WorldWideScience

Sample records for circulating n-terminal pro-brain

  1. High circulating N-terminal pro-brain natriuretic peptide and tumor necrosis factor-α in mixed cryoglobulinemia

    Institute of Scientific and Technical Information of China (English)

    Alessandro Antonelli; Clodoveo Ferri; Silvia Martina Ferrari; Fabio Galetta; Ferdinando Franzoni; Gino Santoro; Salvatore De Marco; Emiliano Ghiri; Poupak Fallahi

    2009-01-01

    AIM: To evaluate serum levels of N-terminal pro-brain natriuretic peptide (NTproBNP) and tumor necrosis factor α (TNF-α) in a large series of patients with hepatitis C associated with mixed cryoglobulinemia (MC+HCV).METHODS: Serum NTproBNP and TNF-α levels were assayed in 50 patients with MC+HCV, and in 50 sex-and age-matched controls.RESULTS: Cryoglobulinemic patients showed significantly higher mean NTproBNP and TNF-α levels than controls ( P < 0.001; Mann-Whitney U test). By defining high NTproBNP level as a value higher than 125 pg/mL (the single cut-off point for outpatients under 75 years of age), 30% of MC+HCV and 6% of controls had high NTproBNP (χ~2, P < 0.01). With a cut-off point of 300 pg/mL (used to rule out heart failure (HF) in patients under 75 years of age), 8% of MC+HCV and 0 controls had high NTproBNP (χ~2, P < 0.04). With a cut-off point of 900 pg/mL (used for ruling in HF in patients aged 50-75 years; such as the patients of our study), 6% of MC+HCV and 0 controls had high NTproBNP (χ~2, P = 0.08).CONCLUSION: The study demonstrates high levels of circulating NTproBNP and TNF-α in MC+HCV patients.The increase of NTproBNP may indicate the presence of a subclinical cardiac dysfunction.

  2. Prevalence and prognosis of heart failure with preserved ejection fraction and elevated N-terminal pro brain natriuretic peptide

    DEFF Research Database (Denmark)

    Carlsen, Christian Malchau; Bay, Morten; Kirk, Vibeke

    2012-01-01

    The aim of this study was to assess the epidemiological features and prognosis of heart failure with preserved ejection fraction (HFPEF) and to compare these findings with those from patients with reduced ejection fraction. Furthermore the effects of N-terminal pro brain natriuretic peptide (NT......-proBNP) requirement in the heart failure diagnosis were assessed by repeating the analyses in the subgroup of patients with elevated NT-proBNP....

  3. Kadar N-Terminal Pro-Brain Natriuretic Peptide sebagai Prediktor Luaran Klinis Sindrom Koroner Akut

    Directory of Open Access Journals (Sweden)

    Florencia Idajanti Tandhana

    2012-06-01

    Full Text Available Plasma levels of N-terminal pro-brain natriuretic peptide (NT-proBNP levels may reflect the severity of ischemia, although there is no necrosis. A transient ischemia which can increase the heart wall stretch would induces BNP synthesis and release. Synthesis and release of BNP are comparable with the severity of ischemia. The aim of this study was to analyze whether NT-proBNP levels in patients with acute coronary syndrome (ACS can be used as a predictor for clinical outcome. Studies was held since January to March 2010. Subject were patients with ACS who came to emergency room Dr. Hasan Sadikin Hospital Bandung and were clinically diagnosed according to World Health Organization criteria. Subjects which were suited with the inclusion criteria, stored until assayed. NT-pro BNP concentration was examined by electrochemiluminescence immunoassay method along with creatine kinase muscle brain (enzymatic method and cardiac troponin T (quantitative method. Statistical analysis was performed using the one-sample Kolmogorov-Smirnov test for verifying normality, normally distributed data were analyzed using parametric analysis and abnormal distributed data was assayed using multiple logistic regression analysis to determine the parameters which can be used as predictor for clinical outcome in patients with ACS. Multiple logistic regression analysis on 83 subjects showed predictive value of NT-proBNP levels with OR=1.00, which mean there was no different likelihood in patients with high and low concentration of NT-proBNP to have longer hospitality duration. NT-proBNP β coefficient of 0.001 states that every addition of 1,000 pg/mL of NT-proBNP concentration will increase the length of hospitality duration for one day. On convalesce subjects, the most significant predictive value for predicting clinical outcome cTnT was more better than NT-proBNP concentration in patients with ACS (OR=32.53, 95%CI; 0.58–1,819.26. In conclusions, NT-proBNP is not a major

  4. Heart murmur and N-terminal pro-brain natriuretic peptide as predictors of death in 2977 consecutive hospitalized patients

    DEFF Research Database (Denmark)

    Iversen, Kasper; Nielsen, O.W.; Kirk, V.

    2008-01-01

    Background: Little is known about the prognostic importance of murmur in unselected patients. It is difficult to distinguish between innocent and significant murmurs. N-terminal pro-brain natriuretic peptide (NT-pro-BNP) and BNP have recently been shown to be useful in small series of patients......-pro-BNP, discovery of valvular heart disease by echocardiography yielded no additional prognostic information. Conclusions: Detection of a cardiac murmur during routine medical examination of hospitalized patients is associated with increased risk of death within a year. A blood test for NT-pro-BNP gives significant...

  5. Detection of left ventricular enlargement and impaired systolic function with plasma N-terminal pro brain natriuretic peptide concentrations

    DEFF Research Database (Denmark)

    Grønning, Bjørn Aaris; Nilsson, Jens C.; Søndergaard, Lars

    2002-01-01

    BACKGROUND: Brain- and N-terminal pro brain natriuretic peptide (NT-proBNP) have been identified as promising markers for heart failure. However, previous studies have revealed that they may hold insufficient diagnostic power for implementation into clinical practice because of a significant...... to investigate the diagnostic potential of NT-proBNP with magnetic resonance imaging as the reference method for the cardiac measurements. METHODS: Forty-eight patients with stable symptomatic heart failure in New York Heart Association functional classifications II to IV were examined once with blood samples...

  6. Prognostic usefulness of anemia and N-terminal pro-brain natriuretic peptide in outpatients with systolic heart failure

    DEFF Research Database (Denmark)

    Schou, Morten; Gustafsson, Finn; Kistorp, Caroline N

    2007-01-01

    N-terminal pro-brain natriuretic peptide (NT-pro-BNP) and anemia are predictors of outcome in systolic heart failure. It is currently unclear how these 2 markers interact in particular with regard to the prognostic information carried by each risk marker. We therefore tested the hypothesis...... that anemia (World Health Organization criteria, hemoglobin levels ... prospectively at the baseline visit to our heart failure clinic (inclusion criterion left ventricular ejection fraction anemia was 27%. In a multivariate logistic regression model, anemia (p = 0...

  7. The influence of anaemia on stroke prognosis and its relation to N-terminal pro-brain natriuretic peptide

    DEFF Research Database (Denmark)

    Nybo, M; Kristensen, S R; Mickley, H;

    2007-01-01

    Anaemia is a negative prognostic factor for patients with heart failure and impaired renal function, but its role in stroke patients is unknown. Furthermore, anaemia has been shown to influence the level of N-terminal pro-brain natriuretic peptide (NT-proBNP), but this is only investigated...... in patients with heart failure, not in stroke patients. Two-hundred-and-fifty consecutive, well-defined ischemic stroke patients were investigated. Mortality was recorded at 6 months follow-up. Anaemia was diagnosed in 37 patients (15%) in whom stroke severity was worse than in the non-anaemic group, whilst...... the prevalence of renal affection, smoking and heart failure was lower. At 6 months follow-up, 23 patients were dead, and anaemia had an odds ratio of 4.7 when adjusted for age, Scandinavian Stroke Scale and a combined variable of heart and/or renal failure and/or elevation of troponin T using logistic...

  8. Clinical significance of N-terminal pro-brain natriuretic peptide

    Institute of Scientific and Technical Information of China (English)

    张向阳; 朱继红

    2004-01-01

    @@ Traditionally, it was believed that the natriuretic peptide family (NPs) was composed of four natural peptides, i.e., atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP) and urodilatin. All of them have the same 17-amino acid ring connected by bisulfate bond, which is essential for their biological activity.1 There are C-terminal and N-terminal tails on the ring. Each peptide encoded by an independent gene has its own tissue specificity and regulation mechanism. It is now suggested that beside the four traditional peptides, their precursors and the peptide fragments released by the activation or hydrolysis of the precursors, such as precursor of ANP and N-terminal proANP (NTANP), precursor of BNP and N-terminal proBNP (NTBNP) are also NPs. Furthermore, an artificially synthesized NP, vasonatrin peptide, is also a new member of NP family. In fish like eel, another peptide named ventricular natriuretic peptide was found. We now have a review on the clinical significance of NTBNP.

  9. Elevated N-terminal pro-brain natriuretic peptide is associated with mortality in tobacco smokers independent of airflow obstruction.

    Directory of Open Access Journals (Sweden)

    Jason A Stamm

    Full Text Available BACKGROUND: Tobacco use is associated with an increased prevalence of cardiovascular disease. N-terminal pro-brain natiuretic peptide (NT-proBNP, a widely available biomarker that is associated with cardiovascular outcomes in other conditions, has not been investigated as a predictor of mortality in tobacco smokers. We hypothesized that NT-proBNP would be an independent prognostic marker in a cohort of well-characterized tobacco smokers without known cardiovascular disease. METHODS: Clinical data from 796 subjects enrolled in two prospective tobacco exposed cohorts was assessed to determine factors associated with elevated NT-proBNP and the relationship of these factors and NT-proBNP with mortality. RESULTS: Subjects were followed for a median of 562 (IQR 252-826 days. Characteristics associated with a NT-proBNP above the median (≥49 pg/mL were increased age, female gender, and decreased body mass index. By time-to-event analysis, an NT-proBNP above the median (≥49 pg/mL was a significant predictor of mortality (log rank p = 0.02. By proportional hazard analysis controlling for age, gender, cohort, and severity of airflow obstruction, an elevated NT-proBNP level (≥49 pg/mL remained an independent predictor of mortality (HR = 2.19, 95% CI 1.07-4.46, p = 0.031. CONCLUSIONS: Elevated NT-proBNP is an independent predictor of mortality in tobacco smokers without known cardiovascular disease, conferring a 2.2 fold increased risk of death. Future studies should assess the ability of this biomarker to guide further diagnostic testing and to direct specific cardiovascular risk reduction inventions that may positively impact quality of life and survival.

  10. The relationship between N-terminal pro-brain natriuretic peptide and risk for hospitalization and mortality is curvilinear in patients with chronic heart failure

    DEFF Research Database (Denmark)

    Schou, Morten; Gustafsson, Finn; Corell, Pernille

    2007-01-01

    BACKGROUND: N-terminal pro-brain natriuretic peptide (NT-proBNP) carries prognostic information in patients with chronic heart failure and predicts risk for mortality and cardiovascular events. It is unknown whether NT-proBNP predicts risk for hospitalization for any cause. Furthermore, a clinica......BACKGROUND: N-terminal pro-brain natriuretic peptide (NT-proBNP) carries prognostic information in patients with chronic heart failure and predicts risk for mortality and cardiovascular events. It is unknown whether NT-proBNP predicts risk for hospitalization for any cause. Furthermore...... of doubling NT-proBNP on adjusted hazard ratios was 1.56 (95% CI 1.32-1.85) for mortality and 1.19 (95% CI 1.09-1.31) for hospitalization. We observed a curvilinear relationship between NT-proBNP and risk for mortality and hospitalization in the whole range of NT-proBNP. CONCLUSIONS: N-terminal pro-brain...... natriuretic peptide predicts risk for hospitalization and mortality. A simple algorithm indicates that every time NT-proBNP is doubled, estimated hazard ratio for death increases by a factor of 1.56 (56%) and by a factor of 1.19 (19%) for hospitalization. Finally, the relationship between NT-proBNP and risk...

  11. N-terminal pro-brain natriuretic peptide levels and short term prognosis in acute ischemic stroke

    Directory of Open Access Journals (Sweden)

    Vandanapu Naveen

    2015-01-01

    Full Text Available Background: Sparse published data are available regarding the prognostic importance of plasma N-terminal pro-brain natriuretic peptide (NT-proBNP in patients with acute ischemic stroke. Materials and Methods: We prospectively studied 74 consecutive patients presenting with acute ischemic stroke within 24 hours of onset. All of them underwent laboratory and imaging evaluation and were treated as per guidelines. In all subjects, plasma NT-proBNP levels were measured at initial admission and again on day 7. Results: Their mean age was 54 ± 13.5years; there were 49 males; 18 (24% patients died during the hospital stay. A statistically significant negative correlation between log NT-proBNP and Glasgow coma scale (GCS score (P < 0.001; and a significant positive correlation between log NT-proBNP and National Institutes of Health Stroke Scale (NIHSS score (P < 0.001 were observed. Baseline log NT-proBNP levels were higher among non-survivors compared with survivors (6.7 ± 0.47 vs. 5.37 ± 0.62; P = 0.06; day 7 log NT-proBNP levels were significantly higher in non-survivors compared with survivors (7.3 ± 0.26 vs. 4.5 ± 0.4; P = 0.000. In survivors, there was a statistically significant decline in log NT-proBNP levels from baseline to day 7 (5.3710 ± 0.620 vs. 4.5320 ± 0.451; P < 0.001. In contrast, among non-survivors, log NT-proBNP levels showed a statistically significant increase from baseline to day 7 (4.5322 ± 0.451 vs. 7.2992 ± 0.263; P < 0.001. On receiver operator characteristic curve (ROC analysis, at a cut-off value of ≥ 6.0661, log NT-proBNP had a sensitivity and specificity of 98.2 and 88.9, respectively, in predicting death. Conclusions: Plasma log NT-pro-BNP level appears to be a useful biological marker for predicting in-hospital mortality inpatients presenting with acute ischemic stroke.

  12. Cardiovascular risk prediction by N-terminal pro brain natriuretic peptide and high sensitivity C-reactive protein is affected by age and sex

    DEFF Research Database (Denmark)

    Olsen, M.H.; Hansen, T.W.; Christensen, M.K.

    2008-01-01

    BACKGROUND: Previous studies have shown that the urine albumin/creatinine ratio (UACR), high sensitivity C-reactive protein (hsCRP) and N-terminal pro brain natriuretic peptide (Nt-proBNP) predict cardiovascular events in a general population aged 41, 51, 61 or 71 years. This study investigated...... factors, UACR, hsCRP and Nt-proBNP. The composite cardiovascular endpoint (CEP) of cardiovascular death and non-fatal stroke or myocardial infarction was assessed after 9.5 years. RESULTS: In Cox regression analyses predicting CEP, the effects of log(hsCRP) and log(Nt-proBNP) were modulated by sex (P

  13. Relationship between N-terminal pro-brain natriuretic peptide, obesity and the risk of heart failure in middle-aged German adults.

    Directory of Open Access Journals (Sweden)

    Janine Wirth

    Full Text Available Both high concentrations of N-terminal pro-brain natriuretic peptide (NT-proBNP and obesity are related to higher heart failure risk. However, inverse relationships between NT-proBNP and obesity have been reported. Therefore, it was investigated whether the association between NT-proBNP and the risk of heart failure differed according to obesity status.A case-cohort study was conducted within the European Prospective Investigation into Cancer and Nutrition (EPIC-Potsdam, comprising a random sub-cohort (non-cases = 1,150, cases = 13, mean age: 50.5±9.0 years and heart failure cases outside the sub-cohort (n = 197. Weighted Cox proportional hazards regression was used to examine the association between NT-proBNP and heart failure risk during a mean follow-up time of 8 years. Stratified analyses were performed according to obesity status as defined by body mass index (<30 kg/m2 versus ≥30 kg/m2.Overall, NT-proBNP was associated with higher risk of heart failure after multivariable adjustment (hazard ratio (HR and 95% confidence interval (CI: 2.56 (1.49-4.41 for the top versus bottom tertile of NT-proBNP, ptrend:<0.01. In stratified analyses, the shape of association was linear in non-obese and U-shaped in obese participants: HRs (95%CI from the first to the third tertile of NT-proBNP for non-obese: reference, 1.72 (0.85-3.49, 2.72 (1.42-5.22, and for obese: 3.29 (1.04-10.40, reference, 3.74 (1.52-9.21.Although high circulating concentrations of NT-proBNP were positively associated with incident heart failure in the entire sample, the association differed according to obesity status. In obese, an increased risk of heart failure was also observed in those with low NT-proBNP concentrations. If confirmed, this observation warrants further investigation to understand underlying pathophysiological mechanisms.

  14. Effects of body mass index and age on N-terminal pro brain natriuretic peptide are associated with glomerular filtration rate in chronic heart failure patients

    DEFF Research Database (Denmark)

    Schou, Morten; Gustafsson, Finn; Kistorp, Caroline N

    2007-01-01

    BACKGROUND: Obesity is a state characterized by glomerular hyperfiltration and age-related decreases in glomerular filtration rate (GFR). Body mass index (BMI), age, and GFR are associated with plasma concentrations of N-terminal pro-brain natriuretic peptide (NT-proBNP) in chronic heart failure...... (CHF) patients. We hypothesized that the effects of BMI and age on plasma concentrations of NT-proBNP are associated with GFR. METHODS: We obtained clinical data and laboratory test results from 345 CHF patients at the baseline visit in our heart failure clinic and examined the hypothesis using...... multiple linear regression models. RESULTS: Age (P = 0.0184), BMI (P = 0.0098), hemoglobin (P = 0.0043), heart rhythm (P

  15. Association between plasma brain natriuretic peptide/N-terminal pro-brain natriuretic peptide levels and atrial fibrillation:evidence from a meta-analysis

    Institute of Scientific and Technical Information of China (English)

    Liu Yaowu; Xiao Yunyun; Chen Xinguang; Zhang Fengxiang

    2014-01-01

    Background Several small sample-size observational studies evaluated the association of plasma brain natriuretic peptide (BNP) or N-terminal pro-brain natriuretic peptide (NT-proBNP) with atrial fibrillation (AF),but the results were contradictory.We aimed to perform a meta-analysis of relevant studies to evaluate the availability of this association.Methods We performed an extensive literature search on PubMed,Web of Science (WOS) and the Cochrane Library databases.Pooled standardized mean difference (SMD) and 95% confidence interval (CI) were calculated to assess the strength of association using random effects models.We performed sensitivity and subgroup analyses to explore the potential sources of heterogeneity.We also estimated publication biases.Statistical analyses were performed using the STATA 12.0 software.Results A total of 11 studies including 777 cases and 870 controls were finally analyzed.Overall,the brain natriuretic peptide/N-terminal pro-brain natriuretic peptide levels were higher in atrial fibrillation patients than controls without atrial fibrillation.Results showed that the SMD in the natriuretic peptide levels between cases and controls was 2.68 units (95%CI 1.76 to 3.60); test for overall effect z-score=5.7 (P <0.001).There was significant heterogeneity between individual studies (I2=97.8%; P <0.001).Further analysis revealed that differences in the assay of natriuretic peptide possibly account for this heterogeneity.Conclusions Increased BNP/NT-proBNP levels were associated with the presence of atrial fibrillation.This finding indicates that BNP/NT-proBNP may prove to be a biomarker of an underlying predisposition to AF.

  16. Association between resting heart rate and N-terminal pro-brain natriuretic peptide in a community-based population study in Beijing

    Directory of Open Access Journals (Sweden)

    Cao R

    2014-12-01

    Full Text Available Ruihua Cao, Yongyi Bai, Ruyi Xu, Ping Ye Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, People’s Republic of China Background: N-terminal pro-brain natriuretic peptide (NT-proBNP is associated with an increased risk of cardiac insufficiency, which possibly leads to heart failure. However, the relationship between resting heart rate and NT-proBNP is unclear.Objective: This study focuses on this relativity between resting heart rate and plasma NT-proBNP levels in a surveyed community-based population.Methods: We evaluated the relativity between resting heart rate and plasma levels of NT-proBNP in 1,567 participants (mean age 61.0 years, range 21–96 years from a community-based population in Beijing, People’s Republic of China.Results: In patients with high resting heart rate (≥75 beats/min, NT-proBNP was higher than in those having low resting heart rate (<75 beats/min. In multiple linear stepwise regression analysis, plasma NT-proBNP was associated with resting heart rate (partial correlation coefficient, 0.82; 95% confidence interval, 0.18–1.51; P=0.011. A subsequent subgroup analysis revealed that the association between resting heart rate and plasma NT-proBNP was strengthened in subjects over 60 years old (partial correlation coefficient 1.28; 95% confidence interval, 0.49–2.36; P=0.031; while the relativity between resting heart rate and plasma NT-proBNP was not emerged in the younger subgroup (<60 years old.Conclusions: Resting heart rate was associated with plasma NT-proBNP in the elderly, which indicated a relationship between resting heart rate and cardiac function damage. Keywords: resting heart rate, N-terminal pro-brain natriuretic peptide, epidemiology, cardiac function, relationship

  17. NEW POSSIBILITIES FOR EVALUATION OF SEVERITY AND PROGNOSIS IN PATIENTS WITH CHRONIC HEART FAILURE BASED ON N-TERMINAL PRO-BRAIN NATRIURETIC PEPTIDE PLASMA LEVEL

    Directory of Open Access Journals (Sweden)

    A. S. Galjavich

    2016-01-01

    Full Text Available Aim. To study an importance of plasma N-terminal pro-brain natriuretic peptide (N-proBNP in evaluation of severity and prognosis in patients with chronic heart failure (CHF of ischemic genesis.Material and methods. 77 patients (60 men and 17 women; 59,4±10,7 y.o. with CHF of ischemic genesis were included in the study. All patients had sinus rhythm and history of Q wave myocardial infarction. Standard examination was performed to all patients. Besides N-proBNP plasma level and patients yearly survival were evaluated.Results. N-proBNP plasma level had direct correlation with clinical indices (exercise tolerance, blood pressure, heart rate and echocardiographic heart sizes. N-proBNP plasma level had relationship with prognosis of CHF patients. Baseline N-proBNP level was more than 2 times higher in died patients in comparison with survived patients. The yearly survival rate of CHF patients was 51,3% if N-proBNP level had been more than 400 fmol/ml (>15% of normal value. The clinico-laboratory index (based on N-proBNP plasma level of severity and prognosis in CHF patients was developed.Conclusion. The clinico-laboratory index based on N-proBNP plasma level is easy to use and can improve medical practice.

  18. NEW POSSIBILITIES FOR EVALUATION OF SEVERITY AND PROGNOSIS IN PATIENTS WITH CHRONIC HEART FAILURE BASED ON N-TERMINAL PRO-BRAIN NATRIURETIC PEPTIDE PLASMA LEVEL

    Directory of Open Access Journals (Sweden)

    A. S. Galjavich

    2009-01-01

    Full Text Available Aim. To study an importance of plasma N-terminal pro-brain natriuretic peptide (N-proBNP in evaluation of severity and prognosis in patients with chronic heart failure (CHF of ischemic genesis.Material and methods. 77 patients (60 men and 17 women; 59,4±10,7 y.o. with CHF of ischemic genesis were included in the study. All patients had sinus rhythm and history of Q wave myocardial infarction. Standard examination was performed to all patients. Besides N-proBNP plasma level and patients yearly survival were evaluated.Results. N-proBNP plasma level had direct correlation with clinical indices (exercise tolerance, blood pressure, heart rate and echocardiographic heart sizes. N-proBNP plasma level had relationship with prognosis of CHF patients. Baseline N-proBNP level was more than 2 times higher in died patients in comparison with survived patients. The yearly survival rate of CHF patients was 51,3% if N-proBNP level had been more than 400 fmol/ml (>15% of normal value. The clinico-laboratory index (based on N-proBNP plasma level of severity and prognosis in CHF patients was developed.Conclusion. The clinico-laboratory index based on N-proBNP plasma level is easy to use and can improve medical practice.

  19. N-terminal pro-brain natriuretic peptide can be an adjunctive diagnostic marker of hyper-acute phase of Kawasaki disease.

    Science.gov (United States)

    Kwon, Hyuksool; Lee, Jin Hee; Jung, Jae Yun; Kwak, Young Ho; Kim, Do Kyun; Jung, Jin Hee; Chang, Ikwan; Kim, Kyuseok

    2016-12-01

    The purpose of this study was to determine whether the serum N-terminal pro-brain natriuretic peptide (NT-proBNP) level could be a useful marker for Kawasaki disease in the pediatric emergency department (PED) and in the presence of fever duration of 4 days or less (hyper-acute phase of Kawasaki disease). Medical records of patients who were 1 month to 15 years old of age and presented at the PED with suspected Kawasaki disease from January 1, 2010, to December 31, 2014, were collected retrospectively. Two hundred thirty-nine patients with a history of fever for 4 days or less were diagnosed with Kawasaki disease, as well as 111 patients with other febrile diseases, and were enrolled. The NT-proBNP level was significantly higher in patients with Kawasaki disease (Kawasaki disease vs. other febrile disease group, 444.8 (189.7-951.5) vs. 153.4 (68.9-287.6) pg/mL; p Kawasaki disease was 0.763 (95 % CI 0.712-0.814).

  20. Urine albumin/creatinine ratio, high sensitivity C-reactive protein and N-terminal pro brain natriuretic peptide--three new cardiovascular risk markers--do they improve risk prediction and influence treatment?

    DEFF Research Database (Denmark)

    Olsen, Michael H; Sehestedt, Thomas; Lyngbaek, Stig

    2010-01-01

    In order to prioritize limited health resources in a time of increasing demands optimal cardiovascular risk stratification is essential. We tested the additive prognostic value of 3 relatively new, but established cardiovascular risk markers: N-terminal pro brain natriuretic peptide (Nt-proBNP), ......In order to prioritize limited health resources in a time of increasing demands optimal cardiovascular risk stratification is essential. We tested the additive prognostic value of 3 relatively new, but established cardiovascular risk markers: N-terminal pro brain natriuretic peptide (Nt...... death lower than 5% based on HeartScore and therefore not eligible for primary prevention, the actual 10-year risk of cardiovascular death exceeded 5% in a small subgroup of subjects with UACR higher than the 95-percentile of approximately 1.6 mg/mmol. Combined use of high UACR or high hsCRP identified...

  1. Predictive value of N-terminal pro-brain natriuretic peptide in combination with the sequential organ failure assessment score in sepsis

    Institute of Scientific and Technical Information of China (English)

    JU Min-jie; ZHU Du-ming; TU Guo-wei; HE Yi-zhou; XUE Zhang-gang; LUO Zhe; WU Zhao-guang

    2012-01-01

    Background The prognostic power of n-terminal pro-brain natriuretic peptide (NT-proBNP) in sepsis is disputable and unstable among different models.We attempt to evaluate the prognostic potential of NT-proBNP in combination with the sequential organ failure assessment (SOFA) score in sepsis.Methods In this retrospective study,100 consecutive sepsis patients were enrolled.Clinical data such as admission SOFA,the Acute Physiologic and Chronic Health Evaluation score,shock prevalence,use of lung protective ventilation,vasopressors,and glucocorticoids were recorded.Additionally,serum creatinine (Scr1 and Scr3) and NT-proBNP (NT-proBNP1 and NT-proBNP3) were assayed and evaluated at admission and on day 3 respectively.Results △NT-proBNP (NT-proBNP3 minus NT-proBNP1) (P <0.001,Hazard ratio (HR)=1.245,95% confidence interval (C/),1.137-1.362) and admission SOFA (P <0.001,HR=1.197,95% C/,1.106-1.295) were independently related to in-hospital mortality.Their combination was a more robust predictor for in-hospital mortality than either of them individually.Patients with high △NT-proBNP and SOFA had the poorest prognosis.Conclusions In our study,both △NT-proBNP and SOFA were independent predictors of septic patients' prognosis.Moreover,the combination of △NT-proBNP and admission SOFA provided a novel strategy that contained information regarding both the response to treatment and sepsis severity.

  2. Influence of preoperative serum N-terminal pro-brain type natriuretic peptide on the postoperative outcome and survival rates of coronary artery bypass patients

    Directory of Open Access Journals (Sweden)

    Thomas Schachner

    2010-01-01

    Full Text Available BACKGROUND: The N-terminal fragment of pro-brain type natriuretic peptide (NT-proBNP is an established biomarker for cardiac failure. OBJECTIVE: To determine the influence of preoperative serum NT-proBNP on postoperative outcome and mid-term survival in patients undergoing coronary artery bypass grafting (CABG. METHODS: In 819 patients undergoing isolated CABG surgery preoperative serum NT-proBNP levels were measured. NT-proBNP was correlated with various postoperative outcome parameters and survival rate after a median follow-up time of 18 (0.5-44 months. Risk factors of mortality were identified using χ2, Mann-Whitney test, and Cox regression. RESULTS: NT-proBNP levels >430 ng/ml and >502 ng/ml predicted hospital and overall mortality (p502 ng/ml (p=0.001. Age, preoperative serum creatinine, diabetes, chronic obstructive pulmonary disease, low left ventricular ejection fraction and BNP levels >502 ng/ml were isolated as risk factors for overall mortality. Multivariate Cox regression analysis, including the known factors influencing NT-proBNP levels, identified NT-proBNP as an independent risk factor for mortality (OR = 3.079 (CI = 1.149-8.247, p = 0.025. Preoperative NT-proBNP levels >502 ng/ml were associated with increased ventilation time (p=0.005, longer intensive care unit stay (p=0.001, higher incidence of postoperative hemofiltration (p=0.001, use of intra-aortic balloon pump (p502 ng/ml predict mid-term mortality after isolated CABG and are associated with significantly higher hospital mortality and perioperative complications.

  3. N-terminal pro-brain natriuretic peptide and cardiovascular or all-cause mortality in the general population: A meta-analysis

    Science.gov (United States)

    Geng, Zhaohua; Huang, Lan; Song, Mingbao; Song, Yaoming

    2017-01-01

    The prognostic role of N-terminal pro-brain natriuretic peptide (NT-proBNP) in the general population remains controversial. We conducted this meta-analysis to investigate the association between baseline NT-proBNP concentrations and cardiovascular or all-cause mortality in the general population. PubMed and Embase databases were systematically searched from their inception to August 2016. Prospective observational studies that investigated the association between baseline NT-proBNP concentrations and cardiovascular or all-cause mortality in the general population were eligible. A summary of the hazard ratio (HR) and 95% confidence interval (CI) of mortality were calculated by the highest versus the lowest category of NT-proBNP concentrations. Eleven studies with a total of 25,715 individuals were included. Compared individuals in the highest with those in the lowest category of NT-proBNP, the pooled HR was 2.44 (95% CI 2.11–2.83) for all-cause mortality, 3.77 (95% CI 2.85–5.00) for cardiovascular mortality, and 2.35 (95% CI 1.45–3.82) for coronary heart disease mortality, respectively. Subgroup analyses indicated that the effects of NT-proBNP on the risk of cardiovascular mortality (RR 2.27) and all-cause mortality (RR 3.00) appeared to be slightly lower among men. Elevated NT-proBNP concentrations appeared to be independently associated with increased risk of cardiovascular and all-cause mortality in the general population. PMID:28134294

  4. N-Terminal Pro-Brain Natriuretic Peptide Is Associated with a Future Diagnosis of Cancer in Patients with Coronary Artery Disease.

    Directory of Open Access Journals (Sweden)

    José Tuñón

    Full Text Available Several papers have reported elevated plasma levels of natriuretic peptides in patients with a previous diagnosis of cancer. We have explored whether N-terminal pro-brain natriuretic peptide (NT-proBNP plasma levels predict a future diagnosis of cancer in patients with coronary artery disease (CAD.We studied 699 patients with CAD free of cancer. At baseline, NT-proBNP, galectin-3, monocyte chemoattractant protein-1, soluble tumor necrosis factor-like weak inducer of apoptosis, high-sensitivity C-reactive protein, and high-sensitivity cardiac troponin I plasma levels were assessed. The primary outcome was new cancer diagnosis. The secondary outcome was cancer diagnosis, heart failure requiring hospitalization, or death.After 2.15±0.98 years of follow-up, 24 patients developed cancer. They were older (68.5 [61.5, 75.8] vs 60.0 [52.0, 72.0] years; p=0.011, had higher NT-proBNP (302.0 [134.8, 919.8] vs 165.5 [87.4, 407.5] pg/ml; p=0.040 and high-sensitivity C-reactive protein (3.27 [1.33, 5.94] vs 1.92 [0.83, 4.00] mg/L; p=0.030, and lower triglyceride (92.5 [70.5, 132.8] vs 112.0 [82.0, 157.0] mg/dl; p=0.044 plasma levels than those without cancer. NT-proBNP (Hazard Ratio [HR]=1.030; 95% Confidence Interval [CI]=1.008-1.053; p=0.007 and triglyceride levels (HR=0.987; 95%CI=0.975-0.998; p=0.024 were independent predictors of a new cancer diagnosis (multivariate Cox regression analysis. When patients in whom the suspicion of cancer appeared in the first one-hundred days after blood extraction were excluded, NT-proBNP was the only predictor of cancer (HR=1.061; 95%CI=1.034-1.088; p<0.001. NT-proBNP was an independent predictor of cancer, heart failure, or death (HR=1.038; 95%CI=1.023-1.052; p<0.001 along with age, and use of insulin and acenocumarol.NT-proBNP is an independent predictor of malignancies in patients with CAD. New studies in large populations are needed to confirm these findings.

  5. Does Serum N-Terminal pro-Brain Natriuretic Peptide Level Predict the Severity of Angiographic Lesions in Patients with Acute Coronary Syndrome?

    Directory of Open Access Journals (Sweden)

    Afsaneh Rajabiani

    2015-10-01

    Full Text Available Background: Serum N-terminal pro-brain natriuretic peptide (NT-proBNP, a polypeptide secreted by ventricular myocytes in response to stretch, was suggested as a predictor of adverse prognosis of the acute coronary syndrome (ACS. We examined the association between NT-proBNP level and angiographic findings in ACS patients to determine whether it could be used as a predictor of the severity of angiographic lesions.Methods: This cross-sectional study was performed on 126 patients with chest pain or other ischemic heart symptoms suggestive  of ACS.  Venous  blood  samples  were  drawn  to  measure  serum  levels  of  NT-proBNP. Afterward,  coronary angiography was performed and the patients were categorized into four groups according to the number of coronary vessels with significant stenosis. The severity of angiographic lesions was assessed with the Gensini scoring system.Results: According to angiographic diagnosis, 11 (8.7% patients had normal coronary arteries (no coronary artery disease [CAD] and 115 (91.3% had CAD, of whom 108 (85.7% had obstructive CAD and 7 (5.6% had minimal CAD. The serum NT-proBNP concentration was higher in the CAD group than in the non-CAD group (p value <0.01. A progressive significant increase in the NT-proBNP concentration according to the Gensini score and the number of involved vessels was reported after adjustment for sex and age. Furthermore, the Receiver Operating Characteristic Curve (ROC analysis indicated that an NT-proBNP cut-point of 400 pg/ml could predict obstructive CAD with a sensitivity of 65% and a specificity of 78%.Conclusion: Higher levels of NT-proBNP among our ACS patients were associated with the severity of angiographic lesions in terms of both the Gensini score and the number of involved vessels. This finding underscores the potential role of NT-proBNP in predicting the severity of CAD before performing angiography.

  6. Incremental value of a combination of cardiac troponin T, N-terminal pro-brain natriuretic peptide and C-reactive protein for prediction of mortality in end-stage renal disease

    DEFF Research Database (Denmark)

    Hallén, Jonas; Madsen, Lene Helleskov; Ladefoged, Søren

    2011-01-01

    Abstract Objective. To determine the relative prognostic merits of C-reactive protein (CRP), cardiac troponin T (cTnT) and N-terminal pro-brain natriuretic peptide (NT-pro-BNP) for prediction of all-cause death in patients with end-stage renal disease (ESRD) receiving haemodialysis. Material...... were predictive of death in univariate analysis. In multivariable analysis, elevated cTnT (> 0.01 µg/l) and CRP (> 1.0 mg/dl) remained significantly associated with mortality [hazard ratio (95% confidence interval), 3.2 (1.2-8.5), p = 0.017 for cTnT; 2.0 (1.0-3.8), p = 0.032 for CRP], while NT...

  7. Elevated plasma levels of N-terminal pro-brain natriuretic peptide in patients with chronic hepatitis C during interferon-based antiviral therapy

    Institute of Scientific and Technical Information of China (English)

    J(o)rg Bojunga; Christoph Sarrazin; Georg Hess; Stefan Zeuzem

    2006-01-01

    AIM: To investigate plasma levels of N-terminal probrain natriuretic peptide (NT-proBNP), an established marker of cardiac function, in patients with chronic hepatitis C during interferon-based antiviral therapy.METHODS: Using a sandwich immunoassay, plasma levels of NT-proBNP were determined in 48 patients with chronic hepatitis C at baseline, wk 24 and 48 during antiviral therapy and at wk 72 during follow-up.RESULTS: Plasma NT-proBNP concentrations were significantly increased (P < 0.05) at wk 24, 48 and 72 compared to the baseline values. NT-proBNP concentrations at baseline and wk 24 were closely correlated (r = 0.8; P < 0.001). At wk 24, 7 (14.6%)patients had NT-proBNP concentrations above 200 ng/L compared to 1 (2%) patient at baseline (P = 0.059).Six of these 7 patients had been treated with high-dose IFN-α induction therapy. In multiple regression analysis,NT-proBNP was not related to other clinical parameters,biochemical parameters of liver disease or virus load and response to therapy.CONCLUSION: Elevated levels of NT-proBNP during and after interferon-based antiviral therapy of chronic hepatitis C may indicate the presence of cardiac dysfunction, which may contribute to the clinical symptoms observed in patients during therapy. Plasma levels of NT-proBNP may be used as a diagnostic tool and for guiding therapy in patients during interferonbased antiviral therapy.

  8. Association between high-sensitivity cardiac troponin T and N-terminal pro-brain natriuretic peptide in a community based population

    Institute of Scientific and Technical Information of China (English)

    Xu Ruyi; Ye Ping; Luo Leiming; Sheng Li; Wu Hongmei; Xiao Wenkai; Zheng Jin

    2014-01-01

    Background N-terminal pro-B-type natriuretic peptide (NT-proBNP) and high-sensitivity cardiac troponin T (hs-cTnT) are excellent biomarkers for detecting heart failure and subclinical myocardial injury.However,it remains unclear whether subclinical myocardial injury is associated with NT-proBNP elevation in a community based population.Methods In a community based study,levels of hs-cTnT and of NT-proBNP were determined in 1 497 participants older than 45 years.The lower detection limit of the hs-cTnT assay used in the present study was 0.003 ng/ml.The association of hs-cTnT levels and NT-proBNP levels was analyzed.Results When the subjects with undetectable (<0.003 ng/ml),intermediate (0.003-0.014 ng/ml),and elevated (≥0.014 ng/ml) levels of hs-cTnT were compared (r=0.175,P <0.001),a strong association between the hs-cTnT levels and NT-proBNP levels was observed (β=-0.206,P <0.001; β=-0.118,P <0.001,respectively).In multivariable analyses,older age and hs-cTnT were positively and independently associated with NT-proBNP levels (β=0.341,P <0.001; β=0.143,P <0.001,respectively),and male gender and the levels of eGFR were inversely and independently associated with NT-proBNP levels.When the subjects with normal or elevated NT-proBNP were analyzed separately,the hs-cTnT level was not an independent predictor for the NT-proBNP level in the normal NT-proBNP group,whereas the hs-cTnT level was the only independent predictor for NT-proBNP level in the elevated NT-proBNP group (β=0.399,P <0.01).Conclusions In this community based population,NT-proBNP elevation was common.In addition to female gender and older age,subclinical myocardial injury indicated by the hs-cTnT level was another important factor in NT-proBNP elevation.

  9. Increased circulating pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP) in patients with cirrhosis: relation to cardiovascular dysfunction and severity of disease

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik; Gøtze, J P; Fuglsang, Stefan;

    2003-01-01

    subjects (1.8 v 2.3; NS). Circulating proBNP and BNP were related to severity of liver disease (Child score, serum albumin, coagulation factors 2, 7, and 10, and hepatic venous pressure gradient) and to markers of cardiac dysfunction (QT interval, heart rate, plasma volume) but not to indicators......BACKGROUND AND AIMS: Cardiac dysfunction may be present in patients with cirrhosis. This study was undertaken to relate plasma concentrations of cardiac peptides reflecting early ventricular dysfunction (pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP)) to markers...... of severity of liver disease, cardiac dysfunction, and hyperdynamic circulation in patients with cirrhosis. PATIENTS AND METHODS: Circulating levels of proBNP and BNP were determined in 51 cirrhotic patients during a haemodynamic investigation. RESULTS: Plasma proBNP and BNP were significantly increased...

  10. Increased N-terminal CgA in circulation associated with cardiac reperfusin in pigs

    DEFF Research Database (Denmark)

    Frydland, Martin; Kousholt, Birgitte S.; Larsen, Jens Rolighed;

    2013-01-01

    Aim: Acute myocardial infarction causes neurohumoral activation characterized by increased sympathetic activity. CgA is a protein released during sympathoadrenal stress from neuroendocrine tissue. Recently, increased CgA concentrations in circulation have been reported and suggested...... to be an independent predictor of mortality after acute myocardial infarction. Materials & methods: Eighteen pigs underwent 1 h of regional myocardial ischemia followed by 3 h of reperfusion. Blood samples were collected every hour and plasma CgA was measured with two radioimmunoassays. Results: We found a 30......% increase in plasma N-terminal CgA 1 h after re-establishment of coronary blood supply. On the other hand, plasma pancreastatin did not change in response to ischemia or reperfusion but decreased during the entire experiment. Conclusion: Our results suggest a differentiated CgA response in myocardial...

  11. Reference range of plasma N-terminal pro-brain natriuretic peptide levels in early preterm infants%早期早产儿血浆N末端脑钠肽参考值范围

    Institute of Scientific and Technical Information of China (English)

    张茜; 罗成汉; 时赞扬; 卢洁; 程欣茹; 徐千雅; 郭宏湘; 王丽; 程秀永

    2013-01-01

    .358,t1d与7 d=14.743,t3d与7d =11.105,P均=0.000).出生后1d、3d、7d早产儿血浆NT-proBNP水平分别为(1875 ±686) ng/L、(1615±574) ng/L、(1118 ±380) ng/L;均数95%置信区间分别为530~3220 ng/L、490~2740 ng/L、373~ 1863 ng/L.结论 早产儿血浆NT-proBNP水平出生第1天达高峰,之后随日龄增加而下降,二者呈负相关;血浆NT-proBNP水平不受胎龄、性别、出生体质量、分娩方式及营养方式的影响.%Objective To establish the reference range of plasma N-terminal pro-brain natriuretic peptide (NT-proBNP) levels in early preterm infants.Methods 1.Inclusion criteria of the subjects:(1) preterm infants admitted to Neonatal Ward of First Affiliated Hospital of Zhengzhou University between Oct.2009 and Aug.2012 within 24 hours after birth;(2) maternal health during pregnancy; (3) written informed consent obtained from parents;(4) normal laboratory examination results such as blood gas analysis,electrolyte,hepatorenal function,myocardial enzyme,routine blood count and infectious disease screening (hepatitis B,hepatitis C,syphilis and acquired immune deficiency syndrome) within 24 hours after birth.Plasma NT-proBNP levels were measured on day 1,day 3 and day 7 of life.Variable data was analyzed using the Shapiro-Wilk test for normality test.Difference in plasma NT-proBNP levels on different days of life was analyzed using repeated measure analysis of variance.A multiple regression analysis was performed to determine the influencing factors for plasma NT-proBNP level,reference value interval:reference range containing 95 % of the reference population,namely(x-1.96 s)-(x-+ 1.96 s),with inspection level α =0.05.Results 1.A total of 204 preterm infants (104 cases were male and 100 cases were female) were included in the present study,with gestational age ranging from 27 + 1 to 36 +6 weeks(median 33 weeks) and birth weight ranging from 700 to 3050 g (median 1590 g).Of these preterm infants,vaginal delivery were 78

  12. 脓毒症休克与血清氨基末端B型利钠肽前体研究进展%Research Progress on N-terminal Pro-brain Natriuretic Peptide in Septic Shock

    Institute of Scientific and Technical Information of China (English)

    商娜; 张源波; 周荣斌; 杨萌

    2013-01-01

    脓毒症休克是极为常见的危重病,病情凶险,病死率高达30%~70%.近年来,随着早期目标指导性治疗(EGDT)在重症领域的应用,其病死率有了很大改善.目前,临床医师多数根据血流动力学指标的异常指导治疗和判断预后,但血流动力学指标的获得操作复杂、技术要求高,且具有一定的滞后性.国内外学者一直致力于探索敏感性和特异性较高的生物标记物--血清氨基末端B型利钠肽前体(NT-proBNP),希望为脓毒症休克的早期积极干预提供参考依据.研究发现,脓毒症休克时NT-proBNP升高有多种机制参与,NT-proBNP水平的变化可指导脓毒症休克患者的治疗和判断预后.NT-proBNP检测简便迅速,具有广阔的临床应用前景.本文主要结合国内外文献探讨脓毒症休克时NT-proBNP变化机制及其临床应用.%Septic shock is a very common disease and its mortality rate is as high as 30% to 70% . In recent years, with the widely application of early goal - directed therapy ( EGDT ) in intensive illnesses, the mortality rate was greatly reduced. Currently, hemodynamic parameters are used to guide treatment and predict prognosis, but these parameters can only be obtained by skilled operators and are time - consuming. Domestic and foreign scholars have been dedicated to exploring a biological marker with high sensitivity and specificity, that is, serum amino - terminal pro - brain natriuretic peptide ( NT - proBNP ), which can provide reference for the early intervention and prediction of patients with septic shock. Studies have found that multiple mechanisms can cause the changes of NT - proBNP level in septic shock, and these changes can guide treatment and prognosis of patients with septic shock. Besides, the detection of NT - proBNP is simple and fast, so its clinical application is promising. This paper is aimed to introduce mechanisms of NT - proBNP change in septic shock and its clinical application.

  13. Increased circulating pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP) in patients with cirrhosis: relation to cardiovascular dysfunction and severity of disease

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Gøtze, J P; Fuglsang, S;

    2003-01-01

    BACKGROUND AND AIMS: Cardiac dysfunction may be present in patients with cirrhosis. This study was undertaken to relate plasma concentrations of cardiac peptides reflecting early ventricular dysfunction (pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP)) to markers...

  14. Assessment of blood N-terminal pro-brain natriuretic peptide levels in patients with heart failure with preserved ejection fraction%射血分数正常的心力衰竭患者全血N-末端脑钠肽前体浓度变化

    Institute of Scientific and Technical Information of China (English)

    陈广胜; 徐崇利; 张郁青; 林涛

    2012-01-01

    Objectives To assess ihe changes of blood N-terminal pro-brain natriuretic peptide (NT-pro-BNP) levels in patients with heart failure with preserved ejection fraction (HFPEF). Methods Totally 78 patients with cardiovascular diseases were classified into three groups: 22 cases with normal heart function, 33 cases with HFPEF and 23 cases with heart failure with reduced ejection fraction (HFREF). Blood NT-pro-BNP levels were measured and echoeardiograms were performed in all patients. Results Blood NT-pro-BNP levels in patients with HFPEF were significantly higher than those in patients with normal heart function [(1 424+996 )pg/mL vs. (167+ 117 )pg/mL,P<0.01 ] and significantly lower than those in patients with HFREF [(1 424±996)mg/L vs. (5 910±2828)mg/L,P<0.01 ]. For heart failure patients, blood NT-pro-BNP levels were negatively correlated with ejection fraction (r=—0.72,P<0.01 ), positively correlated with left atrial diameter (r=0.34,-P<0.05), left end-diastolic ventricular diameter (r=0.61 ,P<0.05) , left end-systolic ventricular diameter (r=0.62,P<0.05) and E/A ratio (r=0.40, P<0.05). Conclusions Compared with that of HFREF, HFPEF is associated with a less elevated level of NT-pro-BNP.%目的 评估射血分数正常的心力衰竭(心衰)患者全血N-末端脑钠肽前休(N-terminal pro-brain natriureticpeptide,NT-pro-BNP)浓度的变化.方法 入选78例心脏病患者分为3组:心功能正常组22例,射血分数正常心衰(heart failure with preserved ejection fretion,HFPEF)组33例,射血分数减低心衰(heart failure with reduced ejection fraction,HFREF)组23例.测定患者的全血NT-pro-BNP浓度并进行超声心动图检查.结果 HFPEF组患者全血NT-proBNP浓度高于心功能正常组[(1 424±996)pg/mL vs.(167±117) pg/mL,P<0.01],低于HFREF组[(1 424±996)mg/L vs.(5 910±2 828)mg/L,P<0.01],差异有统计学意义.心衰患者全血NT-proBNP浓度与射血分数呈负相关(r=-0.72,P<0.01),与左心房内径(r=0.34,P<0.05)

  15. Heritability assessment of cartilage metabolism. A twin study on circulating procollagen IIA N-terminal propeptide (PIIANP)

    DEFF Research Database (Denmark)

    Munk, H L; Svendsen, A J; Hjelmborg, J V B;

    2014-01-01

    OBJECTIVE: The aim of this investigation was to estimate the heritability of circulating collagen IIA N-terminal propeptide (PIIANP) by studying mono- and dizygotic healthy twin pairs at different age and both genders. DESIGN: 598 monozygotic (MZ) and dizygotic (DZ) twin individuals aged 18......-59 years were recruited from the Danish Twin Registry. PIIANP was measured by competitive ELISA. The similarity of circulating PIIANP among MZ and DZ twins was assessed by intraclass correlations according to traits. The heritability was estimated by variance component analysis accounting for additive...... and dominant genetic factors as well as shared and non-shared environment but ignoring epistasis (genetic inter-locus interaction) and gene-environment interaction. RESULTS: The intraclass correlation of PIIANP in MZ and DZ twins was 0.69 (0.60-0.76) and 0.46 (0.34-0.58) respectively indicating a significant...

  16. Relationship of plasma N-terminal pro-brain natriuretic peptide and cardiac function in patients with chronic kidney disease%慢性肾脏病患者血浆氨基末端前体脑钠肽与心功能的关系

    Institute of Scientific and Technical Information of China (English)

    向莉; 杨敏; 潘家荣

    2011-01-01

    Objective To study the relationship of plasma N-terminal pro-brain natriuretic peptide(NT-proBNP) and cardiac function in patients with chronic kidney disease(CKD). Methods Plasma NT-proBNP was examined in 152 CKD patients and 20 healthy subjects. The relationship of plasma NT-proBNP and echocardiographic and biochemistry parameter was analyzed. Results Plasma NT-proBNP level of CKD patients with heart failure was much higher than that of CKD cases in same stage but without heart failure. Plasma NT-proBNP level of CKD patients without heart failure increased with the decrease of the level of estimated glomerular filtration rate( eGFR),which was not in CKD patients with heart failure. NT-proBNP level was positively correlated with left atrial diameter (LAD), left ventricular end-diastolic diameter(LVEDD) and left ventricular end-systolic diameter (LVESD),but negatively correlated with left ventricular ejection frection(LVEF). Conclusion Plasma NT-proBNP is a sensitive marker for diagnosing early symptomless heart failure in CKD patients.%目的 研究血浆氨基末端前体脑钠肽(NT-proBNP)与心功能的关系.方法 采用固相免疫层析法检测152例不同分期慢性肾脏病(CKD)组患者与20例对照组血浆NT-proBNP水平,分析其与心脏彩超各指标、生化指标的关系.结果 伴有心衰的各期CKD患者NT-proBNP水平远高于同一分期无心衰患者;非心衰组CKD患者的NT-proBNP水平随着肾小球滤过率的下降逐渐升高;NT-proBNP水平与左房内径以及左室舒张末内径、左室收缩末内径均呈正相关,与心脏射血分数呈负相关.结论 NT-proBNP是早期诊断CKD患者无症状性心功能不全的敏感指标.

