WorldWideScience

Sample records for circulation cloud structure

  1. Impact of cloud radiative heating on East Asian summer monsoon circulation

    International Nuclear Information System (INIS)

    Guo, Zhun; Zhou, Tianjun; Wang, Minghuai; Qian, Yun

    2015-01-01

    The impacts of cloud radiative heating on the East Asian Summer Monsoon (EASM) over southeastern China (105°–125°E, 20°–35°N) are addressed by using the Community Atmosphere Model version 5 (CAM5). Sensitivity experiments demonstrate that the radiative heating of clouds leads to a positive effect on the local EASM circulation over southeastern China. Without the radiative heating of clouds, the EASM circulation and precipitation would be much weaker than that in normal conditions. The longwave heating of clouds dominates the changes of EASM circulation. The positive effect of clouds on EASM circulation is explained by the thermodynamic energy equation, i.e. the different heating rate between cloud base and cloud top enhances the convective instability over southeastern China, which consequently enhances updraft. The strong updraft would further result in a southward meridional wind above the center of the updraft through Sverdrup vorticity balance. (letter)

  2. [Treatment of cloud radiative effects in general circulation models

    International Nuclear Information System (INIS)

    Wang, W.C.

    1993-01-01

    This is a renewal proposal for an on-going project of the Department of Energy (DOE)/Atmospheric Radiation Measurement (ARM) Program. The objective of the ARM Program is to improve the treatment of radiation-cloud in GCMs so that reliable predictions of the timing and magnitude of greenhouse gas-induced global warming and regional responses can be made. The ARM Program supports two research areas: (I) The modeling and analysis of data related to the parameterization of clouds and radiation in general circulation models (GCMs); and (II) the development of advanced instrumentation for both mapping the three-dimensional structure of the atmosphere and high accuracy/precision radiometric observations. The present project conducts research in area (I) and focuses on GCM treatment of cloud life cycle, optical properties, and vertical overlapping. The project has two tasks: (1) Development and Refinement of GCM Radiation-Cloud Treatment Using ARM Data; and (2) Validation of GCM Radiation-Cloud Treatment

  3. Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change

    Science.gov (United States)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-01-01

    Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  4. Venus: cloud level circulation during 1982 as determined from Pioneer cloud photopolarimeter images. 11. Solar longitude dependent circulation

    International Nuclear Information System (INIS)

    Limaye, S.S.

    1988-01-01

    Pioneer Venus Orbiter images obtained in 1982 indicate a marked solar-locked dependence of cloud level circulation in both averaged cloud motions and cloud layer UV reflectivity. An apparent relationship is noted between horizontal divergence and UV reflectivity: the highest reflectivities are associated with regions of convergence at high latitudes, while lower values are associated with equatorial latitude regions where the motions are divergent. In solar-locked coordinates, the rms deviation of normalized UV brightness is higher at 45-deg latitudes than in equatorial regions. 37 references

  5. A stratiform cloud parameterization for General Circulation Models

    International Nuclear Information System (INIS)

    Ghan, S.J.; Leung, L.R.; Chuang, C.C.; Penner, J.E.; McCaa, J.

    1994-01-01

    The crude treatment of clouds in General Circulation Models (GCMs) is widely recognized as a major limitation in the application of these models to predictions of global climate change. The purpose of this project is to develop a paxameterization for stratiform clouds in GCMs that expresses stratiform clouds in terms of bulk microphysical properties and their subgrid variability. In this parameterization, precipitating cloud species are distinguished from non-precipitating species, and the liquid phase is distinguished from the ice phase. The size of the non-precipitating cloud particles (which influences both the cloud radiative properties and the conversion of non-precipitating cloud species to precipitating species) is determined by predicting both the mass and number concentrations of each species

  6. A stratiform cloud parameterization for general circulation models

    International Nuclear Information System (INIS)

    Ghan, S.J.; Leung, L.R.; Chuang, C.C.; Penner, J.E.; McCaa, J.

    1994-01-01

    The crude treatment of clouds in general circulation models (GCMs) is widely recognized as a major limitation in applying these models to predictions of global climate change. The purpose of this project is to develop in GCMs a stratiform cloud parameterization that expresses clouds in terms of bulk microphysical properties and their subgrid variability. Various clouds variables and their interactions are summarized. Precipitating cloud species are distinguished from non-precipitating species, and the liquid phase is distinguished from the ice phase. The size of the non-precipitating cloud particles (which influences both the cloud radiative properties and the conversion of non-precipitating cloud species to precipitating species) is determined by predicting both the mass and number concentrations of each species

  7. Treatment of cloud radiative effects in general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.C.; Dudek, M.P.; Liang, X.Z.; Ding, M. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: (1) to improve the general circulation model (GCM) cloud/radiation treatment with a focus on cloud verticle overlapping and layer cloud optical properties, and (2) to study the effects of cloud/radiation-climate interaction on GCM climate simulations. This report summarizes the project progress since the Fourth ARM Science Team meeting February 28-March 4, 1994, in Charleston, South Carolina.

  8. Impact of cloud microphysics on cloud-radiation interactions in the CSU general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, L.D.; Randall, D.A.

    1995-04-01

    Our ability to study and quantify the impact of cloud-radiation interactions in studying global scale climate variations strongly relies upon the ability of general circulation models (GCMs) to simulate the coupling between the spatial and temporal variations of the model-generated cloudiness and atmospheric moisture budget components. In particular, the ability of GCMs to reproduce the geographical distribution of the sources and sinks of the planetary radiation balance depends upon their representation of the formation and dissipation of cloudiness in conjunction with cloud microphysics processes, and the fractional amount and optical characteristics of cloudiness in conjunction with the mass of condensate stored in the atmosphere. A cloud microphysics package which encompasses five prognostic variables for the mass of water vapor, cloud water, cloud ice, rain, and snow has been implemented in the Colorado State University General Circulation Model (CSU GCM) to simulate large-scale condensation processes. Convection interacts with the large-scale environment through the detrainment of cloud water and cloud ice at the top of cumulus towers. The cloud infrared emissivity and cloud optical depth of the model-generated cloudiness are interactive and depend upon the mass of cloud water and cloud ice suspended in the atmosphere. The global atmospheric moisture budget and planetary radiation budget of the CSU GCM obtained from a perpetual January simulation are discussed. Geographical distributions of the atmospheric moisture species are presented. Global maps of the top-of-atmosphere outgoing longwave radiation and planetary albedo are compared against Earth Radiation Budget Experiment (ERBE) satellite data.

  9. Aerosol Effects on Instability, Circulations, Clouds, and Precipitation

    Directory of Open Access Journals (Sweden)

    Seoung-Soo Lee

    2014-01-01

    Full Text Available It is well known that increasing aerosol and associated changes in aerosol-cloud interactions and precipitation since industrialization have been playing an important role in climate change, but this role has not been well understood. This prevents us from predicting future climate with a good confidence. This review paper presents recent studies on the changes in the aerosol-cloud interactions and precipitation particularly in deep convective clouds. In addition, this review paper discusses how to improve our understanding of these changes by considering feedbacks among aerosol, cloud dynamics, cloud and its embedded circulations, and microphysics. Environmental instability basically determines the dynamic intensity of clouds and thus acts as one of the most important controls on these feedbacks. As a first step to the improvement of the understanding, this paper specifically elaborates on how to link the instability to the feedbacks.

  10. Evaluation of NCMRWF unified model vertical cloud structure with CloudSat over the Indian summer monsoon region

    Science.gov (United States)

    Jayakumar, A.; Mamgain, Ashu; Jisesh, A. S.; Mohandas, Saji; Rakhi, R.; Rajagopal, E. N.

    2016-05-01

    Representation of rainfall distribution and monsoon circulation in the high resolution versions of NCMRWF Unified model (NCUM-REG) for the short-range forecasting of extreme rainfall event is vastly dependent on the key factors such as vertical cloud distribution, convection and convection/cloud relationship in the model. Hence it is highly relevant to evaluate the vertical structure of cloud and precipitation of the model over the monsoon environment. In this regard, we utilized the synergy of the capabilities of CloudSat data for long observational period, by conditioning it for the synoptic situation of the model simulation period. Simulations were run at 4-km grid length with the convective parameterization effectively switched off and on. Since the sample of CloudSat overpasses through the monsoon domain is small, the aforementioned methodology may qualitatively evaluate the vertical cloud structure for the model simulation period. It is envisaged that the present study will open up the possibility of further improvement in the high resolution version of NCUM in the tropics for the Indian summer monsoon associated rainfall events.

  11. Prognostic cloud water in the Los Alamos general circulation model

    International Nuclear Information System (INIS)

    Kristjansson, J.E.; Kao, C.Y.J.

    1993-01-01

    Most of today's general circulation models (GCMS) have a greatly simplified treatment of condensation and clouds. Recent observational studies of the earth's radiation budget have suggested cloud-related feedback mechanisms to be of tremendous importance for the issue of global change. Thus, there has arisen an urgent need for improvements in the treatment of clouds in GCMS, especially as the clouds relate to radiation. In the present paper, we investigate the effects of introducing pregnostic cloud water into the Los Alamos GCM. The cloud water field, produced by both stratiform and convective condensation, is subject to 3-dimensional advection and vertical diffusion. The cloud water enters the radiation calculations through the long wave emissivity calculations. Results from several sensitivity simulations show that realistic cloud water and precipitation fields can be obtained with the applied method. Comparisons with observations show that the most realistic results are obtained when more sophisticated schemes for moist convection are introduced at the same time. The model's cold bias is reduced and the zonal winds become stronger, due to more realistic tropical convection

  12. Prognostic cloud water in the Los Alamos general circulation model

    International Nuclear Information System (INIS)

    Kristjansson, J.E.; Kao, C.Y.J.

    1994-01-01

    Most of today's general circulation models (GCMs) have a greatly simplified treatment of condensation and clouds. Recent observational studies of the earth's radiation budget have suggested cloud-related feedback mechanisms to be of tremendous importance for the issue of global change. Thus, an urgent need for improvements in the treatment of clouds in GCMs has arisen, especially as the clouds relate to radiation. In this paper, we investigate the effects of introducing prognostic cloud water into the Los Alamos GCM. The cloud water field, produced by both stratiform and convective condensation, is subject to 3-dimensional advection and vertical diffusion. The cloud water enters the radiation calculations through the longwave emissivity calculations. Results from several sensitivity simulations show that realistic water and precipitation fields can be obtained with the applied method. Comparisons with observations show that the most realistic results are obtained when more sophisticated schemes for moist convection are introduced at the same time. The model's cold bias is reduced and the zonal winds becomes stronger because of more realistic tropical convection

  13. Dynamics of Clouds and Mesoscale Circulations over the Maritime Continent

    Science.gov (United States)

    Jin, Y.; Wang, S.; Xian, P.; Reid, J. S.; Nachamkin, J.

    2010-12-01

    In recent decades Southeast Asia (SEA) has seen rapid economic growth as well as increased biomass burning, resulting in high air pollution levels and reduced air qual-ity. At the same time clouds often prevent accurate air-quality monitoring and analysis using satellite observations. The Seven SouthEast Asian Studies (7SEAS) field campaign currently underway over SEA provides an unprecedented opportunity to study the com-plex interplay between aerosol and clouds. 7SEAS is a comprehensive interdisciplinary atmospheric sciences program through international partnership of NASA, NRL, ONR and seven local institutions including those from Indonesia, Malaysia, the Philippines, Singapore, Taiwan, Thailand, and Vietnam. While the original goal of 7SEAS is to iso-late the impacts of aerosol particles on weather and the environment, it is recognized that better understanding of SEA meteorological conditions, especially those associated with cloud formation and evolution, is critical to the success of the campaign. In this study we attempt to gain more insight into the dynamic and physical processes associated with low level clouds and atmospheric circulation at the regional scale over SEA, using the Navy’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS® ), a regional forecast model in operation at FNMOC since 1998. This effort comprises two main components. First, multiple-years of COAMPS operational forecasts over SEA are analyzed for basic climatology of atmospheric fea-tures. Second, mesoscale circulation and cloud properties are simulated at relatively higher resolution (15-km) for selected periods in the Gulf of Tonkin and adjacent coastal areas. Simulation results are compared to MODIS cloud observations and local sound-ings obtained during 7SEAS for model verifications. Atmospheric boundary layer proc-esses are examined in relation to spatial and temporal variations of cloud fields. The cur-rent work serves as an important step toward improving our

  14. EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation

    Science.gov (United States)

    Bony, Sandrine; Stevens, Bjorn; Ament, Felix; Bigorre, Sebastien; Chazette, Patrick; Crewell, Susanne; Delanoë, Julien; Emanuel, Kerry; Farrell, David; Flamant, Cyrille; Gross, Silke; Hirsch, Lutz; Karstensen, Johannes; Mayer, Bernhard; Nuijens, Louise; Ruppert, James H.; Sandu, Irina; Siebesma, Pier; Speich, Sabrina; Szczap, Frédéric; Totems, Julien; Vogel, Raphaela; Wendisch, Manfred; Wirth, Martin

    2017-11-01

    Trade-wind cumuli constitute the cloud type with the highest frequency of occurrence on Earth, and it has been shown that their sensitivity to changing environmental conditions will critically influence the magnitude and pace of future global warming. Research over the last decade has pointed out the importance of the interplay between clouds, convection and circulation in controling this sensitivity. Numerical models represent this interplay in diverse ways, which translates into different responses of trade-cumuli to climate perturbations. Climate models predict that the area covered by shallow cumuli at cloud base is very sensitive to changes in environmental conditions, while process models suggest the opposite. To understand and resolve this contradiction, we propose to organize a field campaign aimed at quantifying the physical properties of trade-cumuli (e.g., cloud fraction and water content) as a function of the large-scale environment. Beyond a better understanding of clouds-circulation coupling processes, the campaign will provide a reference data set that may be used as a benchmark for advancing the modelling and the satellite remote sensing of clouds and circulation. It will also be an opportunity for complementary investigations such as evaluating model convective parameterizations or studying the role of ocean mesoscale eddies in air-sea interactions and convective organization.

  15. EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation

    Science.gov (United States)

    Bony, Sandrine; Stevens, Bjorn; Ament, Felix; Bigorre, Sebastien; Chazette, Patrick; Crewell, Susanne; Delanoë, Julien; Emanuel, Kerry; Farrell, David; Flamant, Cyrille; Gross, Silke; Hirsch, Lutz; Karstensen, Johannes; Mayer, Bernhard; Nuijens, Louise; Ruppert, James H.; Sandu, Irina; Siebesma, Pier; Speich, Sabrina; Szczap, Frédéric; Totems, Julien; Vogel, Raphaela; Wendisch, Manfred; Wirth, Martin

    Trade-wind cumuli constitute the cloud type with the highest frequency of occurrence on Earth, and it has been shown that their sensitivity to changing environmental conditions will critically influence the magnitude and pace of future global warming. Research over the last decade has pointed out the importance of the interplay between clouds, convection and circulation in controling this sensitivity. Numerical models represent this interplay in diverse ways, which translates into different responses of tradecumuli to climate perturbations. Climate models predict that the area covered by shallow cumuli at cloud base is very sensitive to changes in environmental conditions, while process models suggest the opposite. To understand and resolve this contradiction, we propose to organize a field campaign aimed at quantifying the physical properties of tradecumuli (e.g., cloud fraction and water content) as a function of the large-scale environment. Beyond a better understanding of clouds-circulation coupling processes, the campaign will provide a reference data set that may be used as a benchmark for advancing the modelling and the satellite remote sensing of clouds and circulation. It will also be an opportunity for complementary investigations such as evaluating model convective parameterizations or studying the role of ocean mesoscale eddies in air-sea interactions and convective organization.

  16. Satellite-Observed Vertical Structures of Clouds over the Amazon Basin

    Science.gov (United States)

    Wu, M.; Lee, J. E.

    2017-12-01

    The long wet season of the Amazon basin currently plays a critical role in the terrestrial ecosystem, regulating carbon balance and supporting high biodiversity. It has been argued that the land surface processes are important in maintaining high precipitation; yet, how the land-atmosphere interactions modulate the atmospheric processes are not completely understood. As a first step toward solving this problem, here we examine the vertical structures of clouds and the thermodynamics of the atmosphere over the entire basin at the different time of the year. We combine the vertical distribution of cloud water content from CloudSat, and the atmospheric thermodynamic conditions from the ECMWF ERA-interim reanalysis to compare and contrast the atmospheric condition at different time of the year-the wet, dry, and dry-to-wet transition seasons-and in different regions-ever-wet evergreen broadleaf forests, wet evergreen broadleaf forests with a dry season, and dry wooded grasslands/woodlands-following water stress gradient. In the ever-wet and wet regions, a large amount of cloud ice water is present in the upper atmosphere (above 11km) and convective available potential energy (CAPE) is high during the transition season, supporting the claim that the convective activity is strongest during the transition season. In the dry region, there are more cloud water above 8km over woodlands than over wooded grasslands during the dry and transition seasons, indicating the influence of the land cover. We also classified our data following the large-scale circulation pattern, and the CloudSat data support more deep convective activities in the wet and dry regions when the wind blows from the east during the wet and transition seasons. As a next step, we will focus more on linking the cloud structure to the large-scale circulation and surface processes.

  17. Clouds and the extratropical circulation response to global warming in a hierarchy of global atmosphere models

    Science.gov (United States)

    Voigt, A.

    2017-12-01

    Climate models project that global warming will lead to substantial changes in extratropical jet streams. Yet, many quantitative aspects of warming-induced jet stream changes remain uncertain, and recent work has indicated an important role of clouds and their radiative interactions. Here, I will investigate how cloud-radiative changes impact the zonal-mean extratropical circulation response under global warming using a hierarchy of global atmosphere models. I will first focus on aquaplanet setups with prescribed sea-surface temperatures (SSTs), which reproduce the model spread found in realistic simulations with interactive SSTs. Simulations with two CMIP5 models MPI-ESM and IPSL-CM5A and prescribed clouds show that half of the circulation response can be attributed to cloud changes. The rise of tropical high-level clouds and the upward and poleward movement of midlatitude high-level clouds lead to poleward jet shifts. High-latitude low-level cloud changes shift the jet poleward in one model but not in the other. The impact of clouds on the jet operates via the atmospheric radiative forcing that is created by the cloud changes and is qualitatively reproduced in a dry Held-Suarez model, although the latter is too sensitive because of its simplified treatment of diabatic processes. I will then show that the aquaplanet results also hold when the models are used in a realistic setup that includes continents and seasonality. I will further juxtapose these prescribed-SST simulations with interactive-SST simulations and show that atmospheric and surface cloud-radiative interactions impact the jet poleward jet shifts in about equal measure. Finally, I will discuss the cloud impact on regional and seasonal circulation changes.

  18. International Space Science Institute Workshop on Shallow Clouds, Water Vapor, Circulation and Climate Sensitivity

    CERN Document Server

    Winker, David; Bony, Sandrine; Stevens, Bjorn

    2018-01-01

    This volume presents a series of overview articles arising from a workshop exploring the links among shallow clouds, water vapor, circulation, and climate sensitivity. It provides a state-of-the art synthesis of understanding about the coupling of clouds and water vapor to the large-scale circulation. The emphasis is on two phenomena, namely the self-aggregation of deep convection and interactions between low clouds and the large-scale environment, with direct links to the sensitivity of climate to radiative perturbations. Each subject is approached using simulations, observations, and synthesizing theory; particular attention is paid to opportunities offered by new remote-sensing technologies, some still prospective. The collection provides a thorough grounding in topics representing one of the World Climate Research Program’s Grand Challenges. Previously published in Surveys in Geophysics, Volume 38, Issue 6, 2017 The articles “Observing Convective Aggregation”, “An Observational View of Relationshi...

  19. Explicit prediction of ice clouds in general circulation models

    Science.gov (United States)

    Kohler, Martin

    1999-11-01

    Although clouds play extremely important roles in the radiation budget and hydrological cycle of the Earth, there are large quantitative uncertainties in our understanding of their generation, maintenance and decay mechanisms, representing major obstacles in the development of reliable prognostic cloud water schemes for General Circulation Models (GCMs). Recognizing their relative neglect in the past, both observationally and theoretically, this work places special focus on ice clouds. A recent version of the UCLA - University of Utah Cloud Resolving Model (CRM) that includes interactive radiation is used to perform idealized experiments to study ice cloud maintenance and decay mechanisms under various conditions in term of: (1) background static stability, (2) background relative humidity, (3) rate of cloud ice addition over a fixed initial time-period and (4) radiation: daytime, nighttime and no-radiation. Radiation is found to have major effects on the life-time of layer-clouds. Optically thick ice clouds decay significantly slower than expected from pure microphysical crystal fall-out (taucld = 0.9--1.4 h as opposed to no-motion taumicro = 0.5--0.7 h). This is explained by the upward turbulent fluxes of water induced by IR destabilization, which partially balance the downward transport of water by snowfall. Solar radiation further slows the ice-water decay by destruction of the inversion above cloud-top and the resulting upward transport of water. Optically thin ice clouds, on the other hand, may exhibit even longer life-times (>1 day) in the presence of radiational cooling. The resulting saturation mixing ratio reduction provides for a constant cloud ice source. These CRM results are used to develop a prognostic cloud water scheme for the UCLA-GCM. The framework is based on the bulk water phase model of Ose (1993). The model predicts cloud liquid water and cloud ice separately, and which is extended to split the ice phase into suspended cloud ice (predicted

  20. Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations

    Science.gov (United States)

    Nuijens, Louise; Emanuel, Kerry; Masunaga, Hirohiko; L'Ecuyer, Tristan

    2017-11-01

    Space-borne observations reveal that 20-40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of warm rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column radiative-convective model of hydrostatic, nonlinear flow on a non-rotating sphere, with parameterized convection and radiation, and review ongoing efforts in high-resolution modeling and observations of warm rain. The model experiments investigate the response of convection and circulation to sea surface temperature (SST) gradients between the columns and to changes in a parameter that controls the conversion of cloud condensate to rain. Convection over the cold ocean collapses to a shallow mode with tops near 850 hPa, but a congestus mode with tops near 600 hPa can develop at small SST differences when warm rain formation is more efficient. Here, interactive radiation and the response of the circulation are crucial: along with congestus a deeper moist layer develops, which leads to less low-level radiative cooling, a smaller buoyancy gradient between the columns, and therefore a weaker circulation and less subsidence over the cold ocean. The congestus mode is accompanied with more surface precipitation in the subsiding column and less surface precipitation in the deep convecting column. For the shallow mode over colder oceans, circulations also weaken with more efficient warm rain formation, but only marginally. Here, more warm rain reduces convective tops and the boundary layer depth—similar to Large-Eddy Simulation (LES) studies—which reduces the integrated buoyancy gradient. Elucidating the impact of warm rain can benefit from large-domain high-resolution simulations and observations. Parameterizations of warm rain may be constrained through collocated cloud and rain profiling from ground, and concurrent changes in convection and rain in subsiding and convecting branches of

  1. Cloud-turbulence interactions: Sensitivity of a general circulation model to closure assumptions

    International Nuclear Information System (INIS)

    Brinkop, S.; Roeckner, E.

    1993-01-01

    Several approaches to parameterize the turbulent transport of momentum, heat, water vapour and cloud water for use in a general circulation model (GCM) have been tested in one-dimensional and three-dimensional model simulations. The schemes differ with respect to their closure assumptions (conventional eddy diffusivity model versus turbulent kinetic energy closure) and also regarding their treatment of cloud-turbulence interactions. The basis properties of these parameterizations are discussed first in column simulations of a stratocumulus-topped atmospheric boundary layer (ABL) under a strong subsidence inversion during the KONTROL experiment in the North Sea. It is found that the K-models tend to decouple the cloud layer from the adjacent layers because the turbulent activity is calculated from local variables. The higher-order scheme performs better in this respect because internally generated turbulence can be transported up and down through the action of turbulent diffusion. Thus, the TKE-scheme provides not only a better link between the cloud and the sub-cloud layer but also between the cloud and the inversion as a result of cloud-top entrainment. In the stratocumulus case study, where the cloud is confined by a pronounced subsidence inversion, increased entrainment favours cloud dilution through enhanced evaporation of cloud droplets. In the GCM study, however, additional cloud-top entrainment supports cloud formation because indirect cloud generating processes are promoted through efficient ventilation of the ABL, such as the enhanced moisture supply by surface evaporation and the increased depth of the ABL. As a result, tropical convection is more vigorous, the hydrological cycle is intensified, the whole troposphere becomes warmer and moister in general and the cloudiness in the upper part of the ABL is increased. (orig.)

  2. Kernel structures for Clouds

    Science.gov (United States)

    Spafford, Eugene H.; Mckendry, Martin S.

    1986-01-01

    An overview of the internal structure of the Clouds kernel was presented. An indication of how these structures will interact in the prototype Clouds implementation is given. Many specific details have yet to be determined and await experimentation with an actual working system.

  3. Direct weakening of tropical circulations from masked CO2 radiative forcing.

    Science.gov (United States)

    Merlis, Timothy M

    2015-10-27

    Climate models robustly simulate weakened mean circulations of the tropical atmosphere in direct response to increased carbon dioxide (CO2). The direct response to CO2, defined by the response to radiative forcing in the absence of changes in sea surface temperature, affects tropical precipitation and tropical cyclone genesis, and these changes have been tied to the weakening of the mean tropical circulation. The mechanism underlying this direct CO2-forced circulation change has not been elucidated. Here, I demonstrate that this circulation weakening results from spatial structure in CO2's radiative forcing. In regions of ascending circulation, such as the intertropical convergence zone, the CO2 radiative forcing is reduced, or "masked," by deep-convective clouds and high humidity; in subsiding regions, such as the subtropics, the CO2 radiative forcing is larger because the atmosphere is drier and deep-convective clouds are infrequent. The spatial structure of the radiative forcing reduces the need for the atmosphere to transport energy. This, in turn, weakens the mass overturning of the tropical circulation. The previously unidentified mechanism is demonstrated in a hierarchy of atmospheric general circulation model simulations with altered radiative transfer to suppress the cloud masking of the radiative forcing. The mechanism depends on the climatological distribution of clouds and humidity, rather than uncertain changes in these quantities. Masked radiative forcing thereby offers an explanation for the robustness of the direct circulation weakening under increased CO2.

  4. The Mars Dust Cycle: Investigating the Effects of Radiatively Active Water Ice Clouds on Surface Stresses and Dust Lifting Potential with the NASA Ames Mars General Circulation Model

    Science.gov (United States)

    Kahre, Melinda A.; Hollingsworth, Jeffery

    2012-01-01

    The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.

  5. Mesoscale circulation at the upper cloud level at middle latitudes from the imaging by Venus Monitoring Camera onboard Venus Express

    Science.gov (United States)

    Patsaeva, Marina; Ignatiev, Nikolay; Markiewicz, Wojciech; Khatuntsev, Igor; Titov, Dmitrij; Patsaev, Dmitry

    The Venus Monitoring Camera onboard ESA Venus Express spacecraft acquired a great number of UV images (365 nm) allowing us to track the motion of cloud features at the upper cloud layer of Venus. A digital method developed to analyze correlation functions between two UV images provided wind vector fields on the Venus day side (9-16 hours local time) from the equator to high latitudes. Sizes and regions for the correlation were chosen empirically, as a trade-off of sensitivity against noise immunity and vary from 10(°) x7.5(°) to 20(°) x10(°) depending on the grid step, making this method suitable to investigate the mesoscale circulation. Previously, the digital method was used for investigation of the circulation at low latitudes and provided good agreement with manual tracking of the motion of cloud patterns. Here we present first results obtained by this method for middle latitudes (25(°) S-75(°) S) on the basis of 270 orbits. Comparing obtained vector fields with images for certain orbits, we found a relationship between morphological patterns of the cloud cover at middle latitudes and parameters of the circulation. Elongated cloud features, so-called streaks, are typical for middle latitudes, and their orientation varies over wide range. The behavior of the vector field of velocities depends on the angle between the streak and latitude circles. In the middle latitudes the average angle of the flow deviation from the zonal direction is equal to -5.6(°) ± 1(°) (the sign “-“ means the poleward flow, the standard error is given). For certain orbits, this angle varies from -15.6(°) ± 1(°) to 1.4(°) ± 1(°) . In some regions at latitudes above 60(°) S the meridional wind is equatorward in the morning. The relationship between the cloud cover morphology and circulation peculiarity can be attributed to the motion of the Y-feature in the upper cloud layer due to the super-rotation of the atmosphere.

  6. Cloud4Psi: cloud computing for 3D protein structure similarity searching.

    Science.gov (United States)

    Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur

    2014-10-01

    Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. © The Author 2014. Published by Oxford University Press.

  7. Formation of giant molecular clouds in global spiral structures: the role of orbital dynamics and cloud-cloud collisions

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The different roles played by orbital dynamics and dissipative cloud-cloud collisions in the formation of giant molecular clouds (GMCs) in a global spiral structure are investigated. The interstellar medium (ISM) is simulated by a system of particles, representing clouds, which orbit in a spiral-perturbed, galactic gravitational field. The overall magnitude and width of the global cloud density distribution in spiral arms is very similar in the collisional and collisionless simulations. The results suggest that the assumed number density and size distribution of clouds and the details of individual cloud-cloud collisions have relatively little effect on these features. Dissipative cloud-cloud collisions play an important steadying role for the cloud system's global spiral structure. Dissipative cloud-cloud collisions also damp the relative velocity dispersion of clouds in massive associations and thereby aid in the effective assembling of GMC-like complexes

  8. Influence of cloud radiative effects on tropical circulation and hydrological cycle in the Mid-Holocene

    Science.gov (United States)

    Izumi, Kenji; Kageyama, Masa; Bony, Sandrine; Braconnot, Pascale

    2016-04-01

    Paleoenvironmental data in particular, vegetation and lake-status at mid-Holocene (6,000 years ago) in Sahara shows that African monsoon extended much further north than today. Much of this change results from the changes in insolation driven by precession of the Earth's orbit, but in the state-of-the-art climate models, this factor alone is insufficient to explain the magnitude of the change. Previous studies showed that ocean and vegetation feedbacks affect the mid-Holocene monsoon and that the incorporation of these feedbacks in models improves the simulation of the hydrological cycle. However, it is not sufficient to reduce the discrepancies between simulated and reconstructed surface climates. In this study, we investigate the extent to which the simulation of cloud-radiative effects matters for the simulation of paleo-climatic changes, and past changes in the position and strength of the tropical rain belts in particular. This is done by running a general circulation model with and without clouds-radiation interactions using the IPSL model. The impact of cloud -radiative effects, which prevents the precipitation band to move north, on the tropical circulation and precipitation changes in mid-Holocene experiments will be discussed. Additionally, we will show the simulated effects of land cover change over Sahara.

  9. Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan Plateau

    Science.gov (United States)

    Liu, Y.; Yan, Y.; Lu, J.

    2017-12-01

    The vertical structure of clouds and its connection with precipitation and cloud radiative effects (CRE) over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) products and the Tropical Rainfall Measuring Mission (TRMM) precipitation data. Unique characteristics of cloud vertical structure and CRE over the TP are found. The cloud amount shows seasonal variation over the TP, which presents a single peak (located in 7-11 km) during January to April and two peaks (located in 5-8 km and 11-17 km separately) after mid-June, and then resumes to one peak (located in 5-10 km) after mid-August. Topography-induced restriction on moisture supply leads to a compression effect on clouds, i.e., the reduction in both cloud thickness and number of cloud layers, over the TP. The topography-induced compression effect is also shown in the range in the variation of cloud thickness and cloud-top height corresponding to different precipitation intensity, which is much smaller over the TP than its neighboring regions. In summer, cloud ice particles over the TP are mostly located at lower altitude (5-10 km) with richer variety of sizes and aggregation in no rain conditions compared to other regions. Ice water content becomes abundant and the number concentration tends to be dense at higher levels when precipitation is enhanced. The longwave CRE in the atmosphere over the TP is a net cooling effect. The vertical structure of CRE over the TP is unique compared to other regions: there exists a strong cooling layer of net CRE at the altitude of 8 km, from June to the beginning of October; the net radiative heating layer above the surface is shallower but stronger underneath 7 km and with a stronger seasonal variation over the TP.

  10. Exploring the Effects of Cloud Vertical Structure on Cloud Microphysical Retrievals based on Polarized Reflectances

    Science.gov (United States)

    Miller, D. J.; Zhang, Z.; Platnick, S. E.; Ackerman, A. S.; Cornet, C.; Baum, B. A.

    2013-12-01

    A polarized cloud reflectance simulator was developed by coupling an LES cloud model with a polarized radiative transfer model to assess the capabilities of polarimetric cloud retrievals. With future remote sensing campaigns like NASA's Aerosols/Clouds/Ecosystems (ACE) planning to feature advanced polarimetric instruments it is important for the cloud remote sensing community to understand the retrievable information available and the related systematic/methodical limitations. The cloud retrieval simulator we have developed allows us to probe these important questions in a realistically relevant test bed. Our simulator utilizes a polarized adding-doubling radiative transfer model and an LES cloud field from a DHARMA simulation (Ackerman et al. 2004) with cloud properties based on the stratocumulus clouds observed during the DYCOMS-II field campaign. In this study we will focus on how the vertical structure of cloud microphysics can influence polarized cloud effective radius retrievals. Numerous previous studies have explored how retrievals based on total reflectance are affected by cloud vertical structure (Platnick 2000, Chang and Li 2002) but no such studies about the effects of vertical structure on polarized retrievals exist. Unlike the total cloud reflectance, which is predominantly multiply scattered light, the polarized reflectance is primarily the result of singly scattered photons. Thus the polarized reflectance is sensitive to only the uppermost region of the cloud (tau~influencer on the microphysical development of cloud droplets, can be potentially studied with polarimetric retrievals.

  11. Contributions of Heterogeneous Ice Nucleation, Large-Scale Circulation, and Shallow Cumulus Detrainment to Cloud Phase Transition in Mixed-Phase Clouds with NCAR CAM5

    Science.gov (United States)

    Liu, X.; Wang, Y.; Zhang, D.; Wang, Z.

    2016-12-01

    Mixed-phase clouds consisting of both liquid and ice water occur frequently at high-latitudes and in mid-latitude storm track regions. This type of clouds has been shown to play a critical role in the surface energy balance, surface air temperature, and sea ice melting in the Arctic. Cloud phase partitioning between liquid and ice water determines the cloud optical depth of mixed-phase clouds because of distinct optical properties of liquid and ice hydrometeors. The representation and simulation of cloud phase partitioning in state-of-the-art global climate models (GCMs) are associated with large biases. In this study, the cloud phase partition in mixed-phase clouds simulated from the NCAR Community Atmosphere Model version 5 (CAM5) is evaluated against satellite observations. Observation-based supercooled liquid fraction (SLF) is calculated from CloudSat, MODIS and CPR radar detected liquid and ice water paths for clouds with cloud-top temperatures between -40 and 0°C. Sensitivity tests with CAM5 are conducted for different heterogeneous ice nucleation parameterizations with respect to aerosol influence (Wang et al., 2014), different phase transition temperatures for detrained cloud water from shallow convection (Kay et al., 2016), and different CAM5 model configurations (free-run versus nudged winds and temperature, Zhang et al., 2015). A classical nucleation theory-based ice nucleation parameterization in mixed-phase clouds increases the SLF especially at temperatures colder than -20°C, and significantly improves the model agreement with observations in the Arctic. The change of transition temperature for detrained cloud water increases the SLF at higher temperatures and improves the SLF mostly over the Southern Ocean. Even with the improved SLF from the ice nucleation and shallow cumulus detrainment, the low SLF biases in some regions can only be improved through the improved circulation with the nudging technique. Our study highlights the challenges of

  12. Cloud cover typing from environmental satellite imagery. Discriminating cloud structure with Fast Fourier Transforms (FFT)

    Science.gov (United States)

    Logan, T. L.; Huning, J. R.; Glackin, D. L.

    1983-01-01

    The use of two dimensional Fast Fourier Transforms (FFTs) subjected to pattern recognition technology for the identification and classification of low altitude stratus cloud structure from Geostationary Operational Environmental Satellite (GOES) imagery was examined. The development of a scene independent pattern recognition methodology, unconstrained by conventional cloud morphological classifications was emphasized. A technique for extracting cloud shape, direction, and size attributes from GOES visual imagery was developed. These attributes were combined with two statistical attributes (cloud mean brightness, cloud standard deviation), and interrogated using unsupervised clustering amd maximum likelihood classification techniques. Results indicate that: (1) the key cloud discrimination attributes are mean brightness, direction, shape, and minimum size; (2) cloud structure can be differentiated at given pixel scales; (3) cloud type may be identifiable at coarser scales; (4) there are positive indications of scene independence which would permit development of a cloud signature bank; (5) edge enhancement of GOES imagery does not appreciably improve cloud classification over the use of raw data; and (6) the GOES imagery must be apodized before generation of FFTs.

  13. Infrared polarimetry of dark clouds. Pt. 1. Magnetic field structure in Heiles Cloud 2

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Motohide; Nagata, Tetsuya; Sato, Shuji; Tanaka, Masuo

    1987-01-15

    The K-band polarization of 18 stars toward Heiles Cloud 2 in the Taurus dark cloud complex has been measured to investigate the structure of the magnetic field in this cloud. The observed polarization vectors are well aligned, with a mean position angle of approx. 50/sup 0/, which is perpendicular to the direction of the elongation of the cloud. This indicates that Heiles Cloud 2 has formed by contraction along the magnetic field, resulting in the flattened shape.

  14. The impact of radiatively active water-ice clouds on Martian mesoscale atmospheric circulations

    Science.gov (United States)

    Spiga, A.; Madeleine, J.-B.; Hinson, D.; Navarro, T.; Forget, F.

    2014-04-01

    Background and Goals Water ice clouds are a key component of the Martian climate [1]. Understanding the properties of the Martian water ice clouds is crucial to constrain the Red Planet's climate and hydrological cycle both in the present and in the past [2]. In recent years, this statement have become all the more true as it was shown that the radiative effects of water ice clouds is far from being as negligible as hitherto believed; water ice clouds plays instead a key role in the large-scale thermal structure and dynamics of the Martian atmosphere [3, 4, 5]. Nevertheless, the radiative effect of water ice clouds at lower scales than the large synoptic scale (the so-called meso-scales) is still left to be explored. Here we use for the first time mesoscale modeling with radiatively active water ice clouds to address this open question.

  15. On unravelling mechanism of interplay between cloud and large scale circulation: a grey area in climate science

    Science.gov (United States)

    De, S.; Agarwal, N. K.; Hazra, Anupam; Chaudhari, Hemantkumar S.; Sahai, A. K.

    2018-04-01

    The interaction between cloud and large scale circulation is much less explored area in climate science. Unfolding the mechanism of coupling between these two parameters is imperative for improved simulation of Indian summer monsoon (ISM) and to reduce imprecision in climate sensitivity of global climate model. This work has made an effort to explore this mechanism with CFSv2 climate model experiments whose cloud has been modified by changing the critical relative humidity (CRH) profile of model during ISM. Study reveals that the variable CRH in CFSv2 has improved the nonlinear interactions between high and low frequency oscillations in wind field (revealed as internal dynamics of monsoon) and modulates realistically the spatial distribution of interactions over Indian landmass during the contrasting monsoon season compared to the existing CRH profile of CFSv2. The lower tropospheric wind error energy in the variable CRH simulation of CFSv2 appears to be minimum due to the reduced nonlinear convergence of error to the planetary scale range from long and synoptic scales (another facet of internal dynamics) compared to as observed from other CRH experiments in normal and deficient monsoons. Hence, the interplay between cloud and large scale circulation through CRH may be manifested as a change in internal dynamics of ISM revealed from scale interactive quasi-linear and nonlinear kinetic energy exchanges in frequency as well as in wavenumber domain during the monsoon period that eventually modify the internal variance of CFSv2 model. Conversely, the reduced wind bias and proper modulation of spatial distribution of scale interaction between the synoptic and low frequency oscillations improve the eastward and northward extent of water vapour flux over Indian landmass that in turn give feedback to the realistic simulation of cloud condensates attributing improved ISM rainfall in CFSv2.

  16. Marine cloud brightening

    OpenAIRE

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identi...

  17. Can CFMIP2 models reproduce the leading modes of cloud vertical structure in the CALIPSO-GOCCP observations?

    Science.gov (United States)

    Wang, Fang; Yang, Song

    2018-02-01

    Using principal component (PC) analysis, three leading modes of cloud vertical structure (CVS) are revealed by the GCM-Oriented CALIPSO Cloud Product (GOCCP), i.e. tropical high, subtropical anticyclonic and extratropical cyclonic cloud modes (THCM, SACM and ECCM, respectively). THCM mainly reflect the contrast between tropical high clouds and clouds in middle/high latitudes. SACM is closely associated with middle-high clouds in tropical convective cores, few-cloud regimes in subtropical anticyclonic clouds and stratocumulus over subtropical eastern oceans. ECCM mainly corresponds to clouds along extratropical cyclonic regions. Models of phase 2 of Cloud Feedback Model Intercomparison Project (CFMIP2) well reproduce the THCM, but SACM and ECCM are generally poorly simulated compared to GOCCP. Standardized PCs corresponding to CVS modes are generally captured, whereas original PCs (OPCs) are consistently underestimated (overestimated) for THCM (SACM and ECCM) by CFMIP2 models. The effects of CVS modes on relative cloud radiative forcing (RSCRF/RLCRF) (RSCRF being calculated at the surface while RLCRF at the top of atmosphere) are studied in terms of principal component regression method. Results show that CFMIP2 models tend to overestimate (underestimated or simulate the opposite sign) RSCRF/RLCRF radiative effects (REs) of ECCM (THCM and SACM) in unit global mean OPC compared to observations. These RE biases may be attributed to two factors, one of which is underestimation (overestimation) of low/middle clouds (high clouds) (also known as stronger (weaker) REs in unit low/middle (high) clouds) in simulated global mean cloud profiles, the other is eigenvector biases in CVS modes (especially for SACM and ECCM). It is suggested that much more attention should be paid on improvement of CVS, especially cloud parameterization associated with particular physical processes (e.g. downwelling regimes with the Hadley circulation, extratropical storm tracks and others), which

  18. Role of orbital dynamics and cloud-cloud collisions in the formation of giant molecular clouds in global spiral structures

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors. 68 references

  19. MEASURING THE FRACTAL STRUCTURE OF INTERSTELLAR CLOUDS

    NARCIS (Netherlands)

    VOGELAAR, MGR; WAKKER, BP; SCHWARZ, UJ

    1991-01-01

    To study the structure of interstellar clouds we used the so-called perimeter-area relation to estimate fractal dimensions. We studied the reliability of the method by applying it to artificial fractals and discuss some of the problems and pitfalls. Results for two different cloud types

  20. Spatially ordered structures in storm clouds and fogs

    International Nuclear Information System (INIS)

    Shavlov, A.V.; Dzhumandzhi, V.A.

    2010-01-01

    The article shows the possibility of formation of the spatially ordered structures by the charged drops of water in both storm clouds and fogs. To predict the existence of the given structures there was proposed a model of interaction mechanism among the charged particles. We also estimated the influence of drop ordering onto the surface tension and the shear viscosity in clouds.

  1. Combining observations and models to reduce uncertainty in the cloud response to global warming

    Science.gov (United States)

    Norris, J. R.; Myers, T.; Chellappan, S.

    2017-12-01

    Currently there is large uncertainty on how subtropical low-level clouds will respond to global warming and whether they will act as a positive feedback or negative feedback. Global climate models substantially agree on what changes in atmospheric structure and circulation will occur with global warming but greatly disagree over how clouds will respond to these changes in structure and circulation. An examination of models with the most realistic simulations of low-level cloudiness indicates that the model cloud response to atmospheric changes associated with global warming is quantitatively similar to the model cloud response to atmospheric changes at interannual time scales. For these models, the cloud response to global warming predicted by multilinear regression using coefficients derived from interannual time scales is quantitatively similar to the cloud response to global warming directly simulated by the model. Since there is a large spread among cloud response coefficients even among models with the most realistic cloud simulations, substitution of coefficients derived from satellite observations reduces the uncertainty range of the low-level cloud feedback. Increased sea surface temperature associated with global warming acts to reduce low-level cloudiness, which is partially offset by increased lower tropospheric stratification that acts to enhance low-level cloudiness. Changes in free-tropospheric relative humidity, subsidence, and horizontal advection have only a small impact on low-level cloud. The net reduction in subtropical low-level cloudiness increases absorption of solar radiation by the climate system, thus resulting in a weak positive feedback.

  2. Changes in atmospheric circulation and the Arctic Oscillation preserved within a millennial length reconstruction of summer cloud cover from northern Fennoscandia

    Energy Technology Data Exchange (ETDEWEB)

    Young, Giles H.F.; McCarroll, Danny; Loader, Neil J.; Gagen, Mary H.; Demmler, Joanne C. [Swansea University, Department of Geography, Swansea (United Kingdom); Kirchhefer, Andreas J. [University of Tromsoe, Department of Arctic and Marine Biology, Tromsoe (Norway); Dendrooekologen, Tromsoe (Norway)

    2012-07-15

    Cloud cover currently represents the single greatest source of uncertainty in General Circulation Models. Stable carbon isotope ratios ({delta}{sup 13}C) from tree-rings, in areas of low moisture stress, are likely to be primarily controlled by photosynthetically active radiation (PAR), and therefore should provide a proxy record for cloud cover or sunshine; indeed this association has previously been demonstrated experimentally for Scots pine in Fennoscandia, with sunlight explaining ca 90% of the variance in photosynthesis and temperature only ca 4%. We present a statistically verifiable 1011-year reconstruction of cloud cover from a well replicated, annually-resolved {delta}{sup 13}C record from Forfjord in coastal northwestern Norway. This reconstruction exhibits considerable variability in cloud cover over the past millennium, including extended sunny periods during the cool seventeenth and eighteenth centuries and warm cloudy periods during the eleventh, early fifteenth and twentieth centuries. We find that while a generally positive relationship persists between sunshine and temperature at high-frequency, at lower (multi-decadal) frequencies the relationship is more often a negative one, with cool periods being sunny (most notably the Little Ice Age period from 1600 to 1750 CE) and warm periods more cloudy (e.g. the mediaeval and the twentieth century). We conclude that these long-term changes may be caused by changes in the dominant circulation mode, likely to be associated with the Arctic Oscillation. There is also strong circumstantial evidence that prolonged periods of high summer cloud cover, with low PAR and probably high precipitation, may be in part responsible for major European famines caused by crop failures. (orig.)

  3. Counting the clouds

    International Nuclear Information System (INIS)

    Randall, David A

    2005-01-01

    Cloud processes are very important for the global circulation of the atmosphere. It is now possible, though very expensive, to simulate the global circulation of the atmosphere using a model with resolution fine enough to explicitly represent the larger individual clouds. An impressive preliminary calculation of this type has already been performed by Japanese scientists, using the Earth Simulator. Within the next few years, such global cloud-resolving models (GCRMs) will be applied to weather prediction, and later they will be used in climatechange simulations. The tremendous advantage of GCRMs, relative to conventional lowerresolution global models, is that GCRMs can avoid many of the questionable 'parameterizations' used to represent cloud effects in lower-resolution global models. Although cloud microphysics, turbulence, and radiation must still be parameterized in GCRMs, the high resolution of a GCRM simplifies these problems considerably, relative to conventional models. The United States currently has no project to develop a GCRM, although we have both the computer power and the expertise to do it. A research program aimed at development and applications of GCRMs is outlined

  4. Assessing the impact of the Kuroshio Current on vertical cloud structure using CloudSat data

    Directory of Open Access Journals (Sweden)

    A. Yamauchi

    2018-06-01

    Full Text Available This study analyzed CloudSat satellite data to determine how the warm ocean Kuroshio Current affects the vertical structure of clouds. Rainfall intensity around the middle troposphere (6 km in height over the Kuroshio was greater than that over surrounding areas. The drizzle clouds over the Kuroshio have a higher frequency of occurrence of geometrically thin (0.5–3 km clouds and thicker (7–10 km clouds compared to those around the Kuroshio. Moreover, the frequency of occurrence of precipitating clouds with a geometric thickness of 7 to 10 km increased over the Kuroshio. Stronger updrafts over the Kuroshio maintain large droplets higher in the upper part of the cloud layer, and the maximum radar reflectivity within a cloud layer in non-precipitating and drizzle clouds over the Kuroshio is higher than that around the Kuroshio.

  5. The influence of cirrus cloud-radiative forcing on climate and climate sensitivity in a general circulation model

    International Nuclear Information System (INIS)

    Lohmann, U.; Roeckner, E.

    1994-01-01

    Six numerical experiments have been performed with a general circulation model (GCM) to study the influence of high-level cirrus clouds and global sea surface temperature (SST) perturbations on climate and climate sensitivity. The GCM used in this investigation is the third-generation ECHAM3 model developed jointly by the Max-Planck-Institute for Meteorology and the University of Hamburg. It is shown that the model is able to reproduce many features of the observed cloud-radiative forcing with considerable skill, such as the annual mean distribution, the response to seasonal forcing and the response to observed SST variations in the equatorial Pacific. In addition to a reference experiment where the cirrus emissivity is computed as a function of the cloud water content, two sensitivity experiments have been performed in which the cirrus emissivity is either set to zero everywhere above 400 hPa ('transparent cirrus') or set to one ('black cirrus'). These three experiments are repeated identically, except for prescribing a globally uniform SST warming of 4 K. (orig.)

  6. A cloud/particle model of the interstellar medium - Galactic spiral structure

    Science.gov (United States)

    Levinson, F. H.; Roberts, W. W., Jr.

    1981-01-01

    A cloud/particle model for gas flow in galaxies is developed that incorporates cloud-cloud collisions and supernovae as dominant local processes. Cloud-cloud collisions are the main means of dissipation. To counter this dissipation and maintain local dispersion, supernova explosions in the medium administer radial snowplow pushes to all nearby clouds. The causal link between these processes is that cloud-cloud collisions will form stars and that these stars will rapidly become supernovae. The cloud/particle model is tested and used to investigate the gas dynamics and spiral structures in galaxies where these assumptions may be reasonable. Particular attention is given to whether large-scale galactic shock waves, which are thought to underlie the regular well-delineated spiral structure in some galaxies, form and persist in a cloud-supernova dominated interstellar medium; this question is answered in the affirmative.

  7. Evolution of the Large Scale Circulation, Cloud Structure and Regional Water Cycle Associated with the South China Sea Monsoon During May-June, 1998

    Science.gov (United States)

    Lau, William K.-M.; Li, Xiao-Fan

    2001-01-01

    In this paper, changes in the large-scale circulation, cloud structures and regional water cycle associated with the evolution of the South China Sea (SCS) monsoon in May-June 1998 were investigated using data from the Tropical Rainfall Measuring Mission (TRMM) and field data from the South China Sea Monsoon Experiment (SCSMEX). Results showed that both tropical and extratropical processes strongly influenced the onset and evolution of the SCS monsoon. Prior to the onset of the SCS monsoon, enhanced convective activities associated with the Madden and Julian Oscillation were detected over the Indian Ocean, and the SCS was under the influence of the West Pacific Anticyclone (WPA) with prevailing low level easterlies and suppressed convection. Establishment of low-level westerlies across Indo-China, following the development of a Bay of Bengal depression played an important role in building up convective available potential energy over the SCS. The onset of SCS monsoon appeared to be triggered by the equatorward penetration of extratropical frontal system, which was established over the coastal region of southern China and Taiwan in early May. Convective activities over the SCS were found to vary inversely with those over the Yangtze River Valley (YRV). Analysis of TRMM microwave and precipitation radar data revealed that during the onset phase, convection over the northern SCS consisted of squall-type rain cell embedded in meso-scale complexes similar to extratropical systems. The radar Z-factor intensity indicated that SCS clouds possessed a bimodal distribution, with a pronounced signal (less than 30dBz) at a height of 2-3 km, and another one (less than 25 dBz) at the 8-10 km level, separated by a well-defined melting level indicated by a bright band at around 5-km level. The stratiform-to-convective cloud ratio was approximately 1:1 in the pre-onset phase, but increased to 5:1 in the active phase. Regional water budget calculations indicated that during the

  8. Modelling microphysical and meteorological controls on precipitation and cloud cellular structures in Southeast Pacific stratocumulus

    Directory of Open Access Journals (Sweden)

    H. Wang

    2010-07-01

    Full Text Available Microphysical and meteorological controls on the formation of open and closed cellular structures in the Southeast Pacific are explored using model simulations based on aircraft observations during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx. The effectiveness of factors such as boundary-layer moisture and temperature perturbations, surface heat and moisture fluxes, large-scale vertical motion and solar heating in promoting drizzle and open cell formation for prescribed aerosol number concentrations is explored. For the case considered, drizzle and subsequent open cell formation over a broad region are more sensitive to the observed boundary-layer moisture and temperature perturbations (+0.9 g kg−1; −1 K than to a five-fold decrease in aerosol number concentration (150 vs. 30 mg−1. When embedding the perturbations in closed cells, local drizzle and pockets of open cell (POC formation respond faster to the aerosol reduction than to the moisture increase, but the latter generates stronger and more persistent drizzle. A local negative perturbation in temperature drives a mesoscale circulation that prevents local drizzle formation but promotes it in a remote area where lower-level horizontal transport of moisture is blocked and converges to enhance liquid water path. This represents a potential mechanism for POC formation in the Southeast Pacific stratocumulus region whereby the circulation is triggered by strong precipitation in adjacent broad regions of open cells. A simulation that attempts to mimic the influence of a coastally induced upsidence wave results in an increase in cloud water but this alone is insufficient to initiate drizzle. An increase of surface sensible heat flux is also effective in triggering local drizzle and POC formation.

    Both open and closed cells simulated with observed initial conditions exhibit distinct diurnal variations in cloud properties. A

  9. Simulations of physics and chemistry of polar stratospheric clouds with a general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, J.

    2005-04-20

    A polar stratospheric cloud submodel has been developed and incorporated in a general circulation model including atmospheric chemistry (ECHAM5/MESSy). The formation and sedimentation of polar stratospheric cloud (PSC) particles can thus be simulated as well as heterogeneous chemical reactions that take place on the PSC particles. For solid PSC particle sedimentation, the need for a tailor-made algorithm has been elucidated. A sedimentation scheme based on first order approximations of vertical mixing ratio profiles has been developed. It produces relatively little numerical diffusion and can deal well with divergent or convergent sedimentation velocity fields. For the determination of solid PSC particle sizes, an efficient algorithm has been adapted. It assumes a monodisperse radii distribution and thermodynamic equilibrium between the gas phase and the solid particle phase. This scheme, though relatively simple, is shown to produce particle number densities and radii within the observed range. The combined effects of the representations of sedimentation and solid PSC particles on vertical H{sub 2}O and HNO{sub 3} redistribution are investigated in a series of tests. The formation of solid PSC particles, especially of those consisting of nitric acid trihydrate, has been discussed extensively in recent years. Three particle formation schemes in accordance with the most widely used approaches have been identified and implemented. For the evaluation of PSC occurrence a new data set with unprecedented spatial and temporal coverage was available. A quantitative method for the comparison of simulation results and observations is developed and applied. It reveals that the relative PSC sighting frequency can be reproduced well with the PSC submodel whereas the detailed modelling of PSC events is beyond the scope of coarse global scale models. In addition to the development and evaluation of new PSC submodel components, parts of existing simulation programs have been

  10. Comparison of CloudSat and TRMM radar reflectivities

    Indian Academy of Sciences (India)

    Tropical deep convective clouds drive the large scale circulation of ... information concerning tropical clouds since 1998 ..... and CloudSat Data Processing Center, NASA for providing .... ical precipitating clouds ranging from shallow to deep.

  11. Cloud motions on Venus - Global structure and organization

    Science.gov (United States)

    Limaye, S. S.; Suomi, V. E.

    1981-01-01

    Results on cloud motions on Venus obtained over a period of 3.5 days from Mariner 10 television images are presented. The implied atmosphere flow is almost zonal everywhere on the visible disk, and is in the same retrograde sense as the solid planet. Objective analysis of motions suggests the presence of jet cores (-130 m/s) and organized atmospheric waves. The longitudinal mean meridional profile of the zonal component of motion of the ultraviolet features shows presence of a midlatitude jet stream (-110 m/s). The mean zonal component is -97 m/s at the equator. The mean meridional motion at most latitudes is directed toward the pole in either hemisphere and is at least an order of magnitude smaller so that the flow is nearly zonal. A tentative conclusion from the limited coverage available from Mariner 10 is that at the level of ultraviolet features mean meridional circulation is the dominant mode of poleward angular momentum transfer as opposed to the eddy circulation.

  12. Radiative properties of clouds

    International Nuclear Information System (INIS)

    Twomey, S.

    1993-01-01

    The climatic effects of condensation nuclei in the formation of cloud droplets and the subsequent role of the cloud droplets as contributors to the planetary short-wave albedo is emphasized. Microphysical properties of clouds, which can be greatly modified by the degree of mixing with cloud-free air from outside, are discussed. The effect of clouds on visible radiation is assessed through multiple scattering of the radiation. Cloudwater or ice absorbs more with increasing wavelength in the near-infrared region, with water vapor providing the stronger absorption over narrower wavelength bands. Cloud thermal infrared absorption can be solely related to liquid water content at least for shallow clouds and clouds in the early development state. Three-dimensional general circulation models have been used to study the climatic effect of clouds. It was found for such studies (which did not consider variations in cloud albedo) that the cooling effects due to the increase in planetary short-wave albedo from clouds were offset by heating effects due to thermal infrared absorption by the cloud. Two permanent direct effects of increased pollution are discussed in this chapter: (a) an increase of absorption in the visible and near infrared because of increased amounts of elemental carbon, which gives rise to a warming effect climatically, and (b) an increased optical thickness of clouds due to increasing cloud droplet number concentration caused by increasing cloud condensation nuclei number concentration, which gives rise to a cooling effect climatically. An increase in cloud albedo from 0.7 to 0.87 produces an appreciable climatic perturbation of cooling up to 2.5 K at the ground, using a hemispheric general circulation model. Effects of pollution on cloud thermal infrared absorption are negligible

  13. Progress in Understanding the Impacts of 3-D Cloud Structure on MODIS Cloud Property Retrievals for Marine Boundary Layer Clouds

    Science.gov (United States)

    Zhang, Zhibo; Werner, Frank; Miller, Daniel; Platnick, Steven; Ackerman, Andrew; DiGirolamo, Larry; Meyer, Kerry; Marshak, Alexander; Wind, Galina; Zhao, Guangyu

    2016-01-01

    Theory: A novel framework based on 2-D Tayler expansion for quantifying the uncertainty in MODIS retrievals caused by sub-pixel reflectance inhomogeneity. (Zhang et al. 2016). How cloud vertical structure influences MODIS LWP retrievals. (Miller et al. 2016). Observation: Analysis of failed MODIS cloud property retrievals. (Cho et al. 2015). Cloud property retrievals from 15m resolution ASTER observations. (Werner et al. 2016). Modeling: LES-Satellite observation simulator (Zhang et al. 2012, Miller et al. 2016).

  14. Synoptic Traveling Weather Systems on Mars: Effects of Radiatively-Active Water Ice Clouds

    Science.gov (United States)

    Hollingsworth, Jeffery; Kahre, Melinda; Haberle, Robert; Urata, Richard

    2017-01-01

    Atmospheric aerosols on Mars are critical in determining the nature of its thermal structure, its large-scale circulation, and hence the overall climate of the planet. We conduct multi-annual simulations with the latest version of the NASA Ames Mars global climate model (GCM), gcm2.3+, that includes a modernized radiative-transfer package and complex water-ice cloud microphysics package which permit radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and mutual interactions) to influence the net diabatic heating. Results indicate that radiatively active water ice clouds profoundly affect the seasonal and annual mean climate. The mean thermal structure and balanced circulation patterns are strongly modified near the surface and aloft. Warming of the subtropical atmosphere at altitude and cooling of the high latitude atmosphere at low levels takes place, which increases the mean pole-to-equator temperature contrast (i.e., "baroclinicity"). With radiatively active water ice clouds (RAC) compared to radiatively inert water ice clouds (nonRAC), significant changes in the intensity of the mean state and forced stationary Rossby modes occur, both of which affect the vigor and intensity of traveling, synoptic period weather systems.Such weather systems not only act as key agents in the transport of heat and momentum beyond the extent of the Hadley circulation, but also the transport of trace species such as water vapor, water ice-clouds, dust and others. The northern hemisphere (NH) forced Rossby waves and resultant wave train are augmented in the RAC case: the modes are more intense and the wave train is shifted equatorward. Significant changes also occur within the subtropics and tropics. The Rossby wave train sets up, combined with the traveling synoptic period weather systems (i.e., cyclones and anticyclones), the geographic extent of storm zones (or storm tracks) within the NH. A variety of circulation

  15. Thermodynamic control of anvil cloud amount

    Science.gov (United States)

    Bony, Sandrine; Stevens, Bjorn; Coppin, David; Becker, Tobias; Reed, Kevin A.; Voigt, Aiko

    2016-01-01

    General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, we show that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction. When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation. PMID:27412863

  16. The structure of the clouds distributed operating system

    Science.gov (United States)

    Dasgupta, Partha; Leblanc, Richard J., Jr.

    1989-01-01

    A novel system architecture, based on the object model, is the central structuring concept used in the Clouds distributed operating system. This architecture makes Clouds attractive over a wide class of machines and environments. Clouds is a native operating system, designed and implemented at Georgia Tech. and runs on a set of generated purpose computers connected via a local area network. The system architecture of Clouds is composed of a system-wide global set of persistent (long-lived) virtual address spaces, called objects that contain persistent data and code. The object concept is implemented at the operating system level, thus presenting a single level storage view to the user. Lightweight treads carry computational activity through the code stored in the objects. The persistent objects and threads gives rise to a programming environment composed of shared permanent memory, dispensing with the need for hardware-derived concepts such as the file systems and message systems. Though the hardware may be distributed and may have disks and networks, the Clouds provides the applications with a logically centralized system, based on a shared, structured, single level store. The current design of Clouds uses a minimalist philosophy with respect to both the kernel and the operating system. That is, the kernel and the operating system support a bare minimum of functionality. Clouds also adheres to the concept of separation of policy and mechanism. Most low-level operating system services are implemented above the kernel and most high level services are implemented at the user level. From the measured performance of using the kernel mechanisms, we are able to demonstrate that efficient implementations are feasible for the object model on commercially available hardware. Clouds provides a rich environment for conducting research in distributed systems. Some of the topics addressed in this paper include distributed programming environments, consistency of persistent data

  17. Generating Free-Form Grid Truss Structures from 3D Scanned Point Clouds

    Directory of Open Access Journals (Sweden)

    Hui Ding

    2017-01-01

    Full Text Available Reconstruction, according to physical shape, is a novel way to generate free-form grid truss structures. 3D scanning is an effective means of acquiring physical form information and it generates dense point clouds on surfaces of objects. However, generating grid truss structures from point clouds is still a challenge. Based on the advancing front technique (AFT which is widely used in Finite Element Method (FEM, a scheme for generating grid truss structures from 3D scanned point clouds is proposed in this paper. Based on the characteristics of point cloud data, the search box is adopted to reduce the search space in grid generating. A front advancing procedure suit for point clouds is established. Delaunay method and Laplacian method are used to improve the quality of the generated grids, and an adjustment strategy that locates grid nodes at appointed places is proposed. Several examples of generating grid truss structures from 3D scanned point clouds of seashells are carried out to verify the proposed scheme. Physical models of the grid truss structures generated in the examples are manufactured by 3D print, which solidifies the feasibility of the scheme.

  18. Prediction of cloud droplet number in a general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Ghan, S.J.; Leung, L.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-04-01

    We have applied the Colorado State University Regional Atmospheric Modeling System (RAMS) bulk cloud microphysics parameterization to the treatment of stratiform clouds in the National Center for Atmospheric Research Community Climate Model (CCM2). The RAMS predicts mass concentrations of cloud water, cloud ice, rain and snow, and number concnetration of ice. We have introduced the droplet number conservation equation to predict droplet number and it`s dependence on aerosols.

  19. Thermal structure of intense convective clouds derived from GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Randel, W. J.; Ho, S. -P.

    2012-01-01

    Thermal structure associated with deep convective clouds is investigated using Global Positioning System (GPS) radio occultation measurements. GPS data are insensitive to the presence of clouds, and provide high vertical resolution and high accuracy measurements to identify associated temperature...... behavior. Deep convective systems are identified using International Satellite Cloud Climatology Project (ISCCP) satellite data, and cloud tops are accurately measured using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO) lidar observations; we focus on 53 cases of near-coincident GPS...

  20. Thermal structure of intense convective clouds derived from GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Randel, W. J.; Ho, S.-P.

    2011-01-01

    Thermal structure associated with deep convective clouds is investigated using Global Positioning System (GPS) radio occultation measurements. GPS data are insensitive to the presence of clouds, and provide high vertical resolution and high accuracy measurements to identify associated temperature...... behavior. Deep convective systems are identified using International Satellite Cloud Climatology Project (ISCCP) satellite data, and cloud tops are accurately measured using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO) lidar observations; we focus on 53 cases of near-coincident GPS...

  1. Jovian cloud structure and velocity fields

    International Nuclear Information System (INIS)

    Mitchell, J.L.; Terrile, R.J.; Collins, S.A.; Smith, B.A.; Muller, J.P.; Ingersoll, A.P.; Hunt, G.E.; Beebe, R.F.

    1979-01-01

    A regional comparison of the cloud structures and velocity fields (meridional as well as zonal velocities) in the jovian atmosphere (scales > 200 km) as observed by the Voyager 1 imaging system is given. It is shown that although both hemispheres of Jupiter show similar patterns of diminishing and alternating eastward and westward jets as one progresses polewards, there is a pronounced asymmetry in the structural appearance of the two hemispheres. (UK)

  2. The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6.

    Science.gov (United States)

    Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; Bony, Sandrine; Bretherton, Christopher S.; Chadwick, Robin; Chepfer, Helene; Douville, Herve; Good, Peter; Kay, Jennifer E.; hide

    2017-01-01

    The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud-climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions 'How does the Earth system respond to forcing?' and 'What are the origins and consequences of systematic model biases?' and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity. A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation

  3. Mesoscale to Synoptic Scale Cloud Variability

    Science.gov (United States)

    Rossow, William B.

    1998-01-01

    The atmospheric circulation and its interaction with the oceanic circulation involve non-linear and non-local exchanges of energy and water over a very large range of space and time scales. These exchanges are revealed, in part, by the related variations of clouds, which occur on a similar range of scales as the atmospheric motions that produce them. Collection of comprehensive measurements of the properties of the atmosphere, clouds and surface allows for diagnosis of some of these exchanges. The use of a multi-satellite-network approach by the International Satellite Cloud Climatology Project (ISCCP) comes closest to providing complete coverage of the relevant range space and time scales over which the clouds, atmosphere and ocean vary. A nearly 15-yr dataset is now available that covers the range from 3 hr and 30 km to decade and planetary. This paper considers three topics: (1) cloud variations at the smallest scales and how they may influence radiation-cloud interactions, and (2) cloud variations at "moderate" scales and how they may cause natural climate variability, and (3) cloud variations at the largest scales and how they affect the climate. The emphasis in this discussion is on the more mature subject of cloud-radiation interactions. There is now a need to begin similar detailed diagnostic studies of water exchange processes.

  4. Radiative effect differences between multi-layered and single-layer clouds derived from CERES, CALIPSO, and CloudSat data

    International Nuclear Information System (INIS)

    Li Jiming; Yi Yuhong; Minnis, Patrick; Huang Jianping; Yan Hongru; Ma Yuejie; Wang Wencai; Kirk Ayers, J.

    2011-01-01

    Clouds alter general circulation through modification of the radiative heating profile within the atmosphere. Their effects are complex and depend on height, vertical structure, and phase. The instantaneous cloud radiative effect (CRE) induced by multi-layered (ML) and single-layer (SL) clouds is estimated by analyzing data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, and Clouds and Earth's Radiation Energy Budget System (CERES) missions from March 2007 through February 2008. The CRE differences between ML and SL clouds at the top of the atmosphere (TOA) and at the surface were also examined. The zonal mean shortwave (SW) CRE differences between the ML and SL clouds at the TOA and surface were positive at most latitudes, peaking at 120 W m -2 in the tropics and dropping to -30 W m -2 at higher latitudes. This indicated that the ML clouds usually reflected less sunlight at the TOA and transmitted more to the surface than the SL clouds, due to their higher cloud top heights. The zonal mean longwave (LW) CRE differences between ML and SL clouds at the TOA and surface were relatively small, ranging from -30 to 30 W m -2 . This showed that the ML clouds only increased the amount of thermal radiation at the TOA relative to the SL clouds in the tropics, decreasing it elsewhere. In other words, ML clouds tended to cool the atmosphere in the tropics and warm it elsewhere when compared to SL clouds. The zonal mean net CRE differences were positive at most latitudes and dominated by the SW CRE differences.

