WorldWideScience

Sample records for circulating tumor cell

  1. Redefining circulating tumor cells by image processing

    NARCIS (Netherlands)

    Ligthart, S.T.

    2012-01-01

    Circulating tumor cells (CTC) in the blood of patients with metastatic carcinomas are associated with poor survival and can be used to guide therapy. However, CTC are very heterogeneous in size and shape, and are present at very low frequencies. Missing or misjudging a few events may have great cons

  2. CellTracks cytometer for detection of circulating tumor cells

    NARCIS (Netherlands)

    Tibbe, A.G.J.; Kooi, van der A.; Groot, de M.R.; Vermes, I.

    2003-01-01

    Introduction: In patients with carcinomas, tumor cells are shed into the circulation. The number of the circulating tumor cells is low and technology is needed that has sufficient sensitivity and specificity to enumerate and characterize these cells. The CellTracks system was developed to provide an

  3. The biology of circulating tumor cells.

    Science.gov (United States)

    Pantel, K; Speicher, M R

    2016-03-10

    Metastasis is a biologically complex process consisting of numerous stochastic events which may tremendously differ across various cancer types. Circulating tumor cells (CTCs) are cells that are shed from primary tumors and metastatic deposits into the blood stream. CTCs bear a tremendous potential to improve our understanding of steps involved in the metastatic cascade, starting from intravasation of tumor cells into the circulation until the formation of clinically detectable metastasis. These efforts were propelled by novel high-resolution approaches to dissect the genomes and transcriptomes of CTCs. Furthermore, capturing of viable CTCs has paved the way for innovative culturing technologies to study fundamental characteristics of CTCs such as invasiveness, their kinetics and responses to selection barriers, such as given therapies. Hence the study of CTCs is not only instrumental as a basic research tool, but also allows the serial monitoring of tumor genotypes and may therefore provide predictive and prognostic biomarkers for clinicians. Here, we review how CTCs have contributed to significant insights into the metastatic process and how they may be utilized in clinical practice.

  4. Circulating Tumor Cells in Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Brian [Institute of Urology, University of Southern California, 1441 Eastlake Avenue, Suite 7416, Los Angeles, CA 90033 (United States); Rochefort, Holly [Department of Surgery, University of Southern California, 1520 San Pablo Street, HCT 4300, Los Angeles, CA 90033 (United States); Goldkorn, Amir, E-mail: agoldkor@usc.edu [Department of Internal Medicine and Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Suite 3440, Los Angeles, CA 90033 (United States)

    2013-12-04

    Circulating tumor cells (CTCs) can provide a non-invasive, repeatable snapshot of an individual patient’s tumor. In prostate cancer, CTC enumeration has been extensively studied and validated as a prognostic tool and has received FDA clearance for use in monitoring advanced disease. More recently, CTC analysis has been shifting from enumeration to more sophisticated molecular characterization of captured cells, which serve as a “liquid biopsy” of the tumor, reflecting molecular changes in an individual’s malignancy over time. Here we will review the main CTC studies in advanced and localized prostate cancer, highlighting the important gains as well as the challenges posed by various approaches, and their implications for advancing prostate cancer management.

  5. Circulating Tumor Cells in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Brian Hu

    2013-12-01

    Full Text Available Circulating tumor cells (CTCs can provide a non-invasive, repeatable snapshot of an individual patient’s tumor. In prostate cancer, CTC enumeration has been extensively studied and validated as a prognostic tool and has received FDA clearance for use in monitoring advanced disease. More recently, CTC analysis has been shifting from enumeration to more sophisticated molecular characterization of captured cells, which serve as a “liquid biopsy” of the tumor, reflecting molecular changes in an individual’s malignancy over time. Here we will review the main CTC studies in advanced and localized prostate cancer, highlighting the important gains as well as the challenges posed by various approaches, and their implications for advancing prostate cancer management.

  6. Circulating tumor cells: utopia or reality?

    Science.gov (United States)

    Conteduca, Vincenza; Zamarchi, Rita; Rossi, Elisabetta; Condelli, Valentina; Troiani, Laura; Aieta, Michele

    2013-09-01

    Circulating tumor cells (CTCs) could be considered a sign of tumor aggressiveness, but highly sensitive and specific methods of CTC detection are necessary owing to the rarity and heterogeneity of CTCs in peripheral blood. This review summarizes recent studies on tumor biology, with particular attention to the metastatic cascade, and the molecular characterization and clinical significance of CTCs. Recent technological approaches to enrich and detect these cells and challenges of CTCs for individualized cancer treatment are also discussed. This review also provides an insight into the positive and negative features of the future potential applications of CTC detection, which sometimes remains still a 'utopia', but its actual utility remains among the fastest growing research fields in oncology. PMID:23980681

  7. Circulating Tumor Cells Measurements in Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Franck Chiappini

    2012-01-01

    Full Text Available Liver cancer is the fifth most common cancer in men and the seventh in women. During the past 20 years, the incidence of HCC has tripled while the 5-year survival rate has remained below 12%. The presence of circulating tumor cells (CTC reflects the aggressiveness nature of a tumor. Many attempts have been made to develop assays that reliably detect and enumerate the CTC during the development of the HCC. In this case, the challenges are (1 there are few markers specific to the HCC (tumor cells versus nontumor cells and (2 they can be used to quantify the number of CTC in the bloodstream. Another technical challenge consists of finding few CTC mixed with million leukocytes and billion erythrocytes. CTC detection and identification can be used to estimate prognosis and may serve as an early marker to assess antitumor activity of treatment. CTC can also be used to predict progression-free survival and overall survival. CTC are an interesting source of biological information in order to understand dissemination, drug resistance, and treatment-induced cell death. Our aim is to review and analyze the different new methods existing to detect, enumerate, and characterize the CTC in the peripheral circulation of patients with HCC.

  8. Circulating Tumor Cells, Enumeration and Beyond

    Directory of Open Access Journals (Sweden)

    Jian-Mei Hou

    2010-06-01

    Full Text Available The detection and enumeration of circulating tumor cells (CTCs has shown significant clinical utility with respect to prognosis in breast, colorectal and prostate cancers. Emerging studies show that CTCs can provide pharmacodynamic information to aid therapy decision making. CTCs as a ‘virtual and real-time biopsy’ have clear potential to facilitate exploration of tumor biology, and in particular, the process of metastasis. The challenge of profiling CTC molecular characteristics and generating CTC signatures using current technologies is that they enrich rather than purify CTCs from whole blood; we face the problem of looking for the proverbial ‘needle in the haystack’. This review summarizes the current methods for CTC detection and enumeration, focuses on molecular characterization of CTCs, unveils some aspects of CTC heterogeneity, describes attempts to purify CTCs and scans the horizon for approaches leading to comprehensive dissection of CTC biology.

  9. Circulating Tumor Cells, Enumeration and Beyond

    International Nuclear Information System (INIS)

    The detection and enumeration of circulating tumor cells (CTCs) has shown significant clinical utility with respect to prognosis in breast, colorectal and prostate cancers. Emerging studies show that CTCs can provide pharmacodynamic information to aid therapy decision making. CTCs as a ‘virtual and real-time biopsy’ have clear potential to facilitate exploration of tumor biology, and in particular, the process of metastasis. The challenge of profiling CTC molecular characteristics and generating CTC signatures using current technologies is that they enrich rather than purify CTCs from whole blood; we face the problem of looking for the proverbial ‘needle in the haystack’. This review summarizes the current methods for CTC detection and enumeration, focuses on molecular characterization of CTCs, unveils some aspects of CTC heterogeneity, describes attempts to purify CTCs and scans the horizon for approaches leading to comprehensive dissection of CTC biology

  10. Diagnostic value of circulating tumor cells in cerebrospinal fluid

    OpenAIRE

    Ning Mu; Chunhua Ma; Rong Jiang; Yuan Lv; Jinduo Li; Bin Wang; Liwei Sun

    2016-01-01

    To assess circulating tumor cells in cerebrospinal fluid as a diagnostic approach to identify meningeal metastasis in patients with non-small cell lung cancer by using tumor marker immunostaining–fluorescence in situ hybridization (TM-iFISH).

  11. Tumor-Related Methylated Cell-Free DNA and Circulating Tumor Cells in Melanoma

    OpenAIRE

    Salvianti, Francesca; Orlando, Claudio; Massi, Daniela; DE GIORGI, VINCENZO; Grazzini, Marta; Pazzagli, Mario; Pinzani, Pamela

    2016-01-01

    Solid tumor release into the circulation cell-free DNA (cfDNA) and circulating tumor cells (CTCs) which represent promising biomarkers for cancer diagnosis. Circulating tumor DNA may be studied in plasma from cancer patients by detecting tumor specific alterations, such as genetic or epigenetic modifications. Ras association domain family 1 isoform A (RASSF1A) is a tumor suppressor gene silenced by promoter hypermethylation in a variety of human cancers including melanoma. The aim of the pres...

  12. Isolation of Circulating Tumor Cells by Dielectrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, Peter R. C., E-mail: pgascoyn@mdanderson.org [Department of Imaging Physics Research, The University of Texas M.D. Anderson Cancer Center Unit 951, 1515 Holcombe Boulevard, Houston, TX 77030 (United States); Shim, Sangjo [Department of Imaging Physics Research, The University of Texas M.D. Anderson Cancer Center Unit 951, 1515 Holcombe Boulevard, Houston, TX 77030 (United States); Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712 (United States); Present address: Micro & Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, 208 North Wright Street, Urbana, IL 61801 (United States)

    2014-03-12

    Dielectrophoresis (DEP) is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs) from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a) the principles of DEP; (b) the biological basis for the dielectric differences between CTCs and blood cells; (c) why such differences are expected to be present for all types of tumors; and (d) instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF) is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies.

  13. Isolation of Circulating Tumor Cells by Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Peter R. C. Gascoyne

    2014-03-01

    Full Text Available Dielectrophoresis (DEP is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a the principles of DEP; (b the biological basis for the dielectric differences between CTCs and blood cells; (c why such differences are expected to be present for all types of tumors; and (d instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies.

  14. Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer.

    Science.gov (United States)

    Nurwidya, Fariz; Zaini, Jamal; Putra, Andika Chandra; Andarini, Sita; Hudoyo, Achmad; Syahruddin, Elisna; Yunus, Faisal

    2016-09-01

    Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer. PMID:27689025

  15. Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer

    Science.gov (United States)

    Zaini, Jamal; Putra, Andika Chandra; Andarini, Sita; Hudoyo, Achmad; Syahruddin, Elisna; Yunus, Faisal

    2016-01-01

    Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer.

  16. Circulating tumor cells in lung cancer.

    Science.gov (United States)

    Young, Rachel; Pailler, Emma; Billiot, Fanny; Drusch, Françoise; Barthelemy, Amélie; Oulhen, Marianne; Besse, Benjamin; Soria, Jean-Charles; Farace, Françoise; Vielh, Philippe

    2012-01-01

    Circulating tumor cells (CTCs) have emerged as potential biomarkers in several cancers such as colon, prostate, and breast carcinomas, with a correlation between CTC number and patient prognosis being established by independent research groups. The detection and enumeration of CTCs, however, is still a developing field, with no universal method of detection suitable for all types of cancer. CTC detection in lung cancer in particular has proven difficult to perform, as CTCs in this type of cancer often present with nonepithelial characteristics. Moreover, as many detection methods rely on the use of epithelial markers to identify CTCs, the loss of these markers during epithelial-to-mesenchymal transition in certain metastatic cancers can render these methods ineffective. The development of personalized medicine has led to an increase in the advancement of molecular characterization of CTCs. The application of techniques such as FISH and RT-PCR to detect EGFR, HER2, and KRAS abnormalities in lung, breast, and colon cancer, for example, could be used to characterize CTCs in real time. The use of CTCs as a 'liquid biopsy' is therefore an exciting possibility providing information on patient prognosis and treatment efficacy. This review summarizes the state of CTC detection today, with particular emphasis on lung cancer, and discusses the future applications of CTCs in helping the clinician to develop new strategies in patient treatment. PMID:23207444

  17. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor

    2016-06-29

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  18. Single-cell analyses of circulating tumor cells

    Institute of Scientific and Technical Information of China (English)

    Xi-Xi Chen; Fan Bai

    2015-01-01

    Circulating tumor cells (CTCs) are a population of tumor cells mediating metastasis, which results in most of the cancer related deaths. hTe number of CTCs in the peripheral blood of patients is rare, and many platforms have been launched for detection and enrichment of CTCs. Enumeration of CTCs has already been used as a prognosis marker predicting the survival rate of cancer patients. Yet CTCs should be more potential. Studies on CTCs at single cell level may help revealing the underlying mechanism of tumorigenesis and metastasis. Though far from developed, this area of study holds much promise in providing new clinical application and deep understanding towards metastasis and cancer development.

  19. Circulating tumor cells in oral squamous cell carcinoma: An insight

    Directory of Open Access Journals (Sweden)

    B V Prakruthi

    2015-01-01

    Full Text Available Circulating tumor cells (CTCs are those cells present in the blood and have antigenic and/or genetic characteristics of a specific tumor type. CTCs can be detected in the peripheral blood of cancer patients. Various techniques are available for detection of CTCs, which provide evidence for future metastasis. CTCs may provide new insight into the biology of cancer and process of metastasis in oral squamous cell carcinoma (OSCC. The detection of CTCs may represent a new diagnostic tool for predicting the occurrence of metastatic disease in OSCC and endow with the treatment strategies to efficiently treat and prevent cancer metastasis. This review gives an insight into the significance of CTCs and different techniques for detection of CTCs.

  20. Cytomorphology of Circulating Colorectal Tumor Cells: A Small Case Series

    Directory of Open Access Journals (Sweden)

    Dena Marrinucci

    2010-01-01

    Full Text Available Several methodologies exist to enumerate circulating tumor cells (CTCs from the blood of cancer patients; however, most methodologies lack high-resolution imaging, and thus, little is known about the cytomorphologic features of these cells. In this study of metastatic colorectal cancer patients, we used immunofluorescent staining with fiber-optic array scanning technology to identify CTCs, with subsequent Wright-Giemsa and Papanicolau staining. The CTCs were compared to the corresponding primary and metastatic tumors. The colorectal CTCs showed marked intrapatient pleomorphism. In comparison to the corresponding tissue biopsies, cells from all sites showed similar pleomorphism, demonstrating that colorectal CTCs retain the pleomorphism present in regions of solid growth. They also often retain particular cytomorphologic features present in the patient's primary and/or metastatic tumor tissue. This study provides an initial analysis of the cytomorphologic features of circulating colon cancer cells, providing a foundation for further investigation into the significance and metastatic potential of CTCs.

  1. After clouds sun again shines on circulating tumor cells research.

    Science.gov (United States)

    Barriere, Guislaine; Rigaud, Michel

    2013-07-01

    In the Science issue of first February 2013 Yu M et al. characterized epithelial and mesenchymal circulating tumor cells (CTC) by RNA-in situ hybridization. In this editorial we comment their results and emphasize the different CTC subpopulations arising from epithelial mesenchymal transition (EMT).

  2. Cryopreservation of Circulating Tumor Cells for Enumeration and Characterization

    DEFF Research Database (Denmark)

    Nejlund, Sarah; Smith, Julie; Kraan, Jaco;

    2016-01-01

    BACKGROUND: A blood sample containing circulating tumor cells (CTCs) may serve as a surrogate for metastasis in invasive cancer. Cryopreservation will provide new opportunities in management of clinical samples in the laboratory and allow collection of samples over time for future analysis of exi...

  3. Isolation and characterization of circulating tumor cells in prostate cancer

    Directory of Open Access Journals (Sweden)

    Elan Shlomo Diamond

    2012-10-01

    Full Text Available Circulating tumor cells (CTCs are tumor cells found in the peripheral blood that originate from established sites of malignancy and likely have metastatic potential. Analysis of circulating tumor cells CTCs has shown great promise as a prognostic marker as well as a potential source of novel therapeutics. Isolation and characterization these cells for study, however, remain challenging due to their rarity in comparison with other cellular components of peripheral blood. Several techniques that exploit the unique biochemical properties of CTCs have been developed to facilitate isolation of these cells. Positive selection of CTCs is achieved using microfluidic surfaces coated with antibodies against epithelial cell markers or tumor specific antigens such as EpCAM or prostate specific membrane antigen (PSMA. Following isolation, characterization of CTCs may help guide clinical decision-making. For instance, molecular and genetic characterization may shed light on the development of chemotherapy resistance and mechanisms of metastasis without the need for tissue biopsy. This paper will review novel isolation techniques to capture CTCs from patients with advanced cancers, as well as efforts to characterize the CTCs. We will also review ways in which these analyses can assist in clinical decision-making,Conclusion: The study of CTCs provides insight into the molecular biology of their tumors of origin that will eventually guide the development tailored therapeutics. These advances are predicated on high yield and accurate isolation techniques that exploit the unique biochemical features of these cells.

  4. Advanced Research on Circulating Tumor Cells in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Hui LI

    2012-11-01

    Full Text Available Lung cancer is the malignant disease with the highest rate in terms of incidence and mortality in China. Early diagnosis and timely monitoring tumor recurrence and metastasis are extremely important for improving 5-year survival rate of lung cancer patients. Circulating tumor cells (CTCs, as a "liquid biopsy specimens” for the primary tumor, provide the possibility to perform real-time, non-invasive histological identification for lung cancer patients. The detection of CTCs contributes to early diagnosis, surveillance of tumor recurrence and metastasis, and prediction of therapeutic efficacy and prognosis. Furthermore, CTCs-dependent detection emerges as a new approach for molecularly pathologic examination, study of molecular mechanisms involved in drug resistance, and resolution for tumor heterogeneity. This study reviewed the recent progress of CTCs in lung cancer research field.

  5. Case study of the morphologic variation of circulating tumor cells.

    Science.gov (United States)

    Marrinucci, Dena; Bethel, Kelly; Bruce, Richard H; Curry, Douglas N; Hsieh, Ben; Humphrey, Mark; Krivacic, Robert T; Kroener, Joan; Kroener, Lindsay; Ladanyi, Andras; Lazarus, Nicole H; Nieva, Jorge; Kuhn, Peter

    2007-03-01

    We report a detailed cytomorphologic evaluation of the circulating component of widely metastatic breast carcinoma. A previously healthy 38-year-old woman was diagnosed with breast cancer. Wide local excision revealed a 1.7-cm infiltrating ductal adenocarcinoma, BSR score 7/9 with angiolymphatic invasion, and 4/20 lymph nodes positive for carcinoma. Five years later, a bone marrow biopsy revealed involvement of bone marrow by metastatic breast carcinoma, and shortly thereafter, metastases were identified in the liver and lung hilum. She enrolled in a clinical investigation for the detection of circulating tumor cells (CTCs) in breast carcinoma. A total of 659 CTCs were identified in a 10-mL blood sample using an immunofluorescent protocol targeting cytokeratins and detected using fiber-optic array scanning technology. The detected CTCs were subsequently stained with a Wright-Giemsa stain, and representative cells were evaluated in detail by light microscopy for morphologic evaluation. We find that the patient's CTCs exhibit a high degree of pleomorphism including CTCs with high and low nuclear-to-cytoplasmic ratios along with CTCs exhibiting early and late apoptotic changes. In addition, in comparison with her tumor cells in other sites, the full morphologic spectrum of cancer cells present in primary and metastatic tumor is also present in peripheral blood circulation. PMID:17188328

  6. Circulating tumor cells in newly diagnosed inflammatory breast cancer

    OpenAIRE

    Mego, Michal; Giordano, Antonio; De Giorgi, Ugo; Masuda, Hiroko; Hsu, Limin; Giuliano, Mario; Fouad, Tamer M.; Dawood, Shaheenah; Ueno, Naoto T.; Valero, Vicente; Andreopoulou, Eleni; Alvarez, Ricardo H.; Wendy A Woodward; Hortobagyi, Gabriel N; Cristofanilli, Massimo

    2015-01-01

    Introduction Circulating tumor cells (CTCs) are an independent prognostic factor for progression-free survival (PFS) and overall survival (OS) in patients with metastatic breast cancer. Inflammatory breast cancer (IBC) is one of the most aggressive forms of breast cancer. The prognostic value of a CTC count in newly diagnosed IBC has not been established. The aim of this study was to assess the prognostic value of a baseline CTC count in patients with newly diagnosed IBC. Methods This retrosp...

  7. Dynamic Fluctuation of Circulating Tumor Cells during Cancer Progression

    International Nuclear Information System (INIS)

    Circulating tumor cells (CTCs) are a promising diagnostic and prognostic biomarker for metastatic tumors. We demonstrate that CTCs’ diagnostic value might be increased through real-time monitoring of CTC dynamics. Using preclinical animal models of breast cancer and melanoma and in vivo flow cytometry with photoacoustic and fluorescence detection schematics, we show that CTC count does not always correlate with the primary tumor size. Individual analysis elucidated many cases where the highest level of CTCs was detected before the primary tumor starts progressing. This phenomenon could be attributed to aggressive tumors developing from cancer stem cells. Furthermore, real-time continuous monitoring of CTCs reveals that they occur at highly variable rates in a detection point over a period of time (e.g., a range of 0–54 CTCs per 5 min). These same fluctuations in CTC numbers were observed in vivo in epithelial and non-epithelial metastatic tumors, in different stages of tumor progression, and in different vessels. These temporal CTC fluctuations can explain false negative results of a one-time snapshot test in humans. Indeed, we observed wide variations in the number of CTCs in subsequent blood samples taken from the same metastatic melanoma patient, with some samples being CTC-free. If these phenomena are confirmed in our ongoing in vivo clinical trials, this could support a personalized strategy of CTC monitoring for cancer patients

  8. Dynamic Fluctuation of Circulating Tumor Cells during Cancer Progression

    Directory of Open Access Journals (Sweden)

    Mazen A. Juratli

    2014-01-01

    Full Text Available Circulating tumor cells (CTCs are a promising diagnostic and prognostic biomarker for metastatic tumors. We demonstrate that CTCs’ diagnostic value might be increased through real-time monitoring of CTC dynamics. Using preclinical animal models of breast cancer and melanoma and in vivo flow cytometry with photoacoustic and fluorescence detection schematics, we show that CTC count does not always correlate with the primary tumor size. Individual analysis elucidated many cases where the highest level of CTCs was detected before the primary tumor starts progressing. This phenomenon could be attributed to aggressive tumors developing from cancer stem cells. Furthermore, real-time continuous monitoring of CTCs reveals that they occur at highly variable rates in a detection point over a period of time (e.g., a range of 0–54 CTCs per 5 min. These same fluctuations in CTC numbers were observed in vivo in epithelial and non-epithelial metastatic tumors, in different stages of tumor progression, and in different vessels. These temporal CTC fluctuations can explain false negative results of a one-time snapshot test in humans. Indeed, we observed wide variations in the number of CTCs in subsequent blood samples taken from the same metastatic melanoma patient, with some samples being CTC-free. If these phenomena are confirmed in our ongoing in vivo clinical trials, this could support a personalized strategy of CTC monitoring for cancer patients.

  9. Dynamic Fluctuation of Circulating Tumor Cells during Cancer Progression

    Energy Technology Data Exchange (ETDEWEB)

    Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A. [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Melerzanov, Alexander V. [Moscow Institute of Physics and Technology (MIPT), Moscow Region, 141700 (Russian Federation); Zharov, Vladimir P. [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Moscow Institute of Physics and Technology (MIPT), Moscow Region, 141700 (Russian Federation); Galanzha, Ekaterina I., E-mail: egalanzha@uams.edu [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2014-01-15

    Circulating tumor cells (CTCs) are a promising diagnostic and prognostic biomarker for metastatic tumors. We demonstrate that CTCs’ diagnostic value might be increased through real-time monitoring of CTC dynamics. Using preclinical animal models of breast cancer and melanoma and in vivo flow cytometry with photoacoustic and fluorescence detection schematics, we show that CTC count does not always correlate with the primary tumor size. Individual analysis elucidated many cases where the highest level of CTCs was detected before the primary tumor starts progressing. This phenomenon could be attributed to aggressive tumors developing from cancer stem cells. Furthermore, real-time continuous monitoring of CTCs reveals that they occur at highly variable rates in a detection point over a period of time (e.g., a range of 0–54 CTCs per 5 min). These same fluctuations in CTC numbers were observed in vivo in epithelial and non-epithelial metastatic tumors, in different stages of tumor progression, and in different vessels. These temporal CTC fluctuations can explain false negative results of a one-time snapshot test in humans. Indeed, we observed wide variations in the number of CTCs in subsequent blood samples taken from the same metastatic melanoma patient, with some samples being CTC-free. If these phenomena are confirmed in our ongoing in vivo clinical trials, this could support a personalized strategy of CTC monitoring for cancer patients.

  10. Filtration parameters influencing circulating tumor cell enrichment from whole blood.

    Directory of Open Access Journals (Sweden)

    Frank A W Coumans

    Full Text Available Filtration can achieve circulating tumor cell (CTC enrichment from blood. Key parameters such as flow-rate, applied pressure, and fixation, vary largely between assays and their influence is not well understood. Here, we used a filtration system, to monitor these parameters and determine their relationships. Whole blood, or its components, with and without spiked tumor cells were filtered through track-etched filters. We characterize cells passing through filter pores by their apparent viscosity; the viscosity of a fluid that would pass with the same flow. We measured a ratio of 5·10(4∶10(2∶1 for the apparent viscosities of 15 µm diameter MDA-231 cells, 10 µm white cells and 90 fl red cells passing through a 5 µm pore. Fixation increases the pressure needed to pass cells through 8 µm pores 25-fold and halves the recovery of spiked tumor cells. Filtration should be performed on unfixed samples at a pressure of ∼10 mbar for a 1 cm(2 track-etched filter with 5 µm pores. At this pressure MDA-231 cells move through the filter in 1 hour. If fixation is needed for sample preservation, a gentle fixative should be selected. The difference in apparent viscosity between CTC and blood cells is key in optimizing recovery of CTC.

  11. Cell-free circulating tumor DNA in cancer

    Institute of Scientific and Technical Information of China (English)

    Zhen Qin; Vladimir A Ljubimov; Cuiqi Zhou; Yunguang Tong; Jimin Liang

    2016-01-01

    Cancer is a common cause of death worldwide. Despite significant advances in cancer treatments, the morbidity and mortality are still enormous. Tumor heterogeneity, especially intratumoral heterogeneity, is a significant reason under-lying difculties in tumor treatment and failure of a number of current therapeutic modalities, even of molecularly targeted therapies. The development of a virtually noninvasive“liquid biopsy”from the blood has been attempted to characterize tumor heterogeneity. This review focuses on cell-free circulating tumor DNA (ctDNA) in the bloodstream as a versatile biomarker. ctDNA analysis is an evolving field with many new methods being developed and optimized to be able to successfully extract and analyze ctDNA, which has vast clinical applications. ctDNA has the potential to accurately genotype the tumor and identify personalized genetic and epigenetic alterations of the entire tumor. In addition, ctDNA has the potential to accurately monitor tumor burden and treatment response, while also being able to monitor minimal residual disease, reducing the need for harmful adjuvant chemotherapy and allowing more rapid detection of relapse. There are still many challenges that need to be overcome prior to this biomarker getting wide adoption in the clinical world, including optimization, standardization, and large multicenter trials.

  12. Cell-free circulating tumor DNA in cancer.

    Science.gov (United States)

    Qin, Zhen; Ljubimov, Vladimir A; Zhou, Cuiqi; Tong, Yunguang; Liang, Jimin

    2016-01-01

    Cancer is a common cause of death worldwide. Despite significant advances in cancer treatments, the morbidity and mortality are still enormous. Tumor heterogeneity, especially intratumoral heterogeneity, is a significant reason underlying difficulties in tumor treatment and failure of a number of current therapeutic modalities, even of molecularly targeted therapies. The development of a virtually noninvasive "liquid biopsy" from the blood has been attempted to characterize tumor heterogeneity. This review focuses on cell-free circulating tumor DNA (ctDNA) in the bloodstream as a versatile biomarker. ctDNA analysis is an evolving field with many new methods being developed and optimized to be able to successfully extract and analyze ctDNA, which has vast clinical applications. ctDNA has the potential to accurately genotype the tumor and identify personalized genetic and epigenetic alterations of the entire tumor. In addition, ctDNA has the potential to accurately monitor tumor burden and treatment response, while also being able to monitor minimal residual disease, reducing the need for harmful adjuvant chemotherapy and allowing more rapid detection of relapse. There are still many challenges that need to be overcome prior to this biomarker getting wide adoption in the clinical world, including optimization, standardization, and large multicenter trials. PMID:27056366

  13. Circulating tumor cells as a prognostic and predictive marker in gastrointestinal stromal tumors

    DEFF Research Database (Denmark)

    Li, Qiang; Zhi, Xiaofei; Zhou, Jianping;

    2016-01-01

    BACKGROUND: Circulating tumor cells (CTC) are prognostic and predictive for several cancer types. Only limited data exist regarding prognostic or predictive impact of CTC on gastrointestinal stromal tumor (GIST) patients. The aim of our study was to elucidate the role of CTC in GIST patients. RES...

  14. Genetic engineering of platelets to neutralize circulating tumor cells.

    Science.gov (United States)

    Li, Jiahe; Sharkey, Charles C; Wun, Brittany; Liesveld, Jane L; King, Michael R

    2016-04-28

    Mounting experimental evidence demonstrates that platelets support cancer metastasis. Within the circulatory system, platelets guard circulating tumor cells (CTCs) from immune elimination and promote their arrest at the endothelium, supporting CTC extravasation into secondary sites. Neutralization of CTCs in blood circulation can potentially attenuate metastases to distant organs. Therefore, extensive studies have explored the blockade of platelet-CTC interactions as an anti-metastatic strategy. Such an intervention approach, however, may cause bleeding disorders since the platelet-CTC interactions inherently rely on the blood coagulation cascade including platelet activation. On the other hand, platelets have been genetically engineered to correct inherited bleeding disorders in both animal models and human clinical trials. In this study, inspired by the physical association between platelets and CTCs, platelets were genetically modified to express surface-bound tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a cytokine known to induce apoptosis specifically in tumor cells. The TRAIL-expressing platelets were demonstrated to kill cancer cells in vitro and significantly reduce metastases in a mouse model of prostate cancer metastasis. Our results suggest that using platelets to produce and deliver cancer-specific therapeutics can provide a Trojan-horse strategy of neutralizing CTCs to attenuate metastasis.

  15. Genetic engineering of platelets to neutralize circulating tumor cells.

    Science.gov (United States)

    Li, Jiahe; Sharkey, Charles C; Wun, Brittany; Liesveld, Jane L; King, Michael R

    2016-04-28

    Mounting experimental evidence demonstrates that platelets support cancer metastasis. Within the circulatory system, platelets guard circulating tumor cells (CTCs) from immune elimination and promote their arrest at the endothelium, supporting CTC extravasation into secondary sites. Neutralization of CTCs in blood circulation can potentially attenuate metastases to distant organs. Therefore, extensive studies have explored the blockade of platelet-CTC interactions as an anti-metastatic strategy. Such an intervention approach, however, may cause bleeding disorders since the platelet-CTC interactions inherently rely on the blood coagulation cascade including platelet activation. On the other hand, platelets have been genetically engineered to correct inherited bleeding disorders in both animal models and human clinical trials. In this study, inspired by the physical association between platelets and CTCs, platelets were genetically modified to express surface-bound tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a cytokine known to induce apoptosis specifically in tumor cells. The TRAIL-expressing platelets were demonstrated to kill cancer cells in vitro and significantly reduce metastases in a mouse model of prostate cancer metastasis. Our results suggest that using platelets to produce and deliver cancer-specific therapeutics can provide a Trojan-horse strategy of neutralizing CTCs to attenuate metastasis. PMID:26921521

  16. Photoacoustic monitoring of circulating tumor cells released during medical procedures

    Science.gov (United States)

    Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A.; Galanzha, Ekaterina; Suen, James Y.; Zharov, Vladimir P.

    2013-03-01

    Many cancer deaths are related to metastasis to distant organs due to dissemination of circulating tumor cells (CTCs) shed from the primary tumor. For many years, oncologists believed some medical procedures may provoke metastasis; however, no direct evidence has been reported. We have developed a new, noninvasive technology called in vivo photoacoustic (PA) flow cytometry (PAFC), which provides ultrasensitive detection of CTCs. When CTCs with strongly light-absorbing intrinsic melanin pass through a laser beam aimed at a peripheral blood vessel, laser-induced acoustic waves from CTCs were detected using an ultrasound transducer. We focused on melanoma as it is one of the most metastatically aggressive malignancies. The goal of this research was to determine whether melanoma manipulation, like compression, incisional biopsy, or tumor excision, could enhance penetration of cancer cells from the primary tumor into the circulatory system. The ears of nude mice were inoculated with melanoma cells. Blood vessels were monitored for the presence of CTCs using in vivo PAFC. We discovered some medical procedures, like compression of the tumor, biopsy, and surgery may either initiate CTC release in the blood which previously contained no CTCs, or dramatically increased (10-30-fold) CTC counts above the initial level. Our results warn oncologists to use caution during physical examination, and surgery. A preventive anti-CTC therapy during or immediately after surgery, by intravenous drug administration could serve as an option to treat the resulting release of CTCs.

  17. Significance of Micrometastases: Circulating Tumor Cells and Disseminated Tumor Cells in Early Breast Cancer

    Directory of Open Access Journals (Sweden)

    Catherine Oakman

    2010-06-01

    Full Text Available Adjuvant systemic therapy targets minimal residual disease. Our current clinical approach in the adjuvant setting is to presume, rather than confirm, the presence of minimal residual disease. Based on assessment of the primary tumor, we estimate an individual’s recurrence risk. Subsequent treatment decisions are based on characteristics of the primary tumor, with the presumption of consistent biology and treatment sensitivity between micrometastases and the primary lesion. An alternative approach is to identify micrometastatic disease. Detection of disseminated tumor cells (DTC in the bone marrow and circulating tumor cells (CTC from peripheral blood collection may offer quantification and biocharacterization of residual disease. This paper will review the prognostic and predictive potential of micrometastatic disease in early breast cancer.

  18. Circulating Cell Free DNA in the Diagnosis of Trophoblastic Tumors

    Science.gov (United States)

    Openshaw, Mark R.; Harvey, Richard A.; Sebire, Neil J.; Kaur, Baljeet; Sarwar, Naveed; Seckl, Michael J.; Fisher, Rosemary A.

    2015-01-01

    Gestational trophoblastic neoplasia (GTN) represents a group of diseases characterized by production of human chorionic gonadotropin (hCG). Since non-gestational tumors may occasionally secrete hCG, histopathological diagnosis is important for appropriate clinical management. However, a histopathological diagnosis is not always available. We therefore investigated the feasibility of extracting cell free DNA (cfDNA) from the plasma of women with GTN for use as a “liquid biopsy” in patients without histopathological diagnosis. cfDNA was prepared from the plasma of 20 women with a diagnosis of GTN and five with hCG-secreting tumors of unknown origin. Genotyping of cfDNA from the patient, genomic DNA from her and her partner and DNA from the tumor tissue identified circulating tumor DNA (ctDNA) (from 9% to 53% of total cfDNA) in 12 of 20 patients with GTN. In one case without a tissue diagnosis, ctDNA enabled a diagnosis of GTN originating in a non-molar conception and in another a diagnosis of non-gestational tumor, based on the high degree of allelic instability and loss of heterozygosity in the ctDNA. In summary ctDNA can be detected in the plasma of women with GTN and can facilitate the diagnosis of both gestational and non-gestational trophoblastic tumors in cases without histopathological diagnosis. PMID:26981554

  19. Circulating Cell Free DNA in the Diagnosis of Trophoblastic Tumors

    Directory of Open Access Journals (Sweden)

    Mark R. Openshaw

    2016-02-01

    Full Text Available Gestational trophoblastic neoplasia (GTN represents a group of diseases characterized by production of human chorionic gonadotropin (hCG. Since non-gestational tumors may occasionally secrete hCG, histopathological diagnosis is important for appropriate clinical management. However, a histopathological diagnosis is not always available. We therefore investigated the feasibility of extracting cell free DNA (cfDNA from the plasma of women with GTN for use as a “liquid biopsy” in patients without histopathological diagnosis. cfDNA was prepared from the plasma of 20 women with a diagnosis of GTN and five with hCG-secreting tumors of unknown origin. Genotyping of cfDNA from the patient, genomic DNA from her and her partner and DNA from the tumor tissue identified circulating tumor DNA (ctDNA (from 9% to 53% of total cfDNA in 12 of 20 patients with GTN. In one case without a tissue diagnosis, ctDNA enabled a diagnosis of GTN originating in a non-molar conception and in another a diagnosis of non-gestational tumor, based on the high degree of allelic instability and loss of heterozygosity in the ctDNA. In summary ctDNA can be detected in the plasma of women with GTN and can facilitate the diagnosis of both gestational and non-gestational trophoblastic tumors in cases without histopathological diagnosis.

  20. TUMOR-RELATED METHYLATED CELL-FREE DNA AND CIRCULATING TUMOR CELLS IN MELANOMA

    Directory of Open Access Journals (Sweden)

    Francesca eSalvianti

    2016-01-01

    Full Text Available Solid tumor release into the circulation cell-free DNA (cfDNA and circulating tumor cells (CTCs which represent promising biomarkers for cancer diagnosis. Circulating tumor DNA may be studied in plasma from cancer patients by detecting tumor specific alterations, such as genetic or epigenetic modifications. Ras association domain family 1 isoform A (RASSF1A is a tumor suppressor gene silenced by promoter hypermethylation in a variety of human cancers including melanoma.The aim of the present study was to assess the diagnostic performance of a tumor-related methylated cfDNA marker in melanoma patients and to compare this parameter with the presence of CTCs.RASSF1A promoter methylation was quantified in cfDNA by qPCR in a consecutive series of 84 melanoma patients and 68 healthy controls. In a subset of 68 cases, the presence of CTCs was assessed by a filtration method (Isolation by Size of Epithelial Tumor Cells, ISET as well as by an indirect method based on the detection of tyrosinase mRNA by RT-qPCR. The distribution of RASSF1A methylated cfDNA was investigated in cases and controls and the predictive capability of this parameter was assessed by means of the area under the ROC curve (AUC.The percentage of cases with methylated RASSF1A promoter in cfDNA was significantly higher in each class of melanoma patients (in situ, invasive and metastatic than in healthy subjects (Pearson chi-squared test, p<0.001. The concentration of RASSF1A methylated cfDNA in the subjects with a detectable quantity of methylated alleles was significantly higher in melanoma patients than in controls. The biomarker showed a good predictive capability (in terms of AUC in discriminating between melanoma patients and healthy controls. This epigenetic marker associated to cfDNA did not show a significant correlation with the presence of CTCs, but, when the two parameters are jointly considered, we obtain a higher sensitivity of the detection of positive cases in invasive

  1. Tumor-Related Methylated Cell-Free DNA and Circulating Tumor Cells in Melanoma

    Science.gov (United States)

    Salvianti, Francesca; Orlando, Claudio; Massi, Daniela; De Giorgi, Vincenzo; Grazzini, Marta; Pazzagli, Mario; Pinzani, Pamela

    2016-01-01

    Solid tumor release into the circulation cell-free DNA (cfDNA) and circulating tumor cells (CTCs) which represent promising biomarkers for cancer diagnosis. Circulating tumor DNA may be studied in plasma from cancer patients by detecting tumor specific alterations, such as genetic or epigenetic modifications. Ras association domain family 1 isoform A (RASSF1A) is a tumor suppressor gene silenced by promoter hypermethylation in a variety of human cancers including melanoma. The aim of the present study was to assess the diagnostic performance of a tumor-related methylated cfDNA marker in melanoma patients and to compare this parameter with the presence of CTCs. RASSF1A promoter methylation was quantified in cfDNA by qPCR in a consecutive series of 84 melanoma patients and 68 healthy controls. In a subset of 68 cases, the presence of CTCs was assessed by a filtration method (Isolation by Size of Epithelial Tumor Cells, ISET) as well as by an indirect method based on the detection of tyrosinase mRNA by RT-qPCR. The distribution of RASSF1A methylated cfDNA was investigated in cases and controls and the predictive capability of this parameter was assessed by means of the area under the ROC curve (AUC). The percentage of cases with methylated RASSF1A promoter in cfDNA was significantly higher in each class of melanoma patients (in situ, invasive and metastatic) than in healthy subjects (Pearson chi-squared test, p < 0.001). The concentration of RASSF1A methylated cfDNA in the subjects with a detectable quantity of methylated alleles was significantly higher in melanoma patients than in controls. The biomarker showed a good predictive capability (in terms of AUC) in discriminating between melanoma patients and healthy controls. This epigenetic marker associated to cfDNA did not show a significant correlation with the presence of CTCs, but, when the two parameters are jointly considered, we obtain a higher sensitivity of the detection of positive cases in invasive and

  2. Cancer Stem Cells, Epithelial to Mesenchymal Markers, and Circulating Tumor Cells in Small Cell Lung Cancer

    NARCIS (Netherlands)

    Pore, Milind; Meijer, Coby; de Bock, Geertruida H; Boersma-van Ek, Wytske; Terstappen, Leon W M M; Groen, Harry J M; Timens, Wim; Kruyt, Frank A E; Hiltermann, T Jeroen N

    2016-01-01

    BACKGROUND: Small cell lung cancer (SCLC) has a poor prognosis, and even with localized (limited) disease, the 5-year survival has only been around 20%. Elevated levels of circulating tumor cells (CTCs) have been associated with a worse prognosis, and markers of cancer stem cells (CSCs) and epitheli

  3. Opportunities and Challenges for Pancreatic Circulating Tumor Cells.

    Science.gov (United States)

    Nagrath, Sunitha; Jack, Rhonda M; Sahai, Vaibhav; Simeone, Diane M

    2016-09-01

    Sensitive and reproducible platforms have been developed for detection, isolation, and enrichment of circulating tumor cells (CTCs)-rare cells that enter the blood from solid tumors, including those of the breast, prostate gland, lung, pancreas, and colon. These might be used as biomarkers in diagnosis or determination of prognosis. CTCs are no longer simply detected and quantified; they are now used in ex vivo studies of anticancer agents and early detection. We review what we have recently learned about CTCs from pancreatic tumors, describing advances in their isolation and analysis and challenges to their clinical utility. We summarize technologies used to isolate CTCs from blood samples of patients with pancreatic cancer, including immunoaffinity and label-free physical attribute-based capture. We explain methods of CTC analysis and how findings from these studies might be used to detect cancer at earlier stages, monitor disease progression, and determine prognosis. We review studies that have expanded CTCs for testing of anticancer agents and how these approaches might be used to personalize treatment. Advances in the detection, isolation, and analysis of CTCs have increased our understanding of the dissemination and progression of pancreatic cancer. However, standardization of methodologies and prospective studies are needed for this emerging technology to have a significant effect on clinical care. PMID:27339829

  4. Biodegradable polymeric micelle-encapsulated doxorubicin suppresses tumor metastasis by killing circulating tumor cells

    Science.gov (United States)

    Deng, Senyi; Wu, Qinjie; Zhao, Yuwei; Zheng, Xin; Wu, Ni; Pang, Jing; Li, Xuejing; Bi, Cheng; Liu, Xinyu; Yang, Li; Liu, Lei; Su, Weijun; Wei, Yuquan; Gong, Changyang

    2015-03-01

    Circulating tumor cells (CTCs) play a crucial role in tumor metastasis, but it is rare for any chemotherapy regimen to focus on killing CTCs. Herein, we describe doxorubicin (Dox) micelles that showed anti-metastatic activity by killing CTCs. Dox micelles with a small particle size and high encapsulation efficiency were obtained using a pH-induced self-assembly method. Compared with free Dox, Dox micelles exhibited improved cytotoxicity, apoptosis induction, and cellular uptake. In addition, Dox micelles showed a sustained release behavior in vitro, and in a transgenic zebrafish model, Dox micelles exhibited a longer circulation time and lower extravasation from blood vessels into surrounding tissues. Anti-tumor and anti-metastatic activities of Dox micelles were investigated in transgenic zebrafish and mouse models. In transgenic zebrafish, Dox micelles inhibited tumor growth and prolonged the survival of tumor-bearing zebrafish. Furthermore, Dox micelles suppressed tumor metastasis by killing CTCs. In addition, improved anti-tumor and anti-metastatic activities were also confirmed in mouse tumor models, where immunofluorescent staining of tumors indicated that Dox micelles induced more apoptosis and showed fewer proliferation-positive cells. There were decreased side effects in transgenic zebrafish and mice after administration of Dox micelles. In conclusion, Dox micelles showed stronger anti-tumor and anti-metastatic activities and decreased side effects both in vitro and in vivo, which may have potential applications in cancer therapy.

  5. Recent Advances in the Molecular Characterization of Circulating Tumor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lowes, Lori E. [London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 4L6 (Canada); Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1 (Canada); Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 4L6 (Canada); Allan, Alison L., E-mail: alison.allan@lhsc.on.ca [London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 4L6 (Canada); Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1 (Canada); Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 4L6 (Canada); Lawson Health Research Institute, London, ON N6C 2R5 (Canada)

    2014-03-13

    Although circulating tumor cells (CTCs) were first observed over a century ago, lack of sensitive methodology precluded detailed study of these cells until recently. However, technological advances have now facilitated the identification, enumeration, and characterization of CTCs using a variety of methods. The majority of evidence supporting the use of CTCs in clinical decision-making has been related to enumeration using the CellSearch{sup ®} system and correlation with prognosis. Growing evidence also suggests that CTC monitoring can provide an early indication of patient treatment response based on comparison of CTC levels before and after therapy. However, perhaps the greatest potential that CTCs hold for oncology lies at the level of molecular characterization. Clinical treatment decisions may be more effective if they are based on molecular characteristics of metastatic cells rather than on those of the primary tumor alone. Molecular characterization of CTCs (which can be repeatedly isolated in a minimally invasive fashion) provides the opportunity for a “real-time liquid biopsy” that allows assessment of genetic drift, investigation of molecular disease evolution, and identification of actionable genomic characteristics. This review focuses on recent advances in this area, including approaches involving immunophenotyping, fluorescence in situ hybridization (FISH), multiplex RT-PCR, microarray, and genomic sequencing.

  6. Microchip-based immunomagnetic detection of circulating tumor cells.

    Science.gov (United States)

    Hoshino, Kazunori; Huang, Yu-Yen; Lane, Nancy; Huebschman, Michael; Uhr, Jonathan W; Frenkel, Eugene P; Zhang, Xiaojing

    2011-10-21

    Screening for circulating tumor cells (CTCs) in blood has been an object of interest for evidence of progressive disease, status of disease activity, recognition of clonal evolution of molecular changes and for possible early diagnosis of cancer. We describe a new method of microchip-based immunomagnetic CTC detection, in which the benefits of both immunomagnetic assay and the microfluidic device are combined. As the blood sample flows through the microchannel closely above arrayed magnets, cancer cells labeled with magnetic nanoparticles are separated from blood flow and deposited at the bottom wall of the glass coverslip, which allows direct observation of captured cells with a fluorescence microscope. A polydimethylsiloxane (PDMS)-based microchannel fixed on a glass coverslip was used to screen blood samples. The thin, flat dimensions of the microchannel, combined with the sharp magnetic field gradient in the vicinity of arrayed magnets with alternate polarities, lead to an effective capture of labeled cells. Compared to the commercially available CellSearch™ system, fewer (25%) magnetic particles are required to achieve a comparable capture rate, while the screening speed (at an optimal blood flow rate of 10 mL h(-1)) is more than five times faster than those reported previously with a microchannel-based assay. For the screening experiment, blood drawn from healthy subjects into CellSave™ tubes was spiked with cultured cancer cell lines of COLO205 and SKBR3. The blood was then kept at room temperature for 48 hours before the screening, emulating the actual clinical cases of blood screening. Customized Fe(3)O(4) magnetic nanoparticles (Veridex Ferrofluid™) conjugated to anti-epithelial cell adhesion molecule (EpCAM) antibodies were introduced into the blood samples to label cancer cells, and the blood was then run through the microchip device to capture the labelled cells. After capture, the cells were stained with fluorescent labelled anti

  7. Cell-based monitoring of cancer : Circulating tumor and endothelial cells

    NARCIS (Netherlands)

    J. Kraan (Jaco)

    2015-01-01

    markdownabstractThis thesis aimed to optimize the predictive and prognostic information that can be obtained from Circulating Tumor cells (CTC) and Circulating Endothelial Cells (CEC) in whole blood by improving and standardization of their detection and characterization methods in patients with sol

  8. Electrical Detection Method for Circulating Tumor Cells Using Graphene Nanoplates.

    Science.gov (United States)

    Han, Song-I; Han, Ki-Ho

    2015-10-20

    This paper presents a microfluidic device for electrical discrimination of circulating tumor cells (CTCs) using graphene nanoplates (GNPs) as a highly conductive material bound to the cell surface. For two-step cascade discrimination, the microfluidic device is composed of a CTC-enrichment device and an impedance cytometry. Using lateral magnetophoresis, the CTC-enrichment device enriches rare CTCs from millions of background blood cells. Then, the impedance cytometry electrically identifies CTCs from the enriched sample, containing CTCs and persistent residual blood cells, based on the electrical impedance of CTCs modified by the GNPs. GNPs were used as a highly conductive material for modifying surface conductivity of CTCs, thereby improving the accuracy of electrical discrimination. The experimental results showed that a colorectal cancer cell line (DLD-1) spiked into peripheral blood was enriched by nearly 500-fold by the CTC-enrichment device. The phase of the electrical signal measured from DLD-1 cells covered by GNPs shifted by about 100° in comparison with that from normal blood cells, which allows the impedance cytometry to identify CTCs at a rate of 94% from the enriched samples. PMID:26402053

  9. Challenges in circulating tumor cell detection by the CellSearch system

    NARCIS (Netherlands)

    Andree, K.C.; Dalum, van G.; Terstappen, L.W.M.M.

    2016-01-01

    Enumeration and characterization of circulating tumor cells (CTC) hold the promise of a real time liquid biopsy. They are however present in a large background of hematopoietic cells making their isolation technically challenging. In 2004, the CellSearch system was introduced as the first and only F

  10. Lab-on-chip platform for circulating tumor cells isolation

    Science.gov (United States)

    Maurya, D. K.; Fooladvand, M.; Gray, E.; Ziman, M.; Alameh, K.

    2015-12-01

    We design, develop and demonstrate the principle of a continuous, non-intrusive, low power microfluidics-based lab-ona- chip (LOC) structure for Circulating Tumor Cell (CTC) separation. Cell separation is achieved through 80 cascaded contraction and expansion microchannels of widths 60 μm and 300 μm, respectively, and depth 60 μm, which enable momentum-change-induced inertial forces to be exerted on the cells, thus routing them to desired destinations. The total length of the developed LOC is 72 mm. The LOC structure is simulated using the COMSOL multiphysics software, which enables the optimization of the dimensions of the various components of the LOC structure, namely the three inlets, three filters, three contraction and expansion microchannel segments and five outlets. Simulation results show that the LOC can isolate CTCs of sizes ranging from 15 to 30 μm with a recovery rate in excess of 90%. Fluorescent microparticles of two different sizes (5 μm and 15 μm), emulating blood and CTC cells, respectively, are used to demonstrate the principle of the developed LOC. A mixture of these microparticles is injected into the primary LOC inlet via an electronically-controlled syringe pump, and the large-size particles are routed to the primary LOC outlet through the contraction and expansion microchannels. Experimental results demonstrate the ability of the developed LOC to isolate particles by size exclusion with an accuracy of 80%. Ongoing research is focusing on the LOC design improvement for better separation efficiency and testing of biological samples for isolation of CTCs.

  11. Circulating Tumor Cells in the Adenocarcinoma of the Esophagus

    Directory of Open Access Journals (Sweden)

    Giulia Gallerani

    2016-08-01

    Full Text Available Circulating tumor cells (CTCs are elements of indisputable significance as they seem to be responsible for the onset of metastasis. Despite this, research into CTCs and their clinical application have been hindered by their rarity and heterogeneity at the molecular and cellular level, and also by a lack of technical standardization. Esophageal adenocarcinoma (EAC is a highly aggressive cancer that is often diagnosed at an advanced stage. Its incidence has increased so much in recent years that new diagnostic, prognostic and predictive biomarkers are urgently needed. Preliminary findings suggest that CTCs could represent an effective, non-invasive, real-time assessable biomarker in all stages of EAC. This review provides an overview of EAC and CTC characteristics and reports the main research results obtained on CTCs in this setting. The need to carry out further basic and translational research in this area to confirm the clinical usefulness of CTCs and to provide oncologists with a tool to improve therapeutic strategies for EAC patients was herein highlighted.

  12. Detection and Isolation of Circulating Tumor Cells in Urologic Cancers: A Review

    Directory of Open Access Journals (Sweden)

    Robert D. Loberg

    2004-07-01

    Full Text Available The American Cancer Society has estimated that in 2003, there will be approximately 239,600 new cases of urologic cancer diagnosed and 54,600 urologic cancer-related deaths in the United States. To date, the majority of research and therapy design have focused on the microenvironment of the primary tumor site, as well as the microenvironment of the metastatic or secondary (target tumor site. Little attention has been placed on the interactions of the circulating tumor cells and the microenvironment of the circulation (i.e., the third microenvironment. The purpose of this review is to present the methods for the detection and isolation of circulating tumor cells and to discuss the importance of circulating tumor cells in the biology and treatment of urologic cancers.

  13. Detection of circulating tumor cells in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Annkathrin eHanssen

    2015-09-01

    Full Text Available Lung Cancer is the most common cause of cancer related deaths that frequently metastasizes prior to disease diagnosis. Circulating tumor cells (CTCs are found in many different types of epithelial tumors and are of great clinical interest in terms of prognosis and therapy intervention. Here, we present and discuss EpCAM-dependent and -independent capture of CTCs in non-small cell lung cancer (NSCLC and the clinical relevance of CTC detection and characterization. Taking blood samples and analyzing CTCs as liquid biopsy might be a far less invasive diagnostic strategy than biopsies of lung tumors or metastases. Moreover, sequential blood sampling allows to study the dynamic changes of tumor cells during therapy, in particular the development of resistant tumor cell clones.

  14. Mutational analysis of circulating tumor cells from colorectal cancer patients and correlation with primary tumor tissue.

    Directory of Open Access Journals (Sweden)

    Anna Lyberopoulou

    Full Text Available Circulating tumor cells (CTCs provide a non-invasive accessible source of tumor material from patients with cancer. The cellular heterogeneity within CTC populations is of great clinical importance regarding the increasing number of adjuvant treatment options for patients with metastatic carcinomas, in order to eliminate residual disease. Moreover, the molecular profiling of these rare cells might lead to insight on disease progression and therapeutic strategies than simple CTCs counting. In the present study we investigated the feasibility to detect KRAS, BRAF, CD133 and Plastin3 (PLS3 mutations in an enriched CTCs cell suspension from patients with colorectal cancer, with the hypothesis that these genes` mutations are of great importance regarding the generation of CTCs subpopulations. Subsequently, we compared CTCs mutational status with that of the corresponding primary tumor, in order to access the possibility of tumor cells characterization without biopsy. CTCs were detected and isolated from blood drawn from 52 colorectal cancer (CRC patients using a quantum-dot-labelled magnetic immunoassay method. Mutations were detected by PCR-RFLP or allele-specific PCR and confirmed by direct sequencing. In 52 patients, discordance between primary tumor and CTCs was 5.77% for KRAS, 3.85% for BRAF, 11.54% for CD133 rs3130, 7.69% for CD133 rs2286455 and 11.54% for PLS3 rs6643869 mutations. Our results support that DNA mutational analysis of CTCs may enable non-invasive, specific biomarker diagnostics and expand the scope of personalized medicine for cancer patients.

  15. Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells

    NARCIS (Netherlands)

    A.M. Sieuwerts (Anieta); J. Kraan (Jaco); J. Bolt (Joan); P. van der Spoel (Petra); F. Elstrodt (Fons); A.E.M. Schutte (Mieke); J.W.M. Martens (John); J.W. Gratama (Jan-Willem); S. Sleijfer (Stefan); J.A. Foekens (John)

    2009-01-01

    textabstractIdentification of specific subtypes of circulating tumor cells in peripheral blood of cancer patients can provide information about the biology of metastasis and improve patient management. However, to be effective, the method used to identify circulating tumor cells must detect all tumo

  16. Do circulating tumor cells, exosomes, and circulating tumor nucleic acids have clinical utility? A report of the association for molecular pathology.

    Science.gov (United States)

    Gold, Bert; Cankovic, Milena; Furtado, Larissa V; Meier, Frederick; Gocke, Christopher D

    2015-05-01

    Diagnosing and screening for tumors through noninvasive means represent an important paradigm shift in precision medicine. In contrast to tissue biopsy, detection of circulating tumor cells (CTCs) and circulating tumor nucleic acids provides a minimally invasive method for predictive and prognostic marker detection. This allows early and serial assessment of metastatic disease, including follow-up during remission, characterization of treatment effects, and clonal evolution. Isolation and characterization of CTCs and circulating tumor DNA (ctDNA) are likely to improve cancer diagnosis, treatment, and minimal residual disease monitoring. However, more trials are required to validate the clinical utility of precise molecular markers for a variety of tumor types. This review focuses on the clinical utility of CTCs and ctDNA testing in patients with solid tumors, including somatic and epigenetic alterations that can be detected. A comparison of methods used to isolate and detect CTCs and some of the intricacies of the characterization of the ctDNA are also provided.

  17. Chitinase-3-like-1/YKL-40 as marker of circulating tumor cells

    OpenAIRE

    Hamilton, Gerhard; Rath, Barbara; Burghuber, Otto

    2015-01-01

    Ex vivo expansion of circulating tumor cells (CTCs) of small cell lung cancer (SCLC) patients enabled systematic screening of secreted cytokines. Permanent CTC cultures of different patients shared secretion of chitinase-3-like-1 (CHI3L1)/YKL-40, known to be upregulated in a range of tumor entities and to be associated with increased metastasis and decreased survival. This protein lacks enzymatic activity and its mechanism of promoting tumor dissemination has not been resolved. Results from S...

  18. Optimization and Evaluation of a Novel Size Based Circulating Tumor Cell Isolation System

    OpenAIRE

    Lei Xu; Xueying Mao; Ahmet Imrali; Ferrial Syed; Katherine Mutsvangwa; Daniel Berney; Paul Cathcart; John Hines; Jonathan Shamash; Yong-Jie Lu

    2015-01-01

    Isolation of circulating tumor cells (CTCs) from peripheral blood has the potential to provide a far easier "liquid biopsy" than tumor tissue biopsies, to monitor tumor cell populations during disease progression and in response to therapies. Many CTC isolation technologies have been developed. We optimized the Parsortix system, an epitope independent, size and compressibility-based platform for CTCs isolation, making it possible to harvest CTCs at the speed and sample volume comparable to st...

  19. Circulating Cell Free DNA in the Diagnosis of Trophoblastic Tumors

    OpenAIRE

    Openshaw, Mark R.; Harvey, Richard A.; Sebire, Neil J; Baljeet Kaur; Naveed Sarwar; Michael J Seckl; Fisher, Rosemary A.

    2015-01-01

    Gestational trophoblastic neoplasia (GTN) represents a group of diseases characterized by production of human chorionic gonadotropin (hCG). Since non-gestational tumors may occasionally secrete hCG, histopathological diagnosis is important for appropriate clinical management. However, a histopathological diagnosis is not always available. We therefore investigated the feasibility of extracting cell free DNA (cfDNA) from the plasma of women with GTN for use as a “liquid biopsy” in patients wit...

  20. The detection of EpCAM+ and EpCAM– circulating tumor cells

    NARCIS (Netherlands)

    Wit, de Sanne; Dalum, van Guus; Lenferink, Aufried; Tibbe, Arjan G.J.; Hilterman, T. Jeroen N.; Groen, Harry J.M.; Rijn, van Cees J.M.; Terstappen, Leon W.M.M.

    2015-01-01

    EpCAM expressing circulating tumor cells, detected by CellSearch, are predictive of short survival in several cancers and may serve as a liquid biopsy to guide therapy. Here we investigate the presence of EpCAM+ CTC detected by CellSearch and EpCAM– CTC discarded by CellSearch, after EpCAM based enr

  1. The detection of EpCAM(+) and EpCAM(-) circulating tumor cells

    NARCIS (Netherlands)

    de Wit, Sanne; van Dalum, Guus; Lenferink, Aufried T. M.; Tibbe, Arjan G. J.; Hiltermann, T. Jeroen N.; Groen, Harry J. M.; van Rijn, Cees J. M.; Terstappen, Leon W. M. M.

    2015-01-01

    EpCAM expressing circulating tumor cells, detected by CellSearch, are predictive of short survival in several cancers and may serve as a liquid biopsy to guide therapy. Here we investigate the presence of EpCAM(+) CTC detected by CellSearch and EpCAM(-) CTC discarded by CellSearch, after EpCAM based

  2. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles.

    Science.gov (United States)

    Li, Jiahe; Ai, Yiwei; Wang, Lihua; Bu, Pengcheng; Sharkey, Charles C; Wu, Qianhui; Wun, Brittany; Roy, Sweta; Shen, Xiling; King, Michael R

    2016-01-01

    Circulating tumor cells (CTCs) are responsible for metastases in distant organs via hematogenous dissemination. Fundamental studies in the past decade have suggested that neutralization of CTCs in circulation could represent an effective strategy to prevent metastasis. Current paradigms of targeted drug delivery into a solid tumor largely fall into two main categories: unique cancer markers (e.g. overexpression of surface receptors) and tumor-specific microenvironment (e.g. low pH, hypoxia, etc.). While relying on a surface receptor to target CTCs can be greatly challenged by cancer heterogeneity, targeting of tumor microenvironments has the advantage of recognizing a broader spectrum of cancer cells regardless of genetic differences or tumor types. The blood circulation, however, where CTCs transit through, lacks the same tumor microenvironment as that found in a solid tumor. In this study, a unique "microenvironment" was confirmed upon introduction of cancer cells of different types into circulation where activated platelets and fibrin were physically associated with blood-borne cancer cells. Inspired by this observation, synthetic silica particles were functionalized with activated platelet membrane along with surface conjugation of tumor-specific apoptosis-inducing ligand cytokine, TRAIL. Biomimetic synthetic particles incorporated into CTC-associated micro-thrombi in lung vasculature and dramatically decreased lung metastases in a mouse breast cancer metastasis model. Our results demonstrate a "Trojan Horse" strategy of neutralizing CTCs to attenuate metastasis.

  3. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles.

    Science.gov (United States)

    Li, Jiahe; Ai, Yiwei; Wang, Lihua; Bu, Pengcheng; Sharkey, Charles C; Wu, Qianhui; Wun, Brittany; Roy, Sweta; Shen, Xiling; King, Michael R

    2016-01-01

    Circulating tumor cells (CTCs) are responsible for metastases in distant organs via hematogenous dissemination. Fundamental studies in the past decade have suggested that neutralization of CTCs in circulation could represent an effective strategy to prevent metastasis. Current paradigms of targeted drug delivery into a solid tumor largely fall into two main categories: unique cancer markers (e.g. overexpression of surface receptors) and tumor-specific microenvironment (e.g. low pH, hypoxia, etc.). While relying on a surface receptor to target CTCs can be greatly challenged by cancer heterogeneity, targeting of tumor microenvironments has the advantage of recognizing a broader spectrum of cancer cells regardless of genetic differences or tumor types. The blood circulation, however, where CTCs transit through, lacks the same tumor microenvironment as that found in a solid tumor. In this study, a unique "microenvironment" was confirmed upon introduction of cancer cells of different types into circulation where activated platelets and fibrin were physically associated with blood-borne cancer cells. Inspired by this observation, synthetic silica particles were functionalized with activated platelet membrane along with surface conjugation of tumor-specific apoptosis-inducing ligand cytokine, TRAIL. Biomimetic synthetic particles incorporated into CTC-associated micro-thrombi in lung vasculature and dramatically decreased lung metastases in a mouse breast cancer metastasis model. Our results demonstrate a "Trojan Horse" strategy of neutralizing CTCs to attenuate metastasis. PMID:26519648

  4. A Pilot Study of Circulating Tumor Cells in Stage IV Non-Small Cell Lung Carcinoma

    Directory of Open Access Journals (Sweden)

    Max Haid

    2016-08-01

    Full Text Available Purpose: Measurement of the number of circulating tumor cells (CTCs in the bloodstream has been shown to have prognostic significance in treating breast carcinoma. This pilot study was formulated to determine if stage IV non-small cell lung carcinomas similarly shed malignant cells into the circulation and if their presence has prognostic significance. Methods: Patients with stage IV non-small cell lung carcinomas were tested once for CTCs in 7.5 ml of their blood prior to receiving any treatments. A proprietary blood collection kit produced by Veridex LLC (Raritan, NJ, which manufactures the instrument that performs the immunomagnetic CELLSEARCH® CTC assay, was used. Tumor measurements were determined in three dimensions by the same radiologist using computerized axial tomography. The three-dimensional sum was used to represent tumor size. Survival from the date of the pretreatment CTC assay was monitored and recorded. Data were analyzed statistically using NCSS8 statistical software (NCSS LLC, Kaysville, UT. Results: Of 19 evaluable patients, 10 had no detectable CTCs. There was no relation between intrapulmonary primary tumor size and the number of CTCs, nor between tumor size and survival. Survival was not affected by gender or age at entry into the trial. The mean survival of those with no detectable CTCs was 536 ± 91.1 days versus 239 ± 96.0 days for those with 1 or more detectable CTCs, a statistically significant advantage (P=0.034 favoring those without CTCs. Conclusions: Patients with a CTC score of 0 survived significantly longer than those with a CTC score of ≥ 1. Survival was not correlated with gender, age or primary tumor size. Recovery of CTCs potentially provides a noninvasive source of tumor cells for genomic profiling, which may enable development of a custom treatment plan for the individual patient. Further investigations are warranted and needed.

  5. Mesenchymal and stemness circulating tumor cells in early breast cancer diagnosis

    International Nuclear Information System (INIS)

    Epithelial mesenchymal transition (EMT) is a crucial event likely involved in dissemination of epithelial cancer cells. This process enables them to acquire migratory/invasive properties, contributing to tumor and metastatic spread. To know if this event is an early one in breast cancer, we developed a clinical trial. The aim of this protocol was to detect circulating tumor cells endowed with mesenchymal and/or stemness characteristics, at the time of initial diagnosis. Breast cancer patients (n = 61), without visceral or bone metastasis were enrolled and analysis of these dedifferentiated circulating tumor cells (ddCTC) was realized. AdnaGen method was used for enrichment cell selection. Then, ddCTC were characterized by RT-PCR study of the following genes: PI3Kα, Akt-2, Twist1 (EMT markers) and ALDH1, Bmi1 and CD44 (stemness indicators). Among the studied primary breast cancer cohort, presence of ddCTC was detected in 39% of cases. This positivity is independant from tumor clinicopathological factors apart from the lymph node status. Our data uniquely demonstrated that in vivo EMT occurs in the primary tumors and is associated with an enhanced ability of tumor cells to intravasate in the early phase of cancer disease. These results suggest that analysis of circulating tumor cells focused on cells showing mesenchymal or stemness characteristics might facilitate assessment of new drugs in clinical trials

  6. Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors

    Science.gov (United States)

    Cho, Edward H.; Wendel, Marco; Luttgen, Madelyn; Yoshioka, Craig; Marrinucci, Dena; Lazar, Daniel; Schram, Ethan; Nieva, Jorge; Bazhenova, Lyudmila; Morgan, Alison; Ko, Andrew H.; Korn, W. Michael; Kolatkar, Anand; Bethel, Kelly; Kuhn, Peter

    2012-02-01

    Circulating tumor cells (CTCs) have been implicated as a population of cells that may seed metastasis and venous thromboembolism (VTE), two major causes of mortality in cancer patients. Thus far, existing CTC detection technologies have been unable to reproducibly detect CTC aggregates in order to address what contribution CTC aggregates may make to metastasis or VTE. We report here an enrichment-free immunofluorescence detection method that can reproducibly detect and enumerate homotypic CTC aggregates in patient samples. We identified CTC aggregates in 43% of 86 patient samples. The fraction of CTC aggregation was investigated in blood draws from 24 breast, 14 non-small cell lung, 18 pancreatic, 15 prostate stage IV cancer patients and 15 normal blood donors. Both single CTCs and CTC aggregates were measured to determine whether differences exist in the physical characteristics of these two populations. Cells contained in CTC aggregates had less area and length, on average, than single CTCs. Nuclear to cytoplasmic ratios between single CTCs and CTC aggregates were similar. This detection method may assist future studies in determining which population of cells is more physically likely to contribute to metastasis and VTE.

  7. High level of chromosomal instability in circulating tumor cells of ROS1-rearranged non-small-cell lung cancer

    OpenAIRE

    Pailler, E.; Auger, N.; Lindsay, C. R.; Vielh, P; Islas-Morris-Hernandez, A.; Borget, I; Ngo-Camus, M.; Planchard, D.; Soria, J.-C.; Besse, B.; Farace, F.

    2015-01-01

    Background Genetic aberrations affecting the c-ros oncogene 1 (ROS1) tyrosine kinase gene have been reported in a small subset of patients with non-small-cell lung cancer (NSCLC). We evaluated whether ROS1-chromosomal rearrangements could be detected in circulating tumor cells (CTCs) and examined tumor heterogeneity of CTCs and tumor biopsies in ROS1-rearranged NSCLC patients. Patients and methods Using isolation by size of epithelial tumor cells (ISET) filtration and filter-adapted-fluoresce...

  8. Cornering metastases: therapeutic targeting of circulating tumor cells and stem cells.

    Directory of Open Access Journals (Sweden)

    Bishoy eFaltas

    2012-07-01

    Full Text Available The last decade has witnessed an evolution of our understanding of the biology of the metastatic cascade. Recent insights into the metastatic process show that it is complex, dynamic and multi-directional. This process starts at a very early stage in the natural history of solid tumor growth leading to early development of metastases that grow in parallel with the primary tumor. The role of stem cells in perpetuating cancer metastases is increasingly becoming more evident. At the same time, there is a growing recognition of the crucial role circulating tumor cells (CTCs play in the development of metastases. These insights have laid the biological foundations for therapeutic targeting of CTCs, a promising area of research that aims to reduce cancer morbidity and mortality by preventing the development of metastases at a very early stage. The hematogenous transport phase of the metastatic cascade provides critical access to CTCs for therapeutic targeting aiming to interrupt the metastatic process. Recent advances in the fields of nanotechnology and micro-fluidics have led to the development of several devices for in-vivo targeting of CTC during transit in the circulation. Selectin-coated tubes that target cell adhesion molecules, immuno-magnetic separators and in-vivo photoacoustic flow cytometers are currently being developed for this purpose. On the pharmacological front, several pharmacological and immunological agents targeting cancer stem cells are currently being developed. Such agents may ultimately prove to be effective against circulating tumor stem cells (CTSCs. Although still in its infancy, therapeutic targeting of CTCs and CTSCs offers an unprecedented opportunity to prevent the development of metastasis and potentially alter the natural history of cancer. By rendering cancer a local disease, these approaches could lead to major reductions in metastasis-related morbidity and mortality.

  9. The potential diagnostic power of circulating tumor cell analysis for non-small-cell lung cancer.

    Science.gov (United States)

    Ross, Kirsty; Pailler, Emma; Faugeroux, Vincent; Taylor, Melissa; Oulhen, Marianne; Auger, Nathalie; Planchard, David; Soria, Jean-Charles; Lindsay, Colin R; Besse, Benjamin; Vielh, Philippe; Farace, Françoise

    2015-01-01

    In non-small-cell lung cancer (NSCLC), genotyping tumor biopsies for targetable somatic alterations has become routine practice. However, serial biopsies have limitations: they may be technically difficult or impossible and could incur serious risks to patients. Circulating tumor cells (CTCs) offer an alternative source for tumor analysis that is easily accessible and presents the potential to identify predictive biomarkers to tailor therapies on a personalized basis. Examined here is our current knowledge of CTC detection and characterization in NSCLC and their potential role in EGFR-mutant, ALK-rearranged and ROS1-rearranged patients. This is followed by discussion of the ongoing issues such as the question of CTC partnership as diagnostic tools in NSCLC. PMID:26564313

  10. Expression of Stem Cell and Epithelial-Mesenchymal Transition Markers in Circulating Tumor Cells of Breast Cancer Patients

    OpenAIRE

    Natalia Krawczyk; Franziska Meier-Stiegen; Malgorzata Banys; Hans Neubauer; Eugen Ruckhaeberle; Tanja Fehm

    2014-01-01

    Evaluation and characterization of circulating tumor cells (CTCs) have become a major focus of translational cancer research. Presence of CTCs predicts worse clinical outcome in early and metastatic breast cancer. Whether all cells from the primary tumor have potential to disseminate and form subsequent metastasis remains unclear. As part of the metastatic cascade, tumor cells lose their cell-to-cell adhesion and undergo epithelial-mesenchymal transition (EMT) in order to enter blood circulat...

