WorldWideScience

Sample records for circulating tumor cell

  1. Metastasis and circulating tumor cells

    NARCIS (Netherlands)

    Dalum, van G.; Holland, L.; Terstappen, L.W.M.M.

    2012-01-01

    Cancer is a prominent cause of death worldwide. In most cases, it is not the primary tumor which causes death, but the metastases. Metastatic tumors are spread over the entire human body and are more difficult to remove or treat than the primary tumor. In a patient with metastatic disease, circulati

  2. Redefining circulating tumor cells by image processing

    NARCIS (Netherlands)

    Ligthart, S.T.

    2012-01-01

    Circulating tumor cells (CTC) in the blood of patients with metastatic carcinomas are associated with poor survival and can be used to guide therapy. However, CTC are very heterogeneous in size and shape, and are present at very low frequencies. Missing or misjudging a few events may have great cons

  3. CellTracks cytometer for detection of circulating tumor cells

    NARCIS (Netherlands)

    Tibbe, A.G.J.; Kooi, van der A.; Groot, de M.R.; Vermes, I.

    2003-01-01

    Introduction: In patients with carcinomas, tumor cells are shed into the circulation. The number of the circulating tumor cells is low and technology is needed that has sufficient sensitivity and specificity to enumerate and characterize these cells. The CellTracks system was developed to provide an

  4. The biology of circulating tumor cells.

    Science.gov (United States)

    Pantel, K; Speicher, M R

    2016-03-10

    Metastasis is a biologically complex process consisting of numerous stochastic events which may tremendously differ across various cancer types. Circulating tumor cells (CTCs) are cells that are shed from primary tumors and metastatic deposits into the blood stream. CTCs bear a tremendous potential to improve our understanding of steps involved in the metastatic cascade, starting from intravasation of tumor cells into the circulation until the formation of clinically detectable metastasis. These efforts were propelled by novel high-resolution approaches to dissect the genomes and transcriptomes of CTCs. Furthermore, capturing of viable CTCs has paved the way for innovative culturing technologies to study fundamental characteristics of CTCs such as invasiveness, their kinetics and responses to selection barriers, such as given therapies. Hence the study of CTCs is not only instrumental as a basic research tool, but also allows the serial monitoring of tumor genotypes and may therefore provide predictive and prognostic biomarkers for clinicians. Here, we review how CTCs have contributed to significant insights into the metastatic process and how they may be utilized in clinical practice.

  5. Circulating Tumor Cells in Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Brian [Institute of Urology, University of Southern California, 1441 Eastlake Avenue, Suite 7416, Los Angeles, CA 90033 (United States); Rochefort, Holly [Department of Surgery, University of Southern California, 1520 San Pablo Street, HCT 4300, Los Angeles, CA 90033 (United States); Goldkorn, Amir, E-mail: agoldkor@usc.edu [Department of Internal Medicine and Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Suite 3440, Los Angeles, CA 90033 (United States)

    2013-12-04

    Circulating tumor cells (CTCs) can provide a non-invasive, repeatable snapshot of an individual patient’s tumor. In prostate cancer, CTC enumeration has been extensively studied and validated as a prognostic tool and has received FDA clearance for use in monitoring advanced disease. More recently, CTC analysis has been shifting from enumeration to more sophisticated molecular characterization of captured cells, which serve as a “liquid biopsy” of the tumor, reflecting molecular changes in an individual’s malignancy over time. Here we will review the main CTC studies in advanced and localized prostate cancer, highlighting the important gains as well as the challenges posed by various approaches, and their implications for advancing prostate cancer management.

  6. Circulating Tumor Cells in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Brian Hu

    2013-12-01

    Full Text Available Circulating tumor cells (CTCs can provide a non-invasive, repeatable snapshot of an individual patient’s tumor. In prostate cancer, CTC enumeration has been extensively studied and validated as a prognostic tool and has received FDA clearance for use in monitoring advanced disease. More recently, CTC analysis has been shifting from enumeration to more sophisticated molecular characterization of captured cells, which serve as a “liquid biopsy” of the tumor, reflecting molecular changes in an individual’s malignancy over time. Here we will review the main CTC studies in advanced and localized prostate cancer, highlighting the important gains as well as the challenges posed by various approaches, and their implications for advancing prostate cancer management.

  7. Circulating tumor cells: utopia or reality?

    Science.gov (United States)

    Conteduca, Vincenza; Zamarchi, Rita; Rossi, Elisabetta; Condelli, Valentina; Troiani, Laura; Aieta, Michele

    2013-09-01

    Circulating tumor cells (CTCs) could be considered a sign of tumor aggressiveness, but highly sensitive and specific methods of CTC detection are necessary owing to the rarity and heterogeneity of CTCs in peripheral blood. This review summarizes recent studies on tumor biology, with particular attention to the metastatic cascade, and the molecular characterization and clinical significance of CTCs. Recent technological approaches to enrich and detect these cells and challenges of CTCs for individualized cancer treatment are also discussed. This review also provides an insight into the positive and negative features of the future potential applications of CTC detection, which sometimes remains still a 'utopia', but its actual utility remains among the fastest growing research fields in oncology.

  8. Circulating Tumor Cells Measurements in Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Franck Chiappini

    2012-01-01

    Full Text Available Liver cancer is the fifth most common cancer in men and the seventh in women. During the past 20 years, the incidence of HCC has tripled while the 5-year survival rate has remained below 12%. The presence of circulating tumor cells (CTC reflects the aggressiveness nature of a tumor. Many attempts have been made to develop assays that reliably detect and enumerate the CTC during the development of the HCC. In this case, the challenges are (1 there are few markers specific to the HCC (tumor cells versus nontumor cells and (2 they can be used to quantify the number of CTC in the bloodstream. Another technical challenge consists of finding few CTC mixed with million leukocytes and billion erythrocytes. CTC detection and identification can be used to estimate prognosis and may serve as an early marker to assess antitumor activity of treatment. CTC can also be used to predict progression-free survival and overall survival. CTC are an interesting source of biological information in order to understand dissemination, drug resistance, and treatment-induced cell death. Our aim is to review and analyze the different new methods existing to detect, enumerate, and characterize the CTC in the peripheral circulation of patients with HCC.

  9. Circulating Tumor Cells, Enumeration and Beyond

    Directory of Open Access Journals (Sweden)

    Jian-Mei Hou

    2010-06-01

    Full Text Available The detection and enumeration of circulating tumor cells (CTCs has shown significant clinical utility with respect to prognosis in breast, colorectal and prostate cancers. Emerging studies show that CTCs can provide pharmacodynamic information to aid therapy decision making. CTCs as a ‘virtual and real-time biopsy’ have clear potential to facilitate exploration of tumor biology, and in particular, the process of metastasis. The challenge of profiling CTC molecular characteristics and generating CTC signatures using current technologies is that they enrich rather than purify CTCs from whole blood; we face the problem of looking for the proverbial ‘needle in the haystack’. This review summarizes the current methods for CTC detection and enumeration, focuses on molecular characterization of CTCs, unveils some aspects of CTC heterogeneity, describes attempts to purify CTCs and scans the horizon for approaches leading to comprehensive dissection of CTC biology.

  10. Circulating tumor cells: highlight on practical implications.

    Science.gov (United States)

    Gazzaniga, Paola; Raimondi, Cristina; Gradilone, Angela; Naso, Giuseppe; Cortesi, Enrico; Frati, Luigi

    2012-02-01

    Circulating tumor cells (CTCs) are cells of presumed epithelial origin, whose prognostic and predictive value in metastatic cancer patients has recently been demonstrated. To date, the count of CTCs through the CellSearch® system represents a valid approach for monitoring disease status in patients with metastatic colorectal, breast, and prostate cancer; in these cancer types, a rise in the CTC count at any time during treatment predicts a poor outcome. Nevertheless, the clinical utility of monitoring CTC counts remains controversial, and what to do when CTC counts rise during therapy still remains an unanswered question. In this report, we suggest how to integrate CTC counts with their molecular characterization to better translate biologic information obtained on CTCs into daily clinical practice.

  11. Isolation of Circulating Tumor Cells by Dielectrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, Peter R. C., E-mail: pgascoyn@mdanderson.org [Department of Imaging Physics Research, The University of Texas M.D. Anderson Cancer Center Unit 951, 1515 Holcombe Boulevard, Houston, TX 77030 (United States); Shim, Sangjo [Department of Imaging Physics Research, The University of Texas M.D. Anderson Cancer Center Unit 951, 1515 Holcombe Boulevard, Houston, TX 77030 (United States); Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712 (United States); Present address: Micro & Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, 208 North Wright Street, Urbana, IL 61801 (United States)

    2014-03-12

    Dielectrophoresis (DEP) is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs) from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a) the principles of DEP; (b) the biological basis for the dielectric differences between CTCs and blood cells; (c) why such differences are expected to be present for all types of tumors; and (d) instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF) is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies.

  12. Isolation of Circulating Tumor Cells by Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Peter R. C. Gascoyne

    2014-03-01

    Full Text Available Dielectrophoresis (DEP is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a the principles of DEP; (b the biological basis for the dielectric differences between CTCs and blood cells; (c why such differences are expected to be present for all types of tumors; and (d instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies.

  13. Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer.

    Science.gov (United States)

    Nurwidya, Fariz; Zaini, Jamal; Putra, Andika Chandra; Andarini, Sita; Hudoyo, Achmad; Syahruddin, Elisna; Yunus, Faisal

    2016-09-01

    Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer.

  14. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor

    2016-06-29

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  15. Single-cell analyses of circulating tumor cells

    Institute of Scientific and Technical Information of China (English)

    Xi-Xi Chen; Fan Bai

    2015-01-01

    Circulating tumor cells (CTCs) are a population of tumor cells mediating metastasis, which results in most of the cancer related deaths. hTe number of CTCs in the peripheral blood of patients is rare, and many platforms have been launched for detection and enrichment of CTCs. Enumeration of CTCs has already been used as a prognosis marker predicting the survival rate of cancer patients. Yet CTCs should be more potential. Studies on CTCs at single cell level may help revealing the underlying mechanism of tumorigenesis and metastasis. Though far from developed, this area of study holds much promise in providing new clinical application and deep understanding towards metastasis and cancer development.

  16. Circulating Tumor Cells Versus Circulating Tumor DNA in Colorectal Cancer: Pros and Cons.

    Science.gov (United States)

    Tan, Carlyn Rose C; Zhou, Lanlan; El-Deiry, Wafik S

    2016-06-01

    Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are emerging noninvasive multifunctional biomarkers in liquid biopsy allowing for early diagnosis, accurate prognosis, therapeutic target selection, spatiotemporal monitoring of metastasis, as well as monitoring response and resistance to treatment. CTCs and ctDNA are released from different tumor types at different stages and contribute complementary information for clinical decision. Although big strides have been taken in technology development for detection, isolation and characterization of CTCs and sensitive and specific detection of ctDNA, CTC-, and ctDNA-based liquid biopsies may not be widely adopted for routine cancer patient care until the suitability, accuracy, and reliability of these tests are validated and more standardized protocols are corroborated in large, independent, prospectively designed trials. This review covers CTC- and ctDNA-related technologies and their application in colorectal cancer. The promise of CTC-and ctDNA-based liquid biopsies is envisioned.

  17. The thrombotic potential of circulating tumor microemboli: computational modeling of circulating tumor cell-induced coagulation

    OpenAIRE

    Phillips, Kevin G.; Lee, Angela M.; Tormoen, Garth W.; Rigg, Rachel A.; Kolatkar, Anand; Luttgen, Madelyn; Bethel, Kelly; Bazhenova, Lyudmila; Kuhn, Peter; Newton, Paul; McCarty, Owen J.T.

    2014-01-01

    Thrombotic events can herald the diagnosis of cancer, preceding any cancer-related clinical symptoms. Patients with cancer are at a 4- to 7-fold increased risk of suffering from venous thromboembolism (VTE), with ∼7,000 patients with lung cancer presenting from VTEs. However, the physical biology underlying cancer-associated VTE remains poorly understood. Several lines of evidence suggest that the shedding of tissue factor (TF)-positive circulating tumor cells (CTCs) and microparticles from p...

  18. Circulating tumor cells in oral squamous cell carcinoma: An insight

    Directory of Open Access Journals (Sweden)

    B V Prakruthi

    2015-01-01

    Full Text Available Circulating tumor cells (CTCs are those cells present in the blood and have antigenic and/or genetic characteristics of a specific tumor type. CTCs can be detected in the peripheral blood of cancer patients. Various techniques are available for detection of CTCs, which provide evidence for future metastasis. CTCs may provide new insight into the biology of cancer and process of metastasis in oral squamous cell carcinoma (OSCC. The detection of CTCs may represent a new diagnostic tool for predicting the occurrence of metastatic disease in OSCC and endow with the treatment strategies to efficiently treat and prevent cancer metastasis. This review gives an insight into the significance of CTCs and different techniques for detection of CTCs.

  19. Cytomorphology of Circulating Colorectal Tumor Cells: A Small Case Series

    Directory of Open Access Journals (Sweden)

    Dena Marrinucci

    2010-01-01

    Full Text Available Several methodologies exist to enumerate circulating tumor cells (CTCs from the blood of cancer patients; however, most methodologies lack high-resolution imaging, and thus, little is known about the cytomorphologic features of these cells. In this study of metastatic colorectal cancer patients, we used immunofluorescent staining with fiber-optic array scanning technology to identify CTCs, with subsequent Wright-Giemsa and Papanicolau staining. The CTCs were compared to the corresponding primary and metastatic tumors. The colorectal CTCs showed marked intrapatient pleomorphism. In comparison to the corresponding tissue biopsies, cells from all sites showed similar pleomorphism, demonstrating that colorectal CTCs retain the pleomorphism present in regions of solid growth. They also often retain particular cytomorphologic features present in the patient's primary and/or metastatic tumor tissue. This study provides an initial analysis of the cytomorphologic features of circulating colon cancer cells, providing a foundation for further investigation into the significance and metastatic potential of CTCs.

  20. After clouds sun again shines on circulating tumor cells research.

    Science.gov (United States)

    Barriere, Guislaine; Rigaud, Michel

    2013-07-01

    In the Science issue of first February 2013 Yu M et al. characterized epithelial and mesenchymal circulating tumor cells (CTC) by RNA-in situ hybridization. In this editorial we comment their results and emphasize the different CTC subpopulations arising from epithelial mesenchymal transition (EMT).

  1. Advanced Research on Circulating Tumor Cells in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Hui LI

    2012-11-01

    Full Text Available Lung cancer is the malignant disease with the highest rate in terms of incidence and mortality in China. Early diagnosis and timely monitoring tumor recurrence and metastasis are extremely important for improving 5-year survival rate of lung cancer patients. Circulating tumor cells (CTCs, as a "liquid biopsy specimens” for the primary tumor, provide the possibility to perform real-time, non-invasive histological identification for lung cancer patients. The detection of CTCs contributes to early diagnosis, surveillance of tumor recurrence and metastasis, and prediction of therapeutic efficacy and prognosis. Furthermore, CTCs-dependent detection emerges as a new approach for molecularly pathologic examination, study of molecular mechanisms involved in drug resistance, and resolution for tumor heterogeneity. This study reviewed the recent progress of CTCs in lung cancer research field.

  2. The Challenges of Detecting Circulating Tumor Cells in Sarcoma

    Science.gov (United States)

    Tellez-Gabriel, Marta; Brown, Hannah K.; Young, Robin; Heymann, Marie-Françoise; Heymann, Dominique

    2016-01-01

    Sarcomas are a heterogeneous group of malignant neoplasms of mesenchymal origin, many of which have a propensity to develop distant metastases. Cancer cells that have escaped from the primary tumor are able to invade into surrounding tissues, to intravasate into the bloodstream to become circulating tumor cells (CTCs), and are responsible for the generation of distant metastases. Due to the rarity of these tumors and the absence of specific markers expressed by sarcoma tumor cells, the characterization of sarcoma CTCs has to date been relatively limited. Current techniques for isolating sarcoma CTCs are based on size criteria, the identification of circulating cells that express either common mesenchymal markers, sarcoma-specific markers, such as CD99, CD81, or PAX3, and chromosomal translocations found in certain sarcoma subtypes, such as EWS-FLI1 in Ewing’s sarcoma, detection of osteoblast-related genes, or measurement of the activity of specific metabolic enzymes. Further studies are needed to improve the isolation and characterization of sarcoma CTCs, to demonstrate their clinical significance as predictive and/or prognostic biomarkers, and to utilize CTCs as a tool for investigating the metastatic process in sarcoma and to identify novel therapeutic targets. The present review provides a short overview of the most recent literature on CTCs in sarcoma. PMID:27656422

  3. Circulating Tumor Cells: From Theory to Nanotechnology-Based Detection.

    Science.gov (United States)

    Ming, Yue; Li, Yuanyuan; Xing, Haiyan; Luo, Minghe; Li, Ziwei; Chen, Jianhong; Mo, Jingxin; Shi, Sanjun

    2017-01-01

    Cancer stem cells with stem-cell properties are regarded as tumor initiating cells. Sharing stem-cell properties, circulating tumor cells (CTCs) are responsible for the development of metastasis, which significant affects CTC analysis in clinical practice. Due to their extremely low occurrence in blood, however, it is challenging to enumerate and analyze CTCs. Nanotechnology is able to address the problems of insufficient capture efficiency and low purity of CTCs owing to the unique structural and functional properties of nanomaterials, showing strong promise for CTC isolation and detection. In this review, we discuss the role of stem-like CTCs in metastases, provide insight into recent progress in CTC isolation and detection approaches using various nanoplatforms, and highlight the role of nanotechnology in the advancement of CTC research.

  4. Circulating Tumor Cells: From Theory to Nanotechnology-Based Detection

    Science.gov (United States)

    Ming, Yue; Li, Yuanyuan; Xing, Haiyan; Luo, Minghe; Li, Ziwei; Chen, Jianhong; Mo, Jingxin; Shi, Sanjun

    2017-01-01

    Cancer stem cells with stem-cell properties are regarded as tumor initiating cells. Sharing stem-cell properties, circulating tumor cells (CTCs) are responsible for the development of metastasis, which significant affects CTC analysis in clinical practice. Due to their extremely low occurrence in blood, however, it is challenging to enumerate and analyze CTCs. Nanotechnology is able to address the problems of insufficient capture efficiency and low purity of CTCs owing to the unique structural and functional properties of nanomaterials, showing strong promise for CTC isolation and detection. In this review, we discuss the role of stem-like CTCs in metastases, provide insight into recent progress in CTC isolation and detection approaches using various nanoplatforms, and highlight the role of nanotechnology in the advancement of CTC research. PMID:28203204

  5. Dynamic Fluctuation of Circulating Tumor Cells during Cancer Progression

    Directory of Open Access Journals (Sweden)

    Mazen A. Juratli

    2014-01-01

    Full Text Available Circulating tumor cells (CTCs are a promising diagnostic and prognostic biomarker for metastatic tumors. We demonstrate that CTCs’ diagnostic value might be increased through real-time monitoring of CTC dynamics. Using preclinical animal models of breast cancer and melanoma and in vivo flow cytometry with photoacoustic and fluorescence detection schematics, we show that CTC count does not always correlate with the primary tumor size. Individual analysis elucidated many cases where the highest level of CTCs was detected before the primary tumor starts progressing. This phenomenon could be attributed to aggressive tumors developing from cancer stem cells. Furthermore, real-time continuous monitoring of CTCs reveals that they occur at highly variable rates in a detection point over a period of time (e.g., a range of 0–54 CTCs per 5 min. These same fluctuations in CTC numbers were observed in vivo in epithelial and non-epithelial metastatic tumors, in different stages of tumor progression, and in different vessels. These temporal CTC fluctuations can explain false negative results of a one-time snapshot test in humans. Indeed, we observed wide variations in the number of CTCs in subsequent blood samples taken from the same metastatic melanoma patient, with some samples being CTC-free. If these phenomena are confirmed in our ongoing in vivo clinical trials, this could support a personalized strategy of CTC monitoring for cancer patients.

  6. Dynamic Fluctuation of Circulating Tumor Cells during Cancer Progression

    Energy Technology Data Exchange (ETDEWEB)

    Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A. [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Melerzanov, Alexander V. [Moscow Institute of Physics and Technology (MIPT), Moscow Region, 141700 (Russian Federation); Zharov, Vladimir P. [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Moscow Institute of Physics and Technology (MIPT), Moscow Region, 141700 (Russian Federation); Galanzha, Ekaterina I., E-mail: egalanzha@uams.edu [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2014-01-15

    Circulating tumor cells (CTCs) are a promising diagnostic and prognostic biomarker for metastatic tumors. We demonstrate that CTCs’ diagnostic value might be increased through real-time monitoring of CTC dynamics. Using preclinical animal models of breast cancer and melanoma and in vivo flow cytometry with photoacoustic and fluorescence detection schematics, we show that CTC count does not always correlate with the primary tumor size. Individual analysis elucidated many cases where the highest level of CTCs was detected before the primary tumor starts progressing. This phenomenon could be attributed to aggressive tumors developing from cancer stem cells. Furthermore, real-time continuous monitoring of CTCs reveals that they occur at highly variable rates in a detection point over a period of time (e.g., a range of 0–54 CTCs per 5 min). These same fluctuations in CTC numbers were observed in vivo in epithelial and non-epithelial metastatic tumors, in different stages of tumor progression, and in different vessels. These temporal CTC fluctuations can explain false negative results of a one-time snapshot test in humans. Indeed, we observed wide variations in the number of CTCs in subsequent blood samples taken from the same metastatic melanoma patient, with some samples being CTC-free. If these phenomena are confirmed in our ongoing in vivo clinical trials, this could support a personalized strategy of CTC monitoring for cancer patients.

  7. Circulating tumor cells: exploring intratumor heterogeneity of colorectal cancer.

    Science.gov (United States)

    Raimondi, Cristina; Nicolazzo, Chiara; Gradilone, Angela; Giannini, Giuseppe; De Falco, Elena; Chimenti, Isotta; Varriale, Elisa; Hauch, Siegfried; Plappert, Linda; Cortesi, Enrico; Gazzaniga, Paola

    2014-05-01

    The hypothesis of the "liquid biopsy" using circulating tumor cells (CTCs) emerged as a minimally invasive alternative to traditional tissue biopsy to determine cancer therapy. Discordance for biomarkers expression between primary tumor tissue and circulating tumor cells (CTCs) has been widely reported, thus rendering the biological characterization of CTCs an attractive tool for biomarkers assessment and treatment selection. Studies performed in metastatic colorectal cancer (mCRC) patients using CellSearch, the only FDA-cleared test for CTCs assessment, demonstrated a much lower yield of CTCs in this tumor type compared with breast and prostate cancer, both at baseline and during the course of treatment. Thus, although attractive, the possibility to use CTCs as therapy-related biomarker for colorectal cancer patients is still limited by a number of technical issues mainly due to the low sensitivity of the CellSearch method. In the present study we found a significant discordance between CellSearch and AdnaTest in the detection of CTCs from mCRC patients. We then investigated KRAS pathway activating mutations in CTCs and determined the degree of heterogeneity for KRAS oncogenic mutations between CTCs and tumor tissues. Whether KRAS gene amplification may represent an alternative pathway responsible for KRAS activation was further explored. KRAS gene amplification emerged as a functionally equivalent and mutually exclusive mechanism of KRAS pathway activation in CTCs, possibly related to transcriptional activation. The serial assessment of CTCs may represent an early biomarker of treatment response, able to overcome the intrinsic limit of current molecular biomarkers represented by intratumor heterogeneity.

  8. Cell-free circulating tumor DNA in cancer

    Institute of Scientific and Technical Information of China (English)

    Zhen Qin; Vladimir A Ljubimov; Cuiqi Zhou; Yunguang Tong; Jimin Liang

    2016-01-01

    Cancer is a common cause of death worldwide. Despite significant advances in cancer treatments, the morbidity and mortality are still enormous. Tumor heterogeneity, especially intratumoral heterogeneity, is a significant reason under-lying difculties in tumor treatment and failure of a number of current therapeutic modalities, even of molecularly targeted therapies. The development of a virtually noninvasive“liquid biopsy”from the blood has been attempted to characterize tumor heterogeneity. This review focuses on cell-free circulating tumor DNA (ctDNA) in the bloodstream as a versatile biomarker. ctDNA analysis is an evolving field with many new methods being developed and optimized to be able to successfully extract and analyze ctDNA, which has vast clinical applications. ctDNA has the potential to accurately genotype the tumor and identify personalized genetic and epigenetic alterations of the entire tumor. In addition, ctDNA has the potential to accurately monitor tumor burden and treatment response, while also being able to monitor minimal residual disease, reducing the need for harmful adjuvant chemotherapy and allowing more rapid detection of relapse. There are still many challenges that need to be overcome prior to this biomarker getting wide adoption in the clinical world, including optimization, standardization, and large multicenter trials.

  9. Genetic engineering of platelets to neutralize circulating tumor cells.

    Science.gov (United States)

    Li, Jiahe; Sharkey, Charles C; Wun, Brittany; Liesveld, Jane L; King, Michael R

    2016-04-28

    Mounting experimental evidence demonstrates that platelets support cancer metastasis. Within the circulatory system, platelets guard circulating tumor cells (CTCs) from immune elimination and promote their arrest at the endothelium, supporting CTC extravasation into secondary sites. Neutralization of CTCs in blood circulation can potentially attenuate metastases to distant organs. Therefore, extensive studies have explored the blockade of platelet-CTC interactions as an anti-metastatic strategy. Such an intervention approach, however, may cause bleeding disorders since the platelet-CTC interactions inherently rely on the blood coagulation cascade including platelet activation. On the other hand, platelets have been genetically engineered to correct inherited bleeding disorders in both animal models and human clinical trials. In this study, inspired by the physical association between platelets and CTCs, platelets were genetically modified to express surface-bound tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a cytokine known to induce apoptosis specifically in tumor cells. The TRAIL-expressing platelets were demonstrated to kill cancer cells in vitro and significantly reduce metastases in a mouse model of prostate cancer metastasis. Our results suggest that using platelets to produce and deliver cancer-specific therapeutics can provide a Trojan-horse strategy of neutralizing CTCs to attenuate metastasis.

  10. Significance of Micrometastases: Circulating Tumor Cells and Disseminated Tumor Cells in Early Breast Cancer

    Directory of Open Access Journals (Sweden)

    Catherine Oakman

    2010-06-01

    Full Text Available Adjuvant systemic therapy targets minimal residual disease. Our current clinical approach in the adjuvant setting is to presume, rather than confirm, the presence of minimal residual disease. Based on assessment of the primary tumor, we estimate an individual’s recurrence risk. Subsequent treatment decisions are based on characteristics of the primary tumor, with the presumption of consistent biology and treatment sensitivity between micrometastases and the primary lesion. An alternative approach is to identify micrometastatic disease. Detection of disseminated tumor cells (DTC in the bone marrow and circulating tumor cells (CTC from peripheral blood collection may offer quantification and biocharacterization of residual disease. This paper will review the prognostic and predictive potential of micrometastatic disease in early breast cancer.

  11. Nanobiotechnology for the capture and manipulation of circulating tumor cells.

    Science.gov (United States)

    Hughes, Andrew D; King, Michael R

    2012-01-01

    A necessary step in metastasis is the dissemination of malignant cells into the bloodstream, where cancer cells travel throughout the body as circulating tumor cells (CTC) in search of an opportunity to seed a secondary tumor. CTC represent a valuable diagnostic tool: evidence indicates that the quantity of CTC in the blood has been shown to relate to the severity of the illness, and samples are readily obtained through routine blood draws. As such, there has been a push toward developing technologies to reliably detect CTC using a variety of molecular and immunocytochemical techniques. In addition to their use in diagnostics, CTC detection systems that isolate CTC in such a way that the cells remain viable will allow for the performance of live-cell assays to facilitate the development of personalized cancer therapies. Moreover, techniques for the direct manipulation of CTC in circulation have been developed, intending to block metastasis in situ. We review a number of current and emerging micro- and nanobiotechnology approaches for the detection, capture, and manipulation of rare CTC aimed at advancing cancer treatment.

  12. Circulating Cell Free DNA in the Diagnosis of Trophoblastic Tumors

    Directory of Open Access Journals (Sweden)

    Mark R. Openshaw

    2016-02-01

    Full Text Available Gestational trophoblastic neoplasia (GTN represents a group of diseases characterized by production of human chorionic gonadotropin (hCG. Since non-gestational tumors may occasionally secrete hCG, histopathological diagnosis is important for appropriate clinical management. However, a histopathological diagnosis is not always available. We therefore investigated the feasibility of extracting cell free DNA (cfDNA from the plasma of women with GTN for use as a “liquid biopsy” in patients without histopathological diagnosis. cfDNA was prepared from the plasma of 20 women with a diagnosis of GTN and five with hCG-secreting tumors of unknown origin. Genotyping of cfDNA from the patient, genomic DNA from her and her partner and DNA from the tumor tissue identified circulating tumor DNA (ctDNA (from 9% to 53% of total cfDNA in 12 of 20 patients with GTN. In one case without a tissue diagnosis, ctDNA enabled a diagnosis of GTN originating in a non-molar conception and in another a diagnosis of non-gestational tumor, based on the high degree of allelic instability and loss of heterozygosity in the ctDNA. In summary ctDNA can be detected in the plasma of women with GTN and can facilitate the diagnosis of both gestational and non-gestational trophoblastic tumors in cases without histopathological diagnosis.

  13. Circulating Cell Free DNA in the Diagnosis of Trophoblastic Tumors

    Science.gov (United States)

    Openshaw, Mark R.; Harvey, Richard A.; Sebire, Neil J.; Kaur, Baljeet; Sarwar, Naveed; Seckl, Michael J.; Fisher, Rosemary A.

    2015-01-01

    Gestational trophoblastic neoplasia (GTN) represents a group of diseases characterized by production of human chorionic gonadotropin (hCG). Since non-gestational tumors may occasionally secrete hCG, histopathological diagnosis is important for appropriate clinical management. However, a histopathological diagnosis is not always available. We therefore investigated the feasibility of extracting cell free DNA (cfDNA) from the plasma of women with GTN for use as a “liquid biopsy” in patients without histopathological diagnosis. cfDNA was prepared from the plasma of 20 women with a diagnosis of GTN and five with hCG-secreting tumors of unknown origin. Genotyping of cfDNA from the patient, genomic DNA from her and her partner and DNA from the tumor tissue identified circulating tumor DNA (ctDNA) (from 9% to 53% of total cfDNA) in 12 of 20 patients with GTN. In one case without a tissue diagnosis, ctDNA enabled a diagnosis of GTN originating in a non-molar conception and in another a diagnosis of non-gestational tumor, based on the high degree of allelic instability and loss of heterozygosity in the ctDNA. In summary ctDNA can be detected in the plasma of women with GTN and can facilitate the diagnosis of both gestational and non-gestational trophoblastic tumors in cases without histopathological diagnosis. PMID:26981554

  14. Circulating tumor cells in high-risk nonmetastatic colorectal cancer.

    Science.gov (United States)

    Gazzaniga, Paola; Gianni, Walter; Raimondi, Cristina; Gradilone, Angela; Lo Russo, Giuseppe; Longo, Flavia; Gandini, Orietta; Tomao, Silverio; Frati, Luigi

    2013-10-01

    The identification of patients at higher risk of recurrence after primary colorectal cancer resection is currently one of the challenges facing medical oncologists. Circulating tumor cell (CTC) may represent a surrogate marker of an early spread of disease in patients without overt metastases. Thirty-seven high-risk stages II-III colorectal cancer patients were evaluated for the presence of CTC. Enumeration of CTCs in 7.5 ml of blood was carried out with the FDA-cleared CellSearch system. CTC count was performed after primary tumor resection and before the start of adjuvant therapy. CTC was detected in 22 % of patients with a significant correlation with regional lymph nodes involvement and stage of disease. No significant correlation was found among the presence of CTC and other clinicopathological parameters. These data suggest that CTCs detection might help in the selection of high-risk stage II colorectal cancer patient candidates for adjuvant chemotherapy.

  15. Biodegradable polymeric micelle-encapsulated doxorubicin suppresses tumor metastasis by killing circulating tumor cells

    Science.gov (United States)

    Deng, Senyi; Wu, Qinjie; Zhao, Yuwei; Zheng, Xin; Wu, Ni; Pang, Jing; Li, Xuejing; Bi, Cheng; Liu, Xinyu; Yang, Li; Liu, Lei; Su, Weijun; Wei, Yuquan; Gong, Changyang

    2015-03-01

    Circulating tumor cells (CTCs) play a crucial role in tumor metastasis, but it is rare for any chemotherapy regimen to focus on killing CTCs. Herein, we describe doxorubicin (Dox) micelles that showed anti-metastatic activity by killing CTCs. Dox micelles with a small particle size and high encapsulation efficiency were obtained using a pH-induced self-assembly method. Compared with free Dox, Dox micelles exhibited improved cytotoxicity, apoptosis induction, and cellular uptake. In addition, Dox micelles showed a sustained release behavior in vitro, and in a transgenic zebrafish model, Dox micelles exhibited a longer circulation time and lower extravasation from blood vessels into surrounding tissues. Anti-tumor and anti-metastatic activities of Dox micelles were investigated in transgenic zebrafish and mouse models. In transgenic zebrafish, Dox micelles inhibited tumor growth and prolonged the survival of tumor-bearing zebrafish. Furthermore, Dox micelles suppressed tumor metastasis by killing CTCs. In addition, improved anti-tumor and anti-metastatic activities were also confirmed in mouse tumor models, where immunofluorescent staining of tumors indicated that Dox micelles induced more apoptosis and showed fewer proliferation-positive cells. There were decreased side effects in transgenic zebrafish and mice after administration of Dox micelles. In conclusion, Dox micelles showed stronger anti-tumor and anti-metastatic activities and decreased side effects both in vitro and in vivo, which may have potential applications in cancer therapy.

  16. Opportunities and Challenges for Pancreatic Circulating Tumor Cells.

    Science.gov (United States)

    Nagrath, Sunitha; Jack, Rhonda M; Sahai, Vaibhav; Simeone, Diane M

    2016-09-01

    Sensitive and reproducible platforms have been developed for detection, isolation, and enrichment of circulating tumor cells (CTCs)-rare cells that enter the blood from solid tumors, including those of the breast, prostate gland, lung, pancreas, and colon. These might be used as biomarkers in diagnosis or determination of prognosis. CTCs are no longer simply detected and quantified; they are now used in ex vivo studies of anticancer agents and early detection. We review what we have recently learned about CTCs from pancreatic tumors, describing advances in their isolation and analysis and challenges to their clinical utility. We summarize technologies used to isolate CTCs from blood samples of patients with pancreatic cancer, including immunoaffinity and label-free physical attribute-based capture. We explain methods of CTC analysis and how findings from these studies might be used to detect cancer at earlier stages, monitor disease progression, and determine prognosis. We review studies that have expanded CTCs for testing of anticancer agents and how these approaches might be used to personalize treatment. Advances in the detection, isolation, and analysis of CTCs have increased our understanding of the dissemination and progression of pancreatic cancer. However, standardization of methodologies and prospective studies are needed for this emerging technology to have a significant effect on clinical care.

  17. Controversies in circulating tumor cell count during therapy.

    Science.gov (United States)

    Raimondi, Cristina; Gradilone, Angela; Gazzaniga, Paola

    2013-06-01

    Circulating tumor cells (CTCs) are a potential biomarker for prognosis and predictor for therapeutic response. Besides enumeration, the molecular portrait of CTCs holds promise to reveal new insights into the biology of cancer. Although CTCs may represent a liquid biopsy useful for selection of personalized treatments, to date, inconclusive clinical data support the utility of such information in terms of measurable benefit for the individual cancer patient. To finally move CTCs from translational research to the clinical setting and incorporate CTC count/characterization in routine oncological practice, we still need a definitive validation. This is a goal that will be hard to achieve, since tracing a molecular profile of CTCs is hampered by the extremely high heterogeneity of these cells.

  18. Recent Advances in the Molecular Characterization of Circulating Tumor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lowes, Lori E. [London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 4L6 (Canada); Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1 (Canada); Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 4L6 (Canada); Allan, Alison L., E-mail: alison.allan@lhsc.on.ca [London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 4L6 (Canada); Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1 (Canada); Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 4L6 (Canada); Lawson Health Research Institute, London, ON N6C 2R5 (Canada)

    2014-03-13

    Although circulating tumor cells (CTCs) were first observed over a century ago, lack of sensitive methodology precluded detailed study of these cells until recently. However, technological advances have now facilitated the identification, enumeration, and characterization of CTCs using a variety of methods. The majority of evidence supporting the use of CTCs in clinical decision-making has been related to enumeration using the CellSearch{sup ®} system and correlation with prognosis. Growing evidence also suggests that CTC monitoring can provide an early indication of patient treatment response based on comparison of CTC levels before and after therapy. However, perhaps the greatest potential that CTCs hold for oncology lies at the level of molecular characterization. Clinical treatment decisions may be more effective if they are based on molecular characteristics of metastatic cells rather than on those of the primary tumor alone. Molecular characterization of CTCs (which can be repeatedly isolated in a minimally invasive fashion) provides the opportunity for a “real-time liquid biopsy” that allows assessment of genetic drift, investigation of molecular disease evolution, and identification of actionable genomic characteristics. This review focuses on recent advances in this area, including approaches involving immunophenotyping, fluorescence in situ hybridization (FISH), multiplex RT-PCR, microarray, and genomic sequencing.

  19. Recent Advances in the Molecular Characterization of Circulating Tumor Cells

    Directory of Open Access Journals (Sweden)

    Lori E. Lowes

    2014-03-01

    Full Text Available Although circulating tumor cells (CTCs were first observed over a century ago, lack of sensitive methodology precluded detailed study of these cells until recently. However, technological advances have now facilitated the identification, enumeration, and characterization of CTCs using a variety of methods. The majority of evidence supporting the use of CTCs in clinical decision-making has been related to enumeration using the CellSearch® system and correlation with prognosis. Growing evidence also suggests that CTC monitoring can provide an early indication of patient treatment response based on comparison of CTC levels before and after therapy. However, perhaps the greatest potential that CTCs hold for oncology lies at the level of molecular characterization. Clinical treatment decisions may be more effective if they are based on molecular characteristics of metastatic cells rather than on those of the primary tumor alone. Molecular characterization of CTCs (which can be repeatedly isolated in a minimally invasive fashion provides the opportunity for a “real-time liquid biopsy” that allows assessment of genetic drift, investigation of molecular disease evolution, and identification of actionable genomic characteristics. This review focuses on recent advances in this area, including approaches involving immunophenotyping, fluorescence in situ hybridization (FISH, multiplex RT-PCR, microarray, and genomic sequencing.

  20. Nanostructured Substrates for Capturing Circulating Tumor Cells in Whole Blood

    Science.gov (United States)

    Tseng, Hsian-Rong

    2009-03-01

    Over the past decade, circulating tumor cells (CTCs) has become an emerging ``biomarker'' for detecting early-stage cancer metastasis, predicting patient prognosis, as well as monitoring disease progression and therapeutic outcomes. However, isolation of CTCs has been technically challenging due to the extremely low abundance (a few to hundreds per ml) of CTCs among a high number of hematologic cells (109 per mL) in the blood. Our joint research team at UCLA has developed a new cell capture technology for quantification of CTCs in whole blood samples. Similar to most of the existing approaches, epithelial cell adhesion molecule antibody (anti-EpCAM) was grafted onto the surfaces to distinguish CTCs from the surrounding hematologic cells. The uniqueness of our technology is the use of nanostructured surfaces, which facilitates local topographical interactions between CTCs and substrates at the very first cell/substrate contacting time point. We demonstrated the ability of these nanostructured substrates to capture CTCs in whole blood samples with significantly improved efficiency and selectivity. The successful demonstration of this cell capture technology using brain, breast and prostate cancer cell lines encouraged us to test this approach in clinical setting. We have been able to bond our first validation study with a commercialized technology based on the use of immunomagnetic nanoparticles. A group of clinically well-characterized prostate cancer patients at UCLA hospital have been recruited and tested in parallel by these two technologies.

  1. Cell-based monitoring of cancer : Circulating tumor and endothelial cells

    NARCIS (Netherlands)

    J. Kraan (Jaco)

    2015-01-01

    markdownabstractThis thesis aimed to optimize the predictive and prognostic information that can be obtained from Circulating Tumor cells (CTC) and Circulating Endothelial Cells (CEC) in whole blood by improving and standardization of their detection and characterization methods in patients with sol

  2. Carboxybetaine methacrylate oligomer modified nylon for circulating tumor cells capture.

    Science.gov (United States)

    Dong, Chaoqun; Wang, Huiyu; Zhang, Zhuo; Zhang, Tao; Liu, Baorui

    2014-10-15

    Circulating tumor cells (CTC) capture is one of the most effective approaches in diagnosis and treatment of cancers in the field of personalized cancer medicine. In our study, zwitterionic carboxybetaine methacrylate (CBMA) oligomers were grafted onto nylon via atomic transfer random polymerization (ATRP) which would serve as a novel material for the development of convenient CTC capture interventional medical devices. The chemical, physical and biological properties of pristine and modified nylon surfaces were assessed by Fourier transform infrared spectra, atomic force microscope, water contact angle measurements, X-ray photoelectron spectroscopy, protein adsorption, platelet adhesion, and plasma recalcification time (PRT) determinations, etc. The results, including the significant decrease of proteins adsorption and platelets adhesion, as well as prolonged PRTs demonstrated the extraordinary biocompatibility and blood compatibility of the modified surface. Furthermore, we showed that upon immobilization of anti-epithelial cell adhesion molecular (anti-EpCAM) antibody onto the CBMA moiety, the modified nylon surface can selectively capture EpCAM positive tumor cells from blood with high efficiency, indicating the potential of the modified nylon in the manufacture of convenient interventional CTC capture medical devices.

  3. Sampling circulating tumor cells for clinical benefits: how frequent?

    Science.gov (United States)

    Leong, Sai Mun; Tan, Karen M L; Chua, Hui Wen; Tan, Doreen; Fareda, Delly; Osmany, Saabry; Li, Mo-Huang; Tucker, Steven; Koay, Evelyn S C

    2015-06-25

    Circulating tumor cells (CTCs) are cells shed from tumors or metastatic sites and are a potential biomarker for cancer diagnosis, management, and prognostication. The majority of current studies use single or infrequent CTC sampling points. This strategy assumes that changes in CTC number, as well as phenotypic and molecular characteristics, are gradual with time. In reality, little is known today about the actual kinetics of CTC dissemination and phenotypic and molecular changes in the blood of cancer patients. Herein, we show, using clinical case studies and hypothetical simulation models, how sub-optimal CTC sampling may result in misleading observations with clinical consequences, by missing out on significant CTC spikes that occur in between sampling times. Initial studies using highly frequent CTC sampling are necessary to understand the dynamics of CTC dissemination and phenotypic and molecular changes in the blood of cancer patients. Such an improved understanding will enable an optimal, study-specific sampling frequency to be assigned to individual research studies and clinical trials and better inform practical clinical decisions on cancer management strategies for patient benefits.

  4. 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood.

    Science.gov (United States)

    Zheng, Siyang; Lin, Henry K; Lu, Bo; Williams, Anthony; Datar, Ram; Cote, Richard J; Tai, Yu-Chong

    2011-02-01

    Detection of circulating tumor cells has emerged as a promising minimally invasive diagnostic and prognostic tool for patients with metastatic cancers. We report a novel three dimensional microfilter device that can enrich viable circulating tumor cells from blood. This device consists of two layers of parylene membrane with pores and gap precisely defined with photolithography. The positions of the pores are shifted between the top and bottom membranes. The bottom membrane supports captured cells and minimize the stress concentration on cell membrane and sustain cell viability during filtration. Viable cell capture on device was investigated with scanning electron microscopy, confocal microscopy, and immunofluorescent staining using model systems of cultured tumor cells spiked in blood or saline. The paper presents and validates this new 3D microfiltration concept for circulation tumor cell enrichment application. The device provides a highly valuable tool for assessing and characterizing viable enriched circulating tumor cells in both research and clinical settings.

  5. The rationale for liquid biopsy in colorectal cancer: a focus on circulating tumor cells.

    Science.gov (United States)

    Gazzaniga, Paola; Raimondi, Cristina; Nicolazzo, Chiara; Carletti, Raffaella; di Gioia, Cira; Gradilone, Angela; Cortesi, Enrico

    2015-01-01

    Capturing circulating tumor cells (CTCs) and/or circulating tumor DNA from blood, which represents a precious source of biological material derived from both primary and metastatic tumors, has been named a 'liquid biopsy'. While the circulating tumor DNA might be more representative of the bulk of the metastatic tumor, CTCs are thought to reflect more of the metastases-initiating cells. Consequently, a liquid biopsy made of tumor cells and tumor DNA that is able to track cancer evolution, as a fingerprint of the patient's individual tumor, and is easy to perform at every stage of the disease course, sounds attractive. This article mainly focuses on the applications of CTCs to track tumor dynamics in real time using colorectal cancer as a model system. The analysis of viable CTCs at DNA, RNA and protein levels, as well as their expansion in vitro, may allow deep investigation of the features of metastases-initiating cells.

  6. Lab-on-chip platform for circulating tumor cells isolation

    Science.gov (United States)

    Maurya, D. K.; Fooladvand, M.; Gray, E.; Ziman, M.; Alameh, K.

    2015-12-01

    We design, develop and demonstrate the principle of a continuous, non-intrusive, low power microfluidics-based lab-ona- chip (LOC) structure for Circulating Tumor Cell (CTC) separation. Cell separation is achieved through 80 cascaded contraction and expansion microchannels of widths 60 μm and 300 μm, respectively, and depth 60 μm, which enable momentum-change-induced inertial forces to be exerted on the cells, thus routing them to desired destinations. The total length of the developed LOC is 72 mm. The LOC structure is simulated using the COMSOL multiphysics software, which enables the optimization of the dimensions of the various components of the LOC structure, namely the three inlets, three filters, three contraction and expansion microchannel segments and five outlets. Simulation results show that the LOC can isolate CTCs of sizes ranging from 15 to 30 μm with a recovery rate in excess of 90%. Fluorescent microparticles of two different sizes (5 μm and 15 μm), emulating blood and CTC cells, respectively, are used to demonstrate the principle of the developed LOC. A mixture of these microparticles is injected into the primary LOC inlet via an electronically-controlled syringe pump, and the large-size particles are routed to the primary LOC outlet through the contraction and expansion microchannels. Experimental results demonstrate the ability of the developed LOC to isolate particles by size exclusion with an accuracy of 80%. Ongoing research is focusing on the LOC design improvement for better separation efficiency and testing of biological samples for isolation of CTCs.

  7. Challenges in circulating tumor cell detection by the CellSearch system

    NARCIS (Netherlands)

    Andree, K.C.; Dalum, van G.; Terstappen, L.W.M.M.

    2016-01-01

    Enumeration and characterization of circulating tumor cells (CTC) hold the promise of a real time liquid biopsy. They are however present in a large background of hematopoietic cells making their isolation technically challenging. In 2004, the CellSearch system was introduced as the first and only F

  8. Circulating Tumor Cells in the Adenocarcinoma of the Esophagus

    Directory of Open Access Journals (Sweden)

    Giulia Gallerani

    2016-08-01

    Full Text Available Circulating tumor cells (CTCs are elements of indisputable significance as they seem to be responsible for the onset of metastasis. Despite this, research into CTCs and their clinical application have been hindered by their rarity and heterogeneity at the molecular and cellular level, and also by a lack of technical standardization. Esophageal adenocarcinoma (EAC is a highly aggressive cancer that is often diagnosed at an advanced stage. Its incidence has increased so much in recent years that new diagnostic, prognostic and predictive biomarkers are urgently needed. Preliminary findings suggest that CTCs could represent an effective, non-invasive, real-time assessable biomarker in all stages of EAC. This review provides an overview of EAC and CTC characteristics and reports the main research results obtained on CTCs in this setting. The need to carry out further basic and translational research in this area to confirm the clinical usefulness of CTCs and to provide oncologists with a tool to improve therapeutic strategies for EAC patients was herein highlighted.

  9. Biomarker utility of circulating tumor cells in metastatic cutaneous melanoma.

    Science.gov (United States)

    Khoja, Leila; Lorigan, Paul; Zhou, Cong; Lancashire, Matthew; Booth, Jessica; Cummings, Jeff; Califano, Raffaele; Clack, Glen; Hughes, Andrew; Dive, Caroline

    2013-06-01

    The incidence of melanoma is increasing worldwide. Advances in targeted agents and immunotherapy have improved outcomes in metastatic disease, but biomarkers are required to optimize treatment. We determined the prevalence of circulating tumor cells (CTCs) and explored their utility as prognostic and pharmacodynamic biomarkers. A total of 101 patients with metastatic cutaneous melanoma were recruited prospectively. CTC number was determined using the CellSearch platform and melanoma kits in samples taken at baseline and serially during treatment. CTC numbers ranged between 0 and 36 per 7.5 ml blood; 26% of patients had ≥ 2 CTCs. Baseline CTC number was prognostic for median overall survival (OS) in univariate analysis (2.6 vs. 7.2 months (P<0.011) for patients with ≥ 2 CTCs vs. <2 CTCs, respectively). In multivariate analysis, CTC number was an independent prognostic biomarker of OS (hazard ratio (HR) 2.403, 95% confidence interval (CI) 1.303-4.430, P=0.005). Patients receiving treatment in whom CTC number remained ≥ 2 CTCs during treatment had shorter median OS than those who maintained <2 CTCs (7 vs. 10 months, HR 0.34, 95% CI 0.14-0.81, log-rank test P=0.015). In conclusion, CTC number in metastatic cutaneous melanoma patients is prognostic for OS with a cutoff of 2 CTCs per 7.5 ml blood. CTC number measured before and throughout treatment provided additional prognostic information. Larger studies are warranted to confirm CTC biomarker utility in melanoma patients.

  10. Circulating tumor cells in oral squamous cell carcinoma-an enigma or reality?

    Directory of Open Access Journals (Sweden)

    N Anitha

    2015-01-01

    Full Text Available Oral squamous cell carcinoma (OSCC is ranking 1 st among males and 4 th among females in India. In spite of major advances in diagnosis and treatment of OSCC, survival rates, have remained poor. Circulating tumor cells (CTCs in the blood stream, play an important role in establishing metastases. It is important to identify patients suffering from nonlocalized tumor with "circulating" tumor cells to determine the tailor made, systemic therapy in addition to local resection and irradiation. Thus, detecting metastases at an early stage are needed for better prognosis and survival. CTCs as new prognostic marker to detect the metastatic potential will provide a novel insight into tumor burden and efficacy of therapy. The recent advances and its application in OSCC will be reviewed.

  11. Single Cell Characterization of Prostate Cancer-Circulating Tumor Cells

    Science.gov (United States)

    2013-09-01

    al., 2010). In addition, there were a significant number of cell cycle and mitosis associated transcripts in the highly expressed gene set including...red blood cell lysis with 10 volumes of 16 PharmLyse (BD Biosciences) for 15 minutes at room temperature . Remaining cells were pelleted at 4uC for 15...processes (23%, GO:0008152) or the cell cycle (10%, GO:0007049), consistent with mitotically active cells (Fig. 4C). Cell cycle and mitosis associated

  12. Detection and Isolation of Circulating Tumor Cells in Urologic Cancers: A Review

    Directory of Open Access Journals (Sweden)

    Robert D. Loberg

    2004-07-01

    Full Text Available The American Cancer Society has estimated that in 2003, there will be approximately 239,600 new cases of urologic cancer diagnosed and 54,600 urologic cancer-related deaths in the United States. To date, the majority of research and therapy design have focused on the microenvironment of the primary tumor site, as well as the microenvironment of the metastatic or secondary (target tumor site. Little attention has been placed on the interactions of the circulating tumor cells and the microenvironment of the circulation (i.e., the third microenvironment. The purpose of this review is to present the methods for the detection and isolation of circulating tumor cells and to discuss the importance of circulating tumor cells in the biology and treatment of urologic cancers.

  13. Detection of circulating tumor cells in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Annkathrin eHanssen

    2015-09-01

    Full Text Available Lung Cancer is the most common cause of cancer related deaths that frequently metastasizes prior to disease diagnosis. Circulating tumor cells (CTCs are found in many different types of epithelial tumors and are of great clinical interest in terms of prognosis and therapy intervention. Here, we present and discuss EpCAM-dependent and -independent capture of CTCs in non-small cell lung cancer (NSCLC and the clinical relevance of CTC detection and characterization. Taking blood samples and analyzing CTCs as liquid biopsy might be a far less invasive diagnostic strategy than biopsies of lung tumors or metastases. Moreover, sequential blood sampling allows to study the dynamic changes of tumor cells during therapy, in particular the development of resistant tumor cell clones.

  14. Mutational analysis of circulating tumor cells from colorectal cancer patients and correlation with primary tumor tissue.

    Directory of Open Access Journals (Sweden)

    Anna Lyberopoulou

    Full Text Available Circulating tumor cells (CTCs provide a non-invasive accessible source of tumor material from patients with cancer. The cellular heterogeneity within CTC populations is of great clinical importance regarding the increasing number of adjuvant treatment options for patients with metastatic carcinomas, in order to eliminate residual disease. Moreover, the molecular profiling of these rare cells might lead to insight on disease progression and therapeutic strategies than simple CTCs counting. In the present study we investigated the feasibility to detect KRAS, BRAF, CD133 and Plastin3 (PLS3 mutations in an enriched CTCs cell suspension from patients with colorectal cancer, with the hypothesis that these genes` mutations are of great importance regarding the generation of CTCs subpopulations. Subsequently, we compared CTCs mutational status with that of the corresponding primary tumor, in order to access the possibility of tumor cells characterization without biopsy. CTCs were detected and isolated from blood drawn from 52 colorectal cancer (CRC patients using a quantum-dot-labelled magnetic immunoassay method. Mutations were detected by PCR-RFLP or allele-specific PCR and confirmed by direct sequencing. In 52 patients, discordance between primary tumor and CTCs was 5.77% for KRAS, 3.85% for BRAF, 11.54% for CD133 rs3130, 7.69% for CD133 rs2286455 and 11.54% for PLS3 rs6643869 mutations. Our results support that DNA mutational analysis of CTCs may enable non-invasive, specific biomarker diagnostics and expand the scope of personalized medicine for cancer patients.

  15. Do circulating tumor cells, exosomes, and circulating tumor nucleic acids have clinical utility? A report of the association for molecular pathology.

    Science.gov (United States)

    Gold, Bert; Cankovic, Milena; Furtado, Larissa V; Meier, Frederick; Gocke, Christopher D

    2015-05-01

    Diagnosing and screening for tumors through noninvasive means represent an important paradigm shift in precision medicine. In contrast to tissue biopsy, detection of circulating tumor cells (CTCs) and circulating tumor nucleic acids provides a minimally invasive method for predictive and prognostic marker detection. This allows early and serial assessment of metastatic disease, including follow-up during remission, characterization of treatment effects, and clonal evolution. Isolation and characterization of CTCs and circulating tumor DNA (ctDNA) are likely to improve cancer diagnosis, treatment, and minimal residual disease monitoring. However, more trials are required to validate the clinical utility of precise molecular markers for a variety of tumor types. This review focuses on the clinical utility of CTCs and ctDNA testing in patients with solid tumors, including somatic and epigenetic alterations that can be detected. A comparison of methods used to isolate and detect CTCs and some of the intricacies of the characterization of the ctDNA are also provided.

  16. The detection of EpCAM+ and EpCAM– circulating tumor cells

    NARCIS (Netherlands)

    Wit, de Sanne; Dalum, van Guus; Lenferink, Aufried; Tibbe, Arjan G.J.; Hilterman, T. Jeroen N.; Groen, Harry J.M.; Rijn, van Cees J.M.; Terstappen, Leon W.M.M.

    2015-01-01

    EpCAM expressing circulating tumor cells, detected by CellSearch, are predictive of short survival in several cancers and may serve as a liquid biopsy to guide therapy. Here we investigate the presence of EpCAM+ CTC detected by CellSearch and EpCAM– CTC discarded by CellSearch, after EpCAM based enr

  17. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles.

    Science.gov (United States)

    Li, Jiahe; Ai, Yiwei; Wang, Lihua; Bu, Pengcheng; Sharkey, Charles C; Wu, Qianhui; Wun, Brittany; Roy, Sweta; Shen, Xiling; King, Michael R

    2016-01-01

    Circulating tumor cells (CTCs) are responsible for metastases in distant organs via hematogenous dissemination. Fundamental studies in the past decade have suggested that neutralization of CTCs in circulation could represent an effective strategy to prevent metastasis. Current paradigms of targeted drug delivery into a solid tumor largely fall into two main categories: unique cancer markers (e.g. overexpression of surface receptors) and tumor-specific microenvironment (e.g. low pH, hypoxia, etc.). While relying on a surface receptor to target CTCs can be greatly challenged by cancer heterogeneity, targeting of tumor microenvironments has the advantage of recognizing a broader spectrum of cancer cells regardless of genetic differences or tumor types. The blood circulation, however, where CTCs transit through, lacks the same tumor microenvironment as that found in a solid tumor. In this study, a unique "microenvironment" was confirmed upon introduction of cancer cells of different types into circulation where activated platelets and fibrin were physically associated with blood-borne cancer cells. Inspired by this observation, synthetic silica particles were functionalized with activated platelet membrane along with surface conjugation of tumor-specific apoptosis-inducing ligand cytokine, TRAIL. Biomimetic synthetic particles incorporated into CTC-associated micro-thrombi in lung vasculature and dramatically decreased lung metastases in a mouse breast cancer metastasis model. Our results demonstrate a "Trojan Horse" strategy of neutralizing CTCs to attenuate metastasis.

  18. Mobilization of Viable Tumor Cells Into the Circulation During Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Olga A. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC (Australia); Anderson, Robin L. [The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC (Australia); Metastasis Research Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Russell, Prudence A. [Department of Anatomical Pathology, St. Vincent Hospital, Fitzroy, VIC (Australia); Ashley Cox, R. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Ivashkevich, Alesia [Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Laboratory of DNA Repair and Genomics, Centre for Innate Immunity and Infectious Disease, Monash Institute for Medical Research, Monash University, Clayton, VIC (Australia); Swierczak, Agnieszka; Doherty, Judy P. [Metastasis Research Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Jacobs, Daphne H.M. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Smith, Jai [Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Siva, Shankar; Daly, Patricia E. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Ball, David L. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC (Australia); and others

    2014-02-01

    Purpose: To determine whether radiation therapy (RT) could mobilize viable tumor cells into the circulation of non-small cell lung cancer (NSCLC) patients. Methods and Materials: We enumerated circulating tumor cells (CTCs) by fluorescence microscopy of blood samples immunostained with conventional CTC markers. We measured their DNA damage levels using γ-H2AX, a biomarker for radiation-induced DNA double-strand breaks, either by fluorescence-activated cell sorting or by immunofluorescence microscopy. Results: Twenty-seven RT-treated NSCLC patients had blood samples analyzed by 1 or more methods. We identified increased CTC numbers after commencement of RT in 7 of 9 patients treated with palliative RT, and in 4 of 8 patients treated with curative-intent RT. Circulating tumor cells were also identified, singly and in clumps in large numbers, during RT by cytopathologic examination (in all 5 cases studied). Elevated γ-H2AX signal in post-RT blood samples signified the presence of CTCs derived from irradiated tumors. Blood taken after the commencement of RT contained tumor cells that proliferated extensively in vitro (in all 6 cases studied). Circulating tumor cells formed γ-H2AX foci in response to ex vivo irradiation, providing further evidence of their viability. Conclusions: Our findings provide a rationale for the development of strategies to reduce the concentration of viable CTCs by modulating RT fractionation or by coadministering systemic therapies.

  19. International study on inter-reader variability for circulating tumor cells in breast cancer

    NARCIS (Netherlands)

    M. Ignatiadis (Michael); S. Riethdorf (Sabine); F.-C. Bidard (François-Clement); I. Vaucher (Isabelle); M. Khazour (Mustapha); F. Rothé (Françoise); J. Metallo (Jessica); G. Rouas (Ghizlane); R.E. Payne (Rachel); R.C. Coombes (Raoul); I. Teufel (Ingrid); U. Andergassen (Ulrich); M. Apostolaki (Maria); E. Politaki (Eleni); D. Mavroudis (Dimitris); E. Bessi (Elena); M. Pestrin (Marta); A. Di Leo (Angelo); D. Campion (Dominique); M. Reinholz (Monica); E. Perez (Edith); M.J. Piccart (Martine); E. Borgen (Elin); B. Naume (Bjorn); J. Jimenez (Jose); C.M. Aura (Claudia); L. Zorzino (Laura); M.C. Cassatella (Maria); M.T. Sandri (Maria); B. Mostert (Bianca); S. Sleijfer (Stefan); J. Kraan (Jaco); W. Janni (Wolfgang); T. Fehm (Tanja); B. Rack (Brigitte); L.W.M.M. Terstappen (Leon); M. Repollet (Madeline); J.Y. Pierga (Jean Yves); C. Miller (Craig); C. Sotiriou (Christos); S. Michiels (Stefan); K. Pantel (Klaus)

    2014-01-01

    textabstractIntroduction: Circulating tumor cells (CTCs) have been studied in breast cancer with the CellSearch® system. Given the low CTC counts in non-metastatic breast cancer, it is important to evaluate the inter-reader agreement.Methods: CellSearch® images (N = 272) of either CTCs or white bloo

  20. A Pilot Study of Circulating Tumor Cells in Stage IV Non-Small Cell Lung Carcinoma

    Directory of Open Access Journals (Sweden)

    Max Haid

    2016-08-01

    Full Text Available Purpose: Measurement of the number of circulating tumor cells (CTCs in the bloodstream has been shown to have prognostic significance in treating breast carcinoma. This pilot study was formulated to determine if stage IV non-small cell lung carcinomas similarly shed malignant cells into the circulation and if their presence has prognostic significance. Methods: Patients with stage IV non-small cell lung carcinomas were tested once for CTCs in 7.5 ml of their blood prior to receiving any treatments. A proprietary blood collection kit produced by Veridex LLC (Raritan, NJ, which manufactures the instrument that performs the immunomagnetic CELLSEARCH® CTC assay, was used. Tumor measurements were determined in three dimensions by the same radiologist using computerized axial tomography. The three-dimensional sum was used to represent tumor size. Survival from the date of the pretreatment CTC assay was monitored and recorded. Data were analyzed statistically using NCSS8 statistical software (NCSS LLC, Kaysville, UT. Results: Of 19 evaluable patients, 10 had no detectable CTCs. There was no relation between intrapulmonary primary tumor size and the number of CTCs, nor between tumor size and survival. Survival was not affected by gender or age at entry into the trial. The mean survival of those with no detectable CTCs was 536 ± 91.1 days versus 239 ± 96.0 days for those with 1 or more detectable CTCs, a statistically significant advantage (P=0.034 favoring those without CTCs. Conclusions: Patients with a CTC score of 0 survived significantly longer than those with a CTC score of ≥ 1. Survival was not correlated with gender, age or primary tumor size. Recovery of CTCs potentially provides a noninvasive source of tumor cells for genomic profiling, which may enable development of a custom treatment plan for the individual patient. Further investigations are warranted and needed.

  1. Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors

    Science.gov (United States)

    Cho, Edward H.; Wendel, Marco; Luttgen, Madelyn; Yoshioka, Craig; Marrinucci, Dena; Lazar, Daniel; Schram, Ethan; Nieva, Jorge; Bazhenova, Lyudmila; Morgan, Alison; Ko, Andrew H.; Korn, W. Michael; Kolatkar, Anand; Bethel, Kelly; Kuhn, Peter

    2012-02-01

    Circulating tumor cells (CTCs) have been implicated as a population of cells that may seed metastasis and venous thromboembolism (VTE), two major causes of mortality in cancer patients. Thus far, existing CTC detection technologies have been unable to reproducibly detect CTC aggregates in order to address what contribution CTC aggregates may make to metastasis or VTE. We report here an enrichment-free immunofluorescence detection method that can reproducibly detect and enumerate homotypic CTC aggregates in patient samples. We identified CTC aggregates in 43% of 86 patient samples. The fraction of CTC aggregation was investigated in blood draws from 24 breast, 14 non-small cell lung, 18 pancreatic, 15 prostate stage IV cancer patients and 15 normal blood donors. Both single CTCs and CTC aggregates were measured to determine whether differences exist in the physical characteristics of these two populations. Cells contained in CTC aggregates had less area and length, on average, than single CTCs. Nuclear to cytoplasmic ratios between single CTCs and CTC aggregates were similar. This detection method may assist future studies in determining which population of cells is more physically likely to contribute to metastasis and VTE.

  2. Single-Cell RNA Sequencing Identifies Extracellular Matrix Gene Expression by Pancreatic Circulating Tumor Cells

    Directory of Open Access Journals (Sweden)

    David T. Ting

    2014-09-01

    Full Text Available Circulating tumor cells (CTCs are shed from primary tumors into the bloodstream, mediating the hematogenous spread of cancer to distant organs. To define their composition, we compared genome-wide expression profiles of CTCs with matched primary tumors in a mouse model of pancreatic cancer, isolating individual CTCs using epitope-independent microfluidic capture, followed by single-cell RNA sequencing. CTCs clustered separately from primary tumors and tumor-derived cell lines, showing low-proliferative signatures, enrichment for the stem-cell-associated gene Aldh1a2, biphenotypic expression of epithelial and mesenchymal markers, and expression of Igfbp5, a gene transcript enriched at the epithelial-stromal interface. Mouse as well as human pancreatic CTCs exhibit a very high expression of stromal-derived extracellular matrix (ECM proteins, including SPARC, whose knockdown in cancer cells suppresses cell migration and invasiveness. The aberrant expression by CTCs of stromal ECM genes points to their contribution of microenvironmental signals for the spread of cancer to distant organs.

  3. Cornering metastases: therapeutic targeting of circulating tumor cells and stem cells.

    Directory of Open Access Journals (Sweden)

    Bishoy eFaltas

    2012-07-01

    Full Text Available The last decade has witnessed an evolution of our understanding of the biology of the metastatic cascade. Recent insights into the metastatic process show that it is complex, dynamic and multi-directional. This process starts at a very early stage in the natural history of solid tumor growth leading to early development of metastases that grow in parallel with the primary tumor. The role of stem cells in perpetuating cancer metastases is increasingly becoming more evident. At the same time, there is a growing recognition of the crucial role circulating tumor cells (CTCs play in the development of metastases. These insights have laid the biological foundations for therapeutic targeting of CTCs, a promising area of research that aims to reduce cancer morbidity and mortality by preventing the development of metastases at a very early stage. The hematogenous transport phase of the metastatic cascade provides critical access to CTCs for therapeutic targeting aiming to interrupt the metastatic process. Recent advances in the fields of nanotechnology and micro-fluidics have led to the development of several devices for in-vivo targeting of CTC during transit in the circulation. Selectin-coated tubes that target cell adhesion molecules, immuno-magnetic separators and in-vivo photoacoustic flow cytometers are currently being developed for this purpose. On the pharmacological front, several pharmacological and immunological agents targeting cancer stem cells are currently being developed. Such agents may ultimately prove to be effective against circulating tumor stem cells (CTSCs. Although still in its infancy, therapeutic targeting of CTCs and CTSCs offers an unprecedented opportunity to prevent the development of metastasis and potentially alter the natural history of cancer. By rendering cancer a local disease, these approaches could lead to major reductions in metastasis-related morbidity and mortality.

  4. Relevance of circulating tumor cells, extracellular nucleic acids, and exosomes in breast cancer

    OpenAIRE

    Friel, Anne M.; Corcoran, Claire; Crown, John; O'Driscoll, Lorraine

    2010-01-01

    Abstract Early detection of cancer is vital to improved overall survival rates. At present, evidence is accumulating for the clinical value of detecting occult tumor cells in peripheral blood, plasma, and serum specimens from cancer patients. Both molecular and cellular approaches, which differ in sensitivity and specificity, have been used for such means. Circulating tumor cells and extracellular nucleic acids have been detected within blood, plasma, and sera of cancer patients. A...

  5. Circulating tumor cells in lung cancer: detection methods and clinical applications.

    Science.gov (United States)

    Yu, Na; Zhou, Jia; Cui, Fang; Tang, Xiaokui

    2015-04-01

    Circulating tumor cells (CTCs) are tumor cells that have disseminated from primary and metastatic sites, and circulate in the bloodstream. Advanced immunological and molecular-based methods can be used to detect and analyze the cells with the characteristics of tumor cells, and can be detected and analyzed in the blood of cancer patients. The most commonly used methods in lung cancer combine the processes of immunomagnetic enrichment and immunocytochemical detection, morphology-based enrichment coupled with reverse transcriptase polymerase chain reaction (RT-PCR), and RT-PCR alone. CTC analysis is considered a liquid biopsy approach for early diagnosis, risk stratification, evaluation of curative efficacy, and early detection of lung cancer relapse. In this review, we discuss the present techniques for analyzing CTCs, and the restrictions of using these methods in lung cancer. We also review the clinical studies in lung cancer and discuss the underlying associations between these studies and their future applications to this disease.

  6. Tunable nanostructured coating for the capture and selective release of viable circulating tumor cells.

    Science.gov (United States)

    Reátegui, Eduardo; Aceto, Nicola; Lim, Eugene J; Sullivan, James P; Jensen, Anne E; Zeinali, Mahnaz; Martel, Joseph M; Aranyosi, Alexander J; Li, Wei; Castleberry, Steven; Bardia, Aditya; Sequist, Lecia V; Haber, Daniel A; Maheswaran, Shyamala; Hammond, Paula T; Toner, Mehmet; Stott, Shannon L

    2015-03-04

    A layer-by-layer gelatin nanocoating is presented for use as a tunable, dual response biomaterial for the capture and release of circulating tumor cells (CTCs) from cancer patient blood. The entire nanocoating can be dissolved from the surface of microfluidic devices through biologically compatible temperature shifts. Alternatively, individual CTCs can be released through locally applied mechanical stress.

  7. Automated classification and enhanced characterization of circulating tumor cells by image cytometry

    NARCIS (Netherlands)

    Scholtens, T.M.

    2012-01-01

    Enumeration and characterization of circulating tumor cells (CTC) is an emerging tool for the disease management of patients with metastatic carcinomas. CTC are correlated to progression free- and overall survival in several types of metastatic cancers, and can be used to predict therapy response. W

  8. Prognostic significance of circulating tumor cells in patients with metastatic colorectal cancer.

    NARCIS (Netherlands)

    Cohen, S.J.; Punt, C.J.A.; Iannotti, N.; Saidman, B.H.; Sabbath, K.D.; Gabrail, N.Y.; Picus, J.; Morse, M.A.; Mitchell, E.; Miller, M.C.; Doyle, G.V.; Tissing, H.; Terstappen, L.W.; Meropol, N.J.