  17. Clinical value of N-terminal pro-brain natriuretic peptide for evaluating acute heart failure in patients undergoing hemodialysis%前体脑钠肽对血液透析患者发生急性心功能不全的临床诊断价值

    Institute of Scientific and Technical Information of China (English)

    刘国望; 晏德华; 叶燕丽

    2012-01-01

    目的 在维持性血液透析患者中,研究前体脑钠肽(NT-proBNP)对评价急性心功能不全的临床价值.方法 检测113人次以呼吸困难就诊,临床上怀疑存在急性心功能不全的血液透析患者的NT-proBNP水平.根据定义的临床指标判断急性左心力衰竭.结果 急性心力衰竭组NT-proBNP水平高于非急性心力衰竭组.NT-proBNP和年龄、透析时间以及左心室厚度无关,和右心房大小正相关.对于急性心力衰竭的患者,NT-proBNP水平和心力衰竭临床分级呈正相关性(rs=0.526,P=0.012).多变量分析显示,NT-proBNP水平每升高100 pg/ml,急性心力衰竭的危险性增加2.01倍(OR 3.01,95% CI 2.11~3.85).经ROC曲线分析,NT-proBNP诊断急性心力衰竭的曲线下面积为0.819(95% CI 0.728~0.842).结论 对于血液透析患者,NT-proBNP能作为诊断急性心力衰竭的生物学标志物.%Objective To investigate the clinical value of N-terminal pro-brain natriuretic peptide( NT-proBNP )for evaluating acute heart failure in patients undergoing hemodialysis. Methods NT-proBNP levels of 113 hemodialysis cases were measured,who were hospitalized with tachypnea and were suspected to be with acute heart failure. The diagnosis of acute heart failure was made by the definition of the guideline for diagnosis and therapy of acute left heart failure. Results The level of NT-proBNP was higher in the patients with acute heart failure than those without. The level of NT-proBNP was not associated with age, dialysis time and thickness of left ventricle, whereas correlated with right atrium. The level of NT-proBNP in those with acute left heart failure was also related to class of clinical heart failure( rs = 0. 526, P =0.012 ). The level of NT-proBNP increased 100 pg/ml,the risk for acute heart failure increased 2 fold( odds ratio 3. 01,95% confidence interval 1. 11-3. 85 ). The area under ROC curve of the NT-proBNP for diagnosis of acute heart failure was 0.819(95% confidence

  18. 肌钙蛋白I与N端脑钠肽原在慢性心衰危险预测中的应用价值分析%Value of troponin I and N-terminal pro-brain natriuretic peptide in predicting the risk of chronic heart failure

    Institute of Scientific and Technical Information of China (English)

    朱湘慧; 钱银芬

    2016-01-01

    Objective To investigate the va1ue of troponin I and N- termina1 pro-brain natriuretic peptide in predicting the risk of chronic heart fai1ure. Methods A tota1 of 37 patients with chronic heart fai1ure who were treated in our hospita1 from September 2013 to September 2105 were enro11ed as observation group. Another 37 patients with norma1 cardiac function who were admitted to our hospita1 were enro11ed as contro1 group. Troponin I and N- termina1 pro-brain natriuretic peptide 1eve1s were determined for both groups after admission and compared between the two groups. Results Compared with the contro1 group, the observation group had significant1y higher mean 1eve1s of troponin I (4.5±3.0ng/m1) and N- termina1 pro-brain natriuretic peptide (769.5±322.5pg/m1) (P<0.05). The patients with cardiac function c1ass II had the 1owest 1eve1s of troponin I and N-termina1 pro- brain natriuretic peptide, and those with cardiac function c1ass IV had the highest 1eve1s of troponin I and N-termina1 pro- brain natriuretic peptide. The 1eve1s of troponin I and N-termina1 pro-brain natriuretic peptide showed significant differences across the three groups (P<0.05). Conclusion Troponin I and N- termina1 pro- brain natriuretic peptide can be measured to predict the condition of patients with chronic heart fai1ure and suggest the severity of their condition.%目的:对肌钙蛋白I与N端脑钠肽原在慢性心衰患者危险预测中的应用价值进行分析讨论。方法选择我院2013年9月-2015年9月间37例慢性心衰患者,将其作为观察组,同时随机选取心功能正常入院患者37例,将其作为对照组,所有患者入院后都进行肌钙蛋白I与N端脑钠肽原检测,比较两组患者肌钙蛋白I与N端脑钠肽原水平。结果观察组患者肌钙蛋白I水平平均为(4.5±3.0)ng/m1,明显高于对照组,患者N端脑钠肽原水平平均为(769.5±322.5)pg/m1,同样高于对照组,两组比较存在明显差异,P<0.05

  19. N末端B型利钠肽原与慢性心力衰竭患者心功能相关性的临床研究%Clinical research of the correlation between N-terminal pro-brain natriuretic peptide and cardiac function of the patients with chronic heart failure

    Institute of Scientific and Technical Information of China (English)

    范倩; 李秀珍; 邱明峰; 刘暐; 娄序笙; 李冬梅; 张秀静; 鲁卫星

    2012-01-01

    Objective To observe the correlation between N-terminal pro-brain natriuretic peptide (NT-proBNP)and cardiac function of chronic heart failure(CHF).Methods Eighty patients of CHF were chosen as the observation group,and were classified according to the NYHA classification standard.Twenty healthy people were chosen as control group.The results of NT-proBNP and echocardiography indexes,such as left ventricular enddiastolic dimension(LVEDD),left ventricular end systolic diameter (LVESD),left ventricular ejection fraction (LVEF)were compared.Results ①In the same grade of NYHA,compared with the baseline of the observation group,the results of NT-proBNP after treatment were much lower [ grade Ⅱ (1913±707 )ng/L vs (2657±368)ng/L,grade Ⅲ (3403±1003 )ng/L vs (6037±1742)ng/L,grade Ⅳ (6429±1348 )ng/L vs (8324±679)ng/L,all P<0.01 ];②Compared with the baseline of the observation group,the results of indexes of echocardiography including LVEDD,LVESD and LVEF improved after treatment [ LVEDD (49±9 )mm vs (53±8)mm,LVESD(33±9)mm vs(39±10)mm,LVEF(58±9)% vs(53±10)%,P <0.01 ];③NT-proBNP and LVEDD/LVESD were positively correlated (r =0.640,r =0.694,P <0.01 ),while NT-proBNP and LVEF had negative correlation (r=-0.652,P< 0.01 ).Conclusions NT-proBNP can be used in clinical diagnosis of CHF.NT-proBNP shows a good correlation to NYHA and echocardiography indexes.%目的 观察慢性心力衰竭(CHF)患者N末端B型利钠肽原(NT-proBNP)与心功能的相关性.方法 选择80例CHF患者为观察组,另选20例健康人为对照组.观察组采用β受体阻滞剂、血管紧张素转换酶抑制剂小血管紧张素受体拮抗剂等规范治疗,共28 d.比较治疗前后NT-proBNP浓度、左心室舒张末期内径(LVEDD)、左心室收缩末期内径(LVESD)、左心室射血分数(LVEF)各指标的变化.结果 ①对照组NT-proBNP为(87±23)ng/L,观察组NYHAⅡ、Ⅲ、Ⅳ级患者(分别为27、40、13例)治疗后NT-proBNP浓度均明显低

  20. 脑钠肽前体及肌钙蛋白I在老年急性有机磷中毒心肌损伤中的价值%Clinical significance of N-terminal pro-brain natriuretic peptide and cardiac troponin I in myocardium damage of elderly acute organophosphate poisoning patients

    Institute of Scientific and Technical Information of China (English)

    胡鹏; 朱庆祝; 林涛; 程庆荣

    2014-01-01

    目的:探讨脑钠肽前体(NT-proBNP)及肌钙蛋白I(cTnI)在老年急性有机磷农药中毒(AOPP)心肌损伤中的变化及病情判断、评估中的临床价值。方法102例老年患者按入院时中毒的程度分为轻度中毒24例(轻度组),中度中毒38例(中度组),重度中毒40例(重度组)。于患者入院后4 h、3 d、7 d抽取静脉血4 ml,同步测定NT-proBNP、cTnI、肌酸激酶(CK)、肌酸激酶同工酶(CK-MB)值,与同期40例健康查体者(对照组)比较;合并发生中间型综合征(IMS)33例(IMS组),未发生IMS 69例(非IMS组),比较对照组、IMS组和非IMS组血清各项指标水平及心电监护情况。结果中、重度组老年AOPP患者的血清NT-proBNP、cTnI、CK、CK-MB较对照组显著升高(P<0.05),且随中毒程度和病情加重而升高,各组间两两比较差异均有统计学意义(P<0.05),血清NT-proBNP的敏感性和特异性均高于cTnI、心肌酶谱。IMS组入院后4 h内检测值显著高于非IMS组,差异均有统计学意义(P<0.05);IMS组较非IMS组出现心电图异常的比例更高。结论老年 AOPP 患者中毒越重,血清 cTnI、NT-proBNP 升高越显著,血清 NT-proBNP检测可以更详细地反映心肌的损害程度,早期联合检测可以更好地协助老年AOPP临床分级、病情判断、指导救治和预后评估。%Objective To investigate the changes significance of N-terminal pro-brain natriuretic peptide and cardiac troponin I simultaneously in the myocardium damage of elderly acute organophosphate poisoning patients and the clinical value in disease condition judgment.Methods 102 older acute organophosphate poisoning patients were divided into three groups according to the degree of poisoning on admission: mild poisoning 24 cases (mild), moderate poisoning 38 cases (moderate) and severe poisoning 40 cases(severe). All patients were extracted 4 ml of venous

  1. N末端脑钠肽和大内皮素-1对心衰的预后价值%Prognostic Value of N-Terminal Pro-Brain Natriuretic Peptide and Big Endothelin-1 in Patients with Chronic Heart Failure

    Institute of Scientific and Technical Information of China (English)

    汪隆海; 陈启松; 夏芳; 张平; 何海军

    2011-01-01

    Objective This study was prospectively desigued to investigate the prognostic factors for chronic heart failure and the prognostic ability of N-terminal pro-brain natriuretic peptide (NT-proBNP) and big endothelin-l (Big ET-1) in patients with chronic heart failure. Methods To study 143 consecutive patients hospitalized for chronic heart failure. Serum concentration of NT-proBNP,cTnI,CKMB and plasma Big ET-1 as well as left ventricular ejection fraction (LVEF) and NYHA class I to IV on admission were measured. Cardiac events were found by patients to discharge after 360~480 days, prospectively. Results During a median follow-up period of 380 days,the endpoint of recurrence for cardiac events was reached in 57 patients with 143 heart failure. Patients with endpoint events were older (82 vs 52,P = 0. 000),in a higher functional class (3 vs l,P=0. 000),had higher levels of NT-proBNP (3 802 pmol/L vs 891 pmol/L,P=0. 000) and Big ET-1 (5.13 pmol/L vs 3. 53 pmol/L,P = 0. 000) compared with those without endpoint events. On a Cox proportional hazards regression models analyses, age NT-proBNP and Big ET-1 were found to be the independent predictors of cardiac events. Risk ratio (RR) were 1.175,3. 987 and 2. 691,respectively. Logistic regression models analyses,NT-proBNP and Big ET-1 were found independent predictors of death. Odd ratio (OR) were 2.515 and 1. 978,respectively. Conclusion Measurement of NT-proBNP and Big ET-1 in patients with chronic heart failure could help to identify patients at higher risk for cardiac events and patients for prognosis.%目的 通过对心衰患者的随访研究,探讨N末端脑钠肽(NT-proBNP)和大内皮素-1(Big ET-1)对心衰患者的预后价值.方法 研究143例心衰住院患者,检测入院时NT-proBNP,Big ET-1,肌钙蛋白I,CK-MB和左室射血分数以及NYHA分级.并随访观察患者出院后360~480 d的心血管事件再发生情况.结果 143例心衰患者的中位随访380 d,发生心脏事件57例.发生与未发生

  2. 心脏移植术前血N端B型利钠肽原水平与术后早期受者存活率的关系%Relationship between preoperative N-terminal-pro-brain natriuretic levels and early survival of HT recipients

    Institute of Scientific and Technical Information of China (English)

    黄燕; 黄洁; 胡盛寿; 宋云虎; 王巍; 廖中凯; 朱俊

    2013-01-01

    目的 探讨心脏移植术前血N端B型利尿钠肽原(NT-proBNP)水平与术后早期受者存活率的关系.方法 采用免疫法测定284例拟接受心脏移植的心力衰竭患者移植前血NT-proBNP水平,按NT-proBNP水平将284例患者分为≤5000 nmol/L组(≤5000组,237例)和>5000 nmol/L组(>5000组,47例),比较两组受者的术前一般情况、不同原发病者的NT-proBNP水平、两组围手术期体外膜肺氧合(ECMO)技术应用率及死亡率.采用Kaplan-Meier法计算两组受者1年存活率.结果 >5000组术前肺毛细血管楔压为(25.1±7.4)mm Hg(1 mm Hg=0.133 kPa),明显高于≤5000组的(21.4±9.2)mm Hg(P<0.05);心脏指数为(1.8±0.5)L·min-1·m-2,明显低于≤5000组的(2.1±0.6)L·min-1·m-2 (P<0.05).>5000组围手术期需用ECMO支持者占14.9%(7/47),ECMO相关死亡率为71.4%(5/7),1年存活率为91.3%;≤5000组围手术期需用ECMO支持者占6.8%(16/237),ECMO相关死亡率为12.5%(2/16),1年存活率为96.9%,2个组ECMO应用率、ECMO相关死亡率以及受者1年存活率的差异均有统计学意义(P<0.05).结论 术前血NT-proBNP水平较高(>5000 nmol/L)者围手术期ECMO应用率和1年死亡率均较高;术前测定血NT-proBNP水平有助于心脏移植时机的把握.%Objective To assess the correlation between pre-operative N-terminal-pro-brain natriuretic levels and early survival rate among heart transplantion (HT) recipients in a single Chinese center.Methods According to the pre-operative NT-proBNP level of 284 HT recipients,the recipients were divided into two distinctive groups,≤5000 nmol/L group (237 cases) and >5000 nmol/L group (47 cases).The baseline characteristics and mortality for recipients with different primary cardiac diseases and on extracorporeal membrane oxygenation (ECMO) support were compared.Kaplan Meier method was used to calculate the 1-year survival rate of the two groups.Results The pre-operative NT-proBNP >5000 nmol/L group

  3. Relationship between N-terminal pro brain natriuretic peptide and insulin sensitivity index in pa-tients with unstable angina pectoris%血浆NT-proBNP水平及胰岛素敏感性指标与不稳定型心绞痛危险分层相关研究

    Institute of Scientific and Technical Information of China (English)

    王培; 郑晓晖; 胡丰朝; 杨睿

    2014-01-01

    Objective To study the correlation of N-terminal pro brain natriuretic peptide( NT-proBNP)with insulin sensitivity index( FBG,FINS,FINS/FBG,ISI)in UAP patients,and its clinical significance. Methods One hundred patients with UAP were enrolled as the observation group,30 pa-tients with stable angina pectoris( SAP)as SAP group,and 30 healthy people as the normal control (COM)group. According to the Braunwald UAP,patients in UAP group were graded into 3 sup-groups( grade 1 ,grade 2 and grade 3 ). The plasma NT-proBNP and insulin sensitivity indexes were detected in each group,and then the results were analyzed and the linear correlation analysis was made. Results The concentration of plasma NT-proBNP,FINS,FINS/FBG in patients with UAP and SAP group were significantly higher than those in COM group( P﹤0. 05 ),but ISI was lower than that in COM group( P ﹤0. 05 ). The concentration of plasma NT-proBNP,FINS,FINS/FBG in patients with UAP were significantly higher than those in patients with SAP( P﹤0. 05 ),but ISI was lower than that in patients with SAP(P﹤0. 05),and there was no significant difference in FBG between the two groups. The concentration of plasma NT-proBNP,FINS,FINS/FBG in patients with grade 2 and grade 3 were significantly higher than those in patients with grade 1( P﹤0. 05 ),but ISI was lower in the grade 2( P﹤0. 05). No significant diference was found between grade 2 and grade 3. In UAP patients,the plasma NT-proBNP concentration was positively correlated with FINS,FINS/FBG( r =0. 38,P =0. 046,r =0. 56 ,P=0. 039 ),and negative correlated with ISI( r = -0. 62 ,P =0. 028 ),and with no correlation with FBG. Conclusions The concentration of plasma NT-proBNP was elevated and insulin sensitivity decreased in UAP, especially in Braunwald UAP grade 2 and grade 3( rest angina ),the concentration of NT-proBNP was negatively cor-related with insulin sensitivity. The combined determination is significant in risk grading reference of UAP.%目的:

  4. Circulating N-terminal brain natriuretic peptide and cardiac function in response to acute systemic hypoxia in healthy humans

    NARCIS (Netherlands)

    I. Heinonen (Ilkka); M. Luotolahti (Matti); O. Vuolteenaho (Olli); M. Nikinmaa (Mikko); A. Saraste (Antti); J. Hartiala (Jaakko); J. Koskenvuo (Juha); J. Knuuti (Juhani); O. Arjamaa (Olli)

    2014-01-01

    textabstractBackground: As it remains unclear whether hypoxia of cardiomyocytes could trigger the release of brain natriuretic peptide (BNP) in humans, we investigated whether breathing normobaric hypoxic gas mixture increases the circulating NT-proBNP in healthy male subjects.Methods: Ten healthy y

  5. Serial measurements of N-terminal pro-brain natriuretic peptide after acute ischemic stroke

    DEFF Research Database (Denmark)

    Jensen, J K; Mickley, H; Bak, S;

    2006-01-01

    consecutive patients with acute ischemic stroke. RESULTS: NT-proBNP peaked the day after onset of symptoms (p = 0.007) followed by a decrease until day 5 (p = 0.001, ANOVA). At 6-month follow-up the difference in the level of NT-proBNP was unchanged compared to day 5 (p = 0.42). NT-proBNP levels > or =615 pg...

  6. 血浆N末端脑钠肽前体联合全球急性冠状动脉事件注册评分建立非ST段抬高型急性冠状动脉综合征临床风险预测模型的研究%Addition of N-terminal pro-brain natriuretic peptide to the Global Registry of Acute Coronary Events risk stratification to predict outcome in non-ST-segment elevation acute coronary syndrome

    Institute of Scientific and Technical Information of China (English)

    张宁; 刘文娴

    2014-01-01

    Objective To build a composite score based on the Global Registry of Acute Coronary Events (GRACE) score and N-terminal pro-brain natriuretic peptide (NT-proBNP) concentrations to predict outcome in patients with non-ST-segment elevation acute coronary syndrome (NSTE-ACS). Methods Patients with NSTE-ACS in Beijing Anzhen Hospital affiliated to capital medical university, a composite score including the GRACE score and NT-proBNP concentrations was first randomly developed in a retrospective cohort of 409 patients with NSTE-ACS and then validated in a prediction model of other 231 patients. The mean follow- up time in a retrospective cohort were (774±217) days, and in a prediction model were (706±231)days. The primary end point was the composite of MACE, defined as cardiogenic deaths, myocardial infarction, readmission for heart failure. Results The patients were reclassified by the composite score, 105 patients were in low risk group, 209 patients were in medium risk group, and 95 patients were in high risk group. End points were reached in 26 patients (6.6%). The lgNT-proBNP in patients with NSTE-ACS had positive correlation with their GRACE risk score (r=0.507, P170 was high risk group. 10 patients would be reclassified at high risk using the composite score despite being classified at low risk using the GRACE score alone. Alternatively, 7 patients would be reclassified at medium risk, while being classified high risk with the GRACE score alone. 8 patients would be reclassified at low risk using the composite score despite being classified at high risk using the GRACE score alone. Finally, 2 patients while being classified medium risk of reached the end points, that was would be reclassified at high risk. 6.5% of the population in prediction model reached the end points. The use of the composite score increased the accuracy of the GRACE score, with an increase in the under-ROC curve area from 0.748 to 0.762. Conclusion Both NT-proBNP concentration and GRACE

  7. Adding serial N-terminal pro brain natriuretic peptide measurements to optimal clinical management in outpatients with systolic heart failure

    DEFF Research Database (Denmark)

    Schou, Morten; Gustafsson, Finn; Videbaek, Lars

    2013-01-01

    was 30%, and NT-proBNP 1955 pg/mL. NT-proBNP monitoring did not improve outcome, the hazard ratio for the primary composite endpoint (death or a cardiovascular admission) being 0.96 [95% confidence interval (CI) 0.71-1.29, P = 0.766]. NT-proBNP monitoring did not induce a significant change...

  8. N-terminal pro-B-type natriuretic peptide and long-term mortality in stable coronary heart disease

    DEFF Research Database (Denmark)

    Kragelund, Charlotte; Grønning, Bjørn; Køber, Lars;

    2005-01-01

    BACKGROUND: The level of the inactive N-terminal fragment of pro-brain (B-type) natriuretic peptide (BNP) is a strong predictor of mortality among patients with acute coronary syndromes and may be a strong prognostic marker in patients with chronic coronary heart disease as well. We assessed...... the relationship between N-terminal pro-BNP (NT-pro-BNP) levels and long-term mortality from all causes in a large cohort of patients with stable coronary heart disease. METHODS: NT-pro-BNP was measured in baseline serum samples from 1034 patients referred for angiography because of symptoms or signs of coronary...... of myocardial infarction, angina, hypertension, diabetes, or chronic heart failure; creatinine clearance rate; body-mass index; smoking status; plasma lipid levels; LVEF; and the presence or absence of clinically significant coronary artery disease on angiography. CONCLUSIONS: NT-pro-BNP is a marker of long...

  9. N-terminal pro-brain natriuretic peptide, C-reactive protein, and urinary albumin levels as predictors of mortality and cardiovascular events in older adults

    DEFF Research Database (Denmark)

    Kistorp, Caroline; Raymond, Ilan; Pedersen, Frants;

    2005-01-01

    B-type natriuretic peptides have been shown to predict cardiovascular disease in apparently healthy individuals but their predictive ability for mortality and future cardiovascular events compared with C-reactive protein (CRP) and urinary albumin/creatinine ratio is unknown.......B-type natriuretic peptides have been shown to predict cardiovascular disease in apparently healthy individuals but their predictive ability for mortality and future cardiovascular events compared with C-reactive protein (CRP) and urinary albumin/creatinine ratio is unknown....

  10. N-terminal-pro-brain natriuretic peptide elevations in the course of septic and non-septic shock reflect systolic left ventricular dysfunction assessed by transpulmonary thermodilution

    Directory of Open Access Journals (Sweden)

    A.B. Johan Groeneveld

    2016-03-01

    Conclusions: In septic and non-septic shock, NT-proBNP elevations reflect systolic left ventricular dysfunction and are associated with a poor outcome. They may help recognition of cardiac dysfunction in shock and its management when invasive hemodynamic monitoring is not yet instituted.

  11. Clinical value of N-terminal pro-brain natriuretic peptide and troponin I plasma levels in elderly patients with sepsis

    Institute of Scientific and Technical Information of China (English)

    苏琴

    2014-01-01

    Objective To evaluate the clinical significance for assessment and prognosis of elder patients with sepsis by way of detecting plasma NT-proBNP and cTnI levels.Methods It was a prospective trial conducted.A total of145 elderly patients with sepsis were admitted to the emergency observation center and the emergency ward from January 2011 through January 2013.Of them,there were 84 patients with mild sepsis,45 patients with severe sepsis,and 16 patients with septic shock.Plasma levels

  12. Left ventricular remodeling in the first year after acute myocardial infarction and the predictive value of N-terminal pro brain natriuretic peptide

    DEFF Research Database (Denmark)

    Nilsson, Jens C; Groenning, Bjoern A; Nielsen, Gitte;

    2002-01-01

    BACKGROUND: Left ventricular (LV) remodeling after myocardial infarction (MI) has received much attention because of its severe impact on morbidity and mortality rates. However, the incidence and extent of LV remodeling in a modern infarct population who were offered antiremodeling treatment in c......, approximately 30% had significant increments develop in LVEDVI and LVESVI, and LV ejection fraction remained unchanged. Patients in whom LV dilatation developed could be identified early after the MI with elevated plasma levels of NT-proBNP...

  13. Towards the N-terminal acetylome

    DEFF Research Database (Denmark)

    Zhang, Xumin; Højrup, Peter

    2013-01-01

    Protein N-terminal acetylation (N(α)-acetylation) is observed widely from prokaryotes to eukaryotes. It gains increased importance in biological field, due to its multiple roles in many aspects of the protein life, such as assembly, stability, activity, and location. Today, mass spectrometry (MS)...

  14. Protease Substrate Profiling by N-Terminal COFRADIC.

    Science.gov (United States)

    Staes, An; Van Damme, Petra; Timmerman, Evy; Ruttens, Bart; Stes, Elisabeth; Gevaert, Kris; Impens, Francis

    2017-01-01

    Detection of (neo-)N-terminal peptides is essential for identifying protease cleavage sites . We here present an update of a well-established and efficient selection method for enriching N-terminal peptides out of peptide mixtures: N-terminal COFRADIC (COmbined FRActional DIagonal Chromatography). This method is based on the old concept of diagonal chromatography, which involves a peptide modification step in between otherwise identical chromatographic separations, with this modification step finally allowing for the isolation of N-terminal peptides by longer retention of non-N-terminal peptides on the resin. N-terminal COFRADIC has been successfully applied in many protease-centric studies, as well as for studies on protein alpha-N-acetylation and on characterizing alternative translation initiation events.

  15. Acute effects of N-terminal progastrin fragments on gastric acid secretion in man.

    Science.gov (United States)

    Goetze, Jens P; Hansen, Carsten P; Rehfeld, Jens F

    2017-03-01

    We previously identified an N-terminal fragment of progastrin in human antrum and plasma, where it circulates in high concentrations. In this study, we examined the effects of N-terminal progastrin fragments on gastric acid secretion by infusion in healthy individuals. Increasing doses of progastrin fragment 1-35 were infused intravenously during constant gastric acid stimulation by gastrin-17. In addition, the effects of progastrin fragment 1-35, fragment 6-35, and fragment 1-19 on gastrin-17 stimulated acid secretion were tested. The gastrin-17 stimulated acid secretion decreased 30% after administration of a high dose of progastrin fragment 1-35 (P < 0.05). In extension, a 1-h infusion of fragment 1-35 also decreased gastric acid output. In contrast, fragment 6-35 did not affect acid secretion, and a single infusion of gastrin-17 alone did not reveal fading of gastric acid output during the time course of the experiments. The results show that N-terminal fragments of progastrin may acutely affect gastrin-stimulated gastric acid secretion in vivo. Structure-function analysis suggests that the N-terminal pentapeptide of progastrin is required for the effect.

  16. Towards a functional understanding of protein N-terminal acetylation.

    Directory of Open Access Journals (Sweden)

    Thomas Arnesen

    2011-05-01

    Full Text Available Protein N-terminal acetylation is a major modification of eukaryotic proteins. Its functional implications include regulation of protein-protein interactions and targeting to membranes, as demonstrated by studies of a handful of proteins. Fifty years after its discovery, a potential general function of the N-terminal acetyl group carried by thousands of unique proteins remains enigmatic. However, recent functional data suggest roles for N-terminal acetylation as a degradation signal and as a determining factor for preventing protein targeting to the secretory pathway, thus highlighting N-terminal acetylation as a major determinant for the life and death of proteins. These contributions represent new and intriguing hypotheses that will guide the research in the years to come.

  17. N-terminal Protein Processing: A Comparative Proteogenomic Analysis*

    OpenAIRE

    Bonissone, Stefano; Gupta, Nitin; Romine, Margaret; Bradshaw, Ralph A.; Pavel A Pevzner

    2013-01-01

    N-terminal methionine excision (NME) and N-terminal acetylation (NTA) are two of the most common protein post-translational modifications. NME is a universally conserved activity and a highly specific mechanism across all life forms. NTA is very common in eukaryotes but occurs rarely in prokaryotes. By analyzing data sets from yeast, mammals and bacteria (including 112 million spectra from 57 bacterial species), the largest comparative proteogenomics study to date, it is shown that previous a...

  18. Genetic Variation in the Natriuretic Peptide System, Circulating Natriuretic Peptide Levels, and Blood Pressure

    DEFF Research Database (Denmark)

    Jeppesen, Jørgen L; Nielsen, Søren J; Torp-Pedersen, Christian;

    2012-01-01

    BackgroundIn a large collaborative study (n > 50,000), common variants in the natriuretic peptide (NP) genes were found to be associated with circulating NP levels and also with blood pressure (BP) levels based on office BP measurements (OBPMs). It is unknown if determining an individual's BP by ...... evidence that the NP system plays an important role in BP regulation.American Journal of Hypertension 2012; doi:10.1038/ajh.2012.96.......-h ambulatory BP measurements (ABPMs) will influence the effect of NP gene variations on BP levels.MethodsWe used rs632793 at the NPPB (NP precursor B) locus to investigate the relationship between genetically determined serum N-terminal pro-brain NP (NT-proBNP) concentrations and BP levels......). Office BP decreased across the genotypes from A:A to G:G, but the differences did not reach statistical significance (P = 0.12).ConclusionsThis study suggests that 24-h ABPMs is a better method than OBPMs to detect significant differences in BP levels related to genetic variance and provides further...

  19. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Pozo-Yauner, Luis del, E-mail: ldelpozo@inmegen.gob.mx [Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan, México, D.F. C.P. 14610 (Mexico); Wall, Jonathan S. [Departments of Radiology and Medicine, The University of Tennessee Medical Center, 1924 Alcoa Highway, Knoxville, TN (United States); González Andrade, Martín [Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan, México, D.F. C.P. 14610 (Mexico); Sánchez-López, Rosana [Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa Cuernavaca, Morelos C.P. 62210 (Mexico); Rodríguez-Ambriz, Sandra L. [Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Calle CEPROBI No. 8, Col. San Isidro, Yautepec, Morelos C.P. 62731 (Mexico); Pérez Carreón, Julio I. [Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan, México, D.F. C.P. 14610 (Mexico); and others

    2014-01-10

    Highlights: •We evaluated the impact of mutations in the N-terminal strand of 6aJL2 protein. •Mutations destabilized the protein in a position-dependent manner. •Destabilizing mutations accelerated the fibrillogenesis by shortening the lag time. •The effect on the kinetic of fibril elongation by seeding was of different nature. •The N-terminal strand is buried in the fibrillar state of 6aJL2 protein. -- Abstract: It has been suggested that the N-terminal strand of the light chain variable domain (V{sub L}) protects the molecule from aggregation by hindering spurious intermolecular contacts. We evaluated the impact of mutations in the N-terminal strand on the thermodynamic stability and kinetic of fibrillogenesis of the V{sub L} protein 6aJL2. Mutations in this strand destabilized the protein in a position-dependent manner, accelerating the fibrillogenesis by shortening the lag time; an effect that correlated with the extent of destabilization. In contrast, the effect on the kinetics of fibril elongation, as assessed in seeding experiments was of different nature, as it was not directly dependant on the degree of destabilization. This finding suggests different factors drive the nucleation-dependent and elongation phases of light chain fibrillogenesis. Finally, taking advantage of the dependence of the Trp fluorescence upon environment, four single Trp substitutions were made in the N-terminal strand, and changes in solvent exposure during aggregation were evaluated by acrylamide-quenching. The results suggest that the N-terminal strand is buried in the fibrillar state of 6aJL2 protein. This finding suggest a possible explanation for the modulating effect exerted by the mutations in this strand on the aggregation behavior of 6aJL2 protein.

  20. Plasma pro-brain natriuretic peptide and electrocardiographic changes in combination improve risk prediction in persons without known heart disease

    DEFF Research Database (Denmark)

    Jørgensen, Peter G; Jensen, Jan S; Appleyard, Merete

    2015-01-01

    BACKGROUND: Though the electrocardiogram(ECG) and plasma pro-brain-natriuretic-peptide (pro-BNP) are widely used markers of subclinical cardiac injury and can be used to predict future cardiovascular disease(CVD), they could merely be markers of the same underlying pathology. We aimed to determine...... cohort study. Median follow-up was 10.4 years. High pro-BNP was defined as above 90th percentile of age and sex adjusted levels. The end-points were all-cause mortality and the combination of admission with ischemic heart disease, heart failure or CVD death. RESULTS: ECG changes were present in 907...

  1. Predicting N-terminal myristoylation sites in plant proteins

    Directory of Open Access Journals (Sweden)

    Podell Sheila

    2004-06-01

    Full Text Available Abstract Background N-terminal myristoylation plays a vital role in membrane targeting and signal transduction in plant responses to environmental stress. Although N-myristoyltransferase enzymatic function is conserved across plant, animal, and fungal kingdoms, exact substrate specificities vary, making it difficult to predict protein myristoylation accurately within specific taxonomic groups. Results A new method for predicting N-terminal myristoylation sites specifically in plants has been developed and statistically tested for sensitivity, specificity, and robustness. Compared to previously available methods, the new model is both more sensitive in detecting known positives, and more selective in avoiding false positives. Scores of myristoylated and non-myristoylated proteins are more widely separated than with other methods, greatly reducing ambiguity and the number of sequences giving intermediate, uninformative results. The prediction model is available at http://plantsp.sdsc.edu/myrist.html. Conclusion Superior performance of the new model is due to the selection of a plant-specific training set, covering 266 unique sequence examples from 40 different species, the use of a probability-based hidden Markov model to obtain predictive scores, and a threshold cutoff value chosen to provide maximum positive-negative discrimination. The new model has been used to predict 589 plant proteins likely to contain N-terminal myristoylation signals, and to analyze the functional families in which these proteins occur.

  2. Elevated N-terminal pro-brain natriuretic peptide levels predict an enhanced anti-hypertensive and anti-proteinuric benefit of dietary sodium restriction and diuretics, but not angiotensin receptor blockade, in proteinuric renal patients

    NARCIS (Netherlands)

    Slagman, Maartje C. J.; Waanders, Femke; Vogt, Liffert; Damman, Kevin; Hemmelder, Marc; Navis, Gerjan; Laverman, Gozewijn D.

    2012-01-01

    Background. Renin angiotensin aldosterone system (RAAS) blockade only partly reduces blood pressure, proteinuria and renal and cardiovascular risk in chronic kidney disease (CKD) but often requires sodium targeting [i.e. low sodium diet (LS) and/or diuretics] for optimal efficacy. However, both unde

  3. Urine albumin/creatinine ratio, high sensitivity C-reactive protein and N-terminal pro brain natriuretic peptide--three new cardiovascular risk markers--do they improve risk prediction and influence treatment?

    DEFF Research Database (Denmark)

    Olsen, Michael H; Sehestedt, Thomas; Lyngbaek, Stig;

    2010-01-01

    -proBNP), related to hemodynamic cardiovascular risk factors, high sensitivity C-reactive protein (hsCRP), related to metabolic cardiovascular risk factors and urine albumin/creatinine ratio (UACR), related to hemodynamic as well as metabolic risk factors. In healthy subjects with a 10-year risk of cardiovascular...

  4. Additive prognostic value of plasma N-terminal pro-brain natriuretic peptide and coronary artery calcification for cardiovascular events and mortality in asymptomatic patients with type 2 diabetes

    DEFF Research Database (Denmark)

    von Scholten, Bernt Johan; Reinhard, Henrik; Hansen, Tine Willum;

    2015-01-01

    BACKGROUND: In patients with type 2 diabetes, cardiovascular disease (CVD) is the major cause of morbidity and mortality. We evaluated the combination of NT-proBNP and coronary artery calcium score (CAC) for prediction of combined fatal and non-fatal CVD and mortality in patients with type 2...... treatment. Patients with baseline NT-proBNP > 45.2 ng/L and/or CAC ≥ 400 were stratified as high-risk patients (n = 133). Occurrence of fatal- and nonfatal CVD (n = 40) and mortality (n = 26), was traced after 6.1 years (median). RESULTS: High-risk patients had a higher risk of the composite CVD endpoint...... (adjusted hazard ratio [HR] 10.6 (95 % confidence interval [CI] 2.4-46.3); p = 0.002) and mortality (adjusted HR 5.3 (95 % CI 1.2-24.0); p = 0.032) compared to low-risk patients. In adjusted continuous analysis, both higher NT-proBNP and CAC were strong predictors of the composite CVD endpoint and mortality...

  5. Reference Intervals for N-Terminal Pro-B-Type Natriuretic Peptide in Amniotic Fluid between 10 and 34 Weeks of Gestation

    OpenAIRE

    Merz, Waltraut M.; Christina Leufgen; Rolf Fimmers; Birgit Stoffel-Wagner; Ulrich Gembruch

    2014-01-01

    BACKGROUND: In adult and pediatric cardiology, n-terminal pro-B-type natriuretic peptide (nt-proBNP) serves as biomarker in the diagnosis and management of cardiovascular dysfunction. Elevated levels of circulating nt-proBNP are present in fetal conditions associated with myocardial pressure or volume load. Compared to fetal blood sampling, amniocentesis is technically easier and can be performed from early pregnancy onwards. We aimed to investigate amniotic fluid (AF) nt-proBNP concentration...

  6. Increased ventricular ectopic activity in relation to C-reactive protein, and NT-pro-brain natriuretic peptide in subjects with no apparent heart disease

    DEFF Research Database (Denmark)

    Sajadieh, A; Nielsen, OW; Rasmussen, Verner

    2006-01-01

    BACKGROUND: Subjects with frequent ventricular premature complexes (VPC) and no apparent heart disease make a heterogenic group with regard to prognosis. Some biomarkers have recently proved useful in risk stratification in different heart diseases. We examined prognostic impact of NT-Pro-brain...... with a significantly higher risk of death and acute myocardial infarction. These subjects deserve primary prevention measures and further work up for structural heart disease....

  7. BNP and N-terminal proBNP are both extracted in the normal kidney

    DEFF Research Database (Denmark)

    Gøtze, Jens Peter; Jensen, Gorm Boje; Møller, Søren;

    2006-01-01

    with catheterization of the femoral artery and femoral and renal veins. Blood sampling from the catheters allowed determination of the arteriovenous extraction ratio of N-terminal proBNP and BNP. Results Neither the peripheral N-terminal proBNP (13, 11, 19 pmol L(-1), NS) nor the BNP plasma concentrations (4, 12, 9...

  8. New roles for old modifications: emerging roles of N-terminal post-translational modifications in development and disease.

    Science.gov (United States)

    Tooley, John G; Schaner Tooley, Christine E

    2014-12-01

    The importance of internal post-translational modification (PTM) in protein signaling and function has long been known and appreciated. However, the significance of the same PTMs on the alpha amino group of N-terminal amino acids has been comparatively understudied. Historically considered static regulators of protein stability, additional functional roles for N-terminal PTMs are now beginning to be elucidated. New findings show that N-terminal methylation, along with N-terminal acetylation, is an important regulatory modification with significant roles in development and disease progression. There are also emerging studies on the enzymology and functional roles of N-terminal ubiquitylation and N-terminal propionylation. Here, will discuss the recent advances in the functional studies of N-terminal PTMs, recount the new N-terminal PTMs being identified, and briefly examine the possibility of dynamic N-terminal PTM exchange.

  9. Substrate specificity of mammalian N-terminal α-amino methyltransferase

    Science.gov (United States)

    Petkowski, Janusz J.; Schaner Tooley, Christine E.; Anderson, Lissa C.; Shumilin, Igor A.; Balsbaugh, Jeremy L.; Shabanowitz, Jeffrey; Hunt, Donald F.; Minor, Wladek; Macara, Ian G.

    2012-01-01

    N-terminal methylation of free α-amino-groups is a post-translational modification of proteins that has been known for 30 years but has been very little studied. In this modification, the initiating M residue is cleaved and the exposed α-amino group is mono- di- or trimethylated by NRMT, a recently identified N-terminal methyltransferase. Currently, all known eukaryotic α-aminomethylated proteins have a unique N-terminal motif, M-X-P-K, where X is A, P, or S. NRMT can also methylate artificial substrates in vitro in which X is G, F, Y, C, M, K, R, N, Q or H. Methylation efficiencies of N-terminal amino acids are variable with respect to the identity of X. Here we use in vitro peptide methylation assays and substrate immunoprecipitations to show that the canonical M-X-P-K methylation motif is not the only one recognized by NRMT. We predict that N-terminal methylation is a widespread post-translational modification, and that there is interplay between N-terminal acetylation and N-terminal methylation. We also use isothermal calorimetry experiments to demonstrate that NRMT can efficiently recognize and bind to its fully methylated products. PMID:22769851

  10. Function of the N-terminal segment of the RecA-dependent nuclease Ref.

    Science.gov (United States)

    Gruber, Angela J; Olsen, Tayla M; Dvorak, Rachel H; Cox, Michael M

    2015-02-18

    The bacteriophage P1 Ref (recombination enhancement function) protein is a RecA-dependent, HNH endonuclease. It can be directed to create targeted double-strand breaks within a displacement loop formed by RecA. The 76 amino acid N-terminal region of Ref is positively charged (25/76 amino acid residues) and inherently unstructured in solution. Our investigation of N-terminal truncation variants shows this region is required for DNA binding, contains a Cys involved in incidental dimerization and is necessary for efficient Ref-mediated DNA cleavage. Specifically, Ref N-terminal truncation variants lacking between 21 and 47 amino acids are more effective RecA-mediated targeting nucleases. We propose a more refined set of options for the Ref-mediated cleavage mechanism, featuring the N-terminal region as an anchor for at least one of the DNA strand cleavage events.

  11. Secretin N-terminal hexapeptide potentiates insulin release in mouse islets

    DEFF Research Database (Denmark)

    Kofod, Hans

    1986-01-01

    -6). The consecutive smaller N-terminal peptides Asp-Gly-Thr-Phe-OMe (S3-6) and Gly-Thr-Phe-OMe (S4-6) had no effects while the dipeptide ester Thr-Phe-OMe (S5-6) also potentiated the release of insulin. The results suggest that the N-terminal part of secretin may be involved in the marked in vitro glucose...

  12. Identification and functional characterization of N-terminally acetylated proteins in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Sandra Goetze

    2009-11-01

    Full Text Available Protein modifications play a major role for most biological processes in living organisms. Amino-terminal acetylation of proteins is a common modification found throughout the tree of life: the N-terminus of a nascent polypeptide chain becomes co-translationally acetylated, often after the removal of the initiating methionine residue. While the enzymes and protein complexes involved in these processes have been extensively studied, only little is known about the biological function of such N-terminal modification events. To identify common principles of N-terminal acetylation, we analyzed the amino-terminal peptides from proteins extracted from Drosophila Kc167 cells. We detected more than 1,200 mature protein N-termini and could show that N-terminal acetylation occurs in insects with a similar frequency as in humans. As the sole true determinant for N-terminal acetylation we could extract the (XPX rule that indicates the prevention of acetylation under all circumstances. We could show that this rule can be used to genetically engineer a protein to study the biological relevance of the presence or absence of an acetyl group, thereby generating a generic assay to probe the functional importance of N-terminal acetylation. We applied the assay by expressing mutated proteins as transgenes in cell lines and in flies. Here, we present a straightforward strategy to systematically study the functional relevance of N-terminal acetylations in cells and whole organisms. Since the (XPX rule seems to be of general validity in lower as well as higher eukaryotes, we propose that it can be used to study the function of N-terminal acetylation in all species.

  13. Plasma Pro-C3 (N-terminal type III collagen propeptide) predicts fibrosis progression in patients with chronic hepatitis C

    DEFF Research Database (Denmark)

    Nielsen, Mette J.; Veidal, Sanne S.; Karsdal, Morten A.

    2015-01-01

    BACKGROUND & AIMS: Fibrogenesis results in release of certain extracellular matrix protein fragments into the circulation. We evaluated the diagnostic and prognostic performance of two novel serological markers, the precisely cleaved N-terminal propeptide of type III collagen (Pro-C3) and a peptide...... of helical collagen type III degradation (C3M), in chronic hepatitis C (CHC) patients. METHOD: Pro-C3 and C3M were measured by ELISA in plasma from CHC patients (n = 194) from a prior phase II antifibrotic trial (NCT00244751). Plasma samples and paired liver biopsies were obtained at baseline and after 1...

  14. Distinct influence of N-terminal elements on neuronal nitric-oxide synthase structure and catalysis.

    Science.gov (United States)

    Panda, Koustubh; Adak, Subrata; Aulak, Kulwant S; Santolini, Jerome; McDonald, John F; Stuehr, Dennis J

    2003-09-26

    Nitric oxide (NO) is a signal molecule produced in animals by three different NO synthases. Of these, only NOS I (neuronal nitric-oxide synthase; nNOS) is expressed as catalytically active N-terminally truncated forms that are missing either an N-terminal leader sequence required for protein-protein interactions or are missing the leader sequence plus three core structural motifs that in other NOS are required for dimer assembly and catalysis. To understand how the N-terminal elements impact nNOS structure-function, we generated, purified, and extensively characterized variants that were missing the N-terminal leader sequence (Delta296nNOS) or missing the leader sequence plus the three core motifs (Delta349nNOS). Eliminating the leader sequence had no impact on nNOS structure or catalysis. In contrast, additional removal of the core elements weakened but did not destroy the dimer interaction, slowed ferric heme reduction and reactivity of a hemedioxy intermediate, and caused a 10-fold poorer affinity toward substrate l-arginine. This created an nNOS variant with slower and less coupled NO synthesis that is predisposed to generate reactive oxygen species along with NO. Our findings help justify the existence of nNOS N-terminal splice variants and identify specific catalytic changes that create functional differences among them.

  15. Doublet N-Terminal Oriented Proteomics for N-Terminomics and Proteolytic Processing Identification.

    Science.gov (United States)

    Westermann, Benoit; Jacome, Alvaro Sebastian Vaca; Rompais, Magali; Carapito, Christine; Schaeffer-Reiss, Christine

    2017-01-01

    The study of the N-terminome and the precise identification of proteolytic processing events are key in biology. Dedicated methodologies have been developed as the comprehensive characterization of the N-terminome can hardly be achieved by standard proteomics methods. In this context, we have set up a trimethoxyphenyl phosphonium (TMPP) labeling approach that allows the characterization of both N-terminal and internal digestion peptides in a single experiment. This latter point is a major advantage of our strategy as most N-terminomics methods rely on the enrichment of N-terminal peptides and thus exclude internal peptides.We have implemented a double heavy/light TMPP labeling and an automated data validation workflow that make our doublet N-terminal oriented proteomics (dN-TOP) strategy efficient for high-throughput N-terminome analysis.

  16. Vasoinhibins, N-terminal mouse prolactin fragments, participate in mammary gland involution.

    Science.gov (United States)

    Ishida, Michiyo; Maehara, Midori; Watanabe, Tsukasa; Yanagisawa, Yu; Takata, Yukiko; Nakajima, Ryojun; Suzuki, Mika; Harigaya, Toshio

    2014-06-01

    Vasoinhibins are a family of peptides that act on endothelial cells to suppress angiogenesis and promote apoptosis-mediated vascular regression. Vasoinhibins include the N-terminal fragments from prolactin (PRL), GH, and placental lactogen. One of the vasoinhibins, the N-terminal PRL fragment of 16 kDa, is generated by the lysosomal representative protease cathepsin D (Cath D). Because the normal growth and involution of the mammary gland (MG) are profoundly affected by the expansion and regression of blood vessels and also because PRL stimulates the growth and differentiation of MG, we proposed that intact PRL produced during lactation contributes to MG angiogenesis and increased blood flow, whereas during involution, the N-terminal PRL fragment would have proapoptotic effects on mammary epithelial cells (MECs). Therefore, we investigated the production of the N-terminal PRL fragment and its direct effect on the MG. Mouse PRL (mPRL) was proteolytically cleaved by Cath D between amino acids 148 and 149. N-terminal PRL fragment and Cath D expression increased during MG involution. Furthermore, incubation of MG fragments and MCF7 with recombinant 16 kDa mPRL revealed a proapoptotic effect in MECs. Ectopic mPRL in MECs was cleaved to 16 kDa PRL by Cath D in the MG lysosomal fraction. The majority of PRL derived from pituitary gland was cleaved to 16 kDa PRL in culture medium. Therefore, N-terminal PRL fragment increases during the involution period, has a proapoptotic effect on MECs, and is mainly generated by secreted Cath D in the extracellular space of MG.

  17. Functional stabilization of an RNA recognition motif by a noncanonical N-terminal expansion.

    Science.gov (United States)

    Netter, Catharina; Weber, Gert; Benecke, Heike; Wahl, Markus C

    2009-07-01

    RNA recognition motifs (RRMs) constitute versatile macromolecular interaction platforms. They are found in many components of spliceosomes, in which they mediate RNA and protein interactions by diverse molecular strategies. The human U11/U12-65K protein of the minor spliceosome employs a C-terminal RRM to bind hairpin III of the U12 small nuclear RNA (snRNA). This interaction comprises one side of a molecular bridge between the U11 and U12 small nuclear ribonucleoprotein particles (snRNPs) and is reminiscent of the binding of the N-terminal RRMs in the major spliceosomal U1A and U2B'' proteins to hairpins in their cognate snRNAs. Here we show by mutagenesis and electrophoretic mobility shift assays that the beta-sheet surface and a neighboring loop of 65K C-terminal RRM are involved in RNA binding, as previously seen in canonical RRMs like the N-terminal RRMs of the U1A and U2B'' proteins. However, unlike U1A and U2B'', some 30 residues N-terminal of the 65K C-terminal RRM core are additionally required for stable U12 snRNA binding. The crystal structure of the expanded 65K C-terminal RRM revealed that the N-terminal tail adopts an alpha-helical conformation and wraps around the protein toward the face opposite the RNA-binding platform. Point mutations in this part of the protein had only minor effects on RNA affinity. Removal of the N-terminal extension significantly decreased the thermal stability of the 65K C-terminal RRM. These results demonstrate that the 65K C-terminal RRM is augmented by an N-terminal element that confers stability to the domain, and thereby facilitates stable RNA binding.

  18. The outermost N-terminal region of tapasin facilitates folding of major histocompatibility complex class I

    DEFF Research Database (Denmark)

    Røder, Gustav Andreas; Geironson, Linda; Darabi, Anna

    2009-01-01

    surface for presentation to T cells. The exact mechanisms of Tpn quality control and the criteria for being an optimal peptide are still unknown. Here, we have generated a recombinant fragment of human Tpn, Tpn(1-87) (representing the 87 N-terminal and ER-luminal amino acids of the mature Tpn protein...... localized Tpn. Using overlapping peptides, the epitope of alphaTpn(1-87)/80 was located to Tpn(40-44), which maps to a surface-exposed loop on the Tpn structure. Together, these results demonstrate that the N-terminal region of Tpn can be recombinantly expressed and adopt a structure, which at least...

  19. Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses.

    Science.gov (United States)

    Je, H Shawn; Yang, Feng; Ji, Yuanyuan; Nagappan, Guhan; Hempstead, Barbara L; Lu, Bai

    2012-09-25

    Formation of specific neuronal connections often involves competition between adjacent axons, leading to stabilization of the active terminal, while retraction of the less active ones. The underlying molecular mechanisms remain unknown. We show that activity-dependent conversion of pro-brain-derived neurotrophic factor (proBDNF) to mature (m)BDNF mediates synaptic competition. Stimulation of motoneurons triggers proteolytic conversion of proBDNF to mBDNF at nerve terminals. In Xenopus nerve-muscle cocultures, in which two motoneurons innervate one myocyte, proBDNF-p75(NTR) signaling promotes retraction of the less active terminal, whereas mBDNF-tyrosine-related kinase B (TrkB) p75NTR (p75 neurotrophin receptor) facilitates stabilization of the active one. Thus, proBDNF and mBDNF may serve as potential "punishment" and "reward" signals for inactive and active terminals, respectively, and activity-dependent conversion of proBDNF to mBDNF may regulate synapse elimination.