  5. A parameterization of cloud droplet nucleation

    International Nuclear Information System (INIS)

    Ghan, S.J.; Chuang, C.; Penner, J.E.

    1993-01-01

    Droplet nucleation is a fundamental cloud process. The number of aerosols activated to form cloud droplets influences not only the number of aerosols scavenged by clouds but also the size of the cloud droplets. Cloud droplet size influences the cloud albedo and the conversion of cloud water to precipitation. Global aerosol models are presently being developed with the intention of coupling with global atmospheric circulation models to evaluate the influence of aerosols and aerosol-cloud interactions on climate. If these and other coupled models are to address issues of aerosol-cloud interactions, the droplet nucleation process must be adequately represented. Here we introduce a droplet nucleation parametrization that offers certain advantages over the popular Twomey (1959) parameterization

  6. Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library

    Science.gov (United States)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud- resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production runs will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, ( 2 ) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  7. The South China Sea Thermohaline Structure and Circulation

    National Research Council Canada - National Science Library

    Chu, Peter C; Ma, Binbing; Chen, Yuchun

    2002-01-01

    ...), consisting of 116,019 temperature and 9,617 salinity profiles, during 1968-1984 to investigate the temporal and spatial variabilities of South China Sea thermohaline structures and circulation...

  8. Observations and Measurements on Unsteady Cloud Cavitation Flow Structures

    International Nuclear Information System (INIS)

    Gu, L X; Yan, G J; Huang, B

    2015-01-01

    The objectives of this paper are to investigate the unsteady structures and hydrodynamics of cavitating flows. Experimental results are presented for a Clark-Y hydrofoil, which is fixed at α=0°, 5° and 8°. The high-speed video camera and Particle Image Velocimetry (PIV) are applied to investigate the transient flow structures. The dynamic measurement system is used to record the dynamic characteristics. The cloud cavitation exhibits noticeable unsteady characteristics. For the case of α=0°, there exit strong interactions between the attached cavity and the re-entrant flow. While for the case of α=8°, the re-entrant flow is relatively thin and the interaction between the cavity and re-entrant flow is limited. The results also present that the periodic collapse and shedding of the large-scale cloud cavitation, which leads to substantial increase of turbulent velocity fluctuations in the cavity region. Experimental evidence indicates that the hydrodynamics are clearly affected by the cavitating flow structures, the amplitude of load fluctuation are much higher for the cloud cavitating cases. (paper)

  9. Observations and Measurements on Unsteady Cloud Cavitation Flow Structures

    Science.gov (United States)

    Gu, L. X.; Yan, G. J.; Huang, B.

    2015-12-01

    The objectives of this paper are to investigate the unsteady structures and hydrodynamics of cavitating flows. Experimental results are presented for a Clark-Y hydrofoil, which is fixed at α=0°, 5° and 8°. The high-speed video camera and Particle Image Velocimetry (PIV) are applied to investigate the transient flow structures. The dynamic measurement system is used to record the dynamic characteristics. The cloud cavitation exhibits noticeable unsteady characteristics. For the case of α=0°, there exit strong interactions between the attached cavity and the re-entrant flow. While for the case of α=8°, the re-entrant flow is relatively thin and the interaction between the cavity and re-entrant flow is limited. The results also present that the periodic collapse and shedding of the large-scale cloud cavitation, which leads to substantial increase of turbulent velocity fluctuations in the cavity region. Experimental evidence indicates that the hydrodynamics are clearly affected by the cavitating flow structures, the amplitude of load fluctuation are much higher for the cloud cavitating cases.

  10. Photoionization-regulated star formation and the structure of molecular clouds

    Science.gov (United States)

    Mckee, Christopher F.

    1989-01-01

    A model for the rate of low-mass star formation in Galactic molecular clouds and for the influence of this star formation on the structure and evolution of the clouds is presented. The rate of energy injection by newly formed stars is estimated, and the effect of this energy injection on the size of the cloud is determined. It is shown that the observed rate of star formation appears adequate to support the observed clouds against gravitational collapse. The rate of photoionization-regulated star formation is estimated and it is shown to be in agreement with estimates of the observed rate of star formation if the observed molecular cloud parameters are used. The mean cloud extinction and the Galactic star formation rate per unit mass of molecular gas are predicted theoretically from the condition that photionization-regulated star formation be in equilibrium. A simple model for the evolution of isolated molecular clouds is developed.

  11. Parameterization of clouds and radiation in climate models

    Energy Technology Data Exchange (ETDEWEB)

    Roeckner, E. [Max Planck Institute for Meterology, Hamburg (Germany)

    1995-09-01

    Clouds are a very important, yet poorly modeled element in the climate system. There are many potential cloud feedbacks, including those related to cloud cover, height, water content, phase change, and droplet concentration and size distribution. As a prerequisite to studying the cloud feedback issue, this research reports on the simulation and validation of cloud radiative forcing under present climate conditions using the ECHAM general circulation model and ERBE top-of-atmosphere radiative fluxes.

  12. Cloud Formation, Sea-Air-Land Interaction, Mozambique, Africa

    Science.gov (United States)

    1991-01-01

    This rare depiction of the physical interactions of air land and sea in cloud formation was seen over Mozambique (12.0S, 40.5E). Moist low air, heated as it moves over land, rises and forms clouds. Even the coastal islands have enough heat to initiate the process. Once begun, the circulation is dynamic and the descending motion suppresses cloud formation on either side of the cloud stream. As clouds move inland, they rise to follow the land upslope.

  13. Evaluation of a stratiform cloud parameterization for general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Ghan, S.J.; Leung, L.R. [Pacific Northwest National Lab., Richland, WA (United States); McCaa, J. [Univ. of Washington, Seattle, WA (United States)

    1996-04-01

    To evaluate the relative importance of horizontal advection of cloud versus cloud formation within the grid cell of a single column model (SCM), we have performed a series of simulations with our SCM driven by a fixed vertical velocity and various rates of horizontal advection.

  14. A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

    Science.gov (United States)

    Huang, Dong; Liu, Yangang

    2014-12-01

    Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models.

  15. MEASURING THE FRACTAL STRUCTURE OF INTERSTELLAR CLOUDS

    NARCIS (Netherlands)

    VOGELAAR, MGR; WAKKER, BP

    To study the structure of interstellar matter we have applied the concept of fractal curves to the brightness contours of maps of interstellar clouds and from these estimated the fractal dimension for some of them. We used the so-called perimeter-area relation as the basis for these estimates. We

  16. MEASURING THE FRACTAL STRUCTURE OF INTERSTELLAR CLOUDS

    NARCIS (Netherlands)

    VOGELAAR, MGR; WAKKER, BP

    1994-01-01

    To study the structure of interstellar matter we have applied the concept of fractal curves to the brightness contours of maps of interstellar clouds and from these estimated the fractal dimension for some of them. We used the so-called perimeter-area relation as the basis for these estimates. We

  17. Modeling of clouds and radiation for development of parameterizations for general circulation models

    International Nuclear Information System (INIS)

    Westphal, D.; Toon, B.; Jensen, E.; Kinne, S.; Ackerman, A.; Bergstrom, R.; Walker, A.

    1994-01-01

    Atmospheric Radiation Measurement (ARM) Program research at NASA Ames Research Center (ARC) includes radiative transfer modeling, cirrus cloud microphysics, and stratus cloud modeling. These efforts are designed to provide the basis for improving cloud and radiation parameterizations in our main effort: mesoscale cloud modeling. The range of non-convective cloud models used by the ARM modeling community can be crudely categorized based on the number of predicted hydrometers such as cloud water, ice water, rain, snow, graupel, etc. The simplest model has no predicted hydrometers and diagnoses the presence of clouds based on the predicted relative humidity. The vast majority of cloud models have two or more predictive bulk hydrometers and are termed either bulk water (BW) or size-resolving (SR) schemes. This study compares the various cloud models within the same dynamical framework, and compares results with observations rather than climate statistics

  18. Structure, shape, and evolution of radiatively accelerated QSO emission-line clouds

    International Nuclear Information System (INIS)

    Blumenthal, G.R.; Mathews, W.G.

    1979-01-01

    The possibility that the broad emission-line regions of QSOs and active galactic nuclei are formed by a multitude of small clouds which are radiatively accelerated is discussed. Although this model is by no means certain at present, it has four virtues: (1) Observed emission-line widths can be produced with observationally allowed electron densities, UV luminosities, and ionization levels. (2) The acceleration force is coherent in each cloud are found. (3) Reasonable line profiles can result for all emission lines. (4) Photoionization of hydrogen accounts for both heating and acceleration of the emission-line gas. A self-consistent model is developed for the structure, shape, and evolution of radiatively accelerated clouds. The shape varies with cloud mass, and two distinct types of clouds. Fully ionized clouds of very low mass approach a nearly spherical shape. However, all clouds having masses greater than some critical mass adopt a ''pancake'' shape. The condition for constant cloud mass in the cloud frame is shown to be equivalent to the equation of motion of a cloud in the rest frame of the QSO. The emission-line profiles can be sensitive to radial variations in the properties of the intercloud medium, and those properties that correspond to observed profiles are discussed. Finally, the covering factor of a system of pancake clouds is estimated along with the total number of clouds required--approximately 10 14 clouds in each QSO

  19. Investigation on HL-1M pellet shape and cloud structure

    International Nuclear Information System (INIS)

    Zheng Yinjia

    2001-01-01

    When hydrogen multi-pellet flied out from the gun exit and was injected into the HL-1M plasma, the pellet injection and ablation cloud were observed by using a 2D CCD camera SensiCam 360LF. The shape of flight pellet from the gun exit was obtained with the photos taken. The pellet ablation process and the structure of its cloud were analyzed by means of photos with multiple exposure (exp. 100 ns) and long exposure. The experimental setup is described, the results of the pellet injection experiment and characteristic of ablation cloud are presented

  20. A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

    International Nuclear Information System (INIS)

    Huang, Dong; Liu, Yangang

    2014-01-01

    Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models. (letter)

  1. Clouds and the earth's radiation balance

    Energy Technology Data Exchange (ETDEWEB)

    Schmetz, J; Raschke, E

    1986-01-01

    Cloud formation mechanisms and cloud effects must be known for all regions of the earth for two important purposes of weather and climate research: First, the circulation characteristics of the atmosphere can be defined and understood only if the energy transfer between the atmosphere and the earth's surface is known; secondly, the energy transfer calculations should be as realistic as possible. The article discusses the influence of clouds on the radiation balance of the earth/atmosphere radiation balance, and the effects on weather and climate.

  2. Tropical Oceanic Precipitation Processes Over Warm Pool: 2D and 3D Cloud Resolving Model Simulations

    Science.gov (United States)

    Tao, W.-K.; Johnson, D.; Simpson, J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Rainfall is a key link in the hydrologic cycle as well as the primary heat source for the atmosphere. The vertical distribution of convective latent-heat release modulates the large-scale circulations of the topics. Furthermore, changes in the moisture distribution at middle and upper levels of the troposphere can affect cloud distributions and cloud liquid water and ice contents. How the incoming solar and outgoing longwave radiation respond to these changes in clouds is a major factor in assessing climate change. Present large-scale weather and climate model simulate processes only crudely, reducing confidence in their predictions on both global and regional scales. One of the most promising methods to test physical parameterizations used in General Circulation Models (GCMs) and climate models is to use field observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and physically realistic parameterizations of cloud microphysical processes, and allow for their complex interactions with solar and infrared radiative transfer processes. The CRMs can reasonably well resolve the evolution, structure, and life cycles of individual clouds and clouds systems. The major objective of this paper is to investigate the latent heating, moisture and momentum budgets associated with several convective systems developed during the TOGA COARE IFA - westerly wind burst event (late December, 1992). The tool for this study is the Goddard Cumulus Ensemble (GCE) model which includes a 3-class ice-phase microphysics scheme.

  3. A network approach to the geometric structure of shallow cloud fields

    Science.gov (United States)

    Glassmeier, F.; Feingold, G.

    2017-12-01

    The representation of shallow clouds and their radiative impact is one of the largest challenges for global climate models. While the bulk properties of cloud fields, including effects of organization, are a very active area of research, the potential of the geometric arrangement of cloud fields for the development of new parameterizations has hardly been explored. Self-organized patterns are particularly evident in the cellular structure of Stratocumulus (Sc) clouds so readily visible in satellite imagery. Inspired by similar patterns in biology and physics, we approach pattern formation in Sc fields from the perspective of natural cellular networks. Our network analysis is based on large-eddy simulations of open- and closed-cell Sc cases. We find the network structure to be neither random nor characteristic to natural convection. It is independent of macroscopic cloud fields properties like the Sc regime (open vs closed) and its typical length scale (boundary layer height). The latter is a consequence of entropy maximization (Lewis's Law with parameter 0.16). The cellular pattern is on average hexagonal, where non-6 sided cells occur according to a neighbor-number distribution variance of about 2. Reflecting the continuously renewing dynamics of Sc fields, large (many-sided) cells tend to neighbor small (few-sided) cells (Aboav-Weaire Law with parameter 0.9). These macroscopic network properties emerge independent of the Sc regime because the different processes governing the evolution of closed as compared to open cells correspond to topologically equivalent network dynamics. By developing a heuristic model, we show that open and closed cell dynamics can both be mimicked by versions of cell division and cell disappearance and are biased towards the expansion of smaller cells. This model offers for the first time a fundamental and universal explanation for the geometric pattern of Sc clouds. It may contribute to the development of advanced Sc parameterizations

  4. Automatic Generation of Structural Building Descriptions from 3D Point Cloud Scans

    DEFF Research Database (Denmark)

    Ochmann, Sebastian; Vock, Richard; Wessel, Raoul

    2013-01-01

    We present a new method for automatic semantic structuring of 3D point clouds representing buildings. In contrast to existing approaches which either target the outside appearance like the facade structure or rather low-level geometric structures, we focus on the building’s interior using indoor...... scans to derive high-level architectural entities like rooms and doors. Starting with a registered 3D point cloud, we probabilistically model the affiliation of each measured point to a certain room in the building. We solve the resulting clustering problem using an iterative algorithm that relies...... on the estimated visibilities between any two locations within the point cloud. With the segmentation into rooms at hand, we subsequently determine the locations and extents of doors between adjacent rooms. In our experiments, we demonstrate the feasibility of our method by applying it to synthetic as well...

  5. Automatic Generation of Structural Building Descriptions from 3D Point Cloud Scans

    DEFF Research Database (Denmark)

    Ochmann, Sebastian; Vock, Richard; Wessel, Raoul

    2013-01-01

    We present a new method for automatic semantic structuring of 3D point clouds representing buildings. In contrast to existing approaches which either target the outside appearance like the facade structure or rather low-level geometric structures, we focus on the building’s interior using indoor...... scans to derive high-level architectural entities like rooms and doors. Starting with a registered 3D point cloud, we probabilistically model the affiliation of each measured point to a certain room in the building. We solve the resulting clustering problem using an iterative algorithm that relies...

  6. DSaaS: A cloud service for persistent data structures

    CSIR Research Space (South Africa)

    Le Roux, PB

    2016-04-01

    Full Text Available 2CSIR/SU Centre for Artificial Intelligence Research pierrebleroux@gmail.com, kroon@sun.ac.za, whkbester@cs.sun.ac.za Keywords: DaaS, SaaS, Cloud Computing, Persistent Data Structure, Version...

  7. Molecular clouds in the North American and Pelican Nebulae: structures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaobo; Xu, Ye; Yang, Ji, E-mail: shbzhang@pmo.ac.cn [Purple Mountain Observatory, and Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, Nanjing 210008 (China)

    2014-03-01

    We present observations of a 4.25 deg{sup 2} area toward the North American and Pelican Nebulae in the J = 1-0 transitions of {sup 12}CO, {sup 13}CO, and C{sup 18}O. Three molecules show different emission areas with their own distinct structures. These different density tracers reveal several dense clouds with a surface density of over 500 M {sub ☉} pc{sup –2} and a mean H{sub 2} column density of 5.8, 3.4, and 11.9 × 10{sup 21} cm{sup –2} for {sup 12}CO, {sup 13}CO, and C{sup 18}O, respectively. We obtain a total mass of 5.4 × 10{sup 4} M {sub ☉} ({sup 12}CO), 2.0 × 10{sup 4} M {sub ☉} ({sup 13}CO), and 6.1 × 10{sup 3} M {sub ☉} (C{sup 18}O) in the complex. The distribution of excitation temperature shows two phases of gas: cold gas (∼10 K) spreads across the whole cloud; warm gas (>20 K) outlines the edge of the cloud heated by the W80 H II region. The kinetic structure of the cloud indicates an expanding shell surrounding the ionized gas produced by the H II region. There are six discernible regions in the cloud: the Gulf of Mexico, Caribbean Islands and Sea, and Pelican's Beak, Hat, and Neck. The areas of {sup 13}CO emission range within 2-10 pc{sup 2} with mass of (1-5) × 10{sup 3} M {sub ☉} and line width of a few km s{sup –1}. The different line properties and signs of star-forming activity indicate they are in different evolutionary stages. Four filamentary structures with complicated velocity features are detected along the dark lane in LDN 935. Furthermore, a total of 611 molecular clumps within the {sup 13}CO tracing cloud are identified using the ClumpFind algorithm. The properties of the clumps suggest that most of the clumps are gravitationally bound and at an early stage of evolution with cold and dense molecular gas.

  8. Factors influencing the parameterization of anvil clouds within general circulation models

    International Nuclear Information System (INIS)

    Leone, J.M. Jr.; Chin, H.N.

    1994-01-01

    The overall goal of this project is to improve the representation of clouds and their effects within global climate models (GCMs). We have concentrated on a small portion of the overall goal, the evolution of convectively generated cirrus clouds and their effects on the large-scale environment. Because of the large range of time and length scales involved, we have been using a multi-scale attack. For the early time generation and development of the cirrus anvil, we are using a cloud-scale model with horizontal resolution of 1 to 2 kilometers; for the larger scale transport by the larger scale flow, we are using a mesoscale model with a horizontal resolution of 20 to 60 kilometers. The eventual goal is to use the information obtained from these simulations, together with available observations, to derive improved cloud parameterizations for use in GCMs. This paper presents a new tool, a cirrus generator, that we have developed to aid in our mesoscale studies

  9. 1 Vertical structure of orographic precipitating clouds observed over ...

    Indian Academy of Sciences (India)

    11

    The present study explores the vertical structure of precipitating clouds associated with orographic features in South .... The PR, by design, detects PLW and not CLW. Dryness of ...... Organization of Asian Monsoon Convection*; J. Clim. 19(14) ...

  10. Cloud microphysical characteristics versus temperature for three Canadian field projects

    Directory of Open Access Journals (Sweden)

    I. Gultepe

    2002-11-01

    Full Text Available The purpose of this study is to better understand how cloud microphysical characteristics such as liquid water content (LWC and droplet number concentration (Nd change with temperature (T. The in situ observations were collected during three research projects including: the Radiation, Aerosol, and Cloud Experiment (RACE which took place over the Bay of Fundy and Central Ontario during August 1995, the First International Regional Arctic Cloud Experiment (FIRE.ACE which took place in the Arctic Ocean during April 1998, and the Alliance Icing Research Study (AIRS which took place in the Ontario region during the winter of 1999–2000. The RACE, FIRE.ACE, and AIRS projects represent summer mid-latitude clouds, Arctic clouds, and mid-latitude winter clouds, respectively. A LWC threshold of 0.005 g m-3 was used for this study. Similar to other studies, LWC was observed to decrease with decreasing T. The LWC-T relationship was similar for all projects, although the range of T conditions for each project was substantially different, and the variability of LWC within each project was considerable. Nd also decreased with decreasing T, and a parameterization for Nd versus T is suggested that may be useful for modeling studies.Key words. Atmospheric composition and structure (cloud physics and chemistry – Meteorology and atmospheric dynamics (climatology; general circulation

  11. A Report of Clouds on Titan

    Science.gov (United States)

    Corlies, Paul; Hayes, Alexander; Adamkovics, Mate; Rodriguez, Sebastien; Kelland, John; Turtle, Elizabeth P.; Mitchell, Jonathan; Lora, Juan M.; Rojo, Patricio; Lunine, Jonathan I.

    2017-10-01

    We present in this work a detailed analysis of many of the clouds in the Cassini Visual and Infrared Mapping Spectrometer (VIMS) dataset in order to understand their global and seasonal properties. Clouds are one of the few direct observables in Titan’s atmosphere (Griffith et al 2009, Rodriguez et al 2009, Adamkovics et al 2010), and so determining their characteristics allows for a better understanding of surface atmosphere interactions, winds, transport of volatile material, and general circulation. We find the clouds on Titan generally reside in at 5-15km altitude, which agrees with previous modelling efforts (Rafkin et al. 2015), as well as a power law distribution for cloud optical depth. We assume an average cloud droplet size of 100um. No seasonal dependence is observed with either cloud altitude or optical depth, suggesting there is no preferred seasonal formation mechanisms. Combining these characteristics with cloud size (Kelland et al 2017) can trace the transport of volatiles in Titan’s atmosphere, which can be compared against general circulation models (GCMs) (Lora et al 2015). We also present some specific analysis of interesting cloud systems including hypothesized surface fogs (Brown et al 2009) and orographic cloud formation (Barth et al 2010, Corlies et al 2017). In this analysis we use a correlation between Cassini VIMS and RADAR observations as well as an updated topographic map of Titan’s southern hemisphere to better understand the role that topography plays in influencing and driving atmospheric phenomena.Finally, with the end of the Cassini mission, ground based observing now acts as the only means with which to observe clouds on Titan. We present an update of an ongoing cloud campaign to search for clouds on Titan and to understand their seasonal evolution.References:Adamkovics et al. 2010, Icarus 208:868Barth et al. 2010, Planet. Space Sci. 58:1740Corlies et al. 2017, 48th LPSC, 2870CGriffith et al. 2009, ApJ 702:L105Kelland et al

  12. Impact of small-scale structures on estuarine circulation

    Science.gov (United States)

    Liu, Zhuo; Zhang, Yinglong J.; Wang, Harry V.; Huang, Hai; Wang, Zhengui; Ye, Fei; Sisson, Mac

    2018-05-01

    We present a novel and challenging application of a 3D estuary-shelf model to the study of the collective impact of many small-scale structures (bridge pilings of 1 m × 2 m in size) on larger-scale circulation in a tributary (James River) of Chesapeake Bay. We first demonstrate that the model is capable of effectively transitioning grid resolution from 400 m down to 1 m near the pilings without introducing undue numerical artifact. We then show that despite their small sizes and collectively small area as compared to the total channel cross-sectional area, the pilings exert a noticeable impact on the large-scale circulation, and also create a rich structure of vortices and wakes around the pilings. As a result, the water quality and local sedimentation patterns near the bridge piling area are likely to be affected as well. However, when evaluating over the entire waterbody of the project area, the near field effects are weighed with the areal percentage which is small compared to that for the larger unaffected area, and therefore the impact on the lower James River as a whole becomes relatively insignificant. The study highlights the importance of the use of high resolution in assessing the near-field impact of structures.

  13. Structure and characteristics of diffuse interstellar clouds

    International Nuclear Information System (INIS)

    Arshutkin, L.N.; Kolesnik, I.G.

    1978-01-01

    The results of model calculations for spherically symmetrical interstellar clouds being under external pressure are given. Thermal balance of gas clouds is considered. Ultraviolet radiation fields in clouds and equilibrium for chemical elements are calculated for this purpose. Calculations were carried out in the case when cooling is under way mainly by carbon atoms and ions. The clouds with mass up to 700 Msub(sun) under external pressure from 800 to 3000 K cm -3 are considered. In typical for Galactic disk conditions, clouds have dense n > or approximately 200 cm -3 , and cold T approximately 20-30 K state clouds depending on external pressure is given. The critical mass for clouds at the Galactic disk is approximately 500-600 Msub(sun). It is less than the isothermal solution by a factor of approximately 1.5. The massive gas-dust cloud formation problem is discussed

  14. Three-Dimensional Structures of Thermal Tides Simulated by a Venus GCM

    Science.gov (United States)

    Takagi, Masahiro; Sugimoto, Norihiko; Ando, Hiroki; Matsuda, Yoshihisa

    2018-02-01

    Thermal tides in the Venus atmosphere are investigated by using a GCM named as AFES-Venus. The three-dimensional structures of wind and temperature associated with the thermal tides obtained in our model are fully examined and compared with observations. The result shows that the wind and temperature distributions of the thermal tides depend complexly on latitude and altitude in the cloud layer, mainly because they consist of vertically propagating and trapped modes with zonal wave numbers of 1-4, each of which predominates in different latitudes and altitudes under the influence of mid- and high-latitude jets. A strong circulation between the subsolar and antisolar (SS-AS) points, which is equivalent to a diurnal component of the thermal tides, is superposed on the superrotation. The vertical velocity of SS-AS circulation is about 10 times larger than that of the zonal-mean meridional circulation (ZMMC) in 60-70 km altitudes. It is suggested that the SS-AS circulation could contribute to the material transport, and its upward motion might be related to the UV dark region observed in the subsolar and early afternoon regions in low latitudes. The terdiurnal and quaterdiurnal tides, which may be excited by the nonlinear interactions among the diurnal and semidiurnal tides in middle and high latitudes, are detected in the solar-fixed Y-shape structure formed in the vertical wind field in the upper cloud layer. The ZMMC is weak and has a complex structure in the cloud layer; the Hadley circulation is confined to latitudes equatorward of 30°, and the Ferrel-like one appears in middle and high latitudes.

  15. The cloud computational environment – a blueprint for applications in nuclear structure physics

    International Nuclear Information System (INIS)

    Mishev, S.

    2013-01-01

    The utility of the cloud computational model for studies in the field of the nuclear structure theory is addressed. In particular, a class of theoretical many-body approaches which could benefit from this technology is delineated. An architecture suitable for dealing with high performance computations for nuclear structure theories in a cloud is outlined. Alongside that, a nuclear theory aggregation software platform for presenting reports on calculations from various models is discussed. (author)

  16. STRUCTURAL AND FUNCTIONAL MODEL OF CLOUD ORIENTED LEARNING ENVIRONMENT FOR BACHELORS OF INFORMATICS TRAINING

    Directory of Open Access Journals (Sweden)

    Tetiana A. Vakaliuk

    2017-06-01

    Full Text Available The article summarizes the essence of the category "model". There are presented the main types of models used in educational research: structural, functional, structural and functional model as well as basic requirements for building these types of models. The national experience in building models and designing cloud-based learning environment of educational institutions (both higher and secondary is analyzed. It is presented structural and functional model of cloud-based learning environment for Bachelor of Informatics. Also we describe each component of cloud-based learning environment model for bachelors of informatics training: target, managerial, organizational, content and methodical, communication, technological and productive. It is summarized, that COLE should solve all major tasks that relate to higher education institutions.

  17. The Magellanic clouds

    International Nuclear Information System (INIS)

    1989-01-01

    As the two galaxies nearest to our own, the Magellanic Clouds hold a special place in studies of the extragalactic distance scale, of stellar evolution and the structure of galaxies. In recent years, results from the South African Astronomical Observatory (SAAO) and elsewhere have shown that it is possible to begin understanding the three dimensional structure of the Clouds. Studies of Magellanic Cloud Cepheids have continued, both to investigate the three-dimensional structure of the Clouds and to learn more about Cepheids and their use as extragalactic distance indicators. Other research undertaken at SAAO includes studies on Nova LMC 1988 no 2 and red variables in the Magellanic Clouds

  18. A model of the microphysical evolution of a cloud

    International Nuclear Information System (INIS)

    Zinn, J.

    1994-01-01

    The earth's weather and climate are influenced strongly by phenomena associated with clouds. Therefore, a general circulation model (GCM) that models the evolution of weather and climate must include an accurate physical model of the clouds. This paper describes efforts to develop a suitable cloud model. It concentrates on the microphysical processes that determine the evolution of droplet and ice crystal size distributions, precipitation rates, total and condensed water content, and radiative extinction coefficients

  19. Transforming the representation of the boundary layer and low clouds for high-resolution regional climate modeling: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Alex [University of California, Los Angeles, CA (United States). Joint Institute for Regional Earth System Science and Engineering

    2013-07-24

    Stratocumulus and shallow cumulus clouds in subtropical oceanic regions (e.g., Southeast Pacific) cover thousands of square kilometers and play a key role in regulating global climate (e.g., Klein and Hartmann, 1993). Numerical modeling is an essential tool to study these clouds in regional and global systems, but the current generation of climate and weather models has difficulties in representing them in a realistic way (e.g., Siebesma et al., 2004; Stevens et al., 2007; Teixeira et al., 2011). While numerical models resolve the large-scale flow, subgrid-scale parameterizations are needed to estimate small-scale properties (e.g. boundary layer turbulence and convection, clouds, radiation), which have significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. To represent the contribution of these fine-scale processes to the resolved scale, climate models use various parameterizations, which are the main pieces in the model that contribute to the low clouds dynamics and therefore are the major sources of errors or approximations in their representation. In this project, we aim to 1) improve our understanding of the physical processes in thermal circulation and cloud formation, 2) examine the performance and sensitivity of various parameterizations in the regional weather model (Weather Research and Forecasting model; WRF), and 3) develop, implement, and evaluate the advanced boundary layer parameterization in the regional model to better represent stratocumulus, shallow cumulus, and their transition. Thus, this project includes three major corresponding studies. We find that the mean diurnal cycle is sensitive to model domain in ways that reveal the existence of different contributions originating from the Southeast Pacific land-masses. The experiments suggest that diurnal variations in circulations and thermal structures over this region are influenced by convection over the Peruvian sector of the Andes cordillera, while

  20. Final Technical Report for "High-resolution global modeling of the effects of subgrid-scale clouds and turbulence on precipitating cloud systems"

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Vincent [Univ. of Wisconsin, Milwaukee, WI (United States)

    2016-11-25

    The Multiscale Modeling Framework (MMF) embeds a cloud-resolving model in each grid column of a General Circulation Model (GCM). A MMF model does not need to use a deep convective parameterization, and thereby dispenses with the uncertainties in such parameterizations. However, MMF models grossly under-resolve shallow boundary-layer clouds, and hence those clouds may still benefit from parameterization. In this grant, we successfully created a climate model that embeds a cloud parameterization (“CLUBB”) within a MMF model. This involved interfacing CLUBB’s clouds with microphysics and reducing computational cost. We have evaluated the resulting simulated clouds and precipitation with satellite observations. The chief benefit of the project is to provide a MMF model that has an improved representation of clouds and that provides improved simulations of precipitation.

  1. Data and image fusion for geometrical cloud characterization

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, L.R.; Buch, K.A.; Sun, Chen-Hui; Diegert, C.

    1997-04-01

    Clouds have a strong influence on the Earth`s climate and therefore on climate change. An important step in improving the accuracy of models that predict global climate change, general circulation models, is improving the parameterization of clouds and cloud-radiation interactions. Improvements in the next generation models will likely include the effect of cloud geometry on the cloud-radiation parameterizations. We have developed and report here methods for characterizing the geometrical features and three-dimensional properties of clouds that could be of significant value in developing these new parameterizations. We developed and report here a means of generating and imaging synthetic clouds which we used to test our characterization algorithms; a method for using Taylor`s hypotheses to infer spatial averages from temporal averages of cloud properties; a computer method for automatically classifying cloud types in an image; and a method for producing numerical three-dimensional renderings of cloud fields based on the fusion of ground-based and satellite images together with meteorological data.

  2. A simple model for the initial phase of a water plasma cloud about a large structure in space

    International Nuclear Information System (INIS)

    Hastings, D.E.; Gatsonis, N.A.; Mogstad, T.

    1988-01-01

    Large structures in the ionosphere will outgas or eject neutral water and perturb the ambient neutral environment. This water can undergo charge exchange with the ambient oxygen ions and form a water plasma cloud. Additionally, water dumps or thruster firings can create a water plasma cloud. A simple model for the evolution of a water plasma cloud about a large space structure is obtained. It is shown that if the electron density around a large space structure is substantially enhanced above the ambient density then the plasma cloud will move away from the structure. As the cloud moves away, it will become unstable and will eventually break up into filaments. A true steady state will exist only if the total electron density is unperturbed from the ambient density. When the water density is taken to be consistent with shuttle-based observations, the cloud is found to slowly drift away on a time scale of many tens of milliseconds. This time is consistent with the shuttle observations

  3. STRUCTURE LINE DETECTION FROM LIDAR POINT CLOUDS USING TOPOLOGICAL ELEVATION ANALYSIS

    Directory of Open Access Journals (Sweden)

    C. Y. Lo

    2012-07-01

    Full Text Available Airborne LIDAR point clouds, which have considerable points on object surfaces, are essential to building modeling. In the last two decades, studies have developed different approaches to identify structure lines using two main approaches, data-driven and modeldriven. These studies have shown that automatic modeling processes depend on certain considerations, such as used thresholds, initial value, designed formulas, and predefined cues. Following the development of laser scanning systems, scanning rates have increased and can provide point clouds with higher point density. Therefore, this study proposes using topological elevation analysis (TEA to detect structure lines instead of threshold-dependent concepts and predefined constraints. This analysis contains two parts: data pre-processing and structure line detection. To preserve the original elevation information, a pseudo-grid for generating digital surface models is produced during the first part. The highest point in each grid is set as the elevation value, and its original threedimensional position is preserved. In the second part, using TEA, the structure lines are identified based on the topology of local elevation changes in two directions. Because structure lines can contain certain geometric properties, their locations have small relieves in the radial direction and steep elevation changes in the circular direction. Following the proposed approach, TEA can be used to determine 3D line information without selecting thresholds. For validation, the TEA results are compared with those of the region growing approach. The results indicate that the proposed method can produce structure lines using dense point clouds.

  4. Jupiter's Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes

    Science.gov (United States)

    Bjoraker, G. L.; Wong, M.H.; de Pater, I.; Adamkovics, M.

    2015-01-01

    Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use: a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and b) pressure- broadened line profiles of deuterated methane (CH3D) at 4.66 meters to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiter's 5-meter spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the deep cloud structure even when upper clouds are present. We find that Hot Spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that Hot Spots in the North and South Equatorial Belts (NEB, SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32 degrees South has an opaque cloud top between 4 and 5 bars. From thermochemical models this must be a water cloud. We measured the variation of the equivalent width of CH3D with latitude for comparison with Jupiter's belt-zone structure. We also constrained the vertical profile of H2O in an SEB Hot Spot and in the STZ. The Hot Spot is very dry for a probability less than 4.5 bars and then follows the H2O profile observed by the Galileo Probe. The STZ has a saturated H2O profile above its cloud top between 4 and 5 bars.

  5. Atmospheric Diabatic Heating in Different Weather States and the General Circulation

    Science.gov (United States)

    Rossow, William B.; Zhang, Yuanchong; Tselioudis, George

    2016-01-01

    Analysis of multiple global satellite products identifies distinctive weather states of the atmosphere from the mesoscale pattern of cloud properties and quantifies the associated diabatic heating/cooling by radiative flux divergence, precipitation, and surface sensible heat flux. The results show that the forcing for the atmospheric general circulation is a very dynamic process, varying strongly at weather space-time scales, comprising relatively infrequent, strong heating events by ''stormy'' weather and more nearly continuous, weak cooling by ''fair'' weather. Such behavior undercuts the value of analyses of time-averaged energy exchanges in observations or numerical models. It is proposed that an analysis of the joint time-related variations of the global weather states and the general circulation on weather space-time scales might be used to establish useful ''feedback like'' relationships between cloud processes and the large-scale circulation.

  6. Revisiting Gill's Circulation. Dynamic Response to Diabatic Heating of Different Horizontal Extents

    Science.gov (United States)

    Reboredo, B.; Bellon, G.

    2017-12-01

    The horizontal extent of diabatic heating associated with the MJO is thought to be crucial to its development, and the inability of GCMs to simulate the spatial, horizontal organization of clouds is considered a leading hypothesis to explain their limited capacity to simulate MJO events. This prevents the MJO large-circulation response from developing and feeding back on the development of clouds. We apply mid-tropospheric heating of different size in simple linear and non-linear models of the tropical atmosphere following Gill's seminal work on heat-induced tropical circulations. Results show that there is a scale for which the characteristic circulation {Γ c} for the vertical advection of moisture to produce the latent heat mean {Q} gives a rough estimate of the real world MJO scale. Overturning circulation flow rates above {Γ c} account for a circulation that transports more moisture than necessary to be maintained, and below {Γ c}, circulation would not transport enough moisture to maintain circulation. This dynamic scale might constrain the size of the spatially-organised convection necessary to the development of an MJO event. However, other effects are expected to modulate this scale, such as vertical advection of moisture anomalies, horizontal advection, evaporation, radiative heating, and sensible heat fluxes.

  7. Impact of Biomass Burning Aerosols on Cloud Formation in Coastal Regions

    Science.gov (United States)

    Nair, U. S.; Wu, Y.; Reid, J. S.

    2017-12-01

    In the tropics, shallow and deep convective cloud structures organize in hierarchy of spatial scales ranging from meso-gamma (2-20 km) to planetary scales (40,000km). At the lower end of the spectrum is shallow convection over the open ocean, whose upscale growth is dependent upon mesoscale convergence triggers. In this context, cloud systems associated with land breezes that propagate long distances into open ocean areas are important. We utilized numerical model simulations to examine the impact of biomass burning on such cloud systems in the maritime continent, specifically along the coastal regions of Sarawak. Numerical model simulations conducted using the Weather Research and Forecasting Chemistry (WRF-Chem) model show spatial patterns of smoke that show good agreement to satellite observations. Analysis of model simulations show that, during daytime the horizontal convective rolls (HCRs) that form over land play an important role in organizing transport of smoke in the coastal regions. Alternating patterns of low and high smoke concentrations that are well correlated to the wavelengths of HCRs are found in both the simulations and satellite observations. During night time, smoke transport is modulated by the land breeze circulation and a band of enhanced smoke concentration is found along the land breeze front. Biomass burning aerosols are ingested by the convective clouds that form along the land breeze and leads to changes in total water path, cloud structure and precipitation formation.

  8. Albedo and transmittance of inhomogeneous stratus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, V.E.; Kasyanov, E.I.; Titov, G.A. [Institute of Atmospheric Optics, Tomsk (Russian Federation)] [and others

    1996-04-01

    A highly important topic is the study of the relationship between the statistical parameters of optical and radiative charactertistics of inhomogeneous stratus clouds. This is important because the radiation codes of general circulation models need improvement, and it is important for geophysical information. A cascade model has been developed at the Goddard Space Flight Center to treat stratocumulus clouds with the simplest geometry and horizontal fluctuations of the liquid water path (optical thickness). The model evaluates the strength with which the stochastic geometry of clouds influences the statistical characteristics of albedo and the trnasmittance of solar radiation.

  9. The Coupled Mars Dust and Water Cycles: Understanding How Clouds Affect the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.

    2015-01-01

    The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  10. RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds

    Science.gov (United States)

    Vogelmann, Andrew M.; McFarquhar, Greg M.; Ogren, John A.; Turner, David D.; Comstock, Jennifer M.; Feingold, Graham; Long, Charles N.; Jonsson, Haflidi H.; Bucholtz, Anthony; Collins, Don R.; hide

    2012-01-01

    Small boundary-layer clouds are ubiquitous over many parts of the globe and strongly influence the Earths radiative energy balance. However, our understanding of these clouds is insufficient to solve pressing scientific problems. For example, cloud feedback represents the largest uncertainty amongst all climate feedbacks in general circulation models (GCM). Several issues complicate understanding boundary-layer clouds and simulating them in GCMs. The high spatial variability of boundary-layer clouds poses an enormous computational challenge, since their horizontal dimensions and internal variability occur at spatial scales much finer than the computational grids used in GCMs. Aerosol-cloud interactions further complicate boundary-layer cloud measurement and simulation. Additionally, aerosols influence processes such as precipitation and cloud lifetime. An added complication is that at small scales (order meters to 10s of meters) distinguishing cloud from aerosol is increasingly difficult, due to the effects of aerosol humidification, cloud fragments and photon scattering between clouds.

  11. Integrated cumulus ensemble and turbulence (ICET): An integrated parameterization system for general circulation models (GCMs)

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.L.; Frank, W.M.; Young, G.S. [Pennsylvania State Univ., University Park, PA (United States)

    1996-04-01

    Successful simulations of the global circulation and climate require accurate representation of the properties of shallow and deep convective clouds, stable-layer clouds, and the interactions between various cloud types, the boundary layer, and the radiative fluxes. Each of these phenomena play an important role in the global energy balance, and each must be parameterized in a global climate model. These processes are highly interactive. One major problem limiting the accuracy of parameterizations of clouds and other processes in general circulation models (GCMs) is that most of the parameterization packages are not linked with a common physical basis. Further, these schemes have not, in general, been rigorously verified against observations adequate to the task of resolving subgrid-scale effects. To address these problems, we are designing a new Integrated Cumulus Ensemble and Turbulence (ICET) parameterization scheme, installing it in a climate model (CCM2), and evaluating the performance of the new scheme using data from Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Testbed (CART) sites.

  12. Clouds-radiation interactions in a general circulation model - Impact upon the planetary radiation balance

    Science.gov (United States)

    Smith, Laura D.; Vonder Haar, Thomas H.

    1991-01-01

    Simultaneously conducted observations of the earth radiation budget and the cloud amount estimates, taken during the June 1979 - May 1980 Nimbus 7 mission were used to show interactions between the cloud amount and raidation and to verify a long-term climate simulation obtained with the latest version of the NCAR Community Climate Model (CCM). The parameterization of the radiative, dynamic, and thermodynamic processes produced the mean radiation and cloud quantities that were in reasonable agreement with satellite observations, but at the expense of simulating their short-term fluctuations. The results support the assumption that the inclusion of the cloud liquid water (ice) variable would be the best mean to reduce the blinking of clouds in NCAR CCM.

  13. Space-borne clear air lidar measurements in the presence of broken cloud

    Directory of Open Access Journals (Sweden)

    I. Astin

    Full Text Available A number of proposed lidar systems, such as ESA’s AEOLUS (formerly ADM and DIAL missions (e.g. WALES are to make use of lidar returns in clear air. However, on average, two-thirds of the globe is covered in cloud. Hence, there is a strong likelihood that data from these instruments may be contaminated by cloud. Similarly, optically thick cloud may not be penetrated by a lidar pulse, resulting in unobservable regions that are overshadowed by the cloud. To address this, it is suggested, for example, in AEOLUS, that a number of consecutive short sections of lidar data (between 1 and 3.5 km in length be tested for cloud contamination or for overshadowing and only those that are unaffected by cloud be used to derive atmospheric profiles. The prob-ability of obtaining profiles to near ground level using this technique is investigated both analytically and using UV air-borne lidar data recorded during the CLARE’98 campaign. These data were measured in the presence of broken cloud on a number of flights over southern England over a four-day period and were chosen because the lidar used has the same wavelength, footprint and could match the along-track spacing of the proposed AEOLUS lidar.

    Key words. Atmospheric composition and structure (aerosols and particles Meteorology and atmospheric dynamics (instruments and techniques; general circulation

  14. MULTISEASONAL TREE CROWN STRUCTURE MAPPING WITH POINT CLOUDS FROM OTS QUADROCOPTER SYSTEMS

    Directory of Open Access Journals (Sweden)

    S. Hese

    2017-08-01

    Full Text Available OTF (Off The Shelf quadro copter systems provide a cost effective (below 2000 Euro, flexible and mobile platform for high resolution point cloud mapping. Various studies showed the full potential of these small and flexible platforms. Especially in very tight and complex 3D environments the automatic obstacle avoidance, low copter weight, long flight times and precise maneuvering are important advantages of these small OTS systems in comparison with larger octocopter systems. This study examines the potential of the DJI Phantom 4 pro series and the Phantom 3A series for within-stand and forest tree crown 3D point cloud mapping using both within stand oblique imaging in different altitude levels and data captured from a nadir perspective. On a test site in Brandenburg/Germany a beach crown was selected and measured with 3 different altitude levels in Point Of Interest (POI mode with oblique data capturing and deriving one nadir mosaic created with 85/85 % overlap using Drone Deploy automatic mapping software. Three different flight campaigns were performed, one in September 2016 (leaf-on, one in March 2017 (leaf-off and one in May 2017 (leaf-on to derive point clouds from different crown structure and phenological situations – covering the leaf-on and leafoff status of the tree crown. After height correction, the point clouds where used with GPS geo referencing to calculate voxel based densities on 50 × 10 × 10 cm voxel definitions using a topological network of chessboard image objects in 0,5 m height steps in an object based image processing environment. Comparison between leaf-off and leaf-on status was done on volume pixel definitions comparing the attributed point densities per volume and plotting the resulting values as a function of distance to the crown center. In the leaf-off status SFM (structure from motion algorithms clearly identified the central stem and also secondary branch systems. While the penetration into the

  15. Multiseasonal Tree Crown Structure Mapping with Point Clouds from OTS Quadrocopter Systems

    Science.gov (United States)

    Hese, S.; Behrendt, F.

    2017-08-01

    OTF (Off The Shelf) quadro copter systems provide a cost effective (below 2000 Euro), flexible and mobile platform for high resolution point cloud mapping. Various studies showed the full potential of these small and flexible platforms. Especially in very tight and complex 3D environments the automatic obstacle avoidance, low copter weight, long flight times and precise maneuvering are important advantages of these small OTS systems in comparison with larger octocopter systems. This study examines the potential of the DJI Phantom 4 pro series and the Phantom 3A series for within-stand and forest tree crown 3D point cloud mapping using both within stand oblique imaging in different altitude levels and data captured from a nadir perspective. On a test site in Brandenburg/Germany a beach crown was selected and measured with 3 different altitude levels in Point Of Interest (POI) mode with oblique data capturing and deriving one nadir mosaic created with 85/85 % overlap using Drone Deploy automatic mapping software. Three different flight campaigns were performed, one in September 2016 (leaf-on), one in March 2017 (leaf-off) and one in May 2017 (leaf-on) to derive point clouds from different crown structure and phenological situations - covering the leaf-on and leafoff status of the tree crown. After height correction, the point clouds where used with GPS geo referencing to calculate voxel based densities on 50 × 10 × 10 cm voxel definitions using a topological network of chessboard image objects in 0,5 m height steps in an object based image processing environment. Comparison between leaf-off and leaf-on status was done on volume pixel definitions comparing the attributed point densities per volume and plotting the resulting values as a function of distance to the crown center. In the leaf-off status SFM (structure from motion) algorithms clearly identified the central stem and also secondary branch systems. While the penetration into the crown

  16. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water

    Science.gov (United States)

    Kahre, Melinda A.; Haberle, Robert M.; Hollingsworth, Jeffery L.; Brecht, Amanda S.; Urata, Richard A.

    2015-11-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  17. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R.

    2015-01-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  18. The Regional Water Cycle and Water Ice Clouds in the Tharsis - Valles Marineris System

    Science.gov (United States)

    Leung, C. W. S.; Rafkin, S. C.

    2017-12-01

    The regional atmospheric circulation on Mars is highly influenced by local topographic gradients. Terrain-following air parcels forced along the slopes of the major Tharsis volcanoes and the steep canyon walls of Valles Marineris significantly impact the local water vapor concentration and the associated conditions for cloud formation. Using a non-hydrostatic mesoscale atmospheric model with aerosol & cloud microphysics, we investigate the meteorological conditions for water ice cloud formation in the coupled Tharsis - Valles Marineris system near the aphelion season. The usage of a limited area regional model ensures that topographic slopes are well resolved compared to the typical resolutions of a global-coverage general circulation model. The effects of shadowing and slope angle geometries on the energy budget is also taken into account. Diurnal slope winds in complex terrains are typically characterized by the reversal of wind direction twice per sol: upslope during the day, and downslope at night. However, our simulation results of the regional circulation and diurnal water cycle indicate substantial asymmetries in the day-night circulation. The convergence of moist air masses enters Valles Marineris via easterly flows, whereas dry air sweep across the plateau of the canyon system from the south towards the north. We emphasize the non-uniform vertical distribution of water vapor in our model results. Water vapor mixing ratios in the lower planetary boundary layer may be factors greater than the mixing ratio aloft. Water ice clouds are important contributors to the climatic forcing on Mars, and their effects on the mesoscale circulations in the Tharsis - Valles Marineris region significantly contribute to the regional perturbations in the large-scale global atmospheric circulation.

  19. Structure and variances of equatorial zonal circulation in a multimodel ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Yu, B. [Environment Canada, Climate Data and Analysis Section, Climate Research Division, Toronto, ON (Canada); Zwiers, F.W. [University of Victoria, Pacific Climate Impacts Consortium, Victoria, BC (Canada); Boer, G.J. [Environment Canada, Canadian Centre for Climate Modeling and Analysis, Climate Research Division, Victoria, BC (Canada); Ting, M.F. [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States)

    2012-11-15

    The structure and variance of the equatorial zonal circulation, as characterized by the atmospheric mass flux in the equatorial zonal plane, is examined and inter-compared in simulations from 9 CMIP3 coupled climate models with multiple ensemble members and the NCEP-NCAR and ERA-40 reanalyses. The climate model simulations analyzed here include twentieth century (20C3M) and twenty-first century (SRES A1B) simulations. We evaluate the 20C3M modeled zonal circulations by comparing them with those in the reanalyses. We then examine the variability of the circulation, its changes with global warming, and the associated thermodynamic maintenance. The tropical zonal circulation involves three major components situated over the Pacific, Indian, and Atlantic oceans. The three cells are supported by the corresponding diabatic heating extending deeply throughout the troposphere, with heating centers apparent in the mid-troposphere. Seasonal features appear in the zonal circulation, including variations in its intensity and longitudinal migration. Most models, and hence the multi-model mean, represent the annual and seasonal features of the circulation and the associated heating reasonably well. The multi-model mean reproduces the observed climatology better than any individual model, as indicated by the spatial pattern correlation and mean square difference of the mass flux and the diabatic heating compared to the reanalysis based values. Projected changes in the zonal circulation under A1B forcing are dominated by mass flux changes over the Pacific and Indian oceans. An eastward shift of the Pacific Walker circulation is clearly evident with global warming, with anomalous rising motion apparent over the equatorial central Pacific and anomalous sinking motions in the west and east, which favors an overall strengthening of the Walker circulation. The zonal circulation weakens and shifts westwards over the Indian Ocean under external forcing, whereas it strengthens and shifts

  20. Cloud classification using whole-sky imager data

    Energy Technology Data Exchange (ETDEWEB)

    Buch, K.A. Jr.; Sun, C.H.; Thorne, L.R. [Sandia National Labs., Livermore, CA (United States)

    1996-04-01

    Clouds are one of the most important moderators of the earth radiation budget and one of the least understood. The effect that clouds have on the reflection and absorption of solar and terrestrial radiation is strongly influenced by their shape, size, and composition. Physically accurate parameterization of clouds is necessary for any general circulation model (GCM) to yield meaningful results. The work presented here is part of a larger project that is aimed at producing realistic three-dimensional (3D) volume renderings of cloud scenes based on measured data from real cloud scenes. These renderings will provide the important shape information for parameterizing GCMs. The specific goal of the current study is to develop an algorithm that automatically classifies (by cloud type) the clouds observed in the scene. This information will assist the volume rendering program in determining the shape of the cloud. Much work has been done on cloud classification using multispectral satellite images. Most of these references use some kind of texture measure to distinguish the different cloud types and some also use topological features (such as cloud/sky connectivity or total number of clouds). A wide variety of classification methods has been used, including neural networks, various types of clustering, and thresholding. The work presented here uses binary decision trees to distinguish the different cloud types based on cloud features vectors.

  1. A Numerical Study of Vortex and Precipitating Cloud Merging in Middle Latitudes

    Institute of Scientific and Technical Information of China (English)

    PING Fan; LUO Zhe-Xian; JU Jian-Hua

    2006-01-01

    @@ We mainly focus on the study of precipitating cloud merging associated with vortex merging. The vortex and precipitating cloud merging are simulated by the cloud resolving model from 0000 21 to 1800 23 July 2003. The results show that the model well simulates vortex circulation associated with precipitating clouds. It is also proven that the vortex merging follows the precipitating cloud merging although vortices show the spatial and temporal differences. The convection vorticity vector is introduced to describe the merging processes. Two merging cases are identified during the 42-h simulation and are studied.

  2. Effects of high altitude clouds on the earth's infrared radiation flux

    Science.gov (United States)

    Wang, W.-C.; Kaplan, L. D.

    1983-01-01

    Attention is given to the results of a study of cirrus cloud properties which employed the Goddard Laboratory for Atmospheric Sciences' general circulation model and concentrated on the effects of the nonblackness of high clouds on the IR radiation flux. Although the thermal radiation flux is very sensitive to the treatment of cirrus optical properties in the IR, a more realistic assessment will depend on better parameterizations for cirrus cloud formation, persistence, and dissipation.

  3. Marine Cloud Brightening

    Energy Technology Data Exchange (ETDEWEB)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, H.; Connolly, P.; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Philip J.; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Robert

    2012-09-07

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  4. Marine cloud brightening.

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-09-13

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could-subject to satisfactory resolution of technical and scientific problems identified herein-have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  5. Structural and parameteric uncertainty quantification in cloud microphysics parameterization schemes

    Science.gov (United States)

    van Lier-Walqui, M.; Morrison, H.; Kumjian, M. R.; Prat, O. P.; Martinkus, C.

    2017-12-01

    Atmospheric model parameterization schemes employ approximations to represent the effects of unresolved processes. These approximations are a source of error in forecasts, caused in part by considerable uncertainty about the optimal value of parameters within each scheme -- parameteric uncertainty. Furthermore, there is uncertainty regarding the best choice of the overarching structure of the parameterization scheme -- structrual uncertainty. Parameter estimation can constrain the first, but may struggle with the second because structural choices are typically discrete. We address this problem in the context of cloud microphysics parameterization schemes by creating a flexible framework wherein structural and parametric uncertainties can be simultaneously constrained. Our scheme makes no assuptions about drop size distribution shape or the functional form of parametrized process rate terms. Instead, these uncertainties are constrained by observations using a Markov Chain Monte Carlo sampler within a Bayesian inference framework. Our scheme, the Bayesian Observationally-constrained Statistical-physical Scheme (BOSS), has flexibility to predict various sets of prognostic drop size distribution moments as well as varying complexity of process rate formulations. We compare idealized probabilistic forecasts from versions of BOSS with varying levels of structural complexity. This work has applications in ensemble forecasts with model physics uncertainty, data assimilation, and cloud microphysics process studies.

  6. The use of marine cloud water samples as a diagnostic tool for aqueous chemistry, cloud microphysical processes and dynamics

    Science.gov (United States)

    Crosbie, E.; Ziemba, L. D.; Moore, R.; Shook, M.; Jordan, C.; Thornhill, K. L., II; Winstead, E.; Shingler, T.; Brown, M.; MacDonald, A. B.; Dadashazar, H.; Sorooshian, A.; Weiss-Penzias, P. S.; Anderson, B.

    2017-12-01

    Clouds play several roles in the Earth's climate system. In addition to their clear significance to the hydrological cycle, they strongly modulate the shortwave and longwave radiative balance of the atmosphere, with subsequent feedback on the atmospheric circulation. Furthermore, clouds act as a conduit for the fate and emergence of important trace chemical species and are the predominant removal mechanism for atmospheric aerosols. Marine boundary layer clouds cover large swaths of the global oceans. Because of their global significance, they have attracted significant attention into understanding how changes in aerosols are translated into changes in cloud macro- and microphysical properties. The circular nature of the influence of clouds-on-aerosols and aerosols-on-clouds has been used to explain the chaotic patterns often seen in marine clouds, however, this feedback also presents a substantial hurdle in resolving the uncertain role of anthropogenic aerosols on climate. Here we discuss ways in which the chemical constituents found in cloud water can offer insight into the physical and chemical processes inherent in marine clouds, through the use of aircraft measurements. We focus on observational data from cloud water samples collected during flights conducted over the remote North Atlantic and along coastal California across multiple campaigns. We explore topics related to aqueous processing, wet scavenging and source apportionment.

  7. Interaction of plasma cloud with external electric field in lower ionosphere

    Directory of Open Access Journals (Sweden)

    Y. S. Dimant

    2010-03-01

    Full Text Available In the auroral lower-E and upper-D region of the ionosphere, plasma clouds, such as sporadic-E layers and meteor plasma trails, occur daily. Large-scale electric fields, created by the magnetospheric dynamo, will polarize these highly conducting clouds, redistributing the electrostatic potential and generating anisotropic currents both within and around the cloud. Using a simplified model of the cloud and the background ionosphere, we develop the first self-consistent three-dimensional analytical theory of these phenomena. For dense clouds, this theory predicts highly amplified electric fields around the cloud, along with strong currents collected from the ionosphere and circulated through the cloud. This has implications for the generation of plasma instabilities, electron heating, and global MHD modeling of magnetosphere-ionosphere coupling via modifications of conductances induced by sporadic-E clouds.

  8. Cloud-radiation-precipitation associations over the Asian monsoon region: an observational analysis

    Science.gov (United States)

    Li, Jiandong; Wang, Wei-Chyung; Dong, Xiquan; Mao, Jiangyu

    2017-11-01

    This study uses 2001-2014 satellite observations and reanalyses to investigate the seasonal characteristics of Cloud Radiative Effects (CREs) and their associations with cloud fraction (CF) and precipitation over the Asian monsoon region (AMR) covering Eastern China (EC) and South Asia (SA). The CREs exhibit strong seasonal variations but show distinctly different relationships with CFs and precipitation over the two regions. For EC, the CREs is dominated by shortwave (SW) cooling, with an annual mean value of - 40 W m- 2 for net CRE, and peak in summer while the presence of extensive and opaque low-level clouds contributes to large Top-Of-Atmosphere (TOA) albedo (>0.5) in winter. For SA, a weak net CRE exists throughout the year due to in-phase compensation of SWCRE by longwave (LW) CRE associated with the frequent occurrence of high clouds. For the entire AMR, SWCRE strongly correlates with the dominant types of CFs, although the cloud vertical structure plays important role particularly in summer. The relationships between CREs and precipitation are stronger in SA than in EC, indicating the dominant effect of monsoon circulation in the former region. SWCRE over EC is only partly related to precipitation and shows distinctive regional variations. Further studies need to pay more attention to vertical distributions of cloud micro- and macro-physical properties, and associated precipitation systems over the AMR.

  9. Toward Improving the Representation of Convection and Cloud-Radiation Interaction for Global Climate Simulations

    Science.gov (United States)

    Wu, X.; Song, X.; Deng, L.; Park, S.; Liang, X.; Zhang, G. J.

    2006-05-01

    Despite the significant progress made in developing general circulation models (GCMs), major uncertainties related to the parameterization of convection, cloud and radiation processes still remain. The current GCM credibility of seasonal-interannual climate predictions or climate change projections is limited. In particular, the following long-standing biases, common to most GCMs, need to be reduced: 1) over-prediction of high-level cloud amounts although GCMs realistically simulating the global radiation budget; 2) general failure to reproduce the seasonal variation and migration of the ITCZ precipitation; 3) incomplete representation of the Madden-Julian Oscillation (MJO); and 4) false production of an excessive cold tone of sea surface temperature across the Pacific basin and a double ITCZ structure in precipitation when the atmosphere and ocean are fully coupled. The development of cloud-resolving models (CRMs) provides a unique opportunity to address issues aimed to reduce these biases. The statistical analysis of CRM simulations together with the theoretical consideration of subgrid-scale processes will enable us to develop physically-based parameterization of convection, clouds, radiation and their interactions.

  10. Evaluating cloudiness in an AGCM with Cloud Vertical Structure classes and their radiative effects

    Science.gov (United States)

    Lee, D.; Cho, N.; Oreopoulos, L.; Barahona, D.

    2017-12-01

    Clouds are recognized not only as the main modulator of Earth's Radiation Budget but also as the atmospheric constituent carrying the largest uncertainty in future climate projections. The presentation will showcase a new framework for evaluating clouds and their radiative effects in Atmospheric Global Climate Models (AGCMs) using Cloud Vertical Structure (CVS) classes. We take advantage of a new CVS reference dataset recently created from CloudSat's 2B-CLDCLASS-LIDAR product and which assigns observed cloud vertical configurations to nine simplified CVS classes based on cloud co-occurrence in three standard atmospheric layers. These CVS classes can also be emulated in GEOS-5 using the subcolumn cloud generator currently paired with the RRTMG radiation package as an implementation of the McICA scheme. Comparisons between the observed and modeled climatologies of the frequency of occurrence of the various CVS classes provide a new vantage point for assessing the realism of GEOS-5 clouds. Furthermore, a comparison between observed and modeled cloud radiative effects according to their CVS is also possible thanks to the availability of CloudSat's 2B-FLXHR-LIDAR product and our ability to composite radiative fluxes by CVS class - both in the observed and modeled realm. This latter effort enables an investigation of whether the contribution of the various CVS classes to the Earth's radiation budget is represented realistically in GEOS-5. Making this new pathway of cloud evaluation available to the community is a major step towards the improved representation of clouds in climate models.

  11. A strategy for testing the impact of clouds on the shortwave radiation budge of general circulation models: A prototype for the Atmospheric Radiation Measurement Program

    International Nuclear Information System (INIS)

    Cess, R.D.

    1994-01-01

    Cloud-climate interactions are one of the greatest uncertainties in contemporary general circulation models (GCMs), and this study has focused on one aspect of this. Specifically, combined satellite and near-surface shortwave (SW) flux measurements have been used to test the impact of clouds on the SW radiation budgets of two GCMs. Concentration is initially on SW rather than longwave (LW) radiation because, in one of the GCMs used in this study an SW radiation inconsistency causes a LW inconsistency. The surface data consist of near-surface insolation measured by the upward facing pyranometer at the Boulder Atmospheric Observatory tower. The satellite data consist of top of the atmosphere (TOA) albedo data, collocated with the tower location, as determined from the GOES SW spin-scan radiometer. Measurements are made every half hour, with hourly means taken by averaging successive measurements. The combined data are for a 21-day period encompassing 28 June through 18 July 1987 and consist of 202 combined albedo/insolation measurements

  12. Cloud computing patterns fundamentals to design, build, and manage cloud applications

    CERN Document Server

    Fehling, Christoph; Retter, Ralph; Schupeck, Walter; Arbitter, Peter

    2014-01-01

    The current work provides CIOs, software architects, project managers, developers, and cloud strategy initiatives with a set of architectural patterns that offer nuggets of advice on how to achieve common cloud computing-related goals. The cloud computing patterns capture knowledge and experience in an abstract format that is independent of concrete vendor products. Readers are provided with a toolbox to structure cloud computing strategies and design cloud application architectures. By using this book cloud-native applications can be implemented and best suited cloud vendors and tooling for i

  13. Jovian cloud structure from 5-mu M images

    Science.gov (United States)

    Ortiz, J. L.; Moreno, F.; Molina, A.; Roos-Serote, M.; Orton, G. S.

    1999-09-01

    Most radiative transfer studies place the cloud clearings responsible for the 5-mu m bright areas at pressure levels greater than 1.5 bar whereas the low-albedo clouds are placed at lower pressure levels, in the so-called ammonia cloud. If this picture is correct, and assuming that the strong vertical shear of the zonal wind detected by the Galileo Entry Probe exists at all latitudes in Jupiter, the bright areas at 5 mu m should drift faster than the dark clouds, which is not observed. At the Galileo Probe Entry latitude this can be explained by a wave, but this is not a likely explanation for all regions where the anticorrelation between 5-mu m brightness and red-nIR reflectivity is observed. Therefore, either the vertical zonal wind shears are not global or cloud clearings and dark clouds are located at the same pressure level. We have developed a multiple scattering radiative transfer code to model the limb-darkening at several jovian features derived from IRTF 4.8-mu m images, in order to retrieve information on the cloud levels. The limb darkening coefficients range from 1.4 at hot spots to 0.58 at the Equatorial Region. We also find that reflected light is dominant over thermal emission in the Equatorial Region, as already pointed out by other investigators. Preliminary results from our code tend to favor the idea that the ammonia cloud is a very high-albedo cloud with little influence on the contrast seen in the red and nIR and that a deeper cloud at P >1.5 bar can be responsible for the cloud clearings and for the low-albedo features simultaneously. This research was supported by the Comision Interministerial de Ciencia y Tecnologia under contract ESP96-0623.

  14. Change Analysis in Structural Laser Scanning Point Clouds: The Baseline Method.

    Science.gov (United States)

    Shen, Yueqian; Lindenbergh, Roderik; Wang, Jinhu

    2016-12-24

    A method is introduced for detecting changes from point clouds that avoids registration. For many applications, changes are detected between two scans of the same scene obtained at different times. Traditionally, these scans are aligned to a common coordinate system having the disadvantage that this registration step introduces additional errors. In addition, registration requires stable targets or features. To avoid these issues, we propose a change detection method based on so-called baselines. Baselines connect feature points within one scan. To analyze changes, baselines connecting corresponding points in two scans are compared. As feature points either targets or virtual points corresponding to some reconstructable feature in the scene are used. The new method is implemented on two scans sampling a masonry laboratory building before and after seismic testing, that resulted in damages in the order of several centimeters. The centres of the bricks of the laboratory building are automatically extracted to serve as virtual points. Baselines connecting virtual points and/or target points are extracted and compared with respect to a suitable structural coordinate system. Changes detected from the baseline analysis are compared to a traditional cloud to cloud change analysis demonstrating the potential of the new method for structural analysis.

  15. Change Analysis in Structural Laser Scanning Point Clouds: The Baseline Method

    Directory of Open Access Journals (Sweden)

    Yueqian Shen

    2016-12-01

    Full Text Available A method is introduced for detecting changes from point clouds that avoids registration. For many applications, changes are detected between two scans of the same scene obtained at different times. Traditionally, these scans are aligned to a common coordinate system having the disadvantage that this registration step introduces additional errors. In addition, registration requires stable targets or features. To avoid these issues, we propose a change detection method based on so-called baselines. Baselines connect feature points within one scan. To analyze changes, baselines connecting corresponding points in two scans are compared. As feature points either targets or virtual points corresponding to some reconstructable feature in the scene are used. The new method is implemented on two scans sampling a masonry laboratory building before and after seismic testing, that resulted in damages in the order of several centimeters. The centres of the bricks of the laboratory building are automatically extracted to serve as virtual points. Baselines connecting virtual points and/or target points are extracted and compared with respect to a suitable structural coordinate system. Changes detected from the baseline analysis are compared to a traditional cloud to cloud change analysis demonstrating the potential of the new method for structural analysis.

  16. Cloud Computing Value Chains: Understanding Businesses and Value Creation in the Cloud

    Science.gov (United States)

    Mohammed, Ashraf Bany; Altmann, Jörn; Hwang, Junseok

    Based on the promising developments in Cloud Computing technologies in recent years, commercial computing resource services (e.g. Amazon EC2) or software-as-a-service offerings (e.g. Salesforce. com) came into existence. However, the relatively weak business exploitation, participation, and adoption of other Cloud Computing services remain the main challenges. The vague value structures seem to be hindering business adoption and the creation of sustainable business models around its technology. Using an extensive analyze of existing Cloud business models, Cloud services, stakeholder relations, market configurations and value structures, this Chapter develops a reference model for value chains in the Cloud. Although this model is theoretically based on porter's value chain theory, the proposed Cloud value chain model is upgraded to fit the diversity of business service scenarios in the Cloud computing markets. Using this model, different service scenarios are explained. Our findings suggest new services, business opportunities, and policy practices for realizing more adoption and value creation paths in the Cloud.

  17. Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount

    Directory of Open Access Journals (Sweden)

    B. H. Kahn

    2008-03-01

    Full Text Available The precision of the two-layer cloud height fields derived from the Atmospheric Infrared Sounder (AIRS is explored and quantified for a five-day set of observations. Coincident profiles of vertical cloud structure by CloudSat, a 94 GHz profiling radar, and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO, are compared to AIRS for a wide range of cloud types. Bias and variability in cloud height differences are shown to have dependence on cloud type, height, and amount, as well as whether CloudSat or CALIPSO is used as the comparison standard. The CloudSat-AIRS biases and variability range from −4.3 to 0.5±1.2–3.6 km for all cloud types. Likewise, the CALIPSO-AIRS biases range from 0.6–3.0±1.2–3.6 km (−5.8 to −0.2±0.5–2.7 km for clouds ≥7 km (<7 km. The upper layer of AIRS has the greatest sensitivity to Altocumulus, Altostratus, Cirrus, Cumulonimbus, and Nimbostratus, whereas the lower layer has the greatest sensitivity to Cumulus and Stratocumulus. Although the bias and variability generally decrease with increasing cloud amount, the ability of AIRS to constrain cloud occurrence, height, and amount is demonstrated across all cloud types for many geophysical conditions. In particular, skill is demonstrated for thin Cirrus, as well as some Cumulus and Stratocumulus, cloud types infrared sounders typically struggle to quantify. Furthermore, some improvements in the AIRS Version 5 operational retrieval algorithm are demonstrated. However, limitations in AIRS cloud retrievals are also revealed, including the existence of spurious Cirrus near the tropopause and low cloud layers within Cumulonimbus and Nimbostratus clouds. Likely causes of spurious clouds are identified and the potential for further improvement is discussed.