    2009-01-01

    BACKGROUND: We demonstrated that circulating tumor cell (CTC) number at baseline and follow-up is an independent prognostic factor in metastatic colorectal cancer (mCRC). This analysis was undertaken to explore whether patient and treatment characteristics impact the prognostic value of CTCs. PATIEN

  9. Low Number of Detectable Circulating Tumor Cells in Non-metastatic Colon Cancer

    DEFF Research Database (Denmark)

    Thorsteinsson, Morten; Söletormos, György; Jess, Per

    2011-01-01

    The aim of the present study was to detect circulating tumor cells (CTCs) in the peripheral blood of patients with non-metastatic colon cancer and to evaluate whether there is a diurnal variation in the CTC counts. Furthermore, the study aimed to examine the correlation between CTCs and TNM stage...

  10. Circulating Tumor Cells in Breast Cancer Patients: An Evolving Role in Patient Prognosis and Disease Progression

    Directory of Open Access Journals (Sweden)

    Holly Graves

    2011-01-01

    Full Text Available In this paper, we examine the role of circulating tumor cells (CTCs in breast cancer. CTCs are tumor cells present in the peripheral blood. They are found in many different carcinomas but are not present in patients with benign disease. Recent advances in theories regarding metastasis support the role of early release of tumor cells in the neoplastic process. Furthermore, it has been found that phenotypic variation exists between the primary tumor and CTCs. Of particular interest is the incongruency found between primary tumor and CTC HER2 status in both metastatic and early breast cancer. Overall, CTCs have been shown to be a poor prognostic marker in metastatic breast cancer. CTCs in early breast cancer are not as well studied, however, several studies suggest that the presence of CTCs in early breast cancer may also suggest a poorer prognosis. Studies are currently underway looking at the use of CTC level monitoring in order to guide changes in therapy.

  11. Effects of Herceptin on circulating tumor cells in HER2 positive early breast cancer.

    Science.gov (United States)

    Zhang, J-L; Yao, Q; Chen Y Wang, J-H; Wang, H; Fan, Q; Ling, R; Yi, J; Wang, L

    2015-03-20

    The objective of this study was to determine the changes in peripheral blood circulating tumor cells in HER2-positive early breast cancer before and after Herceptin therapy, and to explore the effects of the HER2 gene and Herceptin on circulating tumor cells. CK19 mRNA expression in peripheral blood was evaluated by qRT-PCR as an index of circulating tumor cells in 15 cases of HER-2-positive breast cancer and 18 cases of HER2-negative breast cancer before, and after chemotherapy as well. Ten cases of HER2-positive breast cancer continued on Herceptin therapy for 3 months after chemotherapy, and their peripheral blood was again drawn and assayed for CK-19 mRNA expression. Preoperatively, all cases of HER2-positive cancer were positive for CK19 mRNA in peripheral blood, but 6 cases of HER2-negative breast cancer were positive (33.3%), where there was a substantial difference between the two groups. After 6 cycles of adjuvant chemotherapy, CK19 positive rates in cases of HER2-positive and -negative breast cancer reduced by 93.3 and 11.1%, respectively, with a significant difference still existing. After 3 months of Herceptin therapy, expression of CK19 mRNA declined considerably in 10 cases of HER2 positive breast cancer (113.66 ± 88.65 vs 63.35 ± 49.27, P = 0.025). HER-2 gene expression closely correlated with circulating tumor cells in peripheral blood of early breast cancer patients. Moreover, Herceptin, a monoclonal antibody for HER2, can reduce the number of circulating tumor cells, which can be an early predictive factor for Herceptin therapy effectiveness against breast cancer.

  12. Circulating tumor cell clusters: What we know and what we expect (Review)

    Science.gov (United States)

    Hong, Yupeng; Fang, Francia; Zhang, Qi

    2016-01-01

    The major cause of cancer-associated mortality is tumor metastasis, a disease that is far from understood. Many studies have observed circulating tumor cells (CTCs) in patients' circulation systems, and a few latest investigations showed that CTC clusters have a potentially high capacity of metastasis. The capture and analysis of CTC clusters offer new insights into tumor metastasis and can facilitate the development of cancer treatments. We reviewed the research history of the CTC clusters, as well as the technologies used for detecting and isolating CTC clusters. In addition, we discuss the characteristics of CTC clusters and their roles in tumor dissemination. Clinical relevance of CTC clusters was also implicated in currently limited data. Moving forward, the next frontier in this field is to develop more efficient capture methods and decipher conundrums of characterization of CTC clusters. This will ultimately identify the clinical value of CTC clusters as a biomarker and therapeutic target. PMID:27779656

  13. In vitro detection of circulating tumor cells compared by the CytoTrack and CellSearch methods

    DEFF Research Database (Denmark)

    Hillig, T.; Horn, P.; Nygaard, Ann-Britt;

    2015-01-01

    Comparison of two methods to detect circulating tumor cells (CTC) CytoTrack and CellSearch through recovery of MCF-7 breast cancer cells, spiked into blood collected from healthy donors. Spiking of a fixed number of EpCAM and pan-cytokeratin positive MCF-7 cells into 7.5 mL donor blood was perfor...

  14. Tumor Irradiation Increases the Recruitment of Circulating Mesenchymal Stem Cells into the Tumor Microenvironment

    Science.gov (United States)

    Klopp, Ann H.; Spaeth, Erika L.; Dembinski, Jennifer L.; Woodward, Wendy A.; Munshi, Anupama; Meyn, Raymond E.; Cox, James D.; Andreeff, Michael; Marini, Frank C.

    2011-01-01

    Mesenchymal stem cells (MSC) migrate to and proliferate within sites of inflammation and tumors as part of the tissue remodeling process. Radiation increases the expression of inflammatory mediators that could enhance the recruitment of MSC into the tumor microenvironment. To investigate this, bilateral murine 4T1 breast carcinomas (expressing renilla luciferase) were irradiated unilaterally (1 or 2 Gy). Twenty-four hours later, 2 × 105 MSC-expressing firefly luciferase were injected i.v. Mice were then monitored with bioluminescent imaging for expression of both renilla (tumor) and firefly (MSC) luciferase. Forty-eight hours postirradiation, levels of MSC engraftment were 34% higher in tumors receiving 2 Gy (P = 0.004) than in the contralateral unirradiated limb. Immunohistochemical staining of tumor sections from mice treated unilaterally with 2 Gy revealed higher levels of MSC in the parenchyma of radiated tumors, whereas a higher proportion of MSC remained vasculature-associated in unirradiated tumors. To discern the potential mediators involved in MSC attraction, in vitro migration assays showed a 50% to 80% increase in MSC migration towards conditioned media from 1 to 5 Gy-irradiated 4T1 cells compared with unirradiated 4T1 cells. Irradiated 4T1 cells had increased expression of the cytokines, transforming growth factor-β1, vascular endothelial growth factor, and platelet-derived growth factor-BB, and this up-regulation was confirmed by immunohistochemistry in tumors irradiated in vivo. Interestingly, the chemokine receptor CCR2 was found to be up-regulated in MSC exposed to irradiated tumor cells and inhibition of CCR2 led to a marked decrease of MSC migration in vitro. In conclusion, clinically relevant low doses of irradiation increase the tropism for and engraftment of MSC in the tumor microenvironment. PMID:18089798

  15. Circulating Tumor Cells Detection and Counting in Uveal Melanomas by a Filtration-Based Method

    Directory of Open Access Journals (Sweden)

    Cinzia Mazzini

    2014-02-01

    Full Text Available Uveal melanoma is one of the most deadly diseases in ophthalmology for which markers able to predict the appearance of metastasis are needed. The study investigates the role of circulating tumor cells (CTC as a prognostic factor in this disease. We report the detection of circulating tumor cells by Isolation by Size of Epithelial Tumor cells (ISET in a cohort of 31 uveal melanoma patients: we identified single CTCs or clusters of cells in 17 patients, while the control population, subjects with choroidal nevi, showed no CTC in peripheral blood. The presence of CTCs did not correlate with any clinical and pathological parameter, such as tumor larger basal diameter (LBD, tumor height and TNM. By stratifying patients in groups on the basis of the number of CTC (lower or higher than 10 CTC per 10 mL blood and the presence of CTC clusters we found a significant difference in LBD (p = 0.019, Tumor height (p = 0.048, disease-free and overall survival (p < 0.05. In conclusion, we confirm the role of CTC as a negative prognostic marker in uveal melanoma patients after a long follow-up period. Further characterization of CTC will help understanding uveal melanoma metastasization and improve patient management.

  16. Current understanding of circulating tumor cells – potential value in malignancies of the central nervous system

    Directory of Open Access Journals (Sweden)

    Lukasz A. Adamczyk

    2015-08-01

    Full Text Available Detection of circulating tumor cells (CTCs in the blood via so-called 'liquid biopsies' carries enormous clinical potential in malignancies of the central nervous system (CNS because of the potential to follow disease evolution with a blood test, without the need for repeat neurosurgical procedures with their inherent risk of patient morbidity. To date studies in non-CNS malignancies, particularly in breast cancer, show increasing reproducibility of detection methods for these rare tumor cells in the circulation. However, no method has yet received full recommendation to use in clinical practice, in part because of lack of a sufficient evidence base regarding clinical utility. In CNS malignancies one of the main challenges is finding a suitable biomarker for identification of these cells, because automated systems such as the widely used Cell Search system are reliant on markers such as the epithelial cell adhesion molecule (EpCAM which are not present in CNS tumors. This review examines methods for CTC enrichment and detection, and reviews the progress in non-CNS tumors and the potential for using this technique in human brain tumors.

  17. Circulating tumor cells: clinically relevant molecular access based on a novel CTC flow cell.

    Directory of Open Access Journals (Sweden)

    Jessamine P Winer-Jones

    Full Text Available BACKGROUND: Contemporary cancer diagnostics are becoming increasing reliant upon sophisticated new molecular methods for analyzing genetic information. Limiting the scope of these new technologies is the lack of adequate solid tumor tissue samples. Patients may present with tumors that are not accessible to biopsy or adequate for longitudinal monitoring. One attractive alternate source is cancer cells in the peripheral blood. These rare circulating tumor cells (CTC require enrichment and isolation before molecular analysis can be performed. Current CTC platforms lack either the throughput or reliability to use in a clinical setting or they provide CTC samples at purities that restrict molecular access by limiting the molecular tools available. METHODOLOGY/PRINCIPAL FINDINGS: Recent advances in magetophoresis and microfluidics have been employed to produce an automated platform called LiquidBiopsy®. This platform uses high throughput sheath flow microfluidics for the positive selection of CTC populations. Furthermore the platform quantitatively isolates cells useful for molecular methods such as detection of mutations. CTC recovery was characterized and validated with an accuracy (<20% error and a precision (CV<25% down to at least 9 CTC/ml. Using anti-EpCAM antibodies as the capture agent, the platform recovers 78% of MCF7 cells within the linear range. Non specific recovery of background cells is independent of target cell density and averages 55 cells/mL. 10% purity can be achieved with as low as 6 CTCs/mL and better than 1% purity can be achieved with 1 CTC/mL. CONCLUSIONS/SIGNIFICANCE: The LiquidBiopsy platform is an automated validated platform that provides high throughput molecular access to the CTC population. It can be validated and integrated into the lab flow enabling CTC enumeration as well as recovery of consistently high purity samples for molecular analysis such as quantitative PCR and Next Generation Sequencing. This tool opens

  18. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    Science.gov (United States)

    2015-10-01

    Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING...SUBTITLE Developiing Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER Carcinoma Using Genetically Engineered Mouse Models and 5b...biomarkers. 15. SUBJECT TERMS Small cell lung cancer (SCLC), Genetically engineered mouse model (GEMM), BH3 mimetic, TORC inhibitor, Apoptosis

  19. Circulating Tumor Cells: A Review of Non-EpCAM-Based Approaches for Cell Enrichment and Isolation

    OpenAIRE

    Gabriel, Marta,; Calleja, Lidia,; Chalopin, Antoine; Ory, Benjamin; Heymann, Dominique

    2016-01-01

    International audience; Background: Circulating tumor cells (CTCs) are biomarkers for non-invasively measuring the evolution of tumor genotypes during treatment and disease progression. Recent technical progress has made it possible to detect and characterize CTCs at the single-cell level in blood. Content: Most current methods are based on epithelial cell adhesion molecule (EpCAM) detection, but numerous studies have demonstrated that EpCAM is not a universal marker for CTC detection since i...

  20. Circulating Fibronectin Controls Tumor Growth

    Directory of Open Access Journals (Sweden)

    Anja von Au

    2013-08-01

    Full Text Available Fibronectin is ubiquitously expressed in the extracellular matrix, and experimental evidence has shown that it modulates blood vessel formation. The relative contribution of local and circulating fibronectin to blood vessel formation in vivo remains unknown despite evidence for unexpected roles of circulating fibronectin in various diseases. Using transgenic mouse models, we established that circulating fibronectin facilitates the growth of bone metastases by enhancing blood vessel formation and maturation. This effect is more relevant than that of fibronectin produced by endothelial cells and pericytes, which only exert a small additive effect on vessel maturation. Circulating fibronectin enhances its local production in tumors through a positive feedback loop and increases the amount of vascular endothelial growth factor (VEGF retained in the matrix. Both fibronectin and VEGF then cooperate to stimulate blood vessel formation. Fibronectin content in the tumor correlates with the number of blood vessels and tumor growth in the mouse models. Consistent with these results, examination of three separate arrays from patients with breast and prostate cancers revealed that a high staining intensity for fibronectin in tumors is associated with increased mortality. These results establish that circulating fibronectin modulates blood vessel formation and tumor growth by modifying the amount of and the response to VEGF. Furthermore, determination of the fibronectin content can serve as a prognostic biomarker for breast and prostate cancers and possibly other cancers.

  1. How circulating tumor cells escape from multidrug resistance: translating molecular mechanisms in metastatic breast cancer treatment.

    Science.gov (United States)

    Gradilone, Angela; Raimondi, Cristina; Naso, Giuseppe; Silvestri, Ida; Repetto, Lazzaro; Palazzo, Antonella; Gianni, Walter; Frati, Luigi; Cortesi, Enrico; Gazzaniga, Paola

    2011-12-01

    Resistance to anthracyclines is responsible for treatment failure in most patients with metastatic breast cancer. According to recent studies, the expression of specific drug transporters (MRPs) on circulating tumor cells is predictive of prognosis in different cancer types. We observed that patients whose circulating tumor cells expressed MRP1 and MRP2, two drug-export pumps responsible for anthracyclines efflux, who received conventional anthracyclines had a significantly shorter time to progression compared with patients sharing same characteristics who received non pegylated liposomal doxorubicin (P < 0.005). These results may highlight a new appealing role of the liposomal doxorubicin formulation, not only because of its reduced cardiac toxicity but especially referring to its theoretical efficacy in anthracycline-resistant breast cancer patients.

  2. The clinical significance of circulating tumor cells in non-metastatic colorectal cancer - A review

    DEFF Research Database (Denmark)

    Thorsteinsson, M; Jess, Per

    2011-01-01

    with metastatic disease, but the prognostic role of CTC in non-metastatic colorectal cancer is less clear. The aim of this review is to examine the possible clinical significance of circulating tumor cells in non-metastatic colorectal cancer (TNM-stage I-III) with the primary focus on detection methods......BACKGROUND: Finding a clinical tool to improve the risk stratification and identifying those colorectal cancer patients with an increased risk of recurrence is of great importance. The presence of circulating tumor cells (CTC) in peripheral blood can be a strong marker of poor prognosis in patients...... and prognosis. METHODS: The PubMed and Cochrane database and reference lists of relevant articles were searched for scientific literature published in English from January 2000 to June 2010. We included studies with non-metastatic colorectal cancer (TNM-stage I-III) and CTC detected pre- and/or post...

  3. Folic acid functionalized surface highlights 5-methylcytosine-genomic content within circulating tumor cells

    KAUST Repository

    Malara, Natalia

    2014-07-01

    Although the detection of methylated cell free DNA represents one of the most promising approaches for relapse risk assessment in cancer patients, the low concentration of cell-free circulating DNA constitutes the biggest obstacle in the development of DNA methylation-based biomarkers from blood. This paper describes a method for the measurement of genomic methylation content directly on circulating tumor cells (CTC), which could be used to deceive the aforementioned problem. Since CTC are disease related blood-based biomarkers, they result essential to monitor tumor\\'s stadiation, therapy, and early relapsing lesions. Within surface\\'s bio-functionalization and cell\\'s isolation procedure standardization, the presented approach reveals a singular ability to detect high 5-methylcytosine CTC-subset content in the whole CTC compound, by choosing folic acid (FA) as transducer molecule. Sensitivity and specificity, calculated for FA functionalized surface (FA-surface), result respectively on about 83% and 60%. FA-surface, allowing the detection and characterization of early metastatic dissemination, provides a unique advance in the comprehension of tumors progression and dissemination confirming the presence of CTC and its association with high risk of relapse. This functionalized surface identifying and quantifying high 5-methylcytosine CTC-subset content into the patient\\'s blood lead significant progress in cancer risk assessment, also providing a novel therapeutic strategy.© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cell receptor and surface ligand density effects on dynamic states of adhering circulating tumor cells.

    Science.gov (United States)

    Zheng, Xiangjun; Cheung, Luthur Siu-Lun; Schroeder, Joyce A; Jiang, Linan; Zohar, Yitshak

    2011-10-21

    Dynamic states of cancer cells moving under shear flow in an antibody-functionalized microchannel are investigated experimentally and theoretically. The cell motion is analyzed with the aid of a simplified physical model featuring a receptor-coated rigid sphere moving above a solid surface with immobilized ligands. The motion of the sphere is described by the Langevin equation accounting for the hydrodynamic loadings, gravitational force, receptor-ligand bindings, and thermal fluctuations; the receptor-ligand bonds are modeled as linear springs. Depending on the applied shear flow rate, three dynamic states of cell motion have been identified: (i) free motion, (ii) rolling adhesion, and (iii) firm adhesion. Of particular interest is the fraction of captured circulating tumor cells, defined as the capture ratio, via specific receptor-ligand bonds. The cell capture ratio decreases with increasing shear flow rate with a characteristic rate. Based on both experimental and theoretical results, the characteristic flow rate increases monotonically with increasing either cell-receptor or surface-ligand density within certain ranges. Utilizing it as a scaling parameter, flow-rate dependent capture ratios for various cell-surface combinations collapse onto a single curve described by an exponential formula.

  5. Isolation of circulating tumor cells by immunomagnetic enrichment and fluorescence-activated cell sorting (IE/FACS) for molecular profiling.

    Science.gov (United States)

    Magbanua, Mark Jesus M; Park, John W

    2013-12-01

    Circulating tumor cells (CTCs) are cells shed by the primary tumor into the blood stream capable of initiating distant metastasis. In the past decade, numerous assays have been developed to reliably detect these extremely rare cells. However, methods for purification of CTCs with little or no contamination of normal blood cells for molecular profiling are limited. We have developed a novel protocol to isolate CTCs by combining immunomagnetic enrichment and fluorescence-activated cell sorting (IE/FACS). The two-part assay includes (1) immunomagnetic capture using magnetic beads conjugated to monoclonal antibody against an epithelial cell adhesion marker (EpCAM) to enrich for tumor cells; and (2) FACS analysis using EpCAM to purify tumor cells away from mononuclear cells of hematopoietic lineage. Downstream molecular analyses of single and pooled cells confirmed the isolation of highly pure CTCs with characteristics typical that of malignant cells.

  6. Circulating tumor cells as a diagnostic test for malignant pleural mesothelioma.

    Science.gov (United States)

    Pinton, Giulia; Manente, Arcangela Gabriella; Moro, Laura; Mutti, Luciano

    2012-05-01

    The detection of circulating tumor cells (CTCs) may have important prognostic and therapeutic implications; therefore, we expect a broader range of tumor types in which CTC detection and count will routinely be conducted in the coming years. This article evaluates the application of CTC as a potentially useful diagnostic and prognostic test in malignant pleural mesothelioma (MMe). MMe is a rare but increasingly prevalent, highly aggressive asbestos exposure-related tumor. MMe develops after long time latency, is rarely diagnosed at early stages, is poorly sensitive to conventional treatments and presents a very short survival upon diagnosis. Pursuing research of CTC in MMe can represent a very important task for all the clinical and preclinical scientists working on blood biomarkers of this tumor. Possibly in combination with other diagnostic tools, such as a thoracoscopy and advanced imaging, CTC can represent a promising tool for MMe prognosis and follow-up. Further studies to confirm value of CTC test in MMe are warranted.

  7. KRAS genotypic changes of circulating tumor cells during treatment of patients with metastatic colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Aristea Kalikaki

    Full Text Available INTRODUCTION: Circulating tumor cells (CTCs could represent a non-invasive source of cancer cells used for longitudinal monitoring of the tumoral mutation status throughout the course of the disease. The aims of the present study were to investigate the detection of KRAS mutations in CTCs from patients with metastatic colorectal cancer (mCRC and to compare their mutation status during treatment or disease progression with that of the corresponding primary tumors. MATERIALS AND METHODS: Identification of the seven most common KRAS mutations on codons 12 and 13 was performed by Peptide Nucleic Acid (PNA-based qPCR method. The sensitivity of the assay was determined after isolation of KRAS mutant cancer cells spiked into healthy donors' blood, using the CellSearch Epithelial Cell kit. Consistent detection of KRAS mutations was achieved in samples containing at least 10 tumor cells/7.5 ml of blood. RESULTS: The clinical utility of the assay was assessed in 48 blood samples drawn from 31 patients with mCRC. All patients had PIK3CA and BRAF wild type primary tumors and 14 KRAS mutant tumors. CTCs were detected in 65% of specimens obtained from 74% of patients. KRAS mutation analysis in CTC-enriched specimens showed that 45% and 16.7% of patients with mutant and wild type primary tumors, respectively, had detectable mutations in their CTCs. Assessing KRAS mutations in serial blood samples revealed that individual patient's CTCs exhibited different mutational status of KRAS during treatment. CONCLUSIONS: The current findings support the rationale for using the CTCs as a dynamic source of tumor cells which, by re-evaluating their KRAS mutation status, could predict, perhaps more accurately, the response of mCRC patients to targeted therapy.

  8. Relevance of circulating tumor cells, extracellular nucleic acids, and exosomes in breast cancer.

    Science.gov (United States)

    Friel, Anne M; Corcoran, Claire; Crown, John; O'Driscoll, Lorraine

    2010-10-01

    Early detection of cancer is vital to improved overall survival rates. At present, evidence is accumulating for the clinical value of detecting occult tumor cells in peripheral blood, plasma, and serum specimens from cancer patients. Both molecular and cellular approaches, which differ in sensitivity and specificity, have been used for such means. Circulating tumor cells and extracellular nucleic acids have been detected within blood, plasma, and sera of cancer patients. As the presence of malignant tumors are clinically determined and/or confirmed upon biopsy procurement-which in itself may have detrimental effects in terms of stimulating cancer progression/metastases-minimally invasive methods would be highly advantageous to the diagnosis and prognosis of breast cancer and the subsequent tailoring of targeted treatments for individuals, if reliable panels of biomarkers suitable for such an approach exist. Herein, we review the current advances made in the detection of such circulating tumor cells and nucleic acids, with particular emphasis on extracellular nucleic acids, specifically extracellular mRNAs and discuss their clinical relevance.

  9. Increased levels of circulating and tumor-infiltrating granulocytic myeloid cells in colorectal cancer patients

    Directory of Open Access Journals (Sweden)

    Salman M Toor

    2016-12-01

    Full Text Available Increased levels of myeloid cells, especially myeloid-derived suppressor cells (MDSCs, have been reported to correlate with bad prognosis and reduced survival in cancer patients. However, limited data are available on their conclusive phenotypes and their correlation with clinical settings. The aim of this study was to investigate levels and phenotype of myeloid cells in peripheral blood and tumor microenvironment of colorectal cancer (CRC patients, compared to blood from healthy donors (HDs and paired, adjacent non-tumor colon tissue. Flow cytometric analysis was performed to examine the expression of different myeloid markers in fresh peripheral blood samples from CRC patients and HDs, and tissue-infiltrating immune cells from CRC patients. We found significantly higher levels of cells expressing myeloid markers and lacking the expression of MHC class II molecule HLA-DR in blood and tumor of CRC patients. Further analysis revealed that these cells were granulocytic and expressed Arginase 1 (ARG1, indicative of their suppressive phenotype. These expanded cells could be neutrophils or granulocytic MDSCs, and we refer to them as granulocytic myeloid cells (GMCs due to the phenotypical and functional overlap between these cell subsets. Interestingly, the expansion of peripheral GMCs correlated with higher stage and histological grade of cancer, thereby suggesting their role in cancer progression. Furthermore, an increase in CD33+CD11b+HLA-DR-CD14-CD15- immature myeloid cells (IMCs was also observed in CRC tumor tissue. Our work shows that GMCs are expanded in circulation and tumor microenvironment of CRC patients, which provides further insights for developing immunotherapeutic approaches targeting these cell subsets to enhance anti-tumor immune and clinical responses.

  10. Exploiting serum interactions with cationic biomaterials enables label-free circulating tumor cell isolation

    Science.gov (United States)

    Castellanos, Carlos

    Herein we investigate the role charged biomaterials and fluid dielectric properties have on microfluidic capture and isolation of circulating tumor cells. We determine that heparan sulfate proteoglycans on cancer cell surfaces are responsible for elevated electric charge of cancer cells compared with white blood cells and that these proteoglycans help mediate adhesive interactions between cells and charged surfaces in albumin-containing fluids. Cancer cell firm adhesion to charged surfaces persists when cells are bathed in up to 1% (w/v) human albumin solution, while white blood cell adhesion is nearly abrogated. As many protocols rely on electrical interactions between cells and biomaterials, our study could reveal a new determinant of efficient adhesion and targeting of specific tissue types in the context of a biological fluid environment.

  11. Imaging circulating tumor cells in freely moving awake small animals using a miniaturized intravital microscope.

    Directory of Open Access Journals (Sweden)

    Laura Sarah Sasportas

    Full Text Available Metastasis, the cause for 90% of cancer mortality, is a complex and poorly understood process involving the invasion of circulating tumor cells (CTCs into blood vessels. These cells have potential prognostic value as biomarkers for early metastatic risk. But their rarity and the lack of specificity and sensitivity in measuring them render their interrogation by current techniques very challenging. How and when these cells are circulating in the blood, on their way to potentially give rise to metastasis, is a question that remains largely unanswered. In order to provide an insight into this "black box" using non-invasive imaging, we developed a novel miniature intravital microscopy (mIVM strategy capable of real-time long-term monitoring of CTCs in awake small animals. We established an experimental 4T1-GL mouse model of metastatic breast cancer, in which tumor cells express both fluorescent and bioluminescent reporter genes to enable both single cell and whole body tumor imaging. Using mIVM, we monitored blood vessels of different diameters in awake mice in an experimental model of metastasis. Using an in-house software algorithm we developed, we demonstrated in vivo CTC enumeration and computation of CTC trajectory and speed. These data represent the first reported use we know of for a miniature mountable intravital microscopy setup for in vivo imaging of CTCs in awake animals.

  12. [Circulating "tumor markers" in gastrointestinal tumors].

    Science.gov (United States)

    Borlinghaus, P; Lamerz, R

    1991-09-01

    Tumor markers (TM) of the neoplastic cell can be divided into non-shedded substances and antigens shedded in blood, urine or other body fluids. For clinicians circulating TM are more important. All relevant circulating TM are not useful in screening of asymptomatic patients because of insufficient sensitivity and specificity. With caution they are useful in the observation of risk groups. Circulating TM have their main significance as additional parameters in monitoring symptomatic patients with malignancies. Several follow up determinations are more important than one single measurement. During follow up of tumor patients TM should not be checked automatically if there are no diagnostic or therapeutical consequences. The clinically most important circulating TM in non-hormone secreting tumors of the gastrointestinal tract are the oncofetal antigens CEA and AFP and antigens defined by monoclonal antibodies e. g. CA 19-9 and CA 72-4. AFP is the primary TM in hepatocellular carcinoma, often elevated in hepatoblastoma and always normal in cholangiocellular carcinoma. CEA is the TM of first choice in patients with colorectal carcinomas and liver metastasis. CA 19-9 is TM of first choice in pancreatic carcinoma and additionally of diagnostic value in cholangiocellular carcinoma and tumors of the bile ducts. In cancer of the stomach CA 19-9 and CEA are secondary TM in combination with CA 72-4 as primary TM. Care should be taken that slight and moderate elevations of TM can be observed in benign diseases of liver, pancreas and bowel.

  13. Characterization of microsieves recovery efficiency in isolation of circulating tumor cells

    Science.gov (United States)

    Osuchowska, Paulina Natalia; Sarzyński, Antoni; Strzelec, Marek; Bogdanowicz, Zdzisław; Marczak, Jan; Łapiński, Mariusz Piotr; Trafny, ElŻbieta Anna

    2016-12-01

    Isolation of circulating tumor cells (CTCs) from the blood is important in the diagnosis of malignant tumors and for monitoring therapeutic responses. The two main problems to be solved are extremely low CTCs numbers in the blood (average 1-10 CTC per 10 ml of whole blood) and the absence of one particular phenotype or genotype, which would allow for precise identification. Isolation of CTCs can be based on physical characteristics, e.g. the size of the cells (ISET, Isolation by Size of Epithelial Tumor cells) or the biological properties of these cells (the expression of specific proteins on their surface). In the IOE WAT the copper alloy microsieves with a pore diameter of 10.85 +/- 0.89 μm designed for cell isolation by ISET method were produced. The microsieves with 100 000 pores with a 50 μm interval was made using precise, percussion laser drilling. The performance microsieves filtration was determined using fluorescent beads with three dimensions: 4 μm, 10 μm and 15 μm. Furthermore, the suspensions of cells lines from different types of tumor were used in the process of filtration. The efficiency of the cells filtration process was affected by lack of biocompatibility of the material used for the microsieves production as well as the roughness and porosity of the microsieves surface. Moreover, the diameter of the pores and the course of the filtration process were also significant.

  14. The biological and clinical importance of epithelial-mesenchymal transition in circulating tumor cells.

    Science.gov (United States)

    Liu, Huiying; Zhang, Xiaofeng; Li, Jun; Sun, Bin; Qian, Haihua; Yin, Zhengfeng

    2015-02-01

    Movement of tumor cells from a primary tumor to a nonadjacent or distant site is a contiguous and complex process. Among the multiple natural cellular programs that promote initiation and progression of tumor metastasis, epithelial-mesenchymal transition (EMT) may play a key role in the ultimate generation of a metastatic foci. Acquisition of the EMT phenotype by tumor cells not only increases their migration and invasion potentials, thereby facilitating their ability to infiltrate blood vessels and to produce circulating tumor cells (CTCs), but also promotes survival of CTCs in the bloodstream and their ability to extravasate out of the circulatory system and invade proximal tissues. In organs distal to the primary tumor, the phenotypic switching mechanism of mesenchymal-epithelial transition (MET) enables CTCs to grow and colonize, enhancing the likelihood of establishing metastasis. In addition, CTCs that have undergone EMT attain increased resistance to chemotherapy and targeted therapy. CTCs with the EMT phenotype have become recognized as an active source of metastases, and targeting EMT/MET processes during the individual steps of tumor metastasis represents a promising new approach for alleviating cancer metastasis and recurrence. In this article, we focus on the biological and clinical importance of EMT and/or MET in CTCs during the individual steps of tumor metastasis, summarizing the recent findings of the regulatory roles played by EMT and/or MET in the generation, survival, and recolonization of CTCs and discussing the EMT-targeting strategies developed for tumor diagnosis as well as their potential for management of metastatic malignant diseases.

  15. miRNA in situ hybridization in circulating tumor cells - MishCTC

    Science.gov (United States)

    Ortega, Francisco G.; Lorente, Jose A.; Garcia Puche, Jose L.; Ruiz, Maria P.; Sanchez-Martin, Rosario M.; de Miguel-Pérez, Diego; Diaz-Mochon, Juan J.; Serrano, Maria J.

    2015-01-01

    Circulating tumor cells (CTCs) must be phenotypically and genetically characterized before they can be utilized in clinical applications. Here, we present the first protocol for the detection of miRNAs in CTCs using in situ hybridization (ISH) combined with immunomagnetic selection based on cytokeratin (CK) expression and immunocytochemistry. Locked-Nucleic Acid (LNA) probes associated with an enzyme-labeled fluorescence (ELF) signal amplification approach were used to detect miRNA-21 in CTCs. This protocol was optimized using both epithelial tumor (MDA-MB468) and epithelial non-tumor (MCF-10A) cell lines, and miRNA-21 was selected as the target miRNA because of its known role as an onco-miRNA. Hematopoietic cells do not express miRNA-21; thus, miRNA-21 is an ideal marker for detecting CTCs. Peripheral blood samples were taken from 25 cancer patients and these samples were analyzed using our developed protocol. Of the 25 samples, 11 contained CTCs. For all 11 CTC-positive samples, the isolated CTCs expressed both CK and miRNA-21. Finally, the protocol was applied to monitor miRNA-21 expression in epithelial to mesenchymal transition (EMT)-induced MCF-7 cells, an epithelial tumor cell line. CK expression was lost in these cells, whereas miRNA-21 was still expressed, suggesting that miRNA-21 might be a good marker for detecting CTCs with an EMT phenotype. PMID:25777797

  16. Detection of mycoplasma infection in circulating tumor cells in patients with hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hong Seo; Lee, Hyun Min; Kim, Won-Tae; Kim, Min Kyu [Department of Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul (Korea, Republic of); Chang, Hee Jin [Center for Colorectal Cancer, Research Institute and Hospital of National Cancer Center, Goyang-si (Korea, Republic of); Lee, Hye Ran [Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang-si (Korea, Republic of); Joh, Jae-Won [Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Dae Shick, E-mail: oncorkim@skku.edu [Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Ryu, Chun Jeih, E-mail: cjryu@sejong.ac.kr [Department of Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul (Korea, Republic of)

    2014-04-04

    Highlights: • This study generates a monoclonal antibody CA27 against the mycoplasmal p37 protein. • CA27 isolates circulating tumor cells (CTCs) from the blood of liver cancer patients. • Results show the first evidence for mycoplasma infected-CTCs in cancer patients. - Abstract: Many studies have shown that persistent infections of bacteria promote carcinogenesis and metastasis. Infectious agents and their products can modulate cancer progression through the induction of host inflammatory and immune responses. The presence of circulating tumor cells (CTCs) is considered as an important indicator in the metastatic cascade. We unintentionally produced a monoclonal antibody (MAb) CA27 against the mycoplasmal p37 protein in mycoplasma-infected cancer cells during the searching process of novel surface markers of CTCs. Mycoplasma-infected cells were enriched by CA27-conjugated magnetic beads in the peripheral blood mononuclear cells in patients with hepatocellular carcinoma (HCC) and analyzed by confocal microscopy with anti-CD45 and CA27 antibodies. CD45-negative and CA27-positive cells were readily detected in three out of seven patients (range 12–30/8.5 ml blood), indicating that they are mycoplasma-infected circulating epithelial cells. CA27-positive cells had larger size than CD45-positive hematological lineage cells, high nuclear to cytoplasmic ratios and irregular nuclear morphology, which identified them as CTCs. The results show for the first time the existence of mycoplasma-infected CTCs in patients with HCC and suggest a possible correlation between mycoplasma infection and the development of cancer metastasis.

  17. Aptamers Selected to Postoperative Lung Adenocarcinoma Detect Circulating Tumor Cells in Human Blood

    Science.gov (United States)

    Zamay, Galina S; Kolovskaya, Olga S; Zamay, Tatiana N; Glazyrin, Yury E; Krat, Alexey V; Zubkova, Olga; Spivak, Ekaterina; Wehbe, Mohammed; Gargaun, Ana; Muharemagic, Darija; Komarova, Mariia; Grigorieva, Valentina; Savchenko, Andrey; Modestov, Andrey A; Berezovski, Maxim V; Zamay, Anna S

    2015-01-01

    Circulating tumor cells (CTCs) are rare cells and valuable clinical markers of prognosis of metastasis formation and prediction of patient survival. Most CTC analyses are based on the antibody-based detection of a few epithelial markers; therefore miss an important portion of mesenchymal cancer cells circulating in blood. In this work, we selected and identified DNA aptamers as specific affinity probes that bind to lung adenocarcinoma cells derived from postoperative tissues. The unique feature of our selection strategy is that aptamers are produced for lung cancer cell biomarkers in their native state and conformation without previous knowledge of the biomarkers. The aptamers did not bind to normal lung cells and lymphocytes, and had very low affinity to A549 lung adenocarcinoma culture. We applied these aptamers to detect CTCs, apoptotic bodies, and microemboli in clinical samples of peripheral blood of lung cancer and metastatic lung cancer patients. We identified aptamer-associated protein biomarkers for lung cancer such as vimentin, annexin A2, annexin A5, histone 2B, neutrophil defensin, and clusterin. Tumor-specific aptamers can be produced for individual patients and synthesized many times during anticancer therapy, thereby opening up the possibility of personalized diagnostics. PMID:26061649

  18. Circulating tumor cells in early bladder cancer: insight into micrometastatic disease.

    Science.gov (United States)

    Raimondi, Cristina; Gradilone, Angela; Gazzaniga, Paola

    2014-05-01

    Although several studies have demonstrated the prognostic and predictive potential of circulating tumor cells (CTCs), to date their evaluation still has not impacted the treatment strategy. There is wide consensus that CTC assessment would be more beneficial in early stage cancer, especially in those tumor types characterized by early progression and a lack of prognostic markers. Non-muscle-invasive bladder cancer represents an optimal model to this purpose. In fact, the rate of metastatic spread ranges between 20 and 40%, which is unacceptable for a 'superficial' tumor and unexpected in an early stage cancer. This may be due to the presence of non-clinically detectable micrometastases. CTCs may be used as a noninvasive, real-time tool for the stratification of early stage bladder cancer patients according to individual risk of progression.

  19. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip.

    Science.gov (United States)

    Stott, Shannon L; Hsu, Chia-Hsien; Tsukrov, Dina I; Yu, Min; Miyamoto, David T; Waltman, Belinda A; Rothenberg, S Michael; Shah, Ajay M; Smas, Malgorzata E; Korir, George K; Floyd, Frederick P; Gilman, Anna J; Lord, Jenna B; Winokur, Daniel; Springer, Simeon; Irimia, Daniel; Nagrath, Sunitha; Sequist, Lecia V; Lee, Richard J; Isselbacher, Kurt J; Maheswaran, Shyamala; Haber, Daniel A; Toner, Mehmet

    2010-10-26

    Rare circulating tumor cells (CTCs) present in the bloodstream of patients with cancer provide a potentially accessible source for detection, characterization, and monitoring of nonhematological cancers. We previously demonstrated the effectiveness of a microfluidic device, the CTC-Chip, in capturing these epithelial cell adhesion molecule (EpCAM)-expressing cells using antibody-coated microposts. Here, we describe a high-throughput microfluidic mixing device, the herringbone-chip, or "HB-Chip," which provides an enhanced platform for CTC isolation. The HB-Chip design applies passive mixing of blood cells through the generation of microvortices to significantly increase the number of interactions between target CTCs and the antibody-coated chip surface. Efficient cell capture was validated using defined numbers of cancer cells spiked into control blood, and clinical utility was demonstrated in specimens from patients with prostate cancer. CTCs were detected in 14 of 15 (93%) patients with metastatic disease (median = 63 CTCs/mL, mean = 386 ± 238 CTCs/mL), and the tumor-specific TMPRSS2-ERG translocation was readily identified following RNA isolation and RT-PCR analysis. The use of transparent materials allowed for imaging of the captured CTCs using standard clinical histopathological stains, in addition to immunofluorescence-conjugated antibodies. In a subset of patient samples, the low shear design of the HB-Chip revealed microclusters of CTCs, previously unappreciated tumor cell aggregates that may contribute to the hematogenous dissemination of cancer.

  20. Carboxybetaine methacrylate-modified nylon surface for circulating tumor cell capture.

    Science.gov (United States)

    Wang, Huiyu; Yue, Guofeng; Dong, Chaoqun; Wu, Fenglei; Wei, Jia; Yang, Yang; Zou, Zhengyun; Wang, Lifeng; Qian, Xiaoping; Zhang, Tao; Liu, Baorui

    2014-03-26

    Conventional in vitro circulating tumor cell (CTC) detection methods are always limited by blood sample volume because of the requirement of a large amount of blood. The aim of this study was to overcome the limitation by designing and making an in vivo CTC capture device. In this study, we designed and prepared a kind of proper material to serve the purpose of intervention. A method employing 3-aminopropyltriethoxysilane (γ-APS) as the coupling reagent to graft carboxybetaine methacrylate (CBMA) and to immobilize an anti-epithelial cell adhesion molecular (EpCAM) antibody on Nylon was developed. The results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy proved the successful graft of γ-APS and CBMA to Nylon. Furthermore, the predicted improvement in the biocompatibilities of our modified Nylon was confirmed by water contact angle measurement, bovine serum albumin adhesion, platelet adhesion, plasma recalcification time determination, and cytotoxicity tests. The tumor cells adhesion experiment revealed that Nylon with the antibody immobilized on it had an affinity for EpCAM positive tumor cells higher than that of pristine Nylon. Additionally, the capture ability of the CTCs was demonstrated in a nude mouse tumor model using the interventional device made of the modified Nylon wire. The positive results suggest that CBMA-grafted and anti-EpCAM antibody-immobilized Nylon is a promising new material for in vivo CTC capture devices.

  1. Dynamic Changes in Numbers and Properties of Circulating Tumor Cells and Their Potential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Ju-Yu [Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 11221, Taiwan (China); Yang, Chih-Yung [Department of Education and Research, Taipei City Hospital, Taipei 10629, Taiwan (China); Liang, Shu-Ching [Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 11221, Taiwan (China); Liu, Ren-Shyan [Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, Taipei 11529, Taiwan (China); Biomedical Imaging Research Center, Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan (China); National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, 11217, Taiwan (China); Jiang, Jeng-Kai, E-mail: jkjiang@vghtpe.gov.tw [Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan (China); Lin, Chi-Hung, E-mail: jkjiang@vghtpe.gov.tw [Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 11221, Taiwan (China); VGH Yang-Ming Genome Research Center, Taipei 11221, Taiwan (China)

    2014-12-16

    Circulating tumor cells (CTCs) can be detected in the blood of different types of early or advanced cancer using immunology-based assays or nucleic acid methods. The detection and quantification of CTCs has significant clinical utility in the prognosis of metastatic breast, prostate, and colorectal cancers. CTCs are a heterogeneous population of cells and often different from those of their respective primary tumor. Understanding the biology of CTCs may provide useful predictive information for the selection of the most appropriate treatment. Therefore, CTC detection and characterization could become a valuable tool to refine prognosis and serve as a “real-time biopsy” and has the potential to guide precision cancer therapies, monitor cancer treatment, and investigate the process of metastasis.

  2. Identification of genomic signatures in circulating tumor cells from breast cancer.

    Science.gov (United States)

    Kanwar, Nisha; Hu, Pingzhao; Bedard, Philippe; Clemons, Mark; McCready, David; Done, Susan J

    2015-07-15

    Levels of circulating tumor cells (CTCs) in blood have prognostic value in early and metastatic breast cancer. CTCs also show varying degrees of concordance with molecular markers of primary tumors they originate from. It is expected that individual cells reflect the heterogeneity and evolution of tumor cells as they acquire new functions and differential responses to chemotherapy. However, a degree of commonality is also plausible, highlighting alterations that allow tumor cells to perform CTC-defining activities such as invasion and intravasation. Using a matched tumor-normal approach, we performed high-resolution copy number profiling of CTCs from breast cancer to identify occult changes occurring during progression to metastasis. We identified a signature of recurrent gain in CTCs, consisting of 90 minimal common regions (MCRs) of copy number gain. These were predominantly found across chromosome 19 and were identified at low frequencies (3-4%) in 787 primary breast carcinomas examined. CTC genomic signatures clustered into two groups independent of subtype: a dormancy-related signature with 16 MCRs (AKT2, PTEN, CADM2); and a tumor-aggressiveness related signature with 358 MCRs (ANGPTL4, BSG, MIR-373). There were two MCRs in common between the groups on 19q13 and 21q21, containing genes involved in resistance to anoikis, TGFβ-signaling and metastasis (TFF3, LTBP4, NUMBL). Furthermore, a region harboring the ERBB2 gene was gained in a majority of patients. Regions 20q13 and 15q24 were associated with distant metastasis. The distinctiveness of CTC signatures highlights cell populations with different functional or metastatic potential. Such novel targets could help to specifically identify and block dissemination.

  3. Circulating tumor cells count and characterization in a male breast cancer patient.

    Science.gov (United States)

    Gazzaniga, Paola; Naso, Giuseppe; Raimondi, Cristina; Gradilone, Angela; Palazzo, Antonella; Gandini, Orietta; Petracca, Arianna; Nicolazzo, Chiara; Cortesi, Enrico; Frati, Luigi

    2011-09-01

    A 64-y-old man presented to Medical Oncology Department a metastatic invasive ductal breast carcinoma, positive for estrogen (ER) and progesterone receptors (PR) and Her2/neu negative. The patient was treated with different lines of therapy, with rapid radiological progression of disease. After four courses of a third-line chemotherapy, a radiological stable disease was maintained. The patient was followed by serial blood drawings for the characterization and count of circulating tumor cells (CTC). This is the first report concerning the predictive and prognostic value of CTC in a male breast cancer patient.

  4. Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer

    Science.gov (United States)

    Galardi, Francesca; Pestrin, Marta; Gabellini, Stefano; Simi, Lisa; Mancini, Irene; Vannucchi, Alessandro Maria; Pazzagli, Mario; Di Leo, Angelo; Pinzani, Pamela

    2016-01-01

    Circulating Tumor Cells (CTCs) represent a “liquid biopsy” of the tumor potentially allowing real-time monitoring of cancer biology and therapies in individual patients. The purpose of the study was to explore the applicability of a protocol for the molecular characterization of single CTCs by Next Generation Sequencing (NGS) in order to investigate cell heterogeneity and provide a tool for a personalized medicine approach. CTCs were enriched and enumerated by CellSearch in blood from four metastatic breast cancer patients and singularly isolated by DEPArray. Upon whole genome amplification 3–5 single CTCs per patient were analyzed by NGS for 50 cancer-related genes. We found 51 sequence variants in 25 genes. We observed inter- and intra-patient heterogeneity in the mutational status of CTCs. The highest number of somatic deleterious mutations was found in the gene TP53, whose mutation is associated with adverse prognosis in breast cancer. The discordance between the mutational status of the primary tumor and CTCs observed in 3 patients suggests that, in advanced stages of cancer, CTC characteristics are more closely linked to the dynamic modifications of the disease status. In one patient the mutational profiles of CTCs before and during treatment shared only few sequence variants. This study supports the applicability of a non-invasive approach based on the liquid biopsy in metastatic breast cancer patients which, in perspective, should allow investigating the clonal evolution of the tumor for the development of new therapeutic strategies in precision medicine. PMID:27034166

  5. X-ray enabled detection and eradication of circulating tumor cells with nanoparticles.

    Science.gov (United States)

    Hossain, Mainul; Luo, Yang; Sun, Zhaoyong; Wang, Chaoming; Zhang, Minghui; Fu, Hanyu; Qiao, Yong; Su, Ming

    2012-01-01

    The early detection and eradication of circulating tumor cells (CTCs) play an important role in cancer metastasis management. This paper describes a new nanoparticle-enabled technique for integrated enrichment, detection and killing of CTCs by using magnetic nanoparticles and bismuth nanoparticles, X-ray fluorescence spectrometry, and X-ray radiation. The nanoparticles are modified with tumor targeting agents and conjugated with tumor cells through folate receptors over-expressed on cancer cells. A permanent micro-magnet is used to collect CTCs suspended inside a flowing medium that contains phosphate buffered saline (PBS) or whole blood. The characteristic X-ray emissions from collected bismuth nanoparticles, upon excitation with collimated X-rays, are used to detect CTCs. Results show that the method is capable of selectively detecting CTCs at concentrations ranging from 100-100,000 cells/mL in the buffer solution, with a detection limit of ≈ 100 CTCs/mL. Moreover, the dose of primary X-rays can be enhanced to kill the localized CTCs by radiation induced DNA damage, with minimal invasiveness, thus making in vivo personalized CTC management possible.

  6. The application of circulating tumor cells detecting methods in veterinary oncology.

    Science.gov (United States)

    Chmielewska, M; Łosiewicz, K; Socha, P; Mecik-Kronenberg, T; Wasowicz, K

    2013-01-01

    Cancers are one of the most common diseases affecting dogs. Many of them develop spontaneously and their biology and histopathology shows many similarities to human cancers. What more, it is proved that there are much more analogies in molecular mechanisms of cancer development between these two species. Human oncology is seeking more and more efficient methods for an early disease detection which results directly in the extended life expectancy of patients affected. One of the most modern trends in the diagnosis of cancer is to detect circulating tumor cells (CTC) in the blood of patients. It is known that these cells are responsible for the formation of metastases in distant organs what results in the patient death. Moreover, it's confirmed that CTC are already present in patients' bloodstream in the early stages of tumor development. There is no doubt that mechanism of metastasis development in dogs is identical and thus the CTC are also present in their bloodstream. Despite the intense researches there is still no optimal method of isolating cancer cells from the blood where they occur extremely rarely. The purpose of this study is to analyze the implications of the detection methods of tumor cells in the blood in veterinary oncology.

  7. Circulating tumor cells in breast cancer: A tool whose time has come of age

    Directory of Open Access Journals (Sweden)

    Cristofanilli Massimo

    2011-04-01

    Full Text Available Abstract Circulating tumor cells (CTCs are isolated tumor cells disseminated from the site of disease in metastatic and/or primary cancers, including breast cancer, that can be identified and measured in the peripheral blood of patients. As recent technical advances have rendered it easier to reproducibly and repeatedly sample this population of cells with a high degree of accuracy, these cells represent an attractive surrogate marker of the site of disease. Currently, CTCs are being integrated into clinical trial design as a surrogate for phenotypic and genotypic markers in correlation with development of molecularly targeted therapies. As CTCs play a crucial role in tumor dissemination, translational research is implicating CTCs in several biological processes, including epithelial to mesenchymal transition. In this mini-review, we review CTCs in metastatic breast cancer, and discuss their clinical utility for assessing prognosis and monitoring response to therapy. We will also introduce their utility in pharmacodynamic monitoring for rational selection of molecularly targeted therapies and briefly address how they can help elucidate the biology of cancer metastasis.

  8. Cultured circulating tumor cells and their derived xenografts for personalized oncology

    Directory of Open Access Journals (Sweden)

    Ruoxiang Wang

    2016-10-01

    Full Text Available Recent cancer research has demonstrated the existence of circulating tumor cells (CTCs in cancer patient's blood. Once identified, CTC biomarkers will be invaluable tools for clinical diagnosis, prognosis and treatment. In this review, we propose ex vivo culture as a rational strategy for large scale amplification of the limited numbers of CTCs from a patient sample, to derive enough CTCs for accurate and reproducible characterization of the biophysical, biochemical, gene expressional and behavioral properties of the harvested cells. Because of tumor cell heterogeneity, it is important to amplify all the CTCs in a blood sample for a comprehensive understanding of their role in cancer metastasis. By analyzing critical steps and technical issues in ex vivo CTC culture, we developed a cost-effective and reproducible protocol directly culturing whole peripheral blood mononuclear cells, relying on an assumed survival advantage in CTCs and CTC-like cells over the normal cells to amplify this specified cluster of cancer cells.

  9. Multi-Phenotypic subtyping of circulating tumor cells using sequential fluorescent quenching and restaining

    Science.gov (United States)

    Adams, Daniel L.; Alpaugh, R. Katherine; Tsai, Susan; Tang, Cha-Mei; Stefansson, Steingrimur

    2016-09-01

    In tissue biopsies formalin fixed paraffin embedded cancer blocks are micro-sectioned producing multiple semi-identical specimens which are analyzed and subtyped proteomically, and genomically, with numerous biomarkers. In blood based biopsies (BBBs), blood is purified for circulating tumor cells (CTCs) and clinical utility is typically limited to cell enumeration, as only 2–3 positive fluorescent markers and 1 negative marker can be used. As such, increasing the number of subtyping biomarkers on each individual CTC could dramatically enhance the clinical utility of BBBs, allowing in depth interrogation of clinically relevant CTCs. We describe a simple and inexpensive method for quenching the specific fluors of fluorescently stained CTCs followed by sequential restaining with additional biomarkers. As proof of principle a CTC panel, immunosuppression panel and stem cell panel were used to sequentially subtype individual fluorescently stained patient CTCs, suggesting a simple and universal technique to analyze multiple clinically applicable immunomarkers from BBBs.

  10. Assessment of γ-H2AX levels in circulating tumor cells from patients receiving chemotherapy

    Directory of Open Access Journals (Sweden)

    Alejandra eGarcia-Villa

    2012-10-01

    Full Text Available Circulating tumor cells (CTCs are prognostic markers in a variety of solid tumor malignancies. The potential of CTCs to be used as a liquid biopsy to monitor a patient’s condition and predict drug response and resistance is currently under investigation. Using a negative depletion, enrichment methology, CTCs isolated from the peripheral blood of breast cancer patients with stage IV breast cancer undergoing DNA damaging therapy with platinum based therapy were enriched. The enriched cell suspensions, were stained with an optimized labeling protocol targeting: nuclei, cytokeratins 8, 18, and 19, the surface marker CD45, and the presence of the protein ɣ-H2AX. As a direct or indirect result of platinum therapy, double strand break of DNA initiates phosphorylation of the histone H2AX, at serine 139; this phosphorylated form is referred to as ɣ-H2AX. In addition to ɣ-H2AX staining in specific locations with the cell nuclei, consistent with previous reports and referred to as foci, more general staining in the cell cytoplamim was also observed in some cells suggesting the potential of cell apoptosis. Our study underscores the utility and the complexity of investigating CTCs as predictive markers of response to various therapies. Additional studies are ongoing to evaluate the diverse γ-H2AX staining patterns we report here which needs to be further correlated with patient outcomes

  11. Raman-based identification of circulating tumor cells for cancer diagnosis

    Science.gov (United States)

    Krafft, Christoph; Beleites, Claudia; Schie, Iwan W.; Clement, Joachim H.; Popp, Jürgen

    2016-03-01

    Circulating tumor cells (CTCs) that can be extracted from body fluids offer new prospects in cancer diagnostics. An overview about our recent achievements is presented to use Raman-based methodologies to distinguish cancer cells from normal blood cells. In a first approach, a microfluidic chip was developed to collect Raman spectra from optically trapped cells. Whereas sensitivities and specificities were promising, the throughput was not compatible with the expected low number of CTCs per million white blood cells. A second strategy immobilized up to 200,000 cells onto a microhole array made of silicon nitride. Rapid microscopic screening can be applied to pre-select a subset of cells from which Raman spectra are collected for specific CTC identification. As this approach is compatible with living cells and Raman spectroscopy with 785 nm excitation is non-destructive, a robotic arm can select positively identified CTCs for in-depth biochemical assessment. Finally, an in vivo approach directly collects CTCs from the blood stream. This way reduces the cell number to a manageable size that is subjected to Raman spectroscopy for cell typing and enumeration. An integrated acquisition mode was introduced to further increase the throughput and robustness of single cell classification.

  12. Optimization and Evaluation of a Novel Size Based Circulating Tumor Cell Isolation System.

    Directory of Open Access Journals (Sweden)

    Lei Xu

    Full Text Available Isolation of circulating tumor cells (CTCs from peripheral blood has the potential to provide a far easier "liquid biopsy" than tumor tissue biopsies, to monitor tumor cell populations during disease progression and in response to therapies. Many CTC isolation technologies have been developed. We optimized the Parsortix system, an epitope independent, size and compressibility-based platform for CTCs isolation, making it possible to harvest CTCs at the speed and sample volume comparable to standard CellSearch system. We captured more than half of cancer cells from different cancer cell lines spiked in blood samples from healthy donors using this system. Cell loss during immunostaining of cells transferred and fixed on the slides is a major problem for analyzing rare cell samples. We developed a novel cell transfer and fixation method to retain >90% of cells on the slide after the immunofluorescence process without affecting signal strength and specificity. Using this optimized method, we evaluated the Parsortix system for CTC harvest in prostate cancer patients in comparison to immunobead based CTC isolation systems IsoFlux and CellSearch. We harvested a similar number (p = 0.33 of cytokeratin (CK positive CTCs using Parsortix and IsoFlux from 7.5 mL blood samples of 10 prostate cancer patients (an average of 33.8 and 37.6 respectively. The purity of the CTCs harvested by Parsortix at 3.1% was significantly higher than IsoFlux at 1.0% (p = 0.02. Parsortix harvested significantly more CK positive CTCs than CellSearch (p = 0.04 in seven prostate cancer patient samples, where both systems were utilized (an average of 32.1 and 10.1 respectively. We also captured CTC clusters using Parsortix. Using four-color immunofluorescence we found that 85.8% of PC3 cells expressed EpCAM, 91.7% expressed CK and 2.5% cells lacked both epithelial markers. Interestingly, 95.6% of PC3 cells expressed Vimentin, including those cells that lacked both epithelial marker

  13. Human mammaglobin: a superior marker for reverse-transcriptase PCR in detecting circulating tumor cells in breast cancer patients.

    Science.gov (United States)

    Li, GuangLiang; Zhang, Jing; Jin, KeTao; He, KuiFeng; Wang, HaoHao; Lu, HaiQi; Teng, LiSong

    2011-04-01

    Breast cancer is the most frequent cancer in women in the USA and the second most common cause of death in females who develop cancer. Recently, the detection of circulating tumor cells has emerged as a promising tool for monitoring the progression of clinically occult micrometastases in breast cancer patients. Sensitive molecular techniques, primarily based upon the reverse-transcriptase PCR, using various molecules as markers, have been developed to detect circulating tumor cells. Among those molecules, human mammaglobin mRNA has been found to be the most specific marker for the hematogenous spread of breast cancer cells. In this article, we review the current knowledge regarding the use of reverse-transcriptase PCR for detecting human mammaglobin mRNA as a biomarker for circulating tumor cells in breast cancer patients, and evaluate the clinical implications of human mammaglobin since it was first isolated in 1996.

  14. Circulating tumor cells in lung cancer:Detection methods and clinical impact

    Institute of Scientific and Technical Information of China (English)

    Minghui Zhang; Decai Chi; Co-first author Shu Zhao; Yan Wang; Maopeng Yang; Yan Wang

    2014-01-01

    Circulating tumor cels (CTCs) are tumor cels that enter the blood circulation after detaching from the primary tumor and can migrate to reach distant organs, where they can give rise to aggressive metastasis. Clinical studies have revealed that the presence of CTCs in peripheral blood is correlated with disease progression in lung cancer. However, as CTCs are rare cancer cels released from tumors into the bloodstream, both enrichment and sensitive detection methods are technicaly chalenging. In order to best understand how CTCs are currently being deployed, this review mainly focuses on the diferent detection methods for CTCs. Furthermore, we wil describe the clinical impact of circulating tumor cels in lung cancer and discuss their potential use as biomarker to guide the prognosis.

  15. Technical Insights into Highly Sensitive Isolation and Molecular Characterization of Fixed and Live Circulating Tumor Cells for Early Detection of Tumor Invasion

    Science.gov (United States)

    Laget, Sophie; Dhingra, Dalia M.; BenMohamed, Fatima; Capiod, Thierry; Osteras, Magne; Farinelli, Laurent; Jackson, Stephen; Paterlini-Bréchot, Patrizia

    2017-01-01

    Circulating Tumor Cells (CTC) and Circulating Tumor Microemboli (CTM) are Circulating Rare Cells (CRC) which herald tumor invasion and are expected to provide an opportunity to improve the management of cancer patients. An unsolved technical issue in the CTC field is how to obtain highly sensitive and unbiased collection of these fragile and heterogeneous cells, in both live and fixed form, for their molecular study when they are extremely rare, particularly at the beginning of the invasion process. We report on a new protocol to enrich from blood live CTC using ISET® (Isolation by SizE of Tumor/Trophoblastic Cells), an open system originally developed for marker-independent isolation of fixed tumor cells. We have assessed the impact of our new enrichment method on live tumor cells antigen expression, cytoskeleton structure, cell viability and ability to expand in culture. We have also explored the ISET® in vitro performance to collect intact fixed and live cancer cells by using spiking analyses with extremely low number of fluorescent cultured cells. We describe results consistently showing the feasibility of isolating fixed and live tumor cells with a Lower Limit of Detection (LLOD) of one cancer cell per 10 mL of blood and a sensitivity at LLOD ranging from 83 to 100%. This very high sensitivity threshold can be maintained when plasma is collected before tumor cells isolation. Finally, we have performed a comparative next generation sequencing (NGS) analysis of tumor cells before and after isolation from blood and culture. We established the feasibility of NGS analysis of single live and fixed tumor cells enriched from blood by our system. This study provides new protocols for detection and characterization of CTC collected from blood at the very early steps of tumor invasion. PMID:28060956

  16. Clinical implications of circulating tumor cells of breast cancer patients: role of epithelial mesenchymal plasticity

    Directory of Open Access Journals (Sweden)

    Linda Maria McInnes

    2015-02-01

    Full Text Available There is increasing interest in circulating tumor cells (CTCs due to their purported role in breast cancer metastasis, and their potential as a ‘liquid biopsy’ tool in breast cancer diagnosis and management. There are, however, questions with regards to the reliability and consistency of CTC detection and to the relationship between CTCs and prognosis, which is limiting their clinical utility. There is increasing acceptance that the ability of CTCs to alter from an epithelial to mesenchymal phenotype plays an important role in determining the metastatic potential of these cells. This review examines the phenotypic and genetic variation, which has been reported within CTC populations. Importantly, we discuss how the detection and characterization of CTCs provides additional and often differing information from that obtained from the primary tumor, and how this may be utilized in determining prognosis and treatment options. It has been shown for example that hormone receptor status often differs between the primary tumor and CTCs, which may help to explain failure of endocrine treatment. We examine how CTC status may introduce alternative treatment options and also how they may be used to monitor treatment. Finally, we discuss the most interesting current clinical trials involving CTC analysis and note further research that is required before the breast cancer liquid biopsy can be realised.

  17. Nanostructured Surfaces to Target and Kill Circulating Tumor Cells While Repelling Leukocytes

    Directory of Open Access Journals (Sweden)

    Michael J. Mitchell

    2012-01-01

    Full Text Available Hematogenous metastasis, the process of cancer cell migration from a primary to distal location via the bloodstream, typically leads to a poor patient prognosis. Selectin proteins hold promise in delivering drug-containing nanocarriers to circulating tumor cells (CTCs in the bloodstream, due to their rapid, force-dependent binding kinetics. However, it is challenging to deliver such nanocarriers while avoiding toxic effects on healthy blood cells, as many possess ligands that adhesively interact with selectins. Herein, we describe a nanostructured surface to capture flowing cancer cells, while preventing human neutrophil adhesion. Microtube surfaces with immobilized halloysite nanotubes (HNTs and E-selectin functionalized liposomal doxorubicin (ES-PEG L-DXR significantly increased the number of breast adenocarcinoma MCF7 cells captured from flow, yet also significantly reduced the number of captured neutrophils. Neutrophils firmly adhered and projected pseudopods on surfaces coated only with liposomes, while neutrophils adherent to HNT-liposome surfaces maintained a round morphology. Perfusion of both MCF7 cells and neutrophils resulted in primarily cancer cell adhesion to the HNT-liposome surface, and induced significant cancer cell death. This work demonstrates that nanostructured surfaces consisting of HNTs and ES-PEG L-DXR can increase CTC recruitment for chemotherapeutic delivery, while also preventing healthy cell adhesion and uptake of therapeutic intended for CTCs.

  18. A SYSTEM AND A DEVICE FOR ISOLATING CIRCULATING TUMOR CELLS FROM THE PERIPHERAL BLOOD IN VIVO

    Directory of Open Access Journals (Sweden)

    Michal Mego

    2015-08-01

    Full Text Available Circulating tumor cells (CTC play a crucial role in disseminating tumors and in the metastatic cascade. CTCs are found only in small numbers, and the limited amount of isolated CTCs makes it impossible to characterize them closely. This paper presents a proposal for a new system for isolating CTCs from the peripheral blood in vivo. The system enables CTCs to be isolated from the whole blood volume for further research and applications. The proposed system consists of magnetic nanoparticles covered by monoclonal antibodies against a common epithelial antigen, large supermagnets, which are used to control the position of the nanoparticles within the human body, and a special wire made of a magnetic core wrapped in a non-magnetic shell. The system could be used not only for isolating CTCs, but also for in vivo isolation of other rare cells from the peripheral blood, including hematopoietic and/or mesenchymal stem cells, with applications in regenerative medicine and/or in stem cell transplantation.

  19. Early detection of poor outcome in patients with metastatic colorectal cancer: tumor kinetics evaluated by circulating tumor cells

    Directory of Open Access Journals (Sweden)

    Souza e Silva V

    2016-12-01

    Full Text Available Virgílio Souza e Silva,1 Ludmilla Thomé Domingos Chinen,2 Emne A Abdallah,2 Aline Damascena,2 Jociana Paludo,3 Rubens Chojniak,3 Aldo Lourenço Abbade Dettino,1 Celso Abdon Lopes de Mello,1 Vanessa S Alves,2 Marcello F Fanelli1 1Department of Clinical Oncology, 2International Research Center, 3Image Department, A. C. Camargo Cancer Center, São Paulo, Brazil Background: Colorectal cancer (CRC is the third most prevalent cancer worldwide. New prognostic markers are needed to identify patients with poorer prognosis, and circulating tumor cells (CTCs seem to be promising to accomplish this.Patients and methods: A prospective study was conducted by blood collection from patients with metastatic CRC (mCRC, three times, every 2 months in conjunction with image examinations for evaluation of therapeutic response. CTC isolation and counting were performed by Isolation by Size of Epithelial Tumor Cells (ISET.Results: A total of 54 patients with mCRC with a mean age of 57.3 years (31–82 years were included. Among all patients, 60% (n=32 were carriers of wild-type KRAS (WT KRAS tumors and 90% of them (n=29 were exposed to monoclonal antibodies along with systemic treatment. Evaluating CTC kinetics, when we compared the baseline (pretreatment CTC level (CTC1 with the level at first follow-up (CTC2, we observed that CTC1-positive patients (CTCs above the median, who became negative (CTCs below the median had a favorable evolution (n=14, with a median progression-free survival (PFS of 14.7 months. This was higher than that for patients with an unfavorable evolution (CTC1– that became CTC2+; n=13, 6.9 months; P=0.06. Patients with WT KRAS with favorable kinetics had higher PFS (14.7 months in comparison to those with WT KRAS with unfavorable kinetics (9.4 months; P=0.02. Moreover, patients whose imaging studies showed radiological progression had an increased quantification of CTCs at CTC2 compared to those without progression (P=0.04.Conclusion

  20. Immunomagnetic Nano-Screening Chip for Circulating Tumor Cells Detection in Blood

    Science.gov (United States)

    Horton, A. P.; Lane, N.; Tam, J.; Sokolov, K.; Garner, H. R.; Uhr, J. W.; Zhang, X. J.

    2010-03-01

    We present a novel method towards diagnose cancer at an early stage via a blood test. Early diagnosis is high on the future agenda of oncologists because of significant evidence that it will result in a higher cure rate. Capture of circulating tumor cells (CTCs) which are known to escape from carcinomas at an early stage offers such an opportunity. We design, fabricate and optimize the nanomagnetic-screening chip that captures the CTCs in microfluid, and further integrate the nano-chip with the new multispectral imaging system so that it can quantify different tumor markers and automate the entire instrument. Specifically, hybrid plasmonic (Fe2O3-core Au shell) nanoparticles, conjugated a collection of antibodies especially chosen to target breast cancer CTCs, with high magnetic susceptibility will be used for effective immunomagnetic CTC isolation. Greatly increased sensitivity over previous attempts is demonstrated by decreasing the length scale for interactions between the magnetic-nanoparticle-tagged CTCs and the isolative magnetic field, while increasing the effective cross-sectional area over which this interaction takes place. The screening chip is integrated with a novel hyperspectral microscopic imaging (HMI) platform capable of recording the entire emission spectra in a single pass evaluation. The combined system will precisely quantify up to 10 tumor markers on CTCs.

  1. Let me do more than count the ways: what circulating tumor cells can tell us about the biology of cancer.

    Science.gov (United States)

    Budd, G Thomas

    2009-01-01

    Tumor cells in the circulation of patients with advanced cancers have been described for over a century, but only recently have methods become available to reproducibly and robustly detect these cells in patients with cancer. A variety of methods have been developed to study this phenomenon, reflecting a broad interest in the field. The presence of circulating tumor cells (CTCs) in the peripheral blood of patients with metastatic cancer has been found to be of prognostic significance, and changes in CTC numbers over time appear to reflect treatment outcome. The ability to detect and study CTCs suggests that CTC concentration in blood may be able to be used as an intermediate biomarker in therapeutic trials of novel therapies in cancer patients and that molecular changes in patients' tumors may be able to be detected and addressed with appropriate therapeutic interventions. Studies in patients with early, nonmetastatic cancers are beginning, and some studies indicate that circulating tumor cells can predict outcome in this setting. While the ability to count and characterize circulating tumor cells holds much potential for the future, improvements in and standardization of assay methods need to be made before the potential of this technology is fully realized.

  2. Portal vein-circulating tumor cells predict liver metastases in patients with resectable pancreatic cancer.

    Science.gov (United States)

    Bissolati, Massimiliano; Sandri, Maria Teresa; Burtulo, Giovanni; Zorzino, Laura; Balzano, Gianpaolo; Braga, Marco

    2015-02-01

    Pancreatic cancer patients underwent surgical resection often present distant metastases early after surgery. Detection of circulating tumor cells (CTCs) has been correlated to a worse oncological outcome in patients with advanced pancreatic cancer. The objective of this pilot study is to investigate the possible prognostic role of CTCs in patients undergoing surgery for pancreatic cancer. In 20 patients undergoing pancreatic resection, 10 mL blood sample was collected intraoperatively from both systemic circulation (SC) and portal vein (PV). Blood sample was analyzed for CTCs with CellSearch® system. All patients underwent an oncologic follow-up for at least 3 years, quarterly. CTCs were detected in nine (45%) patients: five patients had CTCs in PV only, three patients in both SC and PV, and one patient in SC only. CTC-positive and CTC-negative patients were similar for demographics and cancer stage pattern. No significant differences were found in both overall and disease-free survival between CTC-positive and CTC-negative patients. At 3-year follow-up, portal vein CTC-positive patients presented a higher rate of liver metastases than CTC-negative patients (53 vs. 8%, p = 0.038). CTCs were found in 45% of the patients. No correlation between CTCs and survival was found. The presence of CTCs in portal vein has been associated to higher rate of liver metastases after surgery.

