approximately 95 days. The rivers discharging into Gorgan Bay are considered as the main sources of nutrients in the bay. Since their mouths are located in the area with a residence time of over 100 days, Gorgan Bay could be at risk of eutrophication; it is necessary to adopt preventive measures against water quality degradation.

  6. Formation and loss of hierarchical structure in two-dimensional MHD simulations of wave-driven turbulence in interstellar clouds

    OpenAIRE

    Elmegreen, Bruce G.

    1999-01-01

    Two dimensional compressible magneto-hydrodynamical (MHD) simulations run for 20 crossing times on a 800x640 grid with two stable thermal states show persistent hierarchical density structures and Kolmogorov turbulent motions in the interaction zone between incoming non-linear Alfven waves. These structures and motions are similar to what are commonly observed in weakly self-gravitating interstellar clouds, suggesting that these clouds get their fractal structures from non-linear magnetic wav...

  7. GPU-based Point Cloud Superpositioning for Structural Comparisons of Protein Binding Sites.

    Science.gov (United States)

    Leinweber, Matthias; Fober, Thomas; Freisleben, Bernd

    2016-11-07

    In this paper, we present a novel approach to solve the labeled point cloud superpositioning problem for performing structural comparisons of protein binding sites. The solution is based on a parallel evolution strategy that operates on large populations and runs on GPU hardware. The proposed evolution strategy reduces the likelihood of getting stuck in a local optimum of the multimodal real-valued optimization problem represented by labeled point cloud superpositioning. The performance of the GPU-based parallel evolution strategy is compared to a previously proposed CPU-based sequential approach for labeled point cloud superpositioning, indicating that the GPU-based parallel evolution strategy leads to qualitatively better results and significantly shorter runtimes, with speed improvements of up to a factor of 1,500 for large populations. Binary classification tests based on the ATP, NADH and FAD protein subsets of CavBase, a database containing putative binding sites, show average classification rate improvements from about 92% (CPU) to 96% (GPU). Further experiments indicate that the proposed GPU-based labeled point cloud superpositioning approach can be superior to traditional protein comparison approaches based on sequence alignments.

  8. The 12- to 20-micron spectrum of Venus - Implications for temperature and cloud structure

    Science.gov (United States)

    Aumann, H. H.; Orton, G. S.

    1979-01-01

    The spectrum of Venus was measured between approximately 500 and 800 kaysers (12 to 20 microns) at a resolution of 3.12 kaysers from the NASA C141 G. P. Kuiper Airborne Observatory on 22 and 24 February 1977. The spectrum clearly shows the detailed structure of CO2 absorption in the vicinity of the nu-2 fundamental band at 667 kaysers. In addition, details of model fitting demonstrate the possibility for a cold and thin haze of sulfuric acid droplets along with an optically opaque cloud top near 250 K. Such clouds represent major differences from other H2SO4 main cloud deck models in the recent literature and may be indicative of changes in the vertical distribution of aerosols on a global scale. The temperatures retrieved for pressures at or below 10 mbar are largely independent of the cloud model assumed and they are some 16 to 20 K warmer than the 1972 NASA model. All retrieved temperatures lie within the range of Mariner 5 and Mariner 10 radio occultation inversion results.

  9. A Cloud Microphysics Model for the Gas Giant Planets

    Science.gov (United States)

    Palotai, Csaba J.; Le Beau, Raymond P.; Shankar, Ramanakumar; Flom, Abigail; Lashley, Jacob; McCabe, Tyler

    2016-10-01

    Recent studies have significantly increased the quality and the number of observed meteorological features on the jovian planets, revealing banded cloud structures and discrete features. Our current understanding of the formation and decay of those clouds also defines the conceptual modes about the underlying atmospheric dynamics. The full interpretation of the new observational data set and the related theories requires modeling these features in a general circulation model (GCM). Here, we present details of our bulk cloud microphysics model that was designed to simulate clouds in the Explicit Planetary Hybrid-Isentropic Coordinate (EPIC) GCM for the jovian planets. The cloud module includes hydrological cycles for each condensable species that consist of interactive vapor, cloud and precipitation phases and it also accounts for latent heating and cooling throughout the transfer processes (Palotai and Dowling, 2008. Icarus, 194, 303-326). Previously, the self-organizing clouds in our simulations successfully reproduced the vertical and horizontal ammonia cloud structure in the vicinity of Jupiter's Great Red Spot and Oval BA (Palotai et al. 2014, Icarus, 232, 141-156). In our recent work, we extended this model to include water clouds on Jupiter and Saturn, ammonia clouds on Saturn, and methane clouds on Uranus and Neptune. Details of our cloud parameterization scheme, our initial results and their comparison with observations will be shown. The latest version of EPIC model is available as open source software from NASA's PDS Atmospheres Node.

  10. Aerosol and cloud vertical structure in New York City: micro-pulse lidar measurements and validation

    Science.gov (United States)

    Hassebo, Ahmed; Ahmed, Sameh; Hassebo, Yasser Y.

    2017-02-01

    We report on the measurements of aerosol and cloud vertical structure in New York City (NYC) using the first polarization Micro pulse Lidar (MPL) located at the City University of New York (CUNY). MPL operation, setup, data collection and correction will be introduced. Preliminary results and comparison analysis between 2015 and 2016 of cloud vertical structure and the Planetary Boundary Layer (PBL) above NYC will be discussed. An investigation analysis of the impact of NYC rush hour pollution on the level of PBL depth will be introduced using the MPL measurements (such as temporal and spatial trends in aerosol and cloud structure). Applications of the MPL tow-polarization channels will be investigated. Potential future studies and collaborations in protecting NYC against environmental disasters by employing more devices along with MPL real-time data will be emphasized. For pedagogical purposes, a lab module was developed to be implemented in the newly developed undergraduate track in Earth System Science and Environmental Engineering (ESE) at LaGuardia Community College of CUNY (LaGCC), more details will be presented.

  11. Atmospheric circulation patterns, cloud-to-ground lightning, and locally intense convective rainfall associated with debris flow initiation in the Dolomite Alps of northeastern Italy

    Science.gov (United States)

    Underwood, S. Jeffrey; Schultz, Michael D.; Berti, Metteo; Gregoretti, Carlo; Simoni, Alessandro; Mote, Thomas L.; Saylor, Anthony M.

    2016-02-01

    The Dolomite Alps of northeastern Italy experience debris flows with great frequency during the summer months. An ample supply of unconsolidated material on steep slopes and a summer season climate regime characterized by recurrent thunderstorms combine to produce an abundance of these destructive hydro-geologic events. In the past, debris flow events have been studied primarily in the context of their geologic and geomorphic characteristics. The atmospheric contribution to these mass-wasting events has been limited to recording rainfall and developing intensity thresholds for debris mobilization. This study aims to expand the examination of atmospheric processes that preceded both locally intense convective rainfall (LICR) and debris flows in the Dolomite region. 500 hPa pressure level plots of geopotential heights were constructed for a period of 3 days prior to debris flow events to gain insight into the synoptic-scale processes which provide an environment conducive to LICR in the Dolomites. Cloud-to-ground (CG) lightning flash data recorded at the meso-scale were incorporated to assess the convective environment proximal to debris flow source regions. Twelve events were analyzed and from this analysis three common synoptic-scale circulation patterns were identified. Evaluation of CG flashes at smaller spatial and temporal scales illustrated that convective processes vary in their production of CF flashes (total number) and the spatial distribution of flashes can also be quite different between events over longer periods. During the 60 min interval immediately preceding debris flow a majority of cases exhibited spatial and temporal colocation of LICR and CG flashes. Also a number of CG flash parameters were found to be significantly correlated to rainfall intensity prior to debris flow initiation.

  12. Multiseasonal Tree Crown Structure Mapping with Point Clouds from OTS Quadrocopter Systems

    Science.gov (United States)

    Hese, S.; Behrendt, F.

    2017-08-01

    OTF (Off The Shelf) quadro copter systems provide a cost effective (below 2000 Euro), flexible and mobile platform for high resolution point cloud mapping. Various studies showed the full potential of these small and flexible platforms. Especially in very tight and complex 3D environments the automatic obstacle avoidance, low copter weight, long flight times and precise maneuvering are important advantages of these small OTS systems in comparison with larger octocopter systems. This study examines the potential of the DJI Phantom 4 pro series and the Phantom 3A series for within-stand and forest tree crown 3D point cloud mapping using both within stand oblique imaging in different altitude levels and data captured from a nadir perspective. On a test site in Brandenburg/Germany a beach crown was selected and measured with 3 different altitude levels in Point Of Interest (POI) mode with oblique data capturing and deriving one nadir mosaic created with 85/85 % overlap using Drone Deploy automatic mapping software. Three different flight campaigns were performed, one in September 2016 (leaf-on), one in March 2017 (leaf-off) and one in May 2017 (leaf-on) to derive point clouds from different crown structure and phenological situations - covering the leaf-on and leafoff status of the tree crown. After height correction, the point clouds where used with GPS geo referencing to calculate voxel based densities on 50 × 10 × 10 cm voxel definitions using a topological network of chessboard image objects in 0,5 m height steps in an object based image processing environment. Comparison between leaf-off and leaf-on status was done on volume pixel definitions comparing the attributed point densities per volume and plotting the resulting values as a function of distance to the crown center. In the leaf-off status SFM (structure from motion) algorithms clearly identified the central stem and also secondary branch systems. While the penetration into the crown

  13. MULTISEASONAL TREE CROWN STRUCTURE MAPPING WITH POINT CLOUDS FROM OTS QUADROCOPTER SYSTEMS

    Directory of Open Access Journals (Sweden)

    S. Hese

    2017-08-01

    Full Text Available OTF (Off The Shelf quadro copter systems provide a cost effective (below 2000 Euro, flexible and mobile platform for high resolution point cloud mapping. Various studies showed the full potential of these small and flexible platforms. Especially in very tight and complex 3D environments the automatic obstacle avoidance, low copter weight, long flight times and precise maneuvering are important advantages of these small OTS systems in comparison with larger octocopter systems. This study examines the potential of the DJI Phantom 4 pro series and the Phantom 3A series for within-stand and forest tree crown 3D point cloud mapping using both within stand oblique imaging in different altitude levels and data captured from a nadir perspective. On a test site in Brandenburg/Germany a beach crown was selected and measured with 3 different altitude levels in Point Of Interest (POI mode with oblique data capturing and deriving one nadir mosaic created with 85/85 % overlap using Drone Deploy automatic mapping software. Three different flight campaigns were performed, one in September 2016 (leaf-on, one in March 2017 (leaf-off and one in May 2017 (leaf-on to derive point clouds from different crown structure and phenological situations – covering the leaf-on and leafoff status of the tree crown. After height correction, the point clouds where used with GPS geo referencing to calculate voxel based densities on 50 × 10 × 10 cm voxel definitions using a topological network of chessboard image objects in 0,5 m height steps in an object based image processing environment. Comparison between leaf-off and leaf-on status was done on volume pixel definitions comparing the attributed point densities per volume and plotting the resulting values as a function of distance to the crown center. In the leaf-off status SFM (structure from motion algorithms clearly identified the central stem and also secondary branch systems. While the penetration into the

  14. Ocean circulation off east Antarctica affects ecosystem structure and sea-ice extent

    Science.gov (United States)

    Nicol, Stephen; Pauly, Tim; Bindoff, Nathan L.; Wright, Simon; Thiele, Deborah; Hosie, Graham W.; Strutton, Peter G.; Woehler, Eric

    2000-08-01

    Sea ice and oceanic boundaries have a dominant effect in structuring Antarctic marine ecosystems. Satellite imagery and historical data have identified the southern boundary of the Antarctic Circumpolar Current as a site of enhanced biological productivity. Meso-scale surveys off the Antarctic peninsula have related the abundances of Antarctic krill (Euphausia superba) and salps (Salpa thompsoni) to inter-annual variations in sea-ice extent. Here we have examined the ecosystem structure and oceanography spanning 3,500km of the east Antarctic coastline, linking the scales of local surveys and global observations. Between 80° and 150°E there is a threefold variation in the extent of annual sea-ice cover, enabling us to examine the regional effects of sea ice and ocean circulation on biological productivity. Phytoplankton, primary productivity, Antarctic krill, whales and seabirds were concentrated where winter sea-ice extent is maximal, whereas salps were located where the sea-ice extent is minimal. We found enhanced biological activity south of the southern boundary of the Antarctic Circumpolar Current rather than in association with it. We propose that along this coastline ocean circulation determines both the sea-ice conditions and the level of biological productivity at all trophic levels.

  15. Turbulence structure of the boundary layer below marine clouds in the SOFIA experiment

    Directory of Open Access Journals (Sweden)

    A. Réchou

    Full Text Available The SOFIA (Surface of the Ocean: Flux and Interaction with the Atmosphere experiment, included in the ASTEX (Atlantic Stratocumulus Transition Experiment field program, was conducted in June 1992 in the Azores region in order to investigate air-sea exchanges, as well as the structure of the atmospheric boundary layer and its capping low-level cloud cover. We present an analysis of the vertical structure of the marine atmospheric boundary layer (MABL, and especially of its turbulence characteristics, deduced from the aircraft missions performed during SOFIA. The meteorological situations were characteristic of a temperate latitude under anticyclonic conditions, i.e., with weak to moderate winds, weak surface sensible heat flux, and broken capping low-altitude cloud cover topped by a strong trade inversion. We show that the mixed layer, driven by the surface fluxes, is decoupled from the above cloud layer. Although weak, the surface buoyancy flux, and the convective velocity scale deduced from it, are relevant for scaling the turbulence moments. The mixed layer then follows the behaviour of a continental convective boundary layer, with the exception of the entrainment process, which is weak in the SOFIA data. These results are confirmed by conditional sampling analysis, which shows that the major turbulence source lies in the buoyant moist updrafts at the surface.

  16. Turbulence structure of the boundary layer below marine clouds in the SOFIA experiment

    Directory of Open Access Journals (Sweden)

    A. Réchou

    1995-10-01

    Full Text Available The SOFIA (Surface of the Ocean: Flux and Interaction with the Atmosphere experiment, included in the ASTEX (Atlantic Stratocumulus Transition Experiment field program, was conducted in June 1992 in the Azores region in order to investigate air-sea exchanges, as well as the structure of the atmospheric boundary layer and its capping low-level cloud cover. We present an analysis of the vertical structure of the marine atmospheric boundary layer (MABL, and especially of its turbulence characteristics, deduced from the aircraft missions performed during SOFIA. The meteorological situations were characteristic of a temperate latitude under anticyclonic conditions, i.e., with weak to moderate winds, weak surface sensible heat flux, and broken capping low-altitude cloud cover topped by a strong trade inversion. We show that the mixed layer, driven by the surface fluxes, is decoupled from the above cloud layer. Although weak, the surface buoyancy flux, and the convective velocity scale deduced from it, are relevant for scaling the turbulence moments. The mixed layer then follows the behaviour of a continental convective boundary layer, with the exception of the entrainment process, which is weak in the SOFIA data. These results are confirmed by conditional sampling analysis, which shows that the major turbulence source lies in the buoyant moist updrafts at the surface.

  17. Change Analysis in Structural Laser Scanning Point Clouds: The Baseline Method

    Directory of Open Access Journals (Sweden)

    Yueqian Shen

    2016-12-01

    Full Text Available A method is introduced for detecting changes from point clouds that avoids registration. For many applications, changes are detected between two scans of the same scene obtained at different times. Traditionally, these scans are aligned to a common coordinate system having the disadvantage that this registration step introduces additional errors. In addition, registration requires stable targets or features. To avoid these issues, we propose a change detection method based on so-called baselines. Baselines connect feature points within one scan. To analyze changes, baselines connecting corresponding points in two scans are compared. As feature points either targets or virtual points corresponding to some reconstructable feature in the scene are used. The new method is implemented on two scans sampling a masonry laboratory building before and after seismic testing, that resulted in damages in the order of several centimeters. The centres of the bricks of the laboratory building are automatically extracted to serve as virtual points. Baselines connecting virtual points and/or target points are extracted and compared with respect to a suitable structural coordinate system. Changes detected from the baseline analysis are compared to a traditional cloud to cloud change analysis demonstrating the potential of the new method for structural analysis.

  18. Modelling the structure of molecular clouds - I. A multiscale energy equipartition

    Science.gov (United States)

    Veltchev, Todor V.; Donkov, Sava; Klessen, Ralf S.

    2016-07-01

    We present a model for describing the general structure of molecular clouds (MCs) at early evolutionary stages in terms of their mass-size relationship. Sizes are defined through threshold levels at which equipartitions between gravitational, turbulent and thermal energy |W| ˜ f(Ekin + Eth) take place, adopting interdependent scaling relations of velocity dispersion and density and assuming a lognormal density distribution at each scale. Variations of the equipartition coefficient 1 ≤ f ≤ 4 allow for modelling of star-forming regions at scales within the size range of typical MCs (≳4 pc). Best fits are obtained for regions with low or no star formation (Pipe, Polaris) as well for such with star-forming activity but with nearly lognormal distribution of column density (Rosette). An additional numerical test of the model suggests its applicability to cloud evolutionary times prior to the formation of first stars.

  19. Cloud prediction of protein structure and function with PredictProtein for Debian.

    Science.gov (United States)

    Kaján, László; Yachdav, Guy; Vicedo, Esmeralda; Steinegger, Martin; Mirdita, Milot; Angermüller, Christof; Böhm, Ariane; Domke, Simon; Ertl, Julia; Mertes, Christian; Reisinger, Eva; Staniewski, Cedric; Rost, Burkhard

    2013-01-01

    We report the release of PredictProtein for the Debian operating system and derivatives, such as Ubuntu, Bio-Linux, and Cloud BioLinux. The PredictProtein suite is available as a standard set of open source Debian packages. The release covers the most popular prediction methods from the Rost Lab, including methods for the prediction of secondary structure and solvent accessibility (profphd), nuclear localization signals (predictnls), and intrinsically disordered regions (norsnet). We also present two case studies that successfully utilize PredictProtein packages for high performance computing in the cloud: the first analyzes protein disorder for whole organisms, and the second analyzes the effect of all possible single sequence variants in protein coding regions of the human genome.

  20. Golgi proteins in circulating human platelets are distributed across non-stacked, scattered structures.

    Science.gov (United States)

    Yadav, Shilpi; Williamson, Jonathan K; Aronova, Maria A; Prince, Andrew A; Pokrovskaya, Irina D; Leapman, Richard D; Storrie, Brian

    2017-06-01

    quantitatively, the Golgi marker proteins failed to map together indicating at the protein level considerable degeneration of the platelet Golgi apparatus relative to the layered stack as seen in the megakaryocyte. In conclusion, we suggest that these results have important implications for organelle structure/function relationships in the mature platelet and the extent to which Golgi apparatus organization is maintained in platelets. Our results suggest that Golgi proteins in circulating platelets are present within a series of scattered, separated structures. As separate elements, selective sets of Golgi enzymes or sugar nucleotides could be secreted during platelet activation. The establishment of the functional importance, if any, of these scattered structures in sequential protein modification in circulating platelets will require further research.

  1. Responses of Cloud Type Distributions to the Large-Scale Dynamical Circulation: Water Budget-Related Dynamical Phase Space and Dynamical Regimes

    Science.gov (United States)

    Wong, Sun; Del Genio, Anthony; Wang, Tao; Kahn, Brian; Fetzer, Eric J.; L'Ecuyer, Tristan S.

    2015-01-01

    Goals: Water budget-related dynamical phase space; Connect large-scale dynamical conditions to atmospheric water budget (including precipitation); Connect atmospheric water budget to cloud type distributions.

  2. The VMC survey - XXVI. Structure of the Small Magellanic Cloud from RR Lyrae stars

    Science.gov (United States)

    Muraveva, T.; Subramanian, S.; Clementini, G.; Cioni, M.-R. L.; Palmer, M.; van Loon, J. Th.; Moretti, M. I.; de Grijs, R.; Molinaro, R.; Ripepi, V.; Marconi, M.; Emerson, J.; Ivanov, V. D.

    2018-01-01

    We present results from the analysis of 2997 fundamental mode RR Lyrae variables located in the Small Magellanic Cloud (SMC). For these objects, near-infrared time series photometry from the VISTA survey of the Magellanic Clouds system (VMC) and visual light curves from the OGLE IV (Optical Gravitational Lensing Experiment IV) survey are available. In this study, the multi-epoch Ks-band VMC photometry was used for the first time to derive intensity-averaged magnitudes of the SMC RR Lyrae stars. We determined individual distances to the RR Lyrae stars from the near-infrared period-absolute magnitude-metallicity (PM_{K_s}Z) relation, which has some advantages in comparison with the visual absolute magnitude-metallicity (MV-[Fe/H]) relation, such as a smaller dependence of the luminosity on interstellar extinction, evolutionary effects and metallicity. The distances we have obtained were used to study the three-dimensional structure of the SMC. The distribution of the SMC RR Lyrae stars is found to be ellipsoidal. The actual line-of-sight depth of the SMC is in the range 1-10 kpc, with an average depth of 4.3 ± 1.0 kpc. We found that RR Lyrae stars in the eastern part of the SMC are affected by interactions of the Magellanic Clouds. However, we do not see a clear bimodality observed for red clump stars, in the distribution of RR Lyrae stars.

  3. A theoretical model for electromagnetic characterization of a spherical dust molecular cloud equilibrium structure

    Science.gov (United States)

    Borah, B.; Karmakar, P. K.

    2015-10-01

    A theoretical model is developed to study the equilibrium electromagnetic properties of a spherically symmetric dust molecular cloud (DMC) structure on the Jeans scales of space and time. It applies a new technique based on the modified Lane-Emden equation (m-LEE) of polytropic configuration. We consider a spatially inhomogeneous distribution of the massive dust grains in hydrodynamic equilibrium in the framework of exact gravito-electrostatic pressure balancing condition. Although weak relative to the massive grains, but non-zero finite, the efficacious inertial roles of the thermal species (electrons and ions) are included. A full portrayal of the lowest-order cloud surface boundary (CSB) and associated significant parameters is numerically presented. The multi-order extremization of the m-LEE solutions specifies the CSB existence at a radial point 8.58 ×1012 m relative to the center. It is shown that the CSB gets biased negatively due to the interplay of plasma-boundary wall interaction (global) and plasma sheath-sheath coupling (local) processes. It acts as an interfacial transition layer coupling the bounded and unbounded scale-dynamics of the cloud. The geometrical patterns of the bi-scale plasma coupling are elaborately analyzed. Application of our technique to neutron stars, other observed DMCs and double layers is stressed together with possible future expansion.

  4. A Modeling Study of the Spatial Structure of Electric Fields Generated by Electrified Clouds with Screening Layers

    Science.gov (United States)

    Biagi, C. J.; Cummins, K. L.

    2015-12-01

    The growing possibility of inexpensive airborne observations of electric fields using one or more small UAVs increases the importance of understanding what can be determined about cloud electrification and associated electric fields outside cloud boundaries. If important information can be inferred from carefully selected flight paths outside of a cloud, then the aircraft and its instrumentation will be much cheaper to develop and much safer to operate. These facts have led us to revisit this long-standing topic using quasi-static, finite-element modeling inside and outside arbitrarily shaped clouds with a variety of internal charge distributions. In particular, we examine the effect of screening layers on electric fields outside of electrified clouds by comparing modeling results for charged clouds having electrical conductivities that are both equal to and lower than the surrounding clear air. The comparisons indicate that the spatial structure of the electric field is approximately the same regardless of the difference in the conductivities between the cloud and clear air and the formation of a screening layer, even for altitude-dependent electrical conductivities. This result is consistent with the numerical modeling results reported by Driscoll et al [1992]. The similarity of the spatial structure of the electric field outside of clouds with and without a screening layer suggests that "bulk" properties related to cloud electrification might be determined using measurements of the electric field at multiple locations in space outside the cloud, particularly at altitude. Finally, for this somewhat simplified model, the reduction in electric field magnitude outside the cloud due to the presence of a screening layer exhibits a simple dependence on the difference in conductivity between the cloud and clear air. These results are particularly relevant for studying clouds that are not producing lightning, such as developing thunderstorms and decaying anvils

  5. AUTOMATED VOXEL MODEL FROM POINT CLOUDS FOR STRUCTURAL ANALYSIS OF CULTURAL HERITAGE

    Directory of Open Access Journals (Sweden)

    G. Bitelli

    2016-06-01

    Full Text Available In the context of cultural heritage, an accurate and comprehensive digital survey of a historical building is today essential in order to measure its geometry in detail for documentation or restoration purposes, for supporting special studies regarding materials and constructive characteristics, and finally for structural analysis. Some proven geomatic techniques, such as photogrammetry and terrestrial laser scanning, are increasingly used to survey buildings with different complexity and dimensions; one typical product is in form of point clouds. We developed a semi-automatic procedure to convert point clouds, acquired from laserscan or digital photogrammetry, to a filled volume model of the whole structure. The filled volume model, in a voxel format, can be useful for further analysis and also for the generation of a Finite Element Model (FEM of the surveyed building. In this paper a new approach is presented with the aim to decrease operator intervention in the workflow and obtain a better description of the structure. In order to achieve this result a voxel model with variable resolution is produced. Different parameters are compared and different steps of the procedure are tested and validated in the case study of the North tower of the San Felice sul Panaro Fortress, a monumental historical building located in San Felice sul Panaro (Modena, Italy that was hit by an earthquake in 2012.

  6. Structural-surface extraction from 3D laser radar point clouds

    Science.gov (United States)

    Lersch, James R.; Webb, Brian N.; West, Karen F.

    2004-09-01

    Structural segmentation of 3-D point-cloud data is an important step in the acquisition, recognition and visual representation of objects from point data. Associating groups of points that are consistent with structural surface elements allows decision making based on object components that are much more meaningful that the points alone. Processing begins by filtering the 3-D point-cloud data to smooth surfaces and remove noise. Filtering is essential for accurate surface-normal estimation. Our point filtering algorithm steps a 3-D box through the data, using an efficient search algorithm that employs priority queues for sequential sorting in x, y, and z. Filtering is based on the computation of a best planar fit at each box location. After filtering, processing continues by again stepping through the data and computing local surface normals at each filtered point. We then compute a Minimum Spanning Tree (MST) with nodes consisting of the filtered points, edges established by proximity, and edge weights set as the Euclidean distance between local surface normals. A modified range tree that is computed on the fly from unsorted point data is used in implementing the MST. We then employ a novel procedure to determine the edges that should be broken, leaving subgraphs that represent structural surfaces. These surfaces have been used for visual display of 3-D LADAR data, extraction of surfaces for automatic detection of buildings, and differentiation between man-made and natural objects.

  7. Visualization of boiling flow structure in a natural circulation boiling loop

    Energy Technology Data Exchange (ETDEWEB)

    Karmakar, Arnab; Paruya, Swapan, E-mail: swapanparuya@gmail.com

    2015-04-15

    Highlights: • Vapor–liquid jet flows in natural circulation boiling loop. • Flow patterns and their transitions during geysering instability in the loop. • Evaluation of the efficiency of the needle probe in detecting the vapor–liquid and boiling flow structure. - Abstract: The present study reports vapor–liquid jet flows, flow patterns and their transitions during geysering instability in a natural circulation boiling loop under varied inlet subcooling ΔT{sub sub} (30–50 °C) and heater power Q (4–5 kW). Video imaging, voltage measurement using impedance needle probe, measurement of local pressure and loop flow rate have been carried out in this study. Power spectra of the voltage, the pressure and the flow rate reveal that at a high ΔT{sub sub} the jet flows have long period (21.36–86.95 s) and they are very irregular with a number of harmonics. The period decreases and becomes regular with a decrease of ΔT{sub sub}. The periods of the jet flows at ΔT{sub sub} = 30–50 °C and Q = 4 kW are in close agreement with those obtained from the video imaging. The probe was found to be more efficient than the pressure sensor in detecting the jet flows within an uncertainty of 9.5% and in detecting a variety of bubble classes. Both the imaging and the probe consistently identify the bubbly flow/vapor-mushrooms transition or the bubbly flow/slug flow transition on decreasing ΔT{sub sub} or on increasing Q.

  8. Secondary flow structure in a model curved artery: 3D morphology and circulation budget analysis

    Science.gov (United States)

    Bulusu, Kartik V.; Plesniak, Michael W.

    2015-11-01

    In this study, we examined the rate of change of circulation within control regions encompassing the large-scale vortical structures associated with secondary flows, i.e. deformed Dean-, Lyne- and Wall-type (D-L-W) vortices at planar cross-sections in a 180° curved artery model (curvature ratio, 1/7). Magnetic resonance velocimetry (MRV) and particle image velocimetry (PIV) experiments were performed independently, under the same physiological inflow conditions (Womersley number, 4.2) and using Newtonian blood-analog fluids. The MRV-technique performed at Stanford University produced phase-averaged, three-dimensional velocity fields. Secondary flow field comparisons of MRV-data to PIV-data at various cross-sectional planes and inflow phases were made. A wavelet-decomposition-based approach was implemented to characterize various secondary flow morphologies. We hypothesize that the persistence and decay of arterial secondary flow vortices is intrinsically related to the influence of the out-of-plane flow, tilting, in-plane convection and diffusion-related factors within the control regions. Evaluation of these factors will elucidate secondary flow structures in arterial hemodynamics. Supported by the National Science Foundation under Grant Number CBET-0828903, and GW Center for Biomimetics and Bioinspired Engineering (COBRE). The MRV data were acquired at Stanford University in collaboration with Christopher Elkins and John Eaton.

  9. Cloud-scale ISM Structure and Star Formation in M51

    Science.gov (United States)

    Leroy, Adam K.; Schinnerer, Eva; Hughes, Annie; Kruijssen, J. M. Diederik; Meidt, Sharon; Schruba, Andreas; Sun, Jiayi; Bigiel, Frank; Aniano, Gonzalo; Blanc, Guillermo A.; Bolatto, Alberto; Chevance, Mélanie; Colombo, Dario; Gallagher, Molly; Garcia-Burillo, Santiago; Kramer, Carsten; Querejeta, Miguel; Pety, Jerome; Thompson, Todd A.; Usero, Antonio

    2017-09-01

    We compare the structure of molecular gas at 40 pc resolution to the ability of gas to form stars across the disk of the spiral galaxy M51. We break the PAWS survey into 370 pc and 1.1 kpc resolution elements, and within each we estimate the molecular gas depletion time ({τ }{Dep}{mol}), the star-formation efficiency per free-fall time ({ɛ }{ff}), and the mass-weighted cloud-scale (40 pc) properties of the molecular gas: surface density, Σ, line width, σ, and b\\equiv {{Σ }}/{σ }2\\propto {α }{vir}-1, a parameter that traces the boundedness of the gas. We show that the cloud-scale surface density appears to be a reasonable proxy for mean volume density. Applying this, we find a typical star-formation efficiency per free-fall time, {ɛ }{ff}( )˜ 0.3 % {--}0.36 % , lower than adopted in many models and found for local clouds. Furthermore, the efficiency per free-fall time anti-correlates with both Σ and σ, in some tension with turbulent star-formation models. The best predictor of the rate of star formation per unit gas mass in our analysis is b\\equiv {{Σ }}/{σ }2, tracing the strength of self-gravity, with {τ }{Dep}{mol}\\propto {b}-0.9. The sense of the correlation is that gas with stronger self-gravity (higher b) forms stars at a higher rate (low {τ }{Dep}{mol}). The different regions of the galaxy mostly overlap in {τ }{Dep}{mol} as a function of b, so that low b explains the surprisingly high {τ }{Dep}{mol} found toward the inner spiral arms found by Meidt et al. (2013).

  10. Screaming Clouds

    Science.gov (United States)

    Fikke, Svein; Egill Kristjánsson, Jón; Nordli, Øyvind

    2017-04-01

    "Mother-of-pearl clouds" appear irregularly in the winter stratosphere at high northern latitudes, about 20-30 km above the surface of the Earth. The size range of the cloud particles is near that of visible light, which explains their extraordinary beautiful colours. We argue that the Norwegian painter Edvard Munch could well have been terrified when the sky all of a sudden turned "bloodish red" after sunset, when darkness was expected. Hence, there is a high probability that it was an event of mother-of-pearl clouds which was the background for Munch's experience in nature, and for his iconic Scream. Currently, the leading hypothesis for explaining the dramatic colours of the sky in Munch's famous painting is that the artist was captivated by colourful sunsets following the enormous Krakatoa eruption in 1883. After carefully considering the historical accounts of some of Munch's contemporaries, especially the physicist Carl Störmer, we suggest an alternative hypothesis, namely that Munch was inspired by spectacular occurrences of mother-of-pearl clouds. Such clouds, which have a wave-like structure akin to that seen in the Scream were first observed and described only a few years before the first version of this motive was released in 1892. Unlike clouds related to conventional weather systems in the troposphere, mother-of-pearl clouds appear in the stratosphere, where significantly different physical conditions prevail. This result in droplet sizes within the range of visible light, creating the spectacular colour patterns these clouds are famous for. Carl Störmer observed such clouds, and described them in minute details at the age of 16, but already with a profound interest in science. He later noted that "..these mother-of-pearl clouds was a vision of indescribable beauty!" The authors find it logical that the same vision could appear scaring in the sensible mind of a young artist unknown to such phenomena.

  11. Recombination in circulating Human enterovirus B: independent evolution of structural and non-structural genome regions.

    Science.gov (United States)

    Lukashev, Alexander N; Lashkevich, Vasilii A; Ivanova, Olga E; Koroleva, Galina A; Hinkkanen, Ari E; Ilonen, Jorma

    2005-12-01

    The complete nucleotide sequences of eight Human enterovirus B (HEV-B) strains were determined, representing five serotypes, E6, E7, E11, CVB3 and CVB5, which were isolated in the former Soviet Union between 1998 and 2002. All strains were mosaic recombinants and only the VP2-VP3-VP1 genome region was similar to that of the corresponding prototype HEV-B strains. In seven of the eight strains studied, the 2C-3D genome region was most similar to the prototype E30, EV74 and EV75 strains, whilst the remaining strain was most similar to the prototype E1 and E9 strains in the non-structural protein genome region. Most viruses also bore marks of additional recombination events in this part of the genome. In the 5' non-translated region, all strains were more similar to the prototype E9 than to other enteroviruses. In most cases, recombination mapped to the VP4 and 2ABC genome regions. This, together with the star-like topology of the phylogenetic trees for these genome regions, identified these genome parts as recombination hot spots. These findings further support the concept of independent evolution of enterovirus genome fragments and indicate a requirement for more advanced typing approaches. A range of available phylogenetic methods was also compared for efficient detection of recombination in enteroviruses.

  12. Cloud Structure of Three Galactic Infrared Dark Star-forming Regions from Combining Ground- and Space-based Bolometric Observations

    Science.gov (United States)

    Lin, Yuxin; Liu, Hauyu Baobab; Dale, James E.; Li, Di; Busquet, Gemma; Zhang, Zhi-Yu; Ginsburg, Adam; Galván-Madrid, Roberto; Kovács, Attila; Koch, Eric; Qian, Lei; Wang, Ke; Longmore, Steve; Chen, Huei-Ru; Walker, Daniel

    2017-05-01

    We have modified the iterative procedure introduced by Lin et al., to systematically combine the submillimeter images taken from ground-based (e.g., CSO, JCMT, APEX) and space (e.g., Herschel, Planck) telescopes. We applied the updated procedure to observations of three well-studied Infrared Dark Clouds (IRDCs): G11.11-0.12, G14.225-0.506, and G28.34+0.06, and then performed single-component, modified blackbody fits to each pixel to derive ˜10″ resolution dust temperature and column density maps. The derived column density maps show that these three IRDCs exhibit complex filamentary structures embedded with rich clumps/cores. We compared the column density probability distribution functions (N-PDFs) and two-point correlation (2PT) functions of the column density field between these IRDCs with several OB-cluster-forming regions. Based on the observed correlation between the luminosity-to-mass ratio and the power-law index of the N-PDF, and complementary hydrodynamical simulations for a 104 {M}⊙ molecular cloud, we hypothesize that cloud evolution can be better characterized by the evolution of the (column) density distribution function and the relative power of dense structures as a function of spatial scales, rather than merely based on the presence of star-forming activity. An important component of our approach is to provide a model-independent quantification of cloud evolution. Based on the small analyzed sample, we propose four evolutionary stages, namely, cloud integration, stellar assembly, cloud pre-dispersal, and dispersed cloud. The initial cloud integration stage and the final dispersed cloud stage may be distinguished from the two intermediate stages by a steeper than -4 power-law index of the N-PDF. The cloud integration stage and the subsequent stellar assembly stage are further distinguished from each other by the larger luminosity-to-mass ratio (>40 {L}⊙ /{M}⊙ ) of the latter. A future large survey of molecular clouds with high angular

  13. Cloud top structure of Venus revealed by Subaru/COMICS mid-infrared images

    Science.gov (United States)

    Sato, T. M.; Sagawa, H.; Kouyama, T.; Mitsuyama, K.; Satoh, T.; Ohtsuki, S.; Ueno, M.; Kasaba, Y.; Nakamura, M.; Imamura, T.

    2014-11-01

    We have investigated the cloud top structure of Venus by analyzing ground-based images taken at the mid-infrared wavelengths of 8.66 μm and 11.34 μm. Venus at a solar phase angle of ∼90°, with the morning terminator in view, was observed by the Cooled Mid-Infrared Camera and Spectrometer (COMICS), mounted on the 8.2-m Subaru Telescope, during the period October 25-29, 2007. The disk-averaged brightness temperatures for the observation period are ∼230 K and ∼238 K at 8.66 μm and 11.34 μm, respectively. The obtained images with good signal-to-noise ratio and with high spatial resolution (∼200 km at the sub-observer point) provide several important findings. First, we present observational evidence, for the first time, of the possibility that the westward rotation of the polar features (the hot polar spots and the surrounding cold collars) is synchronized between the northern and southern hemispheres. Second, after high-pass filtering, the images reveal that streaks and mottled and patchy patterns are distributed over the entire disk, with typical amplitudes of ∼0.5 K, and vary from day to day. The detected features, some of which are similar to those seen in past UV images, result from inhomogeneities of both the temperature and the cloud top altitude. Third, the equatorial center-to-limb variations of brightness temperatures have a systematic day-night asymmetry, except those on October 25, that the dayside brightness temperatures are higher than the nightside brightness temperatures by 0-4 K under the same viewing geometry. Such asymmetry would be caused by the propagation of the migrating semidiurnal tide. Finally, by applying the lapse rates deduced from previous studies, we demonstrate that the equatorial center-to-limb curves in the two spectral channels give access to two parameters: the cloud scale height H and the cloud top altitude zc. The acceptable models for data on October 25 are obtained at H = 2.4-4.3 km and zc = 66-69 km; this supports

  14. A theoretical model for electromagnetic characterization of a spherical dust molecular cloud equilibrium structure

    CERN Document Server

    Borah, B

    2014-01-01

    A theoretical model is developed to study the equilibrium electromagnetic properties of a spherically symmetric dust molecular cloud (DMC) structure on the Jeans scale. It applies a technique based on the modified Lane-Emden equation (m-LEE). It considers an inhomogeneous distribution of dust grains in field-free hydrodynamic equilibrium configuration within the framework of exact gravito-electrostatic pressure balancing condition. Although weak relative to the massive grains, but finite, the efficacious inertial roles of the thermal species (electrons and ions) are included. A full portrayal of the lowest-order cloud surface boundary (CSB) and associated parameter signatures on the Jeans scale is made numerically for the first time. The multi-order extremization of the m-LEE solutions specifies the CSB at a radial point m relative to the centre. It gets biased negatively due to the interplay of plasma-boundary wall interaction (global) and plasma sheath-sheath coupling (local) processes. The CSB acts as an i...

  15. A Fragment-Cloud Model for Breakup of Asteroids with Varied Internal Structures

    Science.gov (United States)

    Wheeler, Lorien; Mathias, Donovan; Stokan, Ed; Brown, Peter

    2016-01-01

    As an asteroid descends toward Earth, it deposits energy in the atmosphere through aerodynamic drag and ablation. Asteroid impact risk assessments rely on energy deposition estimates to predict blast overpressures and ground damage that may result from an airburst, such as the one that occurred over Chelyabinsk, Russia in 2013. The rates and altitudes at which energy is deposited along the entry trajectory depend upon how the bolide fragments, which in turn depends upon its internal structure and composition. In this work, we have developed an analytic asteroid fragmentation model to assess the atmospheric energy deposition of asteroids with a range of structures and compositions. The modeling approach combines successive fragmentation of larger independent pieces with aggregate debris clouds released with each fragmentation event. The model can vary the number and masses of fragments produced, the amount of mass released as debris clouds, the size-strength scaling used to increase the robustness of smaller fragments, and other parameters. The initial asteroid body can be seeded with a distribution of independent fragment sizes amid a remaining debris mass to represent loose rubble pile conglomerations, can be given an outer regolith later, or can be defined as a coherent or fractured monolith. This approach enables the model to represent a range of breakup behaviors and reproduce detailed energy deposition features such as multiple flares due to successive burst events, high-altitude regolith blow-off, or initial disruption of rubble piles followed by more energetic breakup of the constituent boulders. These capabilities provide a means to investigate sensitivities of ground damage to potential variations in asteroid structure.

  16. Circadian Time Structure of Circulating Plasma Lipid Components in Healthy Indians of Different Age Groups.

    Science.gov (United States)

    Singh, Ranjana; Sharma, Sumita; Singh, Raj K; Cornelissen, Germaine

    2016-04-01

    The circadian rhythm of human circulating lipid components was studied under nearnormal tropical conditions in 162 healthy volunteers (103 males and 59 females; 7 to 75 years of age). They followed a diurnal activity from about 06:00 to about 22:00 and nocturnal rest. These volunteers were divided into four groups: Group A (7-20 years), Group B (21-40 years), Group C (41-60 years) and Group D (61-75 years), comprising 42, 60, 35 and 25 participants, respectively. A marked circadian rhythm was demonstrated for each studied variable in each group by population-mean cosinor analysis (almost invariably p groups by parameter tests and regressed as a function of age, separately for males and females. A second-order polynomial characterized the MESOR of HDL cholesterol, phospholipids and total lipids, as well as the 24-h amplitude of total cholesterol and phospholipids. The 24-h amplitude of total lipids decreased linearly with age. The 24-h acrophase of the oldest age group (Group D) was advanced in the case of total cholesterol, HDL cholesterol, and total lipids, whereas that of phospholipids was delayed. Mapping the circadian rhythm (an important component of the broader time structure or chronome, which includes a. o., trends with age and extra-circadian components) of lipid components is needed to explore their role in the aging process in health.

  17. A global map of the atmospheric circulation and thermal structure for an ultrahot exoplanet

    Science.gov (United States)

    Evans, Tom; Sing, David; Tiffany, Kataria; Nikolov, Nikolay; Deming, Drake; Lewis, Nikole; Wakeford, Hannah; Marley, Mark; Gibson, Neale; Spake, Jessica; Drummond, Benjamin; Barstow, Joanna; Henry, Gregory; Mayne, Nathan

    2017-10-01

    WASP-121b is one of the standout exoplanets available for atmospheric characterization, both in transmission and emission, due to its large radius (1.8 Jupiter radii), high temperature ( 2700K), and bright host star (H=9.4mag). Recent HST/WFC3 eclipse observations made by our group have revealed the 1.4 micron water band in emission on the dayside hemisphere of WASP-121b, implying that the atmosphere has a thermal inversion. This new development, combined with the favorable system properties, makes it clear that WASP-121b is an ideal target to empirically probe the variation of thermal inversions with longitude. To do this, we propose phase curve measurements of WASP-121b over a full orbital period in each of the Spitzer/IRAC channels. Given the measurement precision demonstrated by our previous IRAC observations of WASP-121b, we anticipate this dataset will be one of the highest signal-to-noise phase curve measurements for an exoplanet to date. It will provide a powerful complement to full-orbit phase curves that have recently been confirmed for shorter wavelengths, to be made by HST/WFC3 and JWST/NIRISS. Combined, this Spitzer+HST+JWST phase curve dataset will produce an unprecedented map of the longitudinally-resolved thermal structure, chemical composition and global circulation of an exoplanet atmosphere, and, in particular, give crucial new insight into the long-standing mystery of thermal inversions in strongly-irradiated gas giants.

  18. Effects of karst and geologic structure on the circulation of water and permeability in carbonate aquifers

    Science.gov (United States)

    Stringfield, V.T.; Rapp, J.R.; Anders, R.B.

    1979-01-01

    The results of the natural processes caused by solution and leaching of limestone, dolomite, gypsum, salt and other soluble rocks, is known as karst. Development of karst is commonly known as karstification, which may have a pronounced effect on the topography, hydrology and environment, especially where such karst features as sinkholes and vertical solution shafts extend below the land surface and intersect lateral solution passages, cavities, caverns and other karst features in carbonate rocks. Karst features may be divided into two groups: (1) surficial features that do not extend far below the surface; and (2) karst features such as sinkholes that extend below the surface and affect the circulation of water below. The permeability of the most productive carbonate aquifers is due chiefly to enlargement of fractures and other openings by circulation of water. Important controlling factors responsible for the development of karst and permeability in carbonate aquifers include: (1) climate, topography, and presence of soluble rocks; (2) geologic structure; (3) nature of underground circulation; and (4) base level. Another important factor is the condition of the surface of the carbonate rocks at the time they are exposed to meteoric water. A carbonate rock surface, with soil or relatively permeable, less soluble cover, is more favorable for initiation of karstification and solution than bare rocks. Water percolates downward through the cover to the underlying carbonate rocks instead of running off on the surface. Also, the water becomes more corrosive as it percolates through the permeable cover to the underlying carbonate rocks. Where there is no cover or the cover has been removed, the carbonate rocks become case hardened and resistant to erosion. However, in regions underlain not only by carbonate rocks but also by beds of anhydrite, gypsum and salt, such as the Hueco Plateau in southeastern New Mexico, subsurface solution may occur where water without natural

  19. Evaluating the role of groundwater in circulation and thermal structure within a deep inland lake

    Science.gov (United States)

    Safaie, Ammar; Litchman, Elena; Phanikumar, Mantha S.

    2017-10-01

    Groundwater levels in many aquifers are declining due to anthropogenic activities such as increased high-capacity pumping for agriculture or climate-related decreases in natural recharge rates or a combination of factors. At the same time, lake surface temperatures are on the rise in response to a warming climate. As a first step toward evaluating the impacts of declining groundwater levels and warming lake surface temperatures on coupled biophysical processes in lakes, we evaluate the role played by groundwater in circulation and thermal structure within Gull Lake, a deep, dimictic, inland lake in Michigan, USA. A three-dimensional, unstructured grid hydrodynamic model was developed to investigate physical processes in the lake during the summer stratified period. We used high-resolution Acoustic Doppler Current Profiler observations of currents and lake levels as well as temperature data from thermistor chains to test the numerical models. The quality of meteorological forcing fields reconstructed using data from a network of weather stations surrounding the lake were assessed using outputs from a mesoscale numerical weather forecasting model, Weather Research and Forecasting (WRF) and vice versa. Model descriptions of internal heating due to the penetration of shortwave radiation as well as turbulent mixing within the water column were improved using in situ observations. Our results indicate that meteorological forcing fields, carefully reconstructed using WRF model outputs, can provide results comparable to those obtained from a network of weather station data, an important conclusion for modeling lakes in remote parts of the world. The observed low hypolimnetic temperatures could only be explained by taking the groundwater contribution into account and water column temperatures will increase by 8 °C or more on average if the groundwater contribution is absent. These results have implications for a number of key biophysical processes that control the

  20. Revised cloud storage structure for light-weight data archiving in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Hideya, E-mail: nakanisi@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Masaki, Ohsuna; Mamoru, Kojima; Setsuo, Imazu; Miki, Nonomura; Masahiko, Emoto; Takashi, Yamamoto; Yoshio, Nagayama [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Takahisa, Ozeki [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Noriyoshi, Nakajima; Katsumi, Ida; Osamu, Kaneko [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan)

    2014-05-15

    Highlights: • GlusterFS is adopted to replace IznaStor cloud storage in LHD. • GlusterFS and OpenStack/Swift are compared. • SSD-based GlusterFS distributed replicated volume is separated from normal RAID storage. • LABCOM system changes the storage technology every 4 years for cost efficiency. - Abstract: The LHD data archiving system has newly selected GlusterFS distributed filesystem for the replacement of the present cloud storage software named “IznaStor/dSS”. Even though the prior software provided many favorable functionalities of hot plug and play node insertion, internal auto-replication of data files, and symmetric load balancing between all member nodes, it revealed a poor feature in recovering from an accidental malfunction of a storage node. Once a failure happened, the recovering process usually took at least several days or sometimes more than a week with a heavy cpu load. In some cases they fell into the so-called “split-brain” or “amnesia” condition, not to get recovered from it. Since the recovery time tightly depends on the capacity size of the fault node, individual HDD management is more desirable than large volumes of HDD arrays. In addition, the dynamic mutual awareness of data location information may be removed if some other static data distribution method can be applied. In this study, the candidate middleware of “OpenStack/Swift” and “GlusterFS” has been tested by using the real mass of LHD data for more than half a year, and finally GlusterFS has been selected to replace the present IznaStor. It has implemented very limited functionalities of cloud storage but a simplified RAID10-like structure, which may consequently provide lighter-weight read/write ability. Since the LABCOM data system is implemented to be independent of the storage structure, it is easy to plug off the IznaStor and on the new GlusterFS. The effective I/O speed is also confirmed to be on the same level as the estimated one from raw

  1. Changes in forest structure and composition after fire in tropical montane cloud forests near the Andean treeline

    NARCIS (Netherlands)

    Oliveras Menor, I.; Malhi, Y.; Salinas, N.; Huaman, V.; Urquiaga-Flores, E.; Kala-Mamani, J.; Quintano-Loaiza, J.A.; Cuba-Torres, I.; Lizarraga-Morales, N.; Roman-Cuesta, R.M.

    2014-01-01

    Background: In tropical montane cloud forests (TMCFs) fires can be a frequent source of disturbance near the treeline. Aims: To identify how forest structure and tree species composition change in response to fire and to identify fire-tolerant species, and determine which traits or characteristics

  2. Modeling of cloud liquid water structure and the associated radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Wiscombe, W. [Goddard Space Flight Center, NASA, Greenbelt, MD (United States)

    1995-09-01

    A 0.5{degrees}C global warming should result from every 1% decrease in global albedo. It is therefore necessary to accurately quantify the cloud radiation interaction. Most radiation calculations are one-dimensional and attempt to deal with horizontal variability using a horizontally-averaged optical depth. This study presents detailed scale-by-scale statistical analysis of the cloud liquid water content (LWC) field. The aim is to use this information to provide radiation calculations with more adequate information about inhomogeneity in cloud fields. The radiation community needs to carefully specify the minimum requirements which GCMs must include in order to treat cloud-radiation interaction correctly. This may involve GCMs predicting not only mean cloud quantities but also cloud variability. 3 figs.

  3. Herschel far-infrared observations of the Carina Nebula complex. III. Detailed cloud structure and feedback effects

    Science.gov (United States)

    Roccatagliata, V.; Preibisch, T.; Ratzka, T.; Gaczkowski, B.