  11. Cell-free circulating tumor DNA in cancer

    OpenAIRE

    Qin, Zhen; Ljubimov, Vladimir A.; Zhou, Cuiqi; Tong, Yunguang; Liang, Jimin

    2016-01-01

    Cancer is a common cause of death worldwide. Despite significant advances in cancer treatments, the morbidity and mortality are still enormous. Tumor heterogeneity, especially intratumoral heterogeneity, is a significant reason underlying difficulties in tumor treatment and failure of a number of current therapeutic modalities, even of molecularly targeted therapies. The development of a virtually noninvasive “liquid biopsy” from the blood has been attempted to characterize tumor heterogeneit...

  12. Interplay of Stem Cell Characteristics, EMT, and Microtentacles in Circulating Breast Tumor Cells

    International Nuclear Information System (INIS)

    Metastasis, not the primary tumor, is responsible for the majority of breast cancer-related deaths. Emerging evidence indicates that breast cancer stem cells (CSCs) and the epithelial-to-mesenchymal transition (EMT) cooperate to produce circulating tumor cells (CTCs) that are highly competent for metastasis. CTCs with both CSC and EMT characteristics have recently been identified in the bloodstream of patients with metastatic disease. Breast CSCs have elevated tumorigenicity required for metastatic outgrowth, while EMT may promote CSC character and endows breast cancer cells with enhanced invasive and migratory potential. Both CSCs and EMT are associated with a more flexible cytoskeleton and with anoikis-resistance, which help breast carcinoma cells survive in circulation. Suspended breast carcinoma cells produce tubulin-based extensions of the plasma membrane, termed microtentacles (McTNs), which aid in reattachment. CSC and EMT-associated upregulation of intermediate filament vimentin and increased detyrosination of α-tubulin promote the formation of McTNs. The combined advantages of CSCs and EMT and their associated cytoskeletal alterations increase metastatic efficiency, but understanding the biology of these CTCs also presents new therapeutic targets to reduce metastasis

  13. Interplay of Stem Cell Characteristics, EMT, and Microtentacles in Circulating Breast Tumor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Charpentier, Monica [Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-20, Baltimore, MD 21201 (United States); Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-29, Baltimore, MD 21201 (United States); Martin, Stuart, E-mail: ssmartin@som.umaryland.edu [Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-29, Baltimore, MD 21201 (United States); Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-29, Baltimore, MD 21201 (United States)

    2013-11-14

    Metastasis, not the primary tumor, is responsible for the majority of breast cancer-related deaths. Emerging evidence indicates that breast cancer stem cells (CSCs) and the epithelial-to-mesenchymal transition (EMT) cooperate to produce circulating tumor cells (CTCs) that are highly competent for metastasis. CTCs with both CSC and EMT characteristics have recently been identified in the bloodstream of patients with metastatic disease. Breast CSCs have elevated tumorigenicity required for metastatic outgrowth, while EMT may promote CSC character and endows breast cancer cells with enhanced invasive and migratory potential. Both CSCs and EMT are associated with a more flexible cytoskeleton and with anoikis-resistance, which help breast carcinoma cells survive in circulation. Suspended breast carcinoma cells produce tubulin-based extensions of the plasma membrane, termed microtentacles (McTNs), which aid in reattachment. CSC and EMT-associated upregulation of intermediate filament vimentin and increased detyrosination of α-tubulin promote the formation of McTNs. The combined advantages of CSCs and EMT and their associated cytoskeletal alterations increase metastatic efficiency, but understanding the biology of these CTCs also presents new therapeutic targets to reduce metastasis.

  14. Tunable nanostructured coating for the capture and selective release of viable circulating tumor cells.

    Science.gov (United States)

    Reátegui, Eduardo; Aceto, Nicola; Lim, Eugene J; Sullivan, James P; Jensen, Anne E; Zeinali, Mahnaz; Martel, Joseph M; Aranyosi, Alexander J; Li, Wei; Castleberry, Steven; Bardia, Aditya; Sequist, Lecia V; Haber, Daniel A; Maheswaran, Shyamala; Hammond, Paula T; Toner, Mehmet; Stott, Shannon L

    2015-03-01

    A layer-by-layer gelatin nanocoating is presented for use as a tunable, dual response biomaterial for the capture and release of circulating tumor cells (CTCs) from cancer patient blood. The entire nanocoating can be dissolved from the surface of microfluidic devices through biologically compatible temperature shifts. Alternatively, individual CTCs can be released through locally applied mechanical stress. PMID:25640006

  15. Low Number of Detectable Circulating Tumor Cells in Non-metastatic Colon Cancer

    DEFF Research Database (Denmark)

    Thorsteinsson, Morten; Söletormos, György; Jess, Per

    2011-01-01

    The aim of the present study was to detect circulating tumor cells (CTCs) in the peripheral blood of patients with non-metastatic colon cancer and to evaluate whether there is a diurnal variation in the CTC counts. Furthermore, the study aimed to examine the correlation between CTCs and TNM stage...

  16. Automated classification and enhanced characterization of circulating tumor cells by image cytometry

    NARCIS (Netherlands)

    Scholtens, T.M.

    2012-01-01

    Enumeration and characterization of circulating tumor cells (CTC) is an emerging tool for the disease management of patients with metastatic carcinomas. CTC are correlated to progression free- and overall survival in several types of metastatic cancers, and can be used to predict therapy response. W

  17. Prognostic significance of circulating tumor cells in patients with metastatic colorectal cancer.

    NARCIS (Netherlands)

    Cohen, S.J.; Punt, C.J.A.; Iannotti, N.; Saidman, B.H.; Sabbath, K.D.; Gabrail, N.Y.; Picus, J.; Morse, M.A.; Mitchell, E.; Miller, M.C.; Doyle, G.V.; Tissing, H.; Terstappen, L.W.; Meropol, N.J.

    2009-01-01

    BACKGROUND: We demonstrated that circulating tumor cell (CTC) number at baseline and follow-up is an independent prognostic factor in metastatic colorectal cancer (mCRC). This analysis was undertaken to explore whether patient and treatment characteristics impact the prognostic value of CTCs. PATIEN

  18. Bone marrow micrometastases and circulating tumor cells: current aspects and future perspectives

    International Nuclear Information System (INIS)

    Early tumor cell dissemination at the single-cell level can be revealed in patients with breast cancer by using sensitive immunocytochemical and molecular assays. Recent clinical studies involving more than 4000 breast cancer patients demonstrated that the presence of disseminated tumor cells in bone marrow at primary diagnosis is an independent prognostic factor. In addition, various assays for the detection of circulating tumor cells in the peripheral blood have recently been developed and some studies also suggest a potential clinical relevance of this measure. These findings provide the basis for the potential use of disseminated tumor cells in bone marrow or blood as markers for the early assessment of therapeutic response in prospective clinical trials

  19. Method for semi-automated microscopy of filtration-enriched circulating tumor cells

    OpenAIRE

    Pailler, Emma; Oulhen, Marianne; Billiot, Fanny; Galland, Alexandre; Auger, Nathalie; Faugeroux, Vincent; Laplace-Builhé, Corinne; Besse, Benjamin; Loriot, Yohann; Ngo-Camus, Maud; Hemanda, Merouan; Colin R. Lindsay; Soria, Jean-Charles; Vielh, Philippe; Farace, Françoise

    2016-01-01

    Background Circulating tumor cell (CTC)-filtration methods capture high numbers of CTCs in non-small-cell lung cancer (NSCLC) and metastatic prostate cancer (mPCa) patients, and hold promise as a non-invasive technique for treatment selection and disease monitoring. However filters have drawbacks that make the automation of microscopy challenging. We report the semi-automated microscopy method we developed to analyze filtration-enriched CTCs from NSCLC and mPCa patients. Methods Spiked cell l...

  20. In vitro detection of circulating tumor cells compared by the CytoTrack and CellSearch methods

    DEFF Research Database (Denmark)

    Hillig, T.; Horn, P.; Nygaard, Ann-Britt;

    2015-01-01

    Comparison of two methods to detect circulating tumor cells (CTC) CytoTrack and CellSearch through recovery of MCF-7 breast cancer cells, spiked into blood collected from healthy donors. Spiking of a fixed number of EpCAM and pan-cytokeratin positive MCF-7 cells into 7.5 mL donor blood was perfor...

  1. Feasibility of cell-free circulating tumor DNA testing for lung cancer.

    Science.gov (United States)

    Santarpia, Mariacarmela; Karachaliou, Niki; González-Cao, Maria; Altavilla, Giuseppe; Giovannetti, Elisa; Rosell, Rafael

    2016-04-01

    Tumor tissue genotyping is used routinely for lung cancer to identify specific targetable oncogenic alterations, including EGFR mutations and ALK rearrangements. However, tumor tissue from a single biopsy is often insufficient for molecular testing, may offer a limited evaluation because of tumor heterogeneity and can be difficult to obtain. Cell-free circulating tumor DNA has been widely investigated as a potential surrogate for tissue biopsy for noninvasive assessment of tumor-related genomic alterations. New techniques have improved EGFR mutations detection in ctDNA, thus supporting the use of this liquid biopsy for predicting response to EGFR tyrosine kinase inhibitors (TKIs) and monitoring the emergence of resistance. The serial evaluation of ctDNA during treatment is feasible and can be used to track tumor changes in real time and for a wide range of clinically useful applications. PMID:26974841

  2. Identification of circulating tumor cells as a promising method of genitourinary cancer diagnosis 

    Directory of Open Access Journals (Sweden)

    Natalia Gurtowska

    2012-12-01

    Full Text Available Circulating tumor cells (CTCs are cells circulating in the blood, which in terms of antigenic or genetic profile correspond to a particular type of cancer. It is suspected that CTCs possess properties of cancer stem cells. Detection, quantification and characterization of CTCs in the peripheral blood can be of great importance for modern oncology. In the case of early-stage disease, CTCs may help in cancer detection, estimation of metastasis risk and treatment prognosis. In advanced cancer patients, CTCs may also have prognostic significance and may facilitate monitoring response to treatment. Identification of CTCs in the circulation and their differentiation from hematopoietic cells and normal epithelial cells could be based on physical and biological properties such as size, density and expression of specific proteins. Immunomagnetic techniques are the most commonly used methods of CTCs isolation. CellSearch System (CSS is the only test for detecting CTCs in the peripheral blood approved by the Food and Drug Administration (FDA for clinical use. The paper presents the characteristics of circulating tumor cell isolation methods and the results of studies concerning CTCs isolation in patients with prostate, bladder and kidney cancer. 

  3. Circulating Tumor Cells Detection and Counting in Uveal Melanomas by a Filtration-Based Method

    Directory of Open Access Journals (Sweden)

    Cinzia Mazzini

    2014-02-01

    Full Text Available Uveal melanoma is one of the most deadly diseases in ophthalmology for which markers able to predict the appearance of metastasis are needed. The study investigates the role of circulating tumor cells (CTC as a prognostic factor in this disease. We report the detection of circulating tumor cells by Isolation by Size of Epithelial Tumor cells (ISET in a cohort of 31 uveal melanoma patients: we identified single CTCs or clusters of cells in 17 patients, while the control population, subjects with choroidal nevi, showed no CTC in peripheral blood. The presence of CTCs did not correlate with any clinical and pathological parameter, such as tumor larger basal diameter (LBD, tumor height and TNM. By stratifying patients in groups on the basis of the number of CTC (lower or higher than 10 CTC per 10 mL blood and the presence of CTC clusters we found a significant difference in LBD (p = 0.019, Tumor height (p = 0.048, disease-free and overall survival (p < 0.05. In conclusion, we confirm the role of CTC as a negative prognostic marker in uveal melanoma patients after a long follow-up period. Further characterization of CTC will help understanding uveal melanoma metastasization and improve patient management.

  4. Circulating Tumor Cells Detection and Counting in Uveal Melanomas by a Filtration-Based Method

    Energy Technology Data Exchange (ETDEWEB)

    Mazzini, Cinzia [Department of Translational Medicine and Surgery, Università di Firenze, Firenze 50134 (Italy); Pinzani, Pamela, E-mail: p.pinzani@dfc.unifi.it; Salvianti, Francesca [Department of Biomedical, Experimental and Clinical Sciences, Università di Firenze, Firenze 50139 (Italy); Scatena, Cristian; Paglierani, Milena; Ucci, Francesca [Department of Translational Medicine and Surgery, Università di Firenze, Firenze 50134 (Italy); Pazzagli, Mario [Department of Biomedical, Experimental and Clinical Sciences, Università di Firenze, Firenze 50139 (Italy); Massi, Daniela [Department of Translational Medicine and Surgery, Università di Firenze, Firenze 50134 (Italy)

    2014-02-07

    Uveal melanoma is one of the most deadly diseases in ophthalmology for which markers able to predict the appearance of metastasis are needed. The study investigates the role of circulating tumor cells (CTC) as a prognostic factor in this disease. We report the detection of circulating tumor cells by Isolation by Size of Epithelial Tumor cells (ISET) in a cohort of 31 uveal melanoma patients: we identified single CTCs or clusters of cells in 17 patients, while the control population, subjects with choroidal nevi, showed no CTC in peripheral blood. The presence of CTCs did not correlate with any clinical and pathological parameter, such as tumor larger basal diameter (LBD), tumor height and TNM. By stratifying patients in groups on the basis of the number of CTC (lower or higher than 10 CTC per 10 mL blood) and the presence of CTC clusters we found a significant difference in LBD (p = 0.019), Tumor height (p = 0.048), disease-free and overall survival (p < 0.05). In conclusion, we confirm the role of CTC as a negative prognostic marker in uveal melanoma patients after a long follow-up period. Further characterization of CTC will help understanding uveal melanoma metastasization and improve patient management.

  5. Morphological differences between circulating tumor cells from prostate cancer patients and cultured prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Sunyoung Park

    Full Text Available Circulating tumor cell (CTC enumeration promises to be an important predictor of clinical outcome for a range of cancers. Established CTC enumeration methods primarily rely on affinity capture of cell surface antigens, and have been criticized for underestimation of CTC numbers due to antigenic bias. Emerging CTC capture strategies typically distinguish these cells based on their assumed biomechanical characteristics, which are often validated using cultured cancer cells. In this study, we developed a software tool to investigate the morphological properties of CTCs from patients with castrate resistant prostate cancer and cultured prostate cancer cells in order to establish whether the latter is an appropriate model for the former. We isolated both CTCs and cultured cancer cells from whole blood using the CellSearch® system and examined various cytomorphological characteristics. In contrast with cultured cancer cells, CTCs enriched by CellSearch® system were found to have significantly smaller size, larger nuclear-cytoplasmic ratio, and more elongated shape. These CTCs were also found to exhibit significantly more variability than cultured cancer cells in nuclear-cytoplasmic ratio and shape profile.

  6. Continuous Flow Deformability-Based Separation of Circulating Tumor Cells Using Microfluidic Ratchets.

    Science.gov (United States)

    Park, Emily S; Jin, Chao; Guo, Quan; Ang, Richard R; Duffy, Simon P; Matthews, Kerryn; Azad, Arun; Abdi, Hamidreza; Todenhöfer, Tilman; Bazov, Jenny; Chi, Kim N; Black, Peter C; Ma, Hongshen

    2016-04-13

    Circulating tumor cells (CTCs) offer tremendous potential for the detection and characterization of cancer. A key challenge for their isolation and subsequent analysis is the extreme rarity of these cells in circulation. Here, a novel label-free method is described to enrich viable CTCs directly from whole blood based on their distinct deformability relative to hematological cells. This mechanism leverages the deformation of single cells through tapered micrometer scale constrictions using oscillatory flow in order to generate a ratcheting effect that produces distinct flow paths for CTCs, leukocytes, and erythrocytes. A label-free separation of circulating tumor cells from whole blood is demonstrated, where target cells can be separated from background cells based on deformability despite their nearly identical size. In doping experiments, this microfluidic device is able to capture >90% of cancer cells from unprocessed whole blood to achieve 10(4) -fold enrichment of target cells relative to leukocytes. In patients with metastatic castration-resistant prostate cancer, where CTCs are not significantly larger than leukocytes, CTCs can be captured based on deformability at 25× greater yield than with the conventional CellSearch system. Finally, the CTCs separated using this approach are collected in suspension and are available for downstream molecular characterization. PMID:26917414

  7. Current understanding of circulating tumor cells – potential value in malignancies of the central nervous system

    Directory of Open Access Journals (Sweden)

    Lukasz A. Adamczyk

    2015-08-01

    Full Text Available Detection of circulating tumor cells (CTCs in the blood via so-called 'liquid biopsies' carries enormous clinical potential in malignancies of the central nervous system (CNS because of the potential to follow disease evolution with a blood test, without the need for repeat neurosurgical procedures with their inherent risk of patient morbidity. To date studies in non-CNS malignancies, particularly in breast cancer, show increasing reproducibility of detection methods for these rare tumor cells in the circulation. However, no method has yet received full recommendation to use in clinical practice, in part because of lack of a sufficient evidence base regarding clinical utility. In CNS malignancies one of the main challenges is finding a suitable biomarker for identification of these cells, because automated systems such as the widely used Cell Search system are reliant on markers such as the epithelial cell adhesion molecule (EpCAM which are not present in CNS tumors. This review examines methods for CTC enrichment and detection, and reviews the progress in non-CNS tumors and the potential for using this technique in human brain tumors.

  8. The detection of EpCAM+ and EpCAM– circulating tumor cells

    OpenAIRE

    Sanne de Wit; Guus van Dalum; Lenferink, Aufried T. M.; Arjan G. J. Tibbe; T. Jeroen N. Hiltermann; Groen, Harry J. M.; van Rijn, Cees J. M.; Terstappen, Leon W.M.M.

    2015-01-01

    EpCAM expressing circulating tumor cells, detected by CellSearch, are predictive of short survival in several cancers and may serve as a liquid biopsy to guide therapy. Here we investigate the presence of EpCAM(+) CTC detected by CellSearch and EpCAM(-) CTC discarded by CellSearch, after EpCAM based enrichment. EpCAM(-) CTC were identified by filtration and fluorescent labelling. This approach was validated using different cell lines spiked into blood and evaluated on blood samples of 27 meta...

  9. The Significance of Epithelial-to-Mesenchymal Transition for Circulating Tumor Cells.

    Science.gov (United States)

    Kölbl, Alexandra C; Jeschke, Udo; Andergassen, Ulrich

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is a process involved in embryonic development, but it also plays a role in remote metastasis formation in tumor diseases. During this process cells lose their epithelial features and adopt characteristics of mesenchymal cells. Thereby single tumor cells, which dissolve from the primary tumor, are enabled to invade the blood vessels and travel throughout the body as so called "circulating tumor cells" (CTCs). After leaving the blood stream the reverse process of EMT, the mesenchymal to epithelial transition (MET) helps the cells to seed in different tissues, thereby generating the bud of metastasis formation. As metastasis is the main reason for tumor-associated death, CTCs and the EMT process are in the focus of research in recent years. This review summarizes what was already found out about the molecular mechanisms driving EMT, the consequences of EMT for tumor cell detection, and suitable markers for the detection of CTCs which underwent EMT. The research work done in this field could open new roads towards combating cancer. PMID:27529216

  10. Cell receptor and surface ligand density effects on dynamic states of adhering circulating tumor cells.

    Science.gov (United States)

    Zheng, Xiangjun; Cheung, Luthur Siu-Lun; Schroeder, Joyce A; Jiang, Linan; Zohar, Yitshak

    2011-10-21

    Dynamic states of cancer cells moving under shear flow in an antibody-functionalized microchannel are investigated experimentally and theoretically. The cell motion is analyzed with the aid of a simplified physical model featuring a receptor-coated rigid sphere moving above a solid surface with immobilized ligands. The motion of the sphere is described by the Langevin equation accounting for the hydrodynamic loadings, gravitational force, receptor-ligand bindings, and thermal fluctuations; the receptor-ligand bonds are modeled as linear springs. Depending on the applied shear flow rate, three dynamic states of cell motion have been identified: (i) free motion, (ii) rolling adhesion, and (iii) firm adhesion. Of particular interest is the fraction of captured circulating tumor cells, defined as the capture ratio, via specific receptor-ligand bonds. The cell capture ratio decreases with increasing shear flow rate with a characteristic rate. Based on both experimental and theoretical results, the characteristic flow rate increases monotonically with increasing either cell-receptor or surface-ligand density within certain ranges. Utilizing it as a scaling parameter, flow-rate dependent capture ratios for various cell-surface combinations collapse onto a single curve described by an exponential formula.

  11. Clinical Utility of Circulating Tumor Cells in ALK-Positive Non-Small-Cell Lung Cancer.

    Science.gov (United States)

    Faugeroux, Vincent; Pailler, Emma; Auger, Nathalie; Taylor, Melissa; Farace, Françoise

    2014-01-01

    The advent of rationally targeted therapies such as small-molecule tyrosine kinase inhibitors (TKIs) has considerably transformed the therapeutic management of a subset of patients with non-small-cell lung cancer (NSCLC) harboring defined molecular abnormalities. When such genetic molecular alterations are detected the use of specific TKI has demonstrated better results (overall response rate, progression free survival) compared to systemic therapy. However, the detection of such molecular abnormalities is complicated by the difficulty in obtaining sufficient tumor material, in terms of quantity and quality, from a biopsy. Here, we described how circulating tumor cells (CTCs) can have a clinical utility in anaplastic lymphoma kinase (ALK) positive NSCLC patients to diagnose ALK-EML4 gene rearrangement and to guide therapeutic management of these patients. The ability to detect genetic abnormalities such ALK rearrangement in CTCs shows that these cells could offer new perspectives both for the diagnosis and the monitoring of ALK-positive patients eligible for treatment with ALK inhibitors. PMID:25414829

  12. Clinical Utility of Circulating Tumor Cells in ALK-Positive Non-Small-Cell Lung Cancer

    Science.gov (United States)

    Faugeroux, Vincent; Pailler, Emma; Auger, Nathalie; Taylor, Melissa; Farace, Françoise

    2014-01-01

    The advent of rationally targeted therapies such as small-molecule tyrosine kinase inhibitors (TKIs) has considerably transformed the therapeutic management of a subset of patients with non-small-cell lung cancer (NSCLC) harboring defined molecular abnormalities. When such genetic molecular alterations are detected the use of specific TKI has demonstrated better results (overall response rate, progression free survival) compared to systemic therapy. However, the detection of such molecular abnormalities is complicated by the difficulty in obtaining sufficient tumor material, in terms of quantity and quality, from a biopsy. Here, we described how circulating tumor cells (CTCs) can have a clinical utility in anaplastic lymphoma kinase (ALK) positive NSCLC patients to diagnose ALK-EML4 gene rearrangement and to guide therapeutic management of these patients. The ability to detect genetic abnormalities such ALK rearrangement in CTCs shows that these cells could offer new perspectives both for the diagnosis and the monitoring of ALK-positive patients eligible for treatment with ALK inhibitors. PMID:25414829

  13. Folic acid functionalized surface highlights 5-methylcytosine-genomic content within circulating tumor cells

    KAUST Repository

    Malara, Natalia

    2014-07-01

    Although the detection of methylated cell free DNA represents one of the most promising approaches for relapse risk assessment in cancer patients, the low concentration of cell-free circulating DNA constitutes the biggest obstacle in the development of DNA methylation-based biomarkers from blood. This paper describes a method for the measurement of genomic methylation content directly on circulating tumor cells (CTC), which could be used to deceive the aforementioned problem. Since CTC are disease related blood-based biomarkers, they result essential to monitor tumor\\'s stadiation, therapy, and early relapsing lesions. Within surface\\'s bio-functionalization and cell\\'s isolation procedure standardization, the presented approach reveals a singular ability to detect high 5-methylcytosine CTC-subset content in the whole CTC compound, by choosing folic acid (FA) as transducer molecule. Sensitivity and specificity, calculated for FA functionalized surface (FA-surface), result respectively on about 83% and 60%. FA-surface, allowing the detection and characterization of early metastatic dissemination, provides a unique advance in the comprehension of tumors progression and dissemination confirming the presence of CTC and its association with high risk of relapse. This functionalized surface identifying and quantifying high 5-methylcytosine CTC-subset content into the patient\\'s blood lead significant progress in cancer risk assessment, also providing a novel therapeutic strategy.© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The clinical significance of circulating tumor cells in non-metastatic colorectal cancer - A review

    DEFF Research Database (Denmark)

    Thorsteinsson, M; Jess, Per

    2011-01-01

    with metastatic disease, but the prognostic role of CTC in non-metastatic colorectal cancer is less clear. The aim of this review is to examine the possible clinical significance of circulating tumor cells in non-metastatic colorectal cancer (TNM-stage I-III) with the primary focus on detection methods......BACKGROUND: Finding a clinical tool to improve the risk stratification and identifying those colorectal cancer patients with an increased risk of recurrence is of great importance. The presence of circulating tumor cells (CTC) in peripheral blood can be a strong marker of poor prognosis in patients...... and prognosis. METHODS: The PubMed and Cochrane database and reference lists of relevant articles were searched for scientific literature published in English from January 2000 to June 2010. We included studies with non-metastatic colorectal cancer (TNM-stage I-III) and CTC detected pre- and/or post...

  15. KRAS genotypic changes of circulating tumor cells during treatment of patients with metastatic colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Aristea Kalikaki

    Full Text Available INTRODUCTION: Circulating tumor cells (CTCs could represent a non-invasive source of cancer cells used for longitudinal monitoring of the tumoral mutation status throughout the course of the disease. The aims of the present study were to investigate the detection of KRAS mutations in CTCs from patients with metastatic colorectal cancer (mCRC and to compare their mutation status during treatment or disease progression with that of the corresponding primary tumors. MATERIALS AND METHODS: Identification of the seven most common KRAS mutations on codons 12 and 13 was performed by Peptide Nucleic Acid (PNA-based qPCR method. The sensitivity of the assay was determined after isolation of KRAS mutant cancer cells spiked into healthy donors' blood, using the CellSearch Epithelial Cell kit. Consistent detection of KRAS mutations was achieved in samples containing at least 10 tumor cells/7.5 ml of blood. RESULTS: The clinical utility of the assay was assessed in 48 blood samples drawn from 31 patients with mCRC. All patients had PIK3CA and BRAF wild type primary tumors and 14 KRAS mutant tumors. CTCs were detected in 65% of specimens obtained from 74% of patients. KRAS mutation analysis in CTC-enriched specimens showed that 45% and 16.7% of patients with mutant and wild type primary tumors, respectively, had detectable mutations in their CTCs. Assessing KRAS mutations in serial blood samples revealed that individual patient's CTCs exhibited different mutational status of KRAS during treatment. CONCLUSIONS: The current findings support the rationale for using the CTCs as a dynamic source of tumor cells which, by re-evaluating their KRAS mutation status, could predict, perhaps more accurately, the response of mCRC patients to targeted therapy.

  16. Imaging circulating tumor cells in freely moving awake small animals using a miniaturized intravital microscope.

    Directory of Open Access Journals (Sweden)

    Laura Sarah Sasportas

    Full Text Available Metastasis, the cause for 90% of cancer mortality, is a complex and poorly understood process involving the invasion of circulating tumor cells (CTCs into blood vessels. These cells have potential prognostic value as biomarkers for early metastatic risk. But their rarity and the lack of specificity and sensitivity in measuring them render their interrogation by current techniques very challenging. How and when these cells are circulating in the blood, on their way to potentially give rise to metastasis, is a question that remains largely unanswered. In order to provide an insight into this "black box" using non-invasive imaging, we developed a novel miniature intravital microscopy (mIVM strategy capable of real-time long-term monitoring of CTCs in awake small animals. We established an experimental 4T1-GL mouse model of metastatic breast cancer, in which tumor cells express both fluorescent and bioluminescent reporter genes to enable both single cell and whole body tumor imaging. Using mIVM, we monitored blood vessels of different diameters in awake mice in an experimental model of metastasis. Using an in-house software algorithm we developed, we demonstrated in vivo CTC enumeration and computation of CTC trajectory and speed. These data represent the first reported use we know of for a miniature mountable intravital microscopy setup for in vivo imaging of CTCs in awake animals.

  17. [Circulating "tumor markers" in gastrointestinal tumors].

    Science.gov (United States)

    Borlinghaus, P; Lamerz, R

    1991-09-01

    Tumor markers (TM) of the neoplastic cell can be divided into non-shedded substances and antigens shedded in blood, urine or other body fluids. For clinicians circulating TM are more important. All relevant circulating TM are not useful in screening of asymptomatic patients because of insufficient sensitivity and specificity. With caution they are useful in the observation of risk groups. Circulating TM have their main significance as additional parameters in monitoring symptomatic patients with malignancies. Several follow up determinations are more important than one single measurement. During follow up of tumor patients TM should not be checked automatically if there are no diagnostic or therapeutical consequences. The clinically most important circulating TM in non-hormone secreting tumors of the gastrointestinal tract are the oncofetal antigens CEA and AFP and antigens defined by monoclonal antibodies e. g. CA 19-9 and CA 72-4. AFP is the primary TM in hepatocellular carcinoma, often elevated in hepatoblastoma and always normal in cholangiocellular carcinoma. CEA is the TM of first choice in patients with colorectal carcinomas and liver metastasis. CA 19-9 is TM of first choice in pancreatic carcinoma and additionally of diagnostic value in cholangiocellular carcinoma and tumors of the bile ducts. In cancer of the stomach CA 19-9 and CEA are secondary TM in combination with CA 72-4 as primary TM. Care should be taken that slight and moderate elevations of TM can be observed in benign diseases of liver, pancreas and bowel.

  18. The biological and clinical importance of epithelial-mesenchymal transition in circulating tumor cells.

    Science.gov (United States)

    Liu, Huiying; Zhang, Xiaofeng; Li, Jun; Sun, Bin; Qian, Haihua; Yin, Zhengfeng

    2015-02-01

    Movement of tumor cells from a primary tumor to a nonadjacent or distant site is a contiguous and complex process. Among the multiple natural cellular programs that promote initiation and progression of tumor metastasis, epithelial-mesenchymal transition (EMT) may play a key role in the ultimate generation of a metastatic foci. Acquisition of the EMT phenotype by tumor cells not only increases their migration and invasion potentials, thereby facilitating their ability to infiltrate blood vessels and to produce circulating tumor cells (CTCs), but also promotes survival of CTCs in the bloodstream and their ability to extravasate out of the circulatory system and invade proximal tissues. In organs distal to the primary tumor, the phenotypic switching mechanism of mesenchymal-epithelial transition (MET) enables CTCs to grow and colonize, enhancing the likelihood of establishing metastasis. In addition, CTCs that have undergone EMT attain increased resistance to chemotherapy and targeted therapy. CTCs with the EMT phenotype have become recognized as an active source of metastases, and targeting EMT/MET processes during the individual steps of tumor metastasis represents a promising new approach for alleviating cancer metastasis and recurrence. In this article, we focus on the biological and clinical importance of EMT and/or MET in CTCs during the individual steps of tumor metastasis, summarizing the recent findings of the regulatory roles played by EMT and/or MET in the generation, survival, and recolonization of CTCs and discussing the EMT-targeting strategies developed for tumor diagnosis as well as their potential for management of metastatic malignant diseases.

  19. miRNA in situ hybridization in circulating tumor cells - MishCTC

    Science.gov (United States)

    Ortega, Francisco G.; Lorente, Jose A.; Garcia Puche, Jose L.; Ruiz, Maria P.; Sanchez-Martin, Rosario M.; de Miguel-Pérez, Diego; Diaz-Mochon, Juan J.; Serrano, Maria J.

    2015-01-01

    Circulating tumor cells (CTCs) must be phenotypically and genetically characterized before they can be utilized in clinical applications. Here, we present the first protocol for the detection of miRNAs in CTCs using in situ hybridization (ISH) combined with immunomagnetic selection based on cytokeratin (CK) expression and immunocytochemistry. Locked-Nucleic Acid (LNA) probes associated with an enzyme-labeled fluorescence (ELF) signal amplification approach were used to detect miRNA-21 in CTCs. This protocol was optimized using both epithelial tumor (MDA-MB468) and epithelial non-tumor (MCF-10A) cell lines, and miRNA-21 was selected as the target miRNA because of its known role as an onco-miRNA. Hematopoietic cells do not express miRNA-21; thus, miRNA-21 is an ideal marker for detecting CTCs. Peripheral blood samples were taken from 25 cancer patients and these samples were analyzed using our developed protocol. Of the 25 samples, 11 contained CTCs. For all 11 CTC-positive samples, the isolated CTCs expressed both CK and miRNA-21. Finally, the protocol was applied to monitor miRNA-21 expression in epithelial to mesenchymal transition (EMT)-induced MCF-7 cells, an epithelial tumor cell line. CK expression was lost in these cells, whereas miRNA-21 was still expressed, suggesting that miRNA-21 might be a good marker for detecting CTCs with an EMT phenotype. PMID:25777797

  20. Detection of mycoplasma infection in circulating tumor cells in patients with hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hong Seo; Lee, Hyun Min; Kim, Won-Tae; Kim, Min Kyu [Department of Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul (Korea, Republic of); Chang, Hee Jin [Center for Colorectal Cancer, Research Institute and Hospital of National Cancer Center, Goyang-si (Korea, Republic of); Lee, Hye Ran [Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang-si (Korea, Republic of); Joh, Jae-Won [Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Dae Shick, E-mail: oncorkim@skku.edu [Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Ryu, Chun Jeih, E-mail: cjryu@sejong.ac.kr [Department of Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul (Korea, Republic of)

    2014-04-04

    Highlights: • This study generates a monoclonal antibody CA27 against the mycoplasmal p37 protein. • CA27 isolates circulating tumor cells (CTCs) from the blood of liver cancer patients. • Results show the first evidence for mycoplasma infected-CTCs in cancer patients. - Abstract: Many studies have shown that persistent infections of bacteria promote carcinogenesis and metastasis. Infectious agents and their products can modulate cancer progression through the induction of host inflammatory and immune responses. The presence of circulating tumor cells (CTCs) is considered as an important indicator in the metastatic cascade. We unintentionally produced a monoclonal antibody (MAb) CA27 against the mycoplasmal p37 protein in mycoplasma-infected cancer cells during the searching process of novel surface markers of CTCs. Mycoplasma-infected cells were enriched by CA27-conjugated magnetic beads in the peripheral blood mononuclear cells in patients with hepatocellular carcinoma (HCC) and analyzed by confocal microscopy with anti-CD45 and CA27 antibodies. CD45-negative and CA27-positive cells were readily detected in three out of seven patients (range 12–30/8.5 ml blood), indicating that they are mycoplasma-infected circulating epithelial cells. CA27-positive cells had larger size than CD45-positive hematological lineage cells, high nuclear to cytoplasmic ratios and irregular nuclear morphology, which identified them as CTCs. The results show for the first time the existence of mycoplasma-infected CTCs in patients with HCC and suggest a possible correlation between mycoplasma infection and the development of cancer metastasis.

  1. Detection of mycoplasma infection in circulating tumor cells in patients with hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Highlights: • This study generates a monoclonal antibody CA27 against the mycoplasmal p37 protein. • CA27 isolates circulating tumor cells (CTCs) from the blood of liver cancer patients. • Results show the first evidence for mycoplasma infected-CTCs in cancer patients. - Abstract: Many studies have shown that persistent infections of bacteria promote carcinogenesis and metastasis. Infectious agents and their products can modulate cancer progression through the induction of host inflammatory and immune responses. The presence of circulating tumor cells (CTCs) is considered as an important indicator in the metastatic cascade. We unintentionally produced a monoclonal antibody (MAb) CA27 against the mycoplasmal p37 protein in mycoplasma-infected cancer cells during the searching process of novel surface markers of CTCs. Mycoplasma-infected cells were enriched by CA27-conjugated magnetic beads in the peripheral blood mononuclear cells in patients with hepatocellular carcinoma (HCC) and analyzed by confocal microscopy with anti-CD45 and CA27 antibodies. CD45-negative and CA27-positive cells were readily detected in three out of seven patients (range 12–30/8.5 ml blood), indicating that they are mycoplasma-infected circulating epithelial cells. CA27-positive cells had larger size than CD45-positive hematological lineage cells, high nuclear to cytoplasmic ratios and irregular nuclear morphology, which identified them as CTCs. The results show for the first time the existence of mycoplasma-infected CTCs in patients with HCC and suggest a possible correlation between mycoplasma infection and the development of cancer metastasis

  2. Circulating Tumor Cells: What Is in It for the Patient? A Vision towards the Future

    Energy Technology Data Exchange (ETDEWEB)

    Stolpe, Anja van de, E-mail: Anja.van.de.stolpe@philips.com [Fellow, Precision and Decentralized Diagnostics, Philips Research, Eindhoven 5656 AE (Netherlands); Toonder, Jaap M. J. den [Chair Microsystems, Eindhoven University of Technology, Postbox 513, Eindhoven 5600 MB (Netherlands)

    2014-05-28

    Knowledge on cellular signal transduction pathways as drivers of cancer growth and metastasis has fuelled development of “targeted therapy” which “targets” aberrant oncogenic signal transduction pathways. These drugs require nearly invariably companion diagnostic tests to identify the tumor-driving pathway and the cause of the abnormal pathway activity in a tumor sample, both for therapy response prediction as well as for monitoring of therapy response and emerging secondary drug resistance. Obtaining sufficient tumor material for this analysis in the metastatic setting is a challenge, and circulating tumor cells (CTCs) may provide an attractive alternative to biopsy on the premise that they can be captured from blood and the companion diagnostic test results are correctly interpreted. We discuss novel companion diagnostic directions, including the challenges, to identify the tumor driving pathway in CTCs, which in combination with a digital pathology platform and algorithms to quantitatively interpret complex CTC diagnostic results may enable optimized therapy response prediction and monitoring. In contrast to CTC-based companion diagnostics, CTC enumeration is envisioned to be largely replaced by cell free tumor DNA measurements in blood for therapy response and recurrence monitoring. The recent emergence of novel in vitro human model systems in the form of cancer-on-a-chip may enable elucidation of some of the so far elusive characteristics of CTCs, and is expected to contribute to more efficient CTC capture and CTC-based diagnostics.

  3. Circulating Tumor Cells: What Is in It for the Patient? A Vision towards the Future

    International Nuclear Information System (INIS)

    Knowledge on cellular signal transduction pathways as drivers of cancer growth and metastasis has fuelled development of “targeted therapy” which “targets” aberrant oncogenic signal transduction pathways. These drugs require nearly invariably companion diagnostic tests to identify the tumor-driving pathway and the cause of the abnormal pathway activity in a tumor sample, both for therapy response prediction as well as for monitoring of therapy response and emerging secondary drug resistance. Obtaining sufficient tumor material for this analysis in the metastatic setting is a challenge, and circulating tumor cells (CTCs) may provide an attractive alternative to biopsy on the premise that they can be captured from blood and the companion diagnostic test results are correctly interpreted. We discuss novel companion diagnostic directions, including the challenges, to identify the tumor driving pathway in CTCs, which in combination with a digital pathology platform and algorithms to quantitatively interpret complex CTC diagnostic results may enable optimized therapy response prediction and monitoring. In contrast to CTC-based companion diagnostics, CTC enumeration is envisioned to be largely replaced by cell free tumor DNA measurements in blood for therapy response and recurrence monitoring. The recent emergence of novel in vitro human model systems in the form of cancer-on-a-chip may enable elucidation of some of the so far elusive characteristics of CTCs, and is expected to contribute to more efficient CTC capture and CTC-based diagnostics

  4. The roles of serum CXCL16 in circulating Tregs and gastrointestinal stromal tumor cells

    Science.gov (United States)

    Xing, Ya-Nan; Zhang, Jun-Yan; Xu, Hui-Mian

    2016-01-01

    Gastrointestinal stromal tumors (GIST) are the most common sarcomas of the digestive system. Abnormal expression of CXCL16 and its sole receptor, CXCR6, has been demonstrated in many cancers. However, no studies have shown the relationship between CXCL16 or CXCR6 expression and GIST. In this study, we detected CXCL16 and CXCR6 expression in GIST patient samples by using immunohistochemistry analysis and Western blot analysis. Serum CXCL16 level was determined by using enzyme-linked immunosorbent assay. Circulating Tregs were isolated by using flow cytometry. MTT assay, cell cycle assay, and transwell assay were used to test the effects of recombinant CXCL16 on Tregs and GIST cells in vitro. The levels of CXCL16 and CXCR6 protein were higher in cancer tissues than in normal tissues. Serum CXCL16 level and circulating Tregs were higher in GIST patients than that in the healthy volunteers. CXCL16, CXCR6, serum CXCL16, and circulating Tregs were significantly associated with a decreased survival time of patients. Relative to control cells, high concentration recombinant CXCL16 treated Tregs and GIST cells exhibited lower proliferation and mobility rates as assessed by MTT assay and transwell assay, respectively. Taken together, CXCL16 was observed to mediate the inhibitory effects in Tregs and GIST cells, and these involved suppression of the MEK/ERK signaling pathway. PMID:27418838

  5. Dynamic Changes in Numbers and Properties of Circulating Tumor Cells and Their Potential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Ju-Yu [Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 11221, Taiwan (China); Yang, Chih-Yung [Department of Education and Research, Taipei City Hospital, Taipei 10629, Taiwan (China); Liang, Shu-Ching [Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 11221, Taiwan (China); Liu, Ren-Shyan [Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, Taipei 11529, Taiwan (China); Biomedical Imaging Research Center, Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan (China); National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, 11217, Taiwan (China); Jiang, Jeng-Kai, E-mail: jkjiang@vghtpe.gov.tw [Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan (China); Lin, Chi-Hung, E-mail: jkjiang@vghtpe.gov.tw [Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 11221, Taiwan (China); VGH Yang-Ming Genome Research Center, Taipei 11221, Taiwan (China)

    2014-12-16

    Circulating tumor cells (CTCs) can be detected in the blood of different types of early or advanced cancer using immunology-based assays or nucleic acid methods. The detection and quantification of CTCs has significant clinical utility in the prognosis of metastatic breast, prostate, and colorectal cancers. CTCs are a heterogeneous population of cells and often different from those of their respective primary tumor. Understanding the biology of CTCs may provide useful predictive information for the selection of the most appropriate treatment. Therefore, CTC detection and characterization could become a valuable tool to refine prognosis and serve as a “real-time biopsy” and has the potential to guide precision cancer therapies, monitor cancer treatment, and investigate the process of metastasis.

  6. Dynamic changes in numbers and properties of circulating tumor cells and their potential applications.

    Science.gov (United States)

    Tseng, Ju-Yu; Yang, Chih-Yung; Liang, Shu-Ching; Liu, Ren-Shyan; Jiang, Jeng-Kai; Lin, Chi-Hung

    2014-01-01

    Circulating tumor cells (CTCs) can be detected in the blood of different types of early or advanced cancer using immunology-based assays or nucleic acid methods. The detection and quantification of CTCs has significant clinical utility in the prognosis of metastatic breast, prostate, and colorectal cancers. CTCs are a heterogeneous population of cells and often different from those of their respective primary tumor. Understanding the biology of CTCs may provide useful predictive information for the selection of the most appropriate treatment. Therefore, CTC detection and characterization could become a valuable tool to refine prognosis and serve as a "real-time biopsy" and has the potential to guide precision cancer therapies, monitor cancer treatment, and investigate the process of metastasis. PMID:25521853

  7. Dynamic Changes in Numbers and Properties of Circulating Tumor Cells and Their Potential Applications

    International Nuclear Information System (INIS)

    Circulating tumor cells (CTCs) can be detected in the blood of different types of early or advanced cancer using immunology-based assays or nucleic acid methods. The detection and quantification of CTCs has significant clinical utility in the prognosis of metastatic breast, prostate, and colorectal cancers. CTCs are a heterogeneous population of cells and often different from those of their respective primary tumor. Understanding the biology of CTCs may provide useful predictive information for the selection of the most appropriate treatment. Therefore, CTC detection and characterization could become a valuable tool to refine prognosis and serve as a “real-time biopsy” and has the potential to guide precision cancer therapies, monitor cancer treatment, and investigate the process of metastasis

  8. Identification of genomic signatures in circulating tumor cells from breast cancer.

    Science.gov (United States)

    Kanwar, Nisha; Hu, Pingzhao; Bedard, Philippe; Clemons, Mark; McCready, David; Done, Susan J

    2015-07-15

    Levels of circulating tumor cells (CTCs) in blood have prognostic value in early and metastatic breast cancer. CTCs also show varying degrees of concordance with molecular markers of primary tumors they originate from. It is expected that individual cells reflect the heterogeneity and evolution of tumor cells as they acquire new functions and differential responses to chemotherapy. However, a degree of commonality is also plausible, highlighting alterations that allow tumor cells to perform CTC-defining activities such as invasion and intravasation. Using a matched tumor-normal approach, we performed high-resolution copy number profiling of CTCs from breast cancer to identify occult changes occurring during progression to metastasis. We identified a signature of recurrent gain in CTCs, consisting of 90 minimal common regions (MCRs) of copy number gain. These were predominantly found across chromosome 19 and were identified at low frequencies (3-4%) in 787 primary breast carcinomas examined. CTC genomic signatures clustered into two groups independent of subtype: a dormancy-related signature with 16 MCRs (AKT2, PTEN, CADM2); and a tumor-aggressiveness related signature with 358 MCRs (ANGPTL4, BSG, MIR-373). There were two MCRs in common between the groups on 19q13 and 21q21, containing genes involved in resistance to anoikis, TGFβ-signaling and metastasis (TFF3, LTBP4, NUMBL). Furthermore, a region harboring the ERBB2 gene was gained in a majority of patients. Regions 20q13 and 15q24 were associated with distant metastasis. The distinctiveness of CTC signatures highlights cell populations with different functional or metastatic potential. Such novel targets could help to specifically identify and block dissemination.

  9. Detection, manipulation and post processing of circulating tumor cells using optical techniques

    Science.gov (United States)

    Bakhtiaridoost, Somayyeh; Habibiyan, Hamidreza; Ghafoorifard, Hassan

    2015-12-01

    Circulating tumor cells (CTCs) are malignant cells that are derived from a solid tumor in the metastasis stage and are shed into the blood stream. These cells hold great promise to be used as liquid biopsy that is less aggressive than traditional biopsy. Recently, detection and enumeration of these cells has received ever-increasing attention from researchers as a way of early detection of cancer metastasis, determining the effectiveness of treatment and studying the mechanism of formation of secondary tumors. CTCs are found in blood at low concentration, which is a major limitation of isolation and detection of these cells. Over the last few years, multifarious research studies have been conducted on accurate isolation and detection and post processing of CTCs. Among all the proposed systems, microfluidic systems seem to be more attractive for researchers due to their numerous advantages. On the other hand, recent developments in optical methods have made the possibility of cellular studies at single-cell level. Thus, accuracy and efficiency of separation, detection and manipulation of CTCs can be improved using optical techniques. In this review, we describe optical methods that have been used for CTC detection, manipulation and post processing.

  10. Magnetic trapping with simultaneous photoacoustic detection of molecularly targeted rare circulating tumor cells

    Science.gov (United States)

    Wei, Chen-Wei; Xia, Jinjun; Pelivanov, Ivan M.; Hu, Xiaoge; Gao, Xiaohu; O'Donnell, Matthew

    2013-03-01

    Photoacoustic (PA) imaging has been widely used in molecular imaging to detect diseased cells by targeting them with nanoparticle-based contrast agents. However, the sensitivity and specificity are easily degraded because contrast agent signals can be masked by the background. Magnetomotive photoacoustic imaging uses a new type of multifunctional composite particle combining an optically absorptive gold nanorod core and magnetic nanospheres, which can potentially accumulate and concentrate targeted cells while simultaneously enhancing their specific contrast compared to background signals. In this study, HeLa cells molecularly targeted using nanocomposites with folic acid mimicking targeted rare circulating tumor cells (CTCs) were circulated at a 6 ml/min flow rate for trapping and imaging studies. Preliminary results show that the cells accumulate rapidly in the presence of an externally applied magnetic field produced by a dual magnet system. The sensitivity of the current system can reach up to 1 cell/ml in clear water. By manipulating the trapped cells magnetically, the specificity of detecting cells in highly absorptive ink solution can be enhanced with 16.98 dB background suppression by applying motion filtering on PA signals to remove unwanted background signals insensitive to the magnetic field. The results appear promising for future preclinical studies on a small animal model and ultimate clinical detection of rare CTCs in the vasculature.

  11. Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer

    Science.gov (United States)

    Galardi, Francesca; Pestrin, Marta; Gabellini, Stefano; Simi, Lisa; Mancini, Irene; Vannucchi, Alessandro Maria; Pazzagli, Mario; Di Leo, Angelo; Pinzani, Pamela

    2016-01-01

    Circulating Tumor Cells (CTCs) represent a “liquid biopsy” of the tumor potentially allowing real-time monitoring of cancer biology and therapies in individual patients. The purpose of the study was to explore the applicability of a protocol for the molecular characterization of single CTCs by Next Generation Sequencing (NGS) in order to investigate cell heterogeneity and provide a tool for a personalized medicine approach. CTCs were enriched and enumerated by CellSearch in blood from four metastatic breast cancer patients and singularly isolated by DEPArray. Upon whole genome amplification 3–5 single CTCs per patient were analyzed by NGS for 50 cancer-related genes. We found 51 sequence variants in 25 genes. We observed inter- and intra-patient heterogeneity in the mutational status of CTCs. The highest number of somatic deleterious mutations was found in the gene TP53, whose mutation is associated with adverse prognosis in breast cancer. The discordance between the mutational status of the primary tumor and CTCs observed in 3 patients suggests that, in advanced stages of cancer, CTC characteristics are more closely linked to the dynamic modifications of the disease status. In one patient the mutational profiles of CTCs before and during treatment shared only few sequence variants. This study supports the applicability of a non-invasive approach based on the liquid biopsy in metastatic breast cancer patients which, in perspective, should allow investigating the clonal evolution of the tumor for the development of new therapeutic strategies in precision medicine. PMID:27034166

  12. Combination of Circulating Tumor Cells with Serum Carcinoembryonic Antigen Enhances Clinical Prediction of Non-Small Cell Lung Cancer

    OpenAIRE

    Xi Chen; Xu Wang; Hua He; Ziling Liu; Ji-Fan Hu; Wei Li

    2015-01-01

    Circulating tumor cells (CTCs) have emerged as a potential biomarker in the diagnosis, prognosis, treatment, and surveillance of lung cancer. However, CTC detection is not only costly, but its sensitivity is also low, thus limiting its usage and the collection of robust data regarding the significance of CTCs in lung cancer. We aimed to seek clinical variables that enhance the prediction of CTCs in patients with non-small cell lung cancer (NSCLC). Clinical samples and pathological data were c...

  13. The application of circulating tumor cells detecting methods in veterinary oncology.

    Science.gov (United States)

    Chmielewska, M; Łosiewicz, K; Socha, P; Mecik-Kronenberg, T; Wasowicz, K

    2013-01-01

    Cancers are one of the most common diseases affecting dogs. Many of them develop spontaneously and their biology and histopathology shows many similarities to human cancers. What more, it is proved that there are much more analogies in molecular mechanisms of cancer development between these two species. Human oncology is seeking more and more efficient methods for an early disease detection which results directly in the extended life expectancy of patients affected. One of the most modern trends in the diagnosis of cancer is to detect circulating tumor cells (CTC) in the blood of patients. It is known that these cells are responsible for the formation of metastases in distant organs what results in the patient death. Moreover, it's confirmed that CTC are already present in patients' bloodstream in the early stages of tumor development. There is no doubt that mechanism of metastasis development in dogs is identical and thus the CTC are also present in their bloodstream. Despite the intense researches there is still no optimal method of isolating cancer cells from the blood where they occur extremely rarely. The purpose of this study is to analyze the implications of the detection methods of tumor cells in the blood in veterinary oncology. PMID:23691590

  14. X-ray enabled detection and eradication of circulating tumor cells with nanoparticles.

    Science.gov (United States)

    Hossain, Mainul; Luo, Yang; Sun, Zhaoyong; Wang, Chaoming; Zhang, Minghui; Fu, Hanyu; Qiao, Yong; Su, Ming

    2012-01-01

    The early detection and eradication of circulating tumor cells (CTCs) play an important role in cancer metastasis management. This paper describes a new nanoparticle-enabled technique for integrated enrichment, detection and killing of CTCs by using magnetic nanoparticles and bismuth nanoparticles, X-ray fluorescence spectrometry, and X-ray radiation. The nanoparticles are modified with tumor targeting agents and conjugated with tumor cells through folate receptors over-expressed on cancer cells. A permanent micro-magnet is used to collect CTCs suspended inside a flowing medium that contains phosphate buffered saline (PBS) or whole blood. The characteristic X-ray emissions from collected bismuth nanoparticles, upon excitation with collimated X-rays, are used to detect CTCs. Results show that the method is capable of selectively detecting CTCs at concentrations ranging from 100-100,000 cells/mL in the buffer solution, with a detection limit of ≈ 100 CTCs/mL. Moreover, the dose of primary X-rays can be enhanced to kill the localized CTCs by radiation induced DNA damage, with minimal invasiveness, thus making in vivo personalized CTC management possible.

  15. Circulating tumor cells in breast cancer: A tool whose time has come of age

    Directory of Open Access Journals (Sweden)

    Cristofanilli Massimo

    2011-04-01

    Full Text Available Abstract Circulating tumor cells (CTCs are isolated tumor cells disseminated from the site of disease in metastatic and/or primary cancers, including breast cancer, that can be identified and measured in the peripheral blood of patients. As recent technical advances have rendered it easier to reproducibly and repeatedly sample this population of cells with a high degree of accuracy, these cells represent an attractive surrogate marker of the site of disease. Currently, CTCs are being integrated into clinical trial design as a surrogate for phenotypic and genotypic markers in correlation with development of molecularly targeted therapies. As CTCs play a crucial role in tumor dissemination, translational research is implicating CTCs in several biological processes, including epithelial to mesenchymal transition. In this mini-review, we review CTCs in metastatic breast cancer, and discuss their clinical utility for assessing prognosis and monitoring response to therapy. We will also introduce their utility in pharmacodynamic monitoring for rational selection of molecularly targeted therapies and briefly address how they can help elucidate the biology of cancer metastasis.

  16. Circulating tumor cells as a prognostic factor in patients with small cell lung cancer.

    Science.gov (United States)

    Igawa, Satoshi; Gohda, Keigo; Fukui, Tomoya; Ryuge, Shinichiro; Otani, Sakiko; Masago, Akinori; Sato, Jun; Murakami, Katsuhiro; Maki, Sachiyo; Katono, Ken; Takakura, Akira; Sasaki, Jiichiro; Satoh, Yukitoshi; Masuda, Noriyuki

    2014-05-01

    The detection of circulating tumor cells (CTCs) in peripheral blood is currently an important field of study. Detection of CTCs by the OBP-401 assay (TelomeScan(®)) has previously been reported to be useful in the diagnosis, prognosis and evaluation of therapeutic efficacy in breast and gastric cancer. The aim of the present study was to evaluate the OBP-401 assay as a novel method of detecting CTCs of small cell lung cancer (SCLC) patients and to evaluate whether CTC count is associated with prognosis. Prospectively, 30 consecutively diagnosed SCLC patients who had commenced chemotherapy or chemoradiotherapy were enrolled as subjects of the current study. Peripheral blood specimens were collected from the SCLC patients prior to and following the initiation of treatment and the viable CTCs were detected in the specimens following incubation with a telomerase-specific, replication-selective, oncolytic adenoviral agent, which was carrying the green fluorescent protein gene. CTCs were detected in 29 patients (96%). The group of 21 patients with a CTC count of <2 cells/7.5 ml prior to treatment (baseline) had a significantly longer median survival time than the group of eight patients with a CTC count of ≥2 cells/7.5 ml prior to treatment (14.8 and 3.9 months, respectively; P=0.007). The results of a multivariate analysis showed that the baseline CTC count was an independent prognostic factor for survival time (hazard ratio, 3.91; P=0.026). Among the patients that achieved a partial response to treatment, patients who had a CTC count of <2 cells/7.5 ml following two cycles of chemotherapy tended to have a longer median progression-free survival compared with patients who had a CTC count of ≥2 cell/7.5 ml (8.3 and 3.8 months, respectively; P=0.07). Therefore, CTCs may be detected via OBP-401 assay in SCLC patients and the CTC count prior to treatment appears to be a strong prognostic factor. PMID:24765158

  17. Towards Engineered Processes for Sequencing-Based Analysis of Single Circulating Tumor Cells.

    Science.gov (United States)

    Adalsteinsson, Viktor A; Love, J Christopher

    2014-05-01

    Sequencing-based analysis of single circulating tumor cells (CTCs) has the potential to revolutionize our understanding of metastatic cancer and improve clinical care. Technologies exist to enrich, identify, recover, and sequence single cells, but to enable systematic routine analysis of single CTCs from a range of cancer patients, there is a need to establish processes that efficiently integrate these specific operations. Such engineered processes should address challenges associated with the yield and viability of enriched CTCs, the robust identification of candidate single CTCs with minimal degradation of DNA, the bias in whole-genome amplification, and the efficient handling of candidate single CTCs or their amplified DNA products. Advances in methods for single-cell analysis and nanoscale technologies suggest opportunities to overcome these challenges, and could create integrated platforms that perform several of the unit operations together. Ultimately, technologies should be selected or adapted for optimal performance and compatibility in an integrated process. PMID:24839591

  18. Multi-Phenotypic subtyping of circulating tumor cells using sequential fluorescent quenching and restaining.

    Science.gov (United States)

    Adams, Daniel L; Alpaugh, R Katherine; Tsai, Susan; Tang, Cha-Mei; Stefansson, Steingrimur

    2016-01-01

    In tissue biopsies formalin fixed paraffin embedded cancer blocks are micro-sectioned producing multiple semi-identical specimens which are analyzed and subtyped proteomically, and genomically, with numerous biomarkers. In blood based biopsies (BBBs), blood is purified for circulating tumor cells (CTCs) and clinical utility is typically limited to cell enumeration, as only 2-3 positive fluorescent markers and 1 negative marker can be used. As such, increasing the number of subtyping biomarkers on each individual CTC could dramatically enhance the clinical utility of BBBs, allowing in depth interrogation of clinically relevant CTCs. We describe a simple and inexpensive method for quenching the specific fluors of fluorescently stained CTCs followed by sequential restaining with additional biomarkers. As proof of principle a CTC panel, immunosuppression panel and stem cell panel were used to sequentially subtype individual fluorescently stained patient CTCs, suggesting a simple and universal technique to analyze multiple clinically applicable immunomarkers from BBBs. PMID:27647345

  19. Assessment of γ-H2AX levels in circulating tumor cells from patients receiving chemotherapy

    Directory of Open Access Journals (Sweden)

    Alejandra eGarcia-Villa

    2012-10-01

    Full Text Available Circulating tumor cells (CTCs are prognostic markers in a variety of solid tumor malignancies. The potential of CTCs to be used as a liquid biopsy to monitor a patient’s condition and predict drug response and resistance is currently under investigation. Using a negative depletion, enrichment methology, CTCs isolated from the peripheral blood of breast cancer patients with stage IV breast cancer undergoing DNA damaging therapy with platinum based therapy were enriched. The enriched cell suspensions, were stained with an optimized labeling protocol targeting: nuclei, cytokeratins 8, 18, and 19, the surface marker CD45, and the presence of the protein ɣ-H2AX. As a direct or indirect result of platinum therapy, double strand break of DNA initiates phosphorylation of the histone H2AX, at serine 139; this phosphorylated form is referred to as ɣ-H2AX. In addition to ɣ-H2AX staining in specific locations with the cell nuclei, consistent with previous reports and referred to as foci, more general staining in the cell cytoplamim was also observed in some cells suggesting the potential of cell apoptosis. Our study underscores the utility and the complexity of investigating CTCs as predictive markers of response to various therapies. Additional studies are ongoing to evaluate the diverse γ-H2AX staining patterns we report here which needs to be further correlated with patient outcomes

  20. Raman-based identification of circulating tumor cells for cancer diagnosis

    Science.gov (United States)

    Krafft, Christoph; Beleites, Claudia; Schie, Iwan W.; Clement, Joachim H.; Popp, Jürgen

    2016-03-01

    Circulating tumor cells (CTCs) that can be extracted from body fluids offer new prospects in cancer diagnostics. An overview about our recent achievements is presented to use Raman-based methodologies to distinguish cancer cells from normal blood cells. In a first approach, a microfluidic chip was developed to collect Raman spectra from optically trapped cells. Whereas sensitivities and specificities were promising, the throughput was not compatible with the expected low number of CTCs per million white blood cells. A second strategy immobilized up to 200,000 cells onto a microhole array made of silicon nitride. Rapid microscopic screening can be applied to pre-select a subset of cells from which Raman spectra are collected for specific CTC identification. As this approach is compatible with living cells and Raman spectroscopy with 785 nm excitation is non-destructive, a robotic arm can select positively identified CTCs for in-depth biochemical assessment. Finally, an in vivo approach directly collects CTCs from the blood stream. This way reduces the cell number to a manageable size that is subjected to Raman spectroscopy for cell typing and enumeration. An integrated acquisition mode was introduced to further increase the throughput and robustness of single cell classification.

  1. Optimization and Evaluation of a Novel Size Based Circulating Tumor Cell Isolation System.

    Directory of Open Access Journals (Sweden)

    Lei Xu

    Full Text Available Isolation of circulating tumor cells (CTCs from peripheral blood has the potential to provide a far easier "liquid biopsy" than tumor tissue biopsies, to monitor tumor cell populations during disease progression and in response to therapies. Many CTC isolation technologies have been developed. We optimized the Parsortix system, an epitope independent, size and compressibility-based platform for CTCs isolation, making it possible to harvest CTCs at the speed and sample volume comparable to standard CellSearch system. We captured more than half of cancer cells from different cancer cell lines spiked in blood samples from healthy donors using this system. Cell loss during immunostaining of cells transferred and fixed on the slides is a major problem for analyzing rare cell samples. We developed a novel cell transfer and fixation method to retain >90% of cells on the slide after the immunofluorescence process without affecting signal strength and specificity. Using this optimized method, we evaluated the Parsortix system for CTC harvest in prostate cancer patients in comparison to immunobead based CTC isolation systems IsoFlux and CellSearch. We harvested a similar number (p = 0.33 of cytokeratin (CK positive CTCs using Parsortix and IsoFlux from 7.5 mL blood samples of 10 prostate cancer patients (an average of 33.8 and 37.6 respectively. The purity of the CTCs harvested by Parsortix at 3.1% was significantly higher than IsoFlux at 1.0% (p = 0.02. Parsortix harvested significantly more CK positive CTCs than CellSearch (p = 0.04 in seven prostate cancer patient samples, where both systems were utilized (an average of 32.1 and 10.1 respectively. We also captured CTC clusters using Parsortix. Using four-color immunofluorescence we found that 85.8% of PC3 cells expressed EpCAM, 91.7% expressed CK and 2.5% cells lacked both epithelial markers. Interestingly, 95.6% of PC3 cells expressed Vimentin, including those cells that lacked both epithelial marker

  2. Optimization and Evaluation of a Novel Size Based Circulating Tumor Cell Isolation System.

    Science.gov (United States)

    Xu, Lei; Mao, Xueying; Imrali, Ahmet; Syed, Ferrial; Mutsvangwa, Katherine; Berney, Daniel; Cathcart, Paul; Hines, John; Shamash, Jonathan; Lu, Yong-Jie

    2015-01-01

    Isolation of circulating tumor cells (CTCs) from peripheral blood has the potential to provide a far easier "liquid biopsy" than tumor tissue biopsies, to monitor tumor cell populations during disease progression and in response to therapies. Many CTC isolation technologies have been developed. We optimized the Parsortix system, an epitope independent, size and compressibility-based platform for CTCs isolation, making it possible to harvest CTCs at the speed and sample volume comparable to standard CellSearch system. We captured more than half of cancer cells from different cancer cell lines spiked in blood samples from healthy donors using this system. Cell loss during immunostaining of cells transferred and fixed on the slides is a major problem for analyzing rare cell samples. We developed a novel cell transfer and fixation method to retain >90% of cells on the slide after the immunofluorescence process without affecting signal strength and specificity. Using this optimized method, we evaluated the Parsortix system for CTC harvest in prostate cancer patients in comparison to immunobead based CTC isolation systems IsoFlux and CellSearch. We harvested a similar number (p = 0.33) of cytokeratin (CK) positive CTCs using Parsortix and IsoFlux from 7.5 mL blood samples of 10 prostate cancer patients (an average of 33.8 and 37.6 respectively). The purity of the CTCs harvested by Parsortix at 3.1% was significantly higher than IsoFlux at 1.0% (p = 0.02). Parsortix harvested significantly more CK positive CTCs than CellSearch (p = 0.04) in seven prostate cancer patient samples, where both systems were utilized (an average of 32.1 and 10.1 respectively). We also captured CTC clusters using Parsortix. Using four-color immunofluorescence we found that 85.8% of PC3 cells expressed EpCAM, 91.7% expressed CK and 2.5% cells lacked both epithelial markers. Interestingly, 95.6% of PC3 cells expressed Vimentin, including those cells that lacked both epithelial marker expression

  3. Does primary neoadjuvant systemic therapy eradicate minimal residual disease? Analysis of disseminated and circulating tumor cells before and after therapy

    OpenAIRE

    Kasimir-Bauer, Sabine; BITTNER, ANN-KATHRIN; König, Lisa; Reiter, Katharina; Keller, Thomas; Kimmig, Rainer; HOFFMANN, OLIVER

    2016-01-01

    Background Patients with breast cancer (BC) undergoing neoadjuvant chemotherapy (NACT) may experience metastatic relapse despite achieving a pathologic complete response. We analyzed patients with BC before and after NACT for disseminated tumor cells (DTCs) in the bone marrow(BM); comprehensively characterized circulating tumor cells (CTCs), including stem cell–like CTCs (slCTCs), in blood to prove the effectiveness of treatment on these cells; and correlated these findings with response to t...

  4. Mutational Analysis of Circulating Tumor Cells Using a Novel Microfluidic Collection Device and qPCR Assay12

    OpenAIRE

    Harb, Wael; Fan, Andrea; Tran, Tony; Danila, Daniel C; Keys, David; Schwartz, Michael; Ionescu-Zanetti, Cristian

    2013-01-01

    Circulating tumor cells (CTCs) provide a readily accessible source of tumor material from patients with cancer. Molecular profiling of these rare cells can lead to insight on disease progression and therapeutic strategies. A critical need exists to isolate CTCs with sufficient quantity and sample integrity to adapt to conventional analytical techniques. We present a microfluidic platform (IsoFlux) that uses flow control and immunomagnetic capture to enhance CTC isolation. A novel cell retriev...

  5. Isolation of circulating tumor cells by a magnesium-embedded filter

    Science.gov (United States)

    Liu, Yang; Xu, Tong; Xu, Yucheng; Kang, Dongyang; Xu, Lei; Park, Jungwook; Han-Chieh Chang, Jay; Zhang, Xiaoxiao; Goldkorn, Amir; Tai, Yu-Chong

    2015-10-01

    Circulating tumor cells (CTCs) are rare cancer cells that are shed by tumors into the bloodstream and that can be valuable biomarkers for various types of cancers. However, CTCs captured on the filter could not be released easily using the existing CTC analysis platforms based on size. To address this limitation, we have developed a novel magnesium (Mg)-embedded cell filter for capture, release and isolation of CTCs. The CTC-filter consists of a thin Ebeam-deposited Mg layer embedded between two parylene-C (PA-C) layers with designed slots for filtration and CTC capture. Thin Mg film has proved highly biocompatible and can be etched in saline, PBS and Dulbecco’s modified eagle medium (DMEM) etc, properties that are of great benefit to help dissociate the filter and thus release the cells. The finite element method (FEM) analysis was performed on the Mg etching process in DMEM for the structure design. After the filtration process, the filter was submerged in DMEM to facilitate Mg etching. The top PA-C filter pieces break apart from the bottom after Mg completely dissolves, enabling captured CTCs to detach. The released CTC can be easily aspirated into a micropipette for further analysis. Thus, the Mg-embedded cell filter provides a new and effective approach for CTCs isolation from the filter, making this a promising new strategy for cancer detection.

  6. Detection of EpCAM-Negative and Cytokeratin-Negative Circulating Tumor Cells in Peripheral Blood

    Directory of Open Access Journals (Sweden)

    Stephen D. Mikolajczyk

    2011-01-01

    Full Text Available Enrichment of rare circulating tumor cells (CTCs in blood is typically achieved using antibodies to epithelial cell adhesion molecule (EpCAM, with detection using cytokeratin (CK antibodies. However, EpCAM and CK are not expressed in some tumors and can be downregulated during epithelial-to-mesenchymal transition. A micro-fluidic system, not limited to EpCAM or CK, was developed to use multiple antibodies for capture followed by detection using CEE-Enhanced (CE, a novel in situ staining method that fluorescently labels the capture antibodies bound to CTCs. Higher recovery of CTCs was demonstrated using antibody mixtures compared to anti-EpCAM. In addition, CK-positive breast cancer cells were found in 15 of 24 samples (63%; range 1–60 CTCs, while all samples contained additional CE-positive cells (range 1–41; median = 11; =.02. Thus, antibody mixtures against a range of cell surface antigens enables capture of more CTCs than anti-EpCAM alone and CE staining enables the detection of CK-negative CTCs.

  7. 循环肿瘤细胞与肺癌%Circulating tumor cells and lung cancer

    Institute of Scientific and Technical Information of China (English)

    龚磊; 范云

    2013-01-01

    Circulating tumor cells (CTCs) play an important role in tumor metastasis.Detections of CTCs are contribute to tumor treatment,which can provide reliable basis for predicting the prognosis and efficacy.CTCs are related to the staging and distant metastasis of non-small cell lung cancer (NSCLC).The number changes of CTCs are associated with the chemotherapy and radiotherapy effects and prognosis in NSCLC.Almost the same phenomena have been discovered in small cell lung cancer.In the future,CTCs may be used to monitor the occurrence of drug resistant tumor cells and help individual therapy for lung cancer.%循环肿瘤细胞(CTC)与肿瘤转移有明显的相关性,CTC检测有助于指导肿瘤治疗,为判断预后、预测疗效提供可靠依据.CTC与非小细胞肺癌的分期及远处转移相关.CTC数量变化与非小细胞肺癌患者化放疗疗效及预后有关.小细胞肺癌中CTC检出率和数量均明显高于其他肿瘤,与其分期及化疗疗效有关.CTC有望用于指导肺癌个体化治疗.初步研究结果提示可用CTC来动态了解肺癌患者分子靶向药物治疗过程中耐药肿瘤细胞的出现.

  8. Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology.