  3. Circulating Tumor Cells: A Review of Present Methods and the Need to Identify Heterogeneous Phenotypes

    Science.gov (United States)

    Millner, Lori M.; Linder, Mark W.; Valdes, Roland

    2016-01-01

    The measurement and characterization of circulating tumor cells (CTCs) hold promise for advancing personalized therapeutics. CTCs are the precursor to metastatic cancer and thus have the potential to radically alter patient treatment and outcome. Currently, clinical information provided by the enumeration of CTCs is limited to predicting clinical outcome. Other areas of interest in advancing the practice of pathology include: using CTCs for early detection of potential metastasis, determining and monitoring the efficacy of individualized treatment regimens, and predicting site-specific metastasis. Important hurdles to overcome in obtaining this type of clinical information involve present limitations in defining, detecting, and isolating CTCs. Currently, CTCs are detected using epithelial markers. The definition of what distinguishes a CTC should be expanded to include CTCs with heterogeneous phenotypes, and markers should be identified to enable a more comprehensive capture. Additionally, most methods available for detecting CTCs do not capture functionally viable CTCs. Retaining functional viability would provide a significant advantage in characterizing CTC-subtypes that may predict the site of metastatic invasion and thus assist in selecting effective treatment regimens. In this review we describe areas of clinical interest followed by a summary of current circulating cell-separation technologies and present limitations. Lastly, we provide insight into what is required to overcome these limitations as they relate to applications in advancing the practice of pathology and laboratory medicine. PMID:23884225

  4. Considerations in the development of circulating tumor cell technology for clinical use

    Directory of Open Access Journals (Sweden)

    Parkinson David R

    2012-07-01

    Full Text Available Abstract This manuscript summarizes current thinking on the value and promise of evolving circulating tumor cell (CTC technologies for cancer patient diagnosis, prognosis, and response to therapy, as well as accelerating oncologic drug development. Moving forward requires the application of the classic steps in biomarker development–analytical and clinical validation and clinical qualification for specific contexts of use. To that end, this review describes methods for interactive comparisons of proprietary new technologies, clinical trial designs, a clinical validation qualification strategy, and an approach for effectively carrying out this work through a public-private partnership that includes test developers, drug developers, clinical trialists, the US Food & Drug Administration (FDA and the US National Cancer Institute (NCI.

  5. Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells.

    Science.gov (United States)

    Lin, Millicent; Chen, Jie-Fu; Lu, Yi-Tsung; Zhang, Yang; Song, Jinzhao; Hou, Shuang; Ke, Zunfu; Tseng, Hsian-Rong

    2014-10-21

    Circulating tumor cells (CTCs) are cancer cells that break away from either a primary tumor or a metastatic site and circulate in the peripheral blood as the cellular origin of metastasis. With their role as a "tumor liquid biopsy", CTCs provide convenient access to all disease sites, including that of the primary tumor and the site of fatal metastases. It is conceivable that detecting and analyzing CTCs will provide insightful information in assessing the disease status without the flaws and limitations encountered in performing conventional tumor biopsies. However, identifying CTCs in patient blood samples is technically challenging due to the extremely low abundance of CTCs among a large number of hematologic cells. To address this unmet need, there have been significant research endeavors, especially in the fields of chemistry, materials science, and bioengineering, devoted to developing CTC detection, isolation, and characterization technologies. Inspired by the nanoscale interactions observed in the tissue microenvironment, our research team at UCLA pioneered a unique concept of "NanoVelcro" cell-affinity substrates, in which CTC capture agent-coated nanostructured substrates were utilized to immobilize CTCs with high efficiency. The working mechanism of NanoVelcro cell-affinity substrates mimics that of Velcro: when the two fabric strips of a Velcro fastener are pressed together, tangling between the hairy surfaces on two strips leads to strong binding. Through continuous evolution, three generations (gens) of NanoVelcro CTC chips have been established to achieve different clinical utilities. The first-gen NanoVelcro chip, composed of a silicon nanowire substrate (SiNS) and an overlaid microfluidic chaotic mixer, was created for CTC enumeration. Side-by-side analytical validation studies using clinical blood samples suggested that the sensitivity of first-gen NanoVelcro chip outperforms that of FDA-approved CellSearch. In conjunction with the use of the

  6. Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis

    Science.gov (United States)

    Williams, Anthony; Chung, Jaebum; Ou, Xiaoze; Zheng, Guoan; Rawal, Siddarth; Ao, Zheng; Datar, Ram; Yang, Changhuei; Cote, Richard

    2014-06-01

    Circulating tumor cells (CTCs) are recognized as a candidate biomarker with strong prognostic and predictive potential in metastatic disease. Filtration-based enrichment technologies have been used for CTC characterization, and our group has previously developed a membrane microfilter device that demonstrates efficacy in model systems and clinical blood samples. However, uneven filtration surfaces make the use of standard microscopic techniques a difficult task, limiting the performance of automated imaging using commercially available technologies. Here, we report the use of Fourier ptychographic microscopy (FPM) to tackle this challenge. Employing this method, we were able to obtain high-resolution color images, including amplitude and phase, of the microfilter samples over large areas. FPM's ability to perform digital refocusing on complex images is particularly useful in this setting as, in contrast to other imaging platforms, we can focus samples on multiple focal planes within the same frame despite surface unevenness. In model systems, FPM demonstrates high image quality, efficiency, and consistency in detection of tumor cells when comparing corresponding microfilter samples to standard microscopy with high correlation (R2=0.99932). Based on these results, we believe that FPM will have important implications for improved, high throughput, filtration-based CTC analysis, and, more generally, image analysis of uneven surfaces.

  7. Chemosensitivity profile assay of circulating cancer cells: prognostic and predictive value in epithelial tumors.

    Science.gov (United States)

    Gazzaniga, Paola; Naso, Giuseppe; Gradilone, Angela; Cortesi, Enrico; Gandini, Orietta; Gianni, Walter; Fabbri, Maria Agnese; Vincenzi, Bruno; di Silverio, Franco; Frati, Luigi; Aglianò, Anna Maria; Cristofanilli, Massimo

    2010-05-15

    The prognostic value associated with the detection of circulating tumor cells (CTCs) in metastatic breast cancer by the CellSearch technology raise additional issues regarding the biological value of this information. We postulated that a drug-resistance profile of CTCs may predict response to chemotherapy in cancer patients and therefore could be used for patient selection. One hundred 5 patients with diagnosis of carcinoma were enrolled in a prospective trial. CTCs were isolated from peripheral blood, and positive samples were evaluated for the expression of a panel of genes involved in anticancer drugs resistance. The drug-resistance profile was correlated with disease-free survival (DFS; patients in adjuvant setting) and time to progression (TTP; metastatic patients) in a 24-months follow-up. Objective response correlation was a secondary end point. Fifty-one percent of patients were found positive for CTCs while all blood samples from healthy donors were negative. The drug-resistance profile correlates with DFS and TTP (p < 0.001 in both). Sensitivity of the test: able to predict treatment response in 98% of patients. Specificity of the test: 100%; no sample from healthy subject was positive for the presence of CTCs. Positive and negative predictive values were found to be 96.5 and 100%, respectively. We identified a drug-resistance profile of CTCs, which is predictive of response to chemotherapy, independent of tumor type and stage of disease. This approach may represent a first step toward the individualization of chemotherapy in cancer patients.

  8. Circulating tumor cells (CTCs) in breast cancer: a diagnostic tool for prognosis and molecular analysis

    Institute of Scientific and Technical Information of China (English)

    Xiaoshen Dong; R.Katherine Alpaugh; Massimo Cristofanilli

    2012-01-01

    Metastatic breast cancer (MBC) is characterized by a combination of tumor growth,proliferation and metastatic progression and is typically managed with palliative intent.The benefit of standard systemic therapies is relatively limited and the disease is considered incurable suggesting the need to investigate the biological drivers of the various phases of the metastatic process in order to improve the selection of molecularly driven therapies.The detection,enumeration and molecular analysis of circulating tumor cells (CTCs) provide an intriguing opportunity to advance this knowledge.CTCs enumerated by the Food and Drugs Administration-cleared CellSearchTM system are an independent prognostic factor of progression-free survival (PFS) and overall survival (OS) in MBC patients.Several published papers demonstrated the poor prognosis for MBC patients that presented basal CTC count ≥5 in 7.5 mL of blood.Therefore,the enumeration of CTCs during treatment for MBC provides a tool with the ability to predict progression of disease earlier than standard timing of anatomical assessment using conventional radiological tests.During the metastatic process cancer cells exhibit morphological and phenotypic plasticity undergoing epithelial-mesenchymal transition (EMT).This important phenomenon is associated with down regulation of epithelial marker (e.g.,EpCAM) with potential limitations in the applicability of current CTCs enrichment methods.Such observations translated in a number of investigations aimed at improving our capabilities to enumerate and perform molecular characterization of CTCs.Theoretically,the phenotypic analysis of CTCs can represent a "liquid" biopsy of breast tumor that is able to identify a new potential target against the metastatic disease and advance the development and monitoring of personalized therapies.

  9. Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients.

    Science.gov (United States)

    Raimondi, Cristina; Gradilone, Angela; Naso, Giuseppe; Vincenzi, Bruno; Petracca, Arianna; Nicolazzo, Chiara; Palazzo, Antonella; Saltarelli, Rosa; Spremberg, Franco; Cortesi, Enrico; Gazzaniga, Paola

    2011-11-01

    Currently used methods to detect and enumerate circulating tumor cells (CTCs) rely on the expression of the epithelial cell adhesion molecule (EpCAM) and cytokeratins. This selection may exclude cells that have undergone intrinsic modifications of their phenotype, as epithelial-mesenchymal transition (EMT). Aim of the study was to investigate the expression of EMT and stemness markers in CTCs from breast cancer patients in all stages of disease. 92 female breast cancer patients were enrolled. CTCs were isolated by CELLection Dynabeads coated with the monoclonal antibody toward EpCam. Samples found positive for CTCs presence (CD45-/CK+) were evaluated for the expression of ER alpha, HER2, ALDH1, vimentin, and fibronectin. Samples negative for CTCs presence (CD45-/CK-) were also evaluated for the expression of vimentin and fibronectin, used as markers of EMT. CTCs were found in 66% of patients. The distribution of CTCs presence according to stage and grade of disease was found statistically significant. The expression of ALDH1 on CTCs was found to correlate to stage of disease and to the expression of vimentin and fibronectin. In 34% of patients, we detected cells with negative CK/CD45 expression but positive expression of vimentin and fibronectin. There is an urgent need for optimizing CTCs detection methods through the inclusion of EMT markers. The detection of cells in mesenchymal transition, retaining EMT and stemness features, may contribute to discover additional therapeutic targets useful to eradicate micrometastatic disease in breast cancer.

  10. Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors

    Directory of Open Access Journals (Sweden)

    Diesch Claude

    2009-11-01

    Full Text Available Abstract Background With the aim to simplify cancer management, cancer research lately dedicated itself more and more to discover and develop non-invasive biomarkers. In this connection, circulating cell-free DNA (ccf DNA seems to be a promising candidate. Altered levels of ccf nuclear DNA (nDNA and mitochondrial DNA (mtDNA have been found in several cancer types and might have a diagnostic value. Methods Using multiplex real-time PCR we investigated the levels of ccf nDNA and mtDNA in plasma samples from patients with malignant and benign breast tumors, and from healthy controls. To evaluate the applicability of plasma ccf nDNA and mtDNA as a biomarker for distinguishing between the three study-groups we performed ROC (Receiver Operating Characteristic curve analysis. We also compared the levels of both species in the cancer group with clinicopathological parameters. Results While the levels of ccf nDNA in the cancer group were significantly higher in comparison with the benign tumor group (P P P P = 0.022. The level of ccf nDNA was also associated with tumor-size (2 cmP = 0.034. Using ROC curve analysis, we were able to distinguish between the breast cancer cases and the healthy controls using ccf nDNA as marker (cut-off: 1866 GE/ml; sensitivity: 81%; specificity: 69%; P P Conclusion Our data suggests that nuclear and mitochondrial ccf DNA have potential as biomarkers in breast tumor management. However, ccf nDNA shows greater promise regarding sensitivity and specificity.

  11. One-step detection of circulating tumor cells in ovarian cancer using enhanced fluorescent silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Kim JH

    2013-06-01

    Full Text Available Jin Hyun Kim,1,* Hyun Hoon Chung,2,* Min Sook Jeong,1 Mi Ryoung Song,1 Keon Wook Kang,3,4 Jun Sung Kim1 1R&D Center, Biterials Co, Ltd, Seoul, Republic of Korea; 2Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea; 3Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; 4Cancer Research Institute, Seoul National University, Seoul, Republic of Korea *These authors contributed equally to this work Abstract: Ovarian cancer is the fifth-leading cause of cancer-related deaths among women as a result of late diagnosis. For survival rates to improve, more sensitive and specific methods for earlier detection of ovarian cancer are needed. This study presents the development of rapid and specific one-step circulating tumor cell (CTC detection using flow cytometry in a whole-blood sample with fluorescent silica nanoparticles. We prepared magnetic nanoparticle (MNP-SiO2(rhodamine B isothiocyanate [RITC] (MNP-SiO2[RITC] incorporating organic dyes [RITC, λmax(ex/em = 543/580 nm] in the silica shell. We then controlled the amount of organic dye in the silica shell of MNP-SiO2(RITC for increased fluorescence intensity to overcome the autofluorescence of whole blood and increase the sensitivity of CTC detection in whole blood. Next, we modified the surface function group of MNP-SiO2(RITC from –OH to polyethylene glycol (PEG/COOH and conjugated a mucin 1 cell surface-associated (MUC1 antibody on the surface of MNP-SiO2(RITC for CTC detection. To study the specific targeting efficiency of MUC1-MNP-SiO2(RITC, we used immunocytochemistry with a MUC1-positive human ovarian cancer cell line and a negative human embryonic kidney cell line. This technology was capable of detecting 100 ovarian cancer cells in 50 µL of whole blood. In conclusion, we developed a one-step CTC detection technology in ovarian cancer based on multifunctional silica nanoparticles

  12. Circulating Tumor Cell Detection and Capture by Photoacoustic Flow Cytometry in Vivo and ex Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Galanzha, Ekaterina I. [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Zharov, Vladimir P., E-mail: zharovvladimirp@uams.edu [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States)

    2013-12-10

    Despite progress in detecting circulating tumor cells (CTCs), existing assays still have low sensitivity (1–10 CTC/mL) due to the small volume of blood samples (5–10 mL). Consequently, they can miss up to 10{sup 3}–10{sup 4} CTCs, resulting in the development of barely treatable metastasis. Here we analyze a new concept of in vivo CTC detection with enhanced sensitivity (up to 10{sup 2}–10{sup 3} times) by the examination of the entire blood volume in vivo (5 L in adults). We focus on in vivo photoacoustic (PA) flow cytometry (PAFC) of CTCs using label-free or targeted detection, photoswitchable nanoparticles with ultrasharp PA resonances, magnetic trapping with fiber-magnetic-PA probes, optical clearance, real-time spectral identification, nonlinear signal amplification, and the integration with PAFC in vitro. We demonstrate PAFC’s capability to detect rare leukemia, squamous carcinoma, melanoma, and bulk and stem breast CTCs and its clusters in preclinical animal models in blood, lymph, bone, and cerebrospinal fluid, as well as the release of CTCs from primary tumors triggered by palpation, biopsy or surgery, increasing the risk of metastasis. CTC lifetime as a balance between intravasation and extravasation rates was in the range of 0.5–4 h depending on a CTC metastatic potential. We introduced theranostics of CTCs as an integration of nanobubble-enhanced PA diagnosis, photothermal therapy, and feedback through CTC counting. In vivo data were verified with in vitro PAFC demonstrating a higher sensitivity (1 CTC/40 mL) and throughput (up to 10 mL/min) than conventional assays. Further developments include detection of circulating cancer-associated microparticles, and super-resolution PAFC beyond the diffraction and spectral limits.

  13. Circulating Tumor Cell Detection and Capture by Photoacoustic Flow Cytometry in Vivo and ex Vivo

    Directory of Open Access Journals (Sweden)

    Ekaterina I. Galanzha

    2013-12-01

    Full Text Available Despite progress in detecting circulating tumor cells (CTCs, existing assays still have low sensitivity (1–10 CTC/mL due to the small volume of blood samples (5–10 mL. Consequently, they can miss up to 103–104 CTCs, resulting in the development of barely treatable metastasis. Here we analyze a new concept of in vivo CTC detection with enhanced sensitivity (up to 102–103 times by the examination of the entire blood volume in vivo (5 L in adults. We focus on in vivo photoacoustic (PA flow cytometry (PAFC of CTCs using label-free or targeted detection, photoswitchable nanoparticles with ultrasharp PA resonances, magnetic trapping with fiber-magnetic-PA probes, optical clearance, real-time spectral identification, nonlinear signal amplification, and the integration with PAFC in vitro. We demonstrate PAFC’s capability to detect rare leukemia, squamous carcinoma, melanoma, and bulk and stem breast CTCs and its clusters in preclinical animal models in blood, lymph, bone, and cerebrospinal fluid, as well as the release of CTCs from primary tumors triggered by palpation, biopsy or surgery, increasing the risk of metastasis. CTC lifetime as a balance between intravasation and extravasation rates was in the range of 0.5–4 h depending on a CTC metastatic potential. We introduced theranostics of CTCs as an integration of nanobubble-enhanced PA diagnosis, photothermal therapy, and feedback through CTC counting. In vivo data were verified with in vitro PAFC demonstrating a higher sensitivity (1 CTC/40 mL and throughput (up to 10 mL/min than conventional assays. Further developments include detection of circulating cancer-associated microparticles, and super-rsesolution PAFC beyond the diffraction and spectral limits.

  14. [Application and prospect of circulating tumor cells detection in colorectal cancer].

    Science.gov (United States)

    Chen, Qingmin; Tang, Qingchao; Chen, Yinggang; Wang, Xishan

    2016-06-01

    About 30%-50% of colorectal cancer patients would develop recurrence and metastasis. At present, there is still a lack of effective evaluation method for recurrence, metastasis and prognosis. In recent years, a great progress about circulating tumor cells (CTC) in diagnosis and treatment of colorectal cancer has been made. The most common CTC detection methods include immunocytochemistry, flow cytometry, PCR, immunomagnetic separation, optical fiber array scanning and CTC chip. Based on present studies, researchers reach the consensus that CTC is clinically valuable in the following aspects: detection of occult metastasis, monitor of disease progress and evaluation of response to treatment. With recent development of clinical specialization, multi-disciplinary treatment (MDT), gene detection and targeted therapy, individualized treatment may greatly improve overall survive and disease-free survival of colorectal cancer patients. However, the methods above depend on tumor tissues that are always impractical to obtain for late stage and non-surgery patients. Moreover, the size of specimen is always small, making gene expression and mutation detection difficult. CTC detection may solve such problems based on molecular biology with high plausibility and repeatability. Therefore, CTC detection can be used as a new diagnosis tool. It is believed that CTC detection will play an important role in early diagnosis, evaluating recurrence, metastasis, making individualized treatment and predicting prognosis.

  15. Can Biomarker Assessment on Circulating Tumor Cells Help Direct Therapy in Metastatic Breast Cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Natalie [Sandro Pitigliani Medical Oncology Department, Prato Hospital, Istituto Toscano Tumori, Via Ugo Foscolo, Prato, PO 59100 (Italy); Pestrin, Marta [Sandro Pitigliani Medical Oncology Department, Prato Hospital, Istituto Toscano Tumori, Via Ugo Foscolo, Prato, PO 59100 (Italy); Translational Research Laboratory, Prato Hospital, Via Ugo Foscolo, Prato, PO 59100 (Italy); Galardi, Francesca; De Luca, Francesca [Translational Research Laboratory, Prato Hospital, Via Ugo Foscolo, Prato, PO 59100 (Italy); Malorni, Luca [Sandro Pitigliani Medical Oncology Department, Prato Hospital, Istituto Toscano Tumori, Via Ugo Foscolo, Prato, PO 59100 (Italy); Translational Research Laboratory, Prato Hospital, Via Ugo Foscolo, Prato, PO 59100 (Italy); Di Leo, Angelo, E-mail: adileo@usl4.toscana.it [Sandro Pitigliani Medical Oncology Department, Prato Hospital, Istituto Toscano Tumori, Via Ugo Foscolo, Prato, PO 59100 (Italy)

    2014-03-25

    Circulating tumor cell (CTC) count has prognostic significance in metastatic breast cancer, but the predictive utility of CTCs is uncertain. Molecular studies on CTCs have often been limited by a low number of CTCs isolated from a high background of leukocytes. Improved enrichment techniques are now allowing molecular characterisation of single CTCs, whereby molecular markers on single CTCs may provide a real-time assessment of tumor biomarker status from a blood test or “liquid biopsy”, potentially negating the need for a more invasive tissue biopsy. The predictive ability of CTC biomarker analysis has predominantly been assessed in relation to HER2, with variable and inconclusive results. Limited data exist for other biomarkers, such as the estrogen receptor. In addition to the need to define and validate the most accurate and reproducible method for CTC molecular analysis, the clinical relevance of biomarkers, including gain of HER2 on CTC after HER2 negative primary breast cancer, remains uncertain. This review summarises the currently available data relating to biomarker evaluation on CTCs and its role in directing management in metastatic breast cancer, discusses limitations, and outlines measures that may enable future development of this approach.

  16. Can Biomarker Assessment on Circulating Tumor Cells Help Direct Therapy in Metastatic Breast Cancer?

    Directory of Open Access Journals (Sweden)

    Natalie Turner

    2014-03-01

    Full Text Available Circulating tumor cell (CTC count has prognostic significance in metastatic breast cancer, but the predictive utility of CTCs is uncertain. Molecular studies on CTCs have often been limited by a low number of CTCs isolated from a high background of leukocytes. Improved enrichment techniques are now allowing molecular characterisation of single CTCs, whereby molecular markers on single CTCs may provide a real-time assessment of tumor biomarker status from a blood test or “liquid biopsy”, potentially negating the need for a more invasive tissue biopsy. The predictive ability of CTC biomarker analysis has predominantly been assessed in relation to HER2, with variable and inconclusive results. Limited data exist for other biomarkers, such as the estrogen receptor. In addition to the need to define and validate the most accurate and reproducible method for CTC molecular analysis, the clinical relevance of biomarkers, including gain of HER2 on CTC after HER2 negative primary breast cancer, remains uncertain. This review summarises the currently available data relating to biomarker evaluation on CTCs and its role in directing management in metastatic breast cancer, discusses limitations, and outlines measures that may enable future development of this approach.

  17. In vitro validation of an ultra-sensitive scanning fluorescence microscope for analysis of Circulating Tumor Cells

    DEFF Research Database (Denmark)

    Hillig, Thore; Nygaard, Ann-Britt; Nekiunaite, Laura;

    2014-01-01

    Analysis of circulating tumor cells (CTC) holds promise of providing liquid biopsies from patients with cancer. However, current methods include enrichment procedures. We present a method (CytoTrack), where CTC from 7.5 mL of blood is stained, analyzed and counted by a scanning fluorescence...

  18. Development of a Novel Method to Detect Prostate Cancer Circulating Tumor Cells (CTCs) Based on Epithelial-Mesenchymal Transition Biology

    Science.gov (United States)

    2015-12-01

    samples. Nat Protoc 2014;9:694–710. 75. Diamond E, Lee GY, Akhtar NH, et al. Isolation and character- ization of circulating tumor cells in prostate...Campisi, J., Higano, C., Beer, T. M., Porter , P., Coleman, I., True, L., & Nelson, P. S. (2012). Treatment-induced damage to the Cancer Metastasis

  19. Significant prognostic value of circulating tumor cells in esophageal cancer patients: A meta-analysis.

    Science.gov (United States)

    Wang, Shuyu; Du, Hongyang; Li, Guixia

    2017-02-02

    Esophageal cancer is the sixth leading cause of cancer death worldwide. Detection of circulating tumor cells (CTCs) is emerging as a novel strategy for predicting cancer patient prognosis. Here we performed a comprehensive literature search to identify relevant articles in EMbase, PubMed, EBSCO, OVID, Cochrane Database, CNKI, WanFangdata and VIPdata. Meta-analysis was conducted using Stata12.0 software, according to the inclusion and exclusion criteria, extracted data and assessment methodology. Thirteen eligible literature studies were included with a total of 979 esophageal squamous cell carcinoma patients, including 424 CTC-positive and 684 CTC-negative cases. Meta-analysis showed that the presence of CTCs was associated with both worse progression-free/disease-free survival [hazard ration (HR) = 2.32, 95% confidence interval (CI) = 1.57 - 3.43, p < 0.001] and poorer overall survival [HR = 2.64, 95% CI = 1.69 - 4.14, p < 0.001]. Further subgroup analyses demonstrated that CTC-positive patients also showed worse progression-free/disease-free survival and poorer overall survival in different subsets. In summary, our meta-analysis provides strong evidence that detection of CTCs in the peripheral blood is an independent prognostic indicator of poor outcome for esophageal squamous cell carcinoma patients.

  20. An integrated microfluidic device for rapid and high-sensitivity analysis of circulating tumor cells

    Science.gov (United States)

    Jiang, Jianing; Zhao, Hui; Shu, Weiliang; Tian, Jing; Huang, Yuqing; Song, Yongxin; Wang, Ruoyu; Li, Encheng; Slamon, Dennis; Hou, Dongmei; Du, Xiaohui; Zhang, Lichuan; Chen, Yan; Wang, Qi

    2017-01-01

    Recently there has been a more focus on the development of an efficient technique for detection of circulating tumor cells (CTCs), due to their significance in prognosis and therapy of metastatic cancer. However, it remains a challenge because of the low count of CTCs in the blood. Herein, a rapid and high-sensitivity approach for CTCs detection using an integrated microfluidic system, consisting of a deterministic lateral displacement (DLD) isolating structure, an automatic purifying device with CD45-labeled immunomagnetic beads and a capturing platform coated with rat-tail collagen was reported. We observed high capture rate of 90%, purity of about 50% and viability of more than 90% at the high throughput of 1 mL/min by capturing green fluorescent protein (GFP)-positive cells from blood. Further capturing of CTCs from metastatic cancers patients revealed a positive capture rate of 83.3%. Furthermore, our device was compared with CellSearch system via parallel analysis of 30 cancer patients, to find no significant difference between the capture efficiency of both methods. However, our device displayed advantage in terms of time, sample volume and cost for analysis. Thus, our integrated device with sterile environment and convenient use will be a promising platform for CTCs detection with potential clinical application. PMID:28198402

  1. Translational Medicine Study on Circulating Tumor Cell Detection in Patients with Metastatic Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    SHEN Bo; ZHENG Ma-qing; XU Xin-yu; WEI Da

    2015-01-01

    Objective:To explore the prognostic and predictive effects of circulating tumor cell (CTC) detection in patients with metastatic breast cancer (MBC). Methods: A total of 139 patients with MBC were selected to detect the peripheral blood CTC count by CellSearch system. The survival analysis was conducted according to CTC count, and multivariate Cox regression analysis was performed to analyze the factors influencing the progression-free survival (PFS), so as to diagnose the prognostic and predictive effects of CTC counts on MBC patients. Results: The rates of patients with CTC count ≥5 were 38.85% (54/139), 22.43% (24/107) and 17.27% (19/110) before treatment, 3-4 weeks after treatment and 6-8 weeks after treatment, respectively. Before treatment, the PFS of patients with CTC count ≥5 was evidently lower than those with CTC count <5, in which difference was more significant as time went on. HR coefficients of CTC to PFS were 1.939, 2.401 and 3.726 before treatment, 3-4 weeks after treatment and 6-8 weeks after treatment, respectively. And CTC was superior to estrogen receptor (ER) or progesterone receptor (PR) condition, human epidermal receptor 2 (HER2) condition and Eastern Cooperative Oncology Group (ECOG) score in the prognostic and predictive values of MBC patients. Conclusion:CTC count can better reflect the therapeutic efficacy, and has higher clinical predictive value in the PFS of MBC patients.

  2. Circulating Tumor Cells in Metastatic Breast Cancer: A Prognostic and Predictive Marker

    Directory of Open Access Journals (Sweden)

    Sayyed Farshid Moussavi-Harami

    2014-05-01

    Full Text Available The role of circulating tumor cells (CTCs as a marker for disease progression in metastatic cancer is controversial. The current review will serve to summarize the evidence on CTCs as a marker of disease progression in patients with metastatic breast cancer. The immunohistochemistry (IHC-based CellSearch® is the only FDA-approved isolation technique for quantifying CTCs in patients with metastatic breast cancer. We searched PubMed and Web of Knowledge for clinical studies that assessed the prognostic and predictive value of CTCs using IHC-based isolation. The patient outcomes reported include median and Cox-proportional hazard ratios for overall survival (OS and progression-free survival (PFS. All studies reported shorter OS for CTC-positive patients versus CTC-negative. A subset of the selected trials reported significant lower median PFS for CTC-positive patients. The reported trials support the utility of CTC enumeration for patient prognosis. But further studies are required to determine the utility of CTC enumeration for guiding patient therapy. There are three clinical trials ongoing to test this hypothesis. These studies, and others, will further establish the role of CTCs in clinical practice.

  3. Application of detecting cerebrospinal fluid circulating tumor cells in the diagnosis of meningeal metastasis of non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Rong JIANG

    2014-08-01

    Full Text Available Objective To observe a new technology for the detection and enumeration of cerebrospinal fluid (CSF circulating tumor cells (CTCs in the diagnosis of non-small cell lung cancer (NSCLC with meningeal metastasis (MM.  Methods Five cases of NSCLC with MM that were diagnosed by CSF cytology were selected, and 20 ml CSF samples were obtained by lumbar puncture for every patient. The tumor marker immunostaining-fluorescence in situ hybridization (TM-iFISH technology was adapted to detect enrichment and enumeration of circulating tumor cells in 7.50 ml CSF samples; CSF cytology was checked in 10 ml CSF samples; CSF tumor markers were detected in 2.50 ml CSF samples. All of 5 cases were examined by MRI enhancement scan.  Results TM-iFISH detection found circulating tumor cells numbers ranging 18-1823/7.50 ml. Only 2 cases of patients with CSF cytology examination showed the tumor cells. The results of CSF tumor markers in all samples were higher than normal serum tumor markers detection results. The enhanced MRI scan of 5 cases revealed typical signs of MM.  Conclusions The TM-iFISH test showed certain advantages in the detection of malignant tumor cells in CSF. This technology may be a new method of detection and enumeration of tumor cells in CSF, but more studies are needed to prove its sensitivity and specificity. doi: 10.3969/j.issn.1672-6731.2014.08.011

  4. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer.

    NARCIS (Netherlands)

    Cohen, S.J.; Punt, C.J.A.; Iannotti, N.; Saidman, B.H.; Sabbath, K.D.; Gabrail, N.Y.; Picus, J.; Morse, M.; Mitchell, E.; Miller, M.C.; Doyle, G.V.; Tissing, H.; Terstappen, L.W.; Meropol, N.J.

    2008-01-01

    PURPOSE: As treatment options expand for metastatic colorectal cancer (mCRC), a blood marker with a prognostic and predictive role could guide treatment. We tested the hypothesis that circulating tumor cells (CTCs) could predict clinical outcome in patients with mCRC. PATIENTS AND METHODS: In a pros

  5. Assessment of the role of circulating breast cancer cells in tumor formation and metastatic potential using in vivo flow cytometry

    Science.gov (United States)

    Hwu, Derrick; Boutrus, Steven; Greiner, Cherry; Dimeo, Theresa; Kuperwasser, Charlotte; Georgakoudi, Irene

    2011-04-01

    The identification of breast cancer patients who will ultimately progress to metastatic disease is of significant clinical importance. The quantification and assessment of circulating tumor cells (CTCs) has been proposed as one strategy to monitor treatment effectiveness and disease prognosis. However, CTCs have been an elusive population of cells to study because of their small number and difficulties associated with isolation protocols. In vivo flow cytometry (IVFC) can overcome these limitations and provide insights in the role these cells play during primary and metastatic tumor growth. In this study, we used two-color IVFC to examine, for up to ten weeks following orthotopic implantation, changes in the number of circulating human breast cells expressing GFP and a population of circulating hematopoietic cells with strong autofluorescence. We found that the number of detected CTCs in combination with the number of red autofluorescent cells (650 to 690 nm) during the first seven days following implantation was predictive in development of tumor formation and metastasis eight weeks later. These results suggest that the combined detection of these two cell populations could offer a novel approach in the monitoring and prognosis of breast cancer progression, which in turn could aid significantly in their effective treatment.

  6. Prognostic and predictive value of circulating tumor cell analysis in colorectal cancer patients

    Directory of Open Access Journals (Sweden)

    de Albuquerque Andreia

    2012-11-01

    Full Text Available Abstract Objective The aim of this study was to assess the prognostic and predictive values of circulating tumor cell (CTC analysis in colorectal cancer patients. Patients and methods Presence of CTCs was evaluated in 60 colorectal cancer patients before systemic therapy - from which 33 patients were also evaluable for CTC analysis during the first 3 months of treatment - through immunomagnetic enrichment, using the antibodies BM7 and VU1D9 (targeting mucin 1 and EpCAM, respectively, followed by real-time RT-PCR analysis of the tumor-associated genes KRT19, MUC1, EPCAM, CEACAM5 and BIRC5. Results Patients were stratified into groups according to CTC detection (CTC negative, when all marker genes were negative; and CTC positive when at least one of the marker genes was positive. Patients with CTC positivity at baseline had a significant shorter median progression-free survival (median PFS 181.0 days; 95% CI 146.9-215.1 compared with patients with no CTCs (median PFS 329.0 days; 95% CI 299.6-358.4; Log-rank P Conclusion The present study provides evidence of a strong correlation between CTC detection and radiographic disease progression in patients receiving chemotherapy for colorectal cancer. Our results suggest that in addition to the current prognostic factors, CTC analysis represent a potential complementary tool for prediction of colorectal cancer patients’ outcome. Moreover, the present test allows for molecular characterization of CTCs, which may be of relevance to the creation of personalized therapies.

  7. A New Cell Block Method for Multiple Immunohistochemical Analysis of Circulating Tumor Cells in Patients with Liver Cancer

    Science.gov (United States)

    Nam, Soo Jeong; Yeo, Hyun Yang; Chang, Hee Jin; Kim, Bo Hyun; Hong, Eun Kyung; Park, Joong-Won

    2016-01-01

    Purpose We developed a new method of detecting circulating tumor cells (CTCs) in liver cancer patients by constructing cell blocks from peripheral blood cells, including CTCs, followed by multiple immunohistochemical analysis. Materials and Methods Cell blockswere constructed from the nucleated cell pellets of peripheral blood afterremoval of red blood cells. The blood cell blocks were obtained from 29 patients with liver cancer, and from healthy donor blood spikedwith seven cell lines. The cell blocks and corresponding tumor tissues were immunostained with antibodies to seven markers: cytokeratin (CK), epithelial cell adhesion molecule (EpCAM), epithelial membrane antigen (EMA), CK18, α-fetoprotein (AFP), Glypican 3, and HepPar1. Results The average recovery rate of spiked SW620 cells from blood cell blocks was 91%. CTCs were detected in 14 out of 29 patients (48.3%); 11/23 hepatocellular carcinomas (HCC), 1/2 cholangiocarcinomas (CC), 1/1 combined HCC-CC, and 1/3 metastatic cancers. CTCs from 14 patients were positive for EpCAM (57.1%), EMA (42.9%), AFP (21.4%), CK18 (14.3%), Gypican3 and CK (7.1%, each), and HepPar1 (0%). Patients with HCC expressed EpCAM, EMA, CK18, and AFP in tissue and/or CTCs, whereas CK, HepPar1, and Glypican3 were expressed only in tissue. Only EMA was significantly associated with the expressions in CTC and tissue. CTC detection was associated with higher T stage and portal vein invasion in HCC patients. Conclusion This cell block method allows cytologic detection and multiple immunohistochemical analysis of CTCs. Our results show that tissue biomarkers of HCC may not be useful for the detection of CTC. EpCAM could be a candidate marker for CTCs in patients with HCC. PMID:27034142

  8. CCR 20th Anniversary Commentary: Paving the Way for Circulating Tumor Cells

    NARCIS (Netherlands)

    Allard, W. Jeffrey; Terstappen, Leon W.M.M.

    2015-01-01

    Cancer cells can enter the bloodstream, form distant metastases, and ultimately lead to death. A study by Allard and colleagues, which was published in the October 15, 2004, issue of Clinical Cancer Research, concluded that the CellSearch system could be used as a reliable tool to investigate circul

  9. Optical Aptamer Probes of Fluorescent Imaging to Rapid Monitoring of Circulating Tumor Cell

    Directory of Open Access Journals (Sweden)

    Ji Yeon Hwang

    2016-11-01

    Full Text Available Fluorescence detecting of exogenous EpCAM (epithelial cell adhesion molecule or muc1 (mucin1 expression correlated to cancer metastasis using nanoparticles provides pivotal information on CTC (circulating tumor cell occurrence in a noninvasive tool. In this study, we study a new skill to detect extracellular EpCAM/muc1 using quantum dot-based aptamer beacon (QD-EpCAM/muc1 ALB (aptamer linker beacon. The QD-EpCAM/muc1 ALB was designed using QDs (quantum dots and probe. The EpCAM/muc1-targeting aptamer contains a Ep-CAM/muc1 binding sequence and BHQ1 (black hole quencher 1 or BHQ2 (black hole quencher2. In the absence of target EpCAM/muc1, the QD-EpCAM/muc1 ALB forms a partial duplex loop-like aptamer beacon and remained in quenched state because the BHQ1/2 quenches the fluorescence signal-on of the QD-EpCAM/muc1 ALB. The binding of EpCAM/muc1 of CTC to the EpCAM/muc1 binding aptamer sequence of the EpCAM/muc1-targeting oligonucleotide triggered the dissociation of the BHQ1/2 quencher and subsequent signal-on of a green/red fluorescence signal. Furthermore, acute inflammation was stimulated by trigger such as caerulein in vivo, which resulted in increased fluorescent signal of the cy5.5-EpCAM/muc1 ALB during cancer metastasis due to exogenous expression of EpCAM/muc1 in Panc02-implanted mouse model.

  10. Cytometric characterization of circulating tumor cells captured by microfiltration and their correlation to the CellSearch(®) CTC test.

    Science.gov (United States)

    Adams, Daniel L; Stefansson, Steingrimur; Haudenschild, Christian; Martin, Stuart S; Charpentier, Monica; Chumsri, Saranya; Cristofanilli, Massimo; Tang, Cha-Mei; Alpaugh, R Katherine

    2015-02-01

    Recent studies reporting hundreds, to thousands, of circulating tumor cells (CTCs) in the blood of cancer patients have raised questions regarding the prevalence of CTCs, as enumerated by the CellSearch(®) CTC Test. Although CellSearch has been shown to consistently detect clinically relevant CTCs; the ability to only capture EpCAM positive cells has led to speculation that it captures limited subsets of CTCs. In contrast, alternative approaches to CTC isolation are often cited as capturing large numbers of CTCs from patient blood. Not surprisingly the number of cells isolated by alternative approaches show poor correlations when compared to CellSearch, even when accounting for EpCAM presence or absence. In an effort to address this discrepancy, we ran an exploratory method comparison study to characterize and compare the CTC subgroups captured from duplicate blood samples from 30 breast and prostate cancer patients using a microfiltration system (CellSieve™) and CellSearch. We then categorized the CellSieve Cytokeratin(CK)+/CD45-/DAPI+ cells into five morphologically distinct subpopulations for correlative analysis. Like other filtration techniques, CellSieve isolated greater numbers of CK+/CD45- cells than CellSearch. Furthermore, analysis showed low correlation between the total CK+/CD45- cells captured by these two assays, regardless of EpCAM presence. However, subgrouping of CK+/CD45-/DAPI+ cells based on distinct cytokeratin staining patterns and nuclear morphologies elucidated a subpopulation correlative to CellSearch. Using method comparison analyses, we identified a specific CTC morphology which is highly correlative between two distinct capture methods. These data suggests that although various morphologic CTCs with similar phenotypic expressions are present in the blood of cancer patients, the clinically relevant cells isolated by CellSearch can potentially be identified using non-EpCAM dependent isolation. © 2014 The Authors. Published by Wiley

  11. Gene expression profile of circulating tumor cells in breast cancer by RT-qPCR

    Directory of Open Access Journals (Sweden)

    Mavroudis Dimitris

    2011-10-01

    Full Text Available Abstract Background Circulating tumor cells (CTCs have been associated with prognosis especially in breast cancer and have been proposed as a liquid biopsy for repeated follow up examinations. Molecular characterization of CTCs is difficult to address since they are very rare and the amount of available sample is very limited. Methods We quantified by RT-qPCR CK-19, MAGE-A3, HER-2, TWIST1, hTERT α+β+, and mammaglobin gene transcripts in immunomagnetically positively selected CTCs from 92 breast cancer patients, and 28 healthy individuals. We also compared our results with the CellSearch system in 33 of these patients with early breast cancer. Results RT-qPCR is highly sensitive and specific and can detect the expression of each individual gene at the one cell level. None of the genes tested was detected in the group of healthy donors. In 66 operable breast cancer patients, CK-19 was detected in 42.4%, HER-2 in 13.6%, MAGE-A3 in 21.2%, hMAM in 13.6%, TWIST-1 in 42.4%, and hTERT α+β+ in 10.2%. In 26 patients with verified metastasis, CK-19 was detected in 53.8%, HER-2 in 19.2%, MAGE-A3 in 15.4%, hMAM in 30.8%, TWIST-1 in 38.5% and hTERT α+β+in 19.2%. Our preliminary data on the comparison between RT-qPCR and CellSearch in 33 early breast cancer patients showed that RT-qPCR gives more positive results in respect to CellSearch. Conclusions Molecular characterization of CTCs has revealed a remarkable heterogeneity of gene expression between breast cancer patients. In a small percentage of patients, CTCs were positive for all six genes tested, while in some patients only one of these genes was expressed. The clinical significance of these findings in early breast cancer remains to be elucidated when the clinical outcome for these patients is known.

  12. Circulating tumor cell status monitors the treatment responses in breast cancer patients: a meta-analysis

    Science.gov (United States)

    Yan, Wen-Ting; Cui, Xiang; Chen, Qing; Li, Ya-Fei; Cui, You-Hong; Wang, Yan; Jiang, Jun

    2017-01-01

    Whether circulating tumor cells (CTCs) can be used as an indicator of treatment response in breast cancer (BC) needs to be clarified. We addressed this issue by a meta-analysis. PubMed, EMBase and Cochrane library databases were searched in June 2016. Effect measures were estimated as pooled risk ratio (RR), odds ratio (OR) or mean difference by fixed- or random-effect models, according to heterogeneity of included studies. In total, 50 studies with 6712 patients were recruited. Overall analysis showed that there was a significant reduction of CTC-positive rate (RR = 0.68, 95% CI: 0.61–0.76, P < 0.00001) after treatment. Subgroup analyses revealed that neoadjuvant treatment, adjuvant treatment, metastatic treatment or combination therapy could reduce the CTC-positive rate, but surgery could not; moreover, the reduction was only found in HER2+ or HER2- patients but not in the triple-negative ones. Reduction of CTC-positive rate was associated with lower probability of disease progression (OR = 0.54, 95% CI: 0.33–0.89, P = 0.01) and longer overall survival period (mean difference = 11.61 months, 95% CI: 8.63–14.59, P < 0.00001) as well as longer progression-free survival period (mean difference = 5.07 months, 95% CI: 2.70–7.44, P < 0.0001). These results demonstrate that CTC status can serve as an indicator to monitor the effectiveness of treatments and guide subsequent therapies in BC. PMID:28337998

  13. Myeloid-derived suppressor cells (MDSC) facilitate distant metastasis of malignancies by shielding circulating tumor cells (CTC) from immune surveillance.

    Science.gov (United States)

    Liu, Qiaofei; Liao, Quan; Zhao, Yupei

    2016-02-01

    The mechanisms of distant metastasis of malignancies largely remain unknown. Circulating tumor cells (CTC) derived from the primary cancer initiate distant metastasis by entering and traversing the bloodstream. Current methods to detect CTC are based on the notion that CTC do not express the common leukocyte antigen CD45. However, these methods neglect the fact that CTC can directly adhere to platelets and immune cells and therefore appear to be CD45-positive. The potential effects of interactions between CTC and adhesive immune cells have been largely overlooked, despite the fact that most CTC are killed by immune effector cells and only those that evade immune surveillance result in clonal expansion and metastatic lesions. It is crucial to define the characteristics that allow a select CTC population to escape immune surveillance; particularly, it must be determined whether interactions between CTC and adhesive immune cells provide a protective effect on CTC survival. If interactions between CTC and adhesive immune cells offer a selective advantage to those CTC cells, the next consideration is which characteristics of a CTC-immune cell population allow sufficient protection to facilitate immune evasion. Myeloid-derived suppressor cells (MDSC) are a large heterogeneous population of immature myeloid cells that accumulate during cancer progression to induce extensively systemic and local immunosuppression, a phenomenon that has been demonstrated to facilitate cancer distant metastasis. We hypothesize, therefore, that CTC populations interacting with adhesive immune cells will have different biological behavior than CTC populations alone. Further, we hypothesize that CTC can create a defensive shield consisting of adhesive MDSC, which allows evasion of immune surveillance and therefore facilitates distant metastatic lesions. This possibility highlights the importance of direct interactions between CTC and adhesive immune cells and suggests the potential target that

  14. A viable circulating tumor cell isolation device with high retrieval efficiency using a reversibly deformable membrane barrier

    Science.gov (United States)

    Kim, Yoonji; Bu, Jiyoon; Cho, Young-Ho; Son, Il Tae; Kang, Sung-Bum

    2017-02-01

    Circulating tumor cells (CTCs) contain prognostic information of the tumor, since they shed from the primary tumor and invade into the bloodstream. Therefore, the viable isolation is necessary for a consequent analysis of CTCs. Here, we present a device for the viable isolation and efficient retrieval of CTCs using slanted slot filters, formed by a reversibly deformable membrane barrier. Conventional filters have difficulties in retrieving captured cells, since they easily clog the slots. Moreover, large stress concentration at the sharp edges of squared slots, causes cell lysis. In contrast, the present device shows over 94% of high retrieval efficiency, since the slots can be opened simply by relieving the pressure. Furthermore, the inflated membrane barrier naturally forms the slanted slots, thus reducing the cell damage. By using cancer cell lines, we verified that the present device successfully isolate targeted cells, even at an extremely low concentrations (~10 cells/0.1 ml). In the clinical study, 85.7% of patients initially showed CTC positive while the numbers generally decreased after the surgery. We have also proved that the number of CTCs were highly correlated with tumour invasiveness. Therefore, the present device has potential for use in cancer diagnosis, surgical validation, and invasiveness analysis.

  15. Clinical utility of circulating tumor cell counting through CellSearch®: the dilemma of a concept suspended in Limbo

    Directory of Open Access Journals (Sweden)

    Raimondi C

    2014-04-01

    Full Text Available Cristina Raimondi,1 Angela Gradilone,1 Giuseppe Naso,2 Enrico Cortesi,2 Paola Gazzaniga1 1Dipartimento Medicina Molecolare, Sapienza Università di Roma, Rome, Italy; 2Dipartimento di Scienze Radiologiche, Oncologiche e Anatomopatologiche, Sapienza Università di Roma, Rome, Italy Abstract: To date, 10 years after the first demonstration of circulating tumor cells (CTCs, prognostic significance in metastatic breast cancer using the US Food and Drug Administration–cleared system CellSearch®, the potential utility of CTCs in early clinical development of drugs, their role as a surrogate marker of response to therapy, and their molecular analysis for patient stratification for targeted therapies are still major unsolved questions. Great expectations are pinned on the ongoing interventional trials aimed to demonstrate that CTCs might be of value for guiding treatment of patients and predicting cancer progression. To fill the gap between theory and practice with regard to the clinical utility of CTCs, a bridge is needed, taking into account innovative design for clinical trials, a revised definition of traditional CTCs, next-generation CTC technology, the potential clinical application of CTC analysis in non-validated settings of disease, and finally, expanding the number of patients enrolled in the studies. In this regard, the results of the first European pooled analysis definitely validated the independent prognostic value of CTC counting in metastatic breast cancer patients. Keywords: CTC, clinical trials, prognosis

  16. Clinical utility of circulating tumor cell counting through CellSearch(®): the dilemma of a concept suspended in Limbo.

    Science.gov (United States)

    Raimondi, Cristina; Gradilone, Angela; Naso, Giuseppe; Cortesi, Enrico; Gazzaniga, Paola

    2014-01-01

    To date, 10 years after the first demonstration of circulating tumor cells (CTCs), prognostic significance in metastatic breast cancer using the US Food and Drug Administration-cleared system CellSearch(®), the potential utility of CTCs in early clinical development of drugs, their role as a surrogate marker of response to therapy, and their molecular analysis for patient stratification for targeted therapies are still major unsolved questions. Great expectations are pinned on the ongoing interventional trials aimed to demonstrate that CTCs might be of value for guiding treatment of patients and predicting cancer progression. To fill the gap between theory and practice with regard to the clinical utility of CTCs, a bridge is needed, taking into account innovative design for clinical trials, a revised definition of traditional CTCs, next-generation CTC technology, the potential clinical application of CTC analysis in non-validated settings of disease, and finally, expanding the number of patients enrolled in the studies. In this regard, the results of the first European pooled analysis definitely validated the independent prognostic value of CTC counting in metastatic breast cancer patients.

  17. Tumor-selective replication herpes simplex virus-based technology significantly improves clinical detection and prognostication of viable circulating tumor cells

    DEFF Research Database (Denmark)

    Zhang, Wen; Bao, Li; Yang, Shaoxing;

    2016-01-01

    Detection of circulating tumor cells remains a significant challenge due to their vast physical and biological heterogeneity. We developed a cell-surface-marker-independent technology based on telomerase-specific, replication-selective oncolytic herpes-simplex-virus-1 that targets telomerase......Search, our method detected significantly higher positive rates in 40 NSCLC in all stages, including N0M0, N+M0 and M1, and was less affected by chemotherapy. This simple, robust and clinically-applicable technology detects viable CTCs from solid and hematopoietic malignancies in early to late stages...... blood samples from patients with 6 different solid organ carcinomas and lymphomas. Significantly, CTC-positive rates increased remarkably with tumor progression from N0M0, N+M0 to M1 in each of 5 tested cancers (lung, colon, liver, gastric and pancreatic cancer, and glioma). Among 21 non-small cell lung...

  18. The role of circulating tumor cells in urothelial cell carcinoma of the bladder

    NARCIS (Netherlands)

    N. Beije (Nick); S. Sleijfer (Stefan); J.L. Boormans (Joost)

    2015-01-01

    textabstractPatients with muscle-invasive urothelial cell carcinoma of the bladder have a 50 % chance to develop distant metastases despite curative local treatment. Reliable markers that predict the risk of developing metastases or that could be used to determine whether or not perioperative system

  19. A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells.

    Science.gov (United States)

    Hvichia, G E; Parveen, Z; Wagner, C; Janning, M; Quidde, J; Stein, A; Müller, V; Loges, S; Neves, R P L; Stoecklein, N H; Wikman, H; Riethdorf, S; Pantel, K; Gorges, T M

    2016-06-15

    Circulating tumor cells (CTCs) were introduced as biomarkers more than 10 years ago, but capture of viable CTCs at high purity from peripheral blood of cancer patients is still a major technical challenge. Here, we report a novel microfluidic platform designed for marker independent capture of CTCs. The Parsortix™ cell separation system provides size and deformability-based enrichment with automated staining for cell identification, and subsequent recovery (harvesting) of cells from the device. Using the Parsortix™ system, average cell capture inside the device ranged between 42% and 70%. Subsequent harvest of cells from the device ranged between 54% and 69% of cells captured. Most importantly, 99% of the isolated tumor cells were viable after processing in spiking experiments as well as after harvesting from patient samples and still functional for downstream molecular analysis as demonstrated by mRNA characterization and array-based comparative genomic hybridization. Analyzing clinical blood samples from metastatic (n = 20) and nonmetastatic (n = 6) cancer patients in parallel with CellSearch(®) system, we found that there was no statistically significant difference between the quantitative behavior of the two systems in this set of twenty six paired separations. In conclusion, the epitope independent Parsortix™ system enables the isolation of viable CTCs at a very high purity. Using this system, viable tumor cells are easily accessible and ready for molecular and functional analysis. The system's ability for enumeration and molecular characterization of EpCAM-negative CTCs will help to broaden research into the mechanisms of cancer as well as facilitating the use of CTCs as "liquid biopsies."

  20. High Specificity in Circulating Tumor Cell Identification Is Required for Accurate Evaluation of Programmed Death-Ligand 1.

    Directory of Open Access Journals (Sweden)

    Jennifer L Schehr

    Full Text Available Expression of programmed-death ligand 1 (PD-L1 in non-small cell lung cancer (NSCLC is typically evaluated through invasive biopsies; however, recent advances in the identification of circulating tumor cells (CTCs may be a less invasive method to assay tumor cells for these purposes. These liquid biopsies rely on accurate identification of CTCs from the diverse populations in the blood, where some tumor cells share characteristics with normal blood cells. While many blood cells can be excluded by their high expression of CD45, neutrophils and other immature myeloid subsets have low to absent expression of CD45 and also express PD-L1. Furthermore, cytokeratin is typically used to identify CTCs, but neutrophils may stain non-specifically for intracellular antibodies, including cytokeratin, thus preventing accurate evaluation of PD-L1 expression on tumor cells. This holds even greater significance when evaluating PD-L1 in epithelial cell adhesion molecule (EpCAM positive and EpCAM negative CTCs (as in epithelial-mesenchymal transition (EMT.To evaluate the impact of CTC misidentification on PD-L1 evaluation, we utilized CD11b to identify myeloid cells. CTCs were isolated from patients with metastatic NSCLC using EpCAM, MUC1 or Vimentin capture antibodies and exclusion-based sample preparation (ESP technology.Large populations of CD11b+CD45lo cells were identified in buffy coats and stained non-specifically for intracellular antibodies including cytokeratin. The amount of CD11b+ cells misidentified as CTCs varied among patients; accounting for 33-100% of traditionally identified CTCs. Cells captured with vimentin had a higher frequency of CD11b+ cells at 41%, compared to 20% and 18% with MUC1 or EpCAM, respectively. Cells misidentified as CTCs ultimately skewed PD-L1 expression to varying degrees across patient samples.Interfering myeloid populations can be differentiated from true CTCs with additional staining criteria, thus improving the

  1. High Specificity in Circulating Tumor Cell Identification Is Required for Accurate Evaluation of Programmed Death-Ligand 1

    Science.gov (United States)

    Schultz, Zachery D.; Warrick, Jay W.; Guckenberger, David J.; Pezzi, Hannah M.; Sperger, Jamie M.; Heninger, Erika; Saeed, Anwaar; Leal, Ticiana; Mattox, Kara; Traynor, Anne M.; Campbell, Toby C.; Berry, Scott M.; Beebe, David J.; Lang, Joshua M.

    2016-01-01

    Background Expression of programmed-death ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC) is typically evaluated through invasive biopsies; however, recent advances in the identification of circulating tumor cells (CTCs) may be a less invasive method to assay tumor cells for these purposes. These liquid biopsies rely on accurate identification of CTCs from the diverse populations in the blood, where some tumor cells share characteristics with normal blood cells. While many blood cells can be excluded by their high expression of CD45, neutrophils and other immature myeloid subsets have low to absent expression of CD45 and also express PD-L1. Furthermore, cytokeratin is typically used to identify CTCs, but neutrophils may stain non-specifically for intracellular antibodies, including cytokeratin, thus preventing accurate evaluation of PD-L1 expression on tumor cells. This holds even greater significance when evaluating PD-L1 in epithelial cell adhesion molecule (EpCAM) positive and EpCAM negative CTCs (as in epithelial-mesenchymal transition (EMT)). Methods To evaluate the impact of CTC misidentification on PD-L1 evaluation, we utilized CD11b to identify myeloid cells. CTCs were isolated from patients with metastatic NSCLC using EpCAM, MUC1 or Vimentin capture antibodies and exclusion-based sample preparation (ESP) technology. Results Large populations of CD11b+CD45lo cells were identified in buffy coats and stained non-specifically for intracellular antibodies including cytokeratin. The amount of CD11b+ cells misidentified as CTCs varied among patients; accounting for 33–100% of traditionally identified CTCs. Cells captured with vimentin had a higher frequency of CD11b+ cells at 41%, compared to 20% and 18% with MUC1 or EpCAM, respectively. Cells misidentified as CTCs ultimately skewed PD-L1 expression to varying degrees across patient samples. Conclusions Interfering myeloid populations can be differentiated from true CTCs with additional staining criteria

  2. Sensitive and Specific Biomimetic Lipid Coated Microfluidics to Isolate Viable Circulating Tumor Cells and Microemboli for Cancer Detection.

    Directory of Open Access Journals (Sweden)

    Jia-Yang Chen

    Full Text Available Here we presented a simple and effective membrane mimetic microfluidic device with antibody conjugated supported lipid bilayer (SLB "smart coating" to capture viable circulating tumor cells (CTCs and circulating tumor microemboli (CTM directly from whole blood of all stage clinical cancer patients. The non-covalently bound SLB was able to promote dynamic clustering of lipid-tethered antibodies to CTC antigens and minimized non-specific blood cells retention through its non-fouling nature. A gentle flow further flushed away loosely-bound blood cells to achieve high purity of CTCs, and a stream of air foam injected disintegrate the SLB assemblies to release intact and viable CTCs from the chip. Human blood spiked cancer cell line test showed the ~95% overall efficiency to recover both CTCs and CTMs. Live/dead assay showed that at least 86% of recovered cells maintain viability. By using 2 mL of peripheral blood, the CTCs and CTMs counts of 63 healthy and colorectal cancer donors were positively correlated with the cancer progression. In summary, a simple and effective strategy utilizing biomimetic principle was developed to retrieve viable CTCs for enumeration, molecular analysis, as well as ex vivo culture over weeks. Due to the high sensitivity and specificity, it is the first time to show the high detection rates and quantity of CTCs in non-metastatic cancer patients. This work offers the values in both early cancer detection and prognosis of CTC and provides an accurate non-invasive strategy for routine clinical investigation on CTCs.

  3. Multi-parameter Evaluation of the Heterogeneity of Circulating Tumor Cells Using Integrated RNA in situ Hybridization and Immunocytochemical Analysis

    Directory of Open Access Journals (Sweden)

    Yongqi Wu

    2016-11-01

    Full Text Available Circulating tumor cells (CTCs are routinely identified as cytokeratin (CK positive, epithelial cell adhesion molecule (EpCAM positive and CD45 negative, and are enriched based on EpCAM. However, there are a number of methodological challenges regarding both isolation and characterization of these rare CTCs including: downregulation or absence of EpCAM in a variety of solid tumors leading to the omission of subpopulations of CTCs; difficulties in analyzing RNA and protein targets in CTCs due to the rarity of these cells, low levels of targets and technological limitations of visualizing the targets of interest on each individual cell. Building on our previous CTC research on CD45-based negative magnetic separation and four-color fluorescent immunocytochemical (ICC staining, RNA in situ hybridization (ISH was applied to fluorescently target mRNA sequences corresponding to tumor-related genes at the single CTC level. Multiple categories of markers are targeted including cytokeratin (CK, human epidermal growth factor receptor (HER family markers, Hedgehog pathway markers, human papillomavirus (HPV markers and protein arginine methyltransferase 5 (PRMT5. In addition, an integrated method of RNA ISH and fluorescent ICC staining was developed to visualize CTCs on both mRNA and protein levels. The robustness of the integrated co-ICC and RNA ISH staining was demonstrated by a series of tests on representative tumor markers of different categories. The integrated staining can incorporate the advantages of both RNA ISH and fluorescent ICC staining and provide more intense signals and more specific bindings. With this integrated staining methodology, distinct staining patterns were applied in this report to facilitate the searching and characterization of rare subgroups of CTCs. These results support the existence of diverse groups of CTCs at both protein and mRNA transcript levels and provide an analytical tool for the research on CTCs of rare subgroups.

  4. [A Large Number of Circulating Tumor Cells(CTCs)Can Be Isolated from Samples Obtained by Using Leukapheresis Procedures].

    Science.gov (United States)

    Soya, Ryoko; Taguchi, Jyunichi; Nagakawa, Yuichi; Takahashi, Osamu; Sandoh, Norimasa; Hosokawa, Yuichi; Kasuya, Kazuhiko; Umeda, Naoki; Okamoto, Masato; Tsujitani, Shunichi; Tsuchida, Akihiko

    2015-09-01

    We hypothesized that a large number of circulating tumor cells(CTCs)may be isolated from samples obtained by using the leukapheresis procedures that are utilized to collect peripheral blood mononuclear cells for dendritic cell vaccine therapy. We utilized the CellSearch System to determine the number of CTCs in samples obtained by using leukapheresis in 7 patients with colorectal cancer, 5 patients with breast cancer, and 3 patients with gastric cancer. In all patients, a large number of CTCs were isolated. The mean number of CTCs per tumor was 17.1(range 10-34)in colorectal cancer, 10.0(range 2-27)in breast cancer, and 24.0(range 2-42)in gastric cancer. We succeeded in culturing the isolated CTCs from 7 patients with colorectal cancer, 5 patients with breast cancer, and 3 patients with gastric cancer. In conclusion, compared to conventional methods, a large number of CTCs can be obtained by using leukapheresis procedures. The molecular analyses of the CTCs isolated by using this method should be promising in the development of personalized cancer treatments.

  5. Trapping and dynamic manipulation of polystyrene beads mimicking circulating tumor cells using targeted magnetic/photoacoustic contrast agents

    Science.gov (United States)

    Wei, Chen-Wei; Xia, Jinjun; Hu, Xiaoge; Gao, Xiaohu; O’Donnell, Matthew

    2012-01-01

    Abstract. Results on magnetically trapping and manipulating micro-scale beads circulating in a flow field mimicking metastatic cancer cells in human peripheral vessels are presented. Composite contrast agents combining magneto-sensitive nanospheres and highly optical absorptive gold nanorods were conjugated to micro-scale polystyrene beads. To efficiently trap the targeted objects in a fast stream, a dual magnet system consisting of two flat magnets to magnetize (polarize) the contrast agent and an array of cone magnets producing a sharp gradient field to trap the magnetized contrast agent was designed and constructed. A water-ink solution with an optical absorption coefficient of 10  cm−1 was used to mimic the optical absorption of blood. Magnetomotive photoacoustic imaging helped visualize bead trapping, dynamic manipulation of trapped beads in a flow field, and the subtraction of stationary background signals insensitive to the magnetic field. The results show that trafficking micro-scale objects can be effectively trapped in a stream with a flow rate up to 12  ml/min and the background can be significantly (greater than 15 dB) suppressed. It makes the proposed method very promising for sensitive detection of rare circulating tumor cells within high flow vessels with a highly absorptive optical background. PMID:23223993

  6. HER2 status of circulating tumor cells in patients with metastatic breast cancer: a prospective, multicenter trial.

    Science.gov (United States)

    Fehm, Tanja; Müller, Volkmar; Aktas, Bahriye; Janni, Wolfgang; Schneeweiss, Andreas; Stickeler, Elmar; Lattrich, Claus; Löhberg, Christian R; Solomayer, Erich; Rack, Brigitte; Riethdorf, Sabine; Klein, Christoph; Schindlbeck, Christian; Brocker, Kerstin; Kasimir-Bauer, Sabine; Wallwiener, Diethelm; Pantel, Klaus

    2010-11-01

    There is a growing body of evidence that HER2 status can change during disease recurrence or progression in breast cancer patients. In this context, re-evaluation of HER2 status by assessment of HER2 expression on circulating tumor cells (CTCs) is a strategy with potential clinical application. The aim of this trial was to determine the HER2 status of CTCs in metastatic breast cancer patients comparing two CTC assays. A total of 254 patients with metastatic breast cancer from nine German university breast cancer centers were enrolled in this prospective study. HER2 status of CTCs was assessed using both the FDA-approved CellSearch® assay and AdnaTest BreastCancer™. Using the CellSearch assay, 122 of 245 (50%) patients had ≥5 CTCs, and HER2-positive CTCs were observed in 50 (41%) of these patients. Ninety of 229 (39%) patients were CTC positive using AdnaTest BreastCancer, and HER2 positivity rate was 47% (42 of 90). The rate of breast cancer patients with HER2-negative primary tumors but HER2-positive CTCs was 32% (25 of 78) and 49% (28 of 57) using the CellSearch assay and AdnaTest BreastCancer, respectively. Considering only those patients who had CTCs on both tests (n = 62), concordant results regarding HER2 positivity were obtained in 50% of the patients (31/62) (P = 0.96, κ = -0.006). HER2-positive CTCs can be detected in a relevant number of patients with HER2 negative primary tumors. Therefore, it will be mandatory to correlate the assay-dependent HER2 status of CTCs to the clinical response on HER2-targeted therapies.

  7. Disseminated tumor cells in bone marrow and circulating tumor cells in blood of breast cancer patients: current state of detection and characterization.

    Science.gov (United States)

    Riethdorf, Sabine; Pantel, Klaus

    2008-01-01

    Despite the progress resulting from early detection and improved adjuvant therapy, the prognosis of breast cancer patients is still limited by the occurrence of distant metastases largely due to clinically occult micrometastases that remain undetected at primary diagnosis even by high-resolution imaging approaches. Recent research efforts have concentrated on the identification of additional parameters allowing individual risk assessment and stratification of patients for targeted therapies, since traditional prognostic factors are not sufficient to predict metastatic relapse and treatment decisions are still mainly based on statistical risk parameters. Highly sensitive and specific immunocytochemical and molecular assays now enable the detection and characterization of disseminated and circulating tumor cells (DTCs and CTCs, respectively) at the single cell level in bone marrow (BM) and peripheral blood, providing insights into the first crucial steps of the metastatic cascade. However, because of the still high variability of results in DTC/CTC detection, the necessity of standardized approaches will be discussed. A large number of studies showed that the presence of DTCs in BM has prognostic impact for primary breast cancer patients. DTCs are likely to escape from chemotherapy by maintaining a dormant nonproliferating state. There is also evidence for a stem cell-like phenotype of DTCs, probably contributing to the opportunity to escape from dormancy control and to start expansion to manifest metastases. Blood would also be an ideal source for the detection and monitoring of CTCs because of an easy noninvasive sampling procedure enabling repeated analyses. While prognostic significance of CTCs could be reliably demonstrated for metastatic breast cancer, studies to analyze the impact of CTCs in primary breast cancer patients and the potential to replace or supplement BM analysis are still ongoing. Furthermore, molecular characterization of CTCs might contribute

  8. Combined cell surface carbonic anhydrase 9 and CD147 antigens enable high-efficiency capture of circulating tumor cells in clear cell renal cell carcinoma patients.

    Science.gov (United States)

    Liu, Shijie; Tian, Zuhong; Zhang, Lei; Hou, Shuang; Hu, Sijun; Wu, Junshen; Jing, Yuming; Sun, Huimin; Yu, Fei; Zhao, Libo; Wang, Ruoxiang; Tseng, Hsian-Rong; Zhau, Haiyen E; Chung, Leland W K; Wu, Kaichun; Wang, Hao; Wu, Jason Boyang; Nie, Yongzhan; Shao, Chen

    2016-09-13

    Circulating tumor cells (CTCs) have emerged as promising tools for noninvasive cancer detection and prognosis. Most conventional approaches for capturing CTCs use an EpCAM-based enrichment strategy, which does not work well in cancers that show low or no expression of EpCAM, such as renal cell carcinoma (RCC). In this study, we developed a new set of cell surface markers including CA9 and CD147 as alternative CTC-capture antigens specifically designed for RCC patients. We showed that the expression of both CA9 and CD147 was prevalent in a RCC patient cohort (n=70) by immunohistochemical analysis, with both molecules in combination covering 97.1% of cases. The NanoVelcro platform combined with CA9-/CD147-capture antibodies demonstrated significantly higher efficiency for capturing both CTC-mimicking renal cancer cells and RCC CTCs in peripheral blood, compared to the conventional EpCAM-based method. Using immunofluorescence cytological validation at the single-cell level, we were able to identify bona fide CTCs in RCC patient blood following the well-accepted criteria in our CTC-capture system. We further demonstrated a significant association of CTC numbers as well as the CTC expression status of Vimentin, a mesenchymal marker, with disease progression, including pathologic features and clinical staging. These results provide new insights into developing novel, effective targets/approaches for capturing CTCs, making CTCs a valuable tool for improved cancer detection, prognosis and treatment in RCC.

  9. Fragment Length of Circulating Tumor DNA.

    Directory of Open Access Journals (Sweden)

    Hunter R Underhill

    2016-07-01

    Full Text Available Malignant tumors shed DNA into the circulation. The transient half-life of circulating tumor DNA (ctDNA may afford the opportunity to diagnose, monitor recurrence, and evaluate response to therapy solely through a non-invasive blood draw. However, detecting ctDNA against the normally occurring background of cell-free DNA derived from healthy cells has proven challenging, particularly in non-metastatic solid tumors. In this study, distinct differences in fragment length size between ctDNAs and normal cell-free DNA are defined. Human ctDNA in rat plasma derived from human glioblastoma multiforme stem-like cells in the rat brain and human hepatocellular carcinoma in the rat flank were found to have a shorter principal fragment length than the background rat cell-free DNA (134-144 bp vs. 167 bp, respectively. Subsequently, a similar shift in the fragment length of ctDNA in humans with melanoma and lung cancer was identified compared to healthy controls. Comparison of fragment lengths from cell-free DNA between a melanoma patient and healthy controls found that the BRAF V600E mutant allele occurred more commonly at a shorter fragment length than the fragment length of the wild-type allele (132-145 bp vs. 165 bp, respectively. Moreover, size-selecting for shorter cell-free DNA fragment lengths substantially increased the EGFR T790M mutant allele frequency in human lung cancer. These findings provide compelling evidence that experimental or bioinformatic isolation of a specific subset of fragment lengths from cell-free DNA may improve detection of ctDNA.

  10. Fragment Length of Circulating Tumor DNA.

    Science.gov (United States)

    Underhill, Hunter R; Kitzman, Jacob O; Hellwig, Sabine; Welker, Noah C; Daza, Riza; Baker, Daniel N; Gligorich, Keith M; Rostomily, Robert C; Bronner, Mary P; Shendure, Jay

    2016-07-01

    Malignant tumors shed DNA into the circulation. The transient half-life of circulating tumor DNA (ctDNA) may afford the opportunity to diagnose, monitor recurrence, and evaluate response to therapy solely through a non-invasive blood draw. However, detecting ctDNA against the normally occurring background of cell-free DNA derived from healthy cells has proven challenging, particularly in non-metastatic solid tumors. In this study, distinct differences in fragment length size between ctDNAs and normal cell-free DNA are defined. Human ctDNA in rat plasma derived from human glioblastoma multiforme stem-like cells in the rat brain and human hepatocellular carcinoma in the rat flank were found to have a shorter principal fragment length than the background rat cell-free DNA (134-144 bp vs. 167 bp, respectively). Subsequently, a similar shift in the fragment length of ctDNA in humans with melanoma and lung cancer was identified compared to healthy controls. Comparison of fragment lengths from cell-free DNA between a melanoma patient and healthy controls found that the BRAF V600E mutant allele occurred more commonly at a shorter fragment length than the fragment length of the wild-type allele (132-145 bp vs. 165 bp, respectively). Moreover, size-selecting for shorter cell-free DNA fragment lengths substantially increased the EGFR T790M mutant allele frequency in human lung cancer. These findings provide compelling evidence that experimental or bioinformatic isolation of a specific subset of fragment lengths from cell-free DNA may improve detection of ctDNA.