  18. NASA Goddard Earth Sciences Graduate Student Program. [FIRE CIRRUS-II examination of coupling between an upper tropospheric cloud system and synoptic-scale dynamics

    Science.gov (United States)

    Ackerman, Thomas P.

    1994-01-01

    The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE CIRRUS-II Intensive Field Observing Period held in Coffeyville, KS during Nov. and Dec., 1991. Using data from the wind profiler demonstration network and a temporally and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically-derived ageostrophic vertical circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic vertical circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect vertical circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and building ridge. The cloud line formed in the ascending branch of the vertical circulation with the most concentrated cloud development occurring in conjunction with the maximum large-scale vertical motion. The relationship between the large scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed and an example of ice water contents derived from a parameterization forced by the diagnosed vertical motions and observed water vapor contents is presented.

  19. Absorption of solar radiation in broken clouds

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, V.E.; Titov, G.A.; Zhuravleva, T.B. [Institute of Atmospheric Optics, Tomsk (Russian Federation)

    1996-04-01

    It is recognized now that the plane-parallel model unsatisfactorily describes the transfer of radiation through broken clouds and that, consequently, the radiation codes of general circulation models (GCMs) must be refined. However, before any refinement in a GCM code is made, it is necessary to investigate the dependence of radiative characteristics on the effects caused by the random geometry of cloud fields. Such studies for mean fluxes of downwelling and upwelling solar radiation in the visible and near-infrared (IR) spectral range were performed by Zuev et al. In this work, we investigate the mean spectral and integrated absorption of solar radiation by broken clouds (in what follows, the term {open_quotes}mean{close_quotes} will be implied but not used, for convenience). To evaluate the potential effect of stochastic geometry, we will compare the absorption by cumulus (0.5 {le} {gamma} {le} 2) to that by equivalent stratus ({gamma} <<1) clouds; here {gamma} = H/D, H is the cloud layer thickness and D the characteristic horizontal cloud size. The equivalent stratus clouds differ from cumulus only in the aspect ratio {gamma}, all the other parameters coinciding.

  20. A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model.

    Science.gov (United States)

    Miura, Hiroaki; Satoh, Masaki; Nasuno, Tomoe; Noda, Akira T; Oouchi, Kazuyoshi

    2007-12-14

    A Madden-Julian Oscillation (MJO) is a massive weather event consisting of deep convection coupled with atmospheric circulation, moving slowly eastward over the Indian and Pacific Oceans. Despite its enormous influence on many weather and climate systems worldwide, it has proven very difficult to simulate an MJO because of assumptions about cumulus clouds in global meteorological models. Using a model that allows direct coupling of the atmospheric circulation and clouds, we successfully simulated the slow eastward migration of an MJO event. Topography, the zonal sea surface temperature gradient, and interplay between eastward- and westward-propagating signals controlled the timing of the eastward transition of the convective center. Our results demonstrate the potential making of month-long MJO predictions when global cloud-resolving models with realistic initial conditions are used.

  1. Comparison of convective clouds observed by spaceborne W-band radar and simulated by cloud-resolving atmospheric models

    Science.gov (United States)

    Dodson, Jason B.

    Deep convective clouds (DCCs) play an important role in regulating global climate through vertical mass flux, vertical water transport, and radiation. For general circulation models (GCMs) to simulate the global climate realistically, they must simulate DCCs realistically. GCMs have traditionally used cumulus parameterizations (CPs). Much recent research has shown that multiple persistent unrealistic behaviors in GCMs are related to limitations of CPs. Two alternatives to CPs exist: the global cloud-resolving model (GCRM), and the multiscale modeling framework (MMF). Both can directly simulate the coarser features of DCCs because of their multi-kilometer horizontal resolutions, and can simulate large-scale meteorological processes more realistically than GCMs. However, the question of realistic behavior of simulated DCCs remains. How closely do simulated DCCs resemble observed DCCs? In this study I examine the behavior of DCCs in the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) and Superparameterized Community Atmospheric Model (SP-CAM), the latter with both single-moment and double-moment microphysics. I place particular emphasis on the relationship between cloud vertical structure and convective environment. I also emphasize the transition between shallow clouds and mature DCCs. The spatial domains used are the tropical oceans and the contiguous United States (CONUS), the latter of which produces frequent vigorous convection during the summer. CloudSat is used to observe DCCs, and A-Train and reanalysis data are used to represent the large-scale environment in which the clouds form. The CloudSat cloud mask and radar reflectivity profiles for CONUS cumuliform clouds (defined as clouds with a base within the planetary boundary layer) during boreal summer are first averaged and compared. Both NICAM and SP-CAM greatly underestimate the vertical growth of cumuliform clouds. Then they are sorted by three large-scale environmental variables: total preciptable

  2. Marine cloud brightening

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action

  3. A scheme for parameterizing ice cloud water content in general circulation models

    Science.gov (United States)

    Heymsfield, Andrew J.; Donner, Leo J.

    1989-01-01

    A method for specifying ice water content in GCMs is developed, based on theory and in-cloud measurements. A theoretical development of the conceptual precipitation model is given and the aircraft flights used to characterize the ice mass distribution in deep ice clouds is discussed. Ice water content values derived from the theoretical parameterization are compared with the measured values. The results demonstrate that a simple parameterization for atmospheric ice content can account for ice contents observed in several synoptic contexts.

  4. VanderLaan Circulant Type Matrices

    Directory of Open Access Journals (Sweden)

    Hongyan Pan

    2015-01-01

    Full Text Available Circulant matrices have become a satisfactory tools in control methods for modern complex systems. In the paper, VanderLaan circulant type matrices are presented, which include VanderLaan circulant, left circulant, and g-circulant matrices. The nonsingularity of these special matrices is discussed by the surprising properties of VanderLaan numbers. The exact determinants of VanderLaan circulant type matrices are given by structuring transformation matrices, determinants of well-known tridiagonal matrices, and tridiagonal-like matrices. The explicit inverse matrices of these special matrices are obtained by structuring transformation matrices, inverses of known tridiagonal matrices, and quasi-tridiagonal matrices. Three kinds of norms and lower bound for the spread of VanderLaan circulant and left circulant matrix are given separately. And we gain the spectral norm of VanderLaan g-circulant matrix.

  5. Molecular clouds and galactic spiral structure

    International Nuclear Information System (INIS)

    Dame, T.M.

    1984-02-01

    Galactic CO line emission at 115 GHz was surveyed in order to study the distribution of molecular clouds in the inner galaxy. Comparison of this survey with similar H1 data reveals a detailed correlation with the most intense 21 cm features. To each of the classical 21 cm H1 spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is devised for the galactic distribution of molecular clouds. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide

  6. Simulation of the Low-Level-Jet by general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Ghan, S.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-04-01

    To what degree is the low-level jet climatology and it`s impact on clouds and precipitation being captured by current general circulation models? It is hypothesised that a need for a pramaterization exists. This paper describes this parameterization need.

  7. More Than Filaments and Cores: Statistical Study of Structure Formation and Dynamics in Nearby Molecular Clouds

    Science.gov (United States)

    Chen, How-Huan; Goodman, Alyssa

    2018-01-01

    In the past decade, multiple attempts at understanding the connection between filaments and star forming cores have been made using observations across the entire epectrum. However, the filaments and the cores are usually treated as predefined--and well-defined--entities, instead of structures that often come at different sizes, shapes, with substantially different dynamics, and inter-connected at different scales. In my dissertation, I present an array of studies using different statistical methods, including the dendrogram and the probability distribution function (PDF), of structures at different size scales within nearby molecular clouds. These structures are identified using observations of different density tracers, and where possible, in the multi-dimensional parameter space of key dynamic properties--the LSR velocity, the velocity dispersion, and the column density. The goal is to give an overview of structure formation in nearby star-forming clouds, as well as of the dynamics in these structures. I find that the overall statistical properties of a larger structure is often the summation/superposition of sub-structures within, and that there could be significant variations due to local physical processes. I also find that the star formation process within molecular clouds could in fact take place in a non-monolithic manner, connecting potentially merging and/or transient structures, at different scales.

  8. Development of a Cloud Computing-Based Pier Type Port Structure Stability Evaluation Platform Using Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Jo, Byung Wan; Jo, Jun Ho; Khan, Rana Muhammad Asad; Kim, Jung Hoon; Lee, Yun Sung

    2018-05-23

    Structure Health Monitoring is a topic of great interest in port structures due to the ageing of structures and the limitations of evaluating structures. This paper presents a cloud computing-based stability evaluation platform for a pier type port structure using Fiber Bragg Grating (FBG) sensors in a system consisting of a FBG strain sensor, FBG displacement gauge, FBG angle meter, gateway, and cloud computing-based web server. The sensors were installed on core components of the structure and measurements were taken to evaluate the structures. The measurement values were transmitted to the web server via the gateway to analyze and visualize them. All data were analyzed and visualized in the web server to evaluate the structure based on the safety evaluation index (SEI). The stability evaluation platform for pier type port structures involves the efficient monitoring of the structures which can be carried out easily anytime and anywhere by converging new technologies such as cloud computing and FBG sensors. In addition, the platform has been successfully implemented at “Maryang Harbor” situated in Maryang-Meyon of Korea to test its durability.

  9. Arctic cloud-climate feedbacks: On relationships between Arctic clouds, sea ice, and lower tropospheric stability

    Science.gov (United States)

    Taylor, P. C.; Boeke, R.; Hegyi, B.

    2017-12-01

    Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence other important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea ice extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these Arctic climate system elements creating the potential for Arctic cloud-climate feedbacks. To further our understanding of the potential for Arctic cloud-climate feedbacks, we quantify the influence of atmospheric state on the surface cloud radiative effect (CRE). In addition, we quantify the covariability between surface CRE and sea ice concentration (SIC). This paper builds on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, a statistically insignificant covariability is found between CRE and SIC for most atmospheric conditions. Third, we find a statistically significant increase in the average surface longwave CRE at lower SIC values in fall. Specifically, a +3-5 W m-2 larger longwave CRE is found over footprints with 0% versus 100% SIC. Because systematic changes on the order of 1 W m-2 are sufficient to explain the observed long-term reductions in sea ice extent, our results indicate a potentially significant amplifying sea ice-cloud feedback that could delay the fall freeze-up and influence the variability in sea ice extent and volume, under certain meteorological conditions. Our results also suggest that a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea ice.

  10. A Modeling Study of the Spatial Structure of Electric Fields Generated by Electrified Clouds with Screening Layers

    Science.gov (United States)

    Biagi, C. J.; Cummins, K. L.

    2015-12-01

    The growing possibility of inexpensive airborne observations of electric fields using one or more small UAVs increases the importance of understanding what can be determined about cloud electrification and associated electric fields outside cloud boundaries. If important information can be inferred from carefully selected flight paths outside of a cloud, then the aircraft and its instrumentation will be much cheaper to develop and much safer to operate. These facts have led us to revisit this long-standing topic using quasi-static, finite-element modeling inside and outside arbitrarily shaped clouds with a variety of internal charge distributions. In particular, we examine the effect of screening layers on electric fields outside of electrified clouds by comparing modeling results for charged clouds having electrical conductivities that are both equal to and lower than the surrounding clear air. The comparisons indicate that the spatial structure of the electric field is approximately the same regardless of the difference in the conductivities between the cloud and clear air and the formation of a screening layer, even for altitude-dependent electrical conductivities. This result is consistent with the numerical modeling results reported by Driscoll et al [1992]. The similarity of the spatial structure of the electric field outside of clouds with and without a screening layer suggests that "bulk" properties related to cloud electrification might be determined using measurements of the electric field at multiple locations in space outside the cloud, particularly at altitude. Finally, for this somewhat simplified model, the reduction in electric field magnitude outside the cloud due to the presence of a screening layer exhibits a simple dependence on the difference in conductivity between the cloud and clear air. These results are particularly relevant for studying clouds that are not producing lightning, such as developing thunderstorms and decaying anvils

  11. Can We Use Single-Column Models for Understanding the Boundary Layer Cloud-Climate Feedback?

    Science.gov (United States)

    Dal Gesso, S.; Neggers, R. A. J.

    2018-02-01

    This study explores how to drive Single-Column Models (SCMs) with existing data sets of General Circulation Model (GCM) outputs, with the aim of studying the boundary layer cloud response to climate change in the marine subtropical trade wind regime. The EC-EARTH SCM is driven with the large-scale tendencies and boundary conditions as derived from two different data sets, consisting of high-frequency outputs of GCM simulations. SCM simulations are performed near Barbados Cloud Observatory in the dry season (January-April), when fair-weather cumulus is the dominant low-cloud regime. This climate regime is characterized by a near equilibrium in the free troposphere between the long-wave radiative cooling and the large-scale advection of warm air. In the SCM, this equilibrium is ensured by scaling the monthly mean dynamical tendency of temperature and humidity such that it balances that of the model physics in the free troposphere. In this setup, the high-frequency variability in the forcing is maintained, and the boundary layer physics acts freely. This technique yields representative cloud amount and structure in the SCM for the current climate. Furthermore, the cloud response to a sea surface warming of 4 K as produced by the SCM is consistent with that of the forcing GCM.

  12. Global Distribution and Vertical Structure of Clouds Revealed by CALIPSO

    Science.gov (United States)

    Yi, Y.; Minnis, P.; Winker, D.; Huang, J.; Sun-Mack, S.; Ayers, K.

    2007-12-01

    Understanding the effects of clouds on Earth's radiation balance, especially on longwave fluxes within the atmosphere, depends on having accurate knowledge of cloud vertical location within the atmosphere. The Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite mission provides the opportunity to measure the vertical distribution of clouds at a greater detail than ever before possible. The CALIPSO cloud layer products from June 2006 to June 2007 are analyzed to determine the occurrence frequency and thickness of clouds as functions of time, latitude, and altitude. In particular, the latitude-longitude and vertical distributions of single- and multi-layer clouds and the latitudinal movement of cloud cover with the changing seasons are examined. The seasonal variablities of cloud frequency and geometric thickness are also analyzed and compared with similar quantities derived from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) using the Clouds and the Earth's Radiant Energy System (CERES) cloud retrieval algorithms. The comparisons provide an estimate of the errors in cloud fraction, top height, and thickness incurred by passive algorithms.

  13. Spatial and mass distributions of molecular clouds and spiral structure

    International Nuclear Information System (INIS)

    Kwan, J.; Valdes, F.; National Optical Astronomy Observatories, Tucson, AZ)

    1987-01-01

    The growth of molecular clouds resulting from cloud-cloud collisions and coalescence in the Galactic ring between 4 and 8 kpc are modeled, taking into account the presence of a spiral potential and the mutual cloud-cloud gravitational attraction. The mean lifetime of molecular clouds is determined to be about 200 million years. The clouds are present in both spiral arm and interarm regions, but a spiral pattern in their spatial distribution is clearly discernible, with the more massive clouds showing a stronger correlation with the spiral arms. As viewed from within the Galactic disk, however, it is very difficult to ascertain that the molecular cloud distribution in longitude-velocity space has a spiral pattern. 19 references

  14. Late Posthemorrhagic Structural and Functional Changes in Pulmonary Circulation Arteries

    Directory of Open Access Journals (Sweden)

    S. A. Andreyeva

    2008-01-01

    Full Text Available Objective: to reveal the major regularities and mechanisms of morphological changes in the rat pulmonary circulation arteries in the late posthemorrhagic period and to compare them with age-related features of the vessels. Materials and methods: experiments to generate graduated hemorrhagic hypotension with the blood pressure being maintained at 40 mm Hg were carried out on young (5—6-month albino male Wistar rats. Throughout hypotension and 60 days after blood loss, the blood was tested to determine low and average molecular-weight substances by spectrophotometry and the pro- and antioxidative systems by chemiluminescence. Pulmonary circulation arteries were morphologically studied in young animals, rats in the late posthemorrhagic period and old (24—25-month rats. Results. Sixty-minute hemorrhagic hypotension leads to the development of endotoxemia and imbalance of the pro- and antioxidative systems, the signs of which are observed in the late periods (2 months after hypotension. At the same time, the posthemorrhagic period is marked by the significant pulmonary circulation arterial morphological changes comparable with their age-related alterations in old rat. This shows up mainly in the reorganization of a connective tissue component in the vascular wall: the elevated levels of individual collagen fibers, their structural changes, elastic medial membrane destruction and deformity. At the same time, there is a change in the morphometric parameters of vessels at all study stages while their lowered flow capacity is only characteristic for intraorgan arteries. Conclusion: The increased activity of free radical oxidation and endotoxemia may be believed to be one of the causes of morphological changes in pulmonary circulation arteries in the late posthemorrhagic period, which is similar to age-related vascular alterations. Key words: hemorrhagic hypotension, pulmonary circulation arteries, free radical oxidation, endotoxemia, remodeling, late

  15. Experimental study of critical heat flux enhancement with hypervapotron structure under natural circulation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Fangxin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Chang, Huajian [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Zhao, Yufeng, E-mail: zhaoyufeng@snptc.com.cn [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Zhang, Ming; Gao, Tianfang [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Chen, Peipei [State Power Investment Corporation, Beijing (China)

    2017-05-15

    Highlights: • Natural circulation tests are performed to study the effect of hypervapotron on CHF. • Hypervapotron structure improves CHF under natural circulation conditions. • Visualization data illustrate vapor blanket behavior under subcooled flow conditions. - Abstract: The enhancement of critical heat flux with a hypervapotron structure under natural circulation conditions is investigated in this study. Subcooled flow boiling CHF experiments are performed using smooth and hypervapotron surfaces at different inclination angles under natural circulation conditions. The experimental facility, TESEC (Test of External Vessel Surface with Enhanced Cooling), is designed to conduct CHF experiments in a 30 mm by 61 mm rectangular flow channel with a 200 mm long heated surface along the flow direction. The two-phase flow of subcooled flow boiling on both smooth and hypervapotron heating plates is observed and analyzed by the high-speed visualization technology. The results show that both smooth surface and hypervapotron surface CHF data exhibit a similar trend against inclination angles compared with the CHF results under forced flow condition on the same facility in earlier studies. However, the CHF enhancement of the hypervapotron structure is evidently more significant than the one under forced flow conditions. The experiments also indicate that the natural flow rates are higher with hypervapotron structure. The initiation of CHF is analyzed under transient subcooling and flow rate conditions for both smooth and hypervapotron heating surfaces. An explanation is given for the significant enhancement effect caused by the hypervapotron surface under natural circulation conditions. The visualization data are exhibited to demonstrate the behavior of the vapor blanket at various inclination angles and on different surfaces. The geometric data of the vapor blanket are quantified by an image post-processing method. It is found that the thickness of the vapor blanket

  16. a Point Cloud Classification Approach Based on Vertical Structures of Ground Objects

    Science.gov (United States)

    Zhao, Y.; Hu, Q.; Hu, W.

    2018-04-01

    This paper proposes a novel method for point cloud classification using vertical structural characteristics of ground objects. Since urbanization develops rapidly nowadays, urban ground objects also change frequently. Conventional photogrammetric methods cannot satisfy the requirements of updating the ground objects' information efficiently, so LiDAR (Light Detection and Ranging) technology is employed to accomplish this task. LiDAR data, namely point cloud data, can obtain detailed three-dimensional coordinates of ground objects, but this kind of data is discrete and unorganized. To accomplish ground objects classification with point cloud, we first construct horizontal grids and vertical layers to organize point cloud data, and then calculate vertical characteristics, including density and measures of dispersion, and form characteristic curves for each grids. With the help of PCA processing and K-means algorithm, we analyze the similarities and differences of characteristic curves. Curves that have similar features will be classified into the same class and point cloud correspond to these curves will be classified as well. The whole process is simple but effective, and this approach does not need assistance of other data sources. In this study, point cloud data are classified into three classes, which are vegetation, buildings, and roads. When horizontal grid spacing and vertical layer spacing are 3 m and 1 m respectively, vertical characteristic is set as density, and the number of dimensions after PCA processing is 11, the overall precision of classification result is about 86.31 %. The result can help us quickly understand the distribution of various ground objects.

  17. Uranus atmospheric dynamics and circulation

    Science.gov (United States)

    Allison, Michael; Beebe, Reta F.; Conrath, Barney J.; Hinson, David P.; Ingersoll, Andrew P.

    1991-01-01

    The observations, models, and theories relevant to the atmospheric dynamics and meteorology of Uranus are discussed. The available models for the large-scale heat transport and atmospheric dynamics as well as diagnostic interpretations of the Voyager data are reviewed. Some pertinent ideas and questions regarding the global circulation balance are considered, partly in comparison with other planetary atmospheres. The available data indicate atmospheric rotation at midlatitudes nearly 200 m/s faster than that of the planetary magnetic field. Analysis of the dynamical deformation of the shape and size of isobaric surfaces measured by the Voyager radio-occultation experiment suggests a subrotating equator at comparable altitudes. Infrared temperature retrievals above the cloud deck indicate a smaller equator-to-pole contrast than expected for purely radiative-convective equilibrium, but show local variations implying a latitudinally correlated decrease with altitude in the cloud-tracked wind.

  18. GPU-Based Point Cloud Superpositioning for Structural Comparisons of Protein Binding Sites.

    Science.gov (United States)

    Leinweber, Matthias; Fober, Thomas; Freisleben, Bernd

    2018-01-01

    In this paper, we present a novel approach to solve the labeled point cloud superpositioning problem for performing structural comparisons of protein binding sites. The solution is based on a parallel evolution strategy that operates on large populations and runs on GPU hardware. The proposed evolution strategy reduces the likelihood of getting stuck in a local optimum of the multimodal real-valued optimization problem represented by labeled point cloud superpositioning. The performance of the GPU-based parallel evolution strategy is compared to a previously proposed CPU-based sequential approach for labeled point cloud superpositioning, indicating that the GPU-based parallel evolution strategy leads to qualitatively better results and significantly shorter runtimes, with speed improvements of up to a factor of 1,500 for large populations. Binary classification tests based on the ATP, NADH, and FAD protein subsets of CavBase, a database containing putative binding sites, show average classification rate improvements from about 92 percent (CPU) to 96 percent (GPU). Further experiments indicate that the proposed GPU-based labeled point cloud superpositioning approach can be superior to traditional protein comparison approaches based on sequence alignments.

  19. New approaches to quantifying aerosol influence on the cloud radiative effect.

    Science.gov (United States)

    Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; Johnson, Jill S; Carslaw, Kenneth S; Schmidt, K Sebastian

    2016-05-24

    The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol-cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol-cloud interactions adequately. There is a dearth of observational constraints on aerosol-cloud interactions. We develop a conceptual approach to systematically constrain the aerosol-cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol-cloud radiation system.

  20. Molecular clouds and galactic spiral structure

    International Nuclear Information System (INIS)

    Dame, T.M.

    1983-01-01

    Galactic CO line emission at 115 GHz has been surveyed in the region 12 0 less than or equal to l less than or equal to 60 0 and -1 0 less than or equal to b less than or equal to 1 0 in order to study the distribution of molecular clouds in the inner galaxy; an inner strip 0 0 .5 wide has been sampled every beamwidth (0 0 .125), the rest every two beamwidths. Comparison of the survey with similar HI data reveals a detailed correlation with the most intense 21-cm features, implying that the CO and HI trace the same galactic features and have the same large-scale kinematics. To each of the classical 21-cm (HI) spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is developed in which all of the CO emission from the inner galaxy arises from spiral arms. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide. A variety of methods are employed to estimate distances and masses for the largest clouds detected by the inner-galaxy survey and a catalogue is compiled. The catalogued clouds, the largest of which have masses of several 10 6 M/sub sunmass/ and linear dimensions in excess of 100 pc, are found to be excellent spiral-arm tracers. One of the nearest of the clouds, that associated with the supernova remnant W44, is fully mapped in both CO and 13 CO and is discussed in detail

  1. Application of digital image processing methods on the cluster structure at the wall of a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai-guang; Zhao, Zeng-wu; Li, Bao-wei; Wu, Wen-fei [Inner Mongolia Univ. of Science and Technology, Baotou (China). School of Environment and Energy

    2013-07-01

    This paper describes experiments to investigate the cluster structure of gas-particle flow at the wall region of a circulating fluidized bed (CFB). The setup is in a cold scale-model circulating fluidized bed with a riser that has a 0.30 m 0.28 m cross-section and is 2.9 m tall. A video camera was utilized to visualize the cluster structure through a transparent Plexiglas wall. An image processing system was used to analyze images, which were obtained under different superficial gas velocities and solid circulating rates. The results show that distinctly different cluster structures exist in the different operating conditions, which the number, shape and size of the clusters are affected by main air flow.

  2. A STATISTICAL STUDY OF THE MASS AND DENSITY STRUCTURE OF INFRARED DARK CLOUDS

    International Nuclear Information System (INIS)

    Peretto, N.; Fuller, G. A.

    2010-01-01

    How and when the mass distribution of stars in the Galaxy is set is one of the main issues of modern astronomy. Here, we present a statistical study of mass and density distributions of infrared dark clouds (IRDCs) and fragments within them. These regions are pristine molecular gas structures and progenitors of stars and so provide insights into the initial conditions of star formation. This study makes use of an IRDC catalog, the largest sample of IRDC column density maps to date, containing a total of ∼11,000 IRDCs with column densities exceeding N H 2 = 1x10 22 cm -2 and over 50,000 single-peaked IRDC fragments. The large number of objects constitutes an important strength of this study, allowing a detailed analysis of the completeness of the sample and so statistically robust conclusions. Using a statistical approach to assigning distances to clouds, the mass and density distributions of the clouds and the fragments within them are constructed. The mass distributions show a steepening of the slope when switching from IRDCs to fragments, in agreement with previous results of similar structures. IRDCs and fragments are divided into unbound/bound objects by assuming Larson's relation and calculating their virial parameter. IRDCs are mostly gravitationally bound, while a significant fraction of the fragments are not. The density distribution of gravitationally unbound fragments shows a steep characteristic slope such as ΔN/Δlog(n) ∝ n -4.0±0.5 , rather independent of the range of fragment mass. However, the incompleteness limit at a number density of ∼10 3 cm -3 does not allow us to exclude a potential lognormal density distribution. In contrast, gravitationally bound fragments show a characteristic density peak at n ≅ 10 4 cm -3 but the shape of the density distributions changes with the range of fragment masses. An explanation for this could be the differential dynamical evolution of the fragment density with respect to their mass as more massive

  3. Particle pollution changes the atmospheric circulation

    International Nuclear Information System (INIS)

    Kristjansson, Jon Egill; Iversen, Trond; Kirkevaag, Alf; Seland, Oeyvind; Debernard, Jens; Roeed, Lars Petter

    2002-01-01

    Industrial emissions and combustion of fossil fuels create large amounts of sulfate- and carbon containing soot particles. These mix with natural particles to change the natural aerosols. Such anthropogenic changes in the aerosols may have a great impact on the climate of the earth. Altered properties of the aerosols may change the atmosphere's absorption and reflection of solar radiation and contribute to heating or cooling. This is the direct effect. Changes in the properties of aerosols may also affect the number and size of recently formed cloud droplets. This may change the ability of the clouds to reflect solar radiation and to produce precipitation. This is the indirect effect. Recent research at the University of Oslo shows that anthropogenic particles significantly change the atmospheric circulation, in particular in the tropics, but also at European latitudes

  4. Giant molecular cloud scaling relations: the role of the cloud definition

    Science.gov (United States)

    Khoperskov, S. A.; Vasiliev, E. O.; Ladeyschikov, D. A.; Sobolev, A. M.; Khoperskov, A. V.

    2016-01-01

    We investigate the physical properties of molecular clouds in disc galaxies with different morphologies: a galaxy without prominent structure, a spiral barred galaxy and a galaxy with flocculent structure. Our N-body/hydrodynamical simulations take into account non-equilibrium H2 and CO chemical kinetics, self-gravity, star formation and feedback processes. For the simulated galaxies, the scaling relations of giant molecular clouds, or so-called Larson's relations, are studied for two types of cloud definition (or extraction method): the first is based on total column density position-position (PP) data sets and the second is indicated by the CO (1-0) line emission used in position-position-velocity (PPV) data. We find that the cloud populations obtained using both cloud extraction methods generally have similar physical parameters, except that for the CO data the mass spectrum of clouds has a tail with low-mass objects M ˜ 103-104 M⊙. Owing toa varying column density threshold, the power-law indices in the scaling relations are significantly changed. In contrast, the relations are invariant to the CO brightness temperature threshold. Finally, we find that the mass spectra of clouds for PPV data are almost insensitive to the galactic morphology, whereas the spectra for PP data demonstrate significant variation.

  5. Representation of Arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models: Perspectives from a cloud-resolving study

    Science.gov (United States)

    Fan, Jiwen; Ghan, Steven; Ovchinnikov, Mikhail; Liu, Xiaohong; Rasch, Philip J.; Korolev, Alexei

    2011-01-01

    Two types of Arctic mixed-phase clouds observed during the ISDAC and M-PACE field campaigns are simulated using a 3-dimensional cloud-resolving model (CRM) with size-resolved cloud microphysics. The modeled cloud properties agree reasonably well with aircraft measurements and surface-based retrievals. Cloud properties such as the probability density function (PDF) of vertical velocity (w), cloud liquid and ice, regimes of cloud particle growth, including the Wegener-Bergeron-Findeisen (WBF) process, and the relationships among properties/processes in mixed-phase clouds are examined to gain insights for improving their representation in General Circulation Models (GCMs). The PDF of the simulated w is well represented by a Gaussian function, validating, at least for arctic clouds, the subgrid treatment used in GCMs. The PDFs of liquid and ice water contents can be approximated by Gamma functions, and a Gaussian function can describe the total water distribution, but a fixed variance assumption should be avoided in both cases. The CRM results support the assumption frequently used in GCMs that mixed phase clouds maintain water vapor near liquid saturation. Thus, ice continues to grow throughout the stratiform cloud but the WBF process occurs in about 50% of cloud volume where liquid and ice co-exist, predominantly in downdrafts. In updrafts, liquid and ice particles grow simultaneously. The relationship between the ice depositional growth rate and cloud ice strongly depends on the capacitance of ice particles. The simplified size-independent capacitance of ice particles used in GCMs could lead to large deviations in ice depositional growth.

  6. Monte Carlo Bayesian inference on a statistical model of sub-gridcolumn moisture variability using high-resolution cloud observations. Part 2: Sensitivity tests and results

    Science.gov (United States)

    Norris, Peter M.; da Silva, Arlindo M.

    2018-01-01

    Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational–Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by

  7. Monte Carlo Bayesian Inference on a Statistical Model of Sub-Gridcolumn Moisture Variability Using High-Resolution Cloud Observations. Part 2: Sensitivity Tests and Results

    Science.gov (United States)

    Norris, Peter M.; da Silva, Arlindo M.

    2016-01-01

    Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational-Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by

  8. Clouds in ECMWF's 30 KM Resolution Global Atmospheric Forecast Model (TL639)

    Science.gov (United States)

    Cahalan, R. F.; Morcrette, J. J.

    1999-01-01

    Global models of the general circulation of the atmosphere resolve a wide range of length scales, and in particular cloud structures extend from planetary scales to the smallest scales resolvable, now down to 30 km in state-of-the-art models. Even the highest resolution models do not resolve small-scale cloud phenomena seen, for example, in Landsat and other high-resolution satellite images of clouds. Unresolved small-scale disturbances often grow into larger ones through non-linear processes that transfer energy upscale. Understanding upscale cascades is of crucial importance in predicting current weather, and in parameterizing cloud-radiative processes that control long term climate. Several movie animations provide examples of the temporal and spatial variation of cloud fields produced in 4-day runs of the forecast model at the European Centre for Medium-Range Weather Forecasts (ECMWF) in Reading, England, at particular times and locations of simultaneous measurement field campaigns. model resolution is approximately 30 km horizontally (triangular truncation TL639) with 31 vertical levels from surface to stratosphere. Timestep of the model is about 10 minutes, but animation frames are 3 hours apart, at timesteps when the radiation is computed. The animations were prepared from an archive of several 4-day runs at the highest available model resolution, and archived at ECMWF. Cloud, wind and temperature fields in an approximately 1000 km X 1000 km box were retrieved from the archive, then approximately 60 Mb Vis5d files were prepared with the help of Graeme Kelly of ECMWF, and were compressed into MPEG files each less than 3 Mb. We discuss the interaction of clouds and radiation in the model, and compare the variability of cloud liquid as a function of scale to that seen in cloud observations made in intensive field campaigns. Comparison of high-resolution global runs to cloud-resolving models, and to lower resolution climate models is leading to better

  9. Simple structure diffusion cloud chamber for educational purpose

    International Nuclear Information System (INIS)

    Hrehuss, Gy.; Molnar, B.

    1982-01-01

    A simple structure diffusion cloud chamber was designed and built with educational aim. The source of alpha particles is Am-241 radioisotope smeared on steel foil, the source of vapor is a felt disc saturated with methanol. Five minutes after covering the chamber the system achieves the thermodynamic equilibrium and alpha particle tracks of 5 cm length become visible in the centre of the chamber. Life-time of a track is about 0.5-1 second, the frequency is 2-3 tracks/s. The presented diffusion chamber can be built simply and easily, using cheap common materials and components. (D.Gy.)

  10. Detailed Information Security in Cloud Computing

    OpenAIRE

    Pavel Valerievich Ivonin

    2013-01-01

    The object of research in this article is technology of public clouds, structure and security system of clouds. Problems of information security in clouds are considered, elements of security system in public clouds are described.

  11. Star formation induced by cloud-cloud collisions and galactic giant molecular cloud evolution

    Science.gov (United States)

    Kobayashi, Masato I. N.; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro; Fukui, Yasuo

    2018-05-01

    Recent millimeter/submillimeter observations towards nearby galaxies have started to map the whole disk and to identify giant molecular clouds (GMCs) even in the regions between galactic spiral structures. Observed variations of GMC mass functions in different galactic environments indicates that massive GMCs preferentially reside along galactic spiral structures whereas inter-arm regions have many small GMCs. Based on the phase transition dynamics from magnetized warm neutral medium to molecular clouds, Kobayashi et al. (2017, ApJ, 836, 175) proposes a semi-analytical evolutionary description for GMC mass functions including a cloud-cloud collision (CCC) process. Their results show that CCC is less dominant in shaping the mass function of GMCs than the accretion of dense H I gas driven by the propagation of supersonic shock waves. However, their formulation does not take into account the possible enhancement of star formation by CCC. Millimeter/submillimeter observations within the Milky Way indicate the importance of CCC in the formation of star clusters and massive stars. In this article, we reformulate the time-evolution equation largely modified from Kobayashi et al. (2017, ApJ, 836, 175) so that we additionally compute star formation subsequently taking place in CCC clouds. Our results suggest that, although CCC events between smaller clouds are more frequent than the ones between massive GMCs, CCC-driven star formation is mostly driven by massive GMCs ≳ 10^{5.5} M_{⊙} (where M⊙ is the solar mass). The resultant cumulative CCC-driven star formation may amount to a few 10 percent of the total star formation in the Milky Way and nearby galaxies.

  12. UNDERSTANDING TRENDS ASSOCIATED WITH CLOUDS IN IRRADIATED EXOPLANETS

    International Nuclear Information System (INIS)

    Heng, Kevin; Demory, Brice-Olivier

    2013-01-01

    Unlike previously explored relationships between the properties of hot Jovian atmospheres, the geometric albedo and the incident stellar flux do not exhibit a clear correlation, as revealed by our re-analysis of Q0-Q14 Kepler data. If the albedo is primarily associated with the presence of clouds in these irradiated atmospheres, a holistic modeling approach needs to relate the following properties: the strength of stellar irradiation (and hence the strength and depth of atmospheric circulation), the geometric albedo (which controls both the fraction of starlight absorbed and the pressure level at which it is predominantly absorbed), and the properties of the embedded cloud particles (which determine the albedo). The anticipated diversity in cloud properties renders any correlation between the geometric albedo and the stellar flux weak and characterized by considerable scatter. In the limit of vertically uniform populations of scatterers and absorbers, we use an analytical model and scaling relations to relate the temperature-pressure profile of an irradiated atmosphere and the photon deposition layer and to estimate whether a cloud particle will be lofted by atmospheric circulation. We derive an analytical formula for computing the albedo spectrum in terms of the cloud properties, which we compare to the measured albedo spectrum of HD 189733b by Evans et al. Furthermore, we show that whether an optical phase curve is flat or sinusoidal depends on whether the particles are small or large as defined by the Knudsen number. This may be an explanation for why Kepler-7b exhibits evidence for the longitudinal variation in abundance of condensates, while Kepler-12b shows no evidence for the presence of condensates despite the incident stellar flux being similar for both exoplanets. We include an 'observer's cookbook' for deciphering various scenarios associated with the optical phase curve, the peak offset of the infrared phase curve, and the geometric albedo

  13. TEMPERATURE STRUCTURE AND ATMOSPHERIC CIRCULATION OF DRY TIDALLY LOCKED ROCKY EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Koll, Daniel D. B.; Abbot, Dorian S., E-mail: dkoll@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States)

    2016-07-10

    Next-generation space telescopes will observe the atmospheres of rocky planets orbiting nearby M-dwarfs. Understanding these observations will require well-developed theory in addition to numerical simulations. Here we present theoretical models for the temperature structure and atmospheric circulation of dry, tidally locked rocky exoplanets with gray radiative transfer and test them using a general circulation model (GCM). First, we develop a radiative-convective (RC) model that captures surface temperatures of slowly rotating and cool atmospheres. Second, we show that the atmospheric circulation acts as a global heat engine, which places strong constraints on large-scale wind speeds. Third, we develop an RC-subsiding model which extends our RC model to hot and thin atmospheres. We find that rocky planets develop large day–night temperature gradients at a ratio of wave-to-radiative timescales up to two orders of magnitude smaller than the value suggested by work on hot Jupiters. The small ratio is due to the heat engine inefficiency and asymmetry between updrafts and subsidence in convecting atmospheres. Fourth, we show, using GCM simulations, that rotation only has a strong effect on temperature structure if the atmosphere is hot or thin. Our models let us map out atmospheric scenarios for planets such as GJ 1132b, and show how thermal phase curves could constrain them. Measuring phase curves of short-period planets will require similar amounts of time on the James Webb Space Telescope as detecting molecules via transit spectroscopy, so future observations should pursue both techniques.

  14. Implementation of a Parallel Protein Structure Alignment Service on Cloud

    Directory of Open Access Journals (Sweden)

    Che-Lun Hung

    2013-01-01

    Full Text Available Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform.

  15. Impact of deforestation in the Amazon basin on cloud climatology.

    Science.gov (United States)

    Wang, Jingfeng; Chagnon, Frédéric J F; Williams, Earle R; Betts, Alan K; Renno, Nilton O; Machado, Luiz A T; Bisht, Gautam; Knox, Ryan; Bras, Rafael L

    2009-03-10

    Shallow clouds are prone to appear over deforested surfaces whereas deep clouds, much less frequent than shallow clouds, favor forested surfaces. Simultaneous atmospheric soundings at forest and pasture sites during the Rondonian Boundary Layer Experiment (RBLE-3) elucidate the physical mechanisms responsible for the observed correlation between clouds and land cover. We demonstrate that the atmospheric boundary layer over the forested areas is more unstable and characterized by larger values of the convective available potential energy (CAPE) due to greater humidity than that which is found over the deforested area. The shallow convection over the deforested areas is relatively more active than the deep convection over the forested areas. This greater activity results from a stronger lifting mechanism caused by mesoscale circulations driven by deforestation-induced heterogeneities in land cover.

  16. A boundary-layer cloud study using Southern Great Plains Cloud and radiation testbed (CART) data

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, B.; Mace, G.; Dong, X.; Syrett, W. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-04-01

    Boundary layer clouds-stratus and fairweather cumulus - are closely coupled involves the radiative impact of the clouds on the surface energy budget and the strong dependence of cloud formation and maintenance on the turbulent fluxes of heat and moisture in the boundary layer. The continuous data collection at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site provides a unique opportunity to study components of the coupling processes associated with boundary layer clouds and to provide descriptions of cloud and boundary layer structure that can be used to test parameterizations used in climate models. But before the CART data can be used for process studies and parameterization testing, it is necessary to evaluate and validate data and to develop techniques for effectively combining the data to provide meaningful descriptions of cloud and boundary layer characteristics. In this study we use measurements made during an intensive observing period we consider a case where low-level stratus were observed at the site for about 18 hours. This case is being used to examine the temporal evolution of cloud base, cloud top, cloud liquid water content, surface radiative fluxes, and boundary layer structure. A method for inferring cloud microphysics from these parameters is currently being evaluated.

  17. Georeferenced Point Clouds: A Survey of Features and Point Cloud Management

    Directory of Open Access Journals (Sweden)

    Johannes Otepka

    2013-10-01

    Full Text Available This paper presents a survey of georeferenced point clouds. Concentration is, on the one hand, put on features, which originate in the measurement process themselves, and features derived by processing the point cloud. On the other hand, approaches for the processing of georeferenced point clouds are reviewed. This includes the data structures, but also spatial processing concepts. We suggest a categorization of features into levels that reflect the amount of processing. Point clouds are found across many disciplines, which is reflected in the versatility of the literature suggesting specific features.

  18. Multimodel evaluation of cloud phase transition using satellite and reanalysis data

    Science.gov (United States)

    Cesana, G.; Waliser, D. E.; Jiang, X.; Li, J.-L. F.

    2015-08-01

    We take advantage of climate simulations from two multimodel experiments to characterize and evaluate the cloud phase partitioning in 16 general circulation models (GCMs), specifically the vertical structure of the transition between liquid and ice in clouds. We base our analysis on the ratio of ice condensates to the total condensates (phase ratio, PR). Its transition at 90% (PR90) and its links with other relevant variables are evaluated using the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation Cloud Product climatology, reanalysis data, and other satellite observations. In 13 of 16 models, the PR90 transition height occurs too low (6 km to 8.4 km) and at temperatures too warm (-13.9°C to -32.5°C) compared to observations (8.6 km, -33.7°C); features consistent with a lack of supercooled liquid with respect to ice above 6.5 km. However, this bias would be slightly reduced by using the lidar simulator. In convective regimes (more humid air and precipitation), the observed cloud phase transition occurs at a warmer temperature than for subsidence regimes (less humid air and precipitation). Only few models manage to roughly replicate the observed correlations with humidity (5/16), vertical velocity (5/16), and precipitation (4/16); 3/16 perform well for all these parameters (MPI-ESM, NCAR-CAM5, and NCHU). Using an observation-based Clausius-Clapeyron phase diagram, we illustrate that the Bergeron-Findeisen process is a necessary condition for models to represent the observed features. Finally, the best models are those that include more complex microphysics.

  19. LHC Report: out of the clouds (part II)

    CERN Multimedia

    Giovanni Rumolo for the LHC team

    2015-01-01

    A large fraction of the LHC beam-time over the last two weeks has been devoted to the second phase of the scrubbing of the vacuum chambers. This was aimed at reducing the formation of electron clouds in the beam pipes, this time performed with 25-nanosecond spaced bunches. This operation is designed to prepare the machine for a smooth intensity ramp-up for physics with this type of beam.   The scrubbing of the accelerator beam pipes is done by running the machine under an intense electron cloud regime while respecting beam stability constraints. When electron cloud production becomes sufficiently intense, the probability of creating secondary electrons at the chamber walls decreases and this inhibits the whole process. In this way, the scrubbing operation eventually reduces the formation of electron clouds, which would otherwise generate instabilities in the colliding beams. The second phase of LHC scrubbing started on Saturday, 25 July, when 25 ns beams were circulated again in the LHC...

  20. In the Cloud: Nineteenth-Century Visions and Experiments for the Digital Age

    Directory of Open Access Journals (Sweden)

    Luisa Calè

    2015-12-01

    Full Text Available What shapes does the nineteenth-century paper archive take in the twenty-first century digital cloud? Luisa Calè and Ana Parejo Vadillo situate the crafts, experiments, and visions discussed in this anniversary issue in the wider context of questions raised by the emergence and possibilities of nineteenth-century archives for the digital era. What happens when objects float free of their bibliographic and museum anchorings? What is gained and lost in the digital transformations? What new imaginary spaces open up in the transition from the book to the virtual codex and from the terrestrial library to cloud-sourced collections? What formations does the nineteenth century take in digital discourse networks? How are nineteenth-century objects made digital, and through what crafts, skills, and disciplines? How are they shaped by circulation through digital platforms, social media, and remix on the semantic web? What kinds of authoring, what structures of labour, what kinds of making and knowing shape agency in the nineteenth-century digital archive?

  1. Cloud prediction of protein structure and function with PredictProtein for Debian.

    Science.gov (United States)

    Kaján, László; Yachdav, Guy; Vicedo, Esmeralda; Steinegger, Martin; Mirdita, Milot; Angermüller, Christof; Böhm, Ariane; Domke, Simon; Ertl, Julia; Mertes, Christian; Reisinger, Eva; Staniewski, Cedric; Rost, Burkhard

    2013-01-01

    We report the release of PredictProtein for the Debian operating system and derivatives, such as Ubuntu, Bio-Linux, and Cloud BioLinux. The PredictProtein suite is available as a standard set of open source Debian packages. The release covers the most popular prediction methods from the Rost Lab, including methods for the prediction of secondary structure and solvent accessibility (profphd), nuclear localization signals (predictnls), and intrinsically disordered regions (norsnet). We also present two case studies that successfully utilize PredictProtein packages for high performance computing in the cloud: the first analyzes protein disorder for whole organisms, and the second analyzes the effect of all possible single sequence variants in protein coding regions of the human genome.

  2. Role of mixed precipitating cloud systems on the typhoon rainfall

    Directory of Open Access Journals (Sweden)

    C. J. Pan

    2010-01-01

    Full Text Available L-band wind profiler data are utilized to diagnose the vertical structure of the typhoon precipitating cloud systems in Taiwan. For several typhoons, a pronounced bright band (BB around 5 km is commonly observed from the observation. Since strong convection within typhoon circulation may disturb and/or disrupt the melting layer, the BB shall not appear persistently. Hence, an understanding of the vertical structure of the BB region is important because it holds extensive hydrometeors information on the type of precipitation and its variability. Wind profiler observational results suggest that the mixture of convective and stratiform (embedded type clouds are mostly associated with typhoons. In the case of one typhoon, BB is appeared around 5.5 km with embedded precipitation and also BB height of 1 km higher than ordinary showery precipitation. This is evident from the long-term observations of wind profiler and Tropical Rainfall Measuring Mission. The Doppler velocity profiles show hydrometers (ice/snow at 6 km but liquid below 5 km for typhoons and 4 km for showery precipitation. In the BB region the melting particles accelerations of 5.8 ms−1 km−1 and 3.2 ms−1 km−1 are observed for typhoon and showery precipitation, respectively.

  3. Broken-cloud enhancement of solar radiation absorption

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, R.N. [Science Applications International Corporation, San Diego, CA (United States); Somerville, R.C. [Univ. of California, La Jolla, CA (United States); Subasilar, B. [Curtain Univ. of Technology, Perth (Australia)

    1996-04-01

    Two papers recently published in Science have shown that there is more absorption of solar radiation than estimated by current atmospheric general circulation models (GCMs) and that the discrepancy is associated with cloudy scenes. We have devised a simple model which explains this as an artifact of stochastic radiative transport. We first give a heuristic description, unencumbered by mathematical detail. Consider a simple case with clouds distributed at random within a single level whose upper and lower boundaries are fixed. The solar zenith angle is small to moderate; this is therefore an energetically important case. Fix the average areal liquid water content of the cloud layer, and take the statistics of the cloud distribution to be homogeneous within the layer. Furthermore, assume that all the clouds in the layer have the same liquid water content, constant throughout the cloud, and that apart from their droplet content they are identical to the surrounding clear sky. Let the clouds occupy on the average a fraction p{sub cld} of the volume of the cloudy layer, and let them have a prescribed distribution of sizes about some mean. This is not a fractal distribution, because it has a scale. Cloud shape is unimportant so long as cloud aspect ratios are not far from unity. Take the single-scattering albedo to be unity for the droplets in the clouds. All of the absorption is due to atmospheric gases, so the absorption coefficient at a point is the same for cloud and clear sky. Absorption by droplets is less than 10% effect in the numerical stochastic radiation calculations described below, so it is reasonable to neglect it at this level of idealization.

  4. The photoevaporation of interstellar clouds

    International Nuclear Information System (INIS)

    Bertoldi, F.

    1989-01-01

    The dynamics of the photoevaporation of interstellar clouds and its consequences for the structure and evolution of H II regions are studied. An approximate analytical solution for the evolution of photoevaporating clouds is derived under the realistic assumption of axisymmetry. The effects of magnetic fields are taken into account in an approximate way. The evolution of a neutral cloud subjected to the ionizing radiation of an OB star has two distinct stages. When a cloud is first exposed to the radiation, the increase in pressure due to the ionization at the surface of the cloud leads to a radiation-driven implosion: an ionization front drives a shock into the cloud, ionizes part of it and compresses the remaining into a dense globule. The initial implosion is followed by an equilibrium cometary stage, in which the cloud maintains a semistationary comet-shaped configuration; it slowly evaporates while accelerating away from the ionizing star until the cloud has been completely ionized, reaches the edge of the H II region, or dies. Expressions are derived for the cloud mass-loss rate and acceleration. To investigate the effect of the cloud photoevaporation on the structure of H II regions, the evolution of an ensemble of clouds of a given mass distribution is studied. It is shown that the compressive effect of the ionizing radiation can induce star formation in clouds that were initially gravitationally stable, both for thermally and magnetically supported clouds

  5. Comparison of the Cloud Morphology Spatial Structure Between Jupiter and Saturn Using JunoCam and Cassini ISS

    Science.gov (United States)

    Garland, Justin; Sayanagi, Kunio M.; Blalock, John J.; Gunnarson, Jacob; McCabe, Ryan M.; Gallego, Angelina; Hansen, Candice; Orton, Glenn S.

    2017-10-01

    We present an analysis of the spatial-scales contained in the cloud morphology of Jupiter’s southern high latitudes using images captured by JunoCam in 2016 and 2017, and compare them to those on Saturn using images captured using the Imaging Science Subsystem (ISS) on board the Cassini orbiter. For Jupiter, the characteristic spatial scale of cloud morphology as a function of latitude is calculated from images taken in three visual (600-800, 500-600, 420-520 nm) bands and a near-infrared (880- 900 nm) band. In particular, we analyze the transition from the banded structure characteristic of Jupiter’s mid-latitudes to the chaotic structure of the polar region. We apply similar analysis to Saturn using images captured using Cassini ISS. In contrast to Jupiter, Saturn maintains its zonally organized cloud morphology from low latitudes up to the poles, culminating in the cyclonic polar vortices centered at each of the poles. By quantifying the differences in the spatial scales contained in the cloud morphology, our analysis will shed light on the processes that control the banded structures on Jupiter and Saturn. Our work has been supported by the following grants: NASA PATM NNX14AK07G, NASA MUREP NNX15AQ03A, and NSF AAG 1212216.

  6. A cloud climatology of the Southern Great Plains ARM CART

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, S.M.; Krueger, S.K.; Mace, G.G.

    2000-05-15

    Cloud amount statistics from three different sources were processed and compared. Surface observations from a National Centers for Environmental Prediction dataset were used. The data (Edited Cloud Report; ECR) consist of synoptic weather reports that have been edited to facilitate cloud analysis. Two stations near the Southern Great Plains (SGP) Cloud and Radiation Test Bed (CART) in north-central Oklahoma (Oklahoma City, Oklahoma and Wichita, Kansas) were selected. The ECR data span a 10-yr period from December 1981 to November 1991. The International Satellite Cloud Climatology Project (ISCCP) provided cloud amounts over the SGP CART for an 8-yr period (1983--91). Cloud amounts were also obtained from Micro Pulse Lidar (MPL) and Belfort Ceilometer (BLC) cloud-base height measurements made at the SGP CART over a 1-yr period. The annual and diurnal cycles of cloud amount as a function of cloud height and type were analyzed. The three datasets closely agree for total cloud amount. Good agreement was found in the ECR and MPL-BLC monthly low cloud amounts. With the exception of summer and midday in other seasons, the ISCCP low cloud amount estimates are generally 5%--10% less than the others. The ECR high cloud amount estimates are typically 10%--15% greater than those obtained from either the ISCCP or MPL-BLC datasets. The observed diurnal variations of altocumulus support the authors' model results of radiatively induced circulations.

  7. Vertical structure of orographic precipitating clouds observed over ...

    Indian Academy of Sciences (India)

    Shailendra Kumar

    2017-11-23

    Nov 23, 2017 ... the highest over the Western Ghats and the eastern Arabian Sea. ... Shallow clouds; mixed phase clouds; TRMM PR; Western Ghats; radar reflectivity. ..... The focus in the present work is on iden- ... A similar behaviour, but at.

  8. Two-dimensional positive column structure with dust cloud: Experiment and nonlocal kinetic simulation

    Science.gov (United States)

    Zobnin, A. V.; Usachev, A. D.; Petrov, O. F.; Fortov, V. E.; Thoma, M. H.; Fink, M. A.

    2018-03-01

    The influence of a dust cloud on the structure of the positive column of a direct current gas discharge in a cylindrical glass tube under milligravity conditions has been studied both experimentally and numerically. The discharge was produced in neon at 60 Pa in a glass tube with a diameter of 30 mm at a discharge current 1 mA. Spherical monodisperse melamine formaldehyde dust particles with a diameter of 6.86 μm were injected into the positive column and formed there a uniform dust cloud with a maximum diameter of 14.4 mm. The shape of the cloud and the dust particle number density were measured. The cloud was stationary in the radial direction and slowly drifted in the axial direction. It was found that in the presence of the dust cloud, the intensity of the neon spectral line with a wavelength by 585.25 nm emitted by the discharge plasma increased by 2.3 times and 2 striations appeared on the anode side of the cloud. A numerical simulation of the discharge was performed using the 2D (quasi-3D) nonlocal self-consistent kinetic model of a longitudinally inhomogeneous axially symmetric positive column [Zobnin et al., Phys. Plasmas 21, 113503 (2014)], which was supplemented by a program module performing a self-consistent calculation of dust particle charges, the plasma recombination rate on dust particles, and ion scattering on dust particles. A new approach to the calculation of particle charges and the screening radius in dense dust clouds is proposed. The results of the simulation are presented, compared with experimental data and discussed. It is demonstrated that for the best agreement between simulated and experimental data, it is necessary to take into account the reflection of electrons from the dust particle surface in order to correctly describe the recombination rate in the cloud, its radial stability, and the dust particle charges.

  9. Thin Cloud Detection Method by Linear Combination Model of Cloud Image

    Science.gov (United States)

    Liu, L.; Li, J.; Wang, Y.; Xiao, Y.; Zhang, W.; Zhang, S.

    2018-04-01

    The existing cloud detection methods in photogrammetry often extract the image features from remote sensing images directly, and then use them to classify images into cloud or other things. But when the cloud is thin and small, these methods will be inaccurate. In this paper, a linear combination model of cloud images is proposed, by using this model, the underlying surface information of remote sensing images can be removed. So the cloud detection result can become more accurate. Firstly, the automatic cloud detection program in this paper uses the linear combination model to split the cloud information and surface information in the transparent cloud images, then uses different image features to recognize the cloud parts. In consideration of the computational efficiency, AdaBoost Classifier was introduced to combine the different features to establish a cloud classifier. AdaBoost Classifier can select the most effective features from many normal features, so the calculation time is largely reduced. Finally, we selected a cloud detection method based on tree structure and a multiple feature detection method using SVM classifier to compare with the proposed method, the experimental data shows that the proposed cloud detection program in this paper has high accuracy and fast calculation speed.

  10. Cloud Computing Governance Lifecycle

    Directory of Open Access Journals (Sweden)

    Soňa Karkošková

    2016-06-01

    Full Text Available Externally provisioned cloud services enable flexible and on-demand sourcing of IT resources. Cloud computing introduces new challenges such as need of business process redefinition, establishment of specialized governance and management, organizational structures and relationships with external providers and managing new types of risk arising from dependency on external providers. There is a general consensus that cloud computing in addition to challenges brings many benefits but it is unclear how to achieve them. Cloud computing governance helps to create business value through obtain benefits from use of cloud computing services while optimizing investment and risk. Challenge, which organizations are facing in relation to governing of cloud services, is how to design and implement cloud computing governance to gain expected benefits. This paper aims to provide guidance on implementation activities of proposed Cloud computing governance lifecycle from cloud consumer perspective. Proposed model is based on SOA Governance Framework and consists of lifecycle for implementation and continuous improvement of cloud computing governance model.

  11. Laboratory simulations show diabatic heating drives cumulus-cloud evolution and entrainment

    Science.gov (United States)

    Narasimha, Roddam; Diwan, Sourabh Suhas; Duvvuri, Subrahmanyam; Sreenivas, K. R.; Bhat, G. S.

    2011-01-01

    Clouds are the largest source of uncertainty in climate science, and remain a weak link in modeling tropical circulation. A major challenge is to establish connections between particulate microphysics and macroscale turbulent dynamics in cumulus clouds. Here we address the issue from the latter standpoint. First we show how to create bench-scale flows that reproduce a variety of cumulus-cloud forms (including two genera and three species), and track complete cloud life cycles—e.g., from a “cauliflower” congestus to a dissipating fractus. The flow model used is a transient plume with volumetric diabatic heating scaled dynamically to simulate latent-heat release from phase changes in clouds. Laser-based diagnostics of steady plumes reveal Riehl–Malkus type protected cores. They also show that, unlike the constancy implied by early self-similar plume models, the diabatic heating raises the Taylor entrainment coefficient just above cloud base, depressing it at higher levels. This behavior is consistent with cloud-dilution rates found in recent numerical simulations of steady deep convection, and with aircraft-based observations of homogeneous mixing in clouds. In-cloud diabatic heating thus emerges as the key driver in cloud development, and could well provide a major link between microphysics and cloud-scale dynamics. PMID:21918112

  12. Diagnosing Warm Frontal Cloud Formation in a GCM: A Novel Approach Using Conditional Subsetting

    Science.gov (United States)

    Booth, James F.; Naud, Catherine M.; DelGenio, Anthony D.

    2013-01-01

    This study analyzes characteristics of clouds and vertical motion across extratropical cyclone warm fronts in the NASA Goddard Institute for Space Studies general circulation model. The validity of the modeled clouds is assessed using a combination of satellite observations from CloudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The analysis focuses on developing cyclones, to test the model's ability to generate their initial structure. To begin, the extratropical cyclones and their warm fronts are objectively identified and cyclone-local fields are mapped into a vertical transect centered on the surface warm front. To further isolate specific physics, the cyclones are separated using conditional subsetting based on additional cyclone-local variables, and the differences between the subset means are analyzed. Conditional subsets are created based on 1) the transect clouds and 2) vertical motion; 3) the strength of the temperature gradient along the warm front, as well as the storm-local 4) wind speed and 5) precipitable water (PW). The analysis shows that the model does not generate enough frontal cloud, especially at low altitude. The subsetting results reveal that, compared to the observations, the model exhibits a decoupling between cloud formation at high and low altitudes across warm fronts and a weak sensitivity to moisture. These issues are caused in part by the parameterized convection and assumptions in the stratiform cloud scheme that are valid in the subtropics. On the other hand, the model generates proper covariability of low-altitude vertical motion and cloud at the warm front and a joint dependence of cloudiness on wind and PW.

  13. Molecular Cloud Structures and Massive Star Formation in N159

    Science.gov (United States)

    Nayak, O.; Meixner, M.; Fukui, Y.; Tachihara, K.; Onishi, T.; Saigo, K.; Tokuda, K.; Harada, R.

    2018-02-01

    The N159 star-forming region is one of the most massive giant molecular clouds (GMCs) in the Large Magellanic Cloud (LMC). We show the 12CO, 13CO, CS molecular gas lines observed with ALMA in N159 west (N159W) and N159 east (N159E). We relate the structure of the gas clumps to the properties of 24 massive young stellar objects (YSOs) that include 10 newly identified YSOs based on our search. We use dendrogram analysis to identify properties of the molecular clumps, such as flux, mass, linewidth, size, and virial parameter. We relate the YSO properties to the molecular gas properties. We find that the CS gas clumps have a steeper size–linewidth relation than the 12CO or 13CO gas clumps. This larger slope could potentially occur if the CS gas is tracing shocks. The virial parameters of the 13CO gas clumps in N159W and N159E are low (<1). The threshold for massive star formation in N159W is 501 M ⊙ pc‑2, and the threshold for massive star formation in N159E is 794 M ⊙ pc‑2. We find that 13CO is more photodissociated in N159E than N159W. The most massive YSO in N159E has cleared out a molecular gas hole in its vicinity. All the massive YSO candidates in N159E have a more evolved spectral energy distribution type in comparison to the YSO candidates in N159W. These differences lead us to conclude that the giant molecular cloud complex in N159E is more evolved than the giant molecular cloud complex in N159W.

  14. Studies of the Structure of C Pellet Ablation Clouds in W7-AS

    International Nuclear Information System (INIS)

    Bakhareva, O.A.; Sergeev, V.Yu.; Kuteev, B.V.; Skokov, V.G.; Timokhin, V.M.; Burhenn, R.

    2005-01-01

    The structure of the ablation clouds surrounding carbon pellets injected into the ECR-heated Wendelstein 7-AS plasma has been studied. Snapshot and integrated photographs obtained in the spectral ranges containing the CII (720 ± 5 nm and 723 ± 1 nm) and CIII (770 ± 5 nm) spectral lines were analyzed over a wide range of the bulk plasma parameters. It is found that the cloud luminosity profile along the magnetic field is exponential with either one or two characteristic decay lengths of about a few millimeters and a few centimeters. The smaller length corresponds to the zone closer to the pellet. There is good agreement between the characteristic decay lengths deduced from snapshot and integrated photographs. The characteristic decay lengths were obtained along the entire pellet trajectory and were found to change weakly in the central region and to grow at the plasma periphery (generally, in inverse proportion to the plasma electron density). In the central region, the characteristic decay lengths are about a few millimeters and 1 cm. They depend weakly on the bulk plasma temperature and decrease with increasing bulk plasma density. These lengths agree fairly well with estimates of the ionization length of carbon ions into the C 2+ , C 3+ , and C 4+ charge states, respectively, assuming that ionization is provided by the hot electrons of the bulk plasma and that the cloud expands with the ion-acoustic velocity at a temperature of ∼1 eV. The results obtained prove that the cloud structure in the vicinity of the pellet is mainly determined by the bulk plasma electrons

  15. Cloud structure evolution of heavy rain events from the East-West Pacific Ocean: a combined global observation analysis

    Science.gov (United States)

    Sekaranom, A. B.; Nurjani, E.; Pujiastuti, I.

    2018-04-01

    Heavy rain events are often associated with flood hazards as one of the most devastating events across the globe. It is therefore essential to identify the evolution of heavy rainfall cloud structures, primarily from global satellite observation, as a tool to provide better disaster early warning systems. To identify the mechanism of heavy rainfall systems and its relationship with cloud development, especially over The Pacific Ocean, we aim to study the westward evolution of the convective systems over this area. Several datasets from Tropical Rainfall Measuring Mission (TRMM), CloudSat GEOPROF product, and ECMWF-reanalysis (ERA) interim were utilized to characterize the evolution. Geolocation and orbital time-lag analysis of the three different datasets for more than 8 years (2006-2014) could provide information related to the evolution of cloud structures associated with heavy rain events. In the first step, a heavy rainfall database was generated from TRMM. The CloudSat coordinate and time position were then matched with TRMM coordinate and time position. All of the processes were programatically conducted in fortran programming language. The result shows a transition between East and West Pacific ocean for TMI data.

  16. THE MAGELLANIC MOPRA ASSESSMENT (MAGMA). I. THE MOLECULAR CLOUD POPULATION OF THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Wong, Tony; Chu, You-Hua; Gruendl, Robert A.; Looney, Leslie W.; Seale, Jonathan; Welty, Daniel E.; Hughes, Annie; Maddison, Sarah; Ott, Jürgen; Muller, Erik; Fukui, Yasuo; Kawamura, Akiko; Mizuno, Yoji; Pineda, Jorge L.; Bernard, Jean-Philippe; Paradis, Deborah; Henkel, Christian; Klein, Ulrich

    2011-01-01

    We present the properties of an extensive sample of molecular clouds in the Large Magellanic Cloud (LMC) mapped at 11 pc resolution in the CO(1-0) line. Targets were chosen based on a limiting CO flux and peak brightness as measured by the NANTEN survey. The observations were conducted with the ATNF Mopra Telescope as part of the Magellanic Mopra Assessment. We identify clouds as regions of connected CO emission and find that the distributions of cloud sizes, fluxes, and masses are sensitive to the choice of decomposition parameters. In all cases, however, the luminosity function of CO clouds is steeper than dN/dL∝L –2 , suggesting that a substantial fraction of mass is in low-mass clouds. A correlation between size and linewidth, while apparent for the largest emission structures, breaks down when those structures are decomposed into smaller structures. We argue that the correlation between virial mass and CO luminosity is the result of comparing two covariant quantities, with the correlation appearing tighter on larger scales where a size-linewidth relation holds. The virial parameter (the ratio of a cloud's kinetic to self-gravitational energy) shows a wide range of values and exhibits no clear trends with the CO luminosity or the likelihood of hosting young stellar object (YSO) candidates, casting further doubt on the assumption of virialization for molecular clouds in the LMC. Higher CO luminosity increases the likelihood of a cloud harboring a YSO candidate, and more luminous YSOs are more likely to be coincident with detectable CO emission, confirming the close link between giant molecular clouds and massive star formation.

  17. Process-model simulations of cloud albedo enhancement by aerosols in the Arctic

    Science.gov (United States)

    Kravitz, Ben; Wang, Hailong; Rasch, Philip J.; Morrison, Hugh; Solomon, Amy B.

    2014-01-01

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus, the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol–cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation owing to precipitation changes are small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering is unlikely to be effective as the sole means of altering the global radiation budget but could have substantial local radiative effects. PMID:25404677

  18. Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence

    Science.gov (United States)

    Parishani, Hossein; Pritchard, Michael S.; Bretherton, Christopher S.; Wyant, Matthew C.; Khairoutdinov, Marat

    2017-07-01

    Systematic biases in the representation of boundary layer (BL) clouds are a leading source of uncertainty in climate projections. A variation on superparameterization (SP) called "ultraparameterization" (UP) is developed, in which the grid spacing of the cloud-resolving models (CRMs) is fine enough (250 × 20 m) to explicitly capture the BL turbulence, associated clouds, and entrainment in a global climate model capable of multiyear simulations. UP is implemented within the Community Atmosphere Model using 2° resolution (˜14,000 embedded CRMs) with one-moment microphysics. By using a small domain and mean-state acceleration, UP is computationally feasible today and promising for exascale computers. Short-duration global UP hindcasts are compared with SP and satellite observations of top-of-atmosphere radiation and cloud vertical structure. The most encouraging improvement is a deeper BL and more realistic vertical structure of subtropical stratocumulus (Sc) clouds, due to stronger vertical eddy motions that promote entrainment. Results from 90 day integrations show climatological errors that are competitive with SP, with a significant improvement in the diurnal cycle of offshore Sc liquid water. Ongoing concerns with the current UP implementation include a dim bias for near-coastal Sc that also occurs less prominently in SP and a bright bias over tropical continental deep convection zones. Nevertheless, UP makes global eddy-permitting simulation a feasible and interesting alternative to conventionally parameterized GCMs or SP-GCMs with turbulence parameterizations for studying BL cloud-climate and cloud-aerosol feedback.

  19. Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    U. Lohmann

    2008-04-01

    Full Text Available Aerosols affect the climate system by changing cloud characteristics in many ways. They act as cloud condensation and ice nuclei and may have an influence on the hydrological cycle. Here we investigate aerosol effects on convective clouds by extending the double-moment cloud microphysics scheme developed for stratiform clouds, which is coupled to the HAM double-moment aerosol scheme, to convective clouds in the ECHAM5 general circulation model. This enables us to investigate whether more, and smaller cloud droplets suppress the warm rain formation in the lower parts of convective clouds and thus release more latent heat upon freezing, which would then result in more vigorous convection and more precipitation. In ECHAM5, including aerosol effects in large-scale and convective clouds (simulation ECHAM5-conv reduces the sensitivity of the liquid water path increase with increasing aerosol optical depth in better agreement with observations and large-eddy simulation studies. In simulation ECHAM5-conv with increases in greenhouse gas and aerosol emissions since pre-industrial times, the geographical distribution of the changes in precipitation better matches the observed increase in precipitation than neglecting microphysics in convective clouds. In this simulation the convective precipitation increases the most suggesting that the convection has indeed become more vigorous.