  20. Selecting protein N-terminal peptides by combined fractional diagonal chromatography.

    Science.gov (United States)

    Staes, An; Impens, Francis; Van Damme, Petra; Ruttens, Bart; Goethals, Marc; Demol, Hans; Timmerman, Evy; Vandekerckhove, Joël; Gevaert, Kris

    2011-07-14

    In recent years, procedures for selecting the N-terminal peptides of proteins with analysis by mass spectrometry have been established to characterize protease-mediated cleavage and protein α-N-acetylation on a proteomic level. As a pioneering technology, N-terminal combined fractional diagonal chromatography (COFRADIC) has been used in numerous studies in which these protein modifications were investigated. Derivatization of primary amines--which can include stable isotope labeling--occurs before trypsin digestion so that cleavage occurs after arginine residues. Strong cation exchange (SCX) chromatography results in the removal of most of the internal peptides. Diagonal, reversed-phase peptide chromatography, in which the two runs are separated by reaction with 2,4,6-trinitrobenzenesulfonic acid, results in the removal of the C-terminal peptides and remaining internal peptides and the fractionation of the sample. We describe here the fully matured N-terminal COFRADIC protocol as it is currently routinely used, including the most substantial improvements (including treatment with glutamine cyclotransferase and pyroglutamyl aminopeptidase to remove pyroglutamate before SCX, and a sample pooling scheme to reduce the overall number of liquid chromatography-tandem mass spectrometry analyses) that were made since its original publication. Completion of the N-terminal COFRADIC procedure takes ~5 d.

  1. NRMT2 is an N-terminal monomethylase that primes for its homologue NRMT1.

    Science.gov (United States)

    Petkowski, Janusz J; Bonsignore, Lindsay A; Tooley, John G; Wilkey, Daniel W; Merchant, Michael L; Macara, Ian G; Schaner Tooley, Christine E

    2013-12-15

    NRMT (N-terminal regulator of chromatin condensation 1 methyltransferase) was the first eukaryotic methyltransferase identified to specifically methylate the free α-amino group of proteins. Since the discovery of this N-terminal methyltransferase, many new substrates have been identified and the modification itself has been shown to regulate DNA-protein interactions. Sequence analysis predicts one close human homologue of NRMT, METTL11B (methyltransferase-like protein 11B, now renamed NRMT2). We show in the present paper for the first time that NRMT2 also has N-terminal methylation activity and recognizes the same N-terminal consensus sequences as NRMT (now NRMT1). Both enzymes have similar tissue expression and cellular localization patterns. However, enzyme assays and MS experiments indicate that they differ in their specific catalytic functions. Although NRMT1 is a distributive methyltransferase that can mono-, di- and tri-methylate its substrates, NRMT2 is primarily a monomethylase. Concurrent expression of NRMT1 and NRMT2 accelerates the production of trimethylation, and we propose that NRMT2 activates NRMT1 by priming its substrates for trimethylation.

  2. NRMT2 is an N-terminal monomethylase that primes for its homolog NRMT1

    Science.gov (United States)

    Petkowski, Janusz J.; Bonsignore, Lindsay A.; Tooley, John G.; Wilkey, Daniel W.; Merchant, Michael L.; Macara, Ian G.; Schaner Tooley, Christine E.

    2014-01-01

    N-terminal RCC1 methyltransferase (NRMT) was the first eukaryotic methyltransferase identified to specifically methylate the free α-amino group of proteins. Since the discovery of this N-terminal methyltransferase, many new substrates have been identified and the modification itself has been shown to regulate DNA-protein interactions. Sequence analysis predicts one close human homolog of NRMT, Methyltransferase-like protein 11B (METTL11B, now renamed NRMT2). We show here for the first time that NRMT2 also has N-terminal methylation activity and recognizes the same N-terminal consensus sequences as NRMT (now NRMT1). Both enzymes have similar tissue expression and cellular localization patterns. However, enzyme assays and mass spectrometry experiments indicate they differ in their specific catalytic functions. While NRMT1 is a distributive methyltransferase that can mono-, di-, and trimethylate its substrates, NRMT2 is primarily a monomethylase. Concurrent expression of NRMT1 and NRMT2 accelerates the production of trimethylation, and we propose that NRMT2 activates NRMT1 by priming its substrates for trimethylation. PMID:24090352

  3. Site directed spin labeling studies of Escherichia coli dihydroorotate dehydrogenase N-terminal extension

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Sheila G. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Av. Trabalhador Sao-carlense 400, C.P. 369, 13560-970, Sao Carlos, SP (Brazil); Grupo de Biofisica e Fisica Aplicada a Medicina, Instituto de Fisica, Universidade Federal de Goias, Campus Samambaia, C.P. 131, 74001-970, Goiania, GO (Brazil); Cristina Nonato, M. [Laboratorio de Cristalografia de Proteinas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. do Cafe S/N, 14040-903, Ribeirao Preto, SP (Brazil); Costa-Filho, Antonio J., E-mail: ajcosta@ffclrp.usp.br [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Av. Trabalhador Sao-carlense 400, C.P. 369, 13560-970, Sao Carlos, SP (Brazil); Departamento de Fisica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Av. Bandeirantes 3900, 14040-901, Ribeirao Preto, SP (Brazil)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer EcDHODH is a membrane-associated enzyme and a promising target for drug design. Black-Right-Pointing-Pointer Enzyme's N-terminal extension is responsible for membrane association. Black-Right-Pointing-Pointer N-terminal works as a molecular lid regulating access to the protein interior. -- Abstract: Dihydroorotate dehydrogenases (DHODHs) are enzymes that catalyze the fourth step of the de novo synthesis of pyrimidine nucleotides. In this reaction, DHODH converts dihydroorotate to orotate, using a flavine mononucleotide as a cofactor. Since the synthesis of nucleotides has different pathways in mammals as compared to parasites, DHODH has gained much attention as a promising target for drug design. Escherichia coli DHODH (EcDHODH) is a family 2 DHODH that interacts with cell membranes in order to promote catalysis. The membrane association is supposedly made via an extension found in the enzyme's N-terminal. In the present work, we used site directed spin labeling (SDSL) to specifically place a magnetic probe at positions 2, 5, 19, and 21 within the N-terminal and thus monitor, by using Electron Spin Resonance (ESR), dynamics and structural changes in this region in the presence of a membrane model system. Overall, our ESR spectra show that the N-terminal indeed binds to membranes and that it experiences a somewhat high flexibility that could be related to the role of this region as a molecular lid controlling the entrance of the enzyme's active site and thus allowing the enzyme to give access to quinones that are dispersed in the membrane and that are necessary for the catalysis.

  4. N-terminal pro-C-type natriuretic peptide in serum associated with bone destruction in patients with multiple myeloma

    DEFF Research Database (Denmark)

    Mylin, Anne K; Gøtze, Jens P.; Heickendorff, Lene;

    2015-01-01

    AIM: To examine whether N-terminal proCNP concentrations in serum is associated with bone destruction in patients with multiple myeloma. MATERIALS & METHODS: N-terminal proCNP and biochemical bone markers were measured in 153 patients. Radiographic bone disease and skeletal-related events were ev...

  5. The role of the N-terminal loop in the function of the colicin E7 nuclease domain

    DEFF Research Database (Denmark)

    Czene, Anikó; Németh, Eszter; Zóka, István G.;

    2013-01-01

    stabilization effect of the N-terminal amino acids on the catalytic centre. In agreement with this, the absence of the N-terminal sequences resulted in significantly increased movement of the backbone atoms compared with that in the native NColE7: in ΔN25-NColE7 the amino acid strings between residues 485...

  6. Capping β-hairpin with N-terminal d-amino acid stabilizes peptide scaffold.

    Science.gov (United States)

    Makwana, Kamlesh M; Mahalakshmi, Radhakrishnan

    2016-05-01

    Various strategies exist to stabilize de novo designed synthetic peptide β-hairpins or β-sheets structures, especially at the non-hydrogen bonding position. However, strategies to stabilize strand termini, which are affected by fraying, are highly limited. Here, by substituting N-terminal aliphatic amino acid with its mirror image counterpart, we achieve a significant increase in scaffold stabilization, resulting from the formation of a terminal aliphatic-aromatic hydrophobic CH…pi cluster. Our extensive solution NMR studies support the incorporation of an N-terminal d-aliphatic amino acid in the design of short β-hairpins, while successfully retaining the overall structural scaffold. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 260-266, 2016.

  7. NMR assignments of the N-terminal domain of Nephila clavipes spidroin 1.

    Science.gov (United States)

    Parnham, Stuart; Gaines, William A; Duggan, Brendan M; Marcotte, William R; Hennig, Mirko

    2011-10-01

    The building blocks of spider dragline silk are two fibrous proteins secreted from the major ampullate gland named spidroins 1 and 2 (MaSp1, MaSp2). These proteins consist of a large central domain composed of approximately 100 tandem copies of a 35-40 amino acid repeat sequence. Non-repetitive N and C-terminal domains, of which the C-terminal domain has been implicated to transition from soluble and insoluble states during spinning, flank the repetitive core. The N-terminal domain until recently has been largely unknown due to difficulties in cloning and expression. Here, we report nearly complete assignment for all (1)H, (13)C, and (15)N resonances in the 14 kDa N-terminal domain of major ampullate spidroin 1 (MaSp1-N) of the golden orb-web spider Nephila clavipes.

  8. N-terminal-pro-B-type natriuretic peptide during pharmacological heart rate reduction in hyperthyroidism

    DEFF Research Database (Denmark)

    Schultz, M; Kistorp, C; Corell, P

    2009-01-01

    We hypothesized that elevated N-terminal-pro-B-type natriuretic peptide levels in hyperthyroidism are mainly driven by increased metabolism due to excess thyroid hormones. Therefore, serum levels of N-terminal-pro-B-type natriuretic peptide were studied during reduced cardiac work load by means...... of pharmacologically induced heart rate reduction in untreated hyperthyroidism. We designed a noncontrolled interventional study. Eighteen women with newly diagnosed hyperthyroidism were evaluated (including an echocardiography) before and after pharmacological heart rate reduction with 360 mg verapamil daily for 6......-index decreased from median 319 to 315 arbitrary units (p=0.039) and free triiodothyronine-index increased from 8.6 to 9.9 arbitrary units (p=0.010). No changes in echocardiographic parameters were observed. A decrease in resting heart rate in untreated hyperthyroidism due to verapamil treatment did not result...

  9. Resin-assisted Enrichment of N-terminal Peptides for Characterizing Proteolytic Processing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seo; Dai, Ziyu; Aryal, Uma K.; Moore, Ronald J.; Camp, David G.; Baker, Scott E.; Smith, Richard D.; Qian, Weijun

    2013-06-17

    Proteolytic processing is a ubiquitous, irreversible posttranslational modification that plays an important role in cellular regulation in all living organisms. Herein we report a resin-assisted positive selection method for specifically enriching protein N-terminal peptides to facilitate the characterization of proteolytic processing events by liquid chromatography-tandem mass spectrometry. In this approach, proteins are initially reduced and alkylated and their lysine residues are converted to homoarginines. Then, protein N-termini are selectively converted to reactive thiol groups. We demonstrate that these sequential reactions were achieved with nearly quantitative efficiencies. Thiol-containing N-terminal peptides are then captured (>98% efficiency) by a thiol-affinity resin, a significant improvement over the traditional avidin/biotin enrichment. Application to cell lysates of Aspergillus niger, a filamentous fungus of interest for biomass degradation, enabled the identification of 1672 unique protein N-termini and proteolytic cleavage sites from 690 unique proteins.

  10. PRINT: A Protein Bioconjugation Method with Exquisite N-terminal Specificity

    Science.gov (United States)

    Sur, Surojit; Qiao, Yuan; Fries, Anja; O'Meally, Robert N.; Cole, Robert N.; Kinzler, Kenneth W.; Vogelstein, Bert; Zhou, Shibin

    2015-12-01

    Chemical conjugation is commonly used to enhance the pharmacokinetics, biodistribution, and potency of protein therapeutics, but often leads to non-specific modification or loss of bioactivity. Here, we present a simple, versatile and widely applicable method that allows exquisite N-terminal specific modification of proteins. Combining reversible side-chain blocking and protease mediated cleavage of a commonly used HIS tag appended to a protein, we generate with high yield and purity exquisitely site specific and selective bio-conjugates of TNF-α by using amine reactive NHS ester chemistry. We confirm the N terminal selectivity and specificity using mass spectral analyses and show near complete retention of the biological activity of our model protein both in vitro and in vivo murine models. We believe that this methodology would be applicable to a variety of potentially therapeutic proteins and the specificity afforded by this technique would allow for rapid generation of novel biologics.

  11. NMR Structure of Calmodulin Complexed to an N-terminally Acetylated α-Synuclein Peptide

    Science.gov (United States)

    Gruschus, James M.; Yap, Thai Leong; Pistolesi, Sara; Maltsev, Alexander S.; Lee, Jennifer C.

    2013-01-01

    Calmodulin (CaM) is a calcium binding protein that plays numerous roles in Ca-dependent cellular processes, including uptake and release of neurotransmitters in neurons. α-Synuclein (α-syn), one of the most abundant proteins in central nervous system neurons, helps maintain presynaptic vesicles containing neurotransmitters and moderates their Ca-dependent release into the synapse. Ca-bound CaM interacts with α-syn most strongly at its N-terminus. The N-terminal region of α-syn is important for membrane binding, thus CaM could modulate membrane association of α-syn in a Ca-dependent manner. In contrast, Ca-free CaM has negligible interaction. The interaction with CaM leads to significant signal broadening in both CaM and α-syn NMR spectra, most likely due to conformational exchange. The broadening is much reduced when binding a peptide consisting of the first 19 residues of α-syn. In neurons, most α-syn is acetylated at the N-terminus, and acetylation leads to a ten-fold increase in binding strength for the α-syn peptide (KD = 35 ± 10 μM). The N-terminally acetylated peptide adopts a helical structure at the N-terminus with the acetyl group contacting the N-terminal domain of CaM, and with less ordered helical structure towards the C-terminus of the peptide contacting the CaM C-terminal domain. Comparison with known structures shows the CaM/α-syn complex most closely resembles Ca-bound CaM in a complex with an IQ motif peptide. However, a search comparing the α-syn peptide sequence with known CaM targets, including IQ motifs, found no homologies, thus the N-terminal α-syn CaM binding site appears to be a novel CaM target sequence. PMID:23607618

  12. N-terminal Pro-B-type natriuretic peptide: a measure of significant patent cuctus arteriosus

    LENUS (Irish Health Repository)

    OFarombi-Oghuvbu, IO

    2008-01-24

    Background: B type natriuretic peptide (BNP) is a marker for ventricular dysfunction secreted as a pre-prohormone, Pro-B-type natriuretic peptide (ProBNP), and cleaved into BNP and a biologically inactive fragment, N-terminal pro-B-type natriuretic peptide (NT-proBNP). Little is known about the clinical usefulness of NT-proBNP in preterm infants.\\r\

  13. Receptor binding and adenylate cyclase activities of glucagon analogues modified in the N-terminal region

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R.L.; Pelton, J.T.; Trivedi, D.; Johnson, D.G.; Coy, D.H.; Sueiras-Diaz, J.; Hruby, V.J.

    1986-04-08

    In this study, we determined the ability of four N-terminally modified derivatives of glucagon, (3-Me-His1,Arg12)-, (Phe1,Arg12)-, (D-Ala4,Arg12)-, and (D-Phe4)glucagon, to compete with 125I-glucagon for binding sites specific for glucagon in hepatic plasma membranes and to activate the hepatic adenylate cyclase system, the second step involved in producing many of the physiological effects of glucagon. Relative to the native hormone, (3-Me-His1,Arg12)glucagon binds approximately twofold greater to hepatic plasma membranes but is fivefold less potent in the adenylate cyclase assay. (Phe1,Arg12)glucagon binds threefold weaker and is also approximately fivefold less potent in adenylate cyclase activity. In addition, both analogues are partial agonists with respect to adenylate cyclase. These results support the critical role of the N-terminal histidine residue in eliciting maximal transduction of the hormonal message. (D-Ala4,Arg12)glucagon and (D-Phe4)glucagon, analogues designed to examine the possible importance of a beta-bend conformation in the N-terminal region of glucagon for binding and biological activities, have binding potencies relative to glucagon of 31% and 69%, respectively. (D-Ala4,Arg12)glucagon is a partial agonist in the adenylate cyclase assay system having a fourfold reduction in potency, while the (D-Phe4) derivative is a full agonist essentially equipotent with the native hormone. These results do not necessarily support the role of an N-terminal beta-bend in glucagon receptor recognition. With respect to in vivo glycogenolysis activities, all of the analogues have previously been reported to be full agonists.

  14. Structure of the human histone chaperone FACT Spt16 N-terminal domain

    Energy Technology Data Exchange (ETDEWEB)

    Marcianò, G.; Huang, D. T., E-mail: d.huang@beatson.gla.ac.uk [Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland (United Kingdom)

    2016-01-22

    The Spt16–SSRP1 heterodimer is a histone chaperone that plays an important role in regulating chromatin assembly. Here, a crystal structure of the N-terminal domain of human Spt16 is presented and it is shown that this domain may contribute to histone binding. The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of human Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding.

  15. The Relationship among Carotid Artery Remodeling, Cardiac Geometry, and Serum N-Terminal Pro-B-Type Natriuretic Peptide Level in Asymptomatic Asians: Sex-Differences and Longitudinal GEE Study.

    Directory of Open Access Journals (Sweden)

    Chen-Yen Chien

    Full Text Available Carotid artery remodeling is known to be associated with a variety of cardiovascular diseases. However, there is limited information regarding gender differences in carotid remodeling. We sought to investigate the associations among blood pressure (BP, carotid artery remodeling and cardiac geometries, and further explore gender differences.In a large cohort of asymptomatic adults undergoing routine health screening with repeated observations, we related measures of carotid artery diameter (CCAD to various BP components, cardiac geometries and blood N-terminal pro-brain natriuretic peptide (NT-proBNP level, both from baseline cross-sectional and longitudinal dataset using generalized estimating equations (GEE.A total of 2,914 person-visits (baseline: n=998, mean age: 47 ± 8.9 years, 34% female were studied (median: 6 ± 1.73 years follow up. We observed that CCAD was larger in men (p=300pg/mL; AUROC: 0.79, CCAD cut-off: 7.95mm, all p<0.05, which remained significant in multi-variate and longitudinal models. There was a prominent sex interaction (p for interaction with age and systolic BP: 0.004 and 0.028 respectively, where the longitudinal associations of age and systolic BP with increasing CCAD as more pronounced in women than men.These data demonstrated that carotid artery remodeling may parallel subclinical biomarker of cardiac dysfunction, and further showed greater effects of aging and higher blood pressure on such remodeling process in women than men. Further study is warranted to understand how this predisposition of elderly hypertensive women to vascular remodeling may play a role in clinical settings.

  16. Cyclization of the N-Terminal X-Asn-Gly Motif during Sample Preparation for Bottom-Up Proteomics

    DEFF Research Database (Denmark)

    Zhang, Xumin; Højrup, Peter

    2010-01-01

    We, herein, report a novel -17 Da peptide modification corresponding to an N-terminal cyclization of peptides possessing the N-terminal motif of X-Asn-Gly. The cyclization occurs spontaneously during sample preparation for bottom-up proteomics studies. Distinct from the two well-known N......-terminal cyclizations, cyclization of N-terminal glutamine and S-carbamoylmethylcysteine, it is dependent on pH instead of [NH(4)(+)]. The data set from our recent study on large-scale N(α)-modified peptides revealed a sequence requirement for the cyclization event similar to the well-known deamidation of Asn to iso......Asp and Asp. Detailed analysis using synthetic peptides confirmed that the cyclization forms between the N-terminus and its neighboring Asn residue, and the reaction shares the same succinimide intermediate with the Asn deamidation event. As a result, we, here, propose a molecular mechanism for this specific...

  17. Gingival Crevicular Fluid Calprotectin, Osteocalcin and Cross-Linked N-Terminal Telopeptid Levels in Health and Different Periodontal Diseases

    Directory of Open Access Journals (Sweden)

    Sema Becerik

    2011-01-01

    Full Text Available Aim: The aim of the present study was to investigate gingival crevicular fluid (GCF calprotectin, osteocalcin and cross-linked N-terminal telopeptide (NTx levels in health along with different periodontal diseases.

  18. Activation of c-Jun N-terminal Kinases by Ribotoxic Stresses

    Institute of Scientific and Technical Information of China (English)

    Dong-Yun Ouyang; Yuan-Yuan Wang; Yong-Tang Zheng

    2005-01-01

    The c-Jun N-terminal kinases (JNKs) are classic stress-activated protein kinases. Many cellular stresses have been shown to stimulate JNK activation. In this review, we focus on ribotoxic stresses based on their multiple biological potencies including anti-HIV-1 activity. Some of the functions of ribotoxins and the signaling transduction pathway that mediated are mentioned. Different from other stimulators, ribotoxic stresses act on special motifs of 28S rRNA in translationally active mammal ribosomes. Binding and damaging on the motif leads to JNK activation and subsequently biological response to the signal initiator, which is named ribotoxic stress response.

  19. DsbC activation by the N-terminal domain of DsbD

    OpenAIRE

    Goldstone, David; Haebel, Peter W.; Katzen, Federico; Bader, Martin W.; Bardwell, James C. A.; Beckwith, Jon; Metcalf, Peter

    2001-01-01

    The correct formation of disulfide bonds in the periplasm of Escherichia coli involves Dsb proteins, including two related periplasmic disulfide-bond isomerases, DsbC and DsbG. DsbD is a membrane protein required to maintain the functional oxidation state of DsbC and DsbG. In this work, purified proteins were used to investigate the interaction between DsbD and DsbC. A 131-residue N-terminal fragment of DsbD (DsbDα) was expressed and purified and shown to form a fu...

  20. Atomic Force Microscopy Imaging of Filamentous Aggregates from an N-Terminal Peptide Fragment of Barnase

    Science.gov (United States)

    Shibata-Seki, Teiko; Masai, Junji; Yoshida, Kenji; Sato, Kazuki; Yanagawa, Hiroshi

    1993-06-01

    This paper reports the atomic force microscopy (AFM) imaging of filamentous aggregates derived from an N-terminal peptide fragment of barnase, a ribonuclease from Bacillus amyloliquefaciens. The sample was deposited on a freshly cleaved mica surface and observed in ambient conditions. The overall shapes of the filamentous structures imaged with two different kinds of AFMs were similar to those obtained with a transmission electron microscope (TEM), except that the filaments in AFM images were broader than those in TEM images. This broadening phenomenon characteristic of AFM images was explained in terms of the convolution-type distortion of the specimen diameter by the scanning-tip apex.

  1. N-terminal T4 lysozyme fusion facilitates crystallization of a G protein coupled receptor.

    Directory of Open Access Journals (Sweden)

    Yaozhong Zou

    Full Text Available A highly crystallizable T4 lysozyme (T4L was fused to the N-terminus of the β(2 adrenergic receptor (β(2AR, a G-protein coupled receptor (GPCR for catecholamines. We demonstrate that the N-terminal fused T4L is sufficiently rigid relative to the receptor to facilitate crystallogenesis without thermostabilizing mutations or the use of a stabilizing antibody, G protein, or protein fused to the 3rd intracellular loop. This approach adds to the protein engineering strategies that enable crystallographic studies of GPCRs alone or in complex with a signaling partner.

  2. Human urinary renalase lacks the N-terminal signal peptide crucial for accommodation of its FAD cofactor.

    Science.gov (United States)

    Fedchenko, Valerii I; Buneeva, Olga A; Kopylov, Arthur T; Veselovsky, Alexander V; Zgoda, Victor G; Medvedev, Alexei E

    2015-01-01

    Renalase is a recently discovered secretory protein involved in the regulation of blood pressure. Cells synthesize all known isoforms of human renalase (1 and 2) as flavoproteins. Accommodation of FAD in the renalase protein requires the presence of its N-terminal peptide. However, in secretory proteins, such peptides are usually cleaved during their export from the cell. In the present study, we have isolated human renalase from urinary samples of healthy volunteers and human recombinant renalases 1 and 2 expressed in Escherichia coli cells. In these proteins, we investigated the presence of the renalase N-terminal peptide and the FAD cofactor and performed computer-aided molecular analysis of the renalase crystal structure to evaluate possible consequences of removal of the N-terminal peptide. In contrast to human recombinant renalase isoforms 1 and 2 containing non-covalently bound FAD and clearly detectable N-terminal peptide, renalase purified from human urine lacks both the N-terminal signal peptide and FAD. The computer-aided analysis indicates that the removal of this peptide results in inability of the truncated renalase to bind the FAD cofactor. Thus, our results indicate that human renalase secreted in urine lacks its N-terminal peptide, and therefore catalytic activities of urinary renalase reported in the literature cannot be attributed to FAD-dependent mechanisms. We suggest that FAD-dependent catalytic functions are intrinsic properties of intracellular renalases, whereas extracellular renalases act in FAD- and possibly catalytic-independent manner.

  3. Association of Atrial Fibrillation and Amino-terminal Pro-brain Natriuretic Peptide Concentrations in Patients After Off-Pump Coronary Artery Bypass Grafting

    Institute of Scientific and Technical Information of China (English)

    Junquan Li; Qinghua Zhang; Weichen Tian; Hongyu Liu

    2008-01-01

    Objectives To investigate the possible role of amino-terminal pro-brain natriuretic peptide (NT-proBNP) in the occurrence of atrial fibrillation (AF) after coronary artery bypass grafting (CABG).Methods This study group included 70 consecutive patients scheduled for elective off-pump CABG.The patients with ejection fraction (EF) less than 0.30,history of AF,use of class Ⅰor Ⅲ antiarrhythmic drug,implanted pacemaker,postoperative myocardial infarction or chest reopening for pericardial tamponade were excluded.Preoperative and postoperative serum NT-proBNP levels were measured by radioimmunoassay technique.Results Postoperative AF occurred in 15 patients (21.4%);these patients had significantly higher median NT-proBNP levels when compared with those without AF after the operation (P<0.01).Using multivariate logistic regression analyses,an increase in NT-proBNP level after CABG was found to be independently associated with AF (OR=3.78,95% IC=1.81~4.89,P<0.01 ).Increased age,diabetes mellitus,preoperative use of β-blocker,proximal right coronary artery involvement,and longer operation time were also associated with AF.Conclusions These results indicated that AF was associated with higher NT-proBNP concentrations after off pump CABG;the increase in NT-proBNP after CABG may play an important role in the occurrence of AF after the operation.The further studies are needed to define the reason that lead to higher NT-proBNP concentrations among the patients who present AF after off pump CABG.

  4. N-terminal galanin-(1-16) fragment is an agonist at the hippocampal galanin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Fisone, G.; Berthold, M.; Bedecs, K.; Unden, A.; Bartfai, T.; Bertorelli, R.; Consolo, S.; Crawley, J.; Martin, B.; Nilsson, S.; (Univ. of Stockholm (Sweden))

    1989-12-01

    The galanin N-terminal fragment (galanin-(1-16)) has been prepared by solid-phase synthesis and by enzymic cleavage of galanin by endoproteinase Asp-N. This peptide fragment displaced {sup 125}I-labeled galanin in receptor autoradiography experiments on rat forebrain and spinal cord and in equilibrium binding experiments from high-affinity binding sites in the ventral hippocampus with an IC50 of approximately 3 nM. In tissue slices of the same brain area, galanin-(1-16), similarly to galanin, inhibited the muscarinic agonist-stimulated breakdown of inositol phospholipids. Upon intracerebroventricular administration, galanin-(1-16) (10 micrograms/15 microliters) also inhibited the scopolamine (0.3 mg/kg, s.c.)-evoked release of acetylcholine, as studied in vivo by microdialysis. Substitution of (L-Trp2) for (D-Trp2) resulted in a 500-fold loss in affinity as compared with galanin-(1-16). It is concluded that, in the ventral hippocampus, the N-terminal galanin fragment (galanin-(1-16)) is recognized by the galanin receptors controlling acetylcholine release and muscarinic agonist-stimulated inositol phospholipid breakdown as a high-affinity agonist and that amino acid residue (Trp2) plays an important role in the receptor-ligand interactions.

  5. Recombinant N-Terminal Slit2 Inhibits TGF-β-Induced Fibroblast Activation and Renal Fibrosis.

    Science.gov (United States)

    Yuen, Darren A; Huang, Yi-Wei; Liu, Guang-Ying; Patel, Sajedabanu; Fang, Fei; Zhou, Joyce; Thai, Kerri; Sidiqi, Ahmad; Szeto, Stephen G; Chan, Lauren; Lu, Mingliang; He, Xiaolin; John, Rohan; Gilbert, Richard E; Scholey, James W; Robinson, Lisa A

    2016-09-01

    Fibrosis and inflammation are closely intertwined injury pathways present in nearly all forms of CKD for which few safe and effective therapies exist. Slit glycoproteins signaling through Roundabout (Robo) receptors have been described to have anti-inflammatory effects through regulation of leukocyte cytoskeletal organization. Notably, cytoskeletal reorganization is also required for fibroblast responses to TGF-β Here, we examined whether Slit2 also controls TGF-β-induced renal fibrosis. In cultured renal fibroblasts, which we found to express Slit2 and Robo-1, the bioactive N-terminal fragment of Slit2 inhibited TGF-β-induced collagen synthesis, actin cytoskeletal reorganization, and Smad2/3 transcriptional activity, but the inactive C-terminal fragment of Slit2 did not. In mouse models of postischemic renal fibrosis and obstructive uropathy, treatment with N-terminal Slit2 before or after injury inhibited the development of renal fibrosis and preserved renal function, whereas the C-terminal Slit2 had no effect. Our data suggest that administration of recombinant Slit2 may be a new treatment strategy to arrest chronic injury progression after ischemic and obstructive renal insults by not only attenuating inflammation but also, directly inhibiting renal fibrosis.

  6. The N-terminal domain of apolipoprotein B-100: structural characterization by homology modeling

    Directory of Open Access Journals (Sweden)

    Khachfe Hassan M

    2007-07-01

    Full Text Available Abstract Background Apolipoprotein B-100 (apo B-100 stands as one of the largest proteins in humans. Its large size of 4536 amino acids hampers the production of X-ray diffraction quality crystals and hinders in-solution NMR analysis, and thus necessitates a domain-based approach for the structural characterization of the multi-domain full-length apo B. Results The structure of apo B-17 (the N-terminal 17% of apolipoprotein B-100 was predicted by homology modeling based on the structure of the N-terminal domain of lipovitellin (LV, a protein that shares not only sequence similarity with B17, but also a functional aspect of lipid binding and transport. The model structure was first induced to accommodate the six disulfide bonds found in that region, and then optimized using simulated annealing. Conclusion The content of secondary structural elements in this model structure correlates well with the reported data from other biophysical probes. The overall topology of the model conforms with the structural outline corresponding to the apo B-17 domain as seen in the EM representation of the complete LDL structure.

  7. Plasma biomarker screening for liver fibrosis with the N-terminal isotope tagging strategy.

    Science.gov (United States)

    Li, ShuLong; Liu, Xin; Wei, Lai; Wang, HuiFen; Zhang, JiYang; Wei, HanDong; Qian, XiaoHong; Jiang, Ying; He, FuChu

    2011-05-01

    A non-invasive diagnostic approach is crucial for the evaluation of severity of liver disease, treatment decisions, and assessing drug efficacy. This study evaluated plasma proteomic profiling via an N-terminal isotope tagging strategy coupled with liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry measurement to detect liver fibrosis staging. Pooled plasma from different liver fibrosis stages, which were assessed in advance by the current gold-standard of liver biopsy, was quantitatively analyzed. A total of 72 plasma proteins were found to be dysregulated during the fibrogenesis process, and this finding constituted a valuable candidate plasma biomarker bank for follow-up analysis. Validation results of fibronectin by Western blotting reconfirmed the mass-based data. Ingenuity Pathways Analysis showed four types of metabolic networks for the functional effect of liver fibrosis disease in chronic hepatitis B patients. Consequently, quantitative proteomics via the N-terminal acetyl isotope labeling technique provides an effective and useful tool for screening plasma candidate biomarkers for liver fibrosis. We quantitatively monitored the fibrogenesis process in CHB patients. We discovered many new valuable candidate biomarkers for the diagnosis of liver fibrosis and also partly identified the mechanism involved in liver fibrosis disease. These results provide a clearer understanding of liver fibrosis pathophysiology and will also hopefully lead to improvement of clinical diagnosis and treatment.

  8. In Silico Identification and Characterization of N-Terminal Acetyltransferase Genes of Poplar (Populus trichocarpa

    Directory of Open Access Journals (Sweden)

    Hang-Yong Zhu

    2014-01-01

    Full Text Available N-terminal acetyltransferase (Nats complex is responsible for protein N-terminal acetylation (Nα-acetylation, which is one of the most common covalent modifications of eukaryotic proteins. Although genome-wide investigation and characterization of Nat catalytic subunits (CS and auxiliary subunits (AS have been conducted in yeast and humans they remain unexplored in plants. Here we report on the identification of eleven genes encoding eleven putative Nat CS polypeptides, and five genes encoding five putative Nat AS polypeptides in Populus. We document that the expansion of Nat CS genes occurs as duplicated blocks distributed across 10 of the 19 poplar chromosomes, likely only as a result of segmental duplication events. Based on phylogenetic analysis, poplar Nat CS were assigned to six subgroups, which corresponded well to the Nat CS types (CS of Nat A–F, being consistent with previous reports in humans and yeast. In silico analysis of microarray data showed that in the process of normal development of the poplar, their Nat CS and AS genes are commonly expressed at one relatively low level but share distinct tissue-specific expression patterns. This exhaustive survey of Nat genes in poplar provides important information to assist future studies on their functional role in poplar.

  9. Molecular cloning and biologically active production of IpaD N-terminal region.

    Science.gov (United States)

    Hesaraki, Mahdi; Saadati, Mojtaba; Honari, Hossein; Olad, Gholamreza; Heiat, Mohammad; Malaei, Fatemeh; Ranjbar, Reza

    2013-07-01

    Shigella is known as pathogenic intestinal bacteria in high dispersion and pathogenic bacteria due to invasive plasmid antigen (Ipa). So far, a number of Ipa proteins have been studied to introduce a new candidate vaccine. Here, for the first time, we examined whether the N-terminal region of IpaD(72-162) could be a proper candidate for Shigella vaccine. Initially, the DNA sequence coding N-terminal region was isolated by PCR from Shigella dysenteriae type I and cloned into pET-28a expression vector. Then, the heterologous protein was expressed, optimized and purified by affinity Ni-NTA column. Western blot analysis using, His-tag and IpaD(72-162) polyclonal antibodies, confirmed the purity and specificity of the recombinant protein, respectively. Subsequently, the high immunogenicity of the antigen was shown by ELISA. The results of the sereny test in Guinea pigs showed that IpaD(72-162) provides a protective system against Shigella flexneri 5a and S. dysenteriae type I.

  10. N-terminal palmitoylation is required for Toxoplasma gondii HSP20 inner membrane complex localization.

    Science.gov (United States)

    De Napoli, M G; de Miguel, N; Lebrun, M; Moreno, S N J; Angel, S O; Corvi, M M

    2013-06-01

    Toxoplasma gondii is an obligate intracellular parasite and the causative agent of toxoplasmosis. Protein palmitoylation is known to play roles in signal transduction and in enhancing the hydrophobicity of proteins thus contributing to their membrane association. Global inhibition of protein palmitoylation has been shown to affect T. gondii physiology and invasion of the host cell. However, the proteins affected by this modification have been understudied. This paper shows that the small heat shock protein 20 from T. gondii (TgHSP20) is synthesized as a mature protein in the cytosol and is palmitoylated in three cysteine residues. However, its localization at the inner membrane complex (IMC) is dependent only on N-terminal palmitoylation. Absence or incomplete N-terminal palmitoylation causes TgHSP20 to partially accumulate in a membranous structure. Interestingly, TgHSP20 palmitoylation is not responsible for its interaction with the daughter cells IMCs. Together, our data describe the importance of palmitoylation in protein targeting to the IMC in T. gondii.

  11. Role of the N-terminal seven residues of surfactant protein B (SP-B.

    Directory of Open Access Journals (Sweden)

    Mahzad Sharifahmadian

    Full Text Available Breathing is enabled by lung surfactant, a mixture of proteins and lipids that forms a surface-active layer and reduces surface tension at the air-water interface in lungs. Surfactant protein B (SP-B is an essential component of lung surfactant. In this study we probe the mechanism underlying the important functional contributions made by the N-terminal 7 residues of SP-B, a region sometimes called the "insertion sequence". These studies employed a construct of SP-B, SP-B (1-25,63-78, also called Super Mini-B, which is a 41-residue peptide with internal disulfide bonds comprising the N-terminal 7-residue insertion sequence and the N- and C-terminal helices of SP-B. Circular dichroism, solution NMR, and solid state (2H NMR were used to study the structure of SP-B (1-25,63-78 and its interactions with phospholipid bilayers. Comparison of results for SP-B (8-25,63-78 and SP-B (1-25,63-78 demonstrates that the presence of the 7-residue insertion sequence induces substantial disorder near the centre of the lipid bilayer, but without a major disruption of the overall mechanical orientation of the bilayers. This observation suggests the insertion sequence is unlikely to penetrate deeply into the bilayer. The 7-residue insertion sequence substantially increases the solution NMR linewidths, most likely due to an increase in global dynamics.

  12. KLF4 N-Terminal Variance Modulates Induced Reprogramming to Pluripotency

    Directory of Open Access Journals (Sweden)

    Shin-Il Kim

    2015-04-01

    Full Text Available As the quintessential reprogramming model, OCT3/4, SOX2, KLF4, and c-MYC re-wire somatic cells to achieve induced pluripotency. Yet, subtle differences in methodology confound comparative studies of reprogramming mechanisms. Employing transposons, we systematically assessed cellular and molecular hallmarks of mouse somatic cell reprogramming by various polycistronic cassettes. Reprogramming responses varied in the extent of initiation and stabilization of transgene-independent pluripotency. Notably, the cassettes employed one of two KLF4 variants, differing only by nine N-terminal amino acids, which generated dissimilar protein stoichiometry. Extending the shorter variant by nine N-terminal amino acids or augmenting stoichiometry by KLF4 supplementation rescued both protein levels and phenotypic disparities, implicating a threshold in determining reprogramming outcomes. Strikingly, global gene expression patterns elicited by published polycistronic cassettes diverged according to each KLF4 variant. Our data expose a Klf4 reference cDNA variation that alters polycistronic factor stoichiometry, predicts reprogramming hallmarks, and guides comparison of compatible public data sets.

  13. Directed evolution of the TALE N-terminal domain for recognition of all 5' bases.

    Science.gov (United States)

    Lamb, Brian M; Mercer, Andrew C; Barbas, Carlos F

    2013-11-01

    Transcription activator-like effector (TALE) proteins can be designed to bind virtually any DNA sequence. General guidelines for design of TALE DNA-binding domains suggest that the 5'-most base of the DNA sequence bound by the TALE (the N0 base) should be a thymine. We quantified the N0 requirement by analysis of the activities of TALE transcription factors (TALE-TF), TALE recombinases (TALE-R) and TALE nucleases (TALENs) with each DNA base at this position. In the absence of a 5' T, we observed decreases in TALE activity up to >1000-fold in TALE-TF activity, up to 100-fold in TALE-R activity and up to 10-fold reduction in TALEN activity compared with target sequences containing a 5' T. To develop TALE architectures that recognize all possible N0 bases, we used structure-guided library design coupled with TALE-R activity selections to evolve novel TALE N-terminal domains to accommodate any N0 base. A G-selective domain and broadly reactive domains were isolated and characterized. The engineered TALE domains selected in the TALE-R format demonstrated modularity and were active in TALE-TF and TALEN architectures. Evolved N-terminal domains provide effective and unconstrained TALE-based targeting of any DNA sequence as TALE binding proteins and designer enzymes.

  14. Correlation Analysis of CA125 and N-terminal pro-brain natriuretic peptide and cardiac function in patients with chronic heart failure%慢性心衰患者CA125与N-末端脑钠素原及心功能相关性研究

    Institute of Scientific and Technical Information of China (English)

    张建秀; 高华; 曹倩; 闫超

    2014-01-01

    目的:探讨慢性心衰患者血清肿瘤抗原糖类抗原125(C A 125)与N‐末端脑钠素原(WT‐‐ProBNP)及心功能相关性。方法:选择慢性心衰患者108例,根据NYHA 心功能分级标准进行分级,分别检测CA19‐9、CA125、NT‐ProBNP、E/E’及左心射血分数(LVEF)并检测LVEF及E/E’。结果:III级患者CA125、NT‐ProBNP较II级患者均出现显著性升高(P<0.05),IV级患者较II、III级患者均出现显著性升高(P<0.05)。III级患者LVEF、E/E’较II级患者均出现显著性差异(P<0.05),IV级患者LVEF较II级患者均出现显著性升高(P<0.05),E/E'较II、III级患者均出现显著性升高(P<0.05)。CA125与NT‐ProBNP、E/E'显著正相关(P<0.05),与LVEF显著负相关(P<0.05)。结论:CA125与心功能相关指标密切相关,对其水平检测有助于明确慢性心衰的进展。%Objective:To investigate correlation analysis of CA125 and N‐terminal pro‐brain natriuretic peptide and cardiac function in patients with chronic heart failure .Methods :108 patients with chronic heart failure were classified according to NYHA class grading standards ,CA19‐9 ,CA125 ,NT‐ProBNP ,E /E'and LVEF and detect LVEF and E /E'were detected .Results :In stage III patients CA125 ,NT‐ProBNP than stage II patients were significantly higher (P <0 .05) ,stage IV patients than stage II ,stage III patients were significantly higher (P <0 . 05) .LVEF ,E /E'in III patients compared with grade II patients were significantly different (P <0 .05) ,LVEF in grade IV was higher than that in grade II patients (P <0 .05) ,E /E'than grade II and grade III were significantly higher(P <0 .05) .CA125 and NT‐ProBNP ,E /E'showed significant positive correlation (P <0 .05) ,and LVEF was significantly negatively correlated (P <0 .05) .Conclusion:CA125 is closely related to heart function related in‐dicators ,which help to predict progress of chronic heart failure .

  15. 血浆N末端脑利钠肽前体水平与左心室射血分数正常心力衰竭患者预后的相关研究%Prognostic value of N-terminal pro-brain natriuretic peptide in patients with heart failure and preserved left ventricular ejection fraction

    Institute of Scientific and Technical Information of China (English)

    张志扬; 陈慧; 吴小盈

    2009-01-01

    目的 评估血浆氨基末端脑利钠肽前体(NT-proBNP)水平对左心室射血分数(LVEF)正常(LVEF>50%)的心力衰竭(HFPEF)患者的价值.方法 选择2008年1月至12月在福建医科大学省立临床学院心内科连续住院资料完整、有心力衰竭症状或者体征、LVEF正常、有左心室舒张功能不全证据的患者133例[男76例,女57例,年龄(71.7±11.5)岁],并且与同期LVEF下降(0.05).(2)Cox模型回归分析显示lg(NT-proBNP)是HFPEF患者独立的心血管事件再发生的预后因素,OR=4.865(95%CI:1.607~14.726,P=0.005).(3)Kaplan-Meier生存曲线分析表明NT-proBNP>2 016.0 pg/ml组的再发心血管事件风险是NT-proBNP≤2 016.0 pg/ml组的3.688倍(95%CI:1.502~9.056,P=0.003).结论 血浆NT-proBNP水平对HFPEF患者预后评估有重要价值,NT-proBNP>2 016.0 pg/ml提示预后不良.

  16. 超重和肥胖对心房颤动患者血浆N-末端B型利钠肽原浓度的影响%Impact of Overweight/Obesity on Plasma Level of N-terminal Pro-brain Natriuretic Peptide in Patients With Atrial Fibrillation

    Institute of Scientific and Technical Information of China (English)

    郑黎晖; 姚焰; 陈文生; 包静汝; 张澍

    2014-01-01

      方法:连续入选239例因房颤于我院行导管消融治疗的患者,记录临床情况,测量身高、体重计算BMI,测定血浆NT-proBNP浓度。将患者分为超重和肥胖组(BMI≥25 kg/m2)及非超重和肥胖组(BMI  结果:239例中超重和肥胖组129例(54%)。比较非超重和肥胖组,超重和肥胖组的年龄更轻,非阵发性房颤、高血压及糖尿病的比例更高,左心房内径及左心室舒张末期内径更大。超重和肥胖组的血浆NT-proBNP浓度低于非超重和肥胖组[(456±201) fmol/ml vs (601±266) fmol/ml(P  结论:房颤患者的血浆NT-proBNP浓度与BMI呈负相关。

  17. Differential isotope dansylation labeling combined with liquid chromatography mass spectrometry for quantification of intact and N-terminal truncated proteins.

    Science.gov (United States)

    Tang, Yanan; Li, Liang

    2013-08-20

    The N-terminal amino acids of proteins are important structure units for maintaining the biological function, localization, and interaction networks of proteins. Under different biological conditions, one or several N-terminal amino acids could be cleaved from an intact protein due to processes, such as proteolysis, resulting in the change of protein properties. Thus, the ability to quantify the N-terminal truncated forms of proteins is of great importance, particularly in the area of development and production of protein-based drugs where the relative quantity of the intact protein and its truncated form needs to be monitored. In this work, we describe a rapid method for absolute quantification of protein mixtures containing intact and N-terminal truncated proteins. This method is based on dansylation labeling of the N-terminal amino acids of proteins, followed by microwave-assisted acid hydrolysis of the proteins into amino acids. It is shown that dansyl labeled amino acids are stable in acidic conditions and can be quantified by liquid chromatography mass spectrometry (LC-MS) with the use of isotope analog standards.

  18. Crystallization of Galectin-8 Linker Reveals Intricate Relationship between the N-terminal Tail and the Linker

    Directory of Open Access Journals (Sweden)

    Yunlong Si

    2016-12-01

    Full Text Available Galectin-8 (Gal-8 plays a significant role in normal immunological function as well as in cancer. This lectin contains two carbohydrate recognition domains (CRD connected by a peptide linker. The N-terminal CRD determines ligand binding specificity, whereas the linker has been proposed to regulate overall Gal-8 function, including multimerization and biological activity. Here, we crystallized the Gal-8 N-terminal CRD with the peptide linker using a crystallization condition that contains Ni2+. The Ni2+ ion was found to be complexed between two CRDs via crystal packing contacts. The coordination between Ni2+ and Asp25 plays an indirect role in determining the structure of β-strand F0 and in influencing the linker conformation which could not be defined due to its dynamic nature. The linker was also shortened in situ and crystallized under a different condition, leading to a higher resolution structure refined to 1.08 Å. This crystal structure allowed definition of a short portion of the linker interacting with the Gal-8 N-terminal tail via ionic interactions and hydrogen bonds. Observation of two Gal-8 N-terminal CRD structures implies that the N-terminal tail and the linker may influence each other’s conformation. In addition, under specific crystallization conditions, glycerol could replace lactose and was observed at the carbohydrate binding site. However, glycerol did not show inhibition activity in hemagglutination assay.

  19. Structure of the N-terminal domain of the metalloprotease PrtV from Vibrio cholerae.

    Science.gov (United States)

    Edwin, Aaron; Persson, Cecilia; Mayzel, Maxim; Wai, Sun Nyunt; Öhman, Anders; Karlsson, B Göran; Sauer-Eriksson, A Elisabeth

    2015-12-01

    The metalloprotease PrtV from Vibrio cholerae serves an important function for the ability of bacteria to invade the mammalian host cell. The protein belongs to the family of M6 proteases, with a characteristic zinc ion in the catalytic active site. PrtV constitutes a 918 amino acids (102 kDa) multidomain pre-pro-protein that undergoes several N- and C-terminal modifications to form a catalytically active protease. We report here the NMR structure of the PrtV N-terminal domain (residues 23-103) that contains two short α-helices in a coiled coil motif. The helices are held together by a cluster of hydrophobic residues. Approximately 30 residues at the C-terminal end, which were predicted to form a third helical structure, are disordered. These residues are highly conserved within the genus Vibrio, which suggests that they might be functionally important.

  20. Structure of the N-terminal fragment of topoisomerase V reveals a new family of topoisomerases

    Energy Technology Data Exchange (ETDEWEB)

    Taneja, Bhupesh; Patel, Asmita; Slesarev, Alexei; Mondragon, Alfonso (NWU); (FSI)

    2010-09-02

    Topoisomerases are involved in controlling and maintaining the topology of DNA and are present in all kingdoms of life. Unlike all other types of topoisomerases, similar type IB enzymes have only been identified in bacteria and eukarya. The only putative type IB topoisomerase in archaea is represented by Methanopyrus kandleri topoisomerase V. Despite several common functional characteristics, topoisomerase V shows no sequence similarity to other members of the same type. The structure of the 61 kDa N-terminal fragment of topoisomerase V reveals no structural similarity to other topoisomerases. Furthermore, the structure of the active site region is different, suggesting no conservation in the cleavage and religation mechanism. Additionally, the active site is buried, indicating the need of a conformational change for activity. The presence of a topoisomerase in archaea with a unique structure suggests the evolution of a separate mechanism to alter DNA.

  1. Structure-Function Study of the N-terminal Domain of Exocyst Subunit Sec3

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Kyuwon; Knödler, Andreas; Lee, Sung Haeng; Zhang, Xiaoyu; Orlando, Kelly; Zhang, Jian; Foskett, Trevor J.; Guo, Wei; Dominguez, Roberto (UPENN)

    2010-04-19

    The exocyst is an evolutionarily conserved octameric complex involved in polarized exocytosis from yeast to humans. The Sec3 subunit of the exocyst acts as a spatial landmark for exocytosis through its ability to bind phospholipids and small GTPases. The structure of the N-terminal domain of Sec3 (Sec3N) was determined ab initio and defines a new subclass of pleckstrin homology (PH) domains along with a new family of proteins carrying this domain. Respectively, N- and C-terminal to the PH domain Sec3N presents an additional {alpha}-helix and two {beta}-strands that mediate dimerization through domain swapping. The structure identifies residues responsible for phospholipid binding, which when mutated in cells impair the localization of exocyst components at the plasma membrane and lead to defects in exocytosis. Through its ability to bind the small GTPase Cdc42 and phospholipids, the PH domain of Sec3 functions as a coincidence detector at the plasma membrane.

  2. The vasorelaxant effect of adrenomedullin, proadrenomedullin N-terminal 20 peptide and amylin in human skin

    DEFF Research Database (Denmark)

    Hasbak, Philip; Eskesen, Karen; Lind, Peter Henrik

    2006-01-01

    In this study we aimed to assess in vivo, the vasodilator effects of adrenomedullin, proadrenomedullin N-terminal 20 peptide (PAMP) and amylin in human skin vasculature and compare the responses to the effects mediated by the endogenous neuropeptides calcitonin gene-related peptide (CGRP......) and substance P and to examine the mRNA expression of calcitonin receptor-like receptor (CL-R) and receptor-activity modifying proteins, RAMP1, RAMP 2 and RAMP3 in human subcutaneous arteries. Changes in skin blood flow of the forearm were measured using a Laser Doppler Imager after intradermal injection...... of CGRP, adrenomedullin and amylin induces long lasting dilatation of human skin vasculature by activation of CGRP1 receptors. PAMP induces transient vasodilatation. PAMP but not CGRP, adrenomedullin and amylin causes itch sensation and local erythema. The transient effect on vasodilatation as response...