  11. Clinicopathological and prognostic significance of circulating tumor cells in patients with gastric cancer: a meta-analysis.

    Science.gov (United States)

    Huang, Xuanzhang; Gao, Peng; Sun, Jingxu; Chen, Xiaowan; Song, Yongxi; Zhao, Junhua; Xu, Huimian; Wang, Zhenning

    2015-01-01

    The prognostic significance of circulating tumor cells (CTCs) and disseminated tumor cells (DTCs) in patients with gastric cancer (GC) is controversial. The aims of our meta-analysis are to assess its correlation with clinicopathological characteristics and prognostic significance in GC. PubMed, Embase, the Cochrane database, the Science citation index, the CNKI database and the references of relevant studies were systematically searched (up to November, 2013). Using the random-effect model, the meta-analysis was completed with odds ratio (OR), risk ratio, hazard ratio (HR) and 95% confidence intervals (CI) as effect values. Twenty-six studies containing 2,566 patients with GC were analyzed. The overall analysis showed that the incidence difference of tumor cells (CTCs/DTCs) was significant when comparing the stage I/II group to the stage III/IV group (OR = 0.36, CI [0.23, 0.56]), the Lauren diffuse group to the intestinal group (OR = 2.06, CI [1.06, 4.00]), the poorly differentiated group to the well/moderate group (OR = 1.65, CI [1.10, 2.50]), the lymphatic involvement positive group to the positive group (OR = 2.92, CI [1.00, 8.55]). The detection of CTCs/DTCs was significantly related with the disease-free survival of patients (HR = 3.42, CI [2.39, 4.91]) and the detection of CTCs in peripheral blood was significantly related with the overall survival of patients (HR = 2.13, CI [1.13, 4.03]). Our meta-analysis indicates that detection of CTCs/DTCs is associated with prognosis for patients with GC and thus could act as a basis for GC staging.

  12. Microchips and their Significance in Isolation of Circulating Tumor Cells and Monitoring of Cancers.

    Science.gov (United States)

    Sahmani, Mehdi; Vatanmakanian, Mousa; Goudarzi, Mehdi; Mobarra, Naser; Azad, Mehdi

    2016-01-01

    In micro-fluid systems, fluids are injected into extremely narrow polymer channels in small amounts such as micro-, nano-, or pico-liter scales. These channels themselves are embedded on tiny chips. Various specialized structures in the chips including pumps, valves, and channels allow the chips to accept different types of fluids to be entered the channel and along with flowing through the channels, exert their effects in the framework of different reactions. The chips are generally crystal, silicon, or elastomer in texture. These highly organized structures are equipped with discharging channels through which products as well as wastes of the reactions are secreted out. A particular advantage regarding the use of fluids in micro-scales over macro-scales lies in the fact that these fluids are much better processed in the chips when they applied as micro-scales. When the laboratory is miniaturized as a microchip and solutions are injected on a micro-scale, this combination makes a specialized construction referred to as "lab-on-chip". Taken together, micro-fluids are among the novel technologies which further than declining the costs; enhancing the test repeatability, sensitivity, accuracy, and speed; are emerged as widespread technology in laboratory diagnosis. They can be utilized for monitoring a wide spectrum of biological disorders including different types of cancers. When these microchips are used for cancer monitoring, circulatory tumor cells play a fundamental role.

  13. Enhancement of Capture Sensitivity for Circulating Tumor Cells in a Breast Cancer Patient's Blood by Silicon Nanowire Platform.

    Science.gov (United States)

    Kim, Dong-Joo; Choi, Mun-Ki; Jeong, Jin-Tak; Lim, Jung-Taek; Lee, Han-Byoel; Han, Wonshik; Lee, Sang-Kwon

    2016-04-01

    The separation of circulating tumor cells (CTCs) from the blood of cancer patients with high sensitivity is an essential technique for selecting chemotherapeutic agents at a patient-by-patient level. Recently, various research groups have reported a nanostructure-based platform for rare cell capture due to its high surface area and 3D nanotopographic features. However, evaluation of capture sensitivity based on chemical modification of the nanostructure surface has not yet been performed. Here, we evaluated the capture sensitivity for CTCs from the blood of three patients diagnosed with stage IV metastatic breast cancer by using the following three platforms: streptavidin-conjugated silicon nanowire (STR-SiNW), poly-l-lysine-coated silicon nanowire (PLL-SiNW), and poly-l-lysine-coated glass (PLL-glass). The number of evaluated CTCs on STR-SiNW, PLL-SiNW, and PLL-glass were 16.2 ± 5.5 cells, 7.3 ± 2.9 cells, and 4.7 ± 1.5 cells, respectively, per 0.5 ml. Therefore, we suggest that the STR-SiNW platform is highly adaptable for the quantitative evaluation of CTCs from the blood of cancer patients in the clinical setting.

  14. Quantitative image cytometry measurements of lipids, DNA, CD45 and cytokeratin for circulating tumor cell identification in a model system

    Science.gov (United States)

    Futia, Gregory L.; Qamar, Lubna; Behbakht, Kian; Gibson, Emily A.

    2016-04-01

    Circulating tumor cell (CTC) identification has applications in both early detection and monitoring of solid cancers. The rarity of CTCs, expected at ~1-50 CTCs per million nucleated blood cells (WBCs), requires identifying methods based on biomarkers with high sensitivity and specificity for accurate identification. Discovery of biomarkers with ever higher sensitivity and specificity to CTCs is always desirable to potentially find more CTCs in cancer patients thus increasing their clinical utility. Here, we investigate quantitative image cytometry measurements of lipids with the biomarker panel of DNA, Cytokeratin (CK), and CD45 commonly used to identify CTCs. We engineered a device for labeling suspended cell samples with fluorescent antibodies and dyes. We used it to prepare samples for 4 channel confocal laser scanning microscopy. The total data acquired at high resolution from one sample is ~ 1.3 GB. We developed software to perform the automated segmentation of these images into regions of interest (ROIs) containing individual cells. We quantified image features of total signal, spatial second moment, spatial frequency second moment, and their product for each ROI. We performed measurements on pure WBCs, cancer cell line MCF7 and mixed samples. Multivariable regressions and feature selection were used to determine combination features that are more sensitive and specific than any individual feature separately. We also demonstrate that computation of spatial characteristics provides higher sensitivity and specificity than intensity alone. Statistical models allowed quantification of the required sensitivity and specificity for detecting small levels of CTCs in a human blood sample.

  15. Different prognostic value of circulating and disseminated tumor cells in primary breast cancer: Influence of bisphosphonate intake?

    Science.gov (United States)

    Kasimir-Bauer, Sabine; Reiter, Katharina; Aktas, Bahriye; Bittner, Ann-Kathrin; Weber, Stephan; Keller, Thomas; Kimmig, Rainer; Hoffmann, Oliver

    2016-01-01

    Disseminated tumor cells (DTCs) in the bone marrow (BM) and circulating tumor cells (CTCs) in blood of breast cancer patients (pts) are known to correlate with worse outcome. Here we demonstrate a different prognostic value of DTCs and CTCs and explain these findings by early clodronate intake. CTCs (n = 376 pts) were determined using the AdnaTest BreastCancer (Qiagen Hannover GmbH, Germany) and DTCs (n = 525 pts) were analyzed by immunocytochemistry using the pan-cytokeratin antibody A45-B/B3. Clodronate intake was recommended in case of DTC-positivity. CTCs were detected in 22% and DTCs in 40% of the pts, respectively. DTCs were significantly associated with nodal status (p = 0.03), grading (p = 0.01), lymphangiosis (p = 0.03), PR status (p = 0.02) and clodronate intake (p < 0.0001), no significant associations were demonstrated for CTCs. CTCs significantly correlated with reduced PFS (p = 0.0227) and negative prognostic relevance was predominantly related to G2 tumors (p = 0.044), the lobular (p = 0.024) and the triple-negative subtype (p = 0.005), HR-negative pts (p = 0.001), postmenopausal women (p = 0.013) and patients who had received radiation therapy (p = 0.018). No prognostic significance was found for DTCs. Therefore early clodronate intake can improve prognosis of breast cancer patients and CTCs might be a high risk indicator for the onset of metastasis not limited to bone metastasis. PMID:27212060

  16. Different prognostic value of circulating and disseminated tumor cells in primary breast cancer: Influence of bisphosphonate intake?

    Science.gov (United States)

    Kasimir-Bauer, Sabine; Reiter, Katharina; Aktas, Bahriye; Bittner, Ann-Kathrin; Weber, Stephan; Keller, Thomas; Kimmig, Rainer; Hoffmann, Oliver

    2016-05-23

    Disseminated tumor cells (DTCs) in the bone marrow (BM) and circulating tumor cells (CTCs) in blood of breast cancer patients (pts) are known to correlate with worse outcome. Here we demonstrate a different prognostic value of DTCs and CTCs and explain these findings by early clodronate intake. CTCs (n = 376 pts) were determined using the AdnaTest BreastCancer (Qiagen Hannover GmbH, Germany) and DTCs (n = 525 pts) were analyzed by immunocytochemistry using the pan-cytokeratin antibody A45-B/B3. Clodronate intake was recommended in case of DTC-positivity. CTCs were detected in 22% and DTCs in 40% of the pts, respectively. DTCs were significantly associated with nodal status (p = 0.03), grading (p = 0.01), lymphangiosis (p = 0.03), PR status (p = 0.02) and clodronate intake (p < 0.0001), no significant associations were demonstrated for CTCs. CTCs significantly correlated with reduced PFS (p = 0.0227) and negative prognostic relevance was predominantly related to G2 tumors (p = 0.044), the lobular (p = 0.024) and the triple-negative subtype (p = 0.005), HR-negative pts (p = 0.001), postmenopausal women (p = 0.013) and patients who had received radiation therapy (p = 0.018). No prognostic significance was found for DTCs. Therefore early clodronate intake can improve prognosis of breast cancer patients and CTCs might be a high risk indicator for the onset of metastasis not limited to bone metastasis.

  17. The efficacy of lapatinib in metastatic breast cancer with HER2 non-amplified primary tumors and EGFR positive circulating tumor cells: a proof-of-concept study.

    Directory of Open Access Journals (Sweden)

    Justin Stebbing

    Full Text Available BACKGROUND: Analysis of circulating tumor cells (CTCs provides real-time measures of cancer sub-populations with potential for CTC-directed therapeutics. We examined whether lapatinib which binds both HER2 and EGFR could induce depletion of the EGFR-positive pool of CTCs, which may in turn lead to clinical benefits. PATIENTS AND METHODS: Patients with metastatic breast cancer and HER2 non-amplified primary tumors with EGFR-positive CTCs were recruited and lapatinib 1500 mg daily was administered, in a standard two step phase 2 trial. RESULTS: There were no responses leading to termination at the first analysis with 16 patients recruited out of 43 screened. In 6 out of 14 (43% individuals eligible for the efficacy analysis, a decrease in CTCs was observed with most of these having a greater decrease in their EGFR-positive CTC pool. CONCLUSIONS: This is one of the first studies of CTC-directed therapeutics and suggests that lapatinib monotherapy is not having any demonstrable clinical effects by reducing the EGFR-positive pool of CTCs in HER2 non-amplified primary tumors. Our attempt to expand the pool of patients eligible for a targeted therapy was unsuccessful; the role of clonal populations in cancer biology and therapeutic strategies to control them will require extensive evaluation in years to come. TRIAL REGISTRATION: Clinical trials.gov NCT00820924.

  18. Clinical validation of an ultra high-throughput spiral microfluidics for the detection and enrichment of viable circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Bee Luan Khoo

    Full Text Available Circulating tumor cells (CTCs are cancer cells that can be isolated via liquid biopsy from blood and can be phenotypically and genetically characterized to provide critical information for guiding cancer treatment. Current analysis of CTCs is hindered by the throughput, selectivity and specificity of devices or assays used in CTC detection and isolation.Here, we enriched and characterized putative CTCs from blood samples of patients with both advanced stage metastatic breast and lung cancers using a novel multiplexed spiral microfluidic chip. This system detected putative CTCs under high sensitivity (100%, n = 56 (Breast cancer samples: 12-1275 CTCs/ml; Lung cancer samples: 10-1535 CTCs/ml rapidly from clinically relevant blood volumes (7.5 ml under 5 min. Blood samples were completely separated into plasma, CTCs and PBMCs components and each fraction were characterized with immunophenotyping (Pan-cytokeratin/CD45, CD44/CD24, EpCAM, fluorescence in-situ hybridization (FISH (EML4-ALK or targeted somatic mutation analysis. We used an ultra-sensitive mass spectrometry based system to highlight the presence of an EGFR-activating mutation in both isolated CTCs and plasma cell-free DNA (cf-DNA, and demonstrate concordance with the original tumor-biopsy samples.We have clinically validated our multiplexed microfluidic chip for the ultra high-throughput, low-cost and label-free enrichment of CTCs. Retrieved cells were unlabeled and viable, enabling potential propagation and real-time downstream analysis using next generation sequencing (NGS or proteomic analysis.

  19. Immobilized surfactant-nanotube complexes support selectin-mediated capture of viable circulating tumor cells in the absence of capture antibodies.

    Science.gov (United States)

    Mitchell, Michael J; Castellanos, Carlos A; King, Michael R

    2015-10-01

    The metastatic spread of tumor cells from the primary site to anatomically distant organs leads to a poor patient prognosis. Increasing evidence has linked adhesive interactions between circulating tumor cells (CTCs) and endothelial cells to metastatic dissemination. Microscale biomimetic flow devices hold promise as a diagnostic tool to isolate CTCs and develop metastatic therapies, utilizing E-selectin (ES) to trigger the initial rolling adhesion of tumor cells under flow. To trigger firm adhesion and capture under flow, such devices also typically require antibodies against biomarkers thought to be expressed on CTCs. This approach is challenged by the fact that CTCs are now known to exhibit heterogeneous expression of conventional biomarkers. Here, we describe surfactant-nanotube complexes to enhance ES-mediated capture and isolation of tumor cells without the use of capture antibodies. While the majority of tumor cells exhibited weaker rolling adhesion on halloysite nanotubes (HNT) coated with ES, HNT functionalization with the sodium dodecanoate (NaL) surfactant induced a switch to firm cellular adhesion under flow. Conversely, surfactant-nanotube complexes significantly reduced the number of primary human leukocytes captured via ES-mediated adhesion under flow. The switch in tumor cell adhesion was exploited to capture and isolate tumor cells in the absence of EpCAM antibodies, commonly utilized as the gold standard for CTC isolation. Additionally, HNT-NaL complexes were shown to capture tumor cells with low to negligible EpCAM expression, that are not efficiently captured using conventional approaches.

  20. Development of an Automated and Sensitive Microfluidic Device for Capturing and Characterizing Circulating Tumor Cells (CTCs from Clinical Blood Samples.

    Directory of Open Access Journals (Sweden)

    Priya Gogoi

    Full Text Available Current analysis of circulating tumor cells (CTCs is hindered by sub-optimal sensitivity and specificity of devices or assays as well as lack of capability of characterization of CTCs with clinical biomarkers. Here, we validate a novel technology to enrich and characterize CTCs from blood samples of patients with metastatic breast, prostate and colorectal cancers using a microfluidic chip which is processed by using an automated staining and scanning system from sample preparation to image processing. The Celsee system allowed for the detection of CTCs with apparent high sensitivity and specificity (94% sensitivity and 100% specificity. Moreover, the system facilitated rapid capture of CTCs from blood samples and also allowed for downstream characterization of the captured cells by immunohistochemistry, DNA and mRNA fluorescence in-situ hybridization (FISH. In a subset of patients with prostate cancer we compared the technology with a FDA-approved CTC device, CellSearch and found a higher degree of sensitivity with the Celsee instrument. In conclusion, the integrated Celsee system represents a promising CTC technology for enumeration and molecular characterization.

  1. Development of on-chip multi-imaging flow cytometry for identification of imaging biomarkers of clustered circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Hyonchol Kim

    Full Text Available An on-chip multi-imaging flow cytometry system has been developed to obtain morphometric parameters of cell clusters such as cell number, perimeter, total cross-sectional area, number of nuclei and size of clusters as "imaging biomarkers", with simultaneous acquisition and analysis of both bright-field (BF and fluorescent (FL images at 200 frames per second (fps; by using this system, we examined the effectiveness of using imaging biomarkers for the identification of clustered circulating tumor cells (CTCs. Sample blood of rats in which a prostate cancer cell line (MAT-LyLu had been pre-implanted was applied to a microchannel on a disposable microchip after staining the nuclei using fluorescent dye for their visualization, and the acquired images were measured and compared with those of healthy rats. In terms of the results, clustered cells having (1 cell area larger than 200 µm2 and (2 nucleus area larger than 90 µm2 were specifically observed in cancer cell-implanted blood, but were not observed in healthy rats. In addition, (3 clusters having more than 3 nuclei were specific for cancer-implanted blood and (4 a ratio between the actual perimeter and the perimeter calculated from the obtained area, which reflects a shape distorted from ideal roundness, of less than 0.90 was specific for all clusters having more than 3 nuclei and was also specific for cancer-implanted blood. The collected clusters larger than 300 µm2 were examined by quantitative gene copy number assay, and were identified as being CTCs. These results indicate the usefulness of the imaging biomarkers for characterizing clusters, and all of the four examined imaging biomarkers-cluster area, nuclei area, nuclei number, and ratio of perimeter-can identify clustered CTCs in blood with the same level of preciseness using multi-imaging cytometry.

  2. Gene expression markers in circulating tumor cells may predict bone metastasis and response to hormonal treatment in breast cancer.

    Science.gov (United States)

    Wang, Haiying; Molina, Julian; Jiang, John; Ferber, Matthew; Pruthi, Sandhya; Jatkoe, Timothy; Derecho, Carlo; Rajpurohit, Yashoda; Zheng, Jian; Wang, Yixin

    2013-11-01

    Circulating tumor cells (CTCs) have recently attracted attention due to their potential as prognostic and predictive markers for the clinical management of metastatic breast cancer patients. The isolation of CTCs from patients may enable the molecular characterization of these cells, which may help establish a minimally invasive assay for the prediction of metastasis and further optimization of treatment. Molecular markers of proven clinical value may therefore be useful in predicting disease aggressiveness and response to treatment. In our earlier study, we identified a gene signature in breast cancer that appears to be significantly associated with bone metastasis. Among the genes that constitute this signature, trefoil factor 1 (TFF1) was identified as the most differentially expressed gene associated with bone metastasis. In this study, we investigated 25 candidate gene markers in the CTCs of metastatic breast cancer patients with different metastatic sites. The panel of the 25 markers was investigated in 80 baseline samples (first blood draw of CTCs) and 30 follow-up samples. In addition, 40 healthy blood donors (HBDs) were analyzed as controls. The assay was performed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with RNA extracted from CTCs captured by the CellSearch system. Our study indicated that 12 of the genes were uniquely expressed in CTCs and 10 were highly expressed in the CTCs obtained from patients compared to those obtained from HBDs. Among these genes, the expression of keratin 19 was highly correlated with the CTC count. The TFF1 expression in CTCs was a strong predictor of bone metastasis and the patients with a high expression of estrogen receptor β in CTCs exhibited a better response to hormonal treatment. Molecular characterization of these genes in CTCs may provide a better understanding of the mechanism underlying tumor metastasis and identify gene markers in CTCs for predicting disease progression and

  3. Minimizing Platelet Activation-Induced Clogging in Deterministic Lateral Displacement Arrays for High-Throughput Capture of Circulating Tumor Cells

    Science.gov (United States)

    D'Silva, Joseph; Loutherback, Kevin; Austin, Robert; Sturm, James

    2013-03-01

    Deterministic lateral displacement arrays have been used to separate circulating tumor cells (CTCs) from diluted whole blood at flow rates up to 10 mL/min (K. Loutherback et al., AIP Advances, 2012). However, the throughput is limited to 2 mL equivalent volume of undiluted whole blood due to clogging of the array. Since the concentration of CTCs can be as low as 1-10 cells/mL in clinical samples, processing larger volumes of blood is necessary for diagnostic and analytical applications. We have identified platelet activation by the micro-post array as the primary cause of this clogging. In this talk, we (i) show that clogging occurs at the beginning of the micro-post array and not in the injector channels because both acceleration and deceleration in fluid velocity are required for clogging to occur, and (ii) demonstrate how reduction in platelet concentration and decrease in platelet contact time within the device can be used in combination to achieve a 10x increase in the equivalent volume of undiluted whole blood processed. Finally, we discuss experimental efforts to separate the relative contributions of contact activated coagulation and shear-induced platelet activation to clogging and approaches to minimize these, such as surface treatment and post geometry design.

  4. Evaluation of Two Different Analytical Methods for Circulating Tumor Cell Detection in Peripheral Blood of Patients with Primary Breast Cancer

    Directory of Open Access Journals (Sweden)

    B. A. S. Jaeger

    2014-01-01

    Full Text Available Background. Evidence is accumulating that circulating tumor cells (CTC out of peripheral blood can serve as prognostic marker not only in metastatic but also in early breast cancer (BC. Various methods are available to detect CTC. Comparisons between the different techniques, however, are rare. Material and Methods. We evaluate two different methods for CTC enrichment and detection in primary BC patients: the FDA-approved CellSearch System (CSS; Veridex, Warren, USA and a manual immunocytochemistry (MICC. The cut-off value for positivity was ≥1 CTC. Results. The two different nonoverlapping patient cohorts evaluated with one or the other method were well balanced regarding common clinical parameters. Before adjuvant CHT 21.1% (416 out of 1972 and 20.6% (247 out of 1198 of the patients were CTC-positive, while after CHT 22.5% (359 out of 1598 and 16.6% (177 out of 1066 of the patients were CTC-positive using CSS or MICC, respectively. CTC positivity rate before CHT was thus similar and not significantly different (P=0.749, while CTC positivity rate immediately after CHT was significantly lower using MICC compared to CSS (P<0.001. Conclusion. Using CSS or MICC for CTC detection, we found comparable prevalence of CTC before but not after adjuvant CHT.

  5. Circulating tumor cells detection has independent prognostic impact in high-risk non-muscle invasive bladder cancer.

    Science.gov (United States)

    Gazzaniga, Paola; de Berardinis, Ettore; Raimondi, Cristina; Gradilone, Angela; Busetto, Gian Maria; De Falco, Elena; Nicolazzo, Chiara; Giovannone, Riccardo; Gentile, Vincenzo; Cortesi, Enrico; Pantel, Klaus

    2014-10-15

    High-risk non-muscle invasive bladder cancer (NMIBC) progresses to metastatic disease in 10-15% of cases, suggesting that micrometastases may be present at first diagnosis. The prediction of risks of progression relies upon EORTC scoring systems, based on clinical and pathological parameters, which do not accurately identify which patients will progress. Aim of the study was to investigate whether the presence of CTC may improve prognostication in a large population of patients with Stage I bladder cancer who were all candidate to conservative surgery. A prospective single center trial was designed to correlate the presence of CTC to local recurrence and progression of disease in high-risk T1G3 bladder cancer. One hundred two patients were found eligible, all candidate to transurethral resection of the tumor followed by endovesical adjuvant immunotherapy with BCG. Median follow-up was 24.3 months (minimum-maximum: 4-36). The FDA-approved CellSearch System was used to enumerate CTC. Kaplan-Meier methods, log-rank test and multivariable Cox proportional hazard analysis was applied to establish the association of circulating tumor cells with time to first recurrence (TFR) and progression-free survival. CTC were detected in 20% of patients and predicted both decreased TFR (log-rank p < 0.001; multivariable adjusted hazard ratio [HR] 2.92 [95% confidence interval: 1.38-6.18], p = 0.005), and time to progression (log-rank p < 0.001; HR 7.17 [1.89-27.21], p = 0.004). The present findings provide evidence that CTC analyses can identify patients with Stage I bladder cancer who have already a systemic disease at diagnosis and might, therefore, potentially benefit from systemic treatment.

  6. Detection of circulating tumor lysate-reactive CD4+ T cells in melanoma patients

    DEFF Research Database (Denmark)

    Ladekarl, Morten; Agger, Ralf; Fleischer, Charlotte C

    2004-01-01

    PURPOSE: We wanted to study whether an allogeneic melanoma lysate would be a feasible stimulatory antigen source for detection of a peripheral CD4+ T-cell immune response in patients with medically untreated malignant melanoma. The lysate was produced from a melanoma cell line (FM3.29) which expr...

  7. Self-propelled carbon nanotube based microrockets for rapid capture and isolation of circulating tumor cells

    Science.gov (United States)

    Banerjee, Shashwat S.; Jalota-Badhwar, Archana; Zope, Khushbu R.; Todkar, Kiran J.; Mascarenhas, Russel R.; Chate, Govind P.; Khutale, Ganesh V.; Bharde, Atul; Calderon, Marcelo; Khandare, Jayant J.

    2015-05-01

    Here, we report a non-invasive strategy for isolating cancer cells by autonomously propelled carbon nanotube (CNT) microrockets. H2O2-driven oxygen (O2) bubble-propelled microrockets were synthesized using CNT and Fe3O4 nanoparticles in the inner surface and covalently conjugating transferrin on the outer surface. Results show that self-propellant microrockets can specifically capture cancer cells.Here, we report a non-invasive strategy for isolating cancer cells by autonomously propelled carbon nanotube (CNT) microrockets. H2O2-driven oxygen (O2) bubble-propelled microrockets were synthesized using CNT and Fe3O4 nanoparticles in the inner surface and covalently conjugating transferrin on the outer surface. Results show that self-propellant microrockets can specifically capture cancer cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01797a

  8. Self-propelled carbon nanotube based microrockets for rapid capture and isolation of circulating tumor cells.

    Science.gov (United States)

    Banerjee, Shashwat S; Jalota-Badhwar, Archana; Zope, Khushbu R; Todkar, Kiran J; Mascarenhas, Russel R; Chate, Govind P; Khutale, Ganesh V; Bharde, Atul; Calderon, Marcelo; Khandare, Jayant J

    2015-05-21

    Here, we report a non-invasive strategy for isolating cancer cells by autonomously propelled carbon nanotube (CNT) microrockets. H2O2-driven oxygen (O2) bubble-propelled microrockets were synthesized using CNT and Fe3O4 nanoparticles in the inner surface and covalently conjugating transferrin on the outer surface. Results show that self-propellant microrockets can specifically capture cancer cells.

  9. Optical quantification of cellular mass, volume and density of circulating tumor cells identified in an ovarian cancer patient

    Directory of Open Access Journals (Sweden)

    Kevin Gregory Phillips

    2012-07-01

    Full Text Available Clinical studies have demonstrated that circulating tumor cells (CTCs are present in the blood of cancer patients with known metastatic disease across the major types of epithelial malignancies. Recent studies have shown that the concentration of CTCs in the blood is prognostic of overall survival in breast, prostate, colorectal and non-small cell lung cancer. This study characterizes CTCs identified using the high-definition (HD-CTC assay in an ovarian cancer patient with stage IIIC disease. We characterized the physical properties of 31 HD-CTCs and 50 normal leukocytes from a single blood draw taken just prior to the initial debulking surgery. We utilized a non-interferometric quantitative phase microscopy technique using brightfield imagery to measure cellular dry mass. Next we used a quantitative differential interference contrast microscopy technique to measure cellular volume. These techniques were combined to determine cellular dry mass density. We found that HD-CTCs were more massive than leukocytes: 33.6 ± 3.2 pg (HD-CTC compared to 18.7 ± 0.6 pg (leukocytes, p < 0.001; had greater volumes: 518.3 ± 24.5 fL (HD-CTC compared to 230.9 ± 78.5 fL (leukocyte, p<0.001; and possessed a decreased dry mass density with respect to leukocytes: 0.065 ± 0.006 pg/fL (HD-CTC compared to 0.085 ± 0.004 pg/fL (leukocyte, p < 0.006. Quantification of HD-CTC dry mass content and volume provide key insights into the fluid dynamics of cancer, and may provide the rationale for strategies to isolate, monitor or target CTCs based on their physical properties. The parameters reported here can also be incorporated into blood cell flow models to better understand metastasis.

  10. Circulating Tumor Cells in Metastatic Breast Cancer:Monitoring Response to Chemotherapy and Predicting Progression-Free Survival

    Institute of Scientific and Technical Information of China (English)

    Jian-ping Cheng; Ying Yan; Xiang-yi Wang; Yuan-li Lu; Yan-hua Yuan; Xiao-li Wang; Jun Jia; Jun Ren

    2010-01-01

    Objective:The purpose of this study is to explore RT-PCR method to set up the examination platform for detecting circulating tumor cells(CTC)in peripheral blood from metastatic breast cancer patients.The primary endpoint is to find out the correlation of existence of CTC with clinical responses and progression-free survival(PFS).Methods:The breast cancer cell line MCF-7 was serially diluted into the peripheral blood from 45 healthy donors to set up the sensitivity of RT-PCR assay.The expression of CK19 mRNA was amplified from both 49patients and 45 healthy donors respectively.The CK19 protein quantity from plasma was measured by competitive inhibition ELISA assay.Results:The sensitivity of RT-PCR could reach 1/106-107 white blood cells with specificity of 95.6%.The objective response rate(ORR)of patients with CK19 mRNA-negative undertaken one cycle chemotherapy was significantly higher than those with positive(P<0.0001).PFS among CK19 mRNA-negative patients was also increased,although there was no significance(P=0.098).The results of ELISA assay showed that CK19 protein was decreased significantly after one cycle chemotherapy,which gave rise to a little higher ORR(P=0.015)and increased PFS(P=0.016).Conclusion:Patients with unamplified CK19 mRNA after one cycle chemotherapy could achieve better radiographic evaluation and increased PFS,which was showed to be of consistency with the CK19 protein assay among the patients treated.

  11. A simple multicolor flow cytometry protocol for detection and molecular characterization of circulating tumor cells in epithelial cancers.

    Science.gov (United States)

    Hristozova, Tsvetana; Konschak, Robert; Budach, Volker; Tinhofer, Ingeborg

    2012-06-01

    Circulating tumor cells (CTCs) might not only serve as prognostic marker but could also be useful for monitoring treatment efficacy. A multicolor flow cytometry protocol for their detection and molecular characterization in peripheral blood was developed which consisted of erythrocyte lysis followed by staining of cells with fluorochrome-labeled antibodies against CD45 and the epithelial markers EpCam and cytokeratin 7/8. For reducing the number of events acquired by flow cytometry, an electronic threshold for the fluorescent signals from the epithelial markers was applied. After establishment of the protocol by using spiking experiments, its suitability to determine the absolute number of CTCs as well as their expression of epidermal growth factor receptor (EGFR) and its phosphorylated form (phospho-EGFR) in blood samples from patients with squamous cell carcinoma of the head and neck (SCCHN) was validated. Spiking experiments demonstrated an excellent recovery (mean 85%) and a linear performance (R(2) = 0.98) of the protocol. Sensitivity and specificity were comparable to our former protocol using immunomagnetic CTC pre-enrichment. The analysis of 33 SCCHN patient samples revealed the presence of CTCs in 33.3% of cases with a mean ± SD of 1.5 ± 0.5 CTCs per 3.75 ml blood. EGFR was expressed in 100% and phospho-EGFR in 36.4% of the CTC+ cases. We have established a simple and sensitive multicolor flow cytometry protocol for detection of CTCs in patients with epithelial cancers including SCCHN which will allow their detailed molecular characterization.

  12. Circulating Tumor Cells in Metastatic Breast Cancer: Monitoring Response to Chemotherapy and Predicting Progression-Free Survival

    Institute of Scientific and Technical Information of China (English)

    Jian-ping Cheng; Ying Yan; Xiang-yi Wang; Yuan-li Lu; Yan-hua Yuan; Xiao-li Wang; Jun Jia; Jun Ren

    2011-01-01

    Objective: The purpose of this study is to explore RT-PCR method to set up the examination platform for detecting circulating tumor cells(CTC) in peripheral blood from metastatic breast cancer patients.The primary endpoint is to find out the correlation of existence of CTC with clinical responses and progression-free survival (PFS).Methods: The breast cancer cell line MCF-7 was serially diluted into the peripheral blood from 45 healthy donors to set up the sensitivity of RT-PCR assay.The expression of CK19 mRNA was amplified from both 49 patients and 45 healthy donors respectively.The CK19 protein quantity from plasma was measured by competitive inhibition ELISA assay.Results: The sensitivity of RT-PCR could reach 1/106-107 white blood cells with specificity of 95.6%.The objective response rate(ORR) of patients with CK19 mRNA-negative undertaken one cycle chemotherapy was significantly higher than those with positive(P<0.0001).PFS among CK19 mRNA-negative patients was also increased,although there was no significance(P=0.098).The results of ELISA assay showed that CK19 protein was decreased significantly after one cycle chemotherapy,which gave rise to a little higher ORR(P=0.015) and increased PFS(P=0.016).Conclusion: Patients with unamplified CK19 mRNA after one cycle chemotherapy could achieve better radiographic evaluation and increased PFS,which was showed to be of consistency with the CK19 protein assay among the patients treated.

  13. Multiscale immunomagnetic enrichment of circulating tumor cells: from tubes to microchips.

    Science.gov (United States)

    Chen, Peng; Huang, Yu-Yen; Hoshino, Kazunori; Zhang, Xiaojing

    2014-02-07

    We review the rare cancer cell sorting technologies, with a focus on multiscale immunomagnetic approaches. Starting from the conventional magnetic activated cell sorting system, we derive the scaling laws of immunomagnetic assay and justify the recent trend of using downscaled systems for CTC studies. Furthermore, we introduce recent work on combining the immunomagnetic assay with microfluidic technology for enhanced separation. We summarize different types of in-channel micro-magnetic structures that can further increase the local magnetic field without lowering the system throughput. Related design concepts, principles, and microfabrication techniques are presented and evaluated.

  14. High-definition imaging of circulating tumor cells and associated cellular events in non-small cell lung cancer patients: a longitudinal analysis

    Science.gov (United States)

    Nieva, Jorge; Wendel, Marco; Luttgen, Madelyn S.; Marrinucci, Dena; Bazhenova, Lyudmila; Kolatkar, Anand; Santala, Roger; Whittenberger, Brock; Burke, James; Torrey, Melissa; Bethel, Kelly; Kuhn, Peter

    2012-02-01

    Sampling circulating tumor cells (CTCs) from peripheral blood is ideally accomplished using assays that detect high numbers of cells and preserve them for downstream characterization. We sought to evaluate a method using enrichment free fluorescent labeling of CTCs followed by automated digital microscopy in patients with non-small cell lung cancer. Twenty-eight patients with non-small cell lung cancer and hematogenously seeded metastasis were analyzed with multiple blood draws. We detected CTCs in 68% of analyzed samples and found a propensity for increased CTC detection as the disease progressed in individual patients. CTCs were present at a median concentration of 1.6 CTCs ml-1 of analyzed blood in the patient population. Higher numbers of detected CTCs were associated with an unfavorable prognosis.

  15. Probing Androgen Receptor Signaling in Circulating Tumor Cells in Prostate Cancer

    Science.gov (United States)

    2014-07-01

    Society of Clinical Oncology C. Selected Publications Peer-reviewed original articles 1. Haggarty, S.J., Mayer, T.U., Miyamoto, D.T., Fathi, R., King ...are larger than leukocytes, and thus pores of varying geometries can retain CTCs while allowing leukocytes to pass through.61–65 For example, the ISET...Isolation by Size of Epithelial Tumour cells) system (RARECELLS, France) enriches for CTCs by filtering blood through membranes with pores 8 μm

  16. Effective capture and release of circulating tumor cells using core-shell Fe3O4@MnO2 nanoparticles

    Science.gov (United States)

    Xiao, Liang; He, Zhao-Bo; Cai, Bo; Rao, Lang; Cheng, Long; Liu, Wei; Guo, Shi-Shang; Zhao, Xing-Zhong

    2017-01-01

    Circulating tumor cells (CTCs) have been believed to hold significant insights for cancer diagnosis and therapy. Here, we developed a simple and effective method to capture and release viable CTCs using core-shell Fe3O4@MnO2 nanoparticles. Fe3O4@MnO2 nanoparticles bioconjugated with anti-EpCAM antibody have characteristics of specific recognition, magnetic-driven cell isolation and oxalic acid-assisted cell release. The capture and release efficiency of target cancer cells were ∼83% and ∼55%, respectively. And ∼70% of released cells kept good viability, which could facilitate the subsequent cellular analysis.

  17. Construction of Epidermal Growth Factor Receptor Peptide Magnetic Nanovesicles with Lipid Bilayers for Enhanced Capture of Liver Cancer Circulating Tumor Cells.

    Science.gov (United States)

    Ding, Jian; Wang, Kai; Tang, Wen-Jie; Li, Dan; Wei, You-Zhen; Lu, Ying; Li, Zong-Hai; Liang, Xiao-Fei

    2016-09-20

    Highly effective targeted tumor recognition via vectors is crucial for cancer detection. In contrast to antibodies and proteins, peptides are direct targeting ligands with a low molecular weight. In the present study, a peptide magnetic nanovector platform containing a lipid bilayer was designed using a peptide amphiphile (PA) as a skeleton material in a controlled manner without surface modification. Fluorescein isothiocyanate-labeled epidermal growth factor receptor (EGFR) peptide nanoparticles (NPs) could specifically bind to EGFR-positive liver tumor cells. EGFR peptide magnetic vesicles (EPMVs) could efficiently recognize and separate hepatoma carcinoma cells from cell solutions and treated blood samples (ratio of magnetic EPMVs versus anti-EpCAM NPs: 3.5 ± 0.29). Analysis of the circulating tumor cell (CTC) count in blood samples from 32 patients with liver cancer showed that EPMVs could be effectively applied for CTC capture. Thus, this nanoscale, targeted cargo-packaging technology may be useful for designing cancer diagnostic systems.

  18. Highly sensitive proximity mediated immunoassay reveals HER2 status conversion in the circulating tumor cells of metastatic breast cancer patients

    Directory of Open Access Journals (Sweden)

    Kim Phillip

    2011-12-01

    Full Text Available Abstract Background The clinical benefits associated with targeted oncology agents are generally limited to subsets of patients. Even with favorable biomarker profiles, many patients do not respond or acquire resistance. Existing technologies are ineffective for treatment monitoring as they provide only static and limited information and require substantial amounts of tissue. Therefore, there is an urgent need to develop methods that can profile potential therapeutic targets with limited clinical specimens during the course of treatment. Methods We have developed a novel proteomics-based assay, Collaborative Enzyme Enhanced Reactive-immunoassay (CEER that can be used for analyzing clinical samples. CEER utilizes the formation of unique immuno-complex between capture-antibodies and two additional detector-Abs on a microarray surface. One of the detector-Abs is conjugated to glucose oxidase (GO, and the other is conjugated to Horse Radish Peroxidase (HRP. Target detection requires the presence of both detector-Abs because the enzyme channeling event between GO and HRP will not occur unless both Abs are in close proximity. Results CEER was able to detect single-cell level expression and phosphorylation of human epidermal growth factor receptor 2 (HER2 and human epidermal growth factor receptor 1 (HER1 in breast cancer (BCa systems. The shift in phosphorylation profiles of receptor tyrosine kinases (RTKs and other signal transduction proteins upon differential ligand stimulation further demonstrated extreme assay specificity in a multiplexed array format. HER2 analysis by CEER in 227 BCa tissues showed superior accuracy when compared to the outcome from immunohistochemistry (IHC (83% vs. 96%. A significant incidence of HER2 status alteration with recurrent disease was observed via circulating tumor cell (CTC analysis, suggesting an evolving and dynamic disease progression. HER2-positive CTCs were found in 41% (7/17 while CTCs with significant HER2

  19. Detection of circulating prostate tumor cells: alternative spliced variant of PSM induced false-positive result.

    Science.gov (United States)

    Hisatomi, Hisashi; Nagao, Kumi; Kawakita, Mutsuji; Matsuda, Tadashi; Hirata, Hiroyuki; Yamamoto, Shigeki; Nakamoto, Takaaki; Harasawa, Hiroshi; Kaneko, Noboru; Hikiji, Kazumasa; Tsukada, Yutaka

    2002-11-01

    RT-nested PCR has been introduced as a highly specific and sensitive assay method to detect the prostate-specific membrane antigen (PSM) mRNA in peripheral blood. However, appreciable percentages of false-positive cases have been reported. Additionally, primer sets reported previously could not discriminate between PSM and PSM', an alternatively spliced variant, mRNA. These isoforms can be produced from a single gene. Switches in alternative splicing patterns are often controlled with strict cell-type or developmental-stage specificity. Therefore, it is most important to discriminate between PSM mRNA and PSM' mRNA. Using our highly specific primer sets, PSM mRNA was detected in 3 of 24 peripheral blood samples of normal male volunteers (12.5%) and was not detected in peripheral blood of 11 normal female volunteers. PSM' mRNA was detected in 5 of 24 peripheral blood samples of normal male volunteers (20.8%) and in 4 of 11 of normal female volunteers (36.4%). PSM' mRNA induced false-positive results, it is important for genetic diagnosis of prostate cancer to discriminate between PSM and PSM' using our primer sets with high specificity. The advances in the uniquely designed primer sets may allow researchers to detect a real PSM mRNA without PSM' mRNA.

  20. A FISH-based method for assessment of HER-2 amplification status in breast cancer circulating tumor cells following CellSearch isolation

    Directory of Open Access Journals (Sweden)

    Frithiof H

    2016-11-01

    Full Text Available Henrik Frithiof,1 Kristina Aaltonen,1 Lisa Rydén2,3 1Division of Oncology and Pathology, 2Division of Surgery, Department of Clinical Sciences Lund, Lund University, Lund, 3Department of Surgery, Skåne University Hospital, Malmö, Sweden Introduction: Amplification of the HER-2/neu (HER-2 proto-oncogene occurs in 10%–15% of primary breast cancer, leading to an activated HER-2 receptor, augmenting growth of cancer cells. Tumor classification is determined in primary tumor tissue and metastatic biopsies. However, malignant cells tend to alter their phenotype during disease progression. Circulating tumor cell (CTC analysis may serve as an alternative to repeated biopsies. The Food and Drug Administration-approved CellSearch system allows determination of the HER-2 protein, but not of the HER-2 gene. The aim of this study was to optimize a fluorescence in situ hybridization (FISH-based method to quantitatively determine HER-2 amplification in breast cancer CTCs following CellSearch-based isolation and verify the method in patient samples. Methods: Using healthy donor blood spiked with human epidermal growth factor receptor 2 (HER-2-positive breast cancer cell lines, SKBr-3 and BT-474, and a corresponding negative control (the HER-2-negative MCF-7 cell line, an in vitro CTC model system was designed. Following isolation in the CellSearch system, CTC samples were further enriched and fixed on microscope slides. Immunocytochemical staining with cytokeratin and 4',6-diamidino-2'-phenylindole dihydrochloride identified CTCs under a fluorescence microscope. A FISH-based procedure was optimized by applying the HER2 IQFISH pharmDx assay for assessment of HER-2 amplification status in breast cancer CTCs. Results: A method for defining the presence of HER-2 amplification in single breast cancer CTCs after CellSearch isolation was established using cell lines as positive and negative controls. The method was validated in blood from breast cancer patients

  1. Detection of live circulating tumor cells by a class of near-infrared heptamethine carbocyanine dyes in patients with localized and metastatic prostate cancer.

    Science.gov (United States)

    Shao, Chen; Liao, Chun-Peng; Hu, Peizhen; Chu, Chia-Yi; Zhang, Lei; Bui, Matthew H T; Ng, Christopher S; Josephson, David Y; Knudsen, Beatrice; Tighiouart, Mourad; Kim, Hyung L; Zhau, Haiyen E; Chung, Leland W K; Wang, Ruoxiang; Posadas, Edwin M

    2014-01-01

    Tumor cells are inherently heterogeneous and often exhibit diminished adhesion, resulting in the shedding of tumor cells into the circulation to form circulating tumor cells (CTCs). A fraction of these are live CTCs with potential of metastatic colonization whereas others are at various stages of apoptosis making them likely to be less relevant to understanding the disease. Isolation and characterization of live CTCs may augment information yielded by standard enumeration to help physicians to more accurately establish diagnosis, choose therapy, monitor response, and provide prognosis. We previously reported on a group of near-infrared (NIR) heptamethine carbocyanine dyes that are specifically and actively transported into live cancer cells. In this study, this viable tumor cell-specific behavior was utilized to detect live CTCs in prostate cancer patients. Peripheral blood mononuclear cells (PBMCs) from 40 patients with localized prostate cancer together with 5 patients with metastatic disease were stained with IR-783, the prototype heptamethine cyanine dye. Stained cells were subjected to flow cytometric analysis to identify live (NIR(+)) CTCs from the pool of total CTCs, which were identified by EpCAM staining. In patients with localized tumor, live CTC counts corresponded with total CTC numbers. Higher live CTC counts were seen in patients with larger tumors and those with more aggressive pathologic features including positive margins and/or lymph node invasion. Even higher CTC numbers (live and total) were detected in patients with metastatic disease. Live CTC counts declined when patients were receiving effective treatments, and conversely the counts tended to rise at the time of disease progression. Our study demonstrates the feasibility of applying of this staining technique to identify live CTCs, creating an opportunity for further molecular interrogation of a more biologically relevant CTC population.

  2. Detection of live circulating tumor cells by a class of near-infrared heptamethine carbocyanine dyes in patients with localized and metastatic prostate cancer.

    Directory of Open Access Journals (Sweden)

    Chen Shao

    Full Text Available Tumor cells are inherently heterogeneous and often exhibit diminished adhesion, resulting in the shedding of tumor cells into the circulation to form circulating tumor cells (CTCs. A fraction of these are live CTCs with potential of metastatic colonization whereas others are at various stages of apoptosis making them likely to be less relevant to understanding the disease. Isolation and characterization of live CTCs may augment information yielded by standard enumeration to help physicians to more accurately establish diagnosis, choose therapy, monitor response, and provide prognosis. We previously reported on a group of near-infrared (NIR heptamethine carbocyanine dyes that are specifically and actively transported into live cancer cells. In this study, this viable tumor cell-specific behavior was utilized to detect live CTCs in prostate cancer patients. Peripheral blood mononuclear cells (PBMCs from 40 patients with localized prostate cancer together with 5 patients with metastatic disease were stained with IR-783, the prototype heptamethine cyanine dye. Stained cells were subjected to flow cytometric analysis to identify live (NIR(+ CTCs from the pool of total CTCs, which were identified by EpCAM staining. In patients with localized tumor, live CTC counts corresponded with total CTC numbers. Higher live CTC counts were seen in patients with larger tumors and those with more aggressive pathologic features including positive margins and/or lymph node invasion. Even higher CTC numbers (live and total were detected in patients with metastatic disease. Live CTC counts declined when patients were receiving effective treatments, and conversely the counts tended to rise at the time of disease progression. Our study demonstrates the feasibility of applying of this staining technique to identify live CTCs, creating an opportunity for further molecular interrogation of a more biologically relevant CTC population.

  3. MUC1-positive circulating tumor cells and MUC1 protein predict chemotherapeutic efficacy in the treatment of metastatic breast cancer

    Institute of Scientific and Technical Information of China (English)

    Jian-Ping Cheng; Ying Yan; Xiang-Yi Wang; Yuan-Li Lu; Yan-Hua Yuan; Jun Jia; Jun Ren

    2011-01-01

    Chemotherapy plays an important role in the treatment of metastatic breast cancer. It is important to monitor chemotherapeutic efficacy, to find a simple and efficient tool to guide treatment, and to predict the efficacy of treatment in a timely and accurate manner. This study aimed to detect mucin-1 (MUC1) positive circulating tumor cells and MUC1 protein in the peripheral blood of patients with metastatic breast cancer and to investigate their relationship to chemotherapeutic efficacy. MUC1 mRNA was detected in the peripheral blood of 34 patients with newly diagnosed metastatic breast cancer by reverse transcription polymerase chain reaction. The positive rates of MUC1 mRNA were 88.2% before chemotherapy and 70.6% after chemotherapy, without a significant difference (P = 0.564); MUC1 mRNA expression before chemotherapy had no correlation with treatment effectiveness (P = 0.281). The response rate of MUC1 mRNA-negative patients after first-cycle chemotherapy was significantly higher (P = 0.009) and the progression-free survival (PFS) was clearly longer than those of MUC1 mRNA-positive patients (P = 0.095). MUC1 protein in peripheral blood plasma was detected by an ELISA competitive inhibition assay. The patients with decreased MUC1 protein after chemotherapy had a significantly longer PFS than those with elevated MUC1 protein (P = 0.044). These results indicate that the outcomes of MUC1 mRNA negative patients after chemotherapy are better than those of MUC1 mRNA-positive patients. In addition, patients with decreased expression of MUC1 protein have a better PFS.

  4. Circulating Tumor Cells Identify Early Recurrence in Patients with Non-Small Cell Lung Cancer Undergoing Radical Resection.

    Directory of Open Access Journals (Sweden)

    Clara Bayarri-Lara

    Full Text Available Surgery is the treatment of choice for patients with non-small cell lung cancer (NSCLC stages I-IIIA. However, more than 20% of these patients develop recurrence and die due to their disease. The release of tumor cells into peripheral blood (CTCs is one of the main causes of recurrence of cancer. The objectives of this study are to identify the prognostic value of the presence and characterization of CTCs in peripheral blood in patients undergoing radical resection for NSCLC.56 patients who underwent radical surgery for previously untreated NSCLC were enrolled in this prospective study. Peripheral blood samples for CTC analysis were obtained before and one month after surgery. In addition CTCs were phenotypically characterized by epidermal growth factor receptor (EGFR expression.51.8% of the patients evaluated were positive with the presence of CTCs at baseline. A decrease in the detection rate of CTCs was observed in these patients one month after surgery (32.1% (p = 0.035. The mean number of CTCs was 3.16 per 10 ml (range 0-84 preoperatively and 0.66 (range 0-3 in postoperative determination. EGFR expression was found in 89.7% of the patients at baseline and in 38.9% patients one month after surgery. The presence of CTCs after surgery was significantly associated with early recurrence (p = 0.018 and a shorter disease free survival (DFS (p = .008. In multivariate analysis CTC presence after surgery (HR = 5.750, 95% CI: 1.50-21.946, p = 0.010 and N status (HR = 0.296, 95% CI: 0.091-0.961, p = 0.043 were independent prognostic factors for DFS.CTCs can be detected and characterized in patients undergoing radical resection for non-small cell lung cancer. Their presence might be used to identify patients with increased risk of early recurrence.

  5. Circulating Tumor Cells Identify Early Recurrence in Patients with Non-Small Cell Lung Cancer Undergoing Radical Resection

    Science.gov (United States)

    Cueto Ladrón de Guevara, Antonio; Puche, Jose L.; Ruiz Zafra, Javier; de Miguel-Pérez, Diego; Ramos, Abel Sánchez-Palencia; Giraldo-Ospina, Carlos Fernando; Navajas Gómez, Juan A.; Delgado-Rodriguez, Miguel; Lorente, Jose A.; Serrano, María Jose

    2016-01-01

    Background Surgery is the treatment of choice for patients with non-small cell lung cancer (NSCLC) stages I-IIIA. However, more than 20% of these patients develop recurrence and die due to their disease. The release of tumor cells into peripheral blood (CTCs) is one of the main causes of recurrence of cancer. The objectives of this study are to identify the prognostic value of the presence and characterization of CTCs in peripheral blood in patients undergoing radical resection for NSCLC. Patients and Methods 56 patients who underwent radical surgery for previously untreated NSCLC were enrolled in this prospective study. Peripheral blood samples for CTC analysis were obtained before and one month after surgery. In addition CTCs were phenotypically characterized by epidermal growth factor receptor (EGFR) expression. Results 51.8% of the patients evaluated were positive with the presence of CTCs at baseline. A decrease in the detection rate of CTCs was observed in these patients one month after surgery (32.1%) (p = 0.035). The mean number of CTCs was 3.16 per 10 ml (range 0–84) preoperatively and 0.66 (range 0–3) in postoperative determination. EGFR expression was found in 89.7% of the patients at baseline and in 38.9% patients one month after surgery. The presence of CTCs after surgery was significantly associated with early recurrence (p = 0.018) and a shorter disease free survival (DFS) (p = .008). In multivariate analysis CTC presence after surgery (HR = 5.750, 95% CI: 1.50–21.946, p = 0.010) and N status (HR = 0.296, 95% CI: 0.091–0.961, p = 0.043) were independent prognostic factors for DFS. Conclusion CTCs can be detected and characterized in patients undergoing radical resection for non-small cell lung cancer. Their presence might be used to identify patients with increased risk of early recurrence. PMID:26913536

  6. ENO1 Protein Levels in the Tumor Tissues and Circulating Plasma Samples of Non-small Cell Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Ying ZHANG

    2010-12-01

    Full Text Available Background and objective Proper tumor markers are useful to diagnosis, prognosis and treatment for lung cancer. The aim of this study is to examine the levels of alpha-enolase (ENO1 protein in the tumor tissues and peripheral plasma samples obtained from non-small cell lung cancer (NSCLC patients, and evaluate its potential clinical significance. Methods The ENO1 protein levels in the tumor tissues and corresponding normal tissues from 16 cases of lung squamous cell carcinoma were analyzed by Western blot. The ENO1 protein levels in the plasma samples from 42 healthy individuals, 34 patients with lung benign disease and 84 patients with NSCLC were measured by double antibody sandwich enzyme-linked immunosorbent assay. Results For 87.5% (14/16 of the patients with lung squamous cell carcinoma, the ENO1 protein level in the tumor tissues was higher than that in the corresponding normal lung tissues. The ENO1 protein level in the plasma of NSCLC patients was significantly higher than that in the plasma of healthy individuals (P=0.031 and patients with lung benign disease (P=0.019. Furthermore, the ENO1 protein level was significantly higher in the plasma of patients with lung adenocarcinoma than that of patients with lung squamous cell carcinoma. Conclusion The elevated levels of ENO1 protein in the tumor tissues and the plasma samples from NSCLC patients indicate ENO1 may be a candidate biomarker of lung cancer.

  7. Development of a Microfluidic-Based Optical Sensing Device for Label-Free Detection of Circulating Tumor Cells (CTCs Through Their Lactic Acid Metabolism

    Directory of Open Access Journals (Sweden)

    Tzu-Keng Chiu

    2015-03-01

    Full Text Available This study reports a microfluidic-based optical sensing device for label-free detection of circulating tumor cells (CTCs, a rare cell species in blood circulation. Based on the metabolic features of cancer cells, live CTCs can be quantified indirectly through their lactic acid production. Compared with the conventional schemes for CTC detection, this label-free approach could prevent the biological bias due to the heterogeneity of the surface antigens on cancer cells. In this study, a microfluidic device was proposed to generate uniform water-in-oil cell-encapsulating micro-droplets, followed by the fluorescence-based optical detection of lactic acid produced within the micro-droplets. To test its feasibility to quantify cancer cells, experiments were carried out. Results showed that the detection signals were proportional to the number of cancer cells within the micro-droplets, whereas such signals were insensitive to the existence and number of leukocytes within. To further demonstrate its feasibility for cancer cell detection, the cancer cells with known cell number in a cell suspension was detected based on the method. Results revealed that there was no significant difference between the detected number and the real number of cancer cells. As a whole, the proposed method opens up a new route to detect live CTCs in a label-free manner.

  8. Microfluidic bead-based multienzyme-nanoparticle amplification for detection of circulating tumor cells in the blood using quantum dots labels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, He, E-mail: mzhang_he@126.com; Fu, Xin; Hu, Jiayi; Zhu, Zhenjun

    2013-05-24

    Graphical abstract: A microfluidic beads-based nucleic acid sensor for sensitive detection of circulating tumor cells (CTCs) in the blood using multienzyme-nanoparticle amplification and quantum dots labels was developed. The chip-based CTCs analysis could detect reverse transcription-polymerase chain reaction (RT-PCR) products of tumor cell as low as 1 tumor cell (e.g. CEA expressing cell) in 1 mL blood sample. This microfluidic beads-based nucleic acid sensor is a promising platform for disease-related nucleic acid molecules at the lowest level at their earliest incidence. -- Highlights: •Combination of microfluidic bead-based platform and enzyme–probe–AuNPs is proposed. •The developed nucleic acid sensor could respond to 5 fM of tumor associated DNA. •Microfluidic platform and multienzyme-labeled AuNPs greatly enhanced sensitivity. •The developed nucleic acid sensor could respond to RT-PCR products of tumor cell as low as 1 tumor cell in 1 mL blood sample. •We report a sensitive nucleic acid sensor for detection of circulating tumor cells. -- Abstract: This study reports the development of a microfluidic bead-based nucleic acid sensor for sensitive detection of circulating tumor cells in blood samples using multienzyme-nanoparticle amplification and quantum dot labels. In this method, the microbeads functionalized with the capture probes and modified electron rich proteins were arrayed within a microfluidic channel as sensing elements, and the gold nanoparticles (AuNPs) functionalized with the horseradish peroxidases (HRP) and DNA probes were used as labels. Hence, two signal amplification approaches are integrated for enhancing the detection sensitivity of circulating tumor cells. First, the large surface area of Au nanoparticle carrier allows several binding events of HRP on each nanosphere. Second, enhanced mass transport capability inherent from microfluidics leads to higher capture efficiency of targets because continuous flow within micro

  9. Circulating Tumor Cells (CTC) and Cell-Free DNA (cfDNA) Workshop 2016: Scientific Opportunities and Logistics for Cancer Clinical Trial Incorporation.

    Science.gov (United States)

    Lowes, Lori E; Bratman, Scott V; Dittamore, Ryan; Done, Susan; Kelley, Shana O; Mai, Sabine; Morin, Ryan D; Wyatt, Alexander W; Allan, Alison L

    2016-09-08

    Despite the identification of circulating tumor cells (CTCs) and cell-free DNA (cfDNA) as potential blood-based biomarkers capable of providing prognostic and predictive information in cancer, they have not been incorporated into routine clinical practice. This resistance is due in part to technological limitations hampering CTC and cfDNA analysis, as well as a limited understanding of precisely how to interpret emergent biomarkers across various disease stages and tumor types. In recognition of these challenges, a group of researchers and clinicians focused on blood-based biomarker development met at the Canadian Cancer Trials Group (CCTG) Spring Meeting in Toronto, Canada on 29 April 2016 for a workshop discussing novel CTC/cfDNA technologies, interpretation of data obtained from CTCs versus cfDNA, challenges regarding disease evolution and heterogeneity, and logistical considerations for incorporation of CTCs/cfDNA into clinical trials, and ultimately into routine clinical use. The objectives of this workshop included discussion of the current barriers to clinical implementation and recent progress made in the field, as well as fueling meaningful collaborations and partnerships between researchers and clinicians. We anticipate that the considerations highlighted at this workshop will lead to advances in both basic and translational research and will ultimately impact patient management strategies and patient outcomes.

  10. Monitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer patients treated with the PD-1 inhibitor Nivolumab.

    Science.gov (United States)

    Nicolazzo, Chiara; Raimondi, Cristina; Mancini, MariaLaura; Caponnetto, Salvatore; Gradilone, Angela; Gandini, Orietta; Mastromartino, Maria; Del Bene, Gabriella; Prete, Alessandra; Longo, Flavia; Cortesi, Enrico; Gazzaniga, Paola

    2016-08-24

    Controversial results on the predictive value of programmed death ligand 1 (PD-L1) status in lung tumor tissue for response to immune checkpoint inhibitors do not allow for any conclusive consideration. Liquid biopsy might allow real-time sampling of patients for PD-L1 through the course of the disease. Twenty-four stage IV NSCLC patients included in the Expanded Access Program with Nivolumab were enrolled. Circulating tumor cells (CTCs) were analyzed by CellSearch with anti-human B7-H1/PD-L1 PE-conjugated antibody. PD-L1 expressing CTCs were assessed at baseline, at 3 and 6 months after starting therapy, and correlated with outcome. At baseline and at 3 months of treatment, the presence of CTCs and the expression of PD-L1 on their surface were found associated to poor patients outcome. Nevertheless, the high frequency of PD-L1 expressing CTCs hampered to discriminate the role of PD-L1 in defining prognosis. Conversely although CTCs were found in all patients 6 months after treatment, at this time patients could be dichotomized into two groups based PD-L1 expression on CTCs. Patients with PD-L1 negative CTCs all obtained a clinical benefit, while patients with PD-L1 (+) CTCs all experienced progressive disease. This suggests that the persistence of PD-L1(+) CTCs might mirror a mechanism of therapy escape.

  11. Detection of circulating tumor cells in patients with esophagogastric or pancreatic adenocarcinoma using the CellSearch(®) system: An observational feasibility study.

    Science.gov (United States)

    Piegeler, Tobias; Winder, Thomas; Kern, Sabine; Pestalozzi, Bernhard; Schneider, Paul Magnus; Beck-Schimmer, Beatrice

    2016-08-01

    Circulating tumor cells (CTCs) in the blood of cancer patients have been demonstrated to be of prognostic value regarding metastasis and survival. The CellSearch(®) system has been certified for the detection of CTCs and as a prognostic tool in patients with metastatic breast, colon and prostate cancer. Few studies have evaluated the detection of CTCs originating from esophagogastric or pancreatic cancer with the CellSearch(®) system. In the present small pilot study, a total of 16 patients with either esophagogastric (n=8) or pancreatic (n=8) adenocarcinomas at various disease stages were randomly screened and included. A total of 7.5 ml of blood was drawn from each patient and analyzed for CTCs using the CellSearch(®) device. CTCs could be detected in 1 out of 8 patients (12.5%) with esophagogastric and in 7 out of 8 patients (87.5%) with pancreatic cancer. The preliminary data obtained from this observational feasibility study suggested that the CellSearch(®) system may become a valuable tool for the detection of CTCs in patients with pancreatic adenocarcinoma, whereas the usefulness in patients with early-stage esophagogastric adenocarcinoma may be limited. This study clearly points towards a requirement for larger studies focusing on patients with pancreatic adenocarcinoma at various disease stages and assessing CTCs, whereas patients with esophagogastric adenocarcinomas should be part of further pilot studies.

  12. Detection of circulating tumor cells in patients with esophagogastric or pancreatic adenocarcinoma using the CellSearch® system: An observational feasibility study

    Science.gov (United States)

    Piegeler, Tobias; Winder, Thomas; Kern, Sabine; Pestalozzi, Bernhard; Schneider, Paul Magnus; Beck-Schimmer, Beatrice

    2016-01-01

    Circulating tumor cells (CTCs) in the blood of cancer patients have been demonstrated to be of prognostic value regarding metastasis and survival. The CellSearch® system has been certified for the detection of CTCs and as a prognostic tool in patients with metastatic breast, colon and prostate cancer. Few studies have evaluated the detection of CTCs originating from esophagogastric or pancreatic cancer with the CellSearch® system. In the present small pilot study, a total of 16 patients with either esophagogastric (n=8) or pancreatic (n=8) adenocarcinomas at various disease stages were randomly screened and included. A total of 7.5 ml of blood was drawn from each patient and analyzed for CTCs using the CellSearch® device. CTCs could be detected in 1 out of 8 patients (12.5%) with esophagogastric and in 7 out of 8 patients (87.5%) with pancreatic cancer. The preliminary data obtained from this observational feasibility study suggested that the CellSearch® system may become a valuable tool for the detection of CTCs in patients with pancreatic adenocarcinoma, whereas the usefulness in patients with early-stage esophagogastric adenocarcinoma may be limited. This study clearly points towards a requirement for larger studies focusing on patients with pancreatic adenocarcinoma at various disease stages and assessing CTCs, whereas patients with esophagogastric adenocarcinomas should be part of further pilot studies. PMID:27446462

  13. Liver and circulating NK1.1(+)CD3(-) cells are increased in infection with attenuated Salmonella typhimurium and are associated with reduced tumor in murine liver cancer.

    Science.gov (United States)

    Feltis, B A; Miller, J S; Sahar, D A; Kim, A S; Saltzman, D A; Leonard, A S; Wells, C L; Sielaff, T D

    2002-09-01

    An attenuated (DeltacyA, Deltacrp) strain of Salmonella typhimurium (chi4550) containing a gene for human IL-2 (chi4550pIL2) reduces hepatic tumor burden when orally inoculated into mice with liver cancer; however, wild-type S. typhimurium is also associated with cancer regression. Therefore, experiments were designed to clarify the invasiveness and the anti-tumor properties of three strains of S. typhimurium. S. typhimurium chi4550pIL2, chi4550, or wild type (WT) was incubated with mature Caco-2 and HT-29 enterocytes, and S. typhimurium internalization was assessed. For infectivity experiments, mice were orally inoculated with saline or 10(9)S. typhimurium chi4550pIL2, chi4550, or WT; 48 h later mice were sacrificed for analysis of cecal bacteria and S. typhimurium translocation to mesenteric lymph nodes. For experiments involving tumor implantation, four groups were studied: saline control, tumor alone, chi4550pIL2+tumor, and chi4550+tumor. Mice were orally inoculated with saline or S. typhimurium and underwent laparotomy 24 h later with 5 x 10(4) MCA38 murine adenocarcinoma cells injected into the spleen. On day 14, liver tumors were counted and peripheral blood and hepatic lymphocyte populations were analyzed by FACScan. Attenuated S. typhimurium exhibited decreased internalization by cultured enterocytes and decreased infectivity after oral inoculation. Mice treated with chi4550pIL2 or chi4550 had fewer liver tumors and increased populations of hepatic and circulating NK1.1(+)CD3(-) lymphocytes compared to mice treated with saline (P < 0.01). These data suggest that attenuated S. typhimurium may have an application as an anti-tumor agent.

  14. Development of a new rapid isolation device for circulating tumor cells (CTCs) using 3D palladium filter and its application for genetic analysis.

    Science.gov (United States)

    Yusa, Akiko; Toneri, Makoto; Masuda, Taisuke; Ito, Seiji; Yamamoto, Shuhei; Okochi, Mina; Kondo, Naoto; Iwata, Hiroji; Yatabe, Yasushi; Ichinosawa, Yoshiyuki; Kinuta, Seichin; Kondo, Eisaku; Honda, Hiroyuki; Arai, Fumihito; Nakanishi, Hayao

    2014-01-01

    Circulating tumor cells (CTCs) in the blood of patients with epithelial malignancies provide a promising and minimally invasive source for early detection of metastasis, monitoring of therapeutic effects and basic research addressing the mechanism of metastasis. In this study, we developed a new filtration-based, sensitive CTC isolation device. This device consists of a 3-dimensional (3D) palladium (Pd) filter with an 8 µm-sized pore in the lower layer and a 30 µm-sized pocket in the upper layer to trap CTCs on a filter micro-fabricated by precise lithography plus electroforming process. This is a simple pump-less device driven by gravity flow and can enrich CTCs from whole blood within 20 min. After on-device staining of CTCs for 30 min, the filter cassette was removed from the device, fixed in a cassette holder and set up on the upright fluorescence microscope. Enumeration and isolation of CTCs for subsequent genetic analysis from the beginning were completed within 1.5 hr and 2 hr, respectively. Cell spike experiments demonstrated that the recovery rate of tumor cells from blood by this Pd filter device was more than 85%. Single living tumor cells were efficiently isolated from these spiked tumor cells by a micromanipulator, and KRAS mutation, HER2 gene amplification and overexpression, for example, were successfully detected from such isolated single tumor cells. Sequential analysis of blood from mice bearing metastasis revealed that CTC increased with progression of metastasis. Furthermore, a significant increase in the number of CTCs from the blood of patients with metastatic breast cancer was observed compared with patients without metastasis and healthy volunteers. These results suggest that this new 3D Pd filter-based device would be a useful tool for the rapid, cost effective and sensitive detection, enumeration, isolation and genetic analysis of CTCs from peripheral blood in both preclinical and clinical settings.

  15. Development of a new rapid isolation device for circulating tumor cells (CTCs using 3D palladium filter and its application for genetic analysis.

    Directory of Open Access Journals (Sweden)

    Akiko Yusa

    Full Text Available Circulating tumor cells (CTCs in the blood of patients with epithelial malignancies provide a promising and minimally invasive source for early detection of metastasis, monitoring of therapeutic effects and basic research addressing the mechanism of metastasis. In this study, we developed a new filtration-based, sensitive CTC isolation device. This device consists of a 3-dimensional (3D palladium (Pd filter with an 8 µm-sized pore in the lower layer and a 30 µm-sized pocket in the upper layer to trap CTCs on a filter micro-fabricated by precise lithography plus electroforming process. This is a simple pump-less device driven by gravity flow and can enrich CTCs from whole blood within 20 min. After on-device staining of CTCs for 30 min, the filter cassette was removed from the device, fixed in a cassette holder and set up on the upright fluorescence microscope. Enumeration and isolation of CTCs for subsequent genetic analysis from the beginning were completed within 1.5 hr and 2 hr, respectively. Cell spike experiments demonstrated that the recovery rate of tumor cells from blood by this Pd filter device was more than 85%. Single living tumor cells were efficiently isolated from these spiked tumor cells by a micromanipulator, and KRAS mutation, HER2 gene amplification and overexpression, for example, were successfully detected from such isolated single tumor cells. Sequential analysis of blood from mice bearing metastasis revealed that CTC increased with progression of metastasis. Furthermore, a significant increase in the number of CTCs from the blood of patients with metastatic breast cancer was observed compared with patients without metastasis and healthy volunteers. These results suggest that this new 3D Pd filter-based device would be a useful tool for the rapid, cost effective and sensitive detection, enumeration, isolation and genetic analysis of CTCs from peripheral blood in both preclinical and clinical settings.