  20. Measurement errors in cirrus cloud microphysical properties

    Directory of Open Access Journals (Sweden)

    H. Larsen

    Full Text Available The limited accuracy of current cloud microphysics sensors used in cirrus cloud studies imposes limitations on the use of the data to examine the cloud's broadband radiative behaviour, an important element of the global energy balance. We review the limitations of the instruments, PMS probes, most widely used for measuring the microphysical structure of cirrus clouds and show the effect of these limitations on descriptions of the cloud radiative properties. The analysis is applied to measurements made as part of the European Cloud and Radiation Experiment (EUCREX to determine mid-latitude cirrus microphysical and radiative properties.

    Key words. Atmospheric composition and structure (cloud physics and chemistry · Meteorology and atmospheric dynamics · Radiative processes · Instruments and techniques

  1. Cloud Atlas: Rotational Modulations in the L/T Transition Brown Dwarf Companion HN Peg B

    Science.gov (United States)

    Zhou, Yifan; Apai, Dániel; Metchev, Stanimir; Lew, Ben W. P.; Schneider, Glenn; Marley, Mark S.; Karalidi, Theodora; Manjavacas, Elena; Bedin, Luigi R.; Cowan, Nicolas B.; Miles-Páez, Paulo A.; Lowrance, Patrick J.; Radigan, Jacqueline; Burgasser, Adam J.

    2018-03-01

    Time-resolved observations of brown dwarfs’ rotational modulations provide powerful insights into the properties of condensate clouds in ultra-cool atmospheres. Multi-wavelength light curves reveal cloud vertical structures, condensate particle sizes, and cloud morphology, which directly constrain condensate cloud and atmospheric circulation models. We report results from Hubble Space Telescope/Wide Field Camera 3 near-infrared G141 taken in six consecutive orbits observations of HN Peg B, an L/T transition brown dwarf companion to a G0V type star. The best-fit sine wave to the 1.1–1.7 μm broadband light curve has an amplitude of 1.206% ± 0.025% and period of 15.4 ± 0.5 hr. The modulation amplitude has no detectable wavelength dependence except in the 1.4 μm water absorption band, indicating that the characteristic condensate particle sizes are large (>1 μm). We detect significantly (4.4σ) lower modulation amplitude in the 1.4 μm water absorption band and find that HN Peg B’s spectral modulation resembles those of early T type brown dwarfs. We also describe a new empirical interpolation method to remove spectral contamination from the bright host star. This method may be applied in other high-contrast time-resolved observations with WFC3.

  2. Cloud Atlas: Rotational Modulations in the L/T Transition Brown Dwarf Companion HN Peg B

    Science.gov (United States)

    Zhou, Yifan; Apai, Daniel; Metchev, Stanimir; Lew, Ben W. P.; Schneider, Glenn; Marley, Mark S.; Karalidi, Theodora; Manjavacas, Elena; Bedin, Luigi R.; Cowan, Nicolas B.; hide

    2018-01-01

    Time-resolved observations of brown dwarfs' rotational modulations provide powerful insights into the properties of condensate clouds in ultra-cool atmospheres. Multi-wavelength light curves reveal cloud vertical structures, condensate particle sizes, and cloud morphology, which directly constrain condensate cloud and atmospheric circulation models. We report results from Hubble Space Telescope/Wide Field Camera 3 (WFC3) near-infrared G141 taken in six consecutive orbits observations of HNPeg B, an L/T transition brown dwarf companion to a G0V type star. The best-fit sine wave to the 1.1 to 1.7 micron broadband light curve has the amplitude of and period of hour. The modulation amplitude has no detectable wavelength dependence except in the 1.4 micron water absorption band, indicating that the characteristic condensate particle sizes are large (greater than 1 micron). We detect significantly (4.4 sigma) lower modulation amplitude in the 1.4 micron water absorption band, and find that HN Peg B's spectral modulation resembles those of early T type brown dwarfs. We also describe a new empirical interpolation method to remove spectral contamination from the bright host star. This method may be applied in other high-contrast time-resolved observations with WFC3.

  3. Factors influencing the organizational adoption of cloud computing: a survey among cloud workers

    Directory of Open Access Journals (Sweden)

    Mark Stieninger

    2018-01-01

    Full Text Available Cloud computing presents an opportunity for organizations to leverage affordable, scalable, and agile technologies. However, even with the demonstrated value of cloud computing, organizations have been hesitant to adopt such technologies. Based on a multi-theoretical research model, this paper provides an empirical study targeted to better understand the adoption of cloud services. An online survey addressing the factors derived from literature for three specific popular cloud application types (cloud storage, cloud mail and cloud office was undertaken. The research model was analyzed by using variance-based structural equation modelling. Results show that the factors of compatibility, relative advantage, security and trust, as well as, a lower level of complexity lead to a more positive attitude towards cloud adoption. Complexity, compatibility, image and security and trust have direct and indirect effects on relative advantage. These factors further explain a large part of the attitude towards cloud adoption but not of its usage.

  4. Modeling the Effects of Inhomogeneous Aerosols on the Hot Jupiter Kepler-7b’s Atmospheric Circulation

    Science.gov (United States)

    Roman, Michael; Rauscher, Emily

    2017-11-01

    Motivated by observational evidence of inhomogeneous clouds in exoplanetary atmospheres, we investigate how proposed simple cloud distributions can affect atmospheric circulations and infrared emission. We simulated temperatures and winds for the hot Jupiter Kepler-7b using a three-dimensional atmospheric circulation model that included a simplified aerosol radiative transfer model. We prescribed fixed cloud distributions and scattering properties based on results previously inferred from Kepler-7b optical phase curves, including inhomogeneous aerosols centered along the western terminator and hypothetical cases in which aerosols additionally extended across much of the planet’s nightside. In all cases, a strong jet capable of advecting aerosols from a cooler nightside to dayside was found to persist, but only at the equator. Colder temperatures at mid and polar latitudes might permit aerosol to form on the dayside without the need for advection. By altering the deposition and redistribution of heat, aerosols along the western terminator produced an asymmetric heating that effectively shifts the hottest spot further east of the substellar point than expected for a uniform distribution. The addition of opaque high clouds on the nightside can partly mitigate this enhanced shift by retaining heat that contributes to warming west of the hotspot. These expected differences in infrared phase curves could place constraints on proposed cloud distributions and their infrared opacities for brighter hot Jupiters.

  5. Ultraviolet interstellar absorption toward stars in the small Magellanic Cloud. III. THe structure and kinematics of Small Magellanic Cloud

    International Nuclear Information System (INIS)

    Fitzpatrick, A.L.

    1985-01-01

    The structure and kinematical properties of the Small Magellanic Cloud (SMC) are investigated by combining ultraviolet data obtained from the International Ultraviolet Explorer (IUE) satellite with existing optical and radio data. The SMC structure is complicated, undoubtedly a result of gravitational interaction with the Milky Way and the Large Magellanic Cloud, and is poorly understood. It has been known for some time that most of the H I in the SMC is concentrated in two complexes at velocities of approximately 134 and 167 km s -1 (heliocentric). Recent 21 cm emission surveys have revealed two additional, widespread H I components at approx.100 and approx.200 km s -1 . With the radio data alone, however, the relative line-of-sight locations of those complexes cannot be determined, nor can the associations of stars with the complexes be deduced. By using the ultraviolet interstellar absorption-line data in conjunction with radio and optical data, the stellar-interstellar kinematical and morphological relationships can be established. We find that in the southwest region of the SMC, most of the stars observed by IUE, including a group with only low-dispersion IUE spectra, are associated with the 134 km s -1 H I complex

  6. THE DEPENDENCE OF PRESTELLAR CORE MASS DISTRIBUTIONS ON THE STRUCTURE OF THE PARENTAL CLOUD

    International Nuclear Information System (INIS)

    Parravano, Antonio; Sánchez, Néstor; Alfaro, Emilio J.

    2012-01-01

    The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle and Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloud structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle and Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root N statistical fluctuations, increasing with H.

  7. A comparison of ground and satellite observations of cloud cover to saturation pressure differences during a cold air outbreak

    Energy Technology Data Exchange (ETDEWEB)

    Alliss, R.J.; Raman, S. [North Carolina State Univ., Raleigh, NC (United States)

    1996-04-01

    The role of clouds in the atmospheric general circulation and the global climate is twofold. First, clouds owe their origin to large-scale dynamical forcing, radiative cooling in the atmosphere, and turbulent transfer at the surface. In addition, they provide one of the most important mechanisms for the vertical redistribution of momentum and sensible and latent heat for the large scale, and they influence the coupling between the atmosphere and the surface as well as the radiative and dynamical-hydrological balance. In existing diagnostic cloudiness parameterization schemes, relative humidity is the most frequently used variable for estimating total cloud amount or stratiform cloud amount. However, the prediction of relative humidity in general circulation models (GCMs) is usually poor. Even for the most comprehensive GCMs, the predicted relative humidity may deviate greatly from that observed, as far as the frequency distribution of relative humidity is concerned. Recently, there has been an increased effort to improve the representation of clouds and cloud-radiation feedback in GCMs, but the verification of cloudiness parameterization schemes remains a severe problem because of the lack of observational data sets. In this study, saturation pressure differences (as opposed to relative humidity) and satellite-derived cloud heights and amounts are compared with ground determinations of cloud cover over the Gulf Stream Locale (GSL) during a cold air outbreak.

  8. Intercomparison of Vertical Structure of Storms Revealed by Ground-Based (NMQ and Spaceborne Radars (CloudSat-CPR and TRMM-PR

    Directory of Open Access Journals (Sweden)

    Veronica M. Fall

    2013-01-01

    Full Text Available Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR and Ku-band Precipitation Radar (PR, which are onboard NASA’s CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE. This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors’ type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts.

  9. Cloud-particle galactic gas dynamics and star formation

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.

    1983-01-01

    Galactic gas dynamics, spiral structure, and star formation are discussed in the context of N-body computational studies based on a cloud-particle model of the interstellar medium. On the small scale, the interstellar medium appears to be cloud-dominated and supernova-perturbed. The cloud-particle model simulates cloud-cloud collisions, the formation of stellar associations, and supernova explosions as dominant local processes. On the large scale in response to a spiral galactic gravitational field, global density waves and galactic shocks develop with large-scale characteristics similar to those found in continuum gas dynamical studies. Both the system of gas clouds and the system of young stellar associations forming from the clouds share in the global spiral structure. However, with the attributes of neither assuming a continuum of gas (as in continuum gas dynamical studies) nor requiring a prescribed equation of state such as the isothermal condition so often employed, the cloud-particle picture retains much of the detail lost in earlier work: namely, the small-scale features and structures so important in understanding the local, turbulent state of the interstellar medium as well as the degree of raggedness often observed superposed on global spiral structure. (Auth.)

  10. The MJO Transition from Shallow to Deep Convection in CloudSat/CALIPSO Data and GISS GCM Simulations

    Science.gov (United States)

    DelGenio, Anthony G.; Chen, Yonghua; Kim, Daehyun; Yao, Mao-Sung

    2013-01-01

    The relationship between convective penetration depth and tropospheric humidity is central to recent theories of the Madden-Julian oscillation (MJO). It has been suggested that general circulation models (GCMs) poorly simulate the MJO because they fail to gradually moisten the troposphere by shallow convection and simulate a slow transition to deep convection. CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are analyzed to document the variability of convection depth and its relation to water vapor during the MJO transition from shallow to deep convection and to constrain GCM cumulus parameterizations. Composites of cloud occurrence for 10MJO events show the following anticipatedMJO cloud structure: shallow and congestus clouds in advance of the peak, deep clouds near the peak, and upper-level anvils after the peak. Cirrus clouds are also frequent in advance of the peak. The Advanced Microwave Scanning Radiometer for EarthObserving System (EOS) (AMSR-E) columnwater vapor (CWV) increases by;5 mmduring the shallow- deep transition phase, consistent with the idea of moisture preconditioning. Echo-top height of clouds rooted in the boundary layer increases sharply with CWV, with large variability in depth when CWV is between;46 and 68 mm. International Satellite Cloud Climatology Project cloud classifications reproduce these climatological relationships but correctly identify congestus-dominated scenes only about half the time. A version of the Goddard Institute for Space Studies Model E2 (GISS-E2) GCM with strengthened entrainment and rain evaporation that produces MJO-like variability also reproduces the shallow-deep convection transition, including the large variability of cloud-top height at intermediate CWV values. The variability is due to small grid-scale relative humidity and lapse rate anomalies for similar values of CWV. 1.

  11. Reassessing the effect of cloud type on Earth's energy balance

    Science.gov (United States)

    Hang, A.; L'Ecuyer, T.

    2017-12-01

    Cloud feedbacks depend critically on the characteristics of the clouds that change, their location and their environment. As a result, accurately predicting the impact of clouds on future climate requires a better understanding of individual cloud types and their spatial and temporal variability. This work revisits the problem of documenting the effects of distinct cloud regimes on Earth's radiation budget distinguishing cloud types according to their signatures in spaceborne active observations. Using CloudSat's multi-sensor radiative fluxes product that leverages high-resolution vertical cloud information from CloudSat, CALIPSO, and MODIS observations to provide the most accurate estimates of vertically-resolved radiative fluxes available to date, we estimate the global annual mean net cloud radiative effect at the top of the atmosphere to be -17.1 W m-2 (-44.2 W m-2 in the shortwave and 27.1 W m-2 in the longwave), slightly weaker than previous estimates from passive sensor observations. Multi-layered cloud systems, that are often misclassified using passive techniques but are ubiquitous in both hemispheres, contribute about -6.2 W m-2 of the net cooling effect, particularly at ITCZ and higher latitudes. Another unique aspect of this work is the ability of CloudSat and CALIPSO to detect cloud boundary information providing an improved capability to accurately discern the impact of cloud-type variations on surface radiation balance, a critical factor in modulating the disposition of excess energy in the climate system. The global annual net cloud radiative effect at the surface is estimated to be -24.8 W m-2 (-51.1 W m-2 in the shortwave and 26.3 W m-2 in the longwave), dominated by shortwave heating in multi-layered and stratocumulus clouds. Corresponding estimates of the effects of clouds on atmospheric heating suggest that clouds redistribute heat from poles to equator enhancing the general circulation.

  12. Natural circulation in reactor coolant system

    International Nuclear Information System (INIS)

    Han, J.T.

    1987-01-01

    Reactor coolant system (RCS) natural circulation in a PWR is the buoyancy-driven coolant circulation between the core and the upper-plenum region (in-vessel circulation) with or without a countercurrent flow in the hot leg piping between the vessel and steam generators (ex-vessel circulation). This kind of multidimensional bouyancy-driven flow circulation serves as a means of transferring the heat from the core to the structures in the upper plenum, hot legs, and possibly steam generators. As a result, the RCS piping and other pressure boundaries may be heated to high temperatures at which the structural integrity is challenged. RCS natural circulation is likely to occur during the core uncovery period of the TMLB' accident in a PWR when the vessel upper plenum and hot leg are already drained and filled with steam and possibly other gaseous species. RCS natural circulation is being studied for the Surry plant during the TMLB' accident in which station blackout coincides with the loss of auxiliary feedwater and no operator actions. The effects of the multidimensional RCS natural circulation during the TMLB' accident are discussed

  13. Cloud Computing Governance Lifecycle

    OpenAIRE

    Soňa Karkošková; George Feuerlicht

    2016-01-01

    Externally provisioned cloud services enable flexible and on-demand sourcing of IT resources. Cloud computing introduces new challenges such as need of business process redefinition, establishment of specialized governance and management, organizational structures and relationships with external providers and managing new types of risk arising from dependency on external providers. There is a general consensus that cloud computing in addition to challenges brings many benefits but it is uncle...

  14. UNDERSTANDING TRENDS ASSOCIATED WITH CLOUDS IN IRRADIATED EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Kevin [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Demory, Brice-Olivier, E-mail: kevin.heng@csh.unibe.ch, E-mail: demory@mit.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2013-11-10

    Unlike previously explored relationships between the properties of hot Jovian atmospheres, the geometric albedo and the incident stellar flux do not exhibit a clear correlation, as revealed by our re-analysis of Q0-Q14 Kepler data. If the albedo is primarily associated with the presence of clouds in these irradiated atmospheres, a holistic modeling approach needs to relate the following properties: the strength of stellar irradiation (and hence the strength and depth of atmospheric circulation), the geometric albedo (which controls both the fraction of starlight absorbed and the pressure level at which it is predominantly absorbed), and the properties of the embedded cloud particles (which determine the albedo). The anticipated diversity in cloud properties renders any correlation between the geometric albedo and the stellar flux weak and characterized by considerable scatter. In the limit of vertically uniform populations of scatterers and absorbers, we use an analytical model and scaling relations to relate the temperature-pressure profile of an irradiated atmosphere and the photon deposition layer and to estimate whether a cloud particle will be lofted by atmospheric circulation. We derive an analytical formula for computing the albedo spectrum in terms of the cloud properties, which we compare to the measured albedo spectrum of HD 189733b by Evans et al. Furthermore, we show that whether an optical phase curve is flat or sinusoidal depends on whether the particles are small or large as defined by the Knudsen number. This may be an explanation for why Kepler-7b exhibits evidence for the longitudinal variation in abundance of condensates, while Kepler-12b shows no evidence for the presence of condensates despite the incident stellar flux being similar for both exoplanets. We include an 'observer's cookbook' for deciphering various scenarios associated with the optical phase curve, the peak offset of the infrared phase curve, and the geometric

  15. An A-Train Climatology of Extratropical Cyclone Clouds

    Science.gov (United States)

    Posselt, Derek J.; van den Heever, Susan C.; Booth, James F.; Del Genio, Anthony D.; Kahn, Brian; Bauer, Mike

    2016-01-01

    Extratropical cyclones (ETCs) are the main purveyors of precipitation in the mid-latitudes, especially in winter, and have a significant radiative impact through the clouds they generate. However, general circulation models (GCMs) have trouble representing precipitation and clouds in ETCs, and this might partly explain why current GCMs disagree on to the evolution of these systems in a warming climate. Collectively, the A-train observations of MODIS, CloudSat, CALIPSO, AIRS and AMSR-E have given us a unique perspective on ETCs: over the past 10 years these observations have allowed us to construct a climatology of clouds and precipitation associated with these storms. This has proved very useful for model evaluation as well in studies aimed at improving understanding of moist processes in these dynamically active conditions. Using the A-train observational suite and an objective cyclone and front identification algorithm we have constructed cyclone centric datasets that consist of an observation-based characterization of clouds and precipitation in ETCs and their sensitivity to large scale environments. In this presentation, we will summarize the advances in our knowledge of the climatological properties of cloud and precipitation in ETCs acquired with this unique dataset. In particular, we will present what we have learned about southern ocean ETCs, for which the A-train observations have filled a gap in this data sparse region. In addition, CloudSat and CALIPSO have for the first time provided information on the vertical distribution of clouds in ETCs and across warm and cold fronts. We will also discuss how these observations have helped identify key areas for improvement in moist processes in recent GCMs. Recently, we have begun to explore the interaction between aerosol and cloud cover in ETCs using MODIS, CloudSat and CALIPSO. We will show how aerosols are climatologically distributed within northern hemisphere ETCs, and how this relates to cloud cover.

  16. 3D MODELING OF GJ1214b's ATMOSPHERE: FORMATION OF INHOMOGENEOUS HIGH CLOUDS AND OBSERVATIONAL IMPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Charnay, B.; Meadows, V.; Misra, A.; Arney, G. [Astronomy Department, University of Washington, Seattle, WA 98125 (United States); Leconte, J., E-mail: bcharnay@uw.edu [Canadian Institute for Theoretical Astrophysics, 60 St George Street, University of Toronto, Toronto, ON M5S 3H8 (Canada)

    2015-11-01

    The warm sub-Neptune GJ1214b has a featureless transit spectrum that may be due to the presence of high and thick clouds or haze. Here, we simulate the atmosphere of GJ1214b with a 3D General Circulation Model for cloudy hydrogen-dominated atmospheres, including cloud radiative effects. We show that the atmospheric circulation is strong enough to transport micrometric cloud particles to the upper atmosphere and generally leads to a minimum of cloud at the equator. By scattering stellar light, clouds increase the planetary albedo to 0.4–0.6 and cool the atmosphere below 1 mbar. However, the heating by ZnS clouds leads to the formation of a stratospheric thermal inversion above 10 mbar, with temperatures potentially high enough on the dayside to evaporate KCl clouds. We show that flat transit spectra consistent with Hubble Space Telescope observations are possible if cloud particle radii are around 0.5 μm, and that such clouds should be optically thin at wavelengths >3 μm. Using simulated cloudy atmospheres that fit the observed spectra we generate transit, emission, and reflection spectra and phase curves for GJ1214b. We show that a stratospheric thermal inversion would be readily accessible in near- and mid-infrared atmospheric spectral windows. We find that the amplitude of the thermal phase curves is strongly dependent on metallicity, but only slightly impacted by clouds. Our results suggest that primary and secondary eclipses and phase curves observed by the James Webb Space Telescope in the near- to mid-infrared should provide strong constraints on the nature of GJ1214b's atmosphere and clouds.

  17. Role of mixed precipitating cloud systems on the typhoon rainfall

    Directory of Open Access Journals (Sweden)

    C. J. Pan

    2010-01-01

    Full Text Available L-band wind profiler data are utilized to diagnose the vertical structure of the typhoon precipitating cloud systems in Taiwan. For several typhoons, a pronounced bright band (BB around 5 km is commonly observed from the observation. Since strong convection within typhoon circulation may disturb and/or disrupt the melting layer, the BB shall not appear persistently. Hence, an understanding of the vertical structure of the BB region is important because it holds extensive hydrometeors information on the type of precipitation and its variability. Wind profiler observational results suggest that the mixture of convective and stratiform (embedded type clouds are mostly associated with typhoons. In the case of one typhoon, BB is appeared around 5.5 km with embedded precipitation and also BB height of 1 km higher than ordinary showery precipitation. This is evident from the long-term observations of wind profiler and Tropical Rainfall Measuring Mission. The Doppler velocity profiles show hydrometers (ice/snow at 6 km but liquid below 5 km for typhoons and 4 km for showery precipitation. In the BB region the melting particles accelerations of 5.8 ms−1 km−1 and 3.2 ms−1 km−1 are observed for typhoon and showery precipitation, respectively.

  18. Star clouds of Magellan

    International Nuclear Information System (INIS)

    Tucker, W.

    1981-01-01

    The Magellanic Clouds are two irregular galaxies belonging to the local group which the Milky Way belongs to. By studying the Clouds, astronomers hope to gain insight into the origin and composition of the Milky Way. The overall structure and dynamics of the Clouds are clearest when studied in radio region of the spectrum. One benefit of directly observing stellar luminosities in the Clouds has been the discovery of the period-luminosity relation. Also, the Clouds are a splendid laboratory for studying stellar evolution. It is believed that both Clouds may be in the very early stage in the development of a regular, symmetric galaxy. This raises a paradox because some of the stars in the star clusters of the Clouds are as old as the oldest stars in our galaxy. An explanation for this is given. The low velocity of the Clouds with respect to the center of the Milky Way shows they must be bound to it by gravity. Theories are given on how the Magellanic Clouds became associated with the galaxy. According to current ideas the Clouds orbits will decay and they will spiral into the Galaxy

  19. Aerosol-cloud interactions from urban, regional to global scales

    International Nuclear Information System (INIS)

    Wang, Yuan

    2015-01-01

    The studies in this dissertation aim at advancing our scientific understandings about physical processes involved in the aerosol-cloud-precipitation interaction and quantitatively assessing the impacts of aerosols on the cloud systems with diverse scales over the globe on the basis of the observational data analysis and various modeling studies. As recognized in the Fifth Assessment Report by the Inter-government Panel on Climate Change, the magnitude of radiative forcing by atmospheric aerosols is highly uncertain, representing the largest uncertainty in projections of future climate by anthropogenic activities. By using a newly implemented cloud microphysical scheme in the cloud-resolving model, the thesis assesses aerosol-cloud interaction for distinct weather systems, ranging from individual cumulus to mesoscale convective systems. This thesis also introduces a novel hierarchical modeling approach that solves a long outstanding mismatch between simulations by regional weather models and global climate models in the climate modeling community. More importantly, the thesis provides key scientific solutions to several challenging questions in climate science, including the global impacts of the Asian pollution. As scientists wrestle with the complexities of climate change in response to varied anthropogenic forcing, perhaps no problem is more challenging than the understanding of the impacts of atmospheric aerosols from air pollution on clouds and the global circulation.

  20. Aerosol-cloud interactions from urban, regional to global scales

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan [California Institute of Technology, Pasadena, CA (United States). Seismological Lab.

    2015-10-01

    The studies in this dissertation aim at advancing our scientific understandings about physical processes involved in the aerosol-cloud-precipitation interaction and quantitatively assessing the impacts of aerosols on the cloud systems with diverse scales over the globe on the basis of the observational data analysis and various modeling studies. As recognized in the Fifth Assessment Report by the Inter-government Panel on Climate Change, the magnitude of radiative forcing by atmospheric aerosols is highly uncertain, representing the largest uncertainty in projections of future climate by anthropogenic activities. By using a newly implemented cloud microphysical scheme in the cloud-resolving model, the thesis assesses aerosol-cloud interaction for distinct weather systems, ranging from individual cumulus to mesoscale convective systems. This thesis also introduces a novel hierarchical modeling approach that solves a long outstanding mismatch between simulations by regional weather models and global climate models in the climate modeling community. More importantly, the thesis provides key scientific solutions to several challenging questions in climate science, including the global impacts of the Asian pollution. As scientists wrestle with the complexities of climate change in response to varied anthropogenic forcing, perhaps no problem is more challenging than the understanding of the impacts of atmospheric aerosols from air pollution on clouds and the global circulation.

  1. AUTOMATED VOXEL MODEL FROM POINT CLOUDS FOR STRUCTURAL ANALYSIS OF CULTURAL HERITAGE

    Directory of Open Access Journals (Sweden)

    G. Bitelli

    2016-06-01

    Full Text Available In the context of cultural heritage, an accurate and comprehensive digital survey of a historical building is today essential in order to measure its geometry in detail for documentation or restoration purposes, for supporting special studies regarding materials and constructive characteristics, and finally for structural analysis. Some proven geomatic techniques, such as photogrammetry and terrestrial laser scanning, are increasingly used to survey buildings with different complexity and dimensions; one typical product is in form of point clouds. We developed a semi-automatic procedure to convert point clouds, acquired from laserscan or digital photogrammetry, to a filled volume model of the whole structure. The filled volume model, in a voxel format, can be useful for further analysis and also for the generation of a Finite Element Model (FEM of the surveyed building. In this paper a new approach is presented with the aim to decrease operator intervention in the workflow and obtain a better description of the structure. In order to achieve this result a voxel model with variable resolution is produced. Different parameters are compared and different steps of the procedure are tested and validated in the case study of the North tower of the San Felice sul Panaro Fortress, a monumental historical building located in San Felice sul Panaro (Modena, Italy that was hit by an earthquake in 2012.

  2. The effect of clouds on the earth's solar and infrared radiation budgets

    Science.gov (United States)

    Herman, G. F.; Wu, M.-L. C.; Johnson, W. T.

    1980-01-01

    The effect of global cloudiness on the solar and infrared components of the earth's radiation balance is studied in general circulation model experiments. A wintertime simulation is conducted in which the cloud radiative transfer calculations use realistic cloud optical properties and are fully interactive with model-generated cloudiness. This simulation is compared to others in which the clouds are alternatively non-interactive with respect to the solar or thermal radiation calculations. Other cloud processes (formation, latent heat release, precipitation, vertical mixing) were accurately simulated in these experiments. It is concluded that on a global basis clouds increase the global radiation balance by 40 W/sq m by absorbing longwave radiation, but decrease it by 56 W/sq m by reflecting solar radiation to space. The net cloud effect is therefore a reduction of the radiation balance by 16 W/sq m, and is dominated by the cloud albedo effect. Changes in cloud frequency and distribution and in atmospheric and land temperatures are also reported for the control and for the non-interactive simulations. In general, removal of the clouds' infrared absorption cools the atmosphere and causes additional cloudiness to occur, while removal of the clouds' solar radiative properties warms the atmosphere and causes fewer clouds to form. It is suggested that layered clouds and convective clouds over water enter the climate system as positive feedback components, while convective clouds over land enter as negative components.

  3. Upper Troposphere Lower Stratosphere structure during convective systems using GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo

    The deep convective systems play a fundamental role in atmospheric circulation and climate. Thunderstorms and meso-scale convective systems produce fast vertical transport, redistributing water vapor and trace gases and influencing the thermal structure of the upper troposphere and lower...... stratosphere (UTLS) contributing to the troposphere-stratosphere transport and affecting the Earth global circulation and the climate changes. The Global Positioning System (GPS) Radio Occultation (RO) technique enables measurement of atmospheric density structure in any meteorological condition...... to the analysis of tropical storms for the future mission ACES will also be evaluated. Using data from the past and ongoing GPS RO missions we have defined an algorithm to detect the clouds top of the convective systems and their thermal structure. Other satellite and in-situ measurements co-located with GPS ROs...

  4. Cloud-Based Evaluation of Anatomical Structure Segmentation and Landmark Detection Algorithms : VISCERAL Anatomy Benchmarks

    OpenAIRE

    Jimenez-del-Toro, Oscar; Muller, Henning; Krenn, Markus; Gruenberg, Katharina; Taha, Abdel Aziz; Winterstein, Marianne; Eggel, Ivan; Foncubierta-Rodriguez, Antonio; Goksel, Orcun; Jakab, Andres; Kontokotsios, Georgios; Langs, Georg; Menze, Bjoern H.; Fernandez, Tomas Salas; Schaer, Roger

    2016-01-01

    Variations in the shape and appearance of anatomical structures in medical images are often relevant radiological signs of disease. Automatic tools can help automate parts of this manual process. A cloud-based evaluation framework is presented in this paper including results of benchmarking current state-of-the-art medical imaging algorithms for anatomical structure segmentation and landmark detection: the VISCERAL Anatomy benchmarks. The algorithms are implemented in virtual machines in the ...

  5. Coherent Radiation of Electron Cloud

    International Nuclear Information System (INIS)

    Heifets, S.

    2004-01-01

    The electron cloud in positron storage rings is pinched when a bunch passes by. For short bunches, the radiation due to acceleration of electrons of the cloud is coherent. Detection of such radiation can be used to measure the density of the cloud. The estimate of the power and the time structure of the radiated signal is given in this paper

  6. submitter Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments

    CERN Document Server

    Nichman, Leonid; Järvinen, Emma; Ignatius, Karoliina; Höppel, Niko Florian; Dias, Antonio; Heinritzi, Martin; Simon, Mario; Tröstl, Jasmin; Wagner, Andrea Christine; Wagner, Robert; Williamson, Christina; Yan, Chao; Connolly, Paul James; Dorsey, James Robert; Duplissy, Jonathan; Ehrhart, Sebastian; Frege, Carla; Gordon, Hamish; Hoyle, Christopher Robert; Kristensen, Thomas Bjerring; Steiner, Gerhard; McPherson Donahue, Neil; Flagan, Richard; Gallagher, Martin William; Kirkby, Jasper; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Stratmann, Frank; Tomé, António

    2016-01-01

    Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather, and general circulation models. The detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud particle-size range below 50 μm, remains challenging in mixed phase, often unstable environments. The Cloud Aerosol Spectrometer with Polarization (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure the variability in polarization state of their backscattered light. Here we operate the versatile Cosmics Leaving OUtdoor Droplets (CLOUD) chamber facility at the European Organization for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water, and ice particles. In this paper, optical property measurements of mixed-phase clouds and viscous secondary ...

  7. Why do general circulation models overestimate the aerosol cloud lifetime effect? A case study comparing CAM5 and a CRM

    Science.gov (United States)

    Zhou, Cheng; Penner, Joyce E.

    2017-01-01

    Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 27 May 2011 at the southern Great Plains (SGP) measurement site established by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program using a single-column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP in CAM is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near the cloud top, resulting in an overall decrease in LWP. Our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.

  8. Do Clouds Compute? A Framework for Estimating the Value of Cloud Computing

    Science.gov (United States)

    Klems, Markus; Nimis, Jens; Tai, Stefan

    On-demand provisioning of scalable and reliable compute services, along with a cost model that charges consumers based on actual service usage, has been an objective in distributed computing research and industry for a while. Cloud Computing promises to deliver on this objective: consumers are able to rent infrastructure in the Cloud as needed, deploy applications and store data, and access them via Web protocols on a pay-per-use basis. The acceptance of Cloud Computing, however, depends on the ability for Cloud Computing providers and consumers to implement a model for business value co-creation. Therefore, a systematic approach to measure costs and benefits of Cloud Computing is needed. In this paper, we discuss the need for valuation of Cloud Computing, identify key components, and structure these components in a framework. The framework assists decision makers in estimating Cloud Computing costs and to compare these costs to conventional IT solutions. We demonstrate by means of representative use cases how our framework can be applied to real world scenarios.

  9. THE MASS-SIZE RELATION FROM CLOUDS TO CORES. I. A NEW PROBE OF STRUCTURE IN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Kauffmann, J.; Shetty, R.; Goodman, A. A.; Pillai, T.; Myers, P. C.

    2010-01-01

    We use a new contour-based map analysis technique to measure the mass and size of molecular cloud fragments continuously over a wide range of spatial scales (0.05 ≤ r/pc ≤ 10), i.e., from the scale of dense cores to those of entire clouds. The present paper presents the method via a detailed exploration of the Perseus molecular cloud. Dust extinction and emission data are combined to yield reliable scale-dependent measurements of mass. This scale-independent analysis approach is useful for several reasons. First, it provides a more comprehensive characterization of a map (i.e., not biased toward a particular spatial scale). Such a lack of bias is extremely useful for the joint analysis of many data sets taken with different spatial resolution. This includes comparisons between different cloud complexes. Second, the multi-scale mass-size data constitute a unique resource to derive slopes of mass-size laws (via power-law fits). Such slopes provide singular constraints on large-scale density gradients in clouds.

  10. Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation

    KAUST Repository

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry J.; Bower, Amy S.; Zhai, Ping; Kö hl, Armin; Gopalakrishnan, Ganesh

    2014-01-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using high-resolution MIT general circulation model simulations. In the first part of this study, the vertical and horizontal structure of the summer overturning circulation and its dynamical mechanisms are presented from the model results. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. In addition, during late summer two processes associated, respectively, with latitudinally differential heating and increased salinity in the southern Red Sea act together to cause the reversal of the contrast of the vertical density structure and the cessation of the summer overturning circulation. Dynamically, the subsurface northward pressure gradient force is mainly balanced by vertical viscosity resulting from the vertical shear and boundary friction in the Strait of Bab el Mandeb. Unlike some previous studies, the three-layer summer exchange flows in the Strait of Bab el Mandeb do not appear to be hydraulically controlled.

  11. Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation

    KAUST Repository

    Yao, Fengchao

    2014-04-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using high-resolution MIT general circulation model simulations. In the first part of this study, the vertical and horizontal structure of the summer overturning circulation and its dynamical mechanisms are presented from the model results. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. In addition, during late summer two processes associated, respectively, with latitudinally differential heating and increased salinity in the southern Red Sea act together to cause the reversal of the contrast of the vertical density structure and the cessation of the summer overturning circulation. Dynamically, the subsurface northward pressure gradient force is mainly balanced by vertical viscosity resulting from the vertical shear and boundary friction in the Strait of Bab el Mandeb. Unlike some previous studies, the three-layer summer exchange flows in the Strait of Bab el Mandeb do not appear to be hydraulically controlled.

  12. Simulation of E-Cloud Driven Instability And Its Attenuation Using a Feedback System in the CERN SPS

    International Nuclear Information System (INIS)

    Vay, Jean-Luc

    2012-01-01

    Electron clouds have been shown to trigger fast growing instabilities on proton beams circulating in the SPS, and a feedback system to control the instabilities is under active development. We present the latest improvements to the Warp-Posinst simulation framework and feedback model, and its application to the self-consistent simulations of two consecutive bunches interacting with an electron cloud in the SPS.

  13. SUNYA Regional Climate Model Simulations of East Asia Summer Monsoon: Effects of Cloud Vertical Structure on the Surface Energy Balance

    Directory of Open Access Journals (Sweden)

    Wei Gong and Wei-Chyung Wang

    2007-01-01

    -seasonal variation of shortwave CRF, indicating the importance of cloud vertical structure. The strong negative feedbacks from the responses of latent and sensible heat flux tend to limit the effects of low clouds on the surface temperature simulations, as evidently the surface air temperatures bias of only _ in the EASM simulations while the variances of the surface radiative fluxes and heat fluxes are, respectively, in the ranges of 100 - 200 and 60 - 110 Wm-2 when total cloud cover are all near 80%. Therefore, it is also concluded that surface air temperature, precipitation, and total cloud cover, which are three frequently examined variables for climate models, are not sufficient for model evaluation, but instead the cloud vertical structure needs to be examined.

  14. Molecular clouds near supernova remnants

    International Nuclear Information System (INIS)

    Wootten, H.A.

    1978-01-01

    The physical properties of molecular clouds near supernova remnants were investigated. Various properties of the structure and kinematics of these clouds are used to establish their physical association with well-known remmnants. An infrared survey of the most massive clouds revealed embedded objects, probably stars whose formation was induced by the supernova blast wave. In order to understand the relationship between these and other molecular clouds, a control group of clouds was also observed. Excitation models for dense regions of all the clouds are constructed to evaluate molecular abundances in these regions. Those clouds that have embedded stars have lower molecular abundances than the clouds that do not. A cloud near the W28 supernova remnant also has low abundances. Molecular abundances are used to measure an important parameter, the electron density, which is not directly observable. In some clouds extensive deuterium fractionation is observed which confirms electron density measurements in those clouds. Where large deuterium fractionation is observed, the ionization rate in the cloud interior can also be measured. The electron density and ionization rate in the cloud near W28 are higher than in most clouds. The molecular abundances and electron densities are functions of the chemical and dynamical state of evolution of the cloud. Those clouds with lowest abundances are probably the youngest clouds. As low-abundance clouds, some clouds near supernova remnants may have been recently swept from the local interstellar material. Supernova remnants provide sites for star formation in ambient clouds by compressing them, and they sweep new clouds from more diffuse local matter

  15. Structured Cloud Federation for Carrier and ISP Infrastructure

    OpenAIRE

    Xhagjika, Vamis; Vlassov, Vladimir; Molin, Magnus; Toma, Simona

    2014-01-01

    Cloud Computing in recent years has seen enhanced growth and extensive support by the research community and industry. The advent of cloud computing realized the concept of commodity computing, in which infrastructure (resources) can be allocated on demand giving the illusion of infinite resource availability. The state-of-art Carrier and ISP infrastructure technology is composed of tightly coupled software services with the underlying customized hardware architecture. The fast growth of clou...

  16. Investigating the Variability in Cumulus Cloud Number as a Function of Subdomain Size and Organization using large-domain LES

    Science.gov (United States)

    Neggers, R.

    2017-12-01

    Recent advances in supercomputing have introduced a "grey zone" in the representation of cumulus convection in general circulation models, in which this process is partially resolved. Cumulus parameterizations need to be made scale-aware and scale-adaptive to be able to conceptually and practically deal with this situation. A potential way forward are schemes formulated in terms of discretized Cloud Size Densities, or CSDs. Advantages include i) the introduction of scale-awareness at the foundation of the scheme, and ii) the possibility to apply size-filtering of parameterized convective transport and clouds. The CSD is a new variable that requires closure; this concerns its shape, its range, but also variability in cloud number that can appear due to i) subsampling effects and ii) organization in a cloud field. The goal of this study is to gain insight by means of sub-domain analyses of various large-domain LES realizations of cumulus cloud populations. For a series of three-dimensional snapshots, each with a different degree of organization, the cloud size distribution is calculated in all subdomains, for a range of subdomain sizes. The standard deviation of the number of clouds of a certain size is found to decrease with the subdomain size, following a powerlaw scaling corresponding to an inverse-linear dependence. Cloud number variability also increases with cloud size; this reflects that subsampling affects the largest clouds first, due to their typically larger neighbor spacing. Rewriting this dependence in terms of two dimensionless groups, by dividing by cloud number and cloud size respectively, yields a data collapse. Organization in the cloud field is found to act on top of this primary dependence, by enhancing the cloud number variability at the smaller sizes. This behavior reflects that small clouds start to "live" on top of larger structures such as cold pools, favoring or inhibiting their formation (as illustrated by the attached figure of cloud mask

  17. The role of aerosols in cloud drop parameterizations and its applications in global climate models

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, C.C.; Penner, J.E. [Lawrence Livermore National Lab., CA (United States)

    1996-04-01

    The characteristics of the cloud drop size distribution near cloud base are initially determined by aerosols that serve as cloud condensation nuclei and the updraft velocity. We have developed parameterizations relating cloud drop number concentration to aerosol number and sulfate mass concentrations and used them in a coupled global aerosol/general circulation model (GCM) to estimate the indirect aerosol forcing. The global aerosol model made use of our detailed emissions inventories for the amount of particulate matter from biomass burning sources and from fossil fuel sources as well as emissions inventories of the gas-phase anthropogenic SO{sub 2}. This work is aimed at validating the coupled model with the Atmospheric Radiation Measurement (ARM) Program measurements and assessing the possible magnitude of the aerosol-induced cloud effects on climate.

  18. Dynamical and thermodynamical coupling between the North Atlantic subtropical high and the marine boundary layer clouds in boreal summer

    Science.gov (United States)

    Wei, Wei; Li, Wenhong; Deng, Yi; Yang, Song; Jiang, Jonathan H.; Huang, Lei; Liu, W. Timothy

    2018-04-01

    This study investigates dynamical and thermodynamical coupling between the North Atlantic subtropical high (NASH), marine boundary layer (MBL) clouds, and the local sea surface temperatures (SSTs) over the North Atlantic in boreal summer for 1984-2009 using NCEP/DOE Reanalysis 2 dataset, various cloud data, and the Hadley Centre sea surface temperature. On interannual timescales, the summer mean subtropical MBL clouds to the southeast of the NASH is actively coupled with the NASH and local SSTs: a stronger (weaker) NASH is often accompanied with an increase (a decrease) of MBL clouds and abnormally cooler (warmer) SSTs along the southeast flank of the NASH. To understand the physical processes between the NASH and the MBL clouds, the authors conduct a data diagnostic analysis and implement a numerical modeling investigation using an idealized anomalous atmospheric general circulation model (AGCM). Results suggest that significant northeasterly anomalies in the southeast flank of the NASH associated with an intensified NASH tend to induce stronger cold advection and coastal upwelling in the MBL cloud region, reducing the boundary surface temperature. Meanwhile, warm advection associated with the easterly anomalies from the African continent leads to warming over the MBL cloud region at 700 hPa. Such warming and the surface cooling increase the atmospheric static stability, favoring growth of the MBL clouds. The anomalous diabatic cooling associated with the growth of the MBL clouds dynamically excites an anomalous anticyclone to its north and contributes to strengthening of the NASH circulation in its southeast flank. The dynamical and thermodynamical couplings and their associated variations in the NASH, MBL clouds, and SSTs constitute an important aspect of the summer climate variability over the North Atlantic.

  19. High-Resolution Imaging of Dense Gas Structure and Kinematics in Nearby Molecular Clouds with the CARMA Large Area Star Formation Survey

    Science.gov (United States)

    Storm, Shaye

    This thesis utilizes new observations of dense gas in molecular clouds to develop an empirical framework for how clouds form structures which evolve into young cores and stars. Previous observations show the general turbulent and hierarchical nature of clouds. However, current understanding of the star formation pathway is limited by existing data that do not combine angular resolution needed to resolve individual cores with area coverage required to capture entire star-forming regions and with tracers that can resolve gas motions. The original contributions of this thesis to astrophysical research are the creation and analysis of the largest-area high-angular-resolution maps of dense gas in molecular clouds to-date, and the development of a non-binary dendrogram algorithm to quantify the hierarchical nature and three-dimensional morphology of cloud structure. I first describe the CARMA Large Area Star Formation Survey, which provides spectrally imaged N2H+, HCO+, and HCN (J = 1→0) emission across diverse regions of the Perseus and Serpens Molecular Clouds. I then present a detailed analysis of the Barnard 1 and L1451 regions in Perseus. A non-binary dendrogram analysis of Barnard 1 N2H emission and all L1451 emission shows that the most hierarchically complex gas corresponds with sub-regions actively forming young stars. I estimate the typical depth of molecular emission in each region using the spatial and kinematic properties of dendrogram-identified structures. Barnard 1 appears to be a sheet-like region at the largest scales with filamentary substructure, while the L1451 region is composed of more spatially distinct ellipsoidal structures. I then do a uniform comparison of the hierarchical structure and young stellar content of all five regions. The more evolved regions with the most young stellar objects (YSOs) and strongest emission have formed the most hierarchical levels. However, all regions show similar mean branching properties at each level

  20. Encoders for block-circulant LDPC codes

    Science.gov (United States)

    Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)

    2009-01-01

    Methods and apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three or four are disclosed. Block circulant matrices are used. A first method and apparatus make use of the block-circulant structure of the parity check matrix. A second method and apparatus use block-circulant generator matrices.

  1. A Coupled GCM-Cloud Resolving Modeling System, and a Regional Scale Model to Study Precipitation Processes

    Science.gov (United States)

    Tao, Wei-Kuo

    2007-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a superparameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (2ICE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generatio11 regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  2. The Diversity of Cloud Responses to Twentieth Century Sea Surface Temperatures

    Science.gov (United States)

    Silvers, Levi G.; Paynter, David; Zhao, Ming

    2018-01-01

    Low-level clouds are shown to be the conduit between the observed sea surface temperatures (SST) and large decadal fluctuations of the top of the atmosphere radiative imbalance. The influence of low-level clouds on the climate feedback is shown for global mean time series as well as particular geographic regions. The changes of clouds are found to be important for a midcentury period of high sensitivity and a late century period of low sensitivity. These conclusions are drawn from analysis of amip-piForcing simulations using three atmospheric general circulation models (AM2.1, AM3, and AM4.0). All three models confirm the importance of the relationship between the global climate sensitivity and the eastern Pacific trends of SST and low-level clouds. However, this work argues that the variability of the climate feedback parameter is not driven by stratocumulus-dominated regions in the eastern ocean basins, but rather by the cloudy response in the rest of the tropics.

  3. SIMULATION OF E-CLOUD DRIVEN INSTABILITY AND ITS ATTENUATION USING A FEEDBACK SYSTEM IN THE CERN SPS

    International Nuclear Information System (INIS)

    Vay, J.-L.; Byrd, J.M.; Furman, M.A.; Secondo, R.; Venturini, M.; Fox, J.D.; Rivetta, C.H.; Hofle, W.

    2010-01-01

    Electron clouds have been shown to trigger fast growing instabilities on proton beams circulating in the SPS (1), and a feedback system to control the instabilities is under active development (2). We present the latest improvements to the Warp-Posinst simulation framework and feedback model, and its application to the self-consistent simulations of two consecutive bunches interacting with an electron cloud in the SPS.

  4. Subtropical Low Cloud Responses to Central and Eastern Pacific El Nino Events

    Science.gov (United States)

    Rapp, A. D.; Bennartz, R.; Jiang, J. H.; Kato, S.; Olson, W. S.; Pinker, R. T.; Su, H.; Taylor, P. C.

    2014-12-01

    The eastern Pacific El Niño event in 2006-2007 and the central Pacific El Niño event during 2009-2010 exhibit opposite responses in the top of atmosphere (TOA) cloud radiative effects. These responses are driven by differences in large-scale circulation that result in significant low cloud anomalies in the subtropical southeastern Pacific. Both the vertical profile of cloud fraction and cloud water content are reduced during the eastern Pacific El Niño; however, the shift in the distribution of cloud characteristics and the physical processes underlying these changes need further analysis. The NASA Energy and Water Cycle Study (NEWS) Clouds and Radiation Working Group will use a synthesis of NEWS data products, A-Train satellite measurements, reanalysis, and modeling approaches to further explore the differences in the low cloud response to changes in the large-scale forcing, as well as try to understand the physical mechanism driving the observed changes in the low clouds for the 2006/07 and 2009/10 distinct El Niño events. The distributions of cloud macrophysical, microphysical, and radiative properties over the southeast Pacific will first be compared for these two events using a combination of MODIS, CloudSat/CALIPSO, and CERES data. Satellite and reanalysis estimates of changes in the vertical temperature and moisture profiles, lower tropospheric stability, winds, and surface heat fluxes are then used to identify the drivers for observed differences in the clouds and TOA radiative effects.

  5. Western North Pacific Tropical Cyclone Formation and Structure Change in TCS-08

    Science.gov (United States)

    2012-09-30

    cyclones often transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds...there is a need to improve understanding and prediction of the extratropical transition phase of a decaying tropical cyclone. The structural evolution...of the transition from a tropical to an extratropical circulation involves rapid changes to the wind, cloud, and precipitation patterns that

  6. Virial theorem analysis of the structure and stability of magnetized clouds

    International Nuclear Information System (INIS)

    Zweibel, E.G.

    1990-01-01

    The tensor virial theorem is used to analyze the structure and stability of self-gravitating, magnetized spheroids surrounded by a low-density medium with pressure and magnetic field. Analytical expressions are developed for the effect of a weak field and calculate critical states when the effect of the field is arbitrarily strong, comparing the results with full magnetohydrostatic calculations. This analysis suggests that a magnetic field may prevent gravitational collapse but may also be destabilizing, depending on its degree of concentration within the cloud. 34 refs

  7. Fast cloud parameter retrievals of MIPAS/Envisat

    Directory of Open Access Journals (Sweden)

    R. Spang

    2012-08-01

    and tropospheric clouds similar to that of space- and ground-based lidars, with a tendency for higher cloud top heights and consequently higher sensitivity for some of the MIPAS detection methods. For the high cloud amount (HCA, pressure levels below 440 hPa on global scales the sensitivity of MIPAS is significantly greater than that of passive nadir viewers. This means that the high cloud fraction will be underestimated in the ISCCP dataset compared to the amount of high clouds deduced by MIPAS. Good correspondence in seasonal variability and geographical distribution of cloud occurrence and zonal means of cloud top height is found in a detailed comparison with a climatology for subvisible cirrus clouds from the Stratospheric Aerosol and Gas Experiment II (SAGE II limb sounder. Overall, validation with various sensors shows the need to consider differences in sensitivity, and especially the viewing geometries and field-of-view size, to make the datasets comparable (e.g. applying integration along the limb path through nadir cloud fields. The simulation of the limb path integration will be an important issue for comparisons with cloud-resolving global circulation or chemical transport models.

  8. Fragmentation of a Filamentary Cloud Permeated by a Perpendicular Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Hanawa, Tomoyuki [Center for Frontier Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522 (Japan); Kudoh, Takahiro [Faculty of Education, Nagasaki University, 1-14 Bonkyo-machi, Nagasaki, Nagasaki 852-8521 (Japan); Tomisaka, Kohji [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)

    2017-10-10

    We examine the linear stability of an isothermal filamentary cloud permeated by a perpendicular magnetic field. Our model cloud is assumed to be supported by gas pressure against self-gravity in the unperturbed state. For simplicity, the density distribution is assumed to be symmetric around the axis. Also for simplicity, the initial magnetic field is assumed to be uniform, and turbulence is not taken into account. The perturbation equation is formulated to be an eigenvalue problem. The growth rate is obtained as a function of the wavenumber for fragmentation along the axis and the magnetic field strength. The growth rate depends critically on the outer boundary. If the displacement vanishes in regions very far from the cloud axis (fixed boundary), cloud fragmentation is suppressed by a moderate magnetic field, which means the plasma beta is below 1.67 on the cloud axis. If the displacement is constant along the magnetic field in regions very far from the cloud, the cloud is unstable even when the magnetic field is infinitely strong. The cloud is deformed by circulation in the plane perpendicular to the magnetic field. The unstable mode is not likely to induce dynamical collapse, since it is excited even when the whole cloud is magnetically subcritical. For both boundary conditions, the magnetic field increases the wavelength of the most unstable mode. We find that the magnetic force suppresses compression perpendicular to the magnetic field especially in regions of low density.

  9. DACCIWA Cloud-Aerosol Observations in West Africa Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, J Christine [Univ. of Reading (United Kingdom); Blanchard, Yann [Univ. of Reading (United Kingdom); Hill, Peter [Univ. of Reading (United Kingdom); Gregory, Laurie [Brookhaven National Lab. (BNL), Upton, NY (United States); Wagener, Richard [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-06-15

    Interactions between aerosols and clouds, and their effects on radiation, precipitation, and regional circulations, are one of the largest uncertainties in understanding climate. With reducing uncertainties in predictions of weather, climate, and climate impacts in mind, the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, funded by the European Commission, set out to improve our understanding of cloud-aerosol interactions in southern West Africa. This region is ideal for studying cloud-aerosol interactions because of its rich mix of natural and anthropogenic aerosols and diverse clouds, and because of the strong dependence on the regional and global climate of the sensitive West African monsoon. The overview of DACCIWA is described in Knippertz et al. 2015. The interdisciplinary DACCIWA team includes not only several European and African universities, but also Met Centres in the UK, France, Germany, Switzerland, Benin, Ghana, and Nigeria. One of the crucial research activities in DACCIWA is the major field campaign in southern West Africa from June to July 2016, comprising a benchmark data set for assessing detailed processes on natural and anthropogenic emissions; atmospheric composition; air pollution and its impacts on human and ecosystem health; boundary layer processes; couplings between aerosols, clouds, and rainfall; weather systems; radiation; and the monsoon circulation. Details and highlights of the campaign can be found in Flamant et al. 2017. To provide aerosol/cloud microphysical and optical properties that are essential for model evaluations and for the linkage between ground-based, airborne, and spaceborne observations, the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility loaned two sun photometers to the DACCWIA team for the campaign from June 8 to July 29, 2016. The first sun photometer was deployed at Kumasi, Ghana (6.67962°N, 1.56019°W) by the University of Leeds

  10. Effect of remote clouds on surface UV irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Deguenther, M.; Meerkoetter, R. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    2000-06-01

    Clouds affect local surface UV irradiance, even if the horizontal distance from the radiation observation site amounts to several kilometers. In order to investigate this effect, which we call remote clouds effect, a 3-dimensional radiative transfer model is applied. Assuming the atmosphere is subdivided into a quadratic based sector and its surrounding, we quantify the influence of changing cloud coverage within this surrounding from 0% to 100% on surface UV irradiance at the sector center. To work out this remote clouds influence as a function of sector base size, we made some calculations for different sizes between 10 km x 10 km and 100 km x 100 km. It appears that in the case of small sectors (base size {<=}20 km x 20 km) the remote clouds effect is highly variable: Depending on cloud structure, solar zenith angle and wavelength, the surface UV irradiance may be enhanced up to 15% as well as reduced by more than 50%. In contrast, for larger sectors it is always the case that enhancements become smaller by 5% if sector base size exceeds 60 km x 60 km. However, these values are upper estimates of the remote cloud effects and they are found only for special cloud structures. Since these structures might occur but cannot be regarded as typical, different satellite observed cloud formations (horizontal resolution about 1 km x 1 km) have also been investigated. For these more common cloud distributions we find remote cloud effects to be distinctly smaller than the corresponding upper estimates, e.g., for a sector with base size of 25 km x 25 km the surface UV irradiance error due to ignoring the actual remote clouds and replacing their influence with periodic horizontal boundary conditions is less than 3%, whereas the upper estimate of remote clouds effect would suggest an error close to 10%. (orig.)

  11. Two-phase flow stability structure in a natural circulation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhiwei [Nuclear Engineering Laboratory Zurich (Switzerland)

    1995-09-01

    The present study reports a numerical analysis of two-phase flow stability structures in a natural circulation system with two parallel, heated channels. The numerical model is derived, based on the Galerkin moving nodal method. This analysis is related to some design options applicable to integral heating reactors with a slightly-boiling operation mode, and is also of general interest to similar facilities. The options include: (1) Symmetric heating and throttling; (2) Asymmetric heating and symmetric throttling; (3) Asymmetric heating and throttling. The oscillation modes for these variants are discussed. Comparisons with the data from the INET two-phase flow stability experiment have qualitatively validated the present analysis.

  12. The atmospheric circulation of the super Earth GJ 1214b: Dependence on composition and metallicity

    Energy Technology Data Exchange (ETDEWEB)

    Kataria, T.; Showman, A. P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Fortney, J. J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Marley, M. S.; Freedman, R. S., E-mail: tkataria@lpl.arizona.edu [NASA Ames Research Center 245-3, Moffett Field, CA 94035 (United States)

    2014-04-20

    We present three-dimensional atmospheric circulation models of GJ 1214b, a 2.7 Earth-radius, 6.5 Earth-mass super Earth detected by the MEarth survey. Here we explore the planet's circulation as a function of atmospheric metallicity and atmospheric composition, modeling atmospheres with a low mean molecular weight (MMW; i.e., H{sub 2}-dominated) and a high MMW (i.e., water- and CO{sub 2}-dominated). We find that atmospheres with a low MMW have strong day-night temperature variations at pressures above the infrared photosphere that lead to equatorial superrotation. For these atmospheres, the enhancement of atmospheric opacities with increasing metallicity lead to shallower atmospheric heating, larger day-night temperature variations, and hence stronger superrotation. In comparison, atmospheres with a high MMW have larger day-night and equator-to-pole temperature variations than low MMW atmospheres, but differences in opacity structure and energy budget lead to differences in jet structure. The circulation of a water-dominated atmosphere is dominated by equatorial superrotation, while the circulation of a CO{sub 2}-dominated atmosphere is instead dominated by high-latitude jets. By comparing emergent flux spectra and light curves for 50× solar and water-dominated compositions, we show that observations in emission can break the degeneracy in determining the atmospheric composition of GJ 1214b. The variation in opacity with wavelength for the water-dominated atmosphere leads to large phase variations within water bands and small phase variations outside of water bands. The 50× solar atmosphere, however, yields small variations within water bands and large phase variations at other characteristic wavelengths. These observations would be much less sensitive to clouds, condensates, and hazes than transit observations.

  13. Cloud System Evolution in the Trades—CSET

    Science.gov (United States)

    Albrecht, B. A.; Zuidema, P.; Bretherton, C. S.; Wood, R.; Ghate, V. P.

    2015-12-01

    The Cloud System Evolution in the Trades (CSET) study was designed to describe and explain the evolution of the boundary layer aerosol, cloud, and thermodynamic structures along trajectories within the north-Pacific trade-winds. The observational component of this study centered on 7 round-trips made by the NSF NCAR Gulfstream V (GV) between Sacramento, CA and Kona, Hawaii between 1 July and 15 August 2015. The CSET observing strategy used a Lagrangian approach to sample aerosol, cloud, and boundary layer properties upwind from the transition zone over the North Pacific and to resample these areas two days later. GFS forecast trajectories were used to plan the outbound flight to Hawaii and then updated forecast trajectories helped set the return flight plan two days later. Two key elements of the CSET observing system were the newly developed HIAPER Cloud Radar (HCR) and the HIAPER Spectral Resolution Lidar (HSRL). Together they provided unprecedented characterizations of aerosol, cloud and precipitation structures. A full suite of probes on the aircraft were used for in situ measurements of aerosol, cloud, precipitation, and turbulence properties during the low-level aircraft profiling portions of the flights. A wide range of boundary layer structures and aerosol, cloud, and precipitation conditions were observed during CSET. The cloud systems sampled included solid stratocumulus infused with smoke from Canadian wildfires, mesoscale (100-200 km) cloud-precipitation complexes, and patches of shallow cumuli in environments with accumulation mode aerosol concentrations of less than 50 cm-3. Ultra clean layers (UCLs with accumulation mode concentrations of less than 10 cm-3) were observed frequently near the top of the boundary layer and were often associated with shallow, gray (optically thin) layered clouds—features that are the subject of focused investigations by the CSET science team. The extent of aerosol, cloud, drizzle and boundary layer sampling that was

  14. Galactic hail: the origin of the high-velocity cloud complex C

    NARCIS (Netherlands)

    Fraternali, F.; Marasco, A.; Armillotta, L.; Marinacci, F.

    High-velocity clouds consist of cold gas that appears to be raining down from the halo to the disc of the Milky Way. Over the past 50 years, two competing scenarios have attributed their origin either to gas accretion from outside the Galaxy or to circulation of gas from the Galactic disc powered by

  15. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds

    Science.gov (United States)

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-01

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 Wṡm-2) and a surface cooling (-5 to -8 Wṡm-2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  16. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds.

    Science.gov (United States)

    Fan, Jiwen; Leung, L Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-26

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ~27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 W m(-2)) and a surface cooling (-5 to -8 W m(-2)). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  17. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    Science.gov (United States)

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry J.; Bower, Amy S.; Köhl, Armin; Gopalakrishnan, Ganesh; Rivas, David

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model's winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow.

  18. SMART POINT CLOUD: DEFINITION AND REMAINING CHALLENGES

    Directory of Open Access Journals (Sweden)

    F. Poux

    2016-10-01

    Full Text Available Dealing with coloured point cloud acquired from terrestrial laser scanner, this paper identifies remaining challenges for a new data structure: the smart point cloud. This concept arises with the statement that massive and discretized spatial information from active remote sensing technology is often underused due to data mining limitations. The generalisation of point cloud data associated with the heterogeneity and temporality of such datasets is the main issue regarding structure, segmentation, classification, and interaction for an immediate understanding. We propose to use both point cloud properties and human knowledge through machine learning to rapidly extract pertinent information, using user-centered information (smart data rather than raw data. A review of feature detection, machine learning frameworks and database systems indexed both for mining queries and data visualisation is studied. Based on existing approaches, we propose a new 3-block flexible framework around device expertise, analytic expertise and domain base reflexion. This contribution serves as the first step for the realisation of a comprehensive smart point cloud data structure.

  19. Cloud Infrastructure & Applications - CloudIA

    Science.gov (United States)

    Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank

    The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.

  20. Planetary circulations in the presence of transient and self-induced heating

    Science.gov (United States)

    Salby, Murry L.; Garcia, Rolando R.

    1993-01-01

    The research program focuses on large-scale circulations and their interaction with the global convective pattern. An 11-year record of global cloud imagery and contemporaneous fields of motion and temperature have been used to investigate organized convection and coherent variability of the tropical circulation operating on intraseasonal time scales. This study provides a detailed portrait of tropical variability associated with the so-called Madden-Julian Oscillation (MJO). It reveals the nature, geographical distribution, and seasonality of discrete convective signal, which is a measure of feedback between the circulation and the convective pattern. That discrete spectral behavior has been evaluated in light of natural variability of the ITCZ associated with climatological convection. A composite signature of the MJO, based on cross-covariance statistics of cloud cover, motion, and temperature, has been constructed to characterize the lifecycle of the disturbance in terms of these properties. The composite behavior has also been used to investigate the influence the MJO exerts on the zonal-mean circulation and the involvement of the MJO in transfers of momentum between the atmosphere and the solid Earth. The aforementioned observational studies have led to the production of two animations. One reveals the convective signal in band-pass filtered OLR and compares it to climatological convection. The other is a 3-dimensional visualization of the composite lifecycle of the MJO. With a clear picture of the MJO in hand, feedback between the circulation and the convective pattern can be diagnosed meaningfully in numerical simulations. This process is being explored in calculations with the linearized primitive equations on the sphere in the presence of realistic stability and shear. The numerical framework represents climatological convection as a space-time stochastic process and wave-induced convection in terms of the vertically-integrated moisture flux convergence

  1. Fragmentation of rotating protostellar clouds

    International Nuclear Information System (INIS)

    Tohline, J.E.

    1980-01-01

    We examine, with a three-dimensional hydrodynamic computer code, the behavior of rotating, isothermal gas clouds as they collapse from Jeans unstable configurations, in order to determine whether they are susceptible to fragmentation during the initial dynamic collapse phase of their evolution. We find that a gas cloud will not fragment unless (a) it begins collapsing from a radius much smaller than the Jeans radius (i.e., the cloud initially encloses many Jeans masses) and (b) irregularities in the cloud's initial structure (specifically, density inhomogeneities) enclose more than one Jeans mass of material. Gas pressure smooths out features that are not initially Jeans unstable while rotation plays no direct role in damping inhomogeneities. Instead of fragmenting, most of our models collapse to a ring configuration (as has been observed by other investigators in two-dimensional, axisymmetric models). The rings appear to be less susceptible to gragmentation from arbitrary perturbations in their structure than has previously been indicated in other work. Because our models, which include the effects of gas pressure, do not readily fragment during a phase of dynamic collapse, we suggest that gas clouds in the galactic disk undergo fragmentation only during quasi-equilibrium phases of their evolution

  2. 17 Years of Cloud Heights from Terra, and Beyond

    Science.gov (United States)

    Davies, R.

    2017-12-01

    The effective cloud height, H, is the integral of observed cloud-top heights, weighted by their frequency of occurrence. Here we look at changes in the effective cloud height, H', as measured by the Multiangle Imaging Spectroradiometer (MISR) on the first Earth Observing System platform, Terra. Terra was launched in December 1999, and now has over 17 years of consistently measured climate records. Globally, HG' has an important influence on Earth's climate, whereas regionally, HR' is a useful measure of low frequency changes in circulation patterns. MISR has a sampling error in the annual mean HG' of ≈11 m, allowing fairly small interannual variations to be detected. This paper extends the previous 15-year summary that showed significant differences in the long term mean hemispheric cloud height changes. Also of interest are the correlations in tropical cloud height changes and related teleconnections. The largest ephemeral values in the annual HR' [over 1.5 km] are noted over the Central Pacific and the Maritime Continent. These changes are strongly anticorrelated with each other, being directly related to changes in ENSO. They are also correlated with the largest ephemeral changes in HG'. Around the equator, we find at least four distinct centres of similar fluctuations in cloud height. This paper examines the relative time dependence of these regional height changes, separately for La Niña and El Niño events, and stresses the value of extending the time series of uniformly measured cloud heights from space beyond EOS-Terra.

  3. THE CALIFORNIA MOLECULAR CLOUD

    International Nuclear Information System (INIS)

    Lada, Charles J.; Lombardi, Marco; Alves, Joao F.

    2009-01-01

    We present an analysis of wide-field infrared extinction maps of a region in Perseus just north of the Taurus-Auriga dark cloud complex. From this analysis we have identified a massive, nearby, but previously unrecognized, giant molecular cloud (GMC). Both a uniform foreground star density and measurements of the cloud's velocity field from CO observations indicate that this cloud is likely a coherent structure at a single distance. From comparison of foreground star counts with Galactic models, we derive a distance of 450 ± 23 pc to the cloud. At this distance the cloud extends over roughly 80 pc and has a mass of ∼ 10 5 M sun , rivaling the Orion (A) molecular cloud as the largest and most massive GMC in the solar neighborhood. Although surprisingly similar in mass and size to the more famous Orion molecular cloud (OMC) the newly recognized cloud displays significantly less star formation activity with more than an order of magnitude fewer young stellar objects than found in the OMC, suggesting that both the level of star formation and perhaps the star formation rate in this cloud are an order of magnitude or more lower than in the OMC. Analysis of extinction maps of both clouds shows that the new cloud contains only 10% the amount of high extinction (A K > 1.0 mag) material as is found in the OMC. This, in turn, suggests that the level of star formation activity and perhaps the star formation rate in these two clouds may be directly proportional to the total amount of high extinction material and presumably high density gas within them and that there might be a density threshold for star formation on the order of n(H 2 ) ∼ a few x 10 4 cm -3 .

  4. Optical Instruments Synergy in Determination of Optical Depth of Thin Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Vladutescu, Daniela V.; Schwartz, Stephen E.

    2017-06-25

    Optically thin clouds have a strong radiative effect and need to be represented accurately in climate models. Cloud optical depth of thin clouds was retrieved using high resolution digital photography, lidar, and a radiative transfer model. The Doppler Lidar was operated at 1.5 μm, minimizing return from Rayleigh scattering, emphasizing return from aerosols and clouds. This approach examined cloud structure on scales 3 to 5 orders of magnitude finer than satellite products, opening new avenues for examination of cloud structure and evolution.

  5. Study of the Evolution of the Electric Structure of a Convective Cloud Using the Data of a Numerical Nonstationary Three-Dimensional Model

    Science.gov (United States)

    Veremey, N. E.; Dovgalyuk, Yu. A.; Zatevakhin, M. A.; Ignatyev, A. A.; Morozov, V. N.

    2014-04-01

    Numerical nonstationary three-dimensional model of a convective cloud with parameterized description of microphysical processes with allowance for the electrization processes is considered. The results of numerical modeling of the cloud evolution for the specified atmospheric conditions are presented. The spatio-temporal distribution of the main cloud characteristics including the volume charge density and the electric field is obtained. The calculation results show that the electric structure of the cloud is different at its various life stages, i.e., it varies from unipolar to dipolar and then to tripolar. This conclusion is in fair agreement with the field studies.