  3. Structural polymorphism in the N-terminal oligomerization domain of NPM1.

    Science.gov (United States)

    Mitrea, Diana M; Grace, Christy R; Buljan, Marija; Yun, Mi-Kyung; Pytel, Nicholas J; Satumba, John; Nourse, Amanda; Park, Cheon-Gil; Madan Babu, M; White, Stephen W; Kriwacki, Richard W

    2014-03-25

    Nucleophosmin (NPM1) is a multifunctional phospho-protein with critical roles in ribosome biogenesis, tumor suppression, and nucleolar stress response. Here we show that the N-terminal oligomerization domain of NPM1 (Npm-N) exhibits structural polymorphism by populating conformational states ranging from a highly ordered, folded pentamer to a highly disordered monomer. The monomer-pentamer equilibrium is modulated by posttranslational modification and protein binding. Phosphorylation drives the equilibrium in favor of monomeric forms, and this effect can be reversed by Npm-N binding to its interaction partners. We have identified a short, arginine-rich linear motif in NPM1 binding partners that mediates Npm-N oligomerization. We propose that the diverse functional repertoire associated with NPM1 is controlled through a regulated unfolding mechanism signaled through posttranslational modifications and intermolecular interactions.

  4. Copper binding triggers compaction in N-terminal tail of human copper pump ATP7B.

    Science.gov (United States)

    Mondol, Tanumoy; Åden, Jörgen; Wittung-Stafshede, Pernilla

    2016-02-12

    Protein conformational changes are fundamental to biological reactions. For copper ion transport, the multi-domain protein ATP7B in the Golgi network receives copper from the cytoplasmic copper chaperone Atox1 and, with energy from ATP hydrolysis, moves the metal to the lumen for loading of copper-dependent enzymes. Although anticipated, conformational changes involved in ATP7B's functional cycle remain elusive. Using spectroscopic methods we here demonstrate that the four most N-terminal metal-binding domains in ATP7B, upon stoichiometric copper addition, adopt a more compact arrangement which has a higher thermal stability than in the absence of copper. In contrast to previous reports, no stable complex was found in solution between the metal-binding domains and the nucleotide-binding domain of ATP7B. Metal-dependent movement of the first four metal-binding domains in ATP7B may be a trigger that initiates the overall catalytic cycle.

  5. Analysis of the secondary structure of a protein's N-terminal

    Science.gov (United States)

    Floare, C. G.; Bogdan, M.; Horovitz, O.; Mocanu, A.; Tomoaia-Cotisel, M.

    2009-08-01

    The major protein component from aleurone cells of barley (Hordeum vulgare L.), PACB, is related to 7S globulins present in other cereals and to the vicilin-type 7S globulins of legumes and cotton seed. It contains 4 subunits of about 20, 25, 40 and 50 kDa molecular weights. The N-terminal sequence of 16 amino acids (over 260 atoms) in the protein was previously determined, and our aim is the prediction of its secondary structure. The empirical Chou-Fasman method was applied in an improved version as well as the empirical DSC method (discrimination of protein secondary structure class) with quite similar results. A molecular dynamics simulation was also performed, using the FF99SB forcefield within AMBER version 9.0. Solvation effects were incorporated using the Born model. The results are compared and a 3D model is proposed.

  6. Analysis of the secondary structure of a protein's N-terminal

    Energy Technology Data Exchange (ETDEWEB)

    Floare, C G; Bogdan, M [National Institute for R and D of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Horovitz, O; Mocanu, A; Tomoaia-Cotisel, M, E-mail: calin.floare@itim-cj.r [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Physical Chemistry, 11 Arany Janos, 400028 Cluj-Napoca (Romania)

    2009-08-01

    The major protein component from aleurone cells of barley (Hordeum vulgare L.), PACB, is related to 7S globulins present in other cereals and to the vicilin-type 7S globulins of legumes and cotton seed. It contains 4 subunits of about 20, 25, 40 and 50 kDa molecular weights. The N-terminal sequence of 16 amino acids (over 260 atoms) in the protein was previously determined, and our aim is the prediction of its secondary structure. The empirical Chou-Fasman method was applied in an improved version as well as the empirical DSC method (discrimination of protein secondary structure class) with quite similar results. A molecular dynamics simulation was also performed, using the FF99SB forcefield within AMBER version 9.0. Solvation effects were incorporated using the Born model. The results are compared and a 3D model is proposed.

  7. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome.

    Directory of Open Access Journals (Sweden)

    Boris Zybailov

    Full Text Available Characterization of the chloroplast proteome is needed to understand the essential contribution of the chloroplast to plant growth and development. Here we present a large scale analysis by nanoLC-Q-TOF and nanoLC-LTQ-Orbitrap mass spectrometry (MS of ten independent chloroplast preparations from Arabidopsis thaliana which unambiguously identified 1325 proteins. Novel proteins include various kinases and putative nucleotide binding proteins. Based on repeated and independent MS based protein identifications requiring multiple matched peptide sequences, as well as literature, 916 nuclear-encoded proteins were assigned with high confidence to the plastid, of which 86% had a predicted chloroplast transit peptide (cTP. The protein abundance of soluble stromal proteins was calculated from normalized spectral counts from LTQ-Obitrap analysis and was found to cover four orders of magnitude. Comparison to gel-based quantification demonstrates that 'spectral counting' can provide large scale protein quantification for Arabidopsis. This quantitative information was used to determine possible biases for protein targeting prediction by TargetP and also to understand the significance of protein contaminants. The abundance data for 550 stromal proteins was used to understand abundance of metabolic pathways and chloroplast processes. We highlight the abundance of 48 stromal proteins involved in post-translational proteome homeostasis (including aminopeptidases, proteases, deformylases, chaperones, protein sorting components and discuss the biological implications. N-terminal modifications were identified for a subset of nuclear- and chloroplast-encoded proteins and a novel N-terminal acetylation motif was discovered. Analysis of cTPs and their cleavage sites of Arabidopsis chloroplast proteins, as well as their predicted rice homologues, identified new species-dependent features, which will facilitate improved subcellular localization prediction. No evidence

  8. Conservation and antigenicity of N-terminal sequences of GP185 from different Plasmodium falciparum isolates.

    Science.gov (United States)

    Howard, R F; Ardeshir, F; Reese, R T

    1986-01-01

    Complementary DNA (cDNA) clones for GP185, a major antigenically diverse glycoprotein of Plasmodium falciparum, were isolated from a cDNA library of the Honduras I/CDC (Honduras I) isolate, and 1052 bp were sequenced. The expression of cDNA fragments in Escherichia coli using the vector pCQV2 allowed verification of the reading frame. This GP185 cDNA sequence, like the cDNA sequence for a homologous gene of the K1 isolate [Hall et al., Nature 311 (1984) 379-382], codes for a polypeptide which is truncated due to multiple, in-frame stop codons. This polypeptide corresponds to the N-terminal 15% of the proposed coding region of the GP185 gene [Holder et al., Nature 317 (1985) 270-273]. Comparison of the nucleotide sequences for the GP185 gene of Honduras I and five other isolates indicated that there are two areas of conserved DNA sequence, one of 310 bp (beginning 181 bp upstream from the proposed initiation codon) and the other of greater than or equal to 360 bp (located entirely within the coding region), separated by a region encoding isolate-specific tandem amino acid repeats. Rat antiserum was raised to a fusion protein derived from the conserved regions and the intervening repeat region of this Honduras I protein. This antiserum bound GP185 on immunoblots of the homologous Honduras I isolate and the heterologous K1 isolate, which has different tandem repeats. Serum from owl monkeys and humans previously infected with P. falciparum reacted with the fusion protein on immunoblots demonstrating that determinants in the N-terminal 15% of GP185 were immunogenic in infected individuals and suggesting that some of these sites are conserved among isolates.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. N-Terminal Presequence-Independent Import of Phosphofructokinase into Hydrogenosomes of Trichomonas vaginalis.

    Science.gov (United States)

    Rada, Petr; Makki, Abhijith Radhakrishna; Zimorski, Verena; Garg, Sriram; Hampl, Vladimír; Hrdý, Ivan; Gould, Sven B; Tachezy, Jan

    2015-12-01

    Mitochondrial evolution entailed the origin of protein import machinery that allows nuclear-encoded proteins to be targeted to the organelle, as well as the origin of cleavable N-terminal targeting sequences (NTS) that allow efficient sorting and import of matrix proteins. In hydrogenosomes and mitosomes, reduced forms of mitochondria with reduced proteomes, NTS-independent targeting of matrix proteins is known. Here, we studied the cellular localization of two glycolytic enzymes in the anaerobic pathogen Trichomonas vaginalis: PPi-dependent phosphofructokinase (TvPPi-PFK), which is the main glycolytic PFK activity of the protist, and ATP-dependent PFK (TvATP-PFK), the function of which is less clear. TvPPi-PFK was detected predominantly in the cytosol, as expected, while all four TvATP-PFK paralogues were imported into T. vaginalis hydrogenosomes, although none of them possesses an NTS. The heterologous expression of TvATP-PFK in Saccharomyces cerevisiae revealed an intrinsic capability of the protein to be recognized and imported into yeast mitochondria, whereas yeast ATP-PFK resides in the cytosol. TvATP-PFK consists of only a catalytic domain, similarly to "short" bacterial enzymes, while ScATP-PFK includes an N-terminal extension, a catalytic domain, and a C-terminal regulatory domain. Expression of the catalytic domain of ScATP-PFK and short Escherichia coli ATP-PFK in T. vaginalis resulted in their partial delivery to hydrogenosomes. These results indicate that TvATP-PFK and the homologous ATP-PFKs possess internal structural targeting information that is recognized by the hydrogenosomal import machinery. From an evolutionary perspective, the predisposition of ancient ATP-PFK to be recognized and imported into hydrogenosomes might be a relict from the early phases of organelle evolution.

  10. Reaction of the N-terminal methionine residues in cyanase with diethylpyrocarbonate.

    Science.gov (United States)

    Anderson, P M; Korte, J J; Holcomb, T A

    1994-11-29

    Cyanase is an inducible enzyme in Escherichia coli that catalyzes the reaction of cyanate with bicarbonate to give ammonia and carbon dioxide. The enzyme is a decamer of identical subunits (M(r) = 17,000). Previous studies have shown that modification of either the single cysteine residue or the single histidine residue in each subunit gives an active decameric derivative that dissociates reversibly to inactive dimer derivative, indicating that decameric structure is required for activity and that the SH and imidazole groups are not required for catalytic activity [Anderson, P. M., Korte, J. J., Holcomb, T. A., Cho, Y.-G., Son, C.-M., & Sung, Y.-C. (1994) J. Biol. Chem. 269, 15036-15045]. Here the effects of reaction of the reagent diethylpyrocarbonate (DEPC) with cyanase or mutant cyanases are reported. DEPC reacts stoichiometrically with the histidine residue and at one additional site in each subunit when the enzyme is in the inactive dimer form, preventing reactivation. DEPC reacts stoichiometrically (with the same result on reactivation) at only one site per subunit with the inactive dimer form of cyanase mutants in which the single histidine residue has been replaced by one of several different amino acids by site-directed mutagenesis; the site of the reaction was identified as the amino group of the N-terminal methionine. DEPC does not react with the histidine residue of the active decameric form of wild-type cyanase and does not affect activity of the active decameric form of wild-type or mutant cyanases. Reaction with the N-terminal amino group of methionine apparently prevents reactivation of the mutant enzymes by blocking association to decamer.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. NMR and structural data for Connexin 32 and Connexin 26 N-terminal peptides

    Directory of Open Access Journals (Sweden)

    Yuksel Batir

    2016-12-01

    Full Text Available In this article we present 1H and 13C chemical shift assignments, secondary structural propensity data and normalized temperature coefficient data for N-terminal peptides of Connexin 26 (Cx26, Cx26G12R and Cx32G12R mutants seen in syndromic deafness and Charcot Marie Tooth Disease respectively, published in “Structural Studies of N-Terminal Mutants of Connexin 26 and Connexin 32 Using 1H NMR Spectroscopy” (Y. Batir, T.A. Bargiello, T.L. Dowd, 2016 [1]. The mutation G12R affects the structure of both Cx26 and Cx32 peptides differently. We present data from secondary structure propensity chemical shift analysis which calculates a secondary structure propensity (SSP score for both disordered or folded peptides and proteins using the difference between the 13C secondary chemical shifts of the Cα and Cβ protons. This data supplements the calculated NMR structures from NOESY data [1]. We present and compare the SSP data for the Cx26 vs Cx26G12R peptides and the Cx32 and Cx32G12R peptides. In addition, we present plots of temperature coefficients obtained for Cx26, Cx26G12R and Cx32G12R peptides collected previously [1] and normalized to their random coil temperature coefficients, “Random coil 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG” (G. Merutka, H.J. Dyson, P.E. Wright, 1995 [2]. Reductions in these normalized temperature coefficients are directly observable for residues in different segments of the peptide and this data informs on solvent accessibility of the NH protons and NH protons which may be more constrained due to the formation of H bonds.

  12. Stable expression and characterization of N-terminal tagged recombinant human bone morphogenetic protein 15

    Science.gov (United States)

    Li, Qinglei; Rajanahally, Saneal; Edson, Mark A.; Matzuk, Martin M.

    2009-01-01

    Oocyte-derived growth factors are critically involved in multiple ovarian processes via paracrine actions. Although recombinant proteins have been applied to dissect the physiological functions of these factors, variation of activities among different protein preparations remains an issue. To further elucidate the roles of one of these growth factors, bone morphogenetic protein 15 (BMP15), in mediating oocyte-regulated molecular and cellular events and to explore its potential clinical application, we engineered the human BMP15 sequence to efficiently produce bioactive recombinant human BMP15 (rhBMP15). The proteolytic cleavage site of the hBMP15 precursor was optimized to facilitate the production of the mature protein, and a FLAG-tag was placed at the N-terminus of the mature region to ease purification and avoid potential interference of the tag with the cystine knot structure. The rhBMP15 protein was purified using anti-FLAG M2 affinity gel. Our results demonstrated that the N-terminal tagged rhBMP15 was efficiently processed in HEK-293 cells. Furthermore, the purified rhBMP15 could activate SMAD1/5/8 and induce the transcription of genes encoding cumulus expansion-related transcripts (Ptx3, Has2, Tnfaip6 and Ptgs2), inhibitory SMADs (Smad6 and Smad7), BMP antagonists (Grem1 and Fst), activin/inhibin βA (Inhba) and βB (Inhbb) subunits, etc. Thus, our rhBMP15 containing a genetically modified cleavage sequence and an N-terminal FLAG-tag can be efficiently produced, processed and secreted in a mammalian expression system. The purified rhBMP15 is also biologically active and very stable, and can induce the expression of a variety of mouse granulosa cell genes. PMID:19651638

  13. Antimicrobial activity of human prion protein is mediated by its N-terminal region.

    Directory of Open Access Journals (Sweden)

    Mukesh Pasupuleti

    Full Text Available BACKGROUND: Cellular prion-related protein (PrP(c is a cell-surface protein that is ubiquitously expressed in the human body. The multifunctionality of PrP(c, and presence of an exposed cationic and heparin-binding N-terminus, a feature characterizing many antimicrobial peptides, made us hypothesize that PrP(c could exert antimicrobial activity. METHODOLOGY AND PRINCIPAL FINDINGS: Intact recombinant PrP exerted antibacterial and antifungal effects at normal and low pH. Studies employing recombinant PrP and N- and C-terminally truncated variants, as well as overlapping peptide 20mers, demonstrated that the antimicrobial activity is mediated by the unstructured N-terminal part of the protein. Synthetic peptides of the N-terminus of PrP killed the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida parapsilosis. Fluorescence studies of peptide-treated bacteria, paired with analysis of peptide effects on liposomes, showed that the peptides exerted membrane-breaking effects similar to those seen after treatment with the "classical" human antimicrobial peptide LL-37. In contrast to LL-37, however, no marked helix induction was detected for the PrP-derived peptides in presence of negatively charged (bacteria-mimicking liposomes. PrP furthermore showed an inducible expression during wounding of human skin ex vivo and in vivo, as well as stimulation of keratinocytes with TGF-alpha in vitro. CONCLUSIONS: The demonstration of an antimicrobial activity of PrP, localisation of its activity to the N-terminal and heparin-binding region, combined with results showing an increased expression of PrP during wounding, indicate that PrPs could have a previously undisclosed role in host defense.

  14. Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif

    Directory of Open Access Journals (Sweden)

    Emmersen Jeppe

    2010-05-01

    Full Text Available Abstract Background Powdery mildew and rust fungi are widespread, serious pathogens that depend on developing haustoria in the living plant cells. Haustoria are separated from the host cytoplasm by a plant cell-derived extrahaustorial membrane. They secrete effector proteins, some of which are subsequently transferred across this membrane to the plant cell to suppress defense. Results In a cDNA library from barley epidermis containing powdery mildew haustoria, two-thirds of the sequenced ESTs were fungal and represented ~3,000 genes. Many of the most highly expressed genes encoded small proteins with N-terminal signal peptides. While these proteins are novel and poorly related, they do share a three-amino acid motif, which we named "Y/F/WxC", in the N-terminal of the mature proteins. The first amino acid of this motif is aromatic: tyrosine, phenylalanine or tryptophan, and the last is always cysteine. In total, we identified 107 such proteins, for which the ESTs represent 19% of the fungal clones in our library, suggesting fundamental roles in haustoria function. While overall sequence similarity between the powdery mildew Y/F/WxC-proteins is low, they do have a highly similar exon-intron structure, suggesting they have a common origin. Interestingly, searches of public fungal genome and EST databases revealed that haustoria-producing rust fungi also encode large numbers of novel, short proteins with signal peptides and the Y/F/WxC-motif. No significant numbers of such proteins were identified from genome and EST sequences from either fungi which do not produce haustoria or from haustoria-producing Oomycetes. Conclusion In total, we identified 107, 178 and 57 such Y/F/WxC-proteins from the barley powdery mildew, the wheat stem rust and the wheat leaf rust fungi, respectively. All together, our findings suggest the Y/F/WxC-proteins to be a new class of effectors from haustoria-producing pathogenic fungi.

  15. Crystal Structure of the N-terminal Domain of the Group B Streptococcus Alpha C Protein

    Energy Technology Data Exchange (ETDEWEB)

    Auperin,T.; Bolduc, G.; Baron, M.; Heroux, A.; Filman, D.; Madoff, L.; Hogle, J.

    2005-01-01

    Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis, and meningitis among neonates and an important cause of morbidity among pregnant women and immunocompromised adults. Invasive diseases due to GBS are attributed to the ability of the pathogen to translocate across human epithelial surfaces. The alpha C protein (ACP) has been identified as an invasin that plays a role in internalization and translocation of GBS across epithelial cells. The soluble N-terminal domain of ACP (NtACP) blocks the internalization of GBS. We determined the 1.86-{angstrom} resolution crystal structure of NtACP comprising residues Ser{sup 52} through Leu{sup 225} of the full-length ACP. NtACP has two domains, an N-terminal {beta}-sandwich and a C-terminal three-helix bundle. Structural and topological alignments reveal that the {beta}-sandwich shares structural elements with the type III fibronectin fold (FnIII), but includes structural elaborations that make it unique. We have identified a potential integrin-binding motif consisting of Lys-Thr-Asp{sup 146}, Arg{sup 110}, and Asp{sup 118}. A similar arrangement of charged residues has been described in other invasins. ACP shows a heparin binding activity that requires NtACP. We propose a possible heparin-binding site, including one surface of the three-helix bundle, and nearby portions of the sandwich and repeat domains. We have validated this prediction using assays of the heparin binding and cell-adhesion properties of engineered fragments of ACP. This is the first crystal structure of a member of the highly conserved Gram-positive surface alpha-like protein family, and it will enable the internalization mechanism of GBS to be dissected at the atomic level.

  16. Interaction of the N-terminal segment of pulmonary surfactant protein SP-C with interfacial phospholipid films

    DEFF Research Database (Denmark)

    Plasencia, Inés; Keough, Kevin M W; Perez-Gil, Jesus

    2005-01-01

    Pulmonary surfactant protein SP-C is a 35-residue polypeptide composed of a hydrophobic transmembrane alpha-helix and a polycationic, palmitoylated-cysteine containing N-terminal segment. This segment is likely the only structural motif the protein projects out of the bilayer in which SP-C...... is inserted and is therefore a candidate motif to participate in interactions with other bilayers or monolayers. In the present work, we have detected intrinsic ability of a peptide based on the sequence of the N-terminal segment of SP-C to interact and insert spontaneously into preformed zwitterionic....... These results demonstrate that the sequence of the SP-C N-terminal region has intrinsic ability to interact with, insert into, and perturb the structure of zwitterionic and anionic phospholipid films, even in the absence of the palmitic chains attached to this segment in the native protein. This effect has been...

  17. Intrinsic structural differences in the N-terminal segment of pulmonary surfactant protein SP-C from different species

    DEFF Research Database (Denmark)

    Plasencia, I; Rivas, L; Casals, C;

    2001-01-01

    Predictive studies suggest that the known sequences of the N-terminal segment of surfactant protein SP-C from animal species have an intrinsic tendency to form beta-turns, but there are important differences on the probable location of these motifs in different SP-C species. Our hypothesis...... is that intrinsic structural determinants of the sequence of the N-terminal region of SP-C could define conformation, acylation and perhaps surface properties of the mature protein. To test this hypothesis we have synthesized peptides corresponding to the 13-residue N-terminal sequence of porcine and canine SP-C......-terminal end of SP-C may modulate these intrinsic conformational features and the changes induced could be important for the development of its surface activity. Udgivelsesdato: 2001-May...

  18. Correlation between spina bifida manifesta in fetal rats and c-Jun N-terminal kinase signaling

    Institute of Scientific and Technical Information of China (English)

    Yinghuan Ma; Yongxin Bao; Chenghao Li; Fubin Jiao; Hongjie Xin; Zhengwei Yuan

    2012-01-01

    Fetal rat models with neural tube defects were established by injection with retinoic acid at 10 days after conception. The immunofluorescence assay and western blot analysis showed that the number of caspase-3 positive cells in myeloid tissues for spina bifida manifesta was increased. There was also increased phosphorylation of c-Jun N-terminal kinase, a member of the mitogen activated protein kinase family. The c-Jun N-terminal kinase phosphorylation level was positively correlated with caspase-3 expression in myeloid tissues for spina bifida manifesta. Experimental findings indicate that abnormal apoptosis is involved in retinoic acid-induced dominant spina bifida formation in fetal rats, and may be associated with the c-Jun N-terminal kinase signal transduction pathway.

  19. Human choriogonadotropin binds to a lutropin receptor with essentially no N-terminal extension and stimulates cAMP synthesis.

    Science.gov (United States)

    Ji, I H; Ji, T H

    1991-07-15

    The lutropin (LH) receptor, which belongs to the family of G-protein coupled receptors, consists of an extracellular hydrophilic N-terminal extension of 341 amino acids and a membrane-embedded C-terminal region of 333 amino acids. This C-terminal region comprises a short N terminus, seven transmembrane domains, three cytoplasmic loops, three exoplasmic loops, and a C terminus. Recently, it was reported that the N-terminal extension of the LH receptor alone or a naturally occurring variant LH receptor similar to the N-terminal extension is capable of binding the hormone with an affinity slightly higher than that of the native receptor. This finding raises a question as to whether the N-terminal extension represents the entire hormone binding site and, if so, how is hormone binding transduced to the activation of a G-protein? In an attempt to answer this important question, we have prepared truncated receptors containing an N-terminal extension as short as 10 amino acids. Surprisingly, the truncated receptors were not only capable of binding the hormone, albeit with low affinities, but also capable of stimulating cAMP synthesis. These results suggest a possibility that the hormone, at least in part, interacts with the membrane-embedded C-terminal region and modulates it to activate adenylate cyclase. The low hormone binding affinities of the truncated receptors taken together with high affinity hormone binding to the N-terminal extension of the LH receptor indicate the existence of two or more contact points between the receptor and the hormone.

  20. Role of N-terminal region of Escherichia coli maltodextrin glucosidase in folding and function of the protein.

    Science.gov (United States)

    Pastor, Ashutosh; Singh, Amit K; Shukla, Prakash K; Equbal, Md Javed; Malik, Shikha T; Singh, Tej P; Chaudhuri, Tapan K

    2016-09-01

    Maltodextrin glucosidase (MalZ) hydrolyses short malto-oligosaccharides from the reducing end releasing glucose and maltose in Escherichia coli. MalZ is a highly aggregation prone protein and molecular chaperonins GroEL and GroES assist in the folding of this protein to a substantial level. The N-terminal region of this enzyme appears to be a unique domain as seen in sequence comparison studies with other amylases as well as through homology modelling. The sequence and homology model analysis show a probability of disorder in the N-Terminal region of MalZ. The crystal structure of this enzyme has been reported in the present communication. Based on the crystallographic structure, it has been interpreted that the N-terminal region of the enzyme (Met1-Phe131) might be unstructured or flexible. To understand the role of the N-terminal region of MalZ in its enzymatic activity, and overall stability, a truncated version (Ala111-His616) of MalZ was created. The truncated version failed to fold into an active enzyme both in E. coli cytosol and in vitro even with the assistance of chaperonins GroEL and GroES. Furthermore, the refolding effort of N-truncated MalZ in the presence of isolated N-terminal domain didn't succeed. Our studies suggest that while the structural rigidity or orientation of the N-terminal region of the MalZ protein may not be essential for its stability and function, but the said domain is likely to play an important role in the formation of the native structure of the protein when present as an integral part of the protein.

  1. Structure of the EMMPRIN N-terminal domain 1: Dimerization via [beta]-strand swapping

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jinquan; Teplyakov, Alexey; Obmolova, Galina; Malia, Thomas; Wu, Sheng-Jiun; Beil, Eric; Baker, Audrey; Swencki-Underwood, Bethany; Zhao, Yonghong; Sprenkle, Justin; Dixon, Ken; Sweet, Raymond; Gilliland, Gary L.; (Centocor)

    2010-09-27

    Extracellular matrix metalloproteinase inducer (EMMPRIN), also known as Hab18G, CD147, Basigin, M6, and neurothelin, is a membrane glycoprotein expressed on the surface of various cell types and many cancer cells. EMMPRIN stimulates adjacent fibroblasts and tumor cells to produce matrix metalloproteinases and plays an important role in tumor invasion and metastasis, angiogenesis, spermatogensis and fertilization, cell-cell adhesion and communication, and other biological processes (reviewed in Ref. 1 and references therein). It was demonstrated that the EMMPRIN extracellular domain (ECD), which structurally belongs to the IgG superfamily, can form homo-oligomers in a cis dependent manner and the N-terminal domain 1 (residues 22-101) was necessary and sufficient to mediate this interaction. The crystal structure of the ECD of recombinant human EMMPRIN (Hab18G/CD147) expressed in E. coli was reported at 2.8 {angstrom} resolution (Yu et al. 2008). The construct consists of residues 22-205 of the mature protein and has both an N-terminal IgC2 domain (ND1, residues 22-101) and a C-terminal IgC2 domain (ND2, residues 107-205). The two domains are joined by a five amino acid residue linker that constitutes a flexible hinge between the two domains. The crystal form has four copies of the molecule in the asymmetric unit, each of which has a different inter-domain angle that varies from 121{sup o} to 144{sup o}. The two domains each have a conserved disulfide bridge and both are comprised of two {beta}-sheets formed by strands EBA and GFCC, and DEBA and AGFCC for ND1 and ND2, respectively. Based on the crystal packing in this structure, the authors proposed that lateral packing between the two IgG domains of EMMPRIN ECD represents a potential mechanism for cell adhesion. Here we report the 2.0-{angstrom} crystal structure of the N-terminal domain of EMMPRIN ECD (ND1) expressed in mammalian cells. The overall structure of the domain is very similar to that in the full length

  2. HBpF-proBDNF: A New Tool for the Analysis of Pro-Brain Derived Neurotrophic Factor Receptor Signaling and Cell Biology

    Science.gov (United States)

    Gaub, Perrine; de Léon, Andrès; Gibon, Julien; Soubannier, Vincent; Dorval, Geneviève; Séguéla, Philippe; Barker, Philip A.

    2016-01-01

    Neurotrophins activate intracellular signaling pathways necessary for neuronal survival, growth and apoptosis. The most abundant neurotrophin in the adult brain, brain-derived neurotrophic factor (BDNF), is first synthesized as a proBDNF precursor and recent studies have demonstrated that proBDNF can be secreted and that it functions as a ligand for a receptor complex containing p75NTR and sortilin. Activation of proBDNF receptors mediates growth cone collapse, reduces synaptic activity, and facilitates developmental apoptosis of motoneurons but the precise signaling cascades have been difficult to discern. To address this, we have engineered, expressed and purified HBpF-proBDNF, an expression construct containing a 6X-HIS tag, a biotin acceptor peptide (BAP) sequence, a PreScission™ Protease cleavage site and a FLAG-tag attached to the N-terminal part of murine proBDNF. Intact HBpF-proBDNF has activities indistinguishable from its wild-type counterpart and can be used to purify proBDNF signaling complexes or to monitor proBDNF endocytosis and retrograde transport. HBpF-proBDNF will be useful for characterizing proBDNF signaling complexes and for deciphering the role of proBDNF in neuronal development, synapse function and neurodegenerative disease. PMID:26950209

  3. Abnormal kinetochore-generated pulling forces from expressing a N-terminally modified Hec1.

    Directory of Open Access Journals (Sweden)

    Marta Mattiuzzo

    Full Text Available BACKGROUND: Highly Expressed in Cancer protein 1 (Hec1 is a constituent of the Ndc80 complex, a kinetochore component that has been shown to have a fundamental role in stable kinetochore-microtubule attachment, chromosome alignment and spindle checkpoint activation at mitosis. HEC1 RNA is found up-regulated in several cancer cells, suggesting a role for HEC1 deregulation in cancer. In light of this, we have investigated the consequences of experimentally-driven Hec1 expression on mitosis and chromosome segregation in an inducible expression system from human cells. METHODOLOGY/PRINCIPAL FINDINGS: Overexpression of Hec1 could never be obtained in HeLa clones inducibly expressing C-terminally tagged Hec1 or untagged Hec1, suggesting that Hec1 cellular levels are tightly controlled. On the contrary, a chimeric protein with an EGFP tag fused to the Hec1 N-terminus accumulated in cells and disrupted mitotic division. EGFP- Hec1 cells underwent altered chromosome segregation within multipolar spindles that originated from centriole splitting. We found that EGFP-Hec1 assembled a mutant Ndc80 complex that was unable to rescue the mitotic phenotypes of Hec1 depletion. Kinetochores harboring EGFP-Hec1 formed persisting lateral microtubule-kinetochore interactions that recruited the plus-end depolymerase MCAK and the microtubule stabilizing protein HURP on K-fibers. In these conditions the plus-end kinesin CENP-E was preferentially retained at kinetochores. RNAi-mediated CENP-E depletion further demonstrated that CENP-E function was required for multipolar spindle formation in EGFP-Hec1 expressing cells. CONCLUSIONS/SIGNIFICANCE: Our study suggests that modifications on Hec1 N-terminal tail can alter kinetochore-microtubule attachment stability and influence Ndc80 complex function independently from the intracellular levels of the protein. N-terminally modified Hec1 promotes spindle pole fragmentation by CENP-E-mediated plus-end directed kinetochore

  4. SILProNAQ: A Convenient Approach for Proteome-Wide Analysis of Protein N-Termini and N-Terminal Acetylation Quantitation.

    Science.gov (United States)

    Bienvenut, Willy V; Giglione, Carmela; Meinnel, Thierry

    2017-01-01

    Protein N-terminal modifications have recently been involved in overall proteostasis through their impact on cell fate and protein life time. This explains the development of new approaches to characterize more precisely the N-terminal end of mature proteins. Although few approaches are available to perform N-terminal enrichment based on positive or negative discriminations, these methods are usually restricted to the enrichment in N-terminal peptides and their characterization by mass spectrometry. Recent investigation highlights both (1) the knowledge of the N-terminal acetylation status of most cytosolic proteins and (2) post-translational addition of this modification on the N-terminus of nuclear coded chloroplast proteins imported in the plastid and after the cleavage of the transit peptide. The workflow involves stable isotope labeling to assess N-acetylation rates followed by Strong Cation eXchange (SCX ) fractionation of the samples to provide protein N-terminal enriched fractions. Combined with mass spectrometry analyses, the technology finally requires extensive data processing. This last step aims first at discriminating the most relevant mature N-termini from the characterized peptides, next at determining its experimental position and then at calculating the N-terminal acetylation yield. Stable-Isotope Protein N-terminal Acetylation Quantification (SILProNAQ) is a complete workflow combining wet-lab techniques together with dry-lab processing to determine the N-terminal acetylation yield of mature proteins for a clearly defined localization.

  5. IRMPD spectroscopy reveals a novel rearrangement reaction for modified peptides that involves elimination of the N-terminal amino acid

    NARCIS (Netherlands)

    van Stipdonk, M.J.; Patterson, K.; Gibson, J.K.; Berden, G.; Oomens, J.

    2015-01-01

    In this study, peptides were derivatized by reaction with salicylaldehyde to create N-terminal imines (Schiff bases). Collision-induced dissociation of the imine-modified peptides produces a complete series of b and a ions (which reveal sequence). However, an unusual pathway is also observed, one th

  6. N-terminal amino acid sequence of Bacillus licheniformis alpha-amylase: comparison with Bacillus amyloliquefaciens and Bacillus subtilis Enzymes.

    OpenAIRE

    Kuhn, H.; Fietzek, P P; Lampen, J O

    1982-01-01

    The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis.

  7. The N-Terminal of Aquareovirus NS80 Is Required for Interacting with Viral Proteins and Viral Replication.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    Full Text Available Reovirus replication and assembly occurs within viral inclusion bodies that formed in specific intracellular compartments of cytoplasm in infected cells. Previous study indicated that aquareovirus NS80 is able to form inclusion bodies, and also can retain viral proteins within its inclusions. To better understand how NS80 performed in viral replication and assembly, the functional regions of NS80 associated with other viral proteins in aquareovirus replication were investigated in this study. Deletion mutational analysis and rotavirus NSP5-based protein association platform were used to detect association regions. Immunofluorescence images indicated that different N-terminal regions of NS80 could associate with viral proteins VP1, VP4, VP6 and NS38. Further co-immunoprecipitation analysis confirmed the interaction between VP1, VP4, VP6 or NS38 with different regions covering the N-terminal amino acid (aa, 1-471 of NS80, respectively. Moreover, removal of NS80 N-terminal sequences required for interaction with proteins VP1, VP4, VP6 or NS38 not only prevented the capacity of NS80 to support viral replication in NS80 shRNA-based replication complementation assays, but also inhibited the expression of aquareovirus proteins, suggesting that N-terminal regions of NS80 are necessary for viral replication. These results provided a foundational basis for further understanding the role of NS80 in viral replication and assembly during aquareovirus infection.

  8. Dimeric structure of the N-terminal domain of PriB protein from Thermoanaerobacter tengcongensis solved ab initio.

    Science.gov (United States)

    Liebschner, Dorothee; Brzezinski, Krzysztof; Dauter, Miroslawa; Dauter, Zbigniew; Nowak, Marta; Kur, Józef; Olszewski, Marcin

    2012-12-01

    PriB is one of the components of the bacterial primosome, which catalyzes the reactivation of stalled replication forks at sites of DNA damage. The N-terminal domain of the PriB protein from the thermophilic bacterium Thermoanaerobacter tengcongensis (TtePriB) was expressed and its crystal structure was solved at the atomic resolution of 1.09 Å by direct methods. The protein chain, which encompasses the first 104 residues of the full 220-residue protein, adopts the characteristic oligonucleotide/oligosaccharide-binding (OB) structure consisting of a five-stranded β-barrel filled with hydrophobic residues and equipped with four loops extending from the barrel. In the crystal two protomers dimerize, forming a six-stranded antiparallel β-sheet. The structure of the N-terminal OB domain of T. tengcongensis shows significant differences compared with mesophile PriBs. While in all other known structures of PriB a dimer is formed by two identical OB domains in separate chains, TtePriB contains two consecutive OB domains in one chain. However, sequence comparison of both the N-terminal and the C-terminal domains of TtePriB suggests that they have analogous structures and that the natural protein possesses a structure similar to a dimer of two N-terminal domains.

  9. BETA-N-TERMINAL GLYCOHEMOGLOBINS IN SUBJECTS WITH COMMON HEMOGLOBINOPATHIES - RELATION WITH FRUCTOSAMINE AND MEAN ERYTHROCYTE AGE

    NARCIS (Netherlands)

    MARTINA, WV; MARTIJN, EG; VANDERMOLEN, M; SCHERMER, JG; MUSKIET, FAJ

    1993-01-01

    Amounts of beta-N-terminal glycohemoglobins (HbX1c), serum fructosamine, and erythrocyte polyamines were determined in nondiabetic adults with HbAA, HbAC, HbAS, HbCC, HbSC, HbSS, and HbS/hereditary persistent HbF (HPFH). The groups did not differ in fructosamine concentrations. Mean (95% confidence

  10. Topology of eukaryotic type II membrane proteins: importance of N-terminal positively charged residues flanking the hydrophobic domain.

    Science.gov (United States)

    Parks, G D; Lamb, R A

    1991-02-22

    We have tested the role of different charged residues flanking the sides of the signal/anchor (S/A) domain of a eukaryotic type II (N(cyt)C(exo)) integral membrane protein in determining its topology. The removal of positively charged residues on the N-terminal side of the S/A yields proteins with an inverted topology, while the addition of positively charged residues to only the C-terminal side has very little effect on orientation. Expression of chimeric proteins composed of domains from a type II protein (HN) and the oppositely oriented membrane protein M2 indicates that the HN N-terminal domain is sufficient to confer a type II topology and that the M2 N-terminal ectodomain can direct a type II topology when modified by adding positively charged residues. These data suggest that eukaryotic membrane protein topology is governed by the presence or absence of an N-terminal signal for retention in the cytoplasm that is composed in part of positive charges.

  11. Expression, purification, and functional characterization of an N-terminal fragment of the tomato mosaic virus resistance protein Tm-1.

    Science.gov (United States)

    Kato, Masahiko; Ishibashi, Kazuhiro; Kobayashi, Chihoko; Ishikawa, Masayuki; Katoh, Etsuko

    2013-05-01

    Tm-1, the protein product of Tm-1, a semidominant resistance gene of tomato, inhibits tomato mosaic virus (ToMV) replication by binding to ToMV replication proteins. Previous studies suggested the importance of the Tm-1 N-terminal region for its inhibitory activity; however, it has not been determined if the N-terminal region is sufficient for inhibition. Furthermore, the three-dimensional structure of Tm-1 has not been determined. In this study, an N-terminal fragment of Tm-1 (residues 1-431) as a fusion protein containing an upstream maltose-binding protein was expressed in E. coli Rosetta (DE3) cells at 30°C and then purified. The solubility of the fusion protein was greater when the cells were cultured at 30°C than when cultured at lower or higher temperatures. The purified N-terminal Tm-1 fragment from which the maltose-binding protein tag had been removed has inhibitory activity against ToMV RNA replication.

  12. Fine tuning of the catalytic activity of colicin e7 nuclease domain by systematic n-terminal mutations

    DEFF Research Database (Denmark)

    Németh, Eszter; Körtvélyesi, Tamás; Thulstrup, Peter W.;

    2014-01-01

    The nuclease domain of colicin E7 (NColE7) promotes the nonspecific cleavage of nucleic acids at its C-terminal HNH motif. Interestingly, the deletion of four N-terminal residues (446–449NColE75KRNK) resulted in complete loss of the enzyme activity. R447A mutation was reported to decrease the nuc...

  13. Glutamate dehydrogenase isoforms with N-terminal (His)6- or FLAG-tag retain their kinetic properties and cellular localization

    DEFF Research Database (Denmark)

    Pajęcka, Kamilla; Nielsen, Camilla Wendel; Hauge, Anne

    2014-01-01

    containing N-terminal (His)6 tags were successfully expressed in Sf9 cells and the recombinant proteins were isolated to ≥95 % purity in a two-step procedure involving ammonium sulfate precipitation and Ni(2+)-based immobilized metal ion affinity chromatography. To explore whether the presence of the FLAG...

  14. N-terminal fusion tags for effective production of g-protein-coupled receptors in bacterial cell-free systems.

    Science.gov (United States)

    Lyukmanova, E N; Shenkarev, Z O; Khabibullina, N F; Kulbatskiy, D S; Shulepko, M A; Petrovskaya, L E; Arseniev, A S; Dolgikh, D A; Kirpichnikov, M P

    2012-10-01

    G-protein-coupled receptors (GPCR) constitute one of the biggest families of membrane proteins. In spite of the fact that they are highly relevant to pharmacy, they have remained poorly explored. One of the main bottlenecks encountered in structural-functional studies of GPCRs is the difficulty to produce sufficient amounts of the proteins. Cell-free systems based on bacterial extracts fromE. colicells attract much attention as an effective tool for recombinant production of membrane proteins. GPCR production in bacterial cell-free expression systems is often inefficient because of the problems associated with the low efficiency of the translation initiation process. This problem could be resolved if GPCRs were expressed in the form of hybrid proteins with N-terminal polypeptide fusion tags. In the present work, three new N-terminal fusion tags are proposed for cell-free production of the human β2-adrenergic receptor, human M1 muscarinic acetylcholine receptor, and human somatostatin receptor type 5. It is demonstrated that the application of an N-terminal fragment (6 a.a.) of bacteriorhodopsin fromExiguobacterium sibiricum(ESR-tag), N-terminal fragment (16 а.о.) of RNAse A (S-tag), and Mistic protein fromB. subtilisallows to increase the CF synthesis of the target GPCRs by 5-38 times, resulting in yields of 0.6-3.8 mg from 1 ml of the reaction mixture, which is sufficient for structural-functional studies.

  15. Characterization of an extensin-modifying metalloprotease: N-terminal processing and substrate cleavage pattern of Pectobacterium carotovorum Prt1

    DEFF Research Database (Denmark)

    Feng, Tao; Nyffenegger, Christian; Højrup, Peter;

    2014-01-01

    Compared to other plant cell wall-degrading enzymes, proteases are less well understood. In this study, the extracellular metalloprotease Prt1 from Pectobacterium carotovorum (formerly Erwinia carotovora) was expressed in Escherichia coli and characterized with respect to N-terminal processing...

  16. The N-terminal 81-aa fragment is critical for UT-A1 urea transporter bioactivity.

    Science.gov (United States)

    Huang, Haidong; Yang, Yuan; Eaton, Douglas C; Sands, Jeff M; Chen, Guangping

    2010-01-01

    The serine protease, furin, is involved in the activation of a number of proteins most notably epithelial sodium channels (ENaC). The urea transporter UT-A1, located in the kidney inner medullary collecting duct (IMCD), is important for urine concentrating ability. UT-A1's amino acid sequence has a consensus furin cleavage site (RSKR) in the N-terminal region. Despite the putative cleavage site, we find that UT-A1, either from the cytosolic or cell surface pool, is not cleaved by furin in CHO cells. This result was further confirmed by an inability of furin to cleave in vitro an (35)S-labeled UT-A1 or the 126 N-terminal UT-A1 fragment. Functionally, mutation of the furin site (R78A, R81A) does not affect UT-A1 urea transport activity. However, deletion of the 81-aa N-terminal portion does not affect UT-A1 cell surface trafficking, but seriously impair UT-A1 urea transport activity. Our results indicate that UT-A1 maturation and activation does not require furin-dependent cleavage. The N-terminal 81-aa fragment is required for proper UT-A1 urea transport activity, but its effect is not through changing UT-A1 membrane trafficking.

  17. Improved recovery of proteome-informative, protein N-terminal peptides by combined fractional diagonal chromatography (COFRADIC).

    Science.gov (United States)

    Staes, An; Van Damme, Petra; Helsens, Kenny; Demol, Hans; Vandekerckhove, Joël; Gevaert, Kris

    2008-04-01

    We previously described a proteome-wide, peptide-centric procedure for sorting protein N-terminal peptides and used these peptides as readouts for protease degradome and xenoproteome studies. This procedure is part of a repertoire of gel-free techniques known as COmbined FRActional DIagonal Chromatography (COFRADIC) and highly enriches for alpha-amino-blocked peptides, including alpha-amino-acetylated protein N-terminal peptides. Here, we introduce two additional steps that significantly increase the fraction of such proteome-informative, N-terminal peptides: strong cation exchange (SCX) segregation of alpha-amino-blocked and alpha-amino-free peptides and an enzymatic step liberating pyroglutamyl peptides for 2,4,6-trinitrobenzenesulphonic acid (TNBS) modification and thus COFRADIC sorting. The SCX step reduces the complexity of the analyte mixture by enriching N-terminal peptides and depleting alpha-amino-free internal peptides as well as proline-starting peptides prior to COFRADIC. The action of pyroglutamyl aminopeptidases prior to the first COFRADIC peptide separation results in greatly diminishing numbers of contaminating pyroglutamyl peptides in peptide maps. We further show that now close to 95% of all COFRADIC-sorted peptides are alpha-amino-acetylated and, using the same amount of starting material, our novel procedure leads to an increased number of protein identifications.

  18. Functional and structural characterization of a synthetic peptide representing the N-terminal domain of prokaryotic pyruvate dehydrogenase

    NARCIS (Netherlands)

    Hengeveld, A.F.; Mierlo, van C.P.M.; Hooven, van den H.W.; Visser, A.J.W.G.; Kok, de A.

    2002-01-01

    A synthetic peptide (Nterm-E1p) is used to characterize the structure and function of the N-terminal region (amino acid residues 4-45) of the pyruvate dehydrogenase component (E1p) from the pyruvate dehydrogenase multienzyme complex (PDHC) from Azotobacter vinelandii. Activity and binding studies es

  19. Functional characterization of a special thermophilic multifunctional amylase OPMA-N and its N-terminal domain

    Institute of Scientific and Technical Information of China (English)

    Fan Li; Xuejun Zhu; Yanfei Li; Hao Cao; Yingjiu Zhang

    2011-01-01

    A gene encoding a special thermophilic muitifunetional amylase OPMA-N was cloned from Bacillus sp. ZW25311. OPMA-N has an additional 124-residue N-terminal domain compared with typical amylases and forms a relatively independent domain with a IS-pleated sheet and random coil structure. Here we reported an unusual substrate and product specificities of OPMA-N and the impact of the additional N-terminal domain (1-124 aa) on the function and properties of OPMA-N. Both OPMAN (12.82 U/mg) and its N-terminal domain-truncated AOPMA-N (12.55 U/mg) only degraded starch to produce oligosaccharides including maltose, maltotriose, isomaitotriose, and isomaitotetraose, but not to produce glucose. Therefore, the N-terminal domain did not determine its substrate and product specificities that were probably regulated by its C-terminal IS-pleated sheet structure. However, the N-terminal domain of OPMA-N seemed to modulate its catalytic feature, leading to the production of more isomaitotriose and less maltose, and it seemed to contribute to OPMA-N's thermostability since OPMA-N showed higher activity than AOPMA-N in a temperature range from 40 to 80~C and the halflife (tl) was 5 h for OPMA-N and 2 h for AOPMA-N at 60~C. Both OPMA-N and AOPMA-N were Ca-independent, but their activities could be influenced by Cu2+, Niz+, Zn2+, EDTA, SDS (1 mM), or Triton-X100 (1%). Kinetic analysis and starch-adsorption assay indicated that the N-terminal domain of OPMA-N could increase the OPMA-N-starch binding and subsequently increase the catalytic efficiency of OPMA-N for starch. In particular, the N-terminal domain of OPMA-N did not determine its oligomerization, because both OPMA-N and AOPMA-N could exist in the forms of monomer, homodimer, and homooligomer at the same time.

  20. c-Jun N-terminal kinase - c-Jun pathway transactivates Bim to promote osteoarthritis.

    Science.gov (United States)

    Ye, Zhiqiang; Chen, Yuxian; Zhang, Rongkai; Dai, Haitao; Zeng, Chun; Zeng, Hua; Feng, Hui; Du, Gengheng; Fang, Hang; Cai, Daozhang

    2014-02-01

    Osteoarthritis (OA) is a chronic degenerative joint disorder. Previous studies have shown abnormally increased apoptosis of chondrocytes in patients and animal models of OA. TNF-α and nitric oxide have been reported to induce chondrocyte ageing; however, the mechanism of chondrocyte apoptosis induced by IL-1β has remained unclear. The aim of this study is to identify the role of the c-Jun N-terminal kinase (JNK) - c-Jun pathway in regulating induction of Bim, and its implication in chondrocyte apoptosis. This study showed that Bim is upregulated in chondrocytes obtained from the articular cartilage of OA patients and in cultured mouse chondrocytes treated with IL-1β. Upregulation of Bim was found to be critical for chondrocyte apoptosis induced by IL-1β, as revealed by the genetic knockdown of Bim, wherein apoptosis was greatly reduced in the chondrocytes. Moreover, activation of the JNK-c-Jun pathway was observed under IL-1β treatment, as indicated by the increased expression levels of c-Jun protein. Suppression of the JNK-c-Jun pathway, using chemical inhibitors and RNA interference, inhibited the Bim upregulation induced by IL-1β. These findings suggest that the JNK-c-Jun pathway is involved in the upregulation of Bim during OA and that the JNK-c-Jun-Bim pathway is vital for chondrocyte apoptosis.

  1. Tor forms a dimer through an N-terminal helical solenoid with a complex topology.

    Science.gov (United States)

    Baretić, Domagoj; Berndt, Alex; Ohashi, Yohei; Johnson, Christopher M; Williams, Roger L

    2016-04-13

    The target of rapamycin (Tor) is a Ser/Thr protein kinase that regulates a range of anabolic and catabolic processes. Tor is present in two complexes, TORC1 and TORC2, in which the Tor-Lst8 heterodimer forms a common sub-complex. We have determined the cryo-electron microscopy (EM) structure of Tor bound to Lst8. Two Tor-Lst8 heterodimers assemble further into a dyad-symmetry dimer mediated by Tor-Tor interactions. The first 1,300 residues of Tor form a HEAT repeat-containing α-solenoid with four distinct segments: a highly curved 800-residue N-terminal 'spiral', followed by a 400-residue low-curvature 'bridge' and an extended 'railing' running along the bridge leading to the 'cap' that links to FAT region. This complex topology was verified by domain insertions and offers a new interpretation of the mTORC1 structure. The spiral of one TOR interacts with the bridge of another, which together form a joint platform for the Regulatory Associated Protein of TOR (RAPTOR) regulatory subunit.

  2. Transcription-dependent nuclear localization of DAZAP1 requires an N-terminal signal

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Tzu; Wen, Wan-Ching [Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan (China); Yen, Pauline H., E-mail: pyen@ibms.sinica.edu.tw [Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan (China)

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer DAZAP1 shuttles between the nucleus and the cytoplasm. Black-Right-Pointing-Pointer DAZAP1 accumulates in the cytoplasm when the nuclear transcription is inhibited. Black-Right-Pointing-Pointer DAZAP1's transcription-dependent nuclear localization requires N-terminal N42. Black-Right-Pointing-Pointer SLIRP binds to N42 and may be involved in the process. -- Abstract: Deleted in Azoospermia Associated Protein 1 (DAZAP1) is a ubiquitous hnRNP protein required for normal development and spermatogenesis. It resides predominantly in the nucleus and moves between the nucleus and the cytoplasm via a ZNS shuttling signal at its C-terminus. DAZAP1 accumulates in the cytoplasm when RNA polymerase II activity is inhibited by actinomycin D. Here we report the mapping of a 42-amino acid segment (N42) at the N-terminus of DAZAP1 that is both necessary and sufficient for its transcription-dependent nuclear localization. In addition, using a yeast two-hybrid system, we have identified SLIRP as a N42-binding protein which may regulate DAZAP1 subcellular localization.