  16. Monitoring of Circulating Tumor Cells and Their Expression of EGFR/Phospho-EGFR During Combined Radiotherapy Regimens in Locally Advanced Squamous Cell Carcinoma of the Head and Neck

    Energy Technology Data Exchange (ETDEWEB)

    Tinhofer, Ingeborg, E-mail: ingeborg.tinhofer@charite.de [Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charite Campus Mitte, Charite Universitaetsmedizin Berlin, Berlin (Germany); Hristozova, Tsvetana; Stromberger, Carmen [Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charite Campus Mitte, Charite Universitaetsmedizin Berlin, Berlin (Germany); KeilhoIz, Ulrich [Department of Hematology and Oncology, Campus Benjamin Franklin, Charite Universitaetsmedizin Berlin, Berlin (Germany); Budach, Volker [Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charite Campus Mitte, Charite Universitaetsmedizin Berlin, Berlin (Germany)

    2012-08-01

    Purpose: The numbers of circulating tumor cells (CTCs) and their expression/activation of epidermal growth factor receptor (EGFR) during the course of combined chemo- or bioradiotherapy regimens as potential biomarkers of treatment efficacy in squamous cell carcinoma of the head and neck (SCCHN) were determined. Methods and Materials: Peripheral blood samples from SCCHN patients with locally advanced stage IVA/B disease who were treated with concurrent radiochemotherapy or induction chemotherapy followed by bioradiation with cetuximab were included in this study. Using flow cytometry, the absolute number of CTCs per defined blood volume as well as their expression of EGFR and its phosphorylated form (pEGFR) during the course of treatment were assessed. Results: Before treatment, we detected {>=}1 CTC per 3.75 mL blood in 9 of 31 patients (29%). Basal expression of EGFR was detected in 100% and pEGFR in 55% of the CTC+ cases. The frequency of CTC detection was not influenced by induction chemotherapy. However, the number of CTC+ samples significantly increased after radiotherapy. This radiation-induced increase in CTC numbers was less pronounced when radiotherapy was combined with cetuximab compared to its combination with cisplatin/5-fluorouracil. The former treatment regimen was also more effective in reducing pEGFR expression in CTCs. Conclusions: Definitive radiotherapy regimens of locally advanced SCCHN can increase the number of CTCs and might thus contribute to a systemic spread of tumor cells. Further studies are needed to evaluate the predictive value of the radiation-induced increase in CTC numbers and the persistent activation of the EGFR signalling pathway in individual CTC+ cases.

  17. Isolation and characterization of circulating micro(nano)vesicles in the plasma of colorectal cancer patients and their interactions with tumor cells.

    Science.gov (United States)

    Stec, Małgorzata; Baj-Krzyworzeka, Monika; Baran, Jarosław; Węglarczyk, Kazimierz; Zembala, Maria; Barbasz, Jakub; Szczepanik, Antoni; Zembala, Marek

    2015-11-01

    Micro(nano)vesicles (MV) are regarded as important messengers in cell-to-cell communication. There is also evidence for their pivotal role in cancer progression. Circulating MV are of different body cells origin, including tumor cell‑derived MV (TMV) in cancer patients. Determination of circulating TMV is of importance because of their potential diagnostic and therapeutic applications. In the present study, an analysis of circulating MV in colorectal cancer (CRC) patients was undertaken. Plasma from healthy donors was used as the control. In order to define MV characteristics, two plasma fractions: obtained by sequential centrifugation at 15,000 x g (MV15) and 50,000 x g (MV50) were used for analysis. The two fractions possessed a large range of sizes: 70(80)-1,300(1,400) nm and the most common particles with sizes 70-90 nm, both in patients and controls. Atomic force microscopy images of MV50 revealed a heterogeneous population of particles with different shapes and sizes. MV15 contained an increased level of CD41+ and CD61+ particles, suggesting their platelet origin. No difference between patients and controls was observed. A more precise analysis of MV50 showed the increased level of particles expressing EGFR (HER-1/Erb B1), HER-2/neu and Mucin1 (MUC1), suggesting their tumor origin. The total level of MV50‑expressing EGFR, HER-2/neu and MUC1 was enhanced in CRC patients. MV50 both of patients and controls attached to a colon cancer cell line (SW480) and to isolated blood monocytes at 2 h and were engulfed at 24 h. This uptake showed the lack of specificity. Thus, apart from the direct delivery of MV to the tumor site by plasma, monocytes carrying MV may also be involved in their transportation. Taken together, the presented data indicate that MV15 contain mainly platelet‑derived particles, while MV50 from CRC patients are enriched in TMV. Interaction of MV with cancer cells may pin-point their role in communication between tumor cells, resulting

  18. Circulating levels of cell adhesion molecule L1 as a prognostic marker in gastrointestinal stromal tumor patients

    Directory of Open Access Journals (Sweden)

    Schachner Melitta

    2011-05-01

    Full Text Available Abstract Background L1 cell adhesion molecule (CD171 is expressed in many malignant tumors and its expression correlates with unfavourable outcome. It thus represents a target for tumor diagnosis and therapy. An earlier study conducted by our group identified L1 expression levels in primary gastrointestinal stromal tumors (GIST as a prognostic marker. The aim of the current study was to compare L1 serum levels of GIST patients with those of healthy controls and to determine whether levels of soluble L1 in sera could serve as a prognostic marker. Methods Using a sensitive enzyme-linked immunosorbent assay (ELISA, soluble L1 was measured in sera of 93 GIST patients und 151 healthy controls. Soluble L1 levels were then correlated with clinicopathological data. Results Median levels of soluble L1 were significantly higher (p p Conclusion These results suggest that high soluble L1 levels predict poor prognosis and may thus be a promising tumor marker that can contribute to individualise therapy.

  19. Potential role of nuclear PD-L1 expression in cell-surface vimentin positive circulating tumor cells as a prognostic marker in cancer patients.

    Science.gov (United States)

    Satelli, Arun; Batth, Izhar Singh; Brownlee, Zachary; Rojas, Christina; Meng, Qing H; Kopetz, Scott; Li, Shulin

    2016-07-01

    Although circulating tumor cells (CTCs) have potential as diagnostic biomarkers for cancer, determining their prognostic role in cancer patients undergoing treatment is a challenge. We evaluated the prognostic value of programmed death-ligand 1 (PD-L1) expression in CTCs in colorectal and prostate cancer patients undergoing treatment. Peripheral blood samples were collected from 62 metastatic colorectal cancer patients and 30 metastatic prostate cancer patients. CTCs were isolated from the samples using magnetic separation with the cell-surface vimentin(CSV)-specific 84-1 monoclonal antibody that detects epithelial-mesenchymal transitioned (EMT) CTCs. CTCs were enumerated and analyzed for PD-L1 expression using confocal microscopy. PD-L1 expression was detectable in CTCs and was localized in the membrane and/or cytoplasm and nucleus. CTC detection alone was not associated with poor progression-free or overall survival in colorectal cancer or prostate cancer patients, but nuclear PD-L1 (nPD-L1) expression in these patients was significantly associated with short survival durations. These results demonstrated that nPD-L1 has potential as a clinically relevant prognostic biomarker for colorectal and prostate cancer. Our data thus suggested that use of CTC-based models of cancer for risk assessment can improve the standard cancer staging criteria and supported the incorporation of nPD-L1 expression detection in CTCs detection in such models.

  20. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    Science.gov (United States)

    2014-10-01

    Massachusetts General Hospital Boston, MA 02114-2621 REPORT DATE: October 2014 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel...Massachusetts General Hospital Boston MA 02114 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical...during the first year of funding. We developed a dual- color immunofluorescence stain to identify nucleated (DAPI-positive) SCLC cells that express

  1. Assessment of EGFR mutations in circulating tumor cell preparations from NSCLC patients by next generation sequencing: toward a real-time liquid biopsy for treatment.

    Directory of Open Access Journals (Sweden)

    Antonio Marchetti

    Full Text Available Assessment of EGFR mutation in non-small cell lung cancer (NSCLC patients is mandatory for optimization of pharmacologic treatment. In this respect, mutation analysis of circulating tumor cells (CTCs may be desirable since they may provide real-time information on patient's disease status.Blood samples were collected from 37 patients enrolled in the TRIGGER study, a prospective phase II multi-center trial of erlotinib treatment in advanced NSCLC patients with activating EGFR mutations in tumor tissue. 10 CTC preparations from breast cancer patients without EGFR mutations in their primary tumors and 12 blood samples from healthy subjects were analyzed as negative controls. CTC preparations, obtained by the Veridex CellSearch System, were subjected to ultra-deep next generation sequencing (NGS on the Roche 454 GS junior platform.CTCs fulfilling all Veridex criteria were present in 41% of the patients examined, ranging in number between 1 and 29. In addition to validated CTCs, potential neoplastic elements were seen in 33 cases. These included cells not fulfilling all Veridex criteria (also known as "suspicious objects" found in 5 (13% of 37 cases, and isolated or clustered large naked nuclei with irregular shape observed in 33 (89% cases. EGFR mutations were identified by NGS in CTC preparations of 31 (84% patients, corresponding to those present in matching tumor tissue. Twenty-five (96% of 26 deletions at exon 19 and 6 (55% of 11 mutations at exon 21 were detectable (P = 0.005. In 4 (13% cases, multiple EGFR mutations, suggesting CTC heterogeneity, were documented. No mutations were found in control samples.We report for the first time that the CellSearch System coupled with NGS is a very sensitive and specific diagnostic tool for EGFR mutation analysis in CTC preparations with potential clinical impact.

  2. Assessment of a six gene panel for the molecular detection of circulating tumor cells in the blood of female cancer patients

    Directory of Open Access Journals (Sweden)

    Horvat Reinhard

    2010-12-01

    Full Text Available Abstract Background The presence of circulating tumor cells (CTC in the peripheral blood of cancer patients has been described for various solid tumors and their clinical relevance has been shown. CTC detection based on the analysis of epithelial antigens might be hampered by the genetic heterogeneity of the primary tumor and loss of epithelial antigens. Therefore, we aimed to identify new gene markers for the PCR-based detection of CTC in female cancer patients. Methods Gene expression of 38 cancer cell lines (breast, ovarian, cervical and endometrial and of 10 peripheral blood mononuclear cell (PBMC samples from healthy female donors was measured using microarray technology (Applied Biosystems. Differentially expressed genes were identified using the maxT test and the 50% one-sided trimmed maxT-test. Confirmatory RT-qPCR was performed for 380 gene targets using the AB TaqMan® Low Density Arrays. Then, 93 gene targets were analyzed using the same RT-qPCR platform in tumor tissues of 126 patients with primary breast, ovarian or endometrial cancer. Finally, blood samples from 26 healthy women and from 125 patients (primary breast, ovarian, cervical, or endometrial cancer, and advanced breast cancer were analyzed following OncoQuick enrichment and RNA pre-amplification. Likewise, hMAM and EpCAM gene expression was analyzed in the blood of breast and ovarian cancer patients. For each gene, a cut-off threshold value was set at three standard deviations from the mean expression level of the healthy controls to identify potential markers for CTC detection. Results Six genes were over-expressed in blood samples from 81% of patients with advanced and 29% of patients with primary breast cancer. EpCAM gene expression was detected in 19% and 5% of patients, respectively, whereas hMAM gene expression was observed in the advanced group (39% only. Multimarker analysis using the new six gene panel positively identified 44% of the cervical, 64% of the

  3. Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA.

    Directory of Open Access Journals (Sweden)

    Richard B Lanman

    Full Text Available Next-generation sequencing of cell-free circulating solid tumor DNA addresses two challenges in contemporary cancer care. First this method of massively parallel and deep sequencing enables assessment of a comprehensive panel of genomic targets from a single sample, and second, it obviates the need for repeat invasive tissue biopsies. Digital Sequencing™ is a novel method for high-quality sequencing of circulating tumor DNA simultaneously across a comprehensive panel of over 50 cancer-related genes with a simple blood test. Here we report the analytic and clinical validation of the gene panel. Analytic sensitivity down to 0.1% mutant allele fraction is demonstrated via serial dilution studies of known samples. Near-perfect analytic specificity (> 99.9999% enables complete coverage of many genes without the false positives typically seen with traditional sequencing assays at mutant allele frequencies or fractions below 5%. We compared digital sequencing of plasma-derived cell-free DNA to tissue-based sequencing on 165 consecutive matched samples from five outside centers in patients with stage III-IV solid tumor cancers. Clinical sensitivity of plasma-derived NGS was 85.0%, comparable to 80.7% sensitivity for tissue. The assay success rate on 1,000 consecutive samples in clinical practice was 99.8%. Digital sequencing of plasma-derived DNA is indicated in advanced cancer patients to prevent repeated invasive biopsies when the initial biopsy is inadequate, unobtainable for genomic testing, or uninformative, or when the patient's cancer has progressed despite treatment. Its clinical utility is derived from reduction in the costs, complications and delays associated with invasive tissue biopsies for genomic testing.

  4. Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA.

    Science.gov (United States)

    Lanman, Richard B; Mortimer, Stefanie A; Zill, Oliver A; Sebisanovic, Dragan; Lopez, Rene; Blau, Sibel; Collisson, Eric A; Divers, Stephen G; Hoon, Dave S B; Kopetz, E Scott; Lee, Jeeyun; Nikolinakos, Petros G; Baca, Arthur M; Kermani, Bahram G; Eltoukhy, Helmy; Talasaz, AmirAli

    2015-01-01

    Next-generation sequencing of cell-free circulating solid tumor DNA addresses two challenges in contemporary cancer care. First this method of massively parallel and deep sequencing enables assessment of a comprehensive panel of genomic targets from a single sample, and second, it obviates the need for repeat invasive tissue biopsies. Digital Sequencing™ is a novel method for high-quality sequencing of circulating tumor DNA simultaneously across a comprehensive panel of over 50 cancer-related genes with a simple blood test. Here we report the analytic and clinical validation of the gene panel. Analytic sensitivity down to 0.1% mutant allele fraction is demonstrated via serial dilution studies of known samples. Near-perfect analytic specificity (> 99.9999%) enables complete coverage of many genes without the false positives typically seen with traditional sequencing assays at mutant allele frequencies or fractions below 5%. We compared digital sequencing of plasma-derived cell-free DNA to tissue-based sequencing on 165 consecutive matched samples from five outside centers in patients with stage III-IV solid tumor cancers. Clinical sensitivity of plasma-derived NGS was 85.0%, comparable to 80.7% sensitivity for tissue. The assay success rate on 1,000 consecutive samples in clinical practice was 99.8%. Digital sequencing of plasma-derived DNA is indicated in advanced cancer patients to prevent repeated invasive biopsies when the initial biopsy is inadequate, unobtainable for genomic testing, or uninformative, or when the patient's cancer has progressed despite treatment. Its clinical utility is derived from reduction in the costs, complications and delays associated with invasive tissue biopsies for genomic testing.

  5. Heterogeneous PSMA expression on circulating tumor cells - a potential basis for stratification and monitoring of PSMA-directed therapies in prostate cancer

    Science.gov (United States)

    Gorges, Tobias M.; Riethdorf, Sabine; von Ahsen, Oliver; Nastały, Paulina; Röck, Katharina; Boede, Marcel; Peine, Sven; Kuske, Andra; Schmid, Elke; Kneip, Christoph; König, Frank; Rudolph, Marion; Pantel, Klaus

    2016-01-01

    The prostate specific membrane antigen (PSMA) is the only clinically validated marker for therapeutic decisions in prostate cancer (PC). Characterization of circulating tumor cells (CTCs) obtained from the peripheral blood of PC patients might provide an alternative to tissue biopsies called “liquid biopsy”. The aim of this study was to develop a reliable assay for the determination of PSMA on CTCs. PSMA expression was analyzed on tissue samples (cohort one, n = 75) and CTCs from metastatic PC patients (cohort two, n = 29). Specific signals for the expression of PSMA could be seen for different prostate cancer cell line cells (PC3, LaPC4, 22Rv1, and LNCaP) by Western blot, immunohistochemistry (IHC), immunocytochemistry (ICC), and FACS. PSMA expression was found to be significantly increased in patients with higher Gleason grade (p = 0.0011) and metastases in lymph nodes (p = 0.0000085) or bone (p = 0.0020) (cohort one). In cohort two, CTCs were detectable in 20 out of 29 samples (69 %, range from 1 - 1000 cells). Twelve out of 20 CTC-positive patients showed PSMA-positive CTCs (67 %, score 1+ to 3+). We found intra-patient heterogeneity regarding the PSMA status between CTCs and the corresponding primary tumors. The results of our study could help to address the question whether treatment decisions based on CTC PSMA profiling will lead to a measurable benefit in clinical outcome for prostate cancer patients in the near future. PMID:27145459

  6. A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells.

    Science.gov (United States)

    Fan, Xiaoyun; Jia, Chunping; Yang, Jun; Li, Gang; Mao, Hongju; Jin, Qinghui; Zhao, Jianlong

    2015-09-15

    Isolation of circulating tumor cells (CTCs) by size exclusion is a widely researched technique that offers the advantage of capturing tumor cells without reliance on cell surface expression markers. In this work, we report the development of a novel polydimethylsiloxane (PDMS) membrane filter-based microdevice for rapid and highly efficient isolation of CTCs from peripheral blood. A precise and highly porous PDMS microfilter was fabricated and integrated into the microfiltration chip by combining a sacrificial transferring film with a sandwich molding method. We achieved >90% recovery when isolating lung cancer cells from spiked blood samples, with a relatively high processing throughput of 10 mL/h. In contrast to existing CTC filtration systems, which rely on low-porosity track-etch filters or expensive lithography-based filters, our microfiltration chip does not require complex e-beam lithography or the reactive ion etching process, therefore it offers a low-cost alternative tool for highly efficient CTC enrichment and in situ analysis. Thus, this new microdevice has the potential for use in routine monitoring of cancer development and cancer therapy in a clinical setting.

  7. Circulating tumor cells in blood of primary breast cancer patients assessed by a novel RT-PCR test kit and comparison with status of bone marrow-disseminated tumor cells.

    Science.gov (United States)

    Schmitt, Manfred; Foekens, John A

    2009-01-01

    In breast cancer, circulating tumor cells (CTCs)/disseminated tumor cells (DTCs) may serve as independent adverse prognostic variables, to monitor the course of the disease and to predict response or failure to cancer therapy. Most of the techniques to enumerate DTCs in the bone marrow or CTCs in the bloodstream of breast cancer patients rely on a combination of an enrichment step and a detection step. A novel RT-PCR method, the AdnaTest BreastCancer kit, was developed for the enrichment of CTCs from peripheral blood of breast cancer patients followed by identification of CTC-associated marker transcripts by reverse transcription and PCR. Although this test has been demonstrated to identify breast cancer patients at risk, standardization of this technique and direct comparison with other established breast cancer CTC enrichment and detection techniques is still lacking, but highly needed. This is done best within prospective clinical trials, such as in the ongoing DETECT, SUCCESS, and BR-01-2004 trials.

  8. 肾癌患者循环肿瘤细胞的研究进展%Advances in the Detection of Circulating Tumor Cells in Patients with Renal Cell Carcinoma

    Institute of Scientific and Technical Information of China (English)

    陈业刚

    2011-01-01

    Renal cell carcinoma is one of the most common renal malignancies in adults. Almost 1/3 of renal cell carcinomas are metastatic when diagnosed. Hcmatogenous disscmimtion is a significant pathway for tumor metastasis. Dissemination of tumor cells into the peripheral blood is the premise for tumor metastasis. Recent publications have reported that the presence of circulafing tumor cells (CTCs) correlates to lymph node status and presence of synchronous metastases from renal cell carcinoma. Detection of circulating tumor cells in the peripheral blood is a significant and independent prognostic factor for renal cell carcinoma. The study of circulating tumor cells will contribute to the discovery of the mechanism of tumor metastasis, provide guidance for tumor therapy, determine therapeutic efficacy and patient prognosis. Because of the small number of CTCs in the peripheral blood and lack of tumor specific markers, the application of CTCs is limited m clinical work. With the improvement ofthe TRAIL method, the development of new techniques and related research on tumor-specific markers, the sensitivity and specificity of CTC detection have been greatly enhanced. Methods to detect circulating tumor cells using tumor-specific markers include Magnetic Cell Sorting, isolation by size of epithelial tumor cells, Density Gradient Centrifugation, immunocytochemistry, Reverse Transcription Polymerase Chain Reaction, Flow Cytometry Assay, Laser Scanning Cytometry, and the CellSearch System. In this article, the progress of circulating tumor cell application in renal cell carcinoma patients is reviewed.%肾癌是成人肾脏最常见的恶性肿瘤,近1/3的肾细胞癌患者在诊断原发肿瘤时已有转移灶,血行播散是肾癌转移的重要途径,肿瘤细胞进入外周血是肿瘤远处转移的前提.近年研究表明,肾癌CTCs与淋巴结转移和肿瘤浸润有明显的相关性,外周血CTC,的检测可成为判断肿瘤预后的重要指标,CTCs的检测有

  9. AFP mRNA level in enriched circulating tumor cells from hepatocellular carcinoma patient blood samples is a pivotal predictive marker for metastasis.

    Science.gov (United States)

    Jin, Junhua; Niu, Xiaojuan; Zou, Lihui; Li, Lin; Li, Shugang; Han, Jingli; Zhang, Peiying; Song, Jinghai; Xiao, Fei

    2016-08-01

    Circulating tumor cells (CTCs) quantification may be helpful for evaluating cancer dissemination, predicting prognosis and assessing therapeutic effectiveness and safety. In the present study, CTCs from blood samples of 72 patients with hepatocellular carcinoma (HCC) were enriched with anti-EpCAM nanoparticles. AFP mRNA level was detected by nested polymerase chain reaction (PCR) after enrichment of CTCs from HCC blood samples at 0, 3, 6, 9 and 12 months after hepatectomy, respectively. AFP mRNA expression in CTCs was positive in 43 patients (59.7%) and negative in 29 patients (40.3%) before hepatectomy. Among 43 patients with positive AFP mRNA expression in CTCs before hepatectomy, 10 and 11 were diagnosed as intrahepatic/extrahepatic metastasis before and after hepatectomy, respectively. In addition, these 21 patients with metastasis had persisting positive AFP mRNA of CTCs during the whole tested year. Specifically, 3 patients with AFP mRNA negative in CTCs before hepatectomy changed to be positive at 6 and 9 months, and 2 of them were diagnosed as metastasis 12 months after hepatectomy. We conclude that the positive AFP mRNA of CTCs can be a pivotal predictor for HCC metastasis before and after hepatectomy. The release of AFP expression from hepatocellular carcinoma cells into circulation must be a major source of HCC metastasis.

  10. Monitoring KRAS mutations in circulating DNA and tumor cells using digital droplet PCR during treatment of KRAS-mutated lung adenocarcinoma.

    Science.gov (United States)

    Guibert, Nicolas; Pradines, Anne; Farella, Magali; Casanova, Anne; Gouin, Sandrine; Keller, Laura; Favre, Gilles; Mazieres, Julien

    2016-10-01

    Liquid biopsies are a new non-invasive strategy to detect and monitor the biology of non-small-cell lung cancer (NSCLC) in the era of personalized medicine. KRAS is an oncogenic driver that is mutated in 30% of NSCLCs and is associated with a poor prognosis. 62 samples from 32 patients, treated for metastatic KRAS-mutated lung adenocarcinoma, had DNA extracted from plasma and circulating tumor cells (CTCs) prospectively tested for the presence of KRAS mutations using droplet digital PCR. A KRAS mutation was detected in 82% of patients. Sensitivity was 78% for circulating free DNA (cfDNA) and 34% for CTCs. The presence of a KRAS mutation in cfDNA was correlated with a poor response to chemotherapy or targeted therapy. When a KRAS-mutated-DNA was detected and then monitored in cfDNA, its variation during targeted or conventional therapy was correlated with response, according to RECIST criteria, in 87.5% of cases (n=14/16), whereas this correlation was observed in 37.5% of cases for CTCs (n=3/8). We report the usefulness of using digital droplet PCR on liquid biopsies to predict and monitor responses to treatment of KRAS-mutated lung adenocarcinoma. ctDNA was much more sensitive than CTCs in this context.

  11. Clinical Significance of Folate Receptor-positive Circulating Tumor Cells Detected by Ligand-targeted Polymerase Chain Reaction in Lung Cancer

    Science.gov (United States)

    Wang, Lin; Wu, Chuanyong; Qiao, Lihua; Yu, Wenjun; Guo, Qiaomei; Zhao, Mingna; Yang, Guohua; Zhao, Hang; Lou, Jiatao

    2017-01-01

    Background: As the heterogeneity of CTCs is becoming increasingly better understood, it is clear that identifying particular subtypes of CTCs would be more relevant. Methods: We detected folate receptor (FR)-positive circulating tumor cells (FR+-CTCs) by a novel ligand-targeted polymerase chain reaction (LT-PCR) detection technique. Results: In the none-dynamic study, FR+-CTC levels of patients with lung cancer were significantly higher than controls (patients with benign lung diseases and healthy controls). With a threshold of 8.7 CTC units, FR+-CTC showed a sensitivity of 77.7% and specificity of 89.5% in the diagnosis of lung cancer. When compared with established clinical biomarkers including carcinoembryonic antigen (CEA), cytokeratin 19 fragment (CYFRA21-1), and neuron-specific enolase (NSE), FR+-CTC showed the highest diagnostic efficiency. Notably, the combination of FR+-CTC, CEA, NSE, and CYFRA21-1 could significantly improve the diagnostic efficacy in differentiating patients with lung cancer from benign lung disease. In our dynamic surveillance study, the CTC levels of 62 non-small cell lung cancer (NSCLC) patients decreased significantly after tumor resection. Conclusion: We established a LT-PCR-based FR+-CTC detection platform for patients with lung cancer that exhibits high sensitivity and specificity. This platform would be clinical useful in lung cancer diagnosis and treatment response assessment.

  12. Detection of circulating tumor cells in hepatocellular carcinoma using antibodies against asialoglycoprotein receptor, carbamoyl phosphate synthetase 1 and pan-cytokeratin.

    Directory of Open Access Journals (Sweden)

    Jun Li

    Full Text Available BACKGROUND: Asialoglycoprotein receptor (ASGPR-ligand-based separation combined with identification with Hep Par 1 or pan-cytokeratin (P-CK antibody have been demonstrated to detect circulating tumor cells (CTCs in hepatocellular carcinoma (HCC. The aim of this study was to develop an improved enrichment and identification system that allows the detection of all types of HCC CTCs. METHODS: The specificity of the prepared anti-ASGPR monoclonal antibody was characterized. HCC cells were bound by ASGPR antibody and subsequently magnetically isolated by second antibody-coated magnetic beads. Isolated HCC cells were identified by immunofluorescence staining using a combination of anti-P-CK and anti-carbamoyl phosphate synthetase 1 (CPS1 antibodies. Blood samples spiked with HepG2 cells were used to determine recovery and sensitivity. CTCs were detected in blood samples from HCC patients and other patients. RESULTS: ASGPR was exclusively expressed in human hepatoma cell line, normal hepatocytes and HCC cells in tissue specimens detected by the ASGPR antibody staining. More HCC cells could be identified by the antibody cocktail for CPS1 and P-CK compared with a single antibody. The current approach obtained a higher recovery rate of HepG2 cells and more CTC detection from HCC patients than the previous method. Using the current method CTCs were detected in 89% of HCC patients and no CTCs were found in the other test subjects. CONCLUSIONS: Our anti-ASGPR antibody could be used for specific and efficient HCC CTC enrichment, and anti-P-CK combined with anti-CPS1 antibodies is superior to identification with one antibody alone in the sensitivity for HCC CTC detection.

  13. Immune Cells in Blood Recognize Tumors

    Science.gov (United States)

    NCI scientists have developed a novel strategy for identifying immune cells circulating in the blood that recognize specific proteins on tumor cells, a finding they believe may have potential implications for immune-based therapies.

  14. Circulating Tumor Cell Count Correlates with Colorectal Neoplasm Progression and Is a Prognostic Marker for Distant Metastasis in Non-Metastatic Patients

    Science.gov (United States)

    Tsai, Wen-Sy; Chen, Jinn-Shiun; Shao, Hung-Jen; Wu, Jen-Chia; Lai-Ming, Jr.; Lu, Si-Hong; Hung, Tsung-Fu; Chiu, Yen-Chi; You, Jeng-Fu; Hsieh, Pao-Shiu; Yeh, Chien-Yuh; Hung, Hsin-Yuan; Chiang, Sum-Fu; Lin, Geng-Ping; Tang, Reiping; Chang, Ying-Chih

    2016-04-01

    Enumeration of circulating tumor cells (CTCs) has been proven as a prognostic marker for metastatic colorectal cancer (m-CRC) patients. However, the currently available techniques for capturing and enumerating CTCs lack of required sensitivity to be applicable as a prognostic marker for non-metastatic patients as CTCs are even more rare. We have developed a microfluidic device utilizing antibody-conjugated non-fouling coating to eliminate nonspecific binding and to promote the multivalent binding of target cells. We then established the correlation of CTC counts and neoplasm progression through applying this platform to capture and enumerate CTCs in 2 mL of peripheral blood from healthy (n = 27), benign (n = 21), non-metastatic (n = 95), and m-CRC (n = 15) patients. The results showed that the CTC counts progressed from 0, 1, 5, to 36. Importantly, after 2-year follow-up on the non-metastatic CRC patients, we found that those who had ≥5 CTCs were 8 times more likely to develop distant metastasis within one year after curable surgery than those who had <5. In conclusion, by employing a sensitive device, CTC counts show good correlation with colorectal neoplasm, thus CTC may be as a simple, independent prognostic marker for the non-metastatic CRC patients who are at high risk of early recurrence.

  15. Progresses in circulating tumor cell testing and its clinical value%循环肿瘤细胞检测新进展及临床价值

    Institute of Scientific and Technical Information of China (English)

    郑磊; 陈静

    2016-01-01

    循环肿瘤细胞( CTCs)检测具有非侵入性、采样方便、便于实时检测的特点。目前发展了多种基于物理特性和化学特性分离鉴定的CTCs检测方法,而细胞亚群分类、单细胞测序、体外培养等后续特征分析也丰富了我们对CTCs的认识和对肿瘤异质性的理解。 CTCs检测在肿瘤的早期诊断、疗效评估、预后等研究中有着非常重要的应用价值。(中华检验医学杂志,2016,39:565-567)%Circulating tumor cell ( CTC ) testing is characterized by its invasiveness, sampling convenience and facility for real-time monitoring.The booming detection technologies based on physical or immunological features, as well as the subsequent molecular analysis of CTCs including subtype classification, single cell sequencing and in vitro culture, has greatly enriched our comprehension of CTCs and cancer heterogeneity.Meanwhile, a great of researches have demonstrated the significance of CTCs testing in the clinical practice of cancers involving aspects of early diagnosis, treatment monitoring and prognosis.

  16. In Vivo Flow Cytometry of Circulating Tumor-Associated Exosomes

    Directory of Open Access Journals (Sweden)

    Jacqueline Nolan

    2016-01-01

    Full Text Available Circulating tumor cells (CTCs demonstrated the potential as prognostic markers of metastatic development. However, the incurable metastasis can already be developed at the time of initial diagnosis with the existing CTC assays. Alternatively, tumor-associated particles (CTPs including exosomes can be a more valuable prognostic marker because they can be released from the primary tumor long before CTCs and in larger amount. However, little progress has been made in high sensitivity detection of CTPs, especially in vivo. We show here that in vivo integrated photoacoustic (PA and fluorescence flow cytometry (PAFFC platform can provide the detection of melanoma and breast-cancer-associated single CTPs with endogenously expressed melanin and genetically engineered proteins or exogenous dyes as PA and fluorescent contrast agents. The two-beam, time-of-light PAFFC can measure the sizes of CTCs and CTPs and identify bulk and rolling CTCs and CTC clusters, with no influence on blood flow instability. This technique revealed a higher concentration of CTPs than CTCs at an early cancer stage. Because a single tumor cell can release many CTPs and in vivo PAFFC can examine the whole blood volume, PAFFC diagnostic platform has the potential to dramatically improve (up to 105-fold the sensitivity of cancer diagnosis.

  17. 基于微流控芯片的循环肿瘤细胞的分离、检测技术%The Separation, Detection of Circulating Tumor Cells Based on Microfluidic Chip

    Institute of Scientific and Technical Information of China (English)

    刘侃; 张俊哲

    2014-01-01

    Circulating tumor cells (Circulating Tumor Cells, CTCs) is the primary tumor or metastasis shed into the peripheral blood circulating tumor cells, is a sign of tumor metastasis. Early diagnosis, CTCs contribute to cancer, judging curative effect of individualized treatment plan and prognosis diagnosis. With the continuous improvement of detection, CTCs detection has be-come a hot spot, the clinical study, microfluidic chip for its high throughput efficiency and low cost rapid development and wide-ly application of. The research on the latest CTCs detection method and the future development trends are reviewed, especially the analysis of microfluidic chip based microfluidics and nanotechnology is how to be applied to circulating tumor cell separation, enrichment and detection, evaluation of the advantages and disadvantages of each method, and discusses the difficulties and mode of circulating flow cell detection technology future.%循环肿瘤细胞(Circulating Tumor Cells,CTCs)是自肿瘤原发灶或转移灶脱落进入外周血液循环的肿瘤细胞,是肿瘤远处转移的标志。CTCs有助于癌症的早期诊断、判断疗效、个体化治疗方案制订及诊断预后。随着检测技术的不断改进,CTCs检测成为临床研究的热点,其中,微流控芯片以其高通量高效率以及低成本的特点迅速发展并被广泛研究应用。该课题对CTCs最新检测方法的研究以及未来的发展趋势进行综述,特别剖析结合微流体技术和纳米技术的微流控芯片是如何被应用于循环肿瘤细胞的分离、富集以及检测的,评估各种方法的优缺点,并探讨未来循环中流细胞检测技术的难点和方式。

  18. The prognostic impact of soluble and vesicular HLA-G and its relationship to circulating tumor cells in neoadjuvant treated breast cancer patients.

    Science.gov (United States)

    König, Lisa; Kasimir-Bauer, Sabine; Hoffmann, Oliver; Bittner, Ann-Kathrin; Wagner, Bettina; Manvailer, Luis Felipe Santos; Schramm, Sabine; Bankfalvi, Agnes; Giebel, Bernd; Kimmig, Rainer; Horn, Peter A; Rebmann, Vera

    2016-09-01

    The non-classical human leukocyte antigen G (HLA-G) molecule and its soluble forms exert multiple immune suppressive regulatory functions in malignancy and in stem cells contributing to immune escape mechanisms. HLA-G can be secreted as free soluble HLA-G molecules or via extracellular vesicles (EVs). Here we evaluated these soluble HLA-G forms as prognostic marker for prediction of the clinical outcome of neoadjuvant chemotherapy (NACT) treated breast cancer (BC) patients. Plasma samples of BC patients procured before (n=142) and after (n=154) NACT were quantified for total soluble HLA-G (sHLA-Gtot) and HLA-G levels in ExoQuick™ derived EV fractions (sHLA-GEV) by ELISA. The corresponding increments were specified as free sHLA-G (sHLA-Gfree). Total and free sHLA-G were significantly increased in NACT treated BC patients compared to healthy controls (n=16). High sHLA-Gfree levels were exclusively associated to estrogen receptor expression before NACT. Importantly, high sHLA-GEV levels before NACT were related to disease progression and the detection of stem cell-like circulating tumor cells, but high sHLA-Gfree levels indicated an improved clinical outcome. Thus, this study demonstrates for the first time that the different sHLA-G subcomponents represent dissimilar qualitative prognostic impacts on the clinical outcome of NACT treated BC patients, whereas the total sHLA-G levels without separating into subcomponents are not related to clinical outcome.

  19. 消化系统肿瘤外周血循环肿瘤细胞的研究进展%Research Progress of Peripheral Blood Circulating Tumor Cells in Digestive System Tumors

    Institute of Scientific and Technical Information of China (English)

    施少军; 薛峰

    2016-01-01

    Recently,the detection of circulating tumor cells(CTCs)in peripheral blood is used in clinical practice as a form of‘ liquid biopsy’. The self-seeding mechanism of CTCs provides a novel approach to explore the growing mechanism of malignant tumor and developing corresponding targeting therapies. A decade ago,the CellSearch system, which can capture and enumerate CTCs,has been validated by Food and Drug Administration( FDA)as an aid for monitoring the relapse of tumor after radical operation in patients with breast,prostate and colorectal cancer. In recent years,although the separation and detection technique of CTCs has been promoted significantly,the clinical significance of CTCs in tumors of digestive system is still under investigation. This article reviewed the research progress of peripheral blood CTCs in digestive system tumors.%近年来,外周血循环肿瘤细胞(CTCs)检测已作为一项“液相活检”技术应用于临床实践。CTCs 的肿瘤自我播种机制为探索恶性肿瘤的生长机制以及开发相应的肿瘤靶向治疗提供了新思路。10年前美国食品与药品管理局(FDA)即已批准将计数分析 CTCs 的 CellSearch 系统应用于临床监控乳腺癌、前列腺癌和结直肠癌根治术后肿瘤复发。尽管近年来 CTCs 分离和检测技术得到了显著提升,然而在消化系统肿瘤领域,检测 CTCs 的临床意义尚在研究中。本文就消化系统肿瘤外周血 CTCs 的研究进展作一综述。

  20. 外周血循环肿瘤细胞的检测在前列腺癌中的应用%Detection and clinical application of circulating tumor cells in peripheral blood of patients with prostate cancer

    Institute of Scientific and Technical Information of China (English)

    瞿元元; 戴波

    2013-01-01

    Prostate cancer is the most common urogenital malignant tumor among males in Western countries. Recently, more and more prostate cancer patients were diagnosed in China. Tumor metastasis is one of the main cause for the failure of prostate cancer treatment. Tumor cells entering into circulation system is the prerequisite for tumor metastasis in the distant organs. Many studies began to focus on circulating tumor cells in peripheral blood (CTC) because it could represent individual tumor characteristics. This review focused on the detection, enumeration and biomarkers of CTC.%  前列腺癌是欧美国家最常见的男性泌尿生殖系统恶性肿瘤。近年来,我国前列腺癌的发病率明显升高。肿瘤转移是导致多数前列腺癌患者治疗失败的重要原因,而肿瘤细胞进入外周血循环系统是远处器官转移的先决条件。外周血中循环肿瘤细胞(circulating tumor cell,CTC)因能反映患者个体的肿瘤特征,且较易获得而受到众多学者的关注。本文就CTC的检测方法以及CTC计数和分子标志物在前列腺癌中的研究进展作一综述。

  1. 实体瘤外周血循环肿瘤细胞与转移相关性的研究进展%Relationship between circulating tumor cells in peripheral blood of solid tumor and metastasis

    Institute of Scientific and Technical Information of China (English)

    任传利; 韩崇旭; 王大新

    2011-01-01

    目的:总结实体瘤外周血中循环肿瘤细胞(CTC)和转移相关性的研究进展.方法:以"循环肿瘤细胞、实体瘤、转移"为关键词,检索2000-01-2010-10PubMed、Science Direct、Ovid、Springer、CNKI和维普等数据库的相关文献.纳入标准:关于实体瘤CTC与转移密切相关的分子机制、临床相关性的文献.共纳入分析42篇文献.结果:随着分子生物学和材料技术的发展,越来越多的方法有效地富集和鉴定不同类型实体瘤外周血CTC.细胞基因水平证实CTC具有恶性生物学特性,CTC自身基因和转移相关蛋白谱的表达,肿瘤微环境、免疫系统等因素影响着CTC远处器官转移灶的形成.CTC数目、特定基因、蛋白的表达与治疗疗效、预后等具有相关性.结论:研究CTC参与血液播散转移的机制,为全面、准确地阐明恶性实体瘤转移的机制、个体化的治疗提供新的工具.%OBJECTIVE: To review of the studies the relationship between circulating tumor cells (CTC)in peripheral blood of solid tumors and the mechanism of metastasis. METHODS: Keyword: circulating tumor cell (CTC), solid tumors, metastasis. Retrieval system: PubMed, Ovid, Science Direct, Springer, CNKI,Weipu Data. The time limit: 2000-01- 2010-10. The enrolled criteria: about the relationship between CTC in peripheral blood of solid tumors and the mechanism of metastasis, its clinical relevance. Overall, 42 literatures were cited. RESULTS: As the development of the advanced technique of molecular biology and material,more and more methods can be used to enrich and identify CTC. It is reported that cytogenetic evidence that CTC in patients with carcinoma are malignant. The gene and related metastatic protein profile in CTC,tumor microenvironment, immune system can influence on tumor metastasis. The number of CTC, the expression of specific genes and proteins have a relationship with the effect of treatment and evaluation of prognosis. CONCLUSION: The study

  2. Glioblastoma Circulating Cells: Reality, Trap or Illusion?

    Directory of Open Access Journals (Sweden)

    A. Lombard

    2015-01-01

    Full Text Available Metastases are the hallmark of cancer. This event is in direct relationship with the ability of cancer cells to leave the tumor mass and travel long distances within the bloodstream and/or lymphatic vessels. Glioblastoma multiforme (GBM, the most frequent primary brain neoplasm, is mainly characterized by a dismal prognosis. The usual fatal issue for GBM patients is a consequence of local recurrence that is observed most of the time without any distant metastases. However, it has recently been documented that GBM cells could be isolated from the bloodstream in several studies. This observation raises the question of the possible involvement of glioblastoma-circulating cells in GBM deadly recurrence by a “homing metastasis” process. Therefore, we think it is important to review the already known molecular mechanisms underlying circulating tumor cells (CTC specific properties, emphasizing their epithelial to mesenchymal transition (EMT abilities and their possible involvement in tumor initiation. The idea is here to review these mechanisms and speculate on how relevant they could be applied in the forthcoming battles against GBM.

  3. Identification of high independent prognostic value of nanotechnology based circulating tumor cell enumeration in first-line chemotherapy for metastatic breast cancer patients.

    Science.gov (United States)

    Liu, Xiao-Ran; Shao, Bin; Peng, Jia-Xi; Li, Hui-Ping; Yang, Yan-Lian; Kong, Wei-Yao; Song, Guo-Hong; Jiang, Han-Fang; Liang, Xu; Yan, Ying

    2017-04-01

    Enumeration of circulating tumor cells (CTCs) is a promising tool in the management of metastatic breast cancer (MBC). This study investigated the capturing efficiency and prognostic value of our previously reported peptide-based nanomagnetic CTC isolation system (Pep@MNPs). We counted CTCs in blood samples taken at baseline (n = 102) and later at patients' first clinical evaluation after starting firstline chemotherapy (n = 72) in a cohort of women treated for MBC. Their median follow-up was 16.3 months (range: 9.0-31.0 months). The CTC detection rate was 69.6 % for the baseline samples. Patients with ≤2 CTC/2 ml at baseline had longer median progression-free survival (PFS) than did those with >2 CTC/2 ml (17.0 months vs. 8.0 months; P = 0.002). Patients with ≤2 CTC/2 ml both at baseline and first clinical evaluation had longest PFS (18.2 months) among all patient groups (P = 0.004). Particularly, among patients with stable disease (SD; per imaging evaluation) our assay could identify those with longer PFS (P 2 CTC/2 ml at baseline were also significantly more likely to suffer liver metastasis (P = 0.010). This study confirmed the prognostic value of Pep@MNPs assays for MBC patients who undergo firstline chemotherapy, and offered extra stratification regarding PFS for patients with SD, and a possible indicator for patients at risk for liver metastasis.

  4. Reduction in Circulating Tumor Cell Count following Therapy with nab-Paclitaxel plus Carboplatin in a Patient with Leptomeningeal Carcinomatosis from Breast Cancer.

    Science.gov (United States)

    Stebel, Andrea

    2012-01-01

    This case study reports on a 56-year-old woman with breast adenocarcinoma and leptomeningeal metastases. After initial chemotherapy with a dose-dense regimen of doxorubicin/cyclophosphamide followed by 3 cycles of docetaxel (100 mg/m(2)), a lumpectomy was performed that revealed invasive ductal carcinoma with lymph node involvement. Because of the extent of the disease, she underwent a mastectomy. Two months after the completion of initial chemotherapy, leptomeningeal metastases were detected on December 13, 2006. After completion of whole-brain radiation therapy, she received systemic chemotherapy with a novel albumin-bound 130-nm formulation of paclitaxel (nab®-paclitaxel) at 100 mg/m(2) combined with carboplatin AUC = 6, both given weekly. Clinical response was prompt, with a reduction in the circulating tumor cell (CTC) count from 63 before treatment to 2 after the first treatment cycle. While undergoing treatment with nab-paclitaxel plus carboplatin, she reported an improvement in neurologic symptoms, including a decrease in headaches, improved cognition and balance, and an overall improved quality of life. Before the third treatment cycle, she had a CTC count of 2. Without treatment, the median survival of patients diagnosed with leptomeningeal metastases is 4-6 weeks. However, this patient survived for 4 months after the diagnosis of leptomeningeal carcinomatosis. Treatment was discontinued because of complications of urosepsis, and the patient died on April 7, 2007. Our case shows that additional treatment with weekly nab-paclitaxel combined with carboplatin (AUC6) can prolong life for some patients with leptomeningeal carcinomatosis from breast cancer.

  5. Reduction in Circulating Tumor Cell Count following Therapy with nab®-Paclitaxel plus Carboplatin in a Patient with Leptomeningeal Carcinomatosis from Breast Cancer

    Directory of Open Access Journals (Sweden)

    Andrea Stebel

    2012-01-01

    Full Text Available This case study reports on a 56-year-old woman with breast adenocarcinoma and leptomeningeal metastases. After initial chemotherapy with a dose-dense regimen of doxorubicin/cyclophosphamide followed by 3 cycles of docetaxel (100 mg/m2, a lumpectomy was performed that revealed invasive ductal carcinoma with lymph node involvement. Because of the extent of the disease, she underwent a mastectomy. Two months after the completion of initial chemotherapy, leptomeningeal metastases were detected on December 13, 2006. After completion of whole-brain radiation therapy, she received systemic chemotherapy with a novel albumin-bound 130-nm formulation of paclitaxel (nab®-paclitaxel at 100 mg/m2 combined with carboplatin AUC = 6, both given weekly. Clinical response was prompt, with a reduction in the circulating tumor cell (CTC count from 63 before treatment to 2 after the first treatment cycle. While undergoing treatment with nab-paclitaxel plus carboplatin, she reported an improvement in neurologic symptoms, including a decrease in headaches, improved cognition and balance, and an overall improved quality of life. Before the third treatment cycle, she had a CTC count of 2. Without treatment, the median survival of patients diagnosed with leptomeningeal metastases is 4–6 weeks. However, this patient survived for 4 months after the diagnosis of leptomeningeal carcinomatosis. Treatment was discontinued because of complications of urosepsis, and the patient died on April 7, 2007. Our case shows that additional treatment with weekly nab-paclitaxel combined with carboplatin (AUC6 can prolong life for some patients with leptomeningeal carcinomatosis from breast cancer.

  6. Clinical evaluation of M30 and M65 ELISA cell death assays as circulating biomarkers in a drug-sensitive tumor, testicular cancer

    NARCIS (Netherlands)

    de Haas, Esther C.; di Pietro, Alessandra; Simpson, Kathryn L.; Meijer, Coby; Suurmeijer, Albert J. H.; Lancashire, Lee J.; Cummings, J.; de Jong, Steven; de Vries, Elisabeth G. E.; Dive, Caroline; Gietema, Jourik A.

    2008-01-01

    Circulating full-length and caspase-cleaved cytokeratin 18 (CK18) are considered biomarkers of chemotherapy-induced cell death measured using a combination of the M30 and M65 ELISAs. M30 measures caspase-cleaved CK18 produced during apoptosis and M65 measures the levels of both caspase-cleaved and i

  7. Metaphyseal giant cell tumor

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed.

  8. Circulating and Tumor-Infiltrating Foxp3+ Regulatory T Cell Subset in Chinese Patients with Extranodal NK/T Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Rou-Jun Peng, Zhou-Feng Huang, Yi-Lan Zhang, Zhong-Yu Yuan, Yi Xia, Wen-Qi Jiang, Yi-Xin Zeng, Jiang Li

    2011-01-01

    Full Text Available Foxp3+ regulatory T lymphocytes (Tregs usually act as an immune suppressor and correlate with poorer survival in malignancies. This study aims to investigate the distribution and characterization of Foxp3+ subset in peripheral blood mononuclear cells (PBMCs and tumor tissues from extranodal NK/T cell lymphoma (ENKTL. Our study showed the percentage of Foxp3+ subset from PBMC was significantly higher than that of healthy individuals (P<0.001. The Foxp3+ subset from PBMCs expressed CD45RO, CTLA4, GITR, CCR7, and had an IL-10highIFNγ+TGFβ+IL-2lowIL-17low cytokine secreting phenotype. Interestingly, the existence of EBV antigen-specific CD8+Foxp3+ Tregs was discovered in ENKTL. Furthermore, the high density of Foxp3+ TILs was associated with improved progression-free survival (PFS in ENKTL patients (P<0.05. Collectively, our study implicates that EBV antigens could induce antigen-specific CD8+Foxp3+ Tregs in ENKTL, and Foxp3+ TILs is an independent factor for PFS in ENKTL.

  9. Clinical Significance of Early Changes in Circulating Tumor Cells from Patients Receiving First-Line Cisplatin-Based Chemotherapy for Metastatic Urothelial Carcinoma1

    Science.gov (United States)

    Fina, Emanuela; Necchi, Andrea; Giannatempo, Patrizia; Colecchia, Maurizio; Raggi, Daniele; Daidone, Maria Grazia; Cappelletti, Vera

    2016-01-01

    Background: The therapeutic paradigm of metastatic urothelial carcinoma (UC) is rapidly shifting and new biomarkers are needed to enhance patient selection. Objective: Early identification of dynamic predictors of outcome may be a key to optimize the sequence of effective therapies in metastatic UC patients. Methods: Blood samples from patients receiving first-line MVAC chemotherapy were collected at baseline (T0) and after 2 cycles (T2). Samples were processed by immunomagnetic beads (AdnaTest ProstateCancerSelect kit) and the expression of EPCAM, MUC1 and ERBB2 was studied using multiplex-PCR. Circulating tumor cell (CTC) positivity and cutoffs, obtained by receiver operator characteristic (ROC) curve analysis in healthy donors, were: ≥1 positive marker among EPCAM (≥0.40 ng/μl), MUC1 (≥0.10 ng/μl) and ERBB2 (≥0.20 ng/μl). CTC variation (T0/T2) was split in favorable (+/–, –/–, –/+) and unfavorable groups (+/+). Cox regression analyses evaluated associations with clinical factors. Results: In this pilot study to assess a new CTC detection method, among 31 evaluable patients, 17 (54.8%) were CTC-positive at T0. No association was found between CTC and objective response to MVAC. CTC dynamic changes better predicted 3-year progression-free (PFS) and overall survival (OS) compared to CTC status assessed at single time points. Unfavorable trend was univariably detrimental on 3-year PFS (10% vs. 49.2%, p = 0.006) and OS (20% vs. 63.5%, p = 0.017). Significance was maintained after controlling for liver metastases (p = 0.031 and p = 0.025 for PFS and OS) and MSKCC score (p = 0.014 and 0.025). Conclusions: Newly described early CTC changes during chemotherapy might be useful to improve our prognostic ability. Pending validation, these results could fulfill the promise to help accelerating therapeutic sequences. PMID:28035320

  10. 循环肿瘤细胞在乳腺癌中的临床意义及检测方法%The clinical significance and detecting methods of circulating tumor cells in breast cancer

    Institute of Scientific and Technical Information of China (English)

    杨健; 郝辉

    2015-01-01

    乳腺癌预后的主要影响因素是术后复发和转移,而乳腺癌在肿瘤发展的早期就已经发生了转移,在乳腺癌外周血中发现肿瘤细胞,对早期诊断及治疗有指导意义。循环肿瘤细胞已经被证明是转移性乳腺癌预后的标志物。然而,最新研究表明循环肿瘤细胞在早期乳腺癌中亦可提示预后不良。目前,循环肿瘤细胞检测方法主要由富集分离法和分析鉴定法两部分组成,应选择合适的方法检测循环肿瘤细胞,以提高检测效率。探索循环肿瘤细胞与乳腺癌的关系,有助于乳腺癌早期检测及合理治疗。%Metastasis had been occurred in the early breast cancer,and the main influencing factors of prognosis were recurrence and metastasis after operation. So,monitoring tumor cells in peripheral blood was significance to diagnosis and treatment. Circulating tumor cells(CTC)have been shown to be a poor prognostic marker in metastatic breast cancer. However,several recent studies suggest that the presence of CTC in early breast cancer may also suggest a poorer prognosis. At present,the detection methods of circulating tumor cell were composed of enrichment separation and analysis identify methods. Choosing appropriate methods to detect circulating tumor cells could improve the efficiency of detection. Exploring the relation between circulating tumor cell and breast cancer may avail the early diagnosis and effective treatment of breast cancer.

  11. The Use of a New CellCollector to Isolate Circulating Tumor Cells from the Blood of Patients with Different Stages of Prostate Cancer and Clinical Outcomes - A Proof-of-Concept Study

    Science.gov (United States)

    Theil, Gerit; Fischer, Kersten; Weber, Ekkehard; Medek, Rita; Hoda, Raschid; Lücke, Klaus; Fornara, Paolo

    2016-01-01

    Background and Methods Circulating tumor cells (CTCs) constitute a useful approach for personalized medicine. Nevertheless, the isolation of these cells remains very challenging because they rarely circulate in the blood. Another current problem is the cancer-specific characterization of these cells, which requires a method that allows for the molecular and immunocytochemical profiling of all captured cells. The purpose of our proof of concept study was to investigate the use of a medical wire (CellCollector, GILUPI) to isolate CTCs in the blood of prostate cancer (PCa) patients, which allowed CTCs to be counted and molecularly characterized. Forty-three PCa patients in different stages and 11 control subjects were studied. Some randomized samples were used to detect tumor-associated transcripts, such as prostate-specific membrane antigen (PSMA), prostate-specific antigen (PSA) and epidermal growth factor receptor (EGFR), in the isolated CTCs. Results The mean CTC counts were 4.6 CTCs [range, 0–8] in patients with localized PCa, 16.8 CTCs [range, 10–25] in patients with locally advanced PCa, and 26.8 CTCs [range, 0–98] in patients with metastatic PCa. The median follow-up time was 24 months, and there was a significant difference in the cancer-specific survival rates. Patients with CTC counts under 5 CTCs lived significantly longer (p = 0.035) than patients with more than 5 CTCs. We also demonstrated that the captured CTCs could be molecularly characterized. We detected tumor-associated transcripts of EGFR and PSMA in patients with metastatic PCa in 42.8% and 14.3% of the analyzed samples, respectively. Conclusion Our results indicate that the sensitive isolation and molecular characterization of CTCs can be achieved ex vivo using the wire. Patients with more than 5 CTCs had a mortality risk that was 7.0 times greater that of those with fewer than 5 CTCs (hazard ratio 7.0 95%, CI 1.1–29.39). This proof of concept was required for the approval of the use of

  12. Tumor cell metabolism

    Science.gov (United States)

    Romero-Garcia, Susana; Lopez-Gonzalez, Jose Sullivan; B´ez-Viveros, José Luis; Aguilar-Cazares, Dolores

    2011-01-01

    Cancer is a genetic disease that is caused by mutations in oncogenes, tumor suppressor genes and stability genes. The fact that the metabolism of tumor cells is altered has been known for many years. However, the mechanisms and consequences of metabolic reprogramming have just begun to be understood. In this review, an integral view of tumor cell metabolism is presented, showing how metabolic pathways are reprogrammed to satisfy tumor cell proliferation and survival requirements. In tumor cells, glycolysis is strongly enhanced to fulfill the high ATP demands of these cells; glucose carbons are the main building blocks in fatty acid and nucleotide biosynthesis. Glutaminolysis is also increased to satisfy NADPH regeneration, whereas glutamine carbons replenish the Krebs cycle, which produces metabolites that are constantly used for macromolecular biosynthesis. A characteristic feature of the tumor microenvironment is acidosis, which results from the local increase in lactic acid production by tumor cells. This phenomenon is attributed to the carbons from glutamine and glucose, which are also used for lactic acid production. Lactic acidosis also directs the metabolic reprogramming of tumor cells and serves as an additional selective pressure. Finally, we also discuss the role of mitochondria in supporting tumor cell metabolism. PMID:22057267

  13. Dentinogenic ghost cell tumor

    Directory of Open Access Journals (Sweden)

    Singhaniya Shikha

    2009-01-01

    Full Text Available Dentinogenic ghost cell tumor (DGCT is a rare tumorous form of calcifying odontogenic cyst and only a small number of cases have been described. It is a locally invasive neoplasm that is characterized by ameloblastoma-like epithelial islands, ghost cells and dentinoid. The present report describes a case of a 21-year-old male with a tumor in the posterior region of the mandible, showing features of DGCT.

  14. Olfactory ensheathing cell tumor

    Directory of Open Access Journals (Sweden)

    Ippili Kaushal

    2009-01-01

    Full Text Available Olfactory ensheathing cells (OECs are found in the olfactory bulb and olfactory nasal mucosa. They resemble Schwann cells on light and electron microscopy, however, immunohistochemical staining can distinguish between the two. There are less than 30 cases of olfactory groove schwannomas reported in the literature while there is only one reported case of OEC tumor. We report an OEC tumor in a 42-year-old male and discuss the pathology and origin of this rare tumor.

  15. Application of circulating tumor cells detection in non-small cell lung cancer%循环肿瘤细胞检测在非小细胞肺癌中的应用

    Institute of Scientific and Technical Information of China (English)

    李浩; 李胜; 张百江

    2015-01-01

    循环肿瘤细胞(CTC)是非小细胞肺癌(NSCLC)发生复发转移的重要原因。随着检测技术的不断发展,近期研究结果提示,CTC 水平不仅可以用来判断肿瘤临床分期、评估患者预后及治疗反应,还可以用于早期 NSCLC 的风险评估。另外,作为一种非侵入性的“液体活检”,CTC 检测能反映原发肿瘤的分子生物学及遗传学特征,有助于患者获得最佳的个体化治疗。%Circulating tumor cells(CTCs)are essential for establishing metastasis and recurrence in non-small cell lung cancer(NSCLC). With the development of detection technique,results from recent studies suggest that CTC level could be a supplement for TNM staging system and a prediction marker of prognosis and therapeutic efficacy,and even could be applied for risk assessment of early NSCLC. Furthermore,as a non-invasive"liquid biopsy",detection of CTC can reflect the molecular biology and genetics characteristics of the primary tumor,and subsequently assist in selecting an optimal individualized treatment.

  16. In vivo acoustic and photoacoustic focusing of circulating cells

    Science.gov (United States)

    Galanzha, Ekaterina I.; Viegas, Mark G.; Malinsky, Taras I.; Melerzanov, Alexander V.; Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A.; Zharov, Vladimir P.

    2016-03-01

    In vivo flow cytometry using vessels as natural tubes with native cell flows has revolutionized the study of rare circulating tumor cells in a complex blood background. However, the presence of many blood cells in the detection volume makes it difficult to count each cell in this volume. We introduce method for manipulation of circulating cells in vivo with the use of gradient acoustic forces induced by ultrasound and photoacoustic waves. In a murine model, we demonstrated cell trapping, redirecting and focusing in blood and lymph flow into a tight stream, noninvasive wall-free transportation of blood, and the potential for photoacoustic detection of sickle cells without labeling and of leukocytes targeted by functionalized nanoparticles. Integration of cell focusing with intravital imaging methods may provide a versatile biological tool for single-cell analysis in circulation, with a focus on in vivo needleless blood tests, and preclinical studies of human diseases in animal models.

  17. Merkel cell tumor.

    Science.gov (United States)

    Kitazawa, M; Watanabe, H; Kobayashi, H; Ohnishi, Y; Shitara, A; Nitto, H

    1987-06-01

    A Merkel cell tumor appeared on the left cheek of an 83-year-old female was reported. The tumor was located mainly in the dermis and infiltrated to the subcutaneous adipose tissue with an involvement of the blood vessels and lymphatics at the periphery. Electron-microscopically, few of the dense-cored granules and the single globular aggregates of intermediate filaments at the nuclear indentations were observed. Electron-microscopic uranaffin reaction proved positive reaction on the dense-cored granules. Half of the cytoplasmic border was smooth, while the rest had short projections. Desmosomes or junctional complexes were not detected among the tumor cells. Immunohistochemically, the cytoplasm of tumor cell showed positive reaction to both neuron-specific enolase (NSE) and keratin. The single globular positive spots of the latter were localized in accordance with the aggregates of intermediate filaments. These findings suggested a neurogenic origin with double differentiation, epithelial and neuroendocrine, of the Merkel cell tumor.

  18. Circulating tumor DNA detection (liquid biopsy: prospects in oncology

    Directory of Open Access Journals (Sweden)

    N. V. Zhukov

    2015-01-01

    Full Text Available Modern research techniques allows tumor studying in almost any level: protein expression, structural changes of DNA, RNA, epigenetic changes, activity of signaling pathways, microenvironment, interaction with the immune system, etc. However, tumor samples are obtained as 100 years ago – by tumor biopsy prior to treatment. Based on available data about intratumoral heterogeneity and tumor changes during treatment, it may be one of the factors braking to obtain required information of tumor biology. According to study, the analysis of circulating tumor DNA (ctDNA allows to hope to overcome the key limitations of routine biopsy. One of the key benefits of ctDNA analysis is the ability to a more comprehensive tumor investigation, while maintaining a high level of specificity, almost as well as a routine biopsy. Detection sensitivity of ctDNA continues to increase due to the development of new technology. The study of ctDNA may lead to breakthrough results in understanding of tumors molecular heterogeneity, development of resistance to anticancer therapy and ways to overcome it, screening and a number of other key areas of modern oncology.

  19. Circulating tumor DNA detection (liquid biopsy: prospects in oncology

    Directory of Open Access Journals (Sweden)

    N. V. Zhukov

    2014-01-01

    Full Text Available Modern research techniques allows tumor studying in almost any level: protein expression, structural changes of DNA, RNA, epigenetic changes, activity of signaling pathways, microenvironment, interaction with the immune system, etc. However, tumor samples are obtained as 100 years ago – by tumor biopsy prior to treatment. Based on available data about intratumoral heterogeneity and tumor changes during treatment, it may be one of the factors braking to obtain required information of tumor biology. According to study, the analysis of circulating tumor DNA (ctDNA allows to hope to overcome the key limitations of routine biopsy. One of the key benefits of ctDNA analysis is the ability to a more comprehensive tumor investigation, while maintaining a high level of specificity, almost as well as a routine biopsy. Detection sensitivity of ctDNA continues to increase due to the development of new technology. The study of ctDNA may lead to breakthrough results in understanding of tumors molecular heterogeneity, development of resistance to anticancer therapy and ways to overcome it, screening and a number of other key areas of modern oncology.

  20. Liquid biopsy in breast cancer:serum biomarker and circulating tumor cell detection%乳腺癌“液体活检”:血清标志物与循环肿瘤细胞的检测

    Institute of Scientific and Technical Information of China (English)

    陈小松; 沈坤炜

    2012-01-01

      Detection of efficacy and prognosis predictive factors in breast cancer can help us with individualized treatment. Circulating tumor cells (CTCs) test provides us a real-time "liquid biopsy" in breast cancer, which can predict the prognosis of breast cancer patients, monitor the CTCs number changes before and after chemotherapy or endocrine therapy, and predict the treatment efficacy. The further study of CTCs gene phenotype and its biological behavior can improve the therapeutic effect of breast cancer, thereby reducing the breast cancer mortality.%  乳腺癌疗效和预后指标的检测可以帮助我们进行个体化治疗。循环肿瘤细胞(Circulating tumor cells, CTCs)的检测为我们提供了乳腺癌的实时“液体活检”,可以预测乳腺癌患者的预后;进行乳腺癌化疗、内分泌等治疗前后CTCs变化情况的监测,预测治疗的疗效;进一步研究CTCs的基因表型,明确其生物学行为,从而提高乳腺癌的治疗效果,降低其死亡率。

  1. Photoacoustic imaging of single circulating melanoma cells in vivo

    Science.gov (United States)

    Wang, Lidai; Yao, Junjie; Zhang, Ruiying; Xu, Song; Li, Guo; Zou, Jun; Wang, Lihong V.

    2015-03-01

    Melanoma, one of the most common types of skin cancer, has a high mortality rate, mainly due to a high propensity for tumor metastasis. The presence of circulating tumor cells (CTCs) is a potential predictor for metastasis. Label-free imaging of single circulating melanoma cells in vivo provides rich information on tumor progress. Here we present photoacoustic microscopy of single melanoma cells in living animals. We used a fast-scanning optical-resolution photoacoustic microscope to image the microvasculature in mouse ears. The imaging system has sub-cellular spatial resolution and works in reflection mode. A fast-scanning mirror allows the system to acquire fast volumetric images over a large field of view. A 500-kHz pulsed laser was used to image blood and CTCs. Single circulating melanoma cells were imaged in both capillaries and trunk vessels in living animals. These high-resolution images may be used in early detection of CTCs with potentially high sensitivity. In addition, this technique enables in vivo study of tumor cell extravasation from a primary tumor, which addresses an urgent pre-clinical need.

  2. Sertoli-Leydig cell tumor

    Science.gov (United States)

    Sertoli-stromal cell tumor; Arrhenoblastoma; Androblastoma; Ovarian cancer - Sertoli-Leydig cell tumor ... The Sertoli cells are normally located in the male reproductive glands (the testes). They feed sperm cells. The Leydig cells, also ...

  3. Evaluation of Circulating Tumor Cells and Related Events as Prognostic Factors and Surrogate Biomarkers in Advanced NSCLC Patients Receiving First-Line Systemic Treatment.

    Science.gov (United States)

    Muinelo-Romay, Laura; Vieito, Maria; Abalo, Alicia; Nocelo, Marta Alonso; Barón, Francisco; Anido, Urbano; Brozos, Elena; Vázquez, Francisca; Aguín, Santiago; Abal, Miguel; López, Rafael López

    2014-01-01

    In the present study we investigated the prognostic value of Circulating Tumour Cells (CTC) and their utility for therapy monitoring in non-small cell lung cancer (NSCLC). A total of 43 patients newly diagnosed with NSCLC were prospectively enrolled. Blood samples were obtained before the 1st, 2nd and 5th cycles of chemotherapy and analyzed using CellSearch technology. Both CTC and CTC-related objects (not morphological standard or broken epithelial cells) were counted. At baseline 18 (41.9%) patients were positive for intact CTC count and 10 (23.2%) of them had ≥5 CTC, while CK positive events were found in 79.1% of patients. The group of patients with CTC ³5 at baseline presented worse PFS and OS than those with <5 CTC (p = 0.034 and p = 0.008, respectively). Additionally, high levels of total CK positive events were associated with poor prognosis in the group of patients with <5 CTC. Regarding therapy monitoring, patients presenting increased levels of CTC during the treatment demonstrated lower OS and PFS rates. All these data supported the value of CTC as a prognostic biomarker and as a surrogate indicator of chemotherapy effectiveness in advanced NSCLC patients, with the additional value of analyzing other "objects" such as apoptotic CTC or CK fragments to guide the clinical management of these patients.

  4. Evaluation of Circulating Tumor Cells and Related Events as Prognostic Factors and Surrogate Biomarkers in Advanced NSCLC Patients Receiving First-Line Systemic Treatment

    Directory of Open Access Journals (Sweden)

    Laura Muinelo-Romay

    2014-01-01

    Full Text Available In the present study we investigated the prognostic value of Circulating Tumour Cells (CTC and their utility for therapy monitoring in non-small cell lung cancer (NSCLC. A total of 43 patients newly diagnosed with NSCLC were prospectively enrolled. Blood samples were obtained before the 1st, 2nd and 5th cycles of chemotherapy and analyzed using CellSearch technology. Both CTC and CTC-related objects (not morphological standard or broken epithelial cells were counted. At baseline 18 (41.9% patients were positive for intact CTC count and 10 (23.2% of them had ≥5 CTC, while CK positive events were found in 79.1% of patients. The group of patients with CTC ³5 at baseline presented worse PFS and OS than those with <5 CTC (p = 0.034 and p = 0.008, respectively. Additionally, high levels of total CK positive events were associated with poor prognosis in the group of patients with <5 CTC. Regarding therapy monitoring, patients presenting increased levels of CTC during the treatment demonstrated lower OS and PFS rates. All these data supported the value of CTC as a prognostic biomarker and as a surrogate indicator of chemotherapy effectiveness in advanced NSCLC patients, with the additional value of analyzing other “objects” such as apoptotic CTC or CK fragments to guide the clinical management of these patients.

  5. Evaluation of Circulating Tumor Cells and Related Events as Prognostic Factors and Surrogate Biomarkers in Advanced NSCLC Patients Receiving First-Line Systemic Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Muinelo-Romay, Laura; Vieito, Maria; Abalo, Alicia; Alonso Nocelo, Marta; Barón, Francisco; Anido, Urbano; Brozos, Elena; Vázquez, Francisca; Aguín, Santiago; Abal, Miguel; López López, Rafael, E-mail: rafael.lopez.lopez@sergas.es [Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Trav. Choupana s/n 15706 Santiago de Compostela (Spain)

    2014-01-21

    In the present study we investigated the prognostic value of Circulating Tumour Cells (CTC) and their utility for therapy monitoring in non-small cell lung cancer (NSCLC). A total of 43 patients newly diagnosed with NSCLC were prospectively enrolled. Blood samples were obtained before the 1st, 2nd and 5th cycles of chemotherapy and analyzed using CellSearch technology. Both CTC and CTC-related objects (not morphological standard or broken epithelial cells) were counted. At baseline 18 (41.9%) patients were positive for intact CTC count and 10 (23.2%) of them had ≥5 CTC, while CK positive events were found in 79.1% of patients. The group of patients with CTC ≥5 at baseline presented worse PFS and OS than those with <5 CTC (p = 0.034 and p = 0.008, respectively). Additionally, high levels of total CK positive events were associated with poor prognosis in the group of patients with <5 CTC. Regarding therapy monitoring, patients presenting increased levels of CTC during the treatment demonstrated lower OS and PFS rates. All these data supported the value of CTC as a prognostic biomarker and as a surrogate indicator of chemotherapy effectiveness in advanced NSCLC patients, with the additional value of analyzing other “objects” such as apoptotic CTC or CK fragments to guide the clinical management of these patients.

  6. Prognostic significance of circulating tumor cells in bone marrow or peripheral blood as detected by qualitative and quantitative PCR in pediatric NPM-ALK-positive anaplastic large-cell lymphoma.

    Science.gov (United States)

    Damm-Welk, Christine; Busch, Kerstin; Burkhardt, Birgit; Schieferstein, Jutta; Viehmann, Susanne; Oschlies, Ilske; Klapper, Wolfram; Zimmermann, Martin; Harbott, Jochen; Reiter, Alfred; Woessmann, Willi

    2007-07-15

    Clinical and histopathological characteristics have limited prognostic value for children with anaplastic large-cell lymphoma (ALCL). We evaluated the presence, extent, and prognostic impact of circulating tumor cells in bone marrow (BM) and peripheral blood (PB) of children and adolescents with NPM-ALK-positive ALCL at diagnosis using qualitative and quantitative polymerase chain reaction (PCR) for NPM-ALK. Numbers of NPM-ALK transcripts were normalized to 10(4) copies ABL (NCNs). BM was analyzed from 80 patients and PB from 52. BM was positive for NPM-ALK in 47.5% of patients, and positivity was significantly correlated with clinical stage, mediastinal or visceral involvement, microscopic BM involvement, and histologic subtype. Qualitative and quantitative PCR results in BM and PB strongly correlated. BM PCR was associated with the cumulative incidence of relapses (CI-Rs): CI-R was 50% +/- 10% for 38 PCR-positive and 15% +/- 7% for 42 PCR-negative patients (P NPM-ALK in BM had a CI-R of 71% +/- 14% compared with a CI-R of 18% +/- 6% for 59 patients with 10 or fewer NCNs (P < .001). PB PCR results led to a similar grouping. Thus, quantitative PCR in BM or PB allows identification of 20% of patients experiencing 60% of all relapses with an event-free survival of 20%.