    Science.gov (United States)

    Che, James; Yu, Victor; Dhar, Manjima; Renier, Corinne; Matsumoto, Melissa; Heirich, Kyra; Garon, Edward B; Goldman, Jonathan; Rao, Jianyu; Sledge, George W; Pegram, Mark D; Sheth, Shruti; Jeffrey, Stefanie S; Kulkarni, Rajan P; Sollier, Elodie; Di Carlo, Dino

    2016-03-15

    Circulating tumor cells (CTCs) are emerging as rare but clinically significant non-invasive cellular biomarkers for cancer patient prognosis, treatment selection, and treatment monitoring. Current CTC isolation approaches, such as immunoaffinity, filtration, or size-based techniques, are often limited by throughput, purity, large output volumes, or inability to obtain viable cells for downstream analysis. For all technologies, traditional immunofluorescent staining alone has been employed to distinguish and confirm the presence of isolated CTCs among contaminating blood cells, although cells isolated by size may express vastly different phenotypes. Consequently, CTC definitions have been non-trivial, researcher-dependent, and evolving. Here we describe a complete set of objective criteria, leveraging well-established cytomorphological features of malignancy, by which we identify large CTCs. We apply the criteria to CTCs enriched from stage IV lung and breast cancer patient blood samples using the High Throughput Vortex Chip (Vortex HT), an improved microfluidic technology for the label-free, size-based enrichment and concentration of rare cells. We achieve improved capture efficiency (up to 83%), high speed of processing (8 mL/min of 10x diluted blood, or 800 μL/min of whole blood), and high purity (avg. background of 28.8±23.6 white blood cells per mL of whole blood). We show markedly improved performance of CTC capture (84% positive test rate) in comparison to previous Vortex designs and the current FDA-approved gold standard CellSearch assay. The results demonstrate the ability to quickly collect viable and pure populations of abnormal large circulating cells unbiased by molecular characteristics, which helps uncover further heterogeneity in these cells. PMID:26863573

  9. Clinical implications of circulating tumor cells of breast cancer patients: role of epithelial mesenchymal plasticity

    Directory of Open Access Journals (Sweden)

    Linda Maria McInnes

    2015-02-01

    Full Text Available There is increasing interest in circulating tumor cells (CTCs due to their purported role in breast cancer metastasis, and their potential as a ‘liquid biopsy’ tool in breast cancer diagnosis and management. There are, however, questions with regards to the reliability and consistency of CTC detection and to the relationship between CTCs and prognosis, which is limiting their clinical utility. There is increasing acceptance that the ability of CTCs to alter from an epithelial to mesenchymal phenotype plays an important role in determining the metastatic potential of these cells. This review examines the phenotypic and genetic variation, which has been reported within CTC populations. Importantly, we discuss how the detection and characterization of CTCs provides additional and often differing information from that obtained from the primary tumor, and how this may be utilized in determining prognosis and treatment options. It has been shown for example that hormone receptor status often differs between the primary tumor and CTCs, which may help to explain failure of endocrine treatment. We examine how CTC status may introduce alternative treatment options and also how they may be used to monitor treatment. Finally, we discuss the most interesting current clinical trials involving CTC analysis and note further research that is required before the breast cancer liquid biopsy can be realised.

  10. A novel approach for the detection and genetic analysis of live melanoma circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Melody J Xu

    Full Text Available Circulating tumor cell (CTC detection and genetic analysis may complement currently available disease assessments in patients with melanoma to improve risk stratification and monitoring. We therefore sought to establish the feasibility of a telomerase-based assay for detecting and isolating live melanoma CTCs.The telomerase-based CTC assay utilizes an adenoviral vector that, in the presence of elevated human telomerase activity, drives the amplification of green fluorescent protein. Tumor cells are then identified via an image processing system. The protocol was tested on melanoma cells in culture or spiked into control blood, and on samples from patients with metastatic melanoma. Genetic analysis of the isolated melanoma CTCs was then performed for BRAF mutation status.The adenoviral vector was effective for all melanoma cell lines tested with sensitivity of 88.7% (95%CI 85.6-90.4% and specificity of 99.9% (95%CI 99.8-99.9%. In a pilot trial of patients with metastatic disease, CTCs were identified in 9 of 10 patients, with a mean of 6.0 CTCs/mL. At a cutoff of 1.1 CTCs/mL, the telomerase-based assay exhibits test performance of 90.0% sensitivity and 91.7% specificity. BRAF mutation analysis of melanoma cells isolated from culture or spiked control blood, or from pilot patient samples was found to match the known BRAF mutation status of the cell lines and primary tumors.To our knowledge, this is the first report of a telomerase-based assay effective for detecting and isolating live melanoma CTCs. These promising findings support further studies, including towards integrating into the management of patients with melanoma receiving multimodality therapy.

  11. A SYSTEM AND A DEVICE FOR ISOLATING CIRCULATING TUMOR CELLS FROM THE PERIPHERAL BLOOD IN VIVO

    Directory of Open Access Journals (Sweden)

    Michal Mego

    2015-08-01

    Full Text Available Circulating tumor cells (CTC play a crucial role in disseminating tumors and in the metastatic cascade. CTCs are found only in small numbers, and the limited amount of isolated CTCs makes it impossible to characterize them closely. This paper presents a proposal for a new system for isolating CTCs from the peripheral blood in vivo. The system enables CTCs to be isolated from the whole blood volume for further research and applications. The proposed system consists of magnetic nanoparticles covered by monoclonal antibodies against a common epithelial antigen, large supermagnets, which are used to control the position of the nanoparticles within the human body, and a special wire made of a magnetic core wrapped in a non-magnetic shell. The system could be used not only for isolating CTCs, but also for in vivo isolation of other rare cells from the peripheral blood, including hematopoietic and/or mesenchymal stem cells, with applications in regenerative medicine and/or in stem cell transplantation.

  12. Let me do more than count the ways: what circulating tumor cells can tell us about the biology of cancer.

    Science.gov (United States)

    Budd, G Thomas

    2009-01-01

    Tumor cells in the circulation of patients with advanced cancers have been described for over a century, but only recently have methods become available to reproducibly and robustly detect these cells in patients with cancer. A variety of methods have been developed to study this phenomenon, reflecting a broad interest in the field. The presence of circulating tumor cells (CTCs) in the peripheral blood of patients with metastatic cancer has been found to be of prognostic significance, and changes in CTC numbers over time appear to reflect treatment outcome. The ability to detect and study CTCs suggests that CTC concentration in blood may be able to be used as an intermediate biomarker in therapeutic trials of novel therapies in cancer patients and that molecular changes in patients' tumors may be able to be detected and addressed with appropriate therapeutic interventions. Studies in patients with early, nonmetastatic cancers are beginning, and some studies indicate that circulating tumor cells can predict outcome in this setting. While the ability to count and characterize circulating tumor cells holds much potential for the future, improvements in and standardization of assay methods need to be made before the potential of this technology is fully realized.

  13. Aldehyde Dehydrogenase1 Immunohistochemical Staining in Primary Breast Cancer Cells Independently Predicted Overall Survival But Did Not Correlate with the Presence of Circulating or Disseminated Tumors Cells

    OpenAIRE

    Woodward, Wendy A.; Krishnamurthy, Savitri; Lodhi, Ashutosh; Xiao, Lianchun; Gong, Yun; Cristofanilli, Massimo; Buchholz, Thomas A.; Lucci, Anthony

    2014-01-01

    Purpose: We hypothesized that aldehyde dehydrogenase 1 (ALDH1) staining in breast cancer tumor cells might be a simple surrogate for the presence of circulating tumor cells (CTCs) or disseminated tumor cells (DTCs). Experimental Design: Whole tissue primary tumor sections from 121 patients enrolled in a clinical trial assessing CTCs and DTCs at the time of surgery were stained for ALDH1 and scored by a dedicated breast pathologist blinded to outcome. Clinical data was extracted and staining w...

  14. Circulating Tumor Cells: A Review of Present Methods and the Need to Identify Heterogeneous Phenotypes

    Science.gov (United States)

    Millner, Lori M.; Linder, Mark W.; Valdes, Roland

    2016-01-01

    The measurement and characterization of circulating tumor cells (CTCs) hold promise for advancing personalized therapeutics. CTCs are the precursor to metastatic cancer and thus have the potential to radically alter patient treatment and outcome. Currently, clinical information provided by the enumeration of CTCs is limited to predicting clinical outcome. Other areas of interest in advancing the practice of pathology include: using CTCs for early detection of potential metastasis, determining and monitoring the efficacy of individualized treatment regimens, and predicting site-specific metastasis. Important hurdles to overcome in obtaining this type of clinical information involve present limitations in defining, detecting, and isolating CTCs. Currently, CTCs are detected using epithelial markers. The definition of what distinguishes a CTC should be expanded to include CTCs with heterogeneous phenotypes, and markers should be identified to enable a more comprehensive capture. Additionally, most methods available for detecting CTCs do not capture functionally viable CTCs. Retaining functional viability would provide a significant advantage in characterizing CTC-subtypes that may predict the site of metastatic invasion and thus assist in selecting effective treatment regimens. In this review we describe areas of clinical interest followed by a summary of current circulating cell-separation technologies and present limitations. Lastly, we provide insight into what is required to overcome these limitations as they relate to applications in advancing the practice of pathology and laboratory medicine. PMID:23884225

  15. Considerations in the development of circulating tumor cell technology for clinical use

    Directory of Open Access Journals (Sweden)

    Parkinson David R

    2012-07-01

    Full Text Available Abstract This manuscript summarizes current thinking on the value and promise of evolving circulating tumor cell (CTC technologies for cancer patient diagnosis, prognosis, and response to therapy, as well as accelerating oncologic drug development. Moving forward requires the application of the classic steps in biomarker development–analytical and clinical validation and clinical qualification for specific contexts of use. To that end, this review describes methods for interactive comparisons of proprietary new technologies, clinical trial designs, a clinical validation qualification strategy, and an approach for effectively carrying out this work through a public-private partnership that includes test developers, drug developers, clinical trialists, the US Food & Drug Administration (FDA and the US National Cancer Institute (NCI.

  16. Recent advances in nanotechnology-based detection and separation of circulating tumor cells.

    Science.gov (United States)

    Myung, Ja Hye; Tam, Kevin A; Park, Sin-jung; Cha, Ashley; Hong, Seungpyo

    2016-01-01

    Although circulating tumor cells (CTCs) in blood have been widely investigated as a potential biomarker for diagnosis and prognosis of metastatic cancer, their inherent rarity and heterogeneity bring tremendous challenges to develop a CTC detection method with clinically significant specificity and sensitivity. With advances in nanotechnology, a series of new methods that are highly promising have emerged to enable or enhance detection and separation of CTCs from blood. In this review, we systematically categorize nanomaterials, such as gold nanoparticles, magnetic nanoparticles, quantum dots, graphenes/graphene oxides, and dendrimers and stimuli-responsive polymers, used in the newly developed CTC detection methods. This will provide a comprehensive overview of recent advances in the CTC detection achieved through application of nanotechnology as well as the challenges that these existing technologies must overcome to be directly impactful on human health. PMID:26296639

  17. Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells.

    Science.gov (United States)

    Lin, Millicent; Chen, Jie-Fu; Lu, Yi-Tsung; Zhang, Yang; Song, Jinzhao; Hou, Shuang; Ke, Zunfu; Tseng, Hsian-Rong

    2014-10-21

    Circulating tumor cells (CTCs) are cancer cells that break away from either a primary tumor or a metastatic site and circulate in the peripheral blood as the cellular origin of metastasis. With their role as a "tumor liquid biopsy", CTCs provide convenient access to all disease sites, including that of the primary tumor and the site of fatal metastases. It is conceivable that detecting and analyzing CTCs will provide insightful information in assessing the disease status without the flaws and limitations encountered in performing conventional tumor biopsies. However, identifying CTCs in patient blood samples is technically challenging due to the extremely low abundance of CTCs among a large number of hematologic cells. To address this unmet need, there have been significant research endeavors, especially in the fields of chemistry, materials science, and bioengineering, devoted to developing CTC detection, isolation, and characterization technologies. Inspired by the nanoscale interactions observed in the tissue microenvironment, our research team at UCLA pioneered a unique concept of "NanoVelcro" cell-affinity substrates, in which CTC capture agent-coated nanostructured substrates were utilized to immobilize CTCs with high efficiency. The working mechanism of NanoVelcro cell-affinity substrates mimics that of Velcro: when the two fabric strips of a Velcro fastener are pressed together, tangling between the hairy surfaces on two strips leads to strong binding. Through continuous evolution, three generations (gens) of NanoVelcro CTC chips have been established to achieve different clinical utilities. The first-gen NanoVelcro chip, composed of a silicon nanowire substrate (SiNS) and an overlaid microfluidic chaotic mixer, was created for CTC enumeration. Side-by-side analytical validation studies using clinical blood samples suggested that the sensitivity of first-gen NanoVelcro chip outperforms that of FDA-approved CellSearch. In conjunction with the use of the

  18. Molecular Monitoring of Cell-Free Circulating Tumor DNA in Non-Hodgkin Lymphoma.

    Science.gov (United States)

    Melani, Christopher; Roschewski, Mark

    2016-08-01

    The ability to precisely monitor the effectiveness of therapy for non-Hodgkin lymphoma has important clinical implications. In patients with curable lymphomas, such as diffuse large B-cell lymphoma, the eradication of all disease is necessary for cure. In patients with incurable lymphomas, such as follicular lymphoma and mantle cell lymphoma, deep and durable remissions are associated with improvements in survival. Radiographic imaging modalities such as computed tomography and positron emission tomography are the current gold standard for monitoring therapy, but they are fundamentally limited by radiation risks, costs, lack of tumor specificity, and inability to detect disease at the molecular level. Novel sequencing-based methods can detect circulating tumor DNA (ctDNA) in the peripheral blood with great sensitivity, which opens new opportunities for molecular monitoring before, during, and after therapy. Beyond monitoring, ctDNA can also be used as a "liquid biopsy" to assess for molecular changes after therapy that may identify treatment-resistant clones. ctDNA is an emerging tool that may transform our ability to offer precision therapy in non-Hodgkin lymphoma. PMID:27539624

  19. Circulating tumor cells (CTCs) in breast cancer: a diagnostic tool for prognosis and molecular analysis

    Institute of Scientific and Technical Information of China (English)

    Xiaoshen Dong; R.Katherine Alpaugh; Massimo Cristofanilli

    2012-01-01

    Metastatic breast cancer (MBC) is characterized by a combination of tumor growth,proliferation and metastatic progression and is typically managed with palliative intent.The benefit of standard systemic therapies is relatively limited and the disease is considered incurable suggesting the need to investigate the biological drivers of the various phases of the metastatic process in order to improve the selection of molecularly driven therapies.The detection,enumeration and molecular analysis of circulating tumor cells (CTCs) provide an intriguing opportunity to advance this knowledge.CTCs enumerated by the Food and Drugs Administration-cleared CellSearchTM system are an independent prognostic factor of progression-free survival (PFS) and overall survival (OS) in MBC patients.Several published papers demonstrated the poor prognosis for MBC patients that presented basal CTC count ≥5 in 7.5 mL of blood.Therefore,the enumeration of CTCs during treatment for MBC provides a tool with the ability to predict progression of disease earlier than standard timing of anatomical assessment using conventional radiological tests.During the metastatic process cancer cells exhibit morphological and phenotypic plasticity undergoing epithelial-mesenchymal transition (EMT).This important phenomenon is associated with down regulation of epithelial marker (e.g.,EpCAM) with potential limitations in the applicability of current CTCs enrichment methods.Such observations translated in a number of investigations aimed at improving our capabilities to enumerate and perform molecular characterization of CTCs.Theoretically,the phenotypic analysis of CTCs can represent a "liquid" biopsy of breast tumor that is able to identify a new potential target against the metastatic disease and advance the development and monitoring of personalized therapies.

  20. Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors

    Directory of Open Access Journals (Sweden)

    Diesch Claude

    2009-11-01

    Full Text Available Abstract Background With the aim to simplify cancer management, cancer research lately dedicated itself more and more to discover and develop non-invasive biomarkers. In this connection, circulating cell-free DNA (ccf DNA seems to be a promising candidate. Altered levels of ccf nuclear DNA (nDNA and mitochondrial DNA (mtDNA have been found in several cancer types and might have a diagnostic value. Methods Using multiplex real-time PCR we investigated the levels of ccf nDNA and mtDNA in plasma samples from patients with malignant and benign breast tumors, and from healthy controls. To evaluate the applicability of plasma ccf nDNA and mtDNA as a biomarker for distinguishing between the three study-groups we performed ROC (Receiver Operating Characteristic curve analysis. We also compared the levels of both species in the cancer group with clinicopathological parameters. Results While the levels of ccf nDNA in the cancer group were significantly higher in comparison with the benign tumor group (P P P P = 0.022. The level of ccf nDNA was also associated with tumor-size (2 cmP = 0.034. Using ROC curve analysis, we were able to distinguish between the breast cancer cases and the healthy controls using ccf nDNA as marker (cut-off: 1866 GE/ml; sensitivity: 81%; specificity: 69%; P P Conclusion Our data suggests that nuclear and mitochondrial ccf DNA have potential as biomarkers in breast tumor management. However, ccf nDNA shows greater promise regarding sensitivity and specificity.

  1. One-step detection of circulating tumor cells in ovarian cancer using enhanced fluorescent silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Kim JH

    2013-06-01

    Full Text Available Jin Hyun Kim,1,* Hyun Hoon Chung,2,* Min Sook Jeong,1 Mi Ryoung Song,1 Keon Wook Kang,3,4 Jun Sung Kim1 1R&D Center, Biterials Co, Ltd, Seoul, Republic of Korea; 2Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea; 3Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; 4Cancer Research Institute, Seoul National University, Seoul, Republic of Korea *These authors contributed equally to this work Abstract: Ovarian cancer is the fifth-leading cause of cancer-related deaths among women as a result of late diagnosis. For survival rates to improve, more sensitive and specific methods for earlier detection of ovarian cancer are needed. This study presents the development of rapid and specific one-step circulating tumor cell (CTC detection using flow cytometry in a whole-blood sample with fluorescent silica nanoparticles. We prepared magnetic nanoparticle (MNP-SiO2(rhodamine B isothiocyanate [RITC] (MNP-SiO2[RITC] incorporating organic dyes [RITC, λmax(ex/em = 543/580 nm] in the silica shell. We then controlled the amount of organic dye in the silica shell of MNP-SiO2(RITC for increased fluorescence intensity to overcome the autofluorescence of whole blood and increase the sensitivity of CTC detection in whole blood. Next, we modified the surface function group of MNP-SiO2(RITC from –OH to polyethylene glycol (PEG/COOH and conjugated a mucin 1 cell surface-associated (MUC1 antibody on the surface of MNP-SiO2(RITC for CTC detection. To study the specific targeting efficiency of MUC1-MNP-SiO2(RITC, we used immunocytochemistry with a MUC1-positive human ovarian cancer cell line and a negative human embryonic kidney cell line. This technology was capable of detecting 100 ovarian cancer cells in 50 µL of whole blood. In conclusion, we developed a one-step CTC detection technology in ovarian cancer based on multifunctional silica nanoparticles

  2. Circulating Tumor Cell Detection and Capture by Photoacoustic Flow Cytometry in Vivo and ex Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Galanzha, Ekaterina I. [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Zharov, Vladimir P., E-mail: zharovvladimirp@uams.edu [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States)

    2013-12-10

    Despite progress in detecting circulating tumor cells (CTCs), existing assays still have low sensitivity (1–10 CTC/mL) due to the small volume of blood samples (5–10 mL). Consequently, they can miss up to 10{sup 3}–10{sup 4} CTCs, resulting in the development of barely treatable metastasis. Here we analyze a new concept of in vivo CTC detection with enhanced sensitivity (up to 10{sup 2}–10{sup 3} times) by the examination of the entire blood volume in vivo (5 L in adults). We focus on in vivo photoacoustic (PA) flow cytometry (PAFC) of CTCs using label-free or targeted detection, photoswitchable nanoparticles with ultrasharp PA resonances, magnetic trapping with fiber-magnetic-PA probes, optical clearance, real-time spectral identification, nonlinear signal amplification, and the integration with PAFC in vitro. We demonstrate PAFC’s capability to detect rare leukemia, squamous carcinoma, melanoma, and bulk and stem breast CTCs and its clusters in preclinical animal models in blood, lymph, bone, and cerebrospinal fluid, as well as the release of CTCs from primary tumors triggered by palpation, biopsy or surgery, increasing the risk of metastasis. CTC lifetime as a balance between intravasation and extravasation rates was in the range of 0.5–4 h depending on a CTC metastatic potential. We introduced theranostics of CTCs as an integration of nanobubble-enhanced PA diagnosis, photothermal therapy, and feedback through CTC counting. In vivo data were verified with in vitro PAFC demonstrating a higher sensitivity (1 CTC/40 mL) and throughput (up to 10 mL/min) than conventional assays. Further developments include detection of circulating cancer-associated microparticles, and super-resolution PAFC beyond the diffraction and spectral limits.

  3. Circulating Tumor Cell Detection and Capture by Photoacoustic Flow Cytometry in Vivo and ex Vivo

    Directory of Open Access Journals (Sweden)

    Ekaterina I. Galanzha

    2013-12-01

    Full Text Available Despite progress in detecting circulating tumor cells (CTCs, existing assays still have low sensitivity (1–10 CTC/mL due to the small volume of blood samples (5–10 mL. Consequently, they can miss up to 103–104 CTCs, resulting in the development of barely treatable metastasis. Here we analyze a new concept of in vivo CTC detection with enhanced sensitivity (up to 102–103 times by the examination of the entire blood volume in vivo (5 L in adults. We focus on in vivo photoacoustic (PA flow cytometry (PAFC of CTCs using label-free or targeted detection, photoswitchable nanoparticles with ultrasharp PA resonances, magnetic trapping with fiber-magnetic-PA probes, optical clearance, real-time spectral identification, nonlinear signal amplification, and the integration with PAFC in vitro. We demonstrate PAFC’s capability to detect rare leukemia, squamous carcinoma, melanoma, and bulk and stem breast CTCs and its clusters in preclinical animal models in blood, lymph, bone, and cerebrospinal fluid, as well as the release of CTCs from primary tumors triggered by palpation, biopsy or surgery, increasing the risk of metastasis. CTC lifetime as a balance between intravasation and extravasation rates was in the range of 0.5–4 h depending on a CTC metastatic potential. We introduced theranostics of CTCs as an integration of nanobubble-enhanced PA diagnosis, photothermal therapy, and feedback through CTC counting. In vivo data were verified with in vitro PAFC demonstrating a higher sensitivity (1 CTC/40 mL and throughput (up to 10 mL/min than conventional assays. Further developments include detection of circulating cancer-associated microparticles, and super-rsesolution PAFC beyond the diffraction and spectral limits.

  4. Can Biomarker Assessment on Circulating Tumor Cells Help Direct Therapy in Metastatic Breast Cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Natalie [Sandro Pitigliani Medical Oncology Department, Prato Hospital, Istituto Toscano Tumori, Via Ugo Foscolo, Prato, PO 59100 (Italy); Pestrin, Marta [Sandro Pitigliani Medical Oncology Department, Prato Hospital, Istituto Toscano Tumori, Via Ugo Foscolo, Prato, PO 59100 (Italy); Translational Research Laboratory, Prato Hospital, Via Ugo Foscolo, Prato, PO 59100 (Italy); Galardi, Francesca; De Luca, Francesca [Translational Research Laboratory, Prato Hospital, Via Ugo Foscolo, Prato, PO 59100 (Italy); Malorni, Luca [Sandro Pitigliani Medical Oncology Department, Prato Hospital, Istituto Toscano Tumori, Via Ugo Foscolo, Prato, PO 59100 (Italy); Translational Research Laboratory, Prato Hospital, Via Ugo Foscolo, Prato, PO 59100 (Italy); Di Leo, Angelo, E-mail: adileo@usl4.toscana.it [Sandro Pitigliani Medical Oncology Department, Prato Hospital, Istituto Toscano Tumori, Via Ugo Foscolo, Prato, PO 59100 (Italy)

    2014-03-25

    Circulating tumor cell (CTC) count has prognostic significance in metastatic breast cancer, but the predictive utility of CTCs is uncertain. Molecular studies on CTCs have often been limited by a low number of CTCs isolated from a high background of leukocytes. Improved enrichment techniques are now allowing molecular characterisation of single CTCs, whereby molecular markers on single CTCs may provide a real-time assessment of tumor biomarker status from a blood test or “liquid biopsy”, potentially negating the need for a more invasive tissue biopsy. The predictive ability of CTC biomarker analysis has predominantly been assessed in relation to HER2, with variable and inconclusive results. Limited data exist for other biomarkers, such as the estrogen receptor. In addition to the need to define and validate the most accurate and reproducible method for CTC molecular analysis, the clinical relevance of biomarkers, including gain of HER2 on CTC after HER2 negative primary breast cancer, remains uncertain. This review summarises the currently available data relating to biomarker evaluation on CTCs and its role in directing management in metastatic breast cancer, discusses limitations, and outlines measures that may enable future development of this approach.

  5. Can Biomarker Assessment on Circulating Tumor Cells Help Direct Therapy in Metastatic Breast Cancer?

    Directory of Open Access Journals (Sweden)

    Natalie Turner

    2014-03-01

    Full Text Available Circulating tumor cell (CTC count has prognostic significance in metastatic breast cancer, but the predictive utility of CTCs is uncertain. Molecular studies on CTCs have often been limited by a low number of CTCs isolated from a high background of leukocytes. Improved enrichment techniques are now allowing molecular characterisation of single CTCs, whereby molecular markers on single CTCs may provide a real-time assessment of tumor biomarker status from a blood test or “liquid biopsy”, potentially negating the need for a more invasive tissue biopsy. The predictive ability of CTC biomarker analysis has predominantly been assessed in relation to HER2, with variable and inconclusive results. Limited data exist for other biomarkers, such as the estrogen receptor. In addition to the need to define and validate the most accurate and reproducible method for CTC molecular analysis, the clinical relevance of biomarkers, including gain of HER2 on CTC after HER2 negative primary breast cancer, remains uncertain. This review summarises the currently available data relating to biomarker evaluation on CTCs and its role in directing management in metastatic breast cancer, discusses limitations, and outlines measures that may enable future development of this approach.

  6. [Application and prospect of circulating tumor cells detection in colorectal cancer].

    Science.gov (United States)

    Chen, Qingmin; Tang, Qingchao; Chen, Yinggang; Wang, Xishan

    2016-06-01

    About 30%-50% of colorectal cancer patients would develop recurrence and metastasis. At present, there is still a lack of effective evaluation method for recurrence, metastasis and prognosis. In recent years, a great progress about circulating tumor cells (CTC) in diagnosis and treatment of colorectal cancer has been made. The most common CTC detection methods include immunocytochemistry, flow cytometry, PCR, immunomagnetic separation, optical fiber array scanning and CTC chip. Based on present studies, researchers reach the consensus that CTC is clinically valuable in the following aspects: detection of occult metastasis, monitor of disease progress and evaluation of response to treatment. With recent development of clinical specialization, multi-disciplinary treatment (MDT), gene detection and targeted therapy, individualized treatment may greatly improve overall survive and disease-free survival of colorectal cancer patients. However, the methods above depend on tumor tissues that are always impractical to obtain for late stage and non-surgery patients. Moreover, the size of specimen is always small, making gene expression and mutation detection difficult. CTC detection may solve such problems based on molecular biology with high plausibility and repeatability. Therefore, CTC detection can be used as a new diagnosis tool. It is believed that CTC detection will play an important role in early diagnosis, evaluating recurrence, metastasis, making individualized treatment and predicting prognosis.

  7. [Application and prospect of circulating tumor cells detection in colorectal cancer].

    Science.gov (United States)

    Chen, Qingmin; Tang, Qingchao; Chen, Yinggang; Wang, Xishan

    2016-06-01

    About 30%-50% of colorectal cancer patients would develop recurrence and metastasis. At present, there is still a lack of effective evaluation method for recurrence, metastasis and prognosis. In recent years, a great progress about circulating tumor cells (CTC) in diagnosis and treatment of colorectal cancer has been made. The most common CTC detection methods include immunocytochemistry, flow cytometry, PCR, immunomagnetic separation, optical fiber array scanning and CTC chip. Based on present studies, researchers reach the consensus that CTC is clinically valuable in the following aspects: detection of occult metastasis, monitor of disease progress and evaluation of response to treatment. With recent development of clinical specialization, multi-disciplinary treatment (MDT), gene detection and targeted therapy, individualized treatment may greatly improve overall survive and disease-free survival of colorectal cancer patients. However, the methods above depend on tumor tissues that are always impractical to obtain for late stage and non-surgery patients. Moreover, the size of specimen is always small, making gene expression and mutation detection difficult. CTC detection may solve such problems based on molecular biology with high plausibility and repeatability. Therefore, CTC detection can be used as a new diagnosis tool. It is believed that CTC detection will play an important role in early diagnosis, evaluating recurrence, metastasis, making individualized treatment and predicting prognosis. PMID:27353110

  8. In vitro validation of an ultra-sensitive scanning fluorescence microscope for analysis of Circulating Tumor Cells

    DEFF Research Database (Denmark)

    Hillig, Thore; Nygaard, Ann-Britt; Nekiunaite, Laura;

    2014-01-01

    Analysis of circulating tumor cells (CTC) holds promise of providing liquid biopsies from patients with cancer. However, current methods include enrichment procedures. We present a method (CytoTrack), where CTC from 7.5 mL of blood is stained, analyzed and counted by a scanning fluorescence...

  9. Circulating cytokeratin 18 fragments and activation of dormant tumor cells in bone marrow of cancer patients

    OpenAIRE

    Ausch, Christoph; Buxhofer-Ausch, Veronika; Olszewski, Ulrike; Hamilton, Gerhard

    2010-01-01

    In cancer patients detection of systemic disease is of great importance to obtain prognostic information and to guide therapy. Bone marrow (BM) seems to be a common homing tissue for the early spread of tumor cells from various epithelial tumors; however, verification of the prognostic significance of BM-disseminated tumor cells (BM-DTCs), is restricted to breast cancer so far. These cells may be dormant for a long time, and signals triggering their activation leading to recurrence remain to ...

  10. Identification of Circulating Tumor DNA for the Early Detection of Small-cell Lung Cancer.

    Science.gov (United States)

    Fernandez-Cuesta, Lynnette; Perdomo, Sandra; Avogbe, Patrice H; Leblay, Noemie; Delhomme, Tiffany M; Gaborieau, Valerie; Abedi-Ardekani, Behnoush; Chanudet, Estelle; Olivier, Magali; Zaridze, David; Mukeria, Anush; Vilensky, Marta; Holcatova, Ivana; Polesel, Jerry; Simonato, Lorenzo; Canova, Cristina; Lagiou, Pagona; Brambilla, Christian; Brambilla, Elisabeth; Byrnes, Graham; Scelo, Ghislaine; Le Calvez-Kelm, Florence; Foll, Matthieu; McKay, James D; Brennan, Paul

    2016-08-01

    Circulating tumor DNA (ctDNA) is emerging as a key potential biomarker for post-diagnosis surveillance but it may also play a crucial role in the detection of pre-clinical cancer. Small-cell lung cancer (SCLC) is an excellent candidate for early detection given there are no successful therapeutic options for late-stage disease, and it displays almost universal inactivation of TP53. We assessed the presence of TP53 mutations in the cell-free DNA (cfDNA) extracted from the plasma of 51 SCLC cases and 123 non-cancer controls. We identified mutations using a pipeline specifically designed to accurately detect variants at very low fractions. We detected TP53 mutations in the cfDNA of 49% SCLC patients and 11.4% of non-cancer controls. When stratifying the 51 initial SCLC cases by stage, TP53 mutations were detected in the cfDNA of 35.7% early-stage and 54.1% late-stage SCLC patients. The results in the controls were further replicated in 10.8% of an independent series of 102 non-cancer controls. The detection of TP53 mutations in 11% of the 225 non-cancer controls suggests that somatic mutations in cfDNA among individuals without any cancer diagnosis is a common occurrence, and poses serious challenges for the development of ctDNA screening tests. PMID:27377626

  11. Circulating Tumor Cells in Metastatic Breast Cancer: A Prognostic and Predictive Marker

    Directory of Open Access Journals (Sweden)

    Sayyed Farshid Moussavi-Harami

    2014-05-01

    Full Text Available The role of circulating tumor cells (CTCs as a marker for disease progression in metastatic cancer is controversial. The current review will serve to summarize the evidence on CTCs as a marker of disease progression in patients with metastatic breast cancer. The immunohistochemistry (IHC-based CellSearch® is the only FDA-approved isolation technique for quantifying CTCs in patients with metastatic breast cancer. We searched PubMed and Web of Knowledge for clinical studies that assessed the prognostic and predictive value of CTCs using IHC-based isolation. The patient outcomes reported include median and Cox-proportional hazard ratios for overall survival (OS and progression-free survival (PFS. All studies reported shorter OS for CTC-positive patients versus CTC-negative. A subset of the selected trials reported significant lower median PFS for CTC-positive patients. The reported trials support the utility of CTC enumeration for patient prognosis. But further studies are required to determine the utility of CTC enumeration for guiding patient therapy. There are three clinical trials ongoing to test this hypothesis. These studies, and others, will further establish the role of CTCs in clinical practice.

  12. Application of detecting cerebrospinal fluid circulating tumor cells in the diagnosis of meningeal metastasis of non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Rong JIANG

    2014-08-01

    Full Text Available Objective To observe a new technology for the detection and enumeration of cerebrospinal fluid (CSF circulating tumor cells (CTCs in the diagnosis of non-small cell lung cancer (NSCLC with meningeal metastasis (MM.  Methods Five cases of NSCLC with MM that were diagnosed by CSF cytology were selected, and 20 ml CSF samples were obtained by lumbar puncture for every patient. The tumor marker immunostaining-fluorescence in situ hybridization (TM-iFISH technology was adapted to detect enrichment and enumeration of circulating tumor cells in 7.50 ml CSF samples; CSF cytology was checked in 10 ml CSF samples; CSF tumor markers were detected in 2.50 ml CSF samples. All of 5 cases were examined by MRI enhancement scan.  Results TM-iFISH detection found circulating tumor cells numbers ranging 18-1823/7.50 ml. Only 2 cases of patients with CSF cytology examination showed the tumor cells. The results of CSF tumor markers in all samples were higher than normal serum tumor markers detection results. The enhanced MRI scan of 5 cases revealed typical signs of MM.  Conclusions The TM-iFISH test showed certain advantages in the detection of malignant tumor cells in CSF. This technology may be a new method of detection and enumeration of tumor cells in CSF, but more studies are needed to prove its sensitivity and specificity. doi: 10.3969/j.issn.1672-6731.2014.08.011

  13. Heterogeneous estrogen receptor expression in circulating tumor cells suggests diverse mechanisms of fulvestrant resistance.

    Science.gov (United States)

    Paoletti, Costanza; Larios, Jose M; Muñiz, Maria C; Aung, Kimberly; Cannell, Emily M; Darga, Elizabeth P; Kidwell, Kelley M; Thomas, Dafydd G; Tokudome, Nahomi; Brown, Martha E; Connelly, Mark C; Chianese, David A; Schott, Anne F; Henry, N Lynn; Rae, James M; Hayes, Daniel F

    2016-08-01

    Fulvestrant is a dose dependent selective estrogen receptor (ER) down-regulator (SERD) used in ER-positive metastatic breast cancer (MBC). Nearly all patients develop resistance. We performed molecular analysis of circulating tumor cells (CTC) to gain insight into fulvestrant resistance. Preclinical studies were performed with cultured breast cancer cells spiked into human blood and analyzed on the CellSearch(®) system. Clinical data are limited to a subset of patients with ER-positive MBC from a previously reported pilot trial whose disease was progressing on fulvestrant (N = 7) or aromatase inhibitors (AIs) (N = 10). CTCs were enumerated and phenotyped for ER and B-cell lymphoma (BCL2) using the CellSearch(®) CXC kit. In preclinical modeling, tamoxifen and AIs resulted in stabilized ER expression, whereas fulvestrant eliminated it. Five of seven patients progressing on fulvestrant had ≥5CTC/7.5 ml WB. Two of these five, treated with 500 mg/month fulvestrant, had no detectable CTC-expression of ER and BCL2 (an ER regulated gene). Three patients had heterogeneous CTC-ER and BCL2 expression indicating incomplete degradation of the ER target by fulvestrant. Two of these patients received 250 mg/month whereas the third patient received 500 mg/month fulvestrant. Her cancer harbored a mutation (Y537S) in the estrogen receptor alpha gene (ESR1). All seven ER positive patients progressing on AIs had heterogeneous CTC-ER expression. These results suggest heterogeneous mechanisms of resistance to fulvestrant, including insufficient dosage, ESR1 mutation, or conversion to dependence on non-ER pathways. CTC enumeration, phenotyping, and genotyping might identify patients who would benefit from fulvestrant dose escalation versus switching to alternative therapies. PMID:27178224

  14. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer.

    NARCIS (Netherlands)

    Cohen, S.J.; Punt, C.J.A.; Iannotti, N.; Saidman, B.H.; Sabbath, K.D.; Gabrail, N.Y.; Picus, J.; Morse, M.; Mitchell, E.; Miller, M.C.; Doyle, G.V.; Tissing, H.; Terstappen, L.W.; Meropol, N.J.

    2008-01-01

    PURPOSE: As treatment options expand for metastatic colorectal cancer (mCRC), a blood marker with a prognostic and predictive role could guide treatment. We tested the hypothesis that circulating tumor cells (CTCs) could predict clinical outcome in patients with mCRC. PATIENTS AND METHODS: In a pros

  15. Newly identified biomarkers for detecting circulating tumor cells in lung adenocarcinoma.

    Science.gov (United States)

    Man, Yingchun; Cao, Jingyan; Jin, Shi; Xu, Gang; Pan, Bo; Shang, Lihua; Che, Dehai; Yu, Qin; Yu, Yan

    2014-01-01

    Circulating tumor cells (CTCs) have been implicated in cancer prognosis and follow up. Detection of CTCs was considered significant in cancer evaluation. However, due to the heterogeneity and rareness of CTCs, detecting them with a single maker is usually challenged with low specificity and sensitivity. Previous studies concerning CTCs detection in lung cancer mainly focused on non-small cell lung carcinoma. Currently, there is no report yet describing the CTC detection with multiple markers in lung adenocarcinoma. In this study, by employing quantitative real-time PCR, we identified four candidate genes (mRNA) that were significantly elevated in peripheral blood mononuclear cells and biopsy tissue samples from patients with lung adenocarcinoma: cytokeratin 7 (CK7), Ca(2+)-activated chloride channel-2 (CLCA2), hyaluronan-mediated motility receptor (HMMR), and human telomerase catalytic subunit (hTERT). Then, the four markers were used for CTC detection; namely, positive detection was defined if at least one of the four markers was elevated. The positive CTC detection rate was 74.0% in patients with lung adenocarcinoma while 2.2% for healthy controls, 6.3% for benign lung disease, and 48.0% for non-adenocarcinoma non-small cell lung carcinoma. Furthermore, in a three-year follow-up study, patients with an increase in the detection markers of CTCs (CK7, CLCA2, HMMR or hTERT) on day 90 after first detection had shorter survival time compared to those with a decrease. These results demonstrate that the combination of the four markers with specificity and sensitivity is of great value in lung adenocarcinoma prognosis and follow up. PMID:25175030

  16. Prognostic and predictive value of circulating tumor cell analysis in colorectal cancer patients

    Directory of Open Access Journals (Sweden)

    de Albuquerque Andreia

    2012-11-01

    Full Text Available Abstract Objective The aim of this study was to assess the prognostic and predictive values of circulating tumor cell (CTC analysis in colorectal cancer patients. Patients and methods Presence of CTCs was evaluated in 60 colorectal cancer patients before systemic therapy - from which 33 patients were also evaluable for CTC analysis during the first 3 months of treatment - through immunomagnetic enrichment, using the antibodies BM7 and VU1D9 (targeting mucin 1 and EpCAM, respectively, followed by real-time RT-PCR analysis of the tumor-associated genes KRT19, MUC1, EPCAM, CEACAM5 and BIRC5. Results Patients were stratified into groups according to CTC detection (CTC negative, when all marker genes were negative; and CTC positive when at least one of the marker genes was positive. Patients with CTC positivity at baseline had a significant shorter median progression-free survival (median PFS 181.0 days; 95% CI 146.9-215.1 compared with patients with no CTCs (median PFS 329.0 days; 95% CI 299.6-358.4; Log-rank P Conclusion The present study provides evidence of a strong correlation between CTC detection and radiographic disease progression in patients receiving chemotherapy for colorectal cancer. Our results suggest that in addition to the current prognostic factors, CTC analysis represent a potential complementary tool for prediction of colorectal cancer patients’ outcome. Moreover, the present test allows for molecular characterization of CTCs, which may be of relevance to the creation of personalized therapies.

  17. Liquid biopsy and therapeutic response: Circulating tumor cell cultures for evaluation of anticancer treatment

    Science.gov (United States)

    Khoo, Bee Luan; Grenci, Gianluca; Jing, Tengyang; Lim, Ying Bena; Lee, Soo Chin; Thiery, Jean Paul; Han, Jongyoon; Lim, Chwee Teck

    2016-01-01

    The lack of a robust anticancer drug screening system to monitor patients during treatment delays realization of personalized treatment. We demonstrate an efficient approach to evaluate drug response using patient-derived circulating tumor cell (CTC) cultures obtained from liquid biopsy. Custom microfabricated tapered microwells were integrated with microfluidics to allow robust formation of CTC clusters without pre-enrichment and subsequent drug screening in situ. Rapid feedback after 2 weeks promotes immediate intervention upon detection of drug resistance or tolerance. The procedure was clinically validated with blood samples (n = 73) from 55 patients with early-stage, newly diagnosed, locally advanced, or refractory metastatic breast cancer. Twenty-four of these samples were used for drug evaluation. Cluster formation potential correlated inversely with increased drug concentration and therapeutic treatment. This new and robust liquid biopsy technique can potentially evaluate patient prognosis with CTC clusters during treatment and provide a noninvasive and inexpensive assessment that can guide drug discovery development or therapeutic choices for personalized treatment.

  18. A New Cell Block Method for Multiple Immunohistochemical Analysis of Circulating Tumor Cells in Patients with Liver Cancer

    Science.gov (United States)

    Nam, Soo Jeong; Yeo, Hyun Yang; Chang, Hee Jin; Kim, Bo Hyun; Hong, Eun Kyung; Park, Joong-Won

    2016-01-01

    Purpose We developed a new method of detecting circulating tumor cells (CTCs) in liver cancer patients by constructing cell blocks from peripheral blood cells, including CTCs, followed by multiple immunohistochemical analysis. Materials and Methods Cell blockswere constructed from the nucleated cell pellets of peripheral blood afterremoval of red blood cells. The blood cell blocks were obtained from 29 patients with liver cancer, and from healthy donor blood spikedwith seven cell lines. The cell blocks and corresponding tumor tissues were immunostained with antibodies to seven markers: cytokeratin (CK), epithelial cell adhesion molecule (EpCAM), epithelial membrane antigen (EMA), CK18, α-fetoprotein (AFP), Glypican 3, and HepPar1. Results The average recovery rate of spiked SW620 cells from blood cell blocks was 91%. CTCs were detected in 14 out of 29 patients (48.3%); 11/23 hepatocellular carcinomas (HCC), 1/2 cholangiocarcinomas (CC), 1/1 combined HCC-CC, and 1/3 metastatic cancers. CTCs from 14 patients were positive for EpCAM (57.1%), EMA (42.9%), AFP (21.4%), CK18 (14.3%), Gypican3 and CK (7.1%, each), and HepPar1 (0%). Patients with HCC expressed EpCAM, EMA, CK18, and AFP in tissue and/or CTCs, whereas CK, HepPar1, and Glypican3 were expressed only in tissue. Only EMA was significantly associated with the expressions in CTC and tissue. CTC detection was associated with higher T stage and portal vein invasion in HCC patients. Conclusion This cell block method allows cytologic detection and multiple immunohistochemical analysis of CTCs. Our results show that tissue biomarkers of HCC may not be useful for the detection of CTC. EpCAM could be a candidate marker for CTCs in patients with HCC. PMID:27034142

  19. High level of chromosomal instability in circulating tumor cells of ROS1-rearranged non-small-cell lung cancer

    Science.gov (United States)

    Pailler, E.; Auger, N.; Lindsay, C. R.; Vielh, P.; Islas-Morris-Hernandez, A.; Borget, I.; Ngo-Camus, M.; Planchard, D.; Soria, J.-C.; Besse, B.; Farace, F.

    2015-01-01

    Background Genetic aberrations affecting the c-ros oncogene 1 (ROS1) tyrosine kinase gene have been reported in a small subset of patients with non-small-cell lung cancer (NSCLC). We evaluated whether ROS1-chromosomal rearrangements could be detected in circulating tumor cells (CTCs) and examined tumor heterogeneity of CTCs and tumor biopsies in ROS1-rearranged NSCLC patients. Patients and methods Using isolation by size of epithelial tumor cells (ISET) filtration and filter-adapted-fluorescence in situ hybridization (FA-FISH), ROS1 rearrangement was examined in CTCs from four ROS1-rearranged patients treated with the ROS1-inhibitor, crizotinib, and four ROS1-negative patients. ROS1-gene alterations observed in CTCs at baseline from ROS1-rearranged patients were compared with those present in tumor biopsies and in CTCs during crizotinib treatment. Numerical chromosomal instability (CIN) of CTCs was assessed by DNA content quantification and chromosome enumeration. Results ROS1 rearrangement was detected in the CTCs of all four patients with ROS1 rearrangement previously confirmed by tumor biopsy. In ROS1-rearranged patients, median number of ROS1-rearranged CTCs at baseline was 34.5 per 3 ml blood (range, 24–55). In ROS1-negative patients, median background hybridization of ROS1-rearranged CTCs was 7.5 per 3 ml blood (range, 7–11). Tumor heterogeneity, assessed by ROS1 copy number, was significantly higher in baseline CTCs compared with paired tumor biopsies in the three patients experiencing PR or SD (P < 0.0001). Copy number in ROS1-rearranged CTCs increased significantly in two patients who progressed during crizotinib treatment (P < 0.02). CTCs from ROS1-rearranged patients had a high DNA content and gain of chromosomes, indicating high levels of aneuploidy and numerical CIN. Conclusion We provide the first proof-of-concept that CTCs can be used for noninvasive and sensitive detection of ROS1 rearrangement in NSCLC patients. CTCs from ROS1-rearranged

  20. The detection of EpCAM+ and EpCAM- circulating tumor cells

    OpenAIRE

    Wit, de, J.; Dalum, van, G.; Lenferink, Aufried T. M.; Arjan G. J. Tibbe; Hiltermann, T.J.N.; Groen, Harry J. M.; Rijn, van, Michela; Terstappen, Leon W.M.M.

    2015-01-01

    EpCAM expressing circulating tumor cells, detected by CellSearch, are predictive of short survival in several cancers and may serve as a liquid biopsy to guide therapy. Here we investigate the presence of EpCAM+ CTC detected by CellSearch and EpCAM- CTC discarded by CellSearch, after EpCAM based enrichment. EpCAM- CTC were identified by filtration and fluorescent labelling. This approach was validated using different cell lines spiked into blood and evaluated on blood samples of 27 metastatic...

  1. Doublecortin-like kinase 1 is elevated serologically in pancreatic ductal adenocarcinoma and widely expressed on circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Dongfeng Qu

    Full Text Available Doublecortin-like kinase 1 (DCLK1 is a putative pancreatic stem cell marker and is upregulated in pancreatic cancer, colorectal cancer, and many other solid tumors. It marks tumor stem cells in mouse models of intestinal neoplasia. Here we sought to determine whether DCLK1 protein can be detected in the bloodstream and if its levels in archived serum samples could be quantitatively assessed in pancreatic cancer patients. DCLK1 specific ELISA, western blotting, and immunohistochemical analyses were used to determine expression levels in the serum and staining intensity in archived tumor tissues of pancreatic ductal adenocarcinoma (PDAC patients and in pancreatic cancer mouse models. DCLK1 levels in the serum were elevated in early stages of PDAC (stages I and II compared to healthy volunteers (normal controls. No differences were observed between stages III/IV and normal controls. In resected surgical tissues, DCLK1 expression intensity in the stromal cells was significantly higher than that observed in tumor epithelial cells. Circulating tumor cells were isolated from KPCY mice and approximately 52% of these cells were positive for Dclk1 staining. Dclk1 levels in the serum of KPC mice were also elevated. We have previously demonstrated that DCLK1 plays a potential role in regulating epithelial mesenchymal transition (EMT. Given the increasingly recognized role of EMT derived stem cells in cancer progression and metastasis, we hypothesize that DCLK1 may contribute to the metastatic process. Taken together, our results suggest that DCLK1 serum levels and DCLK1 positive circulating tumor cells should be further assessed for their potential diagnostic and prognostic significance.

  2. Gene expression profile of circulating tumor cells in breast cancer by RT-qPCR

    Directory of Open Access Journals (Sweden)

    Mavroudis Dimitris

    2011-10-01

    Full Text Available Abstract Background Circulating tumor cells (CTCs have been associated with prognosis especially in breast cancer and have been proposed as a liquid biopsy for repeated follow up examinations. Molecular characterization of CTCs is difficult to address since they are very rare and the amount of available sample is very limited. Methods We quantified by RT-qPCR CK-19, MAGE-A3, HER-2, TWIST1, hTERT α+β+, and mammaglobin gene transcripts in immunomagnetically positively selected CTCs from 92 breast cancer patients, and 28 healthy individuals. We also compared our results with the CellSearch system in 33 of these patients with early breast cancer. Results RT-qPCR is highly sensitive and specific and can detect the expression of each individual gene at the one cell level. None of the genes tested was detected in the group of healthy donors. In 66 operable breast cancer patients, CK-19 was detected in 42.4%, HER-2 in 13.6%, MAGE-A3 in 21.2%, hMAM in 13.6%, TWIST-1 in 42.4%, and hTERT α+β+ in 10.2%. In 26 patients with verified metastasis, CK-19 was detected in 53.8%, HER-2 in 19.2%, MAGE-A3 in 15.4%, hMAM in 30.8%, TWIST-1 in 38.5% and hTERT α+β+in 19.2%. Our preliminary data on the comparison between RT-qPCR and CellSearch in 33 early breast cancer patients showed that RT-qPCR gives more positive results in respect to CellSearch. Conclusions Molecular characterization of CTCs has revealed a remarkable heterogeneity of gene expression between breast cancer patients. In a small percentage of patients, CTCs were positive for all six genes tested, while in some patients only one of these genes was expressed. The clinical significance of these findings in early breast cancer remains to be elucidated when the clinical outcome for these patients is known.

  3. UV activation of polymeric high aspect ratio microstructures: ramifications in antibody surface loading for circulating tumor cell selection†

    OpenAIRE

    Jackson, Joshua M.; Witek, Małgorzata A.; Hupert, Mateusz L.; Brady, Charles; Pullagurla, Swathi; Kamande, Joyce; Aufforth, Rachel D.; Tignanelli, Christopher J.; Torphy, Robert J.; Yeh, Jen Jen; Soper, Steven A.

    2014-01-01

    The need to activate thermoplastic surfaces using robust and efficient methods has been driven by the fact that replication techniques can be used to produce microfluidic devices in a high production mode and at low cost, making polymer microfluidics invaluable for in vitro diagnostics, such as circulating tumor cell (CTC) analysis, where device disposability is critical to mitigate artifacts associated with sample carryover. Modifying the surface chemistry of thermoplastic devices through ac...

  4. Diagnostic accuracy of circulating tumor cells detection in gastric cancer: systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Circulating tumor cells (CTCs) detection has previously been used for diagnosing gastric cancer. However, the previous studies failed to make an agreement whether the detection of CTCs contributes to the diagnosis of gastric cancer. A systematic review and meta-analysis was performed to evaluate the overall accuracy of CTCs detection for diagnosing gastric cancer. PubMed, Embase and the Wanfang database were searched in all languages published up to Oct 2012. The pooled sensitivity (SEN), specificity (SPE), positive and negative likelihood ratios (PLR and NLR, respectively), diagnostic odds ratio (DOR) and summary receiver operating characteristic (sROC) curve were calculated to evaluate the overall test performance. Twenty studies were included in this systematic review and meta-analysis. The diagnostic value of CTCs detection for the gastric cancer was calculated to evaluate the overall test performance. The summary estimates of The pooled sensitivity, specificity, positive and negative likelihood ratios, diagnostic odds ratio were 0.42 (95% confidence interval (CI), 0.21-0.67), 0.99 (95% CI, 0.96-1.00), 58.2 (95% CI, 9.8-345.9), 0.58 (95% CI, 0.38-0.89), and 100 (95% CI, 15–663), respectively. The summary receiver operating characteristic curve was 0.97 (95% CI, 0.95–0.98). Deek’s funnel plot asymmetry test found no evidence of study publication bias in the current study (P = 0.49). This systematic review suggests that CTCs detection alone cannot be recommended as a screening test for gastric cancer. However, it might be used as a noninvasive method for the confirmation of the gastric cancer diagnosis

  5. Expression of E-selectin ligands on circulating tumor cells: Cross-regulation with cancer stem cell regulatory pathways?

    Directory of Open Access Journals (Sweden)

    Monica M. Burdick

    2012-08-01

    Full Text Available Although significant progress has been made in the fight against cancer, successful treatment strategies have yet to be developed to combat those tumors that have metastasized to distant organs. Poor characterization of the molecular mechanisms of cancer spread is a major impediment to designing predictive diagnostics and effective clinical interventions against late stage disease. In hematogenous metastasis, it is widely suspected that circulating tumor cells (CTCs express specific adhesion molecules that actively initiate contact with the vascular endothelium lining the vessel walls of the target organ. This tethering is mediated by ligands expressed by CTCs that bind to E-selectin expressed by endothelial cells. However, it is currently unknown whether expression of functional E-selectin ligands on CTCs is related to cancer stem cell (CSC regulatory or maintenance pathways, particularly epithelial-to-mesenchymal transition (EMT and the reverse, mesenchymal-to-epithelial transition (MET. In this Hypothesis and Theory article, we explore the potential roles of these mechanisms on the dynamic regulation of selectin ligands mediating CTC trafficking during metastasis.

  6. A modified Phenol-chloroform extraction method for isolating circulating cell free DNA of tumor patients

    Directory of Open Access Journals (Sweden)

    Clemens Hufnagl

    2013-03-01

    Full Text Available Searching for new cancer biomarkers, circulating cell-free DNA (cfDNA has become an appealing target of interest as an elevated level of cfDNA has been detected in the circulation of cancer patients in comparison with healthy controls. Since cfDNA can be isolated from the circulation and other body fluids of patients without harming their physical condition, cfDNA is becoming a promising candidate as a novel non-invasive biomarker for cancer. The challenge in the diagnostic analysis of cfDNA is its very low presence in human plasma/serum and its partially strong fragmentation. Here we evaluated a modified phenol/chloroform extraction method for the isolation of cfDNA and compared it with published standard methods for cfDNA isolation.

  7. High circulating tumor cell concentrations in a specific subtype of gastric cancer with diffuse bone metastasis at diagnosis

    Science.gov (United States)

    Shimazu, Kazuhiro; Fukuda, Koji; Yoshida, Taichi; Inoue, Masahiro; Shibata, Hiroyuki

    2016-01-01

    AIM: To clarify the biological feature contributing to gastric cancer with diffuse bone metastases at diagnosis. METHODS: The participants visited the Department of Clinical Oncology, Akita University Hospital, from January 2014 to August 2015. The selection criterion for gastric cancer with diffuse bone metastases at diagnosis includes over 29 hot spots of bone scintigraphy. Circulating tumor cell were collected from 20 mL of peripheral venous blood drawn using a CellSearch kit and a CellTracks AutoPrep system by SRL, a clinical laboratory. The endpoints of this study were correlations between circulating tumor cells (CTC) count and therapeutic outcomes. RESULTS: Among 39 patients with gastric cancer, 5 patients met the criterion. The incidence of this subtype was 12.8%. CTC counts ranged from 235 to 6440 cells/7.5 mL of peripheral blood (median of 1724). These values were much higher than common gastric cancers (2 cells). In chemo-sensitive cases, CTC counts decreased within 14 d (median) from 275, 235 and 1724 to 2, 7 and 66, respectively. On the other hand, CTC counts increased after treatment failure or insensitive case from 2, 7 and 6440 to 787, 513 and 7885, respectively. The correlation between CTC count and survival time showed a trend, but did not reach significance (Y = 234.6 - 0.03X, P = 0.085). CONCLUSION: High CTC count is a biological hallmark of this subtype, and can be used as a direct and definitive indicator of therapeutic outcome.

  8. Detection and quantitation of circulating tumor cell dynamics by bioluminescence imaging in an orthotopic mammary carcinoma model.

    Directory of Open Access Journals (Sweden)

    Laura Sarah Sasportas

    Full Text Available Circulating tumor cells (CTCs have been detected in the bloodstream of both early-stage and advanced cancer patients. However, very little is know about the dynamics of CTCs during cancer progression and the clinical relevance of longitudinal CTC enumeration. To address this, we developed a simple bioluminescence imaging assay to detect CTCs in mouse models of metastasis. In a 4T1 orthotopic metastatic mammary carcinoma mouse model, we demonstrated that this quantitative method offers sensitivity down to 2 CTCs in 0.1-1mL blood samples and high specificity for CTCs originating from the primary tumor, independently of their epithelial status. In this model, we simultaneously monitored blood CTC dynamics, primary tumor growth, and lung metastasis progression over the course of 24 days. Early in tumor development, we observed low numbers of CTCs in blood samples (10-15 cells/100 µL and demonstrated that CTC dynamics correlate with viable primary tumor growth. To our knowledge, these data represent the first reported use of bioluminescence imaging to detect CTCs and quantify their dynamics in any cancer mouse model. This new assay is opening the door to the study of CTC dynamics in a variety of animal models. These studies may inform clinical decision on the appropriate timing of blood sampling and value of longitudinal CTC enumeration in cancer patients.

  9. Tissue Factor Induced by Epithelial-Mesenchymal Transition Triggers a Procoagulant State That Drives Metastasis of Circulating Tumor Cells.

    Science.gov (United States)

    Bourcy, Morgane; Suarez-Carmona, Meggy; Lambert, Justine; Francart, Marie-Emilie; Schroeder, Hélène; Delierneux, Céline; Skrypek, Nicolas; Thompson, Erik W; Jérusalem, Guy; Berx, Geert; Thiry, Marc; Blacher, Silvia; Hollier, Brett G; Noël, Agnès; Oury, Cécile; Polette, Myriam; Gilles, Christine

    2016-07-15

    Epithelial-mesenchymal transition (EMT) is prominent in circulating tumor cells (CTC), but how it influences metastatic spread in this setting is obscure. Insofar as blood provides a specific microenvironment for tumor cells, we explored a potential link between EMT and coagulation that may provide EMT-positive CTCs with enhanced colonizing properties. Here we report that EMT induces tissue factor (TF), a major cell-associated initiator of coagulation and related procoagulant properties in the blood. TF blockade by antibody or shRNA diminished the procoagulant activity of EMT-positive cells, confirming a functional role for TF in these processes. Silencing the EMT transcription factor ZEB1 inhibited both EMT-associated TF expression and coagulant activity, further strengthening the link between EMT and coagulation. Accordingly, EMT-positive cells exhibited a higher persistance/survival in the lungs of mice colonized after intravenous injection, a feature diminished by TF or ZEB1 silencing. In tumor cells with limited metastatic capability, enforcing expression of the EMT transcription factor Snail increased TF, coagulant properties, and early metastasis. Clinically, we identified a subpopulation of CTC expressing vimentin and TF in the blood of metastatic breast cancer patients consistent with our observations. Overall, our findings define a novel EMT-TF regulatory axis that triggers local activation of coagulation pathways to support metastatic colonization of EMT-positive CTCs. Cancer Res; 76(14); 4270-82. ©2016 AACR. PMID:27221703

  10. Clinical utility of circulating tumor cell counting through CellSearch®: the dilemma of a concept suspended in Limbo

    Directory of Open Access Journals (Sweden)

    Raimondi C

    2014-04-01

    Full Text Available Cristina Raimondi,1 Angela Gradilone,1 Giuseppe Naso,2 Enrico Cortesi,2 Paola Gazzaniga1 1Dipartimento Medicina Molecolare, Sapienza Università di Roma, Rome, Italy; 2Dipartimento di Scienze Radiologiche, Oncologiche e Anatomopatologiche, Sapienza Università di Roma, Rome, Italy Abstract: To date, 10 years after the first demonstration of circulating tumor cells (CTCs, prognostic significance in metastatic breast cancer using the US Food and Drug Administration–cleared system CellSearch®, the potential utility of CTCs in early clinical development of drugs, their role as a surrogate marker of response to therapy, and their molecular analysis for patient stratification for targeted therapies are still major unsolved questions. Great expectations are pinned on the ongoing interventional trials aimed to demonstrate that CTCs might be of value for guiding treatment of patients and predicting cancer progression. To fill the gap between theory and practice with regard to the clinical utility of CTCs, a bridge is needed, taking into account innovative design for clinical trials, a revised definition of traditional CTCs, next-generation CTC technology, the potential clinical application of CTC analysis in non-validated settings of disease, and finally, expanding the number of patients enrolled in the studies. In this regard, the results of the first European pooled analysis definitely validated the independent prognostic value of CTC counting in metastatic breast cancer patients. Keywords: CTC, clinical trials, prognosis

  11. Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA

    OpenAIRE

    Lanman, Richard B.; Mortimer, Stefanie A.; Zill, Oliver A.; Sebisanovic, Dragan; Lopez, Rene; Blau, Sibel; Collisson, Eric A.; Divers, Stephen G.; Hoon, Dave S.B.; Kopetz, E. Scott; Lee, Jeeyun; Nikolinakos, Petros G.; Baca, Arthur M.; Kermani, Bahram G.; Eltoukhy, Helmy

    2015-01-01

    Next-generation sequencing of cell-free circulating solid tumor DNA addresses two challenges in contemporary cancer care. First this method of massively parallel and deep sequencing enables assessment of a comprehensive panel of genomic targets from a single sample, and second, it obviates the need for repeat invasive tissue biopsies. Digital SequencingTM is a novel method for high-quality sequencing of circulating tumor DNA simultaneously across a comprehensive panel of over 50 cancer-relate...

  12. Tumor-selective replication herpes simplex virus-based technology significantly improves clinical detection and prognostication of viable circulating tumor cells

    DEFF Research Database (Denmark)

    Zhang, Wen; Bao, Li; Yang, Shaoxing;

    2016-01-01

    Detection of circulating tumor cells remains a significant challenge due to their vast physical and biological heterogeneity. We developed a cell-surface-marker-independent technology based on telomerase-specific, replication-selective oncolytic herpes-simplex-virus-1 that targets telomerase......Search, our method detected significantly higher positive rates in 40 NSCLC in all stages, including N0M0, N+M0 and M1, and was less affected by chemotherapy. This simple, robust and clinically-applicable technology detects viable CTCs from solid and hematopoietic malignancies in early to late stages...... blood samples from patients with 6 different solid organ carcinomas and lymphomas. Significantly, CTC-positive rates increased remarkably with tumor progression from N0M0, N+M0 to M1 in each of 5 tested cancers (lung, colon, liver, gastric and pancreatic cancer, and glioma). Among 21 non-small cell lung...

  13. Optimization of an Enrichment process for Circulating tumor cells from the blood of Head and Neck Cancer patients through depletion of normal cells

    OpenAIRE

    Yang, Liying; Lang, James C.; Balasubramanian, Priya; Jatana, Kris R.; Schuller, David; Agrawal, Amit; Zborowski, Maciej; Chalmers, Jeffrey J.

    2009-01-01

    The optimization of a purely negative depletion, enrichment process for circulating tumor cells, CTC's, in the peripheral blood of Head and Neck cancer patients is presented. The enrichment process uses a red cell lysis step followed by immunomagnetic labeling, and subsequent depletion, of CD45 positive cells. A number of relevant variables are quantified, or attempted to be quantified, which control the performance of the enrichment process. Six different immunomagnetic labeling combinations...

  14. Nanoelectromechanical Chip (NELMEC) Combination of Nanoelectronics and Microfluidics to Diagnose Epithelial and Mesenchymal Circulating Tumor Cells from Leukocytes.

    Science.gov (United States)

    Hosseini, Seied Ali; Abdolahad, Mohammad; Zanganeh, Somayeh; Dahmardeh, Mahyar; Gharooni, Milad; Abiri, Hamed; Alikhani, Alireza; Mohajerzadeh, Shams; Mashinchian, Omid

    2016-02-17

    An integrated nano-electromechanical chip (NELMEC) has been developed for the label-free distinguishing of both epithelial and mesenchymal circulating tumor cells (ECTCs and MCTCs, respectively) from white blood cells (WBCs). This nanoelectronic microfluidic chip fabricated by silicon micromachining can trap large single cells (>12 µm) at the opening of the analysis microchannel arrays. The nature of the captured cells is detected using silicon nanograss (SiNG) electrodes patterned at the entrance of the channels. There is an observable difference between the membrane capacitance of the ECTCs and MCTCs and that of WBCs (measured using SiNG electrodes), which is the key indication for our diagnosis. The NELMEC chip not only solves the problem of the size overlap between CTCs and WBCs but also detects MCTCs without the need for any markers or tagging processes, which has been an important problem in previously reported CTC detection systems. The great conductivity of the gold-coated SiNG nanocontacts as well as their safe penetration into the membrane of captured cells, facilitate a precise and direct signal extraction to distinguish the type of captured cell. The results achieved from epithelial (MCF-7) and mesenchymal (MDA-MB231) breast cancer cells circulated in unprocessed blood suggest the significant applications for these diagnostic abilities of NELMEC. PMID:26727927

  15. Prognostic significance of circulating tumor cells in esophageal carcinoma: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Qiao GL

    2016-03-01

    Full Text Available Guang-Lei Qiao,1 Wei-Xiang Qi,2 Wei-Hua Jiang,1 Ying Chen,1 Li-Jun Ma1 1Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 2Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China Purpose: The prognostic significance of circulating tumor cells (CTCs in esophageal carcinoma (EC is controversial. We aim to assess its association with clinicopathological and prognostic relevance in EC by using a meta-analysis.Methods: We searched PubMed, Cochrane Database, Embase databases, and the references in relevant studies that assessed the clinicopathological or prognostic relevance of CTCs in peripheral blood of patients with EC. Statistical analyses were conducted by using Stata software to calculate the pooled odds ratio (OR, hazard ratio (HR, and 95% confidence intervals (CIs using fixed or random-effects models according to the heterogeneity of included studies. The subgroup analyses were performed according to ethnicity, histological type, and detection method.Results: Sixteen trials containing 1,260 patients were included for analysis. Pooled results showed that presence of CTCs was significantly associated with poor overall survival (HR =1.71, 95% CI [1.30, 2.12], P<0.001 and progression-free survival (HR =1.67, 95% CI [1.19, 2.15], P<0.001 in EC patients. Subgroup analysis indicated that presence of CTCs was closely associated with worse overall survival (Asian: HR =1.66, 95% CI [1.24, 2.08], P<0.001; squamous cell carcinoma [SCC]: HR =1.66, 95% CI [1.24, 2.08], P<0.001; no polymerase chain reaction [PCR]: HR =2.08, 95% CI [1.40, 2.76], P<0.001 and progression-free survival (Asian: HR =1.63, 95% CI [1.15, 2.12], P<0.001; SCC: HR =1.63, 95% CI [1.15, 2.12], P<0.001; PCR: HR =1.63, 95% CI [1.15, 2.12], P<0.001. Additionally, ORs showed that presence of CTCs was significantly correlated with tumor node metastasis (TNM staging (overall: OR =1

  16. Clinical utility of Circulating Tumor Cells in ALK-Positive Non-Small-Cell Lung Cancer

    OpenAIRE

    Vincent eFaugeroux; Emma ePailler; Nathalie eAuger; Meilissa eTaylor; Françoise eFarace

    2014-01-01

    The advent of rationally targeted therapies such as small-molecule tyrosine kinase inhibitors (TKIs) has considerably transformed the therapeutic management of a subset of patients with non-small cell lung cancer (NSCLC) harboring defined molecular abnormalities. When such genetic molecular alterations are detected the use of specific TKI has demonstrated better results (overall response rate (ORR), progression free survival (PFS)) compared to systemic therapy. However the detection of such m...

  17. Clinical Utility of Circulating Tumor Cells in ALK-Positive Non-Small-Cell Lung Cancer

    OpenAIRE

    Faugeroux, Vincent; Pailler, Emma; Auger, Nathalie; Taylor, Melissa; Farace, Françoise

    2014-01-01

    The advent of rationally targeted therapies such as small-molecule tyrosine kinase inhibitors (TKIs) has considerably transformed the therapeutic management of a subset of patients with non-small-cell lung cancer (NSCLC) harboring defined molecular abnormalities. When such genetic molecular alterations are detected the use of specific TKI has demonstrated better results (overall response rate, progression free survival) compared to systemic therapy. However, the detection of such molecular ab...

  18. Detection of circulating tumor lysate-reactive CD4+ T cells in melanoma patients

    DEFF Research Database (Denmark)

    Ladekarl, Morten; Agger, Ralf; Fleischer, Charlotte C;

    2004-01-01

    donors with high background levels of spontaneous IFN-gamma production, indicating an inhibitory effect of the lysate. CONCLUSIONS: This method for detection of a peripheral T-cell immune response in melanoma patients has several advantages for clinical use. The tumor lysate preparations may contain......PURPOSE: We wanted to study whether an allogeneic melanoma lysate would be a feasible stimulatory antigen source for detection of a peripheral CD4+ T-cell immune response in patients with medically untreated malignant melanoma. The lysate was produced from a melanoma cell line (FM3.29) which...... expresses high amounts of melanoma antigens. METHODS: Fresh peripheral blood was incubated with and without lysate for 6 h in the presence of anti-CD28/anti-CD49d MoAb (for costimulation). After flow cytometric estimation of the frequency of CD69+/IFN-gamma+ cells in the CD4+ population, the response to...

  19. A Method for Detecting Circulating Tumor Cells Based on the Measurement of Single-Cell Metabolism in Droplet-Based Microfluidics.

    Science.gov (United States)

    Del Ben, Fabio; Turetta, Matteo; Celetti, Giorgia; Piruska, Aigars; Bulfoni, Michela; Cesselli, Daniela; Huck, Wilhelm T S; Scoles, Giacinto

    2016-07-18

    The number of circulating tumor cells (CTCs) in blood is strongly correlated with the progress of metastatic cancer. Current methods to detect CTCs are based on immunostaining or discrimination of physical properties. Herein, a label-free method is presented exploiting the abnormal metabolic behavior of cancer cells. A single-cell analysis technique is used to measure the secretion of acid from individual living tumor cells compartmentalized in microfluidically prepared, monodisperse, picoliter (pL) droplets. As few as 10 tumor cells can be detected in a background of 200 000 white blood cells and proof-of-concept data is shown on the detection of CTCs in the blood of metastatic patients. PMID:27247024

  20. The Clinical Potential of Circulating Tumor Cells; The Need to Incorporate a Modern “Immunological Cocktail” in the Assay

    International Nuclear Information System (INIS)

    The accepted clinical assay, CellSearch®, and lab-on-a-chip tests for capturing circulating tumor cells are antibody-mediated. Attempts to improve their sensitivity have relied upon physical changes in the instruments. There have been no significant advances in improving the antibody-mediated portion of the capture. Modern immunologic engineering offers major possibilities for improving the sensitivity and other features of the assay. These include obtaining univalent antibody fragments such as scFvs with picomolar binding affinity and sufficient specificity; altering them to enhance their range of potential contact with target antigens; using antibodies directed against different epitopes on epithelial, mesenchymal or organ-specific cell surface markers to allow simultaneous binding and investigating non-antibody binding molecules as substitutes for antibody. These maneuvers could markedly improve the ability of current assays to improve patient care and might result in an acceptable test for detecting cancer earlier in high risk patients

  1. Leptin promotes melanoma tumor growth in mice related to increasing circulating endothelial progenitor cells numbers and plasma NO production

    Directory of Open Access Journals (Sweden)

    Khazaei Majid

    2011-02-01

    Full Text Available Abstract Background Epidemiological studies propose that obesity increases the risk of several cancers, including melanoma. Obesity increases the expression of leptin, a multifunctional peptide produced predominantly by adipocytes which may promote tumor growth. Several recently experiments have suggested that the tumors growth is in need of endothelial progenitor cell (EPC dependent generation of new blood vessels. Our objectives in the present study were to examine the effects of leptin on melanoma growth, circulating EPCs number and plasma levels of nitric oxide metabolites (NOx. Methods 2 × 106 B16F10 melanoma cells were injected to thirty two C57BL6 mice subcutaneously. The mice were randomly divided into 4 groups (n = 8 in 8th day. Two groups were received twice daily intraperitoneal(i.p injections of either PBS or recombinant murine leptin (1 μg/g initial body weight. Two groups were received i.p. injections of either 9F8 an anti leptin receptor antibody or the control mouse IgG at 50 μg/mouse every 3 consecutive days. By the end of the second week the animals were euthanized and blood samples and tumors were analyzed. Results The tumor weight, EPC numbers and NOx level in leptin, PBS, 9F8, and IgG group were (3.2 ± 0.6, 1.7 ± 0.3, 1.61 ± 0.2,1.7 ± 0.3 g, (222.66 ± 36.5, 133.33 ± 171, 23.33 ± 18, 132.66 ± 27.26/ml of blood, and (22.47 ± 5.5, 12.30 ± 1.5, 6.26 ± 0.84, 15.75 ± 6.3 μmol/L respectively. Tumors weight and size, circulating EPC numbers and plasma levels of NOx were significantly more in the leptin than 9f8 and both control groups (p Conclusions In conclusion, our observations indicate that leptin causes melanoma growth likely through increased NO production and circulating EPC numbers and consequently vasculogenesis.