  6. Spectral cumulus parameterization based on cloud-resolving model

    Science.gov (United States)

    Baba, Yuya

    2018-02-01

    We have developed a spectral cumulus parameterization using a cloud-resolving model. This includes a new parameterization of the entrainment rate which was derived from analysis of the cloud properties obtained from the cloud-resolving model simulation and was valid for both shallow and deep convection. The new scheme was examined in a single-column model experiment and compared with the existing parameterization of Gregory (2001, Q J R Meteorol Soc 127:53-72) (GR scheme). The results showed that the GR scheme simulated more shallow and diluted convection than the new scheme. To further validate the physical performance of the parameterizations, Atmospheric Model Intercomparison Project (AMIP) experiments were performed, and the results were compared with reanalysis data. The new scheme performed better than the GR scheme in terms of mean state and variability of atmospheric circulation, i.e., the new scheme improved positive bias of precipitation in western Pacific region, and improved positive bias of outgoing shortwave radiation over the ocean. The new scheme also simulated better features of convectively coupled equatorial waves and Madden-Julian oscillation. These improvements were found to be derived from the modification of parameterization for the entrainment rate, i.e., the proposed parameterization suppressed excessive increase of entrainment, thus suppressing excessive increase of low-level clouds.

  7. The retrieval of cloud microphysical properties using satellite measurements and an in situ database

    Directory of Open Access Journals (Sweden)

    C. Poix

    1996-01-01

    Full Text Available By combining AVHRR data from the NOAA satellites with information from a database of in situ measurements, large-scale maps can be generated of the microphysical parameters most immediately significant for the modelling of global circulation and climate. From the satellite data, the clouds can be classified into cumuliform, stratiform and cirrus classes and then into further sub-classes by cloud top temperature. At the same time a database of in situ measurements made by research aircraft is classified into the same sub-classes and a statistical analysis is used to derive relationships between the sub-classes and the cloud microphysical properties. These two analyses are then linked to give estimates of the microphysical properties of the satellite observed clouds. Examples are given of the application of this technique to derive maps of the probability of occurrence of precipitating clouds and of precipitating water content derived from a case study within the International Cirrus Experiment (ICE held in 1989 over the North Sea.

  8. The retrieval of cloud microphysical properties using satellite measurements and an in situ database

    Directory of Open Access Journals (Sweden)

    Christophe Poix

    Full Text Available By combining AVHRR data from the NOAA satellites with information from a database of in situ measurements, large-scale maps can be generated of the microphysical parameters most immediately significant for the modelling of global circulation and climate. From the satellite data, the clouds can be classified into cumuliform, stratiform and cirrus classes and then into further sub-classes by cloud top temperature. At the same time a database of in situ measurements made by research aircraft is classified into the same sub-classes and a statistical analysis is used to derive relationships between the sub-classes and the cloud microphysical properties. These two analyses are then linked to give estimates of the microphysical properties of the satellite observed clouds. Examples are given of the application of this technique to derive maps of the probability of occurrence of precipitating clouds and of precipitating water content derived from a case study within the International Cirrus Experiment (ICE held in 1989 over the North Sea.

  9. A COMPACT HIGH VELOCITY CLOUD NEAR THE MAGELLANIC STREAM: METALLICITY AND SMALL-SCALE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Nimisha [Ecole Polytechnique, Route de Saclay, F-91128 Palaiseau (France); Fox, Andrew J.; Tumlinson, Jason; Thom, Christopher; Ely, Justin [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Westmeier, Tobias [ICRAR, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia)

    2015-02-10

    The Magellanic Stream (MS) is a well-resolved gaseous tail originating from the Magellanic Clouds. Studies of its physical properties and chemical composition are needed to understand its role in Galactic evolution. We investigate the properties of a compact HVC (CHVC 224.0-83.4-197) lying close on the sky to the MS to determine whether it is physically connected to the Stream and to examine its internal structure. Our study is based on analysis of HST/COS spectra of three QSOs (Ton S210, B0120-28, and B0117-2837) all of which pass through this single cloud at small angular separation (≲0.°72), allowing us to compare physical conditions on small spatial scales. No significant variation is detected in the ionization structure from one part of the cloud to the other. Using Cloudy photoionization models, toward Ton S210 we derive elemental abundances of [C/H] = –1.21 ± 0.11, [Si/H] = –1.16 ± 0.11, [Al/H] = –1.19 ± 0.17, and [O/H] = –1.12 ± 0.22, which agree within 0.09 dex. The CHVC abundances match the 0.1 solar abundances measured along the main body of the Stream. This suggests that the CHVC (and by extension the extended network of filaments to which it belongs) has an origin in the MS. It may represent a fragment that has been removed from the Stream as it interacts with the gaseous Galactic halo.

  10. Dispersion of the Volcanic Sulfate Cloud from the Mount Pinatubo Eruption

    Science.gov (United States)

    Aquila, Valentina; Oman, Luke D.; Stolarski, Richard S.; Colarco, Peter R.; Newman, Paul A.

    2012-01-01

    We simulate the transport of the volcanic cloud from the 1991 eruption of Mount Pinatubo with the GEOS-5 general circulation model. Our simulations are in good agreement with observational data. We tested the importance of initial condition corresponding to the specific meteorological situation at the time of the eruption by employing reanalysis from MERRA. We found no significant difference in the transport of the cloud. We show how the inclusion of the interaction between volcanic sulfate aerosol and radiation is essential for a reliable simulation of the transport of the volcanic cloud. The absorption of long wave radiation by the volcanic sulfate induces a rising of the volcanic cloud up to the middle stratosphere, combined with divergent motion from the latitude of the eruption to the tropics. Our simulations indicate that the cloud diffuses to the northern hemisphere through a lower stratospheric pathway, and to mid- and high latitudes of the southern hemisphere through a middle stratospheric pathway, centered at about 30 hPa. The direction of the middle stratospheric pathway depends on the season. We did not detect any significant change of the mixing between tropics and mid- and high latitudes in the southern hemisphere.

  11. Formation of Massive Molecular Cloud Cores by Cloud-cloud Collision

    OpenAIRE

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-01-01

    Recent observations of molecular clouds around rich massive star clusters including NGC3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by the cloud-cloud collision. We find that the massive mol...

  12. Circulating Microparticles Alter Formation, Structure, and Properties of Fibrin Clots.

    Science.gov (United States)

    Zubairova, Laily D; Nabiullina, Roza M; Nagaswami, Chandrasekaran; Zuev, Yuriy F; Mustafin, Ilshat G; Litvinov, Rustem I; Weisel, John W

    2015-12-04

    Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plasma using filtration. Clots made in platelet-free and microparticle-depleted plasma samples from the same healthy donors were analyzed in parallel. Microparticles accelerate fibrin polymerisation and support formation of more compact clots that resist internal and external fibrinolysis. These variations correlate with faster thrombin generation, suggesting thrombin-mediated kinetic effects of microparticles on fibrin formation, structure, and properties. In addition, clots formed in the presence of microparticles, unlike clots from the microparticle-depleted plasma, contain 0.1-0.5-μm size granular and CD61-positive material on fibres, suggesting that platelet-derived microparticles attach to fibrin. Therefore, the blood of healthy individuals contains functional microparticles at the levels that have a procoagulant potential. They affect the structure and stability of fibrin clots indirectly through acceleration of thrombin generation and through direct physical incorporation into the fibrin network. Both mechanisms underlie a potential role of microparticles in haemostasis and thrombosis as modulators of fibrin formation, structure, and resistance to fibrinolysis.

  13. Geoengineering by cloud seeding: influence on sea ice and climate system

    International Nuclear Information System (INIS)

    Rasch, Philip J; Latham, John; Chen, Chih-Chieh

    2009-01-01

    General circulation model computations using a fully coupled ocean-atmosphere model indicate that increasing cloud reflectivity by seeding maritime boundary layer clouds with particles made from seawater may compensate for some of the effects on climate of increasing greenhouse gas concentrations. The chosen seeding strategy (one of many possible scenarios) can restore global averages of temperature, precipitation and sea ice to present day values, but not simultaneously. The response varies nonlinearly with the extent of seeding, and geoengineering generates local changes to important climatic features. The global tradeoffs of restoring ice cover, and cooling the planet, must be assessed alongside the local changes to climate features.

  14. Clouds, Wind and the Biogeography of Central American Cloud Forests: Remote Sensing, Atmospheric Modeling, and Walking in the Jungle

    Science.gov (United States)

    Lawton, R.; Nair, U. S.

    2011-12-01

    Cloud forests stand at the core of the complex of montane ecosystems that provide the backbone to the multinational Mesoamerican Biological Corridor, which seeks to protect a biodiversity conservation "hotspot" of global significance in an area of rapidly changing land use. Although cloud forests are generally defined by frequent and prolonged immersion in cloud, workers differ in their feelings about "frequent" and "prolonged", and quantitative assessments are rare. Here we focus on the dry season, in which the cloud and mist from orographic cloud plays a critical role in forest water relations, and discuss remote sensing of orographic clouds, and regional and atmospheric modeling at several scales to quantitatively examine the distribution of the atmospheric conditions that characterize cloud forests. Remote sensing using data from GOES reveals diurnal and longer scale patterns in the distribution of dry season orographic clouds in Central America at both regional and local scales. Data from MODIS, used to calculate the base height of orographic cloud banks, reveals not only the geographic distributon of cloud forest sites, but also striking regional variation in the frequency of montane immersion in orographic cloud. At a more local scale, wind is known to have striking effects on forest structure and species distribution in tropical montane ecosystems, both as a general mechanical stress and as the major agent of ecological disturbance. High resolution regional atmospheric modeling using CSU RAMS in the Monteverde cloud forests of Costa Rica provides quantitative information on the spatial distribution of canopy level winds, insight into the spatial structure and local dynamics of cloud forest communities. This information will be useful in not only in local conservation planning and the design of the Mesoamerican Biological Corridor, but also in assessments of the sensitivity of cloud forests to global and regional climate changes.

  15. Clouds vertical properties over the Northern Hemisphere monsoon regions from CloudSat-CALIPSO measurements

    Science.gov (United States)

    Das, Subrata Kumar; Golhait, R. B.; Uma, K. N.

    2017-01-01

    The CloudSat spaceborne radar and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) space-borne lidar measurements, provide opportunities to understand the intriguing behavior of the vertical structure of monsoon clouds. The combined CloudSat-CALIPSO data products have been used for the summer season (June-August) of 2006-2010 to present the statistics of cloud macrophysical (such as cloud occurrence frequency, distribution of cloud top and base heights, geometrical thickness and cloud types base on occurrence height), and microphysical (such as ice water content, ice water path, and ice effective radius) properties of the Northern Hemisphere (NH) monsoon region. The monsoon regions considered in this work are the North American (NAM), North African (NAF), Indian (IND), East Asian (EAS), and Western North Pacific (WNP). The total cloud fraction over the IND (mostly multiple-layered cloud) appeared to be more frequent as compared to the other monsoon regions. Three distinctive modes of cloud top height distribution are observed over all the monsoon regions. The high-level cloud fraction is comparatively high over the WNP and IND. The ice water content and ice water path over the IND are maximum compared to the other monsoon regions. We found that the ice water content has little variations over the NAM, NAF, IND, and WNP as compared to their macrophysical properties and thus give an impression that the regional differences in dynamics and thermodynamics properties primarily cause changes in the cloud frequency or coverage and only secondary in the cloud ice properties. The background atmospheric dynamics using wind and relative humidity from the ERA-Interim reanalysis data have also been investigated which helps in understanding the variability of the cloud properties over the different monsoon regions.

  16. MVC for content management on the cloud

    OpenAIRE

    McGruder, Crystal A.

    2011-01-01

    Approved for public release; distribution is unlimited. Cloud computing portrays a new model for providing IT services over the Internet. In cloud computing, resources are accessed from the Internet through web-based tools. Although cloud computing offers reduced cost, increased storage, high automation, flexibility, mobility, and the ability of IT to shift focus, there are other concerns such as the management, organization and structure of content on the cloud that large organizations sh...

  17. Retrieving latent heating vertical structure from cloud and precipitation profiles—Part II: Deep convective and stratiform rain processes

    International Nuclear Information System (INIS)

    Li, Rui; Min, Qilong; Wu, Xiaoqing; Fu, Yunfei

    2013-01-01

    An exploratory study on physical based latent heat (LH) retrieval algorithm is conducted by parameterizing the physical linkages between observed cloud and precipitation profiles to the major processes of phase change of atmospheric water. Specifically, rain is segregated into three rain types: warm, convective, and stratiform rain, based on their dynamical and thermodynamical characteristics. As the second of series, both convective and stratiform rain LH algorithms are presented and evaluated here. For convective and stratiform rain, the major LH-related microphysical processes including condensation, deposition, evaporation, sublimation, and freezing–melting are parameterized with the aid of Cloud Resolving Model (CRM) simulations. The condensation and deposition processes are parameterized in terms of rain formation processes through the precipitation formation theory. LH associated with the freezing–melting process is relatively small and is assumed to be a fraction of total condensation and deposition LH. The evaporation and sublimation processes are parameterized for three unsaturated scenarios: rain out of the cloud body, clouds at cloud boundary and clouds and rain in downdraft region. The evaluation or self-consistency test indicates the retrievals capture the major features of LH profiles and reproduce the double peaks at right altitudes. The LH products are applicable at various stages of cloud system life cycle for high-resolution models, as well as for large-scale climate models. -- Highlights: ► An exploratory study on physics-based cold rain latent heat retrieval algorithm. ► Utilize the full information of the vertical structures of cloud and rainfall. ► Include all major LH-related microphysical processes (in ice and liquid phase). ► Directly link water mass measurements to latent heat at instantaneous pixel level. ► Applicable at various stages of cloud system life cycle

  18. Revised cloud storage structure for light-weight data archiving in LHD

    International Nuclear Information System (INIS)

    Nakanishi, Hideya; Masaki, Ohsuna; Mamoru, Kojima; Setsuo, Imazu; Miki, Nonomura; Masahiko, Emoto; Takashi, Yamamoto; Yoshio, Nagayama; Takahisa, Ozeki; Noriyoshi, Nakajima; Katsumi, Ida; Osamu, Kaneko

    2014-01-01

    Highlights: • GlusterFS is adopted to replace IznaStor cloud storage in LHD. • GlusterFS and OpenStack/Swift are compared. • SSD-based GlusterFS distributed replicated volume is separated from normal RAID storage. • LABCOM system changes the storage technology every 4 years for cost efficiency. - Abstract: The LHD data archiving system has newly selected GlusterFS distributed filesystem for the replacement of the present cloud storage software named “IznaStor/dSS”. Even though the prior software provided many favorable functionalities of hot plug and play node insertion, internal auto-replication of data files, and symmetric load balancing between all member nodes, it revealed a poor feature in recovering from an accidental malfunction of a storage node. Once a failure happened, the recovering process usually took at least several days or sometimes more than a week with a heavy cpu load. In some cases they fell into the so-called “split-brain” or “amnesia” condition, not to get recovered from it. Since the recovery time tightly depends on the capacity size of the fault node, individual HDD management is more desirable than large volumes of HDD arrays. In addition, the dynamic mutual awareness of data location information may be removed if some other static data distribution method can be applied. In this study, the candidate middleware of “OpenStack/Swift” and “GlusterFS” has been tested by using the real mass of LHD data for more than half a year, and finally GlusterFS has been selected to replace the present IznaStor. It has implemented very limited functionalities of cloud storage but a simplified RAID10-like structure, which may consequently provide lighter-weight read/write ability. Since the LABCOM data system is implemented to be independent of the storage structure, it is easy to plug off the IznaStor and on the new GlusterFS. The effective I/O speed is also confirmed to be on the same level as the estimated one from raw

  19. Revised cloud storage structure for light-weight data archiving in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Hideya, E-mail: nakanisi@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Masaki, Ohsuna; Mamoru, Kojima; Setsuo, Imazu; Miki, Nonomura; Masahiko, Emoto; Takashi, Yamamoto; Yoshio, Nagayama [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Takahisa, Ozeki [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Noriyoshi, Nakajima; Katsumi, Ida; Osamu, Kaneko [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan)

    2014-05-15

    Highlights: • GlusterFS is adopted to replace IznaStor cloud storage in LHD. • GlusterFS and OpenStack/Swift are compared. • SSD-based GlusterFS distributed replicated volume is separated from normal RAID storage. • LABCOM system changes the storage technology every 4 years for cost efficiency. - Abstract: The LHD data archiving system has newly selected GlusterFS distributed filesystem for the replacement of the present cloud storage software named “IznaStor/dSS”. Even though the prior software provided many favorable functionalities of hot plug and play node insertion, internal auto-replication of data files, and symmetric load balancing between all member nodes, it revealed a poor feature in recovering from an accidental malfunction of a storage node. Once a failure happened, the recovering process usually took at least several days or sometimes more than a week with a heavy cpu load. In some cases they fell into the so-called “split-brain” or “amnesia” condition, not to get recovered from it. Since the recovery time tightly depends on the capacity size of the fault node, individual HDD management is more desirable than large volumes of HDD arrays. In addition, the dynamic mutual awareness of data location information may be removed if some other static data distribution method can be applied. In this study, the candidate middleware of “OpenStack/Swift” and “GlusterFS” has been tested by using the real mass of LHD data for more than half a year, and finally GlusterFS has been selected to replace the present IznaStor. It has implemented very limited functionalities of cloud storage but a simplified RAID10-like structure, which may consequently provide lighter-weight read/write ability. Since the LABCOM data system is implemented to be independent of the storage structure, it is easy to plug off the IznaStor and on the new GlusterFS. The effective I/O speed is also confirmed to be on the same level as the estimated one from raw

  20. A Coupled fcGCM-GCE Modeling System: A 3D Cloud Resolving Model and a Regional Scale Model

    Science.gov (United States)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and ore sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (21CE, several 31CE), Goddard radiation (including explicity calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generation regional scale model, WRF. In this talk, I will present: (1) A Brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), (3) A discussion on the Goddard WRF version (its developments and applications), and (4) The characteristics of the four-dimensional cloud data

  1. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    OpenAIRE

    Y. Liu; W. Wu; M. P. Jensen; T. Toto

    2011-01-01

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surfaced-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fractio...

  2. How chemistry influences cloud structure, star formation, and the IMF

    NARCIS (Netherlands)

    Hocuk, S.; Cazaux, S.; Spaans, M.; Caselli, P.

    2016-01-01

    In the earliest phases of star-forming clouds, stable molecular species, such as CO, are important coolants in the gas phase. Depletion of these molecules on dust surfaces affects the thermal balance of molecular clouds and with that their whole evolution. For the first time, we study the effect of

  3. Near Real Time Structural Health Monitoring with Multiple Sensors in a Cloud Environment

    Science.gov (United States)

    Bock, Y.; Todd, M.; Kuester, F.; Goldberg, D.; Lo, E.; Maher, R.

    2017-12-01

    A repeated near real time 3-D digital surrogate representation of critical engineered structures can be used to provide actionable data on subtle time-varying displacements in support of disaster resiliency. We describe a damage monitoring system of optimally-integrated complementary sensors, including Global Navigation Satellite Systems (GNSS), Micro-Electro-Mechanical Systems (MEMS) accelerometers coupled with the GNSS (seismogeodesy), light multi-rotor Unmanned Aerial Vehicles (UAVs) equipped with high-resolution digital cameras and GNSS/IMU, and ground-based Light Detection and Ranging (LIDAR). The seismogeodetic system provides point measurements of static and dynamic displacements and seismic velocities of the structure. The GNSS ties the UAV and LIDAR imagery to an absolute reference frame with respect to survey stations in the vicinity of the structure to isolate the building response to ground motions. The GNSS/IMU can also estimate the trajectory of the UAV with respect to the absolute reference frame. With these constraints, multiple UAVs and LIDAR images can provide 4-D displacements of thousands of points on the structure. The UAV systematically circumnavigates the target structure, collecting high-resolution image data, while the ground LIDAR scans the structure from different perspectives to create a detailed baseline 3-D reference model. UAV- and LIDAR-based imaging can subsequently be repeated after extreme events, or after long time intervals, to assess before and after conditions. The unique challenge is that disaster environments are often highly dynamic, resulting in rapidly evolving, spatio-temporal data assets with the need for near real time access to the available data and the tools to translate these data into decisions. The seismogeodetic analysis has already been demonstrated in the NASA AIST Managed Cloud Environment (AMCE) designed to manage large NASA Earth Observation data projects on Amazon Web Services (AWS). The Cloud provides

  4. A Fragment-Cloud Model for Breakup of Asteroids with Varied Internal Structures

    Science.gov (United States)

    Wheeler, Lorien; Mathias, Donovan; Stokan, Ed; Brown, Peter

    2016-01-01

    As an asteroid descends toward Earth, it deposits energy in the atmosphere through aerodynamic drag and ablation. Asteroid impact risk assessments rely on energy deposition estimates to predict blast overpressures and ground damage that may result from an airburst, such as the one that occurred over Chelyabinsk, Russia in 2013. The rates and altitudes at which energy is deposited along the entry trajectory depend upon how the bolide fragments, which in turn depends upon its internal structure and composition. In this work, we have developed an analytic asteroid fragmentation model to assess the atmospheric energy deposition of asteroids with a range of structures and compositions. The modeling approach combines successive fragmentation of larger independent pieces with aggregate debris clouds released with each fragmentation event. The model can vary the number and masses of fragments produced, the amount of mass released as debris clouds, the size-strength scaling used to increase the robustness of smaller fragments, and other parameters. The initial asteroid body can be seeded with a distribution of independent fragment sizes amid a remaining debris mass to represent loose rubble pile conglomerations, can be given an outer regolith later, or can be defined as a coherent or fractured monolith. This approach enables the model to represent a range of breakup behaviors and reproduce detailed energy deposition features such as multiple flares due to successive burst events, high-altitude regolith blow-off, or initial disruption of rubble piles followed by more energetic breakup of the constituent boulders. These capabilities provide a means to investigate sensitivities of ground damage to potential variations in asteroid structure.

  5. A Velocity Structure Analysis of Giant Molecular Cloud Associated with HII Region S152

    Directory of Open Access Journals (Sweden)

    Woo-Yeol Choi

    2005-06-01

    Full Text Available S152 is a small bright emission nebula located in the Perseus arm. Its optical diameter corresponds to 1.5 pc for an adopted distance 3.5 kpc. However, S152 is a part of a giant molecular cloud complex, which consists of several dense cores, containing active star-forming sites, and well aligned arm-like features. We analyzed the FCRAO 12CO (J = 1→0 Outer Galaxy Survey data in this region to study the kinematical structure of this region, which resembles a big ``scorpion". We found that there exist three different velocity components, about --54.5, --50.4, --48.8 km s-1, depending on the position of the ``scorpion". There also exist velocity gradients of 0.21 km s-1 pc-1 and 0.16 km s-1 pc-1 through the whole extent of the ``scorpion". Interestingly, these two velocity gradients show an opposite direction with each other. It is likely that the velocity structure of this region may result from the mergence of different gas clouds, and the interaction with the SNR 109.1-1.0 occurred later, mostly at the region around the ``head of the scorpion" only.

  6. Quantifying Biomass from Point Clouds by Connecting Representations of Ecosystem Structure

    Science.gov (United States)

    Hendryx, S. M.; Barron-Gafford, G.

    2017-12-01

    Quantifying terrestrial ecosystem biomass is an essential part of monitoring carbon stocks and fluxes within the global carbon cycle and optimizing natural resource management. Point cloud data such as from lidar and structure from motion can be effective for quantifying biomass over large areas, but significant challenges remain in developing effective models that allow for such predictions. Inference models that estimate biomass from point clouds are established in many environments, yet, are often scale-dependent, needing to be fitted and applied at the same spatial scale and grid size at which they were developed. Furthermore, training such models typically requires large in situ datasets that are often prohibitively costly or time-consuming to obtain. We present here a scale- and sensor-invariant framework for efficiently estimating biomass from point clouds. Central to this framework, we present a new algorithm, assignPointsToExistingClusters, that has been developed for finding matches between in situ data and clusters in remotely-sensed point clouds. The algorithm can be used for assessing canopy segmentation accuracy and for training and validating machine learning models for predicting biophysical variables. We demonstrate the algorithm's efficacy by using it to train a random forest model of above ground biomass in a shrubland environment in Southern Arizona. We show that by learning a nonlinear function to estimate biomass from segmented canopy features we can reduce error, especially in the presence of inaccurate clusterings, when compared to a traditional, deterministic technique to estimate biomass from remotely measured canopies. Our random forest on cluster features model extends established methods of training random forest regressions to predict biomass of subplots but requires significantly less training data and is scale invariant. The random forest on cluster features model reduced mean absolute error, when evaluated on all test data in leave

  7. Statistical thermodynamics and the size distributions of tropical convective clouds.

    Science.gov (United States)

    Garrett, T. J.; Glenn, I. B.; Krueger, S. K.; Ferlay, N.

    2017-12-01

    Parameterizations for sub-grid cloud dynamics are commonly developed by using fine scale modeling or measurements to explicitly resolve the mechanistic details of clouds to the best extent possible, and then to formulating these behaviors cloud state for use within a coarser grid. A second is to invoke physical intuition and some very general theoretical principles from equilibrium statistical thermodynamics. This second approach is quite widely used elsewhere in the atmospheric sciences: for example to explain the heat capacity of air, blackbody radiation, or even the density profile or air in the atmosphere. Here we describe how entrainment and detrainment across cloud perimeters is limited by the amount of available air and the range of moist static energy in the atmosphere, and that constrains cloud perimeter distributions to a power law with a -1 exponent along isentropes and to a Boltzmann distribution across isentropes. Further, the total cloud perimeter density in a cloud field is directly tied to the buoyancy frequency of the column. These simple results are shown to be reproduced within a complex dynamic simulation of a tropical convective cloud field and in passive satellite observations of cloud 3D structures. The implication is that equilibrium tropical cloud structures can be inferred from the bulk thermodynamic structure of the atmosphere without having to analyze computationally expensive dynamic simulations.

  8. Global model comparison of heterogeneous ice nucleation parameterizations in mixed phase clouds

    Science.gov (United States)

    Yun, Yuxing; Penner, Joyce E.

    2012-04-01

    A new aerosol-dependent mixed phase cloud parameterization for deposition/condensation/immersion (DCI) ice nucleation and one for contact freezing are compared to the original formulations in a coupled general circulation model and aerosol transport model. The present-day cloud liquid and ice water fields and cloud radiative forcing are analyzed and compared to observations. The new DCI freezing parameterization changes the spatial distribution of the cloud water field. Significant changes are found in the cloud ice water fraction and in the middle cloud fractions. The new DCI freezing parameterization predicts less ice water path (IWP) than the original formulation, especially in the Southern Hemisphere. The smaller IWP leads to a less efficient Bergeron-Findeisen process resulting in a larger liquid water path, shortwave cloud forcing, and longwave cloud forcing. It is found that contact freezing parameterizations have a greater impact on the cloud water field and radiative forcing than the two DCI freezing parameterizations that we compared. The net solar flux at top of atmosphere and net longwave flux at the top of the atmosphere change by up to 8.73 and 3.52 W m-2, respectively, due to the use of different DCI and contact freezing parameterizations in mixed phase clouds. The total climate forcing from anthropogenic black carbon/organic matter in mixed phase clouds is estimated to be 0.16-0.93 W m-2using the aerosol-dependent parameterizations. A sensitivity test with contact ice nuclei concentration in the original parameterization fit to that recommended by Young (1974) gives results that are closer to the new contact freezing parameterization.

  9. Interconnection Structures, Management and Routing Challenges in Cloud-Service Data Center Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Ahmad Nahar Quttoum

    2018-01-01

    Full Text Available Today’s data center networks employ expensive networking equipments in associated structures that were not designed to meet the increasing requirements of the current large-scale data center services. Limitations that vary between reliability, resource utilization, and high costs are challenging. The era of cloud computing represents a promise to enable large-scale data centers. Computing platforms of such cloud service data centers consist of large number of commodity low-price servers that, with a theme of virtualization on top, can meet the performance of the expensive high-level servers at only a fraction of the price. Recently, the research in data center networks started to evolve rapidly. This opened the path for addressing many of its design and management challenges, these like scalability, reliability, bandwidth capacities, virtual machines’ migration, and cost. Bandwidth resource fragmentation limits the network agility, and leads to low utilization rates, not only for the bandwidth resources, but also for the servers that run the applications. With Traffic Engineering methods, managers of such networks can adapt for rapid changes in the network traffic among their servers, this can help to provide better resource utilization and lower costs. The market is going through exciting changes, and the need to run demanding-scale services drives the work toward cloud networks. These networks that are enabled by the notation of autonomic management, and the availability of commodity low-price network equipments. This work provides the readers with a survey that presents the management challenges, design and operational constraints of the cloud-service data center networks

  10. Semantic-less Breach Detection of Polymorphic Malware in Federated Cloud

    OpenAIRE

    Yahav Biran; George Collins; Borky John M; Joel Dubow

    2017-01-01

    Cloud computing is one of the largest emerging utility services that is expected to grow enormously over the next decade. Many organizations are moving into hybrid cloud/hosted computing models. Single cloud service provider introduces cost and environmental challenges. Also, multi-cloud solution implemented by the Cloud tenant is suboptimal as it requires expensive adaptation costs. Cloud Federation is a useful structure for aggregating cloud based services under a single umbrella to share r...

  11. Two cloud-point phenomena in tetrabutylammonium perfluorooctanoate aqueous solutions: anomalous temperature-induced phase and structure transitions.

    Science.gov (United States)

    Yan, Peng; Huang, Jin; Lu, Run-Chao; Jin, Chen; Xiao, Jin-Xin; Chen, Yong-Ming

    2005-03-24

    This paper reported the phase behavior and aggregate structure of tetrabutylammonium perfluorooctanoate (TBPFO), determined by differential scanning calorimeter, electrical conductivity, static/dynamic light scattering, and rheology methods. We found that above a certain concentration the TBPFO solution showed anomalous temperature-dependent phase behavior and structure transitions. Such an ionic surfactant solution exhibits two cloud points. When the temperature was increased, the solution turned from a homogeneous-phase to a liquid-liquid two-phase system, then to another homogeneous-phase, and finally to another liquid-liquid two-phase system. In the first homogeneous-phase region, the aggregates of TBPFO were rodlike micelles and the solution was Newtonian fluid. While in the second homogeneous-phase region, the aggregates of TBPFO were large wormlike micelles, and the solution behaved as pseudoplastic fluid that also exhibited viscoelastic behavior. We thought that the first cloud point might be caused by the "bridge" effect of the tetrabutylammonium counterion between the micelles and the second one by the formation of the micellar network.

  12. Application of Improved Radiation Modeling to General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  13. Molecular Clouds, Star Formation and Galactic Structure.

    Science.gov (United States)

    Scoville, Nick; Young, Judith S.

    1984-01-01

    Radio observations show that the gigantic clouds of molecules where stars are born are distributed in various ways in spiral galaxies, perhaps accounting for the variation in their optical appearance. Research studies and findings in this area are reported and discussed. (JN)

  14. Impact of aerosol intrusions on sea-ice melting rates and the structure Arctic boundary layer clouds

    Science.gov (United States)

    Cotton, W.; Carrio, G.; Jiang, H.

    2003-04-01

    The Los Alamos National Laboratory sea-ice model (LANL CICE) was implemented into the real-time and research versions of the Colorado State University-Regional Atmospheric Modeling System (RAMS@CSU). The original version of CICE was modified in its structure to allow module communication in an interactive multigrid framework. In addition, some improvements have been made in the routines involved in the coupling, among them, the inclusion of iterative methods that consider variable roughness lengths for snow-covered ice thickness categories. This version of the model also includes more complex microphysics that considers the nucleation of cloud droplets, allowing the prediction of mixing ratios and number concentrations for all condensed water species. The real-time version of RAMS@CSU automatically processes the NASA Team SSMI F13 25km sea-ice coverage data; the data are objectively analyzed and mapped to the model grid configuration. We performed two types of cloud resolving simulations to assess the impact of the entrainment of aerosols from above the inversion on Arctic boundary layer clouds. The first series of numerical experiments corresponds to a case observed on May 4 1998 during the FIRE-ACE/SHEBA field experiment. Results indicate a significant impact on the microstructure of the simulated clouds. When assuming polluted initial profiles above the inversion, the liquid water fraction of the cloud monotonically decreases, the total condensate paths increases and downward IR tends to increase due to a significant increase in the ice water path. The second set of cloud resolving simulations focused on the evaluation of the potential effect of aerosol concentration above the inversion on melting rates during spring-summer period. For these multi-month simulations, the IFN and CCN profiles were also initialized assuming the 4 May profiles as benchmarks. Results suggest that increasing the aerosol concentrations above the boundary layer increases sea-ice melting

  15. pCloud: A Cloud-based Power Market Simulation Environment

    Energy Technology Data Exchange (ETDEWEB)

    Rudkevich, Aleksandr; Goldis, Evgeniy

    2012-12-02

    This research conducted by the Newton Energy Group, LLC (NEG) is dedicated to the development of pCloud: a Cloud-based Power Market Simulation Environment. pCloud is offering power industry stakeholders the capability to model electricity markets and is organized around the Software as a Service (SaaS) concept -- a software application delivery model in which software is centrally hosted and provided to many users via the internet. During the Phase I of this project NEG developed a prototype design for pCloud as a SaaS-based commercial service offering, system architecture supporting that design, ensured feasibility of key architecture's elements, formed technological partnerships and negotiated commercial agreements with partners, conducted market research and other related activities and secured funding for continue development of pCloud between the end of Phase I and beginning of Phase II, if awarded. Based on the results of Phase I activities, NEG has established that the development of a cloud-based power market simulation environment within the Windows Azure platform is technologically feasible, can be accomplished within the budget and timeframe available through the Phase II SBIR award with additional external funding. NEG believes that pCloud has the potential to become a game-changing technology for the modeling and analysis of electricity markets. This potential is due to the following critical advantages of pCloud over its competition: - Standardized access to advanced and proven power market simulators offered by third parties. - Automated parallelization of simulations and dynamic provisioning of computing resources on the cloud. This combination of automation and scalability dramatically reduces turn-around time while offering the capability to increase the number of analyzed scenarios by a factor of 10, 100 or even 1000. - Access to ready-to-use data and to cloud-based resources leading to a reduction in software, hardware, and IT costs

  16. Structure shielding from cloud and fallout gamma ray sources for assessing the consequences of reactor accidents

    International Nuclear Information System (INIS)

    Burson, Z.G.; Profio, A.E.

    1975-12-01

    Radiation shielding provided by transportation vehicles and structures typical of where people live and work were estimated for cloud and fallout gamma-ray sources resulting from a hypothetical reactor accident. Dose reduction factors are recommended for a variety of situations for realistically assessing the consequences of reactor accidents

  17. Potential profiles obtained from applied dust cloud perturbations

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.

    2002-01-01

    This paper details an experimental investigation of the local potential structure within a cloud of suspended microparticles - a 'dusty' or 'complex' plasma - using particle image velocimetry (PIV) techniques. Applied perturbations, synchronized to the PIV measurements, are used to force a cloud of suspended microparticles to become unconfined. From the free-streaming motion of the particles during the loss of confinement and subsequent reformation of the dust cloud, an analysis of the potential is performed. Furthermore, a new method of analyzing the potential structure from the motion of free-streaming microparticles in the plasma is presented

  18. Retrieving latent heating vertical structure from cloud and precipitation Profiles—Part I: Warm rain processes

    International Nuclear Information System (INIS)

    Min, Qilong; Li, Rui; Wu, Xiaoqing; Fu, Yunfei

    2013-01-01

    An exploratory study on physical based latent heat (LH) retrieval algorithm is conducted by parameterizing the physical linkages of hydrometeor profiles of cloud and precipitation to the major processes related to the phase change of atmospheric water. Specifically, rain events are segregated into three rain types: warm, convective, and stratiform, based on their dynamical and thermodynamical characteristics. As the first of the series, only the warm rain LH algorithm is presented and evaluated here. The major microphysical processes of condensation and evaporation for warm rain are parameterized through traditional rain growth theory, with the aid of Cloud Resolving Model (CRM) simulations. The evaluation or the self-consistency tests indicate that the physical based retrievals capture the fundamental LH processes associated with the warm rain life cycle. There is no significant systematic bias in terms of convection strength, illustrated by the month-long CRM simulation as the mesoscale convective systems (MCSs) experience from initial, mature, to decay stages. The overall monthly-mean LH comparison showed that the total LH, as well as condensation heating and evaporation cooling components, agree with the CRM simulation. -- Highlights: ► An exploratory study on physics-based warm rain latent heat retrieval algorithm. ► Utilize the full information of the vertical structures of cloud and rainfall. ► Directly link water mass measurements to latent heat at instantaneous pixel level. ► Applicable at various stages of cloud system life cycle

  19. Seasonal Overturning Circulation in the Red Sea

    Science.gov (United States)

    Yao, F.; Hoteit, I.; Koehl, A.

    2010-12-01

    The Red Sea exhibits a distinct seasonal overturning circulation. In winter, a typical two-layer exchange structure, with a fresher inflow from the Gulf of Aden on top of an outflow from the Red Sea, is established. In summer months (June to September) this circulation pattern is changed to a three-layer structure: a surface outflow from the Red Sea on top of a subsurface intrusion of the Gulf of Aden Intermediate Water and a weakened deep outflow. This seasonal variability is studied using a general circulation model, MITgcm, with 6 hourly NCEP atmospheric forcing. The model is able to reproduce the observed seasonal variability very well. The forcing mechanisms of the seasonal variability related to seasonal surface wind stress and buoyancy flux, and water mass transformation processes associated with the seasonal overturning circulation are analyzed and presented.

  20. Cloud-Top Entrainment in Stratocumulus Clouds

    Science.gov (United States)

    Mellado, Juan Pedro

    2017-01-01

    Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.

  1. A modeling perspective on cloud radiative forcing

    International Nuclear Information System (INIS)

    Potter, G.L.; Corsetti, L.; Slingo, J.M.

    1993-02-01

    Radiation fields from a perpetual July integration of a T106 version of the ECM-WF operational model are used to identify the most appropriate way to diagnose cloud radiative forcing in a general circulation model, for the purposes of intercomparison between models. Differences between the Methods I and II of Cess and Potter (1987) and a variant method are addressed. Method I is shown to be the least robust of all methods, due to the potential uncertainties related to persistent cloudiness, length of the sampling period and biases in retrieved clear-sky quantities due to insufficient sampling of the diurnal cycle. Method II is proposed as an unambiguous way to produce consistent radiative diagnostics for intercomparing model results. The impact of the three methods on the derived sensitivities and cloud feedbacks following an imposed change in sea surface temperature is discussed. The sensitivity of the results to horizontal resolution is considered by using the diagnostics from parallel integrations with T21 version of the model

  2. LS1 Report: the clouds are lifting

    CERN Multimedia

    Anaïs Schaeffer

    2014-01-01

    To combat the problem of electron clouds, which perturbate the environment of the particle beams in our accelerators, the Vacuum team have turned to amorphous carbon. This material is being applied to the interior of 16 magnets in the SPS during LS1 and will help prevent the formation of the secondary particles which are responsible for these clouds.   This photo shows the familiar coils of an SPS dipole magnet in brown. The vacuum chamber is the metallic rectangular part in the centre. The small wheeled device you can see in the vacuum chamber carries the hollow cathodes  along the length of the chamber. When a particle beam circulates at high energy in a vacuum chamber, it unavoidably generates secondary particles. These include electrons produced by the ionisation of residual molecules in the vacuum or indirectly generated by synchrotron radiation. When these electrons hit the surface of the vacuum chamber, they produce other electrons which, through an avalanche-like process, re...

  3. Composition and structure of fresh ammonia clouds on Jupiter based on quantitative analysis of Galileo/NIMS and New Horizons/LEISA spectra

    Science.gov (United States)

    Sromovsky, L. A.; Fry, P. M.

    2018-06-01

    Ammonia gas has long been assumed to be the main source of condensables for the upper cloud layer on Jupiter, but distinctive spectral features associated with ammonia have been seen only rarely. Since both ammonia and NH4SH absorb in the 3 μm region, and widespread absorption in the 3 μm region was present (Sromovsky and Fry, 2010), identification of the 2 μm absorption feature of NH3 provided an opportunity to clearly establish its presence in Jovian clouds. Baines et al. (2002) succeeded in finding in Near Infrared Mapping Spectrometer (NIMS) observations one feature that had both 2 μm and 3 μm absorption, and many which were known to have absorption at 2.73 μm. They named these Spectrally Identifiable Ammonia Clouds (SIACs). They also argued that these were fresh ammonia clouds that would eventually succumb to some process that would obscure their absorption features. Detection of many more of the 2 μm features was later achieved by New Horizon's Linear Etalon Imaging Spectral Array (LEISA) instrument, which provided both the spatial and spectral resolution needed to identify these features. Here we report on the first quantitative modeling that uses NIMS spectra over a broad (1-5.2 μm) spectral range and LEISA spectra over a much narrower (1.25-2.5 μm) spectral range to constrain the cloud structure and composition of these rare cloud features and compare them to background clouds. We find that the absorption signature at 2 μm, which is well characterized in LEISA spectra, is relatively subtle and easily matched by model clouds containing spherical particles of ammonia ice with radii of 2-4 μm. The NIMS spectra, which cover both reflected sunlight as well as thermal emission regions are more difficult to model with cloud materials plausibly present in Jupiter's atmosphere. The best signal/noise spectra obtained from NIMS provide a relatively sparse sampling of the spectrum, which does not establish the detailed shape of the 3 μm absorption region

  4. A comparison of shock-cloud and wind-cloud interactions: effect of increased cloud density contrast on cloud evolution

    Science.gov (United States)

    Goldsmith, K. J. A.; Pittard, J. M.

    2018-05-01

    The similarities, or otherwise, of a shock or wind interacting with a cloud of density contrast χ = 10 were explored in a previous paper. Here, we investigate such interactions with clouds of higher density contrast. We compare the adiabatic hydrodynamic interaction of a Mach 10 shock with a spherical cloud of χ = 103 with that of a cloud embedded in a wind with identical parameters to the post-shock flow. We find that initially there are only minor morphological differences between the shock-cloud and wind-cloud interactions, compared to when χ = 10. However, once the transmitted shock exits the cloud, the development of a turbulent wake and fragmentation of the cloud differs between the two simulations. On increasing the wind Mach number, we note the development of a thin, smooth tail of cloud material, which is then disrupted by the fragmentation of the cloud core and subsequent `mass-loading' of the flow. We find that the normalized cloud mixing time (tmix) is shorter at higher χ. However, a strong Mach number dependence on tmix and the normalized cloud drag time, t_{drag}^' }, is not observed. Mach-number-dependent values of tmix and t_{drag}^' } from comparable shock-cloud interactions converge towards the Mach-number-independent time-scales of the wind-cloud simulations. We find that high χ clouds can be accelerated up to 80-90 per cent of the wind velocity and travel large distances before being significantly mixed. However, complete mixing is not achieved in our simulations and at late times the flow remains perturbed.

  5. Cloud Computing, Tieto Cloud Server Model

    OpenAIRE

    Suikkanen, Saara

    2013-01-01

    The purpose of this study is to find out what is cloud computing. To be able to make wise decisions when moving to cloud or considering it, companies need to understand what cloud is consists of. Which model suits best to they company, what should be taken into account before moving to cloud, what is the cloud broker role and also SWOT analysis of cloud? To be able to answer customer requirements and business demands, IT companies should develop and produce new service models. IT house T...

  6. Collapse and equilibrium of rotating, adiabatic clouds

    International Nuclear Information System (INIS)

    Boss, A.P.

    1980-01-01

    A numerical hydrodynamics computer code has been used to follow the collapse and establishment of equilibrium of adiabatic gas clouds restricted to axial symmetry. The clouds are initially uniform in density and rotation, with adiabatic exponents γ=5/3 and 7/5. The numerical technique allows, for the first time, a direct comparison to be made between the dynamic collapse and approach to equilibrium of unconstrained clouds on the one hand, and the results for incompressible, uniformly rotating equilibrium clouds, and the equilibrium structures of differentially rotating polytropes, on the other hand

  7. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    KAUST Repository

    Yao, Fengchao

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow. Key Points Sinking occurs in a narrow boundary layer along the eastern boundary Surface western boundary current switches into an eastern boundary current Water exchange in the Strait of Bab el Mandeb is not hydraulically controlled © 2014. American Geophysical Union. All Rights Reserved.

  8. Changes in forest structure and composition after fire in tropical montane cloud forests near the Andean treeline

    NARCIS (Netherlands)

    Oliveras Menor, I.; Malhi, Y.; Salinas, N.; Huaman, V.; Urquiaga-Flores, E.; Kala-Mamani, J.; Quintano-Loaiza, J.A.; Cuba-Torres, I.; Lizarraga-Morales, N.; Roman-Cuesta, R.M.

    2014-01-01

    Background: In tropical montane cloud forests (TMCFs) fires can be a frequent source of disturbance near the treeline. Aims: To identify how forest structure and tree species composition change in response to fire and to identify fire-tolerant species, and determine which traits or characteristics

  9. Conditions of external loading of nuclear power plant structures by vapor cloud explosions and design requirements

    International Nuclear Information System (INIS)

    Geiger, W.

    1977-01-01

    In the design of nuclear power plant structures in the Federal Republic of Germany (FRG) the external loading by pressure waves from unconfined vapor cloud explosions is taken into account. The loading conditions used are based on simplified model considerations for the sequence of events which generates the pressure wave. The basic assumption is that the explosion of unconfined vapor clouds can evolve only in the form of a deflagration wave with a maximum overpressure of 0.3 bar. The research on gas explosions conducted in the FRG with a view to external reactor safety just as similar work in other countries demonstrates that there are still various problems which need further clarification. The principal issues are the maximum conceivable load and the modes of structrual response. This paper presents the main results of a status report commissioned by the German Ministry of the Inertior in which the whole sequence of events leading to the external loading of nuclear power plants and the corresponding response of the structure was scrutinized. Constitutive in establishing the status report have been thorough discussions with experts of the various fields. The following problem areas are discussed in the paper. Incidents leading to the release of large amounts of liquefied gas; Formation of explosive vapor clouds, ignition conditions; Development of the explosion, generation of the pressure wave; Interaction between pressure wave and reactor building. It is outlined where definite statements are possible and where uncertainties and information gaps exist. (Auth.)

  10. Cosmic rays linked to rapid mid-latitude cloud changes

    Directory of Open Access Journals (Sweden)

    B. A. Laken

    2010-11-01

    Full Text Available The effect of the Galactic Cosmic Ray (GCR flux on Earth's climate is highly uncertain. Using a novel sampling approach based around observing periods of significant cloud changes, a statistically robust relationship is identified between short-term GCR flux changes and the most rapid mid-latitude (60°–30° N/S cloud decreases operating over daily timescales; this signal is verified in surface level air temperature (SLAT reanalysis data. A General Circulation Model (GCM experiment is used to test the causal relationship of the observed cloud changes to the detected SLAT anomalies. Results indicate that the anomalous cloud changes were responsible for producing the observed SLAT changes, implying that if there is a causal relationship between significant decreases in the rate of GCR flux (~0.79 GU, where GU denotes a change of 1% of the 11-year solar cycle amplitude in four days and decreases in cloud cover (~1.9 CU, where CU denotes a change of 1% cloud cover in four days, an increase in SLAT (~0.05 KU, where KU denotes a temperature change of 1 K in four days can be expected. The influence of GCRs is clearly distinguishable from changes in solar irradiance and the interplanetary magnetic field. However, the results of the GCM experiment are found to be somewhat limited by the ability of the model to successfully reproduce observed cloud cover. These results provide perhaps the most compelling evidence presented thus far of a GCR-climate relationship. From this analysis we conclude that a GCR-climate relationship is governed by both short-term GCR changes and internal atmospheric precursor conditions.

  11. AP-Cloud: Adaptive Particle-in-Cloud method for optimal solutions to Vlasov–Poisson equation

    International Nuclear Information System (INIS)

    Wang, Xingyu; Samulyak, Roman; Jiao, Xiangmin; Yu, Kwangmin

    2016-01-01

    We propose a new adaptive Particle-in-Cloud (AP-Cloud) method for obtaining optimal numerical solutions to the Vlasov–Poisson equation. Unlike the traditional particle-in-cell (PIC) method, which is commonly used for solving this problem, the AP-Cloud adaptively selects computational nodes or particles to deliver higher accuracy and efficiency when the particle distribution is highly non-uniform. Unlike other adaptive techniques for PIC, our method balances the errors in PDE discretization and Monte Carlo integration, and discretizes the differential operators using a generalized finite difference (GFD) method based on a weighted least square formulation. As a result, AP-Cloud is independent of the geometric shapes of computational domains and is free of artificial parameters. Efficient and robust implementation is achieved through an octree data structure with 2:1 balance. We analyze the accuracy and convergence order of AP-Cloud theoretically, and verify the method using an electrostatic problem of a particle beam with halo. Simulation results show that the AP-Cloud method is substantially more accurate and faster than the traditional PIC, and it is free of artificial forces that are typical for some adaptive PIC techniques.

  12. Manifestations of electric currents in interstellar molecular clouds

    International Nuclear Information System (INIS)

    Carlqvist, P.; Gahm, G.F.

    1991-12-01

    We draw the attention to filamentary structures in molecular clouds and point out the existence of subfilaments of sinusoidal shape and also of helix-like structures. For two dark clouds, the Lynds 204 complex and the Sandqvist 187-188 complex (The Norma 'sword') we make a detailed study of such shapes and in addition we find the possible existence of helices wound around the main filaments. All these features are highly reminiscent of morphologies encountered in solar ascending prominences and in experiments in plasma physics and suggest the existence of electric currents and magnetic fields in these clouds. On the basis of a generalization of the Bennett pinch model, we derive the magnitudes of the currents expected to flow in the filaments. Values of column densities, magnetic field strengths, and direction of the fields are derived from observations. Magnetic fields with both toroidal and axial components are considered. This study shows that axial currents of the order of a few times 10 13 A are necessary for the clouds to be in equilibrium. The corresponding mean current densities are very small and even at the very low values of the fractional abundance of electrons encountered in these clouds, the mean electron velocities are of the order of 10 -2 -10 -5 m s -1 , much lower than the thermal velocities in the clouds. We suggest that helical structures may evolve as a result of various instabilities in the pinched clouds. We also call the attention to the kink intability in connection with the sinusoidal shapes. The existence of electromagnetically controlled features in the interstellar clouds can be tested by further observations. (au)

  13. Automatic registration of Iphone images to LASER point clouds of the urban structures using shape features

    Directory of Open Access Journals (Sweden)

    B. Sirmacek

    2013-10-01

    Full Text Available Fusion of 3D airborne laser (LIDAR data and terrestrial optical imagery can be applied in 3D urban modeling and model up-dating. The most challenging aspect of the fusion procedure is registering the terrestrial optical images on the LIDAR point clouds. In this article, we propose an approach for registering these two different data from different sensor sources. As we use iPhone camera images which are taken in front of the interested urban structure by the application user and the high resolution LIDAR point clouds of the acquired by an airborne laser sensor. After finding the photo capturing position and orientation from the iPhone photograph metafile, we automatically select the area of interest in the point cloud and transform it into a range image which has only grayscale intensity levels according to the distance from the image acquisition position. We benefit from local features for registering the iPhone image to the generated range image. In this article, we have applied the registration process based on local feature extraction and graph matching. Finally, the registration result is used for facade texture mapping on the 3D building surface mesh which is generated from the LIDAR point cloud. Our experimental results indicate possible usage of the proposed algorithm framework for 3D urban map updating and enhancing purposes.

  14. Dusty Cloud Acceleration by Radiation Pressure in Rapidly Star-forming Galaxies

    Science.gov (United States)

    Zhang, Dong; Davis, Shane W.; Jiang, Yan-Fei; Stone, James M.

    2018-02-01

    We perform two-dimensional and three-dimensional radiation hydrodynamic simulations to study cold clouds accelerated by radiation pressure on dust in the environment of rapidly star-forming galaxies dominated by infrared flux. We utilize the reduced speed of light approximation to solve the frequency-averaged, time-dependent radiative transfer equation. We find that radiation pressure is capable of accelerating the clouds to hundreds of kilometers per second while remaining dense and cold, consistent with observations. We compare these results to simulations where acceleration is provided by entrainment in a hot wind, where the momentum injection of the hot flow is comparable to the momentum in the radiation field. We find that the survival time of the cloud accelerated by the radiation field is significantly longer than that of a cloud entrained in a hot outflow. We show that the dynamics of the irradiated cloud depends on the initial optical depth, temperature of the cloud, and intensity of the flux. Additionally, gas pressure from the background may limit cloud acceleration if the density ratio between the cloud and background is ≲ {10}2. In general, a 10 pc-scale optically thin cloud forms a pancake structure elongated perpendicular to the direction of motion, while optically thick clouds form a filamentary structure elongated parallel to the direction of motion. The details of accelerated cloud morphology and geometry can also be affected by other factors, such as the cloud lengthscale, reduced speed of light approximation, spatial resolution, initial cloud structure, and dimensionality of the run, but these have relatively little affect on the cloud velocity or survival time.

  15. Virtualized cloud data center networks issues in resource management

    CERN Document Server

    Tsai, Linjiun

    2016-01-01

    This book discusses the characteristics of virtualized cloud networking, identifies the requirements of cloud network management, and illustrates the challenges in deploying virtual clusters in multi-tenant cloud data centers. The book also introduces network partitioning techniques to provide contention-free allocation, topology-invariant reallocation, and highly efficient resource utilization, based on the Fat-tree network structure. Managing cloud data center resources without considering resource contentions among different cloud services and dynamic resource demands adversely affects the performance of cloud services and reduces the resource utilization of cloud data centers. These challenges are mainly due to strict cluster topology requirements, resource contentions between uncooperative cloud services, and spatial/temporal data center resource fragmentation. Cloud data center network resource allocation/reallocation which cope well with such challenges will allow cloud services to be provisioned with ...

  16. Spiral structure and star formation. II. Stellar lifetimes and cloud kinematics

    International Nuclear Information System (INIS)

    Hausman, M.A.; Roberts, W.W. Jr.

    1984-01-01

    We present further results of our model, introduced in Paper I, of star formation and star-gas interactions in the cloud-dominated ISMs of spiral density wave galaxies. The global density distribution and velocity field of the gas clouds are virtually independent of stellar parameters and even of mean free path for the wide range of values studied, but local density variations are found which superficially resemble cloud complexes. Increasing the average life span of ''spiral tracer'' stellar associations beyond about 20 Myr washes out the spiral pattern which younger associations show. Allowing clouds to form several successive associations (sequential star formation) slightly increases the frequency of interarm, young-star spurs and substantially increases the average star formation rate. The mean velocity field of clouds shows tipped oval streamlines, similar to both continuum gas dynamical models and stellar-kinematic models of spiral density waves. These streamlines are almost ballistic orbits except close to the spiral arms. Newly formed stellar associations leave the spiral density peak with initial tangential velocitie shigher than ''postshock'' values and do not fall back into the ''preshock'' region. By varying our stellar parametes within physically reasonable limits, we may reproduce spiral galaxies with a wide range of morphological appearaces

  17. +Cloud: An Agent-Based Cloud Computing Platform

    OpenAIRE

    González, Roberto; Hernández de la Iglesia, Daniel; de la Prieta Pintado, Fernando; Gil González, Ana Belén

    2017-01-01

    Cloud computing is revolutionizing the services provided through the Internet, and is continually adapting itself in order to maintain the quality of its services. This study presents the platform +Cloud, which proposes a cloud environment for storing information and files by following the cloud paradigm. This study also presents Warehouse 3.0, a cloud-based application that has been developed to validate the services provided by +Cloud.

  18. The sensitivities of in cloud and cloud top phase distributions to primary ice formation in ICON-LEM

    Science.gov (United States)

    Beydoun, H.; Karrer, M.; Tonttila, J.; Hoose, C.

    2017-12-01

    Mixed phase clouds remain a leading source of uncertainty in our attempt to quantify cloud-climate and aerosol-cloud climate interactions. Nevertheless, recent advances in parametrizing the primary ice formation process, high resolution cloud modelling, and retrievals of cloud phase distributions from satellite data offer an excellent opportunity to conduct closure studies on the sensitivity of the cloud phase to microphysical and dynamical processes. Particularly, the reliability of satellite data to resolve the phase at the top of the cloud provides a promising benchmark to compare model output to. We run large eddy simulations with the new ICOsahedral Non-hydrostatic atmosphere model (ICON) to place bounds on the sensitivity of in cloud and cloud top phase to the primary ice formation process. State of the art primary ice formation parametrizations in the form of the cumulative ice active site density ns are implemented in idealized deep convective cloud simulations. We exploit the ability of ICON-LEM to switch between a two moment microphysics scheme and the newly developed Predicted Particle Properties (P3) scheme by running our simulations in both configurations for comparison. To quantify the sensitivity of cloud phase to primary ice formation, cloud ice content is evaluated against order of magnitude changes in ns at variable convective strengths. Furthermore, we assess differences between in cloud and cloud top phase distributions as well as the potential impact of updraft velocity on the suppression of the Wegener-Bergeron-Findeisen process. The study aims to evaluate our practical understanding of primary ice formation in the context of predicting the structure and evolution of mixed phase clouds.

  19. Does a Relationship Between Arctic Low Clouds and Sea Ice Matter?

    Science.gov (United States)

    Taylor, Patrick C.

    2016-01-01

    Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea ice extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these elements of the Arctic climate system, and these interactions create the potential for Arctic cloud-climate feedbacks. To further our understanding of potential Arctic cloudclimate feedbacks, the goal of this paper is to quantify the influence of atmospheric state on the surface cloud radiative effect (CRE) and its covariation with sea ice concentration (SIC). We build on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, there is a weak covariation between CRE and SIC for most atmospheric conditions. Third, the results show statistically significant differences in the average surface CRE under different SIC values in fall indicating a 3-5 W m(exp -2) larger LW CRE in 0% versus 100% SIC footprints. Because systematic changes on the order of 1 W m(exp -2) are sufficient to explain the observed long-term reductions in sea ice extent, our results indicate a potentially significant amplifying sea ice-cloud feedback, under certain meteorological conditions, that could delay the fall freeze-up and influence the variability in sea ice extent and volume. Lastly, a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea ice.

  20. Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Surabi; Del Genio, Anthony D.

    2007-09-03

    Any attempt to reconcile observed surface temperature changes within the last 150 years to changes simulated by climate models that include various atmospheric forcings is sensitive to the changes attributed to aerosols and aerosol-cloud-climate interactions, which are the main contributors that may well balance the positive forcings associated with greenhouse gases, absorbing aerosols, ozone related changes, etc. These aerosol effects on climate, from various modeling studies discussed in Menon (2004), range from +0.8 to -2.4 W m{sup -2}, with an implied value of -1.0 W m{sup -2} (range from -0.5 to -4.5 W m{sup -2}) for the aerosol indirect effects. Quantifying the contribution of aerosols and aerosol-cloud interactions remain complicated for several reasons some of which are related to aerosol distributions and some to the processes used to represent their effects on clouds. Aerosol effects on low lying marine stratocumulus clouds that cover much of the Earth's surface (about 70%) have been the focus of most of prior aerosol-cloud interaction effect simulations. Since cumulus clouds (shallow and deep convective) are short lived and cover about 15 to 20% of the Earth's surface, they are not usually considered as radiatively important. However, the large amount of latent heat released from convective towers, and corresponding changes in precipitation, especially in biomass regions due to convective heating effects (Graf et al. 2004), suggest that these cloud systems and aerosol effects on them, must be examined more closely. The radiative heating effects for mature deep convective systems can account for 10-30% of maximum latent heating effects and thus cannot be ignored (Jensen and Del Genio 2003). The first study that isolated the sensitivity of cumulus clouds to aerosols was from Nober et al. (2003) who found a reduction in precipitation in biomass burning regions and shifts in circulation patterns. Aerosol effects on convection have been included in

  1. Cloud, Aerosol, and Complex Terrain Interactions (CACTI) Preliminary Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Varble, Adam [Univ. of Utah, Salt Lake City, UT (United States); Nesbitt, Steve [Univ. of Illinois, Urbana-Champaign, IL (United States); Salio, Paola [Univ. of Buenos Aires (Argentina); Zipser, Edward [Univ. of Utah, Salt Lake City, UT (United States); van den Heever, Susan [Colorado State Univ., Fort Collins, CO (United States); McFarquhar, Greg [Univ. of Illinois, Urbana-Champaign, IL (United States); Kollias, Pavlos [Stony Brook Univ., NY (United States); Kreidenweis, Sonia [Colorado State Univ., Fort Collins, CO (United States); DeMott, Paul [Colorado State Univ., Fort Collins, CO (United States); Jensen, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States); Houze, Jr., Robert [Univ. of Washington, Seattle, WA (United States); Rasmussen, Kristen [Colorado State Univ., Fort Collins, CO (United States); Leung, Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Romps, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gochis, David [National Center for Atmospheric Research, Boulder, CO (United States); Avila, Eldo [National Univ. of Cordoba (Argentina); Williams, Christopher [Univ. of Colorado, Boulder, CO (United States); National Center for Atmospheric Research, Boulder, CO (United States)

    2017-02-01

    General circulation models and downscaled regional models exhibit persistent biases in deep convective initiation location and timing, cloud top height, stratiform area and precipitation fraction, and anvil coverage. Despite important impacts on the distribution of atmospheric heating, moistening, and momentum, nearly all climate models fail to represent convective organization, while system evolution is not represented at all. Improving representation of convective systems in models requires characterization of their predictability as a function of environmental conditions, and this characterization depends on observing many cases of convective initiation, non-initiation, organization, and non-organization. The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) experiment in the Sierras de Córdoba mountain range of north-central Argentina is designed to improve understanding of cloud life cycle and organization in relation to environmental conditions so that cumulus, microphysics, and aerosol parameterizations in multi-scale models can be improved. The Sierras de Córdoba range has a high frequency of orographic boundary-layer clouds, many reaching congestus depths, many initiating into deep convection, and some organizing into mesoscale systems uniquely observable from a single fixed site. Some systems even grow upscale to become among the deepest, largest, and longest-lived in the world. These systems likely contribute to an observed regional trend of increasing extreme rainfall, and poor prediction of them likely contributes to a warm, dry bias in climate models downstream of the Sierras de Córdoba range in a key agricultural region. Many environmental factors influence the convective lifecycle in this region including orographic, low-level jet, and frontal circulations, surface fluxes, synoptic vertical motions influenced by the Andes, cloud detrainment, and aerosol properties. Local and long-range transport of smoke resulting from biomass burning as

  2. Cloud computing for protein-ligand binding site comparison.

    Science.gov (United States)

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  3. Point Cloud Management Through the Realization of the Intelligent Cloud Viewer Software

    Science.gov (United States)

    Costantino, D.; Angelini, M. G.; Settembrini, F.

    2017-05-01

    The paper presents a software dedicated to the elaboration of point clouds, called Intelligent Cloud Viewer (ICV), made in-house by AESEI software (Spin-Off of Politecnico di Bari), allowing to view point cloud of several tens of millions of points, also on of "no" very high performance systems. The elaborations are carried out on the whole point cloud and managed by means of the display only part of it in order to speed up rendering. It is designed for 64-bit Windows and is fully written in C ++ and integrates different specialized modules for computer graphics (Open Inventor by SGI, Silicon Graphics Inc), maths (BLAS, EIGEN), computational geometry (CGAL, Computational Geometry Algorithms Library), registration and advanced algorithms for point clouds (PCL, Point Cloud Library), advanced data structures (BOOST, Basic Object Oriented Supporting Tools), etc. ICV incorporates a number of features such as, for example, cropping, transformation and georeferencing, matching, registration, decimation, sections, distances calculation between clouds, etc. It has been tested on photographic and TLS (Terrestrial Laser Scanner) data, obtaining satisfactory results. The potentialities of the software have been tested by carrying out the photogrammetric survey of the Castel del Monte which was already available in previous laser scanner survey made from the ground by the same authors. For the aerophotogrammetric survey has been adopted a flight height of approximately 1000ft AGL (Above Ground Level) and, overall, have been acquired over 800 photos in just over 15 minutes, with a covering not less than 80%, the planned speed of about 90 knots.

  4. POINT CLOUD MANAGEMENT THROUGH THE REALIZATION OF THE INTELLIGENT CLOUD VIEWER SOFTWARE

    Directory of Open Access Journals (Sweden)

    D. Costantino

    2017-05-01

    Full Text Available The paper presents a software dedicated to the elaboration of point clouds, called Intelligent Cloud Viewer (ICV, made in-house by AESEI software (Spin-Off of Politecnico di Bari, allowing to view point cloud of several tens of millions of points, also on of “no” very high performance systems. The elaborations are carried out on the whole point cloud and managed by means of the display only part of it in order to speed up rendering. It is designed for 64-bit Windows and is fully written in C ++ and integrates different specialized modules for computer graphics (Open Inventor by SGI, Silicon Graphics Inc, maths (BLAS, EIGEN, computational geometry (CGAL, Computational Geometry Algorithms Library, registration and advanced algorithms for point clouds (PCL, Point Cloud Library, advanced data structures (BOOST, Basic Object Oriented Supporting Tools, etc. ICV incorporates a number of features such as, for example, cropping, transformation and georeferencing, matching, registration, decimation, sections, distances calculation between clouds, etc. It has been tested on photographic and TLS (Terrestrial Laser Scanner data, obtaining satisfactory results. The potentialities of the software have been tested by carrying out the photogrammetric survey of the Castel del Monte which was already available in previous laser scanner survey made from the ground by the same authors. For the aerophotogrammetric survey has been adopted a flight height of approximately 1000ft AGL (Above Ground Level and, overall, have been acquired over 800 photos in just over 15 minutes, with a covering not less than 80%, the planned speed of about 90 knots.

  5. Structure, richness and composition of arboreal plants in a cloud thinning forest of Tolima (Colombia)

    International Nuclear Information System (INIS)

    Campo Kurmen, Juan Manuel

    2010-01-01

    Structure, richness, and floristic composition of the woody elements of the selective logging forest of the Vereda Dantas, (Ibague, Tolima, Colombia), where studied in a 0.1 ha plot sampled for all individuals ≥2.5 cm dbh. the forest is characterized by scarcity of lianas and hemiepiphytic, absence of typical families of the Colombian cloud forests between 2000 and 2500 m (Araceae, Ericaceae, Myrtaceae, Meliaceae and Aquifoliaceae), and richness increment of the Sabiaceae and Euphorbiaceae. Compared to others cloud forest from the Colombian Andes and the Neotropic, it has, fewer individuals (237 individuals ≥2.5 cm dbh per 0.1 ha) and more large trees (39.7% of individuals ≥10 cm dbh per 0.1 ha). The forest has a lower woody species richness (75 species ≥2.5 cm dbh per 0.1 ha). Apparently, the effects of selective timber extraction on structure, richness, and floristic composition are decrease floristic richness and density of individuals, decrease of lianas density and richness, and more individuals of secondary species, likes: Hedyosmum goudotianum Slms-Laubach var. goudatianum, Miconia resima Naud, and Palicourea calophlebia Standl.

  6. Silicon Photonics Cloud (SiCloud)

    DEFF Research Database (Denmark)

    DeVore, P. T. S.; Jiang, Y.; Lynch, M.

    2015-01-01

    Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths.......Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths....

  7. The VMC survey - XXVI. Structure of the Small Magellanic Cloud from RR Lyrae stars

    Science.gov (United States)

    Muraveva, T.; Subramanian, S.; Clementini, G.; Cioni, M.-R. L.; Palmer, M.; van Loon, J. Th.; Moretti, M. I.; de Grijs, R.; Molinaro, R.; Ripepi, V.; Marconi, M.; Emerson, J.; Ivanov, V. D.

    2018-01-01

    We present results from the analysis of 2997 fundamental mode RR Lyrae variables located in the Small Magellanic Cloud (SMC). For these objects, near-infrared time series photometry from the VISTA survey of the Magellanic Clouds system (VMC) and visual light curves from the OGLE IV (Optical Gravitational Lensing Experiment IV) survey are available. In this study, the multi-epoch Ks-band VMC photometry was used for the first time to derive intensity-averaged magnitudes of the SMC RR Lyrae stars. We determined individual distances to the RR Lyrae stars from the near-infrared period-absolute magnitude-metallicity (PM_{K_s}Z) relation, which has some advantages in comparison with the visual absolute magnitude-metallicity (MV-[Fe/H]) relation, such as a smaller dependence of the luminosity on interstellar extinction, evolutionary effects and metallicity. The distances we have obtained were used to study the three-dimensional structure of the SMC. The distribution of the SMC RR Lyrae stars is found to be ellipsoidal. The actual line-of-sight depth of the SMC is in the range 1-10 kpc, with an average depth of 4.3 ± 1.0 kpc. We found that RR Lyrae stars in the eastern part of the SMC are affected by interactions of the Magellanic Clouds. However, we do not see a clear bimodality observed for red clump stars, in the distribution of RR Lyrae stars.