  7. Detection and prognostic value of recurrent exportin 1 mutations in tumor and cell-free circulating DNA of patients with classical Hodgkin lymphoma

    Science.gov (United States)

    Camus, Vincent; Stamatoullas, Aspasia; Mareschal, Sylvain; Viailly, Pierre-Julien; Sarafan-Vasseur, Nasrin; Bohers, Elodie; Dubois, Sydney; Picquenot, Jean Michel; Ruminy, Philippe; Maingonnat, Catherine; Bertrand, Philippe; Cornic, Marie; Tallon-Simon, Valérie; Becker, Stéphanie; Veresezan, Liana; Frebourg, Thierry; Vera, Pierre; Bastard, Christian; Tilly, Hervé; Jardin, Fabrice

    2016-01-01

    Classical Hodgkin lymphoma is one of the most common lymphomas and shares clinical and genetic features with primary mediastinal B-cell lymphoma. In this retrospective study, we analyzed the recurrent hotspot mutation of the exportin 1 (XPO1, p.E571K) gene, previously identified in primary mediastinal B-cell lymphoma, in biopsies and plasma circulating cell-free DNA from patients with classical Hodgkin lymphoma using a highly sensitive digital PCR technique. A total of 94 patients were included in the present study. This widely expressed XPO1 E571K mutation is present in one quarter of classical Hodgkin lymphoma patients (24.2%). Mutated and wild-type classical Hodgkin lymphomas were similar regarding the main clinical features. Patients with a detectable XPO1 mutation at the end of treatment displayed a tendency toward shorter progression-free survival, as compared to patients with undetectable mutation in plasma cell-free DNA (2-year progression-free survival: 57.1%, 95% confidence interval: 30.1–100% versus 2-year progression-free survival: 90.5%, 95% confidence interval: 78.8–100%, respectively, P=0.0601). To conclude, the detection of the XPO1 E571K mutation in biopsy and plasma cell-free DNA by digital PCR may be used as a novel biomarker in classical Hodgkin lymphoma for both diagnosis and minimal residual disease, and pinpoints a crucial role of XPO1 in classical Hodgkin lymphoma pathogenesis. The detection of somatic mutation in the plasma cell-free DNA of patients represents a major technological advance in the context of liquid biopsies and noninvasive management of classical Hodgkin lymphoma. PMID:27479820

  8. Detection and prognostic value of recurrent exportin 1 mutations in tumor and cell-free circulating DNA of patients with classical Hodgkin lymphoma.

    Science.gov (United States)

    Camus, Vincent; Stamatoullas, Aspasia; Mareschal, Sylvain; Viailly, Pierre-Julien; Sarafan-Vasseur, Nasrin; Bohers, Elodie; Dubois, Sydney; Picquenot, Jean Michel; Ruminy, Philippe; Maingonnat, Catherine; Bertrand, Philippe; Cornic, Marie; Tallon-Simon, Valérie; Becker, Stéphanie; Veresezan, Liana; Frebourg, Thierry; Vera, Pierre; Bastard, Christian; Tilly, Hervé; Jardin, Fabrice

    2016-09-01

    Classical Hodgkin lymphoma is one of the most common lymphomas and shares clinical and genetic features with primary mediastinal B-cell lymphoma. In this retrospective study, we analyzed the recurrent hotspot mutation of the exportin 1 (XPO1, p.E571K) gene, previously identified in primary mediastinal B-cell lymphoma, in biopsies and plasma circulating cell-free DNA from patients with classical Hodgkin lymphoma using a highly sensitive digital PCR technique. A total of 94 patients were included in the present study. This widely expressed XPO1 E571K mutation is present in one quarter of classical Hodgkin lymphoma patients (24.2%). Mutated and wild-type classical Hodgkin lymphomas were similar regarding the main clinical features. Patients with a detectable XPO1 mutation at the end of treatment displayed a tendency toward shorter progression-free survival, as compared to patients with undetectable mutation in plasma cell-free DNA (2-year progression-free survival: 57.1%, 95% confidence interval: 30.1-100% versus 2-year progression-free survival: 90.5%, 95% confidence interval: 78.8-100%, respectively, P=0.0601). To conclude, the detection of the XPO1 E571K mutation in biopsy and plasma cell-free DNA by digital PCR may be used as a novel biomarker in classical Hodgkin lymphoma for both diagnosis and minimal residual disease, and pinpoints a crucial role of XPO1 in classical Hodgkin lymphoma pathogenesis. The detection of somatic mutation in the plasma cell-free DNA of patients represents a major technological advance in the context of liquid biopsies and noninvasive management of classical Hodgkin lymphoma.

  9. 循环血肿瘤细胞为肿瘤精准治疗带来的机遇与挑战%Circulating tumor cells for precision medicine in cancer

    Institute of Scientific and Technical Information of China (English)

    谢思琪

    2016-01-01

    Over the last two decades,we have seen many advances in the biological underpinnings of many kinds of cancers that have had a significant impact either directly or indirectly on the management and ultimately on the prognostic outcome of this disease.Next-generation sequencing studies have provided further evidence to support the notion4 that cancer is a disease characterized by Darwinian evolution.However,Ones often fail to obtain the information in different stages of the tumor before making treatment decision.This may be the major reason for treatment failures.Currently,circulating tumor cells (CTCs) is considered as a " liquid biopsy".By detecting CTCs at different stages of tumor and obtaining the biological characteristics of CTCs,ones can get information about tumor evolution at different stages.It might provide effective basis for individual therapy to tumors,and promote the accuracy of tumor treatment.%下一代测序技术研究中,越来越多的证据证明了一个假说-肿瘤是一类以达尔文进化为特征的疾病.然而,医生往往不能根据肿瘤不同阶段的生物学特征做治疗决策,这也许是导致很多治疗手段最终失败的关键原因.循环血肿瘤细胞(CTCs)的检测被认为是一种“液体活检”技术,对CTCs进行动态监测,获取肿瘤不同阶段的进化信息,能为肿瘤的个体化治疗提供依据.

  10. Mouse Leydig Tumor Cells

    Directory of Open Access Journals (Sweden)

    Bo-Syong Pan

    2011-01-01

    Full Text Available Cordycepin is a natural pure compound extracted from Cordyceps sinensis (CS. We have demonstrated that CS stimulates steroidogenesis in primary mouse Leydig cell and activates apoptosis in MA-10 mouse Leydig tumor cells. It is highly possible that cordycepin is the main component in CS modulating Leydig cell functions. Thus, our aim was to investigate the steroidogenic and apoptotic effects with potential mechanism of cordycepin on MA-10 mouse Leydig tumor cells. Results showed that cordycepin significantly stimulated progesterone production in dose- and time-dependent manners. Adenosine receptor (AR subtype agonists were further used to treat MA-10 cells, showing that A1, A 2A , A 2B , and A3, AR agonists could stimulate progesterone production. However, StAR promoter activity and protein expression remained of no difference among all cordycepin treatments, suggesting that cordycepin might activate AR, but not stimulated StAR protein to regulate MA-10 cell steroidogenesis. Meanwhile, cordycepin could also induce apoptotic cell death in MA-10 cells. Moreover, four AR subtype agonists induced cell death in a dose-dependent manner, and four AR subtype antagonists could all rescue cell death under cordycepin treatment in MA-10 cells. In conclusion, cordycepin could activate adenosine subtype receptors and simultaneously induce steroidogenesis and apoptosis in MA-10 mouse Leydig tumor cells.

  11. Nonislet Cell Tumor Hypoglycemia

    Directory of Open Access Journals (Sweden)

    Johnson Thomas

    2013-01-01

    Full Text Available Nonislet cell tumor hypoglycemia (NICTH is a rare cause of hypoglycemia. It is characterized by increased glucose utilization by tissues mediated by a tumor resulting in hypoglycemia. NICTH is usually seen in large mesenchymal tumors including tumors involving the GI tract. Here we will discuss a case, its pathophysiology, and recent advances in the management of NICTH. Our patient was diagnosed with poorly differentiated squamous cell carcinoma of esophagus. He continued to be hypoglycemic even after starting continuous tube feeds and D5W. General workup for hypoglycemia was negative and insulin-like growth factor II (IGF II was in the normal range. Hypoglycemia secondary to “big” IGF II was considered, and patient was started on steroids. His hypoglycemia resolved within a day of treatment with steroids. Initially patient had hypoglycemia unawareness, which he regained after maintaining euglycemia for 48 hours.

  12. Ghost Cell Tumors.

    Science.gov (United States)

    Sheikh, Jason; Cohen, Molly D; Ramer, Naomi; Payami, Ali

    2017-04-01

    Ghost cell tumors are a family of lesions that range in presentation from cyst to solid neoplasm and in behavior from benign to locally aggressive or metastatic. All are characterized by the presence of ameloblastic epithelium, ghost cells, and calcifications. This report presents the cases of a 14-year-old girl with a calcifying cystic odontogenic tumor (CCOT) and a 65-year-old woman with a peripheral dentinogenic ghost cell tumor (DGCT) with dysplastic changes, a rare locally invasive tumor of odontogenic epithelium. The first patient presented with a 1-year history of slowly progressing pain and swelling at the left body of the mandible. Initial panoramic radiograph displayed a mixed radiolucent and radiopaque lesion. An incisional biopsy yielded a diagnosis of CCOT. Decompression of the mass was completed; after 3 months, it was enucleated and immediately grafted with bone harvested from the anterior iliac crest. The second patient presented with a 3-month history of slowly progressing pain and swelling at the left body of the mandible. Initial panoramic radiograph depicted a mixed radiolucent and radiopaque lesion with saucerization of the buccal mandibular cortex. An incisional biopsy examination suggested a diagnosis of DGCT because of the presence of ghost cells, dentinoid, and islands of ameloblastic epithelium. Excision of the mass with peripheral ostectomy was completed. At 6 and 12 months of follow-up, no evidence of recurrence was noted.

  13. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunomagnetic circulating cancer cell selection..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Tumor Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection...

  14. Extraovarian granulosa cell tumor

    Directory of Open Access Journals (Sweden)

    Paul Prabir

    2009-04-01

    Full Text Available Extraovarian granulosa cell tumor (GCT is a very uncommon tumor, assumed to arise from the ectopic gonadal tissue along the embryonal route of the genital ridge. One such rare case of extraovarian GCT was encountered in a 58-year-old female who presented with a large intraabdominal lump. Computerized tomography revealed one large retroperitoneal mass measuring 15cm x 16cm and another mesenteric mass of 8cm x 5cm size. The patient had a history of hysterectomy with bilateral salpingooophorectomy 20 years ago for uterine leiomyoma. Ultrasonography-guided aspiration smears revealed cytological features suggestive of GCT. Histopathological examination of the excised masses showed features of adult-type GCT. Because metastatic epithelial tumors, particularly from the ovaries, may show identical morphology, immunostains for inhibin and epithelial membrane antigen (EMA were performed. The tumor showed positivity for inhibin while EMA was negative thus confirming the diagnosis of GCT. As this patient had no previous history of GCT and was oophorectomized 20 years ago, the tumor was considered as extraovarian. A diagnosis of extraovarian GCT should be carried out after excluding any previous history of GCT of the ovary. Immunostains help to differentiate GCTs from other neoplasms.

  15. Detection and isolation of circulating melanoma cells using photoacoustic flowmetry.

    Science.gov (United States)

    O'Brien, Christine M; Rood, Kyle; Sengupta, Shramik; Gupta, Sagar K; DeSouza, Thiago; Cook, Aaron; Viator, John A

    2011-11-25

    Circulating tumor cells (CTCs) are those cells that have separated from a macroscopic tumor and spread through the blood and lymph systems to seed secondary tumors(1,2,3). CTCs are indicators of metastatic disease and their detection in blood samples may be used to diagnose cancer and monitor a patient's response to therapy. Since CTCs are rare, comprising about one tumor cell among billions of normal blood cells in advanced cancer patients, their detection and enumeration is a difficult task. We exploit the presence of pigment in most melanoma cells to generate photoacoustic, or laser induced ultrasonic waves in a custom flow cytometer for detection of circulating melanoma cells (CMCs)(4,5). This process entails separating a whole blood sample using centrifugation and obtaining the white blood cell layer. If present in whole blood, CMCs will separate with the white blood cells due to similar density. These cells are resuspended in phosphate buffered saline (PBS) and introduced into the flowmeter. Rather than a continuous flow of the blood cell suspension, we induced two phase flow in order to capture these cells for further study. In two phase flow, two immiscible liquids in a microfluidic system meet at a junction and form alternating slugs of liquid(6,7). PBS suspended white blood cells and air form microliter slugs that are sequentially irradiated with laser light. The addition of a surfactant to the liquid phase allows uniform slug formation and the user can create different sized slugs by altering the flow rates of the two phases. Slugs of air and slugs of PBS with white blood cells contain no light absorbers and hence, do not produce photoacoustic waves. However, slugs of white blood cells that contain even single CMCs absorb laser light and produce high frequency acoustic waves. These slugs that generate photoacoustic waves are sequestered and collected for cytochemical staining for verification of CMCs.

  16. Analysis of circulating microRNAs in adrenocortical tumors.

    Science.gov (United States)

    Szabó, Diana Rita; Luconi, Michaela; Szabó, Peter M; Tóth, Miklós; Szücs, Nikolette; Horányi, János; Nagy, Zoltán; Mannelli, Massimo; Patócs, Attila; Rácz, Károly; Igaz, Peter

    2014-03-01

    Differential diagnosis of adrenocortical adenoma (ACA) and carcinoma is of pivotal clinical relevance, as the prognosis and clinical management of benign and malignant adrenocortical tumors (ACTs) is entirely different. Circulating microRNAs (miRNAs) are promising biomarker candidates of malignancy in several tumors; however, there are still numerous technical problems associated with their analysis. The objective of our study was to investigate circulating miRNAs in ACTs and to evaluate their potential applicability as biomarkers of malignancy. We have also addressed technical questions including the choice of profiling and reference gene used. A total of 25 preoperative plasma samples obtained from patients with ACAs and carcinomas were studied by microarray and quantitative real-time PCR. None of the three miRNAs (hsa-miR-192, hsa-mir-197 and hsa-miR-1281) found as differentially expressed in plasma samples in our microarray screening could be validated by quantitative real-time PCR. In contrast, of the selected eight miRNAs reported in the literature as differentially expressed in ACT tissues, five (hsa-miR-100, hsa-miR-181b, hsa-miR-184, hsa-miR-210 and hsa-miR-483-5p) showed a statistically significant overexpression in adrenocortical cancer vs adenoma when normalized on hsa-miR-16 as a reference gene. Receiver operator characteristic analysis of data revealed that the combination of dCThsa-miR-210 - dCThsa-miR-181b and dCThsa-miR-100/dCThsa-miR-181b showed the highest diagnostic accuracy (area under curve 0.87 and 0.85, respectively). In conclusion, we have found significant differences in expression of circulating miRNAs between ACAs and carcinomas, but their diagnostic accuracy is not yet high enough for clinical application. Further studies on larger cohorts of patients are needed to assess the diagnostic and prognostic potential application of circulating miRNA markers.

  17. Impact of circulating cholesterol levels on growth and intratumoral androgen concentration of prostate tumors.

    Directory of Open Access Journals (Sweden)

    Elahe A Mostaghel

    Full Text Available Prostate cancer (PCa is the second most common cancer in men. Androgen deprivation therapy (ADT leads to tumor involution and reduction of tumor burden. However, tumors eventually reemerge that have overcome the absence of gonadal androgens, termed castration resistant PCa (CRPC. Theories underlying the development of CRPC include androgen receptor (AR mutation allowing for promiscuous activation by non-androgens, AR amplification and overexpression leading to hypersensitivity to low androgen levels, and/or tumoral uptake and conversion of adrenally derived androgens. More recently it has been proposed that prostate tumor cells synthesize their own androgens through de novo steroidogenesis, which involves the step-wise synthesis of androgens from cholesterol. Using the in vivo LNCaP PCa xenograft model, previous data from our group demonstrated that a hypercholesterolemia diet potentiates prostatic tumor growth via induction of angiogenesis. Using this same model we now demonstrate that circulating cholesterol levels are significantly associated with tumor size (R = 0.3957, p = 0.0049 and intratumoral levels of testosterone (R = 0.41, p = 0.0023 in LNCaP tumors grown in hormonally intact mice. We demonstrate tumoral expression of cholesterol uptake genes as well as the spectrum of steroidogenic enzymes necessary for androgen biosynthesis from cholesterol. Moreover, we show that circulating cholesterol levels are directly correlated with tumoral expression of CYP17A, the critical enzyme required for de novo synthesis of androgens from cholesterol (R = 0.4073, p = 0.025 Since hypercholesterolemia does not raise circulating androgen levels and the adrenal gland of the mouse synthesizes minimal androgens, this study provides evidence that hypercholesterolemia increases intratumoral de novo steroidogenesis. Our results are consistent with the hypothesis that cholesterol-fueled intratumoral androgen synthesis may accelerate the

  18. Isolation and Molecular Characterization of Circulating Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Xi Luo

    2014-05-01

    Full Text Available Melanoma is an invasive malignancy with a high frequency of blood-borne metastases, but circulating tumor cells (CTCs have not been readily isolated. We adapted microfluidic CTC capture to a tamoxifen-driven B-RAF/PTEN mouse melanoma model. CTCs were detected in all tumor-bearing mice and rapidly declined after B-RAF inhibitor treatment. CTCs were shed early from localized tumors, and a short course of B-RAF inhibition following surgical resection was sufficient to dramatically suppress distant metastases. The large number of CTCs in melanoma-bearing mice enabled a comparison of RNA-sequencing profiles with matched primary tumors. A mouse melanoma CTC-derived signature correlated with invasiveness and cellular motility in human melanoma. CTCs were detected in smaller numbers in patients with metastatic melanoma and declined with successful B-RAF-targeted therapy. Together, the capture and molecular characterization of CTCs provide insight into the hematogenous spread of melanoma.

  19. Circulating Tumor DNA in Predicting Outcomes in Patients With Stage IV Head and Neck Cancer or Stage III-IV Non-small Cell Lung Cancer

    Science.gov (United States)

    2016-10-19

    Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Salivary Gland Squamous Cell Carcinoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Salivary Gland Cancer; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Salivary Gland Cancer; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVB Verrucous Carcinoma of the Larynx; Stage IVB Verrucous Carcinoma of the Oral Cavity; Stage IVC Salivary Gland Cancer; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Stage IVC Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVC Verrucous Carcinoma of the Larynx; Stage IVC Verrucous Carcinoma of the Oral Cavity; Tongue Cancer; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  20. Pericytes limit tumor cell metastasis

    DEFF Research Database (Denmark)

    Xian, Xiaojie; Håkansson, Joakim; Ståhlberg, Anders

    2006-01-01

    Previously we observed that neural cell adhesion molecule (NCAM) deficiency in beta tumor cells facilitates metastasis into distant organs and local lymph nodes. Here, we show that NCAM-deficient beta cell tumors grew leaky blood vessels with perturbed pericyte-endothelial cell-cell interactions...... and deficient perivascular deposition of ECM components. Conversely, tumor cell expression of NCAM in a fibrosarcoma model (T241) improved pericyte recruitment and increased perivascular deposition of ECM molecules. Together, these findings suggest that NCAM may limit tumor cell metastasis by stabilizing...... the microvessel wall. To directly address whether pericyte dysfunction increases the metastatic potential of solid tumors, we studied beta cell tumorigenesis in primary pericyte-deficient Pdgfb(ret/ret) mice. This resulted in beta tumor cell metastases in distant organs and local lymph nodes, demonstrating a role...

  1. A critical review of the analytical approaches for circulating tumor biomarker kinetics during treatment.

    Science.gov (United States)

    Almufti, R; Wilbaux, M; Oza, A; Henin, E; Freyer, G; Tod, M; Colomban, O; You, B

    2014-01-01

    Changes in serum tumor biomarkers may indicate treatment efficacy. Traditional tumor markers may soon be replaced by novel serum biomarkers, such as circulating tumor cells (CTCs) or circulating tumor nucleic acids. Given their promising predictive values, studies of their kinetics are warranted. Many methodologies meant to assess kinetics of traditional marker kinetics during anticancer treatment have been reported. Here, we review the methodologies, the advantages and the limitations of the analytical approaches reported in the literature. Strategies based on a single time point were first used (baseline value, normalization, nadir, threshold at a time t), followed by approaches based on two or more time points [half-life (HL), percentage decrease, time-to-events…]. Heterogeneities in methodologies and lack of consideration of inter- and intra-individual variability may account for the inconsistencies and the poor utility in routine. More recently, strategies based on a population kinetics approach and mathematical modeling have been reported. The identification of equations describing individual kinetic profiles of biomarkers may be an alternative strategy despite its complexity and higher number of necessary measurements. Validation studies are required. Efforts should be made to standardize biomarker kinetic analysis methodologies to ensure the optimized development of novel serum biomarkers and avoid the pitfalls of traditional markers.

  2. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells

    Science.gov (United States)

    Fan, Rong; Emery, Travis; Zhang, Yongguo; Xia, Yuxuan; Sun, Jun; Wan, Jiandi

    2016-06-01

    During cancer metastasis, circulating tumor cells constantly experience hemodynamic shear stress in the circulation. Cellular responses to shear stress including cell viability and proliferation thus play critical roles in cancer metastasis. Here, we developed a microfluidic approach to establish a circulatory microenvironment and studied circulating human colon cancer HCT116 cells in response to a variety of magnitude of shear stress and circulating time. Our results showed that cell viability decreased with the increase of circulating time, but increased with the magnitude of wall shear stress. Proliferation of cells survived from circulation could be maintained when physiologically relevant wall shear stresses were applied. High wall shear stress (60.5 dyne/cm2), however, led to decreased cell proliferation at long circulating time (1 h). We further showed that the expression levels of β-catenin and c-myc, proliferation regulators, were significantly enhanced by increasing wall shear stress. The presented study provides a new insight to the roles of circulatory shear stress in cellular responses of circulating tumor cells in a physiologically relevant model, and thus will be of interest for the study of cancer cell mechanosensing and cancer metastasis.

  3. Comparison of circulating and intratumoral regulatory T cells in patients with renal cell carcinoma.

    Science.gov (United States)

    Asma, Gati; Amal, Gorrab; Raja, Marrakchi; Amine, Derouiche; Mohammed, Chebil; Amel, Ben Ammar Elgaaied

    2015-05-01

    The clear evidence that tumor-infiltrating lymphocytes (TIL) exists in the tumor microenvironment raises the question why renal cell carcinoma (RCC) progresses. Numerous studies support the implication of CD4(+)CD25(high) regulatory T (Treg) cells in RCC development. We aimed in this study to characterize the phenotype and function of circulating and intratumoral Treg cells of RCC patient in order to evaluate their implication in the inhibition of the local antitumor immune response. Our results demonstrate that the proportion of Treg in TIL was, in average, similar to that found in circulating CD4(+) T cells of patients or healthy donors. However, intratumoral Treg exhibit a marked different phenotype when compared with the autologous circulating Treg. A higher CD25 mean level, HLA-DR, Fas, and GITR, and a lower CD45RA expression were observed in intratumoral Treg, suggesting therefore that these cells are effector in the tumor microenvironment. Additionally, intratumoral Treg showed a higher inhibitory function on autologous CD4(+)CD25(-) T cells when compared with circulating Treg that may be explained by an overexpression of FoxP3 transcription factor. These findings suggest that intratumoral Treg could be major actors in the impairment of local antitumor immune response for RCC patients.

  4. Carrier molecules and extraction of circulating tumor DNA for next generation sequencing in colorectal cancer.

    Science.gov (United States)

    Beránek, Martin; Sirák, Igor; Vošmik, Milan; Petera, Jiří; Drastíková, Monika; Palička, Vladimír

    The aims of the study were: i) to compare circulating tumor DNA (ctDNA) yields obtained by different manual extraction procedures, ii) to evaluate the addition of various carrier molecules into the plasma to improve ctDNA extraction recovery, and iii) to use next generation sequencing (NGS) technology to analyze KRAS, BRAF, and NRAS somatic mutations in ctDNA from patients with metastatic colorectal cancer. Venous blood was obtained from patients who suffered from metastatic colorectal carcinoma. For plasma ctDNA extraction, the following carriers were tested: carrier RNA, polyadenylic acid, glycogen, linear acrylamide, yeast tRNA, salmon sperm DNA, and herring sperm DNA. Each extract was characterized by quantitative real-time PCR and next generation sequencing. The addition of polyadenylic acid had a significant positive effect on the amount of ctDNA eluted. The sequencing data revealed five cases of ctDNA mutated in KRAS and one patient with a BRAF mutation. An agreement of 86% was found between tumor tissues and ctDNA. Testing somatic mutations in ctDNA seems to be a promising tool to monitor dynamically changing genotypes of tumor cells circulating in the body. The optimized process of ctDNA extraction should help to obtain more reliable sequencing data in patients with metastatic colorectal cancer.

  5. Determine the Dynamic Response to Androgen-Blockade Therapy in Circulating Tumor Cells of CRPC Patients by Transcription-Based Reporter Vectors

    Science.gov (United States)

    2016-08-01

    0.52 ± 0.18-fold, respectively). Because DHT is a direct agonist of AR, we also measured how bioluminescence microscopy could titer DHT concentrations... direct drug target assay requires shorter culture times and does not incorporate its cell growth surrogate and associated non-specific gene expression...for 20 min. Fifteen milliliters of Ficoll-Paque Plus (GE healthcare Life Sciences , Mississauga, ON, Canada) were then placed in a 50 ml SepMate tube

  6. Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies

    Science.gov (United States)

    Bettegowda, Chetan; Sausen, Mark; Leary, Rebecca J.; Kinde, Isaac; Wang, Yuxuan; Agrawal, Nishant; Bartlett, Bjarne R.; Wang, Hao; Luber, Brandon; Alani, Rhoda M.; Antonarakis, Emmanuel S.; Azad, Nilofer S.; Bardelli, Alberto; Brem, Henry; Cameron, John L.; Lee, Clarence C.; Fecher, Leslie A.; Gallia, Gary L.; Gibbs, Peter; Le, Dung; Giuntoli, Robert L.; Goggins, Michael; Hogarty, Michael D.; Holdhoff, Matthias; Hong, Seung-Mo; Jiao, Yuchen; Juhl, Hartmut H.; Kim, Jenny J.; Siravegna, Giulia; Laheru, Daniel A.; Lauricella, Calogero; Lim, Michael; Lipson, Evan J.; Marie, Suely Kazue Nagahashi; Netto, George J.; Oliner, Kelly S.; Olivi, Alessandro; Olsson, Louise; Riggins, Gregory J.; Sartore-Bianchi, Andrea; Schmidt, Kerstin; Shih, le-Ming; Oba-Shinjo, Sueli Mieko; Siena, Salvatore; Theodorescu, Dan; Tie, Jeanne; Harkins, Timothy T.; Veronese, Silvio; Wang, Tian-Li; Weingart, Jon D.; Wolfgang, Christopher L.; Wood, Laura D.; Xing, Dongmei; Hruban, Ralph H.; Wu, Jian; Allen, Peter J.; Schmidt, C. Max; Choti, Michael A.; Velculescu, Victor E.; Kinzler, Kenneth W.; Vogelstein, Bert; Papadopoulos, Nickolas; Diaz, Luis A.

    2014-01-01

    The development of noninvasive methods to detect and monitor tumors continues to be a major challenge in oncology. We used digital polymerase chain reaction–based technologies to evaluate the ability of circulating tumor DNA (ctDNA) to detect tumors in 640 patients with various cancer types. We found that ctDNA was detectable in >75% of patients with advanced pancreatic, ovarian, colorectal, bladder, gastroesophageal, breast, melanoma, hepatocellular, and head and neck cancers, but in less than 50% of primary brain, renal, prostate, or thyroid cancers. In patients with localized tumors, ctDNA was detected in 73, 57, 48, and 50% of patients with colorectal cancer, gastroesophageal cancer, pancreatic cancer, and breast adenocarcinoma, respectively. ctDNA was often present in patients without detectable circulating tumor cells, suggesting that these two biomarkers are distinct entities. In a separate panel of 206 patients with metastatic colorectal cancers, we showed that the sensitivity of ctDNA for detection of clinically relevant KRAS gene mutations was 87.2% and its specificity was 99.2%. Finally, we assessed whether ctDNA could provide clues into the mechanisms underlying resistance to epidermal growth factor receptor blockade in 24 patients who objectively responded to therapy but subsequently relapsed. Twenty-three (96%) of these patients developed one or more mutations in genes involved in the mitogen-activated protein kinase pathway. Together, these data suggest that ctDNA is a broadly applicable, sensitive, and specific biomarker that can be used for a variety of clinical and research purposes in patients with multiple different types of cancer. PMID:24553385

  7. Ovarian Germ Cell Tumors Treatment

    Science.gov (United States)

    ... ovarian germ cell tumor are swelling of the abdomen or vaginal bleeding after menopause. Ovarian germ cell ... if you have either of the following: Swollen abdomen without weight gain in other parts of the ...

  8. Detection of circulating breast cancer cells using photoacoustic flow cytometry

    Science.gov (United States)

    Bhattacharyya, Kiran

    According to the American Cancer Society, more than 200,000 new cases of breast cancer are expected to be diagnosed this year. Moreover, about 40,000 women died from breast cancer last year alone. As breast cancer progresses in an individual, it can transform from a localized state to a metastatic one with multiple tumors distributed through the body, not necessarily contained within the breast. Metastasis is the spread of cancer through the body by circulating tumor cells (CTCs) which can be found in the blood and lymph of the diagnosed patient. Diagnosis of a metastatic state by the discovery of a secondary tumor can often come too late and hence, significantly reduce the patient's chance of survival. There is a current need for a CTC detection method which would diagnose metastasis before the secondary tumor occurs or reaches a size resolvable by current imaging systems. Since earlier detection would improve prognosis, this study proposes a method of labeling of breast cancer cells for detection with a photoacoustic flow cytometry system as a model for CTC detection in human blood. Gold nanoparticles and fluorescent polystyrene nanoparticles are proposed as contrast agents for T47D, the breast cancer cell line of choice. The labeling, photoacoustic detection limit, and sensitivity are first characterized and then applied to a study to show detection from human blood.

  9. [Lung cancer molecular testing, what role for Next Generation Sequencing and circulating tumor DNA].

    Science.gov (United States)

    Pécuchet, Nicolas; Legras, Antoine; Laurent-Puig, Pierre; Blons, Hélène

    2016-01-01

    Molecular screening has become a standard of care for patients with advanced cancers and impacts on how to treat a patient. Advances in genomic technologies with the development of high throughput sequencing methods will certainly improve the possibilities to access a more accurate molecular diagnosis and to go beyond the identification of validated targets as a large number of genes can be screened for actionable changes. Moreover, accurate high throughput testing may help tumor classification in terms of prognosis and drug sensitivity. Finally, it will be possible to assess tumor heterogeneity and changes in molecular profiles during follow-up using ultra-deep sequencing technologies and circulating tumor DNA characterization. The accumulation of somatic ADN alterations is considered as the main contributing factor in carcinogenesis. The alterations can occur at different levels: mutation, copy number variations or gene translocations resulting in altered expression of the corresponding genes or impaired protein functions. Genes involved are mainly tumor suppressors, oncogenes or ADN repair genes whose modifications in tumors will impinge cell fate and proliferation from tumor initiation to metastasis. The entire genome of various tumor types, have now been sequenced. In lung cancer, the average number of mutations is very high with more than 8.9 mutations/Mb (Network TCGAR, 2014) that is to say more than 10,000 mutations/genome. These alterations need to be classified, indeed, some are true drivers that directly impact proliferation and some are passenger mutations linked to genetic instability. The development of targeted therapies relies on the identification of oncogenic drivers. The identification of genotype-phenotype associations as in the case of EGFR-TKI (Epidermal growth factor receptor-tyrosine kinase inhibitor) and EGFR mutations in lung cancer led to the restriction of drugs to patients for which tumor genotype predicts efficacy. Tumor

  10. Advances in understanding clinical significance of circulating tumor cells and cell-free DNA methylation in patients with hepatocellular carcinoma%循环肿瘤细胞及游离DNA甲基化在肝细胞癌患者中的研究进展

    Institute of Scientific and Technical Information of China (English)

    邱必军; 薛峰; 余坚; 夏强

    2012-01-01

    During the early formation and growth of a primary tumor, tumor cells can be detached from the primary tumor and circulate through the bloodstream to form circulating tumor cells (CTCs). Also during the early stage of tumor development, apoptotic and necrotic tumor cells can release DNA into the bloodstream to form circulating cell-free DNA. Therefore, analysis of CTCs and circulating cell-free DNA is considered as a real-time "liquid biopsy" for cancer patients. CTCs are very heterogeneous and can be enriched and detected using different technologies based on their physical and biological properties. The use of modern molecular biological techniques to extract the cell-free DNA in circulating blood and detect aberrant genetic and epigenetic alterations can provide valuable information for the early diagnosis, prediction of response to therapy, recurrence monitoring and prognosis evaluation in cancer patients. In this paper, we will give a review of recent advances in understanding the clinical significance of CTCs and cell-free DNA in patients with hepatocellular carcinoma.%随着对肿瘤认识的不断深入,人们发现在原发肿瘤形成和生长的早期阶段,肿瘤细胞即可以脱离原发肿瘤组织释放到外周血形成循环肿瘤细胞,同样在肿瘤形成的早期阶段就会出现肿瘤细胞的坏死和凋亡,这些凋亡或坏死的肿瘤细胞也可以释放其DNA入外周血形成血浆或血清游离的DNA,因此对肿瘤患者循环肿瘤细胞及游离DNA的分析被认为是实时的“液相活检”,肿瘤患者中的循环肿瘤细胞具有非常强的异质性,我们可以根据其物理和生物学性质采用不同的技术对其进行富集和检测;可以借助现代分子生物学手段对循环游离DNA进行提取,并对其遗传学和表观遗传学的异常改变进行分析,这可为肿瘤的早期诊断、疗效评估、复发监测及预后判断提供重要的信息.本文结合本课题组的研究重点,就循环肿

  11. Circulation Tumor Cells: counts and characteristics

    NARCIS (Netherlands)

    B. Mostert (Bianca)

    2012-01-01

    textabstractIn recent years, many new anti-cancer agents have been developed and introduced into clinical care. While these new agents have led to substantial gains in response rates and life expectancies, they have also increased the need for tools to select those patients benefitting from said the

  12. Reproducibility of Digital PCR Assays for Circulating Tumor DNA Analysis in Advanced Breast Cancer

    Science.gov (United States)

    Hrebien, Sarah; O’Leary, Ben; Beaney, Matthew; Schiavon, Gaia; Fribbens, Charlotte; Bhambra, Amarjit; Johnson, Richard; Turner, Nicholas

    2016-01-01

    Circulating tumor DNA (ctDNA) analysis has the potential to allow non-invasive analysis of tumor mutations in advanced cancer. In this study we assessed the reproducibility of digital PCR (dPCR) assays of circulating tumor DNA in a cohort of patients with advanced breast cancer and assessed delayed plasma processing using cell free DNA preservative tubes. We recruited a cohort of 96 paired samples from 71 women with advanced breast cancer who had paired blood samples processed either immediately or delayed in preservative tubes with processing 48–72 hours after collection. Plasma DNA was analysed with multiplex digital PCR (mdPCR) assays for hotspot mutations in PIK3CA, ESR1 and ERBB2, and for AKT1 E17K. There was 94.8% (91/96) agreement in mutation calling between immediate and delayed processed tubes, kappa 0.88 95% CI 0.77–0.98). Discordance in mutation calling resulted from low allele frequency and likely stochastic effects. In concordant samples there was high correlation in mutant copies per ml plasma (r2 = 0.98; pprocessed tubes, although overall quantification of total cell free plasma DNA had similar prognostic effects in immediate (HR 3.6) and delayed (HR 3.0) tubes. There was moderate agreement in changes in allele fraction between sequential samples in quantitative mutation tracking (r = 0.84, p = 0.0002). Delayed processing of samples using preservative tubes allows for centralized ctDNA digital PCR mutation screening in advanced breast cancer. The potential of preservative tubes in quantitative mutation tracking requires further research. PMID:27760227

  13. Infantile pericardial round cell tumor

    Directory of Open Access Journals (Sweden)

    K H Sridevi

    2015-01-01

    Full Text Available Cardiac malignancies presenting in infancy are rare. Desmoplastic small round cell tumor (DSRCT is a rare occurrence in this age group. No case of intrapericardial DSRCT has been reported in the literature in infants.

  14. Microfluidic cell isolation technology for drug testing of single tumor cells and their clusters

    Science.gov (United States)

    Bithi, Swastika S.; Vanapalli, Siva A.

    2017-01-01

    Drug assays with patient-derived cells such as circulating tumor cells requires manipulating small sample volumes without loss of rare disease-causing cells. Here, we report an effective technology for isolating and analyzing individual tumor cells and their clusters from minute sample volumes using an optimized microfluidic device integrated with pipettes. The method involves using hand pipetting to create an array of cell-laden nanoliter-sized droplets immobilized in a microfluidic device without loss of tumor cells during the pipetting process. Using this technology, we demonstrate single-cell analysis of tumor cell response to the chemotherapy drug doxorubicin. We find that even though individual tumor cells display diverse uptake profiles of the drug, the onset of apoptosis is determined by accumulation of a critical intracellular concentration of doxorubicin. Experiments with clusters of tumor cells compartmentalized in microfluidic drops reveal that cells within a cluster have higher viability than their single-cell counterparts when exposed to doxorubicin. This result suggests that circulating tumor cell clusters might be able to better survive chemotherapy drug treatment. Our technology is a promising tool for understanding tumor cell-drug interactions in patient-derived samples including rare cells. PMID:28150812

  15. Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab.

    Directory of Open Access Journals (Sweden)

    Ahmad A Tarhini

    Full Text Available We evaluated neoadjuvant ipilimumab in patients with surgically operable regionally advanced melanoma in order to define markers of activity in the blood and tumor as assessed at baseline (before ipilimumab and early on-treatment. Patients were treated with ipilimumab (10 mg/kg intravenously every 3 weeks ×2 doses bracketing surgery. Tumor and blood biospecimens were obtained at baseline and at surgery. Flow cytometry and immunohistochemistry for select biomarkers were performed. Thirty five patients were enrolled; IIIB (3; N2b, IIIC (32; N2c, N3, IV (2. Worst toxicities included Grade 3 diarrhea/colitis (5; 14%, hepatitis (2; 6%, rash (1; 3%, elevated lipase (3; 9%. Median follow up was 18 months: among 33 evaluable patients, median progression free survival (PFS was 11 months, 95% CI (6.2-19.2. There was a significant decrease in circulating myeloid derived suppressor cells (MDSC. Greater decrease in circulating monocyte gate MDSC Lin1-/HLA-DR-/CD33⁺/CD11b⁺ was associated with improved PFS (p = 0.03. There was a significant increase in circulating regulatory T cells (Treg; CD4⁺CD25hi⁺Foxp3⁺ that, unexpectedly, was associated with improved PFS (HR = 0.57; p = 0.034. Baseline evidence of fully activated type I CD4⁺ and CD8⁺ antigen-specific T cell immunity against cancer-testis (NY-ESO-1 and melanocytic lineage (MART-1, gp100 antigens was detected and was significantly potentiated after ipilimumab. In tumor, there was a significant increase in CD8⁺ T cells after ipilimumab (p = 0.02. Ipilimumab induced increased tumor infiltration by fully activated (CD69⁺ CD3⁺/CD4⁺ and CD3⁺/CD8⁺ T cells with evidence of induction/potentiation of memory T cells (CD45RO⁺. The change in Treg observed within the tumor showed an inverse relationship with clinical benefit and greater decrease in tumor MDSC subset Lin1-/HLA-DR-/CD33⁺/CD11b⁺ was associated with improved PFS at one year. Neoadjuvant evaluation revealed a

  16. Comparison of assay methods for detection of circulating tumor cells in metastatic breast cancer: AdnaGen AdnaTest BreastCancer Select/Detect™ versus Veridex CellSearch™ system.

    Science.gov (United States)

    Andreopoulou, E; Yang, L-Y; Rangel, K M; Reuben, J M; Hsu, L; Krishnamurthy, S; Valero, V; Fritsche, H A; Cristofanilli, M

    2012-04-01

    The detection of CTCs prior to and during therapy is an independent and strong prognostic marker, and it is predictive of poor treatment outcome. A major challenge is that different technologies are available for isolation and characterization of CTCs in peripheral blood (PB). We compare the CellSearch system and AdnaTest BreastCancer Select/Detect, to evaluate the extent that these assays differ in their ability to detect CTCs in the PB of MBC patients. CTCs in 7.5 ml of PB were isolated and enumerated using the CellSearch, before new treatment. Two cutoff values of ≥2 and ≥5 CTCs/7.5 ml were used. AdnaTest requires 5 ml of PB to detect gene transcripts of tumor markers (GA733-2, MUC-1, and HER2) by RT-PCR. AdnaTest was scored positive if ≥1 of the transcript PCR products for the 3 markers were detected at a concentration ≥0.15 ng/μl. A total of 55 MBC patients were enrolled. 26 (47%) patients were positive for CTCs by the CellSearch (≥2 cutoff), while 20 (36%) were positive (≥5 cutoff). AdnaTest was positive in 29 (53%) with the individual markers being positive in 18% (GA733-2), 44% (MUC-1), and 35% (HER2). Overall positive agreement was 73% for CTC≥2 and 69% for CTC≥5. These preliminary data suggest that the AdnaTest has equivalent sensitivity to that of the CellSearch system in detecting 2 or more CTCs. While there is concordance between these 2 methods, the AdnaTest complements the CellSearch system by improving the overall CTC detection rate and permitting the assessment of genomic markers in CTCs.

  17. Fourier-ring descriptor to characterize rare circulating cells from images generated using immunofluorescence microscopy.

    Science.gov (United States)

    Emerson, Tegan; Kirby, Michael; Bethel, Kelly; Kolatkar, Anand; Luttgen, Madelyn; O'Hara, Stephen; Newton, Paul; Kuhn, Peter

    2015-03-01

    We address the problem of subclassification of rare circulating cells using data driven feature selection from images of candidate circulating tumor cells from patients diagnosed with breast, prostate, or lung cancer. We determine a set of low level features which can differentiate among candidate cell types. We have implemented an image representation based on concentric Fourier rings (FRDs) which allow us to exploit size variations and morphological differences among cells while being rotationally invariant. We discuss potential clinical use in the context of treatment monitoring for cancer patients with metastatic disease.

  18. Dielectrophoretic capture and genetic analysis of single neuroblastoma tumor cells

    Directory of Open Access Journals (Sweden)

    Erica L Carpenter

    2014-07-01

    Full Text Available Our understanding of the diversity of cells that escape the primary tumor and seed micrometastases remains rudimentary, and approaches for studying circulating and disseminated tumor cells have been limited by low throughput and sensitivity, reliance on single parameter sorting, and a focus on enumeration rather than phenotypic and genetic characterization. Here we utilize a highly sensitive microfluidic and dielectrophoretic approach for the isolation and genetic analysis of individual tumor cells. We employed fluorescence labeling to isolate 208 single cells from spiking experiments conducted with 11 cell lines, including 8 neuroblastoma cell lines, and achieved a capture sensitivity of 1 tumor cell per 106 white blood cells. Sample fixation or freezing had no detectable effect on cell capture. Point mutations were accurately detected in the whole genome amplification product of captured single tumor cells but not in negative control white blood cells. We applied this approach to capture 144 single tumor cells from 10 bone marrow samples from patients suffering from neuroblastoma. In this pediatric malignancy, high-risk patients often exhibit wide-spread hematogenous metastasis, but access to primary tumor can be difficult or impossible. Here we used flow-based sorting to pre-enrich samples with tumor involvement below 0.02%. For all patients for whom a mutation in the Anaplastic Lymphoma Kinase gene had already been detected in their primary tumor, the same mutation was detected in single cells from their marrow. These findings demonstrate a novel, non-invasive, and adaptable method for the capture and genetic analysis of single tumor cells from cancer patients.

  19. Impact of microbubble enhanced, pulsed, focused ultrasound on tumor circulation of subcutaneous VX2 cancer

    Institute of Scientific and Technical Information of China (English)

    Li Peijing; Zhu Mei; Xu Yali; Zhao Yang; Gao Shunji; Liu Zheng; Gao Yun-hua

    2014-01-01

    Background Intravascular microbubble-enhanced acoustic cavitation is capable of disrupting the vascular walls of capillaries and small vessels.This study was designed to investigate the impact of microbubble-enhanced,pulsed and focused ultrasound (MEUS) on the blood perfusion of subcutaneous VX2 tumors in rabbits.Methods Subcutaneous VX2 cancers in twenty New Zealand rabbits were treated by combining high-pressure amplitude,pulsed and focused therapeutic ultrasound (TUS) and intravenous microbubble injections.The TUS transducer was operated with a peak negative pressure of 4.6 MPa and a duty cycle of 0.41%.Controls were subcutaneous VX2 cancers treated with TUS or microbubbles only.Contrast-enhanced ultrasound (CEUS) and intravenous Evans Blue (EB) perfusion were performed to assess the tumor circulation.The tumor microvascular disruption was assessed by histological examination.Results CEUS showed that the tumor circulation almost vanished after MEUS treatment.The average peak grayscale value (GSV) of tumor CEUS dropped significantly from 84.1±22.4 to 15.8±10.8 in the MEUS-treated tumors but no significant GSV changes were found in tumors in the two control groups.The mean tumor EB content of the MEUS-treated tumors was significantly lower than that of the controls.Histological examination found scattered tumor microvascular disruption with intercellular edema after MEUS treatment.Conclusion The tumor circulation of VX2 cancers can be arrested or significantly reduced by MEUS due to microvascular disruption.

  20. Circulating osteogenic cells: implications for injury, repair, and regeneration

    DEFF Research Database (Denmark)

    Pignolo, Robert J; Kassem, Moustapha

    2011-01-01

    The aim of this review is to provide a critical reading of recent literature pertaining to the presence of circulating, fluid-phase osteoblastic cells and their possible contribution to bone formation. We have termed this group of cells collectively as circulating osteogenic precursor (COP) cells...

  1. Circulating neuroendocrine tumors biomarkers. Why? When? How? Suggestions for clinical practice from guidelines and consensus

    Institute of Scientific and Technical Information of China (English)

    Paola Razzore; Giorgio Arnaldi

    2016-01-01

    Neuroendocrine neoplasms (NETs) are rare tumors that are increasing in incidence. NETs are characterized by heterogeneous biological behaviour, clinical presentation and course. A sensitive and speciifc diagnostic and prognostic circulating biomarker useful for all sites, grading and staging of neuroendocrine tumors is still an unmet need. The aim of this article was to review current neuroendocrine and oncologic scientiifc society guidelines and position statements, and propose recommendations for the most frequent clinical practice queries on circulating neuroendocrine tumors biomarkers. The authors searched for NCCN, NANETS, ESMO, ENETS, UKINETS, AME management guidelines or position statements available from PubMed up to 7th January 2016. From these results we chose guidelines or position statements published by scientiifc societies or institutions in USA, Europe and Italy with recognized expertise in neuroendocrine tumor patient management. The authors present suggestions for clinical practice based on this analysis.

  2. In vivo tumor cell adhesion in the pulmonary microvasculature is exclusively mediated by tumor cell - endothelial cell interaction

    Directory of Open Access Journals (Sweden)

    Mees Soeren T

    2010-04-01

    Full Text Available Abstract Background Metastasis formation is the leading cause of death among colon cancer patients. We established a new in-situ model of in vivo microscopy of the lung to analyse initiating events of metastatic tumor cell adhesion within this typical metastatic target of colon cancer. Methods Anaesthetized CD rats were mechanically ventilated and 106 human HT-29LMM and T84 colon cancer cells were injected intracardially as single cell suspensions. Quantitative in vivo microscopy of the lung was performed in 10 minute intervals for a total of 40 minutes beginning with the time of injection. Results After vehicle treatment of HT-29LMM controls 15.2 ± 5.3; 14.2 ± 7.5; 11.4 ± 5.5; and 15.4 ± 6.5 cells/20 microscopic fields were found adherent within the pulmonary microvasculature in each 10 minute interval. Similar numbers were found after injection of the lung metastasis derived T84 cell line and after treatment of HT-29LMM with unspecific mouse control-IgG. Subsequently, HT-29LMM cells were treated with function blocking antibodies against β1-, β4-, and αv-integrins wich also did not impair tumor cell adhesion in the lung. In contrast, after hydrolization of sialylated glycoproteins on the cells' surface by neuraminidase, we observed impairment of tumor cell adhesion by more than 50% (p Conclusions These results demonstrate that the initial colon cancer cell adhesion in the capillaries of the lung is predominantly mediated by tumor cell - endothelial cell interactions, possibly supported by platelets. In contrast to reports of earlier studies that metastatic tumor cell adhesion occurs through integrin mediated binding of extracellular matrix proteins in liver, in the lung, the continuously lined endothelium appears to be specifically targeted by circulating tumor cells.

  3. High expression of TRF2, SOX10, and CD10 in circulating tumor microemboli detected in metastatic melanoma patients. A potential impact for the assessment of disease aggressiveness.

    Science.gov (United States)

    Long, Elodie; Ilie, Marius; Bence, Coraline; Butori, Catherine; Selva, Eric; Lalvée, Salomé; Bonnetaud, Christelle; Poissonnet, Gilles; Lacour, Jean-Philippe; Bahadoran, Philippe; Brest, Patrick; Gilson, Eric; Ballotti, Robert; Hofman, Véronique; Hofman, Paul

    2016-06-01

    Circulating tumors cells (CTCs) can be detected in the blood of metastatic melanoma patients (MMPs) both as isolated circulating tumor cells (iCTCs) and circulating tumor microemboli (CTMs), but their clinical significance remains unknown. The aim of this work was to evaluate the prognostic impact in metastatic cutaneous melanoma of CTMs and iCTCs identified by a cytomorphological approach using the isolation by size of tumor cell (ISET) method. We characterized the phenotype of CTCs using anti-PS100, anti-SOX10, anti-CD10, and anti-TRF2 antibodies. 128 MMPs and 37 control healthy individuals with benign nevi were included in this study. Results were compared to the follow-up of patients. 109/128 (85%) MMPs showed CTCs, 44/128 (34%) with 2 to 6 CTMs and 65/128 (51%) with 4 to 9 iCTCs. PS100 expression was homogeneous in iCTCs and heterogeneous in CTMs. SOX10, CD10, and TRF2 were mainly expressed in CTMs. None of the control subjects demonstrated circulating malignant tumor cells. Overall survival was significantly decreased in patients with CTMs, independently of the therapeutic strategies. In conclusion, the presence of CTMs is an independent predictor of shorter survival from the time of diagnosis of MMPs.

  4. Mechanisms of tumor cell necrosis.

    Science.gov (United States)

    Proskuryakov, Sergey Y; Gabai, Vladimir L

    2010-01-01

    Until recently, necrosis, unlike apoptosis, was considered as passive and unregulated form of cell death. However, during the last decade a number of experimental data demonstrated that, except under extreme conditions, necrosis may be a well-regulated process activated by rather specific physiological and pathological stimuli. In this review, we consider mechanisms and the role of necrosis in tumor cells. It became recently clear that the major player in necrotic cascade is a protein kinase RIP1, which can be activated by number of stumuli including TNF, TRAIL, and LPS, oxidative stress, or DNA damage (via poly-ADP-ribose polymerase). RIP1 kinase directly (or indirectly via another kinase JNK) transduces signal to mitochondria and causes specific damage (mitochondrial permeability transition). Mitochondrial collapse activates various proteases (e.g., calpains, cathepsin) and phospholipases, and eventually leads to plasma membrane destruction, a hallmark of necrotic cell death. Necrosis, in contrast to apoptosis, usually evokes powerful inflammatory response, which may participate in tumor regression during anticancer therapy. On the other hand, excessive spontaneous necrosis during tumor development may lead to more aggressive tumors due to stimulatory role of necrosis-induced inflammation on their growth.

  5. Multiparametric classification links tumor microenvironments with tumor cell phenotype.

    Directory of Open Access Journals (Sweden)

    Bojana Gligorijevic

    2014-11-01

    Full Text Available While it has been established that a number of microenvironment components can affect the likelihood of metastasis, the link between microenvironment and tumor cell phenotypes is poorly understood. Here we have examined microenvironment control over two different tumor cell motility phenotypes required for metastasis. By high-resolution multiphoton microscopy of mammary carcinoma in mice, we detected two phenotypes of motile tumor cells, different in locomotion speed. Only slower tumor cells exhibited protrusions with molecular, morphological, and functional characteristics associated with invadopodia. Each region in the primary tumor exhibited either fast- or slow-locomotion. To understand how the tumor microenvironment controls invadopodium formation and tumor cell locomotion, we systematically analyzed components of the microenvironment previously associated with cell invasion and migration. No single microenvironmental property was able to predict the locations of tumor cell phenotypes in the tumor if used in isolation or combined linearly. To solve this, we utilized the support vector machine (SVM algorithm to classify phenotypes in a nonlinear fashion. This approach identified conditions that promoted either motility phenotype. We then demonstrated that varying one of the conditions may change tumor cell behavior only in a context-dependent manner. In addition, to establish the link between phenotypes and cell fates, we photoconverted and monitored the fate of tumor cells in different microenvironments, finding that only tumor cells in the invadopodium-rich microenvironments degraded extracellular matrix (ECM and disseminated. The number of invadopodia positively correlated with degradation, while the inhibiting metalloproteases eliminated degradation and lung metastasis, consistent with a direct link among invadopodia, ECM degradation, and metastasis. We have detected and characterized two phenotypes of motile tumor cells in vivo, which

  6. Modulation of circulating angiogenic factors and tumor biology by aerobic training in breast cancer patients receiving neoadjuvant chemotherapy.

    Science.gov (United States)

    Jones, Lee W; Fels, Diane R; West, Miranda; Allen, Jason D; Broadwater, Gloria; Barry, William T; Wilke, Lee G; Masko, Elisabeth; Douglas, Pamela S; Dash, Rajesh C; Povsic, Thomas J; Peppercorn, Jeffrey; Marcom, P Kelly; Blackwell, Kimberly L; Kimmick, Gretchen; Turkington, Timothy G; Dewhirst, Mark W

    2013-09-01

    Aerobic exercise training (AET) is an effective adjunct therapy to attenuate the adverse side-effects of adjuvant chemotherapy in women with early breast cancer. Whether AET interacts with the antitumor efficacy of chemotherapy has received scant attention. We carried out a pilot study to explore the effects of AET in combination with neoadjuvant doxorubicin-cyclophosphamide (AC+AET), relative to AC alone, on: (i) host physiology [exercise capacity (VO2 peak), brachial artery flow-mediated dilation (BA-FMD)], (ii) host-related circulating factors [circulating endothelial progenitor cells (CEP) cytokines and angiogenic factors (CAF)], and (iii) tumor phenotype [tumor blood flow ((15)O-water PET), tissue markers (hypoxia and proliferation), and gene expression] in 20 women with operable breast cancer. AET consisted of three supervised cycle ergometry sessions/week at 60% to 100% of VO2 peak, 30 to 45 min/session, for 12 weeks. There was significant time × group interactions for VO2 peak and BA-FMD, favoring the AC+AET group (P 0.05). Whole-genome microarray tumor analysis revealed significant differential modulation of 57 pathways (P < 0.01), including many that converge on NF-κB. Data from this exploratory study provide initial evidence that AET can modulate several host- and tumor-related pathways during standard chemotherapy. The biologic and clinical implications remain to be determined.

  7. Circulating plasma cells detected by flow cytometry as a predictor of survival in 302 patients with newly diagnosed multiple myeloma.

    Science.gov (United States)

    Nowakowski, Grzegorz S; Witzig, Thomas E; Dingli, David; Tracz, Michal J; Gertz, Morie A; Lacy, Martha Q; Lust, John A; Dispenzieri, Angela; Greipp, Philip R; Kyle, Robert A; Rajkumar, S Vincent

    2005-10-01

    We detected circulating plasma cells (PCs) by flow cytometry in 302 patients with newly diagnosed multiple myeloma (MM) by gating on CD38+CD45- cells. The number of circulating PCs per 50 000 mononuclear cells was reported. In 80 (27%) patients, no circulating PC were seen; 106 (35%) patients had 1 to 10 and 115 (38%) patients had more than 10 circulating PCs. Median overall survival for the 302 patients was 47 months. Patients with 10 or fewer circulating PCs had a median survival of 58.7 months, whereas patients with more than 10 circulating PCs had a median survival of 37.3 months (P = .001). On multivariate analysis, the prognostic value of circulating PCs was independent of beta2-microglobulin, albumin, and C-reactive protein. There was only a weak correlation between tumor mass and circulating PCs, suggesting that the appearance of circulating PCs may be a reflection of tumor biology. We conclude that the number of circulating PCs measured by flow cytometry in patients with newly diagnosed MM is an independent predictor of survival.

  8. Patient-Derived Antibody Targets Tumor Cells

    Science.gov (United States)

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  9. Dendritic cells are stressed out in tumor.

    Science.gov (United States)

    Maj, Tomasz; Zou, Weiping

    2015-09-01

    A recently paper published in Cell reports that dendritic cells (DCs) are dysfunctional in the tumor environment. Tumor impairs DC function through induction of endoplasmic reticulum stress response and subsequent disruption of lipid metabolic homeostasis.

  10. Treatment Option Overview (Extragonadal Germ Cell Tumors)

    Science.gov (United States)

    ... Germ Cell Tumors Treatment Extragonadal Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Extragonadal Germ ... Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment ...

  11. Human neutrophils facilitate tumor cell transendothelial migration.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  12. Peripheral dentinogenic ghost cell tumor

    Directory of Open Access Journals (Sweden)

    Sushant S Kamat

    2013-01-01

    Full Text Available Dentinogenic ghost cell tumors (DGCT are uncommon lesions mainly with rare peripheral types. This report presents a case of peripheral DGCT on the left side of the mandibular alveolar ridge of a heavy smoker, a 68-year-old man, with main presenting feature as a mild pain. Submandibular lymphadenopathy and radiological "saucerization" were evident. Differential diagnosis included fibroma, neurofibroma, peripheral ameloblastoma, peripheral odontogenic fibroma, and peripheral giant cell granuloma. Histologically, ameloblastoma-like epithelial elements were seen in association with grouped ghost cells. Proliferating polyhedral cells and stellate reticulum-like cells with various densities were spread over a wide range of the field. The lesion was curetted and after 2 years of follow up, it did not recur.

  13. Formation of germline chimera Gaok chicken used circulation primordial germ cells (circulation PGCs fresh and thawed

    Directory of Open Access Journals (Sweden)

    Kostaman T

    2014-03-01

    Full Text Available Formation of germline chimeras by transfer of chicken primordial germ cells (PGCs is one of the effective techniques for preservation and regeneration of genetic resources in chickens. This study attempted to form germline chimeras of Gaok chicken buy purifying circulated PGCs of donor embryo before it is transferred to the recipient (White Leghorn chickens=WL and studied the ability of recipient embryo on survival in incubators, and hatchability. This study used 200 fertile eggs of Gaok and 90 fertile WL breed all of the eggs was incubated at 380C and 60% humidity in a portable incubator. PGCs-circulation of the blood collected Gaok embryos at stage 14-16 were taken from the dorsal aorta, and then purified by centrifugation method using nycodenz. PGCs-circulation results further purification frozen in liquid nitrogen before being transferred to the recipient embryo. The results showed that for the development of embryos transferred to the fresh circulation of PGCs-circulation as many as 25 cells can survive up to day 14, while one of the transferred of 50 and 100 cells into recipient embryos was hatched (10%. On the contrari recipient embryos that are transferred to the frozen PGCs-circulation the embryos development was shorter, and only survived until day 10th (treatment 25 cells, day 14th (treatment of 50 cells and day 17th (treatment of 100 cells. It is concluded that the amount of PGCs-circulation embryos transferred to the recipient is one factor that influence the success of the development germline chimeras.

  14. Label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    Science.gov (United States)

    Wang, Xiaoling; Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Gao, Wenyuan; Tang, Shuo; Wei, Xunbin

    2016-03-01

    Melanoma is a malignant tumor of melanocytes. Melanoma cells have high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC), which is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. We have developed in vitro experiments to prove the ability of PAFC system of detecting photoacoustic signals from melanoma cells. For in vivo experiments, we have constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells, B16F10 with subcutaneous injection. PA signals are detected in the blood vessels of mouse ears in vivo. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The processing methods have a great potential for analyzing signals accurately and rapidly. By counting circulating melanoma cells termly, we obtain the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation.

  15. In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells

    Science.gov (United States)

    He, Yun; Wang, Lidai; Shi, Junhui; Yao, Junjie; Li, Lei; Zhang, Ruiying; Huang, Chih-Hsien; Zou, Jun; Wang, Lihong V.

    2016-12-01

    Metastasis causes as many as 90% of cancer-related deaths, especially for the deadliest skin cancer, melanoma. Since hematogenous dissemination of circulating tumor cells is the major route of metastasis, detection and destruction of circulating tumor cells are vital for impeding metastasis and improving patient prognosis. Exploiting the exquisite intrinsic optical absorption contrast of circulating melanoma cells, we developed dual-wavelength photoacoustic flow cytography coupled with a nanosecond-pulsed melanoma-specific laser therapy mechanism. We have successfully achieved in vivo label-free imaging of rare single circulating melanoma cells in both arteries and veins of mice. Further, the photoacoustic signal from a circulating melanoma cell immediately hardware-triggers a lethal pinpoint laser irradiation to kill it on the spot in a thermally confined manner without causing collateral damage. A pseudo-therapy study including both in vivo and in vitro experiments demonstrated the performance and the potential clinical value of our method, which can facilitate early treatment of metastasis by clearing circulating tumor cells from vasculature.

  16. In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells

    Science.gov (United States)

    He, Yun; Wang, Lidai; Shi, Junhui; Yao, Junjie; Li, Lei; Zhang, Ruiying; Huang, Chih-Hsien; Zou, Jun; Wang, Lihong V.

    2016-01-01

    Metastasis causes as many as 90% of cancer-related deaths, especially for the deadliest skin cancer, melanoma. Since hematogenous dissemination of circulating tumor cells is the major route of metastasis, detection and destruction of circulating tumor cells are vital for impeding metastasis and improving patient prognosis. Exploiting the exquisite intrinsic optical absorption contrast of circulating melanoma cells, we developed dual-wavelength photoacoustic flow cytography coupled with a nanosecond-pulsed melanoma-specific laser therapy mechanism. We have successfully achieved in vivo label-free imaging of rare single circulating melanoma cells in both arteries and veins of mice. Further, the photoacoustic signal from a circulating melanoma cell immediately hardware-triggers a lethal pinpoint laser irradiation to kill it on the spot in a thermally confined manner without causing collateral damage. A pseudo-therapy study including both in vivo and in vitro experiments demonstrated the performance and the potential clinical value of our method, which can facilitate early treatment of metastasis by clearing circulating tumor cells from vasculature. PMID:28000788

  17. Long circulating reduced graphene oxide-iron oxide nanoparticles for efficient tumor targeting and multimodality imaging

    Science.gov (United States)

    Xu, Cheng; Shi, Sixiang; Feng, Liangzhu; Chen, Feng; Graves, Stephen A.; Ehlerding, Emily B.; Goel, Shreya; Sun, Haiyan; England, Christopher G.; Nickles, Robert J.; Liu, Zhuang; Wang, Taihong; Cai, Weibo

    2016-06-01

    Polyethylene glycol (PEG) surface modification is one of the most widely used approaches to improve the solubility of inorganic nanoparticles, prevent their aggregation and prolong their in vivo blood circulation half-life. Herein, we developed double-PEGylated biocompatible reduced graphene oxide nanosheets anchored with iron oxide nanoparticles (RGO-IONP-1stPEG-2ndPEG). The nanoconjugates exhibited a prolonged blood circulation half-life (~27.7 h) and remarkable tumor accumulation (>11 %ID g-1) via an enhanced permeability and retention (EPR) effect. Due to the strong near-infrared absorbance and superparamagnetism of RGO-IONP-1stPEG-2ndPEG, multimodality imaging combining positron emission tomography (PET) imaging with magnetic resonance imaging (MRI) and photoacoustic (PA) imaging was successfully achieved. The promising results suggest the great potential of these nanoconjugates for multi-dimensional and more accurate tumor diagnosis and therapy in the future.

  18. Noninvasive Assessment of Tumor Cell Proliferation in Animal Models

    Directory of Open Access Journals (Sweden)

    Matthias Edinger

    1999-10-01

    Full Text Available Revealing the mechanisms of neoplastic disease and enhancing our ability to intervene in these processes requires an increased understanding of cellular and molecular changes as they occur in intact living animal models. We have begun to address these needs by developing a method of labeling tumor cells through constitutive expression of an optical reporter gene, noninvasively monitoring cellular proliferation in vivo using a sensitive photon detection system. A stable line of HeLa cells that expressed a modified firefly luciferase gene was generated, proliferation of these cells in irradiated severe combined immunodeficiency (SCID mice was monitored. Tumor cells were introduced into animals via subcutaneous, intraperitoneal and intravenous inoculation and whole body images, that revealed tumor location and growth kinetics, were obtained. The number of photons that were emitted from the labeled tumor cells and transmitted through murine tissues was sufficient to detect 1×103 cells in the peritoneal cavity, 1×104 cells at subcutaneous sites and 1×106 circulating cells immediately following injection. The kinetics of cell proliferation, as measured by photon emission, was exponential in the peritoneal cavity and at subcutaneous sites. Intravenous inoculation resulted in detectable colonies of tumor cells in animals receiving more than 1×103 cells. Our demonstrated ability to detect small numbers of tumor cells in living animals noninvasively suggests that therapies designed to treat minimal disease states, as occur early in the disease course and after elimination of the tumor mass, may be monitored using this approach. Moreover, it may be possible to monitor micrometastases and evaluate the molecular steps in the metastatic process. Spatiotemporal analyses of neoplasia will improve the predictability of animal models of human disease as study groups can be followed over time, this method will accelerate development of novel therapeutic

  19. Screening and identification of differentially expressed transcripts in circulating cells of prostate cancer patients using suppression subtractive hybridization

    Directory of Open Access Journals (Sweden)

    Manatt C Scott

    2005-08-01

    Full Text Available Abstract Background Tumor metastasis and changes in host immunosurveillance are important components in cancer development. Tumor cell invasion into the bloodstream is an essential step for systemic metastasis. Currently, the detection of tumor cells in the circulation is mainly dependent upon the utilization of known epithelial cell markers. However, expression of these molecules is not limited to cancer patients; healthy people also have a small number of epithelial cells in their circulation. Utilizing these markers to detect circulating tumor cells (CTCs cannot adequately explain the mechanisms of tumor cell survival or their development of metastatic potential in peripheral blood. The immune system can also evolve along with the cancer, actually promoting or selecting the outgrowth of tumor variants. Unfortunately, both metastasis and immunosurveillance remain mysterious and are debatable because we have yet to define the molecules that participate in these processes. We are interested in identifying the existence of expressed genes, or mRNA species, that are specifically associated with circulating cells of cancer-bearing patients using prostate cancer (PCa as a model. Results We established two comprehensive subtracted cDNA libraries using a molecular technique called suppression subtractive hybridization. This technique selectively amplifies transcripts that are specifically expressed in circulating cells of either PCa patients or healthy men. Following sequencing reaction, we showed that 17 out of 23 (73.9% sequenced clones did not match any mRNAs in the GenBank database. This result suggests that genes associated with alterations in circulating cells of cancer-bearing patients are largely unknown. Semi-quantitative RT-PCR confirmed that two genes are up-regulated in circulating cells of PCa patients, whereas another two genes are down-regulated in the same patients. Conclusion The comprehensive gene expression analysis is capable of

  20. Imaging Tumor Cell Movement In Vivo

    OpenAIRE

    Entenberg, David; Kedrin, Dmitriy; Wyckoff, Jeffrey; Sahai, Erik; Condeelis, John; Segall, Jeffrey E

    2013-01-01

    This unit describes the methods that we have been developing for analyzing tumor cell motility in mouse and rat models of breast cancer metastasis. Rodents are commonly used both to provide a mammalian system for studying human tumor cells (as xenografts in immunocompromised mice) as well as for following the development of tumors from a specific tissue type in transgenic lines. The Basic Protocol in this unit describes the standard methods used for generation of mammary tumors and imaging th...

  1. Genome-wide copy number analysis of cerebrospinal fluid tumor cells and their corresponding archival primary tumors.

    Science.gov (United States)

    Magbanua, Mark Jesus M; Roy, Ritu; Sosa, Eduardo V; Hauranieh, Louai; Kablanian, Andrea; Eisenbud, Lauren E; Ryazantsev, Artem; Au, Alfred; Scott, Janet H; Melisko, Michelle; Park, John W

    2014-12-01

    A debilitating complication of breast cancer is the metastatic spread of tumor cells to the leptomeninges or cerebrospinal fluid (CSF). Patients diagnosed with this aggressive clinical syndrome, known as leptomeningeal carcinomatosis, have very poor prognosis. Despite improvements in detecting cerebrospinal fluid tumor cells (CSFTCs), information regarding their molecular biology is extremely limited. In our recent work, we utilized a protocol previously used for circulating tumor cell isolation to purify tumor cells from the CSF. We then performed genomic characterization of CSFTCs as well as archival tumors from the same patient. Here, we describe the microarray data and quality controls associated with our study published in the Cancer Research journal in 2013 [1]. We also provide an R script containing code for quality control of microarray data and assessment of copy number calls. The microarray data has been deposited into Gene Expression Omnibus under accession # GSE46068.

  2. Robo-Enabled Tumor Cell Extrusion.

    Science.gov (United States)

    Richardson, Helena E; Portela, Marta

    2016-12-19

    How aberrant cells are removed from a tissue to prevent tumor formation is a key question in cancer biology. Reporting in this issue of Developmental Cell, Vaughen and Igaki (2016) show that a pathway with an important role in neural guidance also directs extrusion of tumor cells from epithelial tissues.