  2. High Specificity in Circulating Tumor Cell Identification Is Required for Accurate Evaluation of Programmed Death-Ligand 1.

    Directory of Open Access Journals (Sweden)

    Jennifer L Schehr

    Full Text Available Expression of programmed-death ligand 1 (PD-L1 in non-small cell lung cancer (NSCLC is typically evaluated through invasive biopsies; however, recent advances in the identification of circulating tumor cells (CTCs may be a less invasive method to assay tumor cells for these purposes. These liquid biopsies rely on accurate identification of CTCs from the diverse populations in the blood, where some tumor cells share characteristics with normal blood cells. While many blood cells can be excluded by their high expression of CD45, neutrophils and other immature myeloid subsets have low to absent expression of CD45 and also express PD-L1. Furthermore, cytokeratin is typically used to identify CTCs, but neutrophils may stain non-specifically for intracellular antibodies, including cytokeratin, thus preventing accurate evaluation of PD-L1 expression on tumor cells. This holds even greater significance when evaluating PD-L1 in epithelial cell adhesion molecule (EpCAM positive and EpCAM negative CTCs (as in epithelial-mesenchymal transition (EMT.To evaluate the impact of CTC misidentification on PD-L1 evaluation, we utilized CD11b to identify myeloid cells. CTCs were isolated from patients with metastatic NSCLC using EpCAM, MUC1 or Vimentin capture antibodies and exclusion-based sample preparation (ESP technology.Large populations of CD11b+CD45lo cells were identified in buffy coats and stained non-specifically for intracellular antibodies including cytokeratin. The amount of CD11b+ cells misidentified as CTCs varied among patients; accounting for 33-100% of traditionally identified CTCs. Cells captured with vimentin had a higher frequency of CD11b+ cells at 41%, compared to 20% and 18% with MUC1 or EpCAM, respectively. Cells misidentified as CTCs ultimately skewed PD-L1 expression to varying degrees across patient samples.Interfering myeloid populations can be differentiated from true CTCs with additional staining criteria, thus improving the

  3. High Specificity in Circulating Tumor Cell Identification Is Required for Accurate Evaluation of Programmed Death-Ligand 1

    Science.gov (United States)

    Schultz, Zachery D.; Warrick, Jay W.; Guckenberger, David J.; Pezzi, Hannah M.; Sperger, Jamie M.; Heninger, Erika; Saeed, Anwaar; Leal, Ticiana; Mattox, Kara; Traynor, Anne M.; Campbell, Toby C.; Berry, Scott M.; Beebe, David J.; Lang, Joshua M.

    2016-01-01

    Background Expression of programmed-death ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC) is typically evaluated through invasive biopsies; however, recent advances in the identification of circulating tumor cells (CTCs) may be a less invasive method to assay tumor cells for these purposes. These liquid biopsies rely on accurate identification of CTCs from the diverse populations in the blood, where some tumor cells share characteristics with normal blood cells. While many blood cells can be excluded by their high expression of CD45, neutrophils and other immature myeloid subsets have low to absent expression of CD45 and also express PD-L1. Furthermore, cytokeratin is typically used to identify CTCs, but neutrophils may stain non-specifically for intracellular antibodies, including cytokeratin, thus preventing accurate evaluation of PD-L1 expression on tumor cells. This holds even greater significance when evaluating PD-L1 in epithelial cell adhesion molecule (EpCAM) positive and EpCAM negative CTCs (as in epithelial-mesenchymal transition (EMT)). Methods To evaluate the impact of CTC misidentification on PD-L1 evaluation, we utilized CD11b to identify myeloid cells. CTCs were isolated from patients with metastatic NSCLC using EpCAM, MUC1 or Vimentin capture antibodies and exclusion-based sample preparation (ESP) technology. Results Large populations of CD11b+CD45lo cells were identified in buffy coats and stained non-specifically for intracellular antibodies including cytokeratin. The amount of CD11b+ cells misidentified as CTCs varied among patients; accounting for 33–100% of traditionally identified CTCs. Cells captured with vimentin had a higher frequency of CD11b+ cells at 41%, compared to 20% and 18% with MUC1 or EpCAM, respectively. Cells misidentified as CTCs ultimately skewed PD-L1 expression to varying degrees across patient samples. Conclusions Interfering myeloid populations can be differentiated from true CTCs with additional staining criteria

  4. Sensitive and Specific Biomimetic Lipid Coated Microfluidics to Isolate Viable Circulating Tumor Cells and Microemboli for Cancer Detection.

    Directory of Open Access Journals (Sweden)

    Jia-Yang Chen

    Full Text Available Here we presented a simple and effective membrane mimetic microfluidic device with antibody conjugated supported lipid bilayer (SLB "smart coating" to capture viable circulating tumor cells (CTCs and circulating tumor microemboli (CTM directly from whole blood of all stage clinical cancer patients. The non-covalently bound SLB was able to promote dynamic clustering of lipid-tethered antibodies to CTC antigens and minimized non-specific blood cells retention through its non-fouling nature. A gentle flow further flushed away loosely-bound blood cells to achieve high purity of CTCs, and a stream of air foam injected disintegrate the SLB assemblies to release intact and viable CTCs from the chip. Human blood spiked cancer cell line test showed the ~95% overall efficiency to recover both CTCs and CTMs. Live/dead assay showed that at least 86% of recovered cells maintain viability. By using 2 mL of peripheral blood, the CTCs and CTMs counts of 63 healthy and colorectal cancer donors were positively correlated with the cancer progression. In summary, a simple and effective strategy utilizing biomimetic principle was developed to retrieve viable CTCs for enumeration, molecular analysis, as well as ex vivo culture over weeks. Due to the high sensitivity and specificity, it is the first time to show the high detection rates and quantity of CTCs in non-metastatic cancer patients. This work offers the values in both early cancer detection and prognosis of CTC and provides an accurate non-invasive strategy for routine clinical investigation on CTCs.

  5. [A Large Number of Circulating Tumor Cells(CTCs)Can Be Isolated from Samples Obtained by Using Leukapheresis Procedures].

    Science.gov (United States)

    Soya, Ryoko; Taguchi, Jyunichi; Nagakawa, Yuichi; Takahashi, Osamu; Sandoh, Norimasa; Hosokawa, Yuichi; Kasuya, Kazuhiko; Umeda, Naoki; Okamoto, Masato; Tsujitani, Shunichi; Tsuchida, Akihiko

    2015-09-01

    We hypothesized that a large number of circulating tumor cells(CTCs)may be isolated from samples obtained by using the leukapheresis procedures that are utilized to collect peripheral blood mononuclear cells for dendritic cell vaccine therapy. We utilized the CellSearch System to determine the number of CTCs in samples obtained by using leukapheresis in 7 patients with colorectal cancer, 5 patients with breast cancer, and 3 patients with gastric cancer. In all patients, a large number of CTCs were isolated. The mean number of CTCs per tumor was 17.1(range 10-34)in colorectal cancer, 10.0(range 2-27)in breast cancer, and 24.0(range 2-42)in gastric cancer. We succeeded in culturing the isolated CTCs from 7 patients with colorectal cancer, 5 patients with breast cancer, and 3 patients with gastric cancer. In conclusion, compared to conventional methods, a large number of CTCs can be obtained by using leukapheresis procedures. The molecular analyses of the CTCs isolated by using this method should be promising in the development of personalized cancer treatments.

  6. Aptamer-polymer functionalized silicon nanosubstrates for enhanced recovered circulating tumor cell viability and in vitro chemosensitivity testing

    Directory of Open Access Journals (Sweden)

    Shen QL

    2016-05-01

    Full Text Available Qinglin Shen1,2,*, Caixia Peng2,3,*, Yan Zhan1, Liang Fan1, Mengyi Wang1, Qing Zhou4, Jue Liu2,4, Xiaojuan Lv1, Qiu Tang1, Jun Li1,2, Xiaodong Huang2, Jiahong Xia2 1Department of Oncology, 2Key Laboratory for Molecular Diagnosis of Hubei Province, 3Central Laboratory, 4Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China *These authors contributed equally to this work Abstract: Selection of the optimal chemotherapy regimen for an individual cancer patient is challenging. The existing chemosensitivity tests are costly, time-consuming, and not amenable to wide utilization within a clinic. This limitation might be addressed by the recently proposed use of circulating tumor cells (CTCs, which provide an opportunity to noninvasively monitor response to therapy. Over the past few decades, various techniques were developed to capture and recover CTCs, but these techniques were often limited by a capture and recovery performance tradeoff between high viability and high efficiency. In this work, we used anti-epithelial cell adhesion molecule coated aptamer–poly (N-isopropylacrylamide functionalized silicon nanowire substrates to capture and release epithelial cell adhesion molecule-positive CTCs at 32°C and 4°C, respectively. Then, we applied the nuclease to digest the aptamer to release the captured CTCs (near or at the end of the polymer brush, which cannot be released by heating/cooling process. High viability and purity CTCs could be achieved by decreasing the heating/cooling cycles and enzymatic treatment rounds. Furthermore, the time-saving process is helpful to maintain the morphology and enhance vitality of the recovered CTCs and is beneficial to the subsequent cell culture in vitro. We validated the feasibility of chemosensitivity testing based on the recovered HCC827 cells using an adenosine triphosphate–tumor chemosensitivity

  7. Efficient Purification and Release of Circulating Tumor Cells by Synergistic Effect of Biomarker and SiO2 @Gel-Microbead-Based Size Difference Amplification.

    Science.gov (United States)

    Huang, Qinqin; Cai, Bo; Chen, Bolei; Rao, Lang; He, Zhaobo; He, Rongxiang; Guo, Feng; Zhao, Libo; Kondamareddy, Kiran Kumar; Liu, Wei; Guo, Shishang; Zhao, Xing-Zhong

    2016-07-01

    Microfluidics-based circulating tumor cell (CTC) isolation is achieved by using gelatin-coated silica microbeads conjugated to CTC-specific antibodies. Bead-binding selectively enlarges target cell size, providing efficient high-purity capture. CTCs captured can be further released non-invasively. This stratagem enables high-performance CTC isolation for subsequent studies. PMID:27028055

  8. Trapping and dynamic manipulation of polystyrene beads mimicking circulating tumor cells using targeted magnetic/photoacoustic contrast agents

    Science.gov (United States)

    Wei, Chen-Wei; Xia, Jinjun; Hu, Xiaoge; Gao, Xiaohu; O’Donnell, Matthew

    2012-01-01

    Abstract. Results on magnetically trapping and manipulating micro-scale beads circulating in a flow field mimicking metastatic cancer cells in human peripheral vessels are presented. Composite contrast agents combining magneto-sensitive nanospheres and highly optical absorptive gold nanorods were conjugated to micro-scale polystyrene beads. To efficiently trap the targeted objects in a fast stream, a dual magnet system consisting of two flat magnets to magnetize (polarize) the contrast agent and an array of cone magnets producing a sharp gradient field to trap the magnetized contrast agent was designed and constructed. A water-ink solution with an optical absorption coefficient of 10  cm−1 was used to mimic the optical absorption of blood. Magnetomotive photoacoustic imaging helped visualize bead trapping, dynamic manipulation of trapped beads in a flow field, and the subtraction of stationary background signals insensitive to the magnetic field. The results show that trafficking micro-scale objects can be effectively trapped in a stream with a flow rate up to 12  ml/min and the background can be significantly (greater than 15 dB) suppressed. It makes the proposed method very promising for sensitive detection of rare circulating tumor cells within high flow vessels with a highly absorptive optical background. PMID:23223993

  9. Trapping and dynamic manipulation of polystyrene beads mimicking circulating tumor cells using targeted magnetic/photoacoustic contrast agents

    Science.gov (United States)

    Wei, Chen-Wei; Xia, Jinjun; Pelivanov, Ivan; Hu, Xiaoge; Gao, Xiaohu; O'Donnell, Matthew

    2012-10-01

    Results on magnetically trapping and manipulating micro-scale beads circulating in a flow field mimicking metastatic cancer cells in human peripheral vessels are presented. Composite contrast agents combining magneto-sensitive nanospheres and highly optical absorptive gold nanorods were conjugated to micro-scale polystyrene beads. To efficiently trap the targeted objects in a fast stream, a dual magnet system consisting of two flat magnets to magnetize (polarize) the contrast agent and an array of cone magnets producing a sharp gradient field to trap the magnetized contrast agent was designed and constructed. A water-ink solution with an optical absorption coefficient of 10 cm-1 was used to mimic the optical absorption of blood. Magnetomotive photoacoustic imaging helped visualize bead trapping, dynamic manipulation of trapped beads in a flow field, and the subtraction of stationary background signals insensitive to the magnetic field. The results show that trafficking micro-scale objects can be effectively trapped in a stream with a flow rate up to 12 ml/min and the background can be significantly (greater than 15 dB) suppressed. It makes the proposed method very promising for sensitive detection of rare circulating tumor cells within high flow vessels with a highly absorptive optical background.

  10. HER2 status of circulating tumor cells in patients with metastatic breast cancer: a prospective, multicenter trial.

    Science.gov (United States)

    Fehm, Tanja; Müller, Volkmar; Aktas, Bahriye; Janni, Wolfgang; Schneeweiss, Andreas; Stickeler, Elmar; Lattrich, Claus; Löhberg, Christian R; Solomayer, Erich; Rack, Brigitte; Riethdorf, Sabine; Klein, Christoph; Schindlbeck, Christian; Brocker, Kerstin; Kasimir-Bauer, Sabine; Wallwiener, Diethelm; Pantel, Klaus

    2010-11-01

    There is a growing body of evidence that HER2 status can change during disease recurrence or progression in breast cancer patients. In this context, re-evaluation of HER2 status by assessment of HER2 expression on circulating tumor cells (CTCs) is a strategy with potential clinical application. The aim of this trial was to determine the HER2 status of CTCs in metastatic breast cancer patients comparing two CTC assays. A total of 254 patients with metastatic breast cancer from nine German university breast cancer centers were enrolled in this prospective study. HER2 status of CTCs was assessed using both the FDA-approved CellSearch® assay and AdnaTest BreastCancer™. Using the CellSearch assay, 122 of 245 (50%) patients had ≥5 CTCs, and HER2-positive CTCs were observed in 50 (41%) of these patients. Ninety of 229 (39%) patients were CTC positive using AdnaTest BreastCancer, and HER2 positivity rate was 47% (42 of 90). The rate of breast cancer patients with HER2-negative primary tumors but HER2-positive CTCs was 32% (25 of 78) and 49% (28 of 57) using the CellSearch assay and AdnaTest BreastCancer, respectively. Considering only those patients who had CTCs on both tests (n = 62), concordant results regarding HER2 positivity were obtained in 50% of the patients (31/62) (P = 0.96, κ = -0.006). HER2-positive CTCs can be detected in a relevant number of patients with HER2 negative primary tumors. Therefore, it will be mandatory to correlate the assay-dependent HER2 status of CTCs to the clinical response on HER2-targeted therapies.

  11. Mutational Analysis of Circulating Tumor Cells Using a Novel Microfluidic Collection Device and qPCR Assay.

    Science.gov (United States)

    Harb, Wael; Fan, Andrea; Tran, Tony; Danila, Daniel C; Keys, David; Schwartz, Michael; Ionescu-Zanetti, Cristian

    2013-01-01

    Circulating tumor cells (CTCs) provide a readily accessible source of tumor material from patients with cancer. Molecular profiling of these rare cells can lead to insight on disease progression and therapeutic strategies. A critical need exists to isolate CTCs with sufficient quantity and sample integrity to adapt to conventional analytical techniques. We present a microfluidic platform (IsoFlux) that uses flow control and immunomagnetic capture to enhance CTC isolation. A novel cell retrieval mechanism ensures complete transfer of CTCs into the molecular assay. Improved sensitivity to the capture antigen was demonstrated by spike-in experiments for three cell lines of varying levels of antigen expression. We obtained spike-in recovery rates of 74%, 75%, and 85% for MDA-MB-231 (low), PC3 (middle), and SKBR3 (high) cell lines. Recovery using matched enumeration protocols and matched samples (PC3) yielded 90% and 40% recovery for the IsoFlux and CellSearch systems, respectively. In matched prostate cancer samples (N = 22), patients presenting more than four CTCs per blood draw were 95% and 36% using IsoFlux and CellSearch, respectively. An assay for detecting KRAS mutations was described along with data from patients with colorectal cancer, of which 87% presented CTCs above the assay's limit of detection (four CTCs). The CTC KRAS mutant rate was 50%, with 46% of patients displaying a CTC KRAS mutational status that differed from the previously acquired tissue biopsy data. The microfluidic system and mutation assay presented here provide a complete workflow to track oncogene mutational changes longitudinally with high success rates. PMID:24151533

  12. Mutational Analysis of Circulating Tumor Cells Using a Novel Microfluidic Collection Device and qPCR Assay12

    Science.gov (United States)

    Harb, Wael; Fan, Andrea; Tran, Tony; Danila, Daniel C; Keys, David; Schwartz, Michael; Ionescu-Zanetti, Cristian

    2013-01-01

    Circulating tumor cells (CTCs) provide a readily accessible source of tumor material from patients with cancer. Molecular profiling of these rare cells can lead to insight on disease progression and therapeutic strategies. A critical need exists to isolate CTCs with sufficient quantity and sample integrity to adapt to conventional analytical techniques. We present a microfluidic platform (IsoFlux) that uses flow control and immunomagnetic capture to enhance CTC isolation. A novel cell retrieval mechanism ensures complete transfer of CTCs into the molecular assay. Improved sensitivity to the capture antigen was demonstrated by spike-in experiments for three cell lines of varying levels of antigen expression. We obtained spike-in recovery rates of 74%, 75%, and 85% for MDA-MB-231 (low), PC3 (middle), and SKBR3 (high) cell lines. Recovery using matched enumeration protocols and matched samples (PC3) yielded 90% and 40% recovery for the IsoFlux and CellSearch systems, respectively. In matched prostate cancer samples (N = 22), patients presenting more than four CTCs per blood draw were 95% and 36% using IsoFlux and CellSearch, respectively. An assay for detecting KRAS mutations was described along with data from patients with colorectal cancer, of which 87% presented CTCs above the assay's limit of detection (four CTCs). The CTC KRAS mutant rate was 50%, with 46% of patients displaying a CTC KRAS mutational status that differed from the previously acquired tissue biopsy data. The microfluidic system and mutation assay presented here provide a complete workflow to track oncogene mutational changes longitudinally with high success rates. PMID:24151533

  13. Microchips and their Significance in Isolation of Circulating Tumor Cells and Monitoring of Cancers.

    Science.gov (United States)

    Sahmani, Mehdi; Vatanmakanian, Mousa; Goudarzi, Mehdi; Mobarra, Naser; Azad, Mehdi

    2016-01-01

    In micro-fluid systems, fluids are injected into extremely narrow polymer channels in small amounts such as micro-, nano-, or pico-liter scales. These channels themselves are embedded on tiny chips. Various specialized structures in the chips including pumps, valves, and channels allow the chips to accept different types of fluids to be entered the channel and along with flowing through the channels, exert their effects in the framework of different reactions. The chips are generally crystal, silicon, or elastomer in texture. These highly organized structures are equipped with discharging channels through which products as well as wastes of the reactions are secreted out. A particular advantage regarding the use of fluids in micro-scales over macro-scales lies in the fact that these fluids are much better processed in the chips when they applied as micro-scales. When the laboratory is miniaturized as a microchip and solutions are injected on a micro-scale, this combination makes a specialized construction referred to as "lab-on-chip". Taken together, micro-fluids are among the novel technologies which further than declining the costs; enhancing the test repeatability, sensitivity, accuracy, and speed; are emerged as widespread technology in laboratory diagnosis. They can be utilized for monitoring a wide spectrum of biological disorders including different types of cancers. When these microchips are used for cancer monitoring, circulatory tumor cells play a fundamental role.

  14. Enhancement of Capture Sensitivity for Circulating Tumor Cells in a Breast Cancer Patient's Blood by Silicon Nanowire Platform.

    Science.gov (United States)

    Kim, Dong-Joo; Choi, Mun-Ki; Jeong, Jin-Tak; Lim, Jung-Taek; Lee, Han-Byoel; Han, Wonshik; Lee, Sang-Kwon

    2016-04-01

    The separation of circulating tumor cells (CTCs) from the blood of cancer patients with high sensitivity is an essential technique for selecting chemotherapeutic agents at a patient-by-patient level. Recently, various research groups have reported a nanostructure-based platform for rare cell capture due to its high surface area and 3D nanotopographic features. However, evaluation of capture sensitivity based on chemical modification of the nanostructure surface has not yet been performed. Here, we evaluated the capture sensitivity for CTCs from the blood of three patients diagnosed with stage IV metastatic breast cancer by using the following three platforms: streptavidin-conjugated silicon nanowire (STR-SiNW), poly-l-lysine-coated silicon nanowire (PLL-SiNW), and poly-l-lysine-coated glass (PLL-glass). The number of evaluated CTCs on STR-SiNW, PLL-SiNW, and PLL-glass were 16.2 ± 5.5 cells, 7.3 ± 2.9 cells, and 4.7 ± 1.5 cells, respectively, per 0.5 ml. Therefore, we suggest that the STR-SiNW platform is highly adaptable for the quantitative evaluation of CTCs from the blood of cancer patients in the clinical setting.

  15. Quantitative image cytometry measurements of lipids, DNA, CD45 and cytokeratin for circulating tumor cell identification in a model system

    Science.gov (United States)

    Futia, Gregory L.; Qamar, Lubna; Behbakht, Kian; Gibson, Emily A.

    2016-04-01

    Circulating tumor cell (CTC) identification has applications in both early detection and monitoring of solid cancers. The rarity of CTCs, expected at ~1-50 CTCs per million nucleated blood cells (WBCs), requires identifying methods based on biomarkers with high sensitivity and specificity for accurate identification. Discovery of biomarkers with ever higher sensitivity and specificity to CTCs is always desirable to potentially find more CTCs in cancer patients thus increasing their clinical utility. Here, we investigate quantitative image cytometry measurements of lipids with the biomarker panel of DNA, Cytokeratin (CK), and CD45 commonly used to identify CTCs. We engineered a device for labeling suspended cell samples with fluorescent antibodies and dyes. We used it to prepare samples for 4 channel confocal laser scanning microscopy. The total data acquired at high resolution from one sample is ~ 1.3 GB. We developed software to perform the automated segmentation of these images into regions of interest (ROIs) containing individual cells. We quantified image features of total signal, spatial second moment, spatial frequency second moment, and their product for each ROI. We performed measurements on pure WBCs, cancer cell line MCF7 and mixed samples. Multivariable regressions and feature selection were used to determine combination features that are more sensitive and specific than any individual feature separately. We also demonstrate that computation of spatial characteristics provides higher sensitivity and specificity than intensity alone. Statistical models allowed quantification of the required sensitivity and specificity for detecting small levels of CTCs in a human blood sample.

  16. Fragment Length of Circulating Tumor DNA

    Science.gov (United States)

    Underhill, Hunter R.; Kitzman, Jacob O.; Hellwig, Sabine; Welker, Noah C.; Daza, Riza; Gligorich, Keith M.; Rostomily, Robert C.; Shendure, Jay

    2016-01-01

    Malignant tumors shed DNA into the circulation. The transient half-life of circulating tumor DNA (ctDNA) may afford the opportunity to diagnose, monitor recurrence, and evaluate response to therapy solely through a non-invasive blood draw. However, detecting ctDNA against the normally occurring background of cell-free DNA derived from healthy cells has proven challenging, particularly in non-metastatic solid tumors. In this study, distinct differences in fragment length size between ctDNAs and normal cell-free DNA are defined. Human ctDNA in rat plasma derived from human glioblastoma multiforme stem-like cells in the rat brain and human hepatocellular carcinoma in the rat flank were found to have a shorter principal fragment length than the background rat cell-free DNA (134–144 bp vs. 167 bp, respectively). Subsequently, a similar shift in the fragment length of ctDNA in humans with melanoma and lung cancer was identified compared to healthy controls. Comparison of fragment lengths from cell-free DNA between a melanoma patient and healthy controls found that the BRAF V600E mutant allele occurred more commonly at a shorter fragment length than the fragment length of the wild-type allele (132–145 bp vs. 165 bp, respectively). Moreover, size-selecting for shorter cell-free DNA fragment lengths substantially increased the EGFR T790M mutant allele frequency in human lung cancer. These findings provide compelling evidence that experimental or bioinformatic isolation of a specific subset of fragment lengths from cell-free DNA may improve detection of ctDNA. PMID:27428049

  17. Aptamer–polymer functionalized silicon nanosubstrates for enhanced recovered circulating tumor cell viability and in vitro chemosensitivity testing

    Science.gov (United States)

    Shen, Qinglin; Peng, Caixia; Zhan, Yan; Fan, Liang; Wang, Mengyi; Zhou, Qing; Liu, Jue; Lv, Xiaojuan; Tang, Qiu; Li, Jun; Huang, Xiaodong; Xia, Jiahong

    2016-01-01

    Selection of the optimal chemotherapy regimen for an individual cancer patient is challenging. The existing chemosensitivity tests are costly, time-consuming, and not amenable to wide utilization within a clinic. This limitation might be addressed by the recently proposed use of circulating tumor cells (CTCs), which provide an opportunity to noninvasively monitor response to therapy. Over the past few decades, various techniques were developed to capture and recover CTCs, but these techniques were often limited by a capture and recovery performance tradeoff between high viability and high efficiency. In this work, we used anti-epithelial cell adhesion molecule coated aptamer–poly (N-isopropylacrylamide) functionalized silicon nanowire substrates to capture and release epithelial cell adhesion molecule-positive CTCs at 32°C and 4°C, respectively. Then, we applied the nuclease to digest the aptamer to release the captured CTCs (near or at the end of the polymer brush), which cannot be released by heating/cooling process. High viability and purity CTCs could be achieved by decreasing the heating/cooling cycles and enzymatic treatment rounds. Furthermore, the time-saving process is helpful to maintain the morphology and enhance vitality of the recovered CTCs and is beneficial to the subsequent cell culture in vitro. We validated the feasibility of chemosensitivity testing based on the recovered HCC827 cells using an adenosine triphosphate–tumor chemosensitivity assay, and the results suggested that our method can determine which agent and what concentration have the best chemosensitivity for the culturing recovered CTCs. So, the novel method capable of a highly effective capture and recovery of high viability CTCs will pave the way for chemosensitivity testing. PMID:27274239

  18. Different prognostic value of circulating and disseminated tumor cells in primary breast cancer: Influence of bisphosphonate intake?

    Science.gov (United States)

    Kasimir-Bauer, Sabine; Reiter, Katharina; Aktas, Bahriye; Bittner, Ann-Kathrin; Weber, Stephan; Keller, Thomas; Kimmig, Rainer; Hoffmann, Oliver

    2016-01-01

    Disseminated tumor cells (DTCs) in the bone marrow (BM) and circulating tumor cells (CTCs) in blood of breast cancer patients (pts) are known to correlate with worse outcome. Here we demonstrate a different prognostic value of DTCs and CTCs and explain these findings by early clodronate intake. CTCs (n = 376 pts) were determined using the AdnaTest BreastCancer (Qiagen Hannover GmbH, Germany) and DTCs (n = 525 pts) were analyzed by immunocytochemistry using the pan-cytokeratin antibody A45-B/B3. Clodronate intake was recommended in case of DTC-positivity. CTCs were detected in 22% and DTCs in 40% of the pts, respectively. DTCs were significantly associated with nodal status (p = 0.03), grading (p = 0.01), lymphangiosis (p = 0.03), PR status (p = 0.02) and clodronate intake (p < 0.0001), no significant associations were demonstrated for CTCs. CTCs significantly correlated with reduced PFS (p = 0.0227) and negative prognostic relevance was predominantly related to G2 tumors (p = 0.044), the lobular (p = 0.024) and the triple-negative subtype (p = 0.005), HR-negative pts (p = 0.001), postmenopausal women (p = 0.013) and patients who had received radiation therapy (p = 0.018). No prognostic significance was found for DTCs. Therefore early clodronate intake can improve prognosis of breast cancer patients and CTCs might be a high risk indicator for the onset of metastasis not limited to bone metastasis. PMID:27212060

  19. Different prognostic value of circulating and disseminated tumor cells in primary breast cancer: Influence of bisphosphonate intake?

    Science.gov (United States)

    Kasimir-Bauer, Sabine; Reiter, Katharina; Aktas, Bahriye; Bittner, Ann-Kathrin; Weber, Stephan; Keller, Thomas; Kimmig, Rainer; Hoffmann, Oliver

    2016-05-23

    Disseminated tumor cells (DTCs) in the bone marrow (BM) and circulating tumor cells (CTCs) in blood of breast cancer patients (pts) are known to correlate with worse outcome. Here we demonstrate a different prognostic value of DTCs and CTCs and explain these findings by early clodronate intake. CTCs (n = 376 pts) were determined using the AdnaTest BreastCancer (Qiagen Hannover GmbH, Germany) and DTCs (n = 525 pts) were analyzed by immunocytochemistry using the pan-cytokeratin antibody A45-B/B3. Clodronate intake was recommended in case of DTC-positivity. CTCs were detected in 22% and DTCs in 40% of the pts, respectively. DTCs were significantly associated with nodal status (p = 0.03), grading (p = 0.01), lymphangiosis (p = 0.03), PR status (p = 0.02) and clodronate intake (p < 0.0001), no significant associations were demonstrated for CTCs. CTCs significantly correlated with reduced PFS (p = 0.0227) and negative prognostic relevance was predominantly related to G2 tumors (p = 0.044), the lobular (p = 0.024) and the triple-negative subtype (p = 0.005), HR-negative pts (p = 0.001), postmenopausal women (p = 0.013) and patients who had received radiation therapy (p = 0.018). No prognostic significance was found for DTCs. Therefore early clodronate intake can improve prognosis of breast cancer patients and CTCs might be a high risk indicator for the onset of metastasis not limited to bone metastasis.

  20. The efficacy of lapatinib in metastatic breast cancer with HER2 non-amplified primary tumors and EGFR positive circulating tumor cells: a proof-of-concept study.

    Directory of Open Access Journals (Sweden)

    Justin Stebbing

    Full Text Available BACKGROUND: Analysis of circulating tumor cells (CTCs provides real-time measures of cancer sub-populations with potential for CTC-directed therapeutics. We examined whether lapatinib which binds both HER2 and EGFR could induce depletion of the EGFR-positive pool of CTCs, which may in turn lead to clinical benefits. PATIENTS AND METHODS: Patients with metastatic breast cancer and HER2 non-amplified primary tumors with EGFR-positive CTCs were recruited and lapatinib 1500 mg daily was administered, in a standard two step phase 2 trial. RESULTS: There were no responses leading to termination at the first analysis with 16 patients recruited out of 43 screened. In 6 out of 14 (43% individuals eligible for the efficacy analysis, a decrease in CTCs was observed with most of these having a greater decrease in their EGFR-positive CTC pool. CONCLUSIONS: This is one of the first studies of CTC-directed therapeutics and suggests that lapatinib monotherapy is not having any demonstrable clinical effects by reducing the EGFR-positive pool of CTCs in HER2 non-amplified primary tumors. Our attempt to expand the pool of patients eligible for a targeted therapy was unsuccessful; the role of clonal populations in cancer biology and therapeutic strategies to control them will require extensive evaluation in years to come. TRIAL REGISTRATION: Clinical trials.gov NCT00820924.

  1. Clinical validation of an ultra high-throughput spiral microfluidics for the detection and enrichment of viable circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Bee Luan Khoo

    Full Text Available Circulating tumor cells (CTCs are cancer cells that can be isolated via liquid biopsy from blood and can be phenotypically and genetically characterized to provide critical information for guiding cancer treatment. Current analysis of CTCs is hindered by the throughput, selectivity and specificity of devices or assays used in CTC detection and isolation.Here, we enriched and characterized putative CTCs from blood samples of patients with both advanced stage metastatic breast and lung cancers using a novel multiplexed spiral microfluidic chip. This system detected putative CTCs under high sensitivity (100%, n = 56 (Breast cancer samples: 12-1275 CTCs/ml; Lung cancer samples: 10-1535 CTCs/ml rapidly from clinically relevant blood volumes (7.5 ml under 5 min. Blood samples were completely separated into plasma, CTCs and PBMCs components and each fraction were characterized with immunophenotyping (Pan-cytokeratin/CD45, CD44/CD24, EpCAM, fluorescence in-situ hybridization (FISH (EML4-ALK or targeted somatic mutation analysis. We used an ultra-sensitive mass spectrometry based system to highlight the presence of an EGFR-activating mutation in both isolated CTCs and plasma cell-free DNA (cf-DNA, and demonstrate concordance with the original tumor-biopsy samples.We have clinically validated our multiplexed microfluidic chip for the ultra high-throughput, low-cost and label-free enrichment of CTCs. Retrieved cells were unlabeled and viable, enabling potential propagation and real-time downstream analysis using next generation sequencing (NGS or proteomic analysis.

  2. Immobilized surfactant-nanotube complexes support selectin-mediated capture of viable circulating tumor cells in the absence of capture antibodies.

    Science.gov (United States)

    Mitchell, Michael J; Castellanos, Carlos A; King, Michael R

    2015-10-01

    The metastatic spread of tumor cells from the primary site to anatomically distant organs leads to a poor patient prognosis. Increasing evidence has linked adhesive interactions between circulating tumor cells (CTCs) and endothelial cells to metastatic dissemination. Microscale biomimetic flow devices hold promise as a diagnostic tool to isolate CTCs and develop metastatic therapies, utilizing E-selectin (ES) to trigger the initial rolling adhesion of tumor cells under flow. To trigger firm adhesion and capture under flow, such devices also typically require antibodies against biomarkers thought to be expressed on CTCs. This approach is challenged by the fact that CTCs are now known to exhibit heterogeneous expression of conventional biomarkers. Here, we describe surfactant-nanotube complexes to enhance ES-mediated capture and isolation of tumor cells without the use of capture antibodies. While the majority of tumor cells exhibited weaker rolling adhesion on halloysite nanotubes (HNT) coated with ES, HNT functionalization with the sodium dodecanoate (NaL) surfactant induced a switch to firm cellular adhesion under flow. Conversely, surfactant-nanotube complexes significantly reduced the number of primary human leukocytes captured via ES-mediated adhesion under flow. The switch in tumor cell adhesion was exploited to capture and isolate tumor cells in the absence of EpCAM antibodies, commonly utilized as the gold standard for CTC isolation. Additionally, HNT-NaL complexes were shown to capture tumor cells with low to negligible EpCAM expression, that are not efficiently captured using conventional approaches.

  3. Gene expression markers in circulating tumor cells may predict bone metastasis and response to hormonal treatment in breast cancer

    Science.gov (United States)

    WANG, HAIYING; MOLINA, JULIAN; JIANG, JOHN; FERBER, MATTHEW; PRUTHI, SANDHYA; JATKOE, TIMOTHY; DERECHO, CARLO; RAJPUROHIT, YASHODA; ZHENG, JIAN; WANG, YIXIN

    2013-01-01

    Circulating tumor cells (CTCs) have recently attracted attention due to their potential as prognostic and predictive markers for the clinical management of metastatic breast cancer patients. The isolation of CTCs from patients may enable the molecular characterization of these cells, which may help establish a minimally invasive assay for the prediction of metastasis and further optimization of treatment. Molecular markers of proven clinical value may therefore be useful in predicting disease aggressiveness and response to treatment. In our earlier study, we identified a gene signature in breast cancer that appears to be significantly associated with bone metastasis. Among the genes that constitute this signature, trefoil factor 1 (TFF1) was identified as the most differentially expressed gene associated with bone metastasis. In this study, we investigated 25 candidate gene markers in the CTCs of metastatic breast cancer patients with different metastatic sites. The panel of the 25 markers was investigated in 80 baseline samples (first blood draw of CTCs) and 30 follow-up samples. In addition, 40 healthy blood donors (HBDs) were analyzed as controls. The assay was performed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with RNA extracted from CTCs captured by the CellSearch system. Our study indicated that 12 of the genes were uniquely expressed in CTCs and 10 were highly expressed in the CTCs obtained from patients compared to those obtained from HBDs. Among these genes, the expression of keratin 19 was highly correlated with the CTC count. The TFF1 expression in CTCs was a strong predictor of bone metastasis and the patients with a high expression of estrogen receptor β in CTCs exhibited a better response to hormonal treatment. Molecular characterization of these genes in CTCs may provide a better understanding of the mechanism underlying tumor metastasis and identify gene markers in CTCs for predicting disease progression and

  4. Gene expression markers in circulating tumor cells may predict bone metastasis and response to hormonal treatment in breast cancer.

    Science.gov (United States)

    Wang, Haiying; Molina, Julian; Jiang, John; Ferber, Matthew; Pruthi, Sandhya; Jatkoe, Timothy; Derecho, Carlo; Rajpurohit, Yashoda; Zheng, Jian; Wang, Yixin

    2013-11-01

    Circulating tumor cells (CTCs) have recently attracted attention due to their potential as prognostic and predictive markers for the clinical management of metastatic breast cancer patients. The isolation of CTCs from patients may enable the molecular characterization of these cells, which may help establish a minimally invasive assay for the prediction of metastasis and further optimization of treatment. Molecular markers of proven clinical value may therefore be useful in predicting disease aggressiveness and response to treatment. In our earlier study, we identified a gene signature in breast cancer that appears to be significantly associated with bone metastasis. Among the genes that constitute this signature, trefoil factor 1 (TFF1) was identified as the most differentially expressed gene associated with bone metastasis. In this study, we investigated 25 candidate gene markers in the CTCs of metastatic breast cancer patients with different metastatic sites. The panel of the 25 markers was investigated in 80 baseline samples (first blood draw of CTCs) and 30 follow-up samples. In addition, 40 healthy blood donors (HBDs) were analyzed as controls. The assay was performed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with RNA extracted from CTCs captured by the CellSearch system. Our study indicated that 12 of the genes were uniquely expressed in CTCs and 10 were highly expressed in the CTCs obtained from patients compared to those obtained from HBDs. Among these genes, the expression of keratin 19 was highly correlated with the CTC count. The TFF1 expression in CTCs was a strong predictor of bone metastasis and the patients with a high expression of estrogen receptor β in CTCs exhibited a better response to hormonal treatment. Molecular characterization of these genes in CTCs may provide a better understanding of the mechanism underlying tumor metastasis and identify gene markers in CTCs for predicting disease progression and

  5. Evaluation of Two Different Analytical Methods for Circulating Tumor Cell Detection in Peripheral Blood of Patients with Primary Breast Cancer

    Directory of Open Access Journals (Sweden)

    B. A. S. Jaeger

    2014-01-01

    Full Text Available Background. Evidence is accumulating that circulating tumor cells (CTC out of peripheral blood can serve as prognostic marker not only in metastatic but also in early breast cancer (BC. Various methods are available to detect CTC. Comparisons between the different techniques, however, are rare. Material and Methods. We evaluate two different methods for CTC enrichment and detection in primary BC patients: the FDA-approved CellSearch System (CSS; Veridex, Warren, USA and a manual immunocytochemistry (MICC. The cut-off value for positivity was ≥1 CTC. Results. The two different nonoverlapping patient cohorts evaluated with one or the other method were well balanced regarding common clinical parameters. Before adjuvant CHT 21.1% (416 out of 1972 and 20.6% (247 out of 1198 of the patients were CTC-positive, while after CHT 22.5% (359 out of 1598 and 16.6% (177 out of 1066 of the patients were CTC-positive using CSS or MICC, respectively. CTC positivity rate before CHT was thus similar and not significantly different (P=0.749, while CTC positivity rate immediately after CHT was significantly lower using MICC compared to CSS (P<0.001. Conclusion. Using CSS or MICC for CTC detection, we found comparable prevalence of CTC before but not after adjuvant CHT.

  6. Minimizing Platelet Activation-Induced Clogging in Deterministic Lateral Displacement Arrays for High-Throughput Capture of Circulating Tumor Cells

    Science.gov (United States)

    D'Silva, Joseph; Loutherback, Kevin; Austin, Robert; Sturm, James

    2013-03-01

    Deterministic lateral displacement arrays have been used to separate circulating tumor cells (CTCs) from diluted whole blood at flow rates up to 10 mL/min (K. Loutherback et al., AIP Advances, 2012). However, the throughput is limited to 2 mL equivalent volume of undiluted whole blood due to clogging of the array. Since the concentration of CTCs can be as low as 1-10 cells/mL in clinical samples, processing larger volumes of blood is necessary for diagnostic and analytical applications. We have identified platelet activation by the micro-post array as the primary cause of this clogging. In this talk, we (i) show that clogging occurs at the beginning of the micro-post array and not in the injector channels because both acceleration and deceleration in fluid velocity are required for clogging to occur, and (ii) demonstrate how reduction in platelet concentration and decrease in platelet contact time within the device can be used in combination to achieve a 10x increase in the equivalent volume of undiluted whole blood processed. Finally, we discuss experimental efforts to separate the relative contributions of contact activated coagulation and shear-induced platelet activation to clogging and approaches to minimize these, such as surface treatment and post geometry design.

  7. The use of circulating tumor cells in guiding treatment decisions for patients with metastatic castration-resistant prostate cancer.

    Science.gov (United States)

    Onstenk, Wendy; de Klaver, Willemijn; de Wit, Ronald; Lolkema, Martijn; Foekens, John; Sleijfer, Stefan

    2016-05-01

    The therapeutic landscape of metastatic castration-resistant prostate cancer (mCRPC) has drastically changed over the past decade with the advent of several new anti-tumor agents. Oncologists increasingly face dilemmas concerning the best treatment sequence for individual patients since most of the novel compounds have been investigated and subsequently positioned either pre- or post-docetaxel. A currently unmet need exists for biomarkers able to guide treatment decisions and to capture treatment resistance at an early stage thereby allowing for an early change to an alternative strategy. Circulating tumor cells (CTCs) have in this context intensively been investigated over the last years. The CTC count, as determined by the CellSearch System (Janssen Diagnostics LLC, Raritan, NJ), is a strong, independent prognostic factor for overall survival in patients with mCRPC at various time points during treatment and, as an early response marker, outperforms traditional response evaluations using serum prostate specific antigen (PSA) levels, scintigraphy as well as radiography. The focus of research is now shifting toward the predictive value of CTCs and the use of the characterization of CTCs to guide the selection of treatments with the highest chance of success for individual patients. Recently, the presence of the androgen receptor splice variant 7 (AR-V7) has been shown to be a promising predictive factor. In this review, we have explored the clinical value of the enumeration and characterization of CTCs for the treatment of mCRPC and have put the results obtained from recent studies investigating the prognostic and predictive value of CTCs into clinical perspective. PMID:27107266

  8. High purity microfluidic sorting and analysis of circulating tumor cells: towards routine mutation detection.

    Science.gov (United States)

    Autebert, Julien; Coudert, Benoit; Champ, Jérôme; Saias, Laure; Guneri, Ezgi Tulukcuoglu; Lebofsky, Ronald; Bidard, François-Clément; Pierga, Jean-Yves; Farace, Françoise; Descroix, Stéphanie; Malaquin, Laurent; Viovy, Jean-Louis

    2015-05-01

    A new generation of the Ephesia cell capture technology optimized for CTC capture and genetic analysis is presented, characterized in depth and compared with the CellSearch system as a reference. This technology uses magnetic particles bearing tumour-cell specific EpCAM antibodies, self-assembled in a regular array in a microfluidic flow cell. 48,000 high aspect-ratio columns are generated using a magnetic field in a high throughput (>3 ml h(-1)) device and act as sieves to specifically capture the cells of interest through antibody-antigen interactions. Using this device optimized for CTC capture and analysis, we demonstrated the capture of epithelial cells with capture efficiency above 90% for concentrations as low as a few cells per ml. We showed the high specificity of capture with only 0.26% of non-epithelial cells captured for concentrations above 10 million cells per ml. We investigated the capture behavior of cells in the device, and correlated the cell attachment rate with the EpCAM expression on the cell membranes for six different cell lines. We developed and characterized a two-step blood processing method to allow for rapid processing of 10 ml blood tubes in less than 4 hours, and showed a capture rate of 70% for as low as 25 cells spiked in 10 ml blood tubes, with less than 100 contaminating hematopoietic cells. Using this device and procedure, we validated our system on patient samples using an automated cell immunostaining procedure and a semi-automated cell counting method. Our device captured CTCs in 75% of metastatic prostate cancer patients and 80% of metastatic breast cancer patients, and showed similar or better results than the CellSearch device in 10 out of 13 samples. Finally, we demonstrated the possibility of detecting cancer-related PIK3CA gene mutation in 20 cells captured in the chip with a good correlation between the cell count and the quantitation value Cq of the post-capture qPCR. PMID:25815443

  9. Self-propelled carbon nanotube based microrockets for rapid capture and isolation of circulating tumor cells.

    Science.gov (United States)

    Banerjee, Shashwat S; Jalota-Badhwar, Archana; Zope, Khushbu R; Todkar, Kiran J; Mascarenhas, Russel R; Chate, Govind P; Khutale, Ganesh V; Bharde, Atul; Calderon, Marcelo; Khandare, Jayant J

    2015-05-21

    Here, we report a non-invasive strategy for isolating cancer cells by autonomously propelled carbon nanotube (CNT) microrockets. H2O2-driven oxygen (O2) bubble-propelled microrockets were synthesized using CNT and Fe3O4 nanoparticles in the inner surface and covalently conjugating transferrin on the outer surface. Results show that self-propellant microrockets can specifically capture cancer cells.

  10. Circulating Tumor Cells in Metastatic Breast Cancer: Monitoring Response to Chemotherapy and Predicting Progression-Free Survival

    Institute of Scientific and Technical Information of China (English)

    Jian-ping Cheng; Ying Yan; Xiang-yi Wang; Yuan-li Lu; Yan-hua Yuan; Xiao-li Wang; Jun Jia; Jun Ren

    2011-01-01

    Objective: The purpose of this study is to explore RT-PCR method to set up the examination platform for detecting circulating tumor cells(CTC) in peripheral blood from metastatic breast cancer patients.The primary endpoint is to find out the correlation of existence of CTC with clinical responses and progression-free survival (PFS).Methods: The breast cancer cell line MCF-7 was serially diluted into the peripheral blood from 45 healthy donors to set up the sensitivity of RT-PCR assay.The expression of CK19 mRNA was amplified from both 49 patients and 45 healthy donors respectively.The CK19 protein quantity from plasma was measured by competitive inhibition ELISA assay.Results: The sensitivity of RT-PCR could reach 1/106-107 white blood cells with specificity of 95.6%.The objective response rate(ORR) of patients with CK19 mRNA-negative undertaken one cycle chemotherapy was significantly higher than those with positive(P<0.0001).PFS among CK19 mRNA-negative patients was also increased,although there was no significance(P=0.098).The results of ELISA assay showed that CK19 protein was decreased significantly after one cycle chemotherapy,which gave rise to a little higher ORR(P=0.015) and increased PFS(P=0.016).Conclusion: Patients with unamplified CK19 mRNA after one cycle chemotherapy could achieve better radiographic evaluation and increased PFS,which was showed to be of consistency with the CK19 protein assay among the patients treated.

  11. Optical quantification of cellular mass, volume and density of circulating tumor cells identified in an ovarian cancer patient

    Directory of Open Access Journals (Sweden)

    Kevin Gregory Phillips

    2012-07-01

    Full Text Available Clinical studies have demonstrated that circulating tumor cells (CTCs are present in the blood of cancer patients with known metastatic disease across the major types of epithelial malignancies. Recent studies have shown that the concentration of CTCs in the blood is prognostic of overall survival in breast, prostate, colorectal and non-small cell lung cancer. This study characterizes CTCs identified using the high-definition (HD-CTC assay in an ovarian cancer patient with stage IIIC disease. We characterized the physical properties of 31 HD-CTCs and 50 normal leukocytes from a single blood draw taken just prior to the initial debulking surgery. We utilized a non-interferometric quantitative phase microscopy technique using brightfield imagery to measure cellular dry mass. Next we used a quantitative differential interference contrast microscopy technique to measure cellular volume. These techniques were combined to determine cellular dry mass density. We found that HD-CTCs were more massive than leukocytes: 33.6 ± 3.2 pg (HD-CTC compared to 18.7 ± 0.6 pg (leukocytes, p < 0.001; had greater volumes: 518.3 ± 24.5 fL (HD-CTC compared to 230.9 ± 78.5 fL (leukocyte, p<0.001; and possessed a decreased dry mass density with respect to leukocytes: 0.065 ± 0.006 pg/fL (HD-CTC compared to 0.085 ± 0.004 pg/fL (leukocyte, p < 0.006. Quantification of HD-CTC dry mass content and volume provide key insights into the fluid dynamics of cancer, and may provide the rationale for strategies to isolate, monitor or target CTCs based on their physical properties. The parameters reported here can also be incorporated into blood cell flow models to better understand metastasis.

  12. A simple multicolor flow cytometry protocol for detection and molecular characterization of circulating tumor cells in epithelial cancers.

    Science.gov (United States)

    Hristozova, Tsvetana; Konschak, Robert; Budach, Volker; Tinhofer, Ingeborg

    2012-06-01

    Circulating tumor cells (CTCs) might not only serve as prognostic marker but could also be useful for monitoring treatment efficacy. A multicolor flow cytometry protocol for their detection and molecular characterization in peripheral blood was developed which consisted of erythrocyte lysis followed by staining of cells with fluorochrome-labeled antibodies against CD45 and the epithelial markers EpCam and cytokeratin 7/8. For reducing the number of events acquired by flow cytometry, an electronic threshold for the fluorescent signals from the epithelial markers was applied. After establishment of the protocol by using spiking experiments, its suitability to determine the absolute number of CTCs as well as their expression of epidermal growth factor receptor (EGFR) and its phosphorylated form (phospho-EGFR) in blood samples from patients with squamous cell carcinoma of the head and neck (SCCHN) was validated. Spiking experiments demonstrated an excellent recovery (mean 85%) and a linear performance (R(2) = 0.98) of the protocol. Sensitivity and specificity were comparable to our former protocol using immunomagnetic CTC pre-enrichment. The analysis of 33 SCCHN patient samples revealed the presence of CTCs in 33.3% of cases with a mean ± SD of 1.5 ± 0.5 CTCs per 3.75 ml blood. EGFR was expressed in 100% and phospho-EGFR in 36.4% of the CTC+ cases. We have established a simple and sensitive multicolor flow cytometry protocol for detection of CTCs in patients with epithelial cancers including SCCHN which will allow their detailed molecular characterization.

  13. Multiscale immunomagnetic enrichment of circulating tumor cells: from tubes to microchips.

    Science.gov (United States)

    Chen, Peng; Huang, Yu-Yen; Hoshino, Kazunori; Zhang, Xiaojing

    2014-02-01

    We review the rare cancer cell sorting technologies, with a focus on multiscale immunomagnetic approaches. Starting from the conventional magnetic activated cell sorting system, we derive the scaling laws of immunomagnetic assay and justify the recent trend of using downscaled systems for CTC studies. Furthermore, we introduce recent work on combining the immunomagnetic assay with microfluidic technology for enhanced separation. We summarize different types of in-channel micro-magnetic structures that can further increase the local magnetic field without lowering the system throughput. Related design concepts, principles, and microfabrication techniques are presented and evaluated.

  14. High-definition imaging of circulating tumor cells and associated cellular events in non-small cell lung cancer patients: a longitudinal analysis

    International Nuclear Information System (INIS)

    Sampling circulating tumor cells (CTCs) from peripheral blood is ideally accomplished using assays that detect high numbers of cells and preserve them for downstream characterization. We sought to evaluate a method using enrichment free fluorescent labeling of CTCs followed by automated digital microscopy in patients with non-small cell lung cancer. Twenty-eight patients with non-small cell lung cancer and hematogenously seeded metastasis were analyzed with multiple blood draws. We detected CTCs in 68% of analyzed samples and found a propensity for increased CTC detection as the disease progressed in individual patients. CTCs were present at a median concentration of 1.6 CTCs ml−1 of analyzed blood in the patient population. Higher numbers of detected CTCs were associated with an unfavorable prognosis

  15. Construction of Epidermal Growth Factor Receptor Peptide Magnetic Nanovesicles with Lipid Bilayers for Enhanced Capture of Liver Cancer Circulating Tumor Cells.

    Science.gov (United States)

    Ding, Jian; Wang, Kai; Tang, Wen-Jie; Li, Dan; Wei, You-Zhen; Lu, Ying; Li, Zong-Hai; Liang, Xiao-Fei

    2016-09-20

    Highly effective targeted tumor recognition via vectors is crucial for cancer detection. In contrast to antibodies and proteins, peptides are direct targeting ligands with a low molecular weight. In the present study, a peptide magnetic nanovector platform containing a lipid bilayer was designed using a peptide amphiphile (PA) as a skeleton material in a controlled manner without surface modification. Fluorescein isothiocyanate-labeled epidermal growth factor receptor (EGFR) peptide nanoparticles (NPs) could specifically bind to EGFR-positive liver tumor cells. EGFR peptide magnetic vesicles (EPMVs) could efficiently recognize and separate hepatoma carcinoma cells from cell solutions and treated blood samples (ratio of magnetic EPMVs versus anti-EpCAM NPs: 3.5 ± 0.29). Analysis of the circulating tumor cell (CTC) count in blood samples from 32 patients with liver cancer showed that EPMVs could be effectively applied for CTC capture. Thus, this nanoscale, targeted cargo-packaging technology may be useful for designing cancer diagnostic systems.

  16. Highly sensitive proximity mediated immunoassay reveals HER2 status conversion in the circulating tumor cells of metastatic breast cancer patients

    Directory of Open Access Journals (Sweden)

    Kim Phillip

    2011-12-01

    Full Text Available Abstract Background The clinical benefits associated with targeted oncology agents are generally limited to subsets of patients. Even with favorable biomarker profiles, many patients do not respond or acquire resistance. Existing technologies are ineffective for treatment monitoring as they provide only static and limited information and require substantial amounts of tissue. Therefore, there is an urgent need to develop methods that can profile potential therapeutic targets with limited clinical specimens during the course of treatment. Methods We have developed a novel proteomics-based assay, Collaborative Enzyme Enhanced Reactive-immunoassay (CEER that can be used for analyzing clinical samples. CEER utilizes the formation of unique immuno-complex between capture-antibodies and two additional detector-Abs on a microarray surface. One of the detector-Abs is conjugated to glucose oxidase (GO, and the other is conjugated to Horse Radish Peroxidase (HRP. Target detection requires the presence of both detector-Abs because the enzyme channeling event between GO and HRP will not occur unless both Abs are in close proximity. Results CEER was able to detect single-cell level expression and phosphorylation of human epidermal growth factor receptor 2 (HER2 and human epidermal growth factor receptor 1 (HER1 in breast cancer (BCa systems. The shift in phosphorylation profiles of receptor tyrosine kinases (RTKs and other signal transduction proteins upon differential ligand stimulation further demonstrated extreme assay specificity in a multiplexed array format. HER2 analysis by CEER in 227 BCa tissues showed superior accuracy when compared to the outcome from immunohistochemistry (IHC (83% vs. 96%. A significant incidence of HER2 status alteration with recurrent disease was observed via circulating tumor cell (CTC analysis, suggesting an evolving and dynamic disease progression. HER2-positive CTCs were found in 41% (7/17 while CTCs with significant HER2

  17. Detection of live circulating tumor cells by a class of near-infrared heptamethine carbocyanine dyes in patients with localized and metastatic prostate cancer.

    Science.gov (United States)

    Shao, Chen; Liao, Chun-Peng; Hu, Peizhen; Chu, Chia-Yi; Zhang, Lei; Bui, Matthew H T; Ng, Christopher S; Josephson, David Y; Knudsen, Beatrice; Tighiouart, Mourad; Kim, Hyung L; Zhau, Haiyen E; Chung, Leland W K; Wang, Ruoxiang; Posadas, Edwin M

    2014-01-01

    Tumor cells are inherently heterogeneous and often exhibit diminished adhesion, resulting in the shedding of tumor cells into the circulation to form circulating tumor cells (CTCs). A fraction of these are live CTCs with potential of metastatic colonization whereas others are at various stages of apoptosis making them likely to be less relevant to understanding the disease. Isolation and characterization of live CTCs may augment information yielded by standard enumeration to help physicians to more accurately establish diagnosis, choose therapy, monitor response, and provide prognosis. We previously reported on a group of near-infrared (NIR) heptamethine carbocyanine dyes that are specifically and actively transported into live cancer cells. In this study, this viable tumor cell-specific behavior was utilized to detect live CTCs in prostate cancer patients. Peripheral blood mononuclear cells (PBMCs) from 40 patients with localized prostate cancer together with 5 patients with metastatic disease were stained with IR-783, the prototype heptamethine cyanine dye. Stained cells were subjected to flow cytometric analysis to identify live (NIR(+)) CTCs from the pool of total CTCs, which were identified by EpCAM staining. In patients with localized tumor, live CTC counts corresponded with total CTC numbers. Higher live CTC counts were seen in patients with larger tumors and those with more aggressive pathologic features including positive margins and/or lymph node invasion. Even higher CTC numbers (live and total) were detected in patients with metastatic disease. Live CTC counts declined when patients were receiving effective treatments, and conversely the counts tended to rise at the time of disease progression. Our study demonstrates the feasibility of applying of this staining technique to identify live CTCs, creating an opportunity for further molecular interrogation of a more biologically relevant CTC population.

  18. Detection of live circulating tumor cells by a class of near-infrared heptamethine carbocyanine dyes in patients with localized and metastatic prostate cancer.

    Directory of Open Access Journals (Sweden)

    Chen Shao

    Full Text Available Tumor cells are inherently heterogeneous and often exhibit diminished adhesion, resulting in the shedding of tumor cells into the circulation to form circulating tumor cells (CTCs. A fraction of these are live CTCs with potential of metastatic colonization whereas others are at various stages of apoptosis making them likely to be less relevant to understanding the disease. Isolation and characterization of live CTCs may augment information yielded by standard enumeration to help physicians to more accurately establish diagnosis, choose therapy, monitor response, and provide prognosis. We previously reported on a group of near-infrared (NIR heptamethine carbocyanine dyes that are specifically and actively transported into live cancer cells. In this study, this viable tumor cell-specific behavior was utilized to detect live CTCs in prostate cancer patients. Peripheral blood mononuclear cells (PBMCs from 40 patients with localized prostate cancer together with 5 patients with metastatic disease were stained with IR-783, the prototype heptamethine cyanine dye. Stained cells were subjected to flow cytometric analysis to identify live (NIR(+ CTCs from the pool of total CTCs, which were identified by EpCAM staining. In patients with localized tumor, live CTC counts corresponded with total CTC numbers. Higher live CTC counts were seen in patients with larger tumors and those with more aggressive pathologic features including positive margins and/or lymph node invasion. Even higher CTC numbers (live and total were detected in patients with metastatic disease. Live CTC counts declined when patients were receiving effective treatments, and conversely the counts tended to rise at the time of disease progression. Our study demonstrates the feasibility of applying of this staining technique to identify live CTCs, creating an opportunity for further molecular interrogation of a more biologically relevant CTC population.

  19. Assessment of circulating tumor cells and serum markers for progression-free survival prediction in metastatic breast cancer: a prospective observational study

    OpenAIRE

    Bidard, François-Clément; Hajage, David; Bachelot, Thomas; Delaloge, Suzette; Brain, Etienne; Campone, Mario; Cottu, Paul; Beuzeboc, Philippe; Rolland, Emilie; Mathiot, Claire; Pierga, Jean-Yves

    2012-01-01

    Introduction Circulating tumor cells (CTC) have been recently proposed as a new dynamic blood marker whose positivity at baseline is a prognostic factor and whose changes under treatment are correlated with progression-free survival (PFS) in metastatic breast cancer patients. However, serum marker levels are also used for the same purpose, and no clear comparison has been reported to date. Methods The IC 2006-04 enrolled prospectively 267 metastatic breast cancer patients treated by first lin...

  20. MUC1-positive circulating tumor cells and MUC1 protein predict chemotherapeutic efficacy in the treatment of metastatic breast cancer

    Institute of Scientific and Technical Information of China (English)

    Jian-Ping Cheng; Ying Yan; Xiang-Yi Wang; Yuan-Li Lu; Yan-Hua Yuan; Jun Jia; Jun Ren

    2011-01-01

    Chemotherapy plays an important role in the treatment of metastatic breast cancer. It is important to monitor chemotherapeutic efficacy, to find a simple and efficient tool to guide treatment, and to predict the efficacy of treatment in a timely and accurate manner. This study aimed to detect mucin-1 (MUC1) positive circulating tumor cells and MUC1 protein in the peripheral blood of patients with metastatic breast cancer and to investigate their relationship to chemotherapeutic efficacy. MUC1 mRNA was detected in the peripheral blood of 34 patients with newly diagnosed metastatic breast cancer by reverse transcription polymerase chain reaction. The positive rates of MUC1 mRNA were 88.2% before chemotherapy and 70.6% after chemotherapy, without a significant difference (P = 0.564); MUC1 mRNA expression before chemotherapy had no correlation with treatment effectiveness (P = 0.281). The response rate of MUC1 mRNA-negative patients after first-cycle chemotherapy was significantly higher (P = 0.009) and the progression-free survival (PFS) was clearly longer than those of MUC1 mRNA-positive patients (P = 0.095). MUC1 protein in peripheral blood plasma was detected by an ELISA competitive inhibition assay. The patients with decreased MUC1 protein after chemotherapy had a significantly longer PFS than those with elevated MUC1 protein (P = 0.044). These results indicate that the outcomes of MUC1 mRNA negative patients after chemotherapy are better than those of MUC1 mRNA-positive patients. In addition, patients with decreased expression of MUC1 protein have a better PFS.

  1. Efficient Capture and Isolation of Tumor-Related Circulating Cell-Free DNA from Cancer Patients Using Electroactive Conducting Polymer Nanowire Platforms

    Science.gov (United States)

    Jeon, SeungHyun; Lee, HyungJae; Bae, Kieun; Yoon, Kyong-Ah; Lee, Eun Sook; Cho, Youngnam

    2016-01-01

    Circulating cell-free DNA (cfDNA) is currently recognized as a key non-invasive biomarker for cancer diagnosis and progression and therapeutic efficacy monitoring. Because cfDNA has been detected in patients with diverse types of cancers, the use of efficient strategies to isolate cfDNA not only provides valuable insights into tumour biology, but also offers the potential for developing new cancer-specific targets. However, the challenges associated with conventional cfDNA extraction methods prevent their further clinical applications. Here, we developed a nanostructured conductive polymer platform for the efficient capture and release of circulating cfDNA and demonstrated its potential clinical utility using unprocessed plasma samples from patients with breast and lung cancers. Our results confirmed that the platform's enhanced efficiency allows tumor-specific circulating cfDNA to be recovered at high yield and purity. PMID:27162553

  2. ENO1 Protein Levels in the Tumor Tissues and Circulating Plasma Samples of Non-small Cell Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Ying ZHANG

    2010-12-01

    Full Text Available Background and objective Proper tumor markers are useful to diagnosis, prognosis and treatment for lung cancer. The aim of this study is to examine the levels of alpha-enolase (ENO1 protein in the tumor tissues and peripheral plasma samples obtained from non-small cell lung cancer (NSCLC patients, and evaluate its potential clinical significance. Methods The ENO1 protein levels in the tumor tissues and corresponding normal tissues from 16 cases of lung squamous cell carcinoma were analyzed by Western blot. The ENO1 protein levels in the plasma samples from 42 healthy individuals, 34 patients with lung benign disease and 84 patients with NSCLC were measured by double antibody sandwich enzyme-linked immunosorbent assay. Results For 87.5% (14/16 of the patients with lung squamous cell carcinoma, the ENO1 protein level in the tumor tissues was higher than that in the corresponding normal lung tissues. The ENO1 protein level in the plasma of NSCLC patients was significantly higher than that in the plasma of healthy individuals (P=0.031 and patients with lung benign disease (P=0.019. Furthermore, the ENO1 protein level was significantly higher in the plasma of patients with lung adenocarcinoma than that of patients with lung squamous cell carcinoma. Conclusion The elevated levels of ENO1 protein in the tumor tissues and the plasma samples from NSCLC patients indicate ENO1 may be a candidate biomarker of lung cancer.

  3. Quick chip assay using locked nucleic acid modified epithelial cell adhesion molecule and nucleolin aptamers for the capture of circulating tumor cells.

    Science.gov (United States)

    Maremanda, Nihal G; Roy, Kislay; Kanwar, Rupinder K; Shyamsundar, Vidyarani; Ramshankar, Vijayalakshmi; Krishnamurthy, Arvind; Krishnakumar, Subramanian; Kanwar, Jagat R

    2015-09-01

    The role of circulating tumor cells (CTCs) in disease diagnosis, prognosis, monitoring of the therapeutic efficacy, and clinical decision making is immense and has attracted tremendous focus in the last decade. We designed and fabricated simple, flat channel microfluidic devices polydimethylsiloxane (PDMS based) functionalized with locked nucleic acid (LNA) modified aptamers (targeting epithelial cell adhesion molecule (EpCAM) and nucleolin expression) for quick and efficient capture of CTCs and cancer cells. With optimized flow rates (10 μl/min), it was revealed that the aptamer modified devices offered reusability for up to six times while retaining optimal capture efficiency (>90%) and specificity. High capture sensitivity (92%) and specificity (100%) was observed in whole blood samples spiked with Caco-2 cells (10-100 cells/ml). Analysis of blood samples obtained from 25 head and neck cancer patients on the EpCAM LNA aptamer functionalized chip revealed that an average count of 5 ± 3 CTCs/ml of blood were captured from 22/25 samples (88%). EpCAM intracellular domain (EpICD) immunohistochemistry on 9 oral squamous cell carcinomas showed the EpICD positivity in the tumor cells, confirming the EpCAM expression in CTCs from head and neck cancers. These microfluidic devices also maintained viability for in vitro culture and characterization. Use of LNA modified aptamers provided added benefits in terms of cost effectiveness due to increased reusability and sustainability of the devices. Our results present a robust, quick, and efficient CTC capture platform with the use of simple PDMS based devices that are easy to fabricate at low cost and have an immense potential in cancer diagnosis, prognosis, and therapeutic planning. PMID:26487896

  4. UV activation of polymeric high aspect ratio microstructures: ramifications in antibody surface loading for circulating tumor cell selection.

    Science.gov (United States)

    Jackson, Joshua M; Witek, Małgorzata A; Hupert, Mateusz L; Brady, Charles; Pullagurla, Swathi; Kamande, Joyce; Aufforth, Rachel D; Tignanelli, Christopher J; Torphy, Robert J; Yeh, Jen Jen; Soper, Steven A

    2014-01-01

    The need to activate thermoplastic surfaces using robust and efficient methods has been driven by the fact that replication techniques can be used to produce microfluidic devices in a high production mode and at low cost, making polymer microfluidics invaluable for in vitro diagnostics, such as circulating tumor cell (CTC) analysis, where device disposability is critical to mitigate artifacts associated with sample carryover. Modifying the surface chemistry of thermoplastic devices through activation techniques can be used to increase the wettability of the surface or to produce functional scaffolds to allow for the covalent attachment of biologics, such as antibodies for CTC recognition. Extensive surface characterization tools were used to investigate UV activation of various surfaces to produce uniform and high surface coverage of functional groups, such as carboxylic acids in microchannels of different aspect ratios. We found that the efficiency of the UV activation process is highly dependent on the microchannel aspect ratio and the identity of the thermoplastic substrate. Colorimetric assays and fluorescence imaging of UV-activated microchannels following EDC/NHS coupling of Cy3-labeled oligonucleotides indicated that UV-activation of a PMMA microchannel with an aspect ratio of ~3 was significantly less efficient toward the bottom of the channel compared to the upper sections. This effect was a consequence of the bulk polymer's damping of the modifying UV radiation due to absorption artifacts. In contrast, this effect was less pronounced for COC. Moreover, we observed that after thermal fusion bonding of the device's cover plate to the substrate, many of the generated functional groups buried into the bulk rendering them inaccessible. The propensity of this surface reorganization was found to be higher for PMMA compared to COC. As an example of the effects of material and microchannel aspect ratios on device functionality, thermoplastic devices for the

  5. Microfluidic bead-based multienzyme-nanoparticle amplification for detection of circulating tumor cells in the blood using quantum dots labels

    International Nuclear Information System (INIS)

    Graphical abstract: A microfluidic beads-based nucleic acid sensor for sensitive detection of circulating tumor cells (CTCs) in the blood using multienzyme-nanoparticle amplification and quantum dots labels was developed. The chip-based CTCs analysis could detect reverse transcription-polymerase chain reaction (RT-PCR) products of tumor cell as low as 1 tumor cell (e.g. CEA expressing cell) in 1 mL blood sample. This microfluidic beads-based nucleic acid sensor is a promising platform for disease-related nucleic acid molecules at the lowest level at their earliest incidence. -- Highlights: •Combination of microfluidic bead-based platform and enzyme–probe–AuNPs is proposed. •The developed nucleic acid sensor could respond to 5 fM of tumor associated DNA. •Microfluidic platform and multienzyme-labeled AuNPs greatly enhanced sensitivity. •The developed nucleic acid sensor could respond to RT-PCR products of tumor cell as low as 1 tumor cell in 1 mL blood sample. •We report a sensitive nucleic acid sensor for detection of circulating tumor cells. -- Abstract: This study reports the development of a microfluidic bead-based nucleic acid sensor for sensitive detection of circulating tumor cells in blood samples using multienzyme-nanoparticle amplification and quantum dot labels. In this method, the microbeads functionalized with the capture probes and modified electron rich proteins were arrayed within a microfluidic channel as sensing elements, and the gold nanoparticles (AuNPs) functionalized with the horseradish peroxidases (HRP) and DNA probes were used as labels. Hence, two signal amplification approaches are integrated for enhancing the detection sensitivity of circulating tumor cells. First, the large surface area of Au nanoparticle carrier allows several binding events of HRP on each nanosphere. Second, enhanced mass transport capability inherent from microfluidics leads to higher capture efficiency of targets because continuous flow within micro

  6. Microfluidic bead-based multienzyme-nanoparticle amplification for detection of circulating tumor cells in the blood using quantum dots labels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, He, E-mail: mzhang_he@126.com; Fu, Xin; Hu, Jiayi; Zhu, Zhenjun

    2013-05-24

    Graphical abstract: A microfluidic beads-based nucleic acid sensor for sensitive detection of circulating tumor cells (CTCs) in the blood using multienzyme-nanoparticle amplification and quantum dots labels was developed. The chip-based CTCs analysis could detect reverse transcription-polymerase chain reaction (RT-PCR) products of tumor cell as low as 1 tumor cell (e.g. CEA expressing cell) in 1 mL blood sample. This microfluidic beads-based nucleic acid sensor is a promising platform for disease-related nucleic acid molecules at the lowest level at their earliest incidence. -- Highlights: •Combination of microfluidic bead-based platform and enzyme–probe–AuNPs is proposed. •The developed nucleic acid sensor could respond to 5 fM of tumor associated DNA. •Microfluidic platform and multienzyme-labeled AuNPs greatly enhanced sensitivity. •The developed nucleic acid sensor could respond to RT-PCR products of tumor cell as low as 1 tumor cell in 1 mL blood sample. •We report a sensitive nucleic acid sensor for detection of circulating tumor cells. -- Abstract: This study reports the development of a microfluidic bead-based nucleic acid sensor for sensitive detection of circulating tumor cells in blood samples using multienzyme-nanoparticle amplification and quantum dot labels. In this method, the microbeads functionalized with the capture probes and modified electron rich proteins were arrayed within a microfluidic channel as sensing elements, and the gold nanoparticles (AuNPs) functionalized with the horseradish peroxidases (HRP) and DNA probes were used as labels. Hence, two signal amplification approaches are integrated for enhancing the detection sensitivity of circulating tumor cells. First, the large surface area of Au nanoparticle carrier allows several binding events of HRP on each nanosphere. Second, enhanced mass transport capability inherent from microfluidics leads to higher capture efficiency of targets because continuous flow within micro

  7. Circulating Tumor Cells (CTC) and Cell-Free DNA (cfDNA) Workshop 2016: Scientific Opportunities and Logistics for Cancer Clinical Trial Incorporation.