    2013-06-01

    Context. The star formation process in large clusters/associations can be strongly influenced by the feedback from high-mass stars. Whether the resulting net effect of the feedback is predominantly negative (cloud dispersal) or positive (triggering of star formation due to cloud compression) is still an open question. Aims: The Carina Nebula complex (CNC) represents one of the most massive star-forming regions in our Galaxy. We use our Herschel far-infrared observations to study the properties of the clouds over the entire area of the CNC (with a diameter of ≈3.2°, which corresponds to ≈125 pc at a distance of 2.3 kpc). The good angular resolution (10''-36'') of the Herschel maps corresponds to physical scales of 0.1-0.4 pc, and allows us to analyze the small-scale (i.e., clump-size) structures of the clouds. Methods: The full extent of the CNC was mapped with PACS and SPIRE in the 70, 160, 250, 350, and 500 μm bands. We determined temperatures and column densities at each point in these maps by modeling the observed far-infrared spectral energy distributions. We also derived a map showing the strength of the UV radiation field. We investigated the relation between the cloud properties and the spatial distribution of the high-mass stars and computed total cloud masses for different density thresholds. Results: Our Herschel maps resolve for the first time the small-scale structure of the dense clouds over the entire spatial extent of the CNC. Several particularly interesting regions, including the prominent pillars south of η Car, are analyzed in detail. We compare the cloud masses derived from the Herschel data with previous mass estimates based on sub-mm and molecular line data. Our maps also reveal a peculiar wave-like pattern in the northern part of the Carina Nebula. Finally, we characterize two prominent cloud complexes at the periphery of our Herschel maps, which are probably molecular clouds in the Galactic background. Conclusions: We find that the

  4. WHAT DETERMINES THE DENSITY STRUCTURE OF MOLECULAR CLOUDS? A CASE STUDY OF ORION B WITH HERSCHEL

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, N.; Andre, Ph.; Koenyves, V.; Motte, F.; Arzoumanian, D.; Didelon, P.; Hennemann, M.; Hill, T.; Palmeirim, P.; Peretto, N.; Roy, A. [IRFU/SAp CEA/DSM, Laboratoire AIM CNRS, Universite Paris Diderot, F-91191 Gif-sur-Yvette (France); Bontemps, S. [OASU/LAB-UMR5804, CNRS, Universite Bordeaux 1, F-33270 Floirac (France); Federrath, C. [MoCA, School of Mathematical Sciences, Monash University, VIC 3800 (Australia); Ward-Thompson, D. [Jeremiah Horrocks Institute, UCLAN, Preston, Lancashire PR1 2HE (United Kingdom); Benedettini, M.; Pezzuto, S.; Rygl, K. L. J. [IAPS-INAF, Fosso del Cavaliere 100, I-00133 Roma (Italy); Bressert, E. [CSIRO Astronomy and Space Science, Epping (Australia); Di Francesco, J. [NRCC, Herzberg Institute of Astrophysics, University of Victoria (Canada); Griffin, M. [University School of Physics and Astronomy, Cardiff (United Kingdom); and others

    2013-04-01

    A key parameter to the description of all star formation processes is the density structure of the gas. In this Letter, we make use of probability distribution functions (PDFs) of Herschel column density maps of Orion B, Aquila, and Polaris, obtained with the Herschel Gould Belt survey (HGBS). We aim to understand which physical processes influence the PDF shape, and with which signatures. The PDFs of Orion B (Aquila) show a lognormal distribution for low column densities until A{sub V} {approx} 3 (6), and a power-law tail for high column densities, consistent with a {rho}{proportional_to}r {sup -2} profile for the equivalent spherical density distribution. The PDF of Orion B is broadened by external compression due to the nearby OB stellar aggregates. The PDF of a quiescent subregion of the non-star-forming Polaris cloud is nearly lognormal, indicating that supersonic turbulence governs the density distribution. But we also observe a deviation from the lognormal shape at A{sub V} > 1 for a subregion in Polaris that includes a prominent filament. We conclude that (1) the point where the PDF deviates from the lognormal form does not trace a universal A{sub V} -threshold for star formation, (2) statistical density fluctuations, intermittency, and magnetic fields can cause excess from the lognormal PDF at an early cloud formation stage, (3) core formation and/or global collapse of filaments and a non-isothermal gas distribution lead to a power-law tail, and (4) external compression broadens the column density PDF, consistent with numerical simulations.

  5. What Determines the Density Structure of Molecular Clouds? A Case Study of Orion B with Herschel

    Science.gov (United States)

    Schneider, N.; André, Ph.; Könyves, V.; Bontemps, S.; Motte, F.; Federrath, C.; Ward-Thompson, D.; Arzoumanian, D.; Benedettini, M.; Bressert, E.; Didelon, P.; Di Francesco, J.; Griffin, M.; Hennemann, M.; Hill, T.; Palmeirim, P.; Pezzuto, S.; Peretto, N.; Roy, A.; Rygl, K. L. J.; Spinoglio, L.; White, G.

    2013-04-01

    A key parameter to the description of all star formation processes is the density structure of the gas. In this Letter, we make use of probability distribution functions (PDFs) of Herschel column density maps of Orion B, Aquila, and Polaris, obtained with the Herschel Gould Belt survey (HGBS). We aim to understand which physical processes influence the PDF shape, and with which signatures. The PDFs of Orion B (Aquila) show a lognormal distribution for low column densities until A V ~ 3 (6), and a power-law tail for high column densities, consistent with a ρvpropr -2 profile for the equivalent spherical density distribution. The PDF of Orion B is broadened by external compression due to the nearby OB stellar aggregates. The PDF of a quiescent subregion of the non-star-forming Polaris cloud is nearly lognormal, indicating that supersonic turbulence governs the density distribution. But we also observe a deviation from the lognormal shape at A V > 1 for a subregion in Polaris that includes a prominent filament. We conclude that (1) the point where the PDF deviates from the lognormal form does not trace a universal A V -threshold for star formation, (2) statistical density fluctuations, intermittency, and magnetic fields can cause excess from the lognormal PDF at an early cloud formation stage, (3) core formation and/or global collapse of filaments and a non-isothermal gas distribution lead to a power-law tail, and (4) external compression broadens the column density PDF, consistent with numerical simulations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  6. 3D point cloud analysis of structured light registration in computer-assisted navigation in spinal surgeries

    Science.gov (United States)

    Gupta, Shaurya; Guha, Daipayan; Jakubovic, Raphael; Yang, Victor X. D.

    2017-02-01

    Computer-assisted navigation is used by surgeons in spine procedures to guide pedicle screws to improve placement accuracy and in some cases, to better visualize patient's underlying anatomy. Intraoperative registration is performed to establish a correlation between patient's anatomy and the pre/intra-operative image. Current algorithms rely on seeding points obtained directly from the exposed spinal surface to achieve clinically acceptable registration accuracy. Registration of these three dimensional surface point-clouds are prone to various systematic errors. The goal of this study was to evaluate the robustness of surgical navigation systems by looking at the relationship between the optical density of an acquired 3D point-cloud and the corresponding surgical navigation error. A retrospective review of a total of 48 registrations performed using an experimental structured light navigation system developed within our lab was conducted. For each registration, the number of points in the acquired point cloud was evaluated relative to whether the registration was acceptable, the corresponding system reported error and target registration error. It was demonstrated that the number of points in the point cloud neither correlates with the acceptance/rejection of a registration or the system reported error. However, a negative correlation was observed between the number of the points in the point-cloud and the corresponding sagittal angular error. Thus, system reported total registration points and accuracy are insufficient to gauge the accuracy of a navigation system and the operating surgeon must verify and validate registration based on anatomical landmarks prior to commencing surgery.

  7. Comparison of the Cloud Morphology Spatial Structure Between Jupiter and Saturn Using JunoCam and Cassini ISS

    Science.gov (United States)

    Garland, Justin; Sayanagi, Kunio M.; Blalock, John J.; Gunnarson, Jacob; McCabe, Ryan M.; Gallego, Angelina; Hansen, Candice; Orton, Glenn S.

    2017-10-01

    We present an analysis of the spatial-scales contained in the cloud morphology of Jupiter’s southern high latitudes using images captured by JunoCam in 2016 and 2017, and compare them to those on Saturn using images captured using the Imaging Science Subsystem (ISS) on board the Cassini orbiter. For Jupiter, the characteristic spatial scale of cloud morphology as a function of latitude is calculated from images taken in three visual (600-800, 500-600, 420-520 nm) bands and a near-infrared (880- 900 nm) band. In particular, we analyze the transition from the banded structure characteristic of Jupiter’s mid-latitudes to the chaotic structure of the polar region. We apply similar analysis to Saturn using images captured using Cassini ISS. In contrast to Jupiter, Saturn maintains its zonally organized cloud morphology from low latitudes up to the poles, culminating in the cyclonic polar vortices centered at each of the poles. By quantifying the differences in the spatial scales contained in the cloud morphology, our analysis will shed light on the processes that control the banded structures on Jupiter and Saturn. Our work has been supported by the following grants: NASA PATM NNX14AK07G, NASA MUREP NNX15AQ03A, and NSF AAG 1212216.

  8. Double-layer structure in polar mesospheric clouds observed from SOFIE/AIM

    Directory of Open Access Journals (Sweden)

    H. Gao

    2017-02-01

    Full Text Available Double-layer structures in polar mesospheric clouds (PMCs are observed by using Solar Occultation for Ice Experiment (SOFIE data between 2007 and 2014. We find 816 and 301 events of double-layer structure with percentages of 10.32 and 7.25 % compared to total PMC events, and the mean distances between two peaks are 3.06 and 2.73 km for the Northern Hemisphere (NH and Southern Hemisphere (SH respectively. Double-layer PMCs almost always have less mean ice water content (IWC than daily IWC during the core of the season, but they are close to each other at the beginning and the end. The result by averaging over all events shows that the particle concentration has obvious double peaks, while the particle radius exhibits an unexpected monotonic increase with decreasing altitude. By further analysis of the background temperature and water vapour residual profiles, we conclude that the lower layer is a reproduced one formed at the bottom of the upper layer. 56.00 and 47.51 % of all double-layer events for the NH and SH respectively have temperature enhancements larger than 2 K locating between their double peaks. The longitudinal anti-correlation between the gravity waves' (GWs' potential energies and occurrence frequencies of double-layer PMCs suggests that the double-layer PMCs tend to form in an environment where the GWs have weaker intensities.

  9. Cloud Structure of Galactic OB Cluster-forming Regions from Combining Ground- and Space-based Bolometric Observations

    Science.gov (United States)

    Lin, Yuxin; Liu, Hauyu Baobab; Li, Di; Zhang, Zhi-Yu; Ginsburg, Adam; Pineda, Jaime E.; Qian, Lei; Galván-Madrid, Roberto; McLeod, Anna Faye; Rosolowsky, Erik; Dale, James E.; Immer, Katharina; Koch, Eric; Longmore, Steve; Walker, Daniel; Testi, Leonardo

    2016-09-01

    We have developed an iterative procedure to systematically combine the millimeter and submillimeter images of OB cluster-forming molecular clouds, which were taken by ground-based (CSO, JCMT, APEX, and IRAM-30 m) and space telescopes (Herschel and Planck). For the seven luminous (L\\gt {10}6 L ⊙) Galactic OB cluster-forming molecular clouds selected for our analyses, namely W49A, W43-Main, W43-South, W33, G10.6-0.4, G10.2-0.3, and G10.3-0.1, we have performed single-component, modified blackbody fits to each pixel of the combined (sub)millimeter images, and the Herschel PACS and SPIRE images at shorter wavelengths. The ˜10″ resolution dust column density and temperature maps of these sources revealed dramatically different morphologies, indicating very different modes of OB cluster-formation, or parent molecular cloud structures in different evolutionary stages. The molecular clouds W49A, W33, and G10.6-0.4 show centrally concentrated massive molecular clumps that are connected with approximately radially orientated molecular gas filaments. The W43-Main and W43-South molecular cloud complexes, which are located at the intersection of the Galactic near 3 kpc (or Scutum) arm and the Galactic bar, show a widely scattered distribution of dense molecular clumps/cores over the observed ˜10 pc spatial scale. The relatively evolved sources G10.2-0.3 and G10.3-0.1 appear to be affected by stellar feedback, and show a complicated cloud morphology embedded with abundant dense molecular clumps/cores. We find that with the high angular resolution we achieved, our visual classification of cloud morphology can be linked to the systematically derived statistical quantities (I.e., the enclosed mass profile, the column density probability distribution function (N-PDF), the two-point correlation function of column density, and the probability distribution function of clump/core separations). In particular, the massive molecular gas clumps located at the center of G10.6-0.4 and

  10. The structure and origin of magnetic clouds in the solar wind

    Directory of Open Access Journals (Sweden)

    V. Bothmer

    1998-01-01

    Full Text Available Plasma and magnetic field data from the Helios 1/2 spacecraft have been used to investigate the structure of magnetic clouds (MCs in the inner heliosphere. 46 MCs were identified in the Helios data for the period 1974–1981 between 0.3 and 1 AU. 85% of the MCs were associated with fast-forward interplanetary shock waves, supporting the close association between MCs and SMEs (solar mass ejections. Seven MCs were identified as direct consequences of Helios-directed SMEs, and the passage of MCs agreed with that of interplanetary plasma clouds (IPCs identified as white-light brightness enhancements in the Helios photometer data. The total (plasma and magnetic field pressure in MCs was higher and the plasma-β lower than in the surrounding solar wind. Minimum variance analysis (MVA showed that MCs can best be described as large-scale quasi-cylindrical magnetic flux tubes. The axes of the flux tubes usually had a small inclination to the ecliptic plane, with their azimuthal direction close to the east-west direction. The large-scale flux tube model for MCs was validated by the analysis of multi-spacecraft observations. MCs were observed over a range of up to ~60° in solar longitude in the ecliptic having the same magnetic configuration. The Helios observations further showed that over-expansion is a common feature of MCs. From a combined study of Helios, Voyager and IMP data we found that the radial diameter of MCs increases between 0.3 and 4.2 AU proportional to the distance, R, from the Sun as R0.8 (R in AU. The density decrease inside MCs was found to be proportional to R–2.4, thus being stronger compared to the average solar wind. Four different magnetic configurations, as expected from the flux-tube concept, for MCs have been observed in situ by the Helios probes. MCs with left- and right-handed magnetic helicity occurred with about equal frequencies during 1974–1981, but surprisingly, the majority (74% of the MCs had a south to north (SN

  11. The structure and origin of magnetic clouds in the solar wind

    Directory of Open Access Journals (Sweden)

    V. Bothmer

    Full Text Available Plasma and magnetic field data from the Helios 1/2 spacecraft have been used to investigate the structure of magnetic clouds (MCs in the inner heliosphere. 46 MCs were identified in the Helios data for the period 1974–1981 between 0.3 and 1 AU. 85% of the MCs were associated with fast-forward interplanetary shock waves, supporting the close association between MCs and SMEs (solar mass ejections. Seven MCs were identified as direct consequences of Helios-directed SMEs, and the passage of MCs agreed with that of interplanetary plasma clouds (IPCs identified as white-light brightness enhancements in the Helios photometer data. The total (plasma and magnetic field pressure in MCs was higher and the plasma-β lower than in the surrounding solar wind. Minimum variance analysis (MVA showed that MCs can best be described as large-scale quasi-cylindrical magnetic flux tubes. The axes of the flux tubes usually had a small inclination to the ecliptic plane, with their azimuthal direction close to the east-west direction. The large-scale flux tube model for MCs was validated by the analysis of multi-spacecraft observations. MCs were observed over a range of up to ~60° in solar longitude in the ecliptic having the same magnetic configuration. The Helios observations further showed that over-expansion is a common feature of MCs. From a combined study of Helios, Voyager and IMP data we found that the radial diameter of MCs increases between 0.3 and 4.2 AU proportional to the distance, R, from the Sun as R0.8 (R in AU. The density decrease inside MCs was found to be proportional to R–2.4, thus being stronger compared to the average solar wind. Four different magnetic configurations, as expected from the flux-tube concept, for MCs have been observed in situ by the Helios probes. MCs with left- and right-handed magnetic helicity occurred with about equal frequencies during 1974–1981, but surprisingly, the majority (74% of the MCs had

  12. Automatic Cloud Bursting under FermiCloud

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao [Fermilab; Shangping, Ren [IIT; Garzoglio, Gabriele [Fermilab; Timm, Steven [Fermilab; Bernabeu, Gerard [Fermilab; Kim, Hyun Woo; Chadwick, Keith; Jang, Haengjin [KISTI, Daejeon; Noh, Seo-Young [KISTI, Daejeon

    2013-01-01

    Cloud computing is changing the infrastructure upon which scientific computing depends from supercomputers and distributed computing clusters to a more elastic cloud-based structure. The service-oriented focus and elasticity of clouds can not only facilitate technology needs of emerging business but also shorten response time and reduce operational costs of traditional scientific applications. Fermi National Accelerator Laboratory (Fermilab) is currently in the process of building its own private cloud, FermiCloud, which allows the existing grid infrastructure to use dynamically provisioned resources on FermiCloud to accommodate increased but dynamic computation demand from scientists in the domains of High Energy Physics (HEP) and other research areas. Cloud infrastructure also allows to increase a private cloud’s resource capacity through “bursting” by borrowing or renting resources from other community or commercial clouds when needed. This paper introduces a joint project on building a cloud federation to support HEP applications between Fermi National Accelerator Laboratory and Korea Institution of Science and Technology Information, with technical contributions from the Illinois Institute of Technology. In particular, this paper presents two recent accomplishments of the joint project: (a) cloud bursting automation and (b) load balancer. Automatic cloud bursting allows computer resources to be dynamically reconfigured to meet users’ demands. The load balance algorithm which the cloud bursting depends on decides when and where new resources need to be allocated. Our preliminary prototyping and experiments have shown promising success, yet, they also have opened new challenges to be studied

  13. Disciplining Change, Displacing Frictions. Two Structural Dimensions of Digital Circulation Across Land Registry Database Integration

    NARCIS (Netherlands)

    Pelizza, Annalisa

    2016-01-01

    Data acquire meaning through circulation. Yet most approaches to high-quality data aim to flatten this stratification of meanings. In government, data quality is achieved through integrated systems of authentic registers that reduce multiple trajectories to a single, official one. These systems can

  14. Effects of intratidal and tidal range variability on circulation and salinity structure in the Cape Fear River Estuary, North Carolina

    Science.gov (United States)

    Becker, May Ling; Luettich, Richard A.; Seim, Harvey

    2009-04-01

    Tidal influences on circulation and the salinity structure are investigated in the largely unstudied Cape Fear River Estuary (CFRE), North Carolina, a partially mixed estuary along the southeast coast of the United States. During two different tidal conditions (high versus low tidal range) and when river flow was low, salinity and velocity data were collected over a semidiurnal tidal cycle in a 2.8 km long transect along the estuary axis. Water level data were recorded nearby. Mechanisms that influence salt transport characteristics are diagnosed from an analysis of the field data. Specifically, we investigated the relationship between tidal range and salinity through comparison of along-channel circulation characteristics, computed salt fluxes, and coefficients of vertical eddy diffusivity (Kz) based on a parameterization and on salt budget analysis. Findings indicate up-estuary tidally driven salt fluxes resulting from oscillatory salt transport are dominant near the pycnocline, while mean advective transport dominates near the bottom during both tidal range periods. Earlier research related to salt transport in estuaries with significant gravitational circulation suggests that up-estuary salt transport increases during low tidal ranges as a result of increased gravitational circulation. In the CFRE, in contrast, net (tidally averaged) near-bottom along-channel velocities are greater during higher tidal range conditions than during lower tidal range conditions. Findings indicate stronger tidal forcing and associated mixing contribute to greater near-bottom salinity gradients and, consequently, increased baroclinic circulation. Lower near-bottom salinities during the higher tidal range period are a result of a combination of increased vertical turbulent salt fluxes near the pycnocline and increased bottom-generated mixing.

  15. Experimental study on structural optimization of a supercritical circulating fluidized bed boiler with an annular furnace and six cyclones

    Science.gov (United States)

    Wang, Xiaofang; Shuai, Daping; Lyu, Qinggang

    2017-10-01

    Annular furnace CFBs with six cyclones represent new designs for large capacity CFB boilers over 660 MW. To investigate the gas-solid flow non-uniformity and its main influencing factors, an experimental study was carried out in the cold-test rig of an annular furnace CFB with six cyclones. The influence of furnace structure and cyclone arrangement on the non-uniformity of gas-solid flow was obtained. On the basis of these findings, the structure of the annular furnace CFB with six cyclones was optimized, and an optimal structure was obtained. The results show that for newly designed annular furnace CFBs, the non-uniformity of gas-solid flow among loops is no greater than that of traditional CFBs. In terms of uniformity, side cyclones rotating inward are superior to those rotating outward. The position of the side cyclones determines the basic solid circulating rate distribution trend and can dramatically improve flow non-uniformity. The middle cyclone positions and the symmetric modes of the cyclones do not determine the solid circulating rate distribution trend and have less effect on DEV Gs. Forty-five degree chamfers of outer ring walls can reduce wall erosion and the non-uniformity of gas-solid flow in the circulating fluidized bed. Regarding the operating and structural conditions in this work, the optimal structure of annular furnace CFBs is Type 6: side cyclones rotating inward and b = a/2, d = 0.1 c; the center of the middle cyclone inlet located at the centerline of the furnace cross-section; cyclones on the two sides of the furnace in an axisymmetric arrangement; and a furnace corner shape of 45° chamfers. Under the given operating conditions, the DEV Gs for the optimal structure are approximately 4.0% 10.3%.

  16. Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds

    Science.gov (United States)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chiang, H. C.; Christensen, P. R.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falceta-Gonçalves, D.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Guillet, V.; Harrison, D. L.; Helou, G.; Hennebelle, P.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Soler, J. D.; Stolyarov, V.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Ysard, N.; Yvon, D.; Zonca, A.

    2016-02-01

    Within ten nearby (d < 450 pc) Gould belt molecular clouds we evaluate statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, NH. The selected regions, covering several degrees in size, are analysed at an effective angular resolution of 10' FWHM, thus sampling physical scales from 0.4 to 40 pc in the nearest cloud. The column densities in the selected regions range from NH≈ 1021 to1023 cm-2, and hence they correspond to the bulk of the molecular clouds. The relative orientation is evaluated pixel by pixel and analysed in bins of column density using the novel statistical tool called "histogram of relative orientations". Throughout this study, we assume that the polarized emission observed by Planck at 353 GHz is representative of the projected morphology of the magnetic field in each region, I.e., we assume a constant dust grain alignment efficiency, independent of the local environment. Within most clouds we find that the relative orientation changes progressively with increasing NH, from mostly parallel or having no preferred orientation to mostly perpendicular. In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvénic or sub-Alfvénic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck. We compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution.

  17. Detection of the multiple spallation parameters and the internal structure of a particle cloud during shock-wave loading of a metal

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, A. V., E-mail: fedorovsarov@mail.ru; Mikhailov, A. L.; Finyushin, S. A.; Kalashnikov, D. A.; Chudakov, E. A.; Butusov, E. I.; Gnutov, I. S. [Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (VNIIEF) (Russian Federation)

    2016-04-15

    The results of experiments on studying spallation and the ejection of particles from the surfaces of copper and lead samples are presented. A laser interferometry method is used to detect the particle cloud velocity and the multiple spallation parameters. Angular detectors are used to detect the depth profile of the particle cloud velocity dispersion and the structure of metal spallation.

  18. Dynamic Pricing in Cloud Manufacturing Systems under Combined Effects of Consumer Structure, Negotiation, and Demand

    Directory of Open Access Journals (Sweden)

    Wei Peng

    2017-01-01

    Full Text Available In this study, we proposed a game-theory based framework to model the dynamic pricing process in the cloud manufacturing (CMfg system. We considered a service provider (SP, a broker agent (BA, and a dynamic service demander (SD population that is composed of price takers and bargainers in this study. The pricing processes under linear demand and constant elasticity demand were modeled, respectively. The combined effects of SD population structure, negotiation, and demand forms on the SP’s and the BA’s equilibrium prices and expected revenues were examined. We found that the SP’s optimal wholesale price, the BA’s optimal reservation price, and posted price all increase with the proportion of price takers under linear demand but decrease with it under constant elasticity demand. We also found that the BA’s optimal reservation price increases with bargainers’ power no matter under what kind of demand. Through analyzing the participants’ revenues, we showed that a dynamic SD population with a high ratio of price takers would benefit the SP and the BA.

  19. Changing circulation structure and precipitation characteristics in Asian monsoon regions: greenhouse warming vs. aerosol effects

    Science.gov (United States)

    Lau, William K. M.; Kim, Kyu-Myong; Ruby Leung, L.

    2017-12-01

    Using model outputs from CMIP5 historical integrations, we have investigated the relative roles of anthropogenic emissions of greenhouse gases (GHG) and aerosols in changing the characteristics of the large-scale circulation and rainfall in Asian summer monsoon (ASM) regions. Under GHG warming, a strong positive trend in low-level moist static energy (MSE) is found over ASM regions, associated with increasing large-scale land-sea thermal contrast from 1870s to present. During the same period, a mid-tropospheric convective barrier (MCB) due to widespread reduction in relative humidity in the mid- and lower troposphere is strengthening over the ASM regions, in conjunction with expanding areas of anomalous subsidence associated with the Deep Tropical Squeeze (Lau and Kim in Proc Natl Acad Sci 12:3630-3635, 2015). The opposing effects of MSE and MCB lead to enhanced total ASM rainfall, but only a partial strengthening of the southern portion of the monsoon meridional circulation, coupled to anomalous multi-cellular overturning motions over ASM land. Including anthropogenic aerosol emissions strongly masks MSE but enhances MCB via increased stability in the lower troposphere, resulting in an overall weakened ASM circulation with suppressed rainfall. Analyses of rainfall characteristics indicate that under GHG, overall precipitation efficiency over the ASM region is reduced, manifesting in less moderate but more extreme heavy rain events. Under combined effects of GHG and aerosols, precipitation efficiency is unchanged, with more moderate, but less extreme rainfall.

  20. Structural control on geothermal circulation in the Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Argentina)

    Science.gov (United States)

    Giordano, Guido; Pinton, Annamaria; Cianfarra, Paola; Baez, Walter; Chiodi, Agostina; Viramonte, José; Norini, Gianluca; Groppelli, Gianluca

    2013-01-01

    The reconstruction of the stratigraphical-structural framework and the hydrogeology of geothermal areas is fundamental for understanding the relationships between cap rocks, reservoir and circulation of geothermal fluids and for planning the exploitation of the field. The Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina) has a high geothermal potential. It is crossed by the active NW-SE trans-Andean tectonic lineament known as the Calama-Olacapato-Toro (COT) fault system, which favours a high secondary permeability testified by the presence of numerous springs. This study presents new stratigraphic and hydrogeological data on the geothermal field, together with the analysis from remote sensed image analysis of morphostructural evidences associated with the structural framework and active tectonics. Our data suggest that the main geothermal reservoir is located within or below the Pre-Palaeozoic-Ordovician basement units, characterised by unevenly distributed secondary permeability. The reservoir is recharged by infiltration in the ridges above 4500 m a.s.l., where basement rocks are in outcrop. Below 4500 m a.s.l., the reservoir is covered by the low permeable Miocene-Quaternary units that allow a poor circulation of shallow groundwater. Geothermal fluids upwell in areas with more intense fracturing, especially where main regional structures, particularly NW-SE COT-parallel lineaments, intersect with secondary structures, such as at the Tocomar field. Away from the main tectonic features, such as at the Cerro Tuzgle field, the less developed network of faults and fractures allows only a moderate upwelling of geothermal fluids and a mixing between hot and shallow cold waters. The integration of field-based and remote-sensing analyses at the Cerro Tuzgle-Tocomar area proved to be effective in approaching the prospection of remote geothermal fields, and in defining the conceptual model for geothermal circulation.

  1. Kardar-Parisi-Zhang model for the fractal structure of cumulus cloud fields

    CERN Document Server

    Pelletier, J D

    1996-01-01

    We model the ascent of warm, moist air in the Earth's atmosphere by turbulent convection and expansion with the KPZ equation, familiar in the physics literature on surface growth. Clouds form in domains where the interface between the rising air and its surrounding air achieves an elevation higher than that necessary for condensation. The model predictions are consistent with the perimeter fractal dimension and the cumulative frequency-size distribution of cumulus cloud fields observed from space.

  2. "What Controls the Structure and Stability of the Ocean Meridional Overturning Circulation: Implications for Abrupt Climate Change?"

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, Alexey [Yale University

    2013-11-23

    The central goal of this research project is to understand the properties of the ocean meridional overturning circulation (MOC) – a topic critical for understanding climate variability and stability on a variety of timescales (from decadal to centennial and longer). Specifically, we have explored various factors that control the MOC stability and decadal variability in the Atlantic and the ocean thermal structure in general, including the possibility abrupt climate change. We have also continued efforts on improving the performance of coupled ocean-atmosphere GCMs.

  3. CYANOMETHANIMINE ISOMERS IN COLD INTERSTELLAR CLOUDS: INSIGHTS FROM ELECTRONIC STRUCTURE AND KINETIC CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Vazart, Fanny; Latouche, Camille; Skouteris, Dimitrios; Barone, Vincenzo [Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56125 Pisa (Italy); Balucani, Nadia [Dipartimento di Chimica, Biologia e Biotecnologie, Universitá degli Studi di Perugia, Via Elce di Sotto 8, I-06123 Perugia (Italy)

    2015-09-10

    New insights into the formation of interstellar cyanomethanimine, a species of great relevance in prebiotic chemistry, are provided by electronic structure and kinetic calculations for the reaction CN + CH{sub 2} = NH. This reaction is a facile formation route of Z,E-C-cyanomethanimine, even under the extreme conditions of density and temperature typical of cold interstellar clouds. E-C-cyanomethanimine has been recently identified in Sgr B2(N) in the Green Bank Telescope (GBT) PRIMOS survey by P. Zaleski et al. and no efficient formation routes have been envisaged so far. The rate coefficient expression for the reaction channel leading to the observed isomer E-C-cyanomethanimine is 3.15 × 10-10 × (T/300){sup 0.152} × e{sup (−0.0948/T)}. According to the present study, the more stable Z-C-cyanomethanimine isomer is formed with a slightly larger yield (4.59 × 10{sup −10} × (T/300){sup 0.153} × e{sup (−0.0871/T)}. As the detection of E-isomer is favored due to its larger dipole moment, the missing detection of the Z-isomer can be due to the sensitivity limit of the GBT PRIMOS survey and the detection of the Z-isomer should be attempted with more sensitive instrumentation. The CN + CH{sub 2} = NH reaction can also play a role in the chemistry of the upper atmosphere of Titan where the cyanomethanimine products can contribute to the buildup of the observed nitrogen-rich organic aerosols that cover the moon.

  4. Numerical investigation for the effects of the vertical wind shear on the cloud droplet spectra broadening at the lateral boundary of the cumulus clouds

    Science.gov (United States)

    Wang, Yongqing; Sun, Jiming

    2014-05-01

    The vortex-structure circulation at the top of cumulus clouds can result in air entrainment at the lateral sides of them. The entrained air at the early developing stage of cumulus clouds can lead to new cloud droplet activation at their lateral sides due to its upward expansion cooling induced by the gradient force of the dynamic perturbation pressure. The vertical wind shear may strengthen such a mechanism for cloud droplet nucleation at the lateral sides of cumulus clouds. In order to investigate the impacts of the vertical wind shear on the cloud droplet spectra broadening at the lateral sides, we used the Weather Research and Forecasting (WRF) Model coupled with an aerosol-cloud interaction bin model with a high spectrum resolution (90 bins for aerosols, 160 bins for water drops) and a high spatial resolution (25m in vertical, 50m in horizontal). We run the Large Eddy Simulation (LES) case in the Tianhe supercomputer with more than 1000 CPUs. In our simulations, a new aerosol parameterization scheme have been proposed in order to investigate the secondary activation of cloud condensation nuclei (CCN). The activated CCN will not be cleaned as the current approach. CCN coming from the evaporated cloud droplets can be explicitly determined. Our results show that the vertical wind shear can enhance the cloud droplet nucleation at the leeward lateral side.

  5. Release kinetics of VEGF165 from a collagen matrix and structural matrix changes in a circulation model

    Directory of Open Access Journals (Sweden)

    Fischer Carsten

    2010-07-01

    Full Text Available Abstract Background Current approaches in bone regeneration combine osteoconductive scaffolds with bioactive cytokines like BMP or VEGF. The idea of our in-vitro trial was to apply VEGF165 in gradient concentrations to an equine collagen carrier and to study pharmacological and morphological characteristics of the complex in a circulation model. Methods Release kinetics of VEGF165 complexed in different quantities in a collagen matrix were determined in a circulation model by quantifying protein concentration with ELISA over a period of 5 days. The structural changes of the collagen matrix were assessed with light microscopy, native scanning electron microscopy (SEM as well as with immuno-gold-labelling technique in scanning and transmission electron microscopy (TEM. Results We established a biological half-life for VEGF165 of 90 minutes. In a half-logarithmic presentation the VEGF165 release showed a linear declining gradient; the release kinetics were not depending on VEGF165 concentrations. After 12 hours VEGF release reached a plateau, after 48 hours VEGF165 was no longer detectable in the complexes charged with lower doses, but still measurable in the 80 μg sample. At the beginning of the study a smear layer was visible on the surface of the complex. After the wash out of the protein in the first days the natural structure of the collagen appeared and did not change over the test period. Conclusions By defining the pharmacological and morphological profile of a cytokine collagen complex in a circulation model our data paves the way for further in-vivo studies where additional biological side effects will have to be considered. VEGF165 linked to collagen fibrils shows its improved stability in direct electron microscopic imaging as well as in prolonged release from the matrix. Our in-vitro trial substantiates the position of cytokine collagen complexes as innovative and effective treatment tools in regenerative medicine and and may initiate

  6. Cloud2IR: Infrared thermography and environmental sensors integrated in an autonomoussystem for long term monitoring of structures

    Science.gov (United States)

    Crinière, Antoine; Dumoulin, Jean; Mevel, Laurent; Andrade-Barroso, Guillermo

    2016-04-01

    Since late 2014, the project Cloud2SM aims to develop a robust information system able to assess the long term monitoring of civil engineering structures as well as interfacing various sensors and data. Cloud2SM address three main goals, the management of distributed data and sensors network, the asynchronous processing of the data through network and the local management of the sensors themselves [1]. Integrated to this project Cloud2IR is an autonomous sensor system dedicated to the long term monitoring of infrastructures. Past experimentations have shown the need as well as usefulness of such system [2]. Before Cloud2IR an initially laboratory oriented system was used, which implied heavy operating system to be used [3]. Based on such system Cloud2IR has benefited of the experimental knowledge acquired to redefine a lighter architecture based on generics standards, more appropriated to autonomous operations on field and which can be later included in a wide distributed architecture such as Cloud2SM. The sensor system can be divided in two parts. The sensor side, this part is mainly composed by the various sensors drivers themselves as the infrared camera, the weather station or the pyranometers and their different fixed configurations. In our case, as infrared camera are slightly different than other kind of sensors, the system implement in addition an RTSP server which can be used to set up the FOV as well as other measurement parameter considerations. The second part can be seen as the data side, which is common to all sensors. It instantiate through a generic interface all the sensors and control the data access loop (not the requesting). This side of the system is weakly coupled (see data coupling) with the sensor side. It can be seen as a general framework able to aggregate any sensor data, type or size and automatically encapsulate them in various generic data format as HDF5 or cloud data as OGC SWE standard. This whole part is also responsible of the

  7. Considerations for Achieving Cross-Platform Point Cloud Data Fusion across Different Dryland Ecosystem Structural States.

    Science.gov (United States)

    Swetnam, Tyson L; Gillan, Jeffrey K; Sankey, Temuulen T; McClaran, Mitchel P; Nichols, Mary H; Heilman, Philip; McVay, Jason

    2017-01-01

    Remotely sensing recent growth, herbivory, or disturbance of herbaceous and woody vegetation in dryland ecosystems requires high spatial resolution and multi-temporal depth. Three dimensional (3D) remote sensing technologies like lidar, and techniques like structure from motion (SfM) photogrammetry, each have strengths and weaknesses at detecting vegetation volume and extent, given the instrument's ground sample distance and ease of acquisition. Yet, a combination of platforms and techniques might provide solutions that overcome the weakness of a single platform. To explore the potential for combining platforms, we compared detection bias amongst two 3D remote sensing techniques (lidar and SfM) using three different platforms [ground-based, small unmanned aerial systems (sUAS), and manned aircraft]. We found aerial lidar to be more accurate for characterizing the bare earth (ground) in dense herbaceous vegetation than either terrestrial lidar or aerial SfM photogrammetry. Conversely, the manned aerial lidar did not detect grass and fine woody vegetation while the terrestrial lidar and high resolution near-distance (ground and sUAS) SfM photogrammetry detected these and were accurate. UAS SfM photogrammetry at lower spatial resolution under-estimated maximum heights in grass and shrubs. UAS and handheld SfM photogrammetry in near-distance high resolution collections had similar accuracy to terrestrial lidar for vegetation, but difficulty at measuring bare earth elevation beneath dense herbaceous cover. Combining point cloud data and derivatives (i.e., meshes and rasters) from two or more platforms allowed for more accurate measurement of herbaceous and woody vegetation (height and canopy cover) than any single technique alone. Availability and costs of manned aircraft lidar collection preclude high frequency repeatability but this is less limiting for terrestrial lidar, sUAS and handheld SfM. The post-processing of SfM photogrammetry data became the limiting factor

  8. Ionisation in turbulent magnetic molecular clouds. I. Effect on density and mass-to-flux ratio structures

    Science.gov (United States)

    Bailey, Nicole D.; Basu, Shantanu; Caselli, Paola

    2017-05-01

    Context. Previous studies show that the physical structures and kinematics of a region depend significantly on the ionisation fraction. These studies have only considered these effects in non-ideal magnetohydrodynamic simulations with microturbulence. The next logical step is to explore the effects of turbulence on ionised magnetic molecular clouds and then compare model predictions with observations to assess the importance of turbulence in the dynamical evolution of molecular clouds. Aims: In this paper, we extend our previous studies of the effect of ionisation fractions on star formation to clouds that include both non-ideal magnetohydrodynamics and turbulence. We aim to quantify the importance of a treatment of the ionisation fraction in turbulent magnetised media and investigate the effect of the turbulence on shaping the clouds and filaments before star formation sets in. In particular, here we investigate how the structure, mass and width of filamentary structures depend on the amount of turbulence in ionised media and the initial mass-to-flux ratio. Methods: To determine the effects of turbulence and mass-to-flux ratio on the evolution of non-ideal magnetised clouds with varying ionisation profiles, we have run two sets of simulations. The first set assumes different initial turbulent Mach values for a fixed initial mass-to-flux ratio. The second set assumes different initial mass-to-flux ratio values for a fixed initial turbulent Mach number. Both sets explore the effect of using one of two ionisation profiles: step-like (SL) or cosmic ray only (CR-only). We compare the resulting density and mass-to-flux ratio structures both qualitatively and quantitatively via filament and core masses and filament fitting techniques (Gaussian and Plummer profiles). Results: We find that even with almost no turbulence, filamentary structure still exists although at lower density contours. Comparison of simulations shows that for turbulent Mach numbers above 2, there is

  9. Saturn's North Polar Vortex Revealed by Cassini/VIMS: Zonal Wind Structure and Constraints on Cloud Distributions

    Science.gov (United States)

    Baines, Kevin H.; Momary, T. W.; Fletcher, L. N.; Buratti, B. J.; Roos-Serote, M.; Showman, A. P.; Brown, R. H.; Clark, R. N.; Nicholson, P. D.

    2008-09-01

    We present the first high-spatial resolution, near-nadir imagery and movies of Saturn's north polar region that reveal the wind structure of a north polar vortex. Obtained by Cassini/VIMS on June 15, 2008 from high over Saturn's polar region (sub-spacecraft latitude of 65 degrees N. lat) at an altitude of 0.42 million km during the long polar night, these 210-per-pixel images of the polar region north of 73 degrees N. latitude show several concentric cloud rings and hundreds of individual cloud features in silhouette against the 5-micron background thermal glow of Saturn's deep atmosphere. In contrast to the clear eye of the south polar vortex, the north polar vortex sports a central cloud feature about 650-km in diameter. Zonal winds reach a maximum of 150 m/s near 88 degrees N. latitude (planetocentric) - comparable to the south polar vortex maximum of 190 m/s near 88 degrees S. latitude - and fall off nearly monotonically to 10 m/s near 80 degrees N. latitude. At slightly greater distance from the pole, inside the north polar hexagon in the 75-77 degree N. latitude region, zonal winds increase dramatically to 130 m/s, as silhouetted clouds are seen speeding aroud the "race track” of the hexagonal feature. VIMS 5-micron thermal observations over a 1.6-year period from October 29, 2006 to June 15, 2008 are consistent with the polar hexagon structure itself remaining fixed in the Voyager-era radio rotation rate (Desch and Kaiser, Geophys. Res. Lett, 8, 253-256, 1981) to within an accuracy of 3 seconds per rotational period. This agrees with the stationary nature of the wave in this rotation system found by Godfrey (Icarus 76, 335-356, 1988), but is inconsistent with rotation rates found during the current Cassini era.

  10. VERTICAL VEGETATION STRUCTURE ANALYSIS AND HYDRAULIC ROUGHNESS DETERMINATION USING DENSE ALS POINT CLOUD DATA - A VOXEL BASED APPROACH

    Directory of Open Access Journals (Sweden)

    M. Vetter

    2012-09-01

    Full Text Available In this contribution the complexity of the vertical vegetation structure, based on dense airborne laser scanning (ALS point cloud data (25 echoes/m2 , is analyzed to calculate vegetation roughness for hydraulic applications. Using the original 3D ALS point cloud, three levels of abstractions are derived (cells, voxels and connections to analyze ALS data based on a 1×1 m2 raster over the whole data set. A voxel structure is used to count the echoes in predefined detrended height levels within each cell. In general, it is assumed that the number of voxels containing echoes is an indicator for elevated objects and consequently for increased roughness. Neighboring voxels containing at least one data point are merged together to connections. An additional height threshold is applied to connect vertical neighboring voxels with a certain distance in between. Thus, the connections indicate continuous vegetation structures. The height of the surface near or lowest connection is an indicator for hydrodynamic roughness coefficients. For cells, voxels and connections the laser echoes are counted within the structure and various statistical measures are calculated. Based on these derived statistical parameters a rule-based classification is developed by applying a decision tree to assess vegetation types. Roughness coefficient values such as Manning's n are estimated, which are used as input for 2D hydrodynamic-numerical modeling. The estimated Manning’s values from the ALS point cloud are compared with a traditional Manning's map. Finally, the effect of these two different Manning's n maps as input on the 2D hydraulics are quantified by calculating a height difference model of the inundated depth maps. The results show the large potential of using the entire vertical vegetation structure for hydraulic roughness estimation.

  11. Understanding the responses of deep convective clouds to changing thermodynamic environments

    Science.gov (United States)

    Leong, Marieanne; Dobbie, Steven

    2017-04-01

    Clouds cover a significant part of the globe and have profound impact on the Earth's radiative budget because of their interaction with the propagation of radiation through scattering, absorption and emission processes. Clouds also play an important role in regulating the hydrological cycle through the transport of heat and moisture, which leads to precipitation that is essential in maintaining the biosphere. Berg et al. (2013) reported that convective precipitation is sensitive to temperature change. It is also expected that cloud processes and their radiative effects may change with global warming (Ceppi and Hartmann, 2015). However, cloud responses remain a significant contributor to uncertainties in the climate sensitivity of global warming simulations (Soden and Held, 2006) due to the complex interactions between clouds and other atmospheric processes. Clouds are sensitive to changes in thermodynamic structure of the atmosphere and large-scale circulation (Bony et al. (2004). Past studies have looked at the effects of dynamical variability and external perturbations (e.g. aerosol loading and temperature) on cloud and radiation (e.g. Fan et al., 2008; Sherwood et al., 2015). Other studies also looked at the microphysical scale of cloud evolution as computing power improved (Morrison, 2010). However, there is a lack of knowledge about the thermodynamic effects on clouds, especially on convection. Therefore, it is important to understand how changes in the thermodynamic structure predicted from global warming simulations affect the formation and growth of clouds, with a particular focus on the microphysical processes during the cloud evolution and associated cloud radiative properties. Results will be presented from WRF simulations of deep convective clouds that were run based on past and future thermodynamic profiles derived from climate model simulations (CCSM3). Simulations were performed for a range of locations in the USA and cloud and radiative property

  12. Characterising cloud regimes associated with the Southern Ocean shortwave radiation bias

    Science.gov (United States)

    Mason, S.; Jakob, C.; Protat, A.

    2013-12-01

    The high-latitude Southern Ocean is the site of persistent cloud biases in GCMs. A deficit of shortwave cloud radiative effect especially between 50-65S causes an excess of absorbed shortwave radiation, which has been associated with other biases in the global circulation. Recent model evaluation studies have found that the shortwave radiation bias is potentially associated with low- and mid-level clouds in the cold-air part of extratropical cyclones and ahead of transient ridges. However a coherent description of the cloud properties and cloud processes most associated with the bias has not yet emerged. This study focuses on three cloud regimes that are most frequent in the area of the shortwave radiation bias during the austral summer. They are selected from the cloud regimes derived for the Southern Ocean from International Satellite Cloud Climatology Project (ISCCP) cloud observations. We characterise the selected cloud regimes in terms of their meteorological conditions using the ECMWF Interim reanalysis. We also study their vertical macrophysical structure and microphysical properties based on active satellite observations using the DARDAR (raDAR/liDAR) combined CloudSat and CALIPSO data product. We find that two cloud regimes identified as mid-topped in the ISCCP based data set are associated with distinct meteorological processes. An optically thin mid-level top cloud regime is related to cold mid-levels, cold-air advection and moderate subsidence, while an optically thicker cloud regime is associated with a broader range of conditions resembling weak to moderate frontal events, with warm and moist mid-levels, moderate ascent and warm-air advection. The vertical cloud structure derived from DARDAR profiles show that both these regimes contain mostly low clouds, but both also include frequent occurrences of mid-level cloud. We use a clustering method to quantify the differences in microphysical properties between the regimes. We find that the optically

  13. Horizontal and vertical structure of the Eyjafjallajökull ash cloud over the UK: a comparison of airborne lidar observations and simulations

    Directory of Open Access Journals (Sweden)

    A. L. M. Grant

    2012-11-01

    Full Text Available During April and May 2010 the ash cloud from the eruption of the Icelandic volcano Eyjafjallajökull caused widespread disruption to aviation over northern Europe. The location and impact of the eruption led to a wealth of observations of the ash cloud were being obtained which can be used to assess modelling of the long range transport of ash in the troposphere. The UK FAAM (Facility for Airborne Atmospheric Measurements BAe-146-301 research aircraft overflew the ash cloud on a number of days during May. The aircraft carries a downward looking lidar which detected the ash layer through the backscatter of the laser light. In this study ash concentrations derived from the lidar are compared with simulations of the ash cloud made with NAME (Numerical Atmospheric-dispersion Modelling Environment, a general purpose atmospheric transport and dispersion model.

    The simulated ash clouds are compared to the lidar data to determine how well NAME simulates the horizontal and vertical structure of the ash clouds. Comparison between the ash concentrations derived from the lidar and those from NAME is used to define the fraction of ash emitted in the eruption that is transported over long distances compared to the total emission of tephra. In making these comparisons possible position errors in the simulated ash clouds are identified and accounted for.

    The ash layers seen by the lidar considered in this study were thin, with typical depths of 550–750 m. The vertical structure of the ash cloud simulated by NAME was generally consistent with the observed ash layers, although the layers in the simulated ash clouds that are identified with observed ash layers are about twice the depth of the observed layers. The structure of the simulated ash clouds were sensitive to the profile of ash emissions that was assumed. In terms of horizontal and vertical structure the best results were obtained by assuming that the emission occurred at the top of

  14. Horizontal and vertical structure of the Eyjafjallajökull ash cloud over the UK: a comparison of airborne lidar observations and simulations

    Science.gov (United States)

    Grant, A. L. M.; Dacre, H. F.; Thomson, D. J.; Marenco, F.

    2012-11-01

    During April and May 2010 the ash cloud from the eruption of the Icelandic volcano Eyjafjallajökull caused widespread disruption to aviation over northern Europe. The location and impact of the eruption led to a wealth of observations of the ash cloud were being obtained which can be used to assess modelling of the long range transport of ash in the troposphere. The UK FAAM (Facility for Airborne Atmospheric Measurements) BAe-146-301 research aircraft overflew the ash cloud on a number of days during May. The aircraft carries a downward looking lidar which detected the ash layer through the backscatter of the laser light. In this study ash concentrations derived from the lidar are compared with simulations of the ash cloud made with NAME (Numerical Atmospheric-dispersion Modelling Environment), a general purpose atmospheric transport and dispersion model. The simulated ash clouds are compared to the lidar data to determine how well NAME simulates the horizontal and vertical structure of the ash clouds. Comparison between the ash concentrations derived from the lidar and those from NAME is used to define the fraction of ash emitted in the eruption that is transported over long distances compared to the total emission of tephra. In making these comparisons possible position errors in the simulated ash clouds are identified and accounted for. The ash layers seen by the lidar considered in this study were thin, with typical depths of 550-750 m. The vertical structure of the ash cloud simulated by NAME was generally consistent with the observed ash layers, although the layers in the simulated ash clouds that are identified with observed ash layers are about twice the depth of the observed layers. The structure of the simulated ash clouds were sensitive to the profile of ash emissions that was assumed. In terms of horizontal and vertical structure the best results were obtained by assuming that the emission occurred at the top of the eruption plume, consistent with the

  15. Investigating the Structural Relationship for the Determinants of Cloud Computing Adoption in Education

    Science.gov (United States)

    Bhatiasevi, Veera; Naglis, Michael

    2016-01-01

    This research is one of the first few to investigate the adoption and usage of cloud computing in higher education in the context of developing countries, in this case Thailand. It proposes extending the technology acceptance model to integrate subjective norm, perceived convenience, trust, computer self-efficacy, and software functionality in…

  16. Efficient Structure-Aware Selection Techniques for 3D Point Cloud Visualizations with 2DOF Input

    NARCIS (Netherlands)

    Yu, Lingyun; Efstathiou, Konstantinos; Isenberg, Petra; Isenberg, Tobias

    2012-01-01

    Data selection is a fundamental task in visualization because it serves as a pre-requisite to many follow-up interactions. Efficient spatial selection in 3D point cloud datasets consisting of thousands or millions of particles can be particularly challenging. We present two new techniques,

  17. Turbulent Cloud Structure and Power Spectrum from 23 years of HST Observations

    Science.gov (United States)

    Cosentino, Richard; Simon, Amy; Morales-Juberias, Raul

    2018-01-01

    Images of Jupiter’s clouds show that turbulence is a ubiquitous phenomenon over many orders of scale size. According to Kolmogorov’s theory for turbulence, the frequency/distribution of clouds at various scales can be used to produce an energy power spectrum of a passive tracer. Kolmogorov theory predicts the spectral slopes for “shallow” and “deep” fluids in motion by following how energy is injected and dissipated in the fluid. We are quantifying the turbulent nature of Jupiter’s clouds over 23 years of Hubble Space Telescope (HST) observations using an algorithm first presented in Choi and Showman (2011, Icarus 216). We applied the power spectrum fitting algorithm to a variety of filters from available HST data and tested its sensitivity to free parameters and compare our results to Choi and Showman (2011). We will comment on the evidence for a 2D turbulent regime In Jupiter’s clouds and will report on empirical values found in the spectra and their physical interpretations, such as the Rhines scale. We also will report on the behavior of the passive tracer power spectrum and trends that exist over time for different latitudinal regions, primarily the belts and zones and the north and south equatorial belts.

  18. Automatic Generation of Structural Building Descriptions from 3D Point Cloud Scans

    DEFF Research Database (Denmark)

    Ochmann, Sebastian; Vock, Richard; Wessel, Raoul

    2013-01-01

    on the estimated visibilities between any two locations within the point cloud. With the segmentation into rooms at hand, we subsequently determine the locations and extents of doors between adjacent rooms. In our experiments, we demonstrate the feasibility of our method by applying it to synthetic as well...

  19. A Lidar Point Cloud Based Procedure for Vertical Canopy Structure Analysis And 3D Single Tree Modelling in Forest.

    Science.gov (United States)

    Wang, Yunsheng; Weinacker, Holger; Koch, Barbara

    2008-06-12

    A procedure for both vertical canopy structure analysis and 3D single tree modelling based on Lidar point cloud is presented in this paper. The whole area of research is segmented into small study cells by a raster net. For each cell, a normalized point cloud whose point heights represent the absolute heights of the ground objects is generated from the original Lidar raw point cloud. The main tree canopy layers and the height ranges of the layers are detected according to a statistical analysis of the height distribution probability of the normalized raw points. For the 3D modelling of individual trees, individual trees are detected and delineated not only from the top canopy layer but also from the sub canopy layer. The normalized points are resampled into a local voxel space. A series of horizontal 2D projection images at the different height levels are then generated respect to the voxel space. Tree crown regions are detected from the projection images. Individual trees are then extracted by means of a pre-order forest traversal process through all the tree crown regions at the different height levels. Finally, 3D tree crown models of the extracted individual trees are reconstructed. With further analyses on the 3D models of individual tree crowns, important parameters such as crown height range, crown volume and crown contours at the different height levels can be derived.