  3. Evolution of cooperation among tumor cells.

    Science.gov (United States)

    Axelrod, Robert; Axelrod, David E; Pienta, Kenneth J

    2006-09-01

    The evolution of cooperation has a well established theoretical framework based on game theory. This approach has made valuable contributions to a wide variety of disciplines, including political science, economics, and evolutionary biology. Existing cancer theory suggests that individual clones of cancer cells evolve independently from one another, acquiring all of the genetic traits or hallmarks necessary to form a malignant tumor. It is also now recognized that tumors are heterotypic, with cancer cells interacting with normal stromal cells within the tissue microenvironment, including endothelial, stromal, and nerve cells. This tumor cell-stromal cell interaction in itself is a form of commensalism, because it has been demonstrated that these nonmalignant cells support and even enable tumor growth. Here, we add to this theory by regarding tumor cells as game players whose interactions help to determine their Darwinian fitness. We marshal evidence that tumor cells overcome certain host defenses by means of diffusible products. Our original contribution is to raise the possibility that two nearby cells can protect each other from a set of host defenses that neither could survive alone. Cooperation can evolve as by-product mutualism among genetically diverse tumor cells. Our hypothesis supplements, but does not supplant, the traditional view of carcinogenesis in which one clonal population of cells develops all of the necessary genetic traits independently to form a tumor. Cooperation through the sharing of diffusible products raises new questions about tumorigenesis and has implications for understanding observed phenomena, designing new experiments, and developing new therapeutic approaches.

  4. Effect of tumor cells and tumor microenvironment on NK-cell function.

    Science.gov (United States)

    Vitale, Massimo; Cantoni, Claudia; Pietra, Gabriella; Mingari, Maria Cristina; Moretta, Lorenzo

    2014-06-01

    The ability of tumors to manage an immune-mediated attack has been recently included in the "next generation" of cancer hallmarks. In solid tumors, the microenvironment that is generated during the first steps of tumor development has a pivotal role in immune regulation. An intricate net of cross-interactions occurring between tumor components, stromal cells, and resident or recruited immune cells skews the possible acute inflammatory response toward an aberrant ineffective chronic inflammatory status that favors the evasion from the host's defenses. Natural killer (NK) cells have powerful cytotoxic activity, but their activity may be eluded by the tumor microenvironment. Immunosubversion, immunoediting or immunoselection of poorly immunogenic tumor cells and interference with tumor infiltration play a major role in evading NK-cell responses to tumors. Tumor cells, tumor-associated fibroblasts and tumor-induced aberrant immune cells (i.e. tolerogenic or suppressive macrophages, dendritic cells (DCs) and T cells) can interfere with NK-cell activation pathways or the complex receptor array that regulate NK-cell activation and antitumor activity. Thus, the definition of tumor microenvironment-related immunosuppressive factors, along with the identification of new classes of tissue-residing NK-like innate lymphoid cells, represent key issues to design effective NK-cell-based therapies of solid tumors.

  5. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease.

    Science.gov (United States)

    Olsson, Eleonor; Winter, Christof; George, Anthony; Chen, Yilun; Howlin, Jillian; Tang, Man-Hung Eric; Dahlgren, Malin; Schulz, Ralph; Grabau, Dorthe; van Westen, Danielle; Fernö, Mårten; Ingvar, Christian; Rose, Carsten; Bendahl, Pär-Ola; Rydén, Lisa; Borg, Åke; Gruvberger-Saal, Sofia K; Jernström, Helena; Saal, Lao H

    2015-05-18

    Metastatic breast cancer is usually diagnosed after becoming symptomatic, at which point it is rarely curable. Cell-free circulating tumor DNA (ctDNA) contains tumor-specific chromosomal rearrangements that may be interrogated in blood plasma. We evaluated serial monitoring of ctDNA for earlier detection of metastasis in a retrospective study of 20 patients diagnosed with primary breast cancer and long follow-up. Using an approach combining low-coverage whole-genome sequencing of primary tumors and quantification of tumor-specific rearrangements in plasma by droplet digital PCR, we identify for the first time that ctDNA monitoring is highly accurate for postsurgical discrimination between patients with (93%) and without (100%) eventual clinically detected recurrence. ctDNA-based detection preceded clinical detection of metastasis in 86% of patients with an average lead time of 11 months (range 0-37 months), whereas patients with long-term disease-free survival had undetectable ctDNA postoperatively. ctDNA quantity was predictive of poor survival. These findings establish the rationale for larger validation studies in early breast cancer to evaluate ctDNA as a monitoring tool for early metastasis detection, therapy modification, and to aid in avoidance of overtreatment.

  6. Therapeutic Trial for Patients With Ewing Sarcoma Family of Tumor and Desmoplastic Small Round Cell Tumors

    Science.gov (United States)

    2016-08-25

    Desmoplastic Small Round Cell Tumor; Ewing Sarcoma of Bone or Soft Tissue; Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor

  7. Circulating mesenchymal stem cells and their clinical implications

    Directory of Open Access Journals (Sweden)

    Liangliang Xu

    2014-01-01

    Full Text Available Circulating mesenchymal stem cells (MSCs is a new cell source for tissue regeneration and tissue engineering. The characteristics of circulating MSCs are similar to those of bone marrow-derived MSCs (BM-MSCs, but they exist at a very low level in healthy individuals. It has been demonstrated that MSCs are able to migrate to the sites of injury and that they have some distinct genetic profiles compared to BM-MSCs. The current review summaries the basic knowledge of circulating MSCs and their potential clinical applications, such as mobilizing the BM-MSCs into circulation for therapy. The application of MSCs to cure a broad spectrum of diseases is promising, such as spinal cord injury, cardiovascular repair, bone and cartilage repair. The current review also discusses the issues of using of allogeneic MSCs for clinical therapy.

  8. Circulating endothelial cells and procoagulant microparticles in patients with glioblastoma: prognostic value.

    Directory of Open Access Journals (Sweden)

    Gaspar Reynés

    Full Text Available AIM: Circulating endothelial cells and microparticles are prognostic factors in cancer. However, their prognostic and predictive value in patients with glioblastoma is unclear. The objective of this study was to investigate the potential prognostic value of circulating endothelial cells and microparticles in patients with newly diagnosed glioblastoma treated with standard radiotherapy and concomitant temozolomide. In addition, we have analyzed the methylation status of the MGMT promoter. METHODS: Peripheral blood samples were obtained before and at the end of the concomitant treatment. Blood samples from healthy volunteers were also obtained as controls. Endothelial cells were measured by an immunomagnetic technique and immunofluorescence microscopy. Microparticles were quantified by flow cytometry. Microparticle-mediated procoagulant activity was measured by endogen thrombin generation and by phospholipid-dependent clotting time. Methylation status of MGMT promoter was determined by multiplex ligation-dependent probe amplification. RESULTS: Pretreatment levels of circulating endothelial cells and microparticles were higher in patients than in controls (p<0.001. After treatment, levels of microparticles and thrombin generation decreased, and phospholipid-dependent clotting time increased significantly. A high pretreatment endothelial cell count, corresponding to the 99(th percentile in controls, was associated with poor overall survival. MGMT promoter methylation was present in 27% of tumor samples and was associated to a higher overall survival (66 weeks vs 30 weeks, p<0.004. CONCLUSION: Levels of circulating endothelial cells may have prognostic value in patients with glioblastoma.

  9. Cancer Stem Cells and Pediatric Solid Tumors

    Directory of Open Access Journals (Sweden)

    Gregory K. Friedman

    2011-01-01

    Full Text Available Recently, a subpopulation of cells, termed tumor-initiating cells or tumor stem cells (TSC, has been identified in many different types of solid tumors. These TSC, which are typically more resistant to chemotherapy and radiation compared to other tumor cells, have properties similar to normal stem cells including multipotency and the ability to self-renew, proliferate, and maintain the neoplastic clone. Much of the research on TSC has focused on adult cancers. With considerable differences in tumor biology between adult and pediatric cancers, there may be significant differences in the presence, function and behavior of TSC in pediatric malignancies. We discuss what is currently known about pediatric solid TSC with specific focus on TSC markers, tumor microenvironment, signaling pathways, therapeutic resistance and potential future therapies to target pediatric TSC.

  10. The characterization of four gene expression analysis in circulating tumor cells made by Multiplex-PCR from the AdnaTest kit on the lab-on-a-chip Agilent DNA 1000 platform

    Science.gov (United States)

    Škereňová, Markéta; Mikulová, Veronika; Čapoun, Otakar; Zima, Tomáš

    2016-01-01

    Introduction Nowadays, on-a-chip capillary electrophoresis is a routine method for the detection of PCR fragments. The Agilent 2100 Bioanalyzer was one of the first commercial devices in this field. Our project was designed to study the characteristics of Agilent DNA 1000 kit in PCR fragment analysis as a part of circulating tumour cell (CTC) detection technique. Despite the common use of this kit a complex analysis of the results from a long-term project is still missing. Materials and methods A commercially available Agilent DNA 1000 kit was used as a final step in the CTC detection (AdnaTest) for the determination of the presence of PCR fragments generated by Multiplex PCR. Data from 30 prostate cancer patients obtained during two years of research were analyzed to determine the trueness and precision of the PCR fragment size determination. Additional experiments were performed to demonstrate the precision (repeatability, reproducibility) and robustness of PCR fragment concentration determination. Results The trueness and precision of the size determination was below 3% and 2% respectively. The repeatability of the concentration determination was below 15%. The difference in concentration determination increases when Multiplex-PCR/storage step is added between the two measurements of one sample. Conclusions The characteristics established in our study are in concordance with the manufacturer’s specifications established for a ladder as a sample. However, the concentration determination may vary depending on chip preparation, sample storage and concentration. The 15% variation of concentration determination repeatability was shown to be partly proportional and can be suppressed by proper normalization. PMID:26981024

  11. Functional activities of receptors for tumor necrosis factor-alpha on human vascular endothelial cells.

    NARCIS (Netherlands)

    Paleolog, E.M.; Delasalle, S.A.; Buurman, W.A.; Feldmann, M.

    1994-01-01

    Tumor necrosis factor-alpha (TNF-alpha) plays a critical role in the control of endothelial cell function and hence in regulating traffic of circulating cells into tissues in vivo. Stimulation of endothelial cells in vitro by TNF-alpha increases the surface expression of leukocyte adhesion molecules

  12. Effects of circulation hyperthermic perfusion chemotherapy on tumor marker content and PI3K/Akt/mTOR pathway function of gastric cancer peritoneal effusion patients

    Institute of Scientific and Technical Information of China (English)

    Li Ding

    2015-01-01

    Objective: To study the effects of circulation hyperthermic perfusion chemotherapy on tumor marker content and PI3K/Akt/mTOR pathway function of gastric cancer peritoneal effusion patients. Methods: 80 cases of gastric cancer peritoneal effusion patients in our hospital from May 2013 to August 2014 were enrolled and randomly divided into two groups. Observation group received circulation hyperthermic perfusion chemotherapy; control group received conventional perfusion chemotherapy. Then blood tumor markers, LAG3 and HSP content, PI3K-AKT-mTOR signal molecules were assayed. Results:(1) tumor markers: DDK1, EXOSC2 contents and PGR ratio of observation group were lower than those of control group; PGI and PGII contents were higher than those of control group; (2) LAG3 and HSP contents: HSP27 and HSP90 contents of observation group were lower than those of control group; sLAG-3 content was higher than that of control group; (3) signal molecules: mRNA contents of PI3K, Akt and mTOR molecules of observation group were lower than those of control group. Conclusion: Circulation hyperthermic perfusion chemotherapy is helpful to kill tumor cells, reduce tumor marker releasing into blood, regulate LAG3 and HSP expression and inhibit PI3K/Akt/mTOR pathway function; it’s an ideal method for treating peritoneal effusion.

  13. SYNOVIAL GIANT CELL TUMOR OF THE KNEE.

    Science.gov (United States)

    Abdalla, Rene Jorge; Cohen, Moisés; Nóbrega, Jezimar; Forgas, Andrea

    2009-01-01

    Synovial giant cell tumor is a benign neoplasm, rarely reported in the form of malignant metastasis. Synovial giant cell tumor most frequently occurs on the hand, and, most uncommon, on the ankle and knee. In the present study, the authors describe a rare case of synovial giant cell tumor on the knee as well as the treatment approach. Arthroscopy has been shown, in this case, to be the optimal method for treating this kind of lesion, once it allowed a less aggressive approach, while providing good visualization of all compartments of knee joint and full tumor resection.

  14. [Granular cell tumor of the larynx].

    Science.gov (United States)

    Modrzyński, M; Wróbel, B; Zawisza, E; Drozd, K

    1999-09-01

    Granular cell tumor is an unusual growth of probably neuroectodermal histogenesis, first reported by Abrikossoff in 1926 with the name of myoblastenmyoma. Authors described a case of a 54 year man with laryngeal seat of granular-cell myoblastoma. In this case Abrikossoff tumor was located in the right vocal chord. The tumor was treated successfully surgically by microlaryngoscopy. The etiology, clinical features and diagnostic difficulties are discussed.

  15. Diagnostic technologies for circulating tumour cells and exosomes.

    Science.gov (United States)

    Shao, Huilin; Chung, Jaehoon; Issadore, David

    2015-11-24

    Circulating tumour cells (CTCs) and exosomes are promising circulating biomarkers. They exist in easily accessible blood and carry large diversity of molecular information. As such, they can be easily and repeatedly obtained for minimally invasive cancer diagnosis and monitoring. Because of their intrinsic differences in counts, size and molecular contents, CTCs and exosomes pose unique sets of technical challenges for clinical translation-CTCs are rare whereas exosomes are small. Novel technologies are underway to overcome these specific challenges to fully harness the clinical potential of these circulating biomarkers. Herein, we will overview the characteristics of CTCs and exosomes as valuable circulating biomarkers and their associated technical challenges for clinical adaptation. Specifically, we will describe emerging technologies that have been developed to address these technical obstacles and the unique clinical opportunities enabled by technological innovations.

  16. Granular cell tumors of the tracheobronchial tree.

    NARCIS (Netherlands)

    Maten, van der J; Blaauwgeers, JL; Sutedja, G.; Kwa, HB; Postmus, P.E.; Wagenaar, SS

    2003-01-01

    OBJECTIVE: To describe the population-based incidence and clinical characteristics of granular cell tumors of the tracheobronchial tree. METHODS: All newly registered tracheobronchial granular cell tumors in the Dutch Network and National Database for Pathology for 10 consecutive years (1990-1999) w

  17. Treatment Option Overview (Ovarian Germ Cell Tumors)

    Science.gov (United States)

    ... ovarian germ cell tumor are swelling of the abdomen or vaginal bleeding after menopause. Ovarian germ cell ... if you have either of the following: Swollen abdomen without weight gain in other parts of the ...

  18. General Information about Ovarian Germ Cell Tumors

    Science.gov (United States)

    ... ovarian germ cell tumor are swelling of the abdomen or vaginal bleeding after menopause. Ovarian germ cell ... if you have either of the following: Swollen abdomen without weight gain in other parts of the ...

  19. Tumor Evasion from T Cell Surveillance

    Directory of Open Access Journals (Sweden)

    Katrin Töpfer

    2011-01-01

    Full Text Available An intact immune system is essential to prevent the development and progression of neoplastic cells in a process termed immune surveillance. During this process the innate and the adaptive immune systems closely cooperate and especially T cells play an important role to detect and eliminate tumor cells. Due to the mechanism of central tolerance the frequency of T cells displaying appropriate arranged tumor-peptide-specific-T-cell receptors is very low and their activation by professional antigen-presenting cells, such as dendritic cells, is frequently hampered by insufficient costimulation resulting in peripheral tolerance. In addition, inhibitory immune circuits can impair an efficient antitumoral response of reactive T cells. It also has been demonstrated that large tumor burden can promote a state of immunosuppression that in turn can facilitate neoplastic progression. Moreover, tumor cells, which mostly are genetically instable, can gain rescue mechanisms which further impair immune surveillance by T cells. Herein, we summarize the data on how tumor cells evade T-cell immune surveillance with the focus on solid tumors and describe approaches to improve anticancer capacity of T cells.

  20. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  1. Identification of circulating fetal cell markers by microarray analysis

    DEFF Research Database (Denmark)

    Brinch, Marie; Hatt, Lotte; Singh, Ripudaman

    2012-01-01

    identified by XY fluorescence in situ hybridization and confirmed by reverse-color fluorescence in situ hybridization were shot off microscope slides by laser capture microdissection. The expression pattern of a subset of expressed genes was compared between fetal cells and maternal blood cells using stem......OBJECTIVE: Different fetal cell types have been found in the maternal blood during pregnancy in the past, but fetal cells are scarce, and the proportions of the different cell types are unclear. The objective of the present study was to identify specific fetal cell markers from fetal cells found...... in the maternal blood circulation at the end of the first trimester. METHOD: Twenty-three fetal cells were isolated from maternal blood by removing the red blood cells by lysis or combining this with removal of large proportions of maternal white blood cells by magnetic-activated cell sorting. Fetal cells...

  2. Polymer microfilters with nanostructured surfaces for the culture of circulating cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, Olga V. [Creatv MicroTech, Inc., 2242 West Harrison St., Chicago 60612, IL (United States); Adams, Daniel L., E-mail: dan@creatvmicrotech.com [Creatv MicroTech, Inc., 1 Deer Park Drive, Monmouth Junction, NJ 08852 (United States); Divan, Ralu; Rosenmann, Daniel [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Ave., Argonne 60439, IL (United States); Zhu, Peixuan; Li, Shuhong; Amstutz, Platte; Tang, Cha-Mei [Creatv MicroTech, Inc., 11609 Lake Potomac Drive, Potomac 20854, MD (United States)

    2016-09-01

    There is a critical need to improve the accuracy of drug screening and testing through the development of in vitro culture systems that more effectively mimic the in vivo environment. Surface topographical features on the nanoscale level, in short nanotopography, effect the cell growth patterns, and hence affect cell function in culture. We report the preliminary results on the fabrication, and subsequent cellular growth, of nanoscale surface topography on polymer microfilters using cell lines as a precursor to circulating tumor cells (CTCs). To create various nanoscale features on the microfilter surface, we used reactive ion etching (RIE) with and without an etching mask. An anodized aluminum oxide (AAO) membrane fabricated directly on the polymer surface served as an etching mask. Polymer filters with a variety of modified surfaces were used to compare the effects on the culture of cancer cell lines in blank culture wells, with untreated microfilters or with RIE-treated microfilters. We then report the differences of cell shape, phenotype and growth patterns of bladder and glioblastoma cancer cell lines after isolation on the various types of material modifications. Our data suggest that RIE modified polymer filters can isolate model cell lines while retaining ell viability, and that the RIE filter modification allows T24 monolayering cells to proliferate as a structured cluster. - Highlights: • Surface topographical effects the growth patterns and cell function of cancer cells • Nanoscale surface topography on polymer filters for circulating tumor cell culture • Membrane fabricated directly on polymer surfaces utilized for polymer etching • Nanotopography alters cell shape, phenotype and growth patterns of cancer cells • Nanoscale surface topography dictates monolayering or 3D structured cell culture.

  3. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    Institute of Scientific and Technical Information of China (English)

    Guanqun Qiao; Qingquan Li; Gang Peng; Jun Ma; Hongwei Fan; Yingbin Li

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are stil unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cel s and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cel s were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibril ary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibril ary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibril ary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cel s. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.

  4. Giant cell tumor in adipose package Hoffa

    Science.gov (United States)

    Etcheto, H. Rivarola; Escobar, G.; Blanchod, C. Collazo; Palanconi, M.; Zordan, J.; Salinas, E. Alvarez; Autorino₁, Carlos

    2017-01-01

    Tumors of adipose Hoffa package are very uncommon, with isolated cases reported in the literature. His presentation in pediatric patients knee is exceptional. The most frequently described tumors are benign including vellonodular synovitis. The extra-articular localized variant there of is known as giant cell tumor of the tendon sheath. It is characterized by locally aggressive nature, and has been described in reports of isolated cases. Objective: A case of giant cell tumor of the tendon sheath in adipose presentation package Hoffa in pediatric patients is presented in this paper. Methods: male patient eleven years with right knee pain after sports practice was evaluated. Physical examination, showed limited extension -30º, joint effusion, stable negative Lachman maneuver without peripheral knee laxity. MRI hyperintense on tumor is observed in T2 and hypointense on T1 homogeneous and defined edges content displayed prior to LCA related to adipose Hoffa package. Results: The tumor specimen was obtained and histopathology is defined as densely cellular tissue accumulation of xantomisados fibrocollagenous with histiocytes and multinucleated giant cells, compatible with giant cell tumor of tendon sheath. Conclusion: The presentation of giant cell tumors of the tendon sheath in Hoffa fat pad is exceptional. However, his suspicion allows adequate preoperative surgical planning, as a whole resection is the only procedure that has been shown to decrease the rate of recurrence of this disease.

  5. Fluid phase biopsy for detection and characterization of circulating endothelial cells in myocardial infarction

    Science.gov (United States)

    Bethel, Kelly; Luttgen, Madelyn S.; Damani, Samir; Kolatkar, Anand; Lamy, Rachelle; Sabouri-Ghomi, Mohsen; Topol, Sarah; Topol, Eric J.; Kuhn, Peter

    2014-02-01

    Elevated levels of circulating endothelial cells (CECs) occur in response to various pathological conditions including myocardial infarction (MI). Here, we adapted a fluid phase biopsy technology platform that successfully detects circulating tumor cells in the blood of cancer patients (HD-CTC assay), to create a high-definition circulating endothelial cell (HD-CEC) assay for the detection and characterization of CECs. Peripheral blood samples were collected from 79 MI patients, 25 healthy controls and six patients undergoing vascular surgery (VS). CECs were defined by positive staining for DAPI, CD146 and von Willebrand Factor and negative staining for CD45. In addition, CECs exhibited distinct morphological features that enable differentiation from surrounding white blood cells. CECs were found both as individual cells and as aggregates. CEC numbers were higher in MI patients compared with healthy controls. VS patients had lower CEC counts when compared with MI patients but were not different from healthy controls. Both HD-CEC and CellSearch® assays could discriminate MI patients from healthy controls with comparable accuracy but the HD-CEC assay exhibited higher specificity while maintaining high sensitivity. Our HD-CEC assay may be used as a robust diagnostic biomarker in MI patients.

  6. Review: Biological relevance of disseminated tumor cells in cancer patients.

    Science.gov (United States)

    Riethdorf, Sabine; Wikman, Harriet; Pantel, Klaus

    2008-11-01

    The prognosis of cancer patients is largely determined by the occurrence of distant metastases. In patients with primary tumors, this relapse is mainly due to clinically occult micrometastasis present in secondary organs at primary diagnosis but not detectable even with high resolution imaging procedures. Sensitive and specific immunocytochemical and molecular assays enable the detection and characterization of disseminated tumor cells (DTC) at the single cell level in bone marrow (BM) as the common homing site of DTC and circulating tumor cells (CTC) in peripheral blood. Because of the high variability of results in DTC and CTC detection, there is an urgent need for standardized methods. In this review, we will focus on BM and present currently available methods for the detection and characterization of DTC. Furthermore, we will discuss data on the biology of DTC and the clinical relevance of DTC detection. While the prognostic impact of DTC in BM has clearly been shown for primary breast cancer patients, less is known about the clinical relevance of DTC in patients with other carcinomas. Current findings suggest that DTC are capable to survive chemotherapy and persist in a dormant nonproliferating state over years. To what extent these DTC have stem cell properties is subject of ongoing investigations. Further characterization is required to understand the biology of DTC and to identify new targets for improved risk prevention and tailoring of therapy. Our review will focus on breast, colon, lung, and prostate cancer as the main tumor entities in Europe and the United States.

  7. Herceptin conjugates linked by EDC boost direct tumor cell death via programmed tumor cell necrosis.

    Directory of Open Access Journals (Sweden)

    Jiemiao Hu

    Full Text Available Tumor-targeted antibody therapy is one of the safest biological therapeutics for cancer patients, but it is often ineffective at inducing direct tumor cell death and is ineffective against resistant tumor cells. Currently, the antitumor efficacy of antibody therapy is primarily achieved by inducing indirect tumor cell death, such as antibody-dependent cell cytotoxicity. Our study reveals that Herceptin conjugates, if generated via the crosslinker EDC (1-ethyl-3-(3-dimethylaminopropyl carbodiimide hydrochloride, are capable of engendering human epidermal growth factor receptor 2 (Her2 positive tumor cells death. Using a high-performance liquid chromatography (HPLC system, three peaks with estimated molecular weights of antibody monomer, dimer, and trimer were isolated. Both Herceptin trimer and dimer separated by HPLC induced significant levels of necrotic tumor cell death, although the trimer was more effective than the dimer. Notably, the Herceptin trimer also induced Herceptin-resistant tumor cell death. Surprisingly different from the known cell death mechanism that often results from antibody treatment, the Herceptin trimer elicited effective and direct tumor cell death via a novel mechanism: programmed cell necrosis. In Her2-positive cells, inhibition of necrosis pathways significantly reversed Herceptin trimer-induced cell death. In summary, the Herceptin trimer reported herein harbors great potential for overcoming tumor cell resistance to Herceptin treatment.

  8. Destruction of solid tumors by immune cells

    Science.gov (United States)

    López, Álvaro G.; Seoane, Jesús M.; Sanjuán, Miguel A. F.

    2017-03-01

    The fractional cell kill is a mathematical expression describing the rate at which a certain population of cells is reduced to a fraction of itself. In order to investigate the fractional cell kill that governs the rate at which a solid tumor is lysed by a cell population of cytotoxic CD8+ T cells (CTLs), we present several in silico simulations and mathematical analyses. When the CTLs eradicate efficiently the tumor cells, the models predict a correlation between the morphology of the tumors and the rate at which they are lysed. However, when the effectiveness of the immune cells is decreased, the mathematical function fails to reproduce the process of lysis. This limit is thoroughly discussed and a new fractional cell kill is proposed.

  9. Harnessing Dendritic Cells for Tumor Antigen Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Nierkens, Stefan [Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, Nijmegen 6525 GA (Netherlands); Janssen, Edith M., E-mail: edith.janssen@cchmc.org [Division of Molecular Immunology, Cincinnati Children' s Hospital Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States)

    2011-04-26

    Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8{sup +} and CD4{sup +} T cells; the in vitro loading of DCs with tumor antigens.

  10. Alemtuzumab treatment alters circulating innate immune cells in multiple sclerosis

    Science.gov (United States)

    Ahmetspahic, Diana; Ruck, Tobias; Schulte-Mecklenbeck, Andreas; Schwarte, Kathrin; Jörgens, Silke; Scheu, Stefanie; Windhagen, Susanne; Graefe, Bettina; Melzer, Nico; Klotz, Luisa; Arolt, Volker; Wiendl, Heinz; Meuth, Sven G.

    2016-01-01

    Objective: To characterize changes in myeloid and lymphoid innate immune cells in patients with relapsing-remitting multiple sclerosis (MS) during a 6-month follow-up after alemtuzumab treatment. Methods: Circulating innate immune cells including myeloid cells and innate lymphoid cells (ILCs) were analyzed before and 6 and 12 months after onset of alemtuzumab treatment. Furthermore, a potential effect on granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)–23 production by myeloid cells and natural killer (NK) cell cytolytic activity was determined. Results: In comparison to CD4+ T lymphocytes, myeloid and lymphoid innate cell subsets of patients with MS expressed significantly lower amounts of CD52 on their cell surface. Six months after CD52 depletion, numbers of circulating plasmacytoid dendritic cells (DCs) and conventional DCs were reduced compared to baseline. GM-CSF and IL-23 production in DCs remained unchanged. Within the ILC compartment, the subset of CD56bright NK cells specifically expanded under alemtuzumab treatment, but their cytolytic activity did not change. Conclusions: Our findings demonstrate that 6 months after alemtuzumab treatment, specific DC subsets are reduced, while CD56bright NK cells expanded in patients with MS. Thus, alemtuzumab specifically restricts the DC compartment and expands the CD56bright NK cell subset with potential immunoregulatory properties in MS. We suggest that remodeling of the innate immune compartment may promote long-term efficacy of alemtuzumab and preserve immunocompetence in patients with MS. PMID:27766281

  11. Factors influencing the presence of circulating differentiated thyroid cancer cells in the thyroidectomy perioperative period*

    Institute of Scientific and Technical Information of China (English)

    Wentao Wei; Qinjiang Liu; Wei Yao

    2015-01-01

    Objective The aim of the study was to detect circulating differentiated thyroid cancer (DTC) micrometas-tasis and to investigate the factors influencing their presence in the perioperative thyroidectomy period. Methods DTC micrometastases in the peripheral blood were detected with flow cytometry, and patient clinical and pathological factors were analyzed in 327 DTC patients.Results Circulating blood micrometastases were present in the peripheral circulation at a higher rate 1 week postoperatively than preoperatively and at 4 weeks postoperatively (P 0.05). At 4 weeks postoperatively, the presence of circulating micrometastasis was not associated with tumor size or lymph node stage (P > 0.05), but was associated with poorly differentiated tumors (P < 0.05). Conclusion The presence of circulating DTC micrometastases correlates to tumor size, lymph node stage, and operative manipulation. The differentiation degree of the tumors were associated with the persistent presence of micrometastasis in the circulating blood.

  12. The Emergent Landscape of Detecting EGFR Mutations Using Circulating Tumor DNA in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Wei-Lun Huang

    2015-01-01

    Full Text Available The advances in targeted therapies for lung cancer are based on the evaluation of specific gene mutations especially the epidermal growth factor receptor (EGFR. The assays largely depend on the acquisition of tumor tissue via biopsy before the initiation of therapy or after the onset of acquired resistance. However, the limitations of tissue biopsy including tumor heterogeneity and insufficient tissues for molecular testing are impotent clinical obstacles for mutation analysis and lung cancer treatment. Due to the invasive procedure of tissue biopsy and the progressive development of drug-resistant EGFR mutations, the effective initial detection and continuous monitoring of EGFR mutations are still unmet requirements. Circulating tumor DNA (ctDNA detection is a promising biomarker for noninvasive assessment of cancer burden. Recent advancement of sensitive techniques in detecting EGFR mutations using ctDNA enables a broad range of clinical applications, including early detection of disease, prediction of treatment responses, and disease progression. This review not only introduces the biology and clinical implementations of ctDNA but also includes the updating information of recent advancement of techniques for detecting EGFR mutation using ctDNA in lung cancer.

  13. Capturing Genomic Evolution of Lung Cancers through Liquid Biopsy for Circulating Tumor DNA

    Directory of Open Access Journals (Sweden)

    Michael Offin

    2017-01-01

    Full Text Available Genetic sequencing of malignancies has become increasingly important to uncover therapeutic targets and capture the tumor’s dynamic changes to drug sensitivity and resistance through genomic evolution. In lung cancers, the current standard of tissue biopsy at the time of diagnosis and progression is not always feasible or practical and may underestimate intratumoral heterogeneity. Technological advances in genetic sequencing have enabled the use of circulating tumor DNA (ctDNA analysis to obtain information on both targetable mutations and capturing real-time Darwinian evolution of tumor clones and drug resistance mechanisms under selective therapeutic pressure. The ability to analyze ctDNA from plasma, CSF, or urine enables a comprehensive view of cancers as systemic diseases and captures intratumoral heterogeneity. Here, we describe these recent advances in the setting of lung cancers and advocate for further research and the incorporation of ctDNA analysis in clinical trials of targeted therapies. By capturing genomic evolution in a noninvasive manner, liquid biopsy for ctDNA analysis could accelerate therapeutic discovery and deliver the next leap forward in precision medicine for patients with lung cancers and other solid tumors.

  14. Circulating hTERT mRNA as a tumor marker in cholangiocarcinoma patients

    Institute of Scientific and Technical Information of China (English)

    Kawin Leelawat; Surang Leelawat; Thawee Ratanachu-Ek; Somboon Trubwongchareon; Jerasak Wannaprasert; Saad Tripongkaruna; Suchart Chantawibul; Panadda Tepaksorn

    2006-01-01

    AIM: To investigate human telomerase reverse transcriptase (hTERT) mRNA in the serum of cholangiocarcinoma patients.METHODS: The serum of thirty three cholangiocarcinoma patients, forty one benign biliary tract disease patients and ten healthy volunteers were collected and analyzed for the expression of hTERT mRNA by real-time reverse transcriptase-polymerase chain reaction (RT-PCR).We then examined the correlation between values of serum hTERT mRNA and the pathological staging of cholangiocarcinoma.RESULTS: hTERT mRNA was detected in 28 of 33(84.85%) of serum obtained from cholangiocarcinoma patients and 9 of 41 (21.9%) of serum obtained from benign biliary tract disease patients. hTERT mRNA was not detected in any serum obtained from healthy volunteers. on the other hand the common tumor marker, CA19-9 was detected in 20 of 33 (60.6%) of serum obtained from cholangiocarcinoma patients and 8 of 41 (19.5%) of serum obtained from benign biliary tract disease patients. However, no correlation was found between the present of serum hTERT mRNA and tumor staging.CONCLUSION: These results indicate that the detection of circulating hTERT mRNA was identified in almost all cholangiocarcinoma patients. It offers anovel tumor marker, which can be used as a complementary study for diagnosis of cholangiocarcinoma.

  15. Soluble AXL: a possible circulating biomarker for neurofibromatosis type 1 related tumor burden.

    Science.gov (United States)

    Johansson, Gunnar; Peng, Po-Chun; Huang, Po-Yuan; Chien, Hsiung-Fei; Hua, Kuo-Tai; Kuo, Min-Liang; Chen, Chin-Tin; Lee, Ming-Jen

    2014-01-01

    Neurofibromatosis type 1 (NF1) is the most common tumor predisposition disorder affecting 1/3500 worldwide. Patients are at risk of developing benign (neurofibromas) and malignant peripheral nerve sheath tumors (MPNST). The AXL receptor tyrosine kinase has been implicated in several kinds of cancers, but so far no studies have investigated the role of AXL in NF1 related tumorigenesis. Recently, the soluble fraction from the extracellular domain of AXL (sAXL) has been found in human plasma, and its level was correlated to poor prognosis in patients with renal cancer. Compared to normal human Schwann cells, a significantly high expression level of AXL was found in three of the four MPNST cell lines and two of the three primary MPNST tissues. Similarly, the level of sAXL in conditioned media corresponded to the protein and mRNA levels of AXL in the MPNST cell lines. Furthermore, in two different human MPNST xenograft models, the human sAXL could be detected in the mouse plasma. Its level was proportionate to the size of the xenograft tumors, while no human sAXL was detect prior to the formation of the tumors. Treatment with a newly developed photodynamic therapy, prevented further tumor growth and resulted in drastically reduced the levels of sAXL compared to that of the control group. Finally, the level of sAXL was significantly increased in patients with plexiform tumors compared to patients with only dermal neurofibromas, further supporting the role of sAXL as a marker for NF1 related tumor burden.

  16. Soluble AXL: a possible circulating biomarker for neurofibromatosis type 1 related tumor burden.

    Directory of Open Access Journals (Sweden)

    Gunnar Johansson

    Full Text Available Neurofibromatosis type 1 (NF1 is the most common tumor predisposition disorder affecting 1/3500 worldwide. Patients are at risk of developing benign (neurofibromas and malignant peripheral nerve sheath tumors (MPNST. The AXL receptor tyrosine kinase has been implicated in several kinds of cancers, but so far no studies have investigated the role of AXL in NF1 related tumorigenesis. Recently, the soluble fraction from the extracellular domain of AXL (sAXL has been found in human plasma, and its level was correlated to poor prognosis in patients with renal cancer. Compared to normal human Schwann cells, a significantly high expression level of AXL was found in three of the four MPNST cell lines and two of the three primary MPNST tissues. Similarly, the level of sAXL in conditioned media corresponded to the protein and mRNA levels of AXL in the MPNST cell lines. Furthermore, in two different human MPNST xenograft models, the human sAXL could be detected in the mouse plasma. Its level was proportionate to the size of the xenograft tumors, while no human sAXL was detect prior to the formation of the tumors. Treatment with a newly developed photodynamic therapy, prevented further tumor growth and resulted in drastically reduced the levels of sAXL compared to that of the control group. Finally, the level of sAXL was significantly increased in patients with plexiform tumors compared to patients with only dermal neurofibromas, further supporting the role of sAXL as a marker for NF1 related tumor burden.

  17. The challenges of detecting circulating tumour cells in sarcoma

    OpenAIRE

    Tellez-Gabriel, M.; Brown, H K; Young, R.; Heymann, M. F.; Heymann, D

    2016-01-01

    International audience; Sarcomas are a heterogenous group of malignant neoplasms of mesenchymal origin, many of which have a propensity to develop distant metastases. Cancer cells that have escaped from the primary tumour are able to invade into surrounding tissues, to intravasate into the bloodstream to become Circulating Tumour Cells (CTCs), and are responsible for the generation of distant metastases. Due to the rarity of these tumours and the absence of specific markers expressed by sarco...

  18. Detection, isolation, and capture of circulating breast cancer cells with photoacoustic flow cytometry

    Science.gov (United States)

    Bhattacharyya, Kiran; Njoroge, Martin; Goldschmidt, Benjamin S.; Gaffigan, Brian; Rood, Kyle; Viator, John A.

    2013-03-01

    According to the CDC, breast cancer is the most common cancer and the second leading cause of cancer related deaths among women. Metastasis, or the presence of secondary tumors caused by the spread of cancer cells via the circulatory or lymphatic systems, significantly worsens the prognosis of any breast cancer patient. In this study, a technique is developed to detect circulating breast cancer cells in human blood using a photoacoustic flow cytometry method. A Q-switched laser with a 5 ns pulse at 532 nm is used to interrogate thousands of cells with one pulse as they flow through the beam path. Cells which are pigmented, either naturally or artificially, emit an ultrasound wave as a result of the photoacoustic (PA) effect. Breast cancer cells are targeted with chromophores through immunochemistry in order to provide pigment. After which, the device is calibrated to demonstrate a single-cell detection limit. Cultured breast cancer cells are added to whole blood to reach a biologically relevant concentration of about 25-45 breast cancer cells per 1 mL of blood. An in vitro photoacoustic flow cytometer is used to detect and isolate these cells followed by capture with the use of a micromanipulator. This method can not only be used to determine the disease state of the patient and the response to therapy, it can also be used for genetic testing and in vitro drug trials since the circulating cell can be captured and studied.

  19. Studying depletion kinetics of circulating prostate cancer cells by in vivo flow cytometer

    Science.gov (United States)

    Liu, Guangda; Gu, Zhengqin; Guo, Jin; Li, Yan; Chen, Yun; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2011-03-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. During this time, the tumor produces little or no symptoms or outward signs. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. A real- time quantitative monitoring of circulating prostate cancer cells by the in vivo flow cytometer will be useful to assess the effectiveness of the potential therapeutic interventions.

  20. Depletion kinetics of circulating prostate cancer cells studied by in vivo flow cytometer

    Science.gov (United States)

    Liu, Guangda; Guo, Jin; Li, Yan; Chen, Yun; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2010-11-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. During this time, the tumor produces little or no symptoms or outward signs. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal nearinfrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. A real- time quantitative monitoring of circulating prostate cancer cells by the in vivo flow cytometer will be useful to assess the effectiveness of the potential therapeutic interventions.

  1. Characterization of cell suspensions from solid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Pallavicini, M.

    1985-07-10

    The desirable features of cells in suspension will necessarily be dependent upon the use for which the cells were prepared. Adequate cell yield or recovery is defined by the measurement to be performed. Retention of cellular morphology is important for microscopic identification of cell types in a heterogenous cell suspension, and may be used to determine whether the cells in suspension are representative of those in the tumor in situ. Different dispersal protocols may yield cells with different degrees of clonogenicity, as well as altered biochemical features, such as loss of cellular proteins, surface antigens, nucleotide pools, etc. The quality of the cell suspension can be judged by the degree of cell clumping and level of cellular debris, both of which impact on flow cytometric measurements and studies in which the number of cells be known accurately. Finally, if the data measured on the cells in suspension are to be extrapolated to phenomena occurring in the tumor in situ, it is desirable that the cells in suspension are representative of those in the solid tumor in vivo. This report compares characteristics of tumor cell suspensions obtained by different types of selected disaggregation methods. 33 refs., 2 figs., 4 tabs.

  2. Circulating clonotypic B cells in multiple myeloma and monoclonal gammopathy of undetermined significance.

    Science.gov (United States)

    Thiago, Leandro S; Perez-Andres, Martin; Balanzategui, Ana; Sarasquete, Maria E; Paiva, Bruno; Jara-Acevedo, Maria; Barcena, Paloma; Sanchez, Maria Luz; Almeida, Julia; González, Marcos; San Miguel, Jesus F; Garcia-Sanz, Ramón; Orfao, Alberto

    2014-01-01

    The B-cell compartment in which multiple myeloma stem cells reside remains unclear. We investigated the potential presence of mature, surface-membrane immunoglobulin-positive B lymphocytes clonally related to the tumor bone marrow plasma cells among different subsets of peripheral blood B cells from ten patients (7 with multiple myeloma and 3 with monoclonal gammopathies of undetermined significance). The presence of clonotypic immunoglobulin heavy chain gene rearrangements was determined in multiple highly-purified fractions of peripheral blood B-lymphocytes including surface-membrane IgM(+) CD27(-) naïve B-lymphocytes, plus surface-membrane IgG(+), IgA(+) and IgM(+) memory CD27(+) B cells, and normal circulating plasma cells, in addition to (mono)clonal plasma cells, by a highly-specific and sensitive allele-specific oligonucleotide polymerase chain reaction directed to the CDR3 sequence of the rearranged IGH gene of tumor plasma cells from individual patients. Our results showed systematic absence of clonotypic rearrangements in all the different B-cell subsets analyzed, including M-component isotype-matched memory B-lymphocytes, at frequencies undetermined significance are usually devoid of clonotypic B cells while the presence of immunophenotypically aberrant myeloma plasma cells in peripheral blood of myeloma patients is a relatively frequent finding.

  3. Stages of Childhood Extracranial Germ Cell Tumors

    Science.gov (United States)

    ... tumors include the following: Having certain genetic syndromes : Klinefelter syndrome may increase the risk of germ cell ... and procedures may be used: Physical exam and history : An exam of the body to check general ...

  4. Circulating tumor DNA as a liquid biopsy target for detection of pancreatic cancer

    Science.gov (United States)

    Takai, Erina; Yachida, Shinichi

    2016-01-01

    Most pancreatic cancer patients present with advanced metastatic disease, resulting in extremely poor 5-year survival, mainly because of the lack of a reliable modality for early detection and limited therapeutic options for advanced disease. Therefore, there is a need for minimally-invasive diagnostic tools for detecting pancreatic cancer at an early stage, when curative surgery and also novel therapeutic approaches including precision medicine may be feasible. The “liquid biopsy” addresses these unmet clinical needs based on the concept that simple peripheral blood sampling and detection of circulating tumor DNA (ctDNA) could provide diagnostic information. In this review, we provide an overview of the current status of blood-based tests for diagnosis of pancreatic cancer and the potential utility of ctDNA for precision medicine. We also discuss challenges that remain to be addressed in developing practical ctDNA-based liquid biopsy approaches for early diagnosis of pancreatic cancer.

  5. Energy and Redox Homeostasis in Tumor Cells

    Directory of Open Access Journals (Sweden)

    Marcus Fernandes de Oliveira

    2012-01-01

    Full Text Available Cancer cells display abnormal morphology, chromosomes, and metabolism. This review will focus on the metabolism of tumor cells integrating the available data by way of a functional approach. The first part contains a comprehensive introduction to bioenergetics, mitochondria, and the mechanisms of production and degradation of reactive oxygen species. This will be followed by a discussion on the oxidative metabolism of tumor cells including the morphology, biogenesis, and networking of mitochondria. Tumor cells overexpress proteins that favor fission, such as GTPase dynamin-related protein 1 (Drp1. The interplay between proapoptotic members of the Bcl-2 family that promotes Drp 1-dependent mitochondrial fragmentation and fusogenic antiapoptotic proteins such as Opa-1 will be presented. It will be argued that contrary to the widespread belief that in cancer cells, aerobic glycolysis completely replaces oxidative metabolism, a misrepresentation of Warburg’s original results, mitochondria of tumor cells are fully viable and functional. Cancer cells also carry out oxidative metabolism and generally conform to the orthodox model of ATP production maintaining as well an intact electron transport system. Finally, data will be presented indicating that the key to tumor cell survival in an ROS rich environment depends on the overexpression of antioxidant enzymes and high levels of the nonenzymatic antioxidant scavengers.

  6. Combined use of immunomagnetic activated cell sorting technique enrichment and immunocytochemistry with hematoxylin and eosin staining for identification of circulating tumor cells in peripheral blood mononuclcar cells of hepatocellular carcinoma patients%应用免疫激活磁珠分选技术CD45去除方法富集——免疫细胞化学联合苏木素-伊红染色检测肝癌患者循环肿瘤细胞

    Institute of Scientific and Technical Information of China (English)

    郭立民; 鲁岩; 彭吉润; 蒋力

    2014-01-01

    Objective To estimate the applied value of magnetic activated cell sorting (MACS) techniques with CD45 depletion and immunocytochemistry in combination with hematoxylin and eosin (HE) staining in identifying circulating tumor cells (CTCs) in peripheral blood mononuclear cells (PBMC) of hepatocellular carcinoma (HCC) patients.Methods The expression of CK (CK8,CK18,and CK19) was detected in 18 epithelia-derived tumor cell lines including 9 human hepatocellular carcinoma cell lines.The peripheral blood of HCC patients and healthy volunteers was collected for determination of CTCs in PBMC from HCC patients using MACS techniques with CD45 depletion and immunocytochemstry in combination with HE staining.Results The expression rate of CK8,CK18 and CK19 in the selected CTCs was 72.22%,83.33% and 66.67% respectively.CKs were detected in most of the 9 hepatocelluar carcinoma cell lines.We found intact CTCs in PBMC from HCC patients using HE staining and immunocytochemistry after PBMC enrichment by MACS techniques with CD45 + depletion.The sensitivity of this method was up to 63.15%,and no CTCs were detected in PBMC from 20 healthy controls.Conclusion CKs could be a tumor marker for detection of CTCs in HCC patients.The method of HE staining and immunocytochemistry after PBMC enrichment by MACS technique with CD45 + depletion has potentials in detection of circulating HCC cells.%目的 探讨免疫激活磁珠分选(MACS) CD45去除方法富集后,以细胞角蛋白(CK)为标记联合苏木素-伊红(HE)染色检测肝癌患者外周血肿瘤细胞(CTC)的价值.方法 应用逆转录-聚合酶链反应(RT-PCR)检测18种上皮肿瘤细胞株的CK(CK8、CK18、CK19)表达;采集健康志愿者、肝癌患者外周血,以MACS技术CD45去除方法对外周血单个核细胞(PBMC)进行富集,以CK为标记,采用免疫组织化学染色联合HE染色检测肿瘤细胞.结果 在18种上皮性肿瘤细胞株中CK8、CK18、CK19表达率分别为72.22%、83.33%和66

  7. [Sertoli cell tumor of the testis].

    Science.gov (United States)

    Hita Rosino, E; López Hidalgo, J; Mellado Mesa, P; Olivar Buera, M

    2001-01-01

    Sertoli cell tumors (TCS) derivated from sex-cord estroma cells, are an uncommon variety of testicles neoplasms. A 66 year-old patient that came to the consultation for an increased scrotum of size present. Ultrasound viewed a hipoecoic nodule capable with testicular tumor, more secondary hidrocele. After undergoing the standard treatment, by means of groin radical orchiectomy, its pathologic analysis identified the lesion as Sertoli cell tumor conventional. The pathologic features that best correlate with a clinically benign course are as follows: a lower size tumor to 5 cm, mild nuclear atypia, a mitotic rate of less than 5 mitosis per 10 high power fields, and absent necrosis. Our case presented with these features. Follow-up of these neoplasms should be prolonged by the unusual of its presentation and a small percentage of cases are clinically malignant.

  8. Isolation of rare tumor cells from blood cells with buoyant immuno-microbubbles.

    Directory of Open Access Journals (Sweden)

    Guixin Shi

    Full Text Available Circulating tumor cells (CTCs are exfoliated at various stages of cancer, and could provide invaluable information for the diagnosis and prognosis of cancers. There is an urgent need for the development of cost-efficient and scalable technologies for rare CTC enrichment from blood. Here we report a novel method for isolation of rare tumor cells from excess of blood cells using gas-filled buoyant immuno-microbubbles (MBs. MBs were prepared by emulsification of perfluorocarbon gas in phospholipids and decorated with anti-epithelial cell adhesion molecule (EpCAM antibody. EpCAM-targeted MBs efficiently (85% and rapidly (within 15 minutes bound to various epithelial tumor cells suspended in cell medium. EpCAM-targeted MBs efficiently (88% isolated frequent tumor cells that were spiked at 100,000 cells/ml into plasma-depleted blood. Anti-EpCAM MBs efficiently (>77% isolated rare mouse breast 4T1, human prostate PC-3 and pancreatic cancer BxPC-3 cells spiked into 1, 3 and 7 ml (respectively of plasma-depleted blood. Using EpCAM targeted MBs CTCs from metastatic cancer patients were isolated, suggesting that this technique could be developed into a valuable clinical tool for isolation, enumeration and analysis of rare cells.

  9. CD8+ Tumor-Infiltrating T Cells Are Trapped in the Tumor-Dendritic Cell Network

    Directory of Open Access Journals (Sweden)

    Alexandre Boissonnas

    2013-01-01

    Full Text Available Chemotherapy enhances the antitumor adaptive immune T cell response, but the immunosuppressive tumor environment often dominates, resulting in cancer relapse. Antigen-presenting cells such as tumor-associated macrophages (TAMs and tumor dendritic cells (TuDCs are the main protagonists of tumor-infiltrating lymphocyte (TIL immuno-suppression. TAMs have been widely investigated and are associated with poor prognosis, but the immuno-suppressive activity of TuDCs is less well understood. We performed two-photon imaging of the tumor tissue to examine the spatiotemporal interactions between TILs and TuDCs after chemotherapy. In a strongly immuno-suppressive murine tumor model, cyclophosphamide-mediated chemotherapy transiently enhanced the antitumor activity of adoptively transferred ovalbumin-specific CD8+ T cell receptor transgenic T cells (OTI but barely affected TuDC compartment within the tumor. Time lapse imaging of living tumor tissue showed that TuDCs are organized as a mesh with dynamic interconnections. Once infiltrated into the tumor parenchyma, OTI T cells make antigen-specific and long-lasting contacts with TuDCs. Extensive analysis of TIL infiltration on histologic section revealed that after chemotherapy the majority of OTI T cells interact with TuDCs and that infiltration is restricted to TuDC-rich areas. We propose that the TuDC network exerts antigen-dependent unproductive retention that trap T cells and limit their antitumor effectiveness.

  10. Surfactant functionalization induces robust, differential adhesion of tumor cells and blood cells to charged nanotube-coated biomaterials under flow.

    Science.gov (United States)

    Mitchell, Michael J; Castellanos, Carlos A; King, Michael R

    2015-07-01

    The metastatic spread of cancer cells from the primary tumor to distant sites leads to a poor prognosis in cancers originating from multiple organs. Increasing evidence has linked selectin-based adhesion between circulating tumor cells (CTCs) and endothelial cells of the microvasculature to metastatic dissemination, in a manner similar to leukocyte adhesion during inflammation. Functionalized biomaterial surfaces hold promise as a diagnostic tool to separate CTCs and potentially treat metastasis, utilizing antibody and selectin-mediated interactions for cell capture under flow. However, capture at high purity levels is challenged by the fact that CTCs and leukocytes both possess selectin ligands. Here, a straightforward technique to functionalize and alter the charge of naturally occurring halloysite nanotubes using surfactants is reported to induce robust, differential adhesion of tumor cells and blood cells to nanotube-coated surfaces under flow. Negatively charged sodium dodecanoate-functionalized nanotubes simultaneously enhanced tumor cell capture while negating leukocyte adhesion, both in the presence and absence of adhesion proteins, and can be utilized to isolate circulating tumor cells regardless of biomarker expression. Conversely, diminishing nanotube charge via functionalization with decyltrimethylammonium bromide both abolished tumor cell capture while promoting leukocyte adhesion.

  11. Prognostic value of circulating CD34+ cells in myelodysplastic syndromes.

    Science.gov (United States)

    Cesana, Clara; Klersy, Catherine; Brando, Bruno; Nosari, Annamaria; Scarpati, Barbara; Scampini, Linda; Molteni, Alfredo; Nador, Guido; Santoleri, Luca; Formenti, Marta; Valentini, Marina; Mazzone, Antonino; Morra, Enrica; Cairoli, Roberto

    2008-11-01

    We studied circulating (C)CD34(+) cells by flow cytometry in 96 patients with myelodysplastic syndromes (MDS) at diagnosis, and in a subset of 35 cases during follow-up. CCD34(+) counts were stratified within both International Prognostic Scoring System (IPSS) and World Health Organization (WHO) categories. Counts >10/microl were associated with poorer leukemia-free survival, a prognostic value for evolution independent from that of WHO, and a higher progression probability within intermediate-risk IPSS and WHO classes. When serial measurements were performed, counts >10/microl more frequently correlated to evolution. Separating newly diagnosed patients on the basis of 10/microl cut-off of circulating CD34(+) cells retains prognostic utility, especially in intermediate-risk MDS.

  12. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression.

    Directory of Open Access Journals (Sweden)

    Erika L Spaeth

    Full Text Available BACKGROUND: Tumor associated fibroblasts (TAF, are essential for tumor progression providing both a functional and structural supportive environment. TAF, known as activated fibroblasts, have an established biological impact on tumorigenesis as matrix synthesizing or matrix degrading cells, contractile cells, and even blood vessel associated cells. The production of growth factors, cytokines, chemokines, matrix-degrading enzymes, and immunomodulatory mechanisms by these cells augment tumor progression by providing a suitable environment. There are several suggested origins of the TAF including tissue-resident, circulating, and epithelial-to-mesenchymal-transitioned cells. METHODOLOGY/PRINCIPAL FINDINGS: We provide evidence that TAF are derived from mesenchymal stem cells (MSC that acquire a TAF phenotype following exposure to or systemic recruitment into adenocarcinoma xenograft models including breast, pancreatic, and ovarian. We define the MSC derived TAF in a xenograft ovarian carcinoma model by the immunohistochemical presence of 1 fibroblast specific protein and fibroblast activated protein; 2 markers phenotypically associated with aggressiveness, including tenascin-c, thrombospondin-1, and stromelysin-1; 3 production of pro-tumorigenic growth factors including hepatocyte growth factor, epidermal growth factor, and interleukin-6; and 4 factors indicative of vascularization, including alpha-smooth muscle actin, desmin, and vascular endothelial growth factor. We demonstrate that under long-term tumor conditioning in vitro, MSC express TAF-like proteins. Additionally, human MSC but not murine MSC stimulated tumor growth primarily through the paracrine production of secreted IL6. CONCLUSIONS/SIGNIFICANCE: Our results suggest the dependence of in vitro Skov-3 tumor cell proliferation is due to the presence of tumor-stimulated MSC secreted IL6. The subsequent TAF phenotype arises from the MSC which ultimately promotes tumor growth through the

  13. Prognostic value of circulating tumor DNA in patients with colon cancer: Systematic review

    Science.gov (United States)

    Fan, Gaowei; Zhang, Kuo; Yang, Xin; Ding, Jiansheng; Wang, Zujian; Li, Jinming

    2017-01-01

    The application of circulating tumor DNA(ctDNA) represents a non-invasive method for tumor detection. Its prognostic significance in patients with colorectal cancer is controversial. We performed a systematic review of data from published studies to assess the prognostic values of ctDNA in patients with colorectal cancer. We searched Medline, Embase, Web of Science, the Cochrane Library, and Scopus databases to identify eligible studies reporting disease-free survival (DFS) and overall survival (OS) stratified by ctDNA prior to December 6, 2016. We evaluated the quality and design of these studies. A total of 22 studies were eligible for systematic review. Among them, 11 studies investigated the prognostic value of ctDNA on disease-free survival (DFS). Seven of 11 studies showed that ctDNA was an independent variable to estimate the probability of DFS by multivariate analyses. Thirteen studies assessed the relationship between ctDNA and overall survival (OS). Eight of 13 studies showed that ctDNA was an independent predictor of worse OS through the use of multivariate analyses. This analysis provides evidence that ctDNA may be a prognostic biomarker, negatively correlated with the survival of patients with colorectal cancer. PMID:28187169

  14. Whole tumor antigen vaccination using dendritic cells: Comparison of RNA electroporation and pulsing with UV-irradiated tumor cells

    Directory of Open Access Journals (Sweden)

    Benencia Fabian

    2008-04-01

    Full Text Available Abstract Because of the lack of full characterization of tumor associated antigens for solid tumors, whole antigen use is a convenient approach to tumor vaccination. Tumor RNA and apoptotic tumor cells have been used as a source of whole tumor antigen to prepare dendritic cell (DC based tumor vaccines, but their efficacy has not been directly compared. Here we compare directly RNA electroporation and pulsing of DCs with whole tumor cells killed by ultraviolet (UV B radiation using a convenient tumor model expressing human papilloma virus (HPV E6 and E7 oncogenes. Although both approaches led to DCs presenting tumor antigen, electroporation with tumor cell total RNA induced a significantly higher frequency of tumor-reactive IFN-gamma secreting T cells, and E7-specific CD8+ lymphocytes compared to pulsing with UV-irradiated tumor cells. DCs electroporated with tumor cell RNA induced a larger tumor infiltration by T cells and produced a significantly stronger delay in tumor growth compared to DCs pulsed with UV-irradiated tumor cells. We conclude that electroporation with whole tumor cell RNA and pulsing with UV-irradiated tumor cells are both effective in eliciting antitumor immune response, but RNA electroporation results in more potent tumor vaccination under the examined experimental conditions.

  15. Molecular biology of testicular germ cell tumors.

    Science.gov (United States)

    Gonzalez-Exposito, R; Merino, M; Aguayo, C

    2016-06-01

    Testicular germ cell tumors (TGCTs) are the most common solid tumors in young adult men. They constitute a unique pathology because of their embryonic and germ origin and their special behavior. Genetic predisposition, environmental factors involved in their development and genetic aberrations have been under study in many works throughout the last years trying to explain the susceptibility and the transformation mechanism of TGCTs. Despite the high rate of cure in this type of tumors because its particular sensitivity to cisplatin, there are tumors resistant to chemotherapy for which it is needed to find new therapies. In the present work, it has been carried out a literature review on the most important molecular aspects involved in the onset and development of such tumors, as well as a review of the major developments regarding prognostic factors, new prognostic biomarkers and the possibility of new targeted therapies.

  16. Studying circulating prostate cancer cells by in-vivo flow cytometer

    Science.gov (United States)

    Guo, Jin; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2012-03-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. We have measured the depletion kinetics of cancer cells with different metastatic potential. Interestingly, more invasive PC-3 prostate cancer cells are depleted faster from the circulation than LNCaP cells.

  17. Myeloid cells contribute to tumor lymphangiogenesis.

    Science.gov (United States)

    Zumsteg, Adrian; Baeriswyl, Vanessa; Imaizumi, Natsuko; Schwendener, Reto; Rüegg, Curzio; Christofori, Gerhard

    2009-09-17

    The formation of new blood vessels (angiogenesis) and lymphatic vessels (lymphangiogenesis) promotes tumor outgrowth and metastasis. Previously, it has been demonstrated that bone marrow-derived cells (BMDC) can contribute to tumor angiogenesis. However, the role of BMDC in lymphangiogenesis has largely remained elusive. Here, we demonstrate by bone marrow transplantation/reconstitution and genetic lineage-tracing experiments that BMDC integrate into tumor-associated lymphatic vessels in the Rip1Tag2 mouse model of insulinoma and in the TRAMP-C1 prostate cancer transplantation model, and that the integrated BMDC originate from the myelomonocytic lineage. Conversely, pharmacological depletion of tumor-associated macrophages reduces lymphangiogenesis. No cell fusion events are detected by genetic tracing experiments. Rather, the phenotypical conversion of myeloid cells into lymphatic endothelial cells and their integration into lymphatic structures is recapitulated in two in vitro tube formation assays and is dependent on fibroblast growth factor-mediated signaling. Together, the results reveal that myeloid cells can contribute to tumor-associated lymphatic vessels, thus extending the findings on the previously reported role of hematopoietic cells in lymphatic vessel formation.

  18. Myeloid cells contribute to tumor lymphangiogenesis.

    Directory of Open Access Journals (Sweden)

    Adrian Zumsteg

    Full Text Available The formation of new blood vessels (angiogenesis and lymphatic vessels (lymphangiogenesis promotes tumor outgrowth and metastasis. Previously, it has been demonstrated that bone marrow-derived cells (BMDC can contribute to tumor angiogenesis. However, the role of BMDC in lymphangiogenesis has largely remained elusive. Here, we demonstrate by bone marrow transplantation/reconstitution and genetic lineage-tracing experiments that BMDC integrate into tumor-associated lymphatic vessels in the Rip1Tag2 mouse model of insulinoma and in the TRAMP-C1 prostate cancer transplantation model, and that the integrated BMDC originate from the myelomonocytic lineage. Conversely, pharmacological depletion of tumor-associated macrophages reduces lymphangiogenesis. No cell fusion events are detected by genetic tracing experiments. Rather, the phenotypical conversion of myeloid cells into lymphatic endothelial cells and their integration into lymphatic structures is recapitulated in two in vitro tube formation assays and is dependent on fibroblast growth factor-mediated signaling. Together, the results reveal that myeloid cells can contribute to tumor-associated lymphatic vessels, thus extending the findings on the previously reported role of hematopoietic cells in lymphatic vessel formation.

  19. HPV16-associated tumors control myeloid cell homeostasis in lymphoid organs, generating a suppressor environment for T cells.

    Science.gov (United States)

    Stone, Simone Cardozo; Rossetti, Renata Ariza Marques; Bolpetti, Aline; Boccardo, Enrique; Souza, Patricia Savio de Araujo; Lepique, Ana Paula

    2014-10-01

    Tumors are complex structures containing different types of cells and molecules. The importance of the tumor microenvironment in tumor progression, growth, and maintenance is well-established. However, tumor effects are not restricted to the tumor microenvironment. Molecules secreted by, as well as cells that migrate from tumors, may circulate and reach other tissues. This may cause a series of systemic effects, including modulation of immune responses, and in some cases, leukocytosis and metastasis promotion. Leukocytosis has been described as a poor prognostic factor in patients with cervical cancer. The main etiological factor for cervical cancer development is persistent infection with high oncogenic risk HPV. Our laboratory has been exploring the effects of high oncogenic risk, HPV-associated tumors on lymphoid organs of the host. In the present study, we observed an increase in myeloid cell proliferation and alteration in cell signaling in APCs in the spleen of tumor-bearing mice. In parallel, we characterized the cytokines secreted in the inflammatory and tumor cell compartments in the tumor microenvironment and in the spleen of tumor-bearing mice. We show evidence of constitutive activation of the IL-6/STAT3 signaling pathway in the tumor, including TAMs, and in APCs in the spleen. We also observed that IL-10 is a central molecule in the tolerance toward tumor antigens through control of NF-κB activation, costimulatory molecule expression, and T cell proliferation. These systemic effects over myeloid cells are robust and likely an important problem to be addressed when considering strategies to improve anti-tumor T cell responses.

  20. Cancer stem cell plasticity and tumor hierarchy

    Institute of Scientific and Technical Information of China (English)

    Marina Carla Cabrera; Robert E Hollingsworth; Elaine M Hurt

    2015-01-01

    The origins of the complex process of intratumoralheterogeneity have been highly debated and differentcellular mechanisms have been hypothesized to accountfor the diversity within a tumor. The clonal evolution andcancer stem cell (CSC) models have been proposed asdrivers of this heterogeneity. However, the concept ofcancer stem cell plasticity and bidirectional conversionbetween stem and non-stem cells has added additionalcomplexity to these highly studied paradigms and may helpexplain the tumor heterogeneity observed in solid tumors.The process of cancer stem cell plasticity in which cancercells harbor the dynamic ability of shifting from a non-CSCstate to a CSC state and vice versa may be modulated byspecific microenvironmental signals and cellular interactionsarising in the tumor niche. In addition to promoting CSCplasticity, these interactions may contribute to the cellulartransformation of tumor cells and affect response tochemotherapeutic and radiation treatments by providingCSCs protection from these agents. Herein, we review theliterature in support of this dynamic CSC state, discussthe effectors of plasticity, and examine their role in thedevelopment and treatment of cancer.

  1. Gangliosides regulate tumor cell adhesion to collagen.

    Science.gov (United States)

    Kazarian, Tamara; Jabbar, Adnan A; Wen, Fei-Qui; Patel, Dharmesh A; Valentino, Leonard A

    2003-01-01

    The ability of tumor cells to adhere to extracellular matrix proteins is critical for migration and invasion. The factors that regulate tumor cell adhesion are poorly characterized. Gangliosides promote platelet adhesion and may also play a role in the adhesion of other cell types. We hypothesized that pharmacological depletion of membrane gangliosides from adherent cells would abrogate adhesion to collagen and promote migration and invasion. To test these hypotheses, LA-N1 neuroblastoma cells, which avidly adhere to collagen and are rich with membrane gangliosides (43.69 nmol/10(8) cells), were cultured in the presence of D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol-HCl. Endogenous gangliosides were reduced by 98% (0.76 nmol/10(8) cells) and adhesion to collagen decreased by 67%. There were no changes in cell morphology, viability, proliferation rate or apoptosis. Pre-incubation of ganglioside-depleted cells in conditioned medium from control cells restored adhesion to collagen (0.45 +/- 0.002), comparable to that of control cells (0.49 +/- 0.035). Similarly, pre-incubation of ganglioside-depleted cells with purified GD2 completely restored adhesion in a concentration-dependent manner. When LA-N1 cells were cultured with retinoic acid, a biological response modifier known to increase endogenous gangliosides, adhesion to collagen increased. Next, we questioned whether changes in adhesion would be reflected as changes in migration and invasion. Cells depleted of endogenous cellular gangliosides migrated more than control cells. Finally, control cells replete with their endogenous gangliosides demonstrated less invasive potential than control cells. The data demonstrate that endogenous tumor gangliosides increase neuroblastoma cell adhesion to collagen and reduce migration and invasion in vitro.

  2. Personalized Circulating Tumor DNA Biomarkers Dynamically Predict Treatment Response and Survival In Gynecologic Cancers.

    Directory of Open Access Journals (Sweden)

    Elena Pereira

    Full Text Available High-grade serous ovarian and endometrial cancers are the most lethal female reproductive tract malignancies worldwide. In part, failure to treat these two aggressive cancers successfully centers on the fact that while the majority of patients are diagnosed based on current surveillance strategies as having a complete clinical response to their primary therapy, nearly half will develop disease recurrence within 18 months and the majority will die from disease recurrence within 5 years. Moreover, no currently used biomarkers or imaging studies can predict outcome following initial treatment. Circulating tumor DNA (ctDNA represents a theoretically powerful biomarker for detecting otherwise occult disease. We therefore explored the use of personalized ctDNA markers as both a surveillance and prognostic biomarker in gynecologic cancers and compared this to current FDA-approved surveillance tools.Tumor and serum samples were collected at time of surgery and then throughout treatment course for 44 patients with gynecologic cancers, representing 22 ovarian cancer cases, 17 uterine cancer cases, one peritoneal, three fallopian tube, and one patient with synchronous fallopian tube and uterine cancer. Patient/tumor-specific mutations were identified using whole-exome and targeted gene sequencing and ctDNA levels quantified using droplet digital PCR. CtDNA was detected in 93.8% of patients for whom probes were designed and levels were highly correlated with CA-125 serum and computed tomography (CT scanning results. In six patients, ctDNA detected the presence of cancer even when CT scanning was negative and, on average, had a predictive lead time of seven months over CT imaging. Most notably, undetectable levels of ctDNA at six months following initial treatment was associated with markedly improved progression free and overall survival.Detection of residual disease in gynecologic, and indeed all cancers, represents a diagnostic dilemma and a potential

  3. Giant cell tumor of bone: Multimodal approach

    Directory of Open Access Journals (Sweden)

    Gupta A

    2007-01-01

    Full Text Available Background: The clinical behavior and treatment of giant cell tumor of bone is still perplexing. The aim of this study is to clarify the clinico-pathological correlation of tumor and its relevance in treatment and prognosis. Materials and Methods: Ninety -three cases of giant cell tumor were treated during 1980-1990 by different methods. The age of the patients varied from 18-58 yrs with male and female ratio as 5:4. The upper end of the tibia was most commonly involved (n=31, followed by the lower end of the femur(n=21, distal end of radius(n=14,upper end of fibula (n=9,proximal end of femur(n=5, upper end of the humerus(n=3, iliac bone(n=2,phalanx (n=2 and spine(n=1. The tumors were also encountered on uncommon sites like metacarpals (n=4 and metatarsal(n=1. Fifty four cases were treated by curettage and bone grafting. Wide excision and reconstruction was performed in twenty two cases . Nine cases were treated by wide excision while primary amputation was performed in four cases. One case required only curettage. Three inaccessible lesions of ilium and spine were treated by radiotherapy. Results: 19 of 54 treated by curettage and bone grafting showed a recurrence. The repeat curettage and bone grafting was performed in 18 cases while amputation was done in one. One each out of the cases treated by wide excision and reconstruction and wide excision alone recurred. In this study we observed that though curettage and bone grafting is still the most commonly adopted treatment, wide excision of tumor with reconstruction has shown lesser recurrence. Conclusion: For radiologically well-contained and histologically typical tumor, curettage and autogenous bone grafting is the treatment of choice . The typical tumors with radiologically deficient cortex, clinically aggressive tumors and tumors with histological Grade III should be treated by wide excision and reconstruction.

  4. Circulating myeloid-derived suppressor cells in patients with pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Xiao-Dong Xu; Jun Hu; Min Wang; Feng Peng; Rui Tian; Xing-Jun Guo; Yu Xie; Ren-Yi Qin

    2016-01-01

    BACKGROUND: Myeloid-derived suppressor cells (MDSCs) are heterogeneous cell types that suppress T-cell responses in cancer patients and animal models, some MDSC subpopula-tions are increased in patients with pancreatic cancer. The present study was to investigate a specific subset of MDSCs in patients with pancreatic cancer and the mechanism of MDSCs increase in these patients. METHODS: Myeloid cells from whole blood were collected from 37 patients with pancreatic cancer, 17 with cholangiocarcinoma, and 47 healthy controls. Four pancreatic cancer cell lines were co-culturedwithnormalperipheralbloodmononuclearcells(PBMCs) to test the effect of tumor cells on the conversion of PBMCs to MDSCs. Levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and arginase activity in the plasma of cancer patients were analyzed by enzyme-linked immunosorbent assay. RESULTS: CD14+/CD11b+/HLA-DR- MDSCs were increased in patients with pancreatic or bile duct cancer compared with those in healthy controls, and this increase was correlated with clinical cancer stage. Pancreatic cancer cell lines induced PBMCs to MDSCs in a dose-dependent manner. GM-CSF and arginase activity levels were significantly increased in the se-rum of patients with pancreatic cancer. CONCLUSIONS: MDSCsweretumorrelated:tumorcellsinduced PBMCs to MDSCs in a dose-dependent manner and circulating CD14+/CD11b+/HLA-DR- MDSCs in pancreatic cancer patients were positively correlated with tumor burden. MDSCs might be useful markers for pancreatic cancer detection and progression.