  3. Structure of the N-terminal region of Haemophilus Influenzae HI0017: Implications for function

    Energy Technology Data Exchange (ETDEWEB)

    Yu Liping; Mack, Jamey; Hajduk, Phil; Fesik, Stephen W. [Abbott Laboratories, Pharmaceutical Discovery Division, D46Y, AP10/LL (United States)

    2001-06-15

    Haemophilus influenzae is a gram-negative pathogen that causes infections ranging from asymptomatic colonization of the human upper respiratory tract to serious invasive diseases such as meningitis. Although the genome of Haemophilus influenzae has been completely sequenced, the structure and function of many of these proteins are unknown. HI0017 is one of these uncharacterized proteins. Here we describe the three-dimensional solution structure of the N-terminal portion of HI0017 as determined by NMR spectroscopy. The structure consists of a five-stranded antiparallel {beta}-sheet and two short {alpha}-helices. It is similar to the C-terminal domain of Diphtheria toxin repressor (DtxR). The C-terminal portion of HI0017 has an amino acid sequence that closely resembles pyruvate formate-lyase - an enzyme that converts pyruvate and CoA into acetyl-CoA and formate by a radical mechanism. Based on structural and sequence comparisons, we propose that the C-terminus of HI0017 functions as an enzyme with a glycyl radical mechanism, while the N-terminus participates in protein/protein interactions involving an activase (iron-sulfur protein) and/or the substrate.

  4. Tor forms a dimer through an N-terminal helical solenoid with a complex topology

    Science.gov (United States)

    Baretić, Domagoj; Berndt, Alex; Ohashi, Yohei; Johnson, Christopher M.; Williams, Roger L.

    2016-04-01

    The target of rapamycin (Tor) is a Ser/Thr protein kinase that regulates a range of anabolic and catabolic processes. Tor is present in two complexes, TORC1 and TORC2, in which the Tor-Lst8 heterodimer forms a common sub-complex. We have determined the cryo-electron microscopy (EM) structure of Tor bound to Lst8. Two Tor-Lst8 heterodimers assemble further into a dyad-symmetry dimer mediated by Tor-Tor interactions. The first 1,300 residues of Tor form a HEAT repeat-containing α-solenoid with four distinct segments: a highly curved 800-residue N-terminal 'spiral', followed by a 400-residue low-curvature 'bridge' and an extended `railing' running along the bridge leading to the 'cap' that links to FAT region. This complex topology was verified by domain insertions and offers a new interpretation of the mTORC1 structure. The spiral of one TOR interacts with the bridge of another, which together form a joint platform for the Regulatory Associated Protein of TOR (RAPTOR) regulatory subunit.

  5. Jun N-Terminal Protein Kinase Enhances Middle Ear Mucosal Proliferation during Bacterial Otitis Media▿

    Science.gov (United States)

    Furukawa, Masayuki; Ebmeyer, Jörg; Pak, Kwang; Austin, Darrell A.; Melhus, Åsa; Webster, Nicholas J. G.; Ryan, Allen F.

    2007-01-01

    Mucosal hyperplasia is a characteristic component of otitis media. The present study investigated the participation of signaling via the Jun N-terminal protein kinase (JNK) mitogen-activated protein kinase in middle ear mucosal hyperplasia in animal models of bacterial otitis media. Otitis media was induced by the inoculation of nontypeable Haemophilus influenzae into the middle ear cavity. Western blotting revealed that phosphorylation of JNK isoforms in the middle ear mucosa preceded but paralleled mucosal hyperplasia in this in vivo rat model. Nuclear JNK phosphorylation was observed in many cells of both the mucosal epithelium and stroma by immunohistochemistry. In an in vitro model of primary rat middle ear mucosal explants, bacterially induced mucosal growth was blocked by the Rac/Cdc42 inhibitor Clostridium difficile toxin B, the mixed-lineage kinase inhibitor CEP11004, and the JNK inhibitor SP600125. Finally, the JNK inhibitor SP600125 significantly inhibited mucosal hyperplasia during in vivo bacterial otitis media in guinea pigs. Inhibition of JNK in vivo resulted in a diminished proliferative response, as shown by a local decrease in proliferating cell nuclear antigen protein expression by immunohistochemistry. We conclude that activation of JNK is a critical pathway for bacterially induced mucosal hyperplasia during otitis media, influencing tissue proliferation. PMID:17325051

  6. PLC-δ1-Lf, a novel N-terminal extended phospholipase C-δ1.

    Science.gov (United States)

    Kim, Na Young; Ahn, Sang Jung; Kim, Moo-Sang; Seo, Jung Soo; Kim, Bo Seong; Bak, Hye Jin; Lee, Jin Young; Park, Myoung-Ae; Park, Ju Hyeon; Lee, Hyung Ho; Chung, Joon Ki

    2013-10-10

    Phospholipase C-δ (PLC-δ), a key enzyme in phosphoinositide turnover, is involved in a variety of physiological functions. The widely expressed PLC-δ1 isoform is the best characterized and the most well understood phospholipase family member. However, the functional and molecular mechanisms of PLC-δ1 remain obscure. Here, we identified that the N-terminal region of mouse PLC-δ1 gene has two variants, a novel alternative splicing form, named as long form (mPLC-δ1-Lf) and the previously reported short form (mPLC-δ1-Sf), having exon 2 and exon 1, respectively, while both the gene variants share exons 3-16 for RNA transcription. Furthermore, the expression, identification and enzymatic characterization of the two types of PLC-δ1 genes were compared. Expression of mPLC-δ1-Lf was found to be tissue specific, whereas mPLC-δ1-Sf was widely distributed. The recombinant mPLC-δ1-Sf protein exhibited higher activity than recombinant mPLC-δ1-Lf protein. Although, the general catalytic and regulatory properties of mPLC-δ1-Lf are similar to those of PLC-δ1-Sf isozyme, the mPLC-δ1-Lf showed some distinct regulatory properties, such as tissue-specific expression and lipid binding specificity, particularly for phosphatidylserine.

  7. Calcium-controlled conformational choreography in the N-terminal half of adseverin

    Science.gov (United States)

    Chumnarnsilpa, Sakesit; Robinson, Robert C.; Grimes, Jonathan M.; Leyrat, Cedric

    2015-09-01

    Adseverin is a member of the calcium-regulated gelsolin superfamily of actin-binding proteins. Here we report the crystal structure of the calcium-free N-terminal half of adseverin (iA1-A3) and the Ca2+-bound structure of A3, which reveal structural similarities and differences with gelsolin. Solution small-angle X-ray scattering combined with ensemble optimization revealed a dynamic Ca2+-dependent equilibrium between inactive, intermediate and active conformations. Increasing calcium concentrations progressively shift this equilibrium from a main population of inactive conformation to the active form. Molecular dynamics simulations of iA1-A3 provided insights into Ca2+-induced destabilization, implicating a critical role for the A2 type II calcium-binding site and the A2A3 linker in the activation process. Finally, mutations that disrupt the A1/A3 interface increase Ca2+-independent F-actin severing by A1-A3, albeit at a lower efficiency than observed for gelsolin domains G1-G3. Together, these data address the calcium dependency of A1-A3 activity in relation to the calcium-independent activity of G1-G3.

  8. Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences.

    LENUS (Irish Health Repository)

    Ivanov, Ivaylo P

    2011-05-01

    In eukaryotes, it is generally assumed that translation initiation occurs at the AUG codon closest to the messenger RNA 5\\' cap. However, in certain cases, initiation can occur at codons differing from AUG by a single nucleotide, especially the codons CUG, UUG, GUG, ACG, AUA and AUU. While non-AUG initiation has been experimentally verified for a handful of human genes, the full extent to which this phenomenon is utilized--both for increased coding capacity and potentially also for novel regulatory mechanisms--remains unclear. To address this issue, and hence to improve the quality of existing coding sequence annotations, we developed a methodology based on phylogenetic analysis of predicted 5\\' untranslated regions from orthologous genes. We use evolutionary signatures of protein-coding sequences as an indicator of translation initiation upstream of annotated coding sequences. Our search identified novel conserved potential non-AUG-initiated N-terminal extensions in 42 human genes including VANGL2, FGFR1, KCNN4, TRPV6, HDGF, CITED2, EIF4G3 and NTF3, and also affirmed the conservation of known non-AUG-initiated extensions in 17 other genes. In several instances, we have been able to obtain independent experimental evidence of the expression of non-AUG-initiated products from the previously published literature and ribosome profiling data.

  9. Structure and function of the N-terminal domain of the human mitochondrial calcium uniporter.

    Science.gov (United States)

    Lee, Youngjin; Min, Choon Kee; Kim, Tae Gyun; Song, Hong Ki; Lim, Yunki; Kim, Dongwook; Shin, Kahee; Kang, Moonkyung; Kang, Jung Youn; Youn, Hyung-Seop; Lee, Jung-Gyu; An, Jun Yop; Park, Kyoung Ryoung; Lim, Jia Jia; Kim, Ji Hun; Kim, Ji Hye; Park, Zee Yong; Kim, Yeon-Soo; Wang, Jimin; Kim, Do Han; Eom, Soo Hyun

    2015-10-01

    The mitochondrial calcium uniporter (MCU) is responsible for mitochondrial calcium uptake and homeostasis. It is also a target for the regulation of cellular anti-/pro-apoptosis and necrosis by several oncogenes and tumour suppressors. Herein, we report the crystal structure of the MCU N-terminal domain (NTD) at a resolution of 1.50 Å in a novel fold and the S92A MCU mutant at 2.75 Å resolution; the residue S92 is a predicted CaMKII phosphorylation site. The assembly of the mitochondrial calcium uniporter complex (uniplex) and the interaction with the MCU regulators such as the mitochondrial calcium uptake-1 and mitochondrial calcium uptake-2 proteins (MICU1 and MICU2) are not affected by the deletion of MCU NTD. However, the expression of the S92A mutant or a NTD deletion mutant failed to restore mitochondrial Ca(2+) uptake in a stable MCU knockdown HeLa cell line and exerted dominant-negative effects in the wild-type MCU-expressing cell line. These results suggest that the NTD of MCU is essential for the modulation of MCU function, although it does not affect the uniplex formation.

  10. Synaptic transmission and plasticity require AMPA receptor anchoring via its N-terminal domain

    Science.gov (United States)

    Watson, Jake F; Ho, Hinze; Greger, Ingo H

    2017-01-01

    AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission and are selectively recruited during activity-dependent plasticity to increase synaptic strength. A prerequisite for faithful signal transmission is the positioning and clustering of AMPARs at postsynaptic sites. The mechanisms underlying this positioning have largely been ascribed to the receptor cytoplasmic C-termini and to AMPAR-associated auxiliary subunits, both interacting with the postsynaptic scaffold. Here, using mouse organotypic hippocampal slices, we show that the extracellular AMPAR N-terminal domain (NTD), which projects midway into the synaptic cleft, plays a fundamental role in this process. This highly sequence-diverse domain mediates synaptic anchoring in a subunit-selective manner. Receptors lacking the NTD exhibit increased mobility in synapses, depress synaptic transmission and are unable to sustain long-term potentiation (LTP). Thus, synaptic transmission and the expression of LTP are dependent upon an AMPAR anchoring mechanism that is driven by the NTD. DOI: http://dx.doi.org/10.7554/eLife.23024.001 PMID:28290985

  11. An unexpected N-terminal loop in PD-1 dominates binding by nivolumab

    Science.gov (United States)

    Tan, Shuguang; Zhang, Hao; Chai, Yan; Song, Hao; Tong, Zhou; Wang, Qihui; Qi, Jianxun; Wong, Gary; Zhu, Xiaodong; Liu, William J.; Gao, Shan; Wang, Zhongfu; Shi, Yi; Yang, Fuquan; Gao, George F.; Yan, Jinghua

    2017-01-01

    Cancer immunotherapy by targeting of immune checkpoint molecules has been a research ‘hot-spot' in recent years. Nivolumab, a human monoclonal antibody targeting PD-1, has been widely used clinically since 2014. However, the binding mechanism of nivolumab to PD-1 has not yet been shown, despite a recent report describing the complex structure of pembrolizumab/PD-1. It has previously been speculated that PD-1 glycosylation is involved in nivolumab recognition. Here we report the complex structure of nivolumab with PD-1 and evaluate the effects of PD-1 N-glycosylation on the interactions with nivolumab. Structural and functional analyses unexpectedly reveal an N-terminal loop outside the IgV domain of PD-1. This loop is not involved in recognition of PD-L1 but dominates binding to nivolumab, whereas N-glycosylation is not involved in binding at all. Nivolumab binds to a completely different area than pembrolizumab. These results provide the basis for the design of future inhibitory molecules targeting PD-1. PMID:28165004

  12. Cdc13 N-Terminal Dimerization DNA Binding and Telomere Length Regulation

    Energy Technology Data Exchange (ETDEWEB)

    M Mitchell; J Smith; M Mason; S Harper; D Speicher; F Johnson; E Skordalakes

    2011-12-31

    The essential yeast protein Cdc13 facilitates chromosome end replication by recruiting telomerase to telomeres, and together with its interacting partners Stn1 and Ten1, it protects chromosome ends from nucleolytic attack, thus contributing to genome integrity. Although Cdc13 has been studied extensively, the precise role of its N-terminal domain (Cdc13N) in telomere length regulation remains unclear. Here we present a structural, biochemical, and functional characterization of Cdc13N. The structure reveals that this domain comprises an oligonucleotide/oligosaccharide binding (OB) fold and is involved in Cdc13 dimerization. Biochemical data show that Cdc13N weakly binds long, single-stranded, telomeric DNA in a fashion that is directly dependent on domain oligomerization. When introduced into full-length Cdc13 in vivo, point mutations that prevented Cdc13N dimerization or DNA binding caused telomere shortening or lengthening, respectively. The multiple DNA binding domains and dimeric nature of Cdc13 offer unique insights into how it coordinates the recruitment and regulation of telomerase access to the telomeres.

  13. Jun N-Terminal Kinase 1 Mediates Transcriptional Induction of Matrix Metal loproteinase 9 Expression

    Directory of Open Access Journals (Sweden)

    David L. Crowe

    2001-01-01

    Full Text Available Tumor cell invasion and metastasis require precise coordination of adherence to extracellular matrix (ECM and controlled degradation of its components. Invasive cells secrete proteolytic enzymes known as matrix metal lop roteinases (MMPs which degrade specific basement membrane molecules. Expression of these enzymes is regulated by multiple signaling mechanisms, including the mitogen-activated protein kinase (MAPK pathway. One of the terminal effectors of this signaling cascade is jun N-terminal kinase 1 (JNK1 which phosphorylates the transcription factor c-jun, a component of the AP-1 complex. MMP-9 expression is regulated by two well-characterized AP-1 sites in the promoter of this gene. To determine how JNK1 activity regulated MMP-9 expression in human squamous cell carcinoma lines, we overexpressed this kinase in SCC25 cells. JNK1 overexpression induced MMP-9 protein levels and activity in this cell line. Elevated MMP-9 expression correlated with increased invasion of reconstituted basement membranes by JNK1 -overexpressiog clones. Site-directed mutagenesis of the MMP-9 promoter revealed that JNK1 cooperated with its transcription factor target c-jun to increase MMP-9 expression at the transcriptional level via the proximal AP-1 site. These results suggest that elevated JNK1 expression may contribute to increased MMP-9 activity and ECM invasion by tumor cells.

  14. Fetal Circulation

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Fetal Circulation Updated:Oct 18,2016 click to enlarge The ... fetal heart. These two bypass pathways in the fetal circulation make it possible for most fetuses to survive ...

  15. Dimeric structure of the N-terminal domain of PriB protein from Thermoanaerobacter tengcongensis solved ab initio

    Energy Technology Data Exchange (ETDEWEB)

    Liebschner, Dorothee [National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439 (United States); Brzezinski, Krzysztof [National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439 (United States); University of Bialystok, 15-399 Bialystok (Poland); Dauter, Miroslawa [Argonne National Laboratory, Argonne, IL 60439 (United States); Dauter, Zbigniew, E-mail: dauter@anl.gov [National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439 (United States); Nowak, Marta; Kur, Józef; Olszewski, Marcin, E-mail: dauter@anl.gov [Gdansk University of Technology, 80-952 Gdansk (Poland); National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2012-12-01

    The N-terminal domain of the PriB protein from the thermophilic bacterium T. tengcongensis (TtePriB) was expressed and its crystal structure has been solved at the atomic resolution of 1.09 Å by direct methods. PriB is one of the components of the bacterial primosome, which catalyzes the reactivation of stalled replication forks at sites of DNA damage. The N-terminal domain of the PriB protein from the thermophilic bacterium Thermoanaerobacter tengcongensis (TtePriB) was expressed and its crystal structure was solved at the atomic resolution of 1.09 Å by direct methods. The protein chain, which encompasses the first 104 residues of the full 220-residue protein, adopts the characteristic oligonucleotide/oligosaccharide-binding (OB) structure consisting of a five-stranded β-barrel filled with hydrophobic residues and equipped with four loops extending from the barrel. In the crystal two protomers dimerize, forming a six-stranded antiparallel β-sheet. The structure of the N-terminal OB domain of T. tengcongensis shows significant differences compared with mesophile PriBs. While in all other known structures of PriB a dimer is formed by two identical OB domains in separate chains, TtePriB contains two consecutive OB domains in one chain. However, sequence comparison of both the N-terminal and the C-terminal domains of TtePriB suggests that they have analogous structures and that the natural protein possesses a structure similar to a dimer of two N-terminal domains.

  16. A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization.

    Science.gov (United States)

    Haslbeck, Martin; Ignatiou, Athanasios; Saibil, Helen; Helmich, Sonja; Frenzl, Elke; Stromer, Thusnelda; Buchner, Johannes

    2004-10-15

    Small heat-shock proteins (Hsps) are ubiquitous molecular chaperones which prevent the unspecific aggregation of non-native proteins. For Hsp26, a cytosolic sHsp from of Saccharomyces cerevisiae, it has been shown that, at elevated temperatures, the 24 subunit complex dissociates into dimers. This dissociation is required for the efficient interaction with non-native proteins. Deletion analysis of the protein showed that the N-terminal half of Hsp26 (amino acid residues 1-95) is required for the assembly of the oligomer. Limited proteolysis in combination with mass spectrometry suggested that this region can be divided in two parts, an N-terminal segment including amino acid residues 1-30 and a second part ranging from residues 31-95. To analyze the structure and function of the N-terminal part of Hsp26 we created a deletion mutant lacking amino acid residues 1-30. We show that the oligomeric state and the structure, as determined by size exclusion chromatography and electron microscopy, corresponds to that of the Hsp26 wild-type protein. Furthermore, this truncated version of Hsp26 is active as a chaperone. However, in contrast to full length Hsp26, the truncated version dissociates at lower temperatures and complexes with non-native proteins are less stable than those found with wild-type Hsp26. Our results suggest that the N-terminal segment of Hsp26 is involved in both, oligomerization and chaperone function and that the second part of the N-terminal region (amino acid residues 31-95) is essential for both functions.

  17. Structural insights into the human RyR2 N-terminal region involved in cardiac arrhythmias

    Energy Technology Data Exchange (ETDEWEB)

    Borko, Ľubomír; Bauerová-Hlinková, Vladena, E-mail: vladena.bauerova@savba.sk; Hostinová, Eva; Gašperík, Juraj [Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava (Slovakia); Beck, Konrad [Cardiff University School of Dentistry, Heath Park, Cardiff CF14 4XY Wales (United Kingdom); Lai, F. Anthony [Cardiff University School of Medicine, Cardiff CF14 4XN Wales (United Kingdom); Zahradníková, Alexandra, E-mail: vladena.bauerova@savba.sk [Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava (Slovakia); Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlárska 5, 833 34 Bratislava (Slovakia); Ševčík, Jozef, E-mail: vladena.bauerova@savba.sk [Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava (Slovakia)

    2014-11-01

    X-ray and solution structures of the human RyR2 N-terminal region were obtained under near-physiological conditions. The structure exhibits a unique network of interactions between its three domains, revealing an important stabilizing role of the central helix. Human ryanodine receptor 2 (hRyR2) mediates calcium release from the sarcoplasmic reticulum, enabling cardiomyocyte contraction. The N-terminal region of hRyR2 (amino acids 1–606) is the target of >30 arrhythmogenic mutations and contains a binding site for phosphoprotein phosphatase 1. Here, the solution and crystal structures determined under near-physiological conditions, as well as a homology model of the hRyR2 N-terminal region, are presented. The N-terminus is held together by a unique network of interactions among its three domains, A, B and C, in which the central helix (amino acids 410–437) plays a prominent stabilizing role. Importantly, the anion-binding site reported for the mouse RyR2 N-terminal region is notably absent from the human RyR2. The structure concurs with the differential stability of arrhythmogenic mutations in the central helix (R420W, I419F and I419F/R420W) which are owing to disparities in the propensity of mutated residues to form energetically favourable or unfavourable contacts. In solution, the N-terminus adopts a globular shape with a prominent tail that is likely to involve residues 545–606, which are unresolved in the crystal structure. Docking the N-terminal domains into cryo-electron microscopy maps of the closed and open RyR1 conformations reveals C{sup α} atom movements of up to 8 Å upon channel gating, and predicts the location of the leucine–isoleucine zipper segment and the interaction site for spinophilin and phosphoprotein phosphatase 1 on the RyR surface.

  18. Structural diversity of the active N-terminal kinase domain of p90 ribosomal S6 kinase 2.

    Directory of Open Access Journals (Sweden)

    Margarita Malakhova

    Full Text Available The p90 ribosomal protein kinase 2 (RSK2 is a highly expressed Ser/Thr kinase activated by growth factors and is involved in cancer cell proliferation and tumor promoter-induced cell transformation. RSK2 possesses two non-identical kinase domains, and the structure of its N-terminal domain (NTD, which is responsible for phosphorylation of a variety of substrates, is unknown. The crystal structure of the NTD RSK2 was determined at 1.8 A resolution in complex with AMP-PNP. The N-terminal kinase domain adopted a unique active conformation showing a significant structural diversity of the kinase domain compared to other kinases. The NTD RSK2 possesses a three-stranded betaB-sheet inserted in the N-terminal lobe, resulting in displacement of the alphaC-helix and disruption of the Lys-Glu interaction, classifying the kinase conformation as inactive. The purified protein was phosphorylated at Ser227 in the T-activation loop and exhibited in vitro kinase activity. A key characteristic is the appearance of a new contact between Lys216 (betaB-sheet and the beta-phosphate of AMP-PNP. Mutation of this lysine to alanine impaired both NTDs in vitro and full length RSK2 ex vivo activity, emphasizing the importance of this interaction. Even though the N-terminal lobe undergoes structural re-arrangement, it possesses an intact hydrophobic groove formed between the alphaC-helix, the beta4-strand, and the betaB-sheet junction, which is occupied by the N-terminal tail. The presence of a unique betaB-sheet insert in the N-lobe suggests a different type of activation mechanism for RSK2.

  19. Reference intervals for N-terminal pro-B-type natriuretic peptide in amniotic fluid between 10 and 34 weeks of gestation.

    Directory of Open Access Journals (Sweden)

    Waltraut M Merz

    Full Text Available BACKGROUND: In adult and pediatric cardiology, n-terminal pro-B-type natriuretic peptide (nt-proBNP serves as biomarker in the diagnosis and management of cardiovascular dysfunction. Elevated levels of circulating nt-proBNP are present in fetal conditions associated with myocardial pressure or volume load. Compared to fetal blood sampling, amniocentesis is technically easier and can be performed from early pregnancy onwards. We aimed to investigate amniotic fluid (AF nt-proBNP concentrations in normal pregnancies between 10 and 34 weeks of gestation. METHODS: Nt-proBNP and total protein (TP was measured in AF by chemiluminescence assay (photometry, respectively. To adjust for a potential dilutional effect, the AF-nt-proBNP/AF-TP ratio was analyzed. Reference intervals were constructed by regression modeling across gestational age. RESULTS: 132 samples were analyzed. A negative correlation between AF-nt-proBNP/AF-TP ratio and gestational age was observed. Curves for the mean and the 5% and 95% reference interval between 10 and 34 weeks of gestation were established. CONCLUSION: In normal pregnancy, nt-proBNP is present in AF and decreases during gestation. Our data provide the basis for research on AF-nt-proBNP as biomarker in fetal medicine.

  20. Feline Immunodeficiency Virus Vif N-Terminal Residues Selectively Counteract Feline APOBEC3s.

    Science.gov (United States)

    Gu, Qinyong; Zhang, Zeli; Cano Ortiz, Lucía; Franco, Ana Cláudia; Häussinger, Dieter; Münk, Carsten

    2016-12-01

    Feline immunodeficiency virus (FIV) Vif protein counteracts feline APOBEC3s (FcaA3s) restriction factors by inducing their proteasomal degradation. The functional domains in FIV Vif for interaction with FcaA3s are poorly understood. Here, we have identified several motifs in FIV Vif that are important for selective degradation of different FcaA3s. Cats (Felis catus) express three types of A3s: single-domain A3Z2, single-domain A3Z3, and double-domain A3Z2Z3. We proposed that FIV Vif would selectively interact with the Z2 and the Z3 A3s. Indeed, we identified two N-terminal Vif motifs (12LF13 and 18GG19) that specifically interacted with the FcaA3Z2 protein but not with A3Z3. In contrast, the exclusive degradation of FcaA3Z3 was regulated by a region of three residues (M24, L25, and I27). Only a FIV Vif carrying a combination of mutations from both interaction sites lost the capacity to degrade and counteract FcaA3Z2Z3. However, alterations in the specific A3s interaction sites did not affect the cellular localization of the FIV Vif protein and binding to feline A3s. Pulldown experiments demonstrated that the A3 binding region localized to FIV Vif residues 50 to 80, outside the specific A3 interaction domain. Finally, we found that the Vif sites specific to individual A3s are conserved in several FIV lineages of domestic cat and nondomestic cats, while being absent in the FIV Vif of pumas. Our data support a complex model of multiple Vif-A3 interactions in which the specific region for selective A3 counteraction is discrete from a general A3 binding domain.

  1. Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design

    Science.gov (United States)

    Liu, Xiang; Zaid, Ali; Goh, Lucas Y. H.; Hobson-Peters, Jody; Hall, Roy A.; Merits, Andres

    2017-01-01

    ABSTRACT Mosquito-transmitted chikungunya virus (CHIKV) is an arthritogenic alphavirus of the Togaviridae family responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP)-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS) in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS) attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT)-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infection in vitro. Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design. PMID:28223458

  2. Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design

    Directory of Open Access Journals (Sweden)

    Adam Taylor

    2017-02-01

    Full Text Available Mosquito-transmitted chikungunya virus (CHIKV is an arthritogenic alphavirus of the Togaviridae family responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infection in vitro. Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design.

  3. The MLK family mediates c-Jun N-terminal kinase activation in neuronal apoptosis.

    Science.gov (United States)

    Xu, Z; Maroney, A C; Dobrzanski, P; Kukekov, N V; Greene, L A

    2001-07-01

    Neuronal apoptotic death induced by nerve growth factor (NGF) deprivation is reported to be in part mediated through a pathway that includes Rac1 and Cdc42, mitogen-activated protein kinase kinases 4 and 7 (MKK4 and -7), c-Jun N-terminal kinases (JNKs), and c-Jun. However, additional components of the pathway remain to be defined. We show here that members of the mixed-lineage kinase (MLK) family (including MLK1, MLK2, MLK3, and dual leucine zipper kinase [DLK]) are expressed in neuronal cells and are likely to act between Rac1/Cdc42 and MKK4 and -7 in death signaling. Overexpression of MLKs effectively induces apoptotic death of cultured neuronal PC12 cells and sympathetic neurons, while expression of dominant-negative forms of MLKs suppresses death evoked by NGF deprivation or expression of activated forms of Rac1 and Cdc42. CEP-1347 (KT7515), which blocks neuronal death caused by NGF deprivation and a variety of additional apoptotic stimuli and which selectively inhibits the activities of MLKs, effectively protects neuronal PC12 cells from death induced by overexpression of MLK family members. In addition, NGF deprivation or UV irradiation leads to an increase in both level and phosphorylation of endogenous DLK. These observations support a role for MLKs in the neuronal death mechanism. With respect to ordering the death pathway, dominant-negative forms of MKK4 and -7 and c-Jun are protective against death induced by MLK overexpression, placing MLKs upstream of these kinases. Additional findings place the MLKs upstream of mitochondrial cytochrome c release and caspase activation.

  4. Characterization of niphatenones that inhibit androgen receptor N-terminal domain.

    Directory of Open Access Journals (Sweden)

    Carmen A Banuelos

    Full Text Available Androgen ablation therapy causes a temporary reduction in tumor burden in patients with advanced prostate cancer. Unfortunately the malignancy will return to form lethal castration-recurrent prostate cancer (CRPC. The androgen receptor (AR remains transcriptionally active in CRPC in spite of castrate levels of androgens in the blood. AR transcriptional activity resides in its N-terminal domain (NTD. Possible mechanisms of continued AR transcriptional activity may include, at least in part, expression of constitutively active splice variants of AR that lack the C-terminal ligand-binding domain (LBD. Current therapies that target the AR LBD, would not be effective against these AR variants. Currently no drugs are clinically available that target the AR NTD which should be effective against these AR variants as well as full-length AR. Niphatenones were originally isolated and identified in active extracts from Niphates digitalis marine sponge. Here we begin to characterize the mechanism of niphatenones in blocking AR transcriptional activity. Both enantiomers had similar IC50 values of 6 µM for inhibiting the full-length AR in a functional transcriptional assay. However, (S-niphatenone had significantly better activity against the AR NTD compared to (R-niphatenone. Consistent with niphatenones binding to and inhibiting transactivation of AR NTD, niphatenones inhibited AR splice variant. Niphatenone did not affect the transcriptional activity of the related progesterone receptor, but slightly decreased glucocorticoid receptor (GR activity and covalently bound to GR activation function-1 (AF-1 region. Niphatenone blocked N/C interactions of AR without altering either AR protein levels or its intracellular localization in response to androgen. Alkylation with glutathione suggests that niphatenones are not a feasible scaffold for further drug development.

  5. Nested N-terminal megalin fragments induce high-titer autoantibody and attenuated Heymann nephritis.

    Science.gov (United States)

    Tramontano, Alfonso; Knight, Thomas; Vizzuso, Domenica; Makker, Sudesh P

    2006-07-01

    It was shown previously that an N-terminal fragment (nM60) that encompasses amino acid residues 1 to 563 of megalin could induce active Heymann nephritis (AHN) as efficiently as the native protein. For delineation of a minimal structure within this fragment that is sufficient to induce AHN, smaller protein fragments that encompass residues 1 to 236 (L6), 1 to 195 (L5), 1 to 156 (L4), and 1 to 120 (L3), representing successive C-terminal truncations within ligand-binding repeats of nM60, were cloned and produced in a baculovirus insect cell expression system. Protein fragments L4, L5, and L6 clearly were glycosylated. All four fragments stimulated proliferation of megalin-sensitized lymph node cells and induced high-titer anti-megalin autoantibodies in Lewis rats. A full-blown disease, as assessed by severity of proteinuria, was observed in rats that were immunized with L6 and L5, whereas animals that were immunized with L4 and L3 developed only mild disease. The proteinuria levels correlated with staining for complement (C3, C5b-9) and IgG1 isotype in glomerular immune deposits. The results suggest that one or more molecular determinants on the region that comprises amino acid residues 157 to 236 contribute to the induction of a full-blown form of AHN. Study of the structure, conformation, and posttranslational modifications of these determinants could provide greater insight into the molecular correlates of immunopathogenesis in this disease model.

  6. Promoter-dependent activity on androgen receptor N-terminal domain mutations in androgen insensitivity syndrome.

    Science.gov (United States)

    Tadokoro-Cuccaro, Rieko; Davies, John; Mongan, Nigel P; Bunch, Trevor; Brown, Rosalind S; Audi, Laura; Watt, Kate; McEwan, Iain J; Hughes, Ieuan A

    2014-01-01

    Androgen receptor (AR) mutations are associated with androgen insensitivity syndrome (AIS). Missense mutations identified in the AR-N-terminal domain (AR-NTD) are rare, and clinical phenotypes are typically mild. We investigated 7 missense mutations and 2 insertion/deletions located in the AR-NTD. This study aimed to elucidate the pathogenic role of AR-NTD mutants in AIS and to use this knowledge to further define AR-NTD function. AR-NTD mutations (Q120E, A159T, G216R, N235K, G248V, L272F, and P380R) were introduced into AR-expression plasmids. Stably expressing cell lines were established for del57L and ins58L. Transactivation was measured using luciferase reporter constructs under the control of GRE and Pem promoters. Intrinsic fluorescence spectroscopy and partial proteolysis studies were performed for mutations which showed reduced activities by using a purified AR-AF1 protein. Pem-luciferase reporter activation was reduced for A159T, N235K, and G248V but not the GRE-luciferase reporter. Protein structure analysis detected no significant change in the AR-AF1 region for these mutations. Reduced cellular expression and transactivation activity were observed for ins58L. The mutations Q120E, G216R, L272F, P380R, and del57L showed small or no detectable changes in function. Thus, clinical and experimental analyses have identified novel AR-signalling defects associated with mutations in the structurally disordered AR-NTD domain in patients with AIS.

  7. Production and applications of an N-terminally-truncated recombinant beta-haemolysin from Staphylococcus aureus.

    Science.gov (United States)

    Singh, M; Singh, A; Sharma, A

    2014-07-01

    The beta-haemolysin of Staphylococcus aureus (SA-hlb) is a secreted neutral sphingomyelinase (nSMase) implicated in the pathogenesis of infection and responsible for the characteristic in vitro 'hot-cold' haemolytic ability of the bacterium. Here, we describe the production of a biologically active N-terminally-truncated recombinant SA-hlb protein for use in in vitro assays and as a research tool. Using local isolates of S. aureus, we PCR-amplified an SA-hlb DNA sequence of 891 nucleotides, 99 nucleotides shorter than the full-length molecule, before cloning and sequencing (GenBank accession no. JN580071). The pQE.TriSystem vector (Qiagen, Germany) was used to express recombinant SA-hlb (r-SA-hlb) with a C-terminal 8xHis tag in Escherichia coli JM107 cells. Both JM107 lysate and the purified r-SA-hlb possessed hot-cold lytic activity against sheep and buffalo erythrocytes, which was abolished by incubation at ≥90 °C for 30 min or exposure to dithiothreitol, and could be neutralized by bovine immune sera. Purified r-SA-hlb was also cytotoxic to buffalo mononuclear cells and was effective as a coating antigen for indirect ELISA to screen for reactive sera. Importantly, the r-SA-hlb was suitable for use as a β-toxin in the modified CAMP test. We conclude that the r-SA-hlb protein produced was functionally active and has numerous potential applications.

  8. Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease N{sup pro}

    Energy Technology Data Exchange (ETDEWEB)

    Gottipati, Keerthi; Acholi, Sudheer [Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555-0647 (United States); Ruggli, Nicolas [Institute of Virology and Immunology, CH-3147 Mittelhäusern (Switzerland); Choi, Kyung H., E-mail: kychoi@utmb.edu [Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555-0647 (United States)

    2014-03-15

    Pestivirus N{sup pro} is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N{sup pro} blocks the host's interferon response by inducing degradation of interferon regulatory factor-3. N{sup pro'}s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N{sup pro}-GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N{sup pro} proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 that forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N{sup pro'}s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N{sup pro} does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus. - Highlights: • N{sup pro'}s autoproteolysis is studied using N{sup pro}-GFP fusion proteins. • N-terminal 17 amino acids are dispensable without loss of protease activity. • The putative catalytic residue Glu22 is not involved in protease catalysis. • No specificity for Cys168 at the cleavage site despite evolutionary conservation. • N{sup pro} prefers small amino acids with non-branched beta carbons at the P1 position.

  9. N-terminal Slit2 inhibits HIV-1 replication by regulating the actin cytoskeleton

    Directory of Open Access Journals (Sweden)

    Anand Appakkudal R

    2013-01-01

    Full Text Available Abstract Background Slit2 is a ~ 200 kDa secreted glycoprotein that has been recently shown to regulate immune functions. However, not much is known about its role in HIV (human immunodeficiency virus-1 pathogenesis. Results In the present study, we have shown that the N-terminal fragment of Slit2 (Slit2N (~120 kDa inhibits replication of both CXCR4 and CCR5-tropic HIV-1 viruses in T-cell lines and peripheral blood T-cells. Furthermore, we demonstrated inhibition of HIV-1 infection in resting CD4+ T-cells. In addition, we showed that Slit2N blocks cell-to-cell transmission of HIV-1. We have shown that Slit2N inhibits HIV-1 infection by blocking viral entry into T-cells. We also ruled out Slit2N-mediated inhibition of various other steps in the life cycle including binding, integration and viral transcription. Elucidation of the molecular mechanism revealed that Slit2N mediates its functional effects by binding to Robo1 receptor. Furthermore, we found that Slit2N inhibited Gp120-induced Robo1-actin association suggesting that Slit2N may inhibit cytoskeletal rearrangements facilitating HIV-1 entry. Studies into the mechanism of inhibition of HIV-1 revealed that Slit2N abrogated HIV-1 envelope-induced actin cytoskeletal dynamics in both T-cell lines and primary T-cells. We further showed that Slit2N specifically attenuated the HIV-1 envelope-induced signaling pathway consisting of Rac1, LIMK and cofilin that regulates actin polymerization. Conclusions Taken together, our results show that Slit2N inhibits HIV-1 replication through novel mechanisms involving modulation of cytoskeletal dynamics. Our study, thus, provides insights into the role of Slit2N in HIV-1 infection and underscores its potential in limiting viral replication in T-cells.

  10. N-terminal arginines modulate plasma-membrane localization of Kv7.1/KCNE1 channel complexes.

    Directory of Open Access Journals (Sweden)

    Zenawit Girmatsion

    Full Text Available BACKGROUND AND OBJECTIVE: The slow delayed rectifier current (I(Ks is important for cardiac action potential termination. The underlying channel is composed of Kv7.1 α-subunits and KCNE1 β-subunits. While most evidence suggests a role of KCNE1 transmembrane domain and C-terminus for the interaction, the N-terminal KCNE1 polymorphism 38G is associated with reduced I(Ks and atrial fibrillation (a human arrhythmia. Structure-function relationship of the KCNE1 N-terminus for I(Ks modulation is poorly understood and was subject of this study. METHODS: We studied N-terminal KCNE1 constructs disrupting structurally important positively charged amino-acids (arginines at positions 32, 33, 36 as well as KCNE1 constructs that modify position 38 including an N-terminal truncation mutation. Experimental procedures included molecular cloning, patch-clamp recording, protein biochemistry, real-time-PCR and confocal microscopy. RESULTS: All KCNE1 constructs physically interacted with Kv7.1. I(Ks resulting from co-expression of Kv7.1 with non-atrial fibrillation '38S' was greater than with any other construct. Ionic currents resulting from co-transfection of a KCNE1 mutant with arginine substitutions ('38G-3xA' were comparable to currents evoked from cells transfected with an N-terminally truncated KCNE1-construct ('Δ1-38'. Western-blots from plasma-membrane preparations and confocal images consistently showed a greater amount of Kv7.1 protein at the plasma-membrane in cells co-transfected with the non-atrial fibrillation KCNE1-38S than with any other construct. CONCLUSIONS: The results of our study indicate that N-terminal arginines in positions 32, 33, 36 of KCNE1 are important for reconstitution of I(Ks. Furthermore, our results hint towards a role of these N-terminal amino-acids in membrane representation of the delayed rectifier channel complex.

  11. Structure of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum.

    Science.gov (United States)

    Ksiazek, Dorota; Brandstetter, Hans; Israel, Lars; Bourenkov, Gleb P; Katchalova, Galina; Janssen, Klaus-Peter; Bartunik, Hans D; Noegel, Angelika A; Schleicher, Michael; Holak, Tad A

    2003-09-01

    Cyclase-associated proteins (CAPs) are widely distributed and highly conserved proteins that regulate actin remodeling in response to cellular signals. The N termini of CAPs play a role in Ras signaling and bind adenylyl cyclase; the C termini bind to G-actin and thereby alter the dynamic rearrangements of the microfilament system. We report here the X-ray structure of the core of the N-terminal domain of the CAP from Dictyostelium discoideum, which comprises residues 51-226, determined by a combination of single isomorphous replacement with anomalous scattering (SIRAS). The overall structure of this fragment is an alpha helix bundle composed of six antiparallel helices. Results from gel filtration and crosslinking experiments for CAP(1-226), CAP(255-464), and the full-length protein, together with the CAP N-terminal domain structure and the recently determined CAP C-terminal domain structure, provide evidence that the functional structure of CAP is multimeric.

  12. Structure of a double hexamer of the Pyrococcus furiosus minichromosome maintenance protein N-terminal domain

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Martin; Enemark, Eric J.

    2016-06-22

    The crystal structure of the N-terminal domain of thePyrococcus furiosusminichromosome maintenance (MCM) protein as a double hexamer is described. The MCM complex is a ring-shaped helicase that unwinds DNA at the replication fork of eukaryotes and archaea. Prior to replication initiation, the MCM complex assembles as an inactive double hexamer at specific sites of DNA. The presented structure is highly consistent with previous MCM double-hexamer structures and shows two MCM hexamers with a head-to-head interaction mediated by the N-terminal domain. Minor differences include a diminished head-to-head interaction and a slightly reduced inter-hexamer rotation.

  13. ELKS controls the pool of readily releasable vesicles at excitatory synapses through its N-terminal coiled-coil domains.

    Science.gov (United States)

    Held, Richard G; Liu, Changliang; Kaeser, Pascal S

    2016-06-02

    In a presynaptic nerve terminal, synaptic strength is determined by the pool of readily releasable vesicles (RRP) and the probability of release (P) of each RRP vesicle. These parameters are controlled at the active zone and vary across synapses, but how such synapse specific control is achieved is not understood. ELKS proteins are enriched at vertebrate active zones and enhance P at inhibitory hippocampal synapses, but ELKS functions at excitatory synapses are not known. Studying conditional knockout mice for ELKS, we find that ELKS enhances the RRP at excitatory synapses without affecting P. Surprisingly, ELKS C-terminal sequences, which interact with RIM, are dispensable for RRP enhancement. Instead, the N-terminal ELKS coiled-coil domains that bind to Liprin-α and Bassoon are necessary to control RRP. Thus, ELKS removal has differential, synapse-specific effects on RRP and P, and our findings establish important roles for ELKS N-terminal domains in synaptic vesicle priming.

  14. [Chemical synthesis of lactococcin B and functional evaluation of the N-terminal domain using a truncated synthetic analogue].

    Science.gov (United States)

    Lasta, S; Fajloun, Z; Mansuelle, P; Sabatier, J M; Boudabous, A; Sampieri, F

    2008-01-01

    The lactococcin B (LnB) is a hydrophobic, positively charged bacteriocin, produced by Lactococcus lactis ssp. cremoris 9B4. It consists of a peptidic chain made up of 47 amino acid residues, and inhibits Lactococcus exclusively. In order to study its biological activity a synthetic lactococcin B (LnBs) was obtained by solid-phase chemical synthesis using a Fmoc strategy. LnBs was shown to be indistinguishable from the natural peptide. In addition, a synthetic (7-47) LnBst analogue was obtained by withdrawal of peptidyl-resin after the 41 cycle of LnBs peptide chain assembly. The synthetic N-terminal truncated (7-47) LnBst analogue was found to be inactive on indicator strains. Our results strongly suggest that the first six N-terminal amino acid residues are involved in the bactericidal activity of LnB.

  15. Importin α1 Mediates Yorkie Nuclear Import via an N-terminal Non-canonical Nuclear Localization Signal.

    Science.gov (United States)

    Wang, Shimin; Lu, Yi; Yin, Meng-Xin; Wang, Chao; Wu, Wei; Li, Jinhui; Wu, Wenqing; Ge, Ling; Hu, Lianxin; Zhao, Yun; Zhang, Lei

    2016-04-08

    The Hippo signaling pathway controls organ size by orchestrating cell proliferation and apoptosis. When the Hippo pathway was inactivated, the transcriptional co-activator Yorkie translocates into the nucleus and forms a complex with transcription factor Scalloped to promote the expression of Hippo pathway target genes. Therefore, the nuclear translocation of Yorkie is a critical step in Hippo signaling. Here, we provide evidence that the N-terminal 1-55 amino acids of Yorkie, especially Arg-15, were essential for its nuclear localization. By mass spectrometry and biochemical analyses, we found that Importin α1 can directly interact with the Yorkie N terminus and drive Yorkie into the nucleus. Further experiments show that the upstream component Hippo can inhibit Importin α1-mediated Yorkie nuclear import. Taken together, we identified a potential nuclear localization signal at the N-terminal end of Yorkie as well as a critical role for Importin α1 in Yorkie nuclear import.

  16. Expression and characterization of the N-terminal half of antistasin, an anticoagulant protein derived from the leech Haementeria officinalis.

    Science.gov (United States)

    Palladino, L O; Tung, J S; Dunwiddie, C; Alves, K; Lenny, A B; Przysiecki, C; Lehman, D; Nutt, E; Cuca, G C; Law, S W

    1991-02-01

    Antistasin, a 15-kDa anticoagulant protein isolated from the salivary glands of the Mexican leech Haementeria officinalis, has been shown to be a potent inhibitor of factor Xa in the blood coagulation cascade. Antistasin possesses a twofold internal homology between the N- and C-terminal halves of the molecule, suggesting a gene duplication event in the evolution of the antistasin gene. This structural feature also suggests that either or both halves of the protein may possess biological activity if expressed as separate domains. Because the N-terminal domain contains a factor Xa P1-reactive site, we chose to express this domain in an insect cell baculovirus expression system. Characterization of this recombinant half antistasin molecule reveals that the N-terminal domain inhibits factor Xa in vitro, with a K(i) of 1.7 nM.

  17. Recombinant Mitochondrial Transcription Factor A with N-terminal Mitochondrial Transduction Domain Increases Respiration and Mitochondrial Gene Expression

    OpenAIRE

    Iyer, Shilpa; Thomas, Ravindar R.; Portell, Francisco R.; Dunham, Lisa D.; Quigley, Caitlin K.; Bennett, James P

    2009-01-01

    We developed a scalable procedure to produce human mitochondrial transcription factor A (TFAM) modified with an N-terminal protein transduction domain (PTD) and mitochondrial localization signal (MLS) that allow it to cross membranes and enter mitochondria through its “mitochondrial transduction domain” (MTD=PTD+MLS). Alexa488-labeled MTD-TFAM rapidly entered the mitochondrial compartment of cybrid cells carrying the G11778A LHON mutation. MTD-TFAM reversibly increased respiration and levels ...

  18. Impact of N-terminal acetylation of α-synuclein on its random coil and lipid binding properties.

    Science.gov (United States)

    Maltsev, Alexander S; Ying, Jinfa; Bax, Ad

    2012-06-26

    N-Terminal acetylation of α-synuclein (aS), a protein implicated in the etiology of Parkinson's disease, is common in mammals. The impact of this modification on the protein's structure and dynamics in free solution and on its membrane binding properties has been evaluated by high-resolution nuclear magnetic resonance and circular dichroism (CD) spectroscopy. While no tetrameric form of acetylated aS could be isolated, N-terminal acetylation resulted in chemical shift perturbations of the first 12 residues of the protein that progressively decreased with the distance from the N-terminus. The directions of the chemical shift changes and small changes in backbone (3)J(HH) couplings are consistent with an increase in the α-helicity of the first six residues of aS, although a high degree of dynamic conformational disorder remains and the helical structure is sampled <20% of the time. Chemical shift and (3)J(HH) data for the intact protein are virtually indistinguishable from those recorded for the corresponding N-terminally acetylated and nonacetylated 15-residue synthetic peptides. An increase in α-helicity at the N-terminus of aS is supported by CD data on the acetylated peptide and by weak medium-range nuclear Overhauser effect contacts indicative of α-helical character. The remainder of the protein has chemical shift values that are very close to random coil values and indistinguishable between the two forms of the protein. No significant differences in the fibrillation kinetics were observed between acetylated and nonacetylated aS. However, the lipid binding properties of aS are strongly impacted by acetylation and exhibit distinct behavior for the first 12 residues, indicative of an initiation role for the N-terminal residues in an "initiation-elongation" process of binding to the membrane.

  19. The N-terminal domain of the tomato immune protein Prf contains multiple homotypic and Pto kinase interaction sites.

    Science.gov (United States)

    Saur, Isabel Marie-Luise; Conlan, Brendon Francis; Rathjen, John Paul

    2015-05-01

    Resistance to Pseudomonas syringae bacteria in tomato (Solanum lycopersicum) is conferred by the Prf recognition complex, composed of the nucleotide-binding leucine-rich repeats protein Prf and the protein kinase Pto. The complex is activated by recognition of the P. syringae effectors AvrPto and AvrPtoB. The N-terminal domain is responsible for Prf homodimerization, which brings two Pto kinases into close proximity and holds them in inactive conformation in the absence of either effector. Negative regulation is lost by effector binding to the catalytic cleft of Pto, leading to disruption of its P+1 loop within the activation segment. This change is translated through Prf to a second Pto molecule in the complex. Here we describe a schematic model of the unique Prf N-terminal domain dimer and its interaction with the effector binding determinant Pto. Using heterologous expression in Nicotiana benthamiana, we define multiple sites of N domain homotypic interaction and infer that it forms a parallel dimer folded centrally to enable contact between the N and C termini. Furthermore, we found independent binding sites for Pto at either end of the N-terminal domain. Using the constitutively active mutant ptoL205D, we identify a potential repression site for Pto in the first ∼100 amino acids of Prf. Finally, we find that the Prf leucine-rich repeats domain also binds the N-terminal region, highlighting a possible mechanism for transfer of the effector binding signal to the NB-LRR regulatory unit (consisting of a central nucleotide binding and C-terminal leucine-rich repeats).

  20. Crystallization and preliminary X-ray crystallographic analysis of yeast prion protein Ure2p with shortened N-terminal

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An orthorhombic crystal form of a recombinant yeast prion protein with shortened N-terminal, 90Ure2p, has been obtained. Crystals were grown by the vapordiffusion technique against a mother liquor containing imidazole. Crystals belong to the primitive orthorhombic lattice with the cell parameters a = 54.5 ?, b = 74.7 ?, c = 131.0 ?. The crystals diffract to beyond 3.0 ? resolution at a synchrotron beamline.

  1. Structure of the Tropomyosin Overlap Complex from Chicken Smooth Muscle: Insight into the Diversity of N-Terminal Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Frye, Jeremiah; Klenchin, Vadim A.; Rayment, Ivan (UW)

    2010-09-08

    Tropomyosin is a stereotypical {alpha}-helical coiled coil that polymerizes to form a filamentous macromolecular assembly that lies on the surface of F-actin. The interaction between the C-terminal and N-terminal segments on adjacent molecules is known as the overlap region. We report here two X-ray structures of the chicken smooth muscle tropomyosin overlap complex. A novel approach was used to stabilize the C-terminal and N-terminal fragments. Globular domains from both the human DNA ligase binding protein XRCC4 and bacteriophage {phi}29 scaffolding protein Gp7 were fused to 37 and 28 C-terminal amino acid residues of tropomyosin, respectively, whereas the 29 N-terminal amino acids of tropomyosin were fused to the C-terminal helix bundle of microtubule binding protein EB1. The structures of both the XRCC4 and Gp7 fusion proteins complexed with the N-terminal EB1 fusion contain a very similar helix bundle in the overlap region that encompasses {approx}15 residues. The C-terminal coiled coil opens to allow formation of the helix bundle, which is stabilized by hydrophobic interactions. These structures are similar to that observed in the NMR structure of the rat skeletal overlap complex [Greenfield, N. J., et al. (2006) J. Mol. Biol. 364, 80-96]. The interactions between the N- and C-terminal coiled coils of smooth muscle tropomyosin show significant curvature, which differs somewhat between the two structures and implies flexibility in the overlap complex, at least in solution. This is likely an important attribute that allows tropomyosin to assemble around the actin filaments. These structures provide a molecular explanation for the role of N-acetylation in the assembly of native tropomyosin.