  20. Simulating Mars' Dust Cycle with a Mars General Circulation Model: Effects of Water Ice Cloud Formation on Dust Lifting Strength and Seasonality

    Science.gov (United States)

    Kahre, Melinda A.; Haberle, Robert; Hollingsworth, Jeffery L.

    2012-01-01

    The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere [1,2,3]. Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer [4]. Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across [5]. Regional storm activity is enhanced before northern winter solstice (Ls200 degrees - 240 degrees), and after northern solstice (Ls305 degrees - 340 degrees ), which produces elevated atmospheric dust loadings during these periods [5,6,7]. These pre- and post- solstice increases in dust loading are thought to be associated with transient eddy activity in the northern hemisphere with cross-equatorial transport of dust leading to enhanced dust lifting in the southern hemisphere [6]. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles [8,9,10]. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading.

  1. Hydraulic Binding Between Structural Elements and Groundwater Circulation in a Volcanic Aquifer : Insights from Riano Quarries District (Rome Italy)

    Science.gov (United States)

    Rossi, David; Preziosi, Elisabetta; Ghergo, Stefano; Parrone, Daniele; Amalfitano, Stefano; Bruna Petrangeli, Anna; Zoppini, Annamaria

    2016-04-01

    A field survey and laboratory analysis of fracture systems crosscutting volcanic rocks was performed in the North-East of Rome urban area (Central Italy) to assess the hydraulic binding between structural elements, groundwater circulation and geochemistry. Fracture features (orientation, density, apertures, length and spacing) as well as groundwater heads and geochemical characteristics of rock and groundwater were analysed. We present and discuss the macro and mesostructural deformation pattern of the Riano quarries district (Central Italy) to highlight the close relationships between geological heterogeneity and water circulation. Laboratory analyses were carried out on rock samples: using XRF, microwave acid digestion and diffractometer to identify the chemical and mineralogical characters of the outcropping rock samples with a special focus on altered bands of fractures. On water samples using ICP-OES for major cations, ICP-MS for trace elements, IC for major anions and Spectrophotometry for NO2, PO4, NH4 . A total of 26 quarries with different dimension, shape and depth were examined by both remote and field analyses. Despite all the quarries were realized within the same tuff formation interval, a different fracture spatial distribution was recognized. From North to South a progressively increment of fracture density was observed. It was possible to observe a close relationship between orientation, spatial distribution and length. For each single fractured set, a 5° max orientation variation was observed, suggesting that fracture genesis was likely related to an extensional/transtensional tectonic process. Most of the fractures directly examined show an alteration band with different colors and thickness around the whole fracture shape. A preliminary overview of the laboratory results highlights that altered and unaltered tuffs (belonging to the same formation) show different chemical compositions. In particular, an enrichment of Mn, accompanied by a

  2. Influence of Molecular Structure on O2-Binding Properties and Blood Circulation of Hemoglobin‒Albumin Clusters.

    Directory of Open Access Journals (Sweden)

    Kana Yamada

    Full Text Available A hemoglobin wrapped covalently by three human serum albumins, a Hb-HSA3 cluster, is an artificial O2-carrier with the potential to function as a red blood cell substitute. This paper describes the synthesis and O2-binding properties of new hemoglobin‒albumin clusters (i bearing four HSA units at the periphery (Hb-HSA4, large-size variant and (ii containing an intramolecularly crosslinked Hb in the center (XLHb-HSA3, high O2-affinity variant. Dynamic light scattering measurements revealed that the Hb-HSA4 diameter is greater than that of either Hb-HSA3 or XLHb-HSA3. The XLHb-HSA3 showed moderately high O2-affinity compared to the others because of the chemical linkage between the Cys-93(β residues in Hb. Furthermore, the blood circulation behavior of 125I-labeled clusters was investigated by assay of blood retention and tissue distribution after intravenous administration into anesthetized rats. The XLHb-HSA3 was metabolized faster than Hb-HSA3 and Hb-HSA4. Results suggest that the molecular structure of the protein cluster is a factor that can influence in vivo circulation behavior.

  3. Application of non-structural protein ELISA kits in nationwide FMD surveillance in pigs to demonstrate virus circulation in Taiwan.

    Science.gov (United States)

    Chen, S P; Lee, M C; Sun, Y F; Yang, P C

    2011-09-28

    Large scale surveillance of FMD non-structural protein (NSP) antibody in pigs was conducted to monitor for FMD virus circulation in Taiwan using Ceditest and UBI NSP ELISA kits after recurrence of FMD in 2009. A total of 53,759 serum samples were collected from pigs in the auction markets in 2009. There were 43 farms with positive FMD NSP reactors to both NSP ELISA tests in the nationwide surveillance. After tracing back, clinical examination and the NSP ELISA testing using both Ceditest and UBI on 14 follow-up serum samples from all the herds with confirmed NSP reactors in 2009, there were 4 farms classified as positive on follow-up testing criteria. In this surveillance, we have demonstrated that the NSP ELISA tests of outbreak farms followed by clinical and serological investigation could be used to detect FMD circulation in the pig population in Taiwan even while the national compulsory vaccination program is ongoing. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Jets and Water Clouds on Jupiter

    Science.gov (United States)

    Lian, Yuan; Showman, A. P.

    2012-10-01

    Ground-based and spacecraft observations show that Jupiter exhibits multiple banded zonal jet structures. These banded jets correlate with dark and bright clouds, often called "belts" and "zones". The mechanisms that produce these banded zonal jets and clouds are poorly understood. Our previous studies showed that the latent heat released by condensation of water vapor could produce equatorial superrotation along with multiple zonal jets in the mid-to-high latitudes. However, that previous work assumed complete and instant removal of condensate and therefore could not predict the cloud formation. Here we present an improved 3D Jupiter model to investigate some effects of cloud microphysics on large-scale dynamics using a closed water cycle that includes condensation, three-dimensional advection of cloud material by the large-scale circulation, evaporation and sedimentation. We use a dry convective adjustment scheme to adjust the temperature towards a dry adiabat when atmospheric columns become convectively unstable, and the tracers are mixed within the unstable layers accordingly. Other physics parameterizations included in our model are the bottom drag and internal heat flux as well as the choices of either Newtonian heating scheme or gray radiative transfer. Given the poorly understood cloud microphysics, we perform case studies by treating the particle size and condensation/evaporation time scale as free parameters. We find that, in some cases, the active water cycle can produce multiple banded jets and clouds. However, the equatorial jet is generally very weak in all the cases because of insufficient supply of eastward eddy momentum fluxes. These differences may result from differences in the overall vertical stratification, baroclinicity, and moisture distribution in our new models relative to the older ones; we expect to elucidate the dynamical mechanisms in continuing work.

  5. Cloud microphysical characteristics versus temperature for three Canadian field projects

    Directory of Open Access Journals (Sweden)

    I. Gultepe

    2002-11-01

    Full Text Available The purpose of this study is to better understand how cloud microphysical characteristics such as liquid water content (LWC and droplet number concentration (Nd change with temperature (T. The in situ observations were collected during three research projects including: the Radiation, Aerosol, and Cloud Experiment (RACE which took place over the Bay of Fundy and Central Ontario during August 1995, the First International Regional Arctic Cloud Experiment (FIRE.ACE which took place in the Arctic Ocean during April 1998, and the Alliance Icing Research Study (AIRS which took place in the Ontario region during the winter of 1999–2000. The RACE, FIRE.ACE, and AIRS projects represent summer mid-latitude clouds, Arctic clouds, and mid-latitude winter clouds, respectively. A LWC threshold of 0.005 g m-3 was used for this study. Similar to other studies, LWC was observed to decrease with decreasing T. The LWC-T relationship was similar for all projects, although the range of T conditions for each project was substantially different, and the variability of LWC within each project was considerable. Nd also decreased with decreasing T, and a parameterization for Nd versus T is suggested that may be useful for modeling studies.Key words. Atmospheric composition and structure (cloud physics and chemistry – Meteorology and atmospheric dynamics (climatology; general circulation

  6. The relationship between total cloud lightning behavior and radar derived thunderstorm structure

    OpenAIRE

    Metzger, Eric L.

    2010-01-01

    Approved for public release; distribution is unlimited ng to other thunderstorm parameters. A relationship between total cloud lightning behavior and currently used radar interrogation techniques was found indicating lightning jumps can be classified into three different types. Two types show preponderance for a specific type of severe weather event and lightning behavior while the third show no preference. These findings are of significant interest to the operational meteorological commun...

  7. Investigations of boundary layer structure, cloud characteristics and vertical mixing of aerosols at Barbados with large eddy simulations

    Directory of Open Access Journals (Sweden)

    M. Jähn

    2016-01-01

    Full Text Available Large eddy simulations (LESs are performed for the area of the Caribbean island Barbados to investigate island effects on boundary layer modification, cloud generation and vertical mixing of aerosols. Due to the presence of a topographically structured island surface in the domain center, the model setup has to be designed with open lateral boundaries. In order to generate inflow turbulence consistent with the upstream marine boundary layer forcing, we use the cell perturbation method based on finite amplitude potential temperature perturbations. In this work, this method is for the first time tested and validated for moist boundary layer simulations with open lateral boundary conditions. Observational data obtained from the SALTRACE field campaign is used for both model initialization and a comparison with Doppler wind and Raman lidar data. Several numerical sensitivity tests are carried out to demonstrate the problems related to “gray zone modeling” when using coarser spatial grid spacings beyond the inertial subrange of three-dimensional turbulence or when the turbulent marine boundary layer flow is replaced by laminar winds. Especially cloud properties in the downwind area west of Barbados are markedly affected in these kinds of simulations. Results of an additional simulation with a strong trade-wind inversion reveal its effect on cloud layer depth and location. Saharan dust layers that reach Barbados via long-range transport over the North Atlantic are included as passive tracers in the model. Effects of layer thinning, subsidence and turbulent downward transport near the layer bottom at z ≈ 1800 m become apparent. The exact position of these layers and strength of downward mixing is found to be mainly controlled atmospheric stability (especially inversion strength and wind shear. Comparisons of LES model output with wind lidar data show similarities in the downwind vertical wind structure. Additionally, the model results

  8. Surface circulation and vertical structure of current off the Keum River estuary, Korea in later spring 2008

    Science.gov (United States)

    Lee, Sang-Ho; Kim, Moon-Jin; Kim, Chang-Soo; Choi, Byoung-Ju; Moon, Hong-Bae

    2017-09-01

    To examine the surface circulation and vertical structure of currents in the region of the Keum River (KR) plume, we analyzed the subinertial surface currents obtained by high frequency radar and the vertical profiles of currents measured at a station (M1) located 10 km distance from the estuary mouth for one month in late spring 2008. Monthly-mean surface circulation is composed of the westward flow from the estuary mouth and the northward flow in the offshore. These surface mean currents are a gradient (geostrophic) current around the monthly-mean plume bulge. Dominant variabilities of the surface currents, winds, and KR-outflow are decomposed by the Empirical Orthogonal Functions (EOF). The first current EOF mode, explaining 39% of total variation, is primarily related to the first wind EOF mode varying along the coast and the second current mode, explaining 33% of total variation, is mainly related to the first KR-outflow EOF mode varying along the mean KR-outflow direction. Meanwhile, vertical profile of the monthly-mean current at M1 shows a two-layer structure of the current flowing offshore (onshore) in the upper (lower) layer because the water column is divided by a pycnocline at 7-9 m depths below the plume water. This two layer structure is a background persisting current structure, at least in spring, maintained by the geostrophic balance induced by the sea level slope and density gradient along the line normal to the westward mean surface current direction due to monthly-mean plume bulge off the KR estuary. EOF analysis of vertical current profiles reveals that the first mode, explaining 43% of total variation, represents the two-layer structure of the current variability. The upper-layer current varies along a line normal to the mainland coastline and the low-layer one varies approximately along a line parallel to the coastline, with direction difference of about 115° between the upper-and low-layer. From the correlation analysis it is found that 60

  9. Flow structure formation and evolution in circulating gas-fluidised beds

    NARCIS (Netherlands)

    Li, J.; Kuipers, J.A.M.

    2004-01-01

    The occurrence of heterogeneous flow structures in gas-particle flows seriously affects the gas-solid contacting and transport processes in high-velocity gas-fluidized beds. Particles do not disperse uniformly in the flow but pass through the bed in a swarm of clusters. The so-called "core-annulus"

  10. The VMC survey - XXV. The 3D structure of the Small Magellanic Cloud from Classical Cepheids

    Science.gov (United States)

    Ripepi, Vincenzo; Cioni, Maria-Rosa L.; Moretti, Maria Ida; Marconi, Marcella; Bekki, Kenji; Clementini, Gisella; de Grijs, Richard; Emerson, Jim; Groenewegen, Martin A. T.; Ivanov, Valentin D.; Molinaro, Roberto; Muraveva, Tatiana; Oliveira, Joana M.; Piatti, Andrés E.; Subramanian, Smitha; van Loon, Jacco Th.

    2017-11-01

    The VISTA near-infrared YJKs survey of the Magellanic System (VMC) is collecting deep Ks-band time-series photometry of pulsating stars hosted by the two Magellanic Clouds and their connecting bridge. Here, we present Y, J, Ks light curves for a sample of 717 Small Magellanic Cloud (SMC) Classical Cepheids (CCs). These data, complemented with our previous results and V magnitude from literature, allowed us to construct a variety of period-luminosity and period-Wesenheit relationships, valid for Fundamental, First and Second Overtone pulsators. These relations provide accurate individual distances to CCs in the SMC over an area of more than 40 deg2. Adopting literature relations, we estimated ages and metallicities for the majority of the investigated pulsators, finding that (i) the age distribution is bimodal, with two peaks at 120 ± 10 and 220 ± 10 Myr; (i) the more metal-rich CCs appear to be located closer to the centre of the galaxy. Our results show that the three-dimensional distribution of the CCs in the SMC is not planar but heavily elongated for more than 25-30 kpc approximately in the east/north-east towards south-west direction. The young and old CCs in the SMC show a different geometric distribution. Our data support the current theoretical scenario predicting a close encounter or a direct collision between the Clouds some 200 Myr ago and confirm the presence of a Counter-Bridge predicted by some models. The high-precision three-dimensional distribution of young stars presented in this paper provides a new test bed for future models exploring the formation and evolution of the Magellanic System.

  11. Investigation of Seasonal Landscape Freeze/Thaw Cycles in Relation to Cloud Structure in the High Northern Latitudes

    Science.gov (United States)

    Smith, Cosmo

    2011-01-01

    The seasonal freezing and thawing of Earth's cryosphere (the portion of Earth's surface permanently or seasonally frozen) has an immense impact on Earth's climate as well as on its water, carbon and energy cycles. During the spring, snowmelt and the transition between frozen and non-frozen states lowers Earth's surface albedo. This change in albedo causes more solar radiation to be absorbed by the land surface, raising surface soil and air temperatures as much as 5 C within a few days. The transition of ice into liquid water not only raises the surface humidity, but also greatly affects the energy exchange between the land surface and the atmosphere as the phase change creates a latent energy dominated system. There is strong evidence to suggest that the thawing of the cryosphere during spring and refreezing during autumn is correlated to local atmospheric conditions such as cloud structure and frequency. Understanding the influence of land surface freeze/thaw cycles on atmospheric structure can help improve our understanding of links between seasonal land surface state and weather and climate, providing insight into associated changes in Earth's water, carbon, and energy cycles that are driven by climate change.Information on both the freeze/thaw states of Earth's land surface and cloud characteristics is derived from data sets collected by NOAA's Special Sensor Microwave/Imager (SSM/I), the Advanced Microwave Scanning Radiometer on NASA's Earth Observing System(AMSR-E), NASA's CloudSat, and NASA's SeaWinds-on-QuickSCAT Earth remote sensing satellite instruments. These instruments take advantage of the microwave spectrum to collect an ensemble of atmospheric and land surface data. Our analysis uses data from radars (active instruments which transmit a microwave signal toward Earth and measure the resultant backscatter) and radiometers (passive devices which measure Earth's natural microwave emission) to accurately characterize salient details on Earth's surface

  12. Analysis of Aircraft, Radiosonde and Radar Observations in Cirrus Clouds Observed During FIRE II: The Interactions Between Environmental Structure, Turbulence and Cloud Microphysical Properties

    Science.gov (United States)

    Smith, Samantha A.; DelGenio, Anthony D.

    1999-01-01

    Ways to determine the turbulence intensity and the horizontal variability in cirrus clouds have been investigated using FIRE-II aircraft, radiosonde and radar data. Higher turbulence intensities were found within some, but not all, of the neutrally stratified layers. It was also demonstrated that the stability of cirrus layers with high extinction values decrease in time, possibly as a result of radiative destabilization. However, these features could not be directly related to each other in any simple manner. A simple linear relationship was observed between the amount of horizontal variability in the ice water content and its average value. This was also true for the extinction and ice crystal number concentrations. A relationship was also suggested between the variability in cloud depth and the environmental stability across the depth of the cloud layer, which requires further investigation.

  13. Sensitivity simulations of superparameterised convection in a general circulation model

    Science.gov (United States)

    Rybka, Harald; Tost, Holger

    2015-04-01

    Cloud Resolving Models (CRMs) covering a horizontal grid spacing from a few hundred meters up to a few kilometers have been used to explicitly resolve small-scale and mesoscale processes. Special attention has been paid to realistically represent cloud dynamics and cloud microphysics involving cloud droplets, ice crystals, graupel and aerosols. The entire variety of physical processes on the small-scale interacts with the larger-scale circulation and has to be parameterised on the coarse grid of a general circulation model (GCM). Since more than a decade an approach to connect these two types of models which act on different scales has been developed to resolve cloud processes and their interactions with the large-scale flow. The concept is to use an ensemble of CRM grid cells in a 2D or 3D configuration in each grid cell of the GCM to explicitly represent small-scale processes avoiding the use of convection and large-scale cloud parameterisations which are a major source for uncertainties regarding clouds. The idea is commonly known as superparameterisation or cloud-resolving convection parameterisation. This study presents different simulations of an adapted Earth System Model (ESM) connected to a CRM which acts as a superparameterisation. Simulations have been performed with the ECHAM/MESSy atmospheric chemistry (EMAC) model comparing conventional GCM runs (including convection and large-scale cloud parameterisations) with the improved superparameterised EMAC (SP-EMAC) modeling one year with prescribed sea surface temperatures and sea ice content. The sensitivity of atmospheric temperature, precipiation patterns, cloud amount and types is observed changing the embedded CRM represenation (orientation, width, no. of CRM cells, 2D vs. 3D). Additionally, we also evaluate the radiation balance with the new model configuration, and systematically analyse the impact of tunable parameters on the radiation budget and hydrological cycle. Furthermore, the subgrid

  14. Cloud Computing

    Indian Academy of Sciences (India)

    Cloud computing; services on a cloud; cloud types; computing utility; risks in using cloud computing. Author Affiliations. V Rajaraman1. Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560 012, India. Resonance – Journal of Science Education. Current Issue : Vol. 22, Issue 11. Current ...

  15. The Structure of Ice Nanoclusters and Thin-films of Water Ice: Implications for Icy Grains in Cold Molecular Clouds

    Science.gov (United States)

    Delzeit, Lance; Blake, David; Uffindell, Christine; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The cubic to hexagonal phase transformation in water ice (I(sub c) yields I(sub h)) is used to measure the extent to which surface structure and impurities control bulk properties. In pure crystalline (I(sub c)) water ice nanoclusters and in thin-films of impure water ice, I(sub c) yields I(sub h) occurs at lower temperatures than in thin-films of pure water ice. The disordered surface of the 20 nm diameter nanoclusters promotes transformations or reactions which would otherwise be kinetically hindered. Likewise, impurities such as methanol introduce defects into the ice network, thereby allowing sluggish structural transitions to proceed. Such surface-related phenomena play an important role in promoting chemical reactions on interstellar ice grains within cold molecular clouds, where the first organic compounds are formed.

  16. Requirements and Implementation Feasibility for a CubeSat Thermal Infrared Imaging System to Monitor the Structure of Volcanic Ash Clouds

    Science.gov (United States)

    Thorsen, D.; Carroll, R.; Webley, P.; Hawkins, J.

    2014-12-01

    The 2010 eruption of the Eyjafjallajökull volcano in Iceland caused the cancellation of approximately 108,000 flights over an 8-day period, disrupted air traffic worldwide, and cost the airline industry more than $400 million per day. The inconvenience and economic impact of this and similar events, such as Puyehue-Cordon-Caulle in 2011, have heightened the interest in developing improved satellite remote sensing techniques for monitoring volcanic plumes and drifting clouds. For aviation safety, the operational/research community has started to move towards classifying the concentrations within volcanic plumes and clouds. Additionally, volcanic ash transport and dispersion (VATD) models are often used for forecasting ash cloud locations and they require knowledge of the structure of the erupting column to improve their ash simulations and also downwind 3-D maps of the ash cloud to calibrate/validate their modeling output. Existing remote sensing satellites utilize a brightness temperature method with thermal infrared (TIR) measurements from 10 - 12 μm to determine mass loading of volcanic ash along a single line of sight, but they have infrequent revisit times and they cannot resolve the three-dimensional structure of the ash clouds. A cluster of CubeSats dedicated to the monitoring of volcanic ash and plumes could provide both more frequent updates and the multi-aspect images needed to resolve the density structure of volcanic ash clouds and plumes. In this presentation, we discuss the feasibility and requirements for a CubeSat TIR imaging system and the associated on-board image processing that would be required to monitor the structure of volcanic ash clouds from Low Earth Orbit.

  17. Wide Field Coverage for Juno (WFCJ): Jupiter's 2D Wind Field and Cloud Structure

    Science.gov (United States)

    Wong, Michael

    2017-08-01

    Juno will take novel measurements in the jovian system during HST Cycles 23, 24, and 25. This proposal supports Juno's neutral atmospheric investigation, which includes measurements with an IR imager/spectrometer (JIRAM) and the Microwave Radiometer (MWR). Both will achieve high spatial resolution as the orbiter swoops past Jupiter, in between the radiation belts and the cloud tops. But instrument fields of view are small compared to the planet, so HST observations would provide valuable context and complementary information.We propose to measure Jupiter's 2D wind field, as well as UV/optical cloud colors (and their evolution). We will measure winds using sets of global maps that cover two of Juno's perijove passes, characterizing the time-varying dynamics of waves, jets, vortices, and storms. The remaining perijove passes will be covered by snapshot (1-orbit) visits, sufficient to characterize feature morphology along each Juno track at high resolution. These observations will give crucial context for MWR observations and enable more precise retrievals from MWR data. Earth-based support is particularly important for Juno, due to its highly eccentric orbit and specialized instrumentation. WFC3/UVIS imaging can play an important role in the effort, since no other facility can obtain precise 2D wind fields and UV/optical photometry at high spatial resolution. Without the HST component of this campaign, key dynamical constraints will be missing.

  18. Sertoli Cells Modulate Testicular Vascular Network Development, Structure, and Function to Influence Circulating Testosterone Concentrations in Adult Male Mice.

    Science.gov (United States)

    Rebourcet, Diane; Wu, Junxi; Cruickshanks, Lyndsey; Smith, Sarah E; Milne, Laura; Fernando, Anuruddika; Wallace, Robert J; Gray, Calum D; Hadoke, Patrick W F; Mitchell, Rod T; O'Shaughnessy, Peter J; Smith, Lee B

    2016-06-01

    The testicular vasculature forms a complex network, providing oxygenation, micronutrients, and waste clearance from the testis. The vasculature is also instrumental to testis function because it is both the route by which gonadotropins are delivered to the testis and by which T is transported away to target organs. Whether Sertoli cells play a role in regulating the testicular vasculature in postnatal life has never been unequivocally demonstrated. In this study we used models of acute Sertoli cell ablation and acute germ cell ablation to address whether Sertoli cells actively influence vascular structure and function in the adult testis. Our findings suggest that Sertoli cells play a key role in supporting the structure of the testicular vasculature. Ablating Sertoli cells (and germ cells) or germ cells alone results in a similar reduction in testis size, yet only the specific loss of Sertoli cells leads to a reduction in total intratesticular vascular volume, the number of vascular branches, and the numbers of small microvessels; loss of germ cells alone has no effect on the testicular vasculature. These perturbations to the testicular vasculature leads to a reduction in fluid exchange between the vasculature and testicular interstitium, which reduces gonadotropin-stimulated circulating T concentrations, indicative of reduced Leydig cell stimulation and/or reduced secretion of T into the vasculature. These findings describe a new paradigm by which the transport of hormones and other factors into and out of the testis may be influenced by Sertoli cells and highlights these cells as potential targets for enhancing this endocrine relationship.

  19. Overlap Properties of Clouds Generated by a Cloud Resolving Model

    Science.gov (United States)

    Oreopoulos, L.; Khairoutdinov, M.

    2002-01-01

    In order for General Circulation Models (GCMs), one of our most important tools to predict future climate, to correctly describe the propagation of solar and thermal radiation through the cloudy atmosphere a realistic description of the vertical distribution of cloud amount is needed. Actually, one needs not only the cloud amounts at different levels of the atmosphere, but also how these cloud amounts are related, in other words, how they overlap. Currently GCMs make some idealized assumptions about cloud overlap, for example that contiguous cloud layers overlap maximally and non-contiguous cloud layers overlap in a random fashion. Since there are difficulties in obtaining the vertical profile of cloud amount from observations, the realism of the overlap assumptions made in GCMs has not been yet rigorously investigated. Recently however, cloud observations from a relatively new type of ground radar have been used to examine the vertical distribution of cloudiness. These observations suggest that the GCM overlap assumptions are dubious. Our study uses cloud fields from sophisticated models dedicated to simulate cloud formation, maintenance, and dissipation called Cloud Resolving Models . These models are generally considered capable of producing realistic three-dimensional representation of cloudiness. Using numerous cloud fields produced by such a CRM we show that the degree of overlap between cloud layers is a function of their separation distance, and is in general described by a combination of the maximum and random overlap assumption, with random overlap dominating as separation distances increase. We show that it is possible to parameterize this behavior in a way that can eventually be incorporated in GCMs. Our results seem to have a significant resemblance to the results from the radar observations despite the completely different nature of the datasets. This consistency is encouraging and will promote development of new radiative transfer codes that will

  20. Global Registration of 3D LiDAR Point Clouds Based on Scene Features: Application to Structured Environments

    Directory of Open Access Journals (Sweden)

    Julia Sanchez

    2017-09-01

    Full Text Available Acquiring 3D data with LiDAR systems involves scanning multiple scenes from different points of view. In actual systems, the ICP algorithm (Iterative Closest Point is commonly used to register the acquired point clouds together to form a unique one. However, this method faces local minima issues and often needs a coarse initial alignment to converge to the optimum. This paper develops a new method for registration adapted to indoor environments and based on structure priors of such scenes. Our method works without odometric data or physical targets. The rotation and translation of the rigid transformation are computed separately, using, respectively, the Gaussian image of the point clouds and a correlation of histograms. To evaluate our algorithm on challenging registration cases, two datasets were acquired and are available for comparison with other methods online. The evaluation of our algorithm on four datasets against six existing methods shows that the proposed method is more robust against sampling and scene complexity. Moreover, the time performances enable a real-time implementation.

  1. Comparison of prestellar core elongations and large-scale molecular cloud structures in the Lupus I region

    Energy Technology Data Exchange (ETDEWEB)

    Poidevin, Frédérick [UCL, KLB, Department of Physics and Astronomy, Gower Place, London WC1E 6BT (United Kingdom); Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Angile, Francesco E.; Devlin, Mark J.; Klein, Jeffrey [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Benton, Steven J.; Netterfield, Calvin B. [Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7 (Canada); Chapin, Edward L. [XMM SOC, ESAC, Apartado 78, E-28691 Villanueva de la Canãda, Madrid (Spain); Fissel, Laura M.; Gandilo, Natalie N. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Fukui, Yasuo [Department of Physics, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Korotkov, Andrei L. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Matthews, Tristan G.; Novak, Giles [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Moncelsi, Lorenzo; Mroczkowski, Tony K. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Olmi, Luca, E-mail: fpoidevin@iac.es [Physics Department, University of Puerto Rico, Rio Piedras Campus, Box 23343, UPR station, San Juan, PR 00931 (United States); and others

    2014-08-10

    Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 μm maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of the morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 μm with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics—including secondary filaments that often run orthogonally to the primary filament—and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core.

  2. Intercomparison of Vertical Structure of Storms Revealed by Ground-Based (NMQ and Spaceborne Radars (CloudSat-CPR and TRMM-PR

    Directory of Open Access Journals (Sweden)

    Veronica M. Fall

    2013-01-01

    Full Text Available Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR and Ku-band Precipitation Radar (PR, which are onboard NASA’s CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE. This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors’ type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts.

  3. Antenna structures and cloud-to-ground lightning location: 1995-2015

    Science.gov (United States)

    Kingfield, Darrel M.; Calhoun, Kristin M.; de Beurs, Kirsten M.

    2017-05-01

    Spatial analyses of cloud-to-ground (CG) lightning occurrence due to a rapid expansion in the number of antenna towers across the United States are explored by gridding 20 years of National Lightning Detection Network data at 500 m spatial resolution. The 99.8% of grid cells with ≥100 CGs were within 1 km of an antenna tower registered with the Federal Communications Commission. Tower height is positively correlated with CG occurrence; towers taller than 400 m above ground level experience a median increase of 150% in CG lightning density compared to a region 2 km to 5 km away. In the northern Great Plains, the cumulative CG lightning density near the tower was around 138% (117%) higher than a region 2 to 5 km away in the September-February (March-August) months. Higher CG frequencies typically also occur in the first full year following new tower construction, creating new lightning hot spots.

  4. Evolution Of The Cloud Field And Wind Structure Of Ntb Disturbance

    Science.gov (United States)

    Barrado-Izagirre, Naiara; Pérez-Hoyos, S.; García-Melendo, E.; Sánchez-Lavega, A.

    2009-09-01

    The banded visual aspect of cloud patterns in Jupiter hides markedly turbulent areas visible in high resolution images. The North Temperate Belt (NTB) at 21° N planetocentric latitude where the most intense Jovian jet resides (with speeds of 160 - 180 m/s) is a region of particular interest because it is known to suffer almost every 15 years an eruption or disturbance which dramatically changes its appearance. This phenomenon is known as NTB Disturbance (NTBD). The last one of such disturbances happened in 2007 and was captured by the Hubble Space Telescope and with lower resolution by the "International Outer Planet Watch” (IOPW) network [Sánchez-Lavega et al., 2008. Depth of a strong Jovian jet from a planetary-scale disturbance driven by storms, Nature 451.]. In this work we make use of these observations to characterize the morphology of the disturbed cloud field in the wake of the plumes which originated the perturbation. This is done mostly in terms of the brightness spectral distribution in order to characterize the typical spatial frequency of the perturbation and its wavy and turbulent nature. In addition we make a comparison of the jet profile in the NTB just after the disturbance ended (June 2007) with one obtained year later (July 2008). It shows that a change occurred in its anticyclonic side producing a reinforced westward jet at 17°N with a speed change of 30 m/s. Acknowledgments: This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07

  5. Investigating three-dimensional cloud properties in a large hot Jupiter sample

    Science.gov (United States)

    Kataria, Tiffany; Baldwin, Taylor; Knutson, Heather; Wakeford, Hannah; Mawet, Dimitri; Sing, David K.

    2017-10-01

    Observations of exoplanet atmospheres have shown that clouds and hazes are ubiquitous, but can vary widely over a range of physical properties. In the case of hot Jupiters, previous Spitzer and Hubble Space Telescope observations of a nine-planet sample show a range of alkali/water abundances, as well as Rayleigh scattering at near-UV and optical wavelengths, that suggest a continuum of atmospheres from clear to cloudy. Three-dimensional general circulation models (GCMs) of these planets show that the circulation and temperature structure, both of which influence cloud formation and transport, varies as a function of planet radius, gravity, orbital period, and equilibrium temperature. However, which physical properties most strongly influence cloud formation in hot Jupiters has been largely unexplored over a large sample. Here we utilize previous 3D GCM results of this nine-planet sample to produce 3D cloud maps using a simplified cloud scheme by Ackerman and Marley (2000). We examine trends in cloud types and cloud distributions that arise from differences in each planet’s physical properties. We use these 3D temperature and cloud maps to derive ‘cloudy’ transmission spectra that we then compare to existing Hubble and Spitzer Space Telescope data. In particular, we focus on differences in cloud properties between leading and trailing limbs, each of which contribute equally to a planet’s overall transmission spectrum. These and future analyses will have large implications for the cloud properties that can be explored with future facilities, such as the James Webb Space Telescope.

  6. Lidar and Ceilometer Observations and Comparisons of Atmospheric Cloud Structure at Nagqu of Tibetan Plateau in 2014 Summer

    Directory of Open Access Journals (Sweden)

    Xiaoquan Song

    2017-01-01

    Full Text Available In the project of the Third Tibetan Plateau Experiment of Atmospheric Science (TIPEX III, the intensive observation of cloud and precipitation in Nagqu was conducted from 1 July to 31 August 2014. The CL31 ceilometer and a WAter vapor, Cloud and Aerosol Lidar (WACAL were deployed and focused on studying the cloud macroscopic characteristics and vertical distribution. The statistical result of CL31 ceilometer in continuous operation mode shows that the cloud occurrence is about 81% with a majority of simple one-layer cloud. The cloud base and top height are retrieved by improved differential zero-crossing method using lidar data. The results of cloud base height (CBH are compared with CL31 ceilometer, showing a good consistency with each other, however, in some cases, the CL31 ceilometer overestimates the CBH and is also validated by synchronous radiosonde data. The time snippet comparisons of cloud property between CL31 ceilometer and lidar imply that the cloud properties have obvious diurnal variations with “U” shape distribution. The cloud development including the time-spatial distribution features also has distinct diurnal variations based on the lidar measurement. The detection range of lidar goes beyond the maximum height of CL31 ceilometer, offering substantial observations to the analysis of cirrus cloud radiation characteristics and formation mechanism.

  7. Parameterization of clouds and radiation in climate models

    Energy Technology Data Exchange (ETDEWEB)

    Roeckner, E. [Max Planck Institute for Meterology, Hamburg (Germany)

    1995-09-01

    Clouds are a very important, yet poorly modeled element in the climate system. There are many potential cloud feedbacks, including those related to cloud cover, height, water content, phase change, and droplet concentration and size distribution. As a prerequisite to studying the cloud feedback issue, this research reports on the simulation and validation of cloud radiative forcing under present climate conditions using the ECHAM general circulation model and ERBE top-of-atmosphere radiative fluxes.

  8. Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea

    Directory of Open Access Journals (Sweden)

    S.-W. Kim

    2008-07-01

    Full Text Available We present initial validation results of the space-borne lidar CALIOP onboard CALIPSO satellite using coincidental observations from a ground-based lidar in Seoul National University (SNU, Seoul, Korea (37.46° N, 126.95° E. We analyze six selected cases between September 2006 and February 2007, including 3 daytime and 3 night-time observations and covering different types of clear and cloudy atmospheric conditions. Apparent scattering ratios calculated from the two lidar measurements of total attenuated backscatter at 532 nm show similar aerosol and cloud layer structures both under cloud-free conditions and in cases of multiple aerosol layers underlying semi-transparent cirrus clouds. Agreement on top and base heights of cloud and aerosol layers is generally within 0.10 km, particularly during night-time. This result confirms that the CALIPSO science team algorithms for the discrimination of cloud and aerosol as well as for the detection of layer top and base altitude provide reliable information in such atmospheric conditions. This accuracy of the planetary boundary layer top height under cirrus cloud appears, however, limited during daytime. Under thick cloud conditions, however, information on the cloud top (bottom height only is reliable from CALIOP (ground-based lidar due to strong signal attenuations. However, simultaneous space-borne CALIOP and ground-based SNU lidar (SNU-L measurements complement each other and can be combined to provide full information on the vertical distribution of aerosols and clouds. An aerosol backscatter-to-extinction ratio (BER estimated from lidar and sunphotometer synergy at the SNU site during the CALIOP overpass is assessed to be 0.023±0.004 sr−1 (i.e. a lidar ratio of 43.2±6.2 sr from CALIOP and 0.027±0.006 sr−1 (37.4±7.2 sr from SNU-L. For aerosols within the planetary boundary layer under cloud-free conditions, the aerosol extinction profiles from both lidars are in

  9. Distribution and structure of lotic macroinvertebrate communities and the influence of environmental factors in a tropical cloud forest, Cusuco National Park, Honduras

    Directory of Open Access Journals (Sweden)

    Paul O'Callaghan

    2016-11-01

    Full Text Available Neotropical cloud forests are a critically endangered ecosystem characterised by their unusual hydrological conditions which frequently make them important sources of clean potable water. To facilitate any meaningful research on cloud forest streams it is necessary to first describe the structure and composition of the local lotic aquatic communities and to establish which environmental factors structure them under natural conditions. The present study sampled the macroinvertebrate communities of rivers draining the montane cloud forests of Cucuso National Park in Honduras, where increasing anthropogenic pressures are threatening water quality. Using multivariate techniques a bottom-up approach was adopted to establish groups of similar sites and identify environmental factors driving the differences between these. Three site groupings emerged based largely on differences in taxon composition driven mainly by pH and altitude.

  10. Investigation of the vertical structure of clouds over the Western Ghats, India using X-band and Ka-band Doppler radar observations

    Science.gov (United States)

    Das, Subrata Kumar

    Investigation of the vertical structure of clouds over the Western Ghats, India using X-band and Ka-band Doppler radar observations Subrata Kumar Das*, S. M. Deshpande, K. Chakravarty and M. C. R. Kalapureddy Indian Institute of Tropical Meteorology, Pune, India ABSTRACT The Western Ghats (WGs) located parallel to the west coast of India receives a huge amount of rainfall during the Indian summer monsoon (ISM) in which topography plays a huge role in it. To understand the dynamics and microphysics of monsoon precipitating clouds over the WGs, a High Altitude Cloud Physics Laboratory (HACPL) has been setup at Mahabaleshwar (17.92 oN, 73.6 oE, ~1.4 km AMSL) in 2012. As part of this laboratory, a mobile X-band (9.5 GHz) and Ka-band (35.29 GHz) dual-polarization Doppler weather radar system is installed at Mandhardev (18.04 oN, 73.87 oE, ~1.3 km AMSL, at 26 km radial distance from the HACPL). The X-band radar shows the dominant cloud movement is from the western side of the WGs to the eastern side, crossing the HACPL and the radar site. The cloud occurrence statistics show a sudden reduction within a distance of ~30 km on the eastern side of WGs indicates the possibility of a rain shadow area. Further, we investigate the vertical structure of cloud over the HACPL, and identified four cloud modes viz., shallow cumulus mode, congestus mode, deep convective mode, and overshooting convection mode. The frequency distribution of cloud-cell base height (CBH) and cloud-cell top height (CTH) shows most of the clouds with base below 2.5 km and tops usually not exceeding 9 km. This indicates the dominance of warm-rain process in the WGs region. The positive relationships between surface rainfall rates and CTH and 0oC isotherm level have observed. Details will be presented in the upcoming symposium.

  11. THE GOULD’S BELT DISTANCES SURVEY (GOBELINS). II. DISTANCES AND STRUCTURE TOWARD THE ORION MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kounkel, Marina; Hartmann, Lee [Department of Astronomy, University of Michigan, 1085 S. University Street, Ann Arbor, MI 48109 (United States); Loinard, Laurent; Ortiz-León, Gisela N.; Rodríguez, Luis F.; Pech, Gerardo; Rivera, Juana L. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de Mexico, Morelia 58089 (Mexico); Mioduszewski, Amy J. [National Radio Astronomy Observatory, Domenici Science Operations Center, 1003 Lopezville Road, Socorro, NM 87801 (United States); Dzib, Sergio A. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Torres, Rosa M. [Centro Universitario de Tonalá, Universidad de Guadalajara, Avenida Nuevo Perifrico No. 555, Ejido San José, Tatepozco, C.P. 48525, Tonalá, Jalisco, México (Mexico); Galli, Phillip A. B. [Université Grenoble Alpes, IPAG, F-38000, Grenoble (France); Boden, Andrew F. [Division of Physics, Math and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Evans II, Neal J. [Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Briceño, Cesar [Cerro Tololo Interamerican Observatory, Casilla 603, La Serena (Chile); Tobin, John J., E-mail: mkounkel@umich.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States)

    2017-01-10

    We present the results of the Gould’s Belt Distances Survey of young star-forming regions toward the Orion Molecular Cloud Complex. We detected 36 young stellar objects (YSOs) with the Very Large Baseline Array, 27 of which have been observed in at least three epochs over the course of two years. At least half of these YSOs belong to multiple systems. We obtained parallax and proper motions toward these stars to study the structure and kinematics of the Complex. We measured a distance of 388 ± 5 pc toward the Orion Nebula Cluster, 428 ± 10 pc toward the southern portion L1641, 388 ± 10 pc toward NGC 2068, and roughly ∼420 pc toward NGC 2024. Finally, we observed a strong degree of plasma radio scattering toward λ Ori.

  12. Analysis of small-scale structures in lidar observations of noctilucent clouds using a pattern recognition method

    Science.gov (United States)

    Ridder, C.; Baumgarten, G.; Fiedler, J.; Lübken, F.-J.; Stober, G.

    2017-09-01

    Noctilucent clouds (NLC) have been observed with the ALOMAR Rayleigh/Mie/Raman lidar at 69° N using a temporal resolution of 30 s since 2008. We present an approach to identify and analyze the localized small scale wave structures of the varying altitude of the NLC layers in the range of 5-30 min that may be caused by gravity waves. Small scale gravity waves breaking in the mesopause region contribute notably to the momentum flux but are difficult to observe and to characterize. The approach is based on a template matching method using generalized structures to be identified in the NLC observations. The new method permits the identification of structures that are present in NLC only for a time too short to appear in a Fourier or wavelet spectrum. Without the need for a continuous time series the method can handle multiple NLC layers and data gaps. In the 2000 h of NLC data from the years 2008-2015, we find almost 5000 single wave structures with a total length of 738 h. The structures are found on average 400 m below the NLC centroid altitude and a large number of the structures has a length at the lower limit of 5 min. With the background wind from the meteor radar near ALOMAR a horizontal scale is estimated based on the length of the individual structures. The distribution of horizontal scales shows a peak of wave structures at 15-20 km in accordance with the horizontal wavelengths found by ground-based camera observations of NLC.

  13. Marine Cloud Brightening

    Energy Technology Data Exchange (ETDEWEB)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, H.; Connolly, P.; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Philip J.; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Robert

    2012-09-07

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  14. Using the Annual Cycle to Understand Climate Model Biases in Trade-wind Clouds

    Science.gov (United States)

    Medeiros, B.; Nuijens, L.

    2014-12-01

    This study investigates the clouds of the north Atlantic trade-wind region as represented in climate models. We focus on an area near Barbados, a site with long-term cloud observations. We begin by asking whether the annual cycle of cloud cover is properly represented in models compared to satellite observations and reanalysis. The models robustly overestimate the amplitude of the annual cycle in cloud cover compared to satellite estimates, but qualitatively capture the phase of the annual cycle with the cloudiest months in the summer wet season in association with deeper convection and higher clouds. We show that the wet season biases are associated with biases in the large-scale circulation, in particular the location of the ITCZ. During the dry season, however, cloud cover is underestimated. Comparison of simulated cloud fraction with the expected cloud-controlling factors shows only weak relationships and little correspondence between the models and observation-based estimates. We infer that the cloud cover variations within the dry season are controlled at least as much by local factors as large-scale ones; these local factors are determined by parameterized physics in the climate models. Like the cloud cover, the vertical structure of the the simulated clouds varies tremendously across models. Perhaps unsurprisingly, the shortwave cloud radiative effect (SWCRE) is relatively well-captured by the models during the dry season, signaling a common compensating bias among the models and reaffirming the ''too few, too bright'' error. Conditioning on dry season and SWCRE shows that models diverge as to the cause of SWCRE variation, some having more influence from shallow cumulus cloud variation while others show more dependence on middle and upper-level clouds. These higher clouds are usually considered unimportant for the overall cloudiness and the shortwave radiation budget in the trades, but this does not appear to be the case at least for some models. Since

  15. Cloud Governance

    DEFF Research Database (Denmark)

    Berthing, Hans Henrik

    Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing.......Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing....

  16. Studies of Dark Spots and Their Companion Clouds on the Ice Giant Planets

    Science.gov (United States)

    Bhure, Sakhee; Sankar, Ramanakumar; Hadland, Nathan; Palotai, Csaba J.; Le Beau, Raymond P.; Koutas, Nikko

    2017-10-01

    Observations of ice giant planets in our Solar System have shown several large-scale dark spots with varying lifespans. Some of these features were directly observed, others were diagnosed from their orographic companion clouds. Historically, numerical simulations have been able to model certain characteristics of these storms such as the shape variability of the Neptune Great Dark Spot (GDS-89) (Deng and Le Beau, 2006), but have not been able to match observed drift rates and lifespans using the standard zonal wind profiles (Hammel et al. 2009). Common amongst these studies has been the lack of condensable species in the atmosphere and an explicit treatment of cloud microphysics. Yet, observations show that dark spots can affect neighboring cloud features, such as in the case of bright companion clouds or the “Berg” on Uranus. An analysis of the cloud structure is therefore required to gain a better understanding of the underlying atmospheric physics and dynamics of these vortices.For our simulations, we use the Explicit Planetary Isentropic Coordinate (EPIC) general circulation model (Dowling et al. 1998, 2006) and adapt its jovian cloud microphysics module which successfully reproduced the cloud structure of jovian storms, such as the Great Red Spot and the Oval BA (Palotai and Dowling 2008, Palotai et al. 2014). EPIC was recently updated to account for the condensation of methane and hydrogen sulfide (Palotai et al. 2016), which allows us to account for both the high-altitude methane ice-cloud and the deep atmosphere hydrogen sulfide ice-cloud layers.In this work, we simulate large-scale vortices on Uranus and Neptune with varying cloud microphysical parameters such as the deep abundance and the ambient supersaturation. We examine the effect of cloud formation on their lifespan and drift rates to better understand the underlying processes which drive these storms.

  17. Planck intermediate results XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.

    2016-01-01

    Within ten nearby (d <450 pc) Gould belt molecular clouds we evaluate statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures...

  18. Ice cloud microphysical properties in tropical Pacific regions derived from CloudSat and CALIPSO measurements

    Science.gov (United States)

    Takahashi, Naoya; Hayasaka, Tadahiro; Okamoto, Hajime

    2017-02-01

    We revealed the difference in tropical ice cloud microphysical properties between the western Pacific (WP) and the eastern Pacific (EP), based on satellite retrievals. Vertical profile of effective particle radius of ice cloud (re) was estimated from active sensors on board CloudSat and CALIPSO satellites. In this study, we focused only on ice cloud which is defined as clouds with the cloud top temperature lower than 0°C. To investigate the relationship between cloud optical properties and cloud vertical structures, these ice clouds were classified into five types based on cloud optical thickness values. Compared the vertical profile of re in WP with that in the EP, re around the freezing level within convective cloud in EP slightly larger than that in WP. This analysis also shows that re of optically thick cloud is larger than that of optically thin cloud. The difference in re may be caused by differences in moisture convergence, upward motion, aerosols.

  19. The impact of monsoon winds and mesoscale eddies on thermohaline structures and circulation patterns in the northern South China Sea

    Science.gov (United States)

    Zhao, Ruixiang; Zhu, Xiao-Hua; Guo, Xinyu

    2017-07-01

    We deployed 5 pressure-recording inverted echo sounders (PIES) along a section in the northern South China Sea (NSCS), and estimated well the distributions of temperature, salinity and velocity across the section. Applying the empirical orthogonal function (EOF) method, we found that variability of the estimates is dominated by two modes: one named the seasonal mode affecting strongly on the hydrographic distribution with explained variability of temperature/salinity by 62.9/72.2%; the other named the eddy mode, corresponding to the arrival of mesoscale eddies, affecting strongly on the circulation pattern with explained variability of velocity by 63.2%. Temporal variation of the seasonal mode is highly correlated with the monsoon winds southeast of Vietnam, suggesting a nonlocal forcing mechanism. Case studies looking at the structures and evolutions of three captured eddies, whose impacts were well quantified by the eddy mode. The monsoon (eddies) significantly affects temperature, salinity and velocity shallower than 635 m (860 m), 160 m (150 m) and 1055 m (920 m), respectively. The monsoon (eddies) can induce maximum temperature, salinity and velocity anomalies up to -1.6 to 2.1 °C (-2.5 to 2.2 °C), -0.11 to 0.14 psu (-0.13 to 0.27 psu) and -0.31 to 0.46 m/s (-0.40 to 0.38 m/s), respectively. Mean volume transport (VT) across the section is 1.0 Sv (1 Sv= 1 ×106 m3 s-1, positive to the northeast). Seasonal VT (with eddy impacts removed) is -4.6 Sv, 11.4 Sv, -5.1 Sv and -4.1 Sv for spring, summer, autumn and winter, respectively.

  20. Marine cloud brightening

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action

  1. A Conceptual Model for Circulation Control Systems

    Science.gov (United States)

    Miller, G.; Coleridge, F.

    1977-01-01

    A semimathematical model for library circulation control. The application is intended to contribute to a more structured yet flexible approach to library circulation management. It includes provisions for circulation policy analysis and management, recording, and controlling of circulation transactions. (Author/KP)

  2. Annual Cycle of GW-induced CO2 Cloud Formation in Mars' Middle Atmosphere

    Science.gov (United States)

    Yiğit, E.; Medvedev, A. S.

    2016-12-01

    Gravity waves (GWs) of lower atmospheric origin influence the dynamical and thermal structure of the Martian middle and upper atmosphere. Recently, using the Max Planck Institute Martian General Circulation Model (MPI-MGCM), incorporating the Yigit et al 2008 whole atmosphere nonlinear GW parameterization, Yigit et al 2015 have demonstrated that GWs facilitate high-altitude CO2 ice cloud formation. In this study, using the same modeling framework, we analyze the annual cycle of cloud formation along with the associated variations of GW activity. CO2 ice cloud variations in the mesosphere and the lower thermosphere (MLT) during one Martian year appreciably coincide with GW effects, suggesting that GW processes significantly affect CO2 ice cloud formation in the Martian MLT

  3. Automated Reconstruction of Historic Roof Structures from Point Clouds - Development and Examples

    Science.gov (United States)

    Pöchtrager, M.; Styhler-Aydın, G.; Döring-Williams, M.; Pfeifer, N.

    2017-08-01

    The analysis of historic roof constructions is an important task for planning the adaptive reuse of buildings or for maintenance and restoration issues. Current approaches to modeling roof constructions consist of several consecutive operations that need to be done manually or using semi-automatic routines. To increase efficiency and allow the focus to be on analysis rather than on data processing, a set of methods was developed for the fully automated analysis of the roof constructions, including integration of architectural and structural modeling. Terrestrial laser scanning permits high-detail surveying of large-scale structures within a short time. Whereas 3-D laser scan data consist of millions of single points on the object surface, we need a geometric description of structural elements in order to obtain a structural model consisting of beam axis and connections. Preliminary results showed that the developed methods work well for beams in flawless condition with a quadratic cross section and no bending. Deformations or damages such as cracks and cuts on the wooden beams can lead to incomplete representations in the model. Overall, a high degree of automation was achieved.

  4. Cloud morphology and dynamics in Saturn's northern polar region

    Science.gov (United States)

    Antuñano, Arrate; del Río-Gaztelurrutia, Teresa; Sánchez-Lavega, Agustín; Rodríguez-Aseguinolaza, Javier

    2018-01-01

    We present a study of the cloud morphology and motions in the north polar region of Saturn, from latitude ∼ 70°N to the pole based on Cassini ISS images obtained between January 2009 and November 2014. This region shows a variety of dynamical structures: the permanent hexagon wave and its intense eastward jet, a large field of permanent ;puffy; clouds with scales from 10 - 500 km, probably of convective origin, local cyclone and anticyclones vortices with sizes of ∼1,000 km embedded in this field, and finally the intense cyclonic polar vortex. We report changes in the albedo of the clouds that delineate rings of circulation around the polar vortex and the presence of ;plume-like; activity in the hexagon jet, in both cases not accompanied with significant variations in the corresponding jets. No meridional migration is observed in the clouds forming and merging in the field of puffy clouds, suggesting that their mergers do not contribute to the maintenance of the polar vortex. Finally, we analyze the dominant growing modes for barotropic and baroclinic instabilities in the hexagon jet, showing that a mode 6 barotropic instability is dominant at the latitude of the hexagon.