    Science.gov (United States)

    Lowes, Lori E; Bratman, Scott V; Dittamore, Ryan; Done, Susan; Kelley, Shana O; Mai, Sabine; Morin, Ryan D; Wyatt, Alexander W; Allan, Alison L

    2016-09-08

    Despite the identification of circulating tumor cells (CTCs) and cell-free DNA (cfDNA) as potential blood-based biomarkers capable of providing prognostic and predictive information in cancer, they have not been incorporated into routine clinical practice. This resistance is due in part to technological limitations hampering CTC and cfDNA analysis, as well as a limited understanding of precisely how to interpret emergent biomarkers across various disease stages and tumor types. In recognition of these challenges, a group of researchers and clinicians focused on blood-based biomarker development met at the Canadian Cancer Trials Group (CCTG) Spring Meeting in Toronto, Canada on 29 April 2016 for a workshop discussing novel CTC/cfDNA technologies, interpretation of data obtained from CTCs versus cfDNA, challenges regarding disease evolution and heterogeneity, and logistical considerations for incorporation of CTCs/cfDNA into clinical trials, and ultimately into routine clinical use. The objectives of this workshop included discussion of the current barriers to clinical implementation and recent progress made in the field, as well as fueling meaningful collaborations and partnerships between researchers and clinicians. We anticipate that the considerations highlighted at this workshop will lead to advances in both basic and translational research and will ultimately impact patient management strategies and patient outcomes.

  8. Circulating Tumor Cells (CTC) and Cell-Free DNA (cfDNA) Workshop 2016: Scientific Opportunities and Logistics for Cancer Clinical Trial Incorporation.

    Science.gov (United States)

    Lowes, Lori E; Bratman, Scott V; Dittamore, Ryan; Done, Susan; Kelley, Shana O; Mai, Sabine; Morin, Ryan D; Wyatt, Alexander W; Allan, Alison L

    2016-01-01

    Despite the identification of circulating tumor cells (CTCs) and cell-free DNA (cfDNA) as potential blood-based biomarkers capable of providing prognostic and predictive information in cancer, they have not been incorporated into routine clinical practice. This resistance is due in part to technological limitations hampering CTC and cfDNA analysis, as well as a limited understanding of precisely how to interpret emergent biomarkers across various disease stages and tumor types. In recognition of these challenges, a group of researchers and clinicians focused on blood-based biomarker development met at the Canadian Cancer Trials Group (CCTG) Spring Meeting in Toronto, Canada on 29 April 2016 for a workshop discussing novel CTC/cfDNA technologies, interpretation of data obtained from CTCs versus cfDNA, challenges regarding disease evolution and heterogeneity, and logistical considerations for incorporation of CTCs/cfDNA into clinical trials, and ultimately into routine clinical use. The objectives of this workshop included discussion of the current barriers to clinical implementation and recent progress made in the field, as well as fueling meaningful collaborations and partnerships between researchers and clinicians. We anticipate that the considerations highlighted at this workshop will lead to advances in both basic and translational research and will ultimately impact patient management strategies and patient outcomes. PMID:27618023

  9. Circulating Tumor Cells (CTC) and Cell-Free DNA (cfDNA) Workshop 2016: Scientific Opportunities and Logistics for Cancer Clinical Trial Incorporation

    Science.gov (United States)

    Lowes, Lori E.; Bratman, Scott V.; Dittamore, Ryan; Done, Susan; Kelley, Shana O.; Mai, Sabine; Morin, Ryan D.; Wyatt, Alexander W.; Allan, Alison L.

    2016-01-01

    Despite the identification of circulating tumor cells (CTCs) and cell-free DNA (cfDNA) as potential blood-based biomarkers capable of providing prognostic and predictive information in cancer, they have not been incorporated into routine clinical practice. This resistance is due in part to technological limitations hampering CTC and cfDNA analysis, as well as a limited understanding of precisely how to interpret emergent biomarkers across various disease stages and tumor types. In recognition of these challenges, a group of researchers and clinicians focused on blood-based biomarker development met at the Canadian Cancer Trials Group (CCTG) Spring Meeting in Toronto, Canada on 29 April 2016 for a workshop discussing novel CTC/cfDNA technologies, interpretation of data obtained from CTCs versus cfDNA, challenges regarding disease evolution and heterogeneity, and logistical considerations for incorporation of CTCs/cfDNA into clinical trials, and ultimately into routine clinical use. The objectives of this workshop included discussion of the current barriers to clinical implementation and recent progress made in the field, as well as fueling meaningful collaborations and partnerships between researchers and clinicians. We anticipate that the considerations highlighted at this workshop will lead to advances in both basic and translational research and will ultimately impact patient management strategies and patient outcomes. PMID:27618023

  10. Liver and circulating NK1.1(+)CD3(-) cells are increased in infection with attenuated Salmonella typhimurium and are associated with reduced tumor in murine liver cancer.

    Science.gov (United States)

    Feltis, B A; Miller, J S; Sahar, D A; Kim, A S; Saltzman, D A; Leonard, A S; Wells, C L; Sielaff, T D

    2002-09-01

    An attenuated (DeltacyA, Deltacrp) strain of Salmonella typhimurium (chi4550) containing a gene for human IL-2 (chi4550pIL2) reduces hepatic tumor burden when orally inoculated into mice with liver cancer; however, wild-type S. typhimurium is also associated with cancer regression. Therefore, experiments were designed to clarify the invasiveness and the anti-tumor properties of three strains of S. typhimurium. S. typhimurium chi4550pIL2, chi4550, or wild type (WT) was incubated with mature Caco-2 and HT-29 enterocytes, and S. typhimurium internalization was assessed. For infectivity experiments, mice were orally inoculated with saline or 10(9)S. typhimurium chi4550pIL2, chi4550, or WT; 48 h later mice were sacrificed for analysis of cecal bacteria and S. typhimurium translocation to mesenteric lymph nodes. For experiments involving tumor implantation, four groups were studied: saline control, tumor alone, chi4550pIL2+tumor, and chi4550+tumor. Mice were orally inoculated with saline or S. typhimurium and underwent laparotomy 24 h later with 5 x 10(4) MCA38 murine adenocarcinoma cells injected into the spleen. On day 14, liver tumors were counted and peripheral blood and hepatic lymphocyte populations were analyzed by FACScan. Attenuated S. typhimurium exhibited decreased internalization by cultured enterocytes and decreased infectivity after oral inoculation. Mice treated with chi4550pIL2 or chi4550 had fewer liver tumors and increased populations of hepatic and circulating NK1.1(+)CD3(-) lymphocytes compared to mice treated with saline (P < 0.01). These data suggest that attenuated S. typhimurium may have an application as an anti-tumor agent.

  11. Monitoring of Circulating Tumor Cells and Their Expression of EGFR/Phospho-EGFR During Combined Radiotherapy Regimens in Locally Advanced Squamous Cell Carcinoma of the Head and Neck

    Energy Technology Data Exchange (ETDEWEB)

    Tinhofer, Ingeborg, E-mail: ingeborg.tinhofer@charite.de [Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charite Campus Mitte, Charite Universitaetsmedizin Berlin, Berlin (Germany); Hristozova, Tsvetana; Stromberger, Carmen [Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charite Campus Mitte, Charite Universitaetsmedizin Berlin, Berlin (Germany); KeilhoIz, Ulrich [Department of Hematology and Oncology, Campus Benjamin Franklin, Charite Universitaetsmedizin Berlin, Berlin (Germany); Budach, Volker [Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charite Campus Mitte, Charite Universitaetsmedizin Berlin, Berlin (Germany)

    2012-08-01

    Purpose: The numbers of circulating tumor cells (CTCs) and their expression/activation of epidermal growth factor receptor (EGFR) during the course of combined chemo- or bioradiotherapy regimens as potential biomarkers of treatment efficacy in squamous cell carcinoma of the head and neck (SCCHN) were determined. Methods and Materials: Peripheral blood samples from SCCHN patients with locally advanced stage IVA/B disease who were treated with concurrent radiochemotherapy or induction chemotherapy followed by bioradiation with cetuximab were included in this study. Using flow cytometry, the absolute number of CTCs per defined blood volume as well as their expression of EGFR and its phosphorylated form (pEGFR) during the course of treatment were assessed. Results: Before treatment, we detected {>=}1 CTC per 3.75 mL blood in 9 of 31 patients (29%). Basal expression of EGFR was detected in 100% and pEGFR in 55% of the CTC+ cases. The frequency of CTC detection was not influenced by induction chemotherapy. However, the number of CTC+ samples significantly increased after radiotherapy. This radiation-induced increase in CTC numbers was less pronounced when radiotherapy was combined with cetuximab compared to its combination with cisplatin/5-fluorouracil. The former treatment regimen was also more effective in reducing pEGFR expression in CTCs. Conclusions: Definitive radiotherapy regimens of locally advanced SCCHN can increase the number of CTCs and might thus contribute to a systemic spread of tumor cells. Further studies are needed to evaluate the predictive value of the radiation-induced increase in CTC numbers and the persistent activation of the EGFR signalling pathway in individual CTC+ cases.

  12. Development of a new rapid isolation device for circulating tumor cells (CTCs using 3D palladium filter and its application for genetic analysis.

    Directory of Open Access Journals (Sweden)

    Akiko Yusa

    Full Text Available Circulating tumor cells (CTCs in the blood of patients with epithelial malignancies provide a promising and minimally invasive source for early detection of metastasis, monitoring of therapeutic effects and basic research addressing the mechanism of metastasis. In this study, we developed a new filtration-based, sensitive CTC isolation device. This device consists of a 3-dimensional (3D palladium (Pd filter with an 8 µm-sized pore in the lower layer and a 30 µm-sized pocket in the upper layer to trap CTCs on a filter micro-fabricated by precise lithography plus electroforming process. This is a simple pump-less device driven by gravity flow and can enrich CTCs from whole blood within 20 min. After on-device staining of CTCs for 30 min, the filter cassette was removed from the device, fixed in a cassette holder and set up on the upright fluorescence microscope. Enumeration and isolation of CTCs for subsequent genetic analysis from the beginning were completed within 1.5 hr and 2 hr, respectively. Cell spike experiments demonstrated that the recovery rate of tumor cells from blood by this Pd filter device was more than 85%. Single living tumor cells were efficiently isolated from these spiked tumor cells by a micromanipulator, and KRAS mutation, HER2 gene amplification and overexpression, for example, were successfully detected from such isolated single tumor cells. Sequential analysis of blood from mice bearing metastasis revealed that CTC increased with progression of metastasis. Furthermore, a significant increase in the number of CTCs from the blood of patients with metastatic breast cancer was observed compared with patients without metastasis and healthy volunteers. These results suggest that this new 3D Pd filter-based device would be a useful tool for the rapid, cost effective and sensitive detection, enumeration, isolation and genetic analysis of CTCs from peripheral blood in both preclinical and clinical settings.

  13. Circulating levels of cell adhesion molecule L1 as a prognostic marker in gastrointestinal stromal tumor patients

    Directory of Open Access Journals (Sweden)

    Schachner Melitta

    2011-05-01

    Full Text Available Abstract Background L1 cell adhesion molecule (CD171 is expressed in many malignant tumors and its expression correlates with unfavourable outcome. It thus represents a target for tumor diagnosis and therapy. An earlier study conducted by our group identified L1 expression levels in primary gastrointestinal stromal tumors (GIST as a prognostic marker. The aim of the current study was to compare L1 serum levels of GIST patients with those of healthy controls and to determine whether levels of soluble L1 in sera could serve as a prognostic marker. Methods Using a sensitive enzyme-linked immunosorbent assay (ELISA, soluble L1 was measured in sera of 93 GIST patients und 151 healthy controls. Soluble L1 levels were then correlated with clinicopathological data. Results Median levels of soluble L1 were significantly higher (p p Conclusion These results suggest that high soluble L1 levels predict poor prognosis and may thus be a promising tumor marker that can contribute to individualise therapy.

  14. Expression of SOCS1 and CXCL12 Proteins in Primary Breast Cancer Are Associated with Presence of Circulating Tumor Cells in Peripheral Blood

    Directory of Open Access Journals (Sweden)

    Bozena Smolkova

    2016-06-01

    Full Text Available Circulating tumor cells (CTCs are independent prognostic factors in the primary and metastatic breast cancer patients and play crucial role in hematogenous tumor dissemination. The aim of this study was to correlate the presence of CTCs in peripheral blood with the expression of proteins in tumor tissue that have a putative role in regulation of cell growth and metastatic potential. This prospective study included 203 primary breast cancer patients treated by definitive surgery. CTCs were detected by quantitative real-time PCR for the expression of epithelial (CK19 or epithelial-to-mesenchymal transition–inducing transcription factor genes (TWIST1, SNAIL1, SLUG, and ZEB1. Expression of APC, ADAM23, CXCL12, E-cadherin, RASSF1, SYK, TIMP3, BRMS1, and SOCS1 proteins in primary breast tumor tissue was evaluated by immunohistochemistry. CTCs with epithelial markers were found in 17 (9.2% patients. Their occurrence was associated with inhibition of SOCS1 expression (odds ratio [OR] = 0.07; 95% confidence interval [CI], 0.03-0.13; P < .001. CTCs with positive epithelial-to-mesenchymal transition markers were detected in 30 (15.8% patients; however, no association with analyzed protein expressions was found. Overall, CTCs were detected in 44 (22.9% patients. Presence of any CTC marker was significantly associated with positive CXCL12 expression (OR = 3.08; 95% CI, 1.15-8.26; P = .025 and lack of SOCS1 expression (OR = 0.10; 95% CI, 0.04-0.25; P < .001 in patient’s tumor tissues. As both CXCL12 and SOCS1 proteins are involved in cytokine signaling, our results provide support for the hypothesis that aberrant signaling cross talk between cytokine and chemokine responses could have an important role in hematogenous dissemination of tumor cells in breast cancer.

  15. Potential role of nuclear PD-L1 expression in cell-surface vimentin positive circulating tumor cells as a prognostic marker in cancer patients.

    Science.gov (United States)

    Satelli, Arun; Batth, Izhar Singh; Brownlee, Zachary; Rojas, Christina; Meng, Qing H; Kopetz, Scott; Li, Shulin

    2016-01-01

    Although circulating tumor cells (CTCs) have potential as diagnostic biomarkers for cancer, determining their prognostic role in cancer patients undergoing treatment is a challenge. We evaluated the prognostic value of programmed death-ligand 1 (PD-L1) expression in CTCs in colorectal and prostate cancer patients undergoing treatment. Peripheral blood samples were collected from 62 metastatic colorectal cancer patients and 30 metastatic prostate cancer patients. CTCs were isolated from the samples using magnetic separation with the cell-surface vimentin(CSV)-specific 84-1 monoclonal antibody that detects epithelial-mesenchymal transitioned (EMT) CTCs. CTCs were enumerated and analyzed for PD-L1 expression using confocal microscopy. PD-L1 expression was detectable in CTCs and was localized in the membrane and/or cytoplasm and nucleus. CTC detection alone was not associated with poor progression-free or overall survival in colorectal cancer or prostate cancer patients, but nuclear PD-L1 (nPD-L1) expression in these patients was significantly associated with short survival durations. These results demonstrated that nPD-L1 has potential as a clinically relevant prognostic biomarker for colorectal and prostate cancer. Our data thus suggested that use of CTC-based models of cancer for risk assessment can improve the standard cancer staging criteria and supported the incorporation of nPD-L1 expression detection in CTCs detection in such models. PMID:27363678

  16. Potential role of nuclear PD-L1 expression in cell-surface vimentin positive circulating tumor cells as a prognostic marker in cancer patients

    Science.gov (United States)

    Satelli, Arun; Batth, Izhar Singh; Brownlee, Zachary; Rojas, Christina; Meng, Qing H.; Kopetz, Scott; Li, Shulin

    2016-01-01

    Although circulating tumor cells (CTCs) have potential as diagnostic biomarkers for cancer, determining their prognostic role in cancer patients undergoing treatment is a challenge. We evaluated the prognostic value of programmed death-ligand 1 (PD-L1) expression in CTCs in colorectal and prostate cancer patients undergoing treatment. Peripheral blood samples were collected from 62 metastatic colorectal cancer patients and 30 metastatic prostate cancer patients. CTCs were isolated from the samples using magnetic separation with the cell-surface vimentin(CSV)-specific 84-1 monoclonal antibody that detects epithelial-mesenchymal transitioned (EMT) CTCs. CTCs were enumerated and analyzed for PD-L1 expression using confocal microscopy. PD-L1 expression was detectable in CTCs and was localized in the membrane and/or cytoplasm and nucleus. CTC detection alone was not associated with poor progression-free or overall survival in colorectal cancer or prostate cancer patients, but nuclear PD-L1 (nPD-L1) expression in these patients was significantly associated with short survival durations. These results demonstrated that nPD-L1 has potential as a clinically relevant prognostic biomarker for colorectal and prostate cancer. Our data thus suggested that use of CTC-based models of cancer for risk assessment can improve the standard cancer staging criteria and supported the incorporation of nPD-L1 expression detection in CTCs detection in such models. PMID:27363678

  17. 纳米技术在循环肿瘤细胞中的研究进展%Research progress of nanotechnology in circulating tumor cells

    Institute of Scientific and Technical Information of China (English)

    高洋; 袁周

    2015-01-01

    循环肿瘤细胞(CTC)对于监测肿瘤复发及判断预后具有重要意义.纳米技术为检测CTC提供了良好的平台,使CTC的应用具有广阔的发展前景.同时,利用纳米技术设计杀灭CTC的纳米装置在清除CTC方面有广阔的应用前景,为肿瘤治疗提供了新的研究方向.%Circulating tumor cells (CTCs) play pivotal roles for monitoring the tumor metastasis and prognosis.The nanotechnology provides a favourable platform for CTCs detection,and enables CTCs to be more promising for practical application.Meanwhile,the nanoscale device by virtue of nanotechnology has broad application prospects in eliminating CTCs and offers a new direction in the field of anti-cancer.

  18. Rapid phenotypic and genomic change in response to therapeutic pressure in prostate cancer inferred by high content analysis of single circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Angel E Dago

    Full Text Available Timely characterization of a cancer's evolution is required to predict treatment efficacy and to detect resistance early. High content analysis of single Circulating Tumor Cells (CTCs enables sequential characterization of genotypic, morphometric and protein expression alterations in real time over the course of cancer treatment. This concept was investigated in a patient with castrate-resistant prostate cancer progressing through both chemotherapy and targeted therapy. In this case study, we integrate across four timepoints 41 genome-wide copy number variation (CNV profiles plus morphometric parameters and androgen receptor (AR protein levels. Remarkably, little change was observed in response to standard chemotherapy, evidenced by the fact that a unique clone (A, exhibiting highly rearranged CNV profiles and AR+ phenotype was found circulating before and after treatment. However, clinical response and subsequent progression after targeted therapy was associated with the drastic depletion of clone A, followed by the sequential emergence of two distinct CTC sub-populations that differed in both AR genotype and expression phenotype. While AR- cells with flat or pseudo-diploid CNV profiles (clone B were identified at the time of response, a new tumor lineage of AR+ cells (clone C with CNV altered profiles was detected during relapse. We showed that clone C, despite phylogenetically related to clone A, possessed a unique set of somatic CNV alterations, including MYC amplification, an event linked to hormone escape. Interesting, we showed that both clones acquired AR gene amplification by deploying different evolutionary paths. Overall, these data demonstrate the timeframe of tumor evolution in response to therapy and provide a framework for the multi-scale analysis of fluid biopsies to quantify and monitor disease evolution in individual patients.

  19. Assessment of EGFR mutations in circulating tumor cell preparations from NSCLC patients by next generation sequencing: toward a real-time liquid biopsy for treatment.

    Directory of Open Access Journals (Sweden)

    Antonio Marchetti

    Full Text Available Assessment of EGFR mutation in non-small cell lung cancer (NSCLC patients is mandatory for optimization of pharmacologic treatment. In this respect, mutation analysis of circulating tumor cells (CTCs may be desirable since they may provide real-time information on patient's disease status.Blood samples were collected from 37 patients enrolled in the TRIGGER study, a prospective phase II multi-center trial of erlotinib treatment in advanced NSCLC patients with activating EGFR mutations in tumor tissue. 10 CTC preparations from breast cancer patients without EGFR mutations in their primary tumors and 12 blood samples from healthy subjects were analyzed as negative controls. CTC preparations, obtained by the Veridex CellSearch System, were subjected to ultra-deep next generation sequencing (NGS on the Roche 454 GS junior platform.CTCs fulfilling all Veridex criteria were present in 41% of the patients examined, ranging in number between 1 and 29. In addition to validated CTCs, potential neoplastic elements were seen in 33 cases. These included cells not fulfilling all Veridex criteria (also known as "suspicious objects" found in 5 (13% of 37 cases, and isolated or clustered large naked nuclei with irregular shape observed in 33 (89% cases. EGFR mutations were identified by NGS in CTC preparations of 31 (84% patients, corresponding to those present in matching tumor tissue. Twenty-five (96% of 26 deletions at exon 19 and 6 (55% of 11 mutations at exon 21 were detectable (P = 0.005. In 4 (13% cases, multiple EGFR mutations, suggesting CTC heterogeneity, were documented. No mutations were found in control samples.We report for the first time that the CellSearch System coupled with NGS is a very sensitive and specific diagnostic tool for EGFR mutation analysis in CTC preparations with potential clinical impact.

  20. Prognostic Role of Circulating Tumor Cells during Induction Chemotherapy Followed by Curative Surgery Combined with Postoperative Radiotherapy in Patients with Locally Advanced Oral and Oropharyngeal Squamous Cell Cancer.

    Directory of Open Access Journals (Sweden)

    Johanna Inhestern

    Full Text Available The prognostic role of circulating tumor cells (CTCs after induction chemotherapy using docetaxel, cisplatin and fluorouracil (TPF prior to surgery and adjuvant (chemoradiation in locally advanced oral squamous cell cancer (OSCC was evaluated.In this prospective study, peripheral blood samples from 40 patients of the phase II study TISOC-1 (NCT01108042 with OSCC before, during, and after treatment were taken. CTCs were quantified using laser scanning cytometry of anti- epithelial cell adhesion molecule-stained epithelial cells. Their detection was correlated with clinical risk factors, recurrence-free (RFS and overall survival (OS.Before starting the treatment CTCs were detected in 32 of 40 patients (80%. The median number at baseline was 3295 CTCs/ml. The median maximal number of CTCs during treatment was 5005 CTCs/ml. There was a significant increase of CTCs before postoperative radiotherapy compared to baseline before 1st cycle of IC (p = 0.011, 2nd cycle of IC (p = 0.001, 3rd cycle of IC (p = 0.004, and before surgery (p = 0.002, but not compared to end of therapy (p = 0.118. CTCs at baseline >median was also associated to risk of recurrence (p = 0.014. Maximal CTCs during therapy >median was more frequently observed in tumors of the oral cavity (p=0.022 and related to higher risk of death during follow-up (p = 0.028. Patients with CTCs at baseline >median value had significant lower RFS than patients with CTCs at baseline median during the complete course of therapy had a significantly lower OS than patients with values

  1. A novel strategy for highly efficient isolation and analysis of circulating tumor-specific cell-free DNA from lung cancer patients using a reusable conducting polymer nanostructure.

    Science.gov (United States)

    Lee, HyungJae; Jeon, SeungHyun; Seo, Jin-Suck; Goh, Sung-Ho; Han, Ji-Youn; Cho, Youngnam

    2016-09-01

    We have developed a reusable nanostructured polypyrrole nanochip and demonstrated its use in the electric field-mediated recovery of circulating cell-free DNA (cfDNA) from the plasma of lung cancer patients. Although cfDNA has been recognized and widely studied as a versatile and promising biomarker for the diagnosis and prognosis of cancers, the lack of efficient strategies to directly isolate cfDNA from the plasma has become a great hindrance to its potential clinical use. As a proof-of-concept study, we demonstrated a technique for the rapid and efficient isolation of cfDNA with high yield and purity. In particular, the synergistic effects of the electro-activity and the nanostructured features of the polypyrrole polymer enabled repeated retrieval of cfDNA using a single platform. Moreover, polypyrrole nanochip facilitated the amplification of tumor-specific DNA fragments from the plasma samples of patients with lung cancer characterized by mutations in exons 21 of the epidermal growth factor receptor gene (EGFR). Overall, the proposed polypyrrole nanochip has enormous potential for industrial and clinical applications with significantly enhanced efficiency in the recovery of tumor-associated circulating cfDNA. This may ultimately contribute to more robust and reliable evaluation of gene mutations in peripheral blood. PMID:27294542

  2. Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA.

    Directory of Open Access Journals (Sweden)

    Richard B Lanman

    Full Text Available Next-generation sequencing of cell-free circulating solid tumor DNA addresses two challenges in contemporary cancer care. First this method of massively parallel and deep sequencing enables assessment of a comprehensive panel of genomic targets from a single sample, and second, it obviates the need for repeat invasive tissue biopsies. Digital Sequencing™ is a novel method for high-quality sequencing of circulating tumor DNA simultaneously across a comprehensive panel of over 50 cancer-related genes with a simple blood test. Here we report the analytic and clinical validation of the gene panel. Analytic sensitivity down to 0.1% mutant allele fraction is demonstrated via serial dilution studies of known samples. Near-perfect analytic specificity (> 99.9999% enables complete coverage of many genes without the false positives typically seen with traditional sequencing assays at mutant allele frequencies or fractions below 5%. We compared digital sequencing of plasma-derived cell-free DNA to tissue-based sequencing on 165 consecutive matched samples from five outside centers in patients with stage III-IV solid tumor cancers. Clinical sensitivity of plasma-derived NGS was 85.0%, comparable to 80.7% sensitivity for tissue. The assay success rate on 1,000 consecutive samples in clinical practice was 99.8%. Digital sequencing of plasma-derived DNA is indicated in advanced cancer patients to prevent repeated invasive biopsies when the initial biopsy is inadequate, unobtainable for genomic testing, or uninformative, or when the patient's cancer has progressed despite treatment. Its clinical utility is derived from reduction in the costs, complications and delays associated with invasive tissue biopsies for genomic testing.

  3. Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA

    Science.gov (United States)

    Zill, Oliver A.; Sebisanovic, Dragan; Lopez, Rene; Blau, Sibel; Collisson, Eric A.; Divers, Stephen G.; Hoon, Dave S. B.; Kopetz, E. Scott; Lee, Jeeyun; Nikolinakos, Petros G.; Baca, Arthur M.; Kermani, Bahram G.; Eltoukhy, Helmy; Talasaz, AmirAli

    2015-01-01

    Next-generation sequencing of cell-free circulating solid tumor DNA addresses two challenges in contemporary cancer care. First this method of massively parallel and deep sequencing enables assessment of a comprehensive panel of genomic targets from a single sample, and second, it obviates the need for repeat invasive tissue biopsies. Digital SequencingTM is a novel method for high-quality sequencing of circulating tumor DNA simultaneously across a comprehensive panel of over 50 cancer-related genes with a simple blood test. Here we report the analytic and clinical validation of the gene panel. Analytic sensitivity down to 0.1% mutant allele fraction is demonstrated via serial dilution studies of known samples. Near-perfect analytic specificity (> 99.9999%) enables complete coverage of many genes without the false positives typically seen with traditional sequencing assays at mutant allele frequencies or fractions below 5%. We compared digital sequencing of plasma-derived cell-free DNA to tissue-based sequencing on 165 consecutive matched samples from five outside centers in patients with stage III-IV solid tumor cancers. Clinical sensitivity of plasma-derived NGS was 85.0%, comparable to 80.7% sensitivity for tissue. The assay success rate on 1,000 consecutive samples in clinical practice was 99.8%. Digital sequencing of plasma-derived DNA is indicated in advanced cancer patients to prevent repeated invasive biopsies when the initial biopsy is inadequate, unobtainable for genomic testing, or uninformative, or when the patient’s cancer has progressed despite treatment. Its clinical utility is derived from reduction in the costs, complications and delays associated with invasive tissue biopsies for genomic testing. PMID:26474073

  4. Heterogeneous PSMA expression on circulating tumor cells - a potential basis for stratification and monitoring of PSMA-directed therapies in prostate cancer

    Science.gov (United States)

    Gorges, Tobias M.; Riethdorf, Sabine; von Ahsen, Oliver; Nastały, Paulina; Röck, Katharina; Boede, Marcel; Peine, Sven; Kuske, Andra; Schmid, Elke; Kneip, Christoph; König, Frank; Rudolph, Marion; Pantel, Klaus

    2016-01-01

    The prostate specific membrane antigen (PSMA) is the only clinically validated marker for therapeutic decisions in prostate cancer (PC). Characterization of circulating tumor cells (CTCs) obtained from the peripheral blood of PC patients might provide an alternative to tissue biopsies called “liquid biopsy”. The aim of this study was to develop a reliable assay for the determination of PSMA on CTCs. PSMA expression was analyzed on tissue samples (cohort one, n = 75) and CTCs from metastatic PC patients (cohort two, n = 29). Specific signals for the expression of PSMA could be seen for different prostate cancer cell line cells (PC3, LaPC4, 22Rv1, and LNCaP) by Western blot, immunohistochemistry (IHC), immunocytochemistry (ICC), and FACS. PSMA expression was found to be significantly increased in patients with higher Gleason grade (p = 0.0011) and metastases in lymph nodes (p = 0.0000085) or bone (p = 0.0020) (cohort one). In cohort two, CTCs were detectable in 20 out of 29 samples (69 %, range from 1 - 1000 cells). Twelve out of 20 CTC-positive patients showed PSMA-positive CTCs (67 %, score 1+ to 3+). We found intra-patient heterogeneity regarding the PSMA status between CTCs and the corresponding primary tumors. The results of our study could help to address the question whether treatment decisions based on CTC PSMA profiling will lead to a measurable benefit in clinical outcome for prostate cancer patients in the near future. PMID:27145459

  5. Hydroxyethyl starch 200/0.5 decreases circulating tumor cells of colorectal cancer patients and reduces metastatic potential of colon cancer cell line through inhibiting platelets activation.

    Science.gov (United States)

    Liang, Hua; Yang, Chengxiang; Zhang, Bin; Wang, Hanbing; Liu, Hongzhen; Zhao, Zhenlong; Zhang, Zhiming; Wen, Xianjie; Lai, Xiaohong

    2015-05-01

    Platelets play an important role in metastasis of circulating tumor cells (CTCs). It has been demonstrated that hydroxyethyl starch (HES) inhibits platelets function. However, the effect of HES on CTCs in patients with colorectal cancer remains unclear. We compared the effects of HES 200/0.5 and HES 130/0.4 on CTCs and platelets activation of colorectal patients in this study. Additionally, the effects of HES 200/0.5 or HES 130/0.4 on metastasis ability of colon cancer cell line that stimulated by activated platelets have been explored. In vivo, 90 patients undergoing colorectal cancer radical surgery received randomly 15 mL/kg of HES 200/0.5 (n = 45) or HES 130/0.4 (n = 45) infusion before surgery. Platelet glycoprotein IIb/IIIa (GPIIb/IIIa), CD62P and platelets aggregation rate (PAR) were evaluated pre-, intra- and postoperatively. Cytokeratin-20 (CK-20) mRNA was detected by reverse transcriptase polymerase chain reaction before and after surgery. In vitro, colon cancer SW480 cells were incubated with activated platelets in the presence or absence HES 200/0.5 or HES 130/0.4. The metastasis ability of SW480 cells was assessed by Transwell assay. The results showed that CK-20 mRNA positive rate in HES 200/0.5 group after surgery was decreased significantly as compared to group HES 130/0.4 (χ (2) = 6.164, P = 0.013). Simultaneously, a more pronounced inhibition of platelets activation was observed in group HES 200/0.5. A positive correlation between platelets activation marker and CK-20 mRNA positive rate was found. In vitro, HES 200/0.5, but not HES 130/0.4, decreased the invasion and migration ability of SW480 cells that induced by activated platelets. Besides, the expression of GPIIb/IIIa, CD62P and PAR was inhibited more strongly in group HES 200/0.5 than those in group HES 130/0.4. In summary, we found that HES 200/0.5 significantly decreased CTCs of patients undergoing colorectal cancer radical surgery as compared to HES 130/0.4, which might be associated

  6. Circulating tumor cells in blood of primary breast cancer patients assessed by a novel RT-PCR test kit and comparison with status of bone marrow-disseminated tumor cells.

    Science.gov (United States)

    Schmitt, Manfred; Foekens, John A

    2009-01-01

    In breast cancer, circulating tumor cells (CTCs)/disseminated tumor cells (DTCs) may serve as independent adverse prognostic variables, to monitor the course of the disease and to predict response or failure to cancer therapy. Most of the techniques to enumerate DTCs in the bone marrow or CTCs in the bloodstream of breast cancer patients rely on a combination of an enrichment step and a detection step. A novel RT-PCR method, the AdnaTest BreastCancer kit, was developed for the enrichment of CTCs from peripheral blood of breast cancer patients followed by identification of CTC-associated marker transcripts by reverse transcription and PCR. Although this test has been demonstrated to identify breast cancer patients at risk, standardization of this technique and direct comparison with other established breast cancer CTC enrichment and detection techniques is still lacking, but highly needed. This is done best within prospective clinical trials, such as in the ongoing DETECT, SUCCESS, and BR-01-2004 trials.

  7. Microfluidic bead-based multienzyme-nanoparticle amplification for detection of circulating tumor cells in the blood using quantum dots labels.

    Science.gov (United States)

    Zhang, He; Fu, Xin; Hu, Jiayi; Zhu, Zhenjun

    2013-05-24

    This study reports the development of a microfluidic bead-based nucleic acid sensor for sensitive detection of circulating tumor cells in blood samples using multienzyme-nanoparticle amplification and quantum dot labels. In this method, the microbeads functionalized with the capture probes and modified electron rich proteins were arrayed within a microfluidic channel as sensing elements, and the gold nanoparticles (AuNPs) functionalized with the horseradish peroxidases (HRP) and DNA probes were used as labels. Hence, two signal amplification approaches are integrated for enhancing the detection sensitivity of circulating tumor cells. First, the large surface area of Au nanoparticle carrier allows several binding events of HRP on each nanosphere. Second, enhanced mass transport capability inherent from microfluidics leads to higher capture efficiency of targets because continuous flow within micro-channel delivers fresh analyte solution to the reaction site which maintains a high concentration gradient differential to enhance mass transport. Based on the dual signal amplification strategy, the developed microfluidic bead-based nucleic acid sensor could discriminate as low as 5 fM (signal-to-noise (S/N)3) of synthesized carcinoembryonic antigen (CEA) gene fragments and showed a 1000-fold increase in detection limit compared to the off-chip test. In addition, using spiked colorectal cancer cell lines (HT29) in the blood as a model system, the detection limit of this chip-based approach was found to be as low as 1 HT29 in 1 mL blood sample. This microfluidic bead-based nucleic acid sensor is a promising platform for disease-related nucleic acid molecules at the lowest level at their earliest incidence. PMID:23663673

  8. Detection of circulating tumor cells in blood of metastatic breast cancer patients using a combination of cytokeratin and EpCAM antibodies

    Directory of Open Access Journals (Sweden)

    Weissenstein Ulrike

    2012-05-01

    Full Text Available Abstract Background Circulating tumor cells (CTCs are detectable in peripheral blood of metastatic breast cancer patients (MBC. In this paper we evaluate a new CTC separation method based on a combination of anti-EpCAM- and anti-cytokeratin magnetic cell separation with the aim to improve CTC detection with low target antigen densities. Methods Blood samples of healthy donors spiked with breast cancer cell line HCC1937 were used to determine accuracy and precision of the method. 10 healthy subjects were examined to evaluate specificity. CTC counts in 59 patients with MBC were measured to evaluate the prognostic value on overall survival. Results Regression analysis of numbers of recovered vs. spiked HCC1937 cells yielded a coefficient of determination of R2 = 0.957. The average percentage of cell recovery was 84%. The average within-run coefficient of variation for spiking of 185, 85 and 30 cells was 14%. For spiking of 10 cells the within-run CV was 30%. No CTCs were detected in blood of 10 healthy subjects examined. A standard threshold of 5 CTC/7.5 ml blood as a cut-off point between risk groups led to a highly significant prognostic marker (p  Conclusions We show that our CTC detection method is feasible and leads to accurate and reliable results. Our data suggest that a refined differentiation between patients with different CTC levels is reasonable.

  9. Fluid biopsy for circulating tumor cell identification in patients with early-and late-stage non-small cell lung cancer: a glimpse into lung cancer biology

    Science.gov (United States)

    Wendel, Marco; Bazhenova, Lyudmila; Boshuizen, Rogier; Kolatkar, Anand; Honnatti, Meghana; Cho, Edward H.; Marrinucci, Dena; Sandhu, Ajay; Perricone, Anthony; Thistlethwaite, Patricia; Bethel, Kelly; Nieva, Jorge; van den Heuvel, Michel; Kuhn, Peter

    2012-02-01

    Circulating tumor cell (CTC) counts are an established prognostic marker in metastatic prostate, breast and colorectal cancer, and recent data suggest a similar role in late stage non-small cell lung cancer (NSCLC). However, due to sensitivity constraints in current enrichment-based CTC detection technologies, there are few published data about CTC prevalence rates and morphologic heterogeneity in early-stage NSCLC, or the correlation of CTCs with disease progression and their usability for clinical staging. We investigated CTC counts, morphology and aggregation in early stage, locally advanced and metastatic NSCLC patients by using a fluid-phase biopsy approach that identifies CTCs without relying on surface-receptor-based enrichment and presents them in sufficiently high definition (HD) to satisfy diagnostic pathology image quality requirements. HD-CTCs were analyzed in blood samples from 78 chemotherapy-naïve NSCLC patients. 73% of the total population had a positive HD-CTC count (>0 CTC in 1 mL of blood) with a median of 4.4 HD-CTCs mL-1 (range 0-515.6) and a mean of 44.7 (±95.2) HD-CTCs mL-1. No significant difference in the medians of HD-CTC counts was detected between stage IV (n = 31, range 0-178.2), stage III (n = 34, range 0-515.6) and stages I/II (n = 13, range 0-442.3). Furthermore, HD-CTCs exhibited a uniformity in terms of molecular and physical characteristics such as fluorescent cytokeratin intensity, nuclear size, frequency of apoptosis and aggregate formation across the spectrum of staging. Our results demonstrate that despite stringent morphologic inclusion criteria for the definition of HD-CTCs, the HD-CTC assay shows high sensitivity in the detection and characterization of both early- and late-stage lung cancer CTCs. Extensive studies are warranted to investigate the prognostic value of CTC profiling in early-stage lung cancer. This finding has implications for the design of extensive studies examining screening, therapy and surveillance in

  10. Fluid biopsy for circulating tumor cell identification in patients with early-and late-stage non-small cell lung cancer: a glimpse into lung cancer biology

    International Nuclear Information System (INIS)

    Circulating tumor cell (CTC) counts are an established prognostic marker in metastatic prostate, breast and colorectal cancer, and recent data suggest a similar role in late stage non-small cell lung cancer (NSCLC). However, due to sensitivity constraints in current enrichment-based CTC detection technologies, there are few published data about CTC prevalence rates and morphologic heterogeneity in early-stage NSCLC, or the correlation of CTCs with disease progression and their usability for clinical staging. We investigated CTC counts, morphology and aggregation in early stage, locally advanced and metastatic NSCLC patients by using a fluid-phase biopsy approach that identifies CTCs without relying on surface-receptor-based enrichment and presents them in sufficiently high definition (HD) to satisfy diagnostic pathology image quality requirements. HD-CTCs were analyzed in blood samples from 78 chemotherapy-naïve NSCLC patients. 73% of the total population had a positive HD-CTC count (>0 CTC in 1 mL of blood) with a median of 4.4 HD-CTCs mL−1 (range 0–515.6) and a mean of 44.7 (±95.2) HD-CTCs mL−1. No significant difference in the medians of HD-CTC counts was detected between stage IV (n = 31, range 0–178.2), stage III (n = 34, range 0–515.6) and stages I/II (n = 13, range 0–442.3). Furthermore, HD-CTCs exhibited a uniformity in terms of molecular and physical characteristics such as fluorescent cytokeratin intensity, nuclear size, frequency of apoptosis and aggregate formation across the spectrum of staging. Our results demonstrate that despite stringent morphologic inclusion criteria for the definition of HD-CTCs, the HD-CTC assay shows high sensitivity in the detection and characterization of both early- and late-stage lung cancer CTCs. Extensive studies are warranted to investigate the prognostic value of CTC profiling in early-stage lung cancer. This finding has implications for the design of extensive studies examining screening, therapy and

  11. Detection of circulating tumor cells in hepatocellular carcinoma using antibodies against asialoglycoprotein receptor, carbamoyl phosphate synthetase 1 and pan-cytokeratin.

    Directory of Open Access Journals (Sweden)

    Jun Li

    Full Text Available BACKGROUND: Asialoglycoprotein receptor (ASGPR-ligand-based separation combined with identification with Hep Par 1 or pan-cytokeratin (P-CK antibody have been demonstrated to detect circulating tumor cells (CTCs in hepatocellular carcinoma (HCC. The aim of this study was to develop an improved enrichment and identification system that allows the detection of all types of HCC CTCs. METHODS: The specificity of the prepared anti-ASGPR monoclonal antibody was characterized. HCC cells were bound by ASGPR antibody and subsequently magnetically isolated by second antibody-coated magnetic beads. Isolated HCC cells were identified by immunofluorescence staining using a combination of anti-P-CK and anti-carbamoyl phosphate synthetase 1 (CPS1 antibodies. Blood samples spiked with HepG2 cells were used to determine recovery and sensitivity. CTCs were detected in blood samples from HCC patients and other patients. RESULTS: ASGPR was exclusively expressed in human hepatoma cell line, normal hepatocytes and HCC cells in tissue specimens detected by the ASGPR antibody staining. More HCC cells could be identified by the antibody cocktail for CPS1 and P-CK compared with a single antibody. The current approach obtained a higher recovery rate of HepG2 cells and more CTC detection from HCC patients than the previous method. Using the current method CTCs were detected in 89% of HCC patients and no CTCs were found in the other test subjects. CONCLUSIONS: Our anti-ASGPR antibody could be used for specific and efficient HCC CTC enrichment, and anti-P-CK combined with anti-CPS1 antibodies is superior to identification with one antibody alone in the sensitivity for HCC CTC detection.

  12. Immune Cells in Blood Recognize Tumors

    Science.gov (United States)

    NCI scientists have developed a novel strategy for identifying immune cells circulating in the blood that recognize specific proteins on tumor cells, a finding they believe may have potential implications for immune-based therapies.

  13. NK cells in the tumor microenvironment

    DEFF Research Database (Denmark)

    Larsen, Stine K; Gao, Yanhua; Basse, Per H

    2014-01-01

    The presence of natural killer (NK) cells in the tumor microenvironment correlates with outcome in a variety of cancers. However, the role of intratumoral NK cells is unclear. Preclinical studies have shown that, while NK cells efficiently kill circulating tumor cells of almost any origin......, they seem to have very little effect against the same type of tumor cells when these have extravasated. The ability to kill extravasated tumor cells is, however, is dependent of the level of activation of the NK cells, as more recent published and unpublished studies, discussed below, have demonstrated...... that interleukin-2-activated NK cells are able to attack well-established solid tumors....

  14. 乳腺癌循环肿瘤细胞生物学特性的研究进展%Progress in biological characteristics of circulating breast-tumor cells

    Institute of Scientific and Technical Information of China (English)

    李世超; 姜军

    2012-01-01

    OBJECTIVE: To summarize the progress in biological characteristics of circulating breast-tumor cells. METHODS: A comprehensive search strategy for review literature was performed towards the electronic databases including PubMed, Ovid, EMBASE, Web of Science, and Chinese Biomedical Literature database using terms "breast neoplasm" ."circulating tumor cells" ,"micrometastasis"(2000-01 - 2011-12). Eligibility Criteria: Publications related to biological characteristics of circulating breast-tumor cells were included in this review and 34 literatures were cited. RESULTS : The biological characteristics of circulating breast-tumor cells were different from that of cells in primary and me-tastatic tumor including cellular atypia, proliferation, expressed molecules,angiogenesis,and relationship with epithelial to mesenchymal transition,tumor stem cell and tumor self-seeding. CONCLUSION: With respect to biological characteristics of circulating breast-tumor cells, further investigation on these characteristics may help enhance the understanding of tumor disseminateion and metastasis.%目的:总结乳腺癌循环肿瘤细胞生物学特性相关的研究进展.方法:以“乳腺肿瘤、循环肿瘤细胞和微转移”为关键词,系统检索PubMed、Ovid、EMBASE、Web of Science的中国生物医学文献数据库等医学数据库(2000-01-2011-12).纳入标准:乳腺癌循环肿瘤细胞生物学特性.根据纳入标准,符合分析的文献34篇.结果:乳腺癌循环肿瘤细胞具有高度异形性,细胞增殖活性低,表达激素受体、血管生成相关分子等多种标志,且与上皮细胞间质化、肿瘤干细胞及肿瘤自身种植等密切相关.循环肿瘤细胞具有与原发灶、转移灶内肿瘤细胞明显不同的生物学特征.结论:乳腺癌循环肿瘤细胞具有自身独特的生物学特性,进一步深入研究其生物学特性有助于加深对肿瘤播散和转移机制的认识.

  15. Circulating Tumor Cell Count Correlates with Colorectal Neoplasm Progression and Is a Prognostic Marker for Distant Metastasis in Non-Metastatic Patients

    Science.gov (United States)

    Tsai, Wen-Sy; Chen, Jinn-Shiun; Shao, Hung-Jen; Wu, Jen-Chia; Lai-Ming, Jr.; Lu, Si-Hong; Hung, Tsung-Fu; Chiu, Yen-Chi; You, Jeng-Fu; Hsieh, Pao-Shiu; Yeh, Chien-Yuh; Hung, Hsin-Yuan; Chiang, Sum-Fu; Lin, Geng-Ping; Tang, Reiping; Chang, Ying-Chih

    2016-04-01

    Enumeration of circulating tumor cells (CTCs) has been proven as a prognostic marker for metastatic colorectal cancer (m-CRC) patients. However, the currently available techniques for capturing and enumerating CTCs lack of required sensitivity to be applicable as a prognostic marker for non-metastatic patients as CTCs are even more rare. We have developed a microfluidic device utilizing antibody-conjugated non-fouling coating to eliminate nonspecific binding and to promote the multivalent binding of target cells. We then established the correlation of CTC counts and neoplasm progression through applying this platform to capture and enumerate CTCs in 2 mL of peripheral blood from healthy (n = 27), benign (n = 21), non-metastatic (n = 95), and m-CRC (n = 15) patients. The results showed that the CTC counts progressed from 0, 1, 5, to 36. Importantly, after 2-year follow-up on the non-metastatic CRC patients, we found that those who had ≥5 CTCs were 8 times more likely to develop distant metastasis within one year after curable surgery than those who had independent prognostic marker for the non-metastatic CRC patients who are at high risk of early recurrence.

  16. Prospective assessment of the prognostic value of circulating tumor cells and their clusters in patients with advanced-stage breast cancer.

    Science.gov (United States)

    Mu, Zhaomei; Wang, Chun; Ye, Zhong; Austin, Laura; Civan, Jesse; Hyslop, Terry; Palazzo, Juan P; Jaslow, Rebecca; Li, Bingshan; Myers, Ronald E; Jiang, Juntao; Xing, Jinliang; Yang, Hushan; Cristofanilli, Massimo

    2015-12-01

    The enumeration of circulating tumor cells (CTCs) provides important prognostic values in patients with metastatic breast cancer. Recent studies indicate that individual CTCs form clusters and these CTC-clusters play an important role in tumor metastasis. We aimed to assess whether quantification of CTC-clusters provides additional prognostic value over quantification of individual CTCs alone. In 115 prospectively enrolled advanced-stage (III and IV) breast cancer patients, CTCs and CTC-clusters were counted in 7.5 ml whole blood using the CellSearch system at baseline before first-line therapy. The individual and joint effects of CTC and CTC cluster counts on patients' progression-free survival (PFS) were analyzed using Cox proportional hazards modeling. Of the 115 patients, 36 (31.3 %) had elevated baseline CTCs (≥5 CTCs/7.5 ml) and 20 (17.4 %) had CTC-clusters (≥2 CTCs/7.5 ml). Patients with elevated CTCs and CTC-clusters both had worse PFS with a hazard ratio (HR) of 2.76 [95 % confidence interval (CI) 1.57-4.86, P log-rank = 0.0005] and 2.83 (1.48-5.39, P log-rank = 0.001), respectively. In joint analysis, compared with patients with IBC), the most aggressive form of breast cancer with the poorest survival. Baseline counts of both individual CTCs and CTC-clusters were associated with PFS in advanced-stage breast cancer patients. CTC-clusters might provide additional prognostic value compared with CTC enumeration alone, in patients with elevated CTCs. PMID:26573830

  17. 循环内皮细胞与肿瘤血管生成的关系%Relationship between circulating endothelial cells and tumor angiogenesis

    Institute of Scientific and Technical Information of China (English)

    韩晓; 王哲海

    2010-01-01

    循环内皮细胞(CEC)是指外周血中测得的血管内皮细胞.其在健康人外周血中数量极少,而在动脉粥样硬化、糖尿病、红斑狼疮等疾病中明显增加,被认为是判断血管内皮细胞损伤情况特异而直接的指标.目前临床科研上常用流式细胞术检测计数和免疫磁珠分离法对CEC进行检测和计数.已有多项研究结果证实,CEC与肿瘤关系密切,现就对CEC的来源、检测、与肿瘤血管生成的关系以及在肿瘤预后监测的意义等进行综述.%Circulating endothelial cells (CEC) are endothelial cells which are detected in the peripheral blood. There are very few CEC in healthy adults while the number is obviously increasing in patients with arthrosclerosis, diabetes mellitus, lupus erythematosus, et al. Nowadays, flow cytometry analysis and immunomagnetic isolation for CEC are employed successfully in clinic and scientific research. Several research findings have confirmed that there is intimate relation between CEC and tumorigenesis. Because of the important role in angiogenesis and tumor growth, CEC would be a perspective tumor marker in antiangiogenesis and would also predict the chemotherapy efficacy.

  18. Consistent fluctuations in quantities of circulating immune complexes during progressive and regressive phases of tumor growth.

    OpenAIRE

    Jennette, J. C.

    1980-01-01

    Circulating immune complexes (CIC) were quantitated by a Raji cell radioimmunoassay in sera from Brown Norway rats bearing progressing or regressing methylcholanthrene-induced sarcomas. Quantitative profiles of CIC over time were related to tumor dose, tumor mass, and the regressive or progressive course of tumor growth. Animals bearing progressing tumors demonstrated an initial peak of CIC levels by 7 weeks but thereafter displayed a persistent decline in quantities of CIC despite continued ...

  19. 基于微流控芯片的循环肿瘤细胞的分离、检测技术%The Separation, Detection of Circulating Tumor Cells Based on Microfluidic Chip

    Institute of Scientific and Technical Information of China (English)

    刘侃; 张俊哲

    2014-01-01

    Circulating tumor cells (Circulating Tumor Cells, CTCs) is the primary tumor or metastasis shed into the peripheral blood circulating tumor cells, is a sign of tumor metastasis. Early diagnosis, CTCs contribute to cancer, judging curative effect of individualized treatment plan and prognosis diagnosis. With the continuous improvement of detection, CTCs detection has be-come a hot spot, the clinical study, microfluidic chip for its high throughput efficiency and low cost rapid development and wide-ly application of. The research on the latest CTCs detection method and the future development trends are reviewed, especially the analysis of microfluidic chip based microfluidics and nanotechnology is how to be applied to circulating tumor cell separation, enrichment and detection, evaluation of the advantages and disadvantages of each method, and discusses the difficulties and mode of circulating flow cell detection technology future.%循环肿瘤细胞(Circulating Tumor Cells,CTCs)是自肿瘤原发灶或转移灶脱落进入外周血液循环的肿瘤细胞,是肿瘤远处转移的标志。CTCs有助于癌症的早期诊断、判断疗效、个体化治疗方案制订及诊断预后。随着检测技术的不断改进,CTCs检测成为临床研究的热点,其中,微流控芯片以其高通量高效率以及低成本的特点迅速发展并被广泛研究应用。该课题对CTCs最新检测方法的研究以及未来的发展趋势进行综述,特别剖析结合微流体技术和纳米技术的微流控芯片是如何被应用于循环肿瘤细胞的分离、富集以及检测的,评估各种方法的优缺点,并探讨未来循环中流细胞检测技术的难点和方式。

  20. The prognostic impact of soluble and vesicular HLA-G and its relationship to circulating tumor cells in neoadjuvant treated breast cancer patients.

    Science.gov (United States)

    König, Lisa; Kasimir-Bauer, Sabine; Hoffmann, Oliver; Bittner, Ann-Kathrin; Wagner, Bettina; Manvailer, Luis Felipe Santos; Schramm, Sabine; Bankfalvi, Agnes; Giebel, Bernd; Kimmig, Rainer; Horn, Peter A; Rebmann, Vera

    2016-09-01

    The non-classical human leukocyte antigen G (HLA-G) molecule and its soluble forms exert multiple immune suppressive regulatory functions in malignancy and in stem cells contributing to immune escape mechanisms. HLA-G can be secreted as free soluble HLA-G molecules or via extracellular vesicles (EVs). Here we evaluated these soluble HLA-G forms as prognostic marker for prediction of the clinical outcome of neoadjuvant chemotherapy (NACT) treated breast cancer (BC) patients. Plasma samples of BC patients procured before (n=142) and after (n=154) NACT were quantified for total soluble HLA-G (sHLA-Gtot) and HLA-G levels in ExoQuick™ derived EV fractions (sHLA-GEV) by ELISA. The corresponding increments were specified as free sHLA-G (sHLA-Gfree). Total and free sHLA-G were significantly increased in NACT treated BC patients compared to healthy controls (n=16). High sHLA-Gfree levels were exclusively associated to estrogen receptor expression before NACT. Importantly, high sHLA-GEV levels before NACT were related to disease progression and the detection of stem cell-like circulating tumor cells, but high sHLA-Gfree levels indicated an improved clinical outcome. Thus, this study demonstrates for the first time that the different sHLA-G subcomponents represent dissimilar qualitative prognostic impacts on the clinical outcome of NACT treated BC patients, whereas the total sHLA-G levels without separating into subcomponents are not related to clinical outcome.

  1. 外周血循环肿瘤细胞的检测在前列腺癌中的应用%Detection and clinical application of circulating tumor cells in peripheral blood of patients with prostate cancer

    Institute of Scientific and Technical Information of China (English)

    瞿元元; 戴波

    2013-01-01

    Prostate cancer is the most common urogenital malignant tumor among males in Western countries. Recently, more and more prostate cancer patients were diagnosed in China. Tumor metastasis is one of the main cause for the failure of prostate cancer treatment. Tumor cells entering into circulation system is the prerequisite for tumor metastasis in the distant organs. Many studies began to focus on circulating tumor cells in peripheral blood (CTC) because it could represent individual tumor characteristics. This review focused on the detection, enumeration and biomarkers of CTC.%  前列腺癌是欧美国家最常见的男性泌尿生殖系统恶性肿瘤。近年来,我国前列腺癌的发病率明显升高。肿瘤转移是导致多数前列腺癌患者治疗失败的重要原因,而肿瘤细胞进入外周血循环系统是远处器官转移的先决条件。外周血中循环肿瘤细胞(circulating tumor cell,CTC)因能反映患者个体的肿瘤特征,且较易获得而受到众多学者的关注。本文就CTC的检测方法以及CTC计数和分子标志物在前列腺癌中的研究进展作一综述。

  2. 消化系统肿瘤外周血循环肿瘤细胞的研究进展%Research Progress of Peripheral Blood Circulating Tumor Cells in Digestive System Tumors

    Institute of Scientific and Technical Information of China (English)

    施少军; 薛峰

    2016-01-01

    Recently,the detection of circulating tumor cells(CTCs)in peripheral blood is used in clinical practice as a form of‘ liquid biopsy’. The self-seeding mechanism of CTCs provides a novel approach to explore the growing mechanism of malignant tumor and developing corresponding targeting therapies. A decade ago,the CellSearch system, which can capture and enumerate CTCs,has been validated by Food and Drug Administration( FDA)as an aid for monitoring the relapse of tumor after radical operation in patients with breast,prostate and colorectal cancer. In recent years,although the separation and detection technique of CTCs has been promoted significantly,the clinical significance of CTCs in tumors of digestive system is still under investigation. This article reviewed the research progress of peripheral blood CTCs in digestive system tumors.%近年来,外周血循环肿瘤细胞(CTCs)检测已作为一项“液相活检”技术应用于临床实践。CTCs 的肿瘤自我播种机制为探索恶性肿瘤的生长机制以及开发相应的肿瘤靶向治疗提供了新思路。10年前美国食品与药品管理局(FDA)即已批准将计数分析 CTCs 的 CellSearch 系统应用于临床监控乳腺癌、前列腺癌和结直肠癌根治术后肿瘤复发。尽管近年来 CTCs 分离和检测技术得到了显著提升,然而在消化系统肿瘤领域,检测 CTCs 的临床意义尚在研究中。本文就消化系统肿瘤外周血 CTCs 的研究进展作一综述。

  3. 实体瘤外周血循环肿瘤细胞与转移相关性的研究进展%Relationship between circulating tumor cells in peripheral blood of solid tumor and metastasis

    Institute of Scientific and Technical Information of China (English)

    任传利; 韩崇旭; 王大新

    2011-01-01

    目的:总结实体瘤外周血中循环肿瘤细胞(CTC)和转移相关性的研究进展.方法:以"循环肿瘤细胞、实体瘤、转移"为关键词,检索2000-01-2010-10PubMed、Science Direct、Ovid、Springer、CNKI和维普等数据库的相关文献.纳入标准:关于实体瘤CTC与转移密切相关的分子机制、临床相关性的文献.共纳入分析42篇文献.结果:随着分子生物学和材料技术的发展,越来越多的方法有效地富集和鉴定不同类型实体瘤外周血CTC.细胞基因水平证实CTC具有恶性生物学特性,CTC自身基因和转移相关蛋白谱的表达,肿瘤微环境、免疫系统等因素影响着CTC远处器官转移灶的形成.CTC数目、特定基因、蛋白的表达与治疗疗效、预后等具有相关性.结论:研究CTC参与血液播散转移的机制,为全面、准确地阐明恶性实体瘤转移的机制、个体化的治疗提供新的工具.%OBJECTIVE: To review of the studies the relationship between circulating tumor cells (CTC)in peripheral blood of solid tumors and the mechanism of metastasis. METHODS: Keyword: circulating tumor cell (CTC), solid tumors, metastasis. Retrieval system: PubMed, Ovid, Science Direct, Springer, CNKI,Weipu Data. The time limit: 2000-01- 2010-10. The enrolled criteria: about the relationship between CTC in peripheral blood of solid tumors and the mechanism of metastasis, its clinical relevance. Overall, 42 literatures were cited. RESULTS: As the development of the advanced technique of molecular biology and material,more and more methods can be used to enrich and identify CTC. It is reported that cytogenetic evidence that CTC in patients with carcinoma are malignant. The gene and related metastatic protein profile in CTC,tumor microenvironment, immune system can influence on tumor metastasis. The number of CTC, the expression of specific genes and proteins have a relationship with the effect of treatment and evaluation of prognosis. CONCLUSION: The study

  4. Metaphyseal giant cell tumor

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed.

  5. Metaphyseal giant cell tumor

    International Nuclear Information System (INIS)

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed. (Author)

  6. Nonislet Cell Tumor Hypoglycemia

    OpenAIRE

    Johnson Thomas; Salini C. Kumar

    2013-01-01

    Nonislet cell tumor hypoglycemia (NICTH) is a rare cause of hypoglycemia. It is characterized by increased glucose utilization by tissues mediated by a tumor resulting in hypoglycemia. NICTH is usually seen in large mesenchymal tumors including tumors involving the GI tract. Here we will discuss a case, its pathophysiology, and recent advances in the management of NICTH. Our patient was diagnosed with poorly differentiated squamous cell carcinoma of esophagus. He continued to be hypoglycemic ...

  7. Vertebral angiography of cerebellar astrocytoma. Tumor stain, tumor circulation, CT and angiography in diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, K.; Ito, T.; Tashiro, K.; Abe, H.; Tsuru, M.; Miyasaka, K. (Hokkaido Univ., Sapporo (Japan). School of Medicine)

    1982-05-01

    Thirteen cases of cerebellar astrocytoma were examined primarily for tumor stain and pathological tumor circulation by angiography and CT. Tumor stain was observed in only one case by cerebral angiogram. A tumor was demonstrated as an avascular mass in the remaining 12 cases. It is suggested that mural nodules of cystic lesions should have certain weight and sizes so that they could be demonstrated as tumor stain. In the supratentorial region, five of the 12 low-grade astrocytoma exhibited abnormal tumor stain and tumor circulation by cerebral angiogram. It is considered that supratentorial and posterior fossa astrocytoma must usually exhibit different pathological tumor circulation by cerebral angiogram, since each group has distinctive clinical and biological characteristics. CT was performed in 7 of 13 cases. It appeared to be more useful than cerebral angiography in the morphological diagnosis. Especially in cystic tumors, CT produced minute information concerning peritumoral edema, enhancement of margin of cystic astrocytoma after intravenous contrast medium, and marginal enhancement with layering in the dependent part of the cyst. Neuroradiological differential diagnosis of cerebellar astrocytoma and cerebellar hemagioblastoma by CT was difficult in the cases of tumors. However, both tumors were differentiated from each other with ease by tumor stain and tumor circulation in cerebral angiography. Thus, it is concluded that cerebral angiography is superior to CT in differential diagnosis between cerebellar astrocytoma and cerebellar hemangioblastoma.

  8. Isolation and Molecular Characterization of Circulating Melanoma Cells

    OpenAIRE

    Xi Luo; Devarati Mitra; Ryan J. Sullivan; Ben S. Wittner; Anya M. Kimura; Shiwei Pan; Mai P. Hoang; Brian W. Brannigan; Donald P. Lawrence; Keith T. Flaherty; Lecia V. Sequist; Martin McMahon; Marcus W. Bosenberg; Shannon L. Stott; David T. Ting

    2014-01-01

    Melanoma is an invasive malignancy with a high frequency of blood-borne metastases, but circulating tumor cells (CTCs) have not been readily isolated. We adapted microfluidic CTC capture to a tamoxifen-driven B-RAF/PTEN mouse melanoma model. CTCs were detected in all tumor-bearing mice, rapidly declining after B-RAF inhibitor treatment. CTCs were shed early from localized tumors and a short course of B-RAF inhibition following surgical resection was sufficient to dramatically suppress distant...

  9. Efficient Capture and Isolation of Tumor-Related Circulating Cell-Free DNA from Cancer Patients Using Electroactive Conducting Polymer Nanowire Platforms

    OpenAIRE

    Jeon, SeungHyun; Lee, HyungJae; Bae, Kieun; Yoon, Kyong-Ah; Lee, Eun Sook; Cho, Youngnam

    2016-01-01

    Circulating cell-free DNA (cfDNA) is currently recognized as a key non-invasive biomarker for cancer diagnosis and progression and therapeutic efficacy monitoring. Because cfDNA has been detected in patients with diverse types of cancers, the use of efficient strategies to isolate cfDNA not only provides valuable insights into tumour biology, but also offers the potential for developing new cancer-specific targets. However, the challenges associated with conventional cfDNA extraction methods ...

  10. The Use of a New CellCollector to Isolate Circulating Tumor Cells from the Blood of Patients with Different Stages of Prostate Cancer and Clinical Outcomes - A Proof-of-Concept Study

    Science.gov (United States)

    Theil, Gerit; Fischer, Kersten; Weber, Ekkehard; Medek, Rita; Hoda, Raschid; Lücke, Klaus; Fornara, Paolo

    2016-01-01

    Background and Methods Circulating tumor cells (CTCs) constitute a useful approach for personalized medicine. Nevertheless, the isolation of these cells remains very challenging because they rarely circulate in the blood. Another current problem is the cancer-specific characterization of these cells, which requires a method that allows for the molecular and immunocytochemical profiling of all captured cells. The purpose of our proof of concept study was to investigate the use of a medical wire (CellCollector, GILUPI) to isolate CTCs in the blood of prostate cancer (PCa) patients, which allowed CTCs to be counted and molecularly characterized. Forty-three PCa patients in different stages and 11 control subjects were studied. Some randomized samples were used to detect tumor-associated transcripts, such as prostate-specific membrane antigen (PSMA), prostate-specific antigen (PSA) and epidermal growth factor receptor (EGFR), in the isolated CTCs. Results The mean CTC counts were 4.6 CTCs [range, 0–8] in patients with localized PCa, 16.8 CTCs [range, 10–25] in patients with locally advanced PCa, and 26.8 CTCs [range, 0–98] in patients with metastatic PCa. The median follow-up time was 24 months, and there was a significant difference in the cancer-specific survival rates. Patients with CTC counts under 5 CTCs lived significantly longer (p = 0.035) than patients with more than 5 CTCs. We also demonstrated that the captured CTCs could be molecularly characterized. We detected tumor-associated transcripts of EGFR and PSMA in patients with metastatic PCa in 42.8% and 14.3% of the analyzed samples, respectively. Conclusion Our results indicate that the sensitive isolation and molecular characterization of CTCs can be achieved ex vivo using the wire. Patients with more than 5 CTCs had a mortality risk that was 7.0 times greater that of those with fewer than 5 CTCs (hazard ratio 7.0 95%, CI 1.1–29.39). This proof of concept was required for the approval of the use of

  11. Physiological modeling of tumor-affected renal circulation.

    OpenAIRE

    Bézy-Wendling, Johanne; Kretowski, Marek

    2008-01-01

    International audience One way of gaining insight into what can be observed in medical images is through physiological modeling. For instance, anatomical and functional modifications occur in the organ during the appearance and the growth of a tumor. Some of these changes concern the vascularization. We propose a computational model of tumor-affected renal circulation that represents the local heterogeneity of different parts of the kidney (cortex, medulla). We present a simulation of vasc...

  12. Tumor cell metabolism

    Science.gov (United States)

    Romero-Garcia, Susana; Lopez-Gonzalez, Jose Sullivan; B´ez-Viveros, José Luis; Aguilar-Cazares, Dolores

    2011-01-01

    Cancer is a genetic disease that is caused by mutations in oncogenes, tumor suppressor genes and stability genes. The fact that the metabolism of tumor cells is altered has been known for many years. However, the mechanisms and consequences of metabolic reprogramming have just begun to be understood. In this review, an integral view of tumor cell metabolism is presented, showing how metabolic pathways are reprogrammed to satisfy tumor cell proliferation and survival requirements. In tumor cells, glycolysis is strongly enhanced to fulfill the high ATP demands of these cells; glucose carbons are the main building blocks in fatty acid and nucleotide biosynthesis. Glutaminolysis is also increased to satisfy NADPH regeneration, whereas glutamine carbons replenish the Krebs cycle, which produces metabolites that are constantly used for macromolecular biosynthesis. A characteristic feature of the tumor microenvironment is acidosis, which results from the local increase in lactic acid production by tumor cells. This phenomenon is attributed to the carbons from glutamine and glucose, which are also used for lactic acid production. Lactic acidosis also directs the metabolic reprogramming of tumor cells and serves as an additional selective pressure. Finally, we also discuss the role of mitochondria in supporting tumor cell metabolism. PMID:22057267

  13. Dentinogenic ghost cell tumor

    Directory of Open Access Journals (Sweden)

    Singhaniya Shikha

    2009-01-01

    Full Text Available Dentinogenic ghost cell tumor (DGCT is a rare tumorous form of calcifying odontogenic cyst and only a small number of cases have been described. It is a locally invasive neoplasm that is characterized by ameloblastoma-like epithelial islands, ghost cells and dentinoid. The present report describes a case of a 21-year-old male with a tumor in the posterior region of the mandible, showing features of DGCT.

  14. Olfactory ensheathing cell tumor

    Directory of Open Access Journals (Sweden)

    Ippili Kaushal

    2009-01-01

    Full Text Available Olfactory ensheathing cells (OECs are found in the olfactory bulb and olfactory nasal mucosa. They resemble Schwann cells on light and electron microscopy, however, immunohistochemical staining can distinguish between the two. There are less than 30 cases of olfactory groove schwannomas reported in the literature while there is only one reported case of OEC tumor. We report an OEC tumor in a 42-year-old male and discuss the pathology and origin of this rare tumor.

  15. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells

    OpenAIRE

    Rong Fan; Travis Emery; Yongguo Zhang; Yuxuan Xia; Jun Sun; Jiandi Wan

    2016-01-01

    During cancer metastasis, circulating tumor cells constantly experience hemodynamic shear stress in the circulation. Cellular responses to shear stress including cell viability and proliferation thus play critical roles in cancer metastasis. Here, we developed a microfluidic approach to establish a circulatory microenvironment and studied circulating human colon cancer HCT116 cells in response to a variety of magnitude of shear stress and circulating time. Our results showed that cell viabili...

  16. Application of circulating tumor cells detection in non-small cell lung cancer%循环肿瘤细胞检测在非小细胞肺癌中的应用

    Institute of Scientific and Technical Information of China (English)

    李浩; 李胜; 张百江

    2015-01-01

    循环肿瘤细胞(CTC)是非小细胞肺癌(NSCLC)发生复发转移的重要原因。随着检测技术的不断发展,近期研究结果提示,CTC 水平不仅可以用来判断肿瘤临床分期、评估患者预后及治疗反应,还可以用于早期 NSCLC 的风险评估。另外,作为一种非侵入性的“液体活检”,CTC 检测能反映原发肿瘤的分子生物学及遗传学特征,有助于患者获得最佳的个体化治疗。%Circulating tumor cells(CTCs)are essential for establishing metastasis and recurrence in non-small cell lung cancer(NSCLC). With the development of detection technique,results from recent studies suggest that CTC level could be a supplement for TNM staging system and a prediction marker of prognosis and therapeutic efficacy,and even could be applied for risk assessment of early NSCLC. Furthermore,as a non-invasive"liquid biopsy",detection of CTC can reflect the molecular biology and genetics characteristics of the primary tumor,and subsequently assist in selecting an optimal individualized treatment.

  17. In vivo acoustic and photoacoustic focusing of circulating cells

    Science.gov (United States)

    Galanzha, Ekaterina I.; Viegas, Mark G.; Malinsky, Taras I.; Melerzanov, Alexander V.; Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A.; Zharov, Vladimir P.

    2016-03-01

    In vivo flow cytometry using vessels as natural tubes with native cell flows has revolutionized the study of rare circulating tumor cells in a complex blood background. However, the presence of many blood cells in the detection volume makes it difficult to count each cell in this volume. We introduce method for manipulation of circulating cells in vivo with the use of gradient acoustic forces induced by ultrasound and photoacoustic waves. In a murine model, we demonstrated cell trapping, redirecting and focusing in blood and lymph flow into a tight stream, noninvasive wall-free transportation of blood, and the potential for photoacoustic detection of sickle cells without labeling and of leukocytes targeted by functionalized nanoparticles. Integration of cell focusing with intravital imaging methods may provide a versatile biological tool for single-cell analysis in circulation, with a focus on in vivo needleless blood tests, and preclinical studies of human diseases in animal models.