  8. Electron Cloud Observations during LHC Operation with 25 ns Beams

    CERN Document Server

    Li, Kevin; Iadarola, Giovanni; Mether, Lotta; Romano, Annalisa; Rumolo, Giovanni; Schenk, Michael

    2016-01-01

    While during the Run 1 (2010-2012) of the Large Hadron Collider (LHC) most of the integrated luminosity was produced with 50 ns bunch spacing, for the Run 2 start-up (2015) it was decided to move to the nominal bunch spacing of 25 ns. As expected, with this beam configuration strong electron cloud effects were observed in the machine, which had to be mitigated with dedicated 'scrubbing' periods at injection energy. This enabled to start the operation with 25 ns beams at 6.5 TeV, but e-cloud effects continued to pose challenges while gradually increasing the number of circulating bunch trains. This contribution will review the encountered limitations and the mitigation measures that where put in place and will discuss possible strategies for further performance gain.

  9. How consistent are precipitation patterns predicted by GCMs in the absence of cloud radiative effects?

    Science.gov (United States)

    Popke, Dagmar; Bony, Sandrine; Mauritsen, Thorsten; Stevens, Bjorn

    2015-04-01

    Model simulations with state-of-the-art general circulation models reveal a strong disagreement concerning the simulated regional precipitation patterns and their changes with warming. The deviating precipitation response even persists when reducing the model experiment complexity to aquaplanet simulation with forced sea surface temperatures (Stevens and Bony, 2013). To assess feedbacks between clouds and radiation on precipitation responses we analyze data from 5 models performing the aquaplanet simulations of the Clouds On Off Klima Intercomparison Experiment (COOKIE), where the interaction of clouds and radiation is inhibited. Although cloud radiative effects are then disabled, the precipitation patterns among models are as diverse as with cloud radiative effects switched on. Disentangling differing model responses in such simplified experiments thus appears to be key to better understanding the simulated regional precipitation in more standard configurations. By analyzing the local moisture and moist static energy budgets in the COOKIE experiments we investigate likely causes for the disagreement among models. References Stevens, B. & S. Bony: What Are Climate Models Missing?, Science, 2013, 340, 1053-1054

  10. Cloud Processed CCN Suppress Stratus Cloud Drizzle

    Science.gov (United States)

    Hudson, J. G.; Noble, S. R., Jr.

    2017-12-01

    Conversion of sulfur dioxide to sulfate within cloud droplets increases the sizes and decreases the critical supersaturation, Sc, of cloud residual particles that had nucleated the droplets. Since other particles remain at the same sizes and Sc a size and Sc gap is often observed. Hudson et al. (2015) showed higher cloud droplet concentrations (Nc) in stratus clouds associated with bimodal high-resolution CCN spectra from the DRI CCN spectrometer compared to clouds associated with unimodal CCN spectra (not cloud processed). Here we show that CCN spectral shape (bimodal or unimodal) affects all aspects of stratus cloud microphysics and drizzle. Panel A shows mean differential cloud droplet spectra that have been divided according to traditional slopes, k, of the 131 measured CCN spectra in the Marine Stratus/Stratocumulus Experiment (MASE) off the Central California coast. K is generally high within the supersaturation, S, range of stratus clouds (< 0.5%). Because cloud processing decreases Sc of some particles, it reduces k. Panel A shows higher concentrations of small cloud droplets apparently grown on lower k CCN than clouds grown on higher k CCN. At small droplet sizes the concentrations follow the k order of the legend, black, red, green, blue (lowest to highest k). Above 13 µm diameter the lines cross and the hierarchy reverses so that blue (highest k) has the highest concentrations followed by green, red and black (lowest k). This reversed hierarchy continues into the drizzle size range (panel B) where the most drizzle drops, Nd, are in clouds grown on the least cloud-processed CCN (blue), while clouds grown on the most processed CCN (black) have the lowest Nd. Suppression of stratus cloud drizzle by cloud processing is an additional 2nd indirect aerosol effect (IAE) that along with the enhancement of 1st IAE by higher Nc (panel A) are above and beyond original IAE. However, further similar analysis is needed in other cloud regimes to determine if MASE was

  11. Submm-Wave Radiometry for Cloud/Humidity/Precipitation Sciences

    Science.gov (United States)

    Wu, Dong L.

    2011-01-01

    Although active sensors can provide cloud profiles at good vertical resolution, clouds are often coupled with dynamics to form fast and organized structures. Lack of understanding of these organized systems leads to great challenge for numerical models. The deficiency is partly reflected, for example, in poorly modeled intraseasonal variations (e.g., MJD). Remote sensing clouds in the middle and upper troposphere has been challenging from space. Vis/IR sensors are sensitive to the topmost cloud layers whereas low-frequency MW techniques are sensitivity to liquid and precipitation at the bottom of cloud layers. The middle-level clouds, mostly in the ice phase, require a sensor that has moderate penetration and sensitivity to cloud scattering, in order to measure cloud water content. Sensors at submm wavelengths provide promising sensitivity and coverage with the spatial resolution needed to measure cloud water content floating in the upper air. In addition, submm-wave sensors are able to provide better measurements of upper-tropospheric humidity than traditional microwave instruments.

  12. Cloud top structure of Venus revealed by Subaru/COMICS mid-infrared images

    Science.gov (United States)

    Sato, T. M.; Sagawa, H.; Kouyama, T.; Mitsuyama, K.; Satoh, T.; Ohtsuki, S.; Ueno, M.; Kasaba, Y.; Nakamura, M.; Imamura, T.

    2014-11-01

    We have investigated the cloud top structure of Venus by analyzing ground-based images taken at the mid-infrared wavelengths of 8.66 μm and 11.34 μm. Venus at a solar phase angle of ∼90°, with the morning terminator in view, was observed by the Cooled Mid-Infrared Camera and Spectrometer (COMICS), mounted on the 8.2-m Subaru Telescope, during the period October 25-29, 2007. The disk-averaged brightness temperatures for the observation period are ∼230 K and ∼238 K at 8.66 μm and 11.34 μm, respectively. The obtained images with good signal-to-noise ratio and with high spatial resolution (∼200 km at the sub-observer point) provide several important findings. First, we present observational evidence, for the first time, of the possibility that the westward rotation of the polar features (the hot polar spots and the surrounding cold collars) is synchronized between the northern and southern hemispheres. Second, after high-pass filtering, the images reveal that streaks and mottled and patchy patterns are distributed over the entire disk, with typical amplitudes of ∼0.5 K, and vary from day to day. The detected features, some of which are similar to those seen in past UV images, result from inhomogeneities of both the temperature and the cloud top altitude. Third, the equatorial center-to-limb variations of brightness temperatures have a systematic day-night asymmetry, except those on October 25, that the dayside brightness temperatures are higher than the nightside brightness temperatures by 0-4 K under the same viewing geometry. Such asymmetry would be caused by the propagation of the migrating semidiurnal tide. Finally, by applying the lapse rates deduced from previous studies, we demonstrate that the equatorial center-to-limb curves in the two spectral channels give access to two parameters: the cloud scale height H and the cloud top altitude zc. The acceptable models for data on October 25 are obtained at H = 2.4-4.3 km and zc = 66-69 km; this supports

  13. Fractal properties and denoising of lidar signals from cirrus clouds

    NARCIS (Netherlands)

    Heuvel, J.C. van den; Driesenaar, M.L.; Lerou, R.J.L.

    2000-01-01

    Airborne lidar signals of cirrus clouds are analyzed to determine the cloud structure. Climate modeling and numerical weather prediction benefit from accurate modeling of cirrus clouds. Airborne lidar measurements of the European Lidar in Space Technology Experiment (ELITE) campaign were analyzed by

  14. analysis of spatial-temporal variations and driving force of low cloud in northern China

    Science.gov (United States)

    Niu, Xiaorui; Wang, Shuyu

    2015-04-01

    Cloud plays a crucial role in the climate system, and better understanding of its characteristics and formation mechanism are essential to study the climate system, improve the performance of climate models, and to provide scientific basis on conducting weather modification activities and better using water resources for the purpose of improving the local climate and ecological environment. During 1961 to 2005, decrease trend is detected for the total cloud amount over most parts of northern China, while increase trend is found for the low cloud amount with significant regionality. Both station and ISCCP D2 datasets present similar spatial distributions and interdecadal variation of high cloud. However two datasets show different characters for those of low cloud. Three typical sub-regions are chosen considering their underlying surface features and the temporal trend of low cloud amount, over which the interdecadal variations of low cloud amount in three regions are systematically investigated. The analyses show the strong regionality and seasonality in low cloud amount's temporal variations and trend, and quasi-biannual oscillations are observed in low cloud amount in three regions in the past 45 years. The relationships between 500 hPa circulation indexes and low cloud over the three regions are examined by means of singular value decomposition (SVD). The results show that the summer low cloud amount in Xinjiang is closely related with the Subtropical High, the Tibetan Plateau and Polar Vortex, and the autumn low cloud amount in North China is affected by the area of Subtropical High and intensity of Polar Vortex. For northeast China the controlling factor that affects the spring low cloud amount is the area of Polar Vortex in quadrant ⅳ(30°W-60°E).

  15. ON THE STAR FORMATION RATES IN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Lada, Charles J.; Lombardi, Marco; Alves, Joao F.

    2010-01-01

    In this paper, we investigate the level of star formation activity within nearby molecular clouds. We employ a uniform set of infrared extinction maps to provide accurate assessments of cloud mass and structure and compare these with inventories of young stellar objects within the clouds. We present evidence indicating that both the yield and rate of star formation can vary considerably in local clouds, independent of their mass and size. We find that the surface density structure of such clouds appears to be important in controlling both these factors. In particular, we find that the star formation rate (SFR) in molecular clouds is linearly proportional to the cloud mass (M 0.8 ) above an extinction threshold of A K ∼ 0.8 mag, corresponding to a gas surface density threshold of Σ gas ∼ 116 M sun pc 2 . We argue that this surface density threshold corresponds to a gas volume density threshold which we estimate to be n(H 2 ) ∼ 10 4 cm -3 . Specifically, we find SFR (M sun yr -1 ) = 4.6 ± 2.6 x 10 -8 M 0.8 (M sun ) for the clouds in our sample. This relation between the rate of star formation and the amount of dense gas in molecular clouds appears to be in excellent agreement with previous observations of both galactic and extragalactic star-forming activity. It is likely the underlying physical relationship or empirical law that most directly connects star formation activity with interstellar gas over many spatial scales within and between individual galaxies. These results suggest that the key to obtaining a predictive understanding of the SFRs in molecular clouds and galaxies is to understand those physical factors which give rise to the dense components of these clouds.

  16. CESR Conversion Damping Ring Studies of Electron Cloud Instabilities (CESR-TA)

    International Nuclear Information System (INIS)

    Rubin, David L.; Palmer, Mark A.

    2011-01-01

    In the International Linear Collider, two linear accelerators will accelerate bunches of positrons and electrons to over a hundred billion electron volts and collide them in a central detector. In order to obtain useful collision rates, the bunches, each containing twenty billion particles, must be compressed to a cross section of a few nanometers by a few hundred nanometers. In order to prepare these ultra high density bunches, damping rings (DRs) are employed before the linear accelerators. The DRs take the high emittance bunches that are provided by the electron and positron sources and, through the process of radiation damping, squeeze them into ultra low emittance beams that are ready for the main linear accelerators. In the damping rings, a number of effects can prevent the successful preparation of the beams. In the electron ring, an effect known as the fast ion instability can lead to beam growth and, in the positron ring, the build-up of an electron cloud (EC), which interacts with the circulating bunches, can produce the same effect. EC build-up and the subsequent interaction of the cloud with the positron beam in the DR have been identified as major risks for the successful construction of a linear collider. The CESRTA research program at the Cornell Electron Storage Ring (CESR) was developed in order to study the build-up of the EC, the details of its impact on ultra low emittance beams, as well as methods to mitigate the impact of the cloud. In the DR, the EC forms when synchrotron photons radiated from the circulating beam strike the walls of the vacuum chamber, resulting in the emission of photoelectrons. These low energy electrons can be accelerated across the vacuum chamber by the electric field of the beam, and strike the walls, causing the emission of secondary electrons. The secondary electrons are subsequently accelerated into the walls yet again via the same mechanism. The result is that the EC can rapidly begin to fill the vacuum chamber. In

  17. CESR Conversion Damping Ring Studies of Electron Cloud Instabilities (CESR-TA)

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, David L.; Palmer, Mark A.

    2011-08-02

    In the International Linear Collider, two linear accelerators will accelerate bunches of positrons and electrons to over a hundred billion electron volts and collide them in a central detector. In order to obtain useful collision rates, the bunches, each containing twenty billion particles, must be compressed to a cross section of a few nanometers by a few hundred nanometers. In order to prepare these ultra high density bunches, damping rings (DRs) are employed before the linear accelerators. The DRs take the high emittance bunches that are provided by the electron and positron sources and, through the process of radiation damping, squeeze them into ultra low emittance beams that are ready for the main linear accelerators. In the damping rings, a number of effects can prevent the successful preparation of the beams. In the electron ring, an effect known as the fast ion instability can lead to beam growth and, in the positron ring, the build-up of an electron cloud (EC), which interacts with the circulating bunches, can produce the same effect. EC build-up and the subsequent interaction of the cloud with the positron beam in the DR have been identified as major risks for the successful construction of a linear collider. The CESRTA research program at the Cornell Electron Storage Ring (CESR) was developed in order to study the build-up of the EC, the details of its impact on ultra low emittance beams, as well as methods to mitigate the impact of the cloud. In the DR, the EC forms when synchrotron photons radiated from the circulating beam strike the walls of the vacuum chamber, resulting in the emission of photoelectrons. These low energy electrons can be accelerated across the vacuum chamber by the electric field of the beam, and strike the walls, causing the emission of secondary electrons. The secondary electrons are subsequently accelerated into the walls yet again via the same mechanism. The result is that the EC can rapidly begin to fill the vacuum chamber. In

  18. Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds

    Science.gov (United States)

    Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.

    2008-05-01

    CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.

  19. A Cloud Top Pressure Algorithm for DSCOVR-EPIC

    Science.gov (United States)

    Min, Q.; Morgan, E. C.; Yang, Y.; Marshak, A.; Davis, A. B.

    2017-12-01

    The Earth Polychromatic Imaging Camera (EPIC) sensor on the Deep Space Climate Observatory (DSCOVR) satellite presents unique opportunities to derive cloud properties of the entire daytime Earth. In particular, the Oxygen A- and B-band and corresponding reference channels provide cloud top pressure information. In order to address the in-cloud penetration depth issue—and ensuing retrieval bias—a comprehensive sensitivity study has been conducted to simulate satellite-observed radiances for a wide variety of cloud structures and optical properties. Based on this sensitivity study, a cloud top pressure algorithm for DSCOVR-EPIC has been developed. Further, the algorithm has been applied to EPIC measurements.

  20. Aerosol processing in stratiform clouds in ECHAM6-HAM

    Science.gov (United States)

    Neubauer, David; Lohmann, Ulrike; Hoose, Corinna

    2013-04-01

    Aerosol processing in stratiform clouds by uptake into cloud particles, collision-coalescence, chemical processing inside the cloud particles and release back into the atmosphere has important effects on aerosol concentration, size distribution, chemical composition and mixing state. Aerosol particles can act as cloud condensation nuclei. Cloud droplets can take up further aerosol particles by collisions. Atmospheric gases may also be transferred into the cloud droplets and undergo chemical reactions, e.g. the production of atmospheric sulphate. Aerosol particles are also processed in ice crystals. They may be taken up by homogeneous freezing of cloud droplets below -38° C or by heterogeneous freezing above -38° C. This includes immersion freezing of already immersed aerosol particles in the droplets and contact freezing of particles colliding with a droplet. Many clouds do not form precipitation and also much of the precipitation evaporates before it reaches the ground. The water soluble part of the aerosol particles concentrates in the hydrometeors and together with the insoluble part forms a single, mixed, larger particle, which is released. We have implemented aerosol processing into the current version of the general circulation model ECHAM6 (Stevens et al., 2013) coupled to the aerosol module HAM (Stier et al., 2005). ECHAM6-HAM solves prognostic equations for the cloud droplet number and ice crystal number concentrations. In the standard version of HAM, seven modes are used to describe the total aerosol. The modes are divided into soluble/mixed and insoluble modes and the number concentrations and masses of different chemical components (sulphate, black carbon, organic carbon, sea salt and mineral dust) are prognostic variables. We extended this by an explicit representation of aerosol particles in cloud droplets and ice crystals in stratiform clouds similar to Hoose et al. (2008a,b). Aerosol particles in cloud droplets are represented by 5 tracers for the

  1. The simulation of molecular clouds formation in the Milky Way

    Science.gov (United States)

    Khoperskov, S. A.; Vasiliev, E. O.; Sobolev, A. M.; Khoperskov, A. V.

    2013-01-01

    Using 3D hydrodynamic calculations we simulate formation of molecular clouds in the Galaxy. The simulations take into account molecular hydrogen chemical kinetics, cooling and heating processes. Comprehensive gravitational potential accounts for contributions from the stellar bulge, two- and four-armed spiral structure, stellar disc, dark halo and takes into account self-gravitation of the gaseous component. Gas clouds in our model form in the spiral arms due to shear and wiggle instabilities and turn into molecular clouds after t ≳ 100 Myr. At the times t ˜ 100-300 Myr the clouds form hierarchical structures and agglomerations with the sizes of 100 pc and greater. We analyse physical properties of the simulated clouds and find that synthetic statistical distributions like mass spectrum, `mass-size' relation and velocity dispersion are close to those observed in the Galaxy. The synthetic l-v (galactic longitude-radial velocity) diagram of the simulated molecular gas distribution resembles observed one and displays a structure with appearance similar to molecular ring of the Galaxy. Existence of this structure in our modelling can be explained by superposition of emission from the galactic bar and the spiral arms at ˜3-4 kpc.

  2. Scanning Cloud Radar Observations at Azores: Preliminary 3D Cloud Products

    Energy Technology Data Exchange (ETDEWEB)

    Kollias, P.; Johnson, K.; Jo, I.; Tatarevic, A.; Giangrande, S.; Widener, K.; Bharadwaj, N.; Mead, J.

    2010-03-15

    The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers a prelude for the type of 3D cloud observations that ARM will have the capability to provide at all the ARM Climate Research Facility sites by the end of 2010. The primary objective of the deployment of Scanning ARM Cloud Radars (SACRs) at the ARM Facility sites is to map continuously (operationally) the 3D structure of clouds and shallow precipitation and to provide 3D microphysical and dynamical retrievals for cloud life cycle and cloud-scale process studies. This is a challenging task, never attempted before, and requires significant research and development efforts in order to understand the radar's capabilities and limitations. At the same time, we need to look beyond the radar meteorology aspects of the challenge and ensure that the hardware and software capabilities of the new systems are utilized for the development of 3D data products that address the scientific needs of the new Atmospheric System Research (ASR) program. The SWACR observations at Azores provide a first look at such observations and the challenges associated with their analysis and interpretation. The set of scan strategies applied during the SWACR deployment and their merit is discussed. The scan strategies were adjusted for the detection of marine stratocumulus and shallow cumulus that were frequently observed at the Azores deployment. Quality control procedures for the radar reflectivity and Doppler products are presented. Finally, preliminary 3D-Active Remote Sensing of Cloud Locations (3D-ARSCL) products on a regular grid will be presented, and the challenges associated with their development discussed. In addition to data from the Azores deployment, limited data from the follow-up deployment of the SWACR at the ARM SGP site will be presented. This effort provides a blueprint for the effort required

  3. Three-pattern decomposition of global atmospheric circulation: part II—dynamical equations of horizontal, meridional and zonal circulations

    Science.gov (United States)

    Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan

    2018-04-01

    The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional

  4. CubeSat Constellation Cloud Winds(C3Winds) A New Wind Observing System to Study Mesoscale Cloud Dynamics and Processes

    Science.gov (United States)

    Wu, D. L.; Kelly, M.A.; Yee, J.-H.; Boldt, J.; Demajistre, R.; Reynolds, E. L.; Tripoli, G. J.; Oman, L. D.; Prive, N.; Heidinger, A. K.; hide

    2016-01-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation.

  5. Climate Simulations from Super-parameterized and Conventional General Circulation Models with a Third-order Turbulence Closure

    Science.gov (United States)

    Xu, Kuan-Man; Cheng, Anning

    2014-05-01

    A high-resolution cloud-resolving model (CRM) embedded in a general circulation model (GCM) is an attractive alternative for climate modeling because it replaces all traditional cloud parameterizations and explicitly simulates cloud physical processes in each grid column of the GCM. Such an approach is called "Multiscale Modeling Framework." MMF still needs to parameterize the subgrid-scale (SGS) processes associated with clouds and large turbulent eddies because circulations associated with planetary boundary layer (PBL) and in-cloud turbulence are unresolved by CRMs with horizontal grid sizes on the order of a few kilometers. A third-order turbulence closure (IPHOC) has been implemented in the CRM component of the super-parameterized Community Atmosphere Model (SPCAM). IPHOC is used to predict (or diagnose) fractional cloudiness and the variability of temperature and water vapor at scales that are not resolved on the CRM's grid. This model has produced promised results, especially for low-level cloud climatology, seasonal variations and diurnal variations (Cheng and Xu 2011, 2013a, b; Xu and Cheng 2013a, b). Because of the enormous computational cost of SPCAM-IPHOC, which is 400 times of a conventional CAM, we decided to bypass the CRM and implement the IPHOC directly to CAM version 5 (CAM5). IPHOC replaces the PBL/stratocumulus, shallow convection, and cloud macrophysics parameterizations in CAM5. Since there are large discrepancies in the spatial and temporal scales between CRM and CAM5, IPHOC used in CAM5 has to be modified from that used in SPCAM. In particular, we diagnose all second- and third-order moments except for the fluxes. These prognostic and diagnostic moments are used to select a double-Gaussian probability density function to describe the SGS variability. We also incorporate a diagnostic PBL height parameterization to represent the strong inversion above PBL. The goal of this study is to compare the simulation of the climatology from these three

  6. Cloud ice: A climate model challenge with signs and expectations of progress

    Science.gov (United States)

    Waliser, Duane E.; Li, Jui-Lin F.; Woods, Christopher P.; Austin, Richard T.; Bacmeister, Julio; Chern, Jiundar; Del Genio, Anthony; Jiang, Jonathan H.; Kuang, Zhiming; Meng, Huan; Minnis, Patrick; Platnick, Steve; Rossow, William B.; Stephens, Graeme L.; Sun-Mack, Szedung; Tao, Wei-Kuo; Tompkins, Adrian M.; Vane, Deborah G.; Walker, Christopher; Wu, Dong

    2009-04-01

    Present-day shortcomings in the representation of upper tropospheric ice clouds in general circulation models (GCMs) lead to errors in weather and climate forecasts as well as account for a source of uncertainty in climate change projections. An ongoing challenge in rectifying these shortcomings has been the availability of adequate, high-quality, global observations targeting ice clouds and related precipitating hydrometeors. In addition, the inadequacy of the modeled physics and the often disjointed nature between model representation and the characteristics of the retrieved/observed values have hampered GCM development and validation efforts from making effective use of the measurements that have been available. Thus, even though parameterizations in GCMs accounting for cloud ice processes have, in some cases, become more sophisticated in recent years, this development has largely occurred independently of the global-scale measurements. With the relatively recent addition of satellite-derived products from Aura/Microwave Limb Sounder (MLS) and CloudSat, there are now considerably more resources with new and unique capabilities to evaluate GCMs. In this article, we illustrate the shortcomings evident in model representations of cloud ice through a comparison of the simulations assessed in the Intergovernmental Panel on Climate Change Fourth Assessment Report, briefly discuss the range of global observational resources that are available, and describe the essential components of the model parameterizations that characterize their "cloud" ice and related fields. Using this information as background, we (1) discuss some of the main considerations and cautions that must be taken into account in making model-data comparisons related to cloud ice, (2) illustrate present progress and uncertainties in applying satellite cloud ice (namely from MLS and CloudSat) to model diagnosis, (3) show some indications of model improvements, and finally (4) discuss a number of

  7. Characteristics of bacterial community in cloud water at Mt Tai: similarity and disparity under polluted and non-polluted cloud episodes

    Science.gov (United States)

    Wei, Min; Xu, Caihong; Chen, Jianmin; Zhu, Chao; Li, Jiarong; Lv, Ganglin

    2017-04-01

    Bacteria are widely distributed in atmospheric aerosols and are indispensable components of clouds, playing an important role in the atmospheric hydrological cycle. However, limited information is available about the bacterial community structure and function, especially for the increasing air pollution in the North China Plain. Here, we present a comprehensive characterization of bacterial community composition, function, variation, and environmental influence for cloud water collected at Mt Tai from 24 July to 23 August 2014. Using Miseq 16S rRNA gene sequencing, the highly diverse bacterial community in cloud water and the predominant phyla of Proteobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes were investigated. Bacteria that survive at low temperature, radiation, and poor nutrient conditions were found in cloud water, suggesting adaption to an extreme environment. The bacterial gene functions predicted from the 16S rRNA gene using the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) suggested that the pathways related to metabolism and disease infections were significantly correlated with the predominant genera. The abundant genera Acinetobacter, Stenotrophomonas, Pseudomonas, and Empedobacter originated from a wide range of habitats including cloud condensation nuclei and ice nuclei active species, opportunistic pathogens, and functional species, demonstrating the importance of ecology and health in cloud water. Cluster analysis including hierarchical cluster (Hcluster) and principal coordinate analysis (PCoA) indicated a significant disparity between polluted and non-polluted samples. Linear discriminant analysis effect size (LEfSe) demonstrated that potential pathogens were enriched in the polluted cloud samples, whereas the diverse ecological function groups were significant in the non-polluted samples. Discrepant community structure determined by redundancy analysis (RDA) indicated that the major ions in

  8. Lidar studies of extinction in clouds in the ECLIPS project

    International Nuclear Information System (INIS)

    Martin, C.; Platt, R.; Young, S.A.; Patterson, G.P.

    1992-01-01

    The Experimental Cloud Lidar Pilot Study (ECLIPS) project has now had two active phases in 1989 and 1991. A number of laboratories around the world have taken part in the study. The observations have yielded new data on cloud height and structure, and have yielded some useful new information on the retrieval of cloud optical properties, together with the uncertainties involved. Clouds have a major impact on the climate of the earth. They have the effect of reducing the mean surface temperature from 30 C for a cloudless planet to a value of about 15 C for present cloud conditions. However, it is not at all certain how clouds would react to a change in the planetary temperature in the event of climate change due to a radiative forcing from greenhouse gases. Clouds both reflect out sunlight (negative feedback) and enhance the greenhouse effect (positive feedback), but the ultimate sign of cloud feedback is unknown. Because of these uncertainties, campaigns to study clouds intensely were initiated. The International Satellite Cloud Climatology (ISCPP) and the FIRE Campaigns (cirrus and stratocumulus) are examples. The ECLIPS was set up similarly to the above experiments to obtain information specifically on cloud base, but also cloud top (where possible), optical properties, and cloud structure. ECLIPS was designed to allow as many laboratories as possible globally to take part to get the largest range of clouds. It involves observations with elastic backscatter lidar, supported by infrared fluxes at the ground and radiosonde data, as basic instrumentation. More complex experiments using beam filter radiometers, solar pyranometers, and satellite data and often associated with other campaigns were also encouraged to join ECLIPS

  9. The Influence of Sea Ice on Arctic Low Cloud Properties and Radiative Effects

    Science.gov (United States)

    Taylor, Patrick C.

    2015-01-01

    The Arctic is one of the most climatically sensitive regions of the Earth. Climate models robustly project the Arctic to warm 2-3 times faster than the global mean surface temperature, termed polar warming amplification (PWA), but also display the widest range of surface temperature projections in this region. The response of the Arctic to increased CO2 modulates the response in tropical and extra-tropical regions through teleconnections in the atmospheric circulation. An increased frequency of extreme precipitation events in the northern mid-latitudes, for example, has been linked to the change in the background equator-to-pole temperature gradient implied by PWA. Understanding the Arctic climate system is therefore important for predicting global climate change. The ice albedo feedback is the primary mechanism driving PWA, however cloud and dynamical feedbacks significantly contribute. These feedback mechanisms, however, do not operate independently. How do clouds respond to variations in sea ice? This critical question is addressed by combining sea ice, cloud, and radiation observations from satellites, including CERES, CloudSAT, CALIPSO, MODIS, and microwave radiometers, to investigate sea ice-cloud interactions at the interannual timescale in the Arctic. Cloud characteristics are strongly tied to the atmospheric dynamic and thermodynamic state. Therefore, the sensitivity of Arctic cloud characteristics, vertical distribution and optical properties, to sea ice anomalies is computed within atmospheric dynamic and thermodynamic regimes. Results indicate that the cloud response to changes in sea ice concentration differs significantly between atmospheric state regimes. This suggests that (1) the atmospheric dynamic and thermodynamic characteristics and (2) the characteristics of the marginal ice zone are important for determining the seasonal forcing by cloud on sea ice variability.

  10. Recent Trends of the Tropical Hydrological Cycle Inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data

    Science.gov (United States)

    Zhou, Y. P.; Xu, Kuan-Man; Sud, Y. C.; Betts, A. K.

    2011-01-01

    Scores of modeling studies have shown that increasing greenhouse gases in the atmosphere impact the global hydrologic cycle; however, disagreements on regional scales are large, and thus the simulated trends of such impacts, even for regions as large as the tropics, remain uncertain. The present investigation attempts to examine such trends in the observations using satellite data products comprising Global Precipitation Climatology Project precipitation and International Satellite Cloud Climatology Project cloud and radiation. Specifically, evolving trends of the tropical hydrological cycle over the last 20-30 years were identified and analyzed. The results show (1) intensification of tropical precipitation in the rising regions of the Walker and Hadley circulations and weakening over the sinking regions of the associated overturning circulation; (2) poleward shift of the subtropical dry zones (up to 2deg/decade in June-July-August (JJA) in the Northern Hemisphere and 0.3-0.7deg/decade in June-July-August and September-October-November in the Southern Hemisphere) consistent with an overall broadening of the Hadley circulation; and (3) significant poleward migration (0.9-1.7deg/decade) of cloud boundaries of Hadley cell and plausible narrowing of the high cloudiness in the Intertropical Convergence Zone region in some seasons. These results support findings of some of the previous studies that showed strengthening of the tropical hydrological cycle and expansion of the Hadley cell that are potentially related to the recent global warming trends.

  11. Thermodynamics and Cloud Radiative Effect from the First Year of GoAmazon

    Science.gov (United States)

    Collow, Allie Marquardt; Miller, Mark; Trabachino, Lynne

    2015-01-01

    Deforestation is an ongoing concern for the Amazon Rainforest of Brazil and associated changes to the land surface have been hypothesized to alter the climate in the region. A comprehensive set of meteorological observations at the surface and within the lower troposphere above Manacapuru, Brazil and data from the Modern Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) are used to evaluate the seasonal cycle of cloudiness, thermodynamics, and the radiation budget. While ample moisture is present in the Amazon Rainforest year round, the northward progression of the Hadley circulation during the dry season contributes to a drying of the middle troposphere and inhibits the formation of deep convection. This results in a reduction in cloudiness and precipitation as well as an increase in the height of the lifting condensation level, which is shown to have a negative correlation to the fraction of low clouds. Frequent cloudiness prevents solar radiation from reaching the surface and clouds are often reflective with high values of shortwave cloud radiative effect at the surface and top of the atmosphere. Cloud radiative effect is reduced during the dry season however the dry season surface shortwave cloud radiative effect is still double what is observed during the wet season in other tropical locations. Within the column, the impact of clouds on the radiation budget is more prevalent in the longwave part of the spectrum, with a net warming in the wet season.

  12. The effects of aerosols on precipitation and dimensions of subtropical clouds: a sensitivity study using a numerical cloud model

    Directory of Open Access Journals (Sweden)

    A. Teller

    2006-01-01

    Full Text Available Numerical experiments were carried out using the Tel-Aviv University 2-D cloud model to investigate the effects of increased concentrations of Cloud Condensation Nuclei (CCN, giant CCN (GCCN and Ice Nuclei (IN on the development of precipitation and cloud structure in mixed-phase sub-tropical convective clouds. In order to differentiate between the contribution of the aerosols and the meteorology, all simulations were conducted with the same meteorological conditions. The results show that under the same meteorological conditions, polluted clouds (with high CCN concentrations produce less precipitation than clean clouds (with low CCN concentrations, the initiation of precipitation is delayed and the lifetimes of the clouds are longer. GCCN enhance the total precipitation on the ground in polluted clouds but they have no noticeable effect on cleaner clouds. The increased rainfall due to GCCN is mainly a result of the increased graupel mass in the cloud, but it only partially offsets the decrease in rainfall due to pollution (increased CCN. The addition of more effective IN, such as mineral dust particles, reduces the total amount of precipitation on the ground. This reduction is more pronounced in clean clouds than in polluted ones. Polluted clouds reach higher altitudes and are wider than clean clouds and both produce wider clouds (anvils when more IN are introduced. Since under the same vertical sounding the polluted clouds produce less rain, more water vapor is left aloft after the rain stops. In our simulations about 3.5 times more water evaporates after the rain stops from the polluted cloud as compared to the clean cloud. The implication is that much more water vapor is transported from lower levels to the mid troposphere under polluted conditions, something that should be considered in climate models.

  13. Similar complex kinematics within two massive, filamentary infrared dark clouds

    Science.gov (United States)

    Barnes, A. T.; Henshaw, J. D.; Caselli, P.; Jiménez-Serra, I.; Tan, J. C.; Fontani, F.; Pon, A.; Ragan, S.

    2018-04-01

    Infrared dark clouds (IRDCs) are thought to be potential hosts of the elusive early phases of high-mass star formation. Here, we conduct an in-depth kinematic analysis of one such IRDC, G034.43+00.24 (Cloud F), using high sensitivity and high spectral resolution IRAM-30m N2H+ (1-0) and C18O (1-0) observations. To disentangle the complex velocity structure within this cloud, we use Gaussian decomposition and hierarchical clustering algorithms. We find that four distinct coherent velocity components are present within Cloud F. The properties of these components are compared to those found in a similar IRDC, G035.39-00.33 (Cloud H). We find that the components in both clouds have high densities (inferred by their identification in N2H+), trans-to-supersonic non-thermal velocity dispersions with Mach numbers of ˜1.5-4, a separation in velocity of ˜3 km s-1, and a mean red-shift of ˜0.3 km s-1 between the N2H+ (dense gas) and C18O emission (envelope gas). The latter of these could suggest that these clouds share a common formation scenario. We investigate the kinematics of the larger-scale Cloud F structures, using lower-density-tracing 13CO(1-0) observations. A good correspondence is found between the components identified in the IRAM-30m observations and the most prominent component in the 13CO data. We find that the IRDC Cloud F is only a small part of a much larger structure, which appears to be an inter-arm filament of the Milky Way.

  14. Atlas2 Cloud: a framework for personal genome analysis in the cloud.

    Science.gov (United States)

    Evani, Uday S; Challis, Danny; Yu, Jin; Jackson, Andrew R; Paithankar, Sameer; Bainbridge, Matthew N; Jakkamsetti, Adinarayana; Pham, Peter; Coarfa, Cristian; Milosavljevic, Aleksandar; Yu, Fuli

    2012-01-01

    Until recently, sequencing has primarily been carried out in large genome centers which have invested heavily in developing the computational infrastructure that enables genomic sequence analysis. The recent advancements in next generation sequencing (NGS) have led to a wide dissemination of sequencing technologies and data, to highly diverse research groups. It is expected that clinical sequencing will become part of diagnostic routines shortly. However, limited accessibility to computational infrastructure and high quality bioinformatic tools, and the demand for personnel skilled in data analysis and interpretation remains a serious bottleneck. To this end, the cloud computing and Software-as-a-Service (SaaS) technologies can help address these issues. We successfully enabled the Atlas2 Cloud pipeline for personal genome analysis on two different cloud service platforms: a community cloud via the Genboree Workbench, and a commercial cloud via the Amazon Web Services using Software-as-a-Service model. We report a case study of personal genome analysis using our Atlas2 Genboree pipeline. We also outline a detailed cost structure for running Atlas2 Amazon on whole exome capture data, providing cost projections in terms of storage, compute and I/O when running Atlas2 Amazon on a large data set. We find that providing a web interface and an optimized pipeline clearly facilitates usage of cloud computing for personal genome analysis, but for it to be routinely used for large scale projects there needs to be a paradigm shift in the way we develop tools, in standard operating procedures, and in funding mechanisms.

  15. Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter

    Directory of Open Access Journals (Sweden)

    Shyamala Loganathan

    2015-01-01

    Full Text Available Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms.

  16. Electron cloud studies for SIS-18 and for the FAIR synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor; Weiland, Thomas [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF), Darmstadt (Germany); Boine-Frankenheim, Oliver [Gesellschaft fuer Schwerionenforschung (GSI) GmbH, Darmstadt (Germany)

    2010-07-01

    Electron clouds generated by residual gas ionization pose a potential threat to the stability of the circulating heavy ion beams in the existing SIS-18 synchrotron and in the projected SIS-100. The electrons can potentially accumulate in the space charge potential of the long bunches. As an extreme case we study the accumulation of electrons in a coasting beam under conditions relevant in the SIS-18. Previous studies of electron clouds in coasting beams used particle-in-cell (PIC) codes to describe the generation of the cloud and the interaction with the ion beam. PIC beams exhibit much larger fluctuation amplitudes than real beams. The fluctuations heat the electrons. Therefore the obtained neutralization degree is strongly reduced, relative to a real beam. In our simulation model we add a Langevin term to the electron equation of motion in order to account for the heating process. The effect of natural beam fluctuations on the neutralization degree is studied. The modification of the beam response function as well as the stability limits in the presence of the electrons is discussed.

  17. "On Clocks and Clouds:" Confirming and Interpreting Climate Models as Scientific Hypotheses (Invited)

    Science.gov (United States)

    Donner, L.

    2009-12-01

    The certainty of climate change projected under various scenarios of emissions using general circulation models is an issue of vast societal importance. Unlike numerical weather prediction, a problem to which general circulation models are also applied, projected climate changes usually lie outside of the range of external forcings for which the models generating these changes have been directly evaluated. This presentation views climate models as complex scientific hypotheses and thereby frames these models within a well-defined process of both advancing scientific knowledge and recognizing its limitations. Karl Popper's Logik der Forschung (The Logic of Scientific Discovery, 1934) and 1965 essay “On Clocks and Clouds” capture well the methodologies and challenges associated with constructing climate models. Indeed, the process of a problem situation generating tentative theories, refined by error elimination, characterizes aptly the routine of general circulation model development. Limitations on certainty arise from the distinction Popper perceived in types of natural processes, which he exemplified by clocks, capable of exact measurement, and clouds, subject only to statistical approximation. Remarkably, the representation of clouds in general circulation models remains the key uncertainty in understanding atmospheric aspects of climate change. The asymmetry of hypothesis falsification by negation and much vaguer development of confidence in hypotheses consistent with some of their implications is an important practical challenge to confirming climate models. The presentation will discuss the ways in which predictions made by climate models for observable aspects of the present and past climate can be regarded as falsifiable hypotheses. The presentation will also include reasons why “passing” these tests does not provide complete confidence in predictions about the future by climate models. Finally, I will suggest that a “reductionist” view, in

  18. Radiative-dynamical and microphysical processes of thin cirrus clouds controlling humidity of air entering the stratosphere

    Science.gov (United States)

    Dinh, Tra; Fueglistaler, Stephan

    2016-04-01

    Thin cirrus clouds in the tropical tropopause layer (TTL) are of great interest due to their role in the control of water vapor and temperature in the TTL. Previous research on TTL cirrus clouds has focussed mainly on microphysical processes, specifically the ice nucleation mechanism and dehydration efficiency. Here, we use a cloud resolving model to analyse the sensitivity of TTL cirrus characteristics and impacts with respect to microphysical and radiative processes. A steady-state TTL cirrus cloud field is obtained in the model forced with dynamical conditions typical for the TTL (2-dimensional setup with a Kelvin-wave temperature perturbation). Our model results show that the dehydration efficiency (as given by the domain average relative humidity in the layer of cloud occurrence) is relatively insensitive to the ice nucleation mechanism, i.e. homogeneous versus heterogeneous nucleation. Rather, TTL cirrus affect the water vapor entering the stratosphere via an indirect effect associated with the cloud radiative heating and dynamics. Resolving the cloud radiative heating and the radiatively induced circulations approximately doubles the domain average ice mass. The cloud radiative heating is proportional to the domain average ice mass, and the observed increase in domain average ice mass induces a domain average temperature increase of a few Kelvin. The corresponding increase in water vapor entering the stratosphere is estimated to be about 30 to 40%.

  19. Monte Carlo-based subgrid parameterization of vertical velocity and stratiform cloud microphysics in ECHAM5.5-HAM2

    Directory of Open Access Journals (Sweden)

    J. Tonttila

    2013-08-01

    Full Text Available A new method for parameterizing the subgrid variations of vertical velocity and cloud droplet number concentration (CDNC is presented for general circulation models (GCMs. These parameterizations build on top of existing parameterizations that create stochastic subgrid cloud columns inside the GCM grid cells, which can be employed by the Monte Carlo independent column approximation approach for radiative transfer. The new model version adds a description for vertical velocity in individual subgrid columns, which can be used to compute cloud activation and the subgrid distribution of the number of cloud droplets explicitly. Autoconversion is also treated explicitly in the subcolumn space. This provides a consistent way of simulating the cloud radiative effects with two-moment cloud microphysical properties defined at subgrid scale. The primary impact of the new parameterizations is to decrease the CDNC over polluted continents, while over the oceans the impact is smaller. Moreover, the lower CDNC induces a stronger autoconversion of cloud water to rain. The strongest reduction in CDNC and cloud water content over the continental areas promotes weaker shortwave cloud radiative effects (SW CREs even after retuning the model. However, compared to the reference simulation, a slightly stronger SW CRE is seen e.g. over mid-latitude oceans, where CDNC remains similar to the reference simulation, and the in-cloud liquid water content is slightly increased after retuning the model.

  20. Double-moment cloud microphysics scheme for the deep convection parameterization in the GFDL AM3

    Science.gov (United States)

    Belochitski, A.; Donner, L.

    2014-12-01

    A double-moment cloud microphysical scheme originally developed by Morrision and Gettelman (2008) for the stratiform clouds and later adopted for the deep convection by Song and Zhang (2011) has been implemented in to the Geophysical Fluid Dynamics Laboratory's atmospheric general circulation model AM3. The scheme treats cloud drop, cloud ice, rain, and snow number concentrations and mixing ratios as diagnostic variables and incorporates processes of autoconversion, self-collection, collection between hydrometeor species, sedimentation, ice nucleation, drop activation, homogeneous and heterogeneous freezing, and the Bergeron-Findeisen process. Such detailed representation of microphysical processes makes the scheme suitable for studying the interactions between aerosols and convection, as well as aerosols' indirect effects on clouds and their roles in climate change. The scheme is first tested in the single column version of the GFDL AM3 using forcing data obtained at the U.S. Department of Energy Atmospheric Radiation Measurment project's Southern Great Planes site. Scheme's impact on SCM simulations is discussed. As the next step, runs of the full atmospheric GCM incorporating the new parameterization are compared to the unmodified version of GFDL AM3. Global climatological fields and their variability are contrasted with those of the original version of the GCM. Impact on cloud radiative forcing and climate sensitivity is investigated.

  1. Stratocumulus Cloud Top Radiative Cooling and Cloud Base Updraft Speeds

    Science.gov (United States)

    Kazil, J.; Feingold, G.; Balsells, J.; Klinger, C.

    2017-12-01

    Cloud top radiative cooling is a primary driver of turbulence in the stratocumulus-topped marine boundary. A functional relationship between cloud top cooling and cloud base updraft speeds may therefore exist. A correlation of cloud top radiative cooling and cloud base updraft speeds has been recently identified empirically, providing a basis for satellite retrieval of cloud base updraft speeds. Such retrievals may enable analysis of aerosol-cloud interactions using satellite observations: Updraft speeds at cloud base co-determine supersaturation and therefore the activation of cloud condensation nuclei, which in turn co-determine cloud properties and precipitation formation. We use large eddy simulation and an off-line radiative transfer model to explore the relationship between cloud-top radiative cooling and cloud base updraft speeds in a marine stratocumulus cloud over the course of the diurnal cycle. We find that during daytime, at low cloud water path (CWP correlated, in agreement with the reported empirical relationship. During the night, in the absence of short-wave heating, CWP builds up (CWP > 50 g m-2) and long-wave emissions from cloud top saturate, while cloud base heating increases. In combination, cloud top cooling and cloud base updrafts become weakly anti-correlated. A functional relationship between cloud top cooling and cloud base updraft speed can hence be expected for stratocumulus clouds with a sufficiently low CWP and sub-saturated long-wave emissions, in particular during daytime. At higher CWPs, in particular at night, the relationship breaks down due to saturation of long-wave emissions from cloud top.

  2. Anti-cyclonic circulation driven by the estuarine circulation in a gulf type ROFI

    Science.gov (United States)

    Fujiwara, T.; Sanford, L. P.; Nakatsuji, K.; Sugiyama, Y.

    1997-08-01

    Baroclinic residual circulation processes are examined in gulf type Regions Of Freshwater Influence (ROFIs), which have large rivers discharging into a rounded head wider than the Rossby internal deformation radius. Theoretical and observational investigations concentrate on Ise Bay, Japan, with supporting data from Osaka Bay and Tokyo Bay. Simplified analytical solutions are derived to describe the primary features of the circulation. Three dimensional residual current data collected using moored current meters and shipboard acoustic doppler current profilers (ADCPs), satellite imagery and density structure data observed using STDs, are presented for comparison to the theoretical predictions. There are three key points to understanding the resulting circulation in gulf type ROFIs. First, there are likely to be three distinct water masses: the river plume, a brackish upper layer, and a higher salinity lower layer. Second, baroclinic processes in gulf type ROFIs are influenced by the Earth's rotation at first order. Residual currents are quasi-geostrophic and potential vorticity is approximately conserved. Third, the combined effects of a classical longitudinal estuarine circulation and the Earth's rotation are both necessary to produce the resulting circulation. Anti-cyclonic vorticity is generated in the upper layer by the horizontal divergence associated with upward entrainment, which is part of the estuarine circulation. The interaction between anti-cyclonic vorticity and horizontal divergence results in two regions of qualitatively different circulation, with gyre-like circulation near the bay head and uniformly seaward anti-cyclonicly sheared flow further towards the mouth. The stagnation point separating the two regions is closer to (further away from) the bay head for stronger (weaker) horizontal divergence, respectively. The vorticity and spin-up time of this circulation are-(ƒ-ω 1)/2 and h/2w 0, respectively, where ƒ is the Coriolis parameter, ω 1 is

  3. Cloud networking understanding cloud-based data center networks

    CERN Document Server

    Lee, Gary

    2014-01-01

    Cloud Networking: Understanding Cloud-Based Data Center Networks explains the evolution of established networking technologies into distributed, cloud-based networks. Starting with an overview of cloud technologies, the book explains how cloud data center networks leverage distributed systems for network virtualization, storage networking, and software-defined networking. The author offers insider perspective to key components that make a cloud network possible such as switch fabric technology and data center networking standards. The final chapters look ahead to developments in architectures

  4. Structure and trapping of three-dimensional dust clouds in a capacitively coupled rf-discharge

    International Nuclear Information System (INIS)

    Arp, O.; Block, D.; Piel, A.

    2005-01-01

    In this survey the recently found 'Coulomb balls' are discussed, which show an unusual kind of crystalline order. These three-dimensional dust clouds consisting of hundreds or thousands of micrometer-sized dust particles have a spherical shape and exist in a wide range of plasma conditions. Coulomb balls are optically highly transparent and have macroscopic dimensions of several millimeters in diameter. The clouds allow for the observation of each single particle and thus the complete reconstruction of the crystal structure by means of video microscopy techniques. The particles are arranged in distinct nested shells in which they form patterns with mostly five and six neighbors. The confinement of Coulomb balls by dielectric walls involves electric forces, surface charges, ion drag forces, and thermophoretic levitation. The thermophoretic force field is measured with tracer particles and particle image velocimetry (PIV). The electric forces are derived from simulations with the two-dimensional SIGLO-2D code. It is shown the the sum of all confining forces results in a stable potential well that describes levitation and spherical confinement of the Coulomb ball

  5. Effect of retreating sea ice on Arctic cloud cover in simulated recent global warming

    Directory of Open Access Journals (Sweden)

    M. Abe

    2016-11-01

    Full Text Available This study investigates the effect of sea ice reduction on Arctic cloud cover in historical simulations with the coupled atmosphere–ocean general circulation model MIROC5. Arctic sea ice has been substantially retreating since the 1980s, particularly in September, under simulated global warming conditions. The simulated sea ice reduction is consistent with satellite observations. On the other hand, Arctic cloud cover has been increasing in October, with about a 1-month lag behind the sea ice reduction. The delayed response leads to extensive sea ice reductions because the heat and moisture fluxes from the underlying open ocean into the atmosphere are enhanced. Sensitivity experiments with the atmospheric part of MIROC5 clearly show that sea ice reduction causes increases in cloud cover. Arctic cloud cover increases primarily in the lower troposphere, but it decreases in the near-surface layers just above the ocean; predominant temperature rises in these near-surface layers cause drying (i.e., decreases in relative humidity, despite increasing moisture flux. Cloud radiative forcing due to increases in cloud cover in autumn brings an increase in the surface downward longwave radiation (DLR by approximately 40–60 % compared to changes in clear-sky surface DLR in fall. These results suggest that an increase in Arctic cloud cover as a result of reduced sea ice coverage may bring further sea ice retreat and enhance the feedback processes of Arctic warming.

  6. Comparison of Cloud and Aerosol Detection between CERES Edition 3 Cloud Mask and CALIPSO Version 2 Data Products

    Science.gov (United States)

    Trepte, Qing; Minnis, Patrick; Sun-Mack, Sunny; Trepte, Charles

    Clouds and aerosol play important roles in the global climate system. Accurately detecting their presence, altitude, and properties using satellite radiance measurements is a crucial first step in determining their influence on surface and top-of-atmosphere radiative fluxes. This paper presents a comparison analysis of a new version of the Clouds and Earth's Radiant Energy System (CERES) Edition 3 cloud detection algorithms using Aqua MODIS data with the recently released Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Version 2 Vertical Feature Mask (VFM). Improvements in CERES Edition 3 cloud mask include dust detection, thin cirrus tests, enhanced low cloud detection at night, and a smoother transition from mid-latitude to polar regions. For the CALIPSO Version 2 data set, changes to the lidar calibration can result in significant improvements to its identification of optically thick aerosol layers. The Aqua and CALIPSO satellites, part of the A-train satellite constellation, provide a unique opportunity for validating passive sensor cloud and aerosol detection using an active sensor. In this paper, individual comparison cases will be discussed for different types of clouds and aerosols over various surfaces, for daytime and nighttime conditions, and for regions ranging from the tropics to the poles. Examples will include an assessment of the CERES detection algorithm for optically thin cirrus, marine stratus, and polar night clouds as well as its ability to characterize Saharan dust plumes off the African coast. With the CALIPSO lidar's unique ability to probe the vertical structure of clouds and aerosol layers, it provides an excellent validation data set for cloud detection algorithms, especially for polar nighttime clouds.

  7. Plasma cloud expansion in the ionosphere: Three-dimensional simulation

    International Nuclear Information System (INIS)

    Ma, T.Z.; Schunk, R.W.

    1991-01-01

    A three-dimensional time-dependent model was developed to study the characteristics of a plasma cloud expansion in the ionosphere. The electrostatic potential is solved in three dimensions taking into account the large parallel-to-perpendicular conductivity ratio. Three sample simulations are presented: a plasma expansion of a nearly spherical 1 km Ba + cloud, both with and without a background neutral wind, and a long thin Ba + cloudlet. With or without the neutral wind the effective potential, which is different from the electrostatic potential if the electron temperature is included, is constant along the magnetic field for typical cloud sizes. The expanding plasma clouds become elongated in the magnetic field direction. The released Ba + ions push the background O + ions away along the magnetic field as they expand. Consequently, a hole develops in the background O + distribution at the cloud location and on the two sides of the cloud O + bumps form. The entire three-dimensional structure, composed of the plasma cloud and the background plasma embedded in the cloud, slowly rotates about the magnetic field, with the ions and electrons rotating in opposite directions. The cloud configuration takes the shape of a rotating ellipsoid with a major axis that expands with time. Perpendicular to the magnetic field, in the absence of the neutral wind the motion is insignificant compared to the parallel motion. With a neutral wind the motion along the magnetic field and the rotational motion are qualitatively unchanged, but the cloud and the perturbed background structure move in the direction of the wind, with a speed less than the wind speed. Perpendicular to the magnetic field the deformation of the cloud indiced by the wind is characterized by steepening of the backside

  8. Importance of including ammonium sulfate ((NH42SO4 aerosols for ice cloud parameterization in GCMs

    Directory of Open Access Journals (Sweden)

    P. S. Bhattacharjee

    2010-02-01

    Full Text Available A common deficiency of many cloud-physics parameterizations including the NASA's microphysics of clouds with aerosol-cloud interactions (hereafter called McRAS-AC is that they simulate lesser (larger than the observed ice cloud particle number (size. A single column model (SCM of McRAS-AC physics of the GEOS4 Global Circulation Model (GCM together with an adiabatic parcel model (APM for ice-cloud nucleation (IN of aerosols were used to systematically examine the influence of introducing ammonium sulfate (NH42SO4 aerosols in McRAS-AC and its influence on the optical properties of both liquid and ice clouds. First an (NH42SO4 parameterization was included in the APM to assess its effect on clouds vis-à-vis that of the other aerosols. Subsequently, several evaluation tests were conducted over the ARM Southern Great Plain (SGP and thirteen other locations (sorted into pristine and polluted conditions distributed over marine and continental sites with the SCM. The statistics of the simulated cloud climatology were evaluated against the available ground and satellite data. The results showed that inclusion of (NH42SO4 into McRAS-AC of the SCM made a remarkable improvement in the simulated effective radius of ice cloud particulates. However, the corresponding ice-cloud optical thickness increased even more than the observed. This can be caused by lack of horizontal cloud advection not performed in the SCM. Adjusting the other tunable parameters such as precipitation efficiency can mitigate this deficiency. Inclusion of ice cloud particle splintering invoked empirically further reduced simulation biases. Overall, these changes make a substantial improvement in simulated cloud optical properties and cloud distribution particularly over the Intertropical Convergence Zone (ITCZ in the GCM.

  9. Investigation of Seasonal Landscape Freeze/Thaw Cycles in Relation to Cloud Structure in the High Northern Latitudes

    Science.gov (United States)

    Smith, Cosmo

    2011-01-01

    The seasonal freezing and thawing of Earth's cryosphere (the portion of Earth's surface permanently or seasonally frozen) has an immense impact on Earth's climate as well as on its water, carbon and energy cycles. During the spring, snowmelt and the transition between frozen and non-frozen states lowers Earth's surface albedo. This change in albedo causes more solar radiation to be absorbed by the land surface, raising surface soil and air temperatures as much as 5 C within a few days. The transition of ice into liquid water not only raises the surface humidity, but also greatly affects the energy exchange between the land surface and the atmosphere as the phase change creates a latent energy dominated system. There is strong evidence to suggest that the thawing of the cryosphere during spring and refreezing during autumn is correlated to local atmospheric conditions such as cloud structure and frequency. Understanding the influence of land surface freeze/thaw cycles on atmospheric structure can help improve our understanding of links between seasonal land surface state and weather and climate, providing insight into associated changes in Earth's water, carbon, and energy cycles that are driven by climate change.Information on both the freeze/thaw states of Earth's land surface and cloud characteristics is derived from data sets collected by NOAA's Special Sensor Microwave/Imager (SSM/I), the Advanced Microwave Scanning Radiometer on NASA's Earth Observing System(AMSR-E), NASA's CloudSat, and NASA's SeaWinds-on-QuickSCAT Earth remote sensing satellite instruments. These instruments take advantage of the microwave spectrum to collect an ensemble of atmospheric and land surface data. Our analysis uses data from radars (active instruments which transmit a microwave signal toward Earth and measure the resultant backscatter) and radiometers (passive devices which measure Earth's natural microwave emission) to accurately characterize salient details on Earth's surface

  10. Evaluation of Passive Multilayer Cloud Detection Using Preliminary CloudSat and CALIPSO Cloud Profiles

    Science.gov (United States)

    Minnis, P.; Sun-Mack, S.; Chang, F.; Huang, J.; Nguyen, L.; Ayers, J. K.; Spangenberg, D. A.; Yi, Y.; Trepte, C. R.

    2006-12-01

    During the last few years, several algorithms have been developed to detect and retrieve multilayered clouds using passive satellite data. Assessing these techniques has been difficult due to the need for active sensors such as cloud radars and lidars that can "see" through different layers of clouds. Such sensors have been available only at a few surface sites and on aircraft during field programs. With the launch of the CALIPSO and CloudSat satellites on April 28, 2006, it is now possible to observe multilayered systems all over the globe using collocated cloud radar and lidar data. As part of the A- Train, these new active sensors are also matched in time ad space with passive measurements from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer - EOS (AMSR-E). The Clouds and the Earth's Radiant Energy System (CERES) has been developing and testing algorithms to detect ice-over-water overlapping cloud systems and to retrieve the cloud liquid path (LWP) and ice water path (IWP) for those systems. One technique uses a combination of the CERES cloud retrieval algorithm applied to MODIS data and a microwave retrieval method applied to AMSR-E data. The combination of a CO2-slicing cloud retireval technique with the CERES algorithms applied to MODIS data (Chang et al., 2005) is used to detect and analyze such overlapped systems that contain thin ice clouds. A third technique uses brightness temperature differences and the CERES algorithms to detect similar overlapped methods. This paper uses preliminary CloudSat and CALIPSO data to begin a global scale assessment of these different methods. The long-term goals are to assess and refine the algorithms to aid the development of an optimal combination of the techniques to better monitor ice 9and liquid water clouds in overlapped conditions.

  11. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions: SCM SIMULATIONS OF CLOUD TRANSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Neggers, R. A. J. [Institute for Geophysics and Meteorology, Department of Geosciences, University of Cologne, Cologne Germany; Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Ackerman, A. S. [NASA Goddard Institute for Space Studies, New York NY USA; Angevine, W. M. [CIRES, University of Colorado, Boulder CO USA; NOAA Earth System Research Laboratory, Boulder CO USA; Bazile, E. [Météo France/CNRM, Toulouse France; Beau, I. [Météo France/ENM, Toulouse France; Blossey, P. N. [Department of Atmospheric Sciences, University of Washington, Seattle WA USA; Boutle, I. A. [Met Office, Exeter UK; de Bruijn, C. [Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Cheng, A. [NOAA Center for Weather and Climate Prediction, Environmental Modeling Center, College Park MD USA; van der Dussen, J. [Department of Geoscience and Remote Sensing, Delft University of Technology, Delft The Netherlands; Fletcher, J. [Department of Atmospheric Sciences, University of Washington, Seattle WA USA; University of Leeds, Leeds UK; Dal Gesso, S. [Institute for Geophysics and Meteorology, Department of Geosciences, University of Cologne, Cologne Germany; Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Jam, A. [Météo-France/CNRM & CNRS/IPSL/LMD, Toulouse France; Kawai, H. [Meteorological Research Institute, Climate Research Department, Japan Meteorological Agency, Tsukuba Japan; Cheedela, S. K. [Department of Atmosphere in the Earth System, Max-Planck Institut für Meteorologie, Hamburg Germany; Larson, V. E. [Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee WI USA; Lefebvre, M. -P. [Météo-France/CNRM & CNRS/IPSL/LMD, Toulouse France; Lock, A. P. [Met Office, Exeter UK; Meyer, N. R. [Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee WI USA; de Roode, S. R. [Department of Geoscience and Remote Sensing, Delft University of Technology, Delft The Netherlands; de Rooy, W. [Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Sandu, I. [Section of Physical Aspects, European Centre for Medium-Range Weather Forecasts, Reading UK; Xiao, H. [University of California at Los Angeles, Los Angeles CA USA; Pacific Northwest National Laboratory, Richland WA USA; Xu, K. -M. [NASA Langley Research Centre, Hampton VI USA

    2017-10-01

    Results are presented of the GASS/EUCLIPSE single-column model inter-comparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate mod- els for this cloud regime, using large-eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North-Eastern Pa- cific, while one reflects conditions in the North-Eastern Atlantic. A set of variables is considered that reflects key aspects of the transition process, making use of simple met- rics to establish the model performance. Using this method some longstanding problems in low level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure and the associated impact on radia- tive transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median ex- hibits the well-known “too few too bright” problem. The boundary layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular the verti- cal structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid pa- rameterization.

  12. Cloud Computing Fundamentals

    Science.gov (United States)

    Furht, Borko

    In the introductory chapter we define the concept of cloud computing and cloud services, and we introduce layers and types of cloud computing. We discuss the differences between cloud computing and cloud services. New technologies that enabled cloud computing are presented next. We also discuss cloud computing features, standards, and security issues. We introduce the key cloud computing platforms, their vendors, and their offerings. We discuss cloud computing challenges and the future of cloud computing.

  13. Effect of chemical structure on the cloud point of some new non-ionic surfactants based on bisphenol in relation to their surface active properties

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2011-06-01

    Full Text Available A series of non-ionic surfactants were prepared from bisphenol derived from acetone (A, acetophenone (AC and cyclohexanone (CH. The prepared bisphenols were ethoxylated at different degrees of ethylene oxide (27, 35, 43. The ethoxylated bisphenols were non-esterified by fatty acids; decanoic, lauric, myristic, palmitic, stearic, oleic, linoloic and linolinic. Some surface active properties for these surfactants were measured and calculated such as, surface tension [γ], critical micelle concentration [CMC], minimum area per molecule [Amin], surface excess [Cmax], free energy of micellization and adsorption [ΔGmic] and [ΔGads]. At a certain temperature, the cloud point was measured for these surfactants. From the obtained data it was found that; the cloud point is very sensitive to the increase of the alkyl chain length, content of ethylene oxide and degree of unsaturation. The core of bisphenol affected the cloud point sharply and they are ranked regarding bisphenol structure as BA > BCH > BAC. By inspection of the surface active properties of these surfactants, a good relation was obtained with their cloud points. The data were discussed on the light of their chemical structures.

  14. Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles

    Science.gov (United States)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2010-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.

  15. Security and Interdependency in a Public Cloud: A Game Theoretic Approach

    Science.gov (United States)

    2014-08-29

    maximum utility can be reached (i.e., Pareto efficiency). However, the examples of perverse incentives and information inequality (where this feedback...interdependent structure. Cloud computing gives way to two types of interdependent relationships: cloud host-to- client and cloud client -to- client ... Client -to- client interdependency is much less studied than to the above-mentioned cloud host-to- client relationship. Although, it can still carry the

  16. EEC-sponsored theoretical studies of gas cloud explosion pressure loadings

    International Nuclear Information System (INIS)

    Briscoe, F.; Curtress, N.; Farmer, C.L.; Fogg, G.J.; Vaughan, G.J.

    1979-01-01

    Estimates of the pressure loadings produced by unconfined gas cloud explosions on the surface of structures are required to assist the design of strong secondary containments in countries where the protection of nuclear installations against these events is considered to be necessary. At the present time, one difficulty in the specification of occurate pressure loadings arises from our lack of knowledge concerning the interaction between the incident pressure waves produced by unconfined gas cloud explosions and large structures. Preliminary theoretical studies include (i) general theoretical considerations, especially with regard to scaling (ii) investigations of the deflagration wave interaction with a wall based on an analytic solution for situations with planar symmetry and the application of an SRD gas cloud explosion code (GASEX 1) for situations with planar and spherical symmetry, and (iii) investigations of the interaction between shock waves and structures for situations with two-dimensional symmetry based on the application of another SRD gas cloud explosion code (GASEX 2)

  17. High-mass star formation possibly triggered by cloud-cloud collision in the H II region RCW 34

    Science.gov (United States)

    Hayashi, Katsuhiro; Sano, Hidetoshi; Enokiya, Rei; Torii, Kazufumi; Hattori, Yusuke; Kohno, Mikito; Fujita, Shinji; Nishimura, Atsushi; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo; Hasegawa, Yutaka; Kimura, Kimihiro; Ogawa, Hideo; Fukui, Yasuo

    2018-05-01

    We report on the possibility that the high-mass star located in the H II region RCW 34 was formed by a triggering induced by a collision of molecular clouds. Molecular gas distributions of the 12CO and 13CO J = 2-1 and 12CO J = 3-2 lines in the direction of RCW 34 were measured using the NANTEN2 and ASTE telescopes. We found two clouds with velocity ranges of 0-10 km s-1 and 10-14 km s-1. Whereas the former cloud is as massive as ˜1.4 × 104 M⊙ and has a morphology similar to the ring-like structure observed in the infrared wavelengths, the latter cloud, with a mass of ˜600 M⊙, which has not been recognized by previous observations, is distributed to just cover the bubble enclosed by the other cloud. The high-mass star with a spectral type of O8.5V is located near the boundary of the two clouds. The line intensity ratio of 12CO J = 3-2/J = 2-1 yields high values (≳1.0), suggesting that these clouds are associated with the massive star. We also confirm that the obtained position-velocity diagram shows a similar distribution to that derived by a numerical simulation of the supersonic collision of two clouds. Using the relative velocity between the two clouds (˜5 km s-1), the collisional time scale is estimated to be ˜0.2 Myr with the assumption of a distance of 2.5 kpc. These results suggest that the high-mass star in RCW 34 was formed rapidly within a time scale of ˜0.2 Myr via a triggering of a cloud-cloud collision.

  18. Preface to the Special Issue on Climate-Chemistry Interactions: Atmospheric Ozone, Aerosols, and Clouds over East Asia

    Directory of Open Access Journals (Sweden)

    Wei-Chyung Wang and Jen-Ping Chen

    2007-01-01

    Full Text Available Atmospheric radiatively-important chemical constituents (e.g., O3 and aerosols are important to maintain the radiation balance of the Earth-atmosphere climate system, and changes in their concentration due to both natural causes and anthropogenic activities will induce climate changes. The distribution of these constituents is sensitive to the state of the climate (e.g., temperature, moisture, wind, and clouds. Therefore, rises in atmospheric temperature and water vapor, and changes in circulation and clouds in global warming can directly affect atmospheric chemistry with subsequent implications for these constituents. Although many coupling mechanisms are identified, the net effect of all these impacts on climate change is not well understood. In particular, changes in water vapor and clouds associated with the hydrologic cycle contain significant uncertainties.

  19. High-performance scientific computing in the cloud

    Science.gov (United States)

    Jorissen, Kevin; Vila, Fernando; Rehr, John

    2011-03-01

    Cloud computing has the potential to open up high-performance computational science to a much broader class of researchers, owing to its ability to provide on-demand, virtualized computational resources. However, before such approaches can become commonplace, user-friendly tools must be developed that hide the unfamiliar cloud environment and streamline the management of cloud resources for many scientific applications. We have recently shown that high-performance cloud computing is feasible for parallelized x-ray spectroscopy calculations. We now present benchmark results for a wider selection of scientific applications focusing on electronic structure and spectroscopic simulation software in condensed matter physics. These applications are driven by an improved portable interface that can manage virtual clusters and run various applications in the cloud. We also describe a next generation of cluster tools, aimed at improved performance and a more robust cluster deployment. Supported by NSF grant OCI-1048052.

  20. Clustering, randomness, and regularity in cloud fields: 2. Cumulus cloud fields

    Science.gov (United States)

    Zhu, T.; Lee, J.; Weger, R. C.; Welch, R. M.