  5. 3D Point Cloud Data Basis Shape Management for Assembly of Modularized Large and Complicated Marine Structures

    Directory of Open Access Journals (Sweden)

    Deok-Hyun Yoon

    2015-01-01

    Full Text Available As global competition heats up, in order to improve the productivity, simulation-based methods are becoming increasingly dominant in shipyards. The advancement of the CAD-based production management process even allows verification of installability and functionality before beginning the actual construction. However, whether the ship has been exactly constructed as designed can still and only be manually verified for a limited area. Therefore, significant interblock and intermodule errors are inevitably present in assembly, resulting in costly, time-consuming inspections and modifications. If the construction errors and defects can be investigated and controlled in each shop before assembly of modules, the productivity will be considerably improved. In the installation simulation of large structures, early detection and correction of the errors in junction allow fast and efficient assembly and provide better quality product development even with distributed construction yards. This technique can promote interindustrial collaboration among companies of different sizes, resulting in a significant improvement in overall productivity. In this paper, 3D point cloud data basis shape management framework has been studied with several case studies in a shipyard.

  6. Understanding the Relationships Between Lightning, Cloud Microphysics, and Airborne Radar-derived Storm Structure During Hurricane Karl (2010)

    Science.gov (United States)

    Reinhart, Brad; Fuelberg, Henry; Blakeslee, Richard; Mach, Douglas; Heymsfield, Andrew; Bansemer, Aaron; Durden, Stephen L.; Tanelli, Simone; Heymsfield, Gerald; Lambrigtsen, Bjorn

    2013-01-01

    This study explores relationships between lightning, cloud microphysics, and tropical cyclone (TC) storm structure in Hurricane Karl (16 September 2010) using data collected by the NASA DC-8 and Global Hawk (GH) aircraft during NASA's Genesis and Rapid Intensification Processes (GRIP) experiment. The research capitalizes on the unique opportunity provided by GRIP to synthesize multiple datasets from two aircraft and analyze the microphysical and kinematic properties of an electrified TC. Five coordinated flight legs through Karl by the DC-8 and GH are investigated, focusing on the inner-core region (within 50km of the storm center) where the lightning was concentrated and the aircraft were well coordinated. GRIP datasets are used to compare properties of electrified and nonelectrified inner-core regions that are related to the noninductive charging mechanism, which is widely accepted to explain the observed electric fields within thunderstorms. Three common characteristics of Karl's electrified regions are identified: 1) strong updrafts of 10-20ms21, 2) deep mixed-phase layers indicated by reflectivities.30 dBZ extending several kilometers above the freezing level, and 3) microphysical environments consisting of graupel, very small ice particles, and the inferred presence of supercooled water. These characteristics describe an environment favorable for in situ noninductive charging and, hence, TC electrification. The electrified regions in Karl's inner core are attributable to a microphysical environment that was conducive to electrification because of occasional, strong convective updrafts in the eyewall.

  7. Spatial Variations of Turbulent Properties of Neutral Hydrogen Gas in the Small Magellanic Cloud Using Structure-function Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nestingen-Palm, David; Stanimirović, Snežana; González-Casanova, Diego F.; Babler, Brian [Astronomy Department, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706-1582 (United States); Jameson, Katherine; Bolatto, Alberto, E-mail: sstanimi@astro.wisc.edu [Astronomy Department and Laboratory for Millimeter-wave Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2017-08-10

    We investigate spatial variations of turbulent properties in the Small Magellanic Cloud (SMC) by using neutral hydrogen (H i) observations. With the goal of testing the importance of stellar feedback on H i turbulence, we define central and outer SMC regions based on the star formation rate (SFR) surface density, as well as the H i integrated intensity. We use the structure function and the velocity channel analysis to calculate the power-law index ( γ ) for both underlying density and velocity fields in these regions. In all cases, our results show essentially no difference in γ between the central and outer regions. This suggests that H i turbulent properties are surprisingly homogeneous across the SMC when probed at a resolution of 30 pc. Contrary to recent suggestions from numerical simulations, we do not find a significant change in γ due to stellar feedback as traced by the SFR surface density. This could be due to the stellar feedback being widespread over the whole of the SMC, but more likely due to a large-scale gravitational driving of turbulence. We show that the lack of difference between central and outer SMC regions cannot be explained by the high optical depth H I.

  8. Cloud Computing

    CERN Document Server

    Antonopoulos, Nick

    2010-01-01

    Cloud computing has recently emerged as a subject of substantial industrial and academic interest, though its meaning and scope is hotly debated. For some researchers, clouds are a natural evolution towards the full commercialisation of grid systems, while others dismiss the term as a mere re-branding of existing pay-per-use technologies. From either perspective, 'cloud' is now the label of choice for accountable pay-per-use access to third party applications and computational resources on a massive scale. Clouds support patterns of less predictable resource use for applications and services a

  9. Peripheral circulation.

    Science.gov (United States)

    Laughlin, M Harold; Davis, Michael J; Secher, Niels H; van Lieshout, Johannes J; Arce-Esquivel, Arturo A; Simmons, Grant H; Bender, Shawn B; Padilla, Jaume; Bache, Robert J; Merkus, Daphne; Duncker, Dirk J

    2012-01-01

    Blood flow (BF) increases with increasing exercise intensity in skeletal, respiratory, and cardiac muscle. In humans during maximal exercise intensities, 85% to 90% of total cardiac output is distributed to skeletal and cardiac muscle. During exercise BF increases modestly and heterogeneously to brain and decreases in gastrointestinal, reproductive, and renal tissues and shows little to no change in skin. If the duration of exercise is sufficient to increase body/core temperature, skin BF is also increased in humans. Because blood pressure changes little during exercise, changes in distribution of BF with incremental exercise result from changes in vascular conductance. These changes in distribution of BF throughout the body contribute to decreases in mixed venous oxygen content, serve to supply adequate oxygen to the active skeletal muscles, and support metabolism of other tissues while maintaining homeostasis. This review discusses the response of the peripheral circulation of humans to acute and chronic dynamic exercise and mechanisms responsible for these responses. This is accomplished in the context of leading the reader on a tour through the peripheral circulation during dynamic exercise. During this tour, we consider what is known about how each vascular bed controls BF during exercise and how these control mechanisms are modified by chronic physical activity/exercise training. The tour ends by comparing responses of the systemic circulation to those of the pulmonary circulation relative to the effects of exercise on the regional distribution of BF and mechanisms responsible for control of resistance/conductance in the systemic and pulmonary circulations. © 2012 American Physiological Society

  10. Neighborhood structure influences the convergence in light capture efficiency and carbon gain: an architectural approach for cloud forest shrubs.

    Science.gov (United States)

    Guzmán Q, J Antonio; Cordero S, Roberto A

    2016-06-01

    Although plant competition is recognized as a fundamental factor that limits survival and species coexistence, its relative importance on light capture efficiency and carbon gain is not well understood. Here, we propose a new framework to explain the effects of neighborhood structures and light availability on plant attributes and their effect on plant performance in two understory shade-tolerant species (Palicourea padifolia (Roem. & Schult.) C.M. Taylor & Lorence and Psychotria elata (Swartz)) within two successional stages of a cloud forest in Costa Rica. Features of plant neighborhood physical structure and light availability, estimated by hemispherical photographs, were used to characterize the plant competition. Plant architecture, leaf attributes and gas exchange parameters extracted from the light-response curve were used as functional plant attributes, while an index of light capture efficiency (silhouette to total area ratio, averaged over all viewing angles, STAR) and carbon gain were used as indicators of plant performance. This framework is based in a partial least square Path model, which suggests that changes in plant performance in both species were affected in two ways: (i) increasing size and decreasing distance of neighbors cause changes in plant architecture (higher crown density and greater leaf dispersion), which contribute to lower STAR and subsequently lower carbon gain; and (ii) reductions in light availability caused by the neighbors also decrease plant carbon gain. The effect of neighbors on STAR and carbon gain were similar for the two forests sites, which were at different stages of succession, suggesting that the architectural changes of the two understory species reflect functional convergence in response to plant competition. Because STAR and carbon gain are variables that depend on multiple plant attributes and environmental characteristics, we suggest that changes in these features can be used as a whole-plant response approach to

  11. An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV Imagery, Based on Structure from Motion (SfM Point Clouds

    Directory of Open Access Journals (Sweden)

    Christopher Watson

    2012-05-01

    Full Text Available Unmanned Aerial Vehicles (UAVs are an exciting new remote sensing tool capable of acquiring high resolution spatial data. Remote sensing with UAVs has the potential to provide imagery at an unprecedented spatial and temporal resolution. The small footprint of UAV imagery, however, makes it necessary to develop automated techniques to geometrically rectify and mosaic the imagery such that larger areas can be monitored. In this paper, we present a technique for geometric correction and mosaicking of UAV photography using feature matching and Structure from Motion (SfM photogrammetric techniques. Images are processed to create three dimensional point clouds, initially in an arbitrary model space. The point clouds are transformed into a real-world coordinate system using either a direct georeferencing technique that uses estimated camera positions or via a Ground Control Point (GCP technique that uses automatically identified GCPs within the point cloud. The point cloud is then used to generate a Digital Terrain Model (DTM required for rectification of the images. Subsequent georeferenced images are then joined together to form a mosaic of the study area. The absolute spatial accuracy of the direct technique was found to be 65–120 cm whilst the GCP technique achieves an accuracy of approximately 10–15 cm.

  12. Automatic Atlas Based Electron Density and Structure Contouring for MRI-based Prostate Radiation Therapy on the Cloud

    Science.gov (United States)

    Dowling, J. A.; Burdett, N.; Greer, P. B.; Sun, J.; Parker, J.; Pichler, P.; Stanwell, P.; Chandra, S.; Rivest-Hénault, D.; Ghose, S.; Salvado, O.; Fripp, J.

    2014-03-01

    Our group have been developing methods for MRI-alone prostate cancer radiation therapy treatment planning. To assist with clinical validation of the workflow we are investigating a cloud platform solution for research purposes. Benefits of cloud computing can include increased scalability, performance and extensibility while reducing total cost of ownership. In this paper we demonstrate the generation of DICOM-RT directories containing an automatic average atlas based electron density image and fast pelvic organ contouring from whole pelvis MR scans.

  13. Cloud microphysical characteristics versus temperature for three Canadian field projects

    Directory of Open Access Journals (Sweden)

    I. Gultepe

    Full Text Available The purpose of this study is to better understand how cloud microphysical characteristics such as liquid water content (LWC and droplet number concentration (Nd change with temperature (T. The in situ observations were collected during three research projects including: the Radiation, Aerosol, and Cloud Experiment (RACE which took place over the Bay of Fundy and Central Ontario during August 1995, the First International Regional Arctic Cloud Experiment (FIRE.ACE which took place in the Arctic Ocean during April 1998, and the Alliance Icing Research Study (AIRS which took place in the Ontario region during the winter of 1999–2000. The RACE, FIRE.ACE, and AIRS projects represent summer mid-latitude clouds, Arctic clouds, and mid-latitude winter clouds, respectively. A LWC threshold of 0.005 g m-3 was used for this study. Similar to other studies, LWC was observed to decrease with decreasing T. The LWC-T relationship was similar for all projects, although the range of T conditions for each project was substantially different, and the variability of LWC within each project was considerable. Nd also decreased with decreasing T, and a parameterization for Nd versus T is suggested that may be useful for modeling studies.

    Key words. Atmospheric composition and structure (cloud physics and chemistry – Meteorology and atmospheric dynamics (climatology; general circulation

  14. The Coupled Mars Dust and Water Cycles: Understanding How Clouds Affect the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.

    2015-01-01

    The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  15. Space-borne clear air lidar measurements in the presence of broken cloud

    Directory of Open Access Journals (Sweden)

    I. Astin

    Full Text Available A number of proposed lidar systems, such as ESA’s AEOLUS (formerly ADM and DIAL missions (e.g. WALES are to make use of lidar returns in clear air. However, on average, two-thirds of the globe is covered in cloud. Hence, there is a strong likelihood that data from these instruments may be contaminated by cloud. Similarly, optically thick cloud may not be penetrated by a lidar pulse, resulting in unobservable regions that are overshadowed by the cloud. To address this, it is suggested, for example, in AEOLUS, that a number of consecutive short sections of lidar data (between 1 and 3.5 km in length be tested for cloud contamination or for overshadowing and only those that are unaffected by cloud be used to derive atmospheric profiles. The prob-ability of obtaining profiles to near ground level using this technique is investigated both analytically and using UV air-borne lidar data recorded during the CLARE’98 campaign. These data were measured in the presence of broken cloud on a number of flights over southern England over a four-day period and were chosen because the lidar used has the same wavelength, footprint and could match the along-track spacing of the proposed AEOLUS lidar.

    Key words. Atmospheric composition and structure (aerosols and particles Meteorology and atmospheric dynamics (instruments and techniques; general circulation

  16. Cloud Cover

    Science.gov (United States)

    Schaffhauser, Dian

    2012-01-01

    This article features a major statewide initiative in North Carolina that is showing how a consortium model can minimize risks for districts and help them exploit the advantages of cloud computing. Edgecombe County Public Schools in Tarboro, North Carolina, intends to exploit a major cloud initiative being refined in the state and involving every…

  17. Circulating Metabolites of the Human Immunodeficiency Virus Protease Inhibitor Nelfinavir in Humans: Structural Identification, Levels in Plasma, and Antiviral Activities

    OpenAIRE

    Zhang, Kanyin E.; Wu, Ellen; Amy K Patick; Kerr,Bradley; Zorbas, Mark; Lankford, Angela; Kobayashi, Takuo; Maeda, Yuki; Shetty, Bhasker; Webber, Stephanie

    2001-01-01

    Nelfinavir mesylate (Viracept, formally AG1343) is a potent and orally bioavailable human immunodeficiency virus (HIV) type 1 (HIV-1) protease inhibitor (Ki = 2 nM) and is being widely prescribed in combination with HIV reverse transcriptase inhibitors for the treatment of HIV infection. The current studies evaluated the presence of metabolites circulating in plasma following the oral administration of nelfinavir to healthy volunteers and HIV-infected patients, as well as the levels in plasma...

  18. Fractal Quasar Clouds

    Science.gov (United States)

    Bottorff, Mark; Ferland, Gary

    2001-03-01

    This paper examines whether a fractal cloud geometry can reproduce the emission-line spectra of active galactic nuclei (AGNs). The nature of the emitting clouds is unknown, but many current models invoke various types of magnetohydrodynamic confinement. Recent studies have argued that a fractal distribution of clouds, in which subsets of clouds occur in self-similar hierarchies, is a consequence of such confinement. Whatever the confinement mechanism, fractal cloud geometries are found in nature and may be present in AGNs too. We first outline how a fractal geometry can apply at the center of a luminous quasar. Scaling laws are derived that establish the number of hierarchies, typical sizes, column densities, and densities. Photoionization simulations are used to predict the integrated spectrum from the ensemble. Direct comparison with observations establishes all model parameters so that the final predictions are fully constrained. Theory suggests that denser clouds might form in regions of higher turbulence and that larger turbulence results in a wider dispersion of physical gas densities. An increase in turbulence is expected deeper within the gravitational potential of the black hole, resulting in a density gradient. We mimic this density gradient by employing two sets of clouds with identical fractal structuring but different densities. The low-density clouds have a lower column density and large covering factor similar to the warm absorber. The high-density clouds have high column density and smaller covering factor similar to the broad-line region (BLR). A fractal geometry can simultaneously reproduce the covering factor, density, column density, BLR emission-line strengths, and BLR line ratios as inferred from observation. Absorption properties of the model are consistent with the integrated line-of-sight column density as determined from observations of X-ray absorption, and when scaled to a Seyfert galaxy, the model is consistent with the number of

  19. Using a Venus Atmosphere Model to Investigate Variations in Cloud-level Winds and Temperatures

    Science.gov (United States)

    Parish, Helen; Mitchell, Jonathan

    2017-10-01

    We have developed a new Venus Middle atmosphere Model (VMM), which simulates the atmosphere from just below the cloud deck to around 100 km altitude, with the aim of focusing on the dynamics at cloud levels and above. We take this approach as the circulation and dynamics between the ground and cloud altitudes are not well known. Wind velocities below ~40 km altitude cannot be observed remotely and there are only a few in-situ wind profiles from entry probes on the Venera and Pioneer Venus missions, which are limited in spatial and temporal coverage. However, in the atmosphere at cloud altitudes significant information can be obtained on the circulation and dynamics of Venus' atmosphere and many more observations are available, including measurements from Venus Express and Akatsuki. Preliminary results from the VMM with a simplified radiation scheme have been validated by comparison with Pioneer Venus and Venus Express measurements and show reasonable agreement with the observations. Values of parameters near the lower boundary which are not well measured can be inferred by comparison with values at higher altitudes. We use sensitivity experiments to determine the most important processes involved in shaping the wind and temperature structure at cloud altitudes. We compare the results of simulations with measurements from Pioneer Venus and Venera probes and from the Venus Express and Akatsuki missions

  20. VanderLaan Circulant Type Matrices

    Directory of Open Access Journals (Sweden)

    Hongyan Pan

    2015-01-01

    Full Text Available Circulant matrices have become a satisfactory tools in control methods for modern complex systems. In the paper, VanderLaan circulant type matrices are presented, which include VanderLaan circulant, left circulant, and g-circulant matrices. The nonsingularity of these special matrices is discussed by the surprising properties of VanderLaan numbers. The exact determinants of VanderLaan circulant type matrices are given by structuring transformation matrices, determinants of well-known tridiagonal matrices, and tridiagonal-like matrices. The explicit inverse matrices of these special matrices are obtained by structuring transformation matrices, inverses of known tridiagonal matrices, and quasi-tridiagonal matrices. Three kinds of norms and lower bound for the spread of VanderLaan circulant and left circulant matrix are given separately. And we gain the spectral norm of VanderLaan g-circulant matrix.

  1. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R.

    2015-01-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  2. The Concept Framework of Structural Equation model of Mobile Cloud Learning Acceptance for Higher Education Students in the 21st Century

    Directory of Open Access Journals (Sweden)

    Thanyatorn Amornkitpinyo

    2017-08-01

    Full Text Available This research’s part is in the structural equation model of mobile cloud learning acceptance for higher education students in the 21st century as its objective is to synthesize and design the framework of this model. The methods of this research are divided into 2 parts which are synthesis, combining it to process the mode and designing framework concept. The findings of this research are as the following: 1. Basic digital literacy, Information Quality and Social Cloud are included in the model as the exogenous latent variables. 2. Satisfaction and TAM model (perceived usefulness and perceived ease of use are included as the mediating latent variables. 3. Actual Use is the outcome of the model’s latent variable.

  3. Cloud computing patterns fundamentals to design, build, and manage cloud applications

    CERN Document Server

    Fehling, Christoph; Retter, Ralph; Schupeck, Walter; Arbitter, Peter

    2014-01-01

    The current work provides CIOs, software architects, project managers, developers, and cloud strategy initiatives with a set of architectural patterns that offer nuggets of advice on how to achieve common cloud computing-related goals. The cloud computing patterns capture knowledge and experience in an abstract format that is independent of concrete vendor products. Readers are provided with a toolbox to structure cloud computing strategies and design cloud application architectures. By using this book cloud-native applications can be implemented and best suited cloud vendors and tooling for i

  4. An Automated Approach to the Generation of Structured Building Information Models from Unstructured 3d Point Cloud Scans

    DEFF Research Database (Denmark)

    Tamke, Martin; Evers, Henrik Leander; Wessel, Raoul

    2016-01-01

    In this paper we present and evaluate an approach for the automatic generation of building models in IFC BIM format from unstructured Point Cloud scans, as they result from 3dlaser scans of buildings. While the actual measurement process is relatively fast, 85% of the overall time are spend...... on the interpretation and transformation of the resulting Point Cloud data into information, which can be used in architectural and engineering design workflows. Our approach to tackle this problem, is in contrast to existing ones which work on the levels of points, based on the detection of building elements...... design in BIM and simulations with the build environment....

  5. The MJO Transition from Shallow to Deep Convection in CloudSat/CALIPSO Data and GISS GCM Simulations

    Science.gov (United States)

    DelGenio, Anthony G.; Chen, Yonghua; Kim, Daehyun; Yao, Mao-Sung

    2013-01-01

    The relationship between convective penetration depth and tropospheric humidity is central to recent theories of the Madden-Julian oscillation (MJO). It has been suggested that general circulation models (GCMs) poorly simulate the MJO because they fail to gradually moisten the troposphere by shallow convection and simulate a slow transition to deep convection. CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are analyzed to document the variability of convection depth and its relation to water vapor during the MJO transition from shallow to deep convection and to constrain GCM cumulus parameterizations. Composites of cloud occurrence for 10MJO events show the following anticipatedMJO cloud structure: shallow and congestus clouds in advance of the peak, deep clouds near the peak, and upper-level anvils after the peak. Cirrus clouds are also frequent in advance of the peak. The Advanced Microwave Scanning Radiometer for EarthObserving System (EOS) (AMSR-E) columnwater vapor (CWV) increases by;5 mmduring the shallow- deep transition phase, consistent with the idea of moisture preconditioning. Echo-top height of clouds rooted in the boundary layer increases sharply with CWV, with large variability in depth when CWV is between;46 and 68 mm. International Satellite Cloud Climatology Project cloud classifications reproduce these climatological relationships but correctly identify congestus-dominated scenes only about half the time. A version of the Goddard Institute for Space Studies Model E2 (GISS-E2) GCM with strengthened entrainment and rain evaporation that produces MJO-like variability also reproduces the shallow-deep convection transition, including the large variability of cloud-top height at intermediate CWV values. The variability is due to small grid-scale relative humidity and lapse rate anomalies for similar values of CWV. 1.

  6. Circulating Metabolites of the Human Immunodeficiency Virus Protease Inhibitor Nelfinavir in Humans: Structural Identification, Levels in Plasma, and Antiviral Activities

    Science.gov (United States)

    Zhang, Kanyin E.; Wu, Ellen; Patick, Amy K.; Kerr, Bradley; Zorbas, Mark; Lankford, Angela; Kobayashi, Takuo; Maeda, Yuki; Shetty, Bhasker; Webber, Stephanie

    2001-01-01

    Nelfinavir mesylate (Viracept, formally AG1343) is a potent and orally bioavailable human immunodeficiency virus (HIV) type 1 (HIV-1) protease inhibitor (Ki = 2 nM) and is being widely prescribed in combination with HIV reverse transcriptase inhibitors for the treatment of HIV infection. The current studies evaluated the presence of metabolites circulating in plasma following the oral administration of nelfinavir to healthy volunteers and HIV-infected patients, as well as the levels in plasma and antiviral activities of these metabolites. The results showed that the parent drug was the major circulating chemical species, followed in decreasing abundance by its hydroxy-t-butylamide metabolite (M8) and 3′-methoxy-4′-hydroxynelfinavir (M1). Antiviral assays with HIV-1 strain RF-infected CEM-SS cells showed that the 50% effective concentrations (EC50) of nelfinavir, M8, and M1 were 30, 34, and 151 nM, respectively, and that the corresponding EC50 against another HIV-1 strain, IIIB, in MT-2 cells were 60, 86, and 653 nM. Therefore, apparently similar in vitro antiviral activities were demonstrated for nelfinavir and M8, whereas an approximately 5- to 11-fold-lower level of antiviral activity was observed for M1. The active metabolite, M8, showed a degree of binding to human plasma proteins similar to that of nelfinavir (ca. 98%). Concentrations in plasma of nelfinavir and its metabolites in 10 HIV-positive patients receiving nelfinavir therapy (750 mg three times per day) were determined by a liquid chromatography tandem mass spectrometry assay. At steady state (day 28), the mean plasma nelfinavir concentrations ranged from 1.73 to 4.96 μM and the M8 concentrations ranged from 0.55 to 1.96 μM, whereas the M1 concentrations were low and ranged from 0.09 to 0.19 μM. In conclusion, the findings from the current studies suggest that, in humans, nelfinavir forms an active metabolite circulating at appreciable levels in plasma. The active metabolite M8 may account for

  7. Business model renewal and ambidexterity: Structural alteration and strategy formation process during transition to a Cloud business model

    NARCIS (Netherlands)

    S. Khanagha (Saeed); H.W. Volberda (Henk); I. Oshri (Ilan)

    2014-01-01

    textabstractThis paper presents the findings of a longitudinal study of a large corporation's transition to a new business model in the face of a major transformation in the ICT industry brought about by Cloud computing. We build theory on the process of business model innovation through a

  8. Automatic registration of iPhone images to laser point clouds of urban structures using shape features

    NARCIS (Netherlands)

    Sirmacek, B.; Lindenbergh, R.C.; Menenti, M.

    2013-01-01

    Fusion of 3D airborne laser (LIDAR) data and terrestrial optical imagery can be applied in 3D urban modeling and model up-dating. The most challenging aspect of the fusion procedure is registering the terrestrial optical images on the LIDAR point clouds. In this article, we propose an approach for

  9. Encoders for block-circulant LDPC codes

    Science.gov (United States)

    Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)

    2009-01-01

    Methods and apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three or four are disclosed. Block circulant matrices are used. A first method and apparatus make use of the block-circulant structure of the parity check matrix. A second method and apparatus use block-circulant generator matrices.

  10. Circulation economics

    DEFF Research Database (Denmark)

    Ingebrigtsen, Stig; Jakobsen, Ove

    2006-01-01

    Purpose - This paper is an attempt to advance the critical discussion regarding environmental and societal responsibility in economics and business. Design/methodology/approach - The paper presents and discusses as a holistic, organic perspective enabling innovative solutions to challenges...... concerning the responsible and efficient use of natural resources and the constructive interplay with culture. To reach the goal of sustainable development, the paper argues that it is necessary to make changes in several dimensions in mainstream economics. This change of perspective is called a turn towards...... presupposes a perspective integrating economic, natural and cultural values. Third, to organize the interplay between all stakeholders we introduce an arena for communicative cooperation. Originality/value - The paper concludes that circulation economics presupposes a change in paradigm, from a mechanistic...

  11. Circulating chromatin-anti-chromatin antibody complexes bind with high affinity to dermo-epidermal structures in murine and human lupus nephritis

    DEFF Research Database (Denmark)

    Fismen, S; Hedberg, A; Fenton, K A

    2009-01-01

    Murine and human lupus nephritis are characterized by glomerular deposits of electron-dense structures (EDS). Dominant components of EDS are chromatin fragments and IgG antibodies. Whether glomerular EDS predispose for similar deposits in skin is unknown. We analysed (i) whether dermo...... (NZBxNZW)F1 and MRL-lpr/lpr mice and from five patients with lupus nephritis were analysed by immunofluorescence, immune electron microscopy (IEM) and co-localization TUNEL IEM. Affinity of chromatin fragments for membrane structures was determined by surface plasmon resonance. Results demonstrated (i...... were present in capillary lumina in glomeruli and skin of all nephritic individuals. Thus, chromatin-IgG complexes accounting for lupus nephritis seem to reach skin through circulation, but other undetermined factors are required for these complexes to deposit within skin membranes....

  12. Combining structure-from-motion derived point clouds from satellites and unmanned aircraft systems images with ground-truth data to create high-resolution digital elevation models

    Science.gov (United States)

    Palaseanu, M.; Thatcher, C.; Danielson, J.; Gesch, D. B.; Poppenga, S.; Kottermair, M.; Jalandoni, A.; Carlson, E.

    2016-12-01

    Coastal topographic and bathymetric (topobathymetric) data with high spatial resolution (1-meter or better) and high vertical accuracy are needed to assess the vulnerability of Pacific Islands to climate change impacts, including sea level rise. According to the Intergovernmental Panel on Climate Change reports, low-lying atolls in the Pacific Ocean are extremely vulnerable to king tide events, storm surge, tsunamis, and sea-level rise. The lack of coastal topobathymetric data has been identified as a critical data gap for climate vulnerability and adaptation efforts in the Republic of the Marshall Islands (RMI). For Majuro Atoll, home to the largest city of RMI, the only elevation dataset currently available is the Shuttle Radar Topography Mission data which has a 30-meter spatial resolution and 16-meter vertical accuracy (expressed as linear error at 90%). To generate high-resolution digital elevation models (DEMs) in the RMI, elevation information and photographic imagery have been collected from field surveys using GNSS/total station and unmanned aerial vehicles for Structure-from-Motion (SfM) point cloud generation. Digital Globe WorldView II imagery was processed to create SfM point clouds to fill in gaps in the point cloud derived from the higher resolution UAS photos. The combined point cloud data is filtered and classified to bare-earth and georeferenced using the GNSS data acquired on roads and along survey transects perpendicular to the coast. A total station was used to collect elevation data under tree canopies where heavy vegetation cover blocked the view of GNSS satellites. A subset of the GPS / total station data was set aside for error assessment of the resulting DEM.

  13. The balanced radiative effect of tropical anvil clouds

    Science.gov (United States)

    Hartmann, Dennis L.; Berry, Sara E.

    2017-05-01

    Coincident instantaneous broadband radiation budget measurements from Clouds and Earth's Radiant Energy System and cloud vertical structure information from CloudSat-Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations radar-lidar observations are combined to study the relationship of cloud vertical structure to top-of-atmosphere energy balance fluctuations. Varying optical and physical thickness of high ice clouds produces most of the covariation between albedo and outgoing longwave radiation in regions of tropical convection. Rainy cores of tropical convective clouds have a negative impact on the radiation balance, while nonprecipitating anvil clouds have a positive effect. The effect of anvil clouds on the radiative heating profile is to warm near cloud base and cool near cloud top, and to reduce the radiative cooling rate in the clear air below the cloud. The cooling rate in the clear air below the anvil is reduced to small values for moderately thick anvils, and the driving of instability in the anvil itself also saturates for relatively thin clouds. It is hypothesized that the dependence of radiative heating on cloud thickness may be important in driving the distribution of tropical cloud structures toward one that produces net neutrality of the cloud radiative effect at the top-of-the-atmosphere, as is found in regions of deep convection over ocean areas with high and relatively uniform surface temperatures. This idea is tested with a single-column model, which indicates that cloud-radiation interactions affect anvil cloud properties, encouraging further investigation of the hypothesis.

  14. Cloud Detection and Cloud Top Height Determination using the Hyperspectral Imaging Spectrometer specMACS

    Science.gov (United States)

    Höppler, Lucas; Gödde, Felix; Kölling, Tobias; Zinner, Tobias; Mayer, Bernhard; Groß, Silke; Gutleben, Manuel

    2017-04-01

    Diabatic heat released by clouds sometimes causes numerical weather forecast failures. Climate model predictions depend on radiative effects of tropical clouds in the trade winds. Both climate and global weather forecast models, therefore, need to be improved with respect to a proper representation of cloud microphysical and macrophysical properties. For this purpose, parameters describing the cloud geometry such as cloud fraction, cloud size and cloud top heights are important. These parameters are also important ingredients to accurately validate the results of previous and upcoming studies with cloud resolving models. A hyperspectral imaging spectrometer (specMACS) was operated aboard the research plane HALO in the NARVAL II and NAWDEX experiments. By combining the reflected radiance of the clouds and the signal of the water vapor absorption bands in the infrared part of the solar spectrum, an effective cloud mask was developed which is prerequisite for any further analysis. The method allows detecting clouds even over the bright sunglint. As a next step, cloud top heights are determined by comparing the measured radiance within and outside of the oxygen A-band with radiative transfer model calculations. Subsequently, the calculated cloud top heights are compared to LIDAR measurements. While this method works well for plane-parallel, homogeneous clouds, 3D radiative transfer effects cause artifacts at cloud edges and in cloud free areas which can lead to strongly miscalculated cloud top heights. These effects will be assessed and also evaluated. Deriving quantities such as cloud fraction, cloud size, and cloud structure is the basis for calculating cloud heating and cooling rates in upcoming studies.

  15. Short Temporal Scale Variability of Low Cloud Regimes/Vertical Structures and Large-Scale Thermodynamics and Dynamics over the Southeastern Pacific Using MODIS and ERA-Reanalysis Data

    Science.gov (United States)

    Kubar, T. L.; Lebsock, M. D.

    2012-12-01

    While oceanic boundary layer clouds are well-correlated with SST, ω500, and various stability metrics over particular tropical and subtropical dynamic regimes particularly when at least 10-15 days are averaged together or when examining the annual cycle characteristics, the coherence of clouds with controlling variables is imperfect at smaller temporal and spatial scales for which cloud properties also exhibit significant variability. By utilizing a plethora of novel satellite cloud data of daily observations of MODIS level-3 data in conjunction with state-of-the-art reanalysis data from ERA-Interim, synoptic variability of low-level clouds and their relationships with potential controlling factors are quantified through examination of Hovmoller diagrams as well as empirical orthogonal function (EOF) and harmonic analysis to better elucidate the horizontal structure and temporal evolution of boundary layer clouds and the environment. The focus on the southeastern Pacific along cross-sections between near the equator to the north and the southern hemisphere mid-latitudes south of the primary VOCALS region encompasses multiple SST and large-scale dynamic regimes. This includes the cold tongue near the equator, a large latitude band of subsidence and predominant low clouds near the VOCALS region, and greater synoptic variability and fewer isolated low clouds further south. For fixed latitudes between the equator and ~30°S, SSTs decrease significantly from west to east from ~140°W to ~70°W by 5-10°C, and low-level cloud fraction histograms screened to exclude upper-level cloudiness reveal predominantly scattered low clouds to the west, a cloud fraction transition zone between about 110°W to 90°W, to frequent solid cloud cover scenes especially east of 90°W as stability and inversion strength both increase. Synoptic-scale analyses reveal that enhanced estimated inversion strength (EIS) anomalies tend to be geographically and temporally located with suppressed

  16. Synoptic Traveling Weather Systems on Mars: Effects of Radiatively-Active Water Ice Clouds

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.; Haberle, Robert; Atsuki Urata, Richard

    2016-10-01

    Atmospheric aerosols on Mars are critical in determining the nature of its thermal structure, its large-scale circulation, and hence the overall climate of the planet. We conduct multi-annual simulations with the latest version of the NASA Ames Mars global climate model (GCM), gcm2.3+, that includes a modernized radiative-transfer package and complex water-ice cloud microphysics package which permit radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and mutual interactions) to influence the net diabatic heating. Results indicate that radiatively active water ice clouds profoundly affect the seasonal and annual mean climate. The mean thermal structure and balanced circulation patterns are strongly modified near the surface and aloft. Warming of the subtropical atmosphere at altitude and cooling of the high latitude atmosphere at low levels takes place, which increases the mean pole-to-equator temperature contrast (i.e., "baroclinicity"). With radiatively active water ice clouds (RAC) compared to radiatively inert water ice clouds (nonRAC), significant changes in the intensity of the mean state and forced stationary Rossby modes occur, both of which affect the vigor and intensity of traveling, synoptic period weather systems. Such weather systems not only act as key agents in the transport of heat and momentum beyond the extent of the Hadley circulation, but also the transport of trace species such as water vapor, water ice-clouds, dust and others. The northern hemisphere (NH) forced Rossby waves and resultant wave train are augmented in the RAC case: the modes are more intense and the wave train is shifted equatorward. Significant changes also occur within the subtropics and tropics. The Rossby wave train sets up, combined with the traveling synoptic-period weather systems (i.e., cyclones and anticyclones), the geographic extent of storm zones (or storm tracks) within the NH. A variety of circulation

  17. Synoptic Traveling Weather Systems on Mars: Effects of Radiatively-Active Water Ice Clouds

    Science.gov (United States)

    Hollingsworth, Jeffery; Kahre, Melinda; Haberle, Robert; Urata, Richard

    2017-01-01

    Atmospheric aerosols on Mars are critical in determining the nature of its thermal structure, its large-scale circulation, and hence the overall climate of the planet. We conduct multi-annual simulations with the latest version of the NASA Ames Mars global climate model (GCM), gcm2.3+, that includes a modernized radiative-transfer package and complex water-ice cloud microphysics package which permit radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and mutual interactions) to influence the net diabatic heating. Results indicate that radiatively active water ice clouds profoundly affect the seasonal and annual mean climate. The mean thermal structure and balanced circulation patterns are strongly modified near the surface and aloft. Warming of the subtropical atmosphere at altitude and cooling of the high latitude atmosphere at low levels takes place, which increases the mean pole-to-equator temperature contrast (i.e., "baroclinicity"). With radiatively active water ice clouds (RAC) compared to radiatively inert water ice clouds (nonRAC), significant changes in the intensity of the mean state and forced stationary Rossby modes occur, both of which affect the vigor and intensity of traveling, synoptic period weather systems.Such weather systems not only act as key agents in the transport of heat and momentum beyond the extent of the Hadley circulation, but also the transport of trace species such as water vapor, water ice-clouds, dust and others. The northern hemisphere (NH) forced Rossby waves and resultant wave train are augmented in the RAC case: the modes are more intense and the wave train is shifted equatorward. Significant changes also occur within the subtropics and tropics. The Rossby wave train sets up, combined with the traveling synoptic period weather systems (i.e., cyclones and anticyclones), the geographic extent of storm zones (or storm tracks) within the NH. A variety of circulation

  18. Cloud-radiation-precipitation associations over the Asian monsoon region: an observational analysis

    Science.gov (United States)

    Li, Jiandong; Wang, Wei-Chyung; Dong, Xiquan; Mao, Jiangyu

    2017-11-01

    This study uses 2001-2014 satellite observations and reanalyses to investigate the seasonal characteristics of Cloud Radiative Effects (CREs) and their associations with cloud fraction (CF) and precipitation over the Asian monsoon region (AMR) covering Eastern China (EC) and South Asia (SA). The CREs exhibit strong seasonal variations but show distinctly different relationships with CFs and precipitation over the two regions. For EC, the CREs is dominated by shortwave (SW) cooling, with an annual mean value of - 40 W m- 2 for net CRE, and peak in summer while the presence of extensive and opaque low-level clouds contributes to large Top-Of-Atmosphere (TOA) albedo (>0.5) in winter. For SA, a weak net CRE exists throughout the year due to in-phase compensation of SWCRE by longwave (LW) CRE associated with the frequent occurrence of high clouds. For the entire AMR, SWCRE strongly correlates with the dominant types of CFs, although the cloud vertical structure plays important role particularly in summer. The relationships between CREs and precipitation are stronger in SA than in EC, indicating the dominant effect of monsoon circulation in the former region. SWCRE over EC is only partly related to precipitation and shows distinctive regional variations. Further studies need to pay more attention to vertical distributions of cloud micro- and macro-physical properties, and associated precipitation systems over the AMR.

  19. Neptune's clouds

    Science.gov (United States)

    1999-01-01

    The bright cirrus-like clouds of Neptune change rapidly, often forming and dissipating over periods of several to tens of hours. In this sequence Voyager 2 observed cloud evolution in the region around the Great Dark Spot (GDS). The surprisingly rapid changes which occur separating each panel shows that in this region Neptune's weather is perhaps as dynamic and variable as that of the Earth. However, the scale is immense by our standards -- the Earth and the GDS are of similar size -- and in Neptune's frigid atmosphere, where temperatures are as low as 55 degrees Kelvin (-360 F), the cirrus clouds are composed of frozen methane rather than Earth's crystals of water ice. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications

  20. Mobile Clouds

    DEFF Research Database (Denmark)

    Fitzek, Frank; Katz, Marcos

    networks, creating a vast fertile ground for novel developments in both research and practical applications Considers research directions, emerging trends and visions This book is an excellent resource for wireless/networking researchers in industry and academia, students and mobile phone programmers...... users in very different ways and for various purposes. The book provides many stimulating examples of resource-sharing applications. Enabling technologies for mobile clouds are also discussed, highlighting the key role of network coding. Mobile clouds have the potential to enhance communications...... examples of mobile clouds applications, based on both existing commercial initiatives as well as proof-of-concept test-beds. Visions and prospects are also discussed, paving the way for further development. As mobile networks and social networks become more and more reliant on each other, the concept...

  1. Validation of MODIS cloud mask and multilayer flag using CloudSat-CALIPSO cloud profiles and a cross-reference of their cloud classifications

    Science.gov (United States)

    Wang, Tao; Fetzer, Eric J.; Wong, Sun; Kahn, Brian H.; Yue, Qing

    2016-10-01

    Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 cloud observations (MYD06) at 1 km are collocated with daytime CloudSat-Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) (C-C) cloud vertical structures (2B-CLDCLASS-LIDAR). For 2007-2010, over 267 million C-C cloud profiles are used to (1) validate MODIS cloud mask and cloud multilayer flag and (2) cross-reference between C-C cloud types and MODIS cloud regimes defined by joint histograms of cloud top pressure (CTP) and cloud optical depth (τ). Globally, of total observations, C-C reports 27.1% clear and 72.9% cloudy, whereas MODIS reports 30.0% confidently clear and 58.7% confidently cloudy, with the rest 7.1% as probably clear and 4.2% as probably cloudy. Agreement between MODIS and C-C is 77.8%, with 20.9% showing both clear and 56.9% showing both cloudy. The 9.1% of observations are clear in MODIS but cloudy in C-C, indicating clouds missed by MODIS; 1.8% of observations are cloudy in MODIS but clear in C-C, likely due to aerosol/dust or surface snow layers misidentified by MODIS. C-C reports 47.4/25.5% single-layer/multilayer clouds, while MODIS reports 26.7/14.0%. For C-C single-layer clouds, 90% of tropical MODIS high (CTP 23) clouds are recognized as deep convective in C-C. Approximately 70% of MODIS low-level (CTP > 680 hPa) clouds are classified as stratocumulus in C-C regardless of region and optical thickness. No systematic relationship exists between MODIS middle-level (680 < CTP < 440 hPa) clouds and C-C cloud types, largely due to different definitions adopted.

  2. Connecting Tropical Marine Cloud Structures to Boundary Layer Properties and the Effect of Sea State on Whitecap Coverage

    Science.gov (United States)

    2016-02-08

    on whitecap coverage Steven Howell Department of Oceanography University of Hawaii 1000 Pope Rd, Honolulu, HI 96822 phone: (808)956-5185 email...efforts to lead to improved modeling and predictability of marine aerosol concentrations and optical properties. 2 Objectives During the PASE project in...Approach It is often difficult to determine whether clouds are organized when one is among them. We used satellite imagery to classify regions we flew

  3. Cloud Computing

    Science.gov (United States)

    2010-04-29

    campaigning to make it true. Richard   Stallman , founder of the GNU project and the Free  Software Foundation, quoted in The Guardian, September 29,  2008... Richard   Stallman , known for his advocacy of “free software”, thinks cloud computing is  a trap for users—if applications and data are managed “in the cloud

  4. Albedo and transmittance of inhomogeneous stratus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, V.E.; Kasyanov, E.I.; Titov, G.A. [Institute of Atmospheric Optics, Tomsk (Russian Federation)] [and others

    1996-04-01

    A highly important topic is the study of the relationship between the statistical parameters of optical and radiative charactertistics of inhomogeneous stratus clouds. This is important because the radiation codes of general circulation models need improvement, and it is important for geophysical information. A cascade model has been developed at the Goddard Space Flight Center to treat stratocumulus clouds with the simplest geometry and horizontal fluctuations of the liquid water path (optical thickness). The model evaluates the strength with which the stochastic geometry of clouds influences the statistical characteristics of albedo and the trnasmittance of solar radiation.

  5. Cloud classification using whole-sky imager data

    Energy Technology Data Exchange (ETDEWEB)

    Buch, K.A. Jr.; Sun, C.H.; Thorne, L.R. [Sandia National Labs., Livermore, CA (United States)

    1996-04-01

    Clouds are one of the most important moderators of the earth radiation budget and one of the least understood. The effect that clouds have on the reflection and absorption of solar and terrestrial radiation is strongly influenced by their shape, size, and composition. Physically accurate parameterization of clouds is necessary for any general circulation model (GCM) to yield meaningful results. The work presented here is part of a larger project that is aimed at producing realistic three-dimensional (3D) volume renderings of cloud scenes based on measured data from real cloud scenes. These renderings will provide the important shape information for parameterizing GCMs. The specific goal of the current study is to develop an algorithm that automatically classifies (by cloud type) the clouds observed in the scene. This information will assist the volume rendering program in determining the shape of the cloud. Much work has been done on cloud classification using multispectral satellite images. Most of these references use some kind of texture measure to distinguish the different cloud types and some also use topological features (such as cloud/sky connectivity or total number of clouds). A wide variety of classification methods has been used, including neural networks, various types of clustering, and thresholding. The work presented here uses binary decision trees to distinguish the different cloud types based on cloud features vectors.

  6. Cloud computing.

    Science.gov (United States)

    Wink, Diane M

    2012-01-01

    In this bimonthly series, the author examines how nurse educators can use Internet and Web-based technologies such as search, communication, and collaborative writing tools; social networking and social bookmarking sites; virtual worlds; and Web-based teaching and learning programs. This article describes how cloud computing can be used in nursing education.

  7. Cloud Computing

    Indian Academy of Sciences (India)

    IAS Admin

    2014-03-01

    Mar 1, 2014 ... group of computers connected to the Internet in a cloud-like boundary (Box 1)). In essence computing is transitioning from an era of users owning computers to one in which users do not own computers but have access to computing hardware and software maintained by providers. Users access the ...

  8. Cloud Computing

    DEFF Research Database (Denmark)

    Krogh, Simon

    2013-01-01

    with technological changes, the paradigmatic pendulum has swung between increased centralization on one side and a focus on distributed computing that pushes IT power out to end users on the other. With the introduction of outsourcing and cloud computing, centralization in large data centers is again dominating...

  9. Transforming the representation of the boundary layer and low clouds for high-resolution regional climate modeling: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Alex [University of California, Los Angeles, CA (United States). Joint Institute for Regional Earth System Science and Engineering

    2013-07-24

    Stratocumulus and shallow cumulus clouds in subtropical oceanic regions (e.g., Southeast Pacific) cover thousands of square kilometers and play a key role in regulating global climate (e.g., Klein and Hartmann, 1993). Numerical modeling is an essential tool to study these clouds in regional and global systems, but the current generation of climate and weather models has difficulties in representing them in a realistic way (e.g., Siebesma et al., 2004; Stevens et al., 2007; Teixeira et al., 2011). While numerical models resolve the large-scale flow, subgrid-scale parameterizations are needed to estimate small-scale properties (e.g. boundary layer turbulence and convection, clouds, radiation), which have significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. To represent the contribution of these fine-scale processes to the resolved scale, climate models use various parameterizations, which are the main pieces in the model that contribute to the low clouds dynamics and therefore are the major sources of errors or approximations in their representation. In this project, we aim to 1) improve our understanding of the physical processes in thermal circulation and cloud formation, 2) examine the performance and sensitivity of various parameterizations in the regional weather model (Weather Research and Forecasting model; WRF), and 3) develop, implement, and evaluate the advanced boundary layer parameterization in the regional model to better represent stratocumulus, shallow cumulus, and their transition. Thus, this project includes three major corresponding studies. We find that the mean diurnal cycle is sensitive to model domain in ways that reveal the existence of different contributions originating from the Southeast Pacific land-masses. The experiments suggest that diurnal variations in circulations and thermal structures over this region are influenced by convection over the Peruvian sector of the Andes cordillera, while

  10. Features Management and Middleware of Hybrid Cloud Infrastructures

    OpenAIRE

    Evgeny Nikulchev; Oleg Lukyanchikov; Evgeniy Pluzhnik; Dmitry Biryukov

    2016-01-01

    The wide spread of cloud computing has identified the need to develop specialized approaches to the design, management and programming for cloud infrastructures. In the article were reviewed the peculiarities of the hybrid cloud and middleware software development, adaptive to implementing the principles of governance and change in the structure of storing data in clouds. The examples and results of experimental research are presented.

  11. Measurement errors in cirrus cloud microphysical properties

    Directory of Open Access Journals (Sweden)

    H. Larsen

    Full Text Available The limited accuracy of current cloud microphysics sensors used in cirrus cloud studies imposes limitations on the use of the data to examine the cloud's broadband radiative behaviour, an important element of the global energy balance. We review the limitations of the instruments, PMS probes, most widely used for measuring the microphysical structure of cirrus clouds and show the effect of these limitations on descriptions of the cloud radiative properties. The analysis is applied to measurements made as part of the European Cloud and Radiation Experiment (EUCREX to determine mid-latitude cirrus microphysical and radiative properties.

    Key words. Atmospheric composition and structure (cloud physics and chemistry · Meteorology and atmospheric dynamics · Radiative processes · Instruments and techniques

  12. Effect of perinatally supplemented flavonoids on brain structure, circulation, cognition, and metabolism in C57BL/6J mice

    NARCIS (Netherlands)

    Janssen, C.I.F.; Zerbi, V.; Mutsaers, M.; Jochems, M.; Vos, C.A.; Vos, J.O.; Berg, B.M.; Tol, E.A. van; Gross, G.; Jouni, Z.E.; Heerschap, A.; Kiliaan, A.J.

    2015-01-01

    Evidence suggests that flavanol consumption can beneficially affect cognition in adults, but little is known about the effect of flavanol intake early in life. The present study aims to assess the effect of dietary flavanol intake during the gestational and postnatal period on brain structure,

  13. Comparative structural and functional analysis of the larval and adult dorsal vessel and its role in hemolymph circulation in the mosquito Anopheles gambiae.

    Science.gov (United States)

    League, Garrett P; Onuh, Ogechukwu C; Hillyer, Julián F

    2015-02-01

    Hemolymph circulation in insects is driven primarily by the contractile action of a dorsal vessel, which is divided into an abdominal heart and a thoracic aorta. As holometabolous insects, mosquitoes undergo striking morphological and physiological changes during metamorphosis. This study presents a comprehensive structural and functional analysis of the larval and adult dorsal vessel in the malaria mosquito Anopheles gambiae. Using intravital video imaging we show that, unlike the adult heart, the larval heart contracts exclusively in the anterograde direction and does not undergo heartbeat directional reversals. The larval heart contracts 24% slower than the adult heart, and hemolymph travels across the larval dorsal vessel at a velocity that is 68% slower than what is seen in adults. By fluorescently labeling muscle tissue we show that although the general structure of the heart and its ostia are similar across life stages, the heart-associated alary muscles are significantly less robust in larvae. Furthermore, unlike the adult ostia, which are the entry points for hemolymph into the heart, the larval ostia are almost entirely lacking in incurrent function. Instead, hemolymph enters the larval heart through incurrent openings located at the posterior terminus of the heart. These posterior openings are structurally similar across life stages, but in adults have an opposite, excurrent function. Finally, the larval aorta and heart differ significantly in the arrangement of their cardiomyocytes. In summary, this study provides an in-depth developmental comparison of the circulatory system of larval and adult mosquitoes. © 2015. Published by The Company of Biologists Ltd.

  14. Cloud management and security

    CERN Document Server

    Abbadi, Imad M

    2014-01-01

    Written by an expert with over 15 years' experience in the field, this book establishes the foundations of Cloud computing, building an in-depth and diverse understanding of the technologies behind Cloud computing. In this book, the author begins with an introduction to Cloud computing, presenting fundamental concepts such as analyzing Cloud definitions, Cloud evolution, Cloud services, Cloud deployment types and highlighting the main challenges. Following on from the introduction, the book is divided into three parts: Cloud management, Cloud security, and practical examples. Part one presents the main components constituting the Cloud and federated Cloud infrastructure(e.g., interactions and deployment), discusses management platforms (resources and services), identifies and analyzes the main properties of the Cloud infrastructure, and presents Cloud automated management services: virtual and application resource management services. Part two analyzes the problem of establishing trustworthy Cloud, discuss...