  18. Quantitative assessment of BRAF V600 mutant circulating cell-free tumor DNA as a tool for therapeutic monitoring in metastatic melanoma patients treated with BRAF/MEK inhibitors

    OpenAIRE

    SCHREUER, MAX; Meersseman, Geert; Van Den Herrewegen, Sari; Jansen, Yanina; Chevolet, Ines; Bott, Ambre; Wilgenhof, Sofie; Seremet, Teofila; Jacobs, Bart; Buyl, Ronald; Maertens, Geert; Neyns, Bart

    2016-01-01

    Background BRAF V600 mutant circulating cell-free tumor DNA (BRAF V600mut ctDNA) could serve as a specific biomarker in patients with BRAF V600 mutant melanoma. We analyzed the value of BRAF V600mut ctDNA from plasma as a monitoring tool for advanced melanoma patients treated with BRAF/MEK inhibitors. Methods Allele-specific quantitative PCR analysis for BRAF V600 E/E2/D/K/R/M mutations was performed on DNA extracted from plasma of patients with known BRAF V600 mutant melanoma who were treate...

  19. Multiple granular cell tumor.

    Science.gov (United States)

    Jones, J K; Kuo, T T; Griffiths, C M; Itharat, S

    1980-10-01

    Eleven cases of granular cell tumor were reviewed. In two of the cases multiple sites of involvement were seen. The tumor occurred in the oral cavity in both of these cases and each was initially wrongly diagnosed as squamous cell carcinoma. The most common site was the subcutaneous tissue (nine patients) and the tongue was involved in three cases. In one patient the parotid gland was involved. Eight of the patients were females and three were males; seven were black and four were white. The importance of differentiating between squamous cell carcinoma and granular cell tumor is stressed, as is the need for a simple wide surgical excision. PMID:7421377

  20. Circulating tumor DNA detection (liquid biopsy: prospects in oncology

    Directory of Open Access Journals (Sweden)

    N. V. Zhukov

    2015-01-01

    Full Text Available Modern research techniques allows tumor studying in almost any level: protein expression, structural changes of DNA, RNA, epigenetic changes, activity of signaling pathways, microenvironment, interaction with the immune system, etc. However, tumor samples are obtained as 100 years ago – by tumor biopsy prior to treatment. Based on available data about intratumoral heterogeneity and tumor changes during treatment, it may be one of the factors braking to obtain required information of tumor biology. According to study, the analysis of circulating tumor DNA (ctDNA allows to hope to overcome the key limitations of routine biopsy. One of the key benefits of ctDNA analysis is the ability to a more comprehensive tumor investigation, while maintaining a high level of specificity, almost as well as a routine biopsy. Detection sensitivity of ctDNA continues to increase due to the development of new technology. The study of ctDNA may lead to breakthrough results in understanding of tumors molecular heterogeneity, development of resistance to anticancer therapy and ways to overcome it, screening and a number of other key areas of modern oncology.

  1. Circulating tumor DNA detection (liquid biopsy: prospects in oncology

    Directory of Open Access Journals (Sweden)

    N. V. Zhukov

    2014-01-01

    Full Text Available Modern research techniques allows tumor studying in almost any level: protein expression, structural changes of DNA, RNA, epigenetic changes, activity of signaling pathways, microenvironment, interaction with the immune system, etc. However, tumor samples are obtained as 100 years ago – by tumor biopsy prior to treatment. Based on available data about intratumoral heterogeneity and tumor changes during treatment, it may be one of the factors braking to obtain required information of tumor biology. According to study, the analysis of circulating tumor DNA (ctDNA allows to hope to overcome the key limitations of routine biopsy. One of the key benefits of ctDNA analysis is the ability to a more comprehensive tumor investigation, while maintaining a high level of specificity, almost as well as a routine biopsy. Detection sensitivity of ctDNA continues to increase due to the development of new technology. The study of ctDNA may lead to breakthrough results in understanding of tumors molecular heterogeneity, development of resistance to anticancer therapy and ways to overcome it, screening and a number of other key areas of modern oncology.

  2. Liquid biopsy in breast cancer:serum biomarker and circulating tumor cell detection%乳腺癌“液体活检”:血清标志物与循环肿瘤细胞的检测

    Institute of Scientific and Technical Information of China (English)

    陈小松; 沈坤炜

    2012-01-01

      Detection of efficacy and prognosis predictive factors in breast cancer can help us with individualized treatment. Circulating tumor cells (CTCs) test provides us a real-time "liquid biopsy" in breast cancer, which can predict the prognosis of breast cancer patients, monitor the CTCs number changes before and after chemotherapy or endocrine therapy, and predict the treatment efficacy. The further study of CTCs gene phenotype and its biological behavior can improve the therapeutic effect of breast cancer, thereby reducing the breast cancer mortality.%  乳腺癌疗效和预后指标的检测可以帮助我们进行个体化治疗。循环肿瘤细胞(Circulating tumor cells, CTCs)的检测为我们提供了乳腺癌的实时“液体活检”,可以预测乳腺癌患者的预后;进行乳腺癌化疗、内分泌等治疗前后CTCs变化情况的监测,预测治疗的疗效;进一步研究CTCs的基因表型,明确其生物学行为,从而提高乳腺癌的治疗效果,降低其死亡率。

  3. Evaluation of Circulating Tumor Cells and Related Events as Prognostic Factors and Surrogate Biomarkers in Advanced NSCLC Patients Receiving First-Line Systemic Treatment.

    Science.gov (United States)

    Muinelo-Romay, Laura; Vieito, Maria; Abalo, Alicia; Nocelo, Marta Alonso; Barón, Francisco; Anido, Urbano; Brozos, Elena; Vázquez, Francisca; Aguín, Santiago; Abal, Miguel; López, Rafael López

    2014-01-01

    In the present study we investigated the prognostic value of Circulating Tumour Cells (CTC) and their utility for therapy monitoring in non-small cell lung cancer (NSCLC). A total of 43 patients newly diagnosed with NSCLC were prospectively enrolled. Blood samples were obtained before the 1st, 2nd and 5th cycles of chemotherapy and analyzed using CellSearch technology. Both CTC and CTC-related objects (not morphological standard or broken epithelial cells) were counted. At baseline 18 (41.9%) patients were positive for intact CTC count and 10 (23.2%) of them had ≥5 CTC, while CK positive events were found in 79.1% of patients. The group of patients with CTC ³5 at baseline presented worse PFS and OS than those with <5 CTC (p = 0.034 and p = 0.008, respectively). Additionally, high levels of total CK positive events were associated with poor prognosis in the group of patients with <5 CTC. Regarding therapy monitoring, patients presenting increased levels of CTC during the treatment demonstrated lower OS and PFS rates. All these data supported the value of CTC as a prognostic biomarker and as a surrogate indicator of chemotherapy effectiveness in advanced NSCLC patients, with the additional value of analyzing other "objects" such as apoptotic CTC or CK fragments to guide the clinical management of these patients.

  4. Evaluation of Circulating Tumor Cells and Related Events as Prognostic Factors and Surrogate Biomarkers in Advanced NSCLC Patients Receiving First-Line Systemic Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Muinelo-Romay, Laura; Vieito, Maria; Abalo, Alicia; Alonso Nocelo, Marta; Barón, Francisco; Anido, Urbano; Brozos, Elena; Vázquez, Francisca; Aguín, Santiago; Abal, Miguel; López López, Rafael, E-mail: rafael.lopez.lopez@sergas.es [Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Trav. Choupana s/n 15706 Santiago de Compostela (Spain)

    2014-01-21

    In the present study we investigated the prognostic value of Circulating Tumour Cells (CTC) and their utility for therapy monitoring in non-small cell lung cancer (NSCLC). A total of 43 patients newly diagnosed with NSCLC were prospectively enrolled. Blood samples were obtained before the 1st, 2nd and 5th cycles of chemotherapy and analyzed using CellSearch technology. Both CTC and CTC-related objects (not morphological standard or broken epithelial cells) were counted. At baseline 18 (41.9%) patients were positive for intact CTC count and 10 (23.2%) of them had ≥5 CTC, while CK positive events were found in 79.1% of patients. The group of patients with CTC ≥5 at baseline presented worse PFS and OS than those with <5 CTC (p = 0.034 and p = 0.008, respectively). Additionally, high levels of total CK positive events were associated with poor prognosis in the group of patients with <5 CTC. Regarding therapy monitoring, patients presenting increased levels of CTC during the treatment demonstrated lower OS and PFS rates. All these data supported the value of CTC as a prognostic biomarker and as a surrogate indicator of chemotherapy effectiveness in advanced NSCLC patients, with the additional value of analyzing other “objects” such as apoptotic CTC or CK fragments to guide the clinical management of these patients.

  5. Evaluation of Circulating Tumor Cells and Related Events as Prognostic Factors and Surrogate Biomarkers in Advanced NSCLC Patients Receiving First-Line Systemic Treatment

    Directory of Open Access Journals (Sweden)

    Laura Muinelo-Romay

    2014-01-01

    Full Text Available In the present study we investigated the prognostic value of Circulating Tumour Cells (CTC and their utility for therapy monitoring in non-small cell lung cancer (NSCLC. A total of 43 patients newly diagnosed with NSCLC were prospectively enrolled. Blood samples were obtained before the 1st, 2nd and 5th cycles of chemotherapy and analyzed using CellSearch technology. Both CTC and CTC-related objects (not morphological standard or broken epithelial cells were counted. At baseline 18 (41.9% patients were positive for intact CTC count and 10 (23.2% of them had ≥5 CTC, while CK positive events were found in 79.1% of patients. The group of patients with CTC ³5 at baseline presented worse PFS and OS than those with <5 CTC (p = 0.034 and p = 0.008, respectively. Additionally, high levels of total CK positive events were associated with poor prognosis in the group of patients with <5 CTC. Regarding therapy monitoring, patients presenting increased levels of CTC during the treatment demonstrated lower OS and PFS rates. All these data supported the value of CTC as a prognostic biomarker and as a surrogate indicator of chemotherapy effectiveness in advanced NSCLC patients, with the additional value of analyzing other “objects” such as apoptotic CTC or CK fragments to guide the clinical management of these patients.

  6. Prognostic significance of circulating tumor cells in bone marrow or peripheral blood as detected by qualitative and quantitative PCR in pediatric NPM-ALK-positive anaplastic large-cell lymphoma.

    Science.gov (United States)

    Damm-Welk, Christine; Busch, Kerstin; Burkhardt, Birgit; Schieferstein, Jutta; Viehmann, Susanne; Oschlies, Ilske; Klapper, Wolfram; Zimmermann, Martin; Harbott, Jochen; Reiter, Alfred; Woessmann, Willi

    2007-07-15

    Clinical and histopathological characteristics have limited prognostic value for children with anaplastic large-cell lymphoma (ALCL). We evaluated the presence, extent, and prognostic impact of circulating tumor cells in bone marrow (BM) and peripheral blood (PB) of children and adolescents with NPM-ALK-positive ALCL at diagnosis using qualitative and quantitative polymerase chain reaction (PCR) for NPM-ALK. Numbers of NPM-ALK transcripts were normalized to 10(4) copies ABL (NCNs). BM was analyzed from 80 patients and PB from 52. BM was positive for NPM-ALK in 47.5% of patients, and positivity was significantly correlated with clinical stage, mediastinal or visceral involvement, microscopic BM involvement, and histologic subtype. Qualitative and quantitative PCR results in BM and PB strongly correlated. BM PCR was associated with the cumulative incidence of relapses (CI-Rs): CI-R was 50% +/- 10% for 38 PCR-positive and 15% +/- 7% for 42 PCR-negative patients (P NPM-ALK in BM had a CI-R of 71% +/- 14% compared with a CI-R of 18% +/- 6% for 59 patients with 10 or fewer NCNs (P < .001). PB PCR results led to a similar grouping. Thus, quantitative PCR in BM or PB allows identification of 20% of patients experiencing 60% of all relapses with an event-free survival of 20%.

  7. 循环血肿瘤细胞为肿瘤精准治疗带来的机遇与挑战%Circulating tumor cells for precision medicine in cancer

    Institute of Scientific and Technical Information of China (English)

    谢思琪

    2016-01-01

    Over the last two decades,we have seen many advances in the biological underpinnings of many kinds of cancers that have had a significant impact either directly or indirectly on the management and ultimately on the prognostic outcome of this disease.Next-generation sequencing studies have provided further evidence to support the notion4 that cancer is a disease characterized by Darwinian evolution.However,Ones often fail to obtain the information in different stages of the tumor before making treatment decision.This may be the major reason for treatment failures.Currently,circulating tumor cells (CTCs) is considered as a " liquid biopsy".By detecting CTCs at different stages of tumor and obtaining the biological characteristics of CTCs,ones can get information about tumor evolution at different stages.It might provide effective basis for individual therapy to tumors,and promote the accuracy of tumor treatment.%下一代测序技术研究中,越来越多的证据证明了一个假说-肿瘤是一类以达尔文进化为特征的疾病.然而,医生往往不能根据肿瘤不同阶段的生物学特征做治疗决策,这也许是导致很多治疗手段最终失败的关键原因.循环血肿瘤细胞(CTCs)的检测被认为是一种“液体活检”技术,对CTCs进行动态监测,获取肿瘤不同阶段的进化信息,能为肿瘤的个体化治疗提供依据.

  8. Mouse Leydig Tumor Cells

    Directory of Open Access Journals (Sweden)

    Bo-Syong Pan

    2011-01-01

    Full Text Available Cordycepin is a natural pure compound extracted from Cordyceps sinensis (CS. We have demonstrated that CS stimulates steroidogenesis in primary mouse Leydig cell and activates apoptosis in MA-10 mouse Leydig tumor cells. It is highly possible that cordycepin is the main component in CS modulating Leydig cell functions. Thus, our aim was to investigate the steroidogenic and apoptotic effects with potential mechanism of cordycepin on MA-10 mouse Leydig tumor cells. Results showed that cordycepin significantly stimulated progesterone production in dose- and time-dependent manners. Adenosine receptor (AR subtype agonists were further used to treat MA-10 cells, showing that A1, A 2A , A 2B , and A3, AR agonists could stimulate progesterone production. However, StAR promoter activity and protein expression remained of no difference among all cordycepin treatments, suggesting that cordycepin might activate AR, but not stimulated StAR protein to regulate MA-10 cell steroidogenesis. Meanwhile, cordycepin could also induce apoptotic cell death in MA-10 cells. Moreover, four AR subtype agonists induced cell death in a dose-dependent manner, and four AR subtype antagonists could all rescue cell death under cordycepin treatment in MA-10 cells. In conclusion, cordycepin could activate adenosine subtype receptors and simultaneously induce steroidogenesis and apoptosis in MA-10 mouse Leydig tumor cells.

  9. Research progress of detection of circulating tumor cells and its application in breast cancer%循环肿瘤细胞的检测及其在乳腺癌中的应用研究进展

    Institute of Scientific and Technical Information of China (English)

    郭德阳; 陈雷; 余正

    2015-01-01

    It has been proved that the patients with breast cancer may have occurred blood metastasis before diagnosis. Circulating tumor cells (CTCs) that fall off from the primary tumor and enter the blood circulation will form a metastatic lesion by planting and growing in the distant tissues. It will promote the establishment of individualized treatment scheme and the judgement of treatment effect of breast cancer if it is feasible to detect CTCs and describe their phenotype and genotype features. The sensitive detection technology makes it possible to detect and evaluate CTCs in the single cell level. This review discussed CTCs detection technology and application value in invasive breast cancer.%现已证实,在乳腺癌患者确诊之前,就可能已经发生了血液转移,循环肿瘤细胞(CTCs)从原发肿瘤组织中脱落并进入血液循环,随血液循环到达远处组织并种植、生长,便形成转移病灶。如果能在早期检测出CTCs并描述其表型和基因型特征将促进乳腺癌个体化治疗方案的制订及治疗效果的判定,目前敏感的检测技术使得在单细胞水平检测和评价CTCs成为可能,该篇综述将讨论CTCs检测技术及在浸润性乳腺癌中的应用价值。

  10. Familial germ cell tumor

    OpenAIRE

    Sanju Cyriac; Rejeev Rajendranath; A. Robert Louis; Sagar, T. G.

    2012-01-01

    Familial testicular germ cell tumors are well known in literature. Only few cases are reported where both brother and sister of the same family suffered from germ cell malignancies. We present a family where the proband is a survivor of ovarian dysgerminoma stage IA. Her elder male sibling became acutely ill and was detected to have disseminated testicular malignancy with grossly elevated markers and vegetations in the mitral valve leaflets. Despite all measures he could not be saved. Presenc...

  11. Intracranial germ cell tumor

    OpenAIRE

    Kreutz, J; Rausin, L.; Weerts, E; Tebache, M; Born, J; Hoyoux, C

    2010-01-01

    Germ cell tumours represent about 3 to 8% of pediatric brain tumours. Occurrence of diabetes insipidus is common in the case of suprasellar germ cell tumors. The diagnosis may be advanced by MRI owing to the location and relatively univocal characteristics of the lesion signal. The existence of a bifocal mass developed in both suprasellar region and pineal zone is highly suggestive of a germinoma. The most important notion is to recognize that at the time of diabetes insipidus diagnosis in a ...

  12. Detection and isolation of circulating melanoma cells using photoacoustic flowmetry.

    Science.gov (United States)

    O'Brien, Christine M; Rood, Kyle; Sengupta, Shramik; Gupta, Sagar K; DeSouza, Thiago; Cook, Aaron; Viator, John A

    2011-01-01

    Circulating tumor cells (CTCs) are those cells that have separated from a macroscopic tumor and spread through the blood and lymph systems to seed secondary tumors(1,2,3). CTCs are indicators of metastatic disease and their detection in blood samples may be used to diagnose cancer and monitor a patient's response to therapy. Since CTCs are rare, comprising about one tumor cell among billions of normal blood cells in advanced cancer patients, their detection and enumeration is a difficult task. We exploit the presence of pigment in most melanoma cells to generate photoacoustic, or laser induced ultrasonic waves in a custom flow cytometer for detection of circulating melanoma cells (CMCs)(4,5). This process entails separating a whole blood sample using centrifugation and obtaining the white blood cell layer. If present in whole blood, CMCs will separate with the white blood cells due to similar density. These cells are resuspended in phosphate buffered saline (PBS) and introduced into the flowmeter. Rather than a continuous flow of the blood cell suspension, we induced two phase flow in order to capture these cells for further study. In two phase flow, two immiscible liquids in a microfluidic system meet at a junction and form alternating slugs of liquid(6,7). PBS suspended white blood cells and air form microliter slugs that are sequentially irradiated with laser light. The addition of a surfactant to the liquid phase allows uniform slug formation and the user can create different sized slugs by altering the flow rates of the two phases. Slugs of air and slugs of PBS with white blood cells contain no light absorbers and hence, do not produce photoacoustic waves. However, slugs of white blood cells that contain even single CMCs absorb laser light and produce high frequency acoustic waves. These slugs that generate photoacoustic waves are sequestered and collected for cytochemical staining for verification of CMCs. PMID:22143421

  13. Extraovarian granulosa cell tumor

    Directory of Open Access Journals (Sweden)

    Paul Prabir

    2009-04-01

    Full Text Available Extraovarian granulosa cell tumor (GCT is a very uncommon tumor, assumed to arise from the ectopic gonadal tissue along the embryonal route of the genital ridge. One such rare case of extraovarian GCT was encountered in a 58-year-old female who presented with a large intraabdominal lump. Computerized tomography revealed one large retroperitoneal mass measuring 15cm x 16cm and another mesenteric mass of 8cm x 5cm size. The patient had a history of hysterectomy with bilateral salpingooophorectomy 20 years ago for uterine leiomyoma. Ultrasonography-guided aspiration smears revealed cytological features suggestive of GCT. Histopathological examination of the excised masses showed features of adult-type GCT. Because metastatic epithelial tumors, particularly from the ovaries, may show identical morphology, immunostains for inhibin and epithelial membrane antigen (EMA were performed. The tumor showed positivity for inhibin while EMA was negative thus confirming the diagnosis of GCT. As this patient had no previous history of GCT and was oophorectomized 20 years ago, the tumor was considered as extraovarian. A diagnosis of extraovarian GCT should be carried out after excluding any previous history of GCT of the ovary. Immunostains help to differentiate GCTs from other neoplasms.

  14. Isolation and Molecular Characterization of Circulating Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Xi Luo

    2014-05-01

    Full Text Available Melanoma is an invasive malignancy with a high frequency of blood-borne metastases, but circulating tumor cells (CTCs have not been readily isolated. We adapted microfluidic CTC capture to a tamoxifen-driven B-RAF/PTEN mouse melanoma model. CTCs were detected in all tumor-bearing mice and rapidly declined after B-RAF inhibitor treatment. CTCs were shed early from localized tumors, and a short course of B-RAF inhibition following surgical resection was sufficient to dramatically suppress distant metastases. The large number of CTCs in melanoma-bearing mice enabled a comparison of RNA-sequencing profiles with matched primary tumors. A mouse melanoma CTC-derived signature correlated with invasiveness and cellular motility in human melanoma. CTCs were detected in smaller numbers in patients with metastatic melanoma and declined with successful B-RAF-targeted therapy. Together, the capture and molecular characterization of CTCs provide insight into the hematogenous spread of melanoma.

  15. Familial germ cell tumor

    Directory of Open Access Journals (Sweden)

    Sanju Cyriac

    2012-01-01

    Full Text Available Familial testicular germ cell tumors are well known in literature. Only few cases are reported where both brother and sister of the same family suffered from germ cell malignancies. We present a family where the proband is a survivor of ovarian dysgerminoma stage IA. Her elder male sibling became acutely ill and was detected to have disseminated testicular malignancy with grossly elevated markers and vegetations in the mitral valve leaflets. Despite all measures he could not be saved. Presence of germ cell malignancies in the siblings of different sex in the same family points toward a genetic susceptibility. Literature review revealed only six similar cases. A discussion regarding the rare occurrence of familial germ cell malignancies with the affected family members may be worthwhile.

  16. Circulating Tumor DNA in Predicting Outcomes in Patients With Stage IV Head and Neck Cancer or Stage III-IV Non-small Cell Lung Cancer

    Science.gov (United States)

    2016-10-19

    Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Salivary Gland Squamous Cell Carcinoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Salivary Gland Cancer; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Salivary Gland Cancer; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVB Verrucous Carcinoma of the Larynx; Stage IVB Verrucous Carcinoma of the Oral Cavity; Stage IVC Salivary Gland Cancer; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Stage IVC Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVC Verrucous Carcinoma of the Larynx; Stage IVC Verrucous Carcinoma of the Oral Cavity; Tongue Cancer; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  17. Pericytes limit tumor cell metastasis

    DEFF Research Database (Denmark)

    Xian, Xiaojie; Håkansson, Joakim; Ståhlberg, Anders;

    2006-01-01

    Previously we observed that neural cell adhesion molecule (NCAM) deficiency in beta tumor cells facilitates metastasis into distant organs and local lymph nodes. Here, we show that NCAM-deficient beta cell tumors grew leaky blood vessels with perturbed pericyte-endothelial cell-cell interactions...... and deficient perivascular deposition of ECM components. Conversely, tumor cell expression of NCAM in a fibrosarcoma model (T241) improved pericyte recruitment and increased perivascular deposition of ECM molecules. Together, these findings suggest that NCAM may limit tumor cell metastasis by stabilizing...... the microvessel wall. To directly address whether pericyte dysfunction increases the metastatic potential of solid tumors, we studied beta cell tumorigenesis in primary pericyte-deficient Pdgfb(ret/ret) mice. This resulted in beta tumor cell metastases in distant organs and local lymph nodes, demonstrating a role...

  18. A critical review of the analytical approaches for circulating tumor biomarker kinetics during treatment.

    Science.gov (United States)

    Almufti, R; Wilbaux, M; Oza, A; Henin, E; Freyer, G; Tod, M; Colomban, O; You, B

    2014-01-01

    Changes in serum tumor biomarkers may indicate treatment efficacy. Traditional tumor markers may soon be replaced by novel serum biomarkers, such as circulating tumor cells (CTCs) or circulating tumor nucleic acids. Given their promising predictive values, studies of their kinetics are warranted. Many methodologies meant to assess kinetics of traditional marker kinetics during anticancer treatment have been reported. Here, we review the methodologies, the advantages and the limitations of the analytical approaches reported in the literature. Strategies based on a single time point were first used (baseline value, normalization, nadir, threshold at a time t), followed by approaches based on two or more time points [half-life (HL), percentage decrease, time-to-events…]. Heterogeneities in methodologies and lack of consideration of inter- and intra-individual variability may account for the inconsistencies and the poor utility in routine. More recently, strategies based on a population kinetics approach and mathematical modeling have been reported. The identification of equations describing individual kinetic profiles of biomarkers may be an alternative strategy despite its complexity and higher number of necessary measurements. Validation studies are required. Efforts should be made to standardize biomarker kinetic analysis methodologies to ensure the optimized development of novel serum biomarkers and avoid the pitfalls of traditional markers.

  19. Circulating lymphangiogenic growth factors in gastrointestinal solid tumors, could they be of any clinical significance?

    Institute of Scientific and Technical Information of China (English)

    Theodore D Tsirlis; George Papastratis; Kyriaki Masselou; Christos Tsigris; Antonis Papachristodoulou; Alkiviadis Kostakis; Nikolaos I Nikiteas

    2008-01-01

    Metastasis is the principal cause of cancer mortality,with the lymphatic system being the first route of tumor dissemination.The glycoproteins VEGF-C and VEGF-D are members of the vascular endothelial growth factor (VEGF)family,whose role has been recently recognized as lymphatic system regulators during embryogenesis and in pathological processes such as inflammation,lymphatic system disorders and malignant tumor metastasis.They are ligands for the VEGFR-3 receptor on the membrane of the lymphatic endothelial cell,resulting in dilatation of existing lymphatic vessels as well as in vegetation of new ones (lymphangiogenesis).Their determination is feasible in the circulating blood by immunoabsorption and in the tissue specimen by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR).Experimental and clinicopathological studies have linked the VEGF-C,VEGF-D/VEGFR3 axis to lymphatic spread as well as to the clinical outcome in several human solid tumors.The majority of these data are derived from surgical specimens and malignant cell series,rendering their clinical application questionable,due to subjectivity factors and post-treatment quantification.In an effort to overcome these drawbacks,an alternative method of immunodetection of the circulating levels of these molecules has been used in studies on gastric,esophageal and colorectal cancer.Their results denote that quantification of VEGF-C and VEGF-D in blood samples could serve as lymph node metastasis predictive biomarkers and contribute to preoperative staging of gastrointestinal malignancies.

  20. 乳腺癌外周血标记物NPY1R的检测及临床意义%Detection and clinical significance of the peripheral blood tumor marker NPY1R for circulating breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    刘镭; 潘理会; 黄亮; 黄旭; 程露阳; 肖丽君; 徐大为

    2013-01-01

    Objective:This study aimed to evaluate a new tumor marker, NPY1R, for the detection of circulating breast cancer cells and to investigate the relationship between NPY1R expression and the clinicopathological features of breast cancer patients. Methods:The marker NPY1R, which could detect circulating cancer cells, was identified by the Digital Gene Expression Displayer tool of the Cancer Genome Anatomy Project. The expression levels of NPY1R in 142 breast cancer patients and 60 healthy volunteers were determined using the real-time semi-quantitative nested polymerase chain reaction. The correlation between NPY1R expression and the clinicopathological features of the patients was then analyzed. A follow-up study was performed with 131 breast cancer patients for 38 months to observe the effect of NPY1R expression on the survival of breast cancer patients. Results:NPY1R was highly expressed in the cancer patients as compared with the normal controls (P<0.01). The high-level expression of NPY1R was positively correlated with the clinical stages and lymph node metastasis as well as the status of the estrogen and progesterone receptors (P<0.05). Breast cancer patients with circulating cancer cells that expressed NPY1R had shorter tumor-specific survival as compared with those without NPY1R expression (P<0.01). Conclusion:NPY1R may serve as a useful marker to predict cancer metastasis and to evaluate the prognosis of breast cancer patients.%  目的:鉴定一种新的检测乳腺癌循环癌细胞的肿瘤标记物NPY1R(neuropeptide Y receptor Y1).探讨NPY1R在乳腺癌外周血中的表达水平及其与临床病理学特征的关系.方法:通过肿瘤基因组解剖计划(cancer genome anatomy project,CGAP)数据库的数字基因表达演示工具(digital gene expression displayer,DGED),发现了一种新的乳腺癌外周血标记物NPY1R.采用实时半定量巢式PCR技术,检测了142例乳腺癌和60例正常人外周血中NPY1R的表达

  1. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells

    Science.gov (United States)

    Fan, Rong; Emery, Travis; Zhang, Yongguo; Xia, Yuxuan; Sun, Jun; Wan, Jiandi

    2016-06-01

    During cancer metastasis, circulating tumor cells constantly experience hemodynamic shear stress in the circulation. Cellular responses to shear stress including cell viability and proliferation thus play critical roles in cancer metastasis. Here, we developed a microfluidic approach to establish a circulatory microenvironment and studied circulating human colon cancer HCT116 cells in response to a variety of magnitude of shear stress and circulating time. Our results showed that cell viability decreased with the increase of circulating time, but increased with the magnitude of wall shear stress. Proliferation of cells survived from circulation could be maintained when physiologically relevant wall shear stresses were applied. High wall shear stress (60.5 dyne/cm2), however, led to decreased cell proliferation at long circulating time (1 h). We further showed that the expression levels of β-catenin and c-myc, proliferation regulators, were significantly enhanced by increasing wall shear stress. The presented study provides a new insight to the roles of circulatory shear stress in cellular responses of circulating tumor cells in a physiologically relevant model, and thus will be of interest for the study of cancer cell mechanosensing and cancer metastasis.

  2. A multicenter pilot study examining the role of Circulating Tumor Cells (CTCs as a blood-based tumor marker in patients with extensive small cell lung cancer (EX-SCLC

    Directory of Open Access Journals (Sweden)

    Chao H Huang

    2014-10-01

    Full Text Available Abstract Background: SCLC, a variant of lung cancer marked by early metastases, accounts for 13% of all lung cancers diagnosed in US. Despite high response rates to treatment, it is an aggressive disease with a median survival of 9-11 months for patients with EX-SCLC. Detection of CTCs is a novel laboratory technique currently in use to determine response to therapy and to predict prognosis in breast, colorectal and prostate cancer. We initiated a study to study the role of CTC as a biomarker of response and relapse in patients with EX-SCLC. Methods: We collected blood sample from chemotherapy naïve patients with EX-SCLC prior to initiation of therapy, after completion of systemic therapy, and follow up every 6-8 weeks and at relapse. The CTC was determined using the Cell Search system in a central laboratory. The study was conducted in 4 different sites and it was reviewed and approved by respective Research Review Committee and IRBs. Results: We enrolled 27 patients with EX-SCLC, 1 was excluded due ineligibility, all patients were treated with platinum and etoposide. We observed partial response in 16 patients, stable disease in 3 patients, 1 with progression of disease and not assessed in 7 patients (5 deceased, 2 not available. The overall median number of CTCs in 24 patients measured at baseline and post-tx was 75 (range 0 to 3430 and 2 (range 0 to 526, respectively. A significant reduction in CTCs from baseline to post-treatment was identified—for the 15 subjects, the median reduction was 97.4% (range -100% to +100%, p < 0.001. Higher baseline CTC and percentage change in post treatment CTC were associated with decreased survival. Conclusions: We were able to demonstrate feasibility of using CTCs as a biomarker of response and prognosis in patients with EX-SCLC in clinical setting. CTC could be a useful biomarker in the management of EX-SCLC to predict response to therapy and predict outcome.

  3. Carrier molecules and extraction of circulating tumor DNA for next generation sequencing in colorectal cancer.

    Science.gov (United States)

    Beránek, Martin; Sirák, Igor; Vošmik, Milan; Petera, Jiří; Drastíková, Monika; Palička, Vladimír

    2016-01-01

    The aims of the study were: i) to compare circulating tumor DNA (ctDNA) yields obtained by different manual extraction procedures, ii) to evaluate the addition of various carrier molecules into the plasma to improve ctDNA extraction recovery, and iii) to use next generation sequencing (NGS) technology to analyze KRAS, BRAF, and NRAS somatic mutations in ctDNA from patients with metastatic colorectal cancer. Venous blood was obtained from patients who suffered from metastatic colorectal carcinoma. For plasma ctDNA extraction, the following carriers were tested: carrier RNA, polyadenylic acid, glycogen, linear acrylamide, yeast tRNA, salmon sperm DNA, and herring sperm DNA. Each extract was characterized by quantitative real-time PCR and next generation sequencing. The addition of polyadenylic acid had a significant positive effect on the amount of ctDNA eluted. The sequencing data revealed five cases of ctDNA mutated in KRAS and one patient with a BRAF mutation. An agreement of 86% was found between tumor tissues and ctDNA. Testing somatic mutations in ctDNA seems to be a promising tool to monitor dynamically changing genotypes of tumor cells circulating in the body. The optimized process of ctDNA extraction should help to obtain more reliable sequencing data in patients with metastatic colorectal cancer. PMID:27526306

  4. Advances in understanding clinical significance of circulating tumor cells and cell-free DNA methylation in patients with hepatocellular carcinoma%循环肿瘤细胞及游离DNA甲基化在肝细胞癌患者中的研究进展

    Institute of Scientific and Technical Information of China (English)

    邱必军; 薛峰; 余坚; 夏强

    2012-01-01

    During the early formation and growth of a primary tumor, tumor cells can be detached from the primary tumor and circulate through the bloodstream to form circulating tumor cells (CTCs). Also during the early stage of tumor development, apoptotic and necrotic tumor cells can release DNA into the bloodstream to form circulating cell-free DNA. Therefore, analysis of CTCs and circulating cell-free DNA is considered as a real-time "liquid biopsy" for cancer patients. CTCs are very heterogeneous and can be enriched and detected using different technologies based on their physical and biological properties. The use of modern molecular biological techniques to extract the cell-free DNA in circulating blood and detect aberrant genetic and epigenetic alterations can provide valuable information for the early diagnosis, prediction of response to therapy, recurrence monitoring and prognosis evaluation in cancer patients. In this paper, we will give a review of recent advances in understanding the clinical significance of CTCs and cell-free DNA in patients with hepatocellular carcinoma.%随着对肿瘤认识的不断深入,人们发现在原发肿瘤形成和生长的早期阶段,肿瘤细胞即可以脱离原发肿瘤组织释放到外周血形成循环肿瘤细胞,同样在肿瘤形成的早期阶段就会出现肿瘤细胞的坏死和凋亡,这些凋亡或坏死的肿瘤细胞也可以释放其DNA入外周血形成血浆或血清游离的DNA,因此对肿瘤患者循环肿瘤细胞及游离DNA的分析被认为是实时的“液相活检”,肿瘤患者中的循环肿瘤细胞具有非常强的异质性,我们可以根据其物理和生物学性质采用不同的技术对其进行富集和检测;可以借助现代分子生物学手段对循环游离DNA进行提取,并对其遗传学和表观遗传学的异常改变进行分析,这可为肿瘤的早期诊断、疗效评估、复发监测及预后判断提供重要的信息.本文结合本课题组的研究重点,就循环肿

  5. [Lung cancer molecular testing, what role for Next Generation Sequencing and circulating tumor DNA].

    Science.gov (United States)

    Pécuchet, Nicolas; Legras, Antoine; Laurent-Puig, Pierre; Blons, Hélène

    2016-01-01

    Molecular screening has become a standard of care for patients with advanced cancers and impacts on how to treat a patient. Advances in genomic technologies with the development of high throughput sequencing methods will certainly improve the possibilities to access a more accurate molecular diagnosis and to go beyond the identification of validated targets as a large number of genes can be screened for actionable changes. Moreover, accurate high throughput testing may help tumor classification in terms of prognosis and drug sensitivity. Finally, it will be possible to assess tumor heterogeneity and changes in molecular profiles during follow-up using ultra-deep sequencing technologies and circulating tumor DNA characterization. The accumulation of somatic ADN alterations is considered as the main contributing factor in carcinogenesis. The alterations can occur at different levels: mutation, copy number variations or gene translocations resulting in altered expression of the corresponding genes or impaired protein functions. Genes involved are mainly tumor suppressors, oncogenes or ADN repair genes whose modifications in tumors will impinge cell fate and proliferation from tumor initiation to metastasis. The entire genome of various tumor types, have now been sequenced. In lung cancer, the average number of mutations is very high with more than 8.9 mutations/Mb (Network TCGAR, 2014) that is to say more than 10,000 mutations/genome. These alterations need to be classified, indeed, some are true drivers that directly impact proliferation and some are passenger mutations linked to genetic instability. The development of targeted therapies relies on the identification of oncogenic drivers. The identification of genotype-phenotype associations as in the case of EGFR-TKI (Epidermal growth factor receptor-tyrosine kinase inhibitor) and EGFR mutations in lung cancer led to the restriction of drugs to patients for which tumor genotype predicts efficacy. Tumor

  6. [Lung cancer molecular testing, what role for Next Generation Sequencing and circulating tumor DNA].

    Science.gov (United States)

    Pécuchet, Nicolas; Legras, Antoine; Laurent-Puig, Pierre; Blons, Hélène

    2016-01-01

    Molecular screening has become a standard of care for patients with advanced cancers and impacts on how to treat a patient. Advances in genomic technologies with the development of high throughput sequencing methods will certainly improve the possibilities to access a more accurate molecular diagnosis and to go beyond the identification of validated targets as a large number of genes can be screened for actionable changes. Moreover, accurate high throughput testing may help tumor classification in terms of prognosis and drug sensitivity. Finally, it will be possible to assess tumor heterogeneity and changes in molecular profiles during follow-up using ultra-deep sequencing technologies and circulating tumor DNA characterization. The accumulation of somatic ADN alterations is considered as the main contributing factor in carcinogenesis. The alterations can occur at different levels: mutation, copy number variations or gene translocations resulting in altered expression of the corresponding genes or impaired protein functions. Genes involved are mainly tumor suppressors, oncogenes or ADN repair genes whose modifications in tumors will impinge cell fate and proliferation from tumor initiation to metastasis. The entire genome of various tumor types, have now been sequenced. In lung cancer, the average number of mutations is very high with more than 8.9 mutations/Mb (Network TCGAR, 2014) that is to say more than 10,000 mutations/genome. These alterations need to be classified, indeed, some are true drivers that directly impact proliferation and some are passenger mutations linked to genetic instability. The development of targeted therapies relies on the identification of oncogenic drivers. The identification of genotype-phenotype associations as in the case of EGFR-TKI (Epidermal growth factor receptor-tyrosine kinase inhibitor) and EGFR mutations in lung cancer led to the restriction of drugs to patients for which tumor genotype predicts efficacy. Tumor

  7. Circulation Tumor Cells: counts and characteristics

    NARCIS (Netherlands)

    B. Mostert (Bianca)

    2012-01-01

    textabstractIn recent years, many new anti-cancer agents have been developed and introduced into clinical care. While these new agents have led to substantial gains in response rates and life expectancies, they have also increased the need for tools to select those patients benefitting from said the

  8. Methylation of cell-free circulating DNA in the diagnosis of cancer

    OpenAIRE

    Warton, Kristina; Samimi, Goli

    2015-01-01

    A range of molecular alterations found in tumor cells, such as DNA mutations and DNA methylation, is reflected in cell-free circulating DNA (circDNA) released from the tumor into the blood, thereby making circDNA an ideal candidate for the basis of a blood-based cancer diagnosis test. In many cancer types, mutations driving tumor development and progression are present in a wide range of oncogenes and tumor suppressor genes. However, even when a gene is consistently mutated in a particular ca...

  9. Reproducibility of Digital PCR Assays for Circulating Tumor DNA Analysis in Advanced Breast Cancer

    Science.gov (United States)

    Hrebien, Sarah; O’Leary, Ben; Beaney, Matthew; Schiavon, Gaia; Fribbens, Charlotte; Bhambra, Amarjit; Johnson, Richard; Turner, Nicholas

    2016-01-01

    Circulating tumor DNA (ctDNA) analysis has the potential to allow non-invasive analysis of tumor mutations in advanced cancer. In this study we assessed the reproducibility of digital PCR (dPCR) assays of circulating tumor DNA in a cohort of patients with advanced breast cancer and assessed delayed plasma processing using cell free DNA preservative tubes. We recruited a cohort of 96 paired samples from 71 women with advanced breast cancer who had paired blood samples processed either immediately or delayed in preservative tubes with processing 48–72 hours after collection. Plasma DNA was analysed with multiplex digital PCR (mdPCR) assays for hotspot mutations in PIK3CA, ESR1 and ERBB2, and for AKT1 E17K. There was 94.8% (91/96) agreement in mutation calling between immediate and delayed processed tubes, kappa 0.88 95% CI 0.77–0.98). Discordance in mutation calling resulted from low allele frequency and likely stochastic effects. In concordant samples there was high correlation in mutant copies per ml plasma (r2 = 0.98; pprocessed tubes, although overall quantification of total cell free plasma DNA had similar prognostic effects in immediate (HR 3.6) and delayed (HR 3.0) tubes. There was moderate agreement in changes in allele fraction between sequential samples in quantitative mutation tracking (r = 0.84, p = 0.0002). Delayed processing of samples using preservative tubes allows for centralized ctDNA digital PCR mutation screening in advanced breast cancer. The potential of preservative tubes in quantitative mutation tracking requires further research. PMID:27760227

  10. Infantile pericardial round cell tumor

    International Nuclear Information System (INIS)

    Cardiac malignancies presenting in infancy are rare. Desmoplastic small round cell tumor (DSRCT) is a rare occurrence in this age group. No case of intrapericardial DSRCT has been reported in the literature in infants

  11. [Ovarian germ cell tumors in girls].

    Science.gov (United States)

    Nechushkina, I V; Karseladze, A I

    2015-01-01

    Morphological structure of tumor influences on the clinical course of the disease in children with germ cell tumors. Patients with ovarian dysgerminoma at the time of diagnosis are significantly older than patients with immature teratoma and yolk sac tumor. Immature teratoma and mixed germ cell tumors are significantly larger compared to other germ cell tumors. Yolk sac tumor and embryonal carcinoma are the most common cause of emergency surgical interventions and are accompanied by rupture of tumor capsule. PMID:26087605

  12. High Circulating Frequencies of Tumor Necrosis Factor Alpha- and Interleukin-2-Secreting Human T-Lymphotropic Virus Type 1 (HTLV-1)-Specific CD4+ T Cells in Patients with HTLV-1-Associated Neurological Disease

    OpenAIRE

    Goon, Peter K. C.; Igakura, Tadahiko; Hanon, Emmanuel; Angelina J Mosley; Asquith, Becca; Gould, Keith G.; Taylor, Graham P.; Weber, Jonathan N.; Bangham, Charles R M

    2003-01-01

    Significantly higher frequencies of tumor necrosis factor alpha- and interleukin-2-secreting human T-lymphotropic virus type 1 (HTLV-1)-specific CD4+ T cells were present in the peripheral blood mononuclear cells of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients than in those of asymptomatic carriers with similar provirus loads. The data suggest that HTLV-1-specific CD4+ T cells play a role in the pathogenesis of HAM/TSP.

  13. Tumor-specific Anti-Nucleosome Antibody Improves Therapeutic Efficacy of Doxorubicin-Loaded Long-Circulating Liposomes against Primary and Metastatic Tumor in Mice

    Science.gov (United States)

    ElBayoumi, Tamer A.; Torchilin, Vladimir P.

    2009-01-01

    The efficacy of drug delivery systems can be significantly enhanced by making them target-specific via the attachment of various ligands to their surface. We attempted to enhance tumor accumulation and therapeutic effect of doxorubicin-loaded long-circulating liposomes (Doxil®, ALZA Corp.) by coupling to their surface the anti-cancer monoclonal antibody 2C5 (mAb 2C5) with nuclesome (NS)-restricted activity, that can recognize the surface of various tumor but not normal cells via the surface-bound nucleosomes released from the apoptotically dying neighboring tumor cells and specifically targets pharmaceutical carriers to tumor cells in vitro and in vivo. Antibody coupling to PEGylated doxorubicin-liposomes was performed by the “post-insertion” technique. The pharmacokinetics of plain and immuno-targeted Doxil®-mimicking liposomes, as well as their accumulation in primary Lewis Lung Carcinoma (LLC) tumors in mice was followed by real-time gamma-scintigraphy upon liposomal membrane labeling with 111In. Therapeutic action of various liposomal formulations was followed by registering primary tumor growth, determining tumor weigh upon mice sacrifice, and by counting the number of metastases in the liver and lungs. 2C5 antibody-targeted liposomes demonstrate significantly enhanced accumulation in LLC tumors. Targeted doxorubicin-loaded PEG-liposomes were significantly more effective in inhibiting tumor growth and metastatic process in the LLC tumor models in mice. Our results clearly show the remarkable capability of 2C5-targeted Doxil® to specifically deliver its cargo into various tumor manifestations (solid and metastatic) significantly increasing the efficacy of therapy. PMID:19049322

  14. Molecular markers for tumor cell dissemination in female cancers

    International Nuclear Information System (INIS)

    In the fight against cancer many advances have been made in early detection and treatment of the disease during the last few decades. Nevertheless, many patients still die of cancer due to metastatic spreading of the disease. Tumor cell dissemination may occur very early and usually is not discovered at the time of initial diagnosis. In these cases, the mere excision of the primary tumor is an insufficient treatment. Microscopic tumor residues will remain in the blood, lymph nodes, or the bone marrow and will cause disease recurrence. To improve the patient's prognosis, a sensitive tool for the detection of single tumor cells supplementing conventional diagnostic procedures is required. As the blood is more easily accessible than the bone marrow or tissue biopsies, we intended to identify gene markers for the detection of circulating tumor cells in the blood of cancer patients. We focused on patients with breast, ovarian, endometrial or cervical cancer. Starting from a genome-wide gene expression analysis of tumor cells and blood cells, we found six genes higher expression levels in cancer patients compared to healthy women. These findings suggest that an increased expression of these genes in the blood indicates the presence of circulating tumor cells inducing future metastases and thus the need for adjuvant therapy assisting the primary treatment. Measuring the expression levels of these six genes in the blood may supplement conventional diagnostic tests and improve the patient's prognosis. (author)

  15. Studying the role of macrophages in circulating prostate cancer cells by in vivo flow cytometry

    Science.gov (United States)

    Cui, Xiaojun; Guo, Jin; Gu, Zhengqin; Wei, Xunbin

    2012-12-01

    Metastasis is a very complicated multi-step process and accounts for the low survival rate of the cancerous patients. To metastasize, the malignant cells must detach from the primary tumor and migrate to secondary sites in the body through either blood or lymph circulation. Macrophages appear to be directly involved in tumor progression and metastasis. However, the role of macrophages in affecting cancer metastasis has not been fully elucidated. Here, we have utilized an emerging technique, namely in vivo flow cytometry (IVFC) to study the depletion kinetics of circulating prostate cancer cells in mice and how depletion of macrophages by the liposome-encapsulated clodronate affects the depletion kinetics. Our results show different depletion kinetics of PC-3 cells between macrophage-deficient group and the control group. The number of circulating tumor cells (CTCs) in macrophage-deficient group decreases in a slower manner compared to the control mice group. The differences in depletion kinetics indicate that the absence of macrophages facilitates the stay of prostate cancer cells in circulation. We speculate that macrophages might be able to arrest, phagocytose and digest PC-3 cells. Therefore, the phagocytosis may mainly contribute to the depletion kinetic differences. The developed methods here would be useful to study the relationship between macrophages and tumor metastasis in small animal cancer model.

  16. Comparison of assay methods for detection of circulating tumor cells in metastatic breast cancer: AdnaGen AdnaTest BreastCancer Select/Detect™ versus Veridex CellSearch™ system.

    Science.gov (United States)

    Andreopoulou, E; Yang, L-Y; Rangel, K M; Reuben, J M; Hsu, L; Krishnamurthy, S; Valero, V; Fritsche, H A; Cristofanilli, M

    2012-04-01

    The detection of CTCs prior to and during therapy is an independent and strong prognostic marker, and it is predictive of poor treatment outcome. A major challenge is that different technologies are available for isolation and characterization of CTCs in peripheral blood (PB). We compare the CellSearch system and AdnaTest BreastCancer Select/Detect, to evaluate the extent that these assays differ in their ability to detect CTCs in the PB of MBC patients. CTCs in 7.5 ml of PB were isolated and enumerated using the CellSearch, before new treatment. Two cutoff values of ≥2 and ≥5 CTCs/7.5 ml were used. AdnaTest requires 5 ml of PB to detect gene transcripts of tumor markers (GA733-2, MUC-1, and HER2) by RT-PCR. AdnaTest was scored positive if ≥1 of the transcript PCR products for the 3 markers were detected at a concentration ≥0.15 ng/μl. A total of 55 MBC patients were enrolled. 26 (47%) patients were positive for CTCs by the CellSearch (≥2 cutoff), while 20 (36%) were positive (≥5 cutoff). AdnaTest was positive in 29 (53%) with the individual markers being positive in 18% (GA733-2), 44% (MUC-1), and 35% (HER2). Overall positive agreement was 73% for CTC≥2 and 69% for CTC≥5. These preliminary data suggest that the AdnaTest has equivalent sensitivity to that of the CellSearch system in detecting 2 or more CTCs. While there is concordance between these 2 methods, the AdnaTest complements the CellSearch system by improving the overall CTC detection rate and permitting the assessment of genomic markers in CTCs.

  17. Circulation times of cancer cells by in vivo flow cytometry

    Science.gov (United States)

    Zhang, Li; Li, Yan; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2012-03-01

    Liver cancer is one of the most common malignancies in the world, with approximately 1,000,000 cases reported every year. Hepatocellular carcinoma may metastasize to lung, bones, kidney, and many other organs. Surgical resection, liver transplantation, chemotherapy and radiation therapy are the foundation of current HCC therapies. However the outcomes are poor: the survival rate is almost zero for metastatic HCC patients. Molecular mechanisms of HCC metastasis need to be understood better and new therapies must be developed. A recently developed "in vivo flow cytometer" combined with real-time confocal fluorescence imaging are used to assess spreading and the circulation kinetics of liver tumor cells. The in vivo flow cytometer has the capability to detect and quantify continuously the number and flow characteristics of fluorescently labeled cells in vivo in real time without extracting blood sample. We have measured the depletion kinetics of two related human HCC cell lines, high-metastatic HCCLM3 cells and low-metastatic HepG2 cells, which were from the same origin and obtained by repetitive screenings in mice. >60% HCCLM3 cells are depleted within the first hour. Interestingly, the low-metastatic HepG2 cells possess noticeably slower depletion kinetics. In comparison, <40% HepG2 cells are depleted within the first hour. The differences in depletion kinetics might provide insights into early metastasis processes.

  18. Circulating endothelial cells in cardiovascular disease.

    Science.gov (United States)

    Boos, Christopher J; Lip, Gregory Y H; Blann, Andrew D

    2006-10-17

    Quantification of circulating endothelial cells (CECs) in peripheral blood is developing as a novel and reproducible method of assessing endothelial damage/dysfunction. The CECs are thought to be mature cells that have detached from the intimal monolayer in response to endothelial injury and are a different cell population to endothelial progenitor cells (EPCs). The EPCs are nonleukocytes derived from the bone marrow that are believed to have proliferative potential and may be important in vascular regeneration. Currently accepted methods of CEC quantification include the use of immunomagnetic bead separation (with cell counting under fluorescence microscopy) and flow cytometry. Several recent studies have shown increased numbers of CECs in cardiovascular disease and its risk factors, such as unstable angina, acute myocardial infarction, stroke, diabetes mellitus, and critical limb ischemia, but no change in stable intermittent claudication, essential hypertension, or atrial fibrillation. Furthermore, CEC quantification at 48 h after acute myocardial infarction has been shown to be an accurate predictor of major adverse coronary events and death at both 1 month and 1 year. This article presents an overview of the pathophysiology of CECs in the setting of cardiovascular disease and a brief comparison with EPCs. PMID:17045885

  19. Dielectrophoretic capture and genetic analysis of single neuroblastoma tumor cells

    Directory of Open Access Journals (Sweden)

    Erica L Carpenter

    2014-07-01

    Full Text Available Our understanding of the diversity of cells that escape the primary tumor and seed micrometastases remains rudimentary, and approaches for studying circulating and disseminated tumor cells have been limited by low throughput and sensitivity, reliance on single parameter sorting, and a focus on enumeration rather than phenotypic and genetic characterization. Here we utilize a highly sensitive microfluidic and dielectrophoretic approach for the isolation and genetic analysis of individual tumor cells. We employed fluorescence labeling to isolate 208 single cells from spiking experiments conducted with 11 cell lines, including 8 neuroblastoma cell lines, and achieved a capture sensitivity of 1 tumor cell per 106 white blood cells. Sample fixation or freezing had no detectable effect on cell capture. Point mutations were accurately detected in the whole genome amplification product of captured single tumor cells but not in negative control white blood cells. We applied this approach to capture 144 single tumor cells from 10 bone marrow samples from patients suffering from neuroblastoma. In this pediatric malignancy, high-risk patients often exhibit wide-spread hematogenous metastasis, but access to primary tumor can be difficult or impossible. Here we used flow-based sorting to pre-enrich samples with tumor involvement below 0.02%. For all patients for whom a mutation in the Anaplastic Lymphoma Kinase gene had already been detected in their primary tumor, the same mutation was detected in single cells from their marrow. These findings demonstrate a novel, non-invasive, and adaptable method for the capture and genetic analysis of single tumor cells from cancer patients.

  20. Cancer stem cells and brain tumors

    OpenAIRE

    Pérez Castillo, Ana; Aguilar Morante, Diana; Morales-García, José A.; Dorado, Jorge

    2008-01-01

    Besides the role of normal stem cells in organogenesis, cancer stem cells are thought to be crucial for tumorigenesis. Most current research on human tumors is focused on molecular and cellular analysis of the bulk tumor mass. However, evidence in leukemia and, more recently, in solid tumors suggests that the tumor cell population is heterogeneous. In recent years, several groups have described the existence of a cancer stem cell population in different brain tumors. These neural cancer stem ...

  1. Cancer stem cells, tumor dormancy, and metastasis

    OpenAIRE

    EmilyChen

    2012-01-01

    Tumor cells can persist undetectably for an extended period of time in primary tumors and in disseminated cancer cells. Very little is known about why and how these tumors persist for extended periods of time and then evolve to malignancy. The discovery of cancer stem cells (CSCs) in human tumors challenges our current understanding of tumor recurrence, drug resistance, and metastasis, and opens up new research directions on how cancer cells are capable of switching from dormancy to malignanc...

  2. Preliminary study of testing circulating tumor cells in patients with renal cell carcinoma by Cell-search System%肾细胞癌外周血循环肿瘤细胞检测方法的初步探讨

    Institute of Scientific and Technical Information of China (English)

    张玉石; 李汉忠; 周春

    2013-01-01

    目的 探讨应用细胞搜索系统(cell-search system,CSS)检测肾细胞癌患者外周血循环肿瘤细胞(circulating tumor cell,CTC)的方法及可行性. 方法 2012年1-6月收治的中晚期肾细胞癌患者8例,男5例,女3例.年龄57~70岁,平均64岁.依据2009年UICC的TNM分期标准:T3N0M0期2例,T4N0M1期6例.3例行肾癌根治手术,5例进行靶向药物治疗.所有患者治疗前采取外周血7.5 ml,15℃~30℃专用试管内保存,96 h内送检.用CSS对患者外周血进行CTC定量检测,标志物选用抗细胞角蛋白CK8/18/19荧光抗体. 结果 8例外周血CTC定量检测结果均为阴性,1例T4N0M1患者外周血中发现25个CK8/18/19和CD45的双阳性细胞. 结论 利用上皮细胞肿瘤标志物CK8/18/19抗体标记肾癌CTC,采用CSS方法未能检测出中晚期肾癌患者血中的CTC,抗CK8/18/19抗体不能作为所有上皮来源肿瘤的细胞标志物来检测CTC.%Objective To explore the feasibility and to improve the efficiency of testing circulating tumor cells(CTC)in patients with renal cell carcinoma by Cell-search System(CSS).Methods Eight patients with renal cell carcinoma hospitalized in the PUMC urology department for further clinical evaluation in Jan.to Jun.2012 were enrolled in this study.There were 5 males and 3 females with mean age of 64 (57-70)years.There were 2 cases in clinical stage T3N0M0 and 6 cases in T4N0M1;3 cases were treated with radical nephrectomy,5 cases were treated with targeted therapy drugs.7.5 ml peripheral blood samples from these patients were collected and saved in test tube at the temperature of 15 ℃-30 ℃.The tests had to be done within 96 hrs after the blood sample drawn.We selected fluorescent anti-CKS/18/19 antibodies as CTC makers for renal cell carcinoma.Then the number of CTC was quantitative detected by CSS.The feasibility and detection rate of testing CTC in patients with RCC by CSS was evaluated,and the improvement of method was discussed.Results Quantitative

  3. Impact of microbubble enhanced, pulsed, focused ultrasound on tumor circulation of subcutaneous VX2 cancer

    Institute of Scientific and Technical Information of China (English)

    Li Peijing; Zhu Mei; Xu Yali; Zhao Yang; Gao Shunji; Liu Zheng; Gao Yun-hua

    2014-01-01

    Background Intravascular microbubble-enhanced acoustic cavitation is capable of disrupting the vascular walls of capillaries and small vessels.This study was designed to investigate the impact of microbubble-enhanced,pulsed and focused ultrasound (MEUS) on the blood perfusion of subcutaneous VX2 tumors in rabbits.Methods Subcutaneous VX2 cancers in twenty New Zealand rabbits were treated by combining high-pressure amplitude,pulsed and focused therapeutic ultrasound (TUS) and intravenous microbubble injections.The TUS transducer was operated with a peak negative pressure of 4.6 MPa and a duty cycle of 0.41%.Controls were subcutaneous VX2 cancers treated with TUS or microbubbles only.Contrast-enhanced ultrasound (CEUS) and intravenous Evans Blue (EB) perfusion were performed to assess the tumor circulation.The tumor microvascular disruption was assessed by histological examination.Results CEUS showed that the tumor circulation almost vanished after MEUS treatment.The average peak grayscale value (GSV) of tumor CEUS dropped significantly from 84.1±22.4 to 15.8±10.8 in the MEUS-treated tumors but no significant GSV changes were found in tumors in the two control groups.The mean tumor EB content of the MEUS-treated tumors was significantly lower than that of the controls.Histological examination found scattered tumor microvascular disruption with intercellular edema after MEUS treatment.Conclusion The tumor circulation of VX2 cancers can be arrested or significantly reduced by MEUS due to microvascular disruption.

  4. Modulation of circulating angiogenic factors and tumor biology by aerobic training in breast cancer patients receiving neoadjuvant chemotherapy.

    Science.gov (United States)

    Jones, Lee W; Fels, Diane R; West, Miranda; Allen, Jason D; Broadwater, Gloria; Barry, William T; Wilke, Lee G; Masko, Elisabeth; Douglas, Pamela S; Dash, Rajesh C; Povsic, Thomas J; Peppercorn, Jeffrey; Marcom, P Kelly; Blackwell, Kimberly L; Kimmick, Gretchen; Turkington, Timothy G; Dewhirst, Mark W

    2013-09-01

    Aerobic exercise training (AET) is an effective adjunct therapy to attenuate the adverse side-effects of adjuvant chemotherapy in women with early breast cancer. Whether AET interacts with the antitumor efficacy of chemotherapy has received scant attention. We carried out a pilot study to explore the effects of AET in combination with neoadjuvant doxorubicin-cyclophosphamide (AC+AET), relative to AC alone, on: (i) host physiology [exercise capacity (VO2 peak), brachial artery flow-mediated dilation (BA-FMD)], (ii) host-related circulating factors [circulating endothelial progenitor cells (CEP) cytokines and angiogenic factors (CAF)], and (iii) tumor phenotype [tumor blood flow ((15)O-water PET), tissue markers (hypoxia and proliferation), and gene expression] in 20 women with operable breast cancer. AET consisted of three supervised cycle ergometry sessions/week at 60% to 100% of VO2 peak, 30 to 45 min/session, for 12 weeks. There was significant time × group interactions for VO2 peak and BA-FMD, favoring the AC+AET group (P blood flow in the AC+AET group. There were no differences in any tumor tissue markers (P > 0.05). Whole-genome microarray tumor analysis revealed significant differential modulation of 57 pathways (P < 0.01), including many that converge on NF-κB. Data from this exploratory study provide initial evidence that AET can modulate several host- and tumor-related pathways during standard chemotherapy. The biologic and clinical implications remain to be determined. PMID:23842792

  5. Circulating neuroendocrine tumors biomarkers. Why? When? How? Suggestions for clinical practice from guidelines and consensus

    Institute of Scientific and Technical Information of China (English)

    Paola Razzore; Giorgio Arnaldi

    2016-01-01

    Neuroendocrine neoplasms (NETs) are rare tumors that are increasing in incidence. NETs are characterized by heterogeneous biological behaviour, clinical presentation and course. A sensitive and speciifc diagnostic and prognostic circulating biomarker useful for all sites, grading and staging of neuroendocrine tumors is still an unmet need. The aim of this article was to review current neuroendocrine and oncologic scientiifc society guidelines and position statements, and propose recommendations for the most frequent clinical practice queries on circulating neuroendocrine tumors biomarkers. The authors searched for NCCN, NANETS, ESMO, ENETS, UKINETS, AME management guidelines or position statements available from PubMed up to 7th January 2016. From these results we chose guidelines or position statements published by scientiifc societies or institutions in USA, Europe and Italy with recognized expertise in neuroendocrine tumor patient management. The authors present suggestions for clinical practice based on this analysis.

  6. Platelets surrounding primary tumor cells are related to chemoresistance.

    Science.gov (United States)

    Ishikawa, Satoko; Miyashita, Tomoharu; Inokuchi, Masafumi; Hayashi, Hironori; Oyama, Katsunobu; Tajima, Hidehiro; Takamura, Hironori; Ninomiya, Itasu; Ahmed, A Karim; Harman, John W; Fushida, Sachio; Ohta, Tetsuo

    2016-08-01

    Platelets are crucial components of the tumor microenvironment that function to promote tumor progression and metastasis. In the circulation, the interaction between tumor cells and platelets increases invasiveness, protects tumor cells from shear stress and immune surveillance, and facilitates tumor cell extravasation to distant sites. However, the role and presence of platelets in the primary tumor have not been fully determined. Here, we investigated the presence of platelets around breast cancer primary tumor cells and the associations between these cells. We further investigated the associations among platelets, tumor cells, chemoresistance, and epithelial-mesenchymal transition (EMT). We retrospectively analyzed data from 74 patients with human epidermal growth factor receptor 2 (HER2)‑negative breast cancer who underwent biopsies before treatment and subsequent neo-adjuvant chemotherapy. In biopsy specimens, we evaluated the expression of platelet-specific markers and EMT markers using immunohistochemistry. The associations among the expression of platelet‑specific markers in biopsy specimens, EMT, response to neo‑adjuvant chemotherapy, and survival were analyzed. The presence of platelets was observed in 44 out of 74 (59%) primary breast cancer biopsy specimens. Platelet‑positive tumor cells showed EMT‑like morphological changes and EMT marker expression. Primary tumor cells associated with platelets were less responsive to neo‑adjuvant chemotherapy (pCR rate: 10 vs. 50%, respectively; p=0.0001). Platelets were an independent predictor of the response to chemotherapy upon multivariable analysis (pbreast cancer. Platelets surrounding primary tumor cells may represent novel predictors of chemotherapeutic responses. PMID:27349611

  7. High expression of TRF2, SOX10, and CD10 in circulating tumor microemboli detected in metastatic melanoma patients. A potential impact for the assessment of disease aggressiveness.

    Science.gov (United States)

    Long, Elodie; Ilie, Marius; Bence, Coraline; Butori, Catherine; Selva, Eric; Lalvée, Salomé; Bonnetaud, Christelle; Poissonnet, Gilles; Lacour, Jean-Philippe; Bahadoran, Philippe; Brest, Patrick; Gilson, Eric; Ballotti, Robert; Hofman, Véronique; Hofman, Paul

    2016-06-01

    Circulating tumors cells (CTCs) can be detected in the blood of metastatic melanoma patients (MMPs) both as isolated circulating tumor cells (iCTCs) and circulating tumor microemboli (CTMs), but their clinical significance remains unknown. The aim of this work was to evaluate the prognostic impact in metastatic cutaneous melanoma of CTMs and iCTCs identified by a cytomorphological approach using the isolation by size of tumor cell (ISET) method. We characterized the phenotype of CTCs using anti-PS100, anti-SOX10, anti-CD10, and anti-TRF2 antibodies. 128 MMPs and 37 control healthy individuals with benign nevi were included in this study. Results were compared to the follow-up of patients. 109/128 (85%) MMPs showed CTCs, 44/128 (34%) with 2 to 6 CTMs and 65/128 (51%) with 4 to 9 iCTCs. PS100 expression was homogeneous in iCTCs and heterogeneous in CTMs. SOX10, CD10, and TRF2 were mainly expressed in CTMs. None of the control subjects demonstrated circulating malignant tumor cells. Overall survival was significantly decreased in patients with CTMs, independently of the therapeutic strategies. In conclusion, the presence of CTMs is an independent predictor of shorter survival from the time of diagnosis of MMPs. PMID:26945789

  8. High expression of TRF2, SOX10, and CD10 in circulating tumor microemboli detected in metastatic melanoma patients. A potential impact for the assessment of disease aggressiveness.

    Science.gov (United States)

    Long, Elodie; Ilie, Marius; Bence, Coraline; Butori, Catherine; Selva, Eric; Lalvée, Salomé; Bonnetaud, Christelle; Poissonnet, Gilles; Lacour, Jean-Philippe; Bahadoran, Philippe; Brest, Patrick; Gilson, Eric; Ballotti, Robert; Hofman, Véronique; Hofman, Paul

    2016-06-01

    Circulating tumors cells (CTCs) can be detected in the blood of metastatic melanoma patients (MMPs) both as isolated circulating tumor cells (iCTCs) and circulating tumor microemboli (CTMs), but their clinical significance remains unknown. The aim of this work was to evaluate the prognostic impact in metastatic cutaneous melanoma of CTMs and iCTCs identified by a cytomorphological approach using the isolation by size of tumor cell (ISET) method. We characterized the phenotype of CTCs using anti-PS100, anti-SOX10, anti-CD10, and anti-TRF2 antibodies. 128 MMPs and 37 control healthy individuals with benign nevi were included in this study. Results were compared to the follow-up of patients. 109/128 (85%) MMPs showed CTCs, 44/128 (34%) with 2 to 6 CTMs and 65/128 (51%) with 4 to 9 iCTCs. PS100 expression was homogeneous in iCTCs and heterogeneous in CTMs. SOX10, CD10, and TRF2 were mainly expressed in CTMs. None of the control subjects demonstrated circulating malignant tumor cells. Overall survival was significantly decreased in patients with CTMs, independently of the therapeutic strategies. In conclusion, the presence of CTMs is an independent predictor of shorter survival from the time of diagnosis of MMPs.

  9. Palifosfamide in Treating Patients With Recurrent Germ Cell Tumors

    Science.gov (United States)

    2015-06-11

    Adult Central Nervous System Germ Cell Tumor; Adult Teratoma; Malignant Extragonadal Germ Cell Tumor; Malignant Extragonadal Non-Seminomatous Germ Cell Tumor; Extragonadal Seminoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Stage IV Extragonadal Non-Seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Ovarian Germ Cell Tumor

  10. Multiparametric classification links tumor microenvironments with tumor cell phenotype.

    Directory of Open Access Journals (Sweden)

    Bojana Gligorijevic

    2014-11-01

    Full Text Available While it has been established that a number of microenvironment components can affect the likelihood of metastasis, the link between microenvironment and tumor cell phenotypes is poorly understood. Here we have examined microenvironment control over two different tumor cell motility phenotypes required for metastasis. By high-resolution multiphoton microscopy of mammary carcinoma in mice, we detected two phenotypes of motile tumor cells, different in locomotion speed. Only slower tumor cells exhibited protrusions with molecular, morphological, and functional characteristics associated with invadopodia. Each region in the primary tumor exhibited either fast- or slow-locomotion. To understand how the tumor microenvironment controls invadopodium formation and tumor cell locomotion, we systematically analyzed components of the microenvironment previously associated with cell invasion and migration. No single microenvironmental property was able to predict the locations of tumor cell phenotypes in the tumor if used in isolation or combined linearly. To solve this, we utilized the support vector machine (SVM algorithm to classify phenotypes in a nonlinear fashion. This approach identified conditions that promoted either motility phenotype. We then demonstrated that varying one of the conditions may change tumor cell behavior only in a context-dependent manner. In addition, to establish the link between phenotypes and cell fates, we photoconverted and monitored the fate of tumor cells in different microenvironments, finding that only tumor cells in the invadopodium-rich microenvironments degraded extracellular matrix (ECM and disseminated. The number of invadopodia positively correlated with degradation, while the inhibiting metalloproteases eliminated degradation and lung metastasis, consistent with a direct link among invadopodia, ECM degradation, and metastasis. We have detected and characterized two phenotypes of motile tumor cells in vivo, which

  11. Role of macrophages in circulating prostate cancer cells studied by in vivo flow cytometry

    Science.gov (United States)

    Liu, Rongrong; Guo, Jin; Gu, Zhengqin; Wei, Xunbin

    2013-02-01

    Macrophages appear to be directly involved in cancer progression and metastasis. However, the role of macrophages in influencing tumor metastasis has not been fully understood. Here, we have used an emerging technique, namely in vivo flow cytometry (IVFC) to study the depletion kinetics of circulating prostate cancer cells in mice and how depletion of macrophages by the liposome-encapsulated clodronate affects the depletion kinetics. Our results show different depletion kinetics of PC-3 prostate cancer cells between macrophage-deficient group and the control group. The number of circulating tumor cells (CTCs) in macrophage-deficient group decreases in a slower manner compared to the control mice group. The differences in depletion kinetics indicate that the absence of macrophages might facilitate the stay of prostate tumor cells in circulation. We speculate that macrophages might be able to arrest, phagocytose and digest PC-3 cancer cells. Therefore, the phagocytosis may mainly contribute to the differences in depletion kinetics. The developed methods here would be useful to study the relationship between macrophages and cancer metastasis in small animal tumor model.

  12. Patient-Derived Antibody Targets Tumor Cells

    Science.gov (United States)

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  13. Dendritic cells are stressed out in tumor.

    Science.gov (United States)

    Maj, Tomasz; Zou, Weiping

    2015-09-01

    A recently paper published in Cell reports that dendritic cells (DCs) are dysfunctional in the tumor environment. Tumor impairs DC function through induction of endoplasmic reticulum stress response and subsequent disruption of lipid metabolic homeostasis.

  14. Persistence of disseminated tumor cells after neoadjuvant treatment for locally advanced breast cancer predicts poor survival

    OpenAIRE

    Mathiesen, Randi R.; Borgen, Elin; Renolen, Anne; Løkkevik, Erik; Nesland, Jahn M; Anker, Gun; Østenstad, Bjørn; Lundgren, Steinar; Risberg, Terje; Mjaaland, Ingvil; Kvalheim, Gunnar; Lønning, Per E.; Naume, Bjørn

    2012-01-01

    Introduction Presence of disseminated tumor cells (DTCs) in bone marrow (BM) and circulating tumor cells (CTC) in peripheral blood (PB) predicts reduced survival in early breast cancer. The aim of this study was to determine the presence of and alterations in DTC- and CTC-status in locally advanced breast cancer patients undergoing neoadjuvant chemotherapy (NACT) and to evaluate their prognostic impact. Methods ...

  15. Human neutrophils facilitate tumor cell transendothelial migration.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  16. Vimentin and Ki67 expression in circulating tumour cells derived from castrate-resistant prostate cancer

    OpenAIRE

    Lindsay, C. R.; Le Moulec, S.; Billiot, F.; Loriot, Y; Ngo-Camus, M.; Vielh, P; Fizazi, K; Massard, C; Farace, F.

    2016-01-01

    Background High circulating tumor cell (CTC) counts are associated with poor prognosis in advanced prostate cancer, and recently CTC number was suggested to be a surrogate for survival in metastatic castrate-resistant prostate cancer (mCRPC). Ki67 and vimentin are well-characterised markers of tumour cell proliferation and the epithelial-mesenchymal transition (EMT), respectively. Here we asked if the expression of vimentin and Ki67 in CTCs offered prognostic or predictive information in mCRP...