  5. Immunosuppressive cells in tumor immune escape and metastasis.

    Science.gov (United States)

    Liu, Yang; Cao, Xuetao

    2016-05-01

    Tumor immune escape and the initiation of metastasis are critical steps in malignant progression of tumors and have been implicated in the failure of some clinical cancer immunotherapy. Tumors develop numerous strategies to escape immune surveillance or metastasize: Tumors not only modulate the recruitment and expansion of immunosuppressive cell populations to develop the tumor microenvironment or pre-metastatic niche but also switch the phenotype and function of normal immune cells from a potentially tumor-reactive state to a tumor-promoting state. Immunosuppressive cells facilitate tumor immune escape by inhibiting antitumor immune responses and furthermore promote tumor metastasis by inducing immunosuppression, promoting tumor cell invasion and intravasation, establishing a pre-metastatic niche, facilitating epithelial-mesenchymal transition, and inducing angiogenesis at primary tumor or metastatic sites. Numerous translational studies indicate that it is possible to inhibit tumor immune escape and prevent tumor metastasis by blocking immunosuppressive cells and eliminating immunosuppressive mechanisms that are induced by either immunosuppressive cells or tumor cells. Furthermore, many clinical trials targeting immunosuppressive cells have also achieved good outcome. In this review, we focus on the underlying mechanisms of immunosuppressive cells in promoting tumor immune escape and metastasis, discuss our current understanding of the interactions between immunosuppressive cells and tumor cells in the tumor microenvironment, and suggest future research directions as well as potential clinical strategies in cancer immunotherapy.

  6. Ultrasound features of orbital granular cell tumor.

    Science.gov (United States)

    Ayres, Bernadete; Miller, Neil R; Eberhart, Charles G; Dibernardo, Cathy W

    2009-01-01

    The authors report the echographic characteristics of a rare orbital granular cell tumor and correlate these findings with histopathology. A 56-year-old woman presented with proptosis. Complete ophthalmic and ultrasound examinations were performed. Ultrasound revealed an oval, well-outlined orbital mass in the intraconal space with low-medium reflectivity and regular internal structure. An orbitotomy with complete excision of the tumor was performed. Histopathologic evaluation showed sheets and nests of cells with abundant eosinophilic and granular cytoplasm in a uniform distribution throughout the lesion. The echographic characteristics correlated well with the morphologic surgical findings and the histologic architecture. This is the first report describing the echographic characteristics of orbital granular cell tumor.

  7. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors.

    Science.gov (United States)

    Wyckoff, Jeffrey B; Wang, Yarong; Lin, Elaine Y; Li, Jiu-feng; Goswami, Sumanta; Stanley, E Richard; Segall, Jeffrey E; Pollard, Jeffrey W; Condeelis, John

    2007-03-15

    Although the presence of macrophages in tumors has been correlated with poor prognosis, until now there was no direct observation of how macrophages are involved in hematogenous metastasis. In this study, we use multiphoton microscopy to show, for the first time, that tumor cell intravasation occurs in association with perivascular macrophages in mammary tumors. Furthermore, we show that perivascular macrophages of the mammary tumor are associated with tumor cell intravasation in the absence of local angiogenesis. These results show that the interaction between macrophages and tumor cells lying in close proximity defines a microenvironment that is directly involved in the intravasation of cancer cells in mammary tumors.

  8. Circulating 25-hydroxyvitamin D and postmenopausal breast cancer survival: Influence of tumor characteristics and lifestyle factors?

    Science.gov (United States)

    Vrieling, Alina; Seibold, Petra; Johnson, Theron S; Heinz, Judith; Obi, Nadia; Kaaks, Rudolf; Flesch-Janys, Dieter; Chang-Claude, Jenny

    2014-06-15

    We previously reported that lower post-diagnostic circulating 25-hydroxyvitamin D [25(OH)D] concentrations were associated with higher risk of overall mortality and distant disease in stage I-IV postmenopausal breast cancer survivors. This association was now re-examined in an extended dataset to investigate potential effect modification by tumor characteristics and lifestyle factors. A prospective cohort study was conducted in Germany including 2,177 incident stage I-IV postmenopausal breast cancer patients aged 50-74 years. Patients were diagnosed between 2001 and 2005 and median follow-up time was 5.3 years. Cox proportional hazards models were stratified by age at diagnosis, study center and season of blood collection and adjusted for other prognostic factors. A meta-analysis of studies on circulating 25(OH)D and mortality in breast cancer patients was performed to summarize evidence. Lower concentrations of 25(OH)D were significantly associated with higher risk of overall mortality [hazard ratio (HR) lowest vs. highest tertile = 1.86; 95% confidence interval (CI): 1.22, 2.82; p-trend = 0.002] and distant disease (HR = 1.76; 95% CI: 1.24, 2.49; p-trend = 0.003) in stage I-IIIa but not in stage IIIb-IV breast cancer patients. No significant interaction by lifestyle factors was observed (all p-interaction > 0.05). The meta-analysis yielded significant associations with overall and breast cancer-specific mortality (lowest vs. highest quantile: HR = 1.52; 95% CI: 1.22, 1.88 and HR = 1.74; 95% CI: 1.23, 2.40, respectively). In conclusion, post-diagnostic circulating 25(OH)D concentrations were associated with overall mortality and distant disease in stage I-IIIa postmenopausal breast cancer patients. This association was not strongly modified by lifestyle factors.

  9. Oriented collagen fibers direct tumor cell intravasation

    KAUST Repository

    Han, Weijing

    2016-09-24

    In this work, we constructed a Collagen I-Matrigel composite extracellular matrix (ECM). The composite ECM was used to determine the influence of the local collagen fiber orientation on the collective intravasation ability of tumor cells. We found that the local fiber alignment enhanced cell-ECM interactions. Specifically, metastatic MDA-MB-231 breast cancer cells followed the local fiber alignment direction during the intravasation into rigid Matrigel (∼10 mg/mL protein concentration).

  10. Flow cytometric data analysis of circulating progenitor cell stability.

    Science.gov (United States)

    Mahar, Ernestine A; Mou, Liping; Hayek, Salim S; Quyyumi, Arshed A; Waller, Edmund K

    2017-02-01

    A recent publication by Mekonnen et al. demonstrated that among women with non-obstructive coronary artery disease, higher levels of circulating progenitor cells in the blood (CPC), were associated with impaired coronary flow reserve [1]. We performed a quality control assessment of the stability of circulating blood progenitor cells in blood samples stored at 4 °C, to determine the time period during which blood samples can be analyzed and yield consistent data for progenitor cell content. Healthy volunteers (n=6) were recruited and underwent phlebotomy, and blood was stored in EDTA tubes at 4 °C. Flow cytometry was performed to quantitate progenitor cell subsets at 0-4 h, 24 h, and 48 h post phlebotomy. All processed samples were fixed with 1% Paraformaldehyde and 1,000,000 total data events were collected. We found no significant differences in PC data for both CD34+ (P=0.68 for one-way ANOVA) and CD34+/CD133+ (P=0.74 for one-way ANOVA).

  11. Monitoring multiple myeloma by next-generation sequencing of V(D)J rearrangements from circulating myeloma cells and cell-free myeloma DNA.

    Science.gov (United States)

    Oberle, Anna; Brandt, Anna; Voigtlaender, Minna; Thiele, Benjamin; Radloff, Janina; Schulenkorf, Anita; Alawi, Malik; Akyüz, Nuray; März, Manuela; Ford, Christopher T; Krohn-Grimberghe, Artus; Binder, Mascha

    2017-02-09

    Recent studies suggest that circulating tumor cells and cell-free DNA may represent powerful non-invasive tools for disease monitoring in patients with solid and hematological malignancies. Here, we conducted a pilot study in 27 myeloma patients to explore the clonotypic V(D)J rearrangement for monitoring of circulating myeloma cells (cmc-V(D)J) and cell-free myeloma DNA (cfm-V(D)J). Next-generation sequencing was used to define the myeloma V(D)J rearrangement and for subsequent peripheral blood tracking after treatment initiation. Positivity for cmc-/cfm-V(D)J was associated with conventional remission status (pJ (pJ despite persistent M-protein, suggesting that these markers are less inert than the M-protein, rely more on cell turnover and therefore decline more rapidly after initiation of effective treatment. Positivity for cmc- and cfm-V(D)J was associated with each other (p=0.042), but in 30% discordant. This indicated that cfm-V(D)J may not be generated entirely by circulating myeloma cells and may reflect overall tumor burden. Prospective studies need to define the predictive potential of high-sensitivity determination of circulating myeloma cells and DNA in the monitoring of multiple myeloma.

  12. Management of nonfunctioning islet cell tumors

    Institute of Scientific and Technical Information of China (English)

    Han Liang; Pu Wang; Xiao-Na Wang; Jia-Cang Wang; Xi-Shan Hao

    2004-01-01

    AIM: To more clearly define the clinical and pathological characteristics and appropriate diagnosis and treatment of nonfunctioning (NFICTs) islet cell tumors, and to review our institutional experience over the last 30 years.METHODS: The records of 43 patients confirmed to have nonfunctioning islet cell tumors of pancreas were retrospectively reviewed. Survival was estimated by the Kaplan-Meier methods and potential risk factors for survival were compared with the log-rank tests.RESULTS: The mean age was 31.63 years (range, 8 to 67 years). There were 7 men and 36 women. Twentyeight patients had a confirmed diagnosis of nonfunctioning islet cell carcinoma (NFICC) and benign islet cell tumors were found in 15 patients. The most common symptoms in patients with NFICTs were abdominal pain (55.8%),nausea and/or vomiting (32.6%), fatigue (25.6%) and abdominal mass (23.3%). Preoperative ultrasonic and computed tomography localized the tumors in all patients.Forty-three NFICTs were distributed throughout the pancreas, with 21 located to the right of the superior mesenteric vessels, 10 in the body of the pancreas, 6 in the tail of the pancreas, and multiple tumors were found in one patient. Thirty-nine of 43 patients (91%) underwent surgical resection. Surgical treatment was curative in 30patients (70%) and palliative in 9(21%). The resectability and curative resection rate in patients with NFICC of pancreas were 89% and 61%, respectively. The overall cumulative 5- and 10-year survival rates for patients with NFICC were 58.05% and 29.03%, respectively. Radical operation and diameter of cancer small than :10 cm were positive prognostic factors in females younger than 30years old. Multivariate Cox regression analysis indicated that radical operation was the only independent prognostic factor, P=0.007.CONCLUSION: Nonfunctioning islet cell tumors of pancreas are found mainly in young women. The long-term results for patients undergone surgery, especially curative resection are

  13. Circulating Tumor Necrosis Factor α Receptors Predict the Outcomes of Human IgA Nephropathy: A Prospective Cohort Study.

    Directory of Open Access Journals (Sweden)

    Yun Jung Oh

    Full Text Available The circulating tumor necrosis factor receptors (TNFRs could predict the long-term renal outcome in diabetes, but the role of circulating TNFRs in other chronic kidney disease has not been reported. Here, we investigated the correlation between circulating TNFRs and renal histologic findings on kidney biopsy in IgA nephropathy (IgAN and assessed the notion that the circulating TNFRs could predict the clinical outcome. 347 consecutive biopsy-proven IgAN patients between 2006 and 2012 were prospectively enrolled. Concentrations of circulating TNFRs were measured using serum samples stored at the time of biopsy. The primary clinical endpoint was the decline of estimated glomerular filtration rate (eGFR; ≥ 30% decline compared to baseline. Mean eGFR decreased and proteinuria worsened proportionally as circulating TNFR1 and TNFR2 increased (P < 0.001. Tubulointerstitial lesions such as interstitial fibrosis and tubular atrophy were significantly more severe as concentrations of circulating TNFRs increased, regardless of eGFR levels. The risks of reaching the primary endpoint were significantly higher in the highest quartile of TNFRs compared with other quartiles by the Cox proportional hazards model (TNFR1; hazard ratio 7.48, P < 0.001, TNFR2; hazard ratio 2.51, P = 0.021. In stratified analysis according to initial renal function classified by the eGFR levels of 60 mL/min/1.73 m2, TNFR1 and TNFR2 were significant predictors of renal progression in both subgroups. In conclusion, circulating TNFRs reflect the histology and clinical severity of IgAN. Moreover, elevated concentrations of circulating TNFRs at baseline are early biomarkers for subsequent renal progression in IgAN patients.

  14. Cyberknife radiosurgery for cranial plasma cell tumor.

    Science.gov (United States)

    Alafaci, Cetty; Grasso, Giovanni; Conti, Alfredo; Caffo, Mariella; Salpietro, Francesco Maria; Tomasello, Francesco

    2014-01-01

    Cranial and intracranial involvement by myelomatous disease is relatively uncommon. Furthermore, systemic manifestations of multiple myeloma are present in the majority of these cases at the time of symptom onset. The authors report the case of a patient with serial appearance of multiple intracranial plasma cell tumor localizations as the first manifestations of a multiple myeloma. The patient was treated with CyberKnife radiosurgery for a lesion localized at the clivus and sella turcica with complete local control. With such a technique, based on high-dose conformality, the tumor was centered with an ablative dose of radiation and, at the same time, with a low dose spreading to the surrounding critical structures. The radiosensitivity of plasma cell tumors renders this treatment modality particularly advantageous for their localized manifestation. A technical description of this case is provided. To our knowledge, this is the first case of successful Cyberknife radiosurgery of multifocal intracranial plasmacytoma.

  15. Flow cytometric data analysis of circulating progenitor cell stability

    Directory of Open Access Journals (Sweden)

    Ernestine A. Mahar

    2017-02-01

    We performed a quality control assessment of the stability of circulating blood progenitor cells in blood samples stored at 4 °C, to determine the time period during which blood samples can be analyzed and yield consistent data for progenitor cell content. Healthy volunteers (n=6 were recruited and underwent phlebotomy, and blood was stored in EDTA tubes at 4 °C. Flow cytometry was performed to quantitate progenitor cell subsets at 0–4 h, 24 h, and 48 h post phlebotomy. All processed samples were fixed with 1% Paraformaldehyde and 1,000,000 total data events were collected. We found no significant differences in PC data for both CD34+ (P=0.68 for one-way ANOVA and CD34+/CD133+ (P=0.74 for one-way ANOVA.

  16. Circulating tumor DNA as a non-invasive substitute to metastasis biopsy for tumor genotyping and personalized medicine in a prospective trial across all tumor types.

    Science.gov (United States)

    Lebofsky, Ronald; Decraene, Charles; Bernard, Virginie; Kamal, Maud; Blin, Anthony; Leroy, Quentin; Rio Frio, Thomas; Pierron, Gaëlle; Callens, Céline; Bieche, Ivan; Saliou, Adrien; Madic, Jordan; Rouleau, Etienne; Bidard, François-Clément; Lantz, Olivier; Stern, Marc-Henri; Le Tourneau, Christophe; Pierga, Jean-Yves

    2015-04-01

    Cell-free tumor DNA (ctDNA) has the potential to enable non-invasive diagnostic tests for personalized medicine in providing similar molecular information as that derived from invasive tumor biopsies. The histology-independent phase II SHIVA trial matches patients with targeted therapeutics based on previous screening of multiple somatic mutations using metastatic biopsies. To evaluate the utility of ctDNA in this trial, as an ancillary study we performed de novo detection of somatic mutations using plasma DNA compared to metastasis biopsies in 34 patients covering 18 different tumor types, scanning 46 genes and more than 6800 COSMIC mutations with a multiplexed next-generation sequencing panel. In 27 patients, 28 of 29 mutations identified in metastasis biopsies (97%) were detected in matched ctDNA. Among these 27 patients, one additional mutation was found in ctDNA only. In the seven other patients, mutation detection from metastasis biopsy failed due to inadequate biopsy material, but was successful in all plasma DNA samples providing three more potential actionable mutations. These results suggest that ctDNA analysis is a potential alternative and/or replacement to analyses using costly, harmful and lengthy tissue biopsies of metastasis, irrespective of cancer type and metastatic site, for multiplexed mutation detection in selecting personalized therapies based on the patient's tumor genetic content.

  17. Syndecans in tumor cell adhesion and signaling

    Directory of Open Access Journals (Sweden)

    Rapraeger Alan C

    2004-01-01

    Full Text Available Abstract Anchorage of cells to "heparin" – binding domains that are prevalent in extracellular matrix (ECM components is thought to occur primarily through the syndecans, a four-member family of transmembrane heparan sulfate proteoglycans that communicate environmental cues from the ECM to the cytoskeleton and the signaling apparatus of the cell. Known activities of the syndecans trace to their highly conserved cytoplasmic domains and to their heparan sulfate chains, which can serve to regulate the signaling of growth factors and morphogens. However, several emerging studies point to critical roles for the syndecans' extracellular protein domains in tumor cell behavior to include cell adhesion and invasion. Although the mechanisms of these activities remain largely unknown, one possibility involves "co-receptor" interactions with integrins that may regulate integrin function and the cell adhesion-signaling phenotype. Thus, alterations in syndecan expression, leading to either overexpression or loss of expression, both of which take place in tumor cells, may have dramatic effects on tumor cell invasion.

  18. ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression

    DEFF Research Database (Denmark)

    Frohlich, Camilla; Nehammer, Camilla; Albrechtsen, Reidar;

    2011-01-01

    hypothesized, however, that the tumor-associated stroma may stimulate ADAM12 expression in tumor cells, based on the fact that TGF-ß1 stimulates ADAM12 expression and is a well-known growth factor released from tumor-associated stroma. TGF-ß1 stimulation of ADAM12-negative Lewis lung tumor cells induced ADAM12...... synthesis, and growth of these cells in vivo induced a >200-fold increase in ADAM12 expression. Our observation that ADAM12 expression is significantly higher in the terminal duct lobular units (TDLUs) adjacent to human breast carcinoma compared with TDLUs found in normal breast tissue supports our......Expression of ADAM12 is low in most normal tissues, but is markedly increased in numerous human cancers, including breast carcinomas. We have previously shown that overexpression of ADAM12 accelerates tumor progression in a mouse model of breast cancer (PyMT). In the present study, we found...

  19. Genetic alteration andmutation proifling ofcirculating cell-free tumor DNA (cfDNA) fordiagnosis andtargeted therapy ofgastrointestinal stromal tumors

    Institute of Scientific and Technical Information of China (English)

    WeixinYan; AiguoZhang; MichaelJPowell

    2016-01-01

    Gastrointestinal stromal tumors (GISTs) have been recognized as a biologically distinctive type of tumor, different from smooth muscle and neural tumors of the gastrointestinal tract. The identiifcation of genetic aberrations in proto-oncogenes that drive the growth of GISTs is critical for improving the effcacy of cancer therapy by match-ing targeted drugs to speciifc mutations. Research into the oncogenic mechanisms of GISTs has found that these tumors frequently contain activating gene mutations in either platelet-derived growth factor receptor A (PDGFRA) or a receptor tyrosine protein associated with a mast cell growth factor receptor encoded by theKIT gene. Mutant cancer subpopulations have the potential to disrupt durable patient responses to molecularly targeted therapy for GISTs, yet the prevalence and size of subpopulations remain largely unexplored. Detection of the cancer subpopulations that harbor low-frequency mutant alleles of target proto-oncogenes through the use of molecular genetic methods, such as polymerase chain reaction (PCR) target ampliifcation technology, is hampered by the high abundance of wild-type alleles, which limit the sensitivity of detection of these minor mutant alleles. This is especially true in the case of mutant tumor DNA derived “driver” and “drug-resistant” alleles that are present in the circulating cell-free tumor DNA (cfDNA) in the peripheral blood circulation of GIST patients. So-called “liquid biopsy” allows for the dynamic monitor-ing of the patients’ tumor status during treatment using minimally invasive sampling. New methodologies, such as a technology that employs a xenonucleic acid (XNA) clamping probe to block the PCR ampliifcation of wild-type templates, have allowed improved molecular detection of these low-frequency alleles both in tissue biopsy samples and in cfDNA. These new methodologies could be widely applied for minimally invasive molecular testing in the therapeutic management of GISTs.

  20. Metabolic Hallmarks of Tumor and Immune Cells in the Tumor Microenvironment

    Science.gov (United States)

    Renner, Kathrin; Singer, Katrin; Koehl, Gudrun E.; Geissler, Edward K.; Peter, Katrin; Siska, Peter J.; Kreutz, Marina

    2017-01-01

    Cytotoxic T lymphocytes and NK cells play an important role in eliminating malignant tumor cells and the number and activity of tumor-infiltrating T cells represent a good marker for tumor prognosis. Based on these findings, immunotherapy, e.g., checkpoint blockade, has received considerable attention during the last couple of years. However, for the majority of patients, immune control of their tumors is gray theory as malignant cells use effective mechanisms to outsmart the immune system. Increasing evidence suggests that changes in tumor metabolism not only ensure an effective energy supply and generation of building blocks for tumor growth but also contribute to inhibition of the antitumor response. Immunosuppression in the tumor microenvironment is often based on the mutual metabolic requirements of immune cells and tumor cells. Cytotoxic T and NK cell activation leads to an increased demand for glucose and amino acids, a well-known feature shown by tumor cells. These close metabolic interdependencies result in metabolic competition, limiting the proliferation, and effector functions of tumor-specific immune cells. Moreover, not only nutrient restriction but also tumor-driven shifts in metabolite abundance and accumulation of metabolic waste products (e.g., lactate) lead to local immunosuppression, thereby facilitating tumor progression and metastasis. In this review, we describe the metabolic interplay between immune cells and tumor cells and discuss tumor cell metabolism as a target structure for cancer therapy. Metabolic (re)education of tumor cells is not only an approach to kill tumor cells directly but could overcome metabolic immunosuppression in the tumor microenvironment and thereby facilitate immunotherapy. PMID:28337200

  1. Escape from Tumor Cell Dormancy

    Science.gov (United States)

    2012-10-01

    with embryogenesis and wound repair (onco-fetal-wound connection). In normal physiological TN-C establishes interactions between the epithelium and the...cancer: down-regulation correlates with cellular dedifferentiation and glandular disintegration. Cancer Res, 53(7), 1690-5 (1993) 185. B. Saha, B...Villette and N. J. Maitland: Prostate epithelial cell lines form spheroids with evidence of glandular differentiation in three-dimensional Matrigel

  2. Clear-cell variant of calcifying epithelial odontogenic tumor (Pindborg tumor) in the mandible

    Institute of Scientific and Technical Information of China (English)

    Ching-Yi Chen; Chung-Wei Wu; Wen-Chen Wang; Li-Min Lin; Yuk-Kwan Chen

    2013-01-01

    We present an uncommon case (female patient aged 59 years) of the clear-cell variant of calcifying epithelial odontogenic tumor (CEOT) (also known as Pindborg tumor) in the mandible. The clinical characteristics and probable origins of the clear tumor cells of previously reported cases of clear-cell variant of intraosseous CEOT are also summarized and discussed.

  3. Circulating cell-free mitochondrial DNA as a novel cancer biomarker: opportunities and challenges.

    Science.gov (United States)

    Yu, Man

    2012-10-01

    The unique characteristics of the mitochondrial genome, such as short length, simple molecular structure, and high copy number, have made monitoring aberrant changes of mitochondrial DNA (mtDNA) quantity an interesting molecular tool for early tumor detection with many advantages over the nuclear genome-based methods. Recently, circulating cell-free (ccf) mtDNA in blood has emerged on the platform as a non-invasive diagnostic and prognostic biomarker for many forms of solid tumors. Accumulating evidence demonstrate that plasma or serum ccf mtDNA levels are significantly different between cancer patients and healthy individuals. Furthermore, quantification of ccf mtDNA levels in circulation may assist in identifying patients from cancer-free healthy population. This minireview attempts to summarize our recent findings in this very promising field of cancer research. The potential technical challenges that we have encountered during the quantitative analysis of ccf mtDNA and mtDNA in general are also briefly discussed. Prospective studies with a larger cohort of patients in various cancer entities are beneficial to precisely define the clinical importance of assessing the ccf mtDNA amount for diagnosing and tracking malignant diseases and their progression.

  4. Photo(chemotherapy reduces circulating Th17 cells and restores circulating regulatory T cells in psoriasis.

    Directory of Open Access Journals (Sweden)

    Takuya Furuhashi

    Full Text Available BACKGROUND: Photo(chemotherapy is widely used to treat psoriasis, the pathogenesis of which might be caused by an imbalance of Th17 cells/regulatory T cells (Treg. In the present study, we evaluated the effects of photo(chemotherapy on the Th17/Treg balance and Treg function. METHODS: Peripheral blood was obtained from psoriasis patients treated with bath-psoralen ultraviolet A (UVA, n = 50 or narrowband ultraviolet B (UVB, n = 18, and age-matched healthy volunteers (n = 20. CD3(+CD4(+IL-17A(+ or CD4(+CD25(+Foxp3(+cells were analyzed to estimate Th17 or Treg number by fluorescence-activated cell sorting. Moreover, CD4(+ CD25(- T cells from patients treated with PUVA(n = 14 were incubated in CFSE and activated with or without CD4(+ CD25(+T cells, and the suppressive function of CD4(+ CD25(+T cells were analyzed. RESULTS: Photo(chemotherapy significantly reduced Th17 levels from 5.66 ± 3.15% to 2.96 ± 2.89% in patients with increased Th17 (Th17/CD4>3.01% [mean+SD of controls]. In contrast, photo(chemotherapy significantly increased Treg levels from 2.77 ± 0.75 to 3.40 ± 1.88% in patients with less than 4.07% Treg level, defined as the mean of controls. Furthermore, while Treg suppressed the CD4(+CD25(- T cell proliferation to a greater extent in controls (Treg Functional Ratio 94.4 ± 4.28% than in patients (70.3±25.1%, PUVA significantly increased Treg Functional Ratio to 88.1 ± 6.47%. Th17 levels in severe patients (>30 PASI were significantly higher as compared to controls. Th17 levels that were left after treatment in the patients not achieving PASI 50 (3.78 ± 4.18% were significantly higher than those in the patients achieving PASI 75 (1.83±1.87%. Treg levels in patients achieving PASI 90 (4.89 ± 1.70% were significantly higher than those in the patients not achieving PASI 90 (3.90 ± 1.66%. Treg levels prior to treatment with Th17 high decreased group (5.16 ± 2.20% was significantly higher than that with Th17 high increased group

  5. In Vitro Efficient Expansion of Tumor Cells Deriving from Different Types of Human Tumor Samples

    Directory of Open Access Journals (Sweden)

    Ilaria Turin

    2014-03-01

    Full Text Available Obtaining human tumor cell lines from fresh tumors is essential to advance our understanding of antitumor immune surveillance mechanisms and to develop new ex vivo strategies to generate an efficient anti-tumor response. The present study delineates a simple and rapid method for efficiently establishing primary cultures starting from tumor samples of different types, while maintaining the immuno-histochemical characteristics of the original tumor. We compared two different strategies to disaggregate tumor specimens. After short or long term in vitro expansion, cells analyzed for the presence of malignant cells demonstrated their neoplastic origin. Considering that tumor cells may be isolated in a closed system with high efficiency, we propose this methodology for the ex vivo expansion of tumor cells to be used to evaluate suitable new drugs or to generate tumor-specific cytotoxic T lymphocytes or vaccines.

  6. Lung metastasis of benign giant cell tumor: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Bosi, Thiago Carneiro da Cunha; Andrade, Fernando Coelho Goulart de; Turtelli, Celso Montenegro; Ribeiro Junior, Helio Antonio [Universidade Federal do Triangulo Mineiro (UFMT), Uberaba, MG (Brazil). Dept. of Radiology and Imaging Diagnosis]. E-mail: tccbosi@yahoo.com.br; Fatureto, Marcelo Cunha [Universidade Federal do Triangulo Mineiro (UFMT), Uberaba, MG (Brazil). Dept. of Thoracic Surgery; Etchebehere, Renata Margarida [Universidade Federal do Triangulo Mineiro (UFMT), Uberaba, MG (Brazil). Dept. of Pathology

    2008-05-15

    Giant cell tumor is the sixth most frequent primary bone neoplasm, affecting long bone metaphysis, most frequently in young adults. On radiological images, this tumor appears as a lytic, well-defined, eccentric lesion. The authors report a case of benign giant cell tumor in a patient who presented with lung metastases five years after undergoing resection of the primary tumor. (author)

  7. NMR exposure sensitizes tumor cells to apoptosis.

    Science.gov (United States)

    Ghibelli, L; Cerella, C; Cordisco, S; Clavarino, G; Marazzi, S; De Nicola, M; Nuccitelli, S; D'Alessio, M; Magrini, A; Bergamaschi, A; Guerrisi, V; Porfiri, L M

    2006-03-01

    NMR technology has dramatically contributed to the revolution of image diagnostic. NMR apparatuses use combinations of microwaves over a homogeneous strong (1 Tesla) static magnetic field. We had previously shown that low intensity (0.3-66 mT) static magnetic fields deeply affect apoptosis in a Ca2+ dependent fashion (Fanelli et al., 1999 FASEBJ., 13;95-102). The rationale of the present study is to examine whether exposure to the static magnetic fields of NMR can affect apoptosis induced on reporter tumor cells of haematopoietic origin. The impressive result was the strong increase (1.8-2.5 fold) of damage-induced apoptosis by NMR. This potentiation is due to cytosolic Ca2+ overload consequent to NMR-promoted Ca2+ influx, since it is prevented by intracellular (BAPTA-AM) and extracellular (EGTA) Ca2+ chelation or by inhibition of plasma membrane L-type Ca2+ channels. Three-days follow up of treated cultures shows that NMR decrease long term cell survival, thus increasing the efficiency of cytocidal treatments. Importantly, mononuclear white blood cells are not sensitised to apoptosis by NMR, showing that NMR may increase the differential cytotoxicity of antitumor drugs on tumor vs normal cells. This strong, differential potentiating effect of NMR on tumor cell apoptosis may have important implications, being in fact a possible adjuvant for antitumor therapies.

  8. BRAF mutation analysis in circulating free tumor DNA of melanoma patients treated with BRAF inhibitors.

    Science.gov (United States)

    Gonzalez-Cao, Maria; Mayo-de-Las-Casas, Clara; Molina-Vila, Miguel A; De Mattos-Arruda, Leticia; Muñoz-Couselo, Eva; Manzano, Jose L; Cortes, Javier; Berros, Jose P; Drozdowskyj, Ana; Sanmamed, Miguel; Gonzalez, Alvaro; Alvarez, Carlos; Viteri, Santiago; Karachaliou, Niki; Martin Algarra, Salvador; Bertran-Alamillo, Jordi; Jordana-Ariza, Nuria; Rosell, Rafael

    2015-12-01

    BRAFV600E is a unique molecular marker for metastatic melanoma, being the most frequent somatic point mutation in this malignancy. Detection of BRAFV600E in blood could have prognostic and predictive value and could be useful for monitoring response to BRAF-targeted therapy. We developed a rapid, sensitive method for the detection and quantification of BRAFV600E in circulating free DNA (cfDNA) isolated from plasma and serum on the basis of a quantitative 5'-nuclease PCR (Taqman) in the presence of a peptide-nucleic acid. We validated the assay in 92 lung, colon, and melanoma archival serum and plasma samples with paired tumor tissue (40 wild-type and 52 BRAFV600E). The correlation of cfDNA BRAFV600E with clinical parameters was further explored in 22 metastatic melanoma patients treated with BRAF inhibitors. Our assay could detect and quantify BRAFV600E in mixed samples with as little as 0.005% mutant DNA (copy number ratio 1 : 20 000), with a specificity of 100% and a sensitivity of 57.7% in archival serum and plasma samples. In 22 melanoma patients treated with BRAF inhibitors, the median progression-free survival was 3.6 months for those showing BRAFV600E in pretreatment cfDNA compared with 13.4 months for those in whom the mutation was not detected (P=0.021). Moreover, the median overall survival for positive versus negative BRAFV600E tests in pretreatment cfDNA differed significantly (7 vs. 21.8 months, P=0.017). This finding indicates that the sensitive detection and accurate quantification of low-abundance BRAFV600E alleles in cfDNA using our assay can be useful for predicting treatment outcome.

  9. Molecular imaging of cell death in tumors. Increasing annexin A5 size reduces contribution of phosphatidylserine-targeting function to tumor uptake.

    Directory of Open Access Journals (Sweden)

    Lisette Ungethüm

    Full Text Available OBJECTIVE: Annexin A5 is a phosphatidylserine binding protein that binds dying cells in vivo. Annexin A5 is a potential molecular imaging agent to determine efficacy of anti-cancer therapy in patients. Its rapid clearance from circulation limits tumor uptake and, hence, its sensitivity. The aim of this study is to determine if non-invasive imaging of cell death in tumors will benefit from increasing circulation time of annexin A5 by increasing its size. PROCEDURES: Annexin A5 size was increased by complexation of biotinylated annexin A5 with Alexa-Fluor680-labeled streptavidin. The non-binding variant of annexin A5, M1234, was used as negative control. The HT29 colon carcinoma xenograft model in NMRI nude mice was used to measure tumor uptake in vivo. Tumor uptake of fluorescent annexin A5-variants was measured using non-invasive optical imaging. RESULTS: The annexin A5-streptavidin complex (4 ∶ 1, moles:moles, Mw ∼ 200 kDa binds phosphatidylserine-expressing membranes with a Hill-coefficient of 5.7 ± 0.5 for Ca2+-binding and an EC50 of 0.9 ± 0.1 mM Ca2+ (EC50 is the Ca2+ concentration required for half maximal binding(annexin A5: Hill-coefficient 3.9 ± 0.2, EC50 1.5 ± 0.2 mM Ca2+. Circulation half-life of annexin A5-streptavidin is ± 21 minutes (circulation half-life of annexin A5 is ± 4 min.. Tumor uptake of annexin A5-streptavidin was higher and persisted longer than annexin A5-uptake but depended less on phosphatidylserine binding. CONCLUSION: Increasing annexin A5 size prolongs circulation times and increases tumor uptake, but decreases contribution of PS-targeting to tumor uptake and abolishes power to report efficacy of therapy.

  10. 应用FR靶向PCR法检测CTC在肺癌诊断中的临床价值:初步研究%Diagnostic Value of Folate Receptor-positive Circulating Tumor Cell in Lung Cancer:A Pilot Study

    Institute of Scientific and Technical Information of China (English)

    连欢欢; 丁志丹; 袁东风; 马杰; 秦建军

    2016-01-01

    背景与目的评价一种通过叶酸受体(folate receptor, FR)检测循环肿瘤细胞(circulating tumor cell, CTC)的方法用于肺癌临床诊断的实用性和可行性及进一步探究CTC在肺癌术后复发的预测价值。方法通过免疫磁珠负向富集方法从3 mL外周血中捕获循环肿瘤细胞,再用肿瘤特异性叶酸配体-寡核苷酸偶和物标记捕获的循环肿瘤细胞,洗去没有结合的偶和物后,洗脱下特异性结合的偶合物的寡核苷酸用于定量PCR扩增分析。结果97例肺癌患者的CTC水平高于肺部良性疾病患者(P<0.001)。本检测方法以8.7 Folate Units/3 mL为cutoff值,结果显示靶向PCR法对肺癌的检测灵敏度为82.5%,特异性为72.2%,特别是在I期肺癌灵敏度达到86.8%。与其他肿瘤标志物(NSE、CEA、CYFRA21-1)比较,CTC对肺癌及I期肺癌具有较高的诊断准确性(0.859;95%CI:0.779-0.939)和(0.912;95%CI:0.829-0.994)。5例肺癌患者术后2周内CTC水平高于cutoff值。结论叶酸受体阳性循环肿瘤细胞可以应用于肺癌的临床诊断,即使是对早期非小细胞肺癌(non-small cell lung cancer, NSCLC)的诊断。%Background and objective The aim of this study is to determine the effcacy and feasibility of a novel folate receptor (FR)-based circulating tumor cell (CTC) detection method in the diagnosis of lung cancer. CTCs were col-lected from 3 mL of blood based on negative enrichment by immunomagnetic beads and then labeled by a conjugate of a tumor-speciifc ligand folate and an oligonucleotide.Methods Atfer washing off redundant conjugates, the bound conjugates were removed and analyzed by quantitative polymerase chain reaction.Results The CTC levels of 97 patients with lung cancer were signiifcantly higher than that of the controls (18 patients with benign lung diseases;P<0.001). With a threshold of 8.7 Folate units, the method showed a sensitivity of 82.5% and a speciifcity of 72

  11. Granular cell tumors of the urinary bladder

    Directory of Open Access Journals (Sweden)

    Kayani Naila

    2007-03-01

    Full Text Available Abstract Background Granular cell tumors (GCTs are extremely rare lesions of the urinary bladder with only nine cases being reported in world literature of which one was malignant. Generally believed to be of neural origin based on histochemical, immunohistochemical, and ultrastructural studies; they mostly follow a clinically benign course but are commonly mistaken for malignant tumors since they are solid looking, ulcerated tumors with ill-defined margins. Materials and methods We herein report two cases of GCTs, one benign and one malignant, presenting with gross hematuria in a 14- and a 47-year-old female, respectively. Results Histopathology revealed characteristic GCTs with positive immunostaining for neural marker (S-100 and negative immunostaining for epithelial (cytokeratin, Cam 5.2, AE/A13, neuroendocrine (neuron specific enolase, chromogranin A, and synaptophysin and sarcoma (desmin, vimentin markers. The benign tumor was successfully managed conservatively with transurethral resection alone while for the malignant tumor, radical cystectomy, hysterectomy with bilateral salpingo-oophorectomy, anterior vaginectomy, plus lymph node dissection was done. Both cases show long-term disease free survival. Conclusion We recommend careful pathologic assessment for establishing the appropriate diagnosis and either a conservative or aggressive surgical treatment for benign or localized malignant GCT of the urinary bladder, respectively.

  12. Studying circulation times of liver cancer cells by in vivo flow cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G; Li, Y; Fan, Z; Guo, J; Tan, X; Wei, X, E-mail: xwei@fudan.edu.cn [Institutes of Biomedical Sciences, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032 (China)

    2011-02-01

    Hepatocellular carcinoma (HCC) may metastasize to lung kidney and many other organs. The survival rate is almost zero for metastatic HCC patients. Molecular mechanisms of HCC metastasis need to be understood better and new therapies must be developed. A recently developed 'in vivo flow cytometer' combined with real-time confocal fluorescence imaging are used to assess spreading and the circulation kinetics of liver tumor cells. The in vivo flow cytometer has the capability to detect and quantify continuously the number and flow characteristics of fluorescently labeled cells in vivo in real time without extracting blood sample. We have measured the depletion kinetics of two related human HCC cell lines high-metastatic HCCLM3 cells and low-metastatic HepG2 cells which were from the same origin and obtained by repetitive screenings in mice. >60% HCCLM3 cells are depleted within the first hour. Interestingly the low-metastatic HepG2 cells possess noticeably slower depletion kinetics. In comparison <40% HepG2 cells are depleted within the first hour. The differences in depletion kinetics might provide insights into early metastasis processes.

  13. Multifunctional Nucleic Acids for Tumor Cell Treatment

    DEFF Research Database (Denmark)

    Pofahl, Monika; Wengel, Jesper; Mayer, Günter

    2014-01-01

    We report on a multifunctional nucleic acid, termed AptamiR, composed of an aptamer domain and an antimiR domain. This composition mediates cell specific delivery of antimiR molecules for silencing of endogenous micro RNA. The introduced multifunctional molecule preserves cell targeting, anti......-proliferative and antimiR function in one 37-nucleotide nucleic acid molecule. It inhibits cancer cell growth and induces gene expression that is pathologically damped by an oncomir. These findings will have a strong impact on future developments regarding aptamer- and antimiR-related applications for tumor targeting...

  14. HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death.

    Science.gov (United States)

    Aits, Sonja; Gustafsson, Lotta; Hallgren, Oskar; Brest, Patrick; Gustafsson, Mattias; Trulsson, Maria; Mossberg, Ann-Kristin; Simon, Hans-Uwe; Mograbi, Baharia; Svanborg, Catharina

    2009-03-01

    HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.

  15. Dynamics of Circulating γδ T Cell Activity in an Immunocompetent Mouse Model of High-Grade Glioma.

    Directory of Open Access Journals (Sweden)

    Benjamin H Beck

    Full Text Available Human γδ T cells are potent effectors against glioma cell lines in vitro and in human/mouse xenograft models of glioblastoma, however, this effect has not been investigated in an immunocompetent mouse model. In this report, we established GL261 intracranial gliomas in syngeneic WT C57BL/6 mice and measured circulating γδ T cell count, phenotype, Vγ/Vδ repertoire, tumor histopathology, NKG2D ligands expression, and T cell invasion at day 10-12 post-injection and at end stage. Circulating γδ T cells transiently increased and upregulated Annexin V expression at post-tumor day 10-12 followed by a dramatic decline in γδ T cell count at end stage. T cell receptor repertoire showed no changes in Vγ1, Vγ4, Vγ7 or Vδ1 subsets from controls at post-tumor day 10-12 or at end stage except for an end-stage increase in the Vδ4 population. Approximately 12% of γδ T cells produced IFN-γ. IL-17 and IL-4 producing γδ T cells were not detected. Tumor progression was the same in TCRδ-/- C57BL/6 mice as that observed in WT mice, suggesting that γδ T cells exerted neither a regulatory nor a sustainable cytotoxic effect on the tumor. WT mice that received an intracranial injection of γδ T cells 15m following tumor placement showed evidence of local tumor growth inhibition but this was insufficient to confer a survival advantage over untreated controls. Taken together, our findings suggest that an early nonspecific proliferation of γδ T cells followed by their depletion occurs in mice implanted with syngeneic GL261 gliomas. The mechanism by which γδ T cell expansion occurs remains a subject for further investigation of the mechanisms responsible for this immune response in the setting of high-grade glioma.

  16. Stem Cells and the Origin and Propagation of Brain Tumors

    OpenAIRE

    2008-01-01

    In recent years there has been a flood of interest in the relationship between brain tumors and stem cells. Some investigators have focused on the sensitivity of normal stem cells to transformation, others have described phenotypic or functional similarities between tumor cells and stem cells, and still others have suggested that tumors contain a subpopulation of “cancer stem cells” that is crucial for tumor maintenance or propagation. While all these concepts are interesting and provide insi...

  17. Tumor Cell Seeding During Surgery—Possible Contribution to Metastasis Formations

    Energy Technology Data Exchange (ETDEWEB)

    Katharina, Pachmann [Department of Experimental Hematology and Oncology, Clinic for Internal Medicine II, Friedrich Schiller University, Jena D-07747 (Germany)

    2011-06-08

    In spite of optimal local control in breast cancer, distant metastases can develop as a systemic part of this disease. Surgery is suspected to contribute to metastasis formation activating dormant tumor cells. Here we add data that seeding of cells during surgery may add to the risk of metastasis formation. The change in circulating epithelial tumor cells (CETC) was monitored in 66 breast cancer patients operated on with breast conserving surgery or mastectomy and during the further course of the disease, analyzing CETC from unseparated white blood cells stained with FITC-anti-EpCAM. An increase in cell numbers lasting until the start of chemotherapy was observed in about one third of patients. It was more preeminent in patients with low numbers of CETC before surgery and, surprisingly, in patients without involved lymph nodes. Patients with the previously reported behavior—Reincrease in cell numbers during adjuvant chemotherapy and subsequent further increase during maintenance therapy—were at increased risk of relapse. In addition to tumor cells already released during growth of the tumor, cell seeding during surgery may contribute to the early peak of relapses observed after removal of the primary tumor and chemotherapy may only marginally postpone relapse in patients with aggressively growing tumors.

  18. Salivary duct carcinoma with striking neutrophil-tumor cell cannibalism

    OpenAIRE

    Payam Arya; Khalbuss, Walid E.; Monaco, Sara E.; Liron Pantanowitz

    2011-01-01

    Cannibalism of neutrophils by tumor cells has previously been reported in certain carcinomas, lymphoma and melanoma. Tumor cannibalism is believed to serve as a tumor-immune escape mechanism, associated with high-grade aggressive cancers with a significantly increased metastatic potential. This interesting phenomenon has not been previously documented in association with salivary gland tumors. We report, for the first time, striking neutrophil-tumor cell cannibalism associated with a high gra...

  19. Detection and Characterization of Circulating Tumour Cells in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Liangxuan Zhang

    2016-06-01

    Full Text Available Multiple myeloma (MM remains an incurable disease despite recent therapeutic improvements. The ability to detect and characterize MM circulating tumour cells (CTCs in peripheral blood provides an alternative to replace or augment invasive bone marrow (BM biopsies with a simple blood draw, providing real-time, clinically relevant information leading to improved disease manage‐ ment and therapy selection. Here we have developed and qualified an enrichment-free, cell-based immunofluores‐ cence MM CTC assay that utilizes an automated digital pathology algorithm to distinguish MM CTCs from white blood cells (WBCs on the basis of CD138 and CD45 expression levels, as well as a number of morphological parameters. These MM CTCs were further characterized for expression of phospho-ribosomal protein S6 (pS6 as a readout for PI3K/AKT pathway activation. Clinical feasi‐ bility of the assay was established by testing blood samples from a small cohort of patients, where we detected popu‐ lations of both CD138pos and CD138neg MM CTCs. In this study, we developed an immunofluorescent cell-based assay to detect and characterize CTCs in MM.

  20. Uses of cell free fetal DNA in maternal circulation.

    Science.gov (United States)

    Hill, Melissa; Barrett, Angela N; White, Helen; Chitty, Lyn S

    2012-10-01

    For over a decade, researchers have focused their attention on the development of non-invasive prenatal diagnosis tests based on cell-free fetal DNA circulating in maternal blood. With the possibility of earlier and safer testing, non-invasive prenatal diagnosis has the potential to bring many positive benefits to prenatal diagnosis. Non-invasive prenatal diagnosis for fetal sex determination for women who are carriers of sex-linked conditions is now firmly established in clinical practice. Other non-invasive prenatal diagnosis-based tests are set to follow, as future applications, such as the detection of single-gene disorders and chromosomal abnormalities, are now well within reach. Here, we review recent developments in non-invasive prenatal diagnosis for genetic conditions and chromosomal abnormalities, and provide an overview of research into ethical concerns, social issues and stakeholder view points.

  1. Regulatory T Cells in Tumor-Associated Tertiary Lymphoid Structures Suppress Anti-tumor T Cell Responses.

    Science.gov (United States)

    Joshi, Nikhil S; Akama-Garren, Elliot H; Lu, Yisi; Lee, Da-Yae; Chang, Gregory P; Li, Amy; DuPage, Michel; Tammela, Tuomas; Kerper, Natanya R; Farago, Anna F; Robbins, Rebecca; Crowley, Denise M; Bronson, Roderick T; Jacks, Tyler

    2015-09-15

    Infiltration of regulatory T (Treg) cells into many tumor types correlates with poor patient prognoses. However, mechanisms of intratumoral Treg cell function remain to be elucidated. We investigated Treg cell function in a genetically engineered mouse model of lung adenocarcinoma and found that Treg cells suppressed anti-tumor responses in tumor-associated tertiary lymphoid structures (TA-TLSs). TA-TLSs have been described in human lung cancers, but their function remains to be determined. TLSs in this model were spatially associated with >90% of tumors and facilitated interactions between T cells and tumor-antigen-presenting dendritic cells (DCs). Costimulatory ligand expression by DCs and T cell proliferation rates increased in TA-TLSs upon Treg cell depletion, leading to tumor destruction. Thus, we propose that Treg cells in TA-TLSs can inhibit endogenous immune responses against tumors, and targeting these cells might provide therapeutic benefit for cancer patients.

  2. Dendritic cell-tumor cell hybrids and immunotherapy

    DEFF Research Database (Denmark)

    Cathelin, Dominique; Nicolas, Alexandra; Bouchot, André

    2011-01-01

    Dendritic cells (DC) are professional antigen-presenting cells currently being used as a cellular adjuvant in cancer immunotherapy strategies. Unfortunately, DC-based vaccines have not demonstrated spectacular clinical results. DC loading with tumor antigens and DC differentiation and activation...

  3. Pro-Tumor and Anti-Tumor Functions of IL-17 and of TH17 Cells in Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Gulubova M.

    2016-10-01

    Full Text Available The current review reveals the seven subclasses of CD4+ T helper cells, i.e. Th1, Th2, Th9, Th17, Th22, regulatory T cells and Tfh, the cytokines produced by them and their role in tumor microenvironment. Main attention was paid to IL-17 and Th17 cells. IL-17-producing cells were described, among which were Treg17 cells and Tc17 cells. The transcription factors, engaged in the activation of Th17 cell differentiation were reviewed. It was shown that Th17 cells might possess regulatory functions in tumor microenvironments that directs toward immunosuppression. The reciprocity between Treg and Th17 cells is realized when the production of a large amount of TGF-β in tumors causes Treg cell differentiation, and the addition of IL-6 shifts the differentiation of naïve T cells to Th17 cells. The main pro-tumor role of IL-17 is the promotion of tumor angiogenesis through stimulation of fibroblasts and endothelial cells. The antitumor functions of IL-17 are associated with enhancement of cytotoxic activity of tumor specific CTL cells and with angiogenesis that provide channels through which immune cells might invade tumor and promote antitumor immunity.

  4. Photobiomodulation on tumor cells in vitro and tumor tissue in vivo

    Science.gov (United States)

    Rong, Dong-Liang; Liu, Timon Cheng-Yi; Jin, Hua

    2006-01-01

    Background and Objective: There are many kinds of photobiomodulation (PBM) on tumor cells whereas PBM induced oncogenic transformation has not been found. These will be discussed in view of the anti-cancer efficacy of PBM. Study Design/Materials and Methods: The biological information model of PBM (BIMP) will be used to study PBM on tumor cells. Results: The PBM on tumor cells includes cell proliferation, cell cycle modulation, cell adhesion, cell differentiation and so on. The PBM on small tumor tissue in vivo may include the inhibition or promotion of tumor growth. The PBM can be designed to play an important role in anti-cancer treatments in terms of BIMP. Conclusions and discussion: PBM on tumor cells may develop into a novel anti-cancer therapeutic approach.

  5. Giant cell tumor of the spine.

    Science.gov (United States)

    Ozaki, Toshifumi; Liljenqvist, Ulf; Halm, Henry; Hillmann, Axel; Gosheger, Georg; Winkelmann, Winfried

    2002-08-01

    Six patients with giant cell tumor of the spine had surgery between 1981 and 1995. Three lesions were located in the scrum, two lesions were in the thoracic spine, and one lesion was in the lumbar spine. Preoperatively, all patients had local pain and neurologic symptoms. Two patients had cement implanted after curettage or intralesional excision of the sacral tumor; one patient had a local relapse. After the second curettage and cement implantation, the tumor was controlled. One patient with a sacral lesion had marginal excision and spondylodesis; no relapse developed. Two patients with thoracic lesions had planned marginal excision and spondylodesis; the margins finally became intralesional, but no relapse developed. One patient with a lumbar lesion had incomplete removal of the tumor and received postoperative irradiation. At the final followup (median, 69 months), five of six patients were disease-free and one patient died of disease progression. Two of the five surviving patients had pain after standing or neurologic problems. Although some contamination occurred, planning a marginal excision of the lesion seems beneficial for vertebral lesions above the sacrum. Total sacrectomy of a sacral lesion seems to be too invasive when cement implantation can control the lesion.

  6. Circulating human B and plasma cells. Age-associated changes in counts and detailed characterization of circulating normal CD138(-) and CD138(+) plasma cells

    NARCIS (Netherlands)

    Caraux, Anouk; Klein, Bernard; Paiva, Bruno; Bret, Caroline; Schmitz, Alexander; Fuhler, Gwenny M.; Bos, Nico A.; Johnsen, Hans E.; Orfao, Alberto; Perez-Andres, Martin

    2010-01-01

    Generation of B and plasma cells involves several organs with a necessary cell trafficking between them. A detailed phenotypic characterization of four circulating B-cell subsets (immature-, naive-, memory- B-lymphocytes and plasma cells) of 106 healthy adults was realized by multiparametric flow cy

  7. A cryogenic circulating advective multi-pass absorption cell

    Science.gov (United States)

    Stockett, M. H.; Lawler, J. E.

    2012-03-01

    A novel absorption cell has been developed to enable a spectroscopic survey of a broad range of polycyclic aromatic hydrocarbons (PAH) under astrophysically relevant conditions and utilizing a synchrotron radiation continuum to test the still controversial hypothesis that these molecules or their ions could be carriers of the diffuse interstellar bands. The cryogenic circulating advective multi-pass absorption cell resembles a wind tunnel; molecules evaporated from a crucible or injected using a custom gas feedthrough are entrained in a laminar flow of cryogenically cooled buffer gas and advected into the path of the synchrotron beam. This system includes a multi-pass optical White cell enabling absorption path lengths of hundreds of meters and a detection sensitivity to molecular densities on the order of 107 cm-3. A capacitively coupled radio frequency dielectric barrier discharge provides ionized and metastable buffer gas atoms for ionizing the candidate molecules via charge exchange and the Penning effect. Stronger than expected clustering of PAH molecules has slowed efforts to record gas phase PAH spectra at cryogenic temperatures, though such clusters may play a role in other interstellar phenomena.

  8. GRANULAR CELL TUMOR OF BREAST (CYTOLOGICAL DIAGNOSIS CONFIRMED BY HISTOPATHOLOGY

    Directory of Open Access Journals (Sweden)

    Divvya

    2014-10-01

    Full Text Available Granular cell tumor is a tumor derived from Schwann cells of peripheral nerves and it can occur throughout the body. About 5% of granular cell tumors occur in breast and are mostly benign in nature. We report a case of 30 year old female who presented with a swelling in right breast which on histo pathological examination revealed features consistent with granular cell tumor. This case is highlighted to reveal the importance of histopathology in differentiating granular cell tumor from carcinoma breast which is difficult based on clinical, radiological and cytological examination alone.

  9. Involvement of platelet-tumor cell interaction in immune evasion. Potential role of podocalyxin-like protein 1

    Directory of Open Access Journals (Sweden)

    Laura eAmo

    2014-09-01

    Full Text Available Besides their essential role in hemostasis and thrombosis, platelets are involved in the onset of cancer metastasis by interacting with tumor cells. Platelets release secretory factors that promote tumor growth, angiogenesis, and metastasis. Furthermore, the formation of platelet-tumor cell aggregates in the bloodstream provides cancer cells with an immune escape mechanism by protecting circulating malignant cells from immune-mediated lysis by natural killer (NK cells. Platelet-tumor cell interaction is accomplished by specific adhesion molecules, including integrins, selectins, and their ligands. Podocalyxin-like protein 1 (PCLP1 is a selectin ligand protein which overexpression has been associated with several aggressive cancers. PCLP1 expression enhances cell adherence to platelets in an integrin-dependent process and through the interaction with P-selectin expressed on activated platelets. However, the involvement of PCLP1-induced tumor-platelet interaction in tumor immune evasion still remains unexplored. The identification of selectin ligands involved in the interaction of platelets with tumor cells may provide help for the development of effective therapies to restrain cancer cell dissemination. This article summarizes the current knowledge on molecules that participate in platelet-tumor cell interaction as well as discusses the potential role of PCLP1 as a molecule implicated in tumor immune evasion.

  10. Circulating dendritic cell number and intracellular TNF-α production in women with type 2 diabetes.

    Science.gov (United States)

    Blank, Sally E; Johnson, Emily Carolyn; Weeks, Debra K; Wysham, Carol H

    2012-12-01

    Human dendritic cell (DC) subsets perform specialized functions for surveillance against bacterial and viral infections essential for the management of type 2 diabetes (T2D). Production of tumor necrosis factor-alpha (TNF-α) by DCs acts in autocrine fashion to regulate DC maturation and promotes the inflammatory response. This study was designed to compare circulating DC number and intracellular TNF-α production between post-menopausal women with T2D and healthy women. Blood samples were obtained (n = 21/group) and examined for plasma glucose and TNF-α concentrations, and dendritic cell subset immunophenotype (plasmacytoid, pDC, CD85k(ILT-3)(+)CD123(+)CD16(-)CD14(-) and myeloid, mDC, CD85k(ILT-3)(+)CD33(+)CD123(dim to neg)CD16(-)CD14(dim to neg)). Intracellular production of TNF-α was determined in unstimulated and stimulated DCs. Women with T2D had significantly (P TNF-α concentrations when compared to healthy women. Women with T2D having poor glycemic control (T2D Poor Control, HbA1c ≥ 7%) had fewer circulating pDCs than women with T2D having good glycemic control (T2D Good Control, HbA1c TNF-α in stimulated pDCs. Intracellular production of TNF-α in pDCs was significantly greater in healthy vs. T2D Poor Control (P production of TNF-α did not differ between groups. These findings indicate that TNF-α production by pDCs was reduced in women with T2D and circulating number of pDCs was associated with glycemic control.

  11. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor

  12. Hsp70 confines tumor progression of rat histiocytoma and impedes the cytotoxicity induced by natural killer cells and peritoneal macrophages

    Institute of Scientific and Technical Information of China (English)

    Amere Subbarao Sreedhar

    2010-01-01

    Objective:To study the role of inducible form of heat shock protein 70 (Hsp70) in the host tumor regression of rat tumor model.Methods: We examined the role of Hsp70 in host tumorigenicity andin vitro cellular cytotoxicity using a rat histocytoma. The differential tumor growth and regression kinetics were studied and correlated with the expression of Hsp70, activation of macrophages and natural killer (NK) cells, and circulating or tumor infiltrating immune molecules in the host system.Results: The sub cuteaneous (s.c.) tumor regression was correlated with increased serum cytokines such as IL-12, TNFα,IFNγ and Hsp70. Despite of similar increase of Hsp70 in intraperitoneal (i.p.) tumor implanted animals, animals succumb to tumor growth, further, evidently, no immune molecule activation was observed. The viral promoter driven Hsp70 over expression in these tumor cells restrained solid tumor growth, however, failed to inhibit ascites growth. The NK cells from s.c. immunized animals induces cytotoxicity in the presence of anti-tumor antibody, which necessitated CD40-L expression, conversely, NK cells from i.p. immunized animals failed to induce cytotoxicity. The NK cells from s.c. or i.p. implanted animals with Hsp70 positive tumor cells failed to induce such cytotoxicity. The peritoneal macrophages isolated from s.c. tumor implanted animals when co-cultured with parental BC-8 cells lyses tumor cells, nevertheless entail macrophage specific TNFα expression. On the contrary, Hsp70 expressing BC-8 tumor cells were resistant to peritoneal macrophage induced cytolysis.Conclusions:This study brings out that Hsp70 possibly involved in regulating the host tumor response and cellular cytotoxicity.

  13. Tetrathiomolybdate inhibits head and neck cancer metastasis by decreasing tumor cell motility, invasiveness and by promoting tumor cell anoikis

    Directory of Open Access Journals (Sweden)

    Merajver Sofia D

    2010-08-01

    Full Text Available Abstract Background The metastatic spread of solid tumors is directly or indirectly responsible for most cancer-related deaths. Tumor metastasis is very complex and this process requires a tumor cell to acquire enhanced motility, invasiveness and anoikis resistance to successfully establish a tumor at a distal site. Metastatic potential of tumor cells is directly correlated with the expression levels of several angiogenic cytokines. Copper is a mandatory cofactor for the function of many of these angiogenic mediators as well as other proteins that play an important role in tumor cell motility and invasiveness. We have previously shown that tetrathiomolybdate (TM is a potent chelator of copper and it mediates its anti-tumor effects by suppressing tumor angiogenesis. However, very little is known about the effect of TM on tumor cell function and tumor metastasis. In this study, we explored the mechanisms underlying TM-mediated inhibition of tumor metastasis. Results We used two in vivo models to examine the effects of TM on tumor metastasis. Animals treated with TM showed a significant decrease in lung metastasis in both in vivo models as compared to the control group. In addition, tumor cells from the lungs of TM treated animals developed significantly smaller colonies and these colonies had significantly fewer tumor cells. TM treatment significantly decreased tumor cell motility and invasiveness by inhibiting lysyl oxidase (LOX activity, FAK activation and MMP2 levels. Furthermore, TM treatment significantly enhanced tumor cell anoikis by activating p38 MAPK cell death pathway and by downregulating XIAP survival protein expression. Conclusions Taken together, these results suggest that TM is a potent suppressor of head and neck tumor metastasis by modulating key regulators of tumor cell motility, invasiveness and anoikis resistance.

  14. Circulating angiogenic cell dysfunction in patients with hereditary hemorrhagic telangiectasia.

    Directory of Open Access Journals (Sweden)

    Liana Zucco

    Full Text Available Hereditary hemorrhagic telangiectasia (HHT is an autosomal dominant vascular disorder. Circulating angiogenic cells (CACs play an important role in vascular repair and regeneration. This study was designed to examine the function of CACs derived from patients with HHT. Peripheral blood mononuclear cells (PBMNCs isolated from patients with HHT and age- and gender-matched healthy volunteers were assessed for expression of CD34, CD133 and VEGF receptor 2 by flow cytometry. PBMNCs were cultured to procure early outgrowth CACs. Development of endothelial cell (EC phenotype in CACs was analyzed by fluorescence microscopy. CAC apoptosis was assayed with Annexin V staining, and CAC migration assessed by a modified Boyden chamber assay. mRNA expression of endoglin (ENG, activin receptor-like kinase-1 (ACVLR1 or ALK1 and endothelial nitric oxide synthase (eNOS in CACs was measured by real time RT-PCR. The percentage of CD34+ cells in PBMNCs from HHT patients was significantly higher than in PBMNCs of healthy controls. CACs derived from patients with HHT not only showed a significant reduction in EC-selective surface markers following 7-day culture, but also a significant increase in the rate of basal apoptosis and blunted migration in response to vascular endothelial growth factor and stromal cell-derived factor-1. CACs from HHT patients expressed significantly lower levels of ENG, ALK1 and eNOS mRNAs. In conclusion, CACs from patients with HHT exhibited various functional impairments, suggesting a reduced regenerative capacity of CACs to repair the vascular lesions seen in HHT patients.

  15. Severe acute tumor lysis syndrome in patients with germ-cell tumors

    Directory of Open Access Journals (Sweden)

    Guilherme Alvarenga Feres

    2008-01-01

    Full Text Available Germ-cell tumors are a high-proliferative type of cancer that may evolve to significant bulky disease. Tumor lysis syndrome is rarely reported in this setting. The reports of three patients with germ-cell tumors who developed severe acute tumor lysis syndrome following the start of their anticancer therapy are presented. All patients developed renal dysfunction and multiorgan failure. Patients with extensive germ-cell tumors should be kept on close clinical and laboratory monitoring. Physicians should be aware of this uncommon but severe complication and consider early admission to the intensive care unit for the institution of measures to prevent acute renal failure.

  16. [Precocious pseudopuberty secondary to granulosa cell tumor].

    Science.gov (United States)

    Fernández, F; Jordán, J; Carmona, M; Oliver, A; Gracia, R; González, M; Peralta, A

    1984-12-01

    A case report of pseudoprecocity secondary to a unilateral ovarian tumor of granulosa cells is presented in a 13 month old female. Clinical manifestations appeared at two months of age as unilateral enlargement of the breast, development of pubic hair and vaginal discharge. Plasma estrogen levels were elevated, whereas there was no response of FSH and LH to LH-RH stimulation. The absence of a palpable abdominal mass and a normal ultrasound examination of the abdomen must be pointed out in our case. The suspected clinical and laboratory diagnosis was later confirmed by surgical abdominal examination and ovarian histopathology study. With the exception of a minimal breast enlargement which persists at two years of age, all other signs of pseudoprecocity have disappeared after the surgical removal of the neoplasm. The importance of surgical abdominal examination must be pointed out as a diagnostic method when clinical and laboratory findings suggest an ovarian tumor inspite of normal abdominal palpation, ultrasound and roentgenology.

  17. Tendon repair augmented with a novel circulating stem cell population.

    Science.gov (United States)

    Daher, Robert J; Chahine, Nadeen O; Razzano, Pasquale; Patwa, Sohum A; Sgaglione, Nicholas J; Grande, Daniel A

    2011-01-01

    Tendon ruptures are common sports-related injuries that are often treated surgically by the use of sutures followed by immobilization. However, tendon repair by standard technique is associated with long healing time and often suboptimal repair. Methods to enhance tendon repair time as well as the quality of repair are currently unmet clinical needs. Our hypothesis is that the introduction of a unique stem cell population at the site of tendon transection would result in an improved rate and quality of repair. Achilles tendons of fifty-one Sprague-Dawley rats were transected and suture-repaired. In half of the rats, a biodegradable scaffold seeded with allogenic circulating stem cells was placed as an onlay to the defect site in addition to the suture repair. The other half was treated with suture alone to serve as the control group. Animals were randomized to a two-, four-, or six-week time group. At the time of necropsy, tendons were harvested and prepared for either biomechanical or histological analysis. Histological slides were evaluated in a blinded fashion with the use of a grading scale. By two weeks, the experimental group demonstrated a significant improvement in repair compared to controls with no failures. Average histological scores of 0.6 and 2.6 were observed for the experimental and control group respectively. The experimental group demonstrated complete bridging of the transection site with parallel collagen fiber arrangement. By four weeks, both groups showed a continuing trend of healing, with the scaffold group exceeding the histological quality of the tissue repaired with suture alone. Biomechanically, the experimental group had a decreasing cross-sectional area with time which was also associated with a significant increase in the ultimate tensile strength of the tendons, reaching 4.2MPa by six weeks. The experimental group also achieved a significantly higher elastic toughness by six weeks and saw an increase in the tensile modulus, reaching

  18. In Vivo Monitoring of Multiple Circulating Cell Populations Using Two-photon Flow Cytometry.

    Science.gov (United States)

    Tkaczyk, Eric R; Zhong, Cheng Frank; Ye, Jing Yong; Myc, Andrzej; Thomas, Thommey; Cao, Zhengyi; Duran-Struuck, Raimon; Luker, Kathryn E; Luker, Gary D; Norris, Theodore B; Baker, James R

    2008-02-15

    To detect and quantify multiple distinct populations of cells circulating simultaneously in the blood of living animals, we developed a novel optical system for two-channel, two-photon flow cytometry in vivo. We used this system to investigate the circulation dynamics in live animals of breast cancer cells with low (MCF-7) and high (MDA-MB-435) metastatic potential, showing for the first time that two different populations of circulating cells can be quantified simultaneously in the vasculature of a single live mouse. We also non-invasively monitored a population of labeled, circulating red blood cells for more than two weeks, demonstrating that this technique can also quantify the dynamics of abundant cells in the vascular system for prolonged periods of time. These data are the first in vivo application of multichannel flow cytometry utilizing two-photon excitation, which will greatly enhance our capability to study circulating cells in cancer and other disease processes.

  19. Mixed germ cell tumors: Report of two cases

    Directory of Open Access Journals (Sweden)

    Pradhan M Pagaro

    2013-01-01

    Full Text Available Germ cell tumors arise in the ovaries and testis and rarely in other tissues. Mixed germ cell tumors are rare. We report two cases of mixed germ cell tumors, one consisting of seminoma and immature teratoma in the testis of a 30-year-old male and second consisting of a yolk sac tumor and immature teratoma in the ovary of a 17-year-old female. Many combinations of mixed germ cell tumors have been reported but very few cases of the above-mentioned combinations have been reported in literature.

  20. Circulating biomarkers in renal cell carcinoma: the link between microRNAs and extracellular vesicles, where are we now?

    Directory of Open Access Journals (Sweden)

    Ana L Teixeira

    2014-12-01

    Full Text Available Renal cell carcinoma (RCC is a lethal urological cancer, with incidence and mortality rates increasing by 2-3% per decade. The lack of   standard screening tests contributes to the fact that one-third of patients are diagnosed with locally invasive or metastatic disease. Moreover, 20-40% of RCC patients submitted to surgical nephrectomy will develop metastasis. MicroRNAs (miRNAs are small non-coding RNAs responsible for gene regulation at a post-transcriptional level.  It is accepted that they are deregulated in cancer and can influence tumor development. Thus, miRNAs are promising RCC biomarkers, since they can be detected using non-invasive methods. They are highly stable and easier to quantify in circulating biofluids. The elevated miRNA stability in circulating samples may be the consequence of their capacity to circulate inside of extracellular microvesicles (EMVs, for example, the exosomes.  The EMVs are bilayered membrane vesicles secreted by all cell types. They can be released in the interstitial space or into circulating biofluids, which allows the travelling, binding and entrance of these vesicles in receptor cells. This type of cell communication can shuttle bioactive molecules between cells, allowing the horizontal transference of genetic material. In this review, we focus on circulating miRNAs (miR-210, miR-1233, miR-221, miR-15a, miR-451, miR-508, miR-378 in the biofluids of RCC patients and attempt to establish the diagnostic and prognostic accuracy, their synergic effects, and the pathways involved in RCC biology.

  1. Tumor cell culture on collagen–chitosan scaffolds as three-dimensional tumor model: A suitable model for tumor studies

    Directory of Open Access Journals (Sweden)

    Aziz Mahmoudzadeh

    2016-07-01

    Full Text Available Tumor cells naturally live in three-dimensional (3D microenvironments, while common laboratory tests and evaluations are done in two-dimensional (2D plates. This study examined the impact of cultured 4T1 cancer cells in a 3D collagen–chitosan scaffold compared with 2D plate cultures. Collagen–chitosan scaffolds were provided and passed confirmatory tests. 4T1 tumor cells were cultured on scaffolds and then tumor cells growth rate, resistance to X-ray radiation, and cyclophosphamide as a chemotherapy drug were analyzed. Furthermore, 4T1 cells were extracted from the scaffold model and were injected into the mice. Tumor growth rate, survival rate, and systemic immune responses were evaluated. Our results showed that 4T1 cells infiltrated the scaffolds pores and constructed a 3D microenvironment. Furthermore, 3D cultured tumor cells showed a slower proliferation rate, increased levels of survival to the X-ray irradiation, and enhanced resistance to chemotherapy drugs in comparison with 2D plate cultures. Transfer of extracted cells to the mice caused enhanced tumor volume and decreased life span. This study indicated that collagen–chitosan nanoscaffolds provide a suitable model of tumor that would be appropriate for tumor studies.

  2. Perivascular epithelioid cell tumor of the liver coexisting with a gastrointestinal stromal tumor

    DEFF Research Database (Denmark)

    Paiva, Carlos Eduardo; Moraes Neto, Francisco Alves; Agaimy, Abbas;

    2008-01-01

    Approximately 10% of patients with gastrointestinal stromal tumors (GIST) develop other neoplasms, either synchronously or metachronously. In this report we describe coexistence of a gastrointestinal stromal tumor and a hepatic perivascular epithelioid cell tumor (PEComa) in a 51-year-old woman...

  3. Plexin D1 is ubiquitously expressed on tumor vessels and tumor cells in solid malignancies.

    NARCIS (Netherlands)

    Roodink, I.; Verrijp, K.; Raats, J.; Leenders, W.P.J.

    2009-01-01

    BACKGROUND: Plexin D1 is expressed on both tumor-associated endothelium and malignant cells