  15. Cloud time

    CERN Document Server

    Lockwood, Dean

    2012-01-01

    The ‘Cloud’, hailed as a new digital commons, a utopia of collaborative expression and constant connection, actually constitutes a strategy of vitalist post-hegemonic power, which moves to dominate immanently and intensively, organizing our affective political involvements, instituting new modes of enclosure, and, crucially, colonizing the future through a new temporality of control. The virtual is often claimed as a realm of invention through which capitalism might be cracked, but it is precisely here that power now thrives. Cloud time, in service of security and profit, assumes all is knowable. We bear witness to the collapse of both past and future virtuals into a present dedicated to the exploitation of the spectres of both.

  16. SMART POINT CLOUD: DEFINITION AND REMAINING CHALLENGES

    OpenAIRE

    Poux, Florent; Neuville, Romain; Hallot, Pierre; Billen, Roland

    2016-01-01

    Dealing with coloured point cloud acquired from terrestrial laser scanner, this paper identifies remaining challenges for a new data structure: the smart point cloud. This concept arises with the statement that massive and discretized spatial information from active remote sensing technology is often underused due to data mining limitations. The generalisation of point cloud data associated with the heterogeneity and temporality of such datasets is the main issue regarding structure, segmenta...

  17. Soft Clouding

    DEFF Research Database (Denmark)

    Søndergaard, Morten; Markussen, Thomas; Wetton, Barnabas

    2012-01-01

    Soft Clouding is a blended concept, which describes the aim of a collaborative and transdisciplinary project. The concept is a metaphor implying a blend of cognitive, embodied interaction and semantic web. Furthermore, it is a metaphor describing our attempt of curating a new semantics of sound...... brought together in one transdisciplinary process of curating a semantics of sound: Technological, Humanistic /Curatorial, and Design / Action-based practice....

  18. Soft Clouding

    DEFF Research Database (Denmark)

    Søndergaard, Morten; Markussen, Thomas; Wetton, Barnabas

    2012-01-01

    Soft Clouding is a blended concept, which describes the aim of a collaborative and transdisciplinary project. The concept is a metaphor implying a blend of cognitive, embodied interaction and semantic web. Furthermore, it is a metaphor describing our attempt of curating a new semantics of sound a...... brought together in one transdisciplinary process of curating a semantics of sound: Technological, Humanistic /Curatorial, and Design / Action-based practice....

  19. Evaluating stratiform cloud base charge remotely

    Science.gov (United States)

    Harrison, R. Giles; Nicoll, Keri A.; Aplin, Karen L.

    2017-06-01

    cloud base charge is negative in the majority of cases. This confirms that charging of layer clouds is not a random process but instead arises from fundamental aspects of the atmosphere's structure.

  20. Application of electrical resistivity tomography for investigating the internal structure of a translational landslide and characterizing its groundwater circulation (Kualiangzi landslide, Southwest China)

    Science.gov (United States)

    Ling, Chengpeng; Xu, Qiang; Zhang, Qiang; Ran, Jiaxin; Lv, Hongbin

    2016-08-01

    Electrical resistivity tomography (ERT) is a widely used tool in near surface geophysical surveys for the investigation of various geological and engineering problems, including landslides. In this study, the internal structure of the southern region of the Kualiangzi landslide, which is located in Sichuan province, China, was investigated using four ERT profiles, drill cores, and inclinometer data. The characteristics of the groundwater circulation were evaluated from variations in electrical resistivity and groundwater level. The results showed that the sliding surface corresponds to a deep zone with low resistivity and that the sliding material consists of clay, gravelly soil, and weathered sandstone and mudstone. The thickness of the sliding material is 50 m in the main tension trough and decreases to several meters in the direction of sliding. The dip angle of the sliding surface that has low resistivity is generally consistent with that of the bedrock. The groundwater level in the tension trough and in the middle transitional part from hill-country to flat terrain was highest in the landslide. The groundwater level close to the toe front of the landslide was the lowest. The groundwater is recharged by the precipitation and generally drains to the toe front by seasonal springs along the sliding surface. The rapid increment of the groundwater level in the tension trough kept pace with that of the displacement rate after intense rainfall. The improved understanding of internal structure and groundwater recirculation is beneficial for the analysis of the mechanisms of translational landslides and their hazard prevention.

  1. Homogeneous pancreatic cancer spheroids mimic growth pattern of circulating tumor cell clusters and macrometastases: displaying heterogeneity and crater-like structure on inner layer.

    Science.gov (United States)

    Feng, Hao; Ou, Bao-Chi; Zhao, Jing-Kun; Yin, Shuai; Lu, Ai-Guo; Oechsle, Eva; Thasler, Wolfgang E

    2017-05-11

    Pancreatic cancer 3D in vitro models including multicellular tumor spheroid (MCTS), single cell-derived tumor spheroid (SCTS), tissue-derived tumor spheroid, and organotypic models provided powerful platforms to mimic in vivo tumor. Recent work supports that circulating tumor cell (CTC) clusters are more efficient in metastasis seeding than single CTCs. The purpose of this study is to establish 3D culture models which can mimic single CTC, monoclonal CTC clusters, and the expansion of macrometastases. Seven pancreatic ductal adenocarcinoma cell lines were used to establish MCTS and SCTS using hanging drop and ultra-low attachment plates. Spheroid immunofluorescence staining, spheroid formation assay, immunoblotting, and literature review were performed to investigate molecular biomarkers and the morphological characteristics of pancreatic tumor spheroids. Single cells experienced different growth patterns to form SCTS, like signet ring-like cells, blastula-like structures, and solid core spheroids. However, golf ball-like hollow spheroids could also be detected, especially when DanG and Capan-1 cells were cultivated with fibroblast-conditioned medium (p cell lines could also establish tumor spheroid with hanging drop plates by adding methylated cellulose. Tumor spheroids derived from pancreatic cancer cell line DanG possessed asymmetrically distributed proliferation center, immune-checkpoint properties. ß-catenin, Ki-67, and F-actin were active surrounding the crater-like structure distributing on the inner layer of viable rim cover of the spheroids, which was relevant to well-differentiated tumor cells. It is possible to establish 3D CTC cluster models from homogenous PDA cell lines using hanging drop and ultra-low attachment plates. PDA cell line displays its own intrinsic properties or heterogeneity. The mechanism of formation of the crater-like structure as well as golf ball-like structure needs further exploration.

  2. Essentials of cloud computing

    CERN Document Server

    Chandrasekaran, K

    2014-01-01

    ForewordPrefaceComputing ParadigmsLearning ObjectivesPreambleHigh-Performance ComputingParallel ComputingDistributed ComputingCluster ComputingGrid ComputingCloud ComputingBiocomputingMobile ComputingQuantum ComputingOptical ComputingNanocomputingNetwork ComputingSummaryReview PointsReview QuestionsFurther ReadingCloud Computing FundamentalsLearning ObjectivesPreambleMotivation for Cloud ComputingThe Need for Cloud ComputingDefining Cloud ComputingNIST Definition of Cloud ComputingCloud Computing Is a ServiceCloud Computing Is a Platform5-4-3 Principles of Cloud computingFive Essential Charact

  3. A Closer Examination of the Joint Behavior of Dark Spots and their Companion Clouds on the Ice Giants

    Science.gov (United States)

    Le Beau, Raymond P.; Warning, S. W.; Palotai, C.; Deng, X.

    2012-10-01

    Starting with the Voyager observations of the Great Dark Spot-Bright Companion duo on Neptune, discrete cloud features have been linked to vortices on the Ice Giants. Building on these observations, numerical simulations of these features have begun to reveal a complex physical interaction in which the vortex can generate clouds which in turn influence the behavior of the vortex. For example, simulations in the EPIC general circulation model of a vortex similar to the Uranian Dark Spot can generate companion clouds from a cloud-free initial condition. These clouds are generated orographically, with a region of upwelling on the leading edge of vortex lifting methane from the warmer lower atmosphere to cooler conditions above the vortex. This increases the local humidity to the point where condensation can occur. The upwelling is perceptible in some simulations a scale height above the vortex with vertical velocities on the order of 0.01-0.1 m/s. The strength of this upwelling is dependent on the local humidity as well as the vortex characteristics; likewise, the meridional drift rate of these vortices is affected by the changes in methane distribution. While the described UDS simulation provides an illustration of the interactive physics underlying vortex-cloud phenomena, there are other, more perplexing observations that require further explanation. These range from the changing shape of the original bright companion cloud above and about the drifting, oscillating Great Dark Spot to the meridional drift and time-varying cloud structure of the “Berg” on Uranus. Ongoing numerical examination of these vortex-cloud pairings will provide further insight into these features and the overall atmospheric physics of the Ice Giants. This research is supported by NASA Planetary Atmospheres grant NNX11AC01G.

  4. Effect of perinatally supplemented flavonoids on brain structure, circulation, cognition, and metabolism in C57BL/6J mice.

    Science.gov (United States)

    Janssen, Carola I F; Zerbi, Valerio; Mutsaers, Martina P C; Jochems, Mieke; Vos, Claudia A; Vos, Julle O; Berg, Brian M; van Tol, Eric A F; Gross, Gabriele; Jouni, Zeina E; Heerschap, Arend; Kiliaan, Amanda J

    2015-10-01

    Evidence suggests that flavanol consumption can beneficially affect cognition in adults, but little is known about the effect of flavanol intake early in life. The present study aims to assess the effect of dietary flavanol intake during the gestational and postnatal period on brain structure, cerebral blood flow (CBF), cognition, and brain metabolism in C57BL/6J mice. Female wild-type C57BL/6J mice were randomly assigned to either a flavanol supplemented diet or a control diet at gestational day 0. Male offspring remained on the corresponding diets throughout life and performed cognitive and behavioral tests during puberty and adulthood assessing locomotion and exploration (Phenotyper and open field), sensorimotor integration (Rotarod and prepulse inhibition), and spatial learning and memory (Morris water maze, MWM). Magnetic resonance spectroscopy and imaging at 11.7T measured brain metabolism, CBF, and white and gray matter integrity in adult mice. Biochemical and immunohistochemical analyses evaluated inflammation, synaptic plasticity, neurogenesis, and vascular density. Cognitive and behavioral tests demonstrated increased locomotion in Phenotypers during puberty after flavanol supplementation (p = 0.041) but not in adulthood. Rotarod and prepulse inhibition demonstrated no differences in sensorimotor integration. Flavanols altered spatial learning in the MWM in adulthood (p = 0.039), while spatial memory remained unaffected. Additionally, flavanols increased diffusion coherence in the visual cortex (p = 0.014) and possibly the corpus callosum (p = 0.066) in adulthood. Mean diffusion remained unaffected, a finding that corresponds with our immunohistochemical data showing no effect on neurogenesis, synaptic plasticity, and vascular density. However, flavanols decreased CBF in the cortex (p = 0.001) and thalamus (p = 0.009) in adulthood. Brain metabolite levels and neuroinflammation remained unaffected by flavanols. These data suggest

  5. Structure-Guided Functional Annotation of the Influenza A Virus NS1 Protein Reveals Dynamic Evolution of the p85β-Binding Site during Circulation in Humans.

    Science.gov (United States)

    Lopes, Antonio M; Domingues, Patricia; Zell, Roland; Hale, Benjamin G

    2017-11-01

    Rational characterization of virulence and host-adaptive markers in the multifunctional influenza A virus NS1 protein is hindered by a lack of comprehensive knowledge about NS1-host protein protein interfaces. Here, we surveyed the impact of amino acid variation in NS1 at its structurally defined binding site for host p85β, a regulator of phosphoinositide 3-kinase (PI3K) signaling. Structure-guided alanine scanning of all viral residues at this interface defined 10 positions contributing to the interaction, with residues 89, 95, 98, 133, 145, and 162 being the most important. A bioinformatic study of >24,000 publicly available NS1 sequences derived from viruses infecting different hosts highlighted several prevalent amino acid variants at the p85β interface that either enhanced (I95) or weakened (N135, T145, L161, Y161, S164) p85β binding. Interestingly, analysis of viruses circulating in humans since the 1918 pandemic revealed the temporal acquisition of functionally relevant variants at this interface. I95 (which enhanced p85β binding) quickly became prevalent in the 1940s and experimentally conferred a fitness advantage to a recombinant 1930s-based H1N1 virus in human lung epithelial cells. Surprisingly, H1N1 and H3N2 viruses recently acquired T145 or N135, respectively, which diminished p85β binding but apparently not the overall fitness in the human population. Evolutionary analyses revealed covariation of the NS1-p85β binding phenotype in humans with functional changes at multiple residues in other viral proteins, suggesting an unexplored compensatory or synergistic interplay between phenotypes in vivo Overall, our data provide a resource to understand the consequences of the NS1-p85β binding spectrum of different influenza viruses and highlight the dynamic evolution of this property in viruses circulating in humans.IMPORTANCE In humans, influenza A viruses are responsible for causing seasonal epidemics and occasional pandemics. These viruses also

  6. Blue skies for CLOUD

    CERN Multimedia

    2006-01-01

    Through the recently approved CLOUD experiment, CERN will soon be contributing to climate research. Tests are being performed on the first prototype of CLOUD, an experiment designed to assess cosmic radiation influence on cloud formation.

  7. Virtualized cloud data center networks issues in resource management

    CERN Document Server

    Tsai, Linjiun

    2016-01-01

    This book discusses the characteristics of virtualized cloud networking, identifies the requirements of cloud network management, and illustrates the challenges in deploying virtual clusters in multi-tenant cloud data centers. The book also introduces network partitioning techniques to provide contention-free allocation, topology-invariant reallocation, and highly efficient resource utilization, based on the Fat-tree network structure. Managing cloud data center resources without considering resource contentions among different cloud services and dynamic resource demands adversely affects the performance of cloud services and reduces the resource utilization of cloud data centers. These challenges are mainly due to strict cluster topology requirements, resource contentions between uncooperative cloud services, and spatial/temporal data center resource fragmentation. Cloud data center network resource allocation/reallocation which cope well with such challenges will allow cloud services to be provisioned with ...

  8. Could the canopy structure of bryophytes serve as an indicator of microbial biodiversity? A test for testate amoebae and microcrustaceans from a subtropical cloud forest in Dominican Republic.

    Science.gov (United States)

    Acosta-Mercado, D; Cancel-Morales, N; Chinea, J D; Santos-Flores, C J; De Jesús, I Sastre

    2012-07-01

    The mechanisms that ultimately regulate the diversity of microbial eukaryotic communities in bryophyte ecosystems remain a contentious topic in microbial ecology. Although there is robust consensus that abiotic factors, such as water chemistry of the bryophyte and pH, explain a significant proportion of protist and microcrustacean diversity, there is no systematic assessment of the role of bryophyte habitat complexity on such prominent microbial groups. Water-holding capacity is correlated with bryophyte morphology and canopy structure. Similarly, canopy structure explains biodiversity dynamics of the macrobiota suggesting that canopy structure may also be a potential parameter for understanding microbial diversity. Canopy roughness of the dominant bryophyte species within the Bahoruco Cloud Forest, Cachote, Dominican Republic, concomitant with their associated diversity of testate amoebae and microcrustaceans was estimated to determine whether canopy structure could be added to the list of factors explaining microbial biodiversity in bryophytes. We hypothesized that smooth (with high moisture content) canopies will have higher species richness, density, and biomass of testate amoebae and higher richness and density of microcrustaceans than rough (desiccation-prone) canopies. For testate amoebae, we found 83 morphospecies with relative low abundances. Species richness and density differed among bryophytes with different bryophyte canopy structures and based on non-metric multidimensional scaling, canopy roughness explained 25% of the variation in species composition although not as predicted. Acroporium pungens (low roughness, LR) had the lowest species richness (2 ± 0.61 SD per gram dry weight bryophyte), and density (2.1 ± 0.61 SD individual per gram of dry weight bryophyte); whereas Thuidium urceolatum (high roughness) had the highest richness (24 ± 10.82 SD) and density (94 ± 64.30 SD). The fact that the bryophyte with the highest roughness had the highest

  9. Martian Clouds Data Workshop

    Science.gov (United States)

    Lee, Steven

    The major topics covered were a discussion of the structure of relational data base systems and features of the Britton Lee Relational Data Base Management System (RDBMS); a discussion of the workshop's objectives, approach, and research scenarios; and an overview of the Atmospheres Node User's Guide, which details the datasets stored on the Britton Lee, the structure of the query and data analysis system, and examples of the exact menu screens encountered. Also discussed were experience with the system, review of the system performance, and a strategy to produce queries and performance data retrievals of mutual interest. The goals were defined as examining correlations between cloud occurrence, water vapor abundance, and surface properties.

  10. Shallow Circulations: Relevance and Strategies for Satellite Observation

    Science.gov (United States)

    Bellon, Gilles; Reitebuch, Oliver; Naumann, Ann Kristin

    2017-11-01

    Shallow circulations are central to many tropical cloud systems. We investigate the potential of existing and upcoming data to document these circulations. Different methods to observe or constrain atmospheric circulations rely on satellite-borne instruments. Direct observations of the wind are currently possible at the ocean surface or using tracer patterns. Satellite-borne wind lidar will soon be available, with a much better coverage and accuracy. Meanwhile, circulations can be constrained using satellite observations of atmospheric diabatic heating. We evaluate the commonalities and discrepancies of these estimates together with reanalysis in systems that include shallow circulations. It appears that existing datasets are in qualitative agreement, but that they still differ too much to provide robust evaluation criteria for general circulation models. This state of affairs highlights the potential of satellite-borne wind lidar and of further work on current satellite retrievals.

  11. Low-Power, Lightweight Cloud Water Content Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The measurement of cloud water content is of great importance in understanding the formation of clouds, their structure, and their radiative properties which in turn...

  12. A non-synonymous coding change in the CYP19A1 gene Arg264Cys (rs700519 does not affect circulating estradiol, bone structure or fracture

    Directory of Open Access Journals (Sweden)

    Wang Jenny Z

    2011-12-01

    Full Text Available Abstract Background The biosynthesis of estrogens from androgens is catalyzed by aromatase P450 enzyme, coded by the CYP19A1 gene on chromosome 15q21.2. Genetic variation within the CYP19A1 gene sequence has been shown to alter the function of the enzyme. The aim of this study is to investigate whether a non-synonymous Arg264Cys (rs700519 single nucleotide polymorphism (SNP is associated with altered levels of circulating estradiol, areal bone mineral density or fracture. Methods This population- based study of 1,022 elderly Caucasian women (mean age 74.95 ± 2.60 years was genotyped for the rs700519 SNP were analyzed to detect any association with endocrine and bone phenotypes. Results The genotype frequencies were 997 wildtype (97.6%, 24 heterozygous (2.3% and 1 homozygous (0.1%. When individuals were grouped by genotype, there was no association between the polymorphism and serum estradiol (wildtype 27.5 ± 16.0; variants 31.2 ± 18.4, P = 0.27. There was also no association seen on hip bone mineral density (wildtype 0.81 ± 0.12; 0.84 ± 0.14 for variants, P = 0.48 or femoral neck bone mineral density (0.69 ± 0.10 for wildtype; 0.70 ± 0.12 for variants, P = 0.54 before or after correction of the data with age, height, weight and calcium therapy. There were also no associations with quantitative ultrasound measures of bone structure (broadband ultrasound attenuation, speed of sound and average stiffness. Conclusions In a cohort of 1,022 elderly Western Australian women, the presence of Arg264Cys (rs700519 polymorphism was not found to be associated with serum estradiol, bone structure or phenotypes.

  13. Silicon Photonics Cloud (SiCloud)

    DEFF Research Database (Denmark)

    DeVore, P. T. S.; Jiang, Y.; Lynch, M.

    2015-01-01

    Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths.......Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths....

  14. A Report of Clouds on Titan

    Science.gov (United States)

    Corlies, Paul; Hayes, Alexander; Adamkovics, Mate; Rodriguez, Sebastien; Kelland, John; Turtle, Elizabeth P.; Mitchell, Jonathan; Lora, Juan M.; Rojo, Patricio; Lunine, Jonathan I.

    2017-10-01

    We present in this work a detailed analysis of many of the clouds in the Cassini Visual and Infrared Mapping Spectrometer (VIMS) dataset in order to understand their global and seasonal properties. Clouds are one of the few direct observables in Titan’s atmosphere (Griffith et al 2009, Rodriguez et al 2009, Adamkovics et al 2010), and so determining their characteristics allows for a better understanding of surface atmosphere interactions, winds, transport of volatile material, and general circulation. We find the clouds on Titan generally reside in at 5-15km altitude, which agrees with previous modelling efforts (Rafkin et al. 2015), as well as a power law distribution for cloud optical depth. We assume an average cloud droplet size of 100um. No seasonal dependence is observed with either cloud altitude or optical depth, suggesting there is no preferred seasonal formation mechanisms. Combining these characteristics with cloud size (Kelland et al 2017) can trace the transport of volatiles in Titan’s atmosphere, which can be compared against general circulation models (GCMs) (Lora et al 2015). We also present some specific analysis of interesting cloud systems including hypothesized surface fogs (Brown et al 2009) and orographic cloud formation (Barth et al 2010, Corlies et al 2017). In this analysis we use a correlation between Cassini VIMS and RADAR observations as well as an updated topographic map of Titan’s southern hemisphere to better understand the role that topography plays in influencing and driving atmospheric phenomena.Finally, with the end of the Cassini mission, ground based observing now acts as the only means with which to observe clouds on Titan. We present an update of an ongoing cloud campaign to search for clouds on Titan and to understand their seasonal evolution.References:Adamkovics et al. 2010, Icarus 208:868Barth et al. 2010, Planet. Space Sci. 58:1740Corlies et al. 2017, 48th LPSC, 2870CGriffith et al. 2009, ApJ 702:L105Kelland et al

  15. NMR structural study of fructans produced by Bacillus sp. 3B6, bacterium isolated in cloud water.

    Science.gov (United States)

    Matulová, Mária; Husárová, Slavomíra; Capek, Peter; Sancelme, Martine; Delort, Anne-Marie

    2011-03-01

    Bacillus sp. 3B6, bacterium isolated from cloud water, was incubated on sucrose for exopolysaccharide production. Dialysis of the obtained mixture (MWCO 500) afforded dialyzate (DIM) and retentate (RIM). Both were separated by size exclusion chromatography. RIM afforded eight fractions: levan exopolysaccharide (EPS), fructooligosaccharides (FOSs) of levan and inulin types with different degrees of polymerization (dp 2-7) and monosaccharides fructose:glucose=9:1. Levan was composed of two components with molecular mass ~3500 and ~100kDa in the ratio 2.3:1. Disaccharide fraction contained difructose anhydride DFA IV. 1-Kestose, 6-kestose, and neokestose were identified as trisaccharides in the ratio 2:1:3. Fractions with dp 4-7 were mixtures of FOSs of levan (2,6-βFruf) and inulin (1,2-βFruf) type. DIM separation afforded two dominant fractions: monosaccharides with fructose: glucose ratio 1:3; disaccharide fraction contained sucrose only. DIM trisaccharide fraction contained 1-kestose, 6-kestose, and neokestose in the ratio1.5:1:2, penta and hexasaccharide fractions contained FOSs of levan type (2,6-βFruf) containing α-glucose. In the pentasaccharide fraction also the presence of a homopentasaccharide composed of 2,6-linked βFruf units only was identified. Nystose, inulin (1,2-βFruf) type, was identified as DIM tetrasaccharide. Identification of levan 2,6-βFruf and inulin 1,2-βFruf type oligosaccharides in the incubation medium suggests both levansucrase and inulosucrase enzymes activity in Bacillus sp. 3B6. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Microphysics and Southern Ocean Cloud Feedback

    Science.gov (United States)

    McCoy, Daniel T.

    Global climate models (GCMs) change their cloud properties in the Southern Ocean (SO) with warming in a qualitatively consistent fashion. Cloud albedo increases in the mid-latitudes and cloud fraction decreases in the subtropics. This creates a distinctive 'dipole' structure in the SW cloud feedback. However, the shape of the dipole varies from model to model. In this thesis we discuss the microphysical mechanisms underlying the SW cloud feedback over the mid-latitude SO. We will focus on the negative lobe of the dipole. The negative SW cloud feedback in the mid-latitudes is created by transitions from ice to liquid in models. If ice transitions to liquid in mixed-phase clouds the cloud albedo increases because ice crystals are larger than liquid droplets and therefore more reflective for a constant mass of water. Decreases in precipitation efficiency further enhance this effect by decreasing sinks of cloud water. This transition is dependent on the mixed-phase cloud parameterization. Parameterizations vary wildly between models and GCMs disagree by up to 35 K on the temperature where ice and liquid are equally prevalent. This results in a wide spread in the model predictions of the increase in liquid water path (LWP, where the path is the vertically integrated mass of water) with warming that drives the negative optical depth cloud feedback. It is found that this disagreement also results in a wide array of climate mean-states as models that create liquid at lower temperatures have a higher mean-state LWP, lower ice water path (IWP), and higher condensed (ice and liquid) water path (CWP). This presents a problem in climate models. GCMs need to have a reasonable planetary albedo in their climate mean-state. We show evidence that GCMs have tuned cloud fraction to compensate for the variation in mid-latitude cloud albedo driven by the mixed-phase cloud parameterization. This tuning results in mid-latitude clouds that are both too few and too bright as well as a

  17. A boundary-layer cloud study using Southern Great Plains Cloud and radiation testbed (CART) data

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, B.; Mace, G.; Dong, X.; Syrett, W. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-04-01

    Boundary layer clouds-stratus and fairweather cumulus - are closely coupled involves the radiative impact of the clouds on the surface energy budget and the strong dependence of cloud formation and maintenance on the turbulent fluxes of heat and moisture in the boundary layer. The continuous data collection at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site provides a unique opportunity to study components of the coupling processes associated with boundary layer clouds and to provide descriptions of cloud and boundary layer structure that can be used to test parameterizations used in climate models. But before the CART data can be used for process studies and parameterization testing, it is necessary to evaluate and validate data and to develop techniques for effectively combining the data to provide meaningful descriptions of cloud and boundary layer characteristics. In this study we use measurements made during an intensive observing period we consider a case where low-level stratus were observed at the site for about 18 hours. This case is being used to examine the temporal evolution of cloud base, cloud top, cloud liquid water content, surface radiative fluxes, and boundary layer structure. A method for inferring cloud microphysics from these parameters is currently being evaluated.

  18. Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library

    Science.gov (United States)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud- resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production runs will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, ( 2 ) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  19. Considerations about Cloud Services: Learning

    Directory of Open Access Journals (Sweden)

    Riccardo Cognini

    2013-05-01

    Full Text Available Cloud services are ubiquitous: for small to large companies the phenomenon of cloud service is nowadays a standard business practice. This paper would compile an analysis over a possible implementation of a cloud system, treating especially the legal aspect of this theme. In the Italian market has a large number of issues arise form cloud computing. First of all, this paper investigates the legal issues associated to cloud computing, specific contractual scheme that is able to define rights a duties both of user (private and/or public body and cloud provider. On one side there is all the EU legislative production related to privacy over electronic communication and, furthermore, the Privacy Directive is under a revision process to be more adaptable to new challenges of decentralized data treatment, but concretely there are no any structured and well defined legal instruments. Objectives: we present a possible solution to address the uncertainty of this area, starting from the EU legislative production with the help of the specific Italian scenario that could offer an operative solution. Indeed the Italian legal system is particularly adaptable to changing technologies and it could use as better as possible to adapt the already existing legal tools to this new technological era. Prior work: after an introduction to the state of the art, we show the main issues and their critical points that must be solved. Approach: observation of the state of the art to propose a new approach to find the suitable disciple

  20. THE CLOUD TECHNOLOGIES OF LEARNING: ORIGIN

    OpenAIRE

    Oksana M. Markova; Serhiy O. Semerikov; Andrii M. Striuk

    2015-01-01

    The research goal is to investigate the evolution of the concept of utility computing in the works of foreign researchers in the years 1959-1966. First the A. O. Mann’s results and expanded overview of the D. F. Parkhill’s results on the concept of computer (information) utility were introduced in the domestic scientific circulation. Functionally identity of the computer utility and cloud computing concepts was proved, as well as refined the primary sources of cloud service models. There was ...

  1. Secure Cloud Architecture

    OpenAIRE

    Kashif Munir; Sellapan Palaniappan

    2013-01-01

    Cloud computing is set of resources and services offered through the Internet. Cloud services are delivered from data centers located throughout the world. Cloud computing facilitates its consumers by providing virtual resources via internet. The biggest challenge in cloud computing is the security and privacy problems caused by its multi-tenancy nature and the outsourcing of infrastructure, sensitive data and critical applications. Enterpri...

  2. Stationary waves and slow cloud features challenge Venus's night side superrotation

    Science.gov (United States)

    Peralta, J.; Hueso, R.; Sánchez-Lavega, A.; Lee, Y. J.; García-Muñoz, A.; Kouyama, T.; Sagawa, H.; Sato, T. M.; Piccioni, G.; Tellmann, S.; Satoh, T.

    2017-09-01

    We present the first global measurements of the night side circulation of Venus at the upper cloud level from the tracking of individual features in thermal emission images at 3.8 and 5.0 μm during 2006-2008 (Venus Express/VIRTIS) and 2015 (IRTF/SpeX). The zonal motions range from -110 to -60 m/s, consistent with those found for the dayside but with larger dispersion6. Slow motions (-50 to -20 m/s) are also found and may indicate temporal changes in the vertical structure of the superrotation. Abundant stationary wave patterns with zonal speeds from -10 to +10 m/s clearly dominate the night upper clouds.

  3. Geothermal gradients and ground water circulation in fissured and karstic rocks: The role played by the structure of the permeable network

    Science.gov (United States)

    Drogue, C.

    1985-12-01

    In fissured and karstic rocks the general movement of underground waters (forced convection) can modify geothermic gradients. This depends both on the discontinuous structure (channels and fissures) and on hydrodynamic conditions which can vary with the weather, e.g. during the recharging of reserviors in rainy periods. An experimental analysis has been carried out in the broken and karstified Mesozoic limestone in the South of France, on shallow boreholes (60 m) grouped in a closely-spaced network. Nearly a hundred thermal loggings have been measured in the homothermic zone below 25 m. The gradients in dry periods, varying from one drilling to another, are between 0.01 and 0.03°C m -1 for an average thermal conductivity of rock of 2.56 Wm -1 °C -1. During recharging of the aquifer by rain, the gradients do not change in some drillings. This always occurs in those which cut through networks of slightly karstified fissures with low hydraulic conductivity. The slow circulation allows the water to be in thermal quasi-equilibrium with the rock. In other drillings, however, recharging causes local and sometimes very significant modifications of the gradients. Disturbances are temporary and appear directly over well-developed karstic channels which rapidly draw down the infiltrated cold water to the bottom. Thermal profiles, either stable or disturbed, can be surveyed simultaneously in drillings situated at least 10 m from each other. The position and nature of the karstic channels in which the forced convection is most active can be identified through observations by videologging and flow velocity tests.

  4. Shallow-cumulus cloud feedback: model uncertainties and perspectives of observational constraint

    Science.gov (United States)

    Bony, Sandrine

    2017-04-01

    Shallow-cumulus clouds constitute the most prominent cloud type on Earth, and their response to changing environmental conditions is critical for climate sensitivity. Research over the last decade has pointed out the importance of the interplay between clouds, convection, turbulence and circulation in controlling this response. Unfortunately, numerical models represent this interplay in diverse ways, which translates into different shallow-cumulus cloud feedbacks in climate change. Climate models predict that the cloud-base cloud fraction is very sensitive to changes in environmental conditions, while process models suggest that it is very resilient to such changes. To understand and solve this contradiction, a field campaign named EUREC4A (Elucidating the role of clouds-circulation coupling in climate) will be organized in the lower Atlantic trades in Jan-Fev 2020. The scientific objectives of this campaign will be presented, and the experimental strategy envisioned to reach these objectives will be discussed.

  5. Robots and sensor clouds

    CERN Document Server

    Shakshuki, Elhadi

    2016-01-01

    This book comprises four chapters that address some of the latest research in clouds robotics and sensor clouds. The first part of the book includes two chapters on cloud robotics. The first chapter introduces a novel resource allocation framework for cloud robotics and proposes a Stackelberg game model and the corresponding task oriented pricing mechanism for resource allocation. In the second chapter, the authors apply Cloud Computing for building a Cloud-Based 3D Point Cloud extractor for stereo images. Their objective is to have a dynamically scalable and applicable to near real-time scenarios.  .

  6. Accuracy of long-range Terrestrial Laser Scanner point clouds for documenting the topography and structure of cliffs: a benchmark at the Mont Saint-Eynard (Chartreuse massif, France)

    Science.gov (United States)

    Bornemann, Pierrick; Guérin, Antoine; Amitrano, David; Malet, Jean-Philippe; Jaboyedoff, Michel

    2017-04-01

    The Mont Saint-Eynard cliff is a 7 km long cliff located to the immediate North East of the city of Grenoble (French Alps). It corresponds to the Western edge of the Chartreuse massif. Its morphology consists of two sub-vertical limestone cliffs separated by a forested ledge, with the lower cliff being 240m high and the upper cliff being 120m high. The cliff is located directly above a densely populated area and is affected by frequent rockfall events, which has led to regular surveying and monitoring campaigns using both aerial and Terrestrial Laser Scanning (TLS) data well as terrestrial multi-views photogrammetry. A benchmark campaign consisting of simultaneous acquisitions of point clouds with three long-range TLS devices (Optech ILRIS-3D, Optech ILRIS-LR, RIEGL VZ-2000) has been carried in October 2016 on common areas from the same base station. The objectives of the benchmark were (1) to document the intrinsic quality of the TLS devices, (2) to test several methodological approaches for the point cloud registration, and (3) to quantify the quality of the registered point clouds to represent the structures of the cliff at several spatial scales. The point cloud alignment and best-fit registration are performed with the open source software CloudCompare and the commercial softwares PolyWorks and RiSCAN PRO. The filtered and registered point clouds are then compared in terms of accuracy (errors, point density) and reliability of the measurements for each laser scanner. For this purpose, we derive and compare quantitative metrics on each point cloud, based on their respective density, roughness, position deviation, and position along cross-sections in order to assess the data noise for each measurement device. The quality of the representation of the relief is further compared in relation to the cliff surface roughness. The final point clouds are then compared with structural information (i.e. dip angle / dip direction along the line of sight) calculated with the

  7. Cloud Robotics Platforms

    Directory of Open Access Journals (Sweden)

    Busra Koken

    2015-01-01

    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  8. The CLOUD experiment

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The Cosmics Leaving Outdoor Droplets (CLOUD) experiment as shown by Jasper Kirkby (spokesperson). Kirkby shows a sketch to illustrate the possible link between galactic cosmic rays and cloud formations. The CLOUD experiment uses beams from the PS accelerator at CERN to simulate the effect of cosmic rays on cloud formations in the Earth's atmosphere. It is thought that cosmic ray intensity is linked to the amount of low cloud cover due to the formation of aerosols, which induce condensation.

  9. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    KAUST Repository

    Yao, Fengchao

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow. Key Points Sinking occurs in a narrow boundary layer along the eastern boundary Surface western boundary current switches into an eastern boundary current Water exchange in the Strait of Bab el Mandeb is not hydraulically controlled © 2014. American Geophysical Union. All Rights Reserved.

  10. Reviewing Molecular Clouds

    Science.gov (United States)

    Fernandez Lopez, Manuel

    2017-07-01

    The star formation process involves a wide range of spatial scales, densities and temperatures. Herschel observations of the cold and low density molecular gas extending tens of parsecs, that constitutes the bulk of the molecular clouds of the Milky Way, have shown a network of dense structures in the shape of filaments. These filaments supposedly condense into higher density clumps to form individual stars or stellar clusters. The study of the kinematics of the filaments through single-dish observations suggests the presence of gas flows along the filaments, oscillatory motions due to gravity infall, and the existence of substructure inside filaments that may be threaded by twisted fibers. A few molecular clouds have been mapped with interferometric resolutions bringing more insight into the filament structure. Compression due to large-scale supersonic flows is the preferred mechanism to explain filament formation although the exact nature of the filaments, their origin and evolution are still not well understood. Determining the turbulence drivers behind the origin of the filaments, the relative importance of turbulence, gravity and magnetic fields on regulating the filament structure and evolution, and providing detailed insight on the substructure inside the filaments are among the current open questions in this research area.

  11. Circulation anomalies associated with tropical-temperate troughs in southern Africa and the south west Indian Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Todd, M.; Washington, R. [Oxford Univ. (United Kingdom). School of Geography

    1999-12-01

    Daily rainfall variability over southern Africa (SA) and the southwest Indian Ocean (SWIO) during the austral summer months has recently been described objectively for the first time, using newly derived satellite products. The principle mode of variability in all months is a dipole structure with bands of rainfall orientated northwest to southeast across the region. These represent the location of cloud bands associated with tropical temperate troughs (TTT). This study objectively identifies major TTT events during November to February, and on the basis of composites off NCEP reanalysis data describes the associated atmospheric structure. The two phases of the rainfall dipole are associated with markedly contrasting circulation patterns. There are also pronounced intraseasonal variations. In early summer the position of the temperate trough and TTT cloud band alternates between the SWIO and southwest Atlantic. In late summer the major TTT axis lies preferentially over the SWIO, associated with an eastward displacement in the Indian Ocean high. In all months, positive events, in which the TTT cloud band lies primarily over the SWIO, are associated with large-scale moisture flux anomalies, in which convergent fluxes form a pronounced poleward flux along the cloud band. This suggests that TTT events are a major mechanism of poleward transfer of energy and momentum. (orig.)

  12. Cirrus clouds. I - A cirrus cloud model. II - Numerical experiments on the formation and maintenance of cirrus

    Science.gov (United States)

    Starr, D. OC.; Cox, S. K.

    1985-01-01

    A simplified cirrus cloud model is presented which may be used to investigate the role of various physical processes in the life cycle of a cirrus cloud. The model is a two-dimensional, time-dependent, Eulerian numerical model where the focus is on cloud-scale processes. Parametrizations are developed to account for phase changes of water, radiative processes, and the effects of microphysical structure on the vertical flux of ice water. The results of a simulation of a thin cirrostratus cloud are given. The results of numerical experiments performed with the model are described in order to demonstrate the important role of cloud-scale processes in determining the cloud properties maintained in response to larger scale forcing. The effects of microphysical composition and radiative processes are considered, as well as their interaction with thermodynamic and dynamic processes within the cloud. It is shown that cirrus clouds operate in an entirely different manner than liquid phase stratiform clouds.

  13. Cloud field segmentation via multiscale convexity analysis

    Science.gov (United States)

    Lim, Sin Liang; Daya Sagar, B. S.

    2008-07-01

    Cloud fields retrieved from remotely sensed satellite data resemble functions depicting spectral values at each spatial position (x,y). Segmenting such cloud fields through a simple thresholding technique may not provide any structurally significant information about each segmented category. An approach based on the use of multiscale convexity analysis to derive structurally significant regions from cloud fields is addressed in this paper. This analysis requires (1) the generation of cloud fields at coarser resolutions and (2) the construction of convex hulls of cloud fields, at corresponding resolutions by employing multiscale morphologic opening transformation and half-plane closings with certain logical operations. The three basic parameters required from these generated multiscale phenomena in order to accomplish the structure-based segmentation include (1) the areas of multiscale cloud fields, (2) the areas of corresponding convex hulls, and (3) the estimation of convexity measures at corresponding resolutions by employing the areas of cloud fields and areas of corresponding convex hulls. These convexity measures computed for multiscale cloud fields are plotted as a function of the resolution imposed owing to multiscale opening to derive a causal relationship. The scaling exponents derived from these graphical plots are taken as the basis for (1) determining the transition zones between the regimes and (2) segmenting the cloud fields into morphologically significant regions. We demonstrated this approach on two different cloud fields retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) data. The segmented regions from these cloud fields possess different degrees of spatial complexities. As many macroscale and microscale atmospheric fields are classified according to spatial variability indexes, the framework proposed here would supplement those existing atmospheric field classification methodologies.

  14. FY1998 report on the survey on total energy and material control. Pt. 2. Survey on feasibility to structure a circulation type society; 1998 nendo total energy and material control ni kansuru chosa hokokusho. 2. Junkangata shakai kochiku kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This paper describes a survey on feasibility to structure a circulation type society. The TEMCOS is a technology to contribute to structuring a circulation type society by controlling energy and materials totally. In order for the technology to develop into one that fuses with districts, survey and research were made on specific possibility of inter-process linking. Particularly discussions were given on zero emission of wastes (by-products) by means of inter-process linking of the metal industries with the chemical and petroleum industries. Therefore, the actual status of by-products was investigated and narrowed down, utilization possibilities were proposed, and the future possibilities and development themes were put into order. In order to structure a sustainable circulation type society, it is indispensable to perform step-wise cascade utilization considering quality of the energy, not only recycling energies and resources. Focusing on recovery of waste heat of low-middle temperatures which is difficult to recover latent heat, plans were established on research themes. The plans include chemical utilization of low-middle temperature heat utilizing ammonia gas, storage of heat in cryogenic temperature waste gas to iron particles, and transfer and utilization thereof. (NEDO)

  15. Probing exoplanet clouds with optical phase curves.

    Science.gov (United States)

    Muñoz, Antonio García; Isaak, Kate G

    2015-11-03

    Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve--from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the extent and location of the clouds. These considerations are relevant to the interpretation of optical phase curves with general circulation models. Finally, we estimate that the spherical albedo of Kepler-7b over the Kepler passband is in the range 0.4-0.5.

  16. Depiction of experimental findings for a cloud enterprise architecture

    CSIR Research Space (South Africa)

    Mvelase, PS

    2015-12-01

    Full Text Available business model shows the benefits that are derived from using the VE cloud model over subscription to public cloud as a single business enterprise. The pricing structure of our VE cloud model is up to 17.82 times economical compared with equivalent Amazon...

  17. Structural characteristics of atmospheric temperature and humidity inside clouds of convective and stratiform precipitation in the rainy season over East Asia

    Science.gov (United States)

    Wang, Rui; Fu, Yunfei

    2017-10-01

    In this study, a merged dataset constructed from Tropical Rainfall Measuring Mission precipitation radar rain products and Integrated Global Radiosonde Archive data is used to investigate the thermal structural characteristics of convective and stratiform precipitation in the rainy season (May-August) of 1998-2012 over East Asia. The results show that the storm tops for convective precipitation are higher than those for stratiform precipitation, because of the more unstable atmospheric motions for convective precipitation. Moreover, the storm tops are higher at 1200 UTC than at 0000 UTC over land regions for both convective and stratiform precipitation, and vice versa for ocean region. Additionally, temperature anomaly patterns inside convective and stratiform precipitating clouds show a negative anomaly of about 0-2 K, which results in cooling effects in the lower troposphere. This cooling is more obvious at 1200 UTC for stratiform precipitation. The positive anomaly that appears in the middle troposphere is more than 2 K, with the strongest warming at 300 hPa. Relative humidity anomaly patterns show a positive anomaly in the middle troposphere (700-500 hPa) prior to the occurrence of the two types of precipitation, and the increase in moisture is evident for stratiform precipitation.

  18. Characterizing the Height Structure and Composition of a Boreal Forest Using an Individual Tree Crown Approach Applied to Photogrammetric Point Clouds

    Directory of Open Access Journals (Sweden)

    Benoît St-Onge

    2015-10-01

    Full Text Available Photogrammetric point clouds (PPC obtained by stereomatching of aerial photographs now have a resolution sufficient to discern individual trees. We have produced such PPCs of a boreal forest and delineated individual tree crowns using a segmentation algorithm applied to the canopy height model derived from the PPC and a lidar terrain model. The crowns were characterized in terms of height and species (spruce, fir, and deciduous. Species classification used the 3D shape of the single crowns and their reflectance properties. The same was performed on a lidar dataset. Results show that the quality of PPC data generally approaches that of airborne lidar. For pixel-based canopy height models, viewing geometry in aerial images, forest structure (dense vs. open canopies, and composition (deciduous vs. conifers influenced the quality of the 3D reconstruction of PPCs relative to lidar. Nevertheless, when individual tree height distributions were analyzed, PPC-based results were very similar to those extracted from lidar. The random forest classification (RF of individual trees performed better in the lidar case when only 3D metrics were used (83% accuracy for lidar, 79% for PPC. However, when 3D and intensity or multispectral data were used together, the accuracy of PPCs (89% surpassed that of lidar (86%.

  19. Differential Radiative Heating Drives Tropical Atmospheric Circulation Weakening

    Science.gov (United States)

    Xia, Yan; Huang, Yi

    2017-10-01

    The tropical atmospheric circulation is projected to weaken during global warming, although the mechanisms that cause the weakening remain to be elucidated. We hypothesize that the weakening is related to the inhomogeneous distribution of the radiative forcing and feedback, which heats the tropical atmosphere in the ascending and subsiding regions differentially and thus requires the circulation to weaken due to energetic constraints. We test this hypothesis in a series of numerical experiments using a fully coupled general circulation model (GCM), in which the radiative forcing distribution is controlled using a novel method. The results affirm the effect of inhomogeneous forcing on the tropical circulation weakening, and this effect is greatly amplified by radiative feedback, especially that of clouds. In addition, we find that differential heating explains the intermodel differences in tropical circulation response to CO2 forcing in the GCM ensemble of the Climate Model Intercomparison Project.

  20. Atmospheric Circulation of Exoplanets

    Science.gov (United States)

    Showman, A. P.; Cho, J. Y.-K.; Menou, K.

    2010-12-01

    We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from solar system studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-water, and two-dimensional nondivergent models. We then survey key concepts in atmospheric dynamics, including the importance of planetary rotation, the concept of balance, and simple scaling arguments to show how turbulent interactions generally produce large-scale east-west banding on rotating planets. We next turn to issues specific to giant planets, including their expected interior and atmospheric thermal structures, the implications for their wind patterns, and mechanisms to pump their east-west jets. Hot Jupiter atmospheric dynamics are given particular attention, as these close-in planets have been the subject of most of the concrete developments in the study of exoplanetary atmospheres. We then turn to the basic elements of circulation on terrestrial planets as inferred from solar system studies, including Hadley cells, jet streams, processes that govern the large-scale horizontal temperature contrasts, and climate, and we discuss how these insights may apply to terrestrial exoplanets. Although exoplanets surely possess a greater diversity of circulation regimes than seen on the planets in our solar system, our guiding philosophy is that the multidecade study of solar system planets reviewed here provides a foundation upon which our understanding of more exotic exoplanetary meteorology must build.

  1. Hybrid cloud for dummies

    CERN Document Server

    Hurwitz, Judith; Halper, Fern; Kirsch, Dan

    2012-01-01

    Understand the cloud and implement a cloud strategy for your business Cloud computing enables companies to save money by leasing storage space and accessing technology services through the Internet instead of buying and maintaining equipment and support services. Because it has its own unique set of challenges, cloud computing requires careful explanation. This easy-to-follow guide shows IT managers and support staff just what cloud computing is, how to deliver and manage cloud computing services, how to choose a service provider, and how to go about implementation. It also covers security and

  2. Secure cloud computing

    CERN Document Server

    Jajodia, Sushil; Samarati, Pierangela; Singhal, Anoop; Swarup, Vipin; Wang, Cliff

    2014-01-01

    This book presents a range of cloud computing security challenges and promising solution paths. The first two chapters focus on practical considerations of cloud computing. In Chapter 1, Chandramouli, Iorga, and Chokani describe the evolution of cloud computing and the current state of practice, followed by the challenges of cryptographic key management in the cloud. In Chapter 2, Chen and Sion present a dollar cost model of cloud computing and explore the economic viability of cloud computing with and without security mechanisms involving cryptographic mechanisms. The next two chapters addres

  3. Flavivirus structural heterogeneity: implications for cell entry.

    Science.gov (United States)

    Rey, Félix A; Stiasny, Karin; Heinz, Franz X

    2017-06-01

    The explosive spread of Zika virus is the most recent example of the threat imposed to human health by flaviviruses. High-resolution structures are available for several of these arthropod-borne viruses, revealing alternative icosahedral organizations of immature and mature virions. Incomplete proteolytic maturation, however, results in a cloud of highly heterogeneous mosaic particles. This heterogeneity is further expanded by a dynamic behavior of the viral envelope glycoproteins. The ensemble of heterogeneous and dynamic infectious particles circulating in infected hosts offers a range of alternative possible receptor interaction sites at their surfaces, potentially contributing to the broad flavivirus host-range and variation in tissue tropism. The potential synergy between heterogeneous particles in the circulating cloud thus provides an additional dimension to understand the unanticipated properties of Zika virus in its recent outbreaks. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  5. Cloud Computing for radiologists.

    Science.gov (United States)

    Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit

    2012-07-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  6. Cloud computing for radiologists

    Directory of Open Access Journals (Sweden)

    Amit T Kharat

    2012-01-01

    Full Text Available Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  7. Moving towards Cloud Security

    Directory of Open Access Journals (Sweden)

    Edit Szilvia Rubóczki

    2015-01-01

    Full Text Available Cloud computing hosts and delivers many different services via Internet. There are a lot of reasons why people opt for using cloud resources. Cloud development is increasing fast while a lot of related services drop behind, for example the mass awareness of cloud security. However the new generation upload videos and pictures without reason to a cloud storage, but only few know about data privacy, data management and the proprietary of stored data in the cloud. In an enterprise environment the users have to know the rule of cloud usage, however they have little knowledge about traditional IT security. It is important to measure the level of their knowledge, and evolve the training system to develop the security awareness. The article proves the importance of suggesting new metrics and algorithms for measuring security awareness of corporate users and employees to include the requirements of emerging cloud security.

  8. In the clouds

    NARCIS (Netherlands)

    Russchenberg, H.; Wassink, J.

    2012-01-01

    Clouds always used to be the least understood element of the weather system, but that is rapidly changing . Computer clouds increasingly correspond with those in the sky, which promises weather forecasts at street level and more accurate climate scenarios.

  9. Cloud Computing for radiologists

    Science.gov (United States)

    Kharat, Amit T; Safvi, Amjad; Thind, SS; Singh, Amarjit

    2012-01-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future. PMID:23599560

  10. Interaction of plasma cloud with external electric field in lower ionosphere

    Directory of Open Access Journals (Sweden)

    Y. S. Dimant

    2010-03-01

    Full Text Available In the auroral lower-E and upper-D region of the ionosphere, plasma clouds, such as sporadic-E layers and meteor plasma trails, occur daily. Large-scale electric fields, created by the magnetospheric dynamo, will polarize these highly conducting clouds, redistributing the electrostatic potential and generating anisotropic currents both within and around the cloud. Using a simplified model of the cloud and the background ionosphere, we develop the first self-consistent three-dimensional analytical theory of these phenomena. For dense clouds, this theory predicts highly amplified electric fields around the cloud, along with strong currents collected from the ionosphere and circulated through the cloud. This has implications for the generation of plasma instabilities, electron heating, and global MHD modeling of magnetosphere-ionosphere coupling via modifications of conductances induced by sporadic-E clouds.

  11. The interpretation of remotely sensed cloud properties from a model parameterization perspective

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The goals of ISCCP and FIRE are, broadly speaking, to provide methods for the retrieval of cloud properties from satellites, and to improve cloud radiation models and the parameterization of clouds in GCMs. This study suggests a direction for GCM cloud parameterizations based on analysis of Landsat and ISCCP satellite data. For low level single layer clouds it is found that the mean retrieved liquid water pathe in cloudy pixels is essentially invariant to the cloud fraction, at least in the range 0.2 - 0.8. This result is very important since it allows the cloud fraction to be estimated if the mean liquid water path of cloud in a general circulation model gridcell is known. 3 figs.

  12. Georeferenced Point Clouds: A Survey of Features and Point Cloud Management

    Directory of Open Access Journals (Sweden)

    Johannes Otepka

    2013-10-01

    Full Text Available This paper presents a survey of georeferenced point clouds. Concentration is, on the one hand, put on features, which originate in the measurement process themselves, and features derived by processing the point cloud. On the other hand, approaches for the processing of georeferenced point clouds are reviewed. This includes the data structures, but also spatial processing concepts. We suggest a categorization of features into levels that reflect the amount of processing. Point clouds are found across many disciplines, which is reflected in the versatility of the literature suggesting specific features.

  13. Experimental circulation loss study

    OpenAIRE

    Lund, Sigurd

    2013-01-01

    Circulation losses could occur during any operation that involves pumping into a well. As of today, it is recognized as one of the most costly drilling problems. In some situation it might be hard to stop, and usually takes precious rig time to deal with the problem. In order to mitigate the risk of circulation loss solid pa...