    1992-12-01

    During the last decade a major controversy has been brewing concerning the proper characterization of cumulus convection. The prevailing view has been that cumulus clouds form in clusters, in which cloud spacing is closer than that found for the overall cloud field and which maintains its identity over many cloud lifetimes. This "mutual protection hypothesis" of Randall and Huffman (1980) has been challenged by the "inhibition hypothesis" of Ramirez et al. (1990) which strongly suggests that the spatial distribution of cumuli must tend toward a regular distribution. A dilemma has resulted because observations have been reported to support both hypotheses. The present work reports a detailed analysis of cumulus cloud field spatial distributions based upon Landsat, Advanced Very High Resolution Radiometer, and Skylab data. Both nearest-neighbor and point-to-cloud cumulative distribution function statistics are investigated. The results show unequivocally that when both large and small clouds are included in the cloud field distribution, the cloud field always has a strong clustering signal. The strength of clustering is largest at cloud diameters of about 200-300 m, diminishing with increasing cloud diameter. In many cases, clusters of small clouds are found which are not closely associated with large clouds. As the small clouds are eliminated from consideration, the cloud field typically tends towards regularity. Thus it would appear that the "inhibition hypothesis" of Ramirez and Bras (1990) has been verified for the large clouds. However, these results are based upon the analysis of point processes. A more exact analysis also is made which takes into account the cloud size distributions. Since distinct clouds are by definition nonoverlapping, cloud size effects place a restriction upon the possible locations of clouds in the cloud field. The net effect of this analysis is that the large clouds appear to be randomly distributed, with only weak tendencies towards

  1. Cloud2IR: Infrared thermography and environmental sensors integrated in an autonomoussystem for long term monitoring of structures

    Science.gov (United States)

    Crinière, Antoine; Dumoulin, Jean; Mevel, Laurent; Andrade-Barroso, Guillermo

    2016-04-01

    Since late 2014, the project Cloud2SM aims to develop a robust information system able to assess the long term monitoring of civil engineering structures as well as interfacing various sensors and data. Cloud2SM address three main goals, the management of distributed data and sensors network, the asynchronous processing of the data through network and the local management of the sensors themselves [1]. Integrated to this project Cloud2IR is an autonomous sensor system dedicated to the long term monitoring of infrastructures. Past experimentations have shown the need as well as usefulness of such system [2]. Before Cloud2IR an initially laboratory oriented system was used, which implied heavy operating system to be used [3]. Based on such system Cloud2IR has benefited of the experimental knowledge acquired to redefine a lighter architecture based on generics standards, more appropriated to autonomous operations on field and which can be later included in a wide distributed architecture such as Cloud2SM. The sensor system can be divided in two parts. The sensor side, this part is mainly composed by the various sensors drivers themselves as the infrared camera, the weather station or the pyranometers and their different fixed configurations. In our case, as infrared camera are slightly different than other kind of sensors, the system implement in addition an RTSP server which can be used to set up the FOV as well as other measurement parameter considerations. The second part can be seen as the data side, which is common to all sensors. It instantiate through a generic interface all the sensors and control the data access loop (not the requesting). This side of the system is weakly coupled (see data coupling) with the sensor side. It can be seen as a general framework able to aggregate any sensor data, type or size and automatically encapsulate them in various generic data format as HDF5 or cloud data as OGC SWE standard. This whole part is also responsible of the

  2. Comparison of cloud top heights derived from FY-2 meteorological satellites with heights derived from ground-based millimeter wavelength cloud radar

    Science.gov (United States)

    Wang, Zhe; Wang, Zhenhui; Cao, Xiaozhong; Tao, Fa

    2018-01-01

    Clouds are currently observed by both ground-based and satellite remote sensing techniques. Each technique has its own strengths and weaknesses depending on the observation method, instrument performance and the methods used for retrieval. It is important to study synergistic cloud measurements to improve the reliability of the observations and to verify the different techniques. The FY-2 geostationary orbiting meteorological satellites continuously observe the sky over China. Their cloud top temperature product can be processed to retrieve the cloud top height (CTH). The ground-based millimeter wavelength cloud radar can acquire information about the vertical structure of clouds-such as the cloud base height (CBH), CTH and the cloud thickness-and can continuously monitor changes in the vertical profiles of clouds. The CTHs were retrieved using both cloud top temperature data from the FY-2 satellites and the cloud radar reflectivity data for the same time period (June 2015 to May 2016) and the resulting datasets were compared in order to evaluate the accuracy of CTH retrievals using FY-2 satellites. The results show that the concordance rate of cloud detection between the two datasets was 78.1%. Higher consistencies were obtained for thicker clouds with larger echo intensity and for more continuous clouds. The average difference in the CTH between the two techniques was 1.46 km. The difference in CTH between low- and mid-level clouds was less than that for high-level clouds. An attenuation threshold of the cloud radar for rainfall was 0.2 mm/min; a rainfall intensity below this threshold had no effect on the CTH. The satellite CTH can be used to compensate for the attenuation error in the cloud radar data.

  3. A Variational Method to Retrieve the Extinction Profile in Liquid Clouds Using Multiple Field-of-View Lidar

    Science.gov (United States)

    Pounder, Nicola L.; Hogan, Robin J.; Varnai, Tamas; Battaglia, Alessandro; Cahalan, Robert F.

    2011-01-01

    While liquid clouds playa very important role in the global radiation budget, it's been very difficult to remotely determine their internal cloud structure. Ordinary lidar instruments (similar to radars but using visible light pulses) receive strong signals from such clouds, but the information is limited to a thin layer near the cloud boundary. Multiple field-of-view (FOV) lidars offer some new hope as they are able to isolate photons that were scattered many times by cloud droplets and penetrated deep into a cloud before returning to the instrument. Their data contains new information on cloud structure, although the lack of fast simulation methods made it challenging to interpret the observations. This paper describes a fast new technique that can simulate multiple-FOV lidar signals and can even estimate the way the signals would change in response to changes in cloud properties-an ability that allows quick refinements in our initial guesses of cloud structure. Results for a hypothetical airborne three-FOV lidar suggest that this approach can help determine cloud structure for a deeper layer in clouds, and can reliably determine the optical thickness of even fairly thick liquid clouds. The algorithm is also applied to stratocumulus observations by the 8-FOV airborne "THOR" lidar. These tests demonstrate that the new method can determine the depth to which a lidar provides useful information on vertical cloud structure. This work opens the way to exploit data from spaceborne lidar and radar more rigorously than has been possible up to now.

  4. Discovery of Temperate Latitude Clouds on Titan

    Science.gov (United States)

    Roe, H. G.; Bouchez, A. H.; Trujillo, C. A.; Schaller, E. L.; Brown, M. E.

    2005-01-01

    Until now, all the clouds imaged in Titan's troposphere have been found at far southern latitudes (60°-90° south). The occurrence and location of these clouds is thought to be the result of convection driven by the maximum annual solar heating of Titan's surface, which occurs at summer solstice (2002 October) in this south polar region. We report the first observations of a new recurring type of tropospheric cloud feature, confined narrowly to ~40° south latitude, which cannot be explained by this simple insolation hypothesis. We propose two classes of formation scenario, one linked to surface geography and the other to seasonally evolving circulation, which will be easily distinguished with continued observations over the next few years. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Particle Physics and Astronomy Research Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).

  5. Comparisons of characteristics of magnetic clouds and cloud-like structures during 1995-2012

    Science.gov (United States)

    Lepping, R. P.; Wu, C. C.; Liou, K.

    2014-12-01

    Using eighteen years (1995-2012) of solar wind plasma and magnetic field data (observed by the Wind spacecraft), solar activity (e.g., sunspot number: SSN), and geomagnetic activity index (Dst), we have identified 168 magnetic clouds (MCs) and 197 magnetic cloud-like structures (MCLs), and we made relevant comparisons. The following features are found during seven different periods [Total Period (TP) during 1995-2012, first and second half period during 1995-2003 (P1) and 2004-2012 (P2), Quiet periods during 1995-1997 (Q1) and 2007-2009 (Q2), Active periods during 1998-2006 (A1) and 2010-2012 (A2)]. (1) During 1995-2012 the yearly occurrence frequency is TP = 9.3 for MCs and TP =10.9 for MCLs. (2) In the quiet periods, Q1,Q2 is higher than Q1,Q2 (i.e., Q1 > Q1 and Q2 > Q2), but Q1,Q2 is lower than during the active periods (i.e., A1 A1 and A2 A2). This is probably due to the lower interaction rate between MCs/MCLs and the quiet background solar wind during lower solar active periods in Q1, Q2, and higher interaction rate and highly disturbed background solar wind during the active periods in A1 and A2. (3) The minimum Bz (Bzmin) inside of a MC is well correlated with the intensity of geomagnetic activity, Dstmin (minimum Dst found within a storm event) for MCs (correlation coefficient, c.c. = 0.75 and the fitting function is Dstmin = -1.74+ 7.23 Bzmin), but Bzmin is not well correlated with MCLs (c.c. = 0.57). (4) MCs play a major role in producing geomagnetic storms: the absolute value of the average Dstmin for MCs (MC = -70 nT) associated geomagnetic storms is two times stronger than that for MCLs (MCL = -35 nT) due to the difference in the IMF (interplanetary magnetic field) strength. (5) Over the Total Period the SSN is not correlated with TP (c.c. = 0.27), but is well associated with TP (c.c. = 0.85). Note that the c.c. for SSN vs. P2 is better than that for SSN vs. P2. (6) Averages of IMF, solar wind speed, and density inside of the MCs are larger than those

  6. Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Brookhaven National Lab. (BNL), Upton, NY (United States); Dong, Xiquan [Univ. of North Dakota, Grand Forks, ND (United States); Wood, Robert [Univ. of Washington, Seattle, WA (United States)

    2016-04-01

    With their extensive coverage, low clouds greatly impact global climate. Presently, low clouds are poorly represented in global climate models (GCMs), and the response of low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The poor representations of low clouds in GCMs are in part due to inadequate observations of their microphysical and macrophysical structures, radiative effects, and the associated aerosol distribution and budget in regions where the aerosol impact is the greatest. The Eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary-layer (MBL) clouds, whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. Boundary-layer aerosol in the ENA region is influenced by a variety of sources, leading to strong variations in cloud condensation nuclei (CCN) concentration and aerosol optical properties. Recently a permanent ENA site was established by the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility on Graciosa Island in the Azores, providing invaluable information on MBL aerosol and low clouds. At the same time, the vertical structures and horizontal variabilities of aerosol, trace gases, cloud, drizzle, and atmospheric thermodynamics are critically needed for understanding and quantifying the budget of MBL aerosol, the radiative properties, precipitation efficiency, and lifecycle of MBL clouds, and the cloud response to aerosol perturbations. Much of this data can be obtained only through aircraft-based measurements. In addition, the interconnected aerosol and cloud processes are best investigated by a study involving simultaneous in situ aerosol, cloud, and thermodynamics measurements. Furthermore, in situ measurements are also necessary for validating and improving ground-based retrieval algorithms at the ENA site. This project is motivated by the need

  7. Opto-mechanical design of small infrared cloud measuring device

    Science.gov (United States)

    Zhang, Jiao; Yu, Xun; Tao, Yu; Jiang, Xu

    2018-01-01

    In order to make small infrared cloud measuring device can be well in a wide temperature range and day-night environment, a design idea using catadioptric infrared panoramic imaging optical system and simple mechanical structure for realizing observation clode under all-weather conditions was proposed. Firstly, the optical system of cloud measuring device was designed. An easy-to-use numerical method was proposed to acquire the profile of a catadioptric mirror, which brought the property of equidistance projection and played the most important role in a catadioptric panoramic lens. Secondly, the mechanical structure was studied in detail. Overcoming the limitations of traditional primary mirror support structure, integrative design was used for refractor and mirror support structure. Lastly, temperature adaptability and modes of the mirror support structure were analyzed. Results show that the observation range of the cloud measuring device is wide and the structure is simple, the fundamental frequency of the structure is greater than 100 Hz, the surface precision of the system reflector reaches PV of λ/10 and RMS of λ/40under the load of temperature range - 40 60°C, it can meet the needs of existing meteorological observation.

  8. Cloud occurrences and cloud radiative effects (CREs) from CERES-CALIPSO-CloudSat-MODIS (CCCM) and CloudSat radar-lidar (RL) products

    Science.gov (United States)

    Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Winker, David; L'Ecuyer, Tristan; Mace, Gerald G.; Painemal, David; Sun-Mack, Sunny; Chen, Yan; Miller, Walter F.

    2017-08-01

    Two kinds of cloud products obtained from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) are compared and analyzed in this study: Clouds and the Earth's Radiant Energy System (CERES)-CALIPSO-CloudSat-MODIS (CCCM) product and CloudSat radar-lidar products such as GEOPROF-LIDAR and FLXHR-LIDAR. Compared to GEOPROF-LIDAR, low-level (40°). The difference occurs when hydrometeors are detected by CALIPSO lidar but are undetected by CloudSat radar. In the comparison of cloud radiative effects (CREs), global mean differences between CCCM and FLXHR-LIDAR are mostly smaller than 5 W m-2, while noticeable regional differences are found. For example, CCCM shortwave (SW) and longwave (LW) CREs are larger than FXLHR-LIDAR along the west coasts of Africa and America because the GEOPROF-LIDAR algorithm misses shallow marine boundary layer clouds. In addition, FLXHR-LIDAR SW CREs are larger than the CCCM counterpart over tropical oceans away from the west coasts of America. Over midlatitude storm-track regions, CCCM SW and LW CREs are larger than the FLXHR-LIDAR counterpart.

  9. Using High Frequency Passive Microwave, A-train, and TRMM Data to Evaluate Hydrometer Structure in the NASA GEOS-5 Data Assimilation System

    Science.gov (United States)

    Robertson, Franklin; Bacmeister, Julio; Bosilovich, Michael; Pittman, Jasna

    2007-01-01

    Validating water vapor and prognostic condensate in global models remains a challenging research task. Model parameterizations are still subject to a large number of tunable parameters; furthermore, accurate and representative in situ observations are very sparse, and satellite observations historically have significant quantitative uncertainties. Progress on improving cloud / hydrometeor fields in models stands to benefit greatly from the growing inventory ofA-Train data sets. ill the present study we are using a variety of complementary satellite retrievals of hydrometeors to examine condensate produced by the emerging NASA Modem Era Retrospective Analysis for Research and Applications, MERRA, and its associated atmospheric general circulation model GEOS5. Cloud and precipitation are generated by both grid-scale prognostic equations and by the Relaxed Arakawa-Schubert (RAS) diagnostic convective parameterization. The high frequency channels (89 to 183.3 GHz) from AMSU-B and MRS on NOAA polar orbiting satellites are being used to evaluate the climatology and variability of precipitating ice from tropical convective anvils. Vertical hydrometeor structure from the Tropical Rainfall Measuring Mission (TRMM) and CloudSat radars are used to develop statistics on vertical hydrometeor structure in order to better interpret the extensive high frequency passive microwave climatology. Cloud liquid and ice water path data retrieved from the Moderate Resolution Imaging Spectroradiometer, MODIS, are used to investigate relationships between upper level cloudiness and tropical deep convective anvils. Together these data are used to evaluate cloud / ice water path, gross aspects of vertical hydrometeor structure, and the relationship between cloud extent and surface precipitation that the MERRA reanalysis must capture.

  10. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection

    Energy Technology Data Exchange (ETDEWEB)

    Hourdin, Frederic; Musat, Ionela; Bony, Sandrine; Codron, Francis; Dufresne, Jean-Louis; Fairhead, Laurent; Grandpeix, Jean-Yves; LeVan, Phu; Li, Zhao-Xin; Lott, Francois [CNRS/UPMC, Laboratoire de Meteorologie Dynamique (LMD/IPSL), Paris Cedex 05 (France); Braconnot, Pascale; Friedlingstein, Pierre [Laboratoire des Sciences du Climat et de l' Environnement (LSCE/IPSL), Saclay (France); Filiberti, Marie-Angele [Institut Pierre Simon Laplace (IPSL), Paris (France); Krinner, Gerhard [Laboratoire de Glaciologie et Geophysique de l' Environnement, Grenoble (France)

    2006-12-15

    The LMDZ4 general circulation model is the atmospheric component of the IPSL-CM4 coupled model which has been used to perform climate change simulations for the 4th IPCC assessment report. The main aspects of the model climatology (forced by observed sea surface temperature) are documented here, as well as the major improvements with respect to the previous versions, which mainly come form the parametrization of tropical convection. A methodology is proposed to help analyse the sensitivity of the tropical Hadley-Walker circulation to the parametrization of cumulus convection and clouds. The tropical circulation is characterized using scalar potentials associated with the horizontal wind and horizontal transport of geopotential (the Laplacian of which is proportional to the total vertical momentum in the atmospheric column). The effect of parametrized physics is analysed in a regime sorted framework using the vertical velocity at 500 hPa as a proxy for large scale vertical motion. Compared to Tiedtke's convection scheme, used in previous versions, the Emanuel's scheme improves the representation of the Hadley-Walker circulation, with a relatively stronger and deeper large scale vertical ascent over tropical continents, and suppresses the marked patterns of concentrated rainfall over oceans. Thanks to the regime sorted analyses, these differences are attributed to intrinsic differences in the vertical distribution of convective heating, and to the lack of self-inhibition by precipitating downdraughts in Tiedtke's parametrization. Both the convection and cloud schemes are shown to control the relative importance of large scale convection over land and ocean, an important point for the behaviour of the coupled model. (orig.)

  11. Thermohaline structure and circulation in the upper layers of the southern Bay of Bengal during BOBMEX-Pilot (October-November 1998)

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Murty, V.S.N.; Rao, L.V.G.; Prabhu, C.V.; Tilvi, V.

    Hydrographic data collected on board ORV Sagar Kanya in the southern Bay of Bengal during the BOBMEX-Pilot programme (October -- November 1998) have been used to describe the thermohaline structure and circulation in the upper 200m water column...

  12. Relation of Cloud Occurrence Frequency, Overlap, and Effective Thickness Derived from CALIPSO and CloudSat Merged Cloud Vertical Profiles

    Science.gov (United States)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2009-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profile derived from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical pro les can be related by a set of equations when the correlation distance of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches the random overlap with increasing distance separating cloud layers and that the probability of deviating from the random overlap decreases exponentially with distance. One month of CALIPSO and CloudSat data support these assumptions. However, the correlation distance sometimes becomes large, which might be an indication of precipitation. The cloud correlation distance is equivalent to the de-correlation distance introduced by Hogan and Illingworth [2000] when cloud fractions of both layers in a two-cloud layer system are the same.

  13. Planck intermediate results: XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds

    International Nuclear Information System (INIS)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Arzoumanian, D.

    2016-01-01

    Within ten nearby (d < 450 pc) Gould belt molecular clouds we evaluate in this paper statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, N_H. The selected regions, covering several degrees in size, are analysed at an effective angular resolution of 10' FWHM, thus sampling physical scales from 0.4 to 40 pc in the nearest cloud. The column densities in the selected regions range from N_H≈ 10"2"1 to10"2"3 cm"-"2, and hence they correspond to the bulk of the molecular clouds. The relative orientation is evaluated pixel by pixel and analysed in bins of column density using the novel statistical tool called “histogram of relative orientations”. Throughout this study, we assume that the polarized emission observed by Planck at 353 GHz is representative of the projected morphology of the magnetic field in each region, i.e., we assume a constant dust grain alignment efficiency, independent of the local environment. Within most clouds we find that the relative orientation changes progressively with increasing N_H, from mostly parallel or having no preferred orientation to mostly perpendicular. In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvénic or sub-Alfvénic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck. Finally, we compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution.

  14. Night and Day: The Opacity of Clouds Measured by the Mars Orbiter Laser Altimeter (MOLA)

    Science.gov (United States)

    Neumann, G. A.; Wilson, R. J.

    2006-01-01

    The Mars Orbiter Laser Altimeter (MOLA) [l] on the Mars Global Surveyor spacecraft ranged to clouds over the course of nearly two Mars years [2] using an active laser ranging system. While ranging to the surface, the instrument was also able to measure the product of the surface reflectivity with the two-way atmospheric transmission at 1064 nm. Furthermore, the reflectivity has now been mapped over seasonal cycles using the passive radiometric capability built into MOLA [3]. Combining these measurements, the column opacity may be inferred. MOLA uniquely provides these measurements both night and day. This study examines the pronounced nighttime opacity of the aphelion season tropical water ice clouds, and the indiscernibly low opacity of the southern polar winter clouds. The water ice clouds (Figure 1) do not themselves trigger the altimeter but have measured opacities tau > 1.5 and are temporally and spatially correlated with temperature anomalies predicted by a Mars Global Circulation Model (MGCM) that incorporates cloud radiative effects [4]. The south polar CO2 ice clouds trigger the altimeter with a very high backscatter cross-section over a thickness of 3-9 m and are vertically dispersed over several km, but their total column opacities lie well below the MOLA measurement limit of tau = 0.7. These clouds correspond to regions of supercooled atmosphere that may form either very large specularly reflecting particles [2] or very compact, dense concentrations (>5x10(exp 6)/cu m) of 100-p particles

  15. SCDAP/RELAP5 applications to RCS natural circulation

    International Nuclear Information System (INIS)

    Bayless, P.D.

    1988-01-01

    The effects of natural circulation flows in the reactor coolant system during a TMLB' sequence were investigated. Both in-vessel circulation and hot leg countercurrent flow were modeled in the Surry nuclear power plant using the SCDAP/RELAP5 computer code. The transient was analyzed until after fuel rod relocation had begun. The delays in the onset of relocation resulting from the natural circulation flows were not significant compared to SCDAP/RELAP5 calculations without natural circulation modeled, but were large compared to the analyses presented in NUREG-1150. The most significant aspect of the natural circulations flows was the heating of ex-vessel structures. Surge line failure is likely to occur before the vessel is breached by the molten core, while steam generator tube failure is not expected

  16. Contrasting Cloud Composition Between Coupled and Decoupled Marine Boundary Layer Clouds

    Science.gov (United States)

    WANG, Z.; Mora, M.; Dadashazar, H.; MacDonald, A.; Crosbie, E.; Bates, K. H.; Coggon, M. M.; Craven, J. S.; Xian, P.; Campbell, J. R.; AzadiAghdam, M.; Woods, R. K.; Jonsson, H.; Flagan, R. C.; Seinfeld, J.; Sorooshian, A.

    2016-12-01

    Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (E-PEACE 2011, NiCE 2013, BOAS 2015). Decoupled clouds exhibited significantly lower overall mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and sub-cloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Non-refractory sub-micrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Total cloud water mass concentration in coupled clouds was dominated by sodium and chloride, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea salt constituents (e.g., Cl, Na, Mg, K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. These results suggest that an important variable is the extent to which clouds are coupled to the surface layer when interpreting microphysical data relevant to clouds and aerosol particles.

  17. Chemistry and structure of giant molecular clouds in energetic environments

    Science.gov (United States)

    Anderson, Crystal Nicole

    2016-09-01

    Throughout the years many studies on Galactic star formation have been conducted. This resulted in the idea that giant molecular clouds (GMCs) are hierarchical in nature with substructures spanning a large range of sizes. The physical processes that determine how molecular clouds fragment, form clumps/cores and then stars depends strongly on both recent radiative and mechanical feed- back from massive stars and, on longer term, from enhanced cooling due to the buildup of metals. Radiative and mechanical energy input from stellar populations can alter subsequent star formation over a large part of a galaxy and hence is relevant to the evolution of galaxies. Much of our knowledge of star formation on galaxy wide scales is based on scaling laws and other parametric descriptions. But to understand the overall evolution of star formation in galaxies we need to watch the feedback processes at work on giant molecular cloud (GMC) scales. By doing this we can begin to answer how strong feedback environments change the properties of the substructure in GMCs. Tests of Galactic star formation theory to other galaxies has been a challenging process due to the lack of resolution with current instruments. Thus, only the nearest galaxies allow us to resolve GMCs and their substructures. The Large Magellanic Cloud (LMC), is one of the closest low metallicity dwarf galaxies (D˜ 50 kpc) and is close enough that current instruments can resolve the sub- structure of its GMCs to molecular gas tracers (e.g. HCO+, HCN, HNC, CS, C2H, N2H+) detected in the LMC at 1.5-40 pc scales and in NGC 5253 at 40 pc scales. I then compare the molecular gas detections to the Central Molecular Zone in our Galaxy. Dense molecular gas was detected in all of the sources. For the regions in the LMC, molecular lines of CS, N2H+, C 2H, HNC, HCO+ and HCN were all detected in N159W and N113 while only HCN, HCO+, HNC, and C2H were detected in 30Dor-10. Toward NGC 5253 only HCO+, HCN, C2H and CS were detected. I

  18. A portable low-cost 3D point cloud acquiring method based on structure light

    Science.gov (United States)

    Gui, Li; Zheng, Shunyi; Huang, Xia; Zhao, Like; Ma, Hao; Ge, Chao; Tang, Qiuxia

    2018-03-01

    A fast and low-cost method of acquiring 3D point cloud data is proposed in this paper, which can solve the problems of lack of texture information and low efficiency of acquiring point cloud data with only one pair of cheap cameras and projector. Firstly, we put forward a scene adaptive design method of random encoding pattern, that is, a coding pattern is projected onto the target surface in order to form texture information, which is favorable for image matching. Subsequently, we design an efficient dense matching algorithm that fits the projected texture. After the optimization of global algorithm and multi-kernel parallel development with the fusion of hardware and software, a fast acquisition system of point-cloud data is accomplished. Through the evaluation of point cloud accuracy, the results show that point cloud acquired by the method proposed in this paper has higher precision. What`s more, the scanning speed meets the demand of dynamic occasion and has better practical application value.

  19. Context-aware distributed cloud computing using CloudScheduler

    Science.gov (United States)

    Seuster, R.; Leavett-Brown, CR; Casteels, K.; Driemel, C.; Paterson, M.; Ring, D.; Sobie, RJ; Taylor, RP; Weldon, J.

    2017-10-01

    The distributed cloud using the CloudScheduler VM provisioning service is one of the longest running systems for HEP workloads. It has run millions of jobs for ATLAS and Belle II over the past few years using private and commercial clouds around the world. Our goal is to scale the distributed cloud to the 10,000-core level, with the ability to run any type of application (low I/O, high I/O and high memory) on any cloud. To achieve this goal, we have been implementing changes that utilize context-aware computing designs that are currently employed in the mobile communication industry. Context-awareness makes use of real-time and archived data to respond to user or system requirements. In our distributed cloud, we have many opportunistic clouds with no local HEP services, software or storage repositories. A context-aware design significantly improves the reliability and performance of our system by locating the nearest location of the required services. We describe how we are collecting and managing contextual information from our workload management systems, the clouds, the virtual machines and our services. This information is used not only to monitor the system but also to carry out automated corrective actions. We are incrementally adding new alerting and response services to our distributed cloud. This will enable us to scale the number of clouds and virtual machines. Further, a context-aware design will enable us to run analysis or high I/O application on opportunistic clouds. We envisage an open-source HTTP data federation (for example, the DynaFed system at CERN) as a service that would provide us access to existing storage elements used by the HEP experiments.

  20. AceCloud: Molecular Dynamics Simulations in the Cloud.

    Science.gov (United States)

    Harvey, M J; De Fabritiis, G

    2015-05-26

    We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.

  1. VMware private cloud computing with vCloud director

    CERN Document Server

    Gallagher, Simon

    2013-01-01

    It's All About Delivering Service with vCloud Director Empowered by virtualization, companies are not just moving into the cloud, they're moving into private clouds for greater security, flexibility, and cost savings. However, this move involves more than just infrastructure. It also represents a different business model and a new way to provide services. In this detailed book, VMware vExpert Simon Gallagher makes sense of private cloud computing for IT administrators. From basic cloud theory and strategies for adoption to practical implementation, he covers all the issues. You'll lea

  2. The response of filamentary and spherical clouds to the turbulence and magnetic field

    Science.gov (United States)

    Gholipour, Mahmoud

    2018-05-01

    Recent observations have revealed that there is a power-law relation between magnetic field and density in molecular clouds. Furthermore, turbulence has been observed in some regions of molecular clouds and the velocity dispersion resulting from the turbulence is found to correlate with to the cloud density. Relating to these observations, in this study, we model filamentary and spherical clouds in magnetohydrostatic equilibrium in two quiescent and turbulent regions. The proposed equations are expected to represent the impact of magnetic field and turbulence on the cloud structure and the relation of cloud mass with shape. The Virial theorem is applied to consider the cloud evolution leading to important conditions for equilibrium of the cloud over its lifetime. The obtained results indicate that under the same conditions of the magnetic field and turbulence, each shape presents different responses. The possible ways for the formation of massive cores or coreless clouds in some regions as well as the formation of massive stars or low-mass stars can be discussed based on the results of this study. It should be mentioned that the shape of the clouds plays an important role in the formation of the protostellar clouds as well as their structure and evolution. This role is due to the effects of magnetic fields and turbulence.

  3. IS THE DUST CLOUD AROUND LAMBDA ORIONIS A RING OR A SHELL, OR BOTH?

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dukhang; Seon, Kwang-Il; Jo, Young-Soo, E-mail: lee.dukhang@gmail.com [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2015-06-20

    The dust cloud around λ Orionis is observed to be circularly symmetric with a large angular extent (≈8°). However, whether the three-dimensional (3D) structure of the cloud is shell- or ring-like has not yet been fully resolved. We study the 3D structure using a new approach that combines a 3D Monte Carlo radiative transfer model for ultraviolet (UV) scattered light and an inverse Abel transform, which gives a detailed 3D radial density profile from a two-dimensional column density map of a spherically symmetric cloud. By comparing the radiative transfer models for a spherical shell cloud and that for a ring cloud, we find that only the shell model can reproduce the radial profile of the scattered UV light, observed using the S2/68 UV observation, suggesting a dust shell structure. However, the inverse Abel transform applied to the column density data from the Pan-STARRS1 dust reddening map results in negative values at a certain radius range of the density profile, indicating the existence of additional, non-spherical clouds near the nebular boundary. The additional cloud component is assumed to be of toroidal ring shape; we subtracted from the column density to obtain a positive, radial density profile using the inverse Abel transform. The resulting density structure, composed of a toroidal ring and a spherical shell, is also found to give a good fit to the UV scattered light profile. We therefore conclude that the cloud around λ Ori is composed of both ring and shell structures.

  4. Response to marine cloud brightening in a multi-model ensemble

    Directory of Open Access Journals (Sweden)

    C. W. Stjern

    2018-01-01

    Full Text Available Here we show results from Earth system model simulations from the marine cloud brightening experiment G4cdnc of the Geoengineering Model Intercomparison Project (GeoMIP. The nine contributing models prescribe a 50 % increase in the cloud droplet number concentration (CDNC of low clouds over the global oceans in an experiment dubbed G4cdnc, with the purpose of counteracting the radiative forcing due to anthropogenic greenhouse gases under the RCP4.5 scenario. The model ensemble median effective radiative forcing (ERF amounts to −1.9 W m−2, with a substantial inter-model spread of −0.6 to −2.5 W m−2. The large spread is partly related to the considerable differences in clouds and their representation between the models, with an underestimation of low clouds in several of the models. All models predict a statistically significant temperature decrease with a median of (for years 2020–2069 −0.96 [−0.17 to −1.21] K relative to the RCP4.5 scenario, with particularly strong cooling over low-latitude continents. Globally averaged there is a weak but significant precipitation decrease of −2.35 [−0.57 to −2.96] % due to a colder climate, but at low latitudes there is a 1.19 % increase over land. This increase is part of a circulation change where a strong negative top-of-atmosphere (TOA shortwave forcing over subtropical oceans, caused by increased albedo associated with the increasing CDNC, is compensated for by rising motion and positive TOA longwave signals over adjacent land regions.

  5. Buildings and Terrain of Urban Area Point Cloud Segmentation based on PCL

    International Nuclear Information System (INIS)

    Liu, Ying; Zhong, Ruofei

    2014-01-01

    One current problem with laser radar point data classification is building and urban terrain segmentation, this paper proposes a point cloud segmentation method base on PCL libraries. PCL is a large cross-platform open source C++ programming library, which implements a large number of point cloud related efficient data structures and generic algorithms involving point cloud retrieval, filtering, segmentation, registration, feature extraction and curved surface reconstruction, visualization, etc. Due to laser radar point cloud characteristics with large amount of data, unsymmetrical distribution, this paper proposes using the data structure of kd-tree to organize data; then using Voxel Grid filter for point cloud resampling, namely to reduce the amount of point cloud data, and at the same time keep the point cloud shape characteristic; use PCL Segmentation Module, we use a Euclidean Cluster Extraction class with Europe clustering for buildings and ground three-dimensional point cloud segmentation. The experimental results show that this method avoids the multiple copy system existing data needs, saves the program storage space through the call of PCL library method and class, shortens the program compiled time and improves the running speed of the program

  6. The impact of horizontal heterogeneities, cloud fraction, and cloud dynamics on warm cloud effective radii and liquid water path from CERES-like Aqua MODIS retrievals

    Science.gov (United States)

    Painemal, D.; Minnis, P.; Sun-Mack, S.

    2013-05-01

    The impact of horizontal heterogeneities, liquid water path (LWP from AMSR-E), and cloud fraction (CF) on MODIS cloud effective radius (re), retrieved from the 2.1 μm (re2.1) and 3.8 μm (re3.8) channels, is investigated for warm clouds over the southeast Pacific. Values of re retrieved using the CERES Edition 4 algorithms are averaged at the CERES footprint resolution (~ 20 km), while heterogeneities (Hσ) are calculated as the ratio between the standard deviation and mean 0.64 μm reflectance. The value of re2.1 strongly depends on CF, with magnitudes up to 5 μm larger than those for overcast scenes, whereas re3.8 remains insensitive to CF. For cloudy scenes, both re2.1 and re3.8 increase with Hσ for any given AMSR-E LWP, but re2.1 changes more than for re3.8. Additionally, re3.8 - re2.1 differences are positive ( 50 g m-2, and negative (up to -4 μm) for larger Hσ. Thus, re3.8 - re2.1 differences are more likely to reflect biases associated with cloud heterogeneities rather than information about the cloud vertical structure. The consequences for MODIS LWP are also discussed.

  7. The Research of Dr. Joanne Simpson: Fifty Years Investigating Hurricanes, Tropical Clouds and Cloud Systems

    Science.gov (United States)

    Tao, W. -K.; Halverson, J.; Adler, R.; Garstang, M.; Houze, R., Jr.; LeMone, M.; Pielke, R., Sr.; Woodley, W.; O'C.Starr, David (Technical Monitor)

    2001-01-01

    This AMS Meteorological Monographs is dedicated to Dr. Joanne Simpson for her many pioneering research efforts in tropical meteorology during her fifty-year career. Dr. Simpson's major areas of scientific research involved the "hot tower" hypothesis and its role in hurricanes, structure and maintenance of trade winds, air-sea interaction, and observations and the mechanism for hurricanes and waterspouts. She was also a pioneer in cloud modeling with the first one-dimensional model and had the first cumulus model on a computer. She also played a major role in planning and leading observational experiments on convective cloud systems. The launch of the Tropical Rainfall Measuring Mission (TRMM) satellite, a joint U.S.-Japan project, in November of 1997 made it possible for quantitative measurements of tropical rainfall to be obtained on a continuous basis over the entire global tropics. Dr. Simpson was the TRAM Project Scientist from 1986 until its launch in 1997. Her efforts during this crucial period ensured that the mission was both well planned scientifically and well engineered as well as within budget. In this paper, Dr. J. Simpson's nine specific accomplishments during her fifty-year career: (1) hot tower hypothesis, (2) hurricanes, (3) airflow and clouds over heated islands, (4) cloud models, (5) trade winds and their role in cumulus development, (6) air-sea interaction, (7) cloud-cloud interactions and mergers, (8) waterspouts, and (9) TRMM science, will be described and discussed.

  8. Sedimentation Efficiency of Condensation Clouds in Substellar Atmospheres

    Science.gov (United States)

    Gao, Peter; Marley, Mark S.; Ackerman, Andrew S.

    2018-03-01

    Condensation clouds in substellar atmospheres have been widely inferred from spectra and photometric variability. Up until now, their horizontally averaged vertical distribution and mean particle size have been largely characterized using models, one of which is the eddy diffusion–sedimentation model from Ackerman and Marley that relies on a sedimentation efficiency parameter, f sed, to determine the vertical extent of clouds in the atmosphere. However, the physical processes controlling the vertical structure of clouds in substellar atmospheres are not well understood. In this work, we derive trends in f sed across a large range of eddy diffusivities (K zz ), gravities, material properties, and cloud formation pathways by fitting cloud distributions calculated by a more detailed cloud microphysics model. We find that f sed is dependent on K zz , but not gravity, when K zz is held constant. f sed is most sensitive to the nucleation rate of cloud particles, as determined by material properties like surface energy and molecular weight. High surface energy materials form fewer, larger cloud particles, leading to large f sed (>1), and vice versa for materials with low surface energy. For cloud formation via heterogeneous nucleation, f sed is sensitive to the condensation nuclei flux and radius, connecting cloud formation in substellar atmospheres to the objects’ formation environments and other atmospheric aerosols. These insights could lead to improved cloud models that help us better understand substellar atmospheres. For example, we demonstrate that f sed could increase with increasing cloud base depth in an atmosphere, shedding light on the nature of the brown dwarf L/T transition.

  9. Evaluation of cloud properties in the NOAA/NCEP global forecast system using multiple satellite products

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyelim [University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States); Li, Zhanqing [University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States); Beijing Normal University, State Key Laboratory of Earth Surface Processes and Resource Ecology, GCESS, Beijing (China)

    2012-12-15

    Knowledge of cloud properties and their vertical structure is important for meteorological studies due to their impact on both the Earth's radiation budget and adiabatic heating within the atmosphere. The objective of this study is to evaluate bulk cloud properties and vertical distribution simulated by the US National Oceanic and Atmospheric Administration National Centers for Environmental Prediction Global Forecast System (GFS) using three global satellite products. Cloud variables evaluated include the occurrence and fraction of clouds in up to three layers, cloud optical depth, liquid water path, and ice water path. Cloud vertical structure data are retrieved from both active (CloudSat/CALIPSO) and passive sensors and are subsequently compared with GFS model results. In general, the GFS model captures the spatial patterns of hydrometeors reasonably well and follows the general features seen in satellite measurements, but large discrepancies exist in low-level cloud properties. More boundary layer clouds over the interior continents were generated by the GFS model whereas satellite retrievals showed more low-level clouds over oceans. Although the frequencies of global multi-layer clouds from observations are similar to those from the model, latitudinal variations show discrepancies in terms of structure and pattern. The modeled cloud optical depth over storm track region and subtropical region is less than that from the passive sensor and is overestimated for deep convective clouds. The distributions of ice water path (IWP) agree better with satellite observations than do liquid water path (LWP) distributions. Discrepancies in LWP/IWP distributions between observations and the model are attributed to differences in cloud water mixing ratio and mean relative humidity fields, which are major control variables determining the formation of clouds. (orig.)

  10. Creating cloud-free Landsat ETM+ data sets in tropical landscapes: cloud and cloud-shadow removal

    Science.gov (United States)

    Sebastián Martinuzzi; William A. Gould; Olga M. Ramos Gonzalez

    2007-01-01

    Clouds and cloud shadows are common features of visible and infrared remotelysensed images collected from many parts of the world, particularly in humid and tropical regions. We have developed a simple and semiautomated method to mask clouds and shadows in Landsat ETM+ imagery, and have developed a recent cloud-free composite of multitemporal images for Puerto Rico and...

  11. Remote Sensing of Crystal Shapes in Ice Clouds

    Science.gov (United States)

    van Diedenhoven, Bastiaan

    2017-01-01

    Ice crystals in clouds exist in a virtually limitless variation of geometries. The most basic shapes of ice crystals are columnar or plate-like hexagonal prisms with aspect ratios determined by relative humidity and temperature. However, crystals in ice clouds generally display more complex structures owing to aggregation, riming and growth histories through varying temperature and humidity regimes. Crystal shape is relevant for cloud evolution as it affects microphysical properties such as fall speeds and aggregation efficiency. Furthermore, the scattering properties of ice crystals are affected by their general shape, as well as by microscopic features such as surface roughness, impurities and internal structure. To improve the representation of ice clouds in climate models, increased understanding of the global variation of crystal shape and how it relates to, e.g., location, cloud temperature and atmospheric state is crucial. Here, the remote sensing of ice crystal macroscale and microscale structure from airborne and space-based lidar depolarization observations and multi-directional measurements of total and polarized reflectances is reviewed. In addition, a brief overview is given of in situ and laboratory observations of ice crystal shape as well as the optical properties of ice crystals that serve as foundations for the remote sensing approaches. Lidar depolarization is generally found to increase with increasing cloud height and to vary with latitude. Although this variation is generally linked to the variation of ice crystal shape, the interpretation of the depolarization remains largely qualitative and more research is needed before quantitative conclusions about ice shape can be deduced. The angular variation of total and polarized reflectances of ice clouds has been analyzed by numerous studies in order to infer information about ice crystal shapes from them. From these studies it is apparent that pristine crystals with smooth surfaces are generally

  12. The structure and origin of magnetic clouds in the solar wind

    Directory of Open Access Journals (Sweden)

    V. Bothmer

    Full Text Available Plasma and magnetic field data from the Helios 1/2 spacecraft have been used to investigate the structure of magnetic clouds (MCs in the inner heliosphere. 46 MCs were identified in the Helios data for the period 1974–1981 between 0.3 and 1 AU. 85% of the MCs were associated with fast-forward interplanetary shock waves, supporting the close association between MCs and SMEs (solar mass ejections. Seven MCs were identified as direct consequences of Helios-directed SMEs, and the passage of MCs agreed with that of interplanetary plasma clouds (IPCs identified as white-light brightness enhancements in the Helios photometer data. The total (plasma and magnetic field pressure in MCs was higher and the plasma-β lower than in the surrounding solar wind. Minimum variance analysis (MVA showed that MCs can best be described as large-scale quasi-cylindrical magnetic flux tubes. The axes of the flux tubes usually had a small inclination to the ecliptic plane, with their azimuthal direction close to the east-west direction. The large-scale flux tube model for MCs was validated by the analysis of multi-spacecraft observations. MCs were observed over a range of up to ~60° in solar longitude in the ecliptic having the same magnetic configuration. The Helios observations further showed that over-expansion is a common feature of MCs. From a combined study of Helios, Voyager and IMP data we found that the radial diameter of MCs increases between 0.3 and 4.2 AU proportional to the distance, R, from the Sun as R0.8 (R in AU. The density decrease inside MCs was found to be proportional to R–2.4, thus being stronger compared to the average solar wind. Four different magnetic configurations, as expected from the flux-tube concept, for MCs have been observed in situ by the Helios probes. MCs with left- and right-handed magnetic helicity occurred with about equal frequencies during 1974–1981, but surprisingly, the majority (74% of the MCs had

  13. 3D And 4D Cloud Lifecycle Investigations Using Innovative Scanning Radar Analysis Methods. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kollias, Pavlos [Stony Brook Univ., NY (United States)

    2017-04-23

    With the vast upgrades to the ARM program radar measurement capabilities in 2010 and beyond, our ability to probe the 3D structure of clouds and associated precipitation has increased dramatically. This project build on the PI's and co-I's expertisein the analysis of radar observations. The first research thrust aims to document the 3D morphological (as depicted by the radar reflectivity structure) and 3D dynamical (cloud$-$scale eddies) structure of boundary layer clouds. Unraveling the 3D dynamical structure of stratocumulus and shallow cumulus clouds requires decomposition of the environmental wind contribution and particle sedimentation velocity from the observed radial Doppler velocity. The second thrust proposes to unravel the mechanism of cumulus entrainment (location, scales) and its impact on microphysics utilizing radar measurements from the vertically pointing and new scanning radars at the ARM sites. The third research thrust requires the development of a cloud$-$tracking algorithm that monitors the properties of cloud.

  14. Using Laboratory Methods to Better Understand Refractory Cloud Formation in Exoplanet Atmospheres

    Science.gov (United States)

    Kohler, E.; Ferguson, F.

    2017-12-01

    The high number of extrasolar planets found in recent years has brought a new importance to planetary atmospheres. These recently discovered planets show a large diversity in their masses, temperatures, orbital periods, and other properties. With such a diverse mix of planetary parameters, it is safe to assume that the atmospheric properties are just as varied. Recent literature suggests silicates and metals as possible condensates in extrasolar planetary atmospheres as well as the atmospheres of brown dwarfs. While theoretical studies have laid the foundation of cloud formation analysis, their findings still need to be validated via experiments. A verification of the condensation and vaporization predictions of refractory materials needs to be found in order to assist global circulation models in being as accurate as possible. The stability of minerals identified in the literature as potential candidates, will be tested in a thermogravimetric balance. The minerals will be pumped under vacuum for twenty-four hours under room temperature and then heated to a predetermined high temperature, dependent on the expected vaporization temperature of that sample. If there is apparent mass loss, then the temperature will be lowered at preset durations and mass measurements will be taken in similar measured increments. The data will be processed by a computer program in order to calculate the mass loss as a function of temperature. The current cloud formation and global circulation models are very important to the field of planetary science but their accuracy is hindered by the lack of experimental data. The aim of this work is to investigate the mineral stability of potential condensates in an effort to explain the formation of refractory clouds in the atmospheres of extrasolar planets and brown dwarfs.

  15. Influence of Ice Particle Surface Roughening on the Global Cloud Radiative Effect

    Science.gov (United States)

    Yi, Bingqi; Yang, Ping; Baum, Bryan A.; LEcuyer, Tristan; Oreopoulos, Lazaros; Mlawer, Eli J.; Heymsfield, Andrew J.; Liou, Kuo-Nan

    2013-01-01

    Ice clouds influence the climate system by changing the radiation budget and large-scale circulation. Therefore, climate models need to have an accurate representation of ice clouds and their radiative effects. In this paper, new broadband parameterizations for ice cloud bulk scattering properties are developed for severely roughened ice particles. The parameterizations are based on a general habit mixture that includes nine habits (droxtals, hollow/solid columns, plates, solid/hollow bullet rosettes, aggregate of solid columns, and small/large aggregates of plates). The scattering properties for these individual habits incorporate recent advances in light-scattering computations. The influence of ice particle surface roughness on the ice cloud radiative effect is determined through simulations with the Fu-Liou and the GCM version of the Rapid Radiative Transfer Model (RRTMG) codes and the National Center for Atmospheric Research Community Atmosphere Model (CAM, version 5.1). The differences in shortwave (SW) and longwave (LW) radiative effect at both the top of the atmosphere and the surface are determined for smooth and severely roughened ice particles. While the influence of particle roughening on the single-scattering properties is negligible in the LW, the results indicate that ice crystal roughness can change the SW forcing locally by more than 10 W m(exp -2) over a range of effective diameters. The global-averaged SW cloud radiative effect due to ice particle surface roughness is estimated to be roughly 1-2 W m(exp -2). The CAM results indicate that ice particle roughening can result in a large regional SW radiative effect and a small but nonnegligible increase in the global LW cloud radiative effect.

  16. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet.

    Science.gov (United States)

    Hofer, Stefan; Tedstone, Andrew J; Fettweis, Xavier; Bamber, Jonathan L

    2017-06-01

    The Greenland Ice Sheet (GrIS) has been losing mass at an accelerating rate since the mid-1990s. This has been due to both increased ice discharge into the ocean and melting at the surface, with the latter being the dominant contribution. This change in state has been attributed to rising temperatures and a decrease in surface albedo. We show, using satellite data and climate model output, that the abrupt reduction in surface mass balance since about 1995 can be attributed largely to a coincident trend of decreasing summer cloud cover enhancing the melt-albedo feedback. Satellite observations show that, from 1995 to 2009, summer cloud cover decreased by 0.9 ± 0.3% per year. Model output indicates that the GrIS summer melt increases by 27 ± 13 gigatons (Gt) per percent reduction in summer cloud cover, principally because of the impact of increased shortwave radiation over the low albedo ablation zone. The observed reduction in cloud cover is strongly correlated with a state shift in the North Atlantic Oscillation promoting anticyclonic conditions in summer and suggests that the enhanced surface mass loss from the GrIS is driven by synoptic-scale changes in Arctic-wide atmospheric circulation.

  17. Local time dependence of the thermal structure in the Venusian equatorial region revealed by Akatsuki radio occultation measurements

    Science.gov (United States)

    Ando, H.; Fukuhara, T.; Takagi, M.; Imamura, T.; Sugimoto, N.; Sagawa, H.

    2017-12-01

    The radio occultation technique is one of the most useful methods to retrieve vertical temperature profiles in planetary atmospheres. Ultra-Stable Oscillator (USO) onboard Venus Climate Orbiter, Akatsuki, enables us to investigate the thermal structure of the Venus atmosphere between about 40-90 km levels. It is expected that 35 temperature profiles will be obtained by the radio occultation measurements of Akatsuki until August 2017. Static stability derived from the temperature profiles shows its local time dependence above the cloud top level at low-latitudes equatorward of 25˚. The vertical profiles of the static stability in the dawn and dusk regions have maxima at 77 km and 82 km levels, respectively. A general circulation model (GCM) for the Venus atmosphere (AFES-Venus) reproduced the thermal structures above the cloud top qualitatively consistent with the radio occultation measurements; the maxima of the static stability are seen both in the dawn and dusk regions, and the local maximum of the static stability in the dusk region is located at a highler level than in the dawn region. Comparing the thermal structures between the radio occultation measurements and the GCM results, it is suggested that the distribution of the static stability above the cloud top could be strongly affected by the diurnal tide. The thermal tide influences on the thermal structure as well as atmospheric motions above the cloud level. In addition, it is shown that zonally averaged zonal wind at about 80 km altitude could be roughly estimated from the radio occultation measurements using the dispersion relation of the internal gravity wave.

  18. Radiation pressure - a stabilizing agent of dust clouds in comets?

    International Nuclear Information System (INIS)

    Froehlich, H.E.; Notni, P.

    1988-01-01

    The internal dynamics of an illuminated dust cloud of finite optical thickness is investigated. The dependence of the radiation pressure on the optical depth makes the individual particles oscillate, in one dimension, around the accelerated centre of gravity of the cloud. The cloud moves as an entity, irrespectively of the velocity dispersion of the particles and their efficiency for radiation pressure. If the optical depth does not change, i.e. if the cloud does not expand laterally, its lifetime is unlimited. A contraction caused by energy dissipation in mechanical collisions between the dust particles is expected. The range of particle sizes which can be transported by such a 'coherent cloud' is estimated, as well as the acceleration of the whole cloud. The structure of the cloud in real space and in velocity space is investigated. A comparison with the 'striae' observed in the dust tails of great comets shows that the parent clouds of these striae may have been of the kind considered. (author)

  19. Zen of cloud learning cloud computing by examples on Microsoft Azure

    CERN Document Server

    Bai, Haishi

    2014-01-01

    Zen of Cloud: Learning Cloud Computing by Examples on Microsoft Azure provides comprehensive coverage of the essential theories behind cloud computing and the Windows Azure cloud platform. Sharing the author's insights gained while working at Microsoft's headquarters, it presents nearly 70 end-to-end examples with step-by-step guidance on implementing typical cloud-based scenarios.The book is organized into four sections: cloud service fundamentals, cloud solutions, devices and cloud, and system integration and project management. Each chapter contains detailed exercises that provide readers w

  20. Photometric Metallicities of the Small and Large Magellanic Clouds

    Science.gov (United States)

    Miller, Amy Elizabeth

    2018-06-01

    In the field of astronomy, the study of galaxies is vitally important to understanding the structure and evolution of the universe. Within the study of galaxies, of particular interest are the Small and Large Magellanic Clouds (SMC and LMC, respectively), two of the Milky Way’s closest and most massive satellite galaxies. Their close proximity make them ideal candidates for understanding astrophysical processes such as galaxy interactions. In order to fully understand the Magellanic Clouds, it is imperative that the metallicity of the clouds be mapped in detail. In order to accomplish this task, I will use data from the Survey of Magellanic Stellar History (SMASH) which is a deep, multi-band (ugriz) photometric survey of the Magellanic Clouds that contains approximately 400 million objects in 197 fully-calibrated fields. SMASH is an extensive and deep photometric data set that enables the full-scale study of the galactic structure in the Clouds. The SMASH u-band is sensitive to metallicity for main-sequence turn-off stars which we calibrate using SDSS spectroscopy in overlapping regions (mainly standard star fields). The final steps will be to make metallicity maps of the main bodies and peripheries of the LMC and SMC. Ultimately, these metallicity maps will help us trace out population gradients in the Clouds and uncover the origin of their very extended stellar peripheries.

  1. Ash cloud aviation advisories

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Ellis, J.S. [Lawrence Livermore National Lab., CA (United States); Schalk, W.W.; Nasstrom, J.S. [EG and G, Inc., Pleasanton, CA (United States)

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  2. TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Gao, Yang; Law, Chung K.; Xu, Haitao

    2015-01-01

    The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation

  3. COMPARATIVE STUDY OF CLOUD COMPUTING AND MOBILE CLOUD COMPUTING

    OpenAIRE

    Nidhi Rajak*, Diwakar Shukla

    2018-01-01

    Present era is of Information and Communication Technology (ICT) and there are number of researches are going on Cloud Computing and Mobile Cloud Computing such security issues, data management, load balancing and so on. Cloud computing provides the services to the end user over Internet and the primary objectives of this computing are resource sharing and pooling among the end users. Mobile Cloud Computing is a combination of Cloud Computing and Mobile Computing. Here, data is stored in...

  4. The Clouds distributed operating system - Functional description, implementation details and related work

    Science.gov (United States)

    Dasgupta, Partha; Leblanc, Richard J., Jr.; Appelbe, William F.

    1988-01-01

    Clouds is an operating system in a novel class of distributed operating systems providing the integration, reliability, and structure that makes a distributed system usable. Clouds is designed to run on a set of general purpose computers that are connected via a medium-of-high speed local area network. The system structuring paradigm chosen for the Clouds operating system, after substantial research, is an object/thread model. All instances of services, programs and data in Clouds are encapsulated in objects. The concept of persistent objects does away with the need for file systems, and replaces it with a more powerful concept, namely the object system. The facilities in Clouds include integration of resources through location transparency; support for various types of atomic operations, including conventional transactions; advanced support for achieving fault tolerance; and provisions for dynamic reconfiguration.

  5. Review of Cloud Computing and existing Frameworks for Cloud adoption

    OpenAIRE

    Chang, Victor; Walters, Robert John; Wills, Gary

    2014-01-01

    This paper presents a selected review for Cloud Computing and explains the benefits and risks of adopting Cloud Computing in a business environment. Although all the risks identified may be associated with two major Cloud adoption challenges, a framework is required to support organisations as they begin to use Cloud and minimise risks of Cloud adoption. Eleven Cloud Computing frameworks are investigated and a comparison of their strengths and limitations is made; the result of the comparison...

  6. The representation of low-level clouds during the West African monsoon in weather and climate models

    Science.gov (United States)

    Kniffka, Anke; Hannak, Lisa; Knippertz, Peter; Fink, Andreas

    2016-04-01

    The West African monsoon is one of the most important large-scale circulation features in the tropics and the associated seasonal rainfalls are crucial to rain-fed agriculture and water resources for hundreds of millions of people. However, numerical weather and climate models still struggle to realistically represent salient features of the monsoon across a wide range of scales. Recently it has been shown that substantial errors in radiation and clouds exist in the southern parts of West Africa (8°W-8°E, 5-10°N) during summer. This area is characterised by strong low-level jets associated with the formation of extensive ultra-low stratus clouds. Often persisting long after sunrise, these clouds have a substantial impact on the radiation budget at the surface and thus the diurnal evolution of the planetary boundary layer (PBL). Here we present some first results from a detailed analysis of the representation of these clouds and the associated PBL features across a range of weather and climate models. Recent climate model simulations for the period 1991-2010 run in the framework of the Year of Tropical Convection (YOTC) offer a great opportunity for this analysis. The models are those used for the latest Assessment Report of the Intergovernmental Panel on Climate Change, but for YOTC the model output has a much better temporal resolution, allowing to resolve the diurnal cycle, and includes diabatic terms, allowing to much better assess physical reasons for errors in low-level temperature, moisture and thus cloudiness. These more statistical climate model analyses are complemented by experiments using ICON (Icosahedral non-hydrostatic general circulation model), the new numerical weather prediction model of the German Weather Service and the Max Planck Institute for Meteorology. ICON allows testing sensitivities to model resolution and numerical schemes. These model simulations are validated against (re-)analysis data, satellite observations (e.g. CM SAF cloud and

  7. Internal structure and stability of an interstellar cloud heated by an external flux of soft X-rays

    International Nuclear Information System (INIS)

    Sabano, Yutaka; Tosa, Makoto

    1975-01-01

    We study the properties of an interstellar gas cloud which is heated by an external flux of soft X-rays and has a uniform pressure distribution. The heating flux is significantly attenuated inside the cloud even for a rather small cloud, and the central region of the cloud is much cooler and denser than that heated uniformly, hence the cloud can be compressed easier. The stability of such a gas cloud and its implications for the process of star formation are discussed on the basis of the two-phase model of the interstellar medium. The large scale galactic shock seems important as a triggering mechanism for the formation of a dense cloud and for the gravitational collapse leading to star formation. (author)

  8. Clouds and the Near-Earth Environment: Possible Links

    Directory of Open Access Journals (Sweden)

    Condurache-Bota Simona

    2015-12-01

    Full Text Available Climate variability is a hot topic not only for scientists and policy-makers, but also for each and every one of us. The anthropogenic activities are considered to be responsible for most climate change, however there are large uncertainties about the magnitude of effects of solar variability and other extraterrestrial influences, such as galactic cosmic rays on terrestrial climate. Clouds play an important role due to feedbacks of the radiation budget: variation of cloud cover/composition affects climate, which, in turn, affects cloud cover via atmospheric dynamics and sea temperature variations. Cloud formation and evolution are still under scientific scrutiny, since their microphysics is still not understood. Besides atmospheric dynamics and other internal climatic parameters, extraterrestrial sources of cloud cover variation are considered. One of these is the solar wind, whose effect on cloud cover might be modulated by the global atmospheric electrical circuit. Clouds height and composition, their seasonal variation and latitudinal distribution should be considered when trying to identify possible mechanisms by which solar energy is transferred to clouds. The influence of the solar wind on cloud formation can be assessed also through the ap index - the geomagnetic storm index, which can be readily connected with interplanetary magnetic field, IMF structure. This paper proposes to assess the possible relationship between both cloud cover and solar wind proxies, as the ap index, function of cloud height and composition and also through seasonal studies. The data covers almost three solar cycles (1984-2009. Mechanisms are looked for by investigating observed trends or correlation at local/seasonal scale

  9. INDICATORS FOR CLUSTER SURVIVABILITY IN A DISPERSING CLOUD

    International Nuclear Information System (INIS)

    Chen, H.-C.; Ko, C.-M.

    2009-01-01

    We use N-body simulations to survey the response of embedded star clusters to the dispersal of their parent molecular cloud. The final stages of the clusters can be divided into three classes: the cluster (1) is destroyed, (2) has a loose structure, and (3) has a compact core. We are interested in three of the governing parameters of the parent cloud: (1) the mass, (2) the size, and (3) the dispersing rate. It is known that the final stage of the cluster is well correlated with the star formation efficiency (SFE) for systems with the same cluster and cloud profile. We deem that the SFE alone is not enough to address systems with clouds of different sizes. Our result shows that the initial cluster-cloud mass ratio at a certain Lagrangian radius and the initial kinetic energy are better indicators for the survivability of embedded clusters.

  10. Turbulent Cloud Structure and Power Spectrum from 23 years of HST Observations

    Science.gov (United States)

    Cosentino, Richard; Simon, Amy; Morales-Juberias, Raul

    2018-01-01

    Images of Jupiter’s clouds show that turbulence is a ubiquitous phenomenon over many orders of scale size. According to Kolmogorov’s theory for turbulence, the frequency/distribution of clouds at various scales can be used to produce an energy power spectrum of a passive tracer. Kolmogorov theory predicts the spectral slopes for “shallow” and “deep” fluids in motion by following how energy is injected and dissipated in the fluid. We are quantifying the turbulent nature of Jupiter’s clouds over 23 years of Hubble Space Telescope (HST) observations using an algorithm first presented in Choi and Showman (2011, Icarus 216). We applied the power spectrum fitting algorithm to a variety of filters from available HST data and tested its sensitivity to free parameters and compare our results to Choi and Showman (2011). We will comment on the evidence for a 2D turbulent regime In Jupiter’s clouds and will report on empirical values found in the spectra and their physical interpretations, such as the Rhines scale. We also will report on the behavior of the passive tracer power spectrum and trends that exist over time for different latitudinal regions, primarily the belts and zones and the north and south equatorial belts.

  11. Ocean Heat Uptake Slows 21st Century Surface Warming Driven by Extratropical Cloud Feedbacks

    Science.gov (United States)

    Frey, W.; Maroon, E.; Pendergrass, A. G.; Kay, J. E.

    2017-12-01

    Equilibrium climate sensitivity (ECS), the warming in response to instantaneously doubled CO2, has long been used to compare climate models. In many models, ECS is well correlated with warming produced by transient forcing experiments. Modifications to cloud phase at high latitudes in a state-of-the-art climate model, the Community Earth System Model (CESM), produce a large increase in ECS (1.5 K) via extratropical cloud feedbacks. However, only a small surface warming increase occurs in a realistic 21st century simulation including a full-depth dynamic ocean and the "business as usual" RCP8.5 emissions scenario. In fact, the increase in surface warming is only barely above the internal variability-generated range in the CESM Large Ensemble. The small change in 21st century warming is attributed to subpolar ocean heat uptake in both hemispheres. In the Southern Ocean, the mean-state circulation takes up heat while in the North Atlantic a slowdown in circulation acts as a feedback to slow surface warming. These results show the importance of subpolar ocean heat uptake in controlling the pace of warming and demonstrate that ECS cannot be used to reliably infer transient warming when it is driven by extratropical feedbacks.

  12. Cloud CCN feedback

    International Nuclear Information System (INIS)

    Hudson, J.G.

    1992-01-01

    Cloud microphysics affects cloud albedo precipitation efficiency and the extent of cloud feedback in response to global warming. Compared to other cloud parameters, microphysics is unique in its large range of variability and the fact that much of the variability is anthropogenic. Probably the most important determinant of cloud microphysics is the spectra of cloud condensation nuclei (CCN) which display considerable variability and have a large anthropogenic component. When analyzed in combination three field observation projects display the interrelationship between CCN and cloud microphysics. CCN were measured with the Desert Research Institute (DRI) instantaneous CCN spectrometer. Cloud microphysical measurements were obtained with the National Center for Atmospheric Research Lockheed Electra. Since CCN and cloud microphysics each affect the other a positive feedback mechanism can result

  13. Considerations about Cloud Services: Learning

    Directory of Open Access Journals (Sweden)

    Riccardo Cognini

    2013-05-01

    Full Text Available Cloud services are ubiquitous: for small to large companies the phenomenon of cloud service is nowadays a standard business practice. This paper would compile an analysis over a possible implementation of a cloud system, treating especially the legal aspect of this theme. In the Italian market has a large number of issues arise form cloud computing. First of all, this paper investigates the legal issues associated to cloud computing, specific contractual scheme that is able to define rights a duties both of user (private and/or public body and cloud provider. On one side there is all the EU legislative production related to privacy over electronic communication and, furthermore, the Privacy Directive is under a revision process to be more adaptable to new challenges of decentralized data treatment, but concretely there are no any structured and well defined legal instruments. Objectives: we present a possible solution to address the uncertainty of this area, starting from the EU legislative production with the help of the specific Italian scenario that could offer an operative solution. Indeed the Italian legal system is particularly adaptable to changing technologies and it could use as better as possible to adapt the already existing legal tools to this new technological era. Prior work: after an introduction to the state of the art, we show the main issues and their critical points that must be solved. Approach: observation of the state of the art to propose a new approach to find the suitable disciple

  14. A CloudSat Perspective of the Atmospheric Water Cycle and Precipitation: Recent Progress and Grand Challenges

    Science.gov (United States)

    Stephens, Graeme L.; Im, Eastwood; Vane, Deborah

    2012-01-01

    Summary Global - mean precipitation - is controlled by Earth's energy balance and is a quantifiable consequence of the water vapor feedback. Predictability rests on the degree to which the water vapor feedback is predictable. Regional scale - to a significant extent, changes are shaped by atmospheric circulation changes but we do not know the extent to which regional scale changes are predictable. The impacts of changes to atmospheric circulation on regional scale water cycle changes can be dramatic. Process - scale - significant biases to the CHARACTER of precipitation (frequency and intensity) is related to how the precipitation process is parameterized in models. Aerosol - We still do not know the extent to which the water cycle is influenced by aerosol but anecdotal evidence is building. The character of precipitation is affected by the way aerosol influence clouds and thus affects the forcing of the climate system through the albedo effect. Observations - we still have a way to go and need to approach the problem in a more integrated way (tie clouds, aerosol and precipitation together and then link to soil moisture, etc). Globally our capabilities seriously lag behind the science and model development.

  15. PROCESSING UAV AND LIDAR POINT CLOUDS IN GRASS GIS

    Directory of Open Access Journals (Sweden)

    V. Petras

    2016-06-01

    Full Text Available Today’s methods of acquiring Earth surface data, namely lidar and unmanned aerial vehicle (UAV imagery, non-selectively collect or generate large amounts of points. Point clouds from different sources vary in their properties such as number of returns, density, or quality. We present a set of tools with applications for different types of points clouds obtained by a lidar scanner, structure from motion technique (SfM, and a low-cost 3D scanner. To take advantage of the vertical structure of multiple return lidar point clouds, we demonstrate tools to process them using 3D raster techniques which allow, for example, the development of custom vegetation classification methods. Dense point clouds obtained from UAV imagery, often containing redundant points, can be decimated using various techniques before further processing. We implemented and compared several decimation techniques in regard to their performance and the final digital surface model (DSM. Finally, we will describe the processing of a point cloud from a low-cost 3D scanner, namely Microsoft Kinect, and its application for interaction with physical models. All the presented tools are open source and integrated in GRASS GIS, a multi-purpose open source GIS with remote sensing capabilities. The tools integrate with other open source projects, specifically Point Data Abstraction Library (PDAL, Point Cloud Library (PCL, and OpenKinect libfreenect2 library to benefit from the open source point cloud ecosystem. The implementation in GRASS GIS ensures long term maintenance and reproducibility by the scientific community but also by the original authors themselves.

  16. Big data mining analysis method based on cloud computing

    Science.gov (United States)

    Cai, Qing Qiu; Cui, Hong Gang; Tang, Hao

    2017-08-01

    Information explosion era, large data super-large, discrete and non-(semi) structured features have gone far beyond the traditional data management can carry the scope of the way. With the arrival of the cloud computing era, cloud computing provides a new technical way to analyze the massive data mining, which can effectively solve the problem that the traditional data mining method cannot adapt to massive data mining. This paper introduces the meaning and characteristics of cloud computing, analyzes the advantages of using cloud computing technology to realize data mining, designs the mining algorithm of association rules based on MapReduce parallel processing architecture, and carries out the experimental verification. The algorithm of parallel association rule mining based on cloud computing platform can greatly improve the execution speed of data mining.

  17. Formaldehyde in the Diffuse Interstellar Cloud MBM40

    Science.gov (United States)

    Joy, Mackenzie; Magnani, Loris A.

    2018-06-01

    MBM40, a high-latitude molecular cloud, has been extensively studied using different molecular tracers. It appears that MBM40 is composed of a relatively dense, helical filament embedded in a more diffuse substrate of low density molecular gas. In order to study the transition between the two regimes, this project presents the first high-resolution mapping of MBM40 using the 110-111 hyperfine transition of formaldehyde (H2CO) at 4.83 GHz. We used H2CO spectra obtained with the Arecibo telescope more than a decade ago to construct this map. The results can be compared to previous maps made from the CO(1-0) transition to gain further understanding of the structure of the cloud. The intensity of the H2CO emission was compared to the CO emission. Although a correlation exists between the H2CO and CO emissivity, there seems to be a saturation of H2CO line strength for stronger CO emissivity. This is probably a radiative transfer effect of the CO emission. We have also found that the velocity dispersion of H2CO in the lower ridge of the cloud is significantly lower than in the rest of the cloud. This may indicate that this portion of the cloud is a coherent structure (analogous to an eddy) in a turbulent flow.

  18. Cloud Governance

    DEFF Research Database (Denmark)

    Berthing, Hans Henrik

    Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing.......Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing....

  19. Carbon Isotope Chemistry in Molecular Clouds

    Science.gov (United States)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  20. An Examination of the Nature of Global MODIS Cloud Regimes

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji; Huffman, George J.

    2014-01-01

    We introduce global cloud regimes (previously also referred to as "weather states") derived from cloud retrievals that use measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Aqua and Terra satellites. The regimes are obtained by applying clustering analysis on joint histograms of retrieved cloud top pressure and cloud optical thickness. By employing a compositing approach on data sets from satellites and other sources, we examine regime structural and thermodynamical characteristics. We establish that the MODIS cloud regimes tend to form in distinct dynamical and thermodynamical environments and have diverse profiles of cloud fraction and water content. When compositing radiative fluxes from the Clouds and the Earth's Radiant Energy System instrument and surface precipitation from the Global Precipitation Climatology Project, we find that regimes with a radiative warming effect on the atmosphere also produce the largest implied latent heat. Taken as a whole, the results of the study corroborate the usefulness of the cloud regime concept, reaffirm the fundamental nature of the regimes as appropriate building blocks for cloud system classification, clarify their association with standard cloud types, and underscore their distinct radiative and hydrological signatures.

  1. Using a second-order turbulence radiative-convective model to study the cloud/radiation interaction with the FIRE data

    International Nuclear Information System (INIS)

    Kao, C.Y.J.