  2. Small, N-terminal tags activate Parkin E3 ubiquitin ligase activity by disrupting its autoinhibited conformation.

    Directory of Open Access Journals (Sweden)

    Lynn Burchell

    Full Text Available Parkin is an E3 ubiquitin ligase, mutations in which cause Autosomal Recessive Parkinson's Disease. Many studies aimed at understanding Parkin function, regulation and dysfunction are performed using N-terminal epitope tags. We report here that the use of small tags such as FLAG, cMyc and HA, influence the physical stability and activity of Parkin in and out of cells, perturbing the autoinhibited native state of Parkin, resulting in an active-for-autoubiquitination species.

  3. Conformational unfolding in the N-terminal region of ribonuclease A detected by nonradiative energy transfer.

    Science.gov (United States)

    McWherter, C A; Haas, E; Leed, A R; Scheraga, H A

    1986-04-22

    Unfolding in the N-terminal region of RNase A was studied by the nonradiative energy-transfer technique. RNase A was labeled with a nonfluorescent acceptor (2,4-dinitrophenyl) on the alpha-amino group and a fluorescent donor (ethylenediamine monoamide of 2-naphthoxyacetic acid) on a carboxyl group in the vicinity of residue 50 (75% at Glu-49 and 25% at Asp-53). The distribution of donor labeling sites does not affect the results of this study since they are close in both the sequence and the three-dimensional structure. The sites of labeling were determined by peptide mapping. The derivatives possessed full enzymatic activity and underwent reversible thermal transitions. However, there were some quantitative differences in the thermodynamic parameters. When the carboxyl groups were masked, there was a 5 degrees C lowering of the melting temperature at pH 2 and 4, and no significant change in delta H(Tm). Labeling of the alpha-amino group had no effect on the melting temperature or delta H(Tm) at pH 2 but did result in a dramatic decrease in delta H(Tm) of the unfolding reaction at pH 4. The melting temperature did not change appreciably at pH 4, indicating that an enthalpy/entropy compensation had occurred. The efficiencies of energy transfer determined with both fluorescence intensity and lifetime measurements were in reasonably good agreement. The transfer efficiency dropped from about 60% under folding conditions to roughly 20% when the derivatives were unfolded with disulfide bonds intact and was further reduced to 5% when the disulfide bonds were reduced. The interprobe separation distance was estimated to be 35 +/- 2 A under folding conditions. The contribution to the interprobe distance resulting from the finite size of the probes was treated by using simple geometric considerations and a rotational isomeric state model of the donor probe linkage. With this model, the estimated average interprobe distance of 36 A is in excellent agreement with the

  4. N-terminal truncation enables crystallization of the receptor-binding domain of the FedF bacterial adhesin

    Energy Technology Data Exchange (ETDEWEB)

    De Kerpel, Maia; Van Molle, Inge [Department of Ultrastructure, Vrije Universiteit Brussel (VUB), Flanders Interuniversity Institute for Biotechnology (VIB), Pleinlaan 2, 1050 Brussels (Belgium); Brys, Lea [Department of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Flanders Interuniversity Institute for Biotechnology (VIB), Pleinlaan 2, 1050 Brussels (Belgium); Wyns, Lode; De Greve, Henri; Bouckaert, Julie, E-mail: bouckaej@vub.ac.be [Department of Ultrastructure, Vrije Universiteit Brussel (VUB), Flanders Interuniversity Institute for Biotechnology (VIB), Pleinlaan 2, 1050 Brussels (Belgium)

    2006-12-01

    The N-terminal receptor-binding domain of the FedF adhesin from enterotoxigenic E. coli has been crystallized. This required the deletion of its first 14 residues, which are also cleaved off naturally. FedF is the two-domain tip adhesin of F18 fimbriae from enterotoxigenic Escherichia coli. Bacterial adherence, mediated by the N-terminal receptor-binding domain of FedF to carbohydrate receptors on intestinal microvilli, causes diarrhoea and oedema disease in newly weaned piglets and induces the secretion of Shiga toxins. A truncate containing only the receptor-binding domain of FedF was found to be further cleaved at its N-terminus. Reconstruction of this N-terminal truncate rendered FedF amenable to crystallization, resulting in crystals with space group P2{sub 1}2{sub 1}2{sub 1} and unit-cell parameters a = 36.20, b = 74.64, c = 99.03 Å that diffracted to beyond 2 Å resolution. The binding specificity of FedF was screened for on a glycan array, exposing 264 glycoconjugates, to identify specific receptors for cocrystallization with FedF.

  5. The first N-terminal unprotected (Gly-Aib)n peptide: H-Gly-Aib-Gly-Aib-OtBu.

    Science.gov (United States)

    Gessmann, Renate; Brückner, Hans; Petratos, Kyriacos

    2015-12-01

    Glycine (Gly) is incorporated in roughly half of all known peptaibiotic (nonribosomally biosynthesized antibiotic peptides of fungal origin) sequences and is the residue with the greatest conformational flexibility. The conformational space of Aib (α-aminoisobutyric acid) is severely restricted by the second methyl group attached to the Cα atom. Most of the crystal structures containing Aib are N-terminal protected. Deprotection of the N- or C-terminus of peptides may alter the hydrogen-bonding scheme and/or the structure and may facilitate crystallization. The structure reported here for glycyl-α-aminoisobutyrylglycyl-α-aminoisobutyric acid tert-butyl ester, C16H30N4O5, describes the first N-terminal-unprotected (Gly-Aib)n peptide. The achiral peptide could form an intramolecular hydrogen bond between the C=O group of Gly1 and the N-H group of Aib4. This hydrogen bond is found in all tetrapeptides and N-terminal-protected tripeptides containing Aib, apart from one exception. In the present work, this hydrogen bond is not observed (N...O = 5.88 Å). Instead, every molecule is hydrogen bonded to six other symmetry-related molecules with a total of eight hydrogen bonds per molecule. The backbone conformation starts in the right-handed helical region (and the left-handed helical region for the inverted molecule) and reverses the screw sense in the last two residues.

  6. Loss of the N-terminal methyltransferase NRMT1 increases sensitivity to DNA damage and promotes mammary oncogenesis

    Science.gov (United States)

    Bonsignore, Lindsay A.; Butler, Jill Sergesketter; Klinge, Carolyn M.; Tooley, Christine E. Schaner

    2015-01-01

    Though discovered over four decades ago, the function of N-terminal methylation has mostly remained a mystery. Our discovery of the first mammalian N-terminal methyltransferase, NRMT1, has led to the discovery of many new functions for N-terminal methylation, including regulation of DNA/protein interactions, accurate mitotic division, and nucleotide excision repair (NER). Here we test whether NRMT1 is also important for DNA double-strand break (DSB) repair, and given its previously known roles in cell cycle regulation and the DNA damage response, assay if NRMT1 is acting as a tumor suppressor. We find that NRMT1 knockdown significantly enhances the sensitivity of breast cancer cell lines to both etoposide treatment and γ-irradiation, as well as, increases proliferation rate, invasive potential, anchorage-independent growth, xenograft tumor size, and tamoxifen sensitivity. Interestingly, this positions NRMT1 as a tumor suppressor protein involved in multiple DNA repair pathways, and indicates, similar to BRCA1 and BRCA2, its loss may result in tumors with enhanced sensitivity to diverse DNA damaging chemotherapeutics. PMID:25909287

  7. Conformation Changes N-terminal Involvement and cGMP Signal Relay in the Phosphodiesterase-5 GAF Domain

    Energy Technology Data Exchange (ETDEWEB)

    H Wang; H Robinson; H Ke

    2011-12-31

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, which may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98-147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.

  8. N-terminal aromatic residues closely impact the cytolytic activity of cupiennin 1a, a major spider venom peptide.

    Science.gov (United States)

    Kuhn-Nentwig, Lucia; Sheynis, Tania; Kolusheva, Sofiya; Nentwig, Wolfgang; Jelinek, Raz

    2013-12-01

    Cupiennins are small cationic α-helical peptides from the venom of the ctenid spider Cupiennius salei which are characterized by high bactericidal as well as hemolytic activities. To gain insight into the determinants responsible for the broad cytolytic activities, two analogues of cupiennin 1a with different N-terminal hydrophobicities were designed. The insecticidal, bactericidal and hemolytic activities of these analogues were assayed and compared to the native peptide. Specifically, substitution of two N-terminal Phe residues by Ala results in less pronounced insecticidal and cytolytic activity, whereas a substitution by Lys reduces strongly its bactericidal activity and completely diminishes its hemolytic activity up to very high tested concentrations. Biophysical analyses of peptide/bilayer membrane interactions point to distinct interactions of the analogues with lipid bilayers, and dependence upon membrane surface charge. Indeed, we find that lower hemolytic activity was correlated with less surface association of the analogues. In contrast, our data indicate that the reduced bactericidal activity of the two cupiennin 1a analogues likely correspond to greater bilayer-surface localization of the peptides. Overall, ultimate insertion and destruction of the host cell membrane is highly dependent on the presence of Phe-2 and Phe-6 (Cu 1a) or Leu-6 (Cu 2a) in the N-terminal sequences of native cupiennins.

  9. The SAS-5 N-terminal domain is a tetramer, with implications for centriole assembly in C. elegans.

    Science.gov (United States)

    Shimanovskaya, Ekaterina; Qiao, Renping; Lesigang, Johannes; Dong, Gang

    2013-07-01

    The centriole is a conserved microtubule-based organelle essential for both centrosome formation and cilium biogenesis. It has a unique 9-fold symmetry and its assembly is governed by at least five component proteins (SPD-2, ZYG-1, SAS-5, SAS-6 and SAS-4), which are recruited in a hierarchical order. Recently published structural studies of the SAS-6 N-terminal domain have greatly advanced our understanding of the mechanisms of centriole assembly. However, it remains unclear how the weak interaction between the SAS-6 N-terminal head groups could drive the assembly of a closed ring-like structure, and what determines the stacking of multiple rings on top one another in centriole duplication. We recently reported that SAS-5 binds specifically to a very narrow region of the SAS-6 central coiled coil through its C-terminal domain (CTD, residues 391-404). Here, we further demonstrate by both static light scattering and small angle X-ray scattering that the SAS-5 N-terminal domain (NTD, residues 1-260) forms a tetramer. Specifically, we found that the tetramer is formed by SAS-5 residues 82-260, whereas residues 1-81 are intrinsically disordered. Taking these results together, we propose a working model for SAS-5-mediated assembly of the multi-layered central tube structure.

  10. Nearshore circulation

    NARCIS (Netherlands)

    Battjes, J.A.; Sobey, R.J.; Stive, M.J.F.

    1990-01-01

    Shelf circulation is driven primarily by wind- and tide-induced forces. It is laterally only weakly constrained so that the geostrophic (Coriolis) acceleration is manifest in the response. Nearshore circulation on the other hand is dominated by wave-induced forces associated with shallow-water. wave

  11. The relationship between N-terminal prosomatostatin, all-cause and cardiovascular mortality in patients with type 2 diabetes mellitus (ZODIAC-35)

    NARCIS (Netherlands)

    van Dijk, Peter R.; Landman, Gijs W. D.; van Essen, Larissa; Struck, Joachim; Groenier, Klaas H.; Bilo, Henk J. G.; Bakker, Stephan J. L.; Kleefstra, Nanne

    2015-01-01

    Background: The hormone somatostatin inhibits growth hormone release from the pituitary gland and is theoretically linked to diabetes and diabetes related complications. This study aimed to investigate the relationship between levels of the stable somatostatin precursor, N-terminal prosomatostatin (

  12. Thermodynamics of Calcium binding to the Calmodulin N-terminal domain to evaluate site-specific affinity constants and cooperativity.

    Science.gov (United States)

    Beccia, Maria Rosa; Sauge-Merle, Sandrine; Lemaire, David; Brémond, Nicolas; Pardoux, Romain; Blangy, Stéphanie; Guilbaud, Philippe; Berthomieu, Catherine

    2015-07-01

    Calmodulin (CaM) is an essential Ca(II)-dependent regulator of cell physiology. To understand its interaction with Ca(II) at a molecular level, it is essential to examine Ca(II) binding at each site of the protein, even if it is challenging to estimate the site-specific binding properties of the interdependent CaM-binding sites. In this study, we evaluated the site-specific Ca(II)-binding affinity of sites I and II of the N-terminal domain by combining site-directed mutagenesis and spectrofluorimetry. The mutations had very low impact on the protein structure and stability. We used these binding constants to evaluate the inter-site cooperativity energy and compared it with its lower limit value usually reported in the literature. We found that site I affinity for Ca(II) was 1.5 times that of site II and that cooperativity induced an approximately tenfold higher affinity for the second Ca(II)-binding event, as compared to the first one. We further showed that insertion of a tryptophan at position 7 of site II binding loop significantly increased site II affinity for Ca(II) and the intra-domain cooperativity. ΔH and ΔS parameters were studied by isothermal titration calorimetry for Ca(II) binding to site I, site II and to the entire N-terminal domain. They showed that calcium binding is mainly entropy driven for the first and second binding events. These findings provide molecular information on the structure-affinity relationship of the individual sites of the CaM N-terminal domain and new perspectives for the optimization of metal ion binding by mutating the EF-hand loops sequences.

  13. Complete mapping of substrate translocation highlights the role of LeuT N-terminal segment in regulating transport cycle.

    Science.gov (United States)

    Cheng, Mary Hongying; Bahar, Ivet

    2014-10-01

    Neurotransmitter: sodium symporters (NSSs) regulate neuronal signal transmission by clearing excess neurotransmitters from the synapse, assisted by the co-transport of sodium ions. Extensive structural data have been collected in recent years for several members of the NSS family, which opened the way to structure-based studies for a mechanistic understanding of substrate transport. Leucine transporter (LeuT), a bacterial orthologue, has been broadly adopted as a prototype in these studies. This goal has been elusive, however, due to the complex interplay of global and local events as well as missing structural data on LeuT N-terminal segment. We provide here for the first time a comprehensive description of the molecular events leading to substrate/Na+ release to the postsynaptic cell, including the structure and dynamics of the N-terminal segment using a combination of molecular simulations. Substrate and Na+-release follows an influx of water molecules into the substrate/Na+-binding pocket accompanied by concerted rearrangements of transmembrane helices. A redistribution of salt bridges and cation-π interactions at the N-terminal segment prompts substrate release. Significantly, substrate release is followed by the closure of the intracellular gate and a global reconfiguration back to outward-facing state to resume the transport cycle. Two minimally hydrated intermediates, not structurally resolved to date, are identified: one, substrate-bound, stabilized during the passage from outward- to inward-facing state (holo-occluded), and another, substrate-free, along the reverse transition (apo-occluded).

  14. Complete mapping of substrate translocation highlights the role of LeuT N-terminal segment in regulating transport cycle.

    Directory of Open Access Journals (Sweden)

    Mary Hongying Cheng

    2014-10-01

    Full Text Available Neurotransmitter: sodium symporters (NSSs regulate neuronal signal transmission by clearing excess neurotransmitters from the synapse, assisted by the co-transport of sodium ions. Extensive structural data have been collected in recent years for several members of the NSS family, which opened the way to structure-based studies for a mechanistic understanding of substrate transport. Leucine transporter (LeuT, a bacterial orthologue, has been broadly adopted as a prototype in these studies. This goal has been elusive, however, due to the complex interplay of global and local events as well as missing structural data on LeuT N-terminal segment. We provide here for the first time a comprehensive description of the molecular events leading to substrate/Na+ release to the postsynaptic cell, including the structure and dynamics of the N-terminal segment using a combination of molecular simulations. Substrate and Na+-release follows an influx of water molecules into the substrate/Na+-binding pocket accompanied by concerted rearrangements of transmembrane helices. A redistribution of salt bridges and cation-π interactions at the N-terminal segment prompts substrate release. Significantly, substrate release is followed by the closure of the intracellular gate and a global reconfiguration back to outward-facing state to resume the transport cycle. Two minimally hydrated intermediates, not structurally resolved to date, are identified: one, substrate-bound, stabilized during the passage from outward- to inward-facing state (holo-occluded, and another, substrate-free, along the reverse transition (apo-occluded.

  15. The EBNA-2 N-Terminal Transactivation Domain Folds into a Dimeric Structure Required for Target Gene Activation.

    Directory of Open Access Journals (Sweden)

    Anders Friberg

    2015-05-01

    Full Text Available Epstein-Barr virus (EBV is a γ-herpesvirus that may cause infectious mononucleosis in young adults. In addition, epidemiological and molecular evidence links EBV to the pathogenesis of lymphoid and epithelial malignancies. EBV has the unique ability to transform resting B cells into permanently proliferating, latently infected lymphoblastoid cell lines. Epstein-Barr virus nuclear antigen 2 (EBNA-2 is a key regulator of viral and cellular gene expression for this transformation process. The N-terminal region of EBNA-2 comprising residues 1-58 appears to mediate multiple molecular functions including self-association and transactivation. However, it remains to be determined if the N-terminus of EBNA-2 directly provides these functions or if these activities merely depend on the dimerization involving the N-terminal domain. To address this issue, we determined the three-dimensional structure of the EBNA-2 N-terminal dimerization (END domain by heteronuclear NMR-spectroscopy. The END domain monomer comprises a small fold of four β-strands and an α-helix which form a parallel dimer by interaction of two β-strands from each protomer. A structure-guided mutational analysis showed that hydrophobic residues in the dimer interface are required for self-association in vitro. Importantly, these interface mutants also displayed severely impaired self-association and transactivation in vivo. Moreover, mutations of solvent-exposed residues or deletion of the α-helix do not impair dimerization but strongly affect the functional activity, suggesting that the EBNA-2 dimer presents a surface that mediates functionally important intra- and/or intermolecular interactions. Our study shows that the END domain is a novel dimerization fold that is essential for functional activity. Since this specific fold is a unique feature of EBNA-2 it might provide a novel target for anti-viral therapeutics.

  16. N-terminal PDZ-like domain of chromatin organizer SATB1 contributes towards its function as transcription regulator

    Indian Academy of Sciences (India)

    Dimple Notani; Praveena L Ramanujam; P Pavan Kumar; Kamalvishnu P Gottimukkala; Chandan Kumar-Sinha; Sanjeev Galande

    2011-08-01

    The special AT-rich DNA-binding protein 1 (SATB1) is a matrix attachment region (MAR)-binding protein that acts as a global repressor via recruitment of CtBP1:HDAC1-containing co-repressors to its binding targets. The N-terminal PSD95/Dlg-A/ZO-1 (PDZ)-like domain of SATB1 mediates interactions with several chromatin proteins. In the present study, we set out to address whether the PDZ-domain-mediated interactions of SATB1 are critical for its in vivo function as a global repressor. We reasoned that since the N-terminal PDZ-like domain (amino acid residues 1–204) lacks DNA binding activity, it would fail to recruit the interacting partners of SATB1 to its genomic binding sites and hence would not repress the SATB1-regulated genes. Indeed, in vivo MAR-linked luciferase reporter assay revealed that overexpression of the PDZ-like domain resulted in de-repression, indicating that the PDZ-like domain exerts a dominant negative effect on genes regulated by SATB1. Next, we developed a stable dominant negative model in human embryonic kidney (HEK) 293T cells that conditionally expressed the N-terminal 1–204 region harbouring the PDZ-like domain of SATB1. To monitor the effect of sequestration of the interaction partners on the global gene regulation by SATB1, transcripts from the induced and uninduced clones were subjected to gene expression profiling. Clustering of expression data revealed that 600 out of 19000 genes analysed were significantly upregulated upon overexpression of the PDZ-like domain. Induced genes were found to be involved in important signalling cascades and cellular functions. These studies clearly demonstrated the role of PDZ domain of SATB1 in global gene regulation presumably through its interaction with other cellular proteins.

  17. Intein-Promoted Cyclization of Aspartic Acid Flanking the Intein Leads to Atypical N-Terminal Cleavage.

    Science.gov (United States)

    Minteer, Christopher J; Siegart, Nicolle M; Colelli, Kathryn M; Liu, Xinyue; Linhardt, Robert J; Wang, Chunyu; Gomez, Alvin V; Reitter, Julie N; Mills, Kenneth V

    2017-02-28

    Protein splicing is a post-translational reaction facilitated by an intein, or intervening protein, which involves the removal of the intein and the ligation of the flanking polypeptides, or exteins. A DNA polymerase II intein from Pyrococcus abyssi (Pab PolII intein) can promote protein splicing in vitro on incubation at high temperature. Mutation of active site residues Cys1, Gln185, and Cys+1 to Ala results in an inactive intein precursor, which cannot promote the steps of splicing, including cleavage of the peptide bond linking the N-extein and intein (N-terminal cleavage). Surprisingly, coupling the inactivating mutations to a change of the residue at the C-terminus of the N-extein (N-1 residue) from the native Asn to Asp reactivates N-terminal cleavage at pH 5. Similar "aspartic acid effects" have been observed in other proteins and peptides but usually only occur at lower pH values. In this case, however, the unusual N-terminal cleavage is abolished by mutations to catalytic active site residues and unfolding of the intein, indicating that this cleavage effect is mediated by the intein active site and the intein fold. We show via mass spectrometry that the reaction proceeds through cyclization of Asp resulting in anhydride formation coupled to peptide bond cleavage. Our results add to the richness of the understanding of the mechanism of protein splicing and provide insight into the stability of proteins at moderately low pH. The results also explain, and may help practitioners avoid, a side reaction that may complicate intein applications in biotechnology.

  18. Intracellular trafficking of the human Wilson protein: the role of the six N-terminal metal-binding sites.

    Science.gov (United States)

    Cater, Michael A; Forbes, John; La Fontaine, Sharon; Cox, Diane; Mercer, Julian F B

    2004-01-01

    The Wilson protein (ATP7B) is a copper-transporting CPx-type ATPase defective in the copper toxicity disorder Wilson disease. In hepatocytes, ATP7B delivers copper to apo-ceruloplasmin and mediates the excretion of excess copper into bile. These distinct functions require the protein to localize at two different subcellular compartments. At the trans-Golgi network, ATP7B transports copper for incorporation into apo-ceruloplasmin. When intracellular copper levels are increased, ATP7B traffics to post-Golgi vesicles in close proximity to the canalicular membrane to facilitate biliary copper excretion. In the present study, we investigated the role of the six N-terminal MBSs (metal-binding sites) in the trafficking process. Using site-directed mutagenesis, we mutated or deleted various combinations of the MBSs and assessed the effect of these changes on the localization and trafficking of ATP7B. Results show that the MBSs required for trafficking are the same as those previously found essential for the copper transport function. Either MBS 5 or MBS 6 alone was sufficient to support the redistribution of ATP7B to vesicular compartments. The first three N-terminal motifs were not required for copper-dependent intracellular trafficking and could not functionally replace sites 4-6 when placed in the same sequence position. Furthermore, the N-terminal region encompassing MBSs 1-5 (amino acids 64-540) was not essential for trafficking, with only one MBS close to the membrane channel, necessary and sufficient to support trafficking. Our findings were similar to those obtained for the closely related ATP7A protein, suggesting similar mechanisms for trafficking between copper-transporting CPx-type ATPases. PMID:14998371

  19. Affects of N-terminal variation in the SeM protein of Streptococcus equi on antibody and fibrinogen binding.

    Science.gov (United States)

    Timoney, John F; DeNegri, Rafaela; Sheoran, Abhineet; Forster, Nathalie

    2010-02-10

    The clonal Streptococcus equi causes equine strangles, a highly contagious suppurative lymphadenopathy and rhinopharyngitis. An important virulence factor and vaccine component, the antiphagocytic fibrinogen binding SeM of S. equi is a surface anchored fibrillar protein. Two recent studies of N. American, Japanese and European isolates have revealed a high frequency of N-terminal amino acid variation in SeM of S. equi CF32 that suggests this region of the protein is subject to immunologic selection pressure. The aims of the present study were firstly to map regions of SeM reactive with convalescent equine IgG and IgA and stimulatory for lymph node cells and secondly to determine effects of N-terminal variation on the functionality of SeM. Variation did not significantly affect fibrinogen binding or susceptibility of S. equi to an opsonic equine serum. Linear epitopes reactive with convalescent IgG and mucosal IgA were concentrated toward the conserved center of SeM. However, IgA but not IgG from every horse reacted with at least one peptide that contained variable sequence. Lymph node cells (CD4+) from horses immunized with SeM were strongly responsive to a peptide (alphaalpha36-138) encoding the entire variable region. SeM (CF32) specific mouse Mab 04D11 which reacted strongly with this larger peptide but not with shorter peptides within that sequence reacted strongly with whole cells of S. equi CF32 but only weakly with cells of any of 14 isolates of S. equi expressing different variants of SeM. These results in combination suggest that N-terminal variation alters a conformational epitope of significance in mucosal IgA and systemic T cell responses but does not affect antibody mediated phagocytosis and killing.

  20. An N-terminal deletion variant of HCN1 in the epileptic WAG/Rij strain modulates HCN current densities.

    Science.gov (United States)

    Wemhöner, Konstantin; Kanyshkova, Tatyana; Silbernagel, Nicole; Fernandez-Orth, Juncal; Bittner, Stefan; Kiper, Aytug K; Rinné, Susanne; Netter, Michael F; Meuth, Sven G; Budde, Thomas; Decher, Niels

    2015-01-01

    Rats of the Wistar Albino Glaxo/Rij (WAG/Rij) strain show symptoms resembling human absence epilepsy. Thalamocortical neurons of WAG/Rij rats are characterized by an increased HCN1 expression, a negative shift in I h activation curve, and an altered responsiveness of I h to cAMP. We cloned HCN1 channels from rat thalamic cDNA libraries of the WAG/Rij strain and found an N-terminal deletion of 37 amino acids. In addition, WAG-HCN1 has a stretch of six amino acids, directly following the deletion, where the wild-type sequence (GNSVCF) is changed to a polyserine motif. These alterations were found solely in thalamus mRNA but not in genomic DNA. The truncated WAG-HCN1 was detected late postnatal in WAG/Rij rats and was not passed on to rats obtained from pairing WAG/Rij and non-epileptic August Copenhagen Irish rats. Heterologous expression in Xenopus oocytes revealed 2.2-fold increased current amplitude of WAG-HCN1 compared to rat HCN1. While WAG-HCN1 channels did not have altered current kinetics or changed regulation by protein kinases, fluorescence imaging revealed a faster and more pronounced surface expression of WAG-HCN1. Using co-expression experiments, we found that WAG-HCN1 channels suppress heteromeric HCN2 and HCN4 currents. Moreover, heteromeric channels of WAG-HCN1 with HCN2 have a reduced cAMP sensitivity. Functional studies revealed that the gain-of-function of WAG-HCN1 is not caused by the N-terminal deletion alone, thus requiring a change of the N-terminal GNSVCF motif. Our findings may help to explain previous observations in neurons of the WAG/Rij strain and indicate that WAG-HCN1 may contribute to the genesis of absence seizures in WAG/Rij rats.

  1. An N-terminal deletion variant of HCN1 in the epileptic WAG/Rij strain modulates HCN current densities

    Directory of Open Access Journals (Sweden)

    Konstantin eWemhöner

    2015-11-01

    Full Text Available Rats of the Wistar Albino Glaxo/Rij (WAG/Rij strain show symptoms resembling human absence epilepsy. Thalamocortical neurons of WAG/Rij rats are characterized by an increased HCN1 expression, a negative shift in Ih activation curve, and an altered responsiveness of Ih to cAMP. We cloned HCN1 channels from rat thalamic cDNA libraries of the WAG/Rij strain and found an N-terminal deletion of 37 amino acids. In addition, WAG-HCN1 has a stretch of six amino acids, directly following the deletion, where the wild-type sequence (GNSVCF is changed to a polyserine motif. These alterations were found solely in thalamus mRNA but not in genomic DNA. The truncated WAG-HCN1 was detected late postnatal in WAG/Rij rats and was not passed on to rats obtained from pairing WAG/Rij and non-epileptic August Copenhagen Irish (ACI rats. Heterologous expression in Xenopus oocytes revealed 2.2-fold increased current amplitude of WAG-HCN1 compared to rat HCN1. While WAG-HCN1 channels did not have altered current kinetics or changed regulation by protein kinases, fluorescence imaging revealed a faster and more pronounced surface expression of WAG-HCN1. Using co-expression experiments, we found that WAG-HCN1 channels suppress heteromeric HCN2 and HCN4 currents. Moreover, heteromeric channels of WAG HCN1 with HCN2 have a reduced cAMP sensitivity. Functional studies revealed that the gain-of-function of WAG-HCN1 is not caused by the N-terminal deletion alone, thus requiring a change of the N-terminal GNSVCF motif. Our findings may help to explain previous observations in neurons of the WAG/Rij strain and indicate that WAG HCN1 may contribute to the genesis of absence seizures in WAG/Rij rats.

  2. Conserved N-terminal negative charges support optimally efficient N-type inactivation of Kv1 channels.

    Directory of Open Access Journals (Sweden)

    Alison Prince

    Full Text Available N-type inactivation is produced by the binding of a potassium channel's N-terminus within the open pore, blocking conductance. Previous studies have found that introduction of negative charges into N-terminal inactivation domains disrupts inactivation; however, the Aplysia AKv1 N-type inactivation domain contains two negatively charged residues, E2 and E9. Rather than being unusual, sequence analysis shows that this N-terminal motif is highly conserved among Kv1 sequences across many phyla. Conservation analysis shows some tolerance at position 9 for other charged residues, like D9 and K9, whereas position 2 is highly conserved as E2. To examine the functional importance of these residues, site directed mutagenesis was performed and effects on inactivation were recorded by two electrode voltage clamp in Xenopus oocytes. We find that inclusion of charged residues at positions 2 and 9 prevents interactions with non-polar sites along the inactivation pathway increasing the efficiency of pore block. In addition, E2 appears to have additional specific electrostatic interactions that stabilize the inactivated state likely explaining its high level of conservation. One possible explanation for E2's unique importance, consistent with our data, is that E2 interacts electrostatically with a positive charge on the N-terminal amino group to stabilize the inactivation domain at the block site deep within the pore. Simple electrostatic modeling suggests that due to the non-polar environment in the pore in the blocked state, even a 1 Å larger separation between these charges, produced by the E2D substitution, would be sufficient to explain the 65× reduced affinity of the E2D N-terminus for the pore. Finally, our studies support a multi-step, multi-site N-type inactivation model where the N-terminus interacts deep within the pore in an extended like structure placing the most N-terminal residues 35% of the way across the electric field in the pore blocked

  3. Mutational analysis of Escherichia coli elongation factor Tu in search of a role for the N-terminal region

    DEFF Research Database (Denmark)

    Mansilla, Francisco; Knudsen, Charlotte Rohde; Laurberg, M;

    1998-01-01

    We have mutated lysine 2 and arginine 7 in elongation factor Tu from Escherichia coli separately either to alanine or glutamic acid. The aim of the work was to reveal the possible interactions between the conserved N-terminal part of the molecule, which is rich in basic residues and aminoacyl...... this activity. Furthermore, arginine 7 seems to play a role in regulating the binding of GTP. The three-dimensional structure of the ternary complex, EF-Tu:GTP:Phe-tRNAPhe, involving Thermus aquaticus EF-Tu and yeast Phe-tRNA(Phe), shows that Arg7 is in a position which permits salt bridge formation with Asp284...

  4. Activation of c-Jun-N-terminal kinase and decline of mitochondrial pyruvate dehydrogenase activity during brain aging.

    Science.gov (United States)

    Zhou, Qiongqiong; Lam, Philip Y; Han, Derick; Cadenas, Enrique

    2009-04-02

    Mitochondrial dysfunction is often associated with aging and neurodegeneration. c-Jun-N-terminal kinase (JNK) phosphorylation and its translocation to mitochondria increased as a function of age in rat brain. This was associated with a decrease of pyruvate dehydrogenase (PDH) activity upon phosphorylation of the E(1alpha) subunit of PDH. Phosphorylation of PDH is likely mediated by PDH kinase, the protein levels and activity of which increased with age. ATP levels were diminished, whereas lactic acid levels increased, thus indicating a shift toward anaerobic glycolysis. The energy transduction deficit due to impairment of PDH activity during aging may be associated with JNK signaling.

  5. Analysis of the distribution of charged residues in the N-terminal region of signal sequences: implications for protein export in prokaryotic and eukaryotic cells.

    OpenAIRE

    von Heijne, G

    1984-01-01

    A statistical analysis of the distribution of charged residues in the N-terminal region of 39 prokaryotic and 134 eukaryotic signal sequences reveals a remarkable similarity between the two samples, both in terms of net charge and in terms of the position of charged residues within the N-terminal region, and suggests that the formyl group on Metf is not removed in prokaryotic signal sequences.

  6. N-Terminal Domains in Two-Domain Proteins Are Biased to Be Shorter and Predicted to Fold Faster Than Their C-Terminal Counterparts

    Directory of Open Access Journals (Sweden)

    Etai Jacob

    2013-04-01

    Full Text Available Computational analysis of proteomes in all kingdoms of life reveals a strong tendency for N-terminal domains in two-domain proteins to have shorter sequences than their neighboring C-terminal domains. Given that folding rates are affected by chain length, we asked whether the tendency for N-terminal domains to be shorter than their neighboring C-terminal domains reflects selection for faster-folding N-terminal domains. Calculations of absolute contact order, another predictor of folding rate, provide additional evidence that N-terminal domains tend to fold faster than their neighboring C-terminal domains. A possible explanation for this bias, which is more pronounced in prokaryotes than in eukaryotes, is that faster folding of N-terminal domains reduces the risk for protein aggregation during folding by preventing formation of nonnative interdomain interactions. This explanation is supported by our finding that two-domain proteins with a shorter N-terminal domain are much more abundant than those with a shorter C-terminal domain.

  7. Solution structure and membrane-binding property of the N-terminal tail domain of human annexin I.

    Science.gov (United States)

    Yoon, M K; Park, S H; Won, H S; Na, D S; Lee, B J

    2000-11-10

    The conformational preferences of AnxI(N26), a peptide corresponding to residues 2-26 of human annexin I, were investigated using CD and NMR spectroscopy. CD results showed that AnxI(N26) adopts a mainly alpha-helical conformation in membrane-mimetic environments, TFE/water and SDS micelles, while a predominantly random structure with slight helical propensity in aqueous buffer. The helical region of AnxI(N26) showed a nearly identical conformation between in TFE/water and in SDS micelles, except for the orientation of the Trp-12 side-chain, which was quite different between the two. The N-terminal region of the AnxI(N26) helix showed a typical amphipathic nature, which could be stabilized by the neighboring hydrophobic cluster. The helical stability of the peptide in SDS micelles was increased by addition of calcium ions. These results suggest that the N-terminal tail domain of human annexin I interacts with biological membranes in a partially calcium-dependent manner.

  8. Opposing Functions of the N-terminal Acetyltransferases Naa50 and NatA in Sister-chromatid Cohesion.

    Science.gov (United States)

    Rong, Ziye; Ouyang, Zhuqing; Magin, Robert S; Marmorstein, Ronen; Yu, Hongtao

    2016-09-02

    During the cell cycle, sister-chromatid cohesion tethers sister chromatids together from S phase to the metaphase-anaphase transition and ensures accurate segregation of chromatids into daughter cells. N-terminal acetylation is one of the most prevalent protein covalent modifications in eukaryotes and is mediated by a family of N-terminal acetyltransferases (NAT). Naa50 (also called San) has previously been shown to play a role in sister-chromatid cohesion in metazoans. The mechanism by which Naa50 contributes to cohesion is not understood however. Here, we show that depletion of Naa50 in HeLa cells weakens the interaction between cohesin and its positive regulator sororin and causes cohesion defects in S phase, consistent with a role of Naa50 in cohesion establishment. Strikingly, co-depletion of NatA, a heterodimeric NAT complex that physically interacts with Naa50, rescues the sister-chromatid cohesion defects and the resulting mitotic arrest caused by Naa50 depletion, indicating that NatA and Naa50 play antagonistic roles in cohesion. Purified recombinant NatA and Naa50 do not affect each other's NAT activity in vitro Because NatA and Naa50 exhibit distinct substrate specificity, we propose that they modify different effectors and regulate sister-chromatid cohesion in opposing ways.

  9. Sequential pH-driven dimerization and stabilization of the N-terminal domain enables rapid spider silk formation.

    Science.gov (United States)

    Kronqvist, Nina; Otikovs, Martins; Chmyrov, Volodymyr; Chen, Gefei; Andersson, Marlene; Nordling, Kerstin; Landreh, Michael; Sarr, Médoune; Jörnvall, Hans; Wennmalm, Stefan; Widengren, Jerker; Meng, Qing; Rising, Anna; Otzen, Daniel; Knight, Stefan D; Jaudzems, Kristaps; Johansson, Jan

    2014-01-01

    The mechanisms controlling the conversion of spider silk proteins into insoluble fibres, which happens in a fraction of a second and in a defined region of the silk glands, are still unresolved. The N-terminal domain changes conformation and forms a homodimer when pH is lowered from 7 to 6; however, the molecular details still remain to be determined. Here we investigate site-directed mutants of the N-terminal domain from Euprosthenops australis major ampullate spidroin 1 and find that the charged residues D40, R60 and K65 mediate intersubunit electrostatic interactions. Protonation of E79 and E119 is required for structural conversions of the subunits into a dimer conformation, and subsequent protonation of E84 around pH 5.7 leads to the formation of a fully stable dimer. These residues are highly conserved, indicating that the now proposed three-step mechanism prevents premature aggregation of spidroins and enables fast formation of spider silk fibres in general.

  10. Structural evidence for variable oligomerization of the N-terminal domain of cyclase-associated protein (CAP).

    Science.gov (United States)

    Yusof, Adlina Mohd; Hu, Nien-Jen; Wlodawer, Alexander; Hofmann, Andreas

    2005-02-01

    Cyclase-associated protein (CAP) is a highly conserved and widely distributed protein that links the nutritional response signaling to cytoskeleton remodeling. In yeast, CAP is a component of the adenylyl cyclase complex and helps to activate the Ras-mediated catalytic cycle of the cyclase. While the N-terminal domain of CAP (N-CAP) provides a binding site for adenylyl cyclase, the C-terminal domain (C-CAP) possesses actin binding activity. Our attempts to crystallize full-length recombinant CAP from Dictyostelium discoideum resulted in growth of orthorhombic crystals containing only the N-terminal domain (residues 42-227) due to auto-proteolytic cleavage. The structure was solved by molecular replacement with data at 2.2 A resolution. The present crystal structure allows the characterization of a head-to-tail N-CAP dimer in the asymmetric unit and a crystallographic side-to-side dimer. Comparison with previously published structures of N-CAP reveals variable modes of dimerization of this domain, but the presence of a common interface for the side-to-side dimer.

  11. N-terminal mono-PEGylation of growth hormone antagonist: correlation of PEG size and pharmacodynamic behavior.

    Science.gov (United States)

    Wu, Ling; Ho, Sa V; Wang, Wei; Gao, Jianping; Zhang, Guifeng; Su, Zhiguo; Hu, Tao

    2013-09-10

    Growth hormone antagonist (GHA), an analog of growth hormone (GH), can inhibit GH action and treat acromegaly. However, GHA suffers from a short plasma half-life of 15-20 min that has limited its clinical application. PEGylation, conjugation with polyethylene glycol (PEG), can increase the plasma half-life of GHA. Single PEG attachment (mono-PEGylation) at N-terminus of GHA has the advantages of product homogeneity and minimization of the bioactivity loss. Conjugation of large PEG molecule may increase the plasma half-life but could potentially decrease the bioactivity of GHA, due to the steric shielding effect of PEG. Thus, N-terminal mono-PEGylation of GHA with 20 kDa and 40 kDa PEG were used to look for a balance of the two competing factors. Sedimentation velocity analysis suggested that 40 kDa PEG was more efficient than 20 kDa PEG to elongate the molecular shape of the conjugate. As reflected by marginal suppression of insulin-like growth factor I (IGF-I), GHA conjugated with 40 kDa PEG was statistically indistinguishable from the saline solution that could not inhibit GH action. In contrast, GHA conjugated with 20kDa PEG can apparently inhibit GH action, as reflected by IGF-I suppression of 30-43%. Thus, our work demonstrated the effective therapeutic potency of N-terminally mono-PEGylated GHA.

  12. Calpain-Mediated Processing of Adenylate Cyclase Toxin Generates a Cytosolic Soluble Catalytically Active N-Terminal Domain.

    Directory of Open Access Journals (Sweden)

    Kepa B Uribe

    Full Text Available Bordetella pertussis, the whooping cough pathogen, secretes several virulence factors among which adenylate cyclase toxin (ACT is essential for establishment of the disease in the respiratory tract. ACT weakens host defenses by suppressing important bactericidal activities of the phagocytic cells. Up to now, it was believed that cell intoxication by ACT was a consequence of the accumulation of abnormally high levels of cAMP, generated exclusively beneath the host plasma membrane by the toxin N-terminal catalytic adenylate cyclase (AC domain, upon its direct translocation across the lipid bilayer. Here we show that host calpain, a calcium-dependent Cys-protease, is activated into the phagocytes by a toxin-triggered calcium rise, resulting in the proteolytic cleavage of the toxin N-terminal domain that releases a catalytically active "soluble AC". The calpain-mediated ACT processing allows trafficking of the "soluble AC" domain into subcellular organella. At least two strategic advantages arise from this singular toxin cleavage, enhancing the specificity of action, and simultaneously preventing an indiscriminate activation of cAMP effectors throughout the cell. The present study provides novel insights into the toxin mechanism of action, as the calpain-mediated toxin processing would confer ACT the capacity for a space- and time-coordinated production of different cAMP "pools", which would play different roles in the cell pathophysiology.

  13. Functional Characterization of the N-Terminal C2 Domain from Arabidopsis thaliana Phospholipase Dα and Dβ

    Science.gov (United States)

    Noiriel, Alexandre

    2016-01-01

    Most of plant phospholipases D (PLD) exhibit a C2-lipid binding domain of around 130 amino acid residues at their N-terminal region, involved in their Ca2+-dependent membrane binding. In this study, we expressed and partially purified catalytically active PLDα from Arabidopsis thaliana (AtPLDα) in the yeast Pichia pastoris. The N-terminal amino acid sequence of the recombinant AtPLDα was found to be NVEETIGV and thus to lack the first 35 amino acid belonging to the C2 domain, as found in other recombinant or plant purified PLDs. To investigate the impact of such a cleavage on the functionality of C2 domains, we expressed, in E. coli, purified, and refolded the mature-like form of the C2 domain of the AtPLDα along with its equivalent C2 domain of the AtPLDβ, for the sake of comparison. Using Förster Resonance Energy Transfer and dot-blot assays, both C2 domains were shown to bind phosphatidylglycerol in a Ca2+-independent manner while phosphatidic acid and phosphatidylserine binding were found to be enhanced in the presence of Ca2+. Amino acid sequence alignment and molecular modeling of both C2 domains with known C2 domain structures revealed the presence of a novel Ca2+-binding site within the C2 domain of AtPLDα. PMID:28101506

  14. Enhancing the antimicrobial activity of Sus scrofa lysozyme by N-terminal fusion of a sextuple unique homologous peptide.

    Science.gov (United States)

    Zhu, Dewei; Cai, Guolin; Li, Xiaomin; Lu, Jian; Zhang, Liang

    2017-02-10

    Sus scrofa lysozyme (SSL), an important component of the pig immune system, is a potential candidate to replace antibiotics in feed. However, there is little antimicrobial activity of natural SSL against gram-negative bacteria, which limits its application. In this study, a unique peptide (A-W-V-A-W-K) with antimicrobial activity against gram-negative bacteria was discovered and purified from trypsin hydrolysate of natural SSL. This unique peptide was fused to natural SSL and the recombinant fused SSL exhibited improved activity against gram-negative bacteria. The N-terminal fusion likely increased the membrane penetrability and induced programmed bacterial cell death. The recombinant fused SSL also showed higher activity against some gram-positive bacteria with O-acetylation. By N-terminal fusion of the sextuple peptide, the anti-microbial activity, either to gram-positive or negative bacteria, of the recombinant SSL was higher than the fusion of only one copy of the peptide. This study provides a general, feasible, and highly useful strategy to enhance the antimicrobial activity of lysozyme.

  15. Ubiquitin proteasome-dependent degradation of the transcriptional coactivator PGC-1{alpha} via the N-terminal pathway.

    Science.gov (United States)

    Trausch-Azar, Julie; Leone, Teresa C; Kelly, Daniel P; Schwartz, Alan L

    2010-12-17

    PGC-1α is a potent, inducible transcriptional coactivator that exerts control on mitochondrial biogenesis and multiple cellular energy metabolic pathways. PGC-1α levels are controlled in a highly dynamic manner reflecting regulation at both transcriptional and post-transcriptional levels. Here, we demonstrate that PGC-1α is rapidly degraded in the nucleus (t(½ 0.3 h) via the ubiquitin proteasome system. An N-terminal deletion mutant of 182 residues, PGC182, as well as a lysine-less mutant form, are nuclear and rapidly degraded (t(½) 0.5 h), consistent with degradation via the N terminus-dependent ubiquitin subpathway. Both PGC-1α and PGC182 degradation rates are increased in cells under low serum conditions. However, a naturally occurring N-terminal splice variant of 270 residues, NT-PGC-1α is cytoplasmic and stable (t(½>7 h), providing additional evidence that PGC-1α is degraded in the nucleus. These results strongly suggest that the nuclear N terminus-dependent ubiquitin proteasome pathway governs PGC-1α cellular degradation. In contrast, the cellular localization of NT-PCG-1α results in a longer-half-life and possible distinct temporal and potentially biological actions.

  16. Direct interaction of the N-terminal domain of ribosomal protein S1 with protein S2 in Escherichia coli.

    Science.gov (United States)

    Byrgazov, Konstantin; Manoharadas, Salim; Kaberdina, Anna C; Vesper, Oliver; Moll, Isabella

    2012-01-01

    Despite of the high resolution structure available for the E. coli ribosome, hitherto the structure and localization of the essential ribosomal protein S1 on the 30 S subunit still remains to be elucidated. It was previously reported that protein S1 binds to the ribosome via protein-protein interaction at the two N-terminal domains. Moreover, protein S2 was shown to be required for binding of protein S1 to the ribosome. Here, we present evidence that the N-terminal domain of S1 (amino acids 1-106; S1(106)) is necessary and sufficient for the interaction with protein S2 as well as for ribosome binding. We show that over production of protein S1(106) affects E. coli growth by displacing native protein S1 from its binding pocket on the ribosome. In addition, our data reveal that the coiled-coil domain of protein S2 (S2α(2)) is sufficient to allow protein S1 to bind to the ribosome. Taken together, these data uncover the crucial elements required for the S1/S2 interaction, which is pivotal for translation initiation on canonical mRNAs in gram-negative bacteria. The results are discussed in terms of a model wherein the S1/S2 interaction surface could represent a possible target to modulate the selectivity of the translational machinery and thereby alter the translational program under distinct conditions.

  17. The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance

    Directory of Open Access Journals (Sweden)

    Markus eKunze

    2015-09-01

    Full Text Available The proper distribution of proteins between the cytosol and various membrane-bound compartments is crucial for the functionality of eukaryotic cells. This requires the cooperation between protein transport machineries that translocate diverse proteins from the cytosol into these compartments and targeting signal(s encoded within the primary sequence of these proteins that define their cellular destination. The mechanisms exerting protein translocation differ remarkably between the compartments, but the predominant targeting signals for mitochondria, chloroplasts and the ER share the N-terminal position, an α-helical structural element and the removal from the core protein by intraorganellar cleavage. Interestingly, similar properties have been described for the peroxisomal targeting signal type 2 mediating the import of a fraction of soluble peroxisomal proteins, whereas other peroxisomal matrix proteins encode the type 1 targeting signal residing at the extreme C-terminus. The structural similarity of N-terminal targeting signals poses a challenge to the specificity of protein transport, but allows the generation of ambiguous targeting signals that mediate dual targeting of proteins into different compartments. Dual targeting might represent an advantage for adaptation processes that involve a redistribution of proteins, because it circumvents the hierarchy of targeting signals. Thus, the co-existence of two equally functional import pathways into peroxisomes might reflect a balance between evolutionary constant and flexible transport routes.

  18. The N-terminal pro region mediates retention of unprocessed type-I PME in the Golgi apparatus.

    Science.gov (United States)

    Wolf, Sebastian; Rausch, Thomas; Greiner, Steffen

    2009-05-01

    The pectin matrix of the cell wall, a complex and dynamic network, impacts on cell growth, cell shape and signaling processes. A hallmark of pectin structure is the methylesterification status of its major component, homogalacturonan (HGA), which affects the biophysical properties and enzymatic turnover of pectin. The pectin methylesterases (PMEs), responsible for de-esterification, encompass a protein family of more than 60 isoforms in the Arabidopsis genome. The pivotal role of PME in the regulation of pectin properties also requires tight control at the post-translational level. Type-I PMEs are characterized by an N-terminal pro region, which exhibits homology with pectin methylesterase inhibitors (PMEIs). Here, we demonstrate that the proteolytic removal of the N-terminal pro region depends on conserved basic tetrad motifs, occurs in the early secretory pathway, and is required for the subsequent export of the PME core domain to the cell wall. In addition, we demonstrate the involvement of AtS1P, a subtilisin-like protease, in Arabidopsis PME processing. Our results indicate that the pro region operates as an effective retention mechanism, keeping unprocessed PME in the Golgi apparatus. Consequently, pro-protein processing could constitute a post-translational mechanism regulating PME activity.

  19. A new general pathway for synthesis of reference compounds of N-terminal valine-isocyanate adducts.

    Science.gov (United States)

    Davies, Ronnie; Rydberg, Per; Westberg, Emelie; Motwani, Hitesh V; Johnstone, Erik; Törnqvist, Margareta

    2010-03-15

    Adducts to Hb could be used as biomarkers to monitor exposure to isocyanates. Particularly useful is the measurement of carbamoylation of N-terminal valines in Hb, after detachment as hydantoins. The synthesis of references from the reactive isocyanates, especially diisocyanates, has been problematic due to side reactions and polymerization of the isocyanate starting material. A simpler, safer, and more general method for the synthesis of valine adducts of isocyanates has been developed using N-[(4-nitrophenyl)carbamate]valine methylamide (NPCVMA) as the key precursor to adducts of various mono- and diisocyanates of interest. By reacting NPCVMA with a range of isocyanate-related amines, carbamoylated valines are formed without the use of the reactive isocyanates. The carbamoylated products synthesized here were cyclized with good yields of the formed hydantoins. The carbamoylated derivative from phenyl isocyanate also showed quantitative yield in a test with cyclization under the conditions used in blood. This new pathway for the preparation of N-carbamoylated model compounds overcomes the above-mentioned problems in the synthesis and is a general and simplified approach, which could make such reference compounds of adducts to N-terminal valine from isocyanates accessible for biomonitoring purposes. The synthesized hydantoins corresponding to adducts from isocyanic acid, methyl isocyanate, phenyl isocyanate, and 2,6-toluene diisocyanate were characterized by LC-MS analysis. The background level of the hydantoin from isocyanic acid in human blood was analyzed with the LC-MS conditions developed.

  20. Interaction between GInB and the N-terminal domain of NifA in Azospirillum brasilense

    Institute of Scientific and Technical Information of China (English)

    ZHOU XiaoYu; ZOU XiaoXiao; LI JiLun

    2008-01-01

    Azospirillum brasilense is a diazotroph associated with many important agricultural crops and shows potential as a biofertilizer. NifA, the transcriptional activator of nitrogen fixation (nif) genes, and GInB, one of P,, signal transduction family protein, are key proteins in the regulation of nitrogen fixation in A. brasilense. It was previously reported that the regulation of NifA activity in A. brasilense depends on GInB. We report here that GInB was found to interact directly with the N-terminal domain of NifA in vivo under nitrogen-free conditions and the N-terminal mutant of NifA in which the Tyr residues at position 18 and 53 were replaced by Phe (NifA-N-Y18/53F) strengthened the interaction with GInB. Moreover, we also found that the amino acid residues 66-88 and 165-176 in N-terminus of NifA are responsible for the interaction with GInB.