  14. Cloud computing strategies

    CERN Document Server

    Chorafas, Dimitris N

    2011-01-01

    A guide to managing cloud projects, Cloud Computing Strategies provides the understanding required to evaluate the technology and determine how it can be best applied to improve business and enhance your overall corporate strategy. Based on extensive research, it examines the opportunities and challenges that loom in the cloud. It explains exactly what cloud computing is, what it has to offer, and calls attention to the important issues management needs to consider before passing the point of no return regarding financial commitments.

  15. Cloud Computing: a Prologue

    OpenAIRE

    Ullah, Sultan; Xuefeng, Zheng

    2013-01-01

    An emerging internet based super computing model is represented by cloud computing. Cloud computing is the convergence and evolution of several concepts from virtualization, distributed storage, grid, and automation management to enable a more flexible approach for deploying and scaling applications. However, cloud computing moves the application software and databases to the large data centers, where the management of the data and services may not be fully trustworthy. The concept of cloud c...

  16. Governmental Cloud - Part of Cloud Computing

    Directory of Open Access Journals (Sweden)

    Cristian IVANUS

    2014-01-01

    Full Text Available Large IT (Information Technology companies propose cloud government's (G-Cloud development model through investment from the private sector, which will facilitate the access of users from public sector to the new generation IT services. Through the G-Cloud private operators that operate governmental cloud infrastructure by adding specific SaaS (Software as a Service functionalities, proposed model by big companies, supports public institutions in optimizing costs and increased operational efficiency, bringing tangible benefits in relation with citizens and thus with the whole society. These optimizations are achieved by moving the initial investment to the private sector, through type subscription model cost by eliminating dependency on human factors (technical and by providing a low cost [1]. This paper aims to bring to the attention of specialists, some aspects of Governmental Cloud from the European Union (EU countries to be understood and implemented in Romania.

  17. Cloud-radiation interactions and their parameterization in climate models

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    This report contains papers from the International Workshop on Cloud-Radiation Interactions and Their Parameterization in Climate Models met on 18--20 October 1993 in Camp Springs, Maryland, USA. It was organized by the Joint Working Group on Clouds and Radiation of the International Association of Meteorology and Atmospheric Sciences. Recommendations were grouped into three broad areas: (1) general circulation models (GCMs), (2) satellite studies, and (3) process studies. Each of the panels developed recommendations on the. themes of the workshop. Explicitly or implicitly, each panel independently recommended observations of basic cloud microphysical properties (water content, phase, size) on the scales resolved by GCMs. Such observations are necessary to validate cloud parameterizations in GCMs, to use satellite data to infer radiative forcing in the atmosphere and at the earth`s surface, and to refine the process models which are used to develop advanced cloud parameterizations.

  18. Boiler circulation calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

    1998-01-01

    Natural circulation water tube and fire tube boilers are widely used in the chemical process industry. These are preferred to forced-circulation boilers where a circulation pump ensures flow of a steam/water mixture through the tubes. In addition to being an operating expense, a pump failure can have serious consequences in such systems. The motive force driving the steam/water mixture through the tubes (water tube boilers) or over tubes (fire tube boilers) in natural-circulation systems is the difference in density between cooler water in the downcomer circuits and the steam/water mixture in the riser tubes. This flow must be adequate to cool the tubes and prevent overheating. This article explains how circulation ratio or the ratio of steam/water mixture to steam flow may be evaluated.

  19. Airborne Observations of Mixed Phase Clouds in the Southern Rockies

    Science.gov (United States)

    Dorsi, S. W.; Avallone, L. M.

    2011-12-01

    Conducted over mountainous regions of Northern Colorado and Southern Wyoming during the 2010-2011 winter, the Colorado Airborne Multi-Phase Cloud Study (CAMPS) was designed to investigate the complex processes within mid-latitude, orographic, mixed-phase clouds. Over the course of 29 flights, instruments aboard the Wyoming King Air research aircraft made observations of cloud properties within diverse wintertime clouds, including many orographic mixed phase clouds. The aircraft carried a suite of in-situ cloud probes, including PMS-FSSP optical particle counter, PMS-2DC and -2DP cloud particle and precipitation imagers, Gerber PVM-100 optical and DMT LWC-100 hotwire liquid content probes, and a Rosemont icing detector. In addition, the research aircraft carried the University of Colorado closed-path laser hygrometer (CLH), which measures total water concentration by sampling the outside airstream, vaporizing condensed water particles in the sample, and observing infrared absorption in water vapor spectrum. The combination of the total water measurement from the CLH and the condensed particle measurements from the optical and hotwire cloud probes provides an opportunity to estimate the relative concentrations of cloud particles by phase. Using this host of cloud probes and the total water measurement, we develop a method for retrieving in-situ cloud water phase and concentration. We present results of this retrieval for several regions of mixed phase cloud, and describe the observed structure and evolution of these clouds.

  20. On CLOUD nine

    CERN Multimedia

    2009-01-01

    The team from the CLOUD experiment - the world’s first experiment using a high-energy particle accelerator to study the climate - were on cloud nine after the arrival of their new three-metre diameter cloud chamber. This marks the end of three years’ R&D and design, and the start of preparations for data taking later this year.

  1. Cloud Computing Explained

    Science.gov (United States)

    Metz, Rosalyn

    2010-01-01

    While many talk about the cloud, few actually understand it. Three organizations' definitions come to the forefront when defining the cloud: Gartner, Forrester, and the National Institutes of Standards and Technology (NIST). Although both Gartner and Forrester provide definitions of cloud computing, the NIST definition is concise and uses…

  2. Greening the Cloud

    NARCIS (Netherlands)

    van den Hoed, Robert; Hoekstra, Eric; Procaccianti, G.; Lago, P.; Grosso, Paola; Taal, Arie; Grosskop, Kay; van Bergen, Esther

    The cloud has become an essential part of our daily lives. We use it to store our documents (Dropbox), to stream our music and lms (Spotify and Net ix) and without giving it any thought, we use it to work on documents in the cloud (Google Docs). The cloud forms a massive storage and processing

  3. Cloud MicroAtlas∗

    Indian Academy of Sciences (India)

    We begin by outlining the life cycle of a tall cloud, and then briefly discuss cloud systems. We choose one aspect of this life cycle, namely, the rapid growth of water droplets in ice- free clouds, to then discuss in greater detail. Taking a single vortex to be a building block of turbulence, we demonstrate one mechanism by ...

  4. Clearing clouds of uncertainty

    Science.gov (United States)

    Zelinka, Mark D.; Randall, David A.; Webb, Mark J.; Klein, Stephen A.

    2017-10-01

    Since 1990, the wide range in model-based estimates of equilibrium climate warming has been attributed to disparate cloud responses to warming. However, major progress in our ability to understand, observe, and simulate clouds has led to the conclusion that global cloud feedback is likely positive.

  5. Mars water-ice clouds and precipitation.

    Science.gov (United States)

    Whiteway, J A; Komguem, L; Dickinson, C; Cook, C; Illnicki, M; Seabrook, J; Popovici, V; Duck, T J; Davy, R; Taylor, P A; Pathak, J; Fisher, D; Carswell, A I; Daly, M; Hipkin, V; Zent, A P; Hecht, M H; Wood, S E; Tamppari, L K; Renno, N; Moores, J E; Lemmon, M T; Daerden, F; Smith, P H

    2009-07-03

    The light detection and ranging instrument on the Phoenix mission observed water-ice clouds in the atmosphere of Mars that were similar to cirrus clouds on Earth. Fall streaks in the cloud structure traced the precipitation of ice crystals toward the ground. Measurements of atmospheric dust indicated that the planetary boundary layer (PBL) on Mars was well mixed, up to heights of around 4 kilometers, by the summer daytime turbulence and convection. The water-ice clouds were detected at the top of the PBL and near the ground each night in late summer after the air temperature started decreasing. The interpretation is that water vapor mixed upward by daytime turbulence and convection forms ice crystal clouds at night that precipitate back toward the surface.

  6. Subvisible cirrus clouds - a dynamical system approach

    Science.gov (United States)

    Spreitzer, Elisa Johanna; Patrik Marschalik, Manuel; Spichtinger, Peter

    2017-06-01

    Ice clouds, so-called cirrus clouds, occur very frequently in the tropopause region. A special class are subvisible cirrus clouds with an optical depth lower than 0.03, associated with very low ice crystal number concentrations. The dominant pathway for the formation of these clouds is not known well. It is often assumed that heterogeneous nucleation on solid aerosol particles is the preferred mechanism although homogeneous freezing of aqueous solution droplets might be possible, since these clouds occur in the low-temperature regime T growth and sedimentation. We study the formation and evolution of subvisible cirrus clouds in the low-temperature regime as driven by slow vertical updraughts (0 qualitatively different states for the long-term behaviour of subvisible cirrus clouds. The first state is a stable focus; i.e. the solution of the differential equations performs damped oscillations and asymptotically reaches a constant value as an equilibrium state. The second state is a limit cycle in phase space; i.e. the solution asymptotically approaches a one-dimensional attractor with purely oscillatory behaviour. The transition between the states is characterised by a Hopf bifurcation and is determined by two parameters - vertical updraught velocity and temperature. In both cases, the properties of the simulated clouds agree reasonably well with simulations from a more detailed model, with former analytical studies, and with observations of subvisible cirrus, respectively. The reduced model can also provide qualitative interpretations of simulations with a complex and more detailed model at states close to bifurcation qualitatively. The results indicate that homogeneous nucleation is a possible formation pathway for subvisible cirrus clouds. The results motivate a minimal model for subvisible cirrus clouds (SVCs), which might be used in future work for the development of parameterisations for coarse large-scale models, representing structures of clouds.

  7. High-Velocity Clouds

    CERN Document Server

    Woerden, Hugo; Schwarz, Ulrich J; Boer, Klaas S

    2005-01-01

    This book contains 17 chapters reviewing our knowledge of the high-velocity clouds (HVCs) as of 2004, bringing this together in one place for the first time. Each of the many different aspects of HVC research is addressed by one of the experts in that subfield. These include a historical overview of HVC research and analyses of the structure and kinematics of HVCs. Separate chapters address the intermediate-velocity clouds, the Magellanic Stream, and neutral hydrogen HVCs discovered in external galaxies. Reviews are presented of the Ha emission and of optical and UV absorption-line studies, followed by discussions of the hot Galactic Halo and of the interactions between HVCs and their surroundings. Four chapters summarize the ideas about the origin of the high-velocity gas, with detailed discussions of connections between HVCs and the Galactic Fountain, tidally-stripped material, and remnants of the Milky Way's formation. A chapter outlining what we do not know completes the book. The book comes at a time whe...

  8. Final Technical Report for "High-resolution global modeling of the effects of subgrid-scale clouds and turbulence on precipitating cloud systems"

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Vincent [Univ. of Wisconsin, Milwaukee, WI (United States)

    2016-11-25

    The Multiscale Modeling Framework (MMF) embeds a cloud-resolving model in each grid column of a General Circulation Model (GCM). A MMF model does not need to use a deep convective parameterization, and thereby dispenses with the uncertainties in such parameterizations. However, MMF models grossly under-resolve shallow boundary-layer clouds, and hence those clouds may still benefit from parameterization. In this grant, we successfully created a climate model that embeds a cloud parameterization (“CLUBB”) within a MMF model. This involved interfacing CLUBB’s clouds with microphysics and reducing computational cost. We have evaluated the resulting simulated clouds and precipitation with satellite observations. The chief benefit of the project is to provide a MMF model that has an improved representation of clouds and that provides improved simulations of precipitation.

  9. Evolution in Cloud Population Statistics of the MJO: From AMIE Field Observations to Global-Cloud Permitting Models Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kollias, Pavlos [McGill Univ., Montreal, QC (Canada). Atmospheric and Oceanic Sciences Dept.

    2017-02-09

    This is a multi-institutional, collaborative project using a three-tier modeling approach to bridge field observations and global cloud-permitting models, with emphases on cloud population structural evolution through various large-scale environments. Our contribution was in data analysis for the generation of high value cloud and precipitation products and derive cloud statistics for model validation. There are two areas in data analysis that we contributed: the development of a synergistic cloud and precipitation cloud classification that identify different cloud (e.g. shallow cumulus, cirrus) and precipitation types (shallow, deep, convective, stratiform) using profiling ARM observations and the development of a quantitative precipitation rate retrieval algorithm using profiling ARM observations. Similar efforts have been developed in the past for precipitation (weather radars), but not for the millimeter-wavelength (cloud) radar deployed at the ARM sites.

  10. Cloud microphysics and surface properties in climate

    Energy Technology Data Exchange (ETDEWEB)

    Stamnes, K. [Univ. of Alaska, Fairbanks, AK (United States)

    1995-09-01

    Cloud optical thickness is determined from ground-based measurements of broadband incoming solar irradiance using a radiation model in which the cloud optical depth is adjusted until computed irradiance agrees with the measured value. From spectral measurements it would be feasible to determine both optical thickness and mean drop size, which apart from cloud structure and morphology, are the most important climatic parameters of clouds. A radiative convective model is used to study the sensitivity of climate to cloud liquid water amount and cloud drop size. This is illustrated in Figure 21.1 which shows that for medium thick clouds a 10 % increase in drop size yields a surface warming of 1.5{degrees}C, which is the same as that due to a doubling of carbon dioxide. For thick clouds, a 5% decrease in drop size is sufficient to offset the warming due to doubling of carbon dioxide. A radiative transfer model for the coupled atmosphere/sea ice/ocean system is used to study the partitioning of radiative energy between the three strata, and the potential for testing such a model in terms of planned experiments in the Arctic is discussed.

  11. Cloud Computing Quality

    Directory of Open Access Journals (Sweden)

    Anamaria Şiclovan

    2013-02-01

    Full Text Available Cloud computing was and it will be a new way of providing Internet services and computers. This calculation approach is based on many existing services, such as the Internet, grid computing, Web services. Cloud computing as a system aims to provide on demand services more acceptable as price and infrastructure. It is exactly the transition from computer to a service offered to the consumers as a product delivered online. This paper is meant to describe the quality of cloud computing services, analyzing the advantages and characteristics offered by it. It is a theoretical paper.Keywords: Cloud computing, QoS, quality of cloud computing

  12. CLOUD STORAGE SERVICES

    OpenAIRE

    YAN, CHENG

    2017-01-01

    Cloud computing is a hot topic in recent research and applications. Because it is widely used in various fields. Up to now, Google, Microsoft, IBM, Amazon and other famous co partnership have proposed their cloud computing application. Look upon cloud computing as one of the most important strategy in the future. Cloud storage is the lower layer of cloud computing system which supports the service of the other layers above it. At the same time, it is an effective way to store and manage heavy...

  13. Hall Effect Gyrators and Circulators

    Directory of Open Access Journals (Sweden)

    Giovanni Viola

    2014-05-01

    Full Text Available The electronic circulator and its close relative the gyrator are invaluable tools for noise management and signal routing in the current generation of low-temperature microwave systems for the implementation of new quantum technologies. The current implementation of these devices using the Faraday effect is satisfactory but requires a bulky structure whose physical dimension is close to the microwave wavelength employed. The Hall effect is an alternative nonreciprocal effect that can also be used to produce desired device functionality. We review earlier efforts to use an Ohmically contacted four-terminal Hall bar, explaining why this approach leads to unacceptably high device loss. We find that capacitive coupling to such a Hall conductor has much greater promise for achieving good circulator and gyrator functionality. We formulate a classical Ohm-Hall analysis for calculating the properties of such a device, and show how this classical theory simplifies remarkably in the limiting case of the Hall angle approaching 90°. In this limit, we find that either a four-terminal or a three-terminal capacitive device can give excellent circulator behavior, with device dimensions far smaller than the ac wavelength. An experiment is proposed to achieve GHz-band gyration in millimeter (and smaller scale structures employing either semiconductor heterostructure or graphene Hall conductors. An inductively coupled scheme for realizing a Hall gyrator is also analyzed.

  14. Aura MLS Cloud Measurements: First-Year Results

    Science.gov (United States)

    Jiang, Jonathan H.; Wu, Dong L.

    2005-01-01

    Aura MLS provides the first vertical upper tropospheric cloud profiling from space, enabling global survey of the vertical structure of cloud systems, with seasonal and geographical variations, needed to evaluate the way clouds are parameterized in global models, thereby contributing to the understanding of cloud-climate feedbacks, and improved weather and climate predictions. The vertical structure of cloud systems is fundamentally important for understanding how clouds affect both their regional and large-scale atmospheric and radiative environments. The regional cloud profiles provide a critical tests of important parameterizations that enable the calculation of radiative flux profiles and heating rates throughout the atmospheric column, which in turn also regulates the water and energy cycles in the upper troposphere

  15. The effects of aerosols on precipitation and dimensions of subtropical clouds: a sensitivity study using a numerical cloud model

    Directory of Open Access Journals (Sweden)

    A. Teller

    2006-01-01

    Full Text Available Numerical experiments were carried out using the Tel-Aviv University 2-D cloud model to investigate the effects of increased concentrations of Cloud Condensation Nuclei (CCN, giant CCN (GCCN and Ice Nuclei (IN on the development of precipitation and cloud structure in mixed-phase sub-tropical convective clouds. In order to differentiate between the contribution of the aerosols and the meteorology, all simulations were conducted with the same meteorological conditions. The results show that under the same meteorological conditions, polluted clouds (with high CCN concentrations produce less precipitation than clean clouds (with low CCN concentrations, the initiation of precipitation is delayed and the lifetimes of the clouds are longer. GCCN enhance the total precipitation on the ground in polluted clouds but they have no noticeable effect on cleaner clouds. The increased rainfall due to GCCN is mainly a result of the increased graupel mass in the cloud, but it only partially offsets the decrease in rainfall due to pollution (increased CCN. The addition of more effective IN, such as mineral dust particles, reduces the total amount of precipitation on the ground. This reduction is more pronounced in clean clouds than in polluted ones. Polluted clouds reach higher altitudes and are wider than clean clouds and both produce wider clouds (anvils when more IN are introduced. Since under the same vertical sounding the polluted clouds produce less rain, more water vapor is left aloft after the rain stops. In our simulations about 3.5 times more water evaporates after the rain stops from the polluted cloud as compared to the clean cloud. The implication is that much more water vapor is transported from lower levels to the mid troposphere under polluted conditions, something that should be considered in climate models.

  16. The Exoplanet Cloud Atlas

    Science.gov (United States)

    Gao, Peter; Marley, Mark S.; Morley, Caroline; Fortney, Jonathan J.

    2017-10-01

    Clouds have been readily inferred from observations of exoplanet atmospheres, and there exists great variability in cloudiness between planets, such that no clear trend in exoplanet cloudiness has so far been discerned. Equilibrium condensation calculations suggest a myriad of species - salts, sulfides, silicates, and metals - could condense in exoplanet atmospheres, but how they behave as clouds is uncertain. The behavior of clouds - their formation, evolution, and equilibrium size distribution - is controlled by cloud microphysics, which includes processes such as nucleation, condensation, and evaporation. In this work, we explore the cloudy exoplanet phase space by using a cloud microphysics model to simulate a suite of cloud species ranging from cooler condensates such as KCl/ZnS, to hotter condensates like perovskite and corundum. We investigate how the cloudiness and cloud particle sizes of exoplanets change due to variations in temperature, metallicity, gravity, and cloud formation mechanisms, and how these changes may be reflected in current and future observations. In particular, we will evaluate where in phase space could cloud spectral features be observable using JWST MIRI at long wavelengths, which will be dependent on the cloud particle size distribution and cloud species.

  17. CLOUD COMPUTING SECURITY

    Directory of Open Access Journals (Sweden)

    Ştefan IOVAN

    2016-05-01

    Full Text Available Cloud computing reprentes the software applications offered as a service online, but also the software and hardware components from the data center.In the case of wide offerd services for any type of client, we are dealing with a public cloud. In the other case, in wich a cloud is exclusively available for an organization and is not available to the open public, this is consider a private cloud [1]. There is also a third type, called hibrid in which case an user or an organization might use both services available in the public and private cloud. One of the main challenges of cloud computing are to build the trust and ofer information privacy in every aspect of service offerd by cloud computingle. The variety of existing standards, just like the lack of clarity in sustenability certificationis not a real help in building trust. Also appear some questions marks regarding the efficiency of traditionsecurity means that are applied in the cloud domain. Beside the economic and technology advantages offered by cloud, also are some advantages in security area if the information is migrated to cloud. Shared resources available in cloud includes the survey, use of the "best practices" and technology for advance security level, above all the solutions offered by the majority of medium and small businesses, big companies and even some guvermental organizations [2].

  18. Thermohaline structure and circulation in the upper layers of the southern Bay of Bengal during BOBMEX-Pilot (October-November 1998)

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Murty, V.S.N.; Rao, L.V.G.; Prabhu, C.V.; Tilvi, V.

    the Bay of Bengal. Keywords. Bay of Bengal; thermohaline circulation; Indian Monsoon Current; BOBMEX. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 109, No. 2, June 2000, pp. 255--265 #Printed in India 255 2. Data and methods The locations of hydrographic..., Charuta V Prabhu and Tilvi V, 2000 Proc. Indian Acad. Sci. (Earth Planet Sci.), (this issue) Murty V S N, Sarma Y V B, Rao D P and Murty C S 1992 J. Mar. Res. 50 207--228 Murty V S N, Suryanarayana A and Rao D P 1993 Indian J. Mar. Sci. 22 12--16 Murty V...

  19. submitter Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments

    CERN Document Server

    Nichman, Leonid; Järvinen, Emma; Ignatius, Karoliina; Höppel, Niko Florian; Dias, Antonio; Heinritzi, Martin; Simon, Mario; Tröstl, Jasmin; Wagner, Andrea Christine; Wagner, Robert; Williamson, Christina; Yan, Chao; Connolly, Paul James; Dorsey, James Robert; Duplissy, Jonathan; Ehrhart, Sebastian; Frege, Carla; Gordon, Hamish; Hoyle, Christopher Robert; Kristensen, Thomas Bjerring; Steiner, Gerhard; McPherson Donahue, Neil; Flagan, Richard; Gallagher, Martin William; Kirkby, Jasper; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Stratmann, Frank; Tomé, António

    2016-01-01

    Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather, and general circulation models. The detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud particle-size range below 50 μm, remains challenging in mixed phase, often unstable environments. The Cloud Aerosol Spectrometer with Polarization (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure the variability in polarization state of their backscattered light. Here we operate the versatile Cosmics Leaving OUtdoor Droplets (CLOUD) chamber facility at the European Organization for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water, and ice particles. In this paper, optical property measurements of mixed-phase clouds and viscous secondary ...

  20. Impacts of Different Aerosol Types on Convective Cloud as Observed by CALIPSO/CloudSat Satellites

    Science.gov (United States)

    Jiang, J. H.; Huang, L.; Su, H.

    2016-12-01

    A major uncertainty in the study of aerosol effects on climate is how different types of aerosol affect the properties of different types of clouds. This study takes full advantage of collocated measurements over the globe from CloudSat/CALIPSO and other A-Train satellites to characterize the influence of various aerosol types on convective clouds. The occurrence frequency of six different types of aerosol (i.e., clean marine, dust, polluted continental, clean continental, polluted dust, and smoke) in each target region, as well as their probability density function, vertical and seasonal variations are determined using CALIPSO observations. The effects of different aerosol types on cloud vertical structure, cloud water content and cloud particle effective radius are investigated using collocated CloudSat and CALIPSO profile data. The influence of meteorological conditions on clouds is distinguished from aerosol effects using multi-variable composite analysis. The results will improve our understanding of the aerosol-cloud-climate interactions and potentially help to reduce uncertainties in climate change predictions.

  1. Process-model simulations of cloud albedo enhancement by aerosols in the Arctic

    Science.gov (United States)

    Kravitz, Ben; Wang, Hailong; Rasch, Philip J.; Morrison, Hugh; Solomon, Amy B.

    2014-01-01

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus, the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol–cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation owing to precipitation changes are small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering is unlikely to be effective as the sole means of altering the global radiation budget but could have substantial local radiative effects. PMID:25404677

  2. Process-model simulations of cloud albedo enhancement by aerosols in the Arctic.

    Science.gov (United States)

    Kravitz, Ben; Wang, Hailong; Rasch, Philip J; Morrison, Hugh; Solomon, Amy B

    2014-12-28

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus, the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation owing to precipitation changes are small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering is unlikely to be effective as the sole means of altering the global radiation budget but could have substantial local radiative effects. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Cloud geographies : computing, data, sovereignty.

    OpenAIRE

    Amoore, L.

    2016-01-01

    The architecture of cloud computing is becoming ever more closely intertwined with geopolitics – from the sharing of intelligence data, to border controls, immigration decisions, and drone strikes. Developing an analogy with the cloud chamber of early twentieth century particle physics, this paper explores the geography of the cloud in cloud computing. It addresses the geographical character of cloud computing across two distinct paradigms. The first, ‘Cloud I’ or a geography of cloud forms, ...

  4. Occurrence of lower cloud albedo in ship tracks

    Directory of Open Access Journals (Sweden)

    Y.-C. Chen

    2012-09-01

    Full Text Available The concept of geoengineering by marine cloud brightening is based on seeding marine stratocumulus clouds with sub-micrometer sea-salt particles to enhance the cloud droplet number concentration and cloud albedo, thereby producing a climate cooling effect. The efficacy of this as a strategy for global cooling rests on the extent to which aerosol-perturbed marine clouds will respond with increased albedo. Ship tracks, quasi-linear cloud features prevalent in oceanic regions impacted by ship exhaust, are a well-known manifestation of the effect of aerosol injection on marine clouds. We present here an analysis of the albedo responses in ship tracks, based on in situ aircraft measurements and three years of satellite observations of 589 individual ship tracks. It is found that the sign (increase or decrease and magnitude of the albedo response in ship tracks depends on the mesoscale cloud structure, the free tropospheric humidity, and cloud top height. In a closed cell structure (cloud cells ringed by a perimeter of clear air, nearly 30% of ship tracks exhibited a decreased albedo. Detailed cloud responses must be accounted for in global studies of the potential efficacy of sea-spray geoengineering as a means to counteract global warming.

  5. Deploying an Application on the Cloud

    OpenAIRE

    Dr .P.V.S Srinivas; N. Ram Ganga Charan; S. Tirupati Rao

    2011-01-01

    Cloud Computing, the impending need of computing as an optimal utility, has the potential to take a gigantic leap in the IT industry, is structured and put to optimal use with regard to the contemporary trends. Developers with innovative ideas need not be apprehensive about non utility of costly resources for the service which does not cater to the need and anticipations. Cloud Computing is like a panacea to overcome the hurdles. It promises to increase the velocity with which the application...

  6. Cloud Robotics Model

    Directory of Open Access Journals (Sweden)

    Gyula Mester

    2015-01-01

    Full Text Available Cloud Robotics was born from the merger of service robotics and cloud technologies. It allows robots to benefit from the powerful computational, storage, and communications resources of modern data centres. Cloud robotics allows robots to take advantage of the rapid increase in data transfer rates to offload tasks without hard real time requirements. Cloud Robotics has rapidly gained momentum with initiatives by companies such as Google, Willow Garage and Gostai as well as more than a dozen active research projects around the world. The presentation summarizes the main idea, the definition, the cloud model composed of essential characteristics, service models and deployment models, planning task execution and beyond. Finally some cloud robotics projects are discussed.

  7. Encyclopedia of cloud computing

    CERN Document Server

    Bojanova, Irena

    2016-01-01

    The Encyclopedia of Cloud Computing provides IT professionals, educators, researchers and students with a compendium of cloud computing knowledge. Authored by a spectrum of subject matter experts in industry and academia, this unique publication, in a single volume, covers a wide range of cloud computing topics, including technological trends and developments, research opportunities, best practices, standards, and cloud adoption. Providing multiple perspectives, it also addresses questions that stakeholders might have in the context of development, operation, management, and use of clouds. Furthermore, it examines cloud computing's impact now and in the future. The encyclopedia presents 56 chapters logically organized into 10 sections. Each chapter covers a major topic/area with cross-references to other chapters and contains tables, illustrations, side-bars as appropriate. Furthermore, each chapter presents its summary at the beginning and backend material, references and additional resources for further i...

  8. Study of Aerosol/Cloud/Radiation Interactions over the ARM SGP Site

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, C; Chin, S

    2006-03-14

    While considerable advances in the understanding of atmospheric processes and feedbacks in the climate system have led to a better representation of these mechanisms in general circulation models (GCMs), the greatest uncertainty in predictability of future climate arises from clouds and their interactions with radiation. To explore this uncertainty, cloud resolving model has been evolved as one of the main tools for understanding and testing cloud feedback processes in climate models, whereas the indirect effects of aerosols are closely linked with cloud feedback processes. In this study we incorporated an existing parameterization of cloud drop concentration (Chuang et al., 2002a) together with aerosol prediction from a global chemistry/aerosol model (IMPACT) (Rotman et al., 2004; Chuang et al., 2002b; Chuang et al., 2005) into LLNL cloud resolving model (Chin, 1994; Chin et al., 1995; Chin and Wilhelmson, 1998) to investigate the effects of aerosols on cloud/precipitation properties and the resulting radiation fields over the Southern Great Plains.

  9. Black carbon semi-direct effects on cloud cover: review and synthesis

    Directory of Open Access Journals (Sweden)

    D. Koch

    2010-08-01

    Full Text Available Absorbing aerosols (AAs such as black carbon (BC or dust absorb incoming solar radiation, perturb the temperature structure of the atmosphere, and influence cloud cover. Previous studies have described conditions under which AAs either increase or decrease cloud cover. The effect depends on several factors, including the altitude of the AA relative to the cloud and the cloud type. We attempt to categorize the effects into several likely regimes. Cloud cover is decreased if the AAs are embedded in the cloud layer. AAs below cloud may enhance convection and cloud cover. AAs above cloud top stabilize the underlying layer and tend to enhance stratocumulus clouds but may reduce cumulus clouds. AAs can also promote cloud cover in convergent regions as they enhance deep convection and low level convergence as it draws in moisture from ocean to land regions. Most global model studies indicate a regional variation in the cloud response but generally increased cloud cover over oceans and some land regions, with net increased low-level and/or reduced upper level cloud cover. The result is a net negative semi-direct effect feedback from the cloud response to AAs. In some of these climate model studies, the cooling effect of BC due to cloud changes is strong enough to essentially cancel the warming direct effects.

  10. THE MAGELLANIC MOPRA ASSESSMENT (MAGMA). I. THE MOLECULAR CLOUD POPULATION OF THE LARGE MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Tony; Chu, You-Hua; Gruendl, Robert A.; Looney, Leslie W.; Seale, Jonathan; Welty, Daniel E. [Astronomy Department, University of Illinois, Urbana, IL 61801 (United States); Hughes, Annie; Maddison, Sarah [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122 (Australia); Ott, Juergen [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Muller, Erik; Fukui, Yasuo; Kawamura, Akiko; Mizuno, Yoji [Department of Astrophysics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Pineda, Jorge L. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States); Bernard, Jean-Philippe; Paradis, Deborah [CNRS, IRAP, 9 Av. Colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France); Henkel, Christian [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Klein, Ulrich, E-mail: wongt@astro.illinois.edu [Argelander Institut fuer Astronomie, Universitaet Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany)

    2011-12-01

    We present the properties of an extensive sample of molecular clouds in the Large Magellanic Cloud (LMC) mapped at 11 pc resolution in the CO(1-0) line. Targets were chosen based on a limiting CO flux and peak brightness as measured by the NANTEN survey. The observations were conducted with the ATNF Mopra Telescope as part of the Magellanic Mopra Assessment. We identify clouds as regions of connected CO emission and find that the distributions of cloud sizes, fluxes, and masses are sensitive to the choice of decomposition parameters. In all cases, however, the luminosity function of CO clouds is steeper than dN/dL{proportional_to}L{sup -2}, suggesting that a substantial fraction of mass is in low-mass clouds. A correlation between size and linewidth, while apparent for the largest emission structures, breaks down when those structures are decomposed into smaller structures. We argue that the correlation between virial mass and CO luminosity is the result of comparing two covariant quantities, with the correlation appearing tighter on larger scales where a size-linewidth relation holds. The virial parameter (the ratio of a cloud's kinetic to self-gravitational energy) shows a wide range of values and exhibits no clear trends with the CO luminosity or the likelihood of hosting young stellar object (YSO) candidates, casting further doubt on the assumption of virialization for molecular clouds in the LMC. Higher CO luminosity increases the likelihood of a cloud harboring a YSO candidate, and more luminous YSOs are more likely to be coincident with detectable CO emission, confirming the close link between giant molecular clouds and massive star formation.

  11. NAO-ocean circulation interactions in a coupled general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, A. [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Gualdi, S.; Navarra, A. [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Scoccimarro, E. [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2008-12-15

    The interplay between the North Atlantic Oscillation (NAO) and the large scale ocean circulation is inspected in a twentieth century simulation conducted with a state-of-the-art coupled general circulation model. Significant lead-lag covariance between oceanic and tropospheric variables suggests that the system supports a damped oscillatory mode involving an active ocean-atmosphere coupling, with a typical NAO-like space structure and a 5 years timescale, qualitatively consistent with a mid-latitude delayed oscillator paradigm. The two essential processes governing the oscillation are (1) a negative feedback between ocean gyre circulation and the high latitude SST meridional gradient and (2) a positive feedback between SST and the NAO. The atmospheric NAO pattern appears to have a weaker projection on the ocean meridional overturning, compared to the gyre circulation, which leads to a secondary role for the thermohaline circulation in driving the meridional heat transport, and thus the oscillatory mode. (orig.)

  12. Considerations for Cloud Security Operations

    OpenAIRE

    Cusick, James

    2016-01-01

    Information Security in Cloud Computing environments is explored. Cloud Computing is presented, security needs are discussed, and mitigation approaches are listed. Topics covered include Information Security, Cloud Computing, Private Cloud, Public Cloud, SaaS, PaaS, IaaS, ISO 27001, OWASP, Secure SDLC.

  13. CLOUD Experiment - How it works -

    CERN Multimedia

    Jasper Kirkby

    2016-01-01

    A brief tour of the CLOUD experiment at CERN, and its scientific aims. CLOUD uses a special cloud chamber to study the possible link between galactic cosmic rays and cloud formation. The results should contribute much to our fundamental understanding of aerosols and clouds, and their affect on climate.

  14. Bi-directional reflectance of finite and infinite clouds

    Science.gov (United States)

    Breon, Francois-Marie; Gautier, Catherine

    1991-01-01

    The transfer of solar irradiance in plane parallel and broken cloud fields is modeled using a Monte Carlo method. The angular distribution pattern of radiances exiting the cloud layer is studied with varying cloud geometries, optical thicknesses, cloudiness and solar zenith angles. A rather large anisotropy of the reflected flux is found, usually increasing with solar zenith angle and with patterns that strongly depend on cloud geometry. The main features are: a local maximum of reflected intensity in the forward direction for all cases; a limb darkening for the plane parallel case; and a limb brightening and a local maximum of reflected intensity in the backward direction for broken clouds. The method is used to study the cloud reflectance sensitivity to various parameters. A more precise description of cloud field internal and external structure is needed in order to obtain accurate bi directional reflectance diagrams.

  15. Marine cloud brightening - as effective without clouds

    Science.gov (United States)

    Ahlm, Lars; Jones, Andy; Stjern, Camilla W.; Muri, Helene; Kravitz, Ben; Egill Kristjánsson, Jón

    2017-11-01

    Marine cloud brightening through sea spray injection has been proposed as a climate engineering method for avoiding the most severe consequences of global warming. A limitation of most of the previous modelling studies on marine cloud brightening is that they have either considered individual models or only investigated the effects of a specific increase in the number of cloud droplets. Here we present results from coordinated simulations with three Earth system models (ESMs) participating in the Geoengineering Model Intercomparison Project (GeoMIP) G4sea-salt experiment. Injection rates of accumulation-mode sea spray aerosol particles over ocean between 30° N and 30° S are set in each model to generate a global-mean effective radiative forcing (ERF) of -2.0 W m-2 at the top of the atmosphere. We find that the injection increases the cloud droplet number concentration in lower layers, reduces the cloud-top effective droplet radius, and increases the cloud optical depth over the injection area. We also find, however, that the global-mean clear-sky ERF by the injected particles is as large as the corresponding total ERF in all three ESMs, indicating a large potential of the aerosol direct effect in regions of low cloudiness. The largest enhancement in ERF due to the presence of clouds occur as expected in the subtropical stratocumulus regions off the west coasts of the American and African continents. However, outside these regions, the ERF is in general equally large in cloudy and clear-sky conditions. These findings suggest a more important role of the aerosol direct effect in sea spray climate engineering than previously thought.

  16. Population structure and circulating genotypes of drug-sensitive and drug-resistant Mycobacterium tuberculosis clinical isolates in São Paulo state, Brazil

    Science.gov (United States)

    Martins, Maria Conceição; Saraiva Giampaglia, Carmen M.; Oliveira, Rosângela S.; Simonsen, Vera; Latrilha, Fábio Oliveira; Moniz, Letícia Lisboa; Couvin, David; Rastogi, Nalin; Ferrazoli, Lucilaine

    2013-01-01

    São Paulo is the most populous Brazilian state and reports the largest number of tuberculosis cases in the country annually (over 18,500). This study included 193 isolates obtained during the 2nd Nationwide Survey on Mycobacterium tuberculosis Drug Resistance that was conducted in São Paulo state and 547 isolates from a laboratory based study of drug resistance that were analyzed by the Mycobacteria Reference Laboratory at the Institute Adolfo Lutz. Both studies were conducted from 2006 to 2008 and sought to determine the genetic diversity and pattern of drug resistance of M. tuberculosis isolates (MTC) circulating in São Paulo. The patterns obtained from the spoligotyping analysis demonstrated that 51/740 (6.9%) of the isolates corresponded to orphan patterns and that 689 (93.1%) of the isolates distributed into 144 shared types, including 119 that matched a preexisting shared type in the SITVIT2 database and 25 that were new isolates. A total of 77/144 patterns corresponded to unique isolates, while the remaining 67 corresponded to clustered patterns (n = 612 isolates clustered into groups of 2–84 isolates each). The evolutionarily ancient PGG1 lineages (Beijing, CAS1-DEL, EAI3-IND, and PINI2) were rarely detected in São Paulo and comprised only 13/740, or 1.76%, of the total isolates; all of the remaining 727/740, or 98.24%, of the MTC isolates from São Paulo state were from the recent PGG2/3 evolutionary isolates belonging to the LAM, T, S, X, and Haarlem lineages, i.e., the Euro-American group. This study provides the first overview of circulating genotypes of M. tuberculosis in São Paulo state and demonstrates that the clustered shared types containing seven or more M. tuberculosis isolates that are spread in São Paulo state included both resistant and susceptible isolates. PMID:23201043

  17. Cloud Computing: An Overview

    Science.gov (United States)

    Qian, Ling; Luo, Zhiguo; Du, Yujian; Guo, Leitao

    In order to support the maximum number of user and elastic service with the minimum resource, the Internet service provider invented the cloud computing. within a few years, emerging cloud computing has became the hottest technology. From the publication of core papers by Google since 2003 to the commercialization of Amazon EC2 in 2006, and to the service offering of AT&T Synaptic Hosting, the cloud computing has been evolved from internal IT system to public service, from cost-saving tools to revenue generator, and from ISP to telecom. This paper introduces the concept, history, pros and cons of cloud computing as well as the value chain and standardization effort.

  18. CLOUD TECHNOLOGY IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Alexander N. Dukkardt

    2014-01-01

    Full Text Available This article is devoted to the review of main features of cloud computing that can be used in education. Particular attention is paid to those learning and supportive tasks, that can be greatly improved in the case of the using of cloud services. Several ways to implement this approach are proposed, based on widely accepted models of providing cloud services. Nevertheless, the authors have not ignored currently existing problems of cloud technologies , identifying the most dangerous risks and their impact on the core business processes of the university. 

  19. JINR cloud infrastructure evolution

    Science.gov (United States)

    Baranov, A. V.; Balashov, N. A.; Kutovskiy, N. A.; Semenov, R. N.

    2016-09-01

    To fulfil JINR commitments in different national and international projects related to the use of modern information technologies such as cloud and grid computing as well as to provide a modern tool for JINR users for their scientific research a cloud infrastructure was deployed at Laboratory of Information Technologies of Joint Institute for Nuclear Research. OpenNebula software was chosen as a cloud platform. Initially it was set up in simple configuration with single front-end host and a few cloud nodes. Some custom development was done to tune JINR cloud installation to fit local needs: web form in the cloud web-interface for resources request, a menu item with cloud utilization statistics, user authentication via Kerberos, custom driver for OpenVZ containers. Because of high demand in that cloud service and its resources over-utilization it was re-designed to cover increasing users' needs in capacity, availability and reliability. Recently a new cloud instance has been deployed in high-availability configuration with distributed network file system and additional computing power.

  20. Geodesics on Point Clouds

    Directory of Open Access Journals (Sweden)

    Hongchuan Yu

    2014-01-01

    Full Text Available We present a novel framework to compute geodesics on implicit surfaces and point clouds. Our framework consists of three parts, particle based approximate geodesics on implicit surfaces, Cartesian grid based approximate geodesics on point clouds, and geodesic correction. The first two parts can effectively generate approximate geodesics on implicit surfaces and point clouds, respectively. By introducing the geodesic curvature flow, the third part produces smooth and accurate geodesic solutions. Differing from most of the existing methods, our algorithms can converge to a given tolerance. The presented computational framework is suitable for arbitrary implicit hypersurfaces or point clouds with high genus or high curvature.

  1. Vertical overlap of probability density functions of cloud and precipitation hydrometeors: CLOUD AND PRECIPITATION PDF OVERLAP

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikov, Mikhail [Pacific Northwest National Laboratory, Richland Washington USA; Lim, Kyo-Sun Sunny [Pacific Northwest National Laboratory, Richland Washington USA; Korea Atomic Energy Research Institute, Daejeon Republic of Korea; Larson, Vincent E. [Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee Wisconsin USA; Wong, May [Pacific Northwest National Laboratory, Richland Washington USA; National Center for Atmospheric Research, Boulder Colorado USA; Thayer-Calder, Katherine [National Center for Atmospheric Research, Boulder Colorado USA; Ghan, Steven J. [Pacific Northwest National Laboratory, Richland Washington USA

    2016-11-05

    Coarse-resolution climate models increasingly rely on probability density functions (PDFs) to represent subgrid-scale variability of prognostic variables. While PDFs characterize the horizontal variability, a separate treatment is needed to account for the vertical structure of clouds and precipitation. When sub-columns are drawn from these PDFs for microphysics or radiation parameterizations, appropriate vertical correlations must be enforced via PDF overlap specifications. This study evaluates the representation of PDF overlap in the Subgrid Importance Latin Hypercube Sampler (SILHS) employed in the assumed PDF turbulence and cloud scheme called the Cloud Layers Unified By Binormals (CLUBB). PDF overlap in CLUBB-SILHS simulations of continental and tropical oceanic deep convection is compared with overlap of PDF of various microphysics variables in cloud-resolving model (CRM) simulations of the same cases that explicitly predict the 3D structure of cloud and precipitation fields. CRM results show that PDF overlap varies significantly between different hydrometeor types, as well as between PDFs of mass and number mixing ratios for each species, - a distinction that the current SILHS implementation does not make. In CRM simulations that explicitly resolve cloud and precipitation structures, faster falling species, such as rain and graupel, exhibit significantly higher coherence in their vertical distributions than slow falling cloud liquid and ice. These results suggest that to improve the overlap treatment in the sub-column generator, the PDF correlations need to depend on hydrometeor properties, such as fall speeds, in addition to the currently implemented dependency on the turbulent convective length scale.

  2. Mars topographic clouds: MAVEN/IUVS observations and LMD MGCM predictions

    Science.gov (United States)

    Schneider, Nicholas M.; Connour, Kyle; Forget, Francois; Deighan, Justin; Jain, Sonal; Vals, Margaux; Wolff, Michael J.; Chaffin, Michael S.; Crismani, Matteo; Stewart, A. Ian F.; McClintock, William E.; Holsclaw, Greg; Lefevre, Franck; Montmessin, Franck; Stiepen, Arnaud; Stevens, Michael H.; Evans, J. Scott; Yelle, Roger; Lo, Daniel; Clarke, John T.; Jakosky, Bruce

    2017-10-01

    The Imaging Ultraviolet Spectrograph (IUVS) instrument on the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft takes mid-UV spectral images of the Martian atmosphere. From these apoapse disk images, information about clouds and aerosols can be retrieved and comprise the only MAVEN observations of topographic clouds and cloud morphologies. Measuring local time variability of large-scale recurring cloud features is made possible with MAVEN’s ~4.5-hour elliptical orbit, something not possible with sun-synchronous orbits. We have run the LMD MGCM (Mars global circulation model) at 1° x 1° resolution to simulate water ice cloud formation with inputs consistent with observing parameters and Mars seasons. Topographic clouds are observed to form daily during the late mornings of northern hemisphere spring and this phenomenon recurs until late summer (Ls = 160°), after which topographic clouds wane in thickness. By northern fall, most topographic clouds cease to form except over Arsia Mons and Pavonis Mons, where clouds can still be observed. Our data show moderate cloud formation over these regions as late as Ls = 220°, something difficult for the model to replicate. Previous studies have shown that models have trouble simulating equatorial cloud thickness in combination with a realistic amount of water vapor and not-too-thick polar water ice clouds, implying aspects of the water cycle are not fully understood. We present data/model comparisons as well as further refinements on parameter inputs based on IUVS observations.

  3. Personality structure in the domestic cat (Felis silvestris catus), Scottish wildcat (Felis silvestris grampia), clouded leopard (Neofelis nebulosa), snow leopard (Panthera uncia), and African lion (Panthera leo): a comparative study.

    Science.gov (United States)

    Gartner, Marieke Cassia; Powell, David M; Weiss, Alexander

    2014-11-01

    Although the study of nonhuman personality has increased in the last decade, there are still few studies on felid species, and the majority focus on domestic cats. We assessed the structure of personality and its reliability in five felids-domestic cats, clouded leopards, snow leopards, African lions, and previous data on Scottish wildcats-and compared the results. In addition to the benefits of understanding more about this taxon, comparative studies of personality structure have the potential to provide information on evolutionary relationships among closely related species. Each of the species studied was found to have three factors of personality. Scottish wildcats' factors were labeled Dominance, Agreeableness, and Self Control; domestic cats' factors were Dominance, Impulsiveness, and Neuroticism; clouded leopards' factors were Dominance/Impulsiveness, Agreeableness/Openness, and Neuroticism; snow leopards' factors were Dominance, Impulsiveness/Openness, and Neuroticism; and African lions' factors were Dominance, Impulsiveness, and Neuroticism. The Neuroticism and Impulsiveness factors were similar, as were two of the Dominance factors. A taxon-level personality structure also showed three similar factors. Age and sex effects are also discussed. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  4. Remote sensing of cloud sides of deep convection: towards a three-dimensional retrieval of cloud particle size profiles

    Directory of Open Access Journals (Sweden)

    T. Zinner

    2008-08-01

    Full Text Available The cloud scanner sensor is a central part of a recently proposed satellite remote sensing concept – the three-dimensional (3-D cloud and aerosol interaction mission (CLAIM-3D combining measurements of aerosol characteristics in the vicinity of clouds and profiles of cloud microphysical characteristics. Such a set of collocated measurements will allow new insights in the complex field of cloud-aerosol interactions affecting directly the development of clouds and precipitation, especially in convection. The cloud scanner measures radiance reflected or emitted by cloud sides at several wavelengths to derive a profile of cloud particle size and thermodynamic phase. For the retrieval of effective size a Bayesian approach was adopted and introduced in a preceding paper.

    In this paper the potential of the approach, which has to account for the complex three-dimensional nature of cloud geometry and radiative transfer, is tested in realistic cloud observing situations. In a fully simulated environment realistic cloud resolving modelling provides complex 3-D structures of ice, water, and mixed phase clouds, from the early stage of convective development to mature deep convection. A three-dimensional Monte Carlo radiative transfer is used to realistically simulate the aspired observations.

    A large number of cloud data sets and related simulated observations provide the database for an experimental Bayesian retrieval. An independent simulation of an additional cloud field serves as a synthetic test bed for the demonstration of the capabilities of the developed retrieval techniques. For this test case only a minimal overall bias in the order of 1% as well as pixel-based uncertainties in the order of 1 μm for droplets and 8 μm for ice particles were found for measurements at a high spatial resolution of 250 m.

  5. VMware vCloud security

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    VMware vCloud Security provides the reader with in depth knowledge and practical exercises sufficient to implement a secured private cloud using VMware vCloud Director and vCloud Networking and Security.This book is primarily for technical professionals with system administration and security administration skills with significant VMware vCloud experience who want to learn about advanced concepts of vCloud security and compliance.

  6. A comparison of climate feedbacks in general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Colman, R. [Bureau of Meteorology Research Centre, GPO Box 1289K Melbourne 3001 (Australia)

    2003-05-01

    Heading Abstract. A comparison is performed for water vapour, cloud, albedo and lapse rate feedbacks taken from published results of 'offline' feedback calculations for general circulation models (GCMs) with mixed layer oceans performing 2 x CO{sub 2} and solar perturbation experiments. All feedbacks show substantial inter-model spread. The impact of uncertainties in feedbacks on climate sensitivity is discussed. A negative correlation is found between water vapour and lapse rate feedbacks, and also between longwave and shortwave components of the cloud feedback. The mean values of the feedbacks are compared with results derived from model intercomparisons which evaluated cloud forcing derived feedbacks under idealized climate forcing. Results are found to be comparable between the two approaches, after allowing for differences in experimental technique and diagnostic method. Recommendations are made for the future reporting of climate feedbacks. (orig.)

  7. CLOUD SERVICES IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Z.S. Seydametova

    2011-05-01

    Full Text Available We present the on-line services based on cloud computing, provided by Google to educational institutions. We describe the own experience of the implementing the Google Apps Education Edition in the educational process. We analyzed and compared the other universities experience of using cloud technologies.

  8. Greening the cloud

    NARCIS (Netherlands)

    van den Hoed, Robert; Hoekstra, Eric; Procaccianti, Giuseppe; Lago, Patricia; Grosso, Paolo; Taal, Arie; Grosskop, Kay; van Bergen, Esther

    The cloud has become an essential part of our daily lives. We use it to store our documents (Dropbox), to stream our music and films (Spotify and Netflix) and without giving it any thought, we use it to work on documents in the cloud (Google Docs).

  9. Cloud Particles Evolution Algorithm

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-01-01

    Full Text Available Many evolutionary algorithms have been paid attention to by the researchers and have been applied to solve optimization problems. This paper presents a new optimization method called cloud particles evolution algorithm (CPEA to solve optimization problems based on cloud formation process and phase transformation of natural substance. The cloud is assumed to have three states in the proposed algorithm. Gaseous state represents the global exploration. Liquid state represents the intermediate process from the global exploration to the local exploitation. Solid state represents the local exploitation. The cloud is composed of descript and independent particles in this algorithm. The cloud particles use phase transformation of three states to realize the global exploration and the local exploitation in the optimization process. Moreover, the cloud particles not only realize the survival of the fittest through competition mechanism but also ensure the diversity of the cloud particles by reciprocity mechanism. The effectiveness of the algorithm is validated upon different benchmark problems. The proposed algorithm is compared with a number of other well-known optimization algorithms, and the experimental results show that cloud particles evolution algorithm has a higher efficiency than some other algorithms.

  10. Weather Fundamentals: Clouds. [Videotape].

    Science.gov (United States)

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) discusses how clouds form, the different types of clouds, and the important role they play in…

  11. Cloud security in vogelvlucht

    NARCIS (Netherlands)

    Pieters, Wolter

    2011-01-01

    Cloud computing is dé hype in IT op het moment, en hoewel veel aspecten niet nieuw zijn, leidt het concept wel tot de noodzaak voor nieuwe vormen van beveiliging. Het idee van cloud computing biedt echter ook juist kansen om hierover na te denken: wat is de rol van informatiebeveiliging in een

  12. Cloud computing basics

    CERN Document Server

    Srinivasan, S

    2014-01-01

    Cloud Computing Basics covers the main aspects of this fast moving technology so that both practitioners and students will be able to understand cloud computing. The author highlights the key aspects of this technology that a potential user might want to investigate before deciding to adopt this service. This book explains how cloud services can be used to augment existing services such as storage, backup and recovery. Addressing the details on how cloud security works and what the users must be prepared for when they move their data to the cloud. Also this book discusses how businesses could prepare for compliance with the laws as well as industry standards such as the Payment Card Industry.