    1992-01-01

    It is well recognized that extended sheets of low-level stratus and stratocumulus clouds are a persistent feature over the eastern parts of the major ocean basins associated with the quasipermanent subtropical high-pressure systems. These clouds exert a strong influence on climate through their high albedo, compared with the underlying surface, and their low altitude. The former leads to a reduction of the net incoming shortwave flux into the atmosphere and the latter leads to an infrared loss in a way essentially the same as the cloud-free conditions. Randall et al.[1984] estimated that an increase of a few percent of global low-level stratiform clouds may offset the warming caused by a doubling of the atmos-pheric CO 2 . The Atmospheric Radiation Measure-ment (ARM) Program, sponsored by the US Department of Energy, is envisioning a locale in the Eastern North Pacific for extensive measure-ments of stratiform boundary-layer clouds and their interaction with atmospheric radiation. Thus, a physically-based parameterization sheme for marine low-level stratiform clouds can be developed for general circulation models (GCMs). This paper is a modeling study with the current understanding of the important physical processes associated with a cloud-capped boundary layer. The numerical model is a high-resolution one-dimensional version of the second-order turbulence convective/radiative model developed at the Los Alamos National Laboratory

  2. Black carbon semi-direct effects on cloud cover: review and synthesis

    Directory of Open Access Journals (Sweden)

    D. Koch

    2010-08-01

    Full Text Available Absorbing aerosols (AAs such as black carbon (BC or dust absorb incoming solar radiation, perturb the temperature structure of the atmosphere, and influence cloud cover. Previous studies have described conditions under which AAs either increase or decrease cloud cover. The effect depends on several factors, including the altitude of the AA relative to the cloud and the cloud type. We attempt to categorize the effects into several likely regimes. Cloud cover is decreased if the AAs are embedded in the cloud layer. AAs below cloud may enhance convection and cloud cover. AAs above cloud top stabilize the underlying layer and tend to enhance stratocumulus clouds but may reduce cumulus clouds. AAs can also promote cloud cover in convergent regions as they enhance deep convection and low level convergence as it draws in moisture from ocean to land regions. Most global model studies indicate a regional variation in the cloud response but generally increased cloud cover over oceans and some land regions, with net increased low-level and/or reduced upper level cloud cover. The result is a net negative semi-direct effect feedback from the cloud response to AAs. In some of these climate model studies, the cooling effect of BC due to cloud changes is strong enough to essentially cancel the warming direct effects.

  3. An Automatic Cloud Detection Method for ZY-3 Satellite

    Directory of Open Access Journals (Sweden)

    CHEN Zhenwei

    2015-03-01

    Full Text Available Automatic cloud detection for optical satellite remote sensing images is a significant step in the production system of satellite products. For the browse images cataloged by ZY-3 satellite, the tree discriminate structure is adopted to carry out cloud detection. The image was divided into sub-images and their features were extracted to perform classification between clouds and grounds. However, due to the high complexity of clouds and surfaces and the low resolution of browse images, the traditional classification algorithms based on image features are of great limitations. In view of the problem, a prior enhancement processing to original sub-images before classification was put forward in this paper to widen the texture difference between clouds and surfaces. Afterwards, with the secondary moment and first difference of the images, the feature vectors were extended in multi-scale space, and then the cloud proportion in the image was estimated through comprehensive analysis. The presented cloud detection algorithm has already been applied to the ZY-3 application system project, and the practical experiment results indicate that this algorithm is capable of promoting the accuracy of cloud detection significantly.

  4. Comparisons of Satellite-Deduced Overlapping Cloud Properties and CALIPSO CloudSat Data

    Science.gov (United States)

    Chang, Fu-Lung; Minnis, Patrick; Lin, Bing; Sun-Mack, Sunny

    2010-01-01

    Introduction to the overlapped cloud properties derived from polar-orbiting (MODIS) and geostationary (GOES-12, -13, Meteosat-8, -9, etc.) meteorological satellites, which are produced at the NASA Langley Research Center (LaRC) cloud research & development team (NASA lead scientist: Dr. Patrick Minnis). Comparison of the LaRC CERES MODIS Edition-3 overlapped cloud properties to the CALIPSO and the CloudSat active sensing data. High clouds and overlapped clouds occur frequently as deduced by CALIPSO (44 & 25%), CloudSat (25 & 4%), and MODIS (37 & 6%). Large fractions of optically-thin cirrus and overlapped clouds are deduced from CALIPSO, but much smaller fractions are from CloudSat and MODIS. For overlapped clouds, the averaged upper-layer CTHs are about 12.8 (CALIPSO), 10.9 (CloudSat) and 10 km (MODIS), and the averaged lower-layer CTHs are about 3.6 (CALIPSO), 3.2 (CloudSat) and 3.9 km (MODIS). Based on comparisons of upper and lower-layer cloud properties as deduced from the MODIS, CALIPSO and CloudSat data, more enhanced passive satellite methods for retrieving thin cirrus and overlapped cloud properties are needed and are under development.

  5. Polarized View of Supercooled Liquid Water Clouds

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Wasilewski, Andrzej P.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven E.; Arnold, G. Thomas

    2016-01-01

    Supercooled liquid water (SLW) clouds, where liquid droplets exist at temperatures below 0 C present a well known aviation hazard through aircraft icing, in which SLW accretes on the airframe. SLW clouds are common over the Southern Ocean, and climate-induced changes in their occurrence is thought to constitute a strong cloud feedback on global climate. The two recent NASA field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January-February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August- September 2013) provided a unique opportunity to observe SLW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of measurements made by the Research Scanning Polarimeter (RSP) during these experiments accompanied by correlative retrievals from other sensors. The RSP measures both polarized and total reflectance in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. It is a scanning sensor taking samples at 0.8deg intervals within 60deg from nadir in both forward and backward directions. This unique angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135deg and 165deg. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT),which allows retrieval of the droplet size distribution without assuming a size distribution shape. We present an overview of the RSP campaign datasets available from the NASA GISS website, as well as two detailed examples of the retrievals. In these case studies we focus on cloud fields with spatial features

  6. Securing the Cloud Cloud Computer Security Techniques and Tactics

    CERN Document Server

    Winkler, Vic (JR)

    2011-01-01

    As companies turn to cloud computing technology to streamline and save money, security is a fundamental concern. Loss of certain control and lack of trust make this transition difficult unless you know how to handle it. Securing the Cloud discusses making the move to the cloud while securing your peice of it! The cloud offers felxibility, adaptability, scalability, and in the case of security-resilience. This book details the strengths and weaknesses of securing your company's information with different cloud approaches. Attacks can focus on your infrastructure, communications network, data, o

  7. Waves on the surface of the Orion molecular cloud.

    Science.gov (United States)

    Berné, Olivier; Marcelino, Núria; Cernicharo, José

    2010-08-19

    Massive stars influence their parental molecular cloud, and it has long been suspected that the development of hydrodynamical instabilities can compress or fragment the cloud. Identifying such instabilities has proved difficult. It has been suggested that elongated structures (such as the 'pillars of creation') and other shapes arise because of instabilities, but alternative explanations are available. One key signature of an instability is a wave-like structure in the gas, which has hitherto not been seen. Here we report the presence of 'waves' at the surface of the Orion molecular cloud near where massive stars are forming. The waves seem to be a Kelvin-Helmholtz instability that arises during the expansion of the nebula as gas heated and ionized by massive stars is blown over pre-existing molecular gas.

  8. Variability of oceanic deep convective system vertical structures observed by CloudSat in Indo-Pacific regions associated with the Madden-Julian oscillation

    Science.gov (United States)

    Yuan, Jian

    2016-09-01

    Vertical structures of deep convective systems during the Madden-Julian oscillation (MJO) are investigated using CloudSat radar measurements in Indo-Pacific oceanic areas. In active phases of the MJO, relatively more large systems and connected mesoscale convective systems (CMCSs) occur. The occurrence frequency of CMCSs peaks in the onset phase, a phase earlier than separated mesoscale convective systems (SMCSs). Compared with SMCSs, CMCSs of all sizes have weaker reflectivity above 8 km in their deep precipitating portions and thick anvil clouds closely linked to them, suggesting more "stratiform" physics associated with them. SMCSs and CMCSs together produce relatively the least anvil clouds in the onset phase, while their deep precipitating portions show stronger/weaker reflectivity above 8 km before/after the onset phase. Thus, after the onset phase of the MJO, mesoscale convective systems shift toward a more "convective" organization because SMCSs maximize after the onset, while their internal structures appear more stratiform because internally they have weaker reflectivity above 8 km. CMCSs coincide with a more humid middle troposphere spatially, even at the same locations a few days before they occur. Middle-tropospheric moistening peaks in the onset phase. Moistening of the free troposphere around deep convective systems shows relatively stronger moistening/drying below 700 hPa before/after the onset phase than domain-mean averages. Low-topped clouds occur most frequently around CMCSs and in active phases, consistent with the presence of a moister free troposphere. Coexistence of these phenomena suggests that the role of middle troposphere moisture in the formation of CMCSs should be better understood.

  9. The "Physical feedbacks of Arctic PBL, Sea ice, Cloud and AerosoL (PASCAL)" campaign during the Arctic POLARSTERN expedition PS106 in spring 2017.

    Science.gov (United States)

    Macke, A.

    2017-12-01

    The Polar regions are important components in the global climate system. The widespread surface snow and ice cover strongly impacts the surface energy budget, which is tightly coupled to global atmospheric and oceanic circulations. The coupling of sea ice, clouds and aerosol in the transition zone between Open Ocean and sea ice is the focus of the PASCAL investigations to improve our understanding of the recent dramatic reduction in Arctic sea-ice. A large variety of active/passive remote sensing, in-situ-aerosol observation, and spectral irradiance measurements have been obtained during the German research icebreaker POLARSTERN expedition PS106, and provided detailed information on the atmospheric spatiotemporal structure, aerosol and cloud chemical and microphysical properties as well as the resulting surface radiation budget. Nearly identical measurements at the AWIPEV Base (German - French Research Base) in Ny-Ålesund close to the Open Ocean and collocated airborne activities of the POLAR 5 and POLAR 6 AWI aircraft in the framework of the ACLOUD project have been carried out in parallel. The airborne observations have been supplemented by observations of the boundary layer structure (mean and turbulent quantities) from a tethered balloon reaching up to 1500 m, which was operated at an ice floe station nearby POLARSTERN for two weeks. All observational activities together with intense modelling at various scales are part of the German Collaborative Research Cluster TR 172 "Arctic Amplification" that aims to provide an unprecedented picture of the complex Arctic weather and climate system. The presentation provides an overview of the measurements on-board POLARSTERN and on the ice floe station during PASCAL from May 24 to July 21 2017. We conclude how these and future similar measurements during the one-year ice drift of POLARSTERN in the framework of MOSAiC help to reduce uncertainties in Arctic aerosol-cloud interaction, cloud radiative forcing, and surface

  10. Hybrid Cloud Computing Environment for EarthCube and Geoscience Community

    Science.gov (United States)

    Yang, C. P.; Qin, H.

    2016-12-01

    The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.

  11. Cloud management and security

    CERN Document Server

    Abbadi, Imad M

    2014-01-01

    Written by an expert with over 15 years' experience in the field, this book establishes the foundations of Cloud computing, building an in-depth and diverse understanding of the technologies behind Cloud computing. In this book, the author begins with an introduction to Cloud computing, presenting fundamental concepts such as analyzing Cloud definitions, Cloud evolution, Cloud services, Cloud deployment types and highlighting the main challenges. Following on from the introduction, the book is divided into three parts: Cloud management, Cloud security, and practical examples. Part one presents the main components constituting the Cloud and federated Cloud infrastructure(e.g., interactions and deployment), discusses management platforms (resources and services), identifies and analyzes the main properties of the Cloud infrastructure, and presents Cloud automated management services: virtual and application resource management services. Part two analyzes the problem of establishing trustworthy Cloud, discuss...

  12. Methodology for cloud-based design of robots

    Science.gov (United States)

    Ogorodnikova, O. M.; Vaganov, K. A.; Putimtsev, I. D.

    2017-09-01

    This paper presents some important results for cloud-based designing a robot arm by a group of students. Methodology for the cloud-based design was developed and used to initiate interdisciplinary project about research and development of a specific manipulator. The whole project data files were hosted by Ural Federal University data center. The 3D (three-dimensional) model of the robot arm was created using Siemens PLM software (Product Lifecycle Management) and structured as a complex mechatronics product by means of Siemens Teamcenter thin client; all processes were performed in the clouds. The robot arm was designed in purpose to load blanks up to 1 kg into the work space of the milling machine for performing student's researches.

  13. On the mechanism of Venusian atmosphere cloud layer formation

    International Nuclear Information System (INIS)

    Zhulanov, Yu.V.; Mukhin, L.M.; Nenarokov, D.F.

    1987-01-01

    Results of investigations into the aerosol component of Venusian atmosphere using a photoelectric counter in the 63-47 km range of heights at the Vega-1 and Vega-2 interplanetary stations are presented. The experiment was carried out in June, 11, 15, 1985 on the night-time side of the planet. Both devices were switched in at the height of 63 km, and data on the quantity of detected particles >=0.5 μm in diameter were transmitted every 0.43 s (that corresponds to 8-20 m spatial resolution). Study of particle concentration profiles obtained at the interval of 4 days (one period of rotation of Venusian atmosphere) permits to make the following conclusions on the structure of Venusian atmosphere cloud layer on the night side: 1) the cloud layer includes two distinct cloud strata: the upper- 56-60 km height range and the lower- 49.5-46.5 km height range separated by the zone of low particle concentrations ( -3 ); 2) the mentioned structure of the cloud layer is rather stable; concentration profiles obtained at the interval of 4 days well agree with each other; 3) concentration profiles, particularly, in the lower cloud-stratum are subjected to heavy fluctuations, that indicates essential spatial field heterogeneity of particle concentrations

  14. Precipitation-generated oscillations in open cellular cloud fields.

    Science.gov (United States)

    Feingold, Graham; Koren, Ilan; Wang, Hailong; Xue, Huiwen; Brewer, Wm Alan

    2010-08-12

    Cloud fields adopt many different patterns that can have a profound effect on the amount of sunlight reflected back to space, with important implications for the Earth's climate. These cloud patterns can be observed in satellite images of the Earth and often exhibit distinct cell-like structures associated with organized convection at scales of tens of kilometres. Recent evidence has shown that atmospheric aerosol particles-through their influence on precipitation formation-help to determine whether cloud fields take on closed (more reflective) or open (less reflective) cellular patterns. The physical mechanisms controlling the formation and evolution of these cells, however, are still poorly understood, limiting our ability to simulate realistically the effects of clouds on global reflectance. Here we use satellite imagery and numerical models to show how precipitating clouds produce an open cellular cloud pattern that oscillates between different, weakly stable states. The oscillations are a result of precipitation causing downward motion and outflow from clouds that were previously positively buoyant. The evaporating precipitation drives air down to the Earth's surface, where it diverges and collides with the outflows of neighbouring precipitating cells. These colliding outflows form surface convergence zones and new cloud formation. In turn, the newly formed clouds produce precipitation and new colliding outflow patterns that are displaced from the previous ones. As successive cycles of this kind unfold, convergence zones alternate with divergence zones and new cloud patterns emerge to replace old ones. The result is an oscillating, self-organized system with a characteristic cell size and precipitation frequency.

  15. Military clouds: utilization of cloud computing systems at the battlefield

    Science.gov (United States)

    Süleyman, Sarıkürk; Volkan, Karaca; İbrahim, Kocaman; Ahmet, Şirzai

    2012-05-01

    Cloud computing is known as a novel information technology (IT) concept, which involves facilitated and rapid access to networks, servers, data saving media, applications and services via Internet with minimum hardware requirements. Use of information systems and technologies at the battlefield is not new. Information superiority is a force multiplier and is crucial to mission success. Recent advances in information systems and technologies provide new means to decision makers and users in order to gain information superiority. These developments in information technologies lead to a new term, which is known as network centric capability. Similar to network centric capable systems, cloud computing systems are operational today. In the near future extensive use of military clouds at the battlefield is predicted. Integrating cloud computing logic to network centric applications will increase the flexibility, cost-effectiveness, efficiency and accessibility of network-centric capabilities. In this paper, cloud computing and network centric capability concepts are defined. Some commercial cloud computing products and applications are mentioned. Network centric capable applications are covered. Cloud computing supported battlefield applications are analyzed. The effects of cloud computing systems on network centric capability and on the information domain in future warfare are discussed. Battlefield opportunities and novelties which might be introduced to network centric capability by cloud computing systems are researched. The role of military clouds in future warfare is proposed in this paper. It was concluded that military clouds will be indispensible components of the future battlefield. Military clouds have the potential of improving network centric capabilities, increasing situational awareness at the battlefield and facilitating the settlement of information superiority.

  16. Clustering, randomness, and regularity in cloud fields. 4: Stratocumulus cloud fields

    Science.gov (United States)

    Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.

    1994-01-01

    To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (more than 900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.

  17. Clustering, randomness, and regularity in cloud fields. 4. Stratocumulus cloud fields

    Science.gov (United States)

    Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.

    1994-07-01

    To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (>900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.

  18. Natural circulation under severe accident conditions

    International Nuclear Information System (INIS)

    Pafford, D.J.; Hanson, D.J.; Tung, V.X.; Chmielewski, S.V.

    1992-01-01

    Research is being conducted to better understand natural circulation phenomena in mixtures of steam and noncondensibles and its influence on the temperature of the vessel internals and the hot leg, pressurizer surge line, and steam generator tubes. The temperature of these structures is important because their failure prior to reactor vessel lower head failure could reduce the likelihood of containment failure as a result of direct containment heating. Computer code calculations (MELPROG, SCDAP/RELAP5/MOD3) predict high fluid temperatures in the upper plenum resulting from in-vessel natural circulation. Using a simple model for the guide tube phenomena, high upper plenum temperatures are shown to be consistent with the relatively low temperatures that were deduced metallurgically from leadscrews removed from the TMI-2 upper plenum. Evaluation of the capabilities of the RELAP5/MOD3 computer code to predict natural circulation behavior was also performed. The code was used to model the Westinghouse natural circulation experimental facility. Comparisons between code calculations and results from experiments show good agreement

  19. The Invertibility, Explicit Determinants, and Inverses of Circulant and Left Circulant and g-Circulant Matrices Involving Any Continuous Fibonacci and Lucas Numbers

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    Full Text Available Circulant matrices play an important role in solving delay differential equations. In this paper, circulant type matrices including the circulant and left circulant and g-circulant matrices with any continuous Fibonacci and Lucas numbers are considered. Firstly, the invertibility of the circulant matrix is discussed and the explicit determinant and the inverse matrices by constructing the transformation matrices are presented. Furthermore, the invertibility of the left circulant and g-circulant matrices is also studied. We obtain the explicit determinants and the inverse matrices of the left circulant and g-circulant matrices by utilizing the relationship between left circulant, g-circulant matrices and circulant matrix, respectively.

  20. Cloud blueprints for integrating and managing cloud federations

    NARCIS (Netherlands)

    Papazoglou, M.; Heisel, M.

    2012-01-01

    Contemporary cloud technologies face insurmountable obstacles. They follow a pull-based, producer-centric trajectory to development where cloud consumers have to ‘squeeze and bolt’ applications onto cloud APIs. They also introduce a monolithic SaaS/PaaS/IaaS stack where a one-size-fits-all mentality

  1. Galaxy CloudMan: delivering cloud compute clusters.

    Science.gov (United States)

    Afgan, Enis; Baker, Dannon; Coraor, Nate; Chapman, Brad; Nekrutenko, Anton; Taylor, James

    2010-12-21

    Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is "cloud computing", which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate "as is" use by experimental biologists. We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon's EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge.

  2. Cloud blueprint : A model-driven approach to configuring federated clouds

    NARCIS (Netherlands)

    Papazoglou, M.; Abello, A.; Bellatreche, L.; Benatallah, B.

    2012-01-01

    Current cloud solutions are fraught with problems. They introduce a monolithic cloud stack that imposes vendor lock-in and donot permit developers to mix and match services freely from diverse cloud service tiers and configure them dynamically to address application needs. Cloud blueprinting is a

  3. Hall Effect Gyrators and Circulators

    Science.gov (United States)

    Viola, Giovanni; DiVincenzo, David P.

    2014-04-01

    The electronic circulator and its close relative the gyrator are invaluable tools for noise management and signal routing in the current generation of low-temperature microwave systems for the implementation of new quantum technologies. The current implementation of these devices using the Faraday effect is satisfactory but requires a bulky structure whose physical dimension is close to the microwave wavelength employed. The Hall effect is an alternative nonreciprocal effect that can also be used to produce desired device functionality. We review earlier efforts to use an Ohmically contacted four-terminal Hall bar, explaining why this approach leads to unacceptably high device loss. We find that capacitive coupling to such a Hall conductor has much greater promise for achieving good circulator and gyrator functionality. We formulate a classical Ohm-Hall analysis for calculating the properties of such a device, and show how this classical theory simplifies remarkably in the limiting case of the Hall angle approaching 90°. In this limit, we find that either a four-terminal or a three-terminal capacitive device can give excellent circulator behavior, with device dimensions far smaller than the ac wavelength. An experiment is proposed to achieve GHz-band gyration in millimeter (and smaller) scale structures employing either semiconductor heterostructure or graphene Hall conductors. An inductively coupled scheme for realizing a Hall gyrator is also analyzed.

  4. Absorption of Sunlight by Water Vapor in Cloudy Conditions: A Partial Explanation for the Cloud Absorption Anomaly

    Science.gov (United States)

    Crisp, D.

    1997-01-01

    The atmospheric radiative transfer algorithms used in most global general circulation models underestimate the globally-averaged solar energy absorbed by cloudy atmospheres by up to 25 W/sq m. The origin of this anomalous absorption is not yet known, but it has been attributed to a variety of sources including oversimplified or missing physical processes in these models, uncertainties in the input data, and even measurement errors. Here, a sophisticated atmospheric radiative transfer model was used to provide a more comprehensive description of the physical processes that contribute to the absorption of solar radiation by the Earth's atmosphere. We found that the amount of sunlight absorbed by a cloudy atmosphere is inversely proportional to the solar zenith angle and the cloud top height, and directly proportional to the cloud optical depth and the water vapor concentration within the clouds. Atmospheres with saturated, optically-thick, low clouds absorbed about 12 W/sq m more than clear atmospheres. This accounts for about 1/2 to 1/3 of the anomalous ab- sorption. Atmospheres with optically thick middle and high clouds usually absorb less than clear atmospheres. Because water vapor is concentrated within and below the cloud tops, this absorber is most effective at small solar zenith angles. An additional absorber that is distributed at or above the cloud tops is needed to produce the amplitude and zenith angle dependence of the observed anomalous absorption.

  5. Characteristic of onset of nucleate boiling in natural circulation

    International Nuclear Information System (INIS)

    Zhou Tao; Yang Ruichang; Liu Ruolei

    2006-01-01

    Two kinds of thermodynamics quality at onset of nucleate boiling with sub-cooled boiling were calculated for force circulation by using Bergles and Rohesenow method or Davis and Anderson method, and natural circulation by using Tsinghua University project group's empirical equations suggested in our natural circulation experiment at same condition. The characteristic of onset of nucleate boiling with subcooled boiling in natural circulation were pointed out. The research result indicates that the thermodynamics quality at onset of nucleate boiling with subcooled boiling in natural circulation is more sensitive for heat and inlet temperature and system pressure. Producing of onset of nucleate boiling with subcooled boiling is early at same condition. The research result also indicates more from microcosmic angle of statistical physics that the phenomena are caused by the effects of characteristic of dissipative structure of natural circulation in self organization, fluctuation force and momentum force of dynamics on thermodynamics equilibrium. these can lay good basis for study and application on sub-cooled boiling in natural circulation in future. (authors)

  6. Tropical cloud and precipitation regimes as seen from near-simultaneous TRMM, CloudSat, and CALIPSO observations and comparison with ISCCP

    Science.gov (United States)

    Luo, Zhengzhao Johnny; Anderson, Ricardo C.; Rossow, William B.; Takahashi, Hanii

    2017-06-01

    Although Tropical Rainfall Measuring Mission (TRMM) and CloudSat/CALIPSO fly in different orbits, they frequently cross each other so that for the period between 2006 and 2010, a total of 15,986 intersect lines occurred within 20 min of each other from 30°S to 30°N, providing a rare opportunity to study tropical cloud and precipitation regimes and their internal vertical structure from near-simultaneous measurements by these active sensors. A k-means cluster analysis of TRMM and CloudSat matchups identifies three tropical cloud and precipitation regimes: the first two regimes correspond to, respectively, organized deep convection with heavy rain and cirrus anvils with moderate rain; the third regime is a convectively suppressed regime that can be further divided into three subregimes, which correspond to, respectively, stratocumulus clouds with drizzle, cirrus overlying low clouds, and nonprecipitating cumulus. Inclusion of CALIPSO data adds to the dynamic range of cloud properties and identifies one more cluster; subcluster analysis further identifies a thin, midlevel cloud regime associated with tropical mountain ranges. The radar-lidar cloud regimes are compared with the International Satellite Cloud Climatology Project (ISCCP) weather states (WSs) for the extended tropics. Focus is placed on the four convectively active WSs, namely, WS1-WS4. ISCCP WS1 and WS2 are found to be counterparts of Regime 1 and Regime 2 in radar-lidar observations, respectively. ISCCP WS3 and WS4, which are mainly isolated convection and broken, detached cirrus, do not have a strong association with any individual radar and lidar regimes, a likely effect of the different sampling strategies between ISCCP and active sensors and patchy cloudiness of these WSs.

  7. Modelling micro- and macrophysical contributors to the dissipation of an Arctic mixed-phase cloud during the Arctic Summer Cloud Ocean Study (ASCOS

    Directory of Open Access Journals (Sweden)

    K. Loewe

    2017-06-01

    Full Text Available The Arctic climate is changing; temperature changes in the Arctic are greater than at midlatitudes, and changing atmospheric conditions influence Arctic mixed-phase clouds, which are important for the Arctic surface energy budget. These low-level clouds are frequently observed across the Arctic. They impact the turbulent and radiative heating of the open water, snow, and sea-ice-covered surfaces and influence the boundary layer structure. Therefore the processes that affect mixed-phase cloud life cycles are extremely important, yet relatively poorly understood. In this study, we present sensitivity studies using semi-idealized large eddy simulations (LESs to identify processes contributing to the dissipation of Arctic mixed-phase clouds. We found that one potential main contributor to the dissipation of an observed Arctic mixed-phase cloud, during the Arctic Summer Cloud Ocean Study (ASCOS field campaign, was a low cloud droplet number concentration (CDNC of about 2 cm−3. Introducing a high ice crystal concentration of 10 L−1 also resulted in cloud dissipation, but such high ice crystal concentrations were deemed unlikely for the present case. Sensitivity studies simulating the advection of dry air above the boundary layer inversion, as well as a modest increase in ice crystal concentration of 1 L−1, did not lead to cloud dissipation. As a requirement for small droplet numbers, pristine aerosol conditions in the Arctic environment are therefore considered an important factor determining the lifetime of Arctic mixed-phase clouds.

  8. A simple biota removal algorithm for 35 GHz cloud radar measurements

    Science.gov (United States)

    Kalapureddy, Madhu Chandra R.; Sukanya, Patra; Das, Subrata K.; Deshpande, Sachin M.; Pandithurai, Govindan; Pazamany, Andrew L.; Ambuj K., Jha; Chakravarty, Kaustav; Kalekar, Prasad; Krishna Devisetty, Hari; Annam, Sreenivas

    2018-03-01

    Cloud radar reflectivity profiles can be an important measurement for the investigation of cloud vertical structure (CVS). However, extracting intended meteorological cloud content from the measurement often demands an effective technique or algorithm that can reduce error and observational uncertainties in the recorded data. In this work, a technique is proposed to identify and separate cloud and non-hydrometeor echoes using the radar Doppler spectral moments profile measurements. The point and volume target-based theoretical radar sensitivity curves are used for removing the receiver noise floor and identified radar echoes are scrutinized according to the signal decorrelation period. Here, it is hypothesized that cloud echoes are observed to be temporally more coherent and homogenous and have a longer correlation period than biota. That can be checked statistically using ˜ 4 s sliding mean and standard deviation value of reflectivity profiles. The above step helps in screen out clouds critically by filtering out the biota. The final important step strives for the retrieval of cloud height. The proposed algorithm potentially identifies cloud height solely through the systematic characterization of Z variability using the local atmospheric vertical structure knowledge besides to the theoretical, statistical and echo tracing tools. Thus, characterization of high-resolution cloud radar reflectivity profile measurements has been done with the theoretical echo sensitivity curves and observed echo statistics for the true cloud height tracking (TEST). TEST showed superior performance in screening out clouds and filtering out isolated insects. TEST constrained with polarimetric measurements was found to be more promising under high-density biota whereas TEST combined with linear depolarization ratio and spectral width perform potentially to filter out biota within the highly turbulent shallow cumulus clouds in the convective boundary layer (CBL). This TEST technique is

  9. CloudFlame: Cyberinfrastructure for combustion research

    KAUST Repository

    Goteng, Gokop

    2013-12-01

    Combustion experiments and chemical kinetics simulations generate huge data that is computationally and data intensive. A cloud-based cyber infrastructure known as Cloud Flame is implemented to improve the computational efficiency, scalability and availability of data for combustion research. The architecture consists of an application layer, a communication layer and distributed cloud servers running in a mix environment of Windows, Macintosh and Linux systems. The application layer runs software such as CHEMKIN modeling application. The communication layer provides secure transfer/archive of kinetic, thermodynamic, transport and gas surface data using private/public keys between clients and cloud servers. A robust XML schema based on the Process Informatics Model (Prime) combined with a workflow methodology for digitizing, verifying and uploading data from scientific graphs/tables to Prime is implemented for chemical molecular structures of compounds. The outcome of using this system by combustion researchers at King Abdullah University of Science and Technology (KAUST) Clean Combustion Research Center and its collaborating partners indicated a significant improvement in efficiency in terms of speed of chemical kinetics and accuracy in searching for the right chemical kinetic data.

  10. Formation of Silicate and Titanium Clouds on Hot Jupiters

    Science.gov (United States)

    Powell, Diana; Zhang, Xi; Gao, Peter; Parmentier, Vivien

    2018-06-01

    We present the first application of a bin-scheme microphysical and vertical transport model to determine the size distribution of titanium and silicate cloud particles in the atmospheres of hot Jupiters. We predict particle size distributions from first principles for a grid of planets at four representative equatorial longitudes, and investigate how observed cloud properties depend on the atmospheric thermal structure and vertical mixing. The predicted size distributions are frequently bimodal and irregular in shape. There is a negative correlation between the total cloud mass and equilibrium temperature as well as a positive correlation between the total cloud mass and atmospheric mixing. The cloud properties on the east and west limbs show distinct differences that increase with increasing equilibrium temperature. Cloud opacities are roughly constant across a broad wavelength range, with the exception of features in the mid-infrared. Forward-scattering is found to be important across the same wavelength range. Using the fully resolved size distribution of cloud particles as opposed to a mean particle size has a distinct impact on the resultant cloud opacities. The particle size that contributes the most to the cloud opacity depends strongly on the cloud particle size distribution. We predict that it is unlikely that silicate or titanium clouds are responsible for the optical Rayleigh scattering slope seen in many hot Jupiters. We suggest that cloud opacities in emission may serve as sensitive tracers of the thermal state of a planet’s deep interior through the existence or lack of a cold trap in the deep atmosphere.

  11. Laser-cooling effects in few-ion clouds of Yb+

    International Nuclear Information System (INIS)

    Edwards, C.S.; Gill, P.; Klein, H.A.; Levick, A.P.; Rowley, W.R.C.

    1994-01-01

    We report some laser-cooling effects in a few 172 Yb + ions held in a Paul trap. Pronounced cloud-to-crystal phase transitions have been observed as discontinuities in the Yb + fluorescence spectrum of the 369 nm cooling transition. The first reported two-dimensional images of Yb + clouds with evidence of crystal structure have been recorded using a photon-counting position-sensitive detector. An ion temperature of 100 mK has been estimated from the size of a single ion image. Stepwise cooling of a re-heated, few-ion Yb + cloud was also observed. (orig.)

  12. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Alexander Marshak; Warren Wiscombe; Yuri Knyazikhin; Christine Chiu

    2011-05-24

    We proposed a variety of tasks centered on the following question: what can we learn about 3D cloud-radiation processes and aerosol-cloud interaction from rapid-sampling ARM measurements of spectral zenith radiance? These ARM measurements offer spectacular new and largely unexploited capabilities in both the temporal and spectral domains. Unlike most other ARM instruments, which average over many seconds or take samples many seconds apart, the new spectral zenith radiance measurements are fast enough to resolve natural time scales of cloud change and cloud boundaries as well as the transition zone between cloudy and clear areas. In the case of the shortwave spectrometer, the measurements offer high time resolution and high spectral resolution, allowing new discovery-oriented science which we intend to pursue vigorously. Research objectives are, for convenience, grouped under three themes: • Understand radiative signature of the transition zone between cloud-free and cloudy areas using data from ARM shortwave radiometers, which has major climatic consequences in both aerosol direct and indirect effect studies. • Provide cloud property retrievals from the ARM sites and the ARM Mobile Facility for studies of aerosol-cloud interactions. • Assess impact of 3D cloud structures on aerosol properties using passive and active remote sensing techniques from both ARM and satellite measurements.

  13. The global atmospheric electric circuit and its effects on cloud microphysics

    International Nuclear Information System (INIS)

    Tinsley, B A

    2008-01-01

    circuit variations. The theory for electrical effects on scavenging of aerosols in clouds is reviewed, with several microphysical processes having consequences for contact ice nucleation; effects on droplet size distributions; precipitation and cloud lifetimes. There are several pathways for resulting macroscopic cloud changes that affect atmospheric circulation; including enhanced ice production and precipitation from clouds in cyclonic storms, with latent heat release affecting cyclone vorticity; and cloud cover changes in layer clouds that affect the atmospheric radiation balance. These macroscopic consequences of global circuit variability affecting aerosols-cloud interactions provide explanations for the many observations of short term and long term changes in clouds and climate that correlate with measured or inferred J z and cosmic ray flux changes due to external or internal forcing, and lead to predictions of additional effects

  14. The global atmospheric electric circuit and its effects on cloud microphysics

    Energy Technology Data Exchange (ETDEWEB)

    Tinsley, B A [Physics Department and Center for Space Sciences, WT15, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX, 75080-3021 (United States)], E-mail: Tinsley@UTDallas.edu

    2008-06-15

    inferred global circuit variations. The theory for electrical effects on scavenging of aerosols in clouds is reviewed, with several microphysical processes having consequences for contact ice nucleation; effects on droplet size distributions; precipitation and cloud lifetimes. There are several pathways for resulting macroscopic cloud changes that affect atmospheric circulation; including enhanced ice production and precipitation from clouds in cyclonic storms, with latent heat release affecting cyclone vorticity; and cloud cover changes in layer clouds that affect the atmospheric radiation balance. These macroscopic consequences of global circuit variability affecting aerosols-cloud interactions provide explanations for the many observations of short term and long term changes in clouds and climate that correlate with measured or inferred J{sub z} and cosmic ray flux changes due to external or internal forcing, and lead to predictions of additional effects.

  15. Essentials of cloud computing

    CERN Document Server

    Chandrasekaran, K

    2014-01-01

    ForewordPrefaceComputing ParadigmsLearning ObjectivesPreambleHigh-Performance ComputingParallel ComputingDistributed ComputingCluster ComputingGrid ComputingCloud ComputingBiocomputingMobile ComputingQuantum ComputingOptical ComputingNanocomputingNetwork ComputingSummaryReview PointsReview QuestionsFurther ReadingCloud Computing FundamentalsLearning ObjectivesPreambleMotivation for Cloud ComputingThe Need for Cloud ComputingDefining Cloud ComputingNIST Definition of Cloud ComputingCloud Computing Is a ServiceCloud Computing Is a Platform5-4-3 Principles of Cloud computingFive Essential Charact

  16. A zonally symmetric model for the monsoon-Hadley circulation with stochastic convective forcing

    Science.gov (United States)

    De La Chevrotière, Michèle; Khouider, Boualem

    2017-02-01

    Idealized models of reduced complexity are important tools to understand key processes underlying a complex system. In climate science in particular, they are important for helping the community improve our ability to predict the effect of climate change on the earth system. Climate models are large computer codes based on the discretization of the fluid dynamics equations on grids of horizontal resolution in the order of 100 km, whereas unresolved processes are handled by subgrid models. For instance, simple models are routinely used to help understand the interactions between small-scale processes due to atmospheric moist convection and large-scale circulation patterns. Here, a zonally symmetric model for the monsoon circulation is presented and solved numerically. The model is based on the Galerkin projection of the primitive equations of atmospheric synoptic dynamics onto the first modes of vertical structure to represent free tropospheric circulation and is coupled to a bulk atmospheric boundary layer (ABL) model. The model carries bulk equations for water vapor in both the free troposphere and the ABL, while the processes of convection and precipitation are represented through a stochastic model for clouds. The model equations are coupled through advective nonlinearities, and the resulting system is not conservative and not necessarily hyperbolic. This makes the design of a numerical method for the solution of this system particularly difficult. Here, we develop a numerical scheme based on the operator time-splitting strategy, which decomposes the system into three pieces: a conservative part and two purely advective parts, each of which is solved iteratively using an appropriate method. The conservative system is solved via a central scheme, which does not require hyperbolicity since it avoids the Riemann problem by design. One of the advective parts is a hyperbolic diagonal matrix, which is easily handled by classical methods for hyperbolic equations, while

  17. Limb clouds and dust on Mars from images obtained by the Visual Monitoring Camera (VMC) onboard Mars Express

    Science.gov (United States)

    Sánchez-Lavega, A.; Chen-Chen, H.; Ordoñez-Etxeberria, I.; Hueso, R.; del Río-Gaztelurrutia, T.; Garro, A.; Cardesín-Moinelo, A.; Titov, D.; Wood, S.

    2018-01-01

    The Visual Monitoring Camera (VMC) onboard the Mars Express (MEx) spacecraft is a simple camera aimed to monitor the release of the Beagle-2 lander on Mars Express and later used for public outreach. Here, we employ VMC as a scientific instrument to study and characterize high altitude aerosols events (dust and condensates) observed at the Martian limb. More than 21,000 images taken between 2007 and 2016 have been examined to detect and characterize elevated layers of dust in the limb, dust storms and clouds. We report a total of 18 events for which we give their main properties (areographic location, maximum altitude, limb projected size, Martian solar longitude and local time of occurrence). The top altitudes of these phenomena ranged from 40 to 85 km and their horizontal extent at the limb ranged from 120 to 2000 km. They mostly occurred at Equatorial and Tropical latitudes (between ∼30°N and 30°S) at morning and afternoon local times in the southern fall and northern winter seasons. None of them are related to the orographic clouds that typically form around volcanoes. Three of these events have been studied in detail using simultaneous images taken by the MARCI instrument onboard Mars Reconnaissance Orbiter (MRO) and studying the properties of the atmosphere using the predictions from the Mars Climate Database (MCD) General Circulation Model. This has allowed us to determine the three-dimensional structure and nature of these events, with one of them being a regional dust storm and the two others water ice clouds. Analyses based on MCD and/or MARCI images for the other cases studied indicate that the rest of the events correspond most probably to water ice clouds.

  18. CLOUD PARAMETERIZATIONS, CLOUD PHYSICS, AND THEIR CONNECTIONS: AN OVERVIEW

    International Nuclear Information System (INIS)

    LIU, Y.; DAUM, P.H.; CHAI, S.K.; LIU, F.

    2002-01-01

    This paper consists of three parts. The first part is concerned with the parameterization of cloud microphysics in climate models. We demonstrate the crucial importance of spectral dispersion of the cloud droplet size distribution in determining radiative properties of clouds (e.g., effective radius), and underline the necessity of specifying spectral dispersion in the parameterization of cloud microphysics. It is argued that the inclusion of spectral dispersion makes the issue of cloud parameterization essentially equivalent to that of the droplet size distribution function, bringing cloud parameterization to the forefront of cloud physics. The second part is concerned with theoretical investigations into the spectral shape of droplet size distributions in cloud physics. After briefly reviewing the mainstream theories (including entrainment and mixing theories, and stochastic theories), we discuss their deficiencies and the need for a paradigm shift from reductionist approaches to systems approaches. A systems theory that has recently been formulated by utilizing ideas from statistical physics and information theory is discussed, along with the major results derived from it. It is shown that the systems formalism not only easily explains many puzzles that have been frustrating the mainstream theories, but also reveals such new phenomena as scale-dependence of cloud droplet size distributions. The third part is concerned with the potential applications of the systems theory to the specification of spectral dispersion in terms of predictable variables and scale-dependence under different fluctuating environments

  19. Impact of Precipitating Ice Hydrometeors on Longwave Radiative Effect Estimated by a Global Cloud-System Resolving Model

    Science.gov (United States)

    Chen, Ying-Wen; Seiki, Tatsuya; Kodama, Chihiro; Satoh, Masaki; Noda, Akira T.

    2018-02-01

    Satellite observation and general circulation model (GCM) studies suggest that precipitating ice makes nonnegligible contributions to the radiation balance of the Earth. However, in most GCMs, precipitating ice is diagnosed and its radiative effects are not taken into account. Here we examine the longwave radiative impact of precipitating ice using a global nonhydrostatic atmospheric model with a double-moment cloud microphysics scheme. An off-line radiation model is employed to determine cloud radiative effects according to the amount and altitude of each type of ice hydrometeor. Results show that the snow radiative effect reaches 2 W m-2 in the tropics, which is about half the value estimated by previous studies. This effect is strongly dependent on the vertical separation of ice categories and is partially generated by differences in terminal velocities, which are not represented in GCMs with diagnostic precipitating ice. Results from sensitivity experiments that artificially change the categories and altitudes of precipitating ice show that the simulated longwave heating profile and longwave radiation field are sensitive to the treatment of precipitating ice in models. This study emphasizes the importance of incorporating appropriate treatments for the radiative effects of precipitating ice in cloud and radiation schemes in GCMs in order to capture the cloud radiative effects of upper level clouds.

  20. Secure cloud computing

    CERN Document Server

    Jajodia, Sushil; Samarati, Pierangela; Singhal, Anoop; Swarup, Vipin; Wang, Cliff

    2014-01-01

    This book presents a range of cloud computing security challenges and promising solution paths. The first two chapters focus on practical considerations of cloud computing. In Chapter 1, Chandramouli, Iorga, and Chokani describe the evolution of cloud computing and the current state of practice, followed by the challenges of cryptographic key management in the cloud. In Chapter 2, Chen and Sion present a dollar cost model of cloud computing and explore the economic viability of cloud computing with and without security mechanisms involving cryptographic mechanisms. The next two chapters addres

  1. Role of Atmospheric Cloud Radiative Effects in the Intermodal Spread in the Shift of Southern Hemispheric Eddy-driven Jet in Responses to Global Warming

    Science.gov (United States)

    Li, Y.; Thompson, D. W. J.; Bony, S.

    2017-12-01

    Observations and most climate models suggest storm track and extratropical eddy driven jet shifts poleward in a warmer climate, particularly in the Southern Hemisphere. However, the magnitude of such shifts remains uncertain. Even for a prescribed uniform SST changes, models produce large inter-model spread in the magnitude of jet shift, suggesting that a substantial part of these uncertainties are caused by the impact of cloud radiative effects on the atmospheric heating rate per se. In this study we will investigate 1) how much do clouds contribute to the spread of the circulation response in the absence of SST coupling? 2) how much do clouds contribute to the spread of the direct CO2 and SST-only response?

  2. PRINCIPLES OF MODERN UNIVERSITY "ACADEMIC CLOUD" FORMATION BASED ON OPEN SOFTWARE PLATFORM

    Directory of Open Access Journals (Sweden)

    Olena H. Hlazunova

    2014-09-01

    Full Text Available In the article approaches to the use of cloud technology in teaching of higher education students are analyzed. The essence of the concept of "academic cloud" and its structural elements are justified. The model of academic clouds of the modern university, which operates on the basis of open software platforms, are proposed. Examples of functional software and platforms, that provide the needs of students in e-learning resources, are given. The models of deployment Cloud-oriented environment in higher education: private cloud, infrastructure as a service and platform as a service, are analyzed. The comparison of the cost of deployment "academic cloud" based on its own infrastructure of the institution and lease infrastructure vendor are substantiated.

  3. Cloud Forecasting and 3-D Radiative Transfer Model Validation using Citizen-Sourced Imagery

    Science.gov (United States)

    Gasiewski, A. J.; Heymsfield, A.; Newman Frey, K.; Davis, R.; Rapp, J.; Bansemer, A.; Coon, T.; Folsom, R.; Pfeufer, N.; Kalloor, J.

    2017-12-01

    Cloud radiative feedback mechanisms are one of the largest sources of uncertainty in global climate models. Variations in local 3D cloud structure impact the interpretation of NASA CERES and MODIS data for top-of-atmosphere radiation studies over clouds. Much of this uncertainty results from lack of knowledge of cloud vertical and horizontal structure. Surface-based data on 3-D cloud structure from a multi-sensor array of low-latency ground-based cameras can be used to intercompare radiative transfer models based on MODIS and other satellite data with CERES data to improve the 3-D cloud parameterizations. Closely related, forecasting of solar insolation and associated cloud cover on time scales out to 1 hour and with spatial resolution of 100 meters is valuable for stabilizing power grids with high solar photovoltaic penetrations. Data for cloud-advection based solar insolation forecasting with requisite spatial resolution and latency needed to predict high ramp rate events obtained from a bottom-up perspective is strongly correlated with cloud-induced fluctuations. The development of grid management practices for improved integration of renewable solar energy thus also benefits from a multi-sensor camera array. The data needs for both 3D cloud radiation modelling and solar forecasting are being addressed using a network of low-cost upward-looking visible light CCD sky cameras positioned at 2 km spacing over an area of 30-60 km in size acquiring imagery on 30 second intervals. Such cameras can be manufactured in quantity and deployed by citizen volunteers at a marginal cost of 200-400 and operated unattended using existing communications infrastructure. A trial phase to understand the potential utility of up-looking multi-sensor visible imagery is underway within this NASA Citizen Science project. To develop the initial data sets necessary to optimally design a multi-sensor cloud camera array a team of 100 citizen scientists using self-owned PDA cameras is being

  4. Magnetic seismology of interstellar gas clouds: Unveiling a hidden dimension.

    Science.gov (United States)

    Tritsis, Aris; Tassis, Konstantinos

    2018-05-11

    Stars and planets are formed inside dense interstellar molecular clouds by processes imprinted on the three-dimensional (3D) morphology of the clouds. Determining the 3D structure of interstellar clouds remains challenging because of projection effects and difficulties measuring the extent of the clouds along the line of sight. We report the detection of normal vibrational modes in the isolated interstellar cloud Musca, allowing determination of the 3D physical dimensions of the cloud. We found that Musca is vibrating globally, with the characteristic modes of a sheet viewed edge on, not the characteristics of a filament as previously supposed. We reconstructed the physical properties of Musca through 3D magnetohydrodynamic simulations, reproducing the observed normal modes and confirming a sheetlike morphology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Overview of Boundary Layer Clouds Using Satellite and Ground-Based Measurements

    Science.gov (United States)

    Xi, B.; Dong, X.; Wu, P.; Qiu, S.

    2017-12-01

    A comprehensive summary of boundary layer clouds properties based on our few recently studies will be presented. The analyses include the global cloud fractions and cloud macro/micro- physical properties based on satellite measurements using both CERES-MODIS and CloudSat/Caliposo data products,; the annual/seasonal/diurnal variations of stratocumulus clouds over different climate regions (mid-latitude land, mid-latitude ocean, and Arctic region) using DOE ARM ground-based measurements over Southern great plain (SGP), Azores (GRW), and North slope of Alaska (NSA) sites; the impact of environmental conditions to the formation and dissipation process of marine boundary layer clouds over Azores site; characterizing Arctice mixed-phase cloud structure and favorable environmental conditions for the formation/maintainess of mixed-phase clouds over NSA site. Though the presentation has widely spread topics, we will focus on the representation of the ground-based measurements over different climate regions; evaluation of satellite retrieved cloud properties using these ground-based measurements, and understanding the uncertainties of both satellite and ground-based retrievals and measurements.

  6. Comparison of Cloud Properties from CALIPSO-CloudSat and Geostationary Satellite Data

    Science.gov (United States)

    Nguyen, L.; Minnis, P.; Chang, F.; Winker, D.; Sun-Mack, S.; Spangenberg, D.; Austin, R.

    2007-01-01

    Cloud properties are being derived in near-real time from geostationary satellite imager data for a variety of weather and climate applications and research. Assessment of the uncertainties in each of the derived cloud parameters is essential for confident use of the products. Determination of cloud amount, cloud top height, and cloud layering is especially important for using these real -time products for applications such as aircraft icing condition diagnosis and numerical weather prediction model assimilation. Furthermore, the distribution of clouds as a function of altitude has become a central component of efforts to evaluate climate model cloud simulations. Validation of those parameters has been difficult except over limited areas where ground-based active sensors, such as cloud radars or lidars, have been available on a regular basis. Retrievals of cloud properties are sensitive to the surface background, time of day, and the clouds themselves. Thus, it is essential to assess the geostationary satellite retrievals over a variety of locations. The availability of cloud radar data from CloudSat and lidar data from CALIPSO make it possible to perform those assessments over each geostationary domain at 0130 and 1330 LT. In this paper, CloudSat and CALIPSO data are matched with contemporaneous Geostationary Operational Environmental Satellite (GOES), Multi-functional Transport Satellite (MTSAT), and Meteosat-8 data. Unlike comparisons with cloud products derived from A-Train imagers, this study considers comparisons of nadir active sensor data with off-nadir retrievals. These matched data are used to determine the uncertainties in cloud-top heights and cloud amounts derived from the geostationary satellite data using the Clouds and the Earth s Radiant Energy System (CERES) cloud retrieval algorithms. The CERES multi-layer cloud detection method is also evaluated to determine its accuracy and limitations in the off-nadir mode. The results will be useful for

  7. Comparison of three ice cloud optical schemes in climate simulations with community atmospheric model version 5

    Science.gov (United States)

    Zhao, Wenjie; Peng, Yiran; Wang, Bin; Yi, Bingqi; Lin, Yanluan; Li, Jiangnan

    2018-05-01

    A newly implemented Baum-Yang scheme for simulating ice cloud optical properties is compared with existing schemes (Mitchell and Fu schemes) in a standalone radiative transfer model and in the global climate model (GCM) Community Atmospheric Model Version 5 (CAM5). This study systematically analyzes the effect of different ice cloud optical schemes on global radiation and climate by a series of simulations with a simplified standalone radiative transfer model, atmospheric GCM CAM5, and a comprehensive coupled climate model. Results from the standalone radiative model show that Baum-Yang scheme yields generally weaker effects of ice cloud on temperature profiles both in shortwave and longwave spectrum. CAM5 simulations indicate that Baum-Yang scheme in place of Mitchell/Fu scheme tends to cool the upper atmosphere and strengthen the thermodynamic instability in low- and mid-latitudes, which could intensify the Hadley circulation and dehydrate the subtropics. When CAM5 is coupled with a slab ocean model to include simplified air-sea interaction, reduced downward longwave flux to surface in Baum-Yang scheme mitigates ice-albedo feedback in the Arctic as well as water vapor and cloud feedbacks in low- and mid-latitudes, resulting in an overall temperature decrease by 3.0/1.4 °C globally compared with Mitchell/Fu schemes. Radiative effect and climate feedback of the three ice cloud optical schemes documented in this study can be referred for future improvements on ice cloud simulation in CAM5.

  8. EVIDENCE FOR CLOUD-CLOUD COLLISION AND PARSEC-SCALE STELLAR FEEDBACK WITHIN THE L1641-N REGION

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Fumitaka [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Miura, Tomoya; Nishi, Ryoichi [Department of Physics, Niigata University, 8050 Ikarashi-2, Niigata 950-2181 (Japan); Kitamura, Yoshimi; Akashi, Toshiya; Ikeda, Norio [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Shimajiri, Yoshito; Kawabe, Ryohei [Nobeyama Radio Observatory, Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Tsukagoshi, Takashi [Department of Astronomy, School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Momose, Munetake [Institute of Astrophysics and Planetary Sciences, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Li Zhiyun, E-mail: fumitaka.nakamura@nao.ac.jp [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States)

    2012-02-10

    We present high spatial resolution {sup 12}CO (J = 1-0) images taken by the Nobeyama 45 m telescope toward a 48' Multiplication-Sign 48' area, including the L1641-N cluster. The effective spatial resolution of the maps is 21'', corresponding to 0.04 pc at a distance of 400 pc. A recent 1.1 mm dust continuum map reveals that the dense gas is concentrated in several thin filaments. We find that a few dust filaments are located at the parts where {sup 12}CO (J = 1-0) emission drops sharply. Furthermore, the filaments have two components with different velocities. The velocity difference between the two components is about 3 km s{sup -1}, corresponding to a Mach number of 10, significantly larger than the local turbulent velocity in the cloud. These facts imply that the collision of the two components (hereafter, the cloud-cloud collision) possibly contributed to the formation of these filaments. Since the two components appear to overlap toward the filaments on the plane of the sky, the collision may have occurred almost along the line of sight. Star formation in the L1641-N cluster was probably triggered by such a collision. We also find several parsec-scale CO shells whose centers are close to either the L1641-N cluster or the V 380 Ori cluster. We propose that these shells were created by multiple winds and/or outflows from cluster young stellar objects, i.e., 'protocluster winds'. One exceptional dust filament located at the western cloud edge lies along a shell; it is presumably part of the expanding shell. Both the cloud-cloud collision and protocluster winds are likely to influence the cloud structure and kinematics in this region.

  9. CLOUD COMPUTING SECURITY

    Directory of Open Access Journals (Sweden)

    Ştefan IOVAN

    2016-05-01

    Full Text Available Cloud computing reprentes the software applications offered as a service online, but also the software and hardware components from the data center.In the case of wide offerd services for any type of client, we are dealing with a public cloud. In the other case, in wich a cloud is exclusively available for an organization and is not available to the open public, this is consider a private cloud [1]. There is also a third type, called hibrid in which case an user or an organization might use both services available in the public and private cloud. One of the main challenges of cloud computing are to build the trust and ofer information privacy in every aspect of service offerd by cloud computingle. The variety of existing standards, just like the lack of clarity in sustenability certificationis not a real help in building trust. Also appear some questions marks regarding the efficiency of traditionsecurity means that are applied in the cloud domain. Beside the economic and technology advantages offered by cloud, also are some advantages in security area if the information is migrated to cloud. Shared resources available in cloud includes the survey, use of the "best practices" and technology for advance security level, above all the solutions offered by the majority of medium and small businesses, big companies and even some guvermental organizations [2].

  10. Photogrammetric Analysis of Rotor Clouds Observed during T-REX

    Science.gov (United States)

    Romatschke, U.; Grubišić, V.

    2017-12-01

    Stereo photogrammetric analysis is a rarely utilized but highly valuable tool for studying smaller, highly ephemeral clouds. In this study, we make use of data that was collected during the Terrain-induced Rotor Experiment (T-REX), which took place in Owens Valley, eastern California, in the spring of 2006. The data set consists of matched digital stereo photographs obtained at high temporal (on the order of seconds) and spatial resolution (limited by the pixel size of the cameras). Using computer vision techniques we have been able to develop algorithms for camera calibration, automatic feature matching, and ultimately reconstruction of 3D cloud scenes. Applying these techniques to images from different T-REX IOPs we capture the motion of clouds in several distinct mountain wave scenarios ranging from short lived lee wave clouds on an otherwise clear sky day to rotor clouds formed in an extreme turbulence environment with strong winds and high cloud coverage. Tracking the clouds in 3D space and time allows us to quantify phenomena such as vertical and horizontal movement of clouds, turbulent motion at the upstream edge of rotor clouds, the structure of the lifting condensation level, extreme wind shear, and the life cycle of clouds in lee waves. When placed into context with the existing literature that originated from the T-REX field campaign, our results complement and expand our understanding of the complex dynamics observed in a variety of different lee wave settings.

  11. Cloud immersion building shielding factors for US residential structures

    International Nuclear Information System (INIS)

    Dickson, E D; Hamby, D M

    2014-01-01

    This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario within a semi-infinite cloud of radioactive material. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement, as well for single-wide manufactured housing-units. (paper)

  12. CLOUD TECHNOLOGIES IN MANAGEMENT AND EDUCATIONAL PROCESS OF UKRAINIAN TECHNICAL UNIVERSITIES

    Directory of Open Access Journals (Sweden)

    Yu. Tryus

    2014-06-01

    Full Text Available This study analyzes opportunities for using cloud technologies in higher education in Ukraine. On the basis of principles of the system approach, it examines the main task of cloud technologies, strategic and tactical goals of cloud computing at the technical universities, as well as problems that arise in their implementation in the educational process. The paper discusses the main trends in the use of cloud technologies in higher technical education, analyzes cloud services used by leading technical universities in Ukraine in management and learning. The typical structure of a Technical University is considered with public, private, and hybrid clouds. The experience of Cherkasy State Technological University in the use of cloud technologies at management and learning is presented. Considerations are particularly given to distance support, mobile, and blending learning, virtualization mechanism to support the students learning at natural, mathematical sciences and engineering through the utilization of individual desktops.

  13. Critical Factors for Personal Cloud Storage Adoption in China

    Directory of Open Access Journals (Sweden)

    Jianya Wang

    2016-06-01

    Full Text Available Purpose: In order to explain and predict the adoption of personal cloud storage, this study explores the critical factors involved in the adoption of personal cloud storage and empirically validates their relationships to a user's intentions. Design/methodology/approach: Based on technology acceptance model (TAM, network externality, trust, and an interview survey, this study proposes a personal cloud storage adoption model. We conducted an empirical analysis by structural equation modeling based on survey data obtained with a questionnaire. Findings: Among the adoption factors we identified, network externality has the salient influence on a user's adoption intention, followed by perceived usefulness, individual innovation, perceived trust, perceived ease of use, and subjective norms. Cloud storage characteristics are the most important indirect factors, followed by awareness to personal cloud storage and perceived risk. However, although perceived risk is regarded as an important factor by other cloud computing researchers, we found that it has no significant influence. Also, subjective norms have no significant influence on perceived usefulness. This indicates that users are rational when they choose whether to adopt personal cloud storage. Research limitations: This study ignores time and cost factors that might affect a user's intention to adopt personal cloud storage. Practical implications: Our findings might be helpful in designing and developing personal cloud storage products, and helpful to regulators crafting policies. Originality/value: This study is one of the first research efforts that discuss Chinese users' personal cloud storage adoption, which should help to further the understanding of personal cloud adoption behavior among Chinese users.

  14. Formation of massive, dense cores by cloud-cloud collisions

    Science.gov (United States)

    Takahira, Ken; Shima, Kazuhiro; Habe, Asao; Tasker, Elizabeth J.

    2018-05-01

    We performed sub-parsec (˜ 0.014 pc) scale simulations of cloud-cloud collisions of two idealized turbulent molecular clouds (MCs) with different masses in the range of (0.76-2.67) × 104 M_{⊙} and with collision speeds of 5-30 km s-1. Those parameters are larger than in Takahira, Tasker, and Habe (2014, ApJ, 792, 63), in which study the colliding system showed a partial gaseous arc morphology that supports the NANTEN observations of objects indicated to be colliding MCs using numerical simulations. Gas clumps with density greater than 10-20 g cm-3 were identified as pre-stellar cores and tracked through the simulation to investigate the effects of the mass of colliding clouds and the collision speeds on the resulting core population. Our results demonstrate that the smaller cloud property is more important for the results of cloud-cloud collisions. The mass function of formed cores can be approximated by a power-law relation with an index γ = -1.6 in slower cloud-cloud collisions (v ˜ 5 km s-1), and is in good agreement with observation of MCs. A faster relative speed increases the number of cores formed in the early stage of collisions and shortens the gas accretion phase of cores in the shocked region, leading to the suppression of core growth. The bending point appears in the high-mass part of the core mass function and the bending point mass decreases with increase in collision speed for the same combination of colliding clouds. The higher-mass part of the core mass function than the bending point mass can be approximated by a power law with γ = -2-3 that is similar to the power index of the massive part of the observed stellar initial mass function. We discuss implications of our results for the massive-star formation in our Galaxy.

  15. Albedo enhancement of marine clouds to counteract global warming: impacts on the hydrological cycle

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G. [Indian Institute of Science, Divecha Center for Climate Change, Bangalore (India); Indian Institute of Science, Center for Atmospheric and Oceanic Sciences, Bangalore (India); Caldeira, Ken; Cao, Long; Ban-Weiss, George; Shin, Ho-Jeong [Carnegie Institution, Department of Global Ecology, Stanford, CA (United States); Nemani, Rama [NASA Ames Research Center, Moffett Field, CA (United States)

    2011-09-15

    Recent studies have shown that changes in solar radiation affect the hydrological cycle more strongly than equivalent CO{sub 2} changes for the same change in global mean surface temperature. Thus, solar radiation management ''geoengineering'' proposals to completely offset global mean temperature increases by reducing the amount of absorbed sunlight might be expected to slow the global water cycle and reduce runoff over land. However, proposed countering of global warming by increasing the albedo of marine clouds would reduce surface solar radiation only over the oceans. Here, for an idealized scenario, we analyze the response of temperature and the hydrological cycle to increased reflection by clouds over the ocean using an atmospheric general circulation model coupled to a mixed layer ocean model. When cloud droplets are reduced in size over all oceans uniformly to offset the temperature increase from a doubling of atmospheric CO{sub 2}, the global-mean precipitation and evaporation decreases by about 1.3% but runoff over land increases by 7.5% primarily due to increases over tropical land. In the model, more reflective marine clouds cool the atmospheric column over ocean. The result is a sinking motion over oceans and upward motion over land. We attribute the increased runoff over land to this increased upward motion over land when marine clouds are made more reflective. Our results suggest that, in contrast to other proposals to increase planetary albedo, offsetting mean global warming by reducing marine cloud droplet size does not necessarily lead to a drying, on average, of the continents. However, we note that the changes in precipitation, evaporation and P-E are dominated by small but significant areas, and given the highly idealized nature of this study, a more thorough and broader assessment would be required for proposals of altering marine cloud properties on a large scale. (orig.)

  16. The research of the availability at cloud service systems

    Science.gov (United States)

    Demydov, Ivan; Klymash, Mykhailo; Kharkhalis, Zenoviy; Strykhaliuk, Bohdan; Komada, Paweł; Shedreyeva, Indira; Targeusizova, Aliya; Iskakova, Aigul

    2017-08-01

    This paper is devoted to the numerical investigation of the availability at cloud service systems. In this paper criteria and constraints calculations were performed and obtained results were analyzed for synthesis purposes of distributed service platforms based on the cloud service-oriented architecture such as availability and system performance index variations by defined set of the main parameters. The method of synthesis has been numerically generalized considering the type of service workload in statistical form by Hurst parameter application for each integrated service that requires implementation within the service delivery platform, which is synthesized by structural matching of virtual machines using combination of elementary servicing components up to functionality into a best-of-breed solution. As a result of restrictions from Amdahl's Law the necessity of cloud-networks clustering was shown, which makes it possible to break the complex dynamic network into separate segments that simplifies access to the resources of virtual machines and, in general, to the "clouds" and respectively simplifies complex topological structure, enhancing the overall system performance. In overall, proposed approaches and obtained results numerically justifying and algorithmically describing the process of structural and functional synthesis of efficient distributed service platforms, which under process of their configuring and exploitation provides an opportunity to act on the dynamic environment in terms of comprehensive services range and nomadic users' workload pulsing.

  17. Do Cloud Properties in a Puerto Rican Tropical Montane Cloud Forest Depend on Occurrence of Long-Range Transported African Dust?

    Science.gov (United States)

    Spiegel, Johanna K.; Buchmann, Nina; Mayol-Bracero, Olga L.; Cuadra-Rodriguez, Luis A.; Valle Díaz, Carlos J.; Prather, Kimberly A.; Mertes, Stephan; Eugster, Werner

    2014-09-01

    We investigated cloud properties of warm clouds in a tropical montane cloud forest at Pico del Este (1,051 m a.s.l.) in the northeastern part of Puerto Rico to address the question of whether cloud properties in the Caribbean could potentially be affected by African dust transported across the Atlantic Ocean. We analyzed data collected during 12 days in July 2011. Cloud droplet size spectra were measured using the FM-100 fog droplet spectrometer that measured droplet size distributions in the range from 2 to 49 µm, primarily during fog events. The droplet size spectra revealed a bimodal structure, with the first peak ( D < 6 µm) being more pronounced in terms of droplet number concentrations, whereas the second peak (10 µm < D < 20 µm) was found to be the one relevant for total liquid water content (LWC) of the cloud. We identified three major clusters of characteristic droplet size spectra by means of hierarchical clustering. All clusters differed significantly from each other in droplet number concentration (), effective diameter (ED), and median volume diameter (MVD). For the cluster comprising the largest droplets and the lowest droplet number concentrations, we found evidence of inhomogeneous mixing in the cloud. Contrastingly, the other two clusters revealed microphysical behavior, which could be expected under homogeneous mixing conditions. For those conditions, an increase in cloud condensation nuclei—e.g., from processed African dust transported to the site—is supposed to lead to an increased droplet concentration. In fact, one of these two clusters showed a clear shift of cloud droplet size spectra towards smaller droplet diameters. Since this cluster occurred during periods with strong evidence for the presence of long-range transported African dust, we hypothesize a link between the observed dust episodes and cloud characteristics in the Caribbean at our site, which is similar to the anthropogenic aerosol indirect effect.

  18. Variability of Oceanic Mesoscale Convective System Vertical Structures Observed by CloudSat in Indo-Pacific Regions Associated with the Madden-Julian Oscillation

    Science.gov (United States)

    Yuan, J.

    2016-12-01

    Vertical structures of mesoscale convective systems (MCSs) during the Madden-Julian-Oscillation (MJO) are investigated using 2006-2011 CloudSat radar measurements for Indo-Pacific oceanic areas. In active phases of the MJO relatively more large MCSs and connected MCSs occur. The frequency of occurrence of connected MCSs peaks in the onset phase, a phase earlier than separated MCSs. Compared to separated MCSs, connected MCSs in all sizes have weaker reflectivity above 8 km in their deep precipitating portions and thick anvil clouds closely linked to them, suggesting more "stratiform" physics associated with them. Separated MCSs and connected MCSs together produce relatively the least anvil clouds in the onset phase while their deep precipitating portions show stronger/weaker reflectivity above 8 km before/after the onset phase. Thus after the onset phase of the MJO, MCSs shift toward more "convective" organization because separated MCSs maximize after the onset, while their internal structures appear more "stratiform" because internally they have weaker reflectivity above 8km. Connected MCSs coincide with a more humid middle troposphere spatially, even at the same places a few days before they occur. Middle-tropospheric moistening peaks in the onset phase. Moistening of the free troposphere around deep convective systems shows relatively stronger moistening/drying below the 700 hPa before/after the onset phase compared to domain-mean averages. Lower-topped clouds occur most frequently around CMCSs and in active phases, consistent with the presence of a moister free troposphere. Coexistence of these phenomena suggests that the role of middle troposphere moisture in the formation of CMCSs needs to be better understood.

  19. An Overview of Cloud Implementation in the Manufacturing Process Life Cycle

    Science.gov (United States)

    Kassim, Noordiana; Yusof, Yusri; Hakim Mohamad, Mahmod Abd; Omar, Abdul Halim; Roslan, Rosfuzah; Aryanie Bahrudin, Ida; Ali, Mohd Hatta Mohamed

    2017-08-01

    The advancement of information and communication technology (ICT) has changed the structure and functions of various sectors and it has also started to play a significant role in modern manufacturing in terms of computerized machining and cloud manufacturing. It is important for industries to keep up with the current trend of ICT for them to be able survive and be competitive. Cloud manufacturing is an approach that wanted to realize a real-world manufacturing processes that will apply the basic concept from the field of Cloud computing to the manufacturing domain called Cloud-based manufacturing (CBM) or cloud manufacturing (CM). Cloud manufacturing has been recognized as a new paradigm for manufacturing businesses. In cloud manufacturing, manufacturing companies need to support flexible and scalable business processes in the shop floor as well as the software itself. This paper provides an insight or overview on the implementation of cloud manufacturing in the modern manufacturing processes and at the same times analyses the requirements needed regarding process enactment for Cloud manufacturing and at the same time proposing a STEP-NC concept that can function as a tool to support the cloud manufacturing concept.

  20. Cloud Collaboration: Cloud-Based Instruction for Business Writing Class

    Science.gov (United States)

    Lin, Charlie; Yu, Wei-Chieh Wayne; Wang, Jenny

    2014-01-01

    Cloud computing technologies, such as Google Docs, Adobe Creative Cloud, Dropbox, and Microsoft Windows Live, have become increasingly appreciated to the next generation digital learning tools. Cloud computing technologies encourage students' active engagement, collaboration, and participation in their learning, facilitate group work, and support…