  1. N-Terminally Myristoylated Feline Foamy Virus Gag Allows Env-Independent Budding of Sub-Viral Particles

    Directory of Open Access Journals (Sweden)

    Yong-Boum Kim

    2011-11-01

    Full Text Available Foamy viruses (FVs are distinct retroviruses classified as Spumaretrovirinae in contrast to the other retroviruses, the Orthoretrovirinae. As a unique feature of FVs, Gag is not sufficient for sub-viral particle (SVP release. In primate and feline FVs (PFV and FFV, particle budding completely depends on the cognate FV Env glycoproteins. It was recently shown that an artificially added N-terminal Gag myristoylation signal (myr-signal overcomes this restriction in PFV inducing an Orthoretrovirus-like budding phenotype. Here we show that engineered, heterologous N-terminal myr-signals also induce budding of the distantly related FFV Gag. The budding efficiency depends on the myr-signal and its location relative to the N-terminus of Gag. When the first nine amino acid residues of FFV Gag were replaced by known myr-signals, the budding efficiency as determined by the detection of extracellular SVPs was low. In contrast, adding myr-signals to the intact N‑terminus of FFV Gag resulted in a more efficient SVP release. Importantly, budding of myr-Gag proteins was sensitive towards inhibition of cellular N-myristoyltransferases. As expected, the addition or insertion of myr-signals that allowed Env-independent budding of FFV SVPs also retargeted Gag to plasma membrane-proximal sites and other intracellular membrane compartments. The data confirm that membrane-targeted FV Gag has the capacity of SVP formation.

  2. N-terminal tetrapeptide T/SPLH motifs contribute to multimodal activation of human TRPA1 channel

    Science.gov (United States)

    Hynkova, Anna; Marsakova, Lenka; Vaskova, Jana; Vlachova, Viktorie

    2016-06-01

    Human transient receptor potential ankyrin channel 1 (TRPA1) is a polymodal sensor implicated in pain, inflammation and itching. An important locus for TRPA1 regulation is the cytoplasmic N-terminal domain, through which various exogenous electrophilic compounds such as allyl-isothiocyanate from mustard oil or cinnamaldehyde from cinnamon activate primary afferent nociceptors. This major region is comprised of a tandem set of 17 ankyrin repeats (AR1-AR17), five of them contain a strictly conserved T/SPLH tetrapeptide motif, a hallmark of an important and evolutionarily conserved contribution to conformational stability. Here, we characterize the functional consequences of putatively stabilizing and destabilizing mutations in these important structural units and identify AR2, AR6, and AR11-13 to be distinctly involved in the allosteric activation of TRPA1 by chemical irritants, cytoplasmic calcium, and membrane voltage. Considering the potential involvement of the T/SP motifs as putative phosphorylation sites, we also show that proline-directed Ser/Thr kinase CDK5 modulates the activity of TRPA1, and that T673 outside the AR-domain is its only possible target. Our data suggest that the most strictly conserved N-terminal ARs define the energetics of the TRPA1 channel gate and contribute to chemical-, calcium- and voltage-dependence.

  3. Identification and analysis of the acetylated status of poplar proteins reveals analogous N-terminal protein processing mechanisms with other eukaryotes.

    Directory of Open Access Journals (Sweden)

    Chang-Cai Liu

    Full Text Available BACKGROUND: The N-terminal protein processing mechanism (NPM including N-terminal Met excision (NME and N-terminal acetylation (N(α-acetylation represents a common protein co-translational process of some eukaryotes. However, this NPM occurred in woody plants yet remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: To reveal the NPM in poplar, we investigated the N(α-acetylation status of poplar proteins during dormancy by combining tandem mass spectrometry with TiO2 enrichment of acetylated peptides. We identified 58 N-terminally acetylated (N(α-acetylated proteins. Most proteins (47, >81% are subjected to N(α-acetylation following the N-terminal removal of Met, indicating that N(α-acetylation and NME represent a common NPM of poplar proteins. Furthermore, we confirm that poplar shares the analogous NME and N(α-acetylation (NPM to other eukaryotes according to analysis of N-terminal features of these acetylated proteins combined with genome-wide identification of the involving methionine aminopeptidases (MAPs and N-terminal acetyltransferase (Nat enzymes in poplar. The N(α-acetylated reactions and the involving enzymes of these poplar proteins are also identified based on those of yeast and human, as well as the subcellular location information of these poplar proteins. CONCLUSIONS/SIGNIFICANCE: This study represents the first extensive investigation of N(α-acetylation events in woody plants, the results of which will provide useful resources for future unraveling the regulatory mechanisms of N(α-acetylation of proteins in poplar.

  4. The solution structure of the N-terminal domain of human tubulin binding cofactor C reveals a platform for tubulin interaction.

    Directory of Open Access Journals (Sweden)

    Ma Flor Garcia-Mayoral

    Full Text Available Human Tubulin Binding Cofactor C (TBCC is a post-chaperonin involved in the folding and assembly of α- and β-tubulin monomers leading to the release of productive tubulin heterodimers ready to polymerize into microtubules. In this process it collaborates with other cofactors (TBC's A, B, D, and E and forms a supercomplex with TBCD, β-tubulin, TBCE and α-tubulin. Here, we demonstrate that TBCC depletion results in multipolar spindles and mitotic failure. Accordingly, TBCC is found at the centrosome and is implicated in bipolar spindle formation. We also determine by NMR the structure of the N-terminal domain of TBCC. The TBCC N-terminal domain adopts a spectrin-like fold topology composed of a left-handed 3-stranded α-helix bundle. Remarkably, the 30-residue N-terminal segment of the TBCC N-terminal domain is flexible and disordered in solution. This unstructured region is involved in the interaction with tubulin. Our data lead us to propose a testable model for TBCC N-terminal domain/tubulin recognition in which the highly charged N-terminus as well as residues from the three helices and the loops interact with the acidic hypervariable regions of tubulin monomers.

  5. The Solution Structure of the N-Terminal Domain of Human Tubulin Binding Cofactor C Reveals a Platform for Tubulin Interaction

    Science.gov (United States)

    Garcia-Mayoral, Mª Flor; Castaño, Raquel; Fanarraga, Monica L.; Zabala, Juan Carlos; Rico, Manuel; Bruix, Marta

    2011-01-01

    Human Tubulin Binding Cofactor C (TBCC) is a post-chaperonin involved in the folding and assembly of α- and β-tubulin monomers leading to the release of productive tubulin heterodimers ready to polymerize into microtubules. In this process it collaborates with other cofactors (TBC's A, B, D, and E) and forms a supercomplex with TBCD, β-tubulin, TBCE and α-tubulin. Here, we demonstrate that TBCC depletion results in multipolar spindles and mitotic failure. Accordingly, TBCC is found at the centrosome and is implicated in bipolar spindle formation. We also determine by NMR the structure of the N-terminal domain of TBCC. The TBCC N-terminal domain adopts a spectrin-like fold topology composed of a left-handed 3-stranded α-helix bundle. Remarkably, the 30-residue N-terminal segment of the TBCC N-terminal domain is flexible and disordered in solution. This unstructured region is involved in the interaction with tubulin. Our data lead us to propose a testable model for TBCC N-terminal domain/tubulin recognition in which the highly charged N-terminus as well as residues from the three helices and the loops interact with the acidic hypervariable regions of tubulin monomers. PMID:22028797

  6. NMR structural characterization of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    Mavoungou, Chrystelle [Max Planck Institute for Biochemistry (Germany); Israel, Lars [Ludwig Maximilians-University, Adolf Butenandt Institute, Cell Biology (Germany); Rehm, Till; Ksiazek, Dorota; Krajewski, Marcin; Popowicz, Grzegorz [Max Planck Institute for Biochemistry (Germany); Noegel, Angelika A. [University of Cologne, Institute for Biochemistry (Germany); Schleicher, Michael [Ludwig Maximilians-University, Adolf Butenandt Institute, Cell Biology (Germany); Holak, Tad A. [Max Planck Institute for Biochemistry (Germany)

    2004-05-15

    Cyclase-associated proteins (CAPs) are highly conserved, ubiquitous actin binding proteins that are involved in microfilament reorganization. The N-termini of CAPs play a role in Ras signaling and bind adenylyl cyclase; the C-termini bind to G-actin. We report here the NMR characterization of the amino-terminal domain of CAP from Dictyostelium discoideum (CAP(1-226)). NMR data, including the steady state {sup 1}H-{sup 15}N heteronuclear NOE experiments, indicate that the first 50 N-terminal residues are unstructured and that this highly flexible serine-rich fragment is followed by a stable, folded core starting at Ser 51. The NMR structure of the folded core is an {alpha}-helix bundle composed of six antiparallel helices, in a stark contrast to the recently determined CAP C-terminal domain structure, which is solely built by {beta}-strands.

  7. NMR structural characterization of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum.

    Science.gov (United States)

    Mavoungou, Chrystelle; Israel, Lars; Rehm, Till; Ksiazek, Dorota; Krajewski, Marcin; Popowicz, Grzegorz; Noegel, Angelika A; Schleicher, Michael; Holak, Tad A

    2004-05-01

    Cyclase-associated proteins (CAPs) are highly conserved, ubiquitous actin binding proteins that are involved in microfilament reorganization. The N-termini of CAPs play a role in Ras signaling and bind adenylyl cyclase; the C-termini bind to G-actin. We report here the NMR characterization of the amino-terminal domain of CAP from Dictyostelium discoideum (CAP(1-226)). NMR data, including the steady state (1)H-(15)N heteronuclear NOE experiments, indicate that the first 50 N-terminal residues are unstructured and that this highly flexible serine-rich fragment is followed by a stable, folded core starting at Ser 51. The NMR structure of the folded core is an alpha-helix bundle composed of six antiparallel helices, in a stark contrast to the recently determined CAP C-terminal domain structure, which is solely built by beta-strands.

  8. Selective monoprotection of 1,n-terminal Diols in supercritical carbon dioxide: a striking example of solvent tunable desymmetrization.

    Science.gov (United States)

    Licence, Peter; Gray, William K; Sokolova, Maia; Poliakoff, Martyn

    2005-01-12

    The reaction between 1,n-terminal diols (n = 3 or 6) with simple alcohols (MeOH, EtOH, and n-PrOH) in supercritical CO(2) over an acid catalyst (Amberlyst 15) leads to two possible products, a mono- and a bis-ether. At 150 degrees C, the selectivity of the reaction with 1,6-hexanediol and MeOH can be switched from 1:20 in favor of the bis-ether at 50 bar to 9:1 in favor of the desymmetrized mono-ether at 200 bar. It is demonstrated that the switch in selectivity is associated with the phase state of the reaction mixture, with monophasic conditions favoring the mono-ether and biphasic conditions favoring the bis-ether. A rationalization of this effect is also presented.

  9. Barley polyamine oxidase: Characterisation and analysis of the cofactor and the N-terminal amino acid sequence

    DEFF Research Database (Denmark)

    Radova, A.; Sebela, M.; Galuszka, P.

    2001-01-01

    This paper reports the first purification method developed for the isolation of an homogeneous polyamine oxidase (PAO) from etiolated barley seedlings. The crude enzyme preparation was obtained after initial precipitation of the extract with protamine sulphate and ammonium sulphate. The enzyme...... was further purified to a final homogeneity (by the criteria of isoelectric focusing and SDS-PAGE) using techniques of low pressure chromatography followed by two FPLC steps. The purified yellow enzyme showed visible absorption maxima of a flavoprotein at 380 and 450 nm: the presence of FAD as the cofactor...... was further confirmed by measuring the fluorescence spectra, Barley PAO is an acidic protein (pI 5.4) containing 3% of neutral sugars: its molecular mass determined by SDS-PAGE was 56 kDa, whilst gel permeation chromatography revealed the higher value of 76 kDa. The N-terminal amino acid sequence of barley...

  10. Structure of the mouse galectin-4 N-terminal carbohydrate-recognition domain reveals the mechanism of oligosaccharide recognition

    Energy Technology Data Exchange (ETDEWEB)

    Krejciríková, Veronika; Pachl, Petr; Fábry, Milan; Malý, Petr; Rezácová, Pavlína; Brynda, Jirí (Czech Academy)

    2011-11-18

    Galectin-4, a member of the tandem-repeat subfamily of galectins, participates in cell-membrane interactions and plays an important role in cell adhesion and modulation of immunity and malignity. The oligosaccharide specificity of the mouse galectin-4 carbohydrate-recognition domains (CRDs) has been reported previously. In this work, the structure and binding properties of the N-terminal domain CRD1 were further investigated and the crystal structure of CRD1 in complex with lactose was determined at 2.1 {angstrom} resolution. The lactose-binding affinity was characterized by fluorescence measurements and two lactose-binding sites were identified: a high-affinity site with a K{sub d} value in the micromolar range (K{sub d1} = 600 {+-} 70 {mu}M) and a low-affinity site with K{sub d2} = 28 {+-} 10 mM.

  11. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  12. A murine monoclonal antibody that binds N-terminal extracellular segment of human protease-activated receptor-4.

    Science.gov (United States)

    Sangawa, Takeshi; Nogi, Terukazu; Takagi, Junichi

    2008-10-01

    Abstract A monoclonal antibody that recognizes native G protein coupled receptors (GPCR) is generally difficult to obtain. Protease-activated receptor-4 (PAR4) is a GPCR that plays an important role in platelet activation as a low-affinity thrombin receptor. By immunizing peptide corresponding to the N-terminal segment of human PAR4, we obtained a monoclonal antibody that recognizes cell surface expressed PAR4. Epitope mapping using a series of artificial fusion proteins that carry PAR4-derived peptide revealed that the recognition motif is fully contained within the 6-residue portion adjacent to the thrombin cleavage site. The antibody blocked PAR4 peptide cleavage by thrombin, suggesting its utility in the functional study of PAR4 signaling.

  13. Synaptobrevin N-terminally bound to syntaxin-SNAP-25 defines the primed vesicle state in regulated exocytosis

    DEFF Research Database (Denmark)

    Walter, Alexander M; Wiederhold, Katrin; Bruns, Dieter;

    2010-01-01

    ) to the syntaxin-SNAP-25 (target membrane SNAREs) acceptor complex or whether the reaction is arrested upstream of that step. In this study, by a combination of in vitro biophysical measurements and time-resolved exocytosis measurements in adrenal chromaffin cells, we find that mutations of the N......-terminal interaction layers of the SNARE bundle inhibit assembly in vitro and vesicle priming in vivo without detectable changes in triggering speed or fusion pore properties. In contrast, mutations in the last C-terminal layer decrease triggering speed and fusion pore duration. Between the two domains, we identify...... a region exquisitely sensitive to mutation, possibly constituting a switch. Our data are consistent with a model in which the N terminus of the SNARE complex assembles during vesicle priming, followed by Ca(2+)-triggered C-terminal assembly and membrane fusion....

  14. N-terminal pro-atrial natriuretic peptide response to acute exercise in depressed patients and healthy controls

    DEFF Research Database (Denmark)

    Krogh, Jesper; Ströhle, Andreas; Westrin, Asa

    2011-01-01

    that patients with depression would have an attenuated N-terminal proANP (NT-proANP) response to acute exercise compared to healthy controls. Secondly, we aimed to assess the effect of antidepressants on NT-proANP response to acute exercise. METHODS: We examined 132 outpatients with mild to moderate depression......BACKGROUND: The dysfunction of hypothalamic-pituitary-adrenal (HPA) axis in major depression includes hyperactivity and reduced feedback inhibition. Atrial natriuretic peptide (ANP) is able to reduce the HPA-axis response to stress and has an anxiolytic effect in rodents and humans. We hypothesized...... (ICD-10) and 44 healthy controls, group matched for age, sex, and BMI. We used an incremental bicycle ergometer test as a physical stressor. Blood samples were drawn at rest, at exhaustion, and 15, 30, and 60min post-exercise. RESULTS: The NT-proANP response to physical exercise differed between...

  15. Effect of Jun N-terminal kinase 1 and 2 on the replication of Penicillium marneffei in human macrophages.

    Science.gov (United States)

    Chen, Renqiong; Xi, Liyan; Huang, Xiaowen; Ma, Tuan; Ren, Hong; Ji, Guangquan

    2015-05-01

    Penicillium marneffei (P. marneffei) is a human pathogen which persists in macrophages and threatens the immunocompromised patients. To clarify the mechanisms involved, we evaluated the effect of c-Jun N-terminal kinase 1 and 2 (JNK1/2) on cytokine expression, phagosomal maturation and multiplication of P. marneffei in P. marneffei-stimulated human macrophages. P. marneffei induced the rapid phosphorylation of JNK1/2. Using the specific inhibitor of JNK1/2 (SP600125), we found that the inhibition of JNK1/2 suppressed P. marneffei-induced tumor necrosis factor-α and IL-10 production. In addition, the presence of SP600125 increased phagosomal acidification and maturation and decreased intracellular replication. These data suggest that JNK1/2 may play an important role in promoting the replication of P. marneffei. Our findings further indicate that the pathogen through the JNK1/2 pathway may attenuate the immune response and macrophage antifungal function.

  16. A second disulfide bridge from the N-terminal domain to extracellular loop 2 dampens receptor activity in GPR39

    DEFF Research Database (Denmark)

    Storjohann, Laura; Holst, Birgitte; Schwartz, Thue W

    2008-01-01

    A highly conserved feature across all families of 7TM receptors is a disulfide bridge between a Cys residue located at the extracellular end of transmembrane segment III (TM-III) and one in extracellular loop 2 (ECL-2). The zinc sensor GPR39 contains four Cys residues in the extracellular domains....... By using mutagenesis, treatment with the reducing agent TCEP, and a labeling procedure for free sulfhydryl groups, we identify the pairing of these Cys residues in two disulfide bridges: the prototypical bridge between Cys (108) in TM-III and Cys (210) in ECL-2 and a second disulfide bridge connecting Cys...... (11) in the N-terminal domain with Cys (191) in ECL-2. Disruption of the conserved disulfide bond by mutagenesis greatly reduced the level of cell surface expression and eliminated agonist-induced increases in inositol phosphate production but surprisingly enhanced constitutive signaling. Disruption...

  17. The cyanobacterial cell division factor Ftn6 contains an N-terminal DnaD-like domain

    Directory of Open Access Journals (Sweden)

    Saguez Cyril

    2009-08-01

    Full Text Available Abstract Background DNA replication and cell cycle as well as their relationship have been extensively studied in the two model organisms E. coli and B. subtilis. By contrast, little is known about these processes in cyanobacteria, even though they are crucial to the biosphere, in utilizing solar energy to renew the oxygenic atmosphere and in producing the biomass for the food chain. Recent studies have allowed the identification of several cell division factors that are specifics to cyanobacteria. Among them, Ftn6 has been proposed to function in the recruitment of the crucial FtsZ proteins to the septum or the subsequent Z-ring assembly and possibly in chromosome segregation. Results In this study, we identified an as yet undescribed domain located in the conserved N-terminal region of Ftn6. This 77 amino-acids-long domain, designated here as FND (Ftn6 N-Terminal Domain, exhibits striking sequence and structural similarities with the DNA-interacting module, listed in the PFAM database as the DnaD-like domain (pfam04271. We took advantage of the sequence similarities between FND and the DnaD-like domains to construct a homology 3D-model of the Ftn6 FND domain from the model cyanobacterium Synechocystis PCC6803. Mapping of the conserved residues exposed onto the FND surface allowed us to identify a highly conserved area that could be engaged in Ftn6-specific interactions. Conclusion Overall, similarities between FND and DnaD-like domains as well as previously reported observations on Ftn6 suggest that FND may function as a DNA-interacting module thereby providing an as yet missing link between DNA replication and cell division in cyanobacteria. Consistently, we also showed that Ftn6 is involved in tolerance to DNA damages generated by UV rays.

  18. N-terminal extension of the yeast IA3 aspartic proteinase inhibitor relaxes the strict intrinsic selectivity.

    Science.gov (United States)

    Winterburn, Tim J; Phylip, Lowri H; Bur, Daniel; Wyatt, David M; Berry, Colin; Kay, John

    2007-07-01

    Yeast IA(3) aspartic proteinase inhibitor operates through an unprecedented mechanism and exhibits a remarkable specificity for one target enzyme, saccharopepsin. Even aspartic proteinases that are very closely similar to saccharopepsin (e.g. the vacuolar enzyme from Pichia pastoris) are not susceptible to significant inhibition. The Pichia proteinase was selected as the target for initial attempts to engineer IA(3) to re-design the specificity. The IA(3) polypeptides from Saccharomyces cerevisiae and Saccharomyces castellii differ considerably in sequence. Alterations made by deletion or exchange of the residues in the C-terminal segment of these polypeptides had only minor effects. By contrast, extension of each of these wild-type and chimaeric polypeptides at its N-terminus by an MK(H)(7)MQ sequence generated inhibitors that displayed subnanomolar potency towards the Pichia enzyme. This gain-in-function was completely reversed upon removal of the extension sequence by exopeptidase trimming. Capture of the potentially positively charged aromatic histidine residues of the extension by remote, negatively charged side-chains, which were identified in the Pichia enzyme by modelling, may increase the local IA(3) concentration and create an anchor that enables the N-terminal segment residues to be harboured in closer proximity to the enzyme active site, thus promoting their interaction. In saccharopepsin, some of the counterpart residues are different and, consistent with this, the N-terminal extension of each IA(3) polypeptide was without major effect on the potency of interaction with saccharopepsin. In this way, it is possible to convert IA(3) polypeptides that display little affinity for the Pichia enzyme into potent inhibitors of this proteinase and thus broaden the target selectivity of this remarkable small protein.

  19. Investigation of the N-terminal coding region of MUC7 alterations in dentistry students with and without caries

    Directory of Open Access Journals (Sweden)

    Koç Öztürk L

    2016-07-01

    Full Text Available Human low-molecular weight salivary mucin (MUC7 is a small, secreted glycoprotein coded by MUC7. In the oral cavity, they inhibit the colonization of oral bacteria, including cariogenic ones, by masking their surface adhesions, thus helping saliva to avoid dental caries. The N-terminal domain is important for low-molecular weight (MG2 mucins to contact with oral microorganisms. In this study, we aimed to identify the N-terminal coding region of the MUC7 gene between individuals with and without caries. Forty-four healthy dental students were enrolled in this study; 24 of them were classified to have caries [decayed, missing, filled-teeth (DMFT = 5.6] according to the World Health Organization (WHO criteria, and 20 of them were caries-free (DMFT = 0. Simplified oral hygiene index (OHI-S and gingival index (GI were used to determine the oral hygiene and gingival conditions. Total protein levels and salivary total protein levels and salivary buffer capacity (SBC were determined by Lowry and Ericsson methods. DNA was extracted from peripheral blood cells of all the participants and genotyping was carried out by a polymerase chain reaction (PCR-sequencing method. No statistical differences were found between two groups in the terms of salivary parameters, oral hygiene and gingival conditions. We detected one common single nucleotide polymorphism (SNP that leads to a change of asparagine to lysine at codon 80. This substitution was found in 29.0 and 40.0%, respectively, of the groups with and without caries. No other sequence variations were detected. The SNP found in this study may be a specific polymorphism affecting the Turkish population. Further studies with extended numbers are necessary in order to clarify this finding.

  20. Zinc(II) interactions with brain-derived neurotrophic factor N-terminal peptide fragments: inorganic features and biological perspectives.

    Science.gov (United States)

    Travaglia, Alessio; La Mendola, Diego; Magrì, Antonio; Pietropaolo, Adriana; Nicoletti, Vincenzo G; Grasso, Giuseppe; Malgieri, Gaetano; Fattorusso, Roberto; Isernia, Carla; Rizzarelli, Enrico

    2013-10-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin essential for neuronal differentiation, growth, and survival; it is involved in memory formation and higher cognitive functions. The N-terminal domain of BDNF is crucial for the binding selectivity and activation of its specific TrkB receptor. Zn(2+) ion binding may influence BDNF activity. Zn(2+) complexes with the peptide fragment BDNF(1-12) encompassing the sequence 1-12 of the N-terminal domain of BDNF were studied by means of potentiometry, electrospray mass spectrometry, NMR, and density functional theory (DFT) approaches. The predominant Zn(2+) complex species, at physiological pH, is [ZnL] in which the metal ion is bound to an amino, an imidazole, and two water molecules (NH2, N(Im), and 2O(water)) in a tetrahedral environment. DFT-based geometry optimization of the zinc coordination environment showed a hydrogen bond between the carboxylate and a water molecule bound to zinc in [ZnL]. The coordination features of the acetylated form [AcBDNF(1-12)] and of a single mutated peptide [BDNF(1-12)D3N] were also characterized, highlighting the role of the imidazole side chain as the first anchoring site and ruling out the direct involvement of the aspartate residue in the metal binding. Zn(2+) addition to the cell culture medium induces an increase in the proliferative activity of the BDNF(1-12) peptide and of the whole protein on the SHSY5Y neuroblastoma cell line. The effect of Zn(2+) is opposite to that previously observed for Cu(2+) addition, which determines a decrease in the proliferative activity for both peptide and protein, suggesting that these metals might discriminate and modulate differently the activity of BDNF.

  1. NMR solution structure and membrane interaction of the N-terminal sequence (1-30) of the bovine prion protein.

    Science.gov (United States)

    Biverståhl, Henrik; Andersson, August; Gräslund, Astrid; Mäler, Lena

    2004-11-30

    The structure and membrane interaction of the N-terminal sequence (1-30) of the bovine prion protein (bPrPp) has been investigated by NMR spectroscopy in phospholipid membrane mimetic systems. CD spectroscopy revealed that the peptide adopts a largely alpha-helical structure in zwitterionic bicelles as well as in DHPC micelles but has a less degree of alpha-helix structure in partly charged bicelles. The solution structure of bPrPp was determined in DHPC micelles, and an alpha-helix was found between residues Ser8 and Ile21. The residues within the helical region show slow amide hydrogen exchange. Translational diffusion measurements in zwitterionic q = 0.5 bicelles show that the peptide does not induce aggregation of the bicelles. Increased quadrupolar splittings were observed in the outer part of the (2)H spectrum of DMPC in q = 3.5 bicelles, indicating that the peptide induces a certain degree of order in the bilayer. The amide hydrogen exchange and the (2)H NMR results are consistent with a slight positive hydrophobic mismatch and that bPrPp forms a stable helix that inserts in a transmembrane location in the bilayer. The structure of bPrPp and its position in the membrane may be relevant for the understanding of how the N-terminal (1-30) part of the bovine PrP functions as a cell-penetrating peptide. These findings may lead to a better understanding of how the prion protein accumulates at the membrane surface and also how the conversion into the scrapie form is carried out.

  2. Characterization of the N-terminal domain of BteA: a Bordetella type III secreted cytotoxic effector.

    Directory of Open Access Journals (Sweden)

    Chen Guttman

    Full Text Available BteA, a 69-kDa cytotoxic protein, is a type III secretion system (T3SS effector in the classical Bordetella, the etiological agents of pertussis and related mammalian respiratory diseases. Currently there is limited information regarding the structure of BteA or its subdomains, and no insight as to the identity of its eukaryotic partners(s and their modes of interaction with BteA. The mechanisms that lead to BteA dependent cell death also remain elusive. The N-terminal domain of BteA is multifunctional, acting as a docking platform for its cognate chaperone (BtcA in the bacterium, and targeting the protein to lipid raft microdomains within the eukaryotic host cell. In this study we describe the biochemical and biophysical characteristics of this domain (BteA287 and determine its architecture. We characterize BteA287 as being a soluble and highly stable domain which is rich in alpha helical content. Nuclear magnetic resonance (NMR experiments combined with size exclusion and analytical ultracentrifugation measurements confirm these observations and reveal BteA287 to be monomeric in nature with a tendency to oligomerize at concentrations above 200 µM. Furthermore, diffusion-NMR demonstrated that the first 31 residues of BteA287 are responsible for the apparent aggregation behavior of BteA287. Light scattering analyses and small angle X-ray scattering experiments reveal a prolate ellipsoidal bi-pyramidal dumb-bell shape. Thus, our biophysical characterization is a first step towards structure determination of the BteA N-terminal domain.

  3. PKC phosphorylates residues in the N-terminal of the DA transporter to regulate amphetamine-induced DA efflux.

    Science.gov (United States)

    Wang, Qiang; Bubula, Nancy; Brown, Jason; Wang, Yunliang; Kondev, Veronika; Vezina, Paul

    2016-05-27

    The DA transporter (DAT), a phosphoprotein, controls extracellular dopamine (DA) levels in the central nervous system through transport or reverse transport (efflux). Multiple lines of evidence support the claim that PKC significantly contributes to amphetamine-induced DA efflux. Other signaling pathways, involving CaMKII and ERK, have also been shown to regulate DAT mediated efflux. Here we assessed the contribution of putative PKC residues (S4, S7, S13) in the N-terminal of the DAT to amphetamine-induced DA efflux by transfecting DATs containing different serine to alanine (S-A) point mutations into DA pre-loaded HEK-293 cells and incubating these cells in amphetamine (2μM). The effects of a S-A mutation at the non-PKC residue S12 and a threonine to alanine (T-A) mutation at the ERK T53 residue were also assessed for comparison. WT-DATs were used as controls. In an initial experiment, we confirmed that inhibiting PKC with Go6976 (130nM) significantly reduced amphetamine-induced DA efflux. In subsequent experiments, cells transfected with the S4A, S12A, S13A, T53A and S4,7,13A mutants showed a reduction in amphetamine-induced DA efflux similar to that observed with Go6976. Interestingly, cells transfected with the S7A mutant, identified by some as a PKC-PKA residue, showed unperturbed WT-DAT levels of amphetamine-induced DA efflux. These results indicate that phosphorylation by PKC of select residues in the DAT N-terminal can regulate amphetamine-induced efflux. PKC can act either independently or in concert with other kinases such as ERK to produce this effect.

  4. Investigation of the N-terminal coding region of MUC7 alterations in dentistry students with and without caries

    Science.gov (United States)

    Koç Öztürk, L; Yarat, A; Akyuz, S; Furuncuoglu, H

    2016-01-01

    ABSTRACT Human low-molecular weight salivary mucin (MUC7) is a small, secreted glycoprotein coded by MUC7. In the oral cavity, they inhibit the colonization of oral bacteria, including cariogenic ones, by masking their surface adhesions, thus helping saliva to avoid dental caries. The N-terminal domain is important for low-molecular weight (MG2) mucins to contact with oral microorganisms. In this study, we aimed to identify the N-terminal coding region of the MUC7 gene between individuals with and without caries. Forty-four healthy dental students were enrolled in this study; 24 of them were classified to have caries [decayed, missing, filled-teeth (DMFT) = 5.6] according to the World Health Organization (WHO) criteria, and 20 of them were caries-free (DMFT = 0). Simplified oral hygiene index (OHI-S) and gingival index (GI) were used to determine the oral hygiene and gingival conditions. Total protein levels and salivary total protein levels and salivary buffer capacity (SBC) were determined by Lowry and Ericsson methods. DNA was extracted from peripheral blood cells of all the participants and genotyping was carried out by a polymerase chain reaction (PCR)-sequencing method. No statistical differences were found between two groups in the terms of salivary parameters, oral hygiene and gingival conditions. We detected one common single nucleotide polymorphism (SNP) that leads to a change of asparagine to lysine at codon 80. This substitution was found in 29.0 and 40.0%, respectively, of the groups with and without caries. No other sequence variations were detected. The SNP found in this study may be a specific polymorphism affecting the Turkish population. Further studies with extended numbers are necessary in order to clarify this finding.

  5. N-terminally truncated GADD34 proteins are convenient translation enhancers in a human cell-derived in vitro protein synthesis system.

    Science.gov (United States)

    Mikami, Satoshi; Kobayashi, Tominari; Machida, Kodai; Masutani, Mamiko; Yokoyama, Shigeyuki; Imataka, Hiroaki

    2010-07-01

    Human cell-derived in vitro protein synthesis systems are useful for the production of recombinant proteins. Productivity can be increased by supplementation with GADD34, a protein that is difficult to express in and purify from E. coli. Deletion of the N-terminal 120 or 240 amino acids of GADD34 improves recovery of this protein from E. coli without compromising its ability to boost protein synthesis in an in vitro protein synthesis system. The use of N-terminally truncated GADD34 proteins in place of full-length GADD34 should improve the utility of human cell-based cell-free protein synthesis systems.

  6. Neuroprotection by inhibiting the c-Jun N-terminal kinase pathway after cerebral ischemia occurs independently of interleukin-6 and keratinocyte-derived chemokine (KC/CXCL1 secretion

    Directory of Open Access Journals (Sweden)

    Benakis Corinne

    2012-04-01

    Full Text Available Abstract Background Cerebral ischemia is associated with the activation of glial cells, infiltration of leukocytes and an increase in inflammatory mediators in the ischemic brain and systemic circulation. How this inflammatory response influences lesion size and neurological outcome remains unclear. D-JNKI1, an inhibitor of the c-Jun N-terminal kinase pathway, is strongly neuroprotective in animal models of stroke. Intriguingly, the protection mediated by D-JNKI1 is high even with intravenous administration at very low doses with undetectable drug levels in the brain, pointing to a systemic mode of action, perhaps on inflammation. Findings We evaluated whether D-JNKI1, administered intravenously 3 h after the onset of middle cerebral artery occlusion (MCAO, modulates secretion of the inflammatory mediators interleukin-6 and keratinocyte-derived chemokine in the plasma and from the spleen and brain at several time points after MCAO. We found an early release of both mediators in the systemic circulation followed by an increase in the brain and went on to show a later systemic increase in vehicle-treated mice. Release of interleukin-6 and keratinocyte-derived chemokine from the spleen of mice with MCAO was not significantly different from sham mice. Interestingly, the secretion of these inflammatory mediators was not altered in the systemic circulation or brain after successful neuroprotection with D-JNKI1. Conclusions We demonstrate that neuroprotection with D-JNKI1 after experimental cerebral ischemia is independent of systemic and brain release of interleukin-6 and keratinocyte-derived chemokine. Furthermore, our findings suggest that the early systemic release of interleukin-6 and keratinocyte-derived chemokine may not necessarily predict an unfavorable outcome in this model.

  7. Specificity and versatility of substrate binding sites in four catalytic domains of human N-terminal acetyltransferases.

    Directory of Open Access Journals (Sweden)

    Cédric Grauffel

    Full Text Available Nt-acetylation is among the most common protein modifications in eukaryotes. Although thought for a long time to protect proteins from degradation, the role of Nt-acetylation is still debated. It is catalyzed by enzymes called N-terminal acetyltransferases (NATs. In eukaryotes, several NATs, composed of at least one catalytic domain, target different substrates based on their N-terminal sequences. In order to better understand the substrate specificity of human NATs, we investigated in silico the enzyme-substrate interactions in four catalytic subunits of human NATs (Naa10p, Naa20p, Naa30p and Naa50p. To date hNaa50p is the only human subunit for which X-ray structures are available. We used the structure of the ternary hNaa50p/AcCoA/MLG complex and a structural model of hNaa10p as a starting point for multiple molecular dynamics simulations of hNaa50p/AcCoA/substrate (substrate=MLG, EEE, MKG, hNaa10p/AcCoA/substrate (substrate=MLG, EEE. Nine alanine point-mutants of the hNaa50p/AcCoA/MLG complex were also simulated. Homology models of hNaa20p and hNaa30p were built and compared to hNaa50p and hNaa10p. The simulations of hNaa50p/AcCoA/MLG reproduce the interactions revealed by the X-ray data. We observed strong hydrogen bonds between MLG and tyrosines 31, 138 and 139. Yet the tyrosines interacting with the substrate's backbone suggest that their role in specificity is limited. This is confirmed by the simulations of hNaa50p/AcCoA/EEE and hNaa10p/AcCoA/MLG, where these hydrogen bonds are still observed. Moreover these tyrosines are all conserved in hNaa20p and hNaa30p. Other amino acids tune the specificity of the S1' sites that is different for hNaa10p (acidic, hNaa20p (hydrophobic/basic, hNaa30p (basic and hNaa50p (hydrophobic. We also observe dynamic correlation between the ligand binding site and helix [Formula: see text] that tightens under substrate binding. Finally, by comparing the four structures we propose maps of the peptide

  8. Modulating the activity of short arginine-tryptophan containing antibacterial peptides with N-terminal metallocenoyl groups

    Directory of Open Access Journals (Sweden)

    H. Bauke Albada

    2012-10-01

    Full Text Available A series of small synthetic arginine and tryptophan containing peptides was prepared and analyzed for their antibacterial activity. The effect of N-terminal substitution with metallocenoyl groups such as ferrocene (FcCO and ruthenocene (RcCO was investigated. Antibacterial activity in different media, growth inhibition, and killing kinetics of the most active peptides were determined. The toxicity of selected derivatives was determined against erythrocytes and three human cancer cell lines. It was shown that the replacement of an N-terminal arginine residue with a metallocenoyl moiety modulates the activity of WRWRW-peptides against Gram-positive and Gram-negative bacteria. MIC values of 2–6 µM for RcCO-W(RW2 and 1–11 µM for (RW3 were determined. Interestingly, W(RW2-peptides derivatized with ferrocene were significantly less active than those derivatized with ruthenocene which have similar structural but different electronic properties, suggesting a major influence of the latter. The high activities observed for the RcCO-W(RW2- and (RW3-peptides led to an investigation of the origin of activity of these peptides using several important activity-related parameters. Firstly, killing kinetics of the RcCO-W(RW2-peptide versus killing kinetics of the (RW3 derivative showed faster reduction of the colony forming units for the RcCO-W(RW2-peptide, although MIC values indicated higher activity for the (RW3-peptide. This was confirmed by growth inhibition studies. Secondly, hemolysis studies revealed that both peptides did not lead to significant destruction of erythrocytes, even up to 500 µg/mL for (RW3 and 250 µg/mL for RcCO-W(RW2. In addition, toxicity against three human cancer cell lines (HepG2, HT29, MCF7 showed that the (RW3-peptide had an IC50 value of ~140 µM and the RcW(RW2 one of ~90 µM, indicating a potentially interesting therapeutic window. Both the killing kinetics and growth inhibition studies presented in this work point to a

  9. Monomer DJ-1 and its N-terminal sequence are necessary for mitochondrial localization of DJ-1 mutants.

    Directory of Open Access Journals (Sweden)

    Chinatsu Maita

    Full Text Available DJ-1 is a novel oncogene and also a causative gene for familial Parkinson's disease (park7. DJ-1 has multiple functions that include transcriptional regulation, anti-oxidative reaction and chaperone and mitochondrial regulation. Mitochondrial dysfunction is observed in DJ-1-knockout mice and fry, and mitochondrial DJ-1 is more protective against oxidative stress-induced cell death. Although translocation of DJ-1 into mitochondria is enhanced by oxidative stress that leads to oxidation of cysteine 106 (C106 of DJ-1, the characteristics of mitochondrial DJ-1 and the mechanism by which DJ-1 is translocated into mitochondria are poorly understood. In this study, immunostaining, co-immunoprecipitation, cell fractionation and pull-down experiments showed that mutants of glutamine 18 (E18 DJ-1 are localized in mitochondria and do not make homodimers. Likewise, DJ-1 with mutations of two cysteines located in the dimer interface, C46S and C53A, and pathogenic mutants, M26I and L166P DJ-1, were found to be localized in mitochondria and not to make homodimers. Mutant DJ-1 harboring both E18A and C106S, in which C106 is not oxidized, was also localized in mitochondria, indicating that oxidation of C106 is important but not essential for mitochondrial localization of DJ-1. It should be noted that E18A DJ-1 was translocated from mitochondria to the cytoplasm when mitochondrial membrane potential was reduced by treatment of cells with CCCP, an uncoupler of the oxidative phosphorylation system in mitochondria. Furthermore, deletion or substitution of the N-terminal 12 amino acids in DJ-1 resulted in re-localization of E18A, M26I and L166P DJ-1 from mitochondria into the cytoplasm. These findings suggest that a monomer and the N-terminal 12 amino acids are necessary for mitochondrial localization of DJ-1 mutants and that conformation change induced by C106 oxidation or by E18 mutation leads to translocation of DJ-1 into mitochondria.

  10. Monomer DJ-1 and Its N-Terminal Sequence Are Necessary for Mitochondrial Localization of DJ-1 Mutants

    Science.gov (United States)

    Maita, Chinatsu; Maita, Hiroshi; Iguchi-Ariga, Sanae M. M.; Ariga, Hiroyoshi

    2013-01-01

    DJ-1 is a novel oncogene and also a causative gene for familial Parkinson’s disease (park7). DJ-1 has multiple functions that include transcriptional regulation, anti-oxidative reaction and chaperone and mitochondrial regulation. Mitochondrial dysfunction is observed in DJ-1-knockout mice and fry, and mitochondrial DJ-1 is more protective against oxidative stress-induced cell death. Although translocation of DJ-1 into mitochondria is enhanced by oxidative stress that leads to oxidation of cysteine 106 (C106) of DJ-1, the characteristics of mitochondrial DJ-1 and the mechanism by which DJ-1 is translocated into mitochondria are poorly understood. In this study, immunostaining, co-immunoprecipitation, cell fractionation and pull-down experiments showed that mutants of glutamine 18 (E18) DJ-1 are localized in mitochondria and do not make homodimers. Likewise, DJ-1 with mutations of two cysteines located in the dimer interface, C46S and C53A, and pathogenic mutants, M26I and L166P DJ-1, were found to be localized in mitochondria and not to make homodimers. Mutant DJ-1 harboring both E18A and C106S, in which C106 is not oxidized, was also localized in mitochondria, indicating that oxidation of C106 is important but not essential for mitochondrial localization of DJ-1. It should be noted that E18A DJ-1 was translocated from mitochondria to the cytoplasm when mitochondrial membrane potential was reduced by treatment of cells with CCCP, an uncoupler of the oxidative phosphorylation system in mitochondria. Furthermore, deletion or substitution of the N-terminal 12 amino acids in DJ-1 resulted in re-localization of E18A, M26I and L166P DJ-1 from mitochondria into the cytoplasm. These findings suggest that a monomer and the N-terminal 12 amino acids are necessary for mitochondrial localization of DJ-1 mutants and that conformation change induced by C106 oxidation or by E18 mutation leads to translocation of DJ-1 into mitochondria. PMID:23326576

  11. Modulating the activity of short arginine-tryptophan containing antibacterial peptides with N-terminal metallocenoyl groups.

    Science.gov (United States)

    Albada, H Bauke; Chiriac, Alina-Iulia; Wenzel, Michaela; Penkova, Maya; Bandow, Julia E; Sahl, Hans-Georg; Metzler-Nolte, Nils

    2012-01-01

    A series of small synthetic arginine and tryptophan containing peptides was prepared and analyzed for their antibacterial activity. The effect of N-terminal substitution with metallocenoyl groups such as ferrocene (FcCO) and ruthenocene (RcCO) was investigated. Antibacterial activity in different media, growth inhibition, and killing kinetics of the most active peptides were determined. The toxicity of selected derivatives was determined against erythrocytes and three human cancer cell lines. It was shown that the replacement of an N-terminal arginine residue with a metallocenoyl moiety modulates the activity of WRWRW-peptides against Gram-positive and Gram-negative bacteria. MIC values of 2-6 µM for RcCO-W(RW)(2) and 1-11 µM for (RW)(3) were determined. Interestingly, W(RW)(2)-peptides derivatized with ferrocene were significantly less active than those derivatized with ruthenocene which have similar structural but different electronic properties, suggesting a major influence of the latter. The high activities observed for the RcCO-W(RW)(2)- and (RW)(3)-peptides led to an investigation of the origin of activity of these peptides using several important activity-related parameters. Firstly, killing kinetics of the RcCO-W(RW)(2)-peptide versus killing kinetics of the (RW)(3) derivative showed faster reduction of the colony forming units for the RcCO-W(RW)(2)-peptide, although MIC values indicated higher activity for the (RW)(3)-peptide. This was confirmed by growth inhibition studies. Secondly, hemolysis studies revealed that both peptides did not lead to significant destruction of erythrocytes, even up to 500 µg/mL for (RW)(3) and 250 µg/mL for RcCO-W(RW)(2). In addition, toxicity against three human cancer cell lines (HepG2, HT29, MCF7) showed that the (RW)(3)-peptide had an IC(50) value of ~140 µM and the RcW(RW)(2) one of ~90 µM, indicating a potentially interesting therapeutic window. Both the killing kinetics and growth inhibition studies presented in

  12. The scavenger receptor SSc5D physically interacts with bacteria through the SRCR-containing N-terminal domain

    Directory of Open Access Journals (Sweden)

    Catarina Bessa-Pereira

    2016-10-01

    Full Text Available The scavenger receptor cysteine-rich (SRCR family comprises a group of membrane-attached or secreted proteins that contain one or more modules/domains structurally similar to the membrane distal domain of type I macrophage scavenger receptor. Although no all-inclusive biological function has been ascribed to the SRCR family, some of these receptors have been shown to recognize pathogen-associated molecular patterns (PAMP of bacteria, fungi or other microbes. SSc5D is a recently described soluble SRCR receptor produced by monocytes/macrophages and T lymphocytes, consisting of an N-terminal portion which contains five SRCR modules, and a large C-terminal mucin-like domain. Towards establishing a global common role for SRCR domains, we interrogated whether the set of five SRCR domains of SSc5D displayed pattern recognition receptor (PRR properties. For that purpose, we have expressed in a mammalian expression system the N-terminal SRCR-containing moiety of SSC5D (N-SSc5D, thus excluding the mucin-like domain likely by nature to bind microorganisms, and tested the capacity of the SRCR functional groups to physically interact with bacteria. Using conventional protein-bacteria binding assays, we showed that N-SSc5D had a superior capacity to bind to E. coli strains RS218 and IHE3034 compared with that of the extracellular domains of the SRCR proteins CD5 and CD6 (sCD5 and sCD6, respectively, and similar E. coli-binding properties as Spα, a proven PRR of the SRCR family. We have further designed a more sensitive, real-time and label-free surface plasmon resonance (SPR-based assay, and examined the capacity of N-SSc5D, Spα, sCD5 and sCD6 to bind to different bacteria. We demonstrated that the N-SSc5D compares with Spα in the capacity to bind to E. coli and L. monocytogenes, and further that it can distinguish between pathogenic E. coli RS218 and IHE3034 strains and the non-pathogenic laboratory E. coli strain BL21(DE3. Our work thus advocates the

  13. The Scavenger Receptor SSc5D Physically Interacts with Bacteria through the SRCR-Containing N-Terminal Domain

    Science.gov (United States)

    Bessa Pereira, Catarina; Bocková, Markéta; Santos, Rita F.; Santos, Ana Mafalda; Martins de Araújo, Mafalda; Oliveira, Liliana; Homola, Jiří; Carmo, Alexandre M.

    2016-01-01

    The scavenger receptor cysteine-rich (SRCR) family comprises a group of membrane-attached or secreted proteins that contain one or more modules/domains structurally similar to the membrane distal domain of type I macrophage scavenger receptor. Although no all-inclusive biological function has been ascribed to the SRCR family, some of these receptors have been shown to recognize pathogen-associated molecular patterns (PAMP) of bacteria, fungi, or other microbes. SSc5D is a recently described soluble SRCR receptor produced by monocytes/macrophages and T lymphocytes, consisting of an N-terminal portion, which contains five SRCR modules, and a large C-terminal mucin-like domain. Toward establishing a global common role for SRCR domains, we interrogated whether the set of five SRCR domains of SSc5D displayed pattern recognition receptor (PRR) properties. For that purpose, we have expressed in a mammalian expression system the N-terminal SRCR-containing moiety of SSc5D (N-SSc5D), thus excluding the mucin-like domain likely by nature to bind microorganisms, and tested the capacity of the SRCR functional groups to physically interact with bacteria. Using conventional protein–bacteria binding assays, we showed that N-SSc5D had a superior capacity to bind to Escherichia coli strains RS218 and IHE3034 compared with that of the extracellular domains of the SRCR proteins CD5 and CD6 (sCD5 and sCD6, respectively), and similar E. coli-binding properties as Spα, a proven PRR of the SRCR family. We have further designed a more sensitive, real-time, and label-free surface plasmon resonance (SPR)-based assay and examined the capacity of N-SSc5D, Spα, sCD5, and sCD6 to bind to different bacteria. We demonstrated that N-SSc5D compares with Spα in the capacity to bind to E. coli and Listeria monocytogenes, and further that it can distinguish between pathogenic E. coli RS218 and IHE3034 strains and the non-pathogenic laboratory E. coli strain BL21(DE3). Our work thus advocates the

  14. Calmodulin activation of an endoplasmic reticulum-located calcium pump involves an interaction with the N-terminal autoinhibitory domain

    Science.gov (United States)

    Hwang, I.; Harper, J. F.; Liang, F.; Sze, H.

    2000-01-01

    To investigate how calmodulin regulates a unique subfamily of Ca(2+) pumps found in plants, we examined the kinetic properties of isoform ACA2 identified in Arabidopsis. A recombinant ACA2 was expressed in a yeast K616 mutant deficient in two endogenous Ca(2+) pumps. Orthovanadate-sensitive (45)Ca(2+) transport into vesicles isolated from transformants demonstrated that ACA2 is a Ca(2+) pump. Ca(2+) pumping by the full-length protein (ACA2-1) was 4- to 10-fold lower than that of the N-terminal truncated ACA2-2 (Delta2-80), indicating that the N-terminal domain normally acts to inhibit the pump. An inhibitory sequence (IC(50) = 4 microM) was localized to a region within valine-20 to leucine-44, because a peptide corresponding to this sequence lowered the V(max) and increased the K(m) for Ca(2+) of the constitutively active ACA2-2 to values comparable to the full-length pump. The peptide also blocked the activity (IC(50) = 7 microM) of a Ca(2+) pump (AtECA1) belonging to a second family of Ca(2+) pumps. This inhibitory sequence appears to overlap with a calmodulin-binding site in ACA2, previously mapped between aspartate-19 and arginine-36 (J.F. Harper, B. Hong, I. Hwang, H.Q. Guo, R. Stoddard, J.F. Huang, M.G. Palmgren, H. Sze inverted question mark1998 J Biol Chem 273: 1099-1106). These results support a model in which the pump is kept "unactivated" by an intramolecular interaction between an autoinhibitory sequence located between residues 20 and 44 and a site in the Ca(2+) pump core that is highly conserved between different Ca(2+) pump families. Results further support a model in which activation occurs as a result of Ca(2+)-induced binding of calmodulin to a site overlapping or immediately adjacent to the autoinhibitory sequence.

  15. Locus-specific detection of HLA-DQ and -DR antigens by antibodies against synthetic N-terminal octapeptides of the beta chain

    DEFF Research Database (Denmark)

    Deufel, T; Grove, A; Kofod, Hans

    1985-01-01

    detected a 29 kDa component in immunoblots of Raji and AL-34 cell plasma membrane proteins separated by SDS gel electrophoresis. The binding of either N-terminal peptide antiserum was selectively inhibited only by the peptide used as antigen. Indirect immunofluorescence analysis by flow cytofluorometry...

  16. Antibodies to the N-terminal block 2 of Plasmodium falciparum merozoite surface protein 1 are associated with protection against clinical malaria

    DEFF Research Database (Denmark)

    Cavanagh, David R; Dodoo, Daniel; Hviid, Lars

    2004-01-01

    This longitudinal prospective study shows that antibodies to the N-terminal block 2 region of the Plasmodium falciparum merozoite surface protein 1 (MSP-1) are associated with protection against clinical malaria in an area of stable but seasonal malaria transmission of Ghana. Antibodies to the bl...