  13. Solar variability and clouds

    CERN Document Server

    Kirkby, Jasper

    2000-01-01

    Satellite observations have revealed a surprising imprint of the 11- year solar cycle on global low cloud cover. The cloud data suggest a correlation with the intensity of Galactic cosmic rays. If this apparent connection between cosmic rays and clouds is real, variations of the cosmic ray flux caused by long-term changes in the solar wind could have a significant influence on the global energy radiation budget and the climate. However a direct link between cosmic rays and clouds has not been unambiguously established and, moreover, the microphysical mechanism is poorly understood. New experiments are being planned to find out whether cosmic rays can affect cloud formation, and if so how. (37 refs).

  14. GRIP CLOUD MICROPHYSICS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Cloud Microphysics dataset was collected during the GRIP campaign from three probes: the Cloud, Aerosol, and Precipitation Spectrometer (CAPS), the...

  15. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2011-07-01

    Full Text Available This paper focuses on three interconnected topics: (1 quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2 surface-based approach for measuring cloud albedo; (3 multiscale (diurnal, annual and inter-annual variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fraction, and cloud albedo. The analytical expression is then used to deduce a new approach for inferring cloud albedo from concurrent surface-based measurements of downwelling surface shortwave radiation and cloud fraction. High-resolution decade-long data on cloud albedos are obtained by use of this surface-based approach over the US Department of Energy's Atmospheric Radiaton Measurement (ARM Program at the Great Southern Plains (SGP site. The surface-based cloud albedos are further compared against those derived from the coincident GOES satellite measurements. The three long-term (1997–2009 sets of hourly data on shortwave cloud radiative forcing, cloud fraction and cloud albedo collected over the SGP site are analyzed to explore the multiscale (diurnal, annual and inter-annual variations and covariations. The analytical formulation is useful for diagnosing deficiencies of cloud-radiation parameterizations in climate models.

  16. Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition

    NARCIS (Netherlands)

    Schmale, J.; Henning, S.; Henzing, B.; Keskinen, H.; Sellegri, K.; Ovadnevaite, J.; Bougiatioti, A.; Kalivitis, N.; Stavroulas, I.; Jefferson, A.; Park, M.; Schlag, P.; Kristensson, A.; Iwamoto, Y.; Pringle, K.; Reddington, C.; Aalto, P.; Äijälä, M.; Baltensperger, U.; Bialek, J.; Birmili, W.; Bukowiecki, N.; Ehn, M.; Fjæraa, A.M.; Fiebig, M.; Frank, G.; Fröhlich, R.; Frumau, A.; Furuya, M.; Hammer, E.; Heikkinen, L.; Herrmann, E.; Holzinger, R.; Hyono, H.; Kanakidou, M.; Kiendler-Scharr, A.; Kinouchi, K.; Kos, G.; Kulmala, M.; Mihalopoulos, N.; Motos, G.; Nenes, A.; O'Dowd, C.; Paramonov, M.; Petäjä, T.; Picard, D.; Poulain, L.; Prévôt, A.S.H.; Slowik, J.; Sonntag, A.; Swietlicki, E.; Svenningsson, B.; Tsurumaru, H.; Wiedensohler, A.; Wittbom, C.; Ogren, J.A.; Matsuki, A.; Yum, S.S.; Myhre, C.L.; Carslaw, K.; Stratmann, F.; Gysel, M.

    2017-01-01

    Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other

  17. Aerosol/Cloud Measurements Using Coherent Wind Doppler Lidars

    Directory of Open Access Journals (Sweden)

    Royer Philippe

    2016-01-01

    LEOSPHERE has recently developed aerosol/cloud detection and characterization on WINDCUBE long range Coherent Wind Doppler Lidars (CWDL. These new features combine wind and backscatter intensity informations (Carrier-to-Noise Ratio CNR in order to detect (aerosol/cloud base and top, PBL height and to characterize atmospheric structures (attenuated backscatter, depolarization ratio. For each aerosol/cloud functionality the method is described, limitations are discussed and examples are given to illustrate the performances.

  18. Fast cloud parameter retrievals of MIPAS/Envisat

    Directory of Open Access Journals (Sweden)

    R. Spang

    2012-08-01

    and tropospheric clouds similar to that of space- and ground-based lidars, with a tendency for higher cloud top heights and consequently higher sensitivity for some of the MIPAS detection methods. For the high cloud amount (HCA, pressure levels below 440 hPa on global scales the sensitivity of MIPAS is significantly greater than that of passive nadir viewers. This means that the high cloud fraction will be underestimated in the ISCCP dataset compared to the amount of high clouds deduced by MIPAS. Good correspondence in seasonal variability and geographical distribution of cloud occurrence and zonal means of cloud top height is found in a detailed comparison with a climatology for subvisible cirrus clouds from the Stratospheric Aerosol and Gas Experiment II (SAGE II limb sounder. Overall, validation with various sensors shows the need to consider differences in sensitivity, and especially the viewing geometries and field-of-view size, to make the datasets comparable (e.g. applying integration along the limb path through nadir cloud fields. The simulation of the limb path integration will be an important issue for comparisons with cloud-resolving global circulation or chemical transport models.

  19. Experimental circulation loss study

    OpenAIRE

    Lund, Sigurd

    2013-01-01

    Master's thesis in Petroleum engineering Circulation losses could occur during any operation that involves pumping into a well. As of today, it is recognized as one of the most costly drilling problems. In some situation it might be hard to stop, and usually takes precious rig time to deal with the problem. In order to mitigate the risk...

  20. Arctic circulation regimes.

    Science.gov (United States)

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. © 2015 The Authors.

  1. Fontan Circulation over Time

    NARCIS (Netherlands)

    Wolff, Djoeke; van Melle, Joost P.; Bartelds, Beatrijs; Ridderbos, Floris-Jan S.; Eshuis, Graziella; van Stratum, Elisabeth B. H. J.; Recinos, Salvador J.; Willemse, Brigitte W. M.; Hillege, Hans; Willems, Tineke P.; Ebels, Tjark; Berger, Rolf M. F.

    2017-01-01

    The unique, unphysiological Fontan circulation is associated with an impaired functional status of the patients that is suggested to deteriorate over time. Unfortunately, previous studies did not integrate both pulmonary and cardiac determinants of functional status. In addition, a comparison with

  2. Venus atmosphere simulated by a high-resolution general circulation model

    Science.gov (United States)

    Sugimoto, Norihiko

    2016-07-01

    An atmospheric general circulation model (AGCM) for Venus on the basis of AFES (AGCM For the Earth Simulator) have been developed (e.g., Sugimoto et al., 2014a) and a very high-resolution simulation is performed. The highest resolution of the model is T319L120; 960 times 480 horizontal grids (grid intervals are about 40 km) with 120 vertical layers (layer intervals are about 1 km). In the model, the atmosphere is dry and forced by the solar heating with the diurnal and semi-diurnal components. The infrared radiative process is simplified by adopting Newtonian cooling approximation. The temperature is relaxed to a prescribed horizontally uniform temperature distribution, in which a layer with almost neutral static stability observed in the Venus atmosphere presents. A fast zonal wind in a solid-body rotation is given as the initial state. Starting from this idealized superrotation, the model atmosphere reaches a quasi-equilibrium state within 1 Earth year and this state is stably maintained for more than 10 Earth years. The zonal-mean zonal flow with weak midlatitude jets has almost constant velocity of 120 m/s in latitudes between 45°S and 45°N at the cloud top levels, which agrees very well with observations. In the cloud layer, baroclinic waves develop continuously at midlatitudes and generate Rossby-type waves at the cloud top (Sugimoto et al., 2014b). At the polar region, warm polar vortex zonally surrounded by a cold latitude band (cold collar) is well reproduced (Ando et al., 2016). As for horizontal kinetic energy spectra, divergent component is broadly (k>10) larger than rotational component compared with that on Earth (Kashimura et al., in preparation). Finally, recent results for thermal tides and small-scale waves will be shown in the presentation. Sugimoto, N. et al. (2014a), Baroclinic modes in the Venus atmosphere simulated by GCM, Journal of Geophysical Research: Planets, Vol. 119, p1950-1968. Sugimoto, N. et al. (2014b), Waves in a Venus general

  3. Effects of aerosol on evaporation, freezing and precipitation in a multiple cloud system

    Science.gov (United States)

    Lee, Seoung Soo; Kim, Byung-Gon; Yum, Seong Soo; Seo, Kyong-Hwan; Jung, Chang-Hoon; Um, Jun Shik; Li, Zhanqing; Hong, JinKyu; Chang, Ki-Ho; Jeong, Jin-Yim

    2017-02-01

    Aerosol effects on clouds and precipitation account for a large portion of uncertainties in the prediction of the future course of global hydrologic circulations and climate. As a process of a better understanding of interactions between aerosol, clouds and precipitation, simulations are performed for a mixed-phase convective multiple-cloud system over the tropics. Studies on single-cloud systems have shown that aerosol-induced increases in freezing, associated increases in parcel buoyancy and thus the intensity of clouds (or updrafts) are a main mechanism which controls aerosol-cloud-precipitation interactions in convective clouds. However, in the multiple-cloud system that plays much more important roles in global hydrologic circulations and thus climate than single-cloud systems, aerosol effects on condensation play the most important role in aerosol-induced changes in the intensity of clouds and the effects on freezing play a negligible role in those changes. Aerosol-induced enhancement in evaporation intensifies gust fronts and increases the number of subsequently developing clouds, which leads to the substantial increases in condensation and associated intensity of convection. Although aerosol-induced enhancement in freezing takes part in the increases in condensation by inducing stronger convergence around cloud bottom, the increases in condensation are one order of magnitude larger than those in freezing. It is found that while aerosol-induced increases in freezing create intermittent extremely heavy precipitation, aerosol-induced increases in evaporation enhance light and medium precipitation in the multiple-cloud system here. This increase in light and medium precipitation makes it possible that cumulative precipitation increases with increasing aerosol concentration, although the increase is small. It is interesting that the altitude of the maximum of the time- and domain-averaged hydrometeor mass densities is quite robust to increases in aerosol

  4. Cloud Computing and Its Applications in GIS

    Science.gov (United States)

    Kang, Cao

    2011-12-01

    Cloud computing is a novel computing paradigm that offers highly scalable and highly available distributed computing services. The objectives of this research are to: 1. analyze and understand cloud computing and its potential for GIS; 2. discover the feasibilities of migrating truly spatial GIS algorithms to distributed computing infrastructures; 3. explore a solution to host and serve large volumes of raster GIS data efficiently and speedily. These objectives thus form the basis for three professional articles. The first article is entitled "Cloud Computing and Its Applications in GIS". This paper introduces the concept, structure, and features of cloud computing. Features of cloud computing such as scalability, parallelization, and high availability make it a very capable computing paradigm. Unlike High Performance Computing (HPC), cloud computing uses inexpensive commodity computers. The uniform administration systems in cloud computing make it easier to use than GRID computing. Potential advantages of cloud-based GIS systems such as lower barrier to entry are consequently presented. Three cloud-based GIS system architectures are proposed: public cloud- based GIS systems, private cloud-based GIS systems and hybrid cloud-based GIS systems. Public cloud-based GIS systems provide the lowest entry barriers for users among these three architectures, but their advantages are offset by data security and privacy related issues. Private cloud-based GIS systems provide the best data protection, though they have the highest entry barriers. Hybrid cloud-based GIS systems provide a compromise between these extremes. The second article is entitled "A cloud computing algorithm for the calculation of Euclidian distance for raster GIS". Euclidean distance is a truly spatial GIS algorithm. Classical algorithms such as the pushbroom and growth ring techniques require computational propagation through the entire raster image, which makes it incompatible with the distributed nature

  5. Making and Breaking Clouds

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Molecular clouds which youre likely familiar with from stunning popular astronomy imagery lead complicated, tumultuous lives. A recent study has now found that these features must be rapidly built and destroyed.Star-Forming CollapseA Hubble view of a molecular cloud, roughly two light-years long, that has broken off of the Carina Nebula. [NASA/ESA, N. Smith (University of California, Berkeley)/The Hubble Heritage Team (STScI/AURA)]Molecular gas can be found throughout our galaxy in the form of eminently photogenic clouds (as featured throughout this post). Dense, cold molecular gas makes up more than 20% of the Milky Ways total gas mass, and gravitational instabilities within these clouds lead them to collapse under their own weight, resulting in the formation of our galaxys stars.How does this collapse occur? The simplest explanation is that the clouds simply collapse in free fall, with no source of support to counter their contraction. But if all the molecular gas we observe collapsed on free-fall timescales, star formation in our galaxy would churn a rate thats at least an order of magnitude higher than the observed 12 solar masses per year in the Milky Way.Destruction by FeedbackAstronomers have theorized that there may be some mechanism that supports these clouds against gravity, slowing their collapse. But both theoretical studies and observations of the clouds have ruled out most of these potential mechanisms, and mounting evidence supports the original interpretation that molecular clouds are simply gravitationally collapsing.A sub-mm image from ESOs APEX telescope of part of the Taurus molecular cloud, roughly ten light-years long, superimposed on a visible-light image of the region. [ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey 2. Acknowledgment: Davide De Martin]If this is indeed the case, then one explanation for our low observed star formation rate could be that molecular clouds are rapidly destroyed by feedback from the very stars

  6. Cloud Computing Law

    CERN Document Server

    Millard, Christopher

    2013-01-01

    This book is about the legal implications of cloud computing. In essence, ‘the cloud’ is a way of delivering computing resources as a utility service via the internet. It is evolving very rapidly with substantial investments being made in infrastructure, platforms and applications, all delivered ‘as a service’. The demand for cloud resources is enormous, driven by such developments as the deployment on a vast scale of mobile apps and the rapid emergence of ‘Big Data’. Part I of this book explains what cloud computing is and how it works. Part II analyses contractual relationships between cloud service providers and their customers, as well as the complex roles of intermediaries. Drawing on primary research conducted by the Cloud Legal Project at Queen Mary University of London, cloud contracts are analysed in detail, including the appropriateness and enforceability of ‘take it or leave it’ terms of service, as well as the scope for negotiating cloud deals. Specific arrangements for public sect...

  7. Cloud Computing: An Overview

    Directory of Open Access Journals (Sweden)

    Libor Sarga

    2012-10-01

    Full Text Available As cloud computing is gaining acclaim as a cost-effective alternative to acquiring processing resources for corporations, scientific applications and individuals, various challenges are rapidly coming to the fore. While academia struggles to procure a concise definition, corporations are more interested in competitive advantages it may generate and individuals view it as a way of speeding up data access times or a convenient backup solution. Properties of the cloud architecture largely preclude usage of existing practices while achieving end-users’ and companies’ compliance requires considering multiple infrastructural as well as commercial factors, such as sustainability in case of cloud-side interruptions, identity management and off-site corporate data handling policies. The article overviews recent attempts at formal definitions of cloud computing, summarizes and critically evaluates proposed delimitations, and specifies challenges associated with its further proliferation. Based on the conclusions, future directions in the field of cloud computing are also briefly hypothesized to include deeper focus on community clouds and bolstering innovative cloud-enabled platforms and devices such as tablets, smart phones, as well as entertainment applications.

  8. Community Cloud Computing

    Science.gov (United States)

    Marinos, Alexandros; Briscoe, Gerard

    Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, it is a challenge we must pursue.

  9. ALMA Observations of a Quiescent Molecular Cloud in the Large Magellanic Cloud

    Science.gov (United States)

    Wong, Tony; Hughes, Annie; Tokuda, Kazuki; Indebetouw, Rémy; Bernard, Jean-Philippe; Onishi, Toshikazu; Wojciechowski, Evan; Bandurski, Jeffrey B.; Kawamura, Akiko; Roman-Duval, Julia; Cao, Yixian; Chen, C.-H. Rosie; Chu, You-hua; Cui, Chaoyue; Fukui, Yasuo; Montier, Ludovic; Muller, Erik; Ott, Juergen; Paradis, Deborah; Pineda, Jorge L.; Rosolowsky, Erik; Sewiło, Marta

    2017-12-01

    We present high-resolution (subparsec) observations of a giant molecular cloud in the nearest star-forming galaxy, the Large Magellanic Cloud. ALMA Band 6 observations trace the bulk of the molecular gas in 12CO(2-1) and the high column density regions in 13CO(2-1). Our target is a quiescent cloud (PGCC G282.98-32.40, which we refer to as the “Planck cold cloud” or PCC) in the southern outskirts of the galaxy where star formation activity is very low and largely confined to one location. We decompose the cloud into structures using a dendrogram and apply an identical analysis to matched-resolution cubes of the 30 Doradus molecular cloud (located near intense star formation) for comparison. Structures in the PCC exhibit roughly 10 times lower surface density and five times lower velocity dispersion than comparably sized structures in 30 Dor, underscoring the non-universality of molecular cloud properties. In both clouds, structures with relatively higher surface density lie closer to simple virial equilibrium, whereas lower surface-density structures tend to exhibit supervirial line widths. In the PCC, relatively high line widths are found in the vicinity of an infrared source whose properties are consistent with a luminous young stellar object. More generally, we find that the smallest resolved structures (“leaves”) of the dendrogram span close to the full range of line widths observed across all scales. As a result, while the bulk of the kinetic energy is found on the largest scales, the small-scale energetics tend to be dominated by only a few structures, leading to substantial scatter in observed size-line-width relationships.

  10. SMART POINT CLOUD: DEFINITION AND REMAINING CHALLENGES

    Directory of Open Access Journals (Sweden)

    F. Poux

    2016-10-01

    Full Text Available Dealing with coloured point cloud acquired from terrestrial laser scanner, this paper identifies remaining challenges for a new data structure: the smart point cloud. This concept arises with the statement that massive and discretized spatial information from active remote sensing technology is often underused due to data mining limitations. The generalisation of point cloud data associated with the heterogeneity and temporality of such datasets is the main issue regarding structure, segmentation, classification, and interaction for an immediate understanding. We propose to use both point cloud properties and human knowledge through machine learning to rapidly extract pertinent information, using user-centered information (smart data rather than raw data. A review of feature detection, machine learning frameworks and database systems indexed both for mining queries and data visualisation is studied. Based on existing approaches, we propose a new 3-block flexible framework around device expertise, analytic expertise and domain base reflexion. This contribution serves as the first step for the realisation of a comprehensive smart point cloud data structure.

  11. Trusted cloud computing

    CERN Document Server

    Krcmar, Helmut; Rumpe, Bernhard

    2014-01-01

    This book documents the scientific results of the projects related to the Trusted Cloud Program, covering fundamental aspects of trust, security, and quality of service for cloud-based services and applications. These results aim to allow trustworthy IT applications in the cloud by providing a reliable and secure technical and legal framework. In this domain, business models, legislative circumstances, technical possibilities, and realizable security are closely interwoven and thus are addressed jointly. The book is organized in four parts on "Security and Privacy", "Software Engineering and

  12. Overview of CO SEST observations: Small Magellanic Cloud

    Science.gov (United States)

    Rubio, Monica

    We present the results of observations of the C-12 (1-0) emission line from the Small Magellaic Cloud (SMC) done with the 15m Swedish-ESO Submillimeter Telescope (SEST). We have fully mapped two areas in the SW region of the SMC bar and have identified several molecular clouds. Molecular clouds in the SMC show different properties than that of Galactic molecular clouds. They follow the same linewidth-size relation (Delta V R1/2) as Galactic clouds for a large range of radii, but they are underluminous in CO. At the smallest scales we can resolve (10 pc), the SMC CO clouds are less luminous in CO by a factor of 2, while at large scales they less luminous by a factor of 20. The physical properties derived from two clouds where C-12 (2-1), C-13 (1-0), and C-13 (2-1) observations were done indicate that the CO clouds are clumpy, with a higher kinetic temperature and a smaller filling factor than that of Galactic CO clouds. These properties can be explained as a consequence of a higher photodisociation rate of CO. Assuming viral equilibrium for the CO structures we derived a preliminary estime of the conversion factor to derive total mass of gas from the CO luminosity. This factor is larger that the canonical value adopted for our Galaxy and depends on the size of the molecular cloud.

  13. Surface tension and quasi-emulsion of cavitation bubble cloud.

    Science.gov (United States)

    Bai, Lixin; Chen, Xiaoguang; Zhu, Gang; Xu, Weilin; Lin, Weijun; Wu, Pengfei; Li, Chao; Xu, Delong; Yan, Jiuchun

    2017-03-01

    A quasi-emulsion phenomenon of cavitation structure in a thin liquid layer (the thin liquid layer is trapped between a radiating surface and a hard reflector) is investigated experimentally with high-speed photography. The transformation from cloud-in-water (c/w) emulsion to water-in-cloud (w/c) emulsion is related to the increase of cavitation bubble cloud. The acoustic field in the thin liquid layer is analyzed. It is found that the liquid region has higher acoustic pressure than the cloud region. The bubbles are pushed from liquid region to cloud region by the primary Bjerknes forces. The rate of change of CSF increased with the increase of CSF. The cavitation bubbles on the surface of cavitation cloud are attracted by the cavitation bubbles inside the cloud due to secondary Bjerknes forces. The existence of surface tension on the interface of liquid region and cloud region is proved. The formation mechanism of disc-shaped liquid region and cloud region are analysed by surface tension and incompressibility of cavitation bubble cloud. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. An Examination of the Nature of Global MODIS Cloud Regimes

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji; Huffman, George J.

    2014-01-01

    We introduce global cloud regimes (previously also referred to as "weather states") derived from cloud retrievals that use measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Aqua and Terra satellites. The regimes are obtained by applying clustering analysis on joint histograms of retrieved cloud top pressure and cloud optical thickness. By employing a compositing approach on data sets from satellites and other sources, we examine regime structural and thermodynamical characteristics. We establish that the MODIS cloud regimes tend to form in distinct dynamical and thermodynamical environments and have diverse profiles of cloud fraction and water content. When compositing radiative fluxes from the Clouds and the Earth's Radiant Energy System instrument and surface precipitation from the Global Precipitation Climatology Project, we find that regimes with a radiative warming effect on the atmosphere also produce the largest implied latent heat. Taken as a whole, the results of the study corroborate the usefulness of the cloud regime concept, reaffirm the fundamental nature of the regimes as appropriate building blocks for cloud system classification, clarify their association with standard cloud types, and underscore their distinct radiative and hydrological signatures.

  15. Taxonomy of cloud computing services

    NARCIS (Netherlands)

    Hoefer, C.N.; Karagiannis, Georgios

    2010-01-01

    Cloud computing is a highly discussed topic, and many big players of the software industry are entering the development of cloud services. Several companies want to explore the possibilities and benefits of cloud computing, but with the amount of cloud computing services increasing quickly, the need

  16. INTERNAL CIRCULATION ENVELOPES

    CERN Multimedia

    Mail Office

    2001-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or a piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration.

  17. Cloud Computing (2/2)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Cloud computing, the recent years buzzword for distributed computing, continues to attract and keep the interest of both the computing and business world. These lectures aim at explaining "What is Cloud Computing?" identifying and analyzing it's characteristics, models, and applications. The lectures will explore different "Cloud definitions" given by different authors and use them to introduce the particular concepts. The main cloud models (SaaS, PaaS, IaaS), cloud types (public, private, hybrid), cloud standards and security concerns will be presented. The borders between Cloud Computing and Grid Computing, Server Virtualization, Utility Computing will be discussed and analyzed.

  18. Cloud Computing (1/2)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Cloud computing, the recent years buzzword for distributed computing, continues to attract and keep the interest of both the computing and business world. These lectures aim at explaining "What is Cloud Computing?" identifying and analyzing it's characteristics, models, and applications. The lectures will explore different "Cloud definitions" given by different authors and use them to introduce the particular concepts. The main cloud models (SaaS, PaaS, IaaS), cloud types (public, private, hybrid), cloud standards and security concerns will be presented. The borders between Cloud Computing and Grid Computing, Server Virtualization, Utility Computing will be discussed and analyzed.

  19. IBM SmartCloud essentials

    CERN Document Server

    Schouten, Edwin

    2013-01-01

    A practical, user-friendly guide that provides an introduction to cloud computing using IBM SmartCloud, along with a thorough understanding of resource management in a cloud environment.This book is great for anyone who wants to get a grasp of what cloud computing is and what IBM SmartCloud has to offer. If you are an IT specialist, IT architect, system administrator, or a developer who wants to thoroughly understand the cloud computing resource model, this book is ideal for you. No prior knowledge of cloud computing is expected.

  20. Comparison of cloud top heights derived from FY-2 meteorological satellites with heights derived from ground-based millimeter wavelength cloud radar

    Science.gov (United States)

    Wang, Zhe; Wang, Zhenhui; Cao, Xiaozhong; Tao, Fa

    2018-01-01

    Clouds are currently observed by both ground-based and satellite remote sensing techniques. Each technique has its own strengths and weaknesses depending on the observation method, instrument performance and the methods used for retrieval. It is important to study synergistic cloud measurements to improve the reliability of the observations and to verify the different techniques. The FY-2 geostationary orbiting meteorological satellites continuously observe the sky over China. Their cloud top temperature product can be processed to retrieve the cloud top height (CTH). The ground-based millimeter wavelength cloud radar can acquire information about the vertical structure of clouds-such as the cloud base height (CBH), CTH and the cloud thickness-and can continuously monitor changes in the vertical profiles of clouds. The CTHs were retrieved using both cloud top temperature data from the FY-2 satellites and the cloud radar reflectivity data for the same time period (June 2015 to May 2016) and the resulting datasets were compared in order to evaluate the accuracy of CTH retrievals using FY-2 satellites. The results show that the concordance rate of cloud detection between the two datasets was 78.1%. Higher consistencies were obtained for thicker clouds with larger echo intensity and for more continuous clouds. The average difference in the CTH between the two techniques was 1.46 km. The difference in CTH between low- and mid-level clouds was less than that for high-level clouds. An attenuation threshold of the cloud radar for rainfall was 0.2 mm/min; a rainfall intensity below this threshold had no effect on the CTH. The satellite CTH can be used to compensate for the attenuation error in the cloud radar data.

  1. Do Clouds Compute? A Framework for Estimating the Value of Cloud Computing

    Science.gov (United States)

    Klems, Markus; Nimis, Jens; Tai, Stefan

    On-demand provisioning of scalable and reliable compute services, along with a cost model that charges consumers based on actual service usage, has been an objective in distributed computing research and industry for a while. Cloud Computing promises to deliver on this objective: consumers are able to rent infrastructure in the Cloud as needed, deploy applications and store data, and access them via Web protocols on a pay-per-use basis. The acceptance of Cloud Computing, however, depends on the ability for Cloud Computing providers and consumers to implement a model for business value co-creation. Therefore, a systematic approach to measure costs and benefits of Cloud Computing is needed. In this paper, we discuss the need for valuation of Cloud Computing, identify key components, and structure these components in a framework. The framework assists decision makers in estimating Cloud Computing costs and to compare these costs to conventional IT solutions. We demonstrate by means of representative use cases how our framework can be applied to real world scenarios.

  2. Point Cloud Management Through the Realization of the Intelligent Cloud Viewer Software

    Science.gov (United States)

    Costantino, D.; Angelini, M. G.; Settembrini, F.

    2017-05-01

    The paper presents a software dedicated to the elaboration of point clouds, called Intelligent Cloud Viewer (ICV), made in-house by AESEI software (Spin-Off of Politecnico di Bari), allowing to view point cloud of several tens of millions of points, also on of "no" very high performance systems. The elaborations are carried out on the whole point cloud and managed by means of the display only part of it in order to speed up rendering. It is designed for 64-bit Windows and is fully written in C ++ and integrates different specialized modules for computer graphics (Open Inventor by SGI, Silicon Graphics Inc), maths (BLAS, EIGEN), computational geometry (CGAL, Computational Geometry Algorithms Library), registration and advanced algorithms for point clouds (PCL, Point Cloud Library), advanced data structures (BOOST, Basic Object Oriented Supporting Tools), etc. ICV incorporates a number of features such as, for example, cropping, transformation and georeferencing, matching, registration, decimation, sections, distances calculation between clouds, etc. It has been tested on photographic and TLS (Terrestrial Laser Scanner) data, obtaining satisfactory results. The potentialities of the software have been tested by carrying out the photogrammetric survey of the Castel del Monte which was already available in previous laser scanner survey made from the ground by the same authors. For the aerophotogrammetric survey has been adopted a flight height of approximately 1000ft AGL (Above Ground Level) and, overall, have been acquired over 800 photos in just over 15 minutes, with a covering not less than 80%, the planned speed of about 90 knots.

  3. A Look at Circulation Statistics

    Science.gov (United States)

    Luzius, Jeff

    2004-01-01

    Nearly all academic libraries keep circulation statistics which are often shared with their parent university, library consortia, and national organizations. This study attempted to discover what goes into circulation statistics by surveying Southeastern research libraries. Libraries were asked what they count in their circulation statistics and…

  4. CloudETL

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Thomsen, Christian; Pedersen, Torben Bach

    2014-01-01

    Extract-Transform-Load (ETL) programs process data into data warehouses (DWs). Rapidly growing data volumes demand systems that scale out. Recently, much attention has been given to MapReduce for parallel handling of massive data sets in cloud environments. Hive is the most widely used RDBMS...... the powerful Pig platform for data processing on MapReduce does not support such dimensional ETL processing. To remedy this, we present the ETL framework CloudETL which uses Hadoop to parallelize ETL execution and to process data into Hive. The user defines the ETL process by means of high-level constructs...... and transformations and does not have to worry about technical MapReduce details. CloudETL supports different dimensional concepts such as star schemas and SCDs. We present how CloudETL works and uses different performance optimizations including a purpose-specific data placement policy to co-locate data. Further, we...

  5. Entangled Cloud Storage

    DEFF Research Database (Denmark)

    Ateniese, Giuseppe; Dagdelen, Özgür; Damgård, Ivan Bjerre

    2012-01-01

    Entangled cloud storage enables a set of clients {P_i} to “entangle” their files {f_i} into a single clew c to be stored by a (potentially malicious) cloud provider S. The entanglement makes it impossible to modify or delete significant part of the clew without affecting all files in c. A clew...... keeps the files in it private but still lets each client P_i recover his own data by interacting with S; no cooperation from other clients is needed. At the same time, the cloud provider is discouraged from altering or overwriting any significant part of c as this will imply that none of the clients can...... recover their files. We provide theoretical foundations for entangled cloud storage, introducing the notion of an entangled encoding scheme that guarantees strong security requirements capturing the properties above. We also give a concrete construction based on privacy-preserving polynomial interpolation...

  6. Green symbiotic cloud communications

    CERN Document Server

    Mustafa, H D; Desai, Uday B; Baveja, Brij Mohan

    2017-01-01

    This book intends to change the perception of modern day telecommunications. Communication systems, usually perceived as “dumb pipes”, carrying information / data from one point to another, are evolved into intelligently communicating smart systems. The book introduces a new field of cloud communications. The concept, theory, and architecture of this new field of cloud communications are discussed. The book lays down nine design postulates that form the basis of the development of a first of its kind cloud communication paradigm entitled Green Symbiotic Cloud Communications or GSCC. The proposed design postulates are formulated in a generic way to form the backbone for development of systems and technologies of the future. The book can be used to develop courses that serve as an essential part of graduate curriculum in computer science and electrical engineering. Such courses can be independent or part of high-level research courses. The book will also be of interest to a wide range of readers including b...

  7. Maps for electron clouds

    Directory of Open Access Journals (Sweden)

    Ubaldo Iriso

    2005-02-01

    Full Text Available The electron cloud effect has been studied by means of detailed simulation codes that typically track the particles' evolution under the influence of the corresponding electromagnetic forces and fields. In this paper we show that, for the RHIC case, the electron cloud can be treated from an abstract point of view as a bunch to bunch evolution using simple maps. Secondly, we show how this treatment yields a useful conclusion, which is otherwise difficult to obtain: for a fixed number of bunches and total beam current in RHIC, it is possible to determine the best way to distribute the bunch pattern around the ring to minimize the electron cloud formation. This application is an example of how maps become a useful tool for exploring the electron cloud evolution in parameter space.

  8. SAP on the cloud

    CERN Document Server

    Missbach, Michael; Gardiner, Cameron; Anderson, George; Tempes, Mark

    2013-01-01

    This book explores the many facets of building and operating an SAP infrastructure exploiting Cloud technologies, describing and discussing the latest challenges and suitable solutions, and outlining future trends. Includes practice-oriented case studies.

  9. How might Australian rainforest cloud interception respond to climate change?

    Science.gov (United States)

    Wallace, Jim; McJannet, Dave

    2013-02-01

    SummaryThe lower and upper montane rainforests in northern Queensland receive significant amounts of cloud interception that affect both in situ canopy wetness and downstream runoff. Cloud interception contributes 5-30% of the annual water input to the canopy and this increases to 40-70% of the monthly water input during the dry season. This occult water is therefore an important input to the canopy, sustaining the epiphytes, mosses and other species that depend on wet canopy conditions. The potential effect of climate change on cloud interception was examined using the relationship between cloud interception and cloud frequency derived from measurements made at four different rainforest locations. Any given change in cloud frequency produces a greater change in cloud interception and this 'amplification' increases from 1.1 to 1.7 as cloud frequency increases from 5% to 70%. This means that any changes in cloud frequency will have the greatest relative effects at the higher altitude sites where cloud interception is greatest. As cloud frequency is also a major factor affecting canopy wetness, any given change in cloud frequency will therefore have a greater impact on canopy wetness at the higher altitude sites. These changes in wetness duration will augment those due to changes in rainfall and may have important implications for the fauna and flora that depend on wet canopy conditions. We also found that the Australian rainforests may be more efficient (by ˜50% on average) in intercepting cloud water than American coniferous forests, which may be due to differences in canopy structure and exposure at the different sites.

  10. Turbulent Motions in Molecular Clouds

    Science.gov (United States)

    Pellegatti Franco, G. A.; Tarsia, R. D.; Quiroga, R. J.

    1986-02-01

    We have studied the behavior of the inner motions of OH, H2CO and CO molecular clouds. This study shows the existence of two main components of these clouds: the narrow one, associated to dense small clouds and a wide one "representing" the large diffuse clouds seen in neutral hidrogen.The large clouds are the "vortex" and intermediate state between turbulent and hydrodynamic motions in the alaxy.

  11. CLOUD COMPUTING TECHNOLOGY TRENDS

    Directory of Open Access Journals (Sweden)

    Cristian IVANUS

    2014-05-01

    Full Text Available Cloud computing has been a tremendous innovation, through which applications became available online, accessible through an Internet connection and using any computing device (computer, smartphone or tablet. According to one of the most recent studies conducted in 2012 by Everest Group and Cloud Connect, 57% of companies said they already use SaaS application (Software as a Service, and 38% reported using standard tools PaaS (Platform as a Service. However, in the most cases, the users of these solutions highlighted the fact that one of the main obstacles in the development of this technology is the fact that, in cloud, the application is not available without an Internet connection. The new challenge of the cloud system has become now the offline, specifically accessing SaaS applications without being connected to the Internet. This topic is directly related to user productivity within companies as productivity growth is one of the key promises of cloud computing system applications transformation. The aim of this paper is the presentation of some important aspects related to the offline cloud system and regulatory trends in the European Union (EU.

  12. eEcoLiDAR, eScience infrastructure for ecological applications of LiDAR point clouds: reconstructing the 3D ecosystem structure for animals at regional to continental scales

    Directory of Open Access Journals (Sweden)

    W. Daniel Kissling

    2017-07-01

    Full Text Available The lack of high-resolution measurements of 3D ecosystem structure across broad spatial extents impedes major advancements in animal ecology and biodiversity science. We aim to fill this gap by using Light Detection and Ranging (LiDAR technology to characterize the vertical and horizontal complexity of vegetation and landscapes at high resolution across regional to continental scales. The newly LiDAR-derived 3D ecosystem structures will be applied in species distribution models for breeding birds in forests and marshlands, for insect pollinators in agricultural landscapes, and songbirds at stopover sites during migration. This will allow novel insights into the hierarchical structure of animal-habitat associations, into why animal populations decline, and how they respond to habitat fragmentation and ongoing land use change. The processing of these massive amounts of LiDAR point cloud data will be achieved by developing a generic interactive eScience environment with multi-scale object-based image analysis (OBIA and interpretation of LiDAR point clouds, including data storage, scalable computing, tools for machine learning and visualisation (feature selection, annotation/segmentation, object classification, and evaluation, and a PostGIS spatial database. The classified objects will include trees, forests, vegetation strata, edges, bushes, hedges, reedbeds etc. with their related metrics, attributes and summary statistics (e.g. vegetation openness, height, density, vertical biomass distribution etc.. The newly developed eScience tools and data will be available to other disciplines and applications in ecology and the Earth sciences, thereby achieving high impact. The project will foster new multi-disciplinary collaborations between ecologists and eScientists and contribute to training a new generation of geo-ecologists.

  13. Evaluation of tropical cloud and precipitation statistics of CAM3 using CloudSat and CALIPSO data

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y; Klein, S; Boyle, J; Mace, G G

    2008-11-20

    The combined CloudSat and CALIPSO satellite observations provide the first simultaneous measurements of cloud and precipitation vertical structure, and are used to examine the representation of tropical clouds and precipitation in the Community Atmosphere Model Version 3 (CAM3). A simulator package utilizing a model-to-satellite approach facilitates comparison of model simulations to observations, and a revised clustering method is used to sort the subgrid-scale patterns of clouds and precipitation into principal cloud regimes. Results from weather forecasts performed with CAM3 suggest that the model underestimates the horizontal extent of low and mid-level clouds in subsidence regions, but overestimates that of high clouds in ascending regions. CAM3 strongly overestimates the frequency of occurrence of the deep convection with heavy precipitation regime, but underestimates the horizontal extent of clouds and precipitation at low and middle levels when this regime occurs. This suggests that the model overestimates convective precipitation and underestimates stratiform precipitation consistent with a previous study that used only precipitation observations. Tropical cloud regimes are also evaluated in a different version of the model, CAM3.5, which uses a highly entraining plume in the parameterization of deep convection. While the frequency of occurrence of the deep convection with heavy precipitation regime from CAM3.5 forecasts decreases, the incidence of the low clouds with precipitation and congestus regimes increases. As a result, the parameterization change does not reduce the frequency of precipitating convection that is far too high relative to observations. For both versions of CAM, clouds and precipitation are overly reflective at the frequency of the CloudSat radar and thin clouds that could be detected by the lidar only are underestimated.

  14. Formation of Massive Molecular Cloud Cores by Cloud-Cloud Collision

    Science.gov (United States)

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-09-01

    Recent observations of molecular clouds around rich massive star clusters including NGC 3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by cloud-cloud collision. We find that the massive molecular cloud cores have large effective Jeans mass owing to the enhancement of the magnetic field strength by shock compression and turbulence in the compressed layer. Our results predict that massive molecular cloud cores formed by the cloud-cloud collision are filamentary and threaded by magnetic fields perpendicular to the filament.

  15. Cloud-Resolving Model and GPM

    Science.gov (United States)

    Tao, Wei-Kuo; Lang, S.; Simpson, J.; Adler, R.; Hou, A.; Li, X.; Shie, C.-L.; Olson, W.; Kummerow, C.

    2003-01-01

    Over the past twenty years, rainfall retrieval algorithms have been developed to retrieve rainfall and vertical hydrometeor structures from passive microwave observations by making use of the fact that weighting functions for various frequencies peak at different levels within a rainy atmosphere. GPROF is one of two TMI rainfall algorithms. It is physically based retrieval that finds the vertical hydrometeor profile that best fits the brightness temperatures in the available passive radiometer channels. Matching is achieved using a library of hydrometeor profiles generated by cloud-resolving models (CRMs). The hydrometeor profiles have a corresponding surface precipitation rate. The algorithm retrieves the hydrometeor profiles and associated surface rainfall using a Bayesian approach that gives the estimated expected values. The ability of CRMs to produce cloud structures that are reliable and representative of observed storms is crucial for the success of GPROF. The cloud mycrophysics are one of the keys to achieving this. In addition, CRMs have been a very useful tool for GPM-algorithm developers through Cloud-Radiation Simulations (CRS), one of the nine GPM disciplinary research themes. This paper will discuss how to generate consistent and comprehensive 4D cloud datasets from an improved (i.e., in regard to bulk and multi-moment microphysics) CRM for TRMM and GPM rainfall retrieval algorithm developers. These cloud datasets include CRM-simulated clouds and cloud systems from different geographic locations in the tropics and midlatitudes. By linking the CRM with a passive microwave radiative-transfer model and using satellite and airborne data, the performance of the "cloud physics" can be assessed and in turn modified and improved. This paper will also address how to assess and improve the performance of various latent and diabatic heating algorithms and develop an algorithm to retrieve the vertical structure of apparent moistening (Q2). Considering that the

  16. A multi-diagnostic approach to cloud evaluation

    Science.gov (United States)

    Williams, Keith D.; Bodas-Salcedo, Alejandro

    2017-07-01

    Most studies evaluating cloud in general circulation models present new diagnostic techniques or observational datasets, or apply a limited set of existing diagnostics to a number of models. In this study, we use a range of diagnostic techniques and observational datasets to provide a thorough evaluation of cloud, such as might be carried out during a model development process. The methodology is illustrated by analysing two configurations of the Met Office Unified Model - the currently operational configuration at the time of undertaking the study (Global Atmosphere 6, GA6), and the configuration which will underpin the United Kingdom's Earth System Model for CMIP6 (Coupled Model Intercomparison Project 6; GA7). By undertaking a more comprehensive analysis which includes compositing techniques, comparing against a set of quite different observational instruments and evaluating the model across a range of timescales, the risks of drawing the wrong conclusions due to compensating model errors are minimized and a more accurate overall picture of model performance can be drawn. Overall the two configurations analysed perform well, especially in terms of cloud amount. GA6 has excessive thin cirrus which is removed in GA7. The primary remaining errors in both configurations are the in-cloud albedos which are too high in most Northern Hemisphere cloud types and sub-tropical stratocumulus, whilst the stratocumulus on the cold-air side of Southern Hemisphere cyclones has in-cloud albedos which are too low.

  17. The role of cloud radiative heating in determining the location of the ITCZ in aqua planet simulations

    Science.gov (United States)

    Harrop, B. E.; Hartmann, D. L.

    2015-12-01

    We investigate the relationship between the tropical circulation and cloud radiative effect. We use output from the Clouds On Off Klimate Intercomparison Experiment (COOKIE) to test the hypothesis that local cloud radiative heating pulls convection equatorward (where sea surface temperatures are at a maximum). In aqua planet simulations with a fixed SST pattern, the cloud radiative effect leads to an equatorward shift of the Intertropical Convergence Zone (ITCZ). Additionally, cloud-radiation interactions strengthen the mean meridional circulation and consequently enhance the moisture convergence. Precipitation peaks at higher values in a narrower band when the cloud radiative effects are active, compared to when they are inactive, due to the enhancement in moisture convergence. We show that the cloud radiative heating in the upper troposphere increases the temperature, weakens CAPE, and inhibits the onset of convection until it is closer to the equator, where SSTs are higher. Cloud radiative heating reduces the total precipitation across the tropics while it enhances cloud water path (liquid plus ice), which suggests that the cloud radiative heating reduces precipitation efficiency in these models.

  18. Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation

    KAUST Repository

    Yao, Fengchao

    2014-04-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using high-resolution MIT general circulation model simulations. In the first part of this study, the vertical and horizontal structure of the summer overturning circulation and its dynamical mechanisms are presented from the model results. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. In addition, during late summer two processes associated, respectively, with latitudinally differential heating and increased salinity in the southern Red Sea act together to cause the reversal of the contrast of the vertical density structure and the cessation of the summer overturning circulation. Dynamically, the subsurface northward pressure gradient force is mainly balanced by vertical viscosity resulting from the vertical shear and boundary friction in the Strait of Bab el Mandeb. Unlike some previous studies, the three-layer summer exchange flows in the Strait of Bab el Mandeb do not appear to be hydraulically controlled.

  19. Evaluation of NASA GISS post-CMIP5 single column model simulated clouds and precipitation using ARM Southern Great Plains observations

    Science.gov (United States)

    Zhang, Lei; Dong, Xiquan; Kennedy, Aaron; Xi, Baike; Li, Zhanqing

    2017-03-01

    The planetary boundary layer turbulence and moist convection parameterizations have been modified recently in the NASA Goddard Institute for Space Studies (GISS) Model E2 atmospheric general circulation model (GCM; post-CMIP5, hereafter P5). In this study, single column model (SCM P5) simulated cloud fractions (CFs), cloud liquid water paths (LWPs) and precipitation were compared with Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) groundbased observations made during the period 2002-08. CMIP5 SCM simulations and GCM outputs over the ARM SGP region were also used in the comparison to identify whether the causes of cloud and precipitation biases resulted from either the physical parameterization or the dynamic scheme. The comparison showed that the CMIP5 SCM has difficulties in simulating the vertical structure and seasonal variation of low-level clouds. The new scheme implemented in the turbulence parameterization led to significantly improved cloud simulations in P5. It was found that the SCM is sensitive to the relaxation time scale. When the relaxation time increased from 3 to 24 h, SCM P5-simulated CFs and LWPs showed a moderate increase (10%-20%) but precipitation increased significantly (56%), which agreed better with observations despite the less accurate atmospheric state. Annual averages among the GCM and SCM simulations were almost the same, but their respective seasonal variations were out of phase. This suggests that the same physical cloud parameterization can generate similar statistical results over a long time period, but different dynamics drive the differences in seasonal variations. This study can potentially provide guidance for the further development of the GISS model.

  20. Cloud networking understanding cloud-based data center networks

    CERN Document Server

    Lee, Gary

    2014-01-01

    Cloud Networking: Understanding Cloud-Based Data Center Networks explains the evolution of established networking technologies into distributed, cloud-based networks. Starting with an overview of cloud technologies, the book explains how cloud data center networks leverage distributed systems for network virtualization, storage networking, and software-defined networking. The author offers insider perspective to key components that make a cloud network possible such as switch fabric technology and data center networking standards. The final chapters look ahead to developments in architectures

  1. New approaches to quantifying aerosol influence on the cloud radiative effect

    Science.gov (United States)

    Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; Johnson, Jill S.; Carslaw, Kenneth S.; Schmidt, K. Sebastian

    2016-05-01

    The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol-cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol-cloud interactions adequately. There is a dearth of observational constraints on aerosol-cloud interactions. We develop a conceptual approach to systematically constrain the aerosol-cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol-cloud radiation system.

  2. Discrimination of water, ice and aerosols by light polarisation in the CLOUD experiment

    Science.gov (United States)

    Nichman, L.; Fuchs, C.; Järvinen, E.; Ignatius, K.; Höppel, N. F.; Dias, A.; Heinritzi, M.; Simon, M.; Tröstl, J.; Wagner, A. C.; Wagner, R.; Williamson, C.; Yan, C.; Bianchi, F.; Connolly, P. J.; Dorsey, J. R.; Duplissy, J.; Ehrhart, S.; Frege, C.; Gordon, H.; Hoyle, C. R.; Kristensen, T. B.; Steiner, G.; Donahue, N. M.; Flagan, R.; Gallagher, M. W.; Kirkby, J.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Stratmann, F.; Tomé, A.

    2015-11-01

    Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather and General Circulation Models (GCMs). The simultaneous detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud-particle size range below 50 μm, remains challenging in mixed phase, often unstable ice-water phase environments. The Cloud Aerosol Spectrometer with Polarisation (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure their effects on the backscatter polarisation state. Here we operate the versatile Cosmics-Leaving-OUtdoor-Droplets (CLOUD) chamber facility at the European Organisation for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water and ice particles. In this paper, optical property measurements of mixed phase clouds and viscous Secondary Organic Aerosol (SOA) are presented. We report observations of significant liquid - viscous SOA particle polarisation transitions under dry conditions using CASPOL. Cluster analysis techniques were subsequently used to classify different types of particles according to their polarisation ratios during phase transition. A classification map is presented for water droplets, organic aerosol (e.g., SOA and oxalic acid), crystalline substances such as ammonium sulphate, and volcanic ash. Finally, we discuss the benefits and limitations of this classification approach for atmospherically relevant concentration and mixtures with respect to the CLOUD 8-9 campaigns and its potential contribution to Tropical Troposphere Layer (TTL) analysis.

  3. Analyzing the Dynamic and Morphological Characteristics of Clouds on Titan using the Cassini VIMS Dataset

    Science.gov (United States)

    Kelland, John; Corlies, Paul; Hayes, Alexander; Rodriguez, Sebastien; Turtle, Elizabeth P.

    2017-10-01

    We present here a comprehensive analysis of tropospheric methane clouds in Titan's atmosphere as imaged by the Visible and Infrared Mapping Spectrometer (VIMS) on board the Cassini spacecraft. When incoming light reaches Titan, increased scattering off cloud particles leads to brightening in certain wavelengths of albedo spectra, and we visually identify cloudy regions using the relative reflectivity of individual pixels in tropospheric channels. By manually progressing through the entirety of the VIMS dataset (~25,000 applicable image cubes), we have used this method to analyze the morphologies and spatial evolutions of 200+ discrete cloud systems over various timescales. Imaged cloud coverage areas range up to ~4.4% of Titan's total surface area, and we resolve speeds up to greater than 25 m/s for sequences spanning observational durations of seconds to days. Applying a radiative transfer model to the cloud sequences provides for the calculation of meridional wind speed profiles, and we observe cloud displacement velocities generally exceeding equatorial wind speeds measured by the Huygens probe. In addition to characterization, our mapping efforts offer both a global distribution of cloud coverage frequency and a long-term picture of latitudinal cloud distribution as a function of time. These seasonal variations illustrate the dynamic nature of methane in Titan's atmosphere, so a comprehensive cloud dataset is conducive to placing better constraints on general circulation models (GCMs). Connections between characterization and mapping can also be made using the search results, for morphologic variations can be indexed in order to explore cloud formation mechanisms.

  4. Insights into low-latitude cloud feedbacks from large-eddy simulations

    Science.gov (United States)

    Bretherton, Christopher; Blossey, Peter

    2017-04-01

    Cloud feedbacks are a leading source of uncertainty in the climate sensitivity simulated by global climate models (GCMs). Low-latitude boundary-layer and cumulus cloud regimes are particularly problematic, because they are sustained by tight interactions between clouds and unresolved turbulent circulations. Large-eddy simulations (LES) using sub-100 m grid spacings better simulate such cloud regimes without need for complex models of subgrid variability of cloud and turbulence. Recently, multiday LES over small computational domains have elucidated marine boundary layer cloud response to specified aspects of greenhouse warming and the associated changes in large-scale dynamics and atmospheric radiative heating. The focus will be the CGILS LES intercomparisons and subsequent related work. Four primary contributing mechanisms of subtropical low cloud response are implicated, all with observational support. These are (1) thermodynamic: cloudiness reduction from warming and moistening of the atmosphere-ocean column, (2) radiative: cloudiness reduction from CO2 and H2O-induced increase in atmospheric emissivity aloft, (3) stability-induced: low cloud increase from increased lower-tropospheric stratification, and (4) dynamical: low cloud increase from reduced subsidence. LES as a group robustly suggest that the cloudiness reduction mechanisms typically dominate, giving positive shortwave cloud feedback in the subtropics consistent with the range simulated by conventional global climate models. Finally, a possible approach for better bridging the scale gap between LES and global models will be noted.