  17. Formation of germline chimera Gaok chicken used circulation primordial germ cells (circulation PGCs fresh and thawed

    Directory of Open Access Journals (Sweden)

    Kostaman T

    2014-03-01

    Full Text Available Formation of germline chimeras by transfer of chicken primordial germ cells (PGCs is one of the effective techniques for preservation and regeneration of genetic resources in chickens. This study attempted to form germline chimeras of Gaok chicken buy purifying circulated PGCs of donor embryo before it is transferred to the recipient (White Leghorn chickens=WL and studied the ability of recipient embryo on survival in incubators, and hatchability. This study used 200 fertile eggs of Gaok and 90 fertile WL breed all of the eggs was incubated at 380C and 60% humidity in a portable incubator. PGCs-circulation of the blood collected Gaok embryos at stage 14-16 were taken from the dorsal aorta, and then purified by centrifugation method using nycodenz. PGCs-circulation results further purification frozen in liquid nitrogen before being transferred to the recipient embryo. The results showed that for the development of embryos transferred to the fresh circulation of PGCs-circulation as many as 25 cells can survive up to day 14, while one of the transferred of 50 and 100 cells into recipient embryos was hatched (10%. On the contrari recipient embryos that are transferred to the frozen PGCs-circulation the embryos development was shorter, and only survived until day 10th (treatment 25 cells, day 14th (treatment of 50 cells and day 17th (treatment of 100 cells. It is concluded that the amount of PGCs-circulation embryos transferred to the recipient is one factor that influence the success of the development germline chimeras.

  18. Label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    Science.gov (United States)

    Wang, Xiaoling; Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Gao, Wenyuan; Tang, Shuo; Wei, Xunbin

    2016-03-01

    Melanoma is a malignant tumor of melanocytes. Melanoma cells have high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC), which is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. We have developed in vitro experiments to prove the ability of PAFC system of detecting photoacoustic signals from melanoma cells. For in vivo experiments, we have constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells, B16F10 with subcutaneous injection. PA signals are detected in the blood vessels of mouse ears in vivo. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The processing methods have a great potential for analyzing signals accurately and rapidly. By counting circulating melanoma cells termly, we obtain the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation.

  19. Circulating osteogenic cells: implications for injury, repair, and regeneration

    DEFF Research Database (Denmark)

    Pignolo, Robert J; Kassem, Moustapha

    2011-01-01

    The aim of this review is to provide a critical reading of recent literature pertaining to the presence of circulating, fluid-phase osteoblastic cells and their possible contribution to bone formation. We have termed this group of cells collectively as circulating osteogenic precursor (COP) cells....... We present evidence for their existence, methods used for their isolation and identification, possible physiological and pathophysiological roles, cellular origins, and possible mechanisms for their migration to target tissues....

  20. Brain tumor stem cell dancing

    Directory of Open Access Journals (Sweden)

    Giuseppina Bozzuto

    2014-09-01

    Full Text Available Background. Issues regarding cancer stem cell (CSC movement are important in neurosphere biology as cell-cell or cell-environment interactions may have significant impacts on CSC differentiation and contribute to the heterogeneity of the neurosphere. Aims. Despite the growing body of literature data on the biology of brain tumor stem cells, floating CSC-derived neurospheres have been scarcely characterized from a morphological and ultrastructural point of view. Results. Here we report a morphological and ultrastructural characterization performed by live imaging and scanning electron microscopy. Glioblastoma multiforme (GBM CSC-derived neurospheres are heterogeneous and are constituted by cells, morphologically different, capable of forming highly dynamic structures. These dynamic structures are regulated by not serendipitous cell-cell interactions, and they synchronously pulsate following a cyclic course made of "fast" and "slow" alternate phases. Autocrine/paracrine non canonical Wnt signalling appears to be correlated with the association status of neurospheres. Conclusions. The results obtained suggest that GBM CSCs can behave both as independents cells and as "social" cells, highly interactive with other members of its species, giving rise to a sort of "multicellular organism".

  1. Autophagy sensitivity of neuroendocrine lung tumor cells

    OpenAIRE

    HONG, SEUNG-KEUN; Kim, Jin-Hwan; Starenki, Dmytro; Park, Jong-In

    2013-01-01

    Neuroendocrine (NE) phenotypes characterize a spectrum of lung tumors, including low-grade typical and intermediate-grade atypical carcinoid, high-grade large-cell NE carcinoma and small cell lung carcinoma. Currently, no effective treatments are available to cure NE lung tumors, demanding identification of biological features specific to these tumors. Here, we report that autophagy has an important role for NE lung tumor cell proliferation and survival. We found that the expression levels of...

  2. Determinates of tumor response to radiation: Tumor cells, tumor stroma and permanent local control

    International Nuclear Information System (INIS)

    Background and purpose: The causes of tumor response variation to radiation remain obscure, thus hampering the development of predictive assays and strategies to decrease resistance. The present study evaluates the impact of host tumor stromal elements and the in vivo environment on tumor cell kill, and relationship between tumor cell radiosensitivity and the tumor control dose. Material and methods: Five endpoints were evaluated and compared in a radiosensitive DNA double-strand break repair-defective (DNA-PKcs−/−) tumor line, and its DNA-PKcs repair competent transfected counterpart. In vitro colony formation assays were performed on in vitro cultured cells, on cells obtained directly from tumors, and on cells irradiated in situ. Permanent local control was assessed by the TCD50 assay. Vascular effects were evaluated by functional vascular density assays. Results: The fraction of repair competent and repair deficient tumor cells surviving radiation did not substantially differ whether irradiated in vitro, i.e., in the absence of host stromal elements and factors, from the fraction of cells killed following in vivo irradiation. Additionally, the altered tumor cell sensitivity resulted in a proportional change in the dose required to achieve permanent local control. The estimated number of tumor cells per tumor, their cloning efficiency and radiosensitivity, all assessed by in vitro assays, were used to predict successfully, the measured tumor control doses. Conclusion: The number of clonogens per tumor and their radiosensitivity govern the permanent local control dose

  3. Within tumors, interactions between T cells and tumor cells are impeded by the extracellular matrix

    OpenAIRE

    Salmon, Hélène; Donnadieu, Emmanuel

    2012-01-01

    In principle, T cells can recognize and kill cancer cells. However, tumors have the ability to escape T cell attack. By imaging the dynamic behavior of T cells in human lung tumor explants, we have recently established the importance of the extracellular matrix in limiting access of T cells to tumor cells.

  4. Atypical extragonadal germ cell tumors

    Directory of Open Access Journals (Sweden)

    Mainak Deb

    2012-01-01

    Full Text Available Aim: To review the experience with the diagnosis and management of extragonadal germ cell tumors (GCT with a subset analysis of those with atypical features. Materials and Methods: A retrospective chart review of patients of extragonadal germ cell tumors between 2000 and 2010 was carried out. Results: Fifteen children aged 7 days to 15 years (median, 1.5 years were included. Three had an antenatal diagnosis (one sacrococcygeal, one retrobulbar, one retroperitoneal tumor and were operated in the neonatal period. The locations were distributed between the retrobulbar area (1, anterior neck-thyroid gland (1, mediastinum (4, abdominothoracic extending through the esophageal hiatus (1, retroperitoneal (4 and sacrococcygeal (4. On histological examination, five harbored immature elements while two were malignant; the latter children received postexcision adjuvant chemotherapy. There was no mortality. At a median follow-up of 4.5 years (6 months to 8 years, 14/15 have had an event-free survival. One immature mediastinal teratoma that recurred locally 7.5 years after the initial operation was excised and adjuvant chemotherapy instituted. Conclusions: Extragonadal GCTs in children are uncommon and occasionally present with atypical clinical, radiological and histological features resulting in diagnostic and therapeutic dilemmas.

  5. Noninvasive Assessment of Tumor Cell Proliferation in Animal Models

    Directory of Open Access Journals (Sweden)

    Matthias Edinger

    1999-10-01

    Full Text Available Revealing the mechanisms of neoplastic disease and enhancing our ability to intervene in these processes requires an increased understanding of cellular and molecular changes as they occur in intact living animal models. We have begun to address these needs by developing a method of labeling tumor cells through constitutive expression of an optical reporter gene, noninvasively monitoring cellular proliferation in vivo using a sensitive photon detection system. A stable line of HeLa cells that expressed a modified firefly luciferase gene was generated, proliferation of these cells in irradiated severe combined immunodeficiency (SCID mice was monitored. Tumor cells were introduced into animals via subcutaneous, intraperitoneal and intravenous inoculation and whole body images, that revealed tumor location and growth kinetics, were obtained. The number of photons that were emitted from the labeled tumor cells and transmitted through murine tissues was sufficient to detect 1×103 cells in the peritoneal cavity, 1×104 cells at subcutaneous sites and 1×106 circulating cells immediately following injection. The kinetics of cell proliferation, as measured by photon emission, was exponential in the peritoneal cavity and at subcutaneous sites. Intravenous inoculation resulted in detectable colonies of tumor cells in animals receiving more than 1×103 cells. Our demonstrated ability to detect small numbers of tumor cells in living animals noninvasively suggests that therapies designed to treat minimal disease states, as occur early in the disease course and after elimination of the tumor mass, may be monitored using this approach. Moreover, it may be possible to monitor micrometastases and evaluate the molecular steps in the metastatic process. Spatiotemporal analyses of neoplasia will improve the predictability of animal models of human disease as study groups can be followed over time, this method will accelerate development of novel therapeutic

  6. Clinical relevance of circulating cell-free microRNAs in ovarian cancer.

    Science.gov (United States)

    Nakamura, Koji; Sawada, Kenjiro; Yoshimura, Akihiko; Kinose, Yasuto; Nakatsuka, Erika; Kimura, Tadashi

    2016-01-01

    Ovarian cancer is the leading cause of death among gynecologic malignancies. Since ovarian cancer develops asymptomatically, it is often diagnosed at an advanced and incurable stage. Despite many years of research, there is still a lack of reliable diagnostic markers and methods for early detection and screening. Recently, it was discovered that cell-free microRNAs (miRNAs) circulate in the body fluids of healthy and diseased patients, suggesting that they may serve as a novel diagnostic marker. This review summarizes the current knowledge regarding the potential clinical relevance of circulating cell-free miRNA for ovarian cancer diagnosis, prognosis, and therapeutics. Despite the high levels of ribonucleases in many types of body fluids, most of the circulating miRNAs are packaged in microvesicles, exosomes, or apoptotic bodies, are binding to RNA-binding protein such as argonaute 2 or lipoprotein complexes, and are thus highly stable. Cell-free miRNA signatures are known to be parallel to those from the originating tumor cells, indicating that circulating miRNA profiles accurately reflect the tumor profiles. Since it is well established that the dysregulation of miRNAs is involved in the tumorigenesis of ovarian cancer, cell-free miRNAs circulating in body fluids such as serum, plasma, whole blood, and urine may reflect not only the existence of ovarian cancer but also tumor histology, stage, and prognoses of the patients. Several groups have successfully demonstrated that serum or plasma miRNAs are able to discriminate patients with ovarian cancer patients from healthy controls, suggesting that the addition of these miRNAs to current testing regimens may improve diagnosis accuracies for ovarian cancer. Furthermore, recent studies have revealed that changes in levels of cell-free circulating miRNAs are associated with the condition of cancer patients. Discrepancies between the results across studies due to the lack of an established endogenous miRNA control to

  7. Long circulating reduced graphene oxide-iron oxide nanoparticles for efficient tumor targeting and multimodality imaging

    Science.gov (United States)

    Xu, Cheng; Shi, Sixiang; Feng, Liangzhu; Chen, Feng; Graves, Stephen A.; Ehlerding, Emily B.; Goel, Shreya; Sun, Haiyan; England, Christopher G.; Nickles, Robert J.; Liu, Zhuang; Wang, Taihong; Cai, Weibo

    2016-06-01

    Polyethylene glycol (PEG) surface modification is one of the most widely used approaches to improve the solubility of inorganic nanoparticles, prevent their aggregation and prolong their in vivo blood circulation half-life. Herein, we developed double-PEGylated biocompatible reduced graphene oxide nanosheets anchored with iron oxide nanoparticles (RGO-IONP-1stPEG-2ndPEG). The nanoconjugates exhibited a prolonged blood circulation half-life (~27.7 h) and remarkable tumor accumulation (>11 %ID g-1) via an enhanced permeability and retention (EPR) effect. Due to the strong near-infrared absorbance and superparamagnetism of RGO-IONP-1stPEG-2ndPEG, multimodality imaging combining positron emission tomography (PET) imaging with magnetic resonance imaging (MRI) and photoacoustic (PA) imaging was successfully achieved. The promising results suggest the great potential of these nanoconjugates for multi-dimensional and more accurate tumor diagnosis and therapy in the future.

  8. Granular Cell Tumor: An Uncommon Benign Neoplasm

    OpenAIRE

    Tirthankar Gayen; Anupam Das; Kaushik Shome; Debabrata Bandyopadhyay; Dipti Das; Abanti Saha

    2015-01-01

    Granular cell tumor is a distinctly rare neoplasm of neural sheath origin. It mainly presents as a solitary asymptomatic swelling in the oral cavity, skin, and rarely internal organs in the middle age. Histopathology is characteristic, showing polyhedral cells containing numerous fine eosinophilic granules with indistinct cell margins. We present a case of granular cell tumor on the back of a 48-year-old woman which was painful, mimicking an adnexal tumor.

  9. Granular cell tumor: An uncommon benign neoplasm

    Directory of Open Access Journals (Sweden)

    Tirthankar Gayen

    2015-01-01

    Full Text Available Granular cell tumor is a distinctly rare neoplasm of neural sheath origin. It mainly presents as a solitary asymptomatic swelling in the oral cavity, skin, and rarely internal organs in the middle age. Histopathology is characteristic, showing polyhedral cells containing numerous fine eosinophilic granules with indistinct cell margins. We present a case of granular cell tumor on the back of a 48-year-old woman which was painful, mimicking an adnexal tumor.

  10. Circulating tumor DNA detection in lung cancer patients before and after surgery

    Science.gov (United States)

    Guo, Nannan; Lou, Feng; Ma, Yongfu; Li, Jie; Yang, Bo; Chen, Wei; Ye, Hua; Zhang, Jing-Bo; Zhao, Ming-Yu; Wu, Wen-Jun; Shi, Rong; Jones, Lindsey; Chen, Katherine S.; Huang, Xue F.; Chen, Si-Yi; Liu, Yang

    2016-01-01

    Circulating tumor DNA (ctDNA) in peripheral blood is a “liquid biopsy” that contains representative tumor information including gene mutations. Additionally, repeated ctDNA samples can be easily obtained to monitor response to treatment and disease progression, which may be especially valuable to lung cancer patients with tumors that cannot be easily biopsied or removed. To investigate the changes in ctDNA after surgical tumor resection, tumor and blood samples obtained before and after surgery were collected prospectively from 41 non-small lung cancer (NSCLC) patients. Somatic driver mutations in tumor DNA (tDNA) and pre- and post-op plasma ctDNA sample pairs were identified by targeted sequencing in several genes including EGFR, KRAS, and TP53 with an overall study concordance of 78.1% and sensitivity and specificity of 69.2% and 93.3%, respectively. Importantly, the frequency of 91.7% of ctDNA mutations decreased after surgery and these changes were observed as little as 2 days post-op. Moreover, the presence of ctDNA had a higher positive predictive value than that of six tumor biomarkers in current clinical use. This study demonstrates the use of targeted sequencing to reliably identify ctDNA changes in response to treatment, indicating a potential utility of this approach in the clinical management of NSCLC. PMID:27641744

  11. Genome-wide copy number analysis of cerebrospinal fluid tumor cells and their corresponding archival primary tumors.

    Science.gov (United States)

    Magbanua, Mark Jesus M; Roy, Ritu; Sosa, Eduardo V; Hauranieh, Louai; Kablanian, Andrea; Eisenbud, Lauren E; Ryazantsev, Artem; Au, Alfred; Scott, Janet H; Melisko, Michelle; Park, John W

    2014-12-01

    A debilitating complication of breast cancer is the metastatic spread of tumor cells to the leptomeninges or cerebrospinal fluid (CSF). Patients diagnosed with this aggressive clinical syndrome, known as leptomeningeal carcinomatosis, have very poor prognosis. Despite improvements in detecting cerebrospinal fluid tumor cells (CSFTCs), information regarding their molecular biology is extremely limited. In our recent work, we utilized a protocol previously used for circulating tumor cell isolation to purify tumor cells from the CSF. We then performed genomic characterization of CSFTCs as well as archival tumors from the same patient. Here, we describe the microarray data and quality controls associated with our study published in the Cancer Research journal in 2013 [1]. We also provide an R script containing code for quality control of microarray data and assessment of copy number calls. The microarray data has been deposited into Gene Expression Omnibus under accession # GSE46068.

  12. Evolution of cooperation among tumor cells.

    Science.gov (United States)

    Axelrod, Robert; Axelrod, David E; Pienta, Kenneth J

    2006-09-01

    The evolution of cooperation has a well established theoretical framework based on game theory. This approach has made valuable contributions to a wide variety of disciplines, including political science, economics, and evolutionary biology. Existing cancer theory suggests that individual clones of cancer cells evolve independently from one another, acquiring all of the genetic traits or hallmarks necessary to form a malignant tumor. It is also now recognized that tumors are heterotypic, with cancer cells interacting with normal stromal cells within the tissue microenvironment, including endothelial, stromal, and nerve cells. This tumor cell-stromal cell interaction in itself is a form of commensalism, because it has been demonstrated that these nonmalignant cells support and even enable tumor growth. Here, we add to this theory by regarding tumor cells as game players whose interactions help to determine their Darwinian fitness. We marshal evidence that tumor cells overcome certain host defenses by means of diffusible products. Our original contribution is to raise the possibility that two nearby cells can protect each other from a set of host defenses that neither could survive alone. Cooperation can evolve as by-product mutualism among genetically diverse tumor cells. Our hypothesis supplements, but does not supplant, the traditional view of carcinogenesis in which one clonal population of cells develops all of the necessary genetic traits independently to form a tumor. Cooperation through the sharing of diffusible products raises new questions about tumorigenesis and has implications for understanding observed phenomena, designing new experiments, and developing new therapeutic approaches.

  13. Circulating mesenchymal stem cells and their clinical implications

    Directory of Open Access Journals (Sweden)

    Liangliang Xu

    2014-01-01

    Full Text Available Circulating mesenchymal stem cells (MSCs is a new cell source for tissue regeneration and tissue engineering. The characteristics of circulating MSCs are similar to those of bone marrow-derived MSCs (BM-MSCs, but they exist at a very low level in healthy individuals. It has been demonstrated that MSCs are able to migrate to the sites of injury and that they have some distinct genetic profiles compared to BM-MSCs. The current review summaries the basic knowledge of circulating MSCs and their potential clinical applications, such as mobilizing the BM-MSCs into circulation for therapy. The application of MSCs to cure a broad spectrum of diseases is promising, such as spinal cord injury, cardiovascular repair, bone and cartilage repair. The current review also discusses the issues of using of allogeneic MSCs for clinical therapy.

  14. Circulating endothelial cells and procoagulant microparticles in patients with glioblastoma: prognostic value.

    Directory of Open Access Journals (Sweden)

    Gaspar Reynés

    Full Text Available AIM: Circulating endothelial cells and microparticles are prognostic factors in cancer. However, their prognostic and predictive value in patients with glioblastoma is unclear. The objective of this study was to investigate the potential prognostic value of circulating endothelial cells and microparticles in patients with newly diagnosed glioblastoma treated with standard radiotherapy and concomitant temozolomide. In addition, we have analyzed the methylation status of the MGMT promoter. METHODS: Peripheral blood samples were obtained before and at the end of the concomitant treatment. Blood samples from healthy volunteers were also obtained as controls. Endothelial cells were measured by an immunomagnetic technique and immunofluorescence microscopy. Microparticles were quantified by flow cytometry. Microparticle-mediated procoagulant activity was measured by endogen thrombin generation and by phospholipid-dependent clotting time. Methylation status of MGMT promoter was determined by multiplex ligation-dependent probe amplification. RESULTS: Pretreatment levels of circulating endothelial cells and microparticles were higher in patients than in controls (p<0.001. After treatment, levels of microparticles and thrombin generation decreased, and phospholipid-dependent clotting time increased significantly. A high pretreatment endothelial cell count, corresponding to the 99(th percentile in controls, was associated with poor overall survival. MGMT promoter methylation was present in 27% of tumor samples and was associated to a higher overall survival (66 weeks vs 30 weeks, p<0.004. CONCLUSION: Levels of circulating endothelial cells may have prognostic value in patients with glioblastoma.

  15. Diagnostic technologies for circulating tumour cells and exosomes

    OpenAIRE

    Shao, Huilin; Chung, Jaehoon; Issadore, David

    2016-01-01

    Circulating tumour cells (CTCs) and exosomes are promising circulating biomarkers. They exist in easily accessible blood and carry large diversity of molecular information. As such, they can be easily and repeatedly obtained for minimally invasive cancer diagnosis and monitoring. Because of their intrinsic differences in counts, size and molecular contents, CTCs and exosomes pose unique sets of technical challenges for clinical translation–CTCs are rare whereas exosomes are small. Novel techn...

  16. The characterization of four gene expression analysis in circulating tumor cells made by Multiplex-PCR from the AdnaTest kit on the lab-on-a-chip Agilent DNA 1000 platform

    Science.gov (United States)

    Škereňová, Markéta; Mikulová, Veronika; Čapoun, Otakar; Zima, Tomáš

    2016-01-01

    Introduction Nowadays, on-a-chip capillary electrophoresis is a routine method for the detection of PCR fragments. The Agilent 2100 Bioanalyzer was one of the first commercial devices in this field. Our project was designed to study the characteristics of Agilent DNA 1000 kit in PCR fragment analysis as a part of circulating tumour cell (CTC) detection technique. Despite the common use of this kit a complex analysis of the results from a long-term project is still missing. Materials and methods A commercially available Agilent DNA 1000 kit was used as a final step in the CTC detection (AdnaTest) for the determination of the presence of PCR fragments generated by Multiplex PCR. Data from 30 prostate cancer patients obtained during two years of research were analyzed to determine the trueness and precision of the PCR fragment size determination. Additional experiments were performed to demonstrate the precision (repeatability, reproducibility) and robustness of PCR fragment concentration determination. Results The trueness and precision of the size determination was below 3% and 2% respectively. The repeatability of the concentration determination was below 15%. The difference in concentration determination increases when Multiplex-PCR/storage step is added between the two measurements of one sample. Conclusions The characteristics established in our study are in concordance with the manufacturer’s specifications established for a ladder as a sample. However, the concentration determination may vary depending on chip preparation, sample storage and concentration. The 15% variation of concentration determination repeatability was shown to be partly proportional and can be suppressed by proper normalization. PMID:26981024

  17. Excess circulating alternatively activated myeloid (M2 cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Ilan Vaknin

    Full Text Available Circulating immune cells including autoreactive T cells and monocytes have been documented as key players in maintaining, protecting and repairing the central nervous system (CNS in health and disease. Here, we hypothesized that neurodegenerative diseases might be associated, similarly to tumors, with increased levels of circulating peripheral myeloid derived suppressor cells (MDSCs, representing a subset of suppressor cells that often expand under pathological conditions and inhibit possible recruitment of helper T cells needed for fighting off the disease.We tested this working hypothesis in amyotrophic lateral sclerosis (ALS and its mouse model, which are characterized by a rapid progression once clinical symptoms are evident. Adaptive transfer of alternatively activated myeloid (M2 cells, which homed to the spleen and exhibited immune suppressive activity in G93A mutant superoxide dismutase-1 (mSOD1 mice at a stage before emergence of disease symptoms, resulted in earlier appearance of disease symptoms and shorter life expectancy. The same protocol mitigated the inflammation-induced disease model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE, which requires circulating T cells for disease induction. Analysis of whole peripheral blood samples obtained from 28 patients suffering from sporadic ALS (sALS, revealed a two-fold increase in the percentage of circulating MDSCs (LIN(-/LowHLA-DR(-CD33(+ compared to controls.Taken together, these results emphasize the distinct requirements for fighting the inflammatory neurodegenerative disease, multiple sclerosis, and the neurodegenerative disease, ALS, though both share a local inflammatory component. Moreover, the increased levels of circulating MDSCs in ALS patients indicates the operation of systemic mechanisms that might lead to an impairment of T cell reactivity needed to overcome the disease conditions within the CNS. This high level of suppressive immune cells might

  18. Diagnostic technologies for circulating tumour cells and exosomes.

    Science.gov (United States)

    Shao, Huilin; Chung, Jaehoon; Issadore, David

    2015-11-24

    Circulating tumour cells (CTCs) and exosomes are promising circulating biomarkers. They exist in easily accessible blood and carry large diversity of molecular information. As such, they can be easily and repeatedly obtained for minimally invasive cancer diagnosis and monitoring. Because of their intrinsic differences in counts, size and molecular contents, CTCs and exosomes pose unique sets of technical challenges for clinical translation-CTCs are rare whereas exosomes are small. Novel technologies are underway to overcome these specific challenges to fully harness the clinical potential of these circulating biomarkers. Herein, we will overview the characteristics of CTCs and exosomes as valuable circulating biomarkers and their associated technical challenges for clinical adaptation. Specifically, we will describe emerging technologies that have been developed to address these technical obstacles and the unique clinical opportunities enabled by technological innovations.

  19. Effects of circulation hyperthermic perfusion chemotherapy on tumor marker content and PI3K/Akt/mTOR pathway function of gastric cancer peritoneal effusion patients

    Institute of Scientific and Technical Information of China (English)

    Li Ding

    2015-01-01

    Objective: To study the effects of circulation hyperthermic perfusion chemotherapy on tumor marker content and PI3K/Akt/mTOR pathway function of gastric cancer peritoneal effusion patients. Methods: 80 cases of gastric cancer peritoneal effusion patients in our hospital from May 2013 to August 2014 were enrolled and randomly divided into two groups. Observation group received circulation hyperthermic perfusion chemotherapy; control group received conventional perfusion chemotherapy. Then blood tumor markers, LAG3 and HSP content, PI3K-AKT-mTOR signal molecules were assayed. Results:(1) tumor markers: DDK1, EXOSC2 contents and PGR ratio of observation group were lower than those of control group; PGI and PGII contents were higher than those of control group; (2) LAG3 and HSP contents: HSP27 and HSP90 contents of observation group were lower than those of control group; sLAG-3 content was higher than that of control group; (3) signal molecules: mRNA contents of PI3K, Akt and mTOR molecules of observation group were lower than those of control group. Conclusion: Circulation hyperthermic perfusion chemotherapy is helpful to kill tumor cells, reduce tumor marker releasing into blood, regulate LAG3 and HSP expression and inhibit PI3K/Akt/mTOR pathway function; it’s an ideal method for treating peritoneal effusion.

  20. Tumor Evasion from T Cell Surveillance

    Directory of Open Access Journals (Sweden)

    Katrin Töpfer

    2011-01-01

    Full Text Available An intact immune system is essential to prevent the development and progression of neoplastic cells in a process termed immune surveillance. During this process the innate and the adaptive immune systems closely cooperate and especially T cells play an important role to detect and eliminate tumor cells. Due to the mechanism of central tolerance the frequency of T cells displaying appropriate arranged tumor-peptide-specific-T-cell receptors is very low and their activation by professional antigen-presenting cells, such as dendritic cells, is frequently hampered by insufficient costimulation resulting in peripheral tolerance. In addition, inhibitory immune circuits can impair an efficient antitumoral response of reactive T cells. It also has been demonstrated that large tumor burden can promote a state of immunosuppression that in turn can facilitate neoplastic progression. Moreover, tumor cells, which mostly are genetically instable, can gain rescue mechanisms which further impair immune surveillance by T cells. Herein, we summarize the data on how tumor cells evade T-cell immune surveillance with the focus on solid tumors and describe approaches to improve anticancer capacity of T cells.

  1. AKAP4 is a circulating biomarker for non-small cell lung cancer

    Science.gov (United States)

    Gumireddy, Kiranmai; Li, Anping; Chang, David H.; Liu, Qin; Kossenkov, Andrew V.; Yan, Jinchun; Korst, Robert J.; Nam, Brian T.; Xu, Hua; Zhang, Lin; Ganepola, Ganepola A.P.; Showe, Louise C.; Huang, Qihong

    2015-01-01

    Cancer testis antigens (CTAs) are widely expressed in tumor tissues, circulating tumor cells (CTCs) and in cancer derived exosomes that are frequently engulfed by lymphoid cells. To determine whether tumor derived CTA mRNAs could be detected in RNA from purified peripheral blood mononuclear cells (PBMC) of non-small cell lung cancer (NSCLC) patients, we assayed for the expression of 116 CTAs in PBMC RNA in a discovery set and identified AKAP4 as a potential NSCLC biomarker. We validated AKAP4 as a highly accurate biomarker in a cohort of 264 NSCLCs and 135 controls from 2 different sites including a subset of controls with high risk lung nodules. When all (264) lung cancers were compared with all (135) controls the area under the ROC curve (AUC) was 0.9714. When 136 stage I NSCLC lung cancers are compared with all controls the AUC is 0.9795 and when all lung cancer patients were compared to 27 controls with histologically confirmed benign lung nodules, a comparison of significant clinical importance, the AUC was 0.9825. AKAP4 expression increases significantly with tumor stage, but independent of age, gender, smoking history or cancer subtype. Follow-up studies in a small number of resected NSCLC patients revealed a decrease of AKAP4 expression post-surgical resection that remained low in patients in remission and increased with tumor recurrence. AKAP4 is a highly accurate biomarker for the detection of early stage lung cancer. PMID:26160834

  2. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  3. Giant cell tumor of the mandible

    Directory of Open Access Journals (Sweden)

    G V V Giri

    2015-01-01

    Full Text Available Giant cell tumor (GCT of bone is a distinctive neoplasm characterized by abundance of multinucleated giant cells scattered throughout the stroma of mononuclear cells. Its importance lies in recognizing and differentiating the characteristic histology, which at times may mimic several other bone tumors and endocrine disorders ranging from locally aggressive giant cell granulomas to hyperparathyroidism to malignant tumors. The jaw bones account for less than 1% of the lesion.In a literature search, we found only five cases of GCT of jaw bones based on the new criteria. We present a rare case of GCT of the mandible which occurred in a 12-year-old female.

  4. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    Institute of Scientific and Technical Information of China (English)

    Guanqun Qiao; Qingquan Li; Gang Peng; Jun Ma; Hongwei Fan; Yingbin Li

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are stil unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cel s and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cel s were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibril ary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibril ary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibril ary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cel s. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.

  5. Effusion cytomorphology of small round cell tumors

    OpenAIRE

    Katsuhide Ikeda; Koji Tsuta

    2016-01-01

    Background: Small round cell tumors (SRCTs) are a group of tumors composed of small, round, and uniform cells with high nuclear/cytoplasmic (N/C) ratios. The appearance of SRCT neoplastic cells in the effusion fluid is very rare. We reported the cytomorphological findings of SRCTs in effusion cytology, and performed statistical and mathematical analyses for a purpose to distinguish SRCTs. Materials and Methods: We analyzed the cytologic findings of effusion samples from 40 SRCT cases and...

  6. Retracing Circulating Tumour Cells for Biomarker Characterization after Enumeration

    DEFF Research Database (Denmark)

    Frandsen, Anders; Fabisiewicz, Anna; Jagiello-Gruszfeld, Agnieszka;

    2015-01-01

    Background: Retracing and biomarker characterization of individual circulating tumour cells (CTCs) may potentially contribute to personalized metastatic cancer therapy. This is relevant when a biopsy of the metastasis is complicated or impossible to acquire. Methods: A novel disc format was used ...

  7. Cancer Stem Cells, Tumor Dormancy, And Metastasis

    Directory of Open Access Journals (Sweden)

    Purvi ePatel

    2012-10-01

    Full Text Available Tumor cells can persist undetectably for an extended period of time in primary tumors and in disseminated cancer cells. Very little is known about why and how these tumors persist for extended periods of time and then evolve to malignancy. The discovery of cancer stem cells (CSCs in human tumors challenges our current understanding of tumor recurrence, drug resistance, and metastasis, and opens up new research directions on how cancer cells are capable of switching from dormancy to malignancy. Although overlapping molecules and pathways have been reported to regulate the stem-like phenotype of CSCs and metastasis, accumulated evidence has suggested additional clonal diversity within the stem-like cancer cell subpopulation. This review will describe the current hypothesis linking CSCs and metastasis and summarize mechanisms important for metastatic CSCs to re-initiate tumors in the secondary sites. A better understanding of CSCs’ contribution to clinical tumor dormancy and metastasis will provide new therapeutic revenues to eradicate metastatic tumors and significantly reduce the mortality of cancer patients.

  8. Fluid phase biopsy for detection and characterization of circulating endothelial cells in myocardial infarction

    International Nuclear Information System (INIS)

    Elevated levels of circulating endothelial cells (CECs) occur in response to various pathological conditions including myocardial infarction (MI). Here, we adapted a fluid phase biopsy technology platform that successfully detects circulating tumor cells in the blood of cancer patients (HD-CTC assay), to create a high-definition circulating endothelial cell (HD-CEC) assay for the detection and characterization of CECs. Peripheral blood samples were collected from 79 MI patients, 25 healthy controls and six patients undergoing vascular surgery (VS). CECs were defined by positive staining for DAPI, CD146 and von Willebrand Factor and negative staining for CD45. In addition, CECs exhibited distinct morphological features that enable differentiation from surrounding white blood cells. CECs were found both as individual cells and as aggregates. CEC numbers were higher in MI patients compared with healthy controls. VS patients had lower CEC counts when compared with MI patients but were not different from healthy controls. Both HD-CEC and CellSearch® assays could discriminate MI patients from healthy controls with comparable accuracy but the HD-CEC assay exhibited higher specificity while maintaining high sensitivity. Our HD-CEC assay may be used as a robust diagnostic biomarker in MI patients. (paper)

  9. Fluid phase biopsy for detection and characterization of circulating endothelial cells in myocardial infarction

    Science.gov (United States)

    Bethel, Kelly; Luttgen, Madelyn S.; Damani, Samir; Kolatkar, Anand; Lamy, Rachelle; Sabouri-Ghomi, Mohsen; Topol, Sarah; Topol, Eric J.; Kuhn, Peter

    2014-02-01

    Elevated levels of circulating endothelial cells (CECs) occur in response to various pathological conditions including myocardial infarction (MI). Here, we adapted a fluid phase biopsy technology platform that successfully detects circulating tumor cells in the blood of cancer patients (HD-CTC assay), to create a high-definition circulating endothelial cell (HD-CEC) assay for the detection and characterization of CECs. Peripheral blood samples were collected from 79 MI patients, 25 healthy controls and six patients undergoing vascular surgery (VS). CECs were defined by positive staining for DAPI, CD146 and von Willebrand Factor and negative staining for CD45. In addition, CECs exhibited distinct morphological features that enable differentiation from surrounding white blood cells. CECs were found both as individual cells and as aggregates. CEC numbers were higher in MI patients compared with healthy controls. VS patients had lower CEC counts when compared with MI patients but were not different from healthy controls. Both HD-CEC and CellSearch® assays could discriminate MI patients from healthy controls with comparable accuracy but the HD-CEC assay exhibited higher specificity while maintaining high sensitivity. Our HD-CEC assay may be used as a robust diagnostic biomarker in MI patients.

  10. The value of peripheral blood circulating tumor cells in KRAS mutation testing of colorectal cancer patients%外周血循环肿瘤细胞在评估结直肠癌患者KRAS基因突变中的价值

    Institute of Scientific and Technical Information of China (English)

    刘彦魁; 王晓莉; 金琳芳; 齐晓薇

    2015-01-01

    Objective To explore the value of peripheral blood samples in KRAS mutation testing of colorectal cancer patients and the correlation between the number of circulating tumor cells and KRAS mutation testing.Methods We detected KRAS mutation using amplification refractory mutation system PCR method in paraffin embedded tissues and matched peripheral blood samples obtained from 112 colorectal cancer patients and 10 proctitic peripheral blood samples in Affiliated Hospital of Jiangnan University between 2013 and 2014.Meanwhile,immunofluorescence in situ hybridization method was used to count the circulating tumor cells in peripheral blood samples and proctitic control samples.Results Among the 112 colorectal cancer samples tested,25 cases of peripheral blood samples found KRAS mutation (41.1%) and which was 46 in formalin fixed paraffin embedded tissues testing (22.3 %),with a significant difference (x2 =40.12,P < 0.001).One case with KRAS wild type in formalin fixed paraffin embedded tissues was mutation type in peripheral samples.In another case,mutation site was different in different kinds of samples.The sensibility of KRAS mutation testing was 73.3%,41.9% and 16.7% when the number of circulating tumor cells was more than 15,5 to 15,and 1 to 5,respectively,with significant differences (x2 =23.70,P < 0.001).No KRAS mutation and no circulating tumor cells were found in 10 proctitic control samples.Conclusion We find high specificity in KRAS mutation testing of peripheral blood samples.but the accurate rate is not satisfying.KRAS mutation testing in peripheral blood samples may be an optional choice to test KRAS mutations for colorectal cancer patients who were not subjected to surgery.The sensibility of KRAS mutation testing in peripheral blood samples has a corretion with the number of circulating tumor cells.%目的 探索外周血标本在结直肠癌患者KRAS基因突变检测中的价值以及循环肿瘤细胞个数与KRAS基因

  11. Alemtuzumab treatment alters circulating innate immune cells in multiple sclerosis

    Science.gov (United States)

    Ahmetspahic, Diana; Ruck, Tobias; Schulte-Mecklenbeck, Andreas; Schwarte, Kathrin; Jörgens, Silke; Scheu, Stefanie; Windhagen, Susanne; Graefe, Bettina; Melzer, Nico; Klotz, Luisa; Arolt, Volker; Wiendl, Heinz; Meuth, Sven G.

    2016-01-01

    Objective: To characterize changes in myeloid and lymphoid innate immune cells in patients with relapsing-remitting multiple sclerosis (MS) during a 6-month follow-up after alemtuzumab treatment. Methods: Circulating innate immune cells including myeloid cells and innate lymphoid cells (ILCs) were analyzed before and 6 and 12 months after onset of alemtuzumab treatment. Furthermore, a potential effect on granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)–23 production by myeloid cells and natural killer (NK) cell cytolytic activity was determined. Results: In comparison to CD4+ T lymphocytes, myeloid and lymphoid innate cell subsets of patients with MS expressed significantly lower amounts of CD52 on their cell surface. Six months after CD52 depletion, numbers of circulating plasmacytoid dendritic cells (DCs) and conventional DCs were reduced compared to baseline. GM-CSF and IL-23 production in DCs remained unchanged. Within the ILC compartment, the subset of CD56bright NK cells specifically expanded under alemtuzumab treatment, but their cytolytic activity did not change. Conclusions: Our findings demonstrate that 6 months after alemtuzumab treatment, specific DC subsets are reduced, while CD56bright NK cells expanded in patients with MS. Thus, alemtuzumab specifically restricts the DC compartment and expands the CD56bright NK cell subset with potential immunoregulatory properties in MS. We suggest that remodeling of the innate immune compartment may promote long-term efficacy of alemtuzumab and preserve immunocompetence in patients with MS. PMID:27766281

  12. Studies on the tumor cells binding mechanism of the long-circulating liposomes loading docetaxel mediated by folic acid receptor%叶酸受体介导多西他赛长循环脂质体与肿瘤细胞结合机理的研究

    Institute of Scientific and Technical Information of China (English)

    苑振贵; 陈大为; 张守堂; 苏书华

    2011-01-01

    目的 研究叶酸受体介导多西他赛长循环脂质体与肿瘤细胞的结合机理.方法 采用薄膜分散法制备脂质体,采用荧光法、流式细胞仪和荧光显微镜检测脂质体与 MCF-7 细胞、Hela 细胞的结合.结果 叶酸受体介导多西他赛长循环脂质体与 MCF-7 细胞的结合量大于 Hela 细胞;游离叶酸可竞争抑制叶酸受体介导多西他赛长循环脂质体与 MCF-7 细胞的结合;荧光显微镜下,MCF-7细胞可见明亮绿色荧光,而 Hela 细胞中只有微弱绿色荧光.结论 叶酸受体介导多西他赛长循环脂质体是通过叶酸介导的细胞内化而进入细胞.%Objective To investigate the tumor ceils binding mechanism of the long-circulating liposomes loading docetaxel mediated by folic acid receptor(FoI-PEG-DTXL). Methods In this study, the long-circulating liposomes loading docetaxel mediated by folic acid receptor were prepared by conventional rotary-evaporated film-ultrasonication method. The flow cytometer and fluorescence microscopy were used to investigate the binding efficacy of FoI-PEG-DTXL against MCF-7 cells and Hela cells. Results After incubated with FoI-PEG-DTXL, the binding amount on MCF-7 cells was higher than that on Hela cells. The binding of Fol-PEG-DTXL could be inhabited by the addition of the free folic acid. Furthermore, a bright green fluorescence was observed on the MCF-7 cells, and the not clear green fluorescence was found on the Hela cells.Conclusions The liposomes are internalized into cells mediated by folic acid.

  13. Factors influencing the presence of circulating differentiated thyroid cancer cells in the thyroidectomy perioperative period*

    Institute of Scientific and Technical Information of China (English)

    Wentao Wei; Qinjiang Liu; Wei Yao

    2015-01-01

    Objective The aim of the study was to detect circulating differentiated thyroid cancer (DTC) micrometas-tasis and to investigate the factors influencing their presence in the perioperative thyroidectomy period. Methods DTC micrometastases in the peripheral blood were detected with flow cytometry, and patient clinical and pathological factors were analyzed in 327 DTC patients.Results Circulating blood micrometastases were present in the peripheral circulation at a higher rate 1 week postoperatively than preoperatively and at 4 weeks postoperatively (P 0.05). At 4 weeks postoperatively, the presence of circulating micrometastasis was not associated with tumor size or lymph node stage (P > 0.05), but was associated with poorly differentiated tumors (P < 0.05). Conclusion The presence of circulating DTC micrometastases correlates to tumor size, lymph node stage, and operative manipulation. The differentiation degree of the tumors were associated with the persistent presence of micrometastasis in the circulating blood.

  14. Depletion kinetics of circulating prostate cancer cells studied by in vivo flow cytometer

    Science.gov (United States)

    Liu, Guangda; Guo, Jin; Li, Yan; Chen, Yun; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2010-11-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. During this time, the tumor produces little or no symptoms or outward signs. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal nearinfrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. A real- time quantitative monitoring of circulating prostate cancer cells by the in vivo flow cytometer will be useful to assess the effectiveness of the potential therapeutic interventions.

  15. Studying depletion kinetics of circulating prostate cancer cells by in vivo flow cytometer

    Science.gov (United States)

    Liu, Guangda; Gu, Zhengqin; Guo, Jin; Li, Yan; Chen, Yun; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2011-03-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. During this time, the tumor produces little or no symptoms or outward signs. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. A real- time quantitative monitoring of circulating prostate cancer cells by the in vivo flow cytometer will be useful to assess the effectiveness of the potential therapeutic interventions.

  16. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    OpenAIRE

    Qiao, Guanqun; Li, Qingquan; Peng, Gang; Ma, Jun; Fan, Hongwei; Li, Yingbin

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are still unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cells and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain t...

  17. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters.

    Science.gov (United States)

    Cheung, Kevin J; Padmanaban, Veena; Silvestri, Vanesa; Schipper, Koen; Cohen, Joshua D; Fairchild, Amanda N; Gorin, Michael A; Verdone, James E; Pienta, Kenneth J; Bader, Joel S; Ewald, Andrew J

    2016-02-16

    Recent genomic studies challenge the conventional model that each metastasis must arise from a single tumor cell and instead reveal that metastases can be composed of multiple genetically distinct clones. These intriguing observations raise the question: How do polyclonal metastases emerge from the primary tumor? In this study, we used multicolor lineage tracing to demonstrate that polyclonal seeding by cell clusters is a frequent mechanism in a common mouse model of breast cancer, accounting for >90% of metastases. We directly observed multicolored tumor cell clusters across major stages of metastasis, including collective invasion, local dissemination, intravascular emboli, circulating tumor cell clusters, and micrometastases. Experimentally aggregating tumor cells into clusters induced a >15-fold increase in colony formation ex vivo and a >100-fold increase in metastasis formation in vivo. Intriguingly, locally disseminated clusters, circulating tumor cell clusters, and lung micrometastases frequently expressed the epithelial cytoskeletal protein, keratin 14 (K14). RNA-seq analysis revealed that K14(+) cells were enriched for desmosome and hemidesmosome adhesion complex genes, and were depleted for MHC class II genes. Depletion of K14 expression abrogated distant metastases and disrupted expression of multiple metastasis effectors, including Tenascin C (Tnc), Jagged1 (Jag1), and Epiregulin (Ereg). Taken together, our findings reveal K14 as a key regulator of metastasis and establish the concept that K14(+) epithelial tumor cell clusters disseminate collectively to colonize distant organs. PMID:26831077

  18. The Emergent Landscape of Detecting EGFR Mutations Using Circulating Tumor DNA in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Wei-Lun Huang

    2015-01-01

    Full Text Available The advances in targeted therapies for lung cancer are based on the evaluation of specific gene mutations especially the epidermal growth factor receptor (EGFR. The assays largely depend on the acquisition of tumor tissue via biopsy before the initiation of therapy or after the onset of acquired resistance. However, the limitations of tissue biopsy including tumor heterogeneity and insufficient tissues for molecular testing are impotent clinical obstacles for mutation analysis and lung cancer treatment. Due to the invasive procedure of tissue biopsy and the progressive development of drug-resistant EGFR mutations, the effective initial detection and continuous monitoring of EGFR mutations are still unmet requirements. Circulating tumor DNA (ctDNA detection is a promising biomarker for noninvasive assessment of cancer burden. Recent advancement of sensitive techniques in detecting EGFR mutations using ctDNA enables a broad range of clinical applications, including early detection of disease, prediction of treatment responses, and disease progression. This review not only introduces the biology and clinical implementations of ctDNA but also includes the updating information of recent advancement of techniques for detecting EGFR mutation using ctDNA in lung cancer.

  19. Characterization of cell suspensions from solid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Pallavicini, M.

    1985-07-10

    The desirable features of cells in suspension will necessarily be dependent upon the use for which the cells were prepared. Adequate cell yield or recovery is defined by the measurement to be performed. Retention of cellular morphology is important for microscopic identification of cell types in a heterogenous cell suspension, and may be used to determine whether the cells in suspension are representative of those in the tumor in situ. Different dispersal protocols may yield cells with different degrees of clonogenicity, as well as altered biochemical features, such as loss of cellular proteins, surface antigens, nucleotide pools, etc. The quality of the cell suspension can be judged by the degree of cell clumping and level of cellular debris, both of which impact on flow cytometric measurements and studies in which the number of cells be known accurately. Finally, if the data measured on the cells in suspension are to be extrapolated to phenomena occurring in the tumor in situ, it is desirable that the cells in suspension are representative of those in the solid tumor in vivo. This report compares characteristics of tumor cell suspensions obtained by different types of selected disaggregation methods. 33 refs., 2 figs., 4 tabs.

  20. Sensing and enumerating rare circulating cells with diffuse light

    Science.gov (United States)

    Zettergren, Eric; Vickers, Dwayne; Niedre, Mark

    2011-02-01

    Detection and quantification of circulating cells in live animals is a challenging and important problem in many areas of biomedical research. Current methods involve extraction of blood samples and counting of cells ex-vivo. Since only small blood volumes are analyzed at specific time points, monitoring of changes in cell populations over time is difficult and rare cells often escape detection. The goal of this research is to develop a method for enumerating very rare circulating cells in the bloodstream non-invasively. This would have many applications in biomedical research, including monitoring of cancer metastasis and tracking of hematopoietic stem cells. In this work we describe the optical configuration of our instrument which allows fluorescence detection of single cells in diffusive media at the mesoscopic scale. Our instrument design consists of two continuous wave laser diode sources and an 8-channel fiber coupled multi-anode photon counting PMT. Fluorescence detector fibers were arranged circularly around the target in a miniaturized ring configuration. Cell-simulating fluorescent microspheres and fluorescently-labeled cells were passed through a limb mimicking phantom with similar optical properties and background fluorescence as a limb of a mouse. Our data shows that we are able to successfully detect and count these with high quantitative accuracy. Future work includes characterization of our instrument using fluorescently labeled cells in-vivo. If successful, this technique would allow several orders of magnitude in vivo detection sensitivity improvement versus current approaches.

  1. General Information about Extragonadal Germ Cell Tumors

    Science.gov (United States)

    ... following PDQ summaries: Ovarian Germ Cell Tumors Treatment Testicular Cancer Treatment Age and gender can affect the risk ... summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and ...

  2. Treatment Option Overview (Extragonadal Germ Cell Tumors)

    Science.gov (United States)

    ... following PDQ summaries: Ovarian Germ Cell Tumors Treatment Testicular Cancer Treatment Age and gender can affect the risk ... summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and ...

  3. Stages of Childhood Extracranial Germ Cell Tumors

    Science.gov (United States)

    ... immature teratomas , and malignant germ cell tumors: Mature Teratomas Mature teratomas are the most common type of ... that cause signs and symptoms of disease. Immature Teratomas Immature teratomas also usually occur in the sacrum ...

  4. Genetic instability in nerve sheath cell tumors

    DEFF Research Database (Denmark)

    Rogatto, Silvia Regina; Casartelli, Cacilda; Rainho, Claudia Aparecida;

    1995-01-01

    by the presence of polyploid cells with inconsistent abnormalities, endoreduplications and telomeric associations resulting in dicentric chromosomes. It is probable that these cytogenetic abnormalities represent some kind of evolutionary advantage for the in vitro progression of nerve sheath tumors....

  5. Energy and Redox Homeostasis in Tumor Cells

    Directory of Open Access Journals (Sweden)

    Marcus Fernandes de Oliveira

    2012-01-01

    Full Text Available Cancer cells display abnormal morphology, chromosomes, and metabolism. This review will focus on the metabolism of tumor cells integrating the available data by way of a functional approach. The first part contains a comprehensive introduction to bioenergetics, mitochondria, and the mechanisms of production and degradation of reactive oxygen species. This will be followed by a discussion on the oxidative metabolism of tumor cells including the morphology, biogenesis, and networking of mitochondria. Tumor cells overexpress proteins that favor fission, such as GTPase dynamin-related protein 1 (Drp1. The interplay between proapoptotic members of the Bcl-2 family that promotes Drp 1-dependent mitochondrial fragmentation and fusogenic antiapoptotic proteins such as Opa-1 will be presented. It will be argued that contrary to the widespread belief that in cancer cells, aerobic glycolysis completely replaces oxidative metabolism, a misrepresentation of Warburg’s original results, mitochondria of tumor cells are fully viable and functional. Cancer cells also carry out oxidative metabolism and generally conform to the orthodox model of ATP production maintaining as well an intact electron transport system. Finally, data will be presented indicating that the key to tumor cell survival in an ROS rich environment depends on the overexpression of antioxidant enzymes and high levels of the nonenzymatic antioxidant scavengers.

  6. Isolation of rare tumor cells from blood cells with buoyant immuno-microbubbles.

    Directory of Open Access Journals (Sweden)

    Guixin Shi

    Full Text Available Circulating tumor cells (CTCs are exfoliated at various stages of cancer, and could provide invaluable information for the diagnosis and prognosis of cancers. There is an urgent need for the development of cost-efficient and scalable technologies for rare CTC enrichment from blood. Here we report a novel method for isolation of rare tumor cells from excess of blood cells using gas-filled buoyant immuno-microbubbles (MBs. MBs were prepared by emulsification of perfluorocarbon gas in phospholipids and decorated with anti-epithelial cell adhesion molecule (EpCAM antibody. EpCAM-targeted MBs efficiently (85% and rapidly (within 15 minutes bound to various epithelial tumor cells suspended in cell medium. EpCAM-targeted MBs efficiently (88% isolated frequent tumor cells that were spiked at 100,000 cells/ml into plasma-depleted blood. Anti-EpCAM MBs efficiently (>77% isolated rare mouse breast 4T1, human prostate PC-3 and pancreatic cancer BxPC-3 cells spiked into 1, 3 and 7 ml (respectively of plasma-depleted blood. Using EpCAM targeted MBs CTCs from metastatic cancer patients were isolated, suggesting that this technique could be developed into a valuable clinical tool for isolation, enumeration and analysis of rare cells.

  7. Circulating tumor DNA as a liquid biopsy target for detection of pancreatic cancer

    Science.gov (United States)

    Takai, Erina; Yachida, Shinichi

    2016-01-01

    Most pancreatic cancer patients present with advanced metastatic disease, resulting in extremely poor 5-year survival, mainly because of the lack of a reliable modality for early detection and limited therapeutic options for advanced disease. Therefore, there is a need for minimally-invasive diagnostic tools for detecting pancreatic cancer at an early stage, when curative surgery and also novel therapeutic approaches including precision medicine may be feasible. The “liquid biopsy” addresses these unmet clinical needs based on the concept that simple peripheral blood sampling and detection of circulating tumor DNA (ctDNA) could provide diagnostic information. In this review, we provide an overview of the current status of blood-based tests for diagnosis of pancreatic cancer and the potential utility of ctDNA for precision medicine. We also discuss challenges that remain to be addressed in developing practical ctDNA-based liquid biopsy approaches for early diagnosis of pancreatic cancer.

  8. Effects of sorafenib on intra-tumoral interstitial fluid pressure and circulating biomarkers in patients with refractory sarcomas (NCI protocol 6948.

    Directory of Open Access Journals (Sweden)

    Chandrajit P Raut

    Full Text Available PURPOSE: Sorafenib is a multi-targeted tyrosine kinase inhibitor with therapeutic efficacy in several malignancies. Sorafenib may exert its anti-neoplastic effect in part by altering vascular permeability and reducing intra-tumoral interstitial hypertension. As correlative science with a phase II study in patients with advanced soft-tissue sarcomas (STS, we evaluated the impact of this agent on intra-tumor interstitial fluid pressure (IFP, serum circulating biomarkers, and vascular density. PATIENTS AND METHODS: Patients with advanced STS with measurable disease and at least one superficial lesion amenable to biopsy received sorafenib 400 mg twice daily. Intratumoral IFP and plasma and circulating cell biomarkers were measured before and after 1-2 months of sorafenib administration. Results were analyzed in the context of the primary clinical endpoint of time-to-progression (TTP. RESULTS: In 15 patients accrued, the median TTP was 45 days (range 14-228. Intra-tumoral IFP measurements obtained in 6 patients at baseline showed a direct correlation with tumor size. Two patients with stable disease at two months had post-sorafenib IFP evaluations and demonstrated a decline in IFP and vascular density. Sorafenib significantly increased plasma VEGF, PlGF, and SDF1α and decreased sVEGFR-2 levels. Increased plasma SDF1α and decreased sVEGFR-2 levels on day 28 correlated with disease progression. CONCLUSIONS: Pretreatment intra-tumoral IFP correlated with tumor size and decreased in two evaluable patients with SD on sorafenib. Sorafenib also induced changes in circulating biomarkers consistent with expected VEGF pathway blockade, despite the lack of more striking clinical activity in this small series. TRIAL REGISTRATION: ClinicalTrials.gov NCT00330421.

  9. Diagnostic value of circulating chromogranin a for neuroendocrine tumors: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Xin Yang

    Full Text Available In previous decades, chromogranin A (CgA has been demonstrated to be the most promising biomarker for the diagnosis of neuroendocrine tumors (NETs, but its diagnostic value is still controversial. This meta-analysis aimed to estimate the potential diagnostic value of circulating CgA for NETs.We collected relevant studies from several electronic databases as well as from reference lists. Diagnostic indices of CgA were pooled with random effects models. Pooled sensitivity, specificity, positive likelihood ratio (PLR, negative likelihood ratio (NLR, diagnostic odds ratio (DOR and summary receiver operating characteristic (SROC curves for the diagnosis of NETs were used to estimate the overall diagnostic efficiency.Through a search strategy, 13 studies met the inclusion criteria and were included. These studies contained 1260 patients with NETs and 967 healthy controls in the total sample. As a result, the overall sensitivity, specificity and diagnostic odds ratio (DOR were 0.73 (95% CI: 0.71 to 0.76, 0.95 (95% CI: 0.93 to 0.96 and 56.29 (95% CI: 25.27 to 125.38, respectively, while the summary positive likelihood ratio (PLR and negative likelihood ratio (NLR were 14.56 (95% CI: 6.62 to 32.02 and 0.26 (95% CI: 0.18 to 0.38, respectively. In addition, the area under the curve (AUC of the circulating CgA in the diagnosis of NETs was 0.8962.These data demonstrate that circulating CgA is an efficient biomarker for the diagnosis of NETs with high sensitivity and specificity, which indicates that it may be helpful for the clinical management of NETs. However, further studies are needed to clarify this issue.

  10. Surfactant functionalization induces robust, differential adhesion of tumor cells and blood cells to charged nanotube-coated biomaterials under flow.

    Science.gov (United States)

    Mitchell, Michael J; Castellanos, Carlos A; King, Michael R

    2015-07-01

    The metastatic spread of cancer cells from the primary tumor to distant sites leads to a poor prognosis in cancers originating from multiple organs. Increasing evidence has linked selectin-based adhesion between circulating tumor cells (CTCs) and endothelial cells of the microvasculature to metastatic dissemination, in a manner similar to leukocyte adhesion during inflammation. Functionalized biomaterial surfaces hold promise as a diagnostic tool to separate CTCs and potentially treat metastasis, utilizing antibody and selectin-mediated interactions for cell capture under flow. However, capture at high purity levels is challenged by the fact that CTCs and leukocytes both possess selectin ligands. Here, a straightforward technique to functionalize and alter the charge of naturally occurring halloysite nanotubes using surfactants is reported to induce robust, differential adhesion of tumor cells and blood cells to nanotube-coated surfaces under flow. Negatively charged sodium dodecanoate-functionalized nanotubes simultaneously enhanced tumor cell capture while negating leukocyte adhesion, both in the presence and absence of adhesion proteins, and can be utilized to isolate circulating tumor cells regardless of biomarker expression. Conversely, diminishing nanotube charge via functionalization with decyltrimethylammonium bromide both abolished tumor cell capture while promoting leukocyte adhesion.

  11. CD8+ Tumor-Infiltrating T Cells Are Trapped in the Tumor-Dendritic Cell Network

    Directory of Open Access Journals (Sweden)

    Alexandre Boissonnas

    2013-01-01

    Full Text Available Chemotherapy enhances the antitumor adaptive immune T cell response, but the immunosuppressive tumor environment often dominates, resulting in cancer relapse. Antigen-presenting cells such as tumor-associated macrophages (TAMs and tumor dendritic cells (TuDCs are the main protagonists of tumor-infiltrating lymphocyte (TIL immuno-suppression. TAMs have been widely investigated and are associated with poor prognosis, but the immuno-suppressive activity of TuDCs is less well understood. We performed two-photon imaging of the tumor tissue to examine the spatiotemporal interactions between TILs and TuDCs after chemotherapy. In a strongly immuno-suppressive murine tumor model, cyclophosphamide-mediated chemotherapy transiently enhanced the antitumor activity of adoptively transferred ovalbumin-specific CD8+ T cell receptor transgenic T cells (OTI but barely affected TuDC compartment within the tumor. Time lapse imaging of living tumor tissue showed that TuDCs are organized as a mesh with dynamic interconnections. Once infiltrated into the tumor parenchyma, OTI T cells make antigen-specific and long-lasting contacts with TuDCs. Extensive analysis of TIL infiltration on histologic section revealed that after chemotherapy the majority of OTI T cells interact with TuDCs and that infiltration is restricted to TuDC-rich areas. We propose that the TuDC network exerts antigen-dependent unproductive retention that trap T cells and limit their antitumor effectiveness.

  12. Osteoclastic giant cell tumor of the pancreas: an immunohistochemical study

    DEFF Research Database (Denmark)

    Dizon, M A; Multhaupt, H A; Paskin, D L;

    1996-01-01

    A case of an osteoclastic giant cell tumor of the pancreas is presented. Immunohistochemical studies were performed, which showed keratin (CAM, AE1) and epithelial membrane antigen positivity in the tumor cells. The findings support an epithelial origin for this tumor.......A case of an osteoclastic giant cell tumor of the pancreas is presented. Immunohistochemical studies were performed, which showed keratin (CAM, AE1) and epithelial membrane antigen positivity in the tumor cells. The findings support an epithelial origin for this tumor....

  13. Whole tumor antigen vaccination using dendritic cells: Comparison of RNA electroporation and pulsing with UV-irradiated tumor cells

    Directory of Open Access Journals (Sweden)

    Benencia Fabian

    2008-04-01

    Full Text Available Abstract Because of the lack of full characterization of tumor associated antigens for solid tumors, whole antigen use is a convenient approach to tumor vaccination. Tumor RNA and apoptotic tumor cells have been used as a source of whole tumor antigen to prepare dendritic cell (DC based tumor vaccines, but their efficacy has not been directly compared. Here we compare directly RNA electroporation and pulsing of DCs with whole tumor cells killed by ultraviolet (UV B radiation using a convenient tumor model expressing human papilloma virus (HPV E6 and E7 oncogenes. Although both approaches led to DCs presenting tumor antigen, electroporation with tumor cell total RNA induced a significantly higher frequency of tumor-reactive IFN-gamma secreting T cells, and E7-specific CD8+ lymphocytes compared to pulsing with UV-irradiated tumor cells. DCs electroporated with tumor cell RNA induced a larger tumor infiltration by T cells and produced a significantly stronger delay in tumor growth compared to DCs pulsed with UV-irradiated tumor cells. We conclude that electroporation with whole tumor cell RNA and pulsing with UV-irradiated tumor cells are both effective in eliciting antitumor immune response, but RNA electroporation results in more potent tumor vaccination under the examined experimental conditions.

  14. Studying circulating prostate cancer cells by in-vivo flow cytometer

    Science.gov (United States)

    Guo, Jin; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2012-03-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. We have measured the depletion kinetics of cancer cells with different metastatic potential. Interestingly, more invasive PC-3 prostate cancer cells are depleted faster from the circulation than LNCaP cells.

  15. Apoptin: specific killer of tumor cells?

    Science.gov (United States)

    Tavassoli, M; Guelen, L; Luxon, B A; Gäken, J

    2005-08-01

    In the early 1990s it was discovered that the VP3/Apoptin protein encoded by the Chicken Anemia virus (CAV) possesses an inherent ability to specifically kill cancer cells. Apoptin was found to be located in the cytoplasm of normal cells while in tumor cells it was localized mainly in the nucleus.(1) These differences in the localization pattern were suggested to be the main mechanism by which normal cells show resistance to Apoptin-mediated cell killing. Although the mechanism of action of Apoptin is presently unknown, it seems to function by the induction of programmed cell death (PCD) after translocation from the cytoplasm to the nucleus and arresting the cell cycle at G2/M, possibly by interfering with the cyclosome.(2) In addition, cancer specific phosphorylation of Threonine residue 108 has been suggested to be important for Apoptin's function to kill tumor cells.(3) In contrast to the large number of publications reporting that nuclear localization, induction of PCD and phosphorylation of Apoptin is restricted to cancer cells, several recent studies have shown that Apoptin has the ability to migrate to the nucleus and induce PCD in some of the normal cell lines tested. There is evidence that high protein expression levels as well as the cellular growth rate may influence Apoptin's ability to specifically kill tumor cells. Thus far both in vitro and in vivo studies indicate that Apoptin is a powerful apoptosis inducing protein with a promising prospective utility in cancer therapy. However, here we show that several recent findings contradict some of the earlier results on the tumor specificity of Apoptin, thus creating some controversy in the field. The aim of this article is to review the available data, some published and some unpublished, which either agree or contradict the reported "black and white" tumor cell specificity of Apoptin. Understanding what factors appear to influence its function should help to develop Apoptin into a potent anti

  16. Enhanced delivery of liposomes to lung tumor through targeting interleukin-4 receptor on both tumor cells and tumor endothelial cells.

    Science.gov (United States)

    Chi, Lianhua; Na, Moon-Hee; Jung, Hyun-Kyung; Vadevoo, Sri Murugan Poongkavithai; Kim, Cheong-Wun; Padmanaban, Guruprasath; Park, Tae-In; Park, Jae-Yong; Hwang, Ilseon; Park, Keon Uk; Liang, Frank; Lu, Maggie; Park, Jiho; Kim, In-San; Lee, Byung-Heon

    2015-07-10

    A growing body of evidence suggests that pathological lesions express tissue-specific molecular targets or biomarkers within the tissue. Interleukin-4 receptor (IL-4R) is overexpressed in many types of cancer cells, including lung cancer. Here we investigated the properties of IL-4R-binding peptide-1 (IL4RPep-1), a CRKRLDRNC peptide, and its ability to target the delivery of liposomes to lung tumor. IL4RPep-1 preferentially bound to H226 lung tumor cells which express higher levers of IL-4R compared to H460 lung tumor cells which express less IL-4R. Mutational analysis revealed that C1, R2, and R4 residues of IL4RPep-1 were the key binding determinants. IL4RPep-1-labeled liposomes containing doxorubicin were more efficiently internalized in H226 cells and effectively delivered doxorubicin into the cells compared to unlabeled liposomes. In vivo fluorescence imaging of nude mice subcutaneously xenotransplanted with H226 tumor cells indicated that IL4RPep-1-labeled liposomes accumulate more efficiently in the tumor and inhibit tumor growth more effectively compared to unlabeled liposomes. Interestingly, expression of IL-4R was high in vascular endothelial cells of tumor, while little was detected in vascular endothelial cells of control organs including the liver. IL-4R expression in cultured human vascular endothelial cells was also up-regulated when activated by a pro-inflammatory cytokine tumor necrosis factor-α. Moreover, the up-regulation of IL-4R expression was observed in primary human lung cancer tissues. These results indicate that IL-4R-targeting nanocarriers may be a useful strategy to enhance drug delivery through the recognition of IL-4R in both tumor cells and tumor endothelial cells. PMID:25979323

  17. HPV16-associated tumors control myeloid cell homeostasis in lymphoid organs, generating a suppressor environment for T cells.

    Science.gov (United States)

    Stone, Simone Cardozo; Rossetti, Renata Ariza Marques; Bolpetti, Aline; Boccardo, Enrique; Souza, Patricia Savio de Araujo; Lepique, Ana Paula

    2014-10-01

    Tumors are complex structures containing different types of cells and molecules. The importance of the tumor microenvironment in tumor progression, growth, and maintenance is well-established. However, tumor effects are not restricted to the tumor microenvironment. Molecules secreted by, as well as cells that migrate from tumors, may circulate and reach other tissues. This may cause a series of systemic effects, including modulation of immune responses, and in some cases, leukocytosis and metastasis promotion. Leukocytosis has been described as a poor prognostic factor in patients with cervical cancer. The main etiological factor for cervical cancer development is persistent infection with high oncogenic risk HPV. Our laboratory has been exploring the effects of high oncogenic risk, HPV-associated tumors on lymphoid organs of the host. In the present study, we observed an increase in myeloid cell proliferation and alteration in cell signaling in APCs in the spleen of tumor-bearing mice. In parallel, we characterized the cytokines secreted in the inflammatory and tumor cell compartments in the tumor microenvironment and in the spleen of tumor-bearing mice. We show evidence of constitutive activation of the IL-6/STAT3 signaling pathway in the tumor, including TAMs, and in APCs in the spleen. We also observed that IL-10 is a central molecule in the tolerance toward tumor antigens through control of NF-κB activation, costimulatory molecule expression, and T cell proliferation. These systemic effects over myeloid cells are robust and likely an important problem to be addressed when considering strategies to improve anti-tumor T cell responses.

  18. Tumor cure and tumor cell survival kinetics after photoradiation treatment in vivo in two experimental mouse tumor systems

    International Nuclear Information System (INIS)

    To study the question whether tumor destruction by photoradiation therapy (PRT) in vivo is due to direct tumor cell kill or whether it is a consequence of damage to the tumor support structures, the authors have used the EMT-6 and RIF in vivo-in vitro tumor systems, which allow colony formation survival assay of tumor cells treated with PRT in vivo. The EMT-6 tumor showed no significant reduction in tumor cell clonogenicity at the completion of PRT at doses which are curative to the tumor. However, when the tumors were allowed to remain in situ for varying lengths of time (1-24 h) after PRT, tumor cell death occurred rapidly and progressively. Very similar tumor cell survival kinetics were found in RIF tumors, although cure of these tumors by PRT is rare. The pattern of tumor cell death following PRT in vivo closely matches that of tumors deprived of oxygen, implying that one of the major factors leading to tumor destruction by PRT may be the shut-down of tumor vasculature, which has been shown to be one of the initial effects of PRT

  19. Quantification of mutant alleles in circulating tumor DNA can predict survival in lung cancer

    Science.gov (United States)

    Ye, Xin; Bai, Hua; Wang, Zhijie; Sun, Yun; Zhao, Jun; An, Tongtong; Duan, Jianchun; Wu, Meina; Wang, Jie

    2016-01-01

    Purpose We aimed to investigate the feasibility of droplet digital PCR (ddPCR) for the quantitative and dynamic detection of EGFR mutations and next generation sequencing (NGS) for screening EGFR-tyrosine kinase inhibitors (EGFR-TKIs) resistance-relevant mutations in circulating tumor DNA (ctDNA) from advanced lung adenocarcinoma (ADC) patients. Results Detection limit of EGFR mutation in ctDNA by ddPCR was 0.04%. Taking the EGFR mutation in tumor tissue as the golden standard, the concordance of EGFR mutations detected in ctDNA was 74% (54/73). Patients with EGFR mutation in ctDNA (n = 54) superior progression-free survival (PFS, median, 12.6 vs. 6.7 months, P 5.15%) showed better PFS compared to those with low EGFR mutated abundance (≤ 5.15%) (PFS, median, 15.4 vs. 11.1 months, P = 0.021). NGS results showed that 66.6% (8/12) total mutational copy number were elevated and 76.5% (26/34) mutual mutation frequency increased after disease progression. Methods Seventy-three advanced ADC patients with tumor tissues carrying EGFR mutations and their matched pre- and post-EGFR-TKIs plasma samples were enrolled in this study. Absolute quantities of plasma EGFR mutant and wild-type alleles were measured by ddPCR. Multi-genes testing was performed using NGS in 12 patients. Conclusions Dynamic and quantitative analysis of EGFR mutation in ctDNA could guide personalized therapy for advanced ADC. NGS shows good performance in multiple genes testing especially novel and uncommon genes. PMID:26989078

  20. Surgery and Combination Chemotherapy in Treating Children With Extracranial Germ Cell Tumors

    Science.gov (United States)

    2016-05-06

    Childhood Embryonal Tumor; Childhood Extracranial Germ Cell Tumor; Childhood Extragonadal Germ Cell Tumor; Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Childhood Teratoma; Ovarian Embryonal Carcinoma; Ovarian Yolk Sac Tumor; Stage II Malignant Testicular Germ Cell Tumor; Stage IIA Ovarian Germ Cell Tumor; Stage IIB Ovarian Germ Cell Tumor; Stage IIC Ovarian Germ Cell Tumor; Stage III Malignant Testicular Germ Cell Tumor; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Germ Cell Tumor; Testicular Choriocarcinoma and Yolk Sac Tumor; Testicular Embryonal Carcinoma

  1. The Human Cell Surfaceome of Breast Tumors

    Directory of Open Access Journals (Sweden)

    Júlia Pinheiro Chagas da Cunha

    2013-01-01

    Full Text Available Introduction. Cell surface proteins are ideal targets for cancer therapy and diagnosis. We have identified a set of more than 3700 genes that code for transmembrane proteins believed to be at human cell surface. Methods. We used a high-throuput qPCR system for the analysis of 573 cell surface protein-coding genes in 12 primary breast tumors, 8 breast cell lines, and 21 normal human tissues including breast. To better understand the role of these genes in breast tumors, we used a series of bioinformatics strategies to integrates different type, of the datasets, such as KEGG, protein-protein interaction databases, ONCOMINE, and data from, literature. Results. We found that at least 77 genes are overexpressed in breast primary tumors while at least 2 of them have also a restricted expression pattern in normal tissues. We found common signaling pathways that may be regulated in breast tumors through the overexpression of these cell surface protein-coding genes. Furthermore, a comparison was made between the genes found in this report and other genes associated with features clinically relevant for breast tumorigenesis. Conclusions. The expression profiling generated in this study, together with an integrative bioinformatics analysis, allowed us to identify putative targets for breast tumors.