  5. Importance of including ammonium sulfate ((NH42SO4 aerosols for ice cloud parameterization in GCMs

    Directory of Open Access Journals (Sweden)

    R. Yang

    2010-02-01

    Full Text Available A common deficiency of many cloud-physics parameterizations including the NASA's microphysics of clouds with aerosol-cloud interactions (hereafter called McRAS-AC is that they simulate lesser (larger than the observed ice cloud particle number (size. A single column model (SCM of McRAS-AC physics of the GEOS4 Global Circulation Model (GCM together with an adiabatic parcel model (APM for ice-cloud nucleation (IN of aerosols were used to systematically examine the influence of introducing ammonium sulfate (NH42SO4 aerosols in McRAS-AC and its influence on the optical properties of both liquid and ice clouds. First an (NH42SO4 parameterization was included in the APM to assess its effect on clouds vis-à-vis that of the other aerosols. Subsequently, several evaluation tests were conducted over the ARM Southern Great Plain (SGP and thirteen other locations (sorted into pristine and polluted conditions distributed over marine and continental sites with the SCM. The statistics of the simulated cloud climatology were evaluated against the available ground and satellite data. The results showed that inclusion of (NH42SO4 into McRAS-AC of the SCM made a remarkable improvement in the simulated effective radius of ice cloud particulates. However, the corresponding ice-cloud optical thickness increased even more than the observed. This can be caused by lack of horizontal cloud advection not performed in the SCM. Adjusting the other tunable parameters such as precipitation efficiency can mitigate this deficiency. Inclusion of ice cloud particle splintering invoked empirically further reduced simulation biases. Overall, these changes make a substantial improvement in simulated cloud optical properties and cloud distribution particularly over the Intertropical Convergence Zone (ITCZ in the GCM.

  6. Isolating the Liquid Cloud Response to Recent Arctic Sea Ice Variability Using Spaceborne Lidar Observations

    Science.gov (United States)

    Morrison, A. L.; Kay, J. E.; Chepfer, H.; Guzman, R.; Yettella, V.

    2018-01-01

    While the radiative influence of clouds on Arctic sea ice is known, the influence of sea ice cover on Arctic clouds is challenging to detect, separate from atmospheric circulation, and attribute to human activities. Providing observational constraints on the two-way relationship between sea ice cover and Arctic clouds is important for predicting the rate of future sea ice loss. Here we use 8 years of CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) spaceborne lidar observations from 2008 to 2015 to analyze Arctic cloud profiles over sea ice and over open water. Using a novel surface mask to restrict our analysis to where sea ice concentration varies, we isolate the influence of sea ice cover on Arctic Ocean clouds. The study focuses on clouds containing liquid water because liquid-containing clouds are the most important cloud type for radiative fluxes and therefore for sea ice melt and growth. Summer is the only season with no observed cloud response to sea ice cover variability: liquid cloud profiles are nearly identical over sea ice and over open water. These results suggest that shortwave summer cloud feedbacks do not slow long-term summer sea ice loss. In contrast, more liquid clouds are observed over open water than over sea ice in the winter, spring, and fall in the 8 year mean and in each individual year. Observed fall sea ice loss cannot be explained by natural variability alone, which suggests that observed increases in fall Arctic cloud cover over newly open water are linked to human activities.

  7. Transequatorial Coronal Cloud Prominences Versus Transequatorial Channel Prominence

    Science.gov (United States)

    Martin, S. F.; Daga, K.

    2016-12-01

    Seven transequatorial channel prominences were identified in the McCauley et al. catalog of erupting prominences from June 2010 - Sep 2014 (2015 Solar Phys. 290, 1703). A comparable number of transequatorial coronal cloud prominences were identified in the Martin et al. study of coronal cloud prominences from May 2010 - April 2012 (IAU Symposium 320, 2016, p. 276). The similar locations of these two subsets of two primary prominence classifications make them nearly ideal candidates for comparison of their properties. Coronal rain is an integral dynamic in coronal cloud prominences whereas counterstreaming motion is characteristic of channel prominences. The two subsets are representative of the the differing magnetic structure, mass origin, evolution, and environmental properties of coronal cloud prominences and channel prominences in general. These samples illustrate how coronal cloud prominences require different models than channel prominences. However, both types of prominences appear to be dependent upon pre-existing environments that largely control their structure and dynamics.

  8. Cloud GIS Based Watershed Management

    Science.gov (United States)

    Bediroğlu, G.; Colak, H. E.

    2017-11-01

    In this study, we generated a Cloud GIS based watershed management system with using Cloud Computing architecture. Cloud GIS is used as SAAS (Software as a Service) and DAAS (Data as a Service). We applied GIS analysis on cloud in terms of testing SAAS and deployed GIS datasets on cloud in terms of DAAS. We used Hybrid cloud computing model in manner of using ready web based mapping services hosted on cloud (World Topology, Satellite Imageries). We uploaded to system after creating geodatabases including Hydrology (Rivers, Lakes), Soil Maps, Climate Maps, Rain Maps, Geology and Land Use. Watershed of study area has been determined on cloud using ready-hosted topology maps. After uploading all the datasets to systems, we have applied various GIS analysis and queries. Results shown that Cloud GIS technology brings velocity and efficiency for watershed management studies. Besides this, system can be easily implemented for similar land analysis and management studies.

  9. Security Problems in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Rola Motawie

    2016-12-01

    Full Text Available Cloud is a pool of computing resources which are distributed among cloud users. Cloud computing has many benefits like scalability, flexibility, cost savings, reliability, maintenance and mobile accessibility. Since cloud-computing technology is growing day by day, it comes with many security problems. Securing the data in the cloud environment is most critical challenges which act as a barrier when implementing the cloud. There are many new concepts that cloud introduces, such as resource sharing, multi-tenancy, and outsourcing, create new challenges for the security community. In this work, we provide a comparable study of cloud computing privacy and security concerns. We identify and classify known security threats, cloud vulnerabilities, and attacks.

  10. Multi-Layer Arctic Mixed-Phase Clouds Simulated by a Cloud-Resolving Model: Comparison with ARM Observations and Sensitivity Experiments

    Science.gov (United States)

    Luo, Yali; Xu, Kuan-Man; Morrison, Hugh; McFarquhar, Greg M.; Wang, Zhien; Zhang, Gong

    2007-01-01

    A cloud-resolving model (CRM) is used to simulate the multiple-layer mixed-phase stratiform (MPS) clouds that occurred during a three-and-a-half day subperiod of the Department of Energy-Atmospheric Radiation Measurement Program s Mixed-Phase Arctic Cloud Experiment (M-PACE). The CRM is implemented with an advanced two-moment microphysics scheme, a state-of-the-art radiative transfer scheme, and a complicated third-order turbulence closure. Concurrent meteorological, aerosol, and ice nucleus measurements are used to initialize the CRM. The CRM is prescribed by time-varying large-scale advective tendencies of temperature and moisture and surface turbulent fluxes of sensible and latent heat. The CRM reproduces the occurrences of the single- and double-layer MPS clouds as revealed by the M-PACE observations. However, the simulated first cloud layer is lower and the second cloud layer thicker compared to observations. The magnitude of the simulated liquid water path agrees with that observed, but its temporal variation is more pronounced than that observed. As in an earlier study of single-layer cloud, the CRM also captures the major characteristics in the vertical distributions and temporal variations of liquid water content (LWC), total ice water content (IWC), droplet number concentration and ice crystal number concentration (nis) as suggested by the aircraft observations. However, the simulated mean values differ significantly from the observed. The magnitude of nis is especially underestimated by one order of magnitude. Sensitivity experiments suggest that the lower cloud layer is closely related to the surface fluxes of sensible and latent heat; the upper cloud layer is probably initialized by the large-scale advective cooling/moistening and maintained through the strong longwave (LW) radiative cooling near the cloud top which enhances the dynamical circulation; artificially turning off all ice-phase microphysical processes results in an increase in LWP by a

  11. Global cloud and precipitation chemistry and wet deposition: tropospheric model simulations with ECHAM5/MESSy1

    OpenAIRE

    Tost, H; Jöckel, P.; Kerkweg, A.; Pozzer, A.; Sander, R.; Lelieveld, J.

    2007-01-01

    The representation of cloud and precipitation chemistry and subsequent wet deposition of trace constituents in global atmospheric chemistry models is associated with large uncertainties. To improve the simulated trace gas distributions we apply the new submodel SCAV, which includes detailed cloud and precipitation chemistry and present results of the atmospheric chemistry general circulation model ECHAM5/MESSy1. A good agreement with observed wet deposition fluxes for species causing acid rai...

  12. Application of the NASA A-Train to Evaluate Clouds Simulated by the Weather Research and Forecast Model

    Science.gov (United States)

    Molthan, Andrew L.; Jedlovec, Gary J.; Lapenta, William M.

    2008-01-01

    The CloudSat Mission, part of the NASA A-Train, is providing the first global survey of cloud profiles and cloud physical properties, observing seasonal and geographical variations that are pertinent to evaluating the way clouds are parameterized in weather and climate forecast models. CloudSat measures the vertical structure of clouds and precipitation from space through the Cloud Profiling Radar (CPR), a 94 GHz nadir-looking radar measuring the power backscattered by clouds as a function of distance from the radar. One of the goals of the CloudSat mission is to evaluate the representation of clouds in forecast models, thereby contributing to improved predictions of weather, climate and the cloud-climate feedback problem. This paper highlights potential limitations in cloud microphysical schemes currently employed in the Weather Research and Forecast (WRF) modeling system. The horizontal and vertical structure of explicitly simulated cloud fields produced by the WRF model at 4-km resolution are being evaluated using CloudSat observations in concert with products derived from MODIS and AIRS. A radiative transfer model is used to produce simulated profiles of radar reflectivity given WRF input profiles of hydrometeor mixing ratios and ambient atmospheric conditions. The preliminary results presented in the paper will compare simulated and observed reflectivity fields corresponding to horizontal and vertical cloud structures associated with midlatitude cyclone events.

  13. Simulation of the Low-Level-Jet by general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Ghan, S.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-04-01

    To what degree is the low-level jet climatology and it`s impact on clouds and precipitation being captured by current general circulation models? It is hypothesised that a need for a pramaterization exists. This paper describes this parameterization need.

  14. Drizzle formation in stratocumulus clouds: effects of turbulent mixing

    Directory of Open Access Journals (Sweden)

    L. Magaritz-Ronen

    2016-02-01

    Full Text Available The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian–Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic and characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. It was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.

  15. Submm-Wave Radiometry for Cloud/Humidity/Precipitation Sciences

    Science.gov (United States)

    Wu, Dong L.

    2011-01-01

    Although active sensors can provide cloud profiles at good vertical resolution, clouds are often coupled with dynamics to form fast and organized structures. Lack of understanding of these organized systems leads to great challenge for numerical models. The deficiency is partly reflected, for example, in poorly modeled intraseasonal variations (e.g., MJD). Remote sensing clouds in the middle and upper troposphere has been challenging from space. Vis/IR sensors are sensitive to the topmost cloud layers whereas low-frequency MW techniques are sensitivity to liquid and precipitation at the bottom of cloud layers. The middle-level clouds, mostly in the ice phase, require a sensor that has moderate penetration and sensitivity to cloud scattering, in order to measure cloud water content. Sensors at submm wavelengths provide promising sensitivity and coverage with the spatial resolution needed to measure cloud water content floating in the upper air. In addition, submm-wave sensors are able to provide better measurements of upper-tropospheric humidity than traditional microwave instruments.

  16. Determining stages of cirrus evolution: a cloud classification scheme

    Science.gov (United States)

    Urbanek, Benedikt; Groß, Silke; Schäfler, Andreas; Wirth, Martin

    2017-05-01

    Cirrus clouds impose high uncertainties on climate prediction, as knowledge on important processes is still incomplete. For instance it remains unclear how cloud microphysical and radiative properties change as the cirrus evolves. Recent studies classify cirrus clouds into categories including in situ, orographic, convective and liquid origin clouds and investigate their specific impact. Following this line, we present a novel scheme for the classification of cirrus clouds that addresses the need to determine specific stages of cirrus evolution. Our classification scheme is based on airborne Differential Absorption and High Spectral Resolution Lidar measurements of atmospheric water vapor, aerosol depolarization, and backscatter, together with model temperature fields and simplified parameterizations of freezing onset conditions. It identifies regions of supersaturation with respect to ice (ice-supersaturated regions, ISSRs), heterogeneous and homogeneous nucleation, depositional growth, and ice sublimation and sedimentation with high spatial resolution. Thus, all relevant stages of cirrus evolution can be classified and characterized. In a case study of a gravity lee-wave-influenced cirrus cloud, encountered during the ML-CIRRUS flight campaign, the applicability of our classification is demonstrated. Revealing the structure of cirrus clouds, this valuable tool might help to examine the influence of evolution stages on the cloud's net radiative effect and to investigate the specific variability of optical and microphysical cloud properties in upcoming research.

  17. Carbon Isotope Chemistry in Molecular Clouds

    Science.gov (United States)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  18. A Comparison between Airborne and Mountaintop Cloud Microphysics

    Science.gov (United States)

    David, R.; Lowenthal, D. H.; Hallar, A. G.; McCubbin, I.; Avallone, L. M.; Mace, G. G.; Wang, Z.

    2014-12-01

    Complex terrain has a large impact on cloud dynamics and microphysics. Several studies have examined the microphysical details of orographically-enhanced clouds from either an aircraft or from a mountain top location. However, further research is needed to characterize the relationships between mountain top and airborne microphysical properties. During the winter of 2011, an airborne study, the Colorado Airborne Mixed-Phase Cloud Study (CAMPS), and a ground-based field campaign, the Storm Peak Lab (SPL) Cloud Property Validation Experiment (StormVEx) were conducted in the Park Range of the Colorado Rockies. The CAMPS study utilized the University of Wyoming King Air (UWKA) to provide airborne cloud microphysical and meteorological data on 29 flights totaling 98 flight hours over the Park Range from December 15, 2010 to February 28, 2011. The UWKA was equipped with instruments that measured both cloud droplet and ice crystal size distributions, liquid water content, total water content (vapor, liquid, and ice), and 3-dimensional wind speed and direction. The Wyoming Cloud Radar and Lidar were also deployed during the campaign. These measurements are used to characterize cloud structure upwind and above the Park Range. StormVEx measured cloud droplet, ice crystal, and aerosol size distributions at SPL, located on the west summit of Mt. Werner at 3220m MSL. The observations from SPL are used to determine mountain top cloud microphysical properties at elevations lower than the UWKA was able to sample in-situ. Comparisons showed that cloud microphysics aloft and at the surface were consistent with respect to snow growth processes while small crystal concentrations were routinely higher at the surface, suggesting ice nucleation near cloud base. The effects of aerosol concentrations and upwind stability on mountain top and downwind microphysics are considered.

  19. Circulation of Stars

    Science.gov (United States)

    Boitani, P.

    2016-01-01

    Since the dawn of man, contemplation of the stars has been a primary impulse in human beings, who proliferated their knowledge of the stars all over the world. Aristotle sees this as the product of primeval and perennial “wonder” which gives rise to what we call science, philosophy, and poetry. Astronomy, astrology, and star art (painting, architecture, literature, and music) go hand in hand through millennia in all cultures of the planet (and all use catasterisms to explain certain phenomena). Some of these developments are independent of each other, i.e., they take place in one culture independently of others. Some, on the other hand, are the product of the “circulation of stars.” There are two ways of looking at this. One seeks out forms, the other concentrates on the passing of specific lore from one area to another through time. The former relies on archetypes (for instance, with catasterism), the latter constitutes a historical process. In this paper I present some of the surprising ways in which the circulation of stars has occurred—from East to West, from East to the Far East, and from West to East, at times simultaneously.

  20. Final Report for Research Conducted at The Scripps Institution of Oceanography, University of California San Diego from 2/2002 to 8/2003 for ''Aerosol and Cloud-Field Radiative Effects in the Tropical Western Pacific: Analyses and General Circulation Model Parameterizations''

    Energy Technology Data Exchange (ETDEWEB)

    Vogelmann, A. M.

    2004-01-27

    OAK-B135 Final report from the University of California San Diego for an ongoing research project that was moved to Brookhaven National Laboratory where proposed work will be completed. The research uses measurements made by the Atmospheric Radiation Measurement (ARM) Program to quantify the effects of aerosols and clouds on the Earth's energy balance in the climatically important Tropical Western Pacific.

  1. Trust management in cloud services

    CERN Document Server

    Noor, Talal H; Bouguettaya, Athman

    2014-01-01

    This book describes the design and implementation of Cloud Armor, a novel approach for credibility-based trust management and automatic discovery of cloud services in distributed and highly dynamic environments. This book also helps cloud users to understand the difficulties of establishing trust in cloud computing and the best criteria for selecting a service cloud. The techniques have been validated by a prototype system implementation and experimental studies using a collection of real world trust feedbacks on cloud services.The authors present the design and implementation of a novel pro

  2. Efficient quantum circuits for dense circulant and circulant like operators.

    Science.gov (United States)

    Zhou, S S; Wang, J B

    2017-05-01

    Circulant matrices are an important family of operators, which have a wide range of applications in science and engineering-related fields. They are, in general, non-sparse and non-unitary. In this paper, we present efficient quantum circuits to implement circulant operators using fewer resources and with lower complexity than existing methods. Moreover, our quantum circuits can be readily extended to the implementation of Toeplitz, Hankel and block circulant matrices. Efficient quantum algorithms to implement the inverses and products of circulant operators are also provided, and an example application in solving the equation of motion for cyclic systems is discussed.

  3. Metastable Phases in Ice Clouds

    Science.gov (United States)

    Weiss, Fabian; Baloh, Philipp; Kubel, Frank; Hoelzel, Markus; Parker, Stewart; Grothe, Hinrich

    2014-05-01

    Polar Stratospheric Clouds and Cirrus Clouds contain both, pure water ice and phases of nitric acid hydrates. Preferentially for the latter, the thermodynamically stable phases have intensively been investigated in the past (e.g. nitric acid trihydrate, beta-NAT). As shown by Peter et al. [1] the water activity inside clouds is higher than expected, which might be explained by the presence of metastable stable phases (e.g. cubic ice). However, also metastable nitric acid hydrates might be important due to the inherent non-equilibrium freezing conditions in the upper atmosphere. The delta ice theory of Gao et al. [2] presents a model approach to solve this problem by involving both metastable ice and NAT as well. So it is of high interest to investigate the metastable phase of NAT (i.e. alpha-NAT), the structure of which was unknown up to the presence. In our laboratory a production procedure for metastable alpha-NAT has been developed, which gives access to neutron diffraction and X-ray diffraction measurements, where sample quantities of several Gramm are required. The diffraction techniques were used to solve the unknown crystalline structure of metastable alpha-NAT, which in turn allows the calculation of the vibrational spectra, which have also been recorded by us in the past. Rerefences [1] Peter, T., C. Marcolli, P. Spichtinger, T. Corti, M. B. Baker, and T. Koop. When dry air is too humid. Science, 314:1399-1402, 2006. [2] Gao, R., P. Popp, D. Fahey, T. Marcy, R. L. Herman, E. Weinstock, D. Baumgardener, T. Garrett, K. Rosenlof, T. Thompson, T. P. Bui, B. Ridley, S. C. Wofsy, O. B. Toon, M. Tolbert, B. Kärcher, Th. Peter, P. K. Hudson, A. Weinheimer, and A. Heymsfield. Evidence That Nitric Acid Increases Relative Humidity in Low-Temperature Cirrus Clouds, Science, 303:516-520, 2004. [3] Tizek, H., E. Knözinger, and H. Grothe. Formation and phase distribution of nitric acid hydrates in the mole fraction range xHNO3<0.25: A combined XRD and IR study, PCCP, 6

  4. [Colonization and structure of arbuscular mycorrhizal fungi community in Alsophila firma (Cyatheales: Cyatheaceae) from a tropical montane cloud forest in Veracruz, México].

    Science.gov (United States)

    Lara-Pérez, Luis Alberto; Noa-Carrazana, Juan Carlos; López, Ángel de Jesús Landa; Hernández-González, Sergio; Oros-Ortega, Iván; Torres, Antonio Andrade

    2014-12-01

    Alsophila firma is a tree fern that is distributed mainly in tropical montane cloud forest (TMCF) and is considered as a threatened species. Arbuscular mycorrrhizal fungi (AMF) have been proposed as an alternative in rescue programs of endangered species. However, our knowledge about diversity of AMF and mycorrhizal status of the species of TMCF is limited. In Mexico TMCF shows different degrees of conservation because of fragmentation and land use change. In this study, we evaluated the level of colonization, richness and abundances of spores of AMF in three fragments with different conservation status: conserved (100 years), secondary vegetation (17 years) and disturbed. For this, soil samples and roots were collected from five individuals of A. firma per site, with at least 100 m away from each other; a total of 100 cm of roots were analysed per site. Root samples showed AMF and occasionally dark septate fungi (DSF) colonizations. For the overall study, 19 species of AMF were recorded: Gigaspora (7), Acaulospora (4), Glomus (4), Funneliformis (2), Sclerocystis (1) and Scutellospora (1). The dominant species in the three sites were Funneliformis geosporum and Acaulospora scrobiculata. The highest diversity (H') and evenness (J') (p 90%. The present study confirmed that A. firma is a mycorrhizal species that exhibits high levels of colonization even in disturbed sites. We suggest that F. geosporum and A. scrobiculata may have the potential to inoculate the gametophyte and young sporophyte of A. firma, to support restoration programs, because of their abundances and high tolerance to disturbed sites.

  5. HUBBLE SPOTS NORTHERN HEMISPHERIC CLOUDS ON URANUS

    Science.gov (United States)

    2002-01-01

    Using visible light, astronomers for the first time this century have detected clouds in the northern hemisphere of Uranus. The newest images, taken July 31 and Aug. 1, 1997 with NASA Hubble Space Telescope's Wide Field and Planetary Camera 2, show banded structure and multiple clouds. Using these images, Dr. Heidi Hammel (Massachusetts Institute of Technology) and colleagues Wes Lockwood (Lowell Observatory) and Kathy Rages (NASA Ames Research Center) plan to measure the wind speeds in the northern hemisphere for the first time. Uranus is sometimes called the 'sideways' planet, because its rotation axis is tipped more than 90 degrees from the planet's orbit around the Sun. The 'year' on Uranus lasts 84 Earth years, which creates extremely long seasons - winter in the northern hemisphere has lasted for nearly 20 years. Uranus has also been called bland and boring, because no clouds have been detectable in ground-based images of the planet. Even to the cameras of the Voyager spacecraft in 1986, Uranus presented a nearly uniform blank disk, and discrete clouds were detectable only in the southern hemisphere. Voyager flew over the planet's cloud tops near the dead of northern winter (when the northern hemisphere was completely shrouded in darkness). Spring has finally come to the northern hemisphere of Uranus. The newest images, both the visible-wavelength ones described here and those taken a few days earlier with the Near Infrared and Multi-Object Spectrometer (NICMOS) by Erich Karkoschka (University of Arizona), show a planet with banded structure and detectable clouds. Two images are shown here. The 'aqua' image (on the left) is taken at 5,470 Angstroms, which is near the human eye's peak response to wavelength. Color has been added to the image to show what a person on a spacecraft near Uranus might see. Little structure is evident at this wavelength, though with image-processing techniques, a small cloud can be seen near the planet's northern limb (rightmost

  6. Transition to the Cloud

    DEFF Research Database (Denmark)

    Hedman, Jonas; Xiao, Xiao

    2016-01-01

    The rising of cloud computing has dramatically changed the way software companies provide and distribute their IT product and related services over the last decades. Today, most software is bought offthe-shelf and distributed over the Internet. This transition is greatly influencing how software...... companies operate. In this paper, we present a case study of an ERP vendor for SMB (small and mediumsize business) in making a transition towards a cloud-based business model. Through the theoretical lens of ecosystem, we are able to analyze the evolution of the vendor and its business network as a whole......, and find that the relationship between vendor and Value-added-Reseller (VAR) is greatly affected. We conclude by presenting critical issues and challenges for managing such cloud transition....

  7. Secure Data Sharing in Cloud Computing using Hybrid cloud

    OpenAIRE

    Er. Inderdeep Singh; Er. Surinder Kaur

    2015-01-01

    Cloud computing is fast growing technology that enables the users to store and access their data remotely. Using cloud services users can enjoy the benefits of on-demand cloud applications and data with limited local infrastructure available with them. While accessing the data from cloud, different users may have relationship among them depending on some attributes, and thus sharing of data along with user privacy and data security becomes important to get effective results. Most of the resea...

  8. Storm and cloud dynamics

    CERN Document Server

    Cotton, William R

    1992-01-01

    This book focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models.Key Features* Key Highlight

  9. Cloud blueprints for integrating and managing cloud federations

    NARCIS (Netherlands)

    Papazoglou, M.; Heisel, M.

    2012-01-01

    Contemporary cloud technologies face insurmountable obstacles. They follow a pull-based, producer-centric trajectory to development where cloud consumers have to ‘squeeze and bolt’ applications onto cloud APIs. They also introduce a monolithic SaaS/PaaS/IaaS stack where a one-size-fits-all mentality

  10. Cloud Computing in Nigeria: The Cloud Ecosystem Perspective ...

    African Journals Online (AJOL)

    The cloud ecosystem describes the complex system of interdependent components that work together to enable cloud services provided to user. This paper presents a critical analysis of the benefits and challenges posed by the adoption and usage of cloud computing. Also presented is the relationship between important ...

  11. Application of Improved Radiation Modeling to General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  12. Cloud Based Applications and Platforms (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Brodt-Giles, D.

    2014-05-15

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  13. Ocean General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin-Ho; Ma, Po-Lun

    2012-09-30

    1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earth’s climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

  14. Securing virtual and cloud environments

    CSIR Research Space (South Africa)

    Carroll, M

    2012-01-01

    Full Text Available targets such as reduced costs, scalability, flexibility, capacity utilisation, higher efficiencies and mobility. Many of these benefits are achieved through the utilisation of technologies such as cloud computing and virtualisation. In many instances cloud...

  15. Cosmic rays, clouds, and climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2000-01-01

    A correlation between a global average of low cloud cover and the flux of cosmic rays incident in the atmosphere has been observed during the last solar cycle. The ionising potential of Earth bound cosmic rays are modulated by the state of the heliosphere, while clouds play an important role...... between cosmic ray flux and low cloud top temperature. The temperature of a cloud depends on the radiation properties determined by its droplet distribution. Low clouds are warm (> 273 K) and therefore consist of liquid water droplets. At typical atmospheric supersaturations (similar to1%) a liquid cloud...... drop will only form in the presence of an aerosol, which acts as a condensation site. The droplet distribution of a cloud will then depend on the number of aerosols activated as cloud condensation nuclei (CCN) and the level of super saturation. Based on observational evidence it is argued...

  16. Lost Circulation Technology Development Status

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, David A.; Schafer, Diane M.; Loeppke, Glen E.; Scott, Douglas D.; Wernig, Marcus D.; Wright, Elton K.

    1992-03-24

    Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the U.S. Department of Energy. The goal of the program is to reduce lost circulation costs by 30-50% through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April, 1991-March, 1992.

  17. Lost circulation technology development status

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, D.A.; Schafer, D.M.; Loeppke, G.E.; Scott, D.D.; Wernig, M.D.; Wright, E.K.

    1992-07-01

    Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the US Department of Energy. The goal of the program is to reduce lost circulation costs by 30--50% through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April 1991--March 1992. 8 refs.

  18. Lost circulation technology development status

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, D.A.; Schafer, D.M.; Loeppke, G.E.; Scott, D.D.; Wernig, M.D.; Wright, E.K.

    1992-01-01

    Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the US Department of Energy. The goal of the program is to reduce lost circulation costs by 30--50% through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April 1991--March 1992. 8 refs.

  19. Percutaneous interventions in Fontan circulation

    Directory of Open Access Journals (Sweden)

    Eduardo Franco

    2015-09-01

    Conclusions: Interventional catheterization procedures are often necessary to reach and maintain the fragile Fontan circulation, mainly in patients with right morphology systemic ventricles and fenestrated Fontan conduits.

  20. Precipitation Characteristics of ISCCP Cloud Regimes for Improving Model Hydrological Budgets

    Science.gov (United States)

    Lee, D.; Oreopoulos, L.

    2011-01-01

    The key in unraveling relationships between precipitation and atmospheric circulations is their common linkage to clouds. Clouds can be described in a variety of ways and several approaches can be adopted to examine their connections to precipitation. We claim that when cloud regimes (aka weather states) from the International Satellite Cloud Climatology Project (ISCCP) are used to conditionally sample/sort and average precipitation data, useful insight and GCM-appropriate diagnostics on the origins and distribution of precipitation can be obtained. The ISCCP cloud regimes are mesoscale (2.5 ) cloud mixtures determined by cluster analysis on joint histograms of cloud optical thickness and cloud top pressure inferred from geostationary and polar orbiter satellite passive retrievals. The ISCCP cloud regime data are combined with GPCP IDD merged surface precipitation data and/or higher temporal and spatial resolution TRMM Multi-Satellite Precipitation Analysis (TMPA) data. The analysis is performed separately for three geographical zones, tropics, and northern/southern midlatitudes (for GPCP; only the tropics can be examined with TMPA data). Our presentation aspires to provide answers to the following questions: (l) What is the mean and variability of surface precipitation produced by each cloud regime at the time of regime occurrence? (2) What is the relative contribution of each cloud regime to the total precipitation within its geographical zone? (3) What is the geographical distribution of precipitation corresponding to particular cloud regime? (4) To what extent are the cloud regimes distinct in terms of their precipitation characteristics and is the regime ordering in terms of convective strength consistent with the observed precipitation intensity?

  1. Circulating tumor cells

    Science.gov (United States)

    Raimondi, Cristina; Nicolazzo, Chiara; Gradilone, Angela; Giannini, Giuseppe; De Falco, Elena; Chimenti, Isotta; Varriale, Elisa; Hauch, Siegfried; Plappert, Linda; Cortesi, Enrico; Gazzaniga, Paola

    2014-01-01

    The hypothesis of the “liquid biopsy” using circulating tumor cells (CTCs) emerged as a minimally invasive alternative to traditional tissue biopsy to determine cancer therapy. Discordance for biomarkers expression between primary tumor tissue and circulating tumor cells (CTCs) has been widely reported, thus rendering the biological characterization of CTCs an attractive tool for biomarkers assessment and treatment selection. Studies performed in metastatic colorectal cancer (mCRC) patients using CellSearch, the only FDA-cleared test for CTCs assessment, demonstrated a much lower yield of CTCs in this tumor type compared with breast and prostate cancer, both at baseline and during the course of treatment. Thus, although attractive, the possibility to use CTCs as therapy-related biomarker for colorectal cancer patients is still limited by a number of technical issues mainly due to the low sensitivity of the CellSearch method. In the present study we found a significant discordance between CellSearch and AdnaTest in the detection of CTCs from mCRC patients. We then investigated KRAS pathway activating mutations in CTCs and determined the degree of heterogeneity for KRAS oncogenic mutations between CTCs and tumor tissues. Whether KRAS gene amplification may represent an alternative pathway responsible for KRAS activation was further explored. KRAS gene amplification emerged as a functionally equivalent and mutually exclusive mechanism of KRAS pathway activation in CTCs, possibly related to transcriptional activation. The serial assessment of CTCs may represent an early biomarker of treatment response, able to overcome the intrinsic limit of current molecular biomarkers represented by intratumor heterogeneity. PMID:24521660

  2. Green Cloud on the Horizon

    Science.gov (United States)

    Ali, Mufajjul

    This paper proposes a Green Cloud model for mobile Cloud computing. The proposed model leverage on the current trend of IaaS (Infrastructure as a Service), PaaS (Platform as a Service) and SaaS (Software as a Service), and look at new paradigm called "Network as a Service" (NaaS). The Green Cloud model proposes various Telco's revenue generating streams and services with the CaaS (Cloud as a Service) for the near future.

  3. Cloud computing basics for librarians.

    Science.gov (United States)

    Hoy, Matthew B

    2012-01-01

    "Cloud computing" is the name for the recent trend of moving software and computing resources to an online, shared-service model. This article briefly defines cloud computing, discusses different models, explores the advantages and disadvantages, and describes some of the ways cloud computing can be used in libraries. Examples of cloud services are included at the end of the article. Copyright © Taylor & Francis Group, LLC

  4. 'Coronae' of rotating interstellar clouds

    Science.gov (United States)

    Rosner, R.; Hartquist, T. W.

    1979-01-01

    This letter considers differential rotation of cool interstellar clouds in the presence of internal magnetic fields, and shows that because of the relative ineffectiveness of field dissipation within the clouds, magnetized gas experiences buoyant forces. The resulting field loops emerge from the cloud and dissipate their energy by field reconnection. The consequent heating is sufficient to produce relatively hot (T approximately 10,000 K) 'coronae' about the clouds.

  5. The Ethics of Cloud Computing

    OpenAIRE

    de Bruin, Boudewijn; Floridi, Luciano

    2016-01-01

    Cloud computing is rapidly gaining traction in business. It offers businesses online services on demand (such as Gmail, iCloud and Salesforce) and allows them to cut costs on hardware and IT support. This is the first paper in business ethics dealing with this new technology. It analyzes the informational duties of hosting companies that own and operate cloud computing datacentres (e.g., Amazon). It considers the cloud services providers leasing ‘space in the cloud’ from hosting companies (e....

  6. Future SDP through Cloud Architectures

    OpenAIRE

    Andriopoulou, Foteini; Lymberopoulos, Dimitrios,

    2012-01-01

    Part 1: Second Artificial Intelligence Applications in Biomedicine Workshop (AIAB 2012); International audience; In this paper we propose a new service delivery platform (SDP), named Future SDP that incorporates principles of cloud computing and service oriented architecture (SOA). Future SDP allows resources, services and middleware infrastructure deployed in diverse clouds to be delivered to users through a common cloud Broker. This cloud Broker is enhanced with policy, management, security...

  7. Cloud services, networking, and management

    CERN Document Server

    da Fonseca, Nelson L S

    2015-01-01

    Cloud Services, Networking and Management provides a comprehensive overview of the cloud infrastructure and services, as well as their underlying management mechanisms, including data center virtualization and networking, cloud security and reliability, big data analytics, scientific and commercial applications. Special features of the book include: State-of-the-art content. Self-contained chapters for readers with specific interests. Includes commercial applications on Cloud (video services and games).

  8. A Variational Method to Retrieve the Extinction Profile in Liquid Clouds Using Multiple Field-of-View Lidar

    Science.gov (United States)

    Pounder, Nicola L.; Hogan, Robin J.; Varnai, Tamas; Battaglia, Alessandro; Cahalan, Robert F.

    2011-01-01

    While liquid clouds playa very important role in the global radiation budget, it's been very difficult to remotely determine their internal cloud structure. Ordinary lidar instruments (similar to radars but using visible light pulses) receive strong signals from such clouds, but the information is limited to a thin layer near the cloud boundary. Multiple field-of-view (FOV) lidars offer some new hope as they are able to isolate photons that were scattered many times by cloud droplets and penetrated deep into a cloud before returning to the instrument. Their data contains new information on cloud structure, although the lack of fast simulation methods made it challenging to interpret the observations. This paper describes a fast new technique that can simulate multiple-FOV lidar signals and can even estimate the way the signals would change in response to changes in cloud properties-an ability that allows quick refinements in our initial guesses of cloud structure. Results for a hypothetical airborne three-FOV lidar suggest that this approach can help determine cloud structure for a deeper layer in clouds, and can reliably determine the optical thickness of even fairly thick liquid clouds. The algorithm is also applied to stratocumulus observations by the 8-FOV airborne "THOR" lidar. These tests demonstrate that the new method can determine the depth to which a lidar provides useful information on vertical cloud structure. This work opens the way to exploit data from spaceborne lidar and radar more rigorously than has been possible up to now.

  9. The role of aerosols in cloud drop parameterizations and its applications in global climate models

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, C.C.; Penner, J.E. [Lawrence Livermore National Lab., CA (United States)

    1996-04-01

    The characteristics of the cloud drop size distribution near cloud base are initially determined by aerosols that serve as cloud condensation nuclei and the updraft velocity. We have developed parameterizations relating cloud drop number concentration to aerosol number and sulfate mass concentrations and used them in a coupled global aerosol/general circulation model (GCM) to estimate the indirect aerosol forcing. The global aerosol model made use of our detailed emissions inventories for the amount of particulate matter from biomass burning sources and from fossil fuel sources as well as emissions inventories of the gas-phase anthropogenic SO{sub 2}. This work is aimed at validating the coupled model with the Atmospheric Radiation Measurement (ARM) Program measurements and assessing the possible magnitude of the aerosol-induced cloud effects on climate.

  10. Gravity Wave-induced High-altitude CO2 Ice Clouds in Mars' Atmosphere

    Science.gov (United States)

    Yigit, E.; Medvedev, A. S.; Hartogh, P.

    2015-12-01

    First general circulation model simulations that quantify and reproduce patches of cold air required for CO2 condensation and ice cloud formation in Mars' atmosphere are presented. Results suggest that these ice clouds are generated by lower atmospheric small-scale gravity waves (GWs) accounted for in the model with the interactively implemented spectral GW parameterization of Yiğit et al. (2008). Distributions of GW-induced temperature fluctuations and occurrences of supersaturation conditions are in a good qualitative agreement with observations of high-altitude CO2 ice clouds. Our study confirms the key role of subgrid-scale GWs in facilitating high-altitude CO2 cloud formation and predicts clouds at altitudes higher than have been observed to date.

  11. Research on cloud computing solutions

    Directory of Open Access Journals (Sweden)

    Liudvikas Kaklauskas

    2015-07-01

    Full Text Available Cloud computing can be defined as a new style of computing in which dynamically scala-ble and often virtualized resources are provided as a services over the Internet. Advantages of the cloud computing technology include cost savings, high availability, and easy scalability. Voas and Zhang adapted six phases of computing paradigms, from dummy termi-nals/mainframes, to PCs, networking computing, to grid and cloud computing. There are four types of cloud computing: public cloud, private cloud, hybrid cloud and community. The most common and well-known deployment model is Public Cloud. A Private Cloud is suited for sensitive data, where the customer is dependent on a certain degree of security.According to the different types of services offered, cloud computing can be considered to consist of three layers (services models: IaaS (infrastructure as a service, PaaS (platform as a service, SaaS (software as a service. Main cloud computing solutions: web applications, data hosting, virtualization, database clusters and terminal services. The advantage of cloud com-puting is the ability to virtualize and share resources among different applications with the objective for better server utilization and without a clustering solution, a service may fail at the moment the server crashes.DOI: 10.15181/csat.v2i2.914

  12. The Basics of Cloud Computing

    Science.gov (United States)

    Kaestner, Rich

    2012-01-01

    Most school business officials have heard the term "cloud computing" bandied about and may have some idea of what the term means. In fact, they likely already leverage a cloud-computing solution somewhere within their district. But what does cloud computing really mean? This brief article puts a bit of definition behind the term and helps one…

  13. A View from the Clouds

    Science.gov (United States)

    Chudnov, Daniel

    2010-01-01

    Cloud computing is definitely a thing now, but it's not new and it's not even novel. Back when people were first learning about the Internet in the 1990s, every diagram that one saw showing how the Internet worked had a big cloud in the middle. That cloud represented the diverse links, routers, gateways, and protocols that passed traffic around in…

  14. iCloud standard guide

    CERN Document Server

    Alfi, Fauzan

    2013-01-01

    An easy-to-use guide, filled with tutorials that will teach you how to set up and use iCloud, and profit from all of its marvellous features.This book is for anyone with basic knowledge of computers and mobile operations. Prior knowledge of cloud computing or iCloud is not expected.

  15. Understanding and Monitoring Cloud Services

    NARCIS (Netherlands)

    Drago, Idilio

    2013-01-01

    Cloud services have changed the way computing power is delivered to customers. The advantages of the cloud model have fast resulted in powerful providers. However, this success has not come without problems. Cloud providers have been related to major failures, including outages and performance

  16. Trusting Privacy in the Cloud

    NARCIS (Netherlands)

    Prüfer, J.O.

    2014-01-01

    Cloud computing technologies have the potential to increase innovation and economic growth considerably. But many users worry that data in the cloud can be accessed by others, thereby damaging the data owner. Consequently, they do not use cloud technologies up to the efficient level. I design an

  17. Securing the Cloud Cloud Computer Security Techniques and Tactics

    CERN Document Server

    Winkler, Vic (JR)

    2011-01-01

    As companies turn to cloud computing technology to streamline and save money, security is a fundamental concern. Loss of certain control and lack of trust make this transition difficult unless you know how to handle it. Securing the Cloud discusses making the move to the cloud while securing your peice of it! The cloud offers felxibility, adaptability, scalability, and in the case of security-resilience. This book details the strengths and weaknesses of securing your company's information with different cloud approaches. Attacks can focus on your infrastructure, communications network, data, o

  18. VMware private cloud computing with vCloud director

    CERN Document Server

    Gallagher, Simon

    2013-01-01

    It's All About Delivering Service with vCloud Director Empowered by virtualization, companies are not just moving into the cloud, they're moving into private clouds for greater security, flexibility, and cost savings. However, this move involves more than just infrastructure. It also represents a different business model and a new way to provide services. In this detailed book, VMware vExpert Simon Gallagher makes sense of private cloud computing for IT administrators. From basic cloud theory and strategies for adoption to practical implementation, he covers all the issues. You'll lea

  19. Structural controls on fluid circulation at the Caviahue-Copahue Volcanic Complex (CCVC) geothermal area (Chile-Argentina), revealed by soil CO2 and temperature, self-potential, and helium isotopes

    Science.gov (United States)

    Roulleau, Emilie; Bravo, Francisco; Pinti, Daniele L.; Barde-Cabusson, Stéphanie; Pizarro, Marcela; Tardani, Daniele; Muñoz, Carlos; Sanchez, Juan; Sano, Yuji; Takahata, Naoto; de la Cal, Federico; Esteban, Carlos; Morata, Diego

    2017-07-01

    Natural geothermal systems are limited areas characterized by anomalously high heat flow caused by recent tectonic or magmatic activity. The heat source at depth is the result of the emplacement of magma bodies, controlled by the regional volcano-tectonic setting. In contrast, at a local scale a well-developed fault-fracture network favors the development of hydrothermal cells, and promotes the vertical advection of fluids and heat. The Southern Volcanic Zone (SVZ), straddling Chile and Argentina, has an important, yet unexplored and undeveloped geothermal potential. Studies on the lithological and tectonic controls of the hydrothermal circulation are therefore important for a correct assessment of the geothermal potential of the region. Here, new and dense self-potential (SP), soil CO2 and temperature (T) measurements, and helium isotope data measured in fumaroles and thermal springs from the geothermal area located in the north-eastern flank of the Copahue volcanic edifice, within the Caviahue Caldera (the Caviahue-Copahue Volcanic Complex - CCVC) are presented. Our results allowed to the constraint of the structural origin of the active thermal areas and the understanding of the evolution of the geothermal system. NE-striking faults in the area, characterized by a combination of SP, CO2, and T maxima and high 3He/4He ratios (up to 8.16 ± 0.21Ra, whereas atmospheric Ra is 1.382 × 10- 6), promote the formation of vertical permeability preferential pathways for fluid circulation. WNW-striking faults represent low-permeability pathways for hydrothermal fluid ascent, but promote infiltration of meteoric water at shallow depths, which dilute the hydrothermal input. The region is scattered with SP, CO2, and T minima, representing self-sealed zones characterized by impermeable altered rocks at depth, which create local barriers for fluid ascent. The NE-striking faults seem to be associated with the upflowing zones of the geothermal system, where the boiling process

  20. Big data mining analysis method based on cloud computing

    Science.gov (United States)

    Cai, Qing Qiu; Cui, Hong Gang; Tang, Hao

    2017-08-01

    Information explosion era, large data super-large, discrete and non-(semi) structured features have gone far beyond the traditional data management can carry the scope of the way. With the arrival of the cloud computing era, cloud computing provides a new technical way to analyze the massive data mining, which can effectively solve the problem that the traditional data mining method cannot adapt to massive data mining. This paper introduces the meaning and characteristics of cloud computing, analyzes the advantages of using cloud computing technology to realize data mining, designs the mining algorithm of association rules based on MapReduce parallel processing architecture, and carries out the experimental verification. The algorithm of parallel association rule mining based on cloud computing platform can greatly improve the execution speed of data mining.

  1. Computing in the Clouds

    Science.gov (United States)

    Johnson, Doug

    2010-01-01

    Web-based applications offer teachers, students, and school districts a convenient way to accomplish a wide range of tasks, from accounting to word processing, for free. Cloud computing has the potential to offer staff and students better services at a lower cost than the technology deployment models they're using now. Saving money and improving…

  2. CLOUD COMPUTING SECURITY ISSUES

    Directory of Open Access Journals (Sweden)

    Florin OGIGAU-NEAMTIU

    2012-01-01

    Full Text Available The term “cloud computing” has been in the spotlights of IT specialists the last years because of its potential to transform this industry. The promised benefits have determined companies to invest great sums of money in researching and developing this domain and great steps have been made towards implementing this technology. Managers have traditionally viewed IT as difficult and expensive and the promise of cloud computing leads many to think that IT will now be easy and cheap. The reality is that cloud computing has simplified some technical aspects of building computer systems, but the myriad challenges facing IT environment still remain. Organizations which consider adopting cloud based services must also understand the many major problems of information policy, including issues of privacy, security, reliability, access, and regulation. The goal of this article is to identify the main security issues and to draw the attention of both decision makers and users to the potential risks of moving data into “the cloud”.

  3. Towards autonomous vehicular clouds

    Directory of Open Access Journals (Sweden)

    Stephan Olariu

    2011-09-01

    Full Text Available The dawn of the 21st century has seen a growing interest in vehicular networking and its myriad potential applications. The initial view of practitioners and researchers was that radio-equipped vehicles could keep the drivers informed about potential safety risks and increase their awareness of road conditions. The view then expanded to include access to the Internet and associated services. This position paper proposes and promotes a novel and more comprehensive vision namely, that advances in vehicular networks, embedded devices and cloud computing will enable the formation of autonomous clouds of vehicular computing, communication, sensing, power and physical resources. Hence, we coin the term, autonomous vehicular clouds (AVCs. A key feature distinguishing AVCs from conventional cloud computing is that mobile AVC resources can be pooled dynamically to serve authorized users and to enable autonomy in real-time service sharing and management on terrestrial, aerial, or aquatic pathways or theaters of operations. In addition to general-purpose AVCs, we also envision the emergence of specialized AVCs such as mobile analytics laboratories. Furthermore, we envision that the integration of AVCs with ubiquitous smart infrastructures including intelligent transportation systems, smart cities and smart electric power grids will have an enormous societal impact enabling ubiquitous utility cyber-physical services at the right place, right time and with right-sized resources.

  4. Marine Aerosols and Clouds.

    Science.gov (United States)

    Brooks, Sarah D; Thornton, Daniel C O

    2017-10-13

    The role of marine bioaerosols in cloud formation and climate is currently so uncertain that even the sign of the climate forcing is unclear. Marine aerosols form through direct emissions and through the conversion of gasphase emissions to aerosols in the atmosphere. The composition and size of aerosols determine how effective they are in catalyzing the formation of water droplets and ice crystals in clouds by acting as cloud condensation nuclei and ice nucleating particles, respectively. Marine organic aerosols may be sourced both from recent regional phytoplankton blooms that add labile organic matter to the surface ocean and from long-term global processes, such as the upwelling of old refractory dissolved organic matter from the deep ocean. Understanding the formation of marine aerosols and their propensity to catalyze cloud formation processes are challenges that must be addressed given the major uncertainties associated with aerosols in climate models. Expected final online publication date for the Annual Review of Marine Science Volume 10 is January 3, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  5. High-Velocity Clouds

    NARCIS (Netherlands)

    Wakker, Bart P.; Woerden, Hugo van; Oswalt, Terry D.; Gilmore, Gerard

    2013-01-01

    The high-velocity clouds (HVCs) are gaseous objects that do not partake in differential galactic rotation, but instead have anomalous velocities. They trace energetic processes on the interface between the interstellar material in the Galactic disk and intergalactic space. Three different processes

  6. Predictable cloud computing

    NARCIS (Netherlands)

    Mullender, Sape J.

    The standard tools for cloud computing—processor and network virtualization—make it difficult to achieve dependability, both in terms of real time operations and fault tolerance. Virtualization multiplexes virtual resources onto physical ones, typically by time division or statistical multiplexing.

  7. Tropical Montane Cloud Forests

    NARCIS (Netherlands)

    Ramirez Correal, Beatriz; Teuling, Adriaan J.; Ganzeveld, Laurens; Hegger, Zita; Leemans, Rik

    2017-01-01

    Mountain areas are characterized by a large heterogeneity in hydrological and meteorological conditions. This heterogeneity is currently poorly represented by gauging networks and by the coarse scale of global and regional climate and hydrological models. Tropical Montane Cloud Forests (TMCFs)

  8. Benchmarking personal cloud storage

    NARCIS (Netherlands)

    Drago, Idilio; Bocchi, Enrico; Mellia, Marco; Slatman, Herman; Pras, Aiko

    2013-01-01

    Personal cloud storage services are data-intensive applications already producing a significant share of Internet traffic. Several solutions offered by different companies attract more and more people. However, little is known about each service capabilities, architecture and - most of all -

  9. Seeding the Cloud

    Science.gov (United States)

    Schaffhauser, Dian

    2013-01-01

    For any institution looking to shift enterprise resource planning (ERP) systems to the cloud, big savings can be achieved--but only if the school has properly prepped "before" negotiations begin. These three steps can help: (1) Mop up the mess first; (2) Understand the true costs for services; and (3) Calculate the cost of transition.

  10. Venus: Tickling the clouds

    Science.gov (United States)

    Marcq, Emmanuel

    2017-08-01

    Even though a thick atmosphere stands between Venus's cloud top and its surface, recent observations now establish the impact of Venus's topography on its upper atmospheric dynamics. Understanding how this is possible will lead to substantial progress in atmospheric computer models.

  11. Clouds and the Near-Earth Environment: Possible Links

    Directory of Open Access Journals (Sweden)

    Condurache-Bota Simona

    2015-12-01

    Full Text Available Climate variability is a hot topic not only for scientists and policy-makers, but also for each and every one of us. The anthropogenic activities are considered to be responsible for most climate change, however there are large uncertainties about the magnitude of effects of solar variability and other extraterrestrial influences, such as galactic cosmic rays on terrestrial climate. Clouds play an important role due to feedbacks of the radiation budget: variation of cloud cover/composition affects climate, which, in turn, affects cloud cover via atmospheric dynamics and sea temperature variations. Cloud formation and evolution are still under scientific scrutiny, since their microphysics is still not understood. Besides atmospheric dynamics and other internal climatic parameters, extraterrestrial sources of cloud cover variation are considered. One of these is the solar wind, whose effect on cloud cover might be modulated by the global atmospheric electrical circuit. Clouds height and composition, their seasonal variation and latitudinal distribution should be considered when trying to identify possible mechanisms by which solar energy is transferred to clouds. The influence of the solar wind on cloud formation can be assessed also through the ap index - the geomagnetic storm index, which can be readily connected with interplanetary magnetic field, IMF structure. This paper proposes to assess the possible relationship between both cloud cover and solar wind proxies, as the ap index, function of cloud height and composition and also through seasonal studies. The data covers almost three solar cycles (1984-2009. Mechanisms are looked for by investigating observed trends or correlation at local/seasonal scale

  12. Polarized View of Supercooled Liquid Water Clouds

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Wasilewski, Andrzej P.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven E.; Arnold, G. Thomas

    2016-01-01

    Supercooled liquid water (SLW) clouds, where liquid droplets exist at temperatures below 0 C present a well known aviation hazard through aircraft icing, in which SLW accretes on the airframe. SLW clouds are common over the Southern Ocean, and climate-induced changes in their occurrence is thought to constitute a strong cloud feedback on global climate. The two recent NASA field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January-February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August- September 2013) provided a unique opportunity to observe SLW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of measurements made by the Research Scanning Polarimeter (RSP) during these experiments accompanied by correlative retrievals from other sensors. The RSP measures both polarized and total reflectance in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. It is a scanning sensor taking samples at 0.8deg intervals within 60deg from nadir in both forward and backward directions. This unique angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135deg and 165deg. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT),which allows retrieval of the droplet size distribution without assuming a size distribution shape. We present an overview of the RSP campaign datasets available from the NASA GISS website, as well as two detailed examples of the retrievals. In these case studies we focus on cloud fields with spatial features

  13. AIRS-CloudSat cloud mask, radar reflectivities, and cloud classification matchups V3.2

    Data.gov (United States)

    National Aeronautics and Space Administration — This is AIRS-CloudSat collocated subset, in NetCDF 4 format. These data contain collocated: AIRS Level 1b radiances spectra, CloudSat radar reflectivities, and MODIS...