  2. Cancer stem cell plasticity and tumor hierarchy

    Institute of Scientific and Technical Information of China (English)

    Marina Carla Cabrera; Robert E Hollingsworth; Elaine M Hurt

    2015-01-01

    The origins of the complex process of intratumoralheterogeneity have been highly debated and differentcellular mechanisms have been hypothesized to accountfor the diversity within a tumor. The clonal evolution andcancer stem cell (CSC) models have been proposed asdrivers of this heterogeneity. However, the concept ofcancer stem cell plasticity and bidirectional conversionbetween stem and non-stem cells has added additionalcomplexity to these highly studied paradigms and may helpexplain the tumor heterogeneity observed in solid tumors.The process of cancer stem cell plasticity in which cancercells harbor the dynamic ability of shifting from a non-CSCstate to a CSC state and vice versa may be modulated byspecific microenvironmental signals and cellular interactionsarising in the tumor niche. In addition to promoting CSCplasticity, these interactions may contribute to the cellulartransformation of tumor cells and affect response tochemotherapeutic and radiation treatments by providingCSCs protection from these agents. Herein, we review theliterature in support of this dynamic CSC state, discussthe effectors of plasticity, and examine their role in thedevelopment and treatment of cancer.

  3. Treatment Resistance Mechanisms of Malignant Glioma Tumor Stem Cells

    International Nuclear Information System (INIS)

    Malignant gliomas are highly lethal because of their resistance to conventional treatments. Recent evidence suggests that a minor subpopulation of cells with stem cell properties reside within these tumors. These tumor stem cells are more resistant to radiation and chemotherapies than their counterpart differentiated tumor cells and may underlie the persistence and recurrence of tumors following treatment. The various mechanisms by which tumor stem cells avoid or repair the damaging effects of cancer therapies are discussed

  4. Treatment Resistance Mechanisms of Malignant Glioma Tumor Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Schmalz, Philip G.R. [Surgical and Molecular Neuro-Oncology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 (United States); Howard Hughes Medical Institute, National Institutes of Health Research Scholars Program, Bethesda, MD 20892 (United States); Shen, Michael J.; Park, John K., E-mail: parkjk@ninds.nih.gov [Surgical and Molecular Neuro-Oncology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 (United States)

    2011-02-10

    Malignant gliomas are highly lethal because of their resistance to conventional treatments. Recent evidence suggests that a minor subpopulation of cells with stem cell properties reside within these tumors. These tumor stem cells are more resistant to radiation and chemotherapies than their counterpart differentiated tumor cells and may underlie the persistence and recurrence of tumors following treatment. The various mechanisms by which tumor stem cells avoid or repair the damaging effects of cancer therapies are discussed.

  5. Circulating myeloid-derived suppressor cells in patients with pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Xiao-Dong Xu; Jun Hu; Min Wang; Feng Peng; Rui Tian; Xing-Jun Guo; Yu Xie; Ren-Yi Qin

    2016-01-01

    BACKGROUND: Myeloid-derived suppressor cells (MDSCs) are heterogeneous cell types that suppress T-cell responses in cancer patients and animal models, some MDSC subpopula-tions are increased in patients with pancreatic cancer. The present study was to investigate a specific subset of MDSCs in patients with pancreatic cancer and the mechanism of MDSCs increase in these patients. METHODS: Myeloid cells from whole blood were collected from 37 patients with pancreatic cancer, 17 with cholangiocarcinoma, and 47 healthy controls. Four pancreatic cancer cell lines were co-culturedwithnormalperipheralbloodmononuclearcells(PBMCs) to test the effect of tumor cells on the conversion of PBMCs to MDSCs. Levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and arginase activity in the plasma of cancer patients were analyzed by enzyme-linked immunosorbent assay. RESULTS: CD14+/CD11b+/HLA-DR- MDSCs were increased in patients with pancreatic or bile duct cancer compared with those in healthy controls, and this increase was correlated with clinical cancer stage. Pancreatic cancer cell lines induced PBMCs to MDSCs in a dose-dependent manner. GM-CSF and arginase activity levels were significantly increased in the se-rum of patients with pancreatic cancer. CONCLUSIONS: MDSCsweretumorrelated:tumorcellsinduced PBMCs to MDSCs in a dose-dependent manner and circulating CD14+/CD11b+/HLA-DR- MDSCs in pancreatic cancer patients were positively correlated with tumor burden. MDSCs might be useful markers for pancreatic cancer detection and progression.

  6. High-Dose Thiotepa Plus Peripheral Stem Cell Transplantation in Treating Patients With Refractory Solid Tumors

    Science.gov (United States)

    2013-03-06

    Brain and Central Nervous System Tumors; Childhood Germ Cell Tumor; Extragonadal Germ Cell Tumor; Ovarian Cancer; Retinoblastoma; Testicular Germ Cell Tumor; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific

  7. Ultrasound features of orbital granular cell tumor.

    Science.gov (United States)

    Ayres, Bernadete; Miller, Neil R; Eberhart, Charles G; Dibernardo, Cathy W

    2009-01-01

    The authors report the echographic characteristics of a rare orbital granular cell tumor and correlate these findings with histopathology. A 56-year-old woman presented with proptosis. Complete ophthalmic and ultrasound examinations were performed. Ultrasound revealed an oval, well-outlined orbital mass in the intraconal space with low-medium reflectivity and regular internal structure. An orbitotomy with complete excision of the tumor was performed. Histopathologic evaluation showed sheets and nests of cells with abundant eosinophilic and granular cytoplasm in a uniform distribution throughout the lesion. The echographic characteristics correlated well with the morphologic surgical findings and the histologic architecture. This is the first report describing the echographic characteristics of orbital granular cell tumor.

  8. Risk assessment of thyroid follicular cell tumors.

    OpenAIRE

    Hill, R. N.; Crisp, T M; Hurley, P M; Rosenthal, S L; Singh, D. V.

    1998-01-01

    Thyroid follicular cell tumors arise in rodents from mutations, perturbations of thyroid and pituitary hormone status with increased stimulation of thyroid cell growth by thyroid-stimulating hormone (TSH), or a combination of the two. The only known human thyroid carcinogen is ionizing radiation. It is not known for certain whether chemicals that affect thyroid cell growth lead to human thyroid cancer. The U.S. Environmental Protection Agency applies the following science policy positions: 1)...

  9. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors.

    Science.gov (United States)

    Wyckoff, Jeffrey B; Wang, Yarong; Lin, Elaine Y; Li, Jiu-feng; Goswami, Sumanta; Stanley, E Richard; Segall, Jeffrey E; Pollard, Jeffrey W; Condeelis, John

    2007-03-15

    Although the presence of macrophages in tumors has been correlated with poor prognosis, until now there was no direct observation of how macrophages are involved in hematogenous metastasis. In this study, we use multiphoton microscopy to show, for the first time, that tumor cell intravasation occurs in association with perivascular macrophages in mammary tumors. Furthermore, we show that perivascular macrophages of the mammary tumor are associated with tumor cell intravasation in the absence of local angiogenesis. These results show that the interaction between macrophages and tumor cells lying in close proximity defines a microenvironment that is directly involved in the intravasation of cancer cells in mammary tumors.

  10. Tumor-associated macrophages promote tumor cell proliferation in nasopharyngeal NK/T-cell lymphoma

    OpenAIRE

    Liu, Yixiong; Fan, Linni; Wang, Yingmei; Li, Peifeng; Zhu, Jin; Wang, Lu; Zhang, Weichen; Zhang, Yuehua; Huang, Gaosheng

    2014-01-01

    Objective: To explore the relationship between the number of tumor-associated macrophages (TAMs) and proliferative activity of tumor cells and the relationship between two macrophage biomarkers CD68 and CD163 in nasopharyngeal NK/T-cell lymphoma. Methods: Immunohistochemistry was used to reconfirm the diagnosis of nasal NK/T-cell lymphoma and detect the numbers of TAMs and the ki-67 label index of the tumor cells in all 31 cases. In addition, 12 cases of inflammatory cases were collected as c...

  11. X-ray responses of human colon tumor cells grown in artificial capillary culture

    International Nuclear Information System (INIS)

    Clone A human colon adenocarcinoma cells were grown in three-dimensional artificial capillary culture (ACC) to determine responses of capillaries treated 3 weeks after tumor cell inoculation with a specific, easily quantifiable cytotoxic agent, ionizing radiation. Changes in extracapillary space (ECS) fluid concentrations of lactate dehydrogenase (LDH) and aspartate aminotransferase (GOT) and the utilization of glucose in circulating medium were monitored after a supralethal radiation dose (90 Gy) of X-rays. Immediately after irradiation, increased levels of LDH and GOT were found that reached maximum levels about four to five times those found in nonirradiated control capillaries at 10-13 days post irradiation and then declined. Patterns of enzyme production appeared to correlate with the numbers of nonviable tumor cells collected from the ECS of the artificial capillaries. In contrast, glucose utilization showed little correlation with either enzyme concentration or dead cell production. In other studies, tumor cells were removed from unirradiated capillaries by trypsinization and used to obtain complete survival curves after graded doses of X-radiation. The dose-response curves obtained indicate that clone A colon tumor cells grown in ACC show a marked decrease in their ability to accumulate sublethal radiation injury as compared to responses of these cells growing exponentially in asynchronous monolayer cultures, to synchronized mid-G1 tumor cells, or to tumor cells in stationary growth phase. These data suggest that ACC is a potentially useful model to study the effects of cytotoxic agents on human tumor cells

  12. Controlling T cell senescence in the tumor microenvironment for tumor immunotherapy

    OpenAIRE

    Ye, Jian; Peng, Guangyong

    2015-01-01

    Understanding molecular mechanisms involved in creating and sustaining the tumor suppressive microenvironment is critical for the development of novel antitumor therapeutic strategies. We have identified the induction of T cell senescence as a novel mechanism utilized by human tumor cells to induce immune suppression, and provided a new strategy using TLR8 ligands to reverse tumor immunosuppressive effects for tumor immunotherapy.

  13. Methylation of cell-free circulating DNA in the diagnosis of cancer

    Science.gov (United States)

    Warton, Kristina; Samimi, Goli

    2015-01-01

    A range of molecular alterations found in tumor cells, such as DNA mutations and DNA methylation, is reflected in cell-free circulating DNA (circDNA) released from the tumor into the blood, thereby making circDNA an ideal candidate for the basis of a blood-based cancer diagnosis test. In many cancer types, mutations driving tumor development and progression are present in a wide range of oncogenes and tumor suppressor genes. However, even when a gene is consistently mutated in a particular cancer, the mutations can be spread over very large regions of its sequence, making evaluation difficult. This diversity of sequence changes in tumor DNA presents a challenge for the development of blood tests based on DNA mutations for cancer diagnosis. Unlike mutations, DNA methylation that can be consistently measured, as it tends to occur in specific regions of the DNA called CpG islands. Since DNA methylation is reflected within circDNA, detection of tumor-specific DNA methylation in patient plasma is a feasible approach for the development of a blood-based test. Aberrant circDNA methylation has been described in most cancer types and is actively being investigated for clinical applications. A commercial blood test for colorectal cancer based on the methylation of the SEPT9 promoter region in circDNA is under review for approval by the Federal Drug Administration (FDA) for clinical use. In this paper, we review the state of research in circDNA methylation as an application for blood-based diagnostic tests in colorectal, breast, lung, pancreatic and ovarian cancers, and we consider some of the future directions and challenges in this field. There are a number of potential circDNA biomarkers currently under investigation, and experience with SEPT9 shows that the time to clinical translation can be relatively rapid, supporting the promise of circDNA as a biomarker. PMID:25988180

  14. Circulating endothelial cells and microparticles as prognostic markers in advanced non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Tania Fleitas

    Full Text Available BACKGROUND: Circulating endothelial cells and microparticles have prognostic value in cancer, and might be predictors of response to chemotherapy and antiangiogenic treatments. We have investigated the prognostic value of circulating endothelial cells and microparticles in patients treated for advanced non-small cell lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: Peripheral blood samples were obtained from 60 patients before first line, platinum-based chemotherapy +/- bevacizumab, and after the third cycle of treatment. Blood samples from 60 healthy volunteers were also obtained as controls. Circulating endothelial cells were measured by an immunomagnetic technique and immunofluorescence microscopy. Phosphatidylserine-positive microparticles were evaluated by flow cytometry. Microparticle-mediated procoagulant activity was measured by the endogen thrombin generation assay. RESULTS: pre- and posttreatment levels of markers were higher in patients than in controls (p<0.0001. Elevated levels of microparticles were associated with longer survival. Elevated pretreatment levels of circulating endothelial cells were associated with shorter survival. CONCLUSIONS/SIGNIFICANCE: Circulating levels of microparticles and circulating endothelial cells correlate with prognosis, and could be useful as prognostic markers in patients with advanced non-small cell lung cancer.

  15. Apoptin: Specific killer of tumor cells?

    OpenAIRE

    Tavassoli, M; Guelen, L.; Luxon, B. A.; Gäken, J

    2005-01-01

    In the early 1990s it was discovered that the VP3/Apoptin protein encoded by the Chicken Anemia virus (CAV) possesses an inherent ability to specifically kill cancer cells. Apoptin was found to be located in the cytoplasm of normal cells while in tumor cells it was localized mainly in the nucleus.1 These differences in the localization pattern were suggested to be the main mechanism by which normal cells show resistance to Apoptin-mediated cell killing. Although the mechanism of action of Apo...

  16. Management of nonfunctioning islet cell tumors

    Institute of Scientific and Technical Information of China (English)

    Han Liang; Pu Wang; Xiao-Na Wang; Jia-Cang Wang; Xi-Shan Hao

    2004-01-01

    AIM: To more clearly define the clinical and pathological characteristics and appropriate diagnosis and treatment of nonfunctioning (NFICTs) islet cell tumors, and to review our institutional experience over the last 30 years.METHODS: The records of 43 patients confirmed to have nonfunctioning islet cell tumors of pancreas were retrospectively reviewed. Survival was estimated by the Kaplan-Meier methods and potential risk factors for survival were compared with the log-rank tests.RESULTS: The mean age was 31.63 years (range, 8 to 67 years). There were 7 men and 36 women. Twentyeight patients had a confirmed diagnosis of nonfunctioning islet cell carcinoma (NFICC) and benign islet cell tumors were found in 15 patients. The most common symptoms in patients with NFICTs were abdominal pain (55.8%),nausea and/or vomiting (32.6%), fatigue (25.6%) and abdominal mass (23.3%). Preoperative ultrasonic and computed tomography localized the tumors in all patients.Forty-three NFICTs were distributed throughout the pancreas, with 21 located to the right of the superior mesenteric vessels, 10 in the body of the pancreas, 6 in the tail of the pancreas, and multiple tumors were found in one patient. Thirty-nine of 43 patients (91%) underwent surgical resection. Surgical treatment was curative in 30patients (70%) and palliative in 9(21%). The resectability and curative resection rate in patients with NFICC of pancreas were 89% and 61%, respectively. The overall cumulative 5- and 10-year survival rates for patients with NFICC were 58.05% and 29.03%, respectively. Radical operation and diameter of cancer small than :10 cm were positive prognostic factors in females younger than 30years old. Multivariate Cox regression analysis indicated that radical operation was the only independent prognostic factor, P=0.007.CONCLUSION: Nonfunctioning islet cell tumors of pancreas are found mainly in young women. The long-term results for patients undergone surgery, especially curative resection are

  17. Ovarian Germ Cell Tumors Treatment

    Science.gov (United States)

    ... c) cancer cells are found in the pelvic peritoneum. In stage I , cancer is found in one ... in the abdomen ) or in washings of the peritoneum ( tissue lining the peritoneal cavity). Stage II Enlarge ...

  18. Combination Chemotherapy in Treating Young Patients With Recurrent or Resistant Malignant Germ Cell Tumors

    Science.gov (United States)

    2016-04-12

    Childhood Extracranial Germ Cell Tumor; Childhood Extragonadal Germ Cell Tumor; Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Ovarian Choriocarcinoma; Ovarian Embryonal Carcinoma; Ovarian Yolk Sac Tumor; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Testicular Choriocarcinoma; Testicular Choriocarcinoma and Embryonal Carcinoma; Testicular Choriocarcinoma and Yolk Sac Tumor; Testicular Embryonal Carcinoma; Testicular Embryonal Carcinoma and Yolk Sac Tumor; Testicular Yolk Sac Tumor

  19. Circulating Tumor Necrosis Factor α Receptors Predict the Outcomes of Human IgA Nephropathy: A Prospective Cohort Study.

    Directory of Open Access Journals (Sweden)

    Yun Jung Oh

    Full Text Available The circulating tumor necrosis factor receptors (TNFRs could predict the long-term renal outcome in diabetes, but the role of circulating TNFRs in other chronic kidney disease has not been reported. Here, we investigated the correlation between circulating TNFRs and renal histologic findings on kidney biopsy in IgA nephropathy (IgAN and assessed the notion that the circulating TNFRs could predict the clinical outcome. 347 consecutive biopsy-proven IgAN patients between 2006 and 2012 were prospectively enrolled. Concentrations of circulating TNFRs were measured using serum samples stored at the time of biopsy. The primary clinical endpoint was the decline of estimated glomerular filtration rate (eGFR; ≥ 30% decline compared to baseline. Mean eGFR decreased and proteinuria worsened proportionally as circulating TNFR1 and TNFR2 increased (P < 0.001. Tubulointerstitial lesions such as interstitial fibrosis and tubular atrophy were significantly more severe as concentrations of circulating TNFRs increased, regardless of eGFR levels. The risks of reaching the primary endpoint were significantly higher in the highest quartile of TNFRs compared with other quartiles by the Cox proportional hazards model (TNFR1; hazard ratio 7.48, P < 0.001, TNFR2; hazard ratio 2.51, P = 0.021. In stratified analysis according to initial renal function classified by the eGFR levels of 60 mL/min/1.73 m2, TNFR1 and TNFR2 were significant predictors of renal progression in both subgroups. In conclusion, circulating TNFRs reflect the histology and clinical severity of IgAN. Moreover, elevated concentrations of circulating TNFRs at baseline are early biomarkers for subsequent renal progression in IgAN patients.

  20. ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression

    DEFF Research Database (Denmark)

    Frohlich, Camilla; Nehammer, Camilla; Albrechtsen, Reidar;

    2011-01-01

    hypothesized, however, that the tumor-associated stroma may stimulate ADAM12 expression in tumor cells, based on the fact that TGF-ß1 stimulates ADAM12 expression and is a well-known growth factor released from tumor-associated stroma. TGF-ß1 stimulation of ADAM12-negative Lewis lung tumor cells induced ADAM12...... synthesis, and growth of these cells in vivo induced a >200-fold increase in ADAM12 expression. Our observation that ADAM12 expression is significantly higher in the terminal duct lobular units (TDLUs) adjacent to human breast carcinoma compared with TDLUs found in normal breast tissue supports our......Expression of ADAM12 is low in most normal tissues, but is markedly increased in numerous human cancers, including breast carcinomas. We have previously shown that overexpression of ADAM12 accelerates tumor progression in a mouse model of breast cancer (PyMT). In the present study, we found...

  1. SNPase-ARMS qPCR: Ultrasensitive Mutation-Based Detection of Cell-Free Tumor DNA in Melanoma Patients

    OpenAIRE

    Stadler, Julia; Eder, Johanna; Pratscher, Barbara; Brandt, Sabine; Schneller, Doris; Müllegger, Robert; Vogl, Claus; Trautinger, Franz; Brem, Gottfried; Burgstaller, Joerg P.

    2015-01-01

    Cell-free circulating tumor DNA in the plasma of cancer patients has become a common point of interest as indicator of therapy options and treatment response in clinical cancer research. Especially patient- and tumor-specific single nucleotide variants that accurately distinguish tumor DNA from wild type DNA are promising targets. The reliable detection and quantification of these single-base DNA variants is technically challenging. Currently, a variety of techniques is applied, with no appar...

  2. Genetic alteration andmutation proifling ofcirculating cell-free tumor DNA (cfDNA) fordiagnosis andtargeted therapy ofgastrointestinal stromal tumors

    Institute of Scientific and Technical Information of China (English)

    WeixinYan; AiguoZhang; MichaelJPowell

    2016-01-01

    Gastrointestinal stromal tumors (GISTs) have been recognized as a biologically distinctive type of tumor, different from smooth muscle and neural tumors of the gastrointestinal tract. The identiifcation of genetic aberrations in proto-oncogenes that drive the growth of GISTs is critical for improving the effcacy of cancer therapy by match-ing targeted drugs to speciifc mutations. Research into the oncogenic mechanisms of GISTs has found that these tumors frequently contain activating gene mutations in either platelet-derived growth factor receptor A (PDGFRA) or a receptor tyrosine protein associated with a mast cell growth factor receptor encoded by theKIT gene. Mutant cancer subpopulations have the potential to disrupt durable patient responses to molecularly targeted therapy for GISTs, yet the prevalence and size of subpopulations remain largely unexplored. Detection of the cancer subpopulations that harbor low-frequency mutant alleles of target proto-oncogenes through the use of molecular genetic methods, such as polymerase chain reaction (PCR) target ampliifcation technology, is hampered by the high abundance of wild-type alleles, which limit the sensitivity of detection of these minor mutant alleles. This is especially true in the case of mutant tumor DNA derived “driver” and “drug-resistant” alleles that are present in the circulating cell-free tumor DNA (cfDNA) in the peripheral blood circulation of GIST patients. So-called “liquid biopsy” allows for the dynamic monitor-ing of the patients’ tumor status during treatment using minimally invasive sampling. New methodologies, such as a technology that employs a xenonucleic acid (XNA) clamping probe to block the PCR ampliifcation of wild-type templates, have allowed improved molecular detection of these low-frequency alleles both in tissue biopsy samples and in cfDNA. These new methodologies could be widely applied for minimally invasive molecular testing in the therapeutic management of GISTs.

  3. Photo(chemotherapy reduces circulating Th17 cells and restores circulating regulatory T cells in psoriasis.

    Directory of Open Access Journals (Sweden)

    Takuya Furuhashi

    Full Text Available BACKGROUND: Photo(chemotherapy is widely used to treat psoriasis, the pathogenesis of which might be caused by an imbalance of Th17 cells/regulatory T cells (Treg. In the present study, we evaluated the effects of photo(chemotherapy on the Th17/Treg balance and Treg function. METHODS: Peripheral blood was obtained from psoriasis patients treated with bath-psoralen ultraviolet A (UVA, n = 50 or narrowband ultraviolet B (UVB, n = 18, and age-matched healthy volunteers (n = 20. CD3(+CD4(+IL-17A(+ or CD4(+CD25(+Foxp3(+cells were analyzed to estimate Th17 or Treg number by fluorescence-activated cell sorting. Moreover, CD4(+ CD25(- T cells from patients treated with PUVA(n = 14 were incubated in CFSE and activated with or without CD4(+ CD25(+T cells, and the suppressive function of CD4(+ CD25(+T cells were analyzed. RESULTS: Photo(chemotherapy significantly reduced Th17 levels from 5.66 ± 3.15% to 2.96 ± 2.89% in patients with increased Th17 (Th17/CD4>3.01% [mean+SD of controls]. In contrast, photo(chemotherapy significantly increased Treg levels from 2.77 ± 0.75 to 3.40 ± 1.88% in patients with less than 4.07% Treg level, defined as the mean of controls. Furthermore, while Treg suppressed the CD4(+CD25(- T cell proliferation to a greater extent in controls (Treg Functional Ratio 94.4 ± 4.28% than in patients (70.3±25.1%, PUVA significantly increased Treg Functional Ratio to 88.1 ± 6.47%. Th17 levels in severe patients (>30 PASI were significantly higher as compared to controls. Th17 levels that were left after treatment in the patients not achieving PASI 50 (3.78 ± 4.18% were significantly higher than those in the patients achieving PASI 75 (1.83±1.87%. Treg levels in patients achieving PASI 90 (4.89 ± 1.70% were significantly higher than those in the patients not achieving PASI 90 (3.90 ± 1.66%. Treg levels prior to treatment with Th17 high decreased group (5.16 ± 2.20% was significantly higher than that with Th17 high increased group

  4. Circulating cell-free mitochondrial DNA as a novel cancer biomarker: opportunities and challenges.

    Science.gov (United States)

    Yu, Man

    2012-10-01

    The unique characteristics of the mitochondrial genome, such as short length, simple molecular structure, and high copy number, have made monitoring aberrant changes of mitochondrial DNA (mtDNA) quantity an interesting molecular tool for early tumor detection with many advantages over the nuclear genome-based methods. Recently, circulating cell-free (ccf) mtDNA in blood has emerged on the platform as a non-invasive diagnostic and prognostic biomarker for many forms of solid tumors. Accumulating evidence demonstrate that plasma or serum ccf mtDNA levels are significantly different between cancer patients and healthy individuals. Furthermore, quantification of ccf mtDNA levels in circulation may assist in identifying patients from cancer-free healthy population. This minireview attempts to summarize our recent findings in this very promising field of cancer research. The potential technical challenges that we have encountered during the quantitative analysis of ccf mtDNA and mtDNA in general are also briefly discussed. Prospective studies with a larger cohort of patients in various cancer entities are beneficial to precisely define the clinical importance of assessing the ccf mtDNA amount for diagnosing and tracking malignant diseases and their progression.

  5. Clear-cell variant of calcifying epithelial odontogenic tumor (Pindborg tumor) in the mandible

    Institute of Scientific and Technical Information of China (English)

    Ching-Yi Chen; Chung-Wei Wu; Wen-Chen Wang; Li-Min Lin; Yuk-Kwan Chen

    2013-01-01

    We present an uncommon case (female patient aged 59 years) of the clear-cell variant of calcifying epithelial odontogenic tumor (CEOT) (also known as Pindborg tumor) in the mandible. The clinical characteristics and probable origins of the clear tumor cells of previously reported cases of clear-cell variant of intraosseous CEOT are also summarized and discussed.

  6. Tumor-Initiating Cells Are Enriched in CD44hi Population in Murine Salivary Gland Tumor

    OpenAIRE

    Shukun Shen; Wenjun Yang; Zhugang Wang; Xia Lei; Liqun Xu; Yang Wang; Lizhen Wang; Lei Huang; Zhiwei Yu; Xinhong Zhang; Jiang Li; Yan Chen; Xiaoping Zhao; Xuelai Yin; Chenping Zhang

    2011-01-01

    Tumor-initiating cells (T-ICs) discovered in various tumors have been widely reported. However, T-IC populations in salivary gland tumors have yet to be elucidated. Using the established Pleomorphic Adenoma Gene-1 (Plag1) transgenic mouse model of a salivary gland tumor, we identified CD44(high) (CD44(hi)) tumor cells, characterized by high levels of CD44 cell surface expression, as the T-ICs for pleomorphic adenomas. These CD44(hi) tumor cells incorporated 5-bromo-2-deoxyuridine (BrdU), at a...

  7. Polymer microfilters with nanostructured surfaces for the culture of circulating cancer cells.

    Science.gov (United States)

    Makarova, Olga V; Adams, Daniel L; Divan, Ralu; Rosenmann, Daniel; Zhu, Peixuan; Li, Shuhong; Amstutz, Platte; Tang, Cha-Mei

    2016-09-01

    There is a critical need to improve the accuracy of drug screening and testing through the development of in vitro culture systems that more effectively mimic the in vivo environment. Surface topographical features on the nanoscale level, in short nanotopography, effect the cell growth patterns, and hence affect cell function in culture. We report the preliminary results on the fabrication, and subsequent cellular growth, of nanoscale surface topography on polymer microfilters using cell lines as a precursor to circulating tumor cells (CTCs). To create various nanoscale features on the microfilter surface, we used reactive ion etching (RIE) with and without an etching mask. An anodized aluminum oxide (AAO) membrane fabricated directly on the polymer surface served as an etching mask. Polymer filters with a variety of modified surfaces were used to compare the effects on the culture of cancer cell lines in blank culture wells, with untreated microfilters or with RIE-treated microfilters. We then report the differences of cell shape, phenotype and growth patterns of bladder and glioblastoma cancer cell lines after isolation on the various types of material modifications. Our data suggest that RIE modified polymer filters can isolate model cell lines while retaining ell viability, and that the RIE filter modification allows T24 monolayering cells to proliferate as a structured cluster. PMID:27207054

  8. In Vitro Efficient Expansion of Tumor Cells Deriving from Different Types of Human Tumor Samples

    Directory of Open Access Journals (Sweden)

    Ilaria Turin

    2014-03-01

    Full Text Available Obtaining human tumor cell lines from fresh tumors is essential to advance our understanding of antitumor immune surveillance mechanisms and to develop new ex vivo strategies to generate an efficient anti-tumor response. The present study delineates a simple and rapid method for efficiently establishing primary cultures starting from tumor samples of different types, while maintaining the immuno-histochemical characteristics of the original tumor. We compared two different strategies to disaggregate tumor specimens. After short or long term in vitro expansion, cells analyzed for the presence of malignant cells demonstrated their neoplastic origin. Considering that tumor cells may be isolated in a closed system with high efficiency, we propose this methodology for the ex vivo expansion of tumor cells to be used to evaluate suitable new drugs or to generate tumor-specific cytotoxic T lymphocytes or vaccines.

  9. NMR exposure sensitizes tumor cells to apoptosis.

    Science.gov (United States)

    Ghibelli, L; Cerella, C; Cordisco, S; Clavarino, G; Marazzi, S; De Nicola, M; Nuccitelli, S; D'Alessio, M; Magrini, A; Bergamaschi, A; Guerrisi, V; Porfiri, L M

    2006-03-01

    NMR technology has dramatically contributed to the revolution of image diagnostic. NMR apparatuses use combinations of microwaves over a homogeneous strong (1 Tesla) static magnetic field. We had previously shown that low intensity (0.3-66 mT) static magnetic fields deeply affect apoptosis in a Ca2+ dependent fashion (Fanelli et al., 1999 FASEBJ., 13;95-102). The rationale of the present study is to examine whether exposure to the static magnetic fields of NMR can affect apoptosis induced on reporter tumor cells of haematopoietic origin. The impressive result was the strong increase (1.8-2.5 fold) of damage-induced apoptosis by NMR. This potentiation is due to cytosolic Ca2+ overload consequent to NMR-promoted Ca2+ influx, since it is prevented by intracellular (BAPTA-AM) and extracellular (EGTA) Ca2+ chelation or by inhibition of plasma membrane L-type Ca2+ channels. Three-days follow up of treated cultures shows that NMR decrease long term cell survival, thus increasing the efficiency of cytocidal treatments. Importantly, mononuclear white blood cells are not sensitised to apoptosis by NMR, showing that NMR may increase the differential cytotoxicity of antitumor drugs on tumor vs normal cells. This strong, differential potentiating effect of NMR on tumor cell apoptosis may have important implications, being in fact a possible adjuvant for antitumor therapies. PMID:16528477

  10. Novel Molecular Tumor Cell Markers in Regional Lymph Nodes and Blood Samples from Patients Undergoing Surgery for Non-Small Cell Lung Cancer

    OpenAIRE

    Oddmund Nordgård; Gurpartap Singh; Steinar Solberg; Lars Jørgensen; Ann Rita Halvorsen; Rune Smaaland; Odd Terje Brustugun; Åslaug Helland

    2013-01-01

    INTRODUCTION: Recent evidence suggests that microscopic lymph node metastases and circulating tumor cells may have clinical importance in lung cancer. The purpose of this study was to identify new molecular markers for tumor cells in regional lymph nodes (LNs) and peripheral blood (PB) from patients with non-small cell lung cancer (NSCLC). METHODS: Candidate markers were selected based on digital transcript profiling and previous literature. KRT19, CEACAM5, EPCAM, DSG3, SFTPA, SFTPC and SFTPB...

  11. Circulating endothelial progenitor cells in kidney transplant patients.

    Directory of Open Access Journals (Sweden)

    Giovana S Di Marco

    Full Text Available BACKGROUND: Kidney transplantation (RTx leads to amelioration of endothelial function in patients with advanced renal failure. Endothelial progenitor cells (EPCs may play a key role in this repair process. The aim of this study was to determine the impact of RTx and immunosuppressive therapy on the number of circulating EPCs. METHODS: We analyzed 52 RTx patients (58±13 years; 33 males, mean ± SD and 16 age- and gender-matched subjects with normal kidney function (57±17; 10 males. RTx patients received a calcineurin inhibitor (CNI-based (65% or a CNI-free therapy (35% and steroids. EPC number was determined by double positive staining for CD133/VEGFR2 and CD34/VEGFR2 by flow cytometry. Stromal cell-derived factor 1 alpha (SDF-1 levels were assessed by ELISA. Experimentally, to dissociate the impact of RTx from the impact of immunosuppressants, we used the 5/6 nephrectomy model. The animals were treated with a CNI-based or a CNI-free therapy, and EPCs (Sca+cKit+ and CD26+ cells were determined by flow cytometry. RESULTS: Compared to controls, circulating number of CD34+/VEGFR2+ and CD133+/VEGFR2+ EPCs increased in RTx patients. There were no correlations between EPC levels and statin, erythropoietin or use of renin angiotensin system blockers in our study. Indeed, multivariate analysis showed that SDF-1--a cytokine responsible for EPC mobilization--is independently associated with the EPC number. 5/6 rats presented decreased EPC counts in comparison to control animals. Immunosuppressive therapy was able to restore normal EPC values in 5/6 rats. These effects on EPC number were associated with reduced number of CD26+ cells, which might be related to consequent accumulation of SDF-1. CONCLUSIONS: We conclude that kidney transplantation and its associated use of immunosuppressive drugs increases the number of circulating EPCs via the manipulation of the CD26/SDF-1 axis. Increased EPC count may be associated to endothelial repair and function in

  12. MR imaging of intracranial germ cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masayuki; Takashima, Tsutomu; Akakura, Yukari (Kanazawa Univ. (Japan). School of Medicine) (and others)

    1994-04-01

    MRI of 13 patients with intracranial germ cell tumor (GCT) was performed with a 1.5 T superconductive scanner. T1-and T2-weighted images (T1WI and T2WI) and Gd-DTPA-enhanced T1-weighted images (Gd-T1WI) were obtained. On T1WI and T2WI, five germinomas and one teratoma were homogeneously isointense with gray matter. Two germinomas with cystic component exhibited markedly hypointense and hyperintense areas, respectively. Three teratomas were heterogeneous on both sequences due to cystic portion, fat, and hemorrhage. Yolk sac tumor (YST) was isointense on T1WI and heterogeneous on T2WI. On Gd-T1WI, five germinomas and YST were homogeneously enhanced. All but one of the others were heterogeneously enhanced. There were increased AFP in YST and increased HCG in malignant teratoma. Differential diagnosis of GCT may be possible with MRI. However, tumor markers should be taken into consideration. (author).

  13. Studying circulation times of liver cancer cells by in vivo flow cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G; Li, Y; Fan, Z; Guo, J; Tan, X; Wei, X, E-mail: xwei@fudan.edu.cn [Institutes of Biomedical Sciences, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032 (China)

    2011-02-01

    Hepatocellular carcinoma (HCC) may metastasize to lung kidney and many other organs. The survival rate is almost zero for metastatic HCC patients. Molecular mechanisms of HCC metastasis need to be understood better and new therapies must be developed. A recently developed 'in vivo flow cytometer' combined with real-time confocal fluorescence imaging are used to assess spreading and the circulation kinetics of liver tumor cells. The in vivo flow cytometer has the capability to detect and quantify continuously the number and flow characteristics of fluorescently labeled cells in vivo in real time without extracting blood sample. We have measured the depletion kinetics of two related human HCC cell lines high-metastatic HCCLM3 cells and low-metastatic HepG2 cells which were from the same origin and obtained by repetitive screenings in mice. >60% HCCLM3 cells are depleted within the first hour. Interestingly the low-metastatic HepG2 cells possess noticeably slower depletion kinetics. In comparison <40% HepG2 cells are depleted within the first hour. The differences in depletion kinetics might provide insights into early metastasis processes.

  14. Multifunctional Nucleic Acids for Tumor Cell Treatment

    DEFF Research Database (Denmark)

    Pofahl, Monika; Wengel, Jesper; Mayer, Günter

    2014-01-01

    We report on a multifunctional nucleic acid, termed AptamiR, composed of an aptamer domain and an antimiR domain. This composition mediates cell specific delivery of antimiR molecules for silencing of endogenous micro RNA. The introduced multifunctional molecule preserves cell targeting, anti......-proliferative and antimiR function in one 37-nucleotide nucleic acid molecule. It inhibits cancer cell growth and induces gene expression that is pathologically damped by an oncomir. These findings will have a strong impact on future developments regarding aptamer- and antimiR-related applications for tumor targeting...

  15. Tumor Regulatory T Cells Potently Abrogate Antitumor Immunity1

    OpenAIRE

    Liu, Zuqiang; Kim, Jin H.; Falo, Louis D.; You, Zhaoyang

    2009-01-01

    Treg from mice bearing a breast tumor were elevated (tumor Treg). In vitro, whereas tumor Treg ability to inhibit tumor-primed CD4+ T cell activity is comparable to Treg from naïve mice (naïve Treg), only tumor Treg suppress naïve CD8+ T cell activation and DC function. Neither tumor Treg nor naïve Treg can suppress antitumor immunity at the effector phase of the immune response induced by adoptively-transferred tumor-primed CD4+ T cells. This is consistent with the observation that, in this ...

  16. HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death.

    Science.gov (United States)

    Aits, Sonja; Gustafsson, Lotta; Hallgren, Oskar; Brest, Patrick; Gustafsson, Mattias; Trulsson, Maria; Mossberg, Ann-Kristin; Simon, Hans-Uwe; Mograbi, Baharia; Svanborg, Catharina

    2009-03-01

    HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.

  17. Granular cell tumors of the urinary bladder

    Directory of Open Access Journals (Sweden)

    Kayani Naila

    2007-03-01

    Full Text Available Abstract Background Granular cell tumors (GCTs are extremely rare lesions of the urinary bladder with only nine cases being reported in world literature of which one was malignant. Generally believed to be of neural origin based on histochemical, immunohistochemical, and ultrastructural studies; they mostly follow a clinically benign course but are commonly mistaken for malignant tumors since they are solid looking, ulcerated tumors with ill-defined margins. Materials and methods We herein report two cases of GCTs, one benign and one malignant, presenting with gross hematuria in a 14- and a 47-year-old female, respectively. Results Histopathology revealed characteristic GCTs with positive immunostaining for neural marker (S-100 and negative immunostaining for epithelial (cytokeratin, Cam 5.2, AE/A13, neuroendocrine (neuron specific enolase, chromogranin A, and synaptophysin and sarcoma (desmin, vimentin markers. The benign tumor was successfully managed conservatively with transurethral resection alone while for the malignant tumor, radical cystectomy, hysterectomy with bilateral salpingo-oophorectomy, anterior vaginectomy, plus lymph node dissection was done. Both cases show long-term disease free survival. Conclusion We recommend careful pathologic assessment for establishing the appropriate diagnosis and either a conservative or aggressive surgical treatment for benign or localized malignant GCT of the urinary bladder, respectively.

  18. Endothelial cell-derived interleukin-6 regulates tumor growth

    International Nuclear Information System (INIS)

    Endothelial cells play a complex role in the pathobiology of cancer. This role is not limited to the making of blood vessels to allow for influx of oxygen and nutrients required for the high metabolic demands of tumor cells. Indeed, it has been recently shown that tumor-associated endothelial cells secrete molecules that enhance tumor cell survival and cancer stem cell self-renewal. The hypothesis underlying this work is that specific disruption of endothelial cell-initiated signaling inhibits tumor growth. Conditioned medium from primary human dermal microvascular endothelial cells (HDMEC) stably transduced with silencing RNA for IL-6 (or controls) was used to evaluate the role of endothelial-derived IL-6 on the activation of key signaling pathways in tumor cells. In addition, these endothelial cells were co-transplanted with tumor cells into immunodefficient mice to determine the impact of endothelial cell-derived IL-6 on tumor growth and angiogenesis. We observed that tumor cells adjacent to blood vessels show strong phosphorylation of STAT3, a key mediator of tumor progression. In search for a possible mechanism for the activation of the STAT3 signaling pathway, we observed that silencing interleukin (IL)-6 in tumor-associated endothelial cells inhibited STAT3 phosphorylation in tumor cells. Notably, tumors vascularized with IL-6-silenced endothelial cells showed lower intratumoral microvessel density, lower tumor cell proliferation, and slower growth than tumors vascularized with control endothelial cells. Collectively, these results demonstrate that IL-6 secreted by endothelial cells enhance tumor growth, and suggest that cancer patients might benefit from targeted approaches that block signaling events initiated by endothelial cells

  19. BRAF mutation analysis in circulating free tumor DNA of melanoma patients treated with BRAF inhibitors.

    Science.gov (United States)

    Gonzalez-Cao, Maria; Mayo-de-Las-Casas, Clara; Molina-Vila, Miguel A; De Mattos-Arruda, Leticia; Muñoz-Couselo, Eva; Manzano, Jose L; Cortes, Javier; Berros, Jose P; Drozdowskyj, Ana; Sanmamed, Miguel; Gonzalez, Alvaro; Alvarez, Carlos; Viteri, Santiago; Karachaliou, Niki; Martin Algarra, Salvador; Bertran-Alamillo, Jordi; Jordana-Ariza, Nuria; Rosell, Rafael

    2015-12-01

    BRAFV600E is a unique molecular marker for metastatic melanoma, being the most frequent somatic point mutation in this malignancy. Detection of BRAFV600E in blood could have prognostic and predictive value and could be useful for monitoring response to BRAF-targeted therapy. We developed a rapid, sensitive method for the detection and quantification of BRAFV600E in circulating free DNA (cfDNA) isolated from plasma and serum on the basis of a quantitative 5'-nuclease PCR (Taqman) in the presence of a peptide-nucleic acid. We validated the assay in 92 lung, colon, and melanoma archival serum and plasma samples with paired tumor tissue (40 wild-type and 52 BRAFV600E). The correlation of cfDNA BRAFV600E with clinical parameters was further explored in 22 metastatic melanoma patients treated with BRAF inhibitors. Our assay could detect and quantify BRAFV600E in mixed samples with as little as 0.005% mutant DNA (copy number ratio 1 : 20 000), with a specificity of 100% and a sensitivity of 57.7% in archival serum and plasma samples. In 22 melanoma patients treated with BRAF inhibitors, the median progression-free survival was 3.6 months for those showing BRAFV600E in pretreatment cfDNA compared with 13.4 months for those in whom the mutation was not detected (P=0.021). Moreover, the median overall survival for positive versus negative BRAFV600E tests in pretreatment cfDNA differed significantly (7 vs. 21.8 months, P=0.017). This finding indicates that the sensitive detection and accurate quantification of low-abundance BRAFV600E alleles in cfDNA using our assay can be useful for predicting treatment outcome.

  20. Detection and Characterization of Circulating Tumour Cells in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Liangxuan Zhang

    2016-06-01

    Full Text Available Multiple myeloma (MM remains an incurable disease despite recent therapeutic improvements. The ability to detect and characterize MM circulating tumour cells (CTCs in peripheral blood provides an alternative to replace or augment invasive bone marrow (BM biopsies with a simple blood draw, providing real-time, clinically relevant information leading to improved disease manage‐ ment and therapy selection. Here we have developed and qualified an enrichment-free, cell-based immunofluores‐ cence MM CTC assay that utilizes an automated digital pathology algorithm to distinguish MM CTCs from white blood cells (WBCs on the basis of CD138 and CD45 expression levels, as well as a number of morphological parameters. These MM CTCs were further characterized for expression of phospho-ribosomal protein S6 (pS6 as a readout for PI3K/AKT pathway activation. Clinical feasi‐ bility of the assay was established by testing blood samples from a small cohort of patients, where we detected popu‐ lations of both CD138pos and CD138neg MM CTCs. In this study, we developed an immunofluorescent cell-based assay to detect and characterize CTCs in MM.

  1. Endothelial cell pseudopods and angiogenesis of breast cancer tumors

    OpenAIRE

    Sun LuZhe; Short Nicholas; Cameron Ivan L; Hardman W Elaine

    2005-01-01

    Abstract Background A neoplastic tumor cannot grow beyond a millimeter or so in diameter without recruitment of endothelial cells and new blood vessels to supply nutrition and oxygen for tumor cell survival. This study was designed to investigate formation of new blood vessels within a human growing breast cancer tumor model (MDA MB231 in mammary fat pad of nude female mouse). Once the tumor grew to 35 mm3, it developed a well-vascularized capsule. Histological sections of tumors greater than...

  2. Regulatory T Cells in Tumor-Associated Tertiary Lymphoid Structures Suppress Anti-tumor T Cell Responses.

    Science.gov (United States)

    Joshi, Nikhil S; Akama-Garren, Elliot H; Lu, Yisi; Lee, Da-Yae; Chang, Gregory P; Li, Amy; DuPage, Michel; Tammela, Tuomas; Kerper, Natanya R; Farago, Anna F; Robbins, Rebecca; Crowley, Denise M; Bronson, Roderick T; Jacks, Tyler

    2015-09-15

    Infiltration of regulatory T (Treg) cells into many tumor types correlates with poor patient prognoses. However, mechanisms of intratumoral Treg cell function remain to be elucidated. We investigated Treg cell function in a genetically engineered mouse model of lung adenocarcinoma and found that Treg cells suppressed anti-tumor responses in tumor-associated tertiary lymphoid structures (TA-TLSs). TA-TLSs have been described in human lung cancers, but their function remains to be determined. TLSs in this model were spatially associated with >90% of tumors and facilitated interactions between T cells and tumor-antigen-presenting dendritic cells (DCs). Costimulatory ligand expression by DCs and T cell proliferation rates increased in TA-TLSs upon Treg cell depletion, leading to tumor destruction. Thus, we propose that Treg cells in TA-TLSs can inhibit endogenous immune responses against tumors, and targeting these cells might provide therapeutic benefit for cancer patients.

  3. Dendritic cell-tumor cell hybrids and immunotherapy

    DEFF Research Database (Denmark)

    Cathelin, Dominique; Nicolas, Alexandra; Bouchot, André;

    2011-01-01

    Dendritic cells (DC) are professional antigen-presenting cells currently being used as a cellular adjuvant in cancer immunotherapy strategies. Unfortunately, DC-based vaccines have not demonstrated spectacular clinical results. DC loading with tumor antigens and DC differentiation and activation...

  4. Quantitation of cell-free DNA and RNA in plasma during tumor progression in rats

    Directory of Open Access Journals (Sweden)

    García-Olmo Dolores C

    2013-02-01

    Full Text Available Abstract Background To clarify the implications of cell-free nucleic acids (cfNA in the plasma in neoplastic disease, it is necessary to determine the kinetics of their release into the circulation. Methods To quantify non-tumor and tumor DNA and RNA in the plasma of tumor-bearing rats and to correlate such levels with tumor progression, we injected DHD/K12-PROb colon cancer cells subcutaneously into syngenic BD-IX rats. Rats were sacrificed and their plasma was analyzed from the first to the eleventh week after inoculation. Results The release of large amounts of non-tumor DNA into plasma was related to tumor development from its early stages. Tumor-specific DNA was detected in 33% of tumor-bearing rats, starting from the first week after inoculation and at an increasing frequency thereafter. Animals that were positive for tumor DNA in the plasma had larger tumors than those that were negative (p = 0.0006. However, the appearance of both mutated and non-mutated DNA fluctuated with time and levels of both were scattered among individuals in each group. The release of non-tumor mRNA was unaffected by tumor progression and we did not detect mutated RNA sequences in any animals. Conclusions The release of normal and tumor cfDNA into plasma appeared to be related to individual-specific factors. The contribution of tumor DNA to the elevated levels of plasma DNA was intermittent. The release of RNA into plasma during cancer progression appeared to be an even more selective and elusive phenomenon than that of DNA.

  5. Circulating human B and plasma cells. Age-associated changes in counts and detailed characterization of circulating normal CD138(-) and CD138(+) plasma cells

    NARCIS (Netherlands)

    Caraux, Anouk; Klein, Bernard; Paiva, Bruno; Bret, Caroline; Schmitz, Alexander; Fuhler, Gwenny M.; Bos, Nico A.; Johnsen, Hans E.; Orfao, Alberto; Perez-Andres, Martin

    2010-01-01

    Generation of B and plasma cells involves several organs with a necessary cell trafficking between them. A detailed phenotypic characterization of four circulating B-cell subsets (immature-, naive-, memory- B-lymphocytes and plasma cells) of 106 healthy adults was realized by multiparametric flow cy

  6. A cryogenic circulating advective multi-pass absorption cell

    Science.gov (United States)

    Stockett, M. H.; Lawler, J. E.

    2012-03-01

    A novel absorption cell has been developed to enable a spectroscopic survey of a broad range of polycyclic aromatic hydrocarbons (PAH) under astrophysically relevant conditions and utilizing a synchrotron radiation continuum to test the still controversial hypothesis that these molecules or their ions could be carriers of the diffuse interstellar bands. The cryogenic circulating advective multi-pass absorption cell resembles a wind tunnel; molecules evaporated from a crucible or injected using a custom gas feedthrough are entrained in a laminar flow of cryogenically cooled buffer gas and advected into the path of the synchrotron beam. This system includes a multi-pass optical White cell enabling absorption path lengths of hundreds of meters and a detection sensitivity to molecular densities on the order of 107 cm-3. A capacitively coupled radio frequency dielectric barrier discharge provides ionized and metastable buffer gas atoms for ionizing the candidate molecules via charge exchange and the Penning effect. Stronger than expected clustering of PAH molecules has slowed efforts to record gas phase PAH spectra at cryogenic temperatures, though such clusters may play a role in other interstellar phenomena.

  7. Interleukin 2 expression by tumor cells alters both the immune response and the tumor microenvironment.

    Science.gov (United States)

    Lee, J; Fenton, B M; Koch, C J; Frelinger, J G; Lord, E M

    1998-04-01

    Microenvironmental conditions within solid tumors can have marked effects on the growth of the tumors and their response to therapies. The disorganized growth of tumors and their attendant vascular systems tends to result in areas of the tumors that are deficient in oxygen (hypoxic). Cells within these hypoxic areas are more resistant to conventional therapies such as radiation and chemotherapy. Here, we examine the hypoxic state of EMT6 mouse mammary tumors and the location of host cells within the different areas of the tumors to determine whether such microenvironmental conditions might also affect their ability to be recognized by the immune system. Hypoxia within tumors was quantified by flow cytometry and visualized by immunohistochemistry using a monoclonal antibody (ELK3-51) against cellular adducts of 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetam ide (EF5), a nitroimidazole compound that binds selectively to hypoxic cells. Thy-1+ cells, quantified using a monoclonal antibody, were found only in the well-oxygenated areas. The location of these Thy-1+ cells was also examined in EMT6 tumors that had been transfected with the gene for interleukin-2 (IL-2) because these tumors contain greatly increased numbers of host cells. Surprisingly, we found that IL-2-transfected tumors had significantly decreased hypoxia compared to parental tumors. Furthermore, using the fluorescent dye Hoechst 33342, an in vivo marker of perfused vessels, combined with immunochemical staining of PECAM-1 (CD31) as a marker of tumor vasculature, we found increased vascularization in the IL-2-transfected tumors. Thus, expression of IL-2 at the site of tumor growth may enhance tumor immunity not only by inducing the generation of tumor-reactive CTLs but also by allowing increased infiltration of activated T cells into the tumors. PMID:9537251

  8. Giant cell tumor of the spine.

    Science.gov (United States)

    Ozaki, Toshifumi; Liljenqvist, Ulf; Halm, Henry; Hillmann, Axel; Gosheger, Georg; Winkelmann, Winfried

    2002-08-01

    Six patients with giant cell tumor of the spine had surgery between 1981 and 1995. Three lesions were located in the scrum, two lesions were in the thoracic spine, and one lesion was in the lumbar spine. Preoperatively, all patients had local pain and neurologic symptoms. Two patients had cement implanted after curettage or intralesional excision of the sacral tumor; one patient had a local relapse. After the second curettage and cement implantation, the tumor was controlled. One patient with a sacral lesion had marginal excision and spondylodesis; no relapse developed. Two patients with thoracic lesions had planned marginal excision and spondylodesis; the margins finally became intralesional, but no relapse developed. One patient with a lumbar lesion had incomplete removal of the tumor and received postoperative irradiation. At the final followup (median, 69 months), five of six patients were disease-free and one patient died of disease progression. Two of the five surviving patients had pain after standing or neurologic problems. Although some contamination occurred, planning a marginal excision of the lesion seems beneficial for vertebral lesions above the sacrum. Total sacrectomy of a sacral lesion seems to be too invasive when cement implantation can control the lesion. PMID:12151896

  9. Colon tumor cells grown in NASA Bioreactor

    Science.gov (United States)

    2001-01-01

    These photos compare the results of colon carcinoma cells grown in a NASA Bioreactor flown on the STS-70 Space Shuttle in 1995 flight and ground control experiments. The cells grown in microgravity (left) have aggregated to form masses that are larger and more similar to tissue found in the body than the cells cultured on the ground (right). The principal investigator is Milburn Jessup of the University of Texas M. D. Anderson Cancer Center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and University of Texas M. D. Anderson Cancer Center.

  10. Revisiting tumor angiogenesis:vessel co-option, vessel remodeling, andcancer cell-derived vasculature formation

    Institute of Scientific and Technical Information of China (English)

    ChaoNan Qian; MinHan Tan; JunPing Yang; YunCao

    2016-01-01

    Tumor growth and metastasis depend on the establishment of tumor vasculature to provide oxygen, nutrients, and other essential factors. The well‑known vascular endothelial growth factor (VEGF) signaling is crucial for sprout‑ing angiogenesis as well as recruitment of circulating progenitor endothelial cells to tumor vasculature, which has become therapeutic targets in clinical practice. However, the survival beneifts gained from targeting VEGF signal‑ing have been very limited, with the inevitable development of treatment resistance. In this article, we discuss the most recent ifndings and understanding on how solid tumors evade VEGF‑targeted therapy, with a special focus on vessel co‑option, vessel remodeling, and tumor cell‑derived vasculature establishment. Vessel co‑option may occur in tumors independently of sprouting angiogenesis,and sprouting angiogenesis is not always required for tumor growth. The differences between vessel‑like structure and tubule‑like structure formed by tumor cells are also intro‑duced. The exploration of the underlying mechanisms of these alternative angiogenic approaches would not only widen our knowledge of tumor angiogenesis but also provide novel therapeutic targets for better controlling cancer growth and metastasis.

  11. GRANULAR CELL TUMOR OF BREAST (CYTOLOGICAL DIAGNOSIS CONFIRMED BY HISTOPATHOLOGY

    Directory of Open Access Journals (Sweden)

    Divvya

    2014-10-01

    Full Text Available Granular cell tumor is a tumor derived from Schwann cells of peripheral nerves and it can occur throughout the body. About 5% of granular cell tumors occur in breast and are mostly benign in nature. We report a case of 30 year old female who presented with a swelling in right breast which on histo pathological examination revealed features consistent with granular cell tumor. This case is highlighted to reveal the importance of histopathology in differentiating granular cell tumor from carcinoma breast which is difficult based on clinical, radiological and cytological examination alone.

  12. Granular Cell Tumor of the Toe: A Case Report

    Directory of Open Access Journals (Sweden)

    Federico Tamborini

    2010-01-01

    Full Text Available Granular cell tumor is a rare tumor of unknown etiology that more commonly affects the oral cavity but can also occur at other sites. The majorities of granular cell tumors are benign and present as a singular dermal nodule. We discuss a case of granular cell tumor of the fourth toe in a 54-year-old patient that was treated with conservative surgery, instead of amputation, and reconstruction with a dermal regeneration template.

  13. Granular Cell Tumor of the Toe: A Case Report

    Science.gov (United States)

    Tamborini, Federico; Cherubino, Mario; Scamoni, Stefano; Valdatta, Luigi A.

    2010-01-01

    Granular cell tumor is a rare tumor of unknown etiology that more commonly affects the oral cavity but can also occur at other sites. The majorities of granular cell tumors are benign and present as a singular dermal nodule. We discuss a case of granular cell tumor of the fourth toe in a 54-year-old patient that was treated with conservative surgery, instead of amputation, and reconstruction with a dermal regeneration template. PMID:20862204

  14. Astrocytes Directly Influence Tumor Cell Invasion and Metastasis In Vivo

    OpenAIRE

    Wang, Ling; Cossette, Stephanie M.; Rarick, Kevin R.; Gershan, Jill; Michael B Dwinell; Harder, David R.; Ramchandran, Ramani

    2013-01-01

    Brain metastasis is a defining component of tumor pathophysiology, and the underlying mechanisms responsible for this phenomenon are not well understood. Current dogma is that tumor cells stimulate and activate astrocytes, and this mutual relationship is critical for tumor cell sustenance in the brain. Here, we provide evidence that primary rat neonatal and adult astrocytes secrete factors that proactively induced human lung and breast tumor cell invasion and metastasis capabilities. Among wh...

  15. Biology and Molecular Markers of Malignant Gonadal Germ Cell Tumors

    OpenAIRE

    Salonen, Jonna

    2009-01-01

    Germ cell tumors occur both in the gonads of both sexes and in extra-gonadal sites during adoles-cence and early adulthood. Malignant ovarian germ cell tumors are rare neoplasms accounting for less than 5% of all cases of ovarian malignancy. In contrast, testicular cancer is the most common malignancy among young males. Most of patients survive the disease. Prognostic factors of gonadal germ cell tumors include histology, clinical stage, size of the primary tumor and residua, and levels of tu...

  16. Induction of myeloid-derived suppressor cells by tumor exosomes

    OpenAIRE

    Xiang, Xiaoyu; Poliakov, Anton; Liu, Cunren; Liu, Yuelong; Deng, Zhong-Bin; wang, Jianhua; Cheng, Ziqiang; Shah, Spandan V.; Wang, Gui-Jun; Zhang, Liming; Grizzle, William E.; Mobley, Jim; Zhang, Huang-Ge

    2009-01-01

    Myeloid-derived suppressor cells (MDSCs) promote tumor progression. The mechanisms of MDSC development during tumor growth remain unknown. Tumor exosomes (T-exosomes) have been implicated to play a role in immune regulation, however the role of exosomes in the induction of MDSCs is unclear. Our previous work demonstrated that exosomes isolated from tumor cells are taken up by bone marrow myeloid cells. Here, we extend those findings showing that exosomes isolated from T-exosomes switch the di...

  17. Involvement of platelet-tumor cell interaction in immune evasion. Potential role of podocalyxin-like protein 1

    Directory of Open Access Journals (Sweden)

    Laura eAmo

    2014-09-01

    Full Text Available Besides their essential role in hemostasis and thrombosis, platelets are involved in the onset of cancer metastasis by interacting with tumor cells. Platelets release secretory factors that promote tumor growth, angiogenesis, and metastasis. Furthermore, the formation of platelet-tumor cell aggregates in the bloodstream provides cancer cells with an immune escape mechanism by protecting circulating malignant cells from immune-mediated lysis by natural killer (NK cells. Platelet-tumor cell interaction is accomplished by specific adhesion molecules, including integrins, selectins, and their ligands. Podocalyxin-like protein 1 (PCLP1 is a selectin ligand protein which overexpression has been associated with several aggressive cancers. PCLP1 expression enhances cell adherence to platelets in an integrin-dependent process and through the interaction with P-selectin expressed on activated platelets. However, the involvement of PCLP1-induced tumor-platelet interaction in tumor immune evasion still remains unexplored. The identification of selectin ligands involved in the interaction of platelets with tumor cells may provide help for the development of effective therapies to restrain cancer cell dissemination. This article summarizes the current knowledge on molecules that participate in platelet-tumor cell interaction as well as discusses the potential role of PCLP1 as a molecule implicated in tumor immune evasion.

  18. Circulating angiogenic cell dysfunction in patients with hereditary hemorrhagic telangiectasia.

    Directory of Open Access Journals (Sweden)

    Liana Zucco

    Full Text Available Hereditary hemorrhagic telangiectasia (HHT is an autosomal dominant vascular disorder. Circulating angiogenic cells (CACs play an important role in vascular repair and regeneration. This study was designed to examine the function of CACs derived from patients with HHT. Peripheral blood mononuclear cells (PBMNCs isolated from patients with HHT and age- and gender-matched healthy volunteers were assessed for expression of CD34, CD133 and VEGF receptor 2 by flow cytometry. PBMNCs were cultured to procure early outgrowth CACs. Development of endothelial cell (EC phenotype in CACs was analyzed by fluorescence microscopy. CAC apoptosis was assayed with Annexin V staining, and CAC migration assessed by a modified Boyden chamber assay. mRNA expression of endoglin (ENG, activin receptor-like kinase-1 (ACVLR1 or ALK1 and endothelial nitric oxide synthase (eNOS in CACs was measured by real time RT-PCR. The percentage of CD34+ cells in PBMNCs from HHT patients was significantly higher than in PBMNCs of healthy controls. CACs derived from patients with HHT not only showed a significant reduction in EC-selective surface markers following 7-day culture, but also a significant increase in the rate of basal apoptosis and blunted migration in response to vascular endothelial growth factor and stromal cell-derived factor-1. CACs from HHT patients expressed significantly lower levels of ENG, ALK1 and eNOS mRNAs. In conclusion, CACs from patients with HHT exhibited various functional impairments, suggesting a reduced regenerative capacity of CACs to repair the vascular lesions seen in HHT patients.

  19. Hsp70 confines tumor progression of rat histiocytoma and impedes the cytotoxicity induced by natural killer cells and peritoneal macrophages

    Institute of Scientific and Technical Information of China (English)

    Amere Subbarao Sreedhar

    2010-01-01

    Objective:To study the role of inducible form of heat shock protein 70 (Hsp70) in the host tumor regression of rat tumor model.Methods: We examined the role of Hsp70 in host tumorigenicity andin vitro cellular cytotoxicity using a rat histocytoma. The differential tumor growth and regression kinetics were studied and correlated with the expression of Hsp70, activation of macrophages and natural killer (NK) cells, and circulating or tumor infiltrating immune molecules in the host system.Results: The sub cuteaneous (s.c.) tumor regression was correlated with increased serum cytokines such as IL-12, TNFα,IFNγ and Hsp70. Despite of similar increase of Hsp70 in intraperitoneal (i.p.) tumor implanted animals, animals succumb to tumor growth, further, evidently, no immune molecule activation was observed. The viral promoter driven Hsp70 over expression in these tumor cells restrained solid tumor growth, however, failed to inhibit ascites growth. The NK cells from s.c. immunized animals induces cytotoxicity in the presence of anti-tumor antibody, which necessitated CD40-L expression, conversely, NK cells from i.p. immunized animals failed to induce cytotoxicity. The NK cells from s.c. or i.p. implanted animals with Hsp70 positive tumor cells failed to induce such cytotoxicity. The peritoneal macrophages isolated from s.c. tumor implanted animals when co-cultured with parental BC-8 cells lyses tumor cells, nevertheless entail macrophage specific TNFα expression. On the contrary, Hsp70 expressing BC-8 tumor cells were resistant to peritoneal macrophage induced cytolysis.Conclusions:This study brings out that Hsp70 possibly involved in regulating the host tumor response and cellular cytotoxicity.

  20. Tetrathiomolybdate inhibits head and neck cancer metastasis by decreasing tumor cell motility, invasiveness and by promoting tumor cell anoikis

    Directory of Open Access Journals (Sweden)

    Merajver Sofia D

    2010-08-01

    Full Text Available Abstract Background The metastatic spread of solid tumors is directly or indirectly responsible for most cancer-related deaths. Tumor metastasis is very complex and this process requires a tumor cell to acquire enhanced motility, invasiveness and anoikis resistance to successfully establish a tumor at a distal site. Metastatic potential of tumor cells is directly correlated with the expression levels of several angiogenic cytokines. Copper is a mandatory cofactor for the function of many of these angiogenic mediators as well as other proteins that play an important role in tumor cell motility and invasiveness. We have previously shown that tetrathiomolybdate (TM is a potent chelator of copper and it mediates its anti-tumor effects by suppressing tumor angiogenesis. However, very little is known about the effect of TM on tumor cell function and tumor metastasis. In this study, we explored the mechanisms underlying TM-mediated inhibition of tumor metastasis. Results We used two in vivo models to examine the effects of TM on tumor metastasis. Animals treated with TM showed a significant decrease in lung metastasis in both in vivo models as compared to the control group. In addition, tumor cells from the lungs of TM treated animals developed significantly smaller colonies and these colonies had significantly fewer tumor cells. TM treatment significantly decreased tumor cell motility and invasiveness by inhibiting lysyl oxidase (LOX activity, FAK activation and MMP2 levels. Furthermore, TM treatment significantly enhanced tumor cell anoikis by activating p38 MAPK cell death pathway and by downregulating XIAP survival protein expression. Conclusions Taken together, these results suggest that TM is a potent suppressor of head and neck tumor metastasis by modulating key regulators of tumor cell motility, invasiveness and anoikis resistance.

  1. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor

  2. Standard-Dose Combination Chemotherapy or High-Dose Combination Chemotherapy and Stem Cell Transplant in Treating Patients With Relapsed or Refractory Germ Cell Tumors

    Science.gov (United States)

    2016-07-26

    Germ Cell Tumor; Teratoma; Choriocarcinoma; Germinoma; Mixed Germ Cell Tumor; Yolk Sac Tumor; Childhood Teratoma; Malignant Germ Cell Neoplasm; Extragonadal Seminoma; Non-seminomatous Germ Cell Tumor; Seminoma

  3. Radiation therapy for intracranial germ cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Shingo; Hayakawa, Kazushige; Tsuchiya, Miwako; Arai, Masahiko; Kazumoto, Tomoko; Niibe, Hideo; Tamura, Masaru

    1988-04-01

    The results of radiation therapy in 31 patients with intracranial germ cell tumors have been analyzed. The five-year survival rates were 70.1 % for germinomas and 38.1 % for teratomas. Three patients with germinoma have since died of spinal seeding. The prophylactic irradiation of the spinal canal has been found effective in protecting spinal seeding, since no relapse of germinoma has been observed in cases that received entire neuraxis iradiation, whereas teratomas and marker (AFP, HCG) positive tumors did not respond favorably to radiation therapy, and the cause of death in these patients has been local failure. Long-term survivors over 3 years after radiation therapy have been determined as having a good quality of life.

  4. In Vivo Monitoring of Multiple Circulating Cell Populations Using Two-photon Flow Cytometry.

    Science.gov (United States)

    Tkaczyk, Eric R; Zhong, Cheng Frank; Ye, Jing Yong; Myc, Andrzej; Thomas, Thommey; Cao, Zhengyi; Duran-Struuck, Raimon; Luker, Kathryn E; Luker, Gary D; Norris, Theodore B; Baker, James R

    2008-02-15

    To detect and quantify multiple distinct populations of cells circulating simultaneously in the blood of living animals, we developed a novel optical system for two-channel, two-photon flow cytometry in vivo. We used this system to investigate the circulation dynamics in live animals of breast cancer cells with low (MCF-7) and high (MDA-MB-435) metastatic potential, showing for the first time that two different populations of circulating cells can be quantified simultaneously in the vasculature of a single live mouse. We also non-invasively monitored a population of labeled, circulating red blood cells for more than two weeks, demonstrating that this technique can also quantify the dynamics of abundant cells in the vascular system for prolonged periods of time. These data are the first in vivo application of multichannel flow cytometry utilizing two-photon excitation, which will greatly enhance our capability to study circulating cells in cancer and other disease processes.

  5. Hypoxic cell turnover in different solid tumor lines.

    NARCIS (Netherlands)

    Ljungkvist, A.; Bussink, J.; Kaanders, J.H.A.M.; Rijken, P.F.J.W.; Begg, A.C.; Raleigh, J.A.; Kogel, A.J. van der

    2005-01-01

    PURPOSE: Most solid tumors contain hypoxic cells, and the amount of tumor hypoxia has been shown to have a negative impact on the outcome of radiotherapy. The efficacy of combined modality treatments depends both on the sequence and timing of the treatments. Hypoxic cell turnover in tumors may be im

  6. Methylation of cell-free circulating DNA in the diagnosis of cancer

    Directory of Open Access Journals (Sweden)

    Goli eSamimi

    2015-04-01

    Full Text Available A range of molecular alterations found in tumor cells, such as DNA mutations and methylation changes, is also reflected in cell-free circulating DNA (circDNA released from the tumor into the blood, thereby making circDNA an ideal candidate for the basis of a blood-based cancer diagnosis test. In many cancer types, mutations driving tumor development and progression are present in a wide range of oncogenes and tumor suppressor genes. However, even when a gene is consistently mutated in a particular cancer, the mutations can be spread over very large regions of its sequence, making evaluation difficult. This diversity of sequence changes in tumor DNA presents a challenge for the development of blood tests based on DNA mutations for cancer diagnosis. DNA methylation is a common molecular alteration found in many cancer types. Unlike DNA mutations, DNA methylation that can be consistently measured, as it tends to occur in specific regions of the DNA called CpG islands. DNA methylation is reflected within circDNA and therefore detection of tumor-specific DNA methylation in patient plasma is a feasible approach for the development of a blood-based test. Aberrant circDNA methylation has been described in most cancer types and is actively being investigated for clinical applications. A commercial blood test for colorectal cancer based on the methylation of the SEPT9 promoter region in circDNA is under review for approval by the Federal Drug Administration (FDA for clinical use. In this paper, we review the state of research in circDNA methylation as an application for blood-based diagnostic tests in colorectal, breast, lung, pancreatic and ovarian cancers, and we consider some of the future directions and challenges in this field. There are a number of potential circDNA biomarkers currently under investigation, and experience with SEPT9 shows that the time to clinical translation can be relatively rapid, supporting the promise of circDNA as a biomarker.

  7. Tumor-initiating cells are enriched in CD44(hi population in murine salivary gland tumor.

    Directory of Open Access Journals (Sweden)

    Shukun Shen

    Full Text Available Tumor-initiating cells (T-ICs discovered in various tumors have been widely reported. However, T-IC populations in salivary gland tumors have yet to be elucidated. Using the established Pleomorphic Adenoma Gene-1 (Plag1 transgenic mouse model of a salivary gland tumor, we identified CD44(high (CD44(hi tumor cells, characterized by high levels of CD44 cell surface expression, as the T-ICs for pleomorphic adenomas. These CD44(hi tumor cells incorporated 5-bromo-2-deoxyuridine (BrdU, at a lower rate than their CD44(negative (CD44(neg counterparts, and also retained BrdU for a long period of time. Cell surface maker analysis revealed that 25% of the CD44(hi tumor cells co-express other cancer stem cell markers such as CD133 and CD117. As few as 500 CD44(hi tumor cells were sufficient to initiate pleomorphic adenomas in one third of the wildtype mice, whereas more than 1×10(4 CD44(neg cells were needed for the same purpose. In NIH 3T3 cells, Plag1 was capable of activating the gene transcription of Egr1, a known upregulator for CD44. Furthermore, deletion of sequence 81-96 in the Egr1 promoter region abolished the effect of Plag1 on Egr1 upregulation. Our results establish the existence of T-ICs in murine salivary gland tumors, and suggest a potential molecular mechanism for CD44 upregulation.

  8. Appearance of Tumor Cells in Cyst Fluid of Malignant Ovarian Tumor

    OpenAIRE

    Numa, Fumitaka; Suminami, Yoshinori; Ogata, Hidenobu; Nawata, Shugo; Umayahara, Kenji; Nakamura, Yasuhiko; Sugino, Norihiro; Hiraoka, Fumiko; Ise, Etsuko; TAKAHASHI, MUTSUO; Hirabayashi, Kei; Hiratsuka, Keisuke; Kato, Hiroshi

    2000-01-01

    The significance of spillage of tumor cells into the abdominal cavity by fine needle aspiration or rupture of adnexel masses in case of malignancy is the focus. However, the appearance rate of malignant cells in cyst fluid by fine needle aspiration has been quite variable. We therefore evaluated t