  17. Procollagen type I N-terminal propeptide (PINP) as an indicator of type I collagen metabolism: ELISA development, reference interval, and hypovitaminosis D induced hyperparathyroidism

    DEFF Research Database (Denmark)

    Orum, O; Hansen, M; Jensen, Charlotte Harken;

    1996-01-01

    A sandwich enzyme-linked immunosorbent assay (ELISA) for quantification of the N-terminal propeptide of human procollagen type I (PINP) utilizing purified alpha 1-chain specific rabbit antibodies is described. The ELISA measured the content of the alpha 1-chain of PINP independent of the molecula...

  18. Expression and purification of a natural N-terminal pre-ligand assembly domain of tumor necrosis factor receptor 1 (TNFR1 PLAD) and preliminary activity determination.

    Science.gov (United States)

    Cao, Jin; Meng, Fang; Gao, Xiangdong; Dong, Hongxia; Yao, Wenbing

    2011-04-01

    A domain at the NH(2) terminal (N-terminal) of tumor necrosis factor receptor (TNFR) termed the pre-ligand binding assembly domain (PLAD). The finding that PLAD can mediate a selective TNFR assembly in previously researches provides a novel target to the prevention of TNFR signaling in immune-mediated inflammatory diseases (IMID). In this study, a natural N-terminal TNFR1 PLAD was obtained for the first time through the methods of GST-tag fusion protein expression and enterokinase cleavage. After purification with a Q Sepharose Fast Flow column, a natural N-terminal TNFR1 PLAD which purity was up to 95%, was obtained and was identified using Nano LC-ECI-MS/MS. Secondary structure analysis of PLAD was carried out using circular dichroism spectra (CD). After that, the TNFR1 PLAD in vitro anti-TNFα activity and the specific TNFR1 affinity were determined. The results proved that the natural N-terminal TNFR1 PLAD can selectively inhibit TNFα bioactivity mainly through TNFR1. It infers an effective and safe strategy for treating variety of IMID with a low risk of side effects in future.

  19. Troponin T, N-terminal pro natriuretic peptide and a patent ductus arteriosus scoring system predict death before discharge or neurodevelopmental outcome at 2 years in preterm infants.

    LENUS (Irish Health Repository)

    El-Khuffash, Afif F

    2011-03-01

    There is little consensus regarding the use of echocardiography in patent ductus arteriosus (PDA) treatment in preterm infants. The use of troponin T (cTnT) and N-terminal Pro-BNP (NTpBNP) in combination with echocardiography assessment may facilitate the development of a superior predictive model.

  20. The major peanut allergen Ara h 1 and its cleaved-off N-terminal peptide; possible implications for peanut allergen detection

    NARCIS (Netherlands)

    Wichers, H.J.; Beijer, de T.; Savelkoul, H.F.J.; Amerongen, van A.

    2004-01-01

    Ara h 1 was purified from raw peanuts (Arachis hypogaea L.) in the presence or absence of protease inhibitors. N-Terminal amino acid sequences were determined after western blotting. Both purification procedures proved to be very consistent and resulted in identical chromatographic and electrophoret

  1. The N-terminal segment of pulmonary surfactant lipopeptide SP-C has intrinsic propensity to interact with and perturb phospholipid bilayers

    DEFF Research Database (Denmark)

    Plasencia, Inés; Rivas, Luis; Keough, Kevin M W;

    2004-01-01

    In the present study, 13-residue peptides with sequences corresponding to the native N-terminal segment of pulmonary SP-C (surfactant protein C) have been synthesized and their interaction with phospholipid bilayers characterized. The peptides are soluble in aqueous media but associate spontaneou......In the present study, 13-residue peptides with sequences corresponding to the native N-terminal segment of pulmonary SP-C (surfactant protein C) have been synthesized and their interaction with phospholipid bilayers characterized. The peptides are soluble in aqueous media but associate...... aggregation, and leakage of the aqueous content of the vesicles. The lipid-peptide interaction includes a significant hydrophobic component for both zwitterionic and anionic membranes, although the interaction with phosphatidylglycerol bilayers is also electrostatic in nature. The effects of the SP-C N......-terminal peptides on the membrane structure are mediated by significant perturbations of the packing order and mobility of phospholipid acyl chain segments deep in the bilayer, as detected by differential scanning calorimetry and spin-label ESR. These results suggest that the N-terminal region of SP-C, even...

  2. A novel method to isolate protein N-terminal peptides from proteome samples using sulfydryl tagging and gold-nanoparticle-based depletion.

    Science.gov (United States)

    Li, Lanting; Wu, Runqing; Yan, Guoquan; Gao, Mingxia; Deng, Chunhui; Zhang, Xiangmin

    2016-01-01

    A novel method to isolate global N-termini using sulfydryl tagging and gold-nanoparticle-based depletion (STagAu method) is presented. The N-terminal and lysine amino groups were first completely dimethylated at the protein level, after which the proteins were digested. The newly generated internal peptides were tagged with sulfydryl by Traut's reagent through digested N-terminal amines in yields of 96%. The resulting sulfydryl peptides were depleted through binding onto nano gold composite materials. The Au-S bond is stable and widely used in materials science. Nano gold composite materials showed nearly complete depletion of sulfydryl peptides. A set of the acetylated and dimethylated N-terminal peptides were analyzed by liquid chromatography-tandem mass spectrometry. This method was demonstrated to be an efficient N-terminus enrichment method because of the use of an effective derivatization reaction, in combination with robust and relative easy to implement Au-S coupling. We identified 632 N-terminal peptides from 386 proteins in a mouse liver sample. The STagAu approach presented is therefore a facile and efficient method for mass-spectrometry-based analysis of proteome N-termini or protease-generated cleavage products.

  3. An Experimental Investigation of the Evolution of Chirality in a Potential Dynamic Peptide System: N-Terminal Epimerization and Degradation into Diketopiperazine

    Science.gov (United States)

    Danger, Grégoire; Plasson, Raphaël; Pascal, Robert

    2010-08-01

    The APED model (activation-polymerization-epimerization-depolymerization) is a unique example of a chemical system that allows symmetry breaking through a dynamic process involving indirect network autocatalysis. In its simplest version, the autocatalytic behavior of this model partly relies on the reproduction of local chiral centers in dipeptides through an epimerization process, with a thermodynamic preference for homochiral chains. We studied the reactivity of di- and tripeptides, containing a N-terminal phenylglycine (Phg) residue, as model compounds for the experimental determination of the kinetic and thermodynamic parameters related to the N-terminal epimerization process. Although the N-terminal residue is prone to spontaneous epimerization, catalysis was required for the epimerization to reach the equilibrium state in reasonable time. Unexpectedly, the observed equilibrium diastereoisomeric excesses have shown a general tendency for more stable heterochiral peptides, especially strong in the case of dipeptides. In parallel to this process, a stereoselective peptide cleavage through diketopiperazine formation was observed. Contrary to the N-terminal epimerization of peptides, the diketopiperazine formation did not need any catalyst, and heterochiral peptides were shown to be dynamically unstabilized, as they were cleaved faster than homochiral peptides. The validity of the extrapolation of these results to other residues and longer peptide chains is discussed, and some directions for future developments of the theoretical model are given.

  4. Enzyme-linked immunosorbent serum assays (ELISAs) for rat and human N-terminal pro-peptide of collagen type I (PINP) - Assessment of corresponding epitopes

    DEFF Research Database (Denmark)

    Leeming, Diana Julie; Larsen, D.V.; Zhang, C.

    2010-01-01

    Objectives: The present study describes two newly developed N-terminal pro-peptides of collagen type I (PINP) competitive enzyme-linked immunosorbent assays (ELISAs) for the assessment of corresponding PINP epitopes in the rat- and human species. Methods: Monoclonal antibodies were raised against...

  5. Circulation economics

    DEFF Research Database (Denmark)

    Ingebrigtsen, Stig; Jakobsen, Ove

    2006-01-01

    Purpose - This paper is an attempt to advance the critical discussion regarding environmental and societal responsibility in economics and business. Design/methodology/approach - The paper presents and discusses as a holistic, organic perspective enabling innovative solutions to challenges...... concerning the responsible and efficient use of natural resources and the constructive interplay with culture. To reach the goal of sustainable development, the paper argues that it is necessary to make changes in several dimensions in mainstream economics. This change of perspective is called a turn towards...... presupposes a perspective integrating economic, natural and cultural values. Third, to organize the interplay between all stakeholders we introduce an arena for communicative cooperation. Originality/value - The paper concludes that circulation economics presupposes a change in paradigm, from a mechanistic...

  6. The N-terminal region of organic anion transporting polypeptide 1B3 (OATP1B3) plays an essential role in regulating its plasma membrane trafficking.

    Science.gov (United States)

    Chun, Se-Eun; Thakkar, Nilay; Oh, Yunseok; Park, Ji Eun; Han, Songhee; Ryoo, Gongmi; Hahn, Hyunggu; Maeng, Sang Hyun; Lim, Young-Ran; Han, Byung Woo; Lee, Wooin

    2017-05-01

    Organic anion transporting polypeptide 1B3 (OATP1B3) is a major influx transporter mediating the hepatic uptake of various endogenous substrates as well as clinically important drugs such as statins and anticancer drugs. However, molecular mechanisms controlling the membrane trafficking of OATP1B3 have been largely unknown. Several reports recently indicated the presence of a distinct, cancer-type OATP1B3 variant lacking the N-terminal 28 amino acids compared to OATP1B3 expressed in non-malignant hepatocytes. Interestingly, the cancer-type OATP1B3 variant is located predominantly in the cytoplasm, implicating the involvement of the N-terminal region of OATP1B3 in its membrane trafficking. In the current study, we set out to experimentally validate the importance of the N-terminal region of OATP1B3 and to identify responsible sequence motif(s) in that region. A number of truncation or point mutants of OATP1B3 were transiently expressed in HEK293T, HCT-8 or MDCK II cells and their expression in cytoplasmic and surface membrane fractions were analyzed by immunoblotting. Our results indicated that the N-terminal sequence of OATP1B3, in particular, at the amino acid positions between 12 and 28, may be indispensable in its membrane trafficking. Moreover, our results using a fusion construct indicated that the first 50 amino acids of OATP1B3 are sufficient for its membrane localization. The importance of the N-terminal region in membranous localization was shared among the other OATP1B subfamily members, OATP1B1 and rat Oatp1b2. Our efforts to identify the responsible amino acid(s) or structure motif(s) in the N-terminal region did not pinpoint individual amino acids or motifs with putative secondary structures. Our current findings however demonstrate that the N-terminal region is important for the membrane localization of the OATP1B subfamily members and should facilitate future investigations of the mechanisms involved in the regulation and membrane trafficking of

  7. Analytically determined topological phase diagram of the proximity-induced gap in diffusive n-terminal Josephson junctions

    Science.gov (United States)

    Amundsen, Morten; Ouassou, Jabir Ali; Linder, Jacob

    2017-01-01

    Multiterminal Josephson junctions have recently been proposed as a route to artificially mimic topological matter with the distinct advantage that its properties can be controlled via the superconducting phase difference, giving rise to Weyl points in 4-terminal geometries. A key goal is to accurately determine when the system makes a transition from a gapped to non-gapped state as a function of the phase differences in the system, the latter effectively playing the role of quasiparticle momenta in conventional topological matter. We here determine the proximity gap phase diagram of diffusive n-terminal Josephson junctions (), both numerically and analytically, by identifying a class of solutions to the Usadel equation at zero energy in the full proximity effect regime. We present an analytical equation which provides the phase diagram for an arbitrary number of terminals n. After briefly demonstrating the validity of the analytical approach in the previously studied 2- and 3-terminal cases, we focus on the 4-terminal case and map out the regimes where the electronic excitations in the system are gapped and non-gapped, respectively, demonstrating also in this case full agreement between the analytical and numerical approach.

  8. Inhibition of N-terminal lysines acetylation and transcription factor assembly by epirubicin induced deranged cell homeostasis.

    Directory of Open Access Journals (Sweden)

    Shahper N Khan

    Full Text Available Epirubicin (EPI, an anthracycline antitumour antibiotic, is a known intercalating and DNA damaging agent. Here, we study the molecular interaction of EPI with histones and other cellular targets. EPI binding with histone core protein was predicted with spectroscopic and computational techniques. The molecular distance r, between donor (histone H3 and acceptor (EPI was estimated using Förster's theory of non-radiation energy transfer and the detailed binding phenomenon is expounded. Interestingly, the concentration dependent reduction in the acetylated states of histone H3 K9/K14 was observed suggesting more repressed chromatin state on EPI treatment. Its binding site near N-terminal lysines is further characterized by thermodynamic determinants and molecular docking studies. Specific DNA binding and inhibition of transcription factor (Tf-DNA complex formation implicates EPI induced transcriptional inhibition. EPI also showed significant cell cycle arrest in drug treated cells. Chromatin fragmentation and loss of membrane integrity in EPI treated cells is suggestive of their commitment to cell death. This study provides an analysis of nucleosome dynamics during EPI treatment and provides a novel insight into its action.

  9. Distribution of adrenomedullin and proadrenomedullin N-terminal 20 peptide immunoreactivity in the pituitary gland of the frog Rana perezi.

    Science.gov (United States)

    Collantes, M; Bodegas, M E; Sesma, M P; Villaro, A C

    2003-08-01

    Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are two multifunctional peptides processed from a common precursor which have been described in numerous mammalian organs, including the pituitary gland. Previous studies have found AM immunoreactivity in neurohypophysis nerve fibers of amphibian pituitary. In the present study, immunocytochemical and Western blot analysis in the pituitary gland of the amphibian Rana perezi demonstrated in the adenohypophysis both AM and PAMP. AM-like immunoreactivity was found in a moderate number of endocrine cells of the pars distalis. In the neurohypophysis, AM was observed not only in nerve fibers of pars nervosa and axonal projections innervating the pars intermedia, but also in the outer zone of the median eminence. PAMP staining was observed in numerous endocrine cells scattered all over the pars distalis and in some cells of the pars tuberalis, but not in the neurohypophysis. In order to compare the quantity of AM and PAMP immunoreactivity between pars distalis of female and male specimens, an image analysis study was done. Significant differences for AM immunoreactivity (p<0.001) between sexes was found, the males showing higher immunostained area percentage. Differences of PAMP immunoreactivity were not significant (p=0.599). Western blot analysis detected bands presumably corresponding to precursor and/or intermediate species in the propeptide processing.

  10. Role of the Caenorhabditis elegans Shc adaptor protein in the c-Jun N-terminal kinase signaling pathway.

    Science.gov (United States)

    Mizuno, Tomoaki; Fujiki, Kota; Sasakawa, Aya; Hisamoto, Naoki; Matsumoto, Kunihiro

    2008-12-01

    Mitogen-activated protein kinases (MAPKs) are integral to the mechanisms by which cells respond to physiological stimuli and a wide variety of environmental stresses. In Caenorhabditis elegans, the stress response is controlled by a c-Jun N-terminal kinase (JNK)-like mitogen-activated protein kinase (MAPK) signaling pathway, which is regulated by MLK-1 MAPK kinase kinase (MAPKKK), MEK-1 MAPK kinase (MAPKK), and KGB-1 JNK-like MAPK. In this study, we identify the shc-1 gene, which encodes a C. elegans homolog of Shc, as a factor that specifically interacts with MEK-1. The shc-1 loss-of-function mutation is defective in activation of KGB-1, resulting in hypersensitivity to heavy metals. A specific tyrosine residue in the NPXY motif of MLK-1 creates a docking site for SHC-1 with the phosphotyrosine binding (PTB) domain. Introduction of a mutation that perturbs binding to the PTB domain or the NPXY motif abolishes the function of SHC-1 or MLK-1, respectively, thereby abolishing the resistance to heavy metal stress. These results suggest that SHC-1 acts as a scaffold to link MAPKKK to MAPKK activation in the KGB-1 MAPK signal transduction pathway.

  11. The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase.

    Science.gov (United States)

    Wei, Ping; Fan, Keqiang; Chen, Hao; Ma, Liang; Huang, Changkang; Tan, Lei; Xi, Dong; Li, Chunmei; Liu, Ying; Cao, Aoneng; Lai, Luhua

    2006-01-20

    The 3C-like proteinase of severe acute respiratory syndrome (SARS) coronavirus has been proposed to be a key target for structural-based drug design against SARS. Accurate determination of the dimer dissociation constant and the role of the N-finger (residues 1-7) will provide more insights into the enzyme catalytic mechanism of SARS 3CL proteinase. The dimer dissociation constant of the wild-type protein was determined to be 14.0microM by analytical ultracentrifugation method. The N-finger fragment of the enzyme plays an important role in enzyme dimerization as shown in the crystal structure. Key residues in the N-finger have been studied by site-directed mutagenesis, enzyme assay, and analytical ultracentrifugation. A single mutation of M6A was found to be critical to maintain the dimer structure of the enzyme. The N-terminal octapeptide N8 and its mutants were also synthesized and tested for their potency as dimerization inhibitors. Peptide cleavage assay confirms that peptide N8 is a dimerization inhibitor with a K(i) of 2.20mM. The comparison of the inhibitory activities of N8 and its mutants indicates that the hydrophobic interaction of Met-6 and the electrostatic interaction of Arg-4 contribute most for inhibitor binding. This study describes the first example of inhibitors targeting the dimeric interface of SARS 3CL proteinase, providing a novel strategy for drug design against SARS and other coronaviruses.

  12. Crystal Structure of the N-Terminal RNA Recognition Motif of mRNA Decay Regulator AUF1

    Directory of Open Access Journals (Sweden)

    Young Jun Choi

    2016-01-01

    Full Text Available AU-rich element binding/degradation factor 1 (AUF1 plays a role in destabilizing mRNAs by forming complexes with AU-rich elements (ARE in the 3′-untranslated regions. Multiple AUF1-ARE complexes regulate the translation of encoded products related to the cell cycle, apoptosis, and inflammation. AUF1 contains two tandem RNA recognition motifs (RRM and a Gln- (Q- rich domain in their C-terminal region. To observe how the two RRMs are involved in recognizing ARE, we obtained the AUF1-p37 protein covering the two RRMs. However, only N-terminal RRM (RRM1 was crystallized and its structure was determined at 1.7 Å resolution. It appears that the RRM1 and RRM2 separated before crystallization. To demonstrate which factors affect the separate RRM1-2, we performed limited proteolysis using trypsin. The results indicated that the intact proteins were cleaved by unknown proteases that were associated with them prior to crystallization. In comparison with each of the monomers, the conformations of the β2-β3 loops were highly variable. Furthermore, a comparison with the RRM1-2 structures of HuR and hnRNP A1 revealed that a dimer of RRM1 could be one of the possible conformations of RRM1-2. Our data may provide a guidance for further structural investigations of AUF1 tandem RRM repeat and its mode of ARE binding.

  13. PRB1 is required for clipping of the histone H3 N terminal tail in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Yong Xue

    Full Text Available Cathepsin L, a lysosomal protein in mouse embryonic stem cells has been shown to clip the histone H3 N- terminus, an activity associated with gene activity during mouse cell development. Glutamate dehydrogenase (GDH was also identified as histone H3 specific protease in chicken liver, which has been connected to gene expression during aging. In baker's yeast, Saccharomyces cerevisiae, clipping the histone H3 N-terminus has been associated with gene activation in stationary phase but the protease responsible for the yeast histone H3 endopeptidase activity had not been identified. In searching for a yeast histone H3 endopeptidase, we found that yeast vacuolar protein Prb1 is present in the cellular fraction enriched for the H3 N-terminus endopeptidase activity and this endopeptidase activity is lost in the PRB1 deletion mutant (prb1Δ. In addition, like Cathepsin L and GDH, purified Prb1 from yeast cleaves H3 between Lys23 and Ala24 in the N-terminus in vitro as shown by Edman degradation. In conclusion, our data argue that PRB1 is required for clipping of the histone H3 N-terminal tail in Saccharomyces cerevisiae.

  14. PRB1 is required for clipping of the histone H3 N terminal tail in Saccharomyces cerevisiae.

    Science.gov (United States)

    Xue, Yong; Vashisht, Ajay A; Tan, Yuliang; Su, Trent; Wohlschlegel, James A

    2014-01-01

    Cathepsin L, a lysosomal protein in mouse embryonic stem cells has been shown to clip the histone H3 N- terminus, an activity associated with gene activity during mouse cell development. Glutamate dehydrogenase (GDH) was also identified as histone H3 specific protease in chicken liver, which has been connected to gene expression during aging. In baker's yeast, Saccharomyces cerevisiae, clipping the histone H3 N-terminus has been associated with gene activation in stationary phase but the protease responsible for the yeast histone H3 endopeptidase activity had not been identified. In searching for a yeast histone H3 endopeptidase, we found that yeast vacuolar protein Prb1 is present in the cellular fraction enriched for the H3 N-terminus endopeptidase activity and this endopeptidase activity is lost in the PRB1 deletion mutant (prb1Δ). In addition, like Cathepsin L and GDH, purified Prb1 from yeast cleaves H3 between Lys23 and Ala24 in the N-terminus in vitro as shown by Edman degradation. In conclusion, our data argue that PRB1 is required for clipping of the histone H3 N-terminal tail in Saccharomyces cerevisiae.

  15. C-jun N-terminal Kinase-mediated Signaling Is Essential for Staphylococcus Aureus-induced U937 Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Jia-he Wang; Bo Yu; Hui-yan Niu; Hui Li; Yi Zhang; Xin Wang; Ping He

    2009-01-01

    Objective To investigate the effect of SP600125, a specific c-jun N-terminal protein kinase (JNK) inhibitor, on Staphylococcus aureus (S. aureus)-induced U937 cell death and the underlying mechanism. Methods The human monocytic U937 cells were treated with S. aureus at different time with or without SP600125. Cell apoptosis was analyzed by flow cytometry. JNK, Bax, and caspase-3 activities were detected by Western blotting. Results S. aureus induced apoptosis in cultured U937 cells in a time-dependent manner. Expression of Bax and phospho-JNK significantly increased in S. aureus-treated U937 cells, and the level of activated caspase-3 also increased in a time-dependent manner. Inhibition of JNK with SP600125 significantly inhibited S. aureus-induced apoptosis in U937 cells. Conclusions S. aureus can induce apoptosis in U937 cells by phosphorylation of JNK and activation of Bax and caspase-3. SP600125 protects U937 cells from apoptosis induced by S. aureus via inhibiting the activity of JNK.

  16. Differences in c-Jun N-terminal kinase recognition and phosphorylation of closely related stathmin-family members.

    Science.gov (United States)

    Yip, Yan Y; Yeap, Yvonne Y C; Bogoyevitch, Marie A; Ng, Dominic C H

    2014-03-28

    The stathmin (STMN) family of tubulin-binding phosphoproteins are critical regulators of interphase microtubule dynamics and organization in a broad range of cellular processes. c-Jun N-terminal kinase (JNK) signalling to STMN family proteins has been implicated specifically in neuronal maturation, degeneration and cell stress responses more broadly. Previously, we characterized mechanisms underlying JNK phosphorylation of STMN at proline-flanked serine residues (Ser25 and Ser38) that are conserved across STMN-like proteins. In this study, we demonstrated using in vitro kinase assays and alanine replacement of serine residues that JNK phosphorylated the STMN-like domain (SLD) of SCG10 on Ser73, consistent with our previous finding that STMN Ser38 was the primary JNK target site. In addition, we confirmed that a JNK binding motif ((41)KKKDLSL(47)) that facilitates JNK targeting of STMN is conserved in SCG10. In contrast, SCLIP was phosphorylated by JNK primarily on Ser60 which corresponds to Ser25 on STMN. Moreover, although the JNK-binding motif identified in STMN and SCG10 was not conserved in SCLIP, JNK phosphorylation of SCLIP was inhibited by a substrate competitive peptide (TI-JIP) highlighting kinase-substrate interaction as required for JNK targeting. Thus, STMN and SCG10 are similarly targeted by JNK but there are clear differences in JNK recognition and phosphorylation of the closely related family member, SCLIP.

  17. The N-terminal domain is a transcriptional activation domain required for Nanog to maintain ES cell self-renewal

    Institute of Scientific and Technical Information of China (English)

    GUO YunQian; ZHANG Juan; YE Li; CHEN Mo; YAO Dong; PAN GuangJin; ZHANG JieQiong; PEI DuanQing

    2009-01-01

    Nanog is a transcription factor identified by its ability to maintain the self-renewal of ES cells in the absence of leukemia inhibitory factor (LIF). Nanog protein contains an N-terminal domain (ND),a DNA-binding homeobox domain (HD) and a C-terminal domain (CD). We previously reported that the CD in Nanog is a transcriptional activation domain essential for the in vivo function of Nanog. Here we demonstrated that the ND in Nanog is also functionally important. Deletion of the ND reduces the transcriptional activity of Nanog on either artificial reporters or native Nanog promoters. This truncated Nanog is also less effective in regulating the endogenous Nanog target genes. Furthermore,the ND truncation disrupted the ability of Nanog to maintain ES cell self-renewal as well. We found that the ND Is not required for the nuclear localization of Nanog. These results suggest that the regulation of endogenous pluripotent genes such as oct3/4 and rex-1 is required for the in vivo function of Nanog.

  18. Involvement of hippocampal jun-N terminal kinase pathway in the enhancement of learning and memory by nicotine.

    Science.gov (United States)

    Kenney, Justin W; Florian, Cédrick; Portugal, George S; Abel, Ted; Gould, Thomas J

    2010-01-01

    Despite intense scrutiny over the past 20 years, the reasons for the high addictive liability of nicotine and extreme rates of relapse in smokers have remained elusive. One factor that contributes to the development and maintenance of nicotine addiction is the ability of nicotine to produce long-lasting modifications of behavior, yet little is known about the mechanisms by which nicotine alters the underlying synaptic plasticity responsible for behavioral changes. This study is the first to explore how nicotine interacts with learning to alter gene transcription, which is a process necessary for long-term memory consolidation. Transcriptional upregulation of hippocampal jun-N terminal kinase 1 (JNK1) mRNA was found in mice that learned contextual fear conditioning (FC) in the presence of nicotine, whereas neither learning alone nor nicotine administration alone exerted an effect. Furthermore, the upregulation of JNK1 was absent in beta2 nicotinic receptor subunit knockout mice, which are mice that do not show enhanced learning by nicotine. Finally, hippocampal JNK activation was increased in mice that were administered nicotine before conditioning, and the inhibition of JNK during consolidation prevented the nicotine-induced enhancement of contextual FC. These data suggest that nicotine and learning interact to alter hippocampal JNK1 gene expression and related signaling processes, thus resulting in strengthened contextual memories.

  19. The N-terminal part of Als1 protein from Candida albicans specifically binds fucose-containing glycans.

    Science.gov (United States)

    Donohue, Dagmara S; Ielasi, Francesco S; Goossens, Katty V Y; Willaert, Ronnie G

    2011-06-01

    The opportunistic pathogen Candida albicans expresses on its surface Als (Agglutinin like sequence) proteins, which play an important role in the adhesion to host cells and in the development of candidiasis. The binding specificity of these proteins is broad, as they can bind to various mammalian proteins, such as extracellular matrix proteins, and N- and E-cadherins. The N-terminal part of Als proteins constitutes the substrate-specific binding domain and is responsible for attachment to epithelial and endothelial cells. We have used glycan array screening to identify possible glycan receptors for the binding domain of Als1p-N. Under those conditions, Als1p-N binds specifically to fucose-containing glycans, which adds a lectin function to the functional diversity of the Als1 protein. The binding between Als1p-N and BSA-fucose glycoconjugate was quantitatively characterized using surface plasmon resonance, which demonstrated a weak millimolar affinity between Als1p-N and fucose. Furthermore, we have also quantified the affinity of Als1p-N to the extracellular matrix proteins proteins fibronectin and laminin, which is situated in the micromolar range. Surface plasmon resonance characterization of Als1p-N-Als1p-N interaction was in the micromolar affinity range.

  20. Regulation of Telomere Length Requires a Conserved N-Terminal Domain of Rif2 in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kaizer, Hannah; Connelly, Carla J; Bettridge, Kelsey; Viggiani, Christopher; Greider, Carol W

    2015-10-01

    The regulation of telomere length equilibrium is essential for cell growth and survival since critically short telomeres signal DNA damage and cell cycle arrest. While the broad principles of length regulation are well established, the molecular mechanism of how these steps occur is not fully understood. We mutagenized the RIF2 gene in Saccharomyces cerevisiae to understand how this protein blocks excess telomere elongation. We identified an N-terminal domain in Rif2 that is essential for length regulation, which we have termed BAT domain for Blocks Addition of Telomeres. Tethering this BAT domain to Rap1 blocked telomere elongation not only in rif2Δ mutants but also in rif1Δ and rap1C-terminal deletion mutants. Mutation of a single amino acid in the BAT domain, phenylalanine at position 8 to alanine, recapitulated the rif2Δ mutant phenotype. Substitution of F8 with tryptophan mimicked the wild-type phenylalanine, suggesting the aromatic amino acid represents a protein interaction site that is essential for telomere length regulation.

  1. PredSL: A Tool for the N-terminal Sequence-based Prediction of Protein Subcellular Localization

    Institute of Scientific and Technical Information of China (English)

    Evangelia I. Petsalaki; Pantelis G. Bagos; Zoi I. Litou; Stavros J. Hamodrakas

    2006-01-01

    The ability to predict the subcellular localization of a protein from its sequence is of great importance, as it provides information about the protein's function.We present a computational tool, PredSL, which utilizes neural networks, Markov chains, profile hidden Markov models, and scoring matrices for the prediction of the subcellular localization of proteins in eukaryotic cells from the N-terminal amino acid sequence. It aims to classify proteins into five groups: chloroplast,thylakoid, mitochondrion, secretory pathway, and "other". When tested in a fivefold cross-validation procedure, PredSL demonstrates 86.7% and 87.1% overall accuracy for the plant and non-plant datasets, respectively. Compared with TargetP, which is the most widely used method to date, and LumenP, the results of PredSL are comparable in most cases. When tested on the experimentally verified proteins of the Saccharomyces cerevisiae genome, PredSL performs comparably if not better than any available algorithm for the same task. Furthermore, PredSL is the only method capable for the prediction of these subcellular localizations that is available as a stand-alone application through the URL:http://bioinformatics.biol.uoa.gr/PredSL/.

  2. NAA10 mutation causing a novel intellectual disability syndrome with Long QT due to N-terminal acetyltransferase impairment

    Science.gov (United States)

    Casey, Jillian P.; Støve, Svein I.; McGorrian, Catherine; Galvin, Joseph; Blenski, Marina; Dunne, Aimee; Ennis, Sean; Brett, Francesca; King, Mary D.; Arnesen, Thomas; Lynch, Sally Ann

    2015-01-01

    We report two brothers from a non-consanguineous Irish family presenting with a novel syndrome characterised by intellectual disability, facial dysmorphism, scoliosis and long QT. Their mother has a milder phenotype including long QT. X-linked inheritance was suspected. Whole exome sequencing identified a novel missense variant (c.128 A > C; p.Tyr43Ser) in NAA10 (X chromosome) as the cause of the family’s disorder. Sanger sequencing confirmed that the mutation arose de novo in the carrier mother. NAA10 encodes the catalytic subunit of the major human N-terminal acetylation complex NatA. In vitro assays for the p.Tyr43Ser mutant enzyme showed a significant decrease in catalytic activity and reduced stability compared to wild-type Naa10 protein. NAA10 has previously been associated with Ogden syndrome, Lenz microphthalmia syndrome and non-syndromic developmental delay. Our findings expand the clinical spectrum of NAA10 and suggest that the proposed correlation between mutant Naa10 enzyme activity and phenotype severity is more complex than anticipated; the p.Tyr43Ser mutant enzyme has less catalytic activity than the p.Ser37Pro mutant associated with lethal Ogden syndrome but results in a milder phenotype. Importantly, we highlight the need for cardiac assessment in males and females with NAA10 variants as both patients and carriers can have long QT. PMID:26522270

  3. The effects of N-terminal insertion into VSV-G of an scFv peptide

    Directory of Open Access Journals (Sweden)

    Piechaczyk Marc

    2006-09-01

    Full Text Available Abstract Recombinant retroviruses, including lentiviruses, are the most widely used vectors for both in vitro and in vivo stable gene transfer. However, the inability to selectively deliver transgenes into cells of interest limits the use of this technology. Due to its wide tropism, stability and ability to pseudotype a range of viral vectors, vesicular stomatitis virus G protein (VSV-G is the most commonly used pseudotyping protein. Here, we attempted to engineer this protein for targeting purposes. Chimaeric VSV-G proteins were constructed by linking a cell-directing single-chain antibody (scFv to its N-terminal. We show that the chimaeric VSV-G molecules can integrate into retroviral and lentiviral particles. HIV-1 particles pseudotyped with VSV-G linked to an scFv against human Major Histocompatibility Complex class I (MHC-I bind strongly and specifically to human cells. Also, this novel molecule preferentially drives lentiviral transduction of human cells, although the titre is considerably lower that viruses pseudotyped with VSV-G. This is likely due to the inefficient fusion activity of the modified protein. To our knowledge, this is the first report where VSV-G was successfully engineered to include a large (253 amino acids exogenous peptide and where attempts were made to change the infection profile of VSV-G pseudotyped vectors.

  4. Improving the glycosyltransferase activity of Agrobacterium tumefaciens glycogen synthase by fusion of N-terminal starch binding domains (SBDs).

    Science.gov (United States)

    Martín, Mariana; Wayllace, Nahuel Z; Valdez, Hugo A; Gomez-Casati, Diego F; Busi, María V

    2013-10-01

    Glycogen and starch, the major storage carbohydrate in most living organisms, result mainly from the action of starch or glycogen synthases (SS or GS, respectively, EC 2.4.1.21). SSIII from Arabidopsis thaliana is an SS isoform with a particular modular organization: the C-terminal highly conserved glycosyltransferase domain is preceded by a unique specific region (SSIII-SD) which contains three in tandem starch binding domains (SBDs, named D1, D2 and D3) characteristic of polysaccharide degrading enzymes. N-terminal SBDs have a probed regulatory role in SSIII activity, showing starch binding ability and modulating the catalytic properties of the enzyme. On the other hand, GS from Agrobacterium tumefaciens has a simple primary structure organization, characterized only by the highly conserved glycosyltransferase domain and lacking SBDs. To further investigate the functional role of A. thaliana SSIII-SD, three chimeric proteins were constructed combining the SBDs from A. thaliana with the GS from A. tumefaciens. Recombinant proteins were expressed in and purified to homogeneity from Escherichia coli cells in order to be kinetically characterized. Furthermore, we tested the ability to restore in vivo glycogen biosynthesis in transformed E. coli glgA(-) cells, deficient in GS. Results show that the D3-GS chimeric enzyme showed increased capacity of glycogen synthesis in vivo with minor changes in its kinetics parameters compared to GS.

  5. Serum asymmetric dimethylarginine levels are independently associated with procollagen III N-terminal peptide in nonalcoholic fatty liver disease patients.

    Science.gov (United States)

    Hyogo, Hideyuki; Yamagishi, Sho-Ichi; Maeda, Sayaka; Fukami, Kei; Ueda, Seiji; Okuda, Seiya; Nakahara, Takashi; Kimura, Yuki; Ishitobi, Tomokazu; Chayama, Kazuaki

    2014-02-01

    Although impaired synthesis and/or bioavailability of nitric oxide are considered to contribute to insulin resistance and the progression of liver disease in nonalcoholic fatty liver disease, role of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, has not been examined. We examined retrospectively which anthropometric and metabolic parameters were independently associated with serum levels of asymmetric dimethylarginine in nonalcoholic fatty liver disease. A total of 194 consecutive biopsy-proven nonalcoholic fatty liver disease patients with or without type 2 diabetes were enrolled. Serum asymmetric dimethylarginine levels in nonalcoholic fatty liver disease patients were significantly higher, irrespective of the presence or absence of diabetes, than those in healthy control. Multiple stepwise regression analysis showed that decreased total protein and procollagen N-terminal peptide levels, markers of advanced liver disease and hepatic fibrosis, respectively, were independently associated with asymmetric dimethylarginine levels in nonalcoholic fatty liver disease subjects without diabetes, whereas soluble form of receptor for advanced glycation end products and density ratio of liver to spleen in computed tomography were independent correlates of asymmetric dimethylarginine in diabetic patients. The present study suggests that asymmetric dimethylarginine may be associated with nonalcoholic fatty liver disease, especially subjects without diabetes.

  6. DNA replication checkpoint signaling depends on a Rad53-Dbf4 N-terminal interaction in Saccharomyces cerevisiae.

    Science.gov (United States)

    Chen, Ying-Chou; Kenworthy, Jessica; Gabrielse, Carrie; Hänni, Christine; Zegerman, Philip; Weinreich, Michael

    2013-06-01

    Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) are essential to initiate DNA replication at individual origins. During replication stress, the S-phase checkpoint inhibits the DDK- and CDK-dependent activation of late replication origins. Rad53 kinase is a central effector of the replication checkpoint and both binds to and phosphorylates Dbf4 to prevent late-origin firing. The molecular basis for the Rad53-Dbf4 physical interaction is not clear but occurs through the Dbf4 N terminus. Here we found that both Rad53 FHA1 and FHA2 domains, which specifically recognize phospho-threonine (pT), interacted with Dbf4 through an N-terminal sequence and an adjacent BRCT domain. Purified Rad53 FHA1 domain (but not FHA2) bound to a pT Dbf4 peptide in vitro, suggesting a possible phospho-threonine-dependent interaction between FHA1 and Dbf4. The Dbf4-Rad53 interaction is governed by multiple contacts that are separable from the Cdc5- and Msa1-binding sites in the Dbf4 N terminus. Importantly, abrogation of the Rad53-Dbf4 physical interaction blocked Dbf4 phosphorylation and allowed late-origin firing during replication checkpoint activation. This indicated that Rad53 must stably bind to Dbf4 to regulate its activity.

  7. c-Jun N-terminal kinase (JNK signaling as a therapeutic target for Alzheimer´s disease

    Directory of Open Access Journals (Sweden)

    Ramón eYarza

    2016-01-01

    Full Text Available c-Jun N-terminal kinases (JNKs are a family of protein kinases that play a central role in stress signaling pathways implicated in gene expression, neuronal plasticity, regeneration, cell death and regulation of cellular senescence. It has been shown that there is a JNK pathway activation after exposure to different stressing factors, including cytokines, growth factors, oxidative stress, unfolded protein response signals or A peptides. Altogether, JNKs have become a focus of screening strategies searching for new therapeutic approaches to diabetes, cancer or liver diseases. In addition, activation of JNK has been identified as a key element responsible for the regulation of apoptotic apoptosis signals and therefore, it is critical for pathological occurring cell death associated with neurodegenerative diseases and, among them, with Alzheimer's disease (AD. In addition, in vitro and in vivo studies have reported alterations of JNK pathways potentially associated with pathogenesis and neuronal death in AD. JNK’s, particularly JNK3, not only enhance Aβ production, moreover it plays a key role in the maturation and development of neurofibrillary tangles.This review aims to explain the rationale behind testing therapies based on inhibition of JNK signalling for AD in terms of current knowledge about the pathophysiology of the disease. Keeping in mind that JNK3 is specifically expressed in the brain and activated by stress-stimuli, it is possible to hypothesize that inhibition of JNK3 might be considered as a potential target for treating neurodegenerative mechanisms associated with AD.

  8. Phenyl amide linker improves the pharmacokinetics and pharmacodynamics of N-terminally mono-PEGylated human growth hormone.

    Science.gov (United States)

    Wu, Ling; Ji, Shaoyang; Shen, Lijuan; Hu, Tao

    2014-09-02

    Human growth hormone (hGH) suffers from a short plasma half-life of ∼15 min, necessitating frequent injections to maintain its physiological effect. PEGylation, conjugation of polyethylene glycol (PEG), is an effective strategy to prolong the plasma half-life of hGH. However, PEGylation can significantly decrease the bioactivity of hGH. Thus, a new PEGylation approach is desired to improve the pharmacokinetics (PK) and pharmacodynamics (PD) of the PEGylated hGH. In the present study, two N-terminally mono-PEGylated hGHs were prepared using aldehyde chemistry. Phenyl amide and ethyl moieties were used as the linkers between PEG and hGH, respectively. The hydrodynamic volume, proteolytic sensitivity, and immunogenicity of the PEGylated hGH with phenyl amide linker (hGH-phenyl-PEG) were lower than those of the one with propyl linker (hGH-prop-PEG). In addition, hGH-phenyl-PEG showed a higher in vitro bioactivity and better PK and PD than hGH-prop-PEG. The better PK of hGH-phenyl-PEG was mainly due to its lower proteolytic sensitivity and low immunogenicity. The better PD of hGH-phenyl-PEG was mainly due to its higher in vitro bioactivity. Thus, the phenyl amide linker can improve the overall pharmacological profiles of the PEGylated hGH. Our study is expected to advance the development of long-acting protein biotherapeutics with high therapeutic efficacy.

  9. Novel role of c-jun N-terminal kinase in regulating the initiation of cap-dependent translation.

    Science.gov (United States)

    Patel, Manish R; Sadiq, Ahad A; Jay-Dixon, Joe; Jirakulaporn, Tanawat; Jacobson, Blake A; Farassati, Faris; Bitterman, Peter B; Kratzke, Robert A

    2012-02-01

    Initiation of protein translation by the 5' mRNA cap is a tightly regulated step in cell growth and proliferation. Aberrant activation of cap-dependent translation is a hallmark of many cancers including non-small cell lung cancer. The canonical signaling mechanisms leading to translation initiation include activation of the Akt/mTOR pathway in response to the presence of nutrients and growth factors. We have previously observed that inhibition of c-jun N-terminal kinase (JNK) leads to inactivation of cap-dependent translation in mesothelioma cells. Since JNK is involved in the genesis of non-small cell lung cancer (NSCLC), we hypothesized that JNK could also be involved in activating cap-dependent translation in NSCLC cells and could represent an alternative pathway regulating translation. In a series of NSCLC cell lines, inhibition of JNK using SP600125 resulted in inhibition of 4E-BP1 phosphorylation and a decrease in formation of the cap-dependent translation complex, eIF4F. Furthermore, we show that JNK-mediated inhibition of translation is independent of mTOR. Our data provide evidence that JNK is involved in the regulation of translation and has potential as a therapeutic target in NSCLC.

  10. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    Energy Technology Data Exchange (ETDEWEB)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan; Lynn, Annie [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States); Cotmore, Susan F. [Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510 (United States); Tattersall, Peter [Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510 (United States); Departments of Genetics, Yale University Medical School, New Haven, CT 06510 (United States); Zhao, Haiyan, E-mail: zhaohy@ku.edu [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States); Tang, Liang, E-mail: tangl@ku.edu [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States)

    2015-02-15

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.

  11. Structure of N-Terminal Domain of NPC1 Reveals Distinct Subdomains for Binding and Transfer of Cholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyock Joo; Abi-Mosleh, Lina; Wang, Michael L.; Deisenhofer, Johann; Goldstein, Joseph L.; Brown, Michael S.; Infante, Rodney E.; (UTSMC)

    2010-09-21

    LDL delivers cholesterol to lysosomes by receptor-mediated endocytosis. Exit of cholesterol from lysosomes requires two proteins, membrane-bound Niemann-Pick C1 (NPC1) and soluble NPC2. NPC2 binds cholesterol with its isooctyl side chain buried and its 3{beta}-hydroxyl exposed. Here, we describe high-resolution structures of the N-terminal domain (NTD) of NPC1 and complexes with cholesterol and 25-hydroxycholesterol. NPC1(NTD) binds cholesterol in an orientation opposite to NPC2: 3{beta}-hydroxyl buried and isooctyl side chain exposed. Cholesterol transfer from NPC2 to NPC1(NTD) requires reorientation of a helical subdomain in NPC1(NTD), enlarging the opening for cholesterol entry. NPC1 with point mutations in this subdomain (distinct from the binding subdomain) cannot accept cholesterol from NPC2 and cannot restore cholesterol exit from lysosomes in NPC1-deficient cells. We propose a working model wherein after lysosomal hydrolysis of LDL-cholesteryl esters, cholesterol binds NPC2, which transfers it to NPC1(NTD), reversing its orientation and allowing insertion of its isooctyl side chain into the outer lysosomal membranes.

  12. Recombinant Expression of Trichoderma reesei Cel61A in Pichia pastoris: Optimizing Yield and N-terminal Processing.

    Science.gov (United States)

    Tanghe, Magali; Danneels, Barbara; Camattari, Andrea; Glieder, Anton; Vandenberghe, Isabel; Devreese, Bart; Stals, Ingeborg; Desmet, Tom

    2015-12-01

    The auxiliary activity family 9 (AA9, formerly GH61) harbors a recently discovered group of oxidative enzymes that boost cellulose degradation. Indeed, these lytic polysaccharide monooxygenases (LPMOs) are able to disrupt the crystalline structure of cellulose, thereby facilitating the work of hydrolytic enzymes involved in biomass degradation. Since these enzymes require an N-terminal histidine residue for activity, their recombinant production as secreted protein is not straightforward. We here report the expression optimization of Trichoderma reesei Cel61A (TrCel61A) in the host Pichia pastoris. The use of the native TrCel61A secretion signal instead of the alpha-mating factor from Saccharomyces cerevisiae was found to be crucial, not only to obtain high protein yields (>400 mg/L during fermentation) but also to enable the correct processing of the N-terminus. Furthermore, the LPMO activity of the enzyme is demonstrated here for the first time, based on its degradation profile of a cellulosic substrate.

  13. Expression and regulation of c-Jun N-terminal kinase (JNK) in endometrial cells in vivo and in vitro.

    Science.gov (United States)

    Kizilay, Gulnur; Cakmak, Hakan; Yen, Chih-Feng; Atabekoglu, Cem; Arici, Aydin; Kayisli, Umit Ali

    2008-10-01

    JNK(c-Jun N-terminal kinase) is one of the main types of mitogen-activated protein kinases. JNK modulates inflammation and apoptosis in response to stress. Our hypothesis is that temporal and spatial changes in JNK activity regulate inflammation in human endometrium and that fluctuation in estrogen and progesterone levels may play a role in JNK activation. Therefore, we aimed to determine total-(t-) and active-(phosphorylated, p-) JNK expression in endometrial tissues in vivo by immunohistochemistry, and in vitro by immunocytochemistry and Western blot analysis. Immunohistochemistry revealed moderate cytoplasmic and nuclear t-JNK immunoreactivity, and mostly nuclear p-JNK immunoreactivity throughout the menstrual cycle and early pregnancy. The highest p- and t-JNK immunoreactivity was detected in late secretory phase (P estrogen combined with progesterone (E(2) + P(4)) withdrawal from the culture conditions, compared to control and non-withdrawal groups (P < 0.05). Upon treatment with JNK inhibitor SP600125, we observed a significantly decreased interleukin (IL)-8 level (P < 0.05) in the presence and absence of E(2). These results demonstrate that JNK expression increases during the late secretory phase when the inflammatory response is highest. Inhibition of IL-8 expression by SP600125 suggests that JNK is involved in regulation of proinflammatory mediators of endometrium.

  14. Role of N-terminal domain of HMW 1Dx5 in the functional and structural properties of wheat dough.

    Science.gov (United States)

    Wang, Jing Jing; Liu, Guang; Huang, Yan-Bo; Zeng, Qiao-Hui; Song, Guo-Sheng; Hou, Yi; Li, Lin; Hu, Song-Qing

    2016-12-15

    Effects of N-terminal domain of high molecular weight glutenin subunit (HMW-GS) 1Dx5 (1Dx5-N) on functional and structural properties of wheat dough were determined by farinographic and rheological analysis, size exclusion chromatography, non-reducing/reducing SDS-PAGE, total free sulfhydryl determination, scanning electron microscopy and Fourier transform infrared spectroscopy. Results showed that 1Dx5-N improved the quality of dough with the increased water absorption, dough stability time, elastic and viscous modulus, and the decreased degree of softening, loss tangent. These improvements could be attributed to the formation of the macro-molecular weight aggregates and massive protein networks, which were favored by 1Dx5-N through disulfide bonds and hydrophobic interactions. Additionally, 1Dx5-N drove the transition of α-helix and random coil conformations to β-sheet and β-turn conformations, further demonstrating the formation of HMW-GS polymers and the enhancement of dough strength. Moreover, all the positive effects of 1Dx5-N were reinforced by edible salt NaCl.

  15. Requirement of the N-terminal residues of human cytomegalovirus UL112-113 proteins for viral growth and oriLyt-dependent DNA replication.

    Science.gov (United States)

    Kim, Young-Eui; Park, Mi Young; Kang, Kyeong Jin; Han, Tae Hee; Lee, Chan Hee; Ahn, Jin-Hyun

    2015-08-01

    The UL112-113 region of the human cytomegalovirus (HCMV) genome encodes four phosphoproteins of 34, 43, 50, and 84 kDa that promote viral DNA replication. Co-transfection assays have demonstrated that self-interaction of these proteins via the shared N-termini is necessary for their intranuclear distribution as foci and for the efficient relocation of a viral DNA polymerase processivity factor (UL44) to the viral replication sites. However, the requirement of UL112-113 N-terminal residues for viral growth and DNA replication has not been fully elucidated. Here, we investigated the effect of deletion of the N-terminal regions of UL112-113 proteins on viral growth and oriLyt-dependent DNA replication. A deletion of the entire UL112 region or the region encoding the 25 N-terminal amino-acid residues from the HCMV (Towne strain) bacmid impaired viral growth in bacmid-transfected human fibroblast cells, indicating their requirement for viral growth. In co-immunoprecipitation assays using the genomic gene expressing the four UL112-113 proteins together, the 25 N-terminal amino-acid residues were found to be necessary for stable expression of UL112-113 proteins and their self-interaction. These residues were also required for efficient binding to and relocation of UL44, but not for interaction with IE2, an origin-binding transcription factor. In co-transfection/replication assays, replication of the oriLyt-containing plasmid was promoted by expression of intact UL112-113 proteins, but not by the expression of 25-amino-acid residue-deleted proteins. Our results demonstrate that the 25 N-terminal amino-acid residues of UL112-113 proteins that mediate self-interaction contribute to viral growth by promoting their binding to UL44 and the initiation of oriLyt-dependent DNA replication.

  16. Yeast strains with N-terminally truncated ribosomal protein S5: implications for the evolution, structure and function of the Rps5/Rps7 proteins.

    Science.gov (United States)

    Lumsden, Thomas; Bentley, Amber A; Beutler, William; Ghosh, Arnab; Galkin, Oleksandr; Komar, Anton A

    2010-03-01

    Ribosomal protein (rp)S5 belongs to the family of the highly conserved rp's that contains rpS7 from prokaryotes and rpS5 from eukaryotes. Alignment of rpS5/rpS7 from metazoans (Homo sapiens), fungi (Saccharomyces cerevisiae) and bacteria (Escherichia coli) shows that the proteins contain a conserved central/C-terminal core region and possess variable N-terminal regions. Yeast rpS5 is 69 amino acids (aa) longer than the E. coli rpS7 protein; and human rpS5 is 48 aa longer than the rpS7, respectively. To investigate the function of the yeast rpS5 and in particular the role of its N-terminal region, we obtained and characterized yeast strains in which the wild-type yeast rpS5 was replaced by its truncated variants, lacking 13, 24, 30 and 46 N-terminal amino acids, respectively. All mutant yeast strains were viable and displayed only moderately reduced growth rates, with the exception of the strain lacking 46 N-terminal amino acids, which had a doubling time of about 3 h. Biochemical analysis of the mutant yeast strains suggests that the N-terminal part of the eukaryotic and, in particular, yeast rpS5 may impact the ability of 40S subunits to function properly in translation and affect the efficiency of initiation, specifically the recruitment of initiation factors eIF3 and eIF2.

  17. Role of N-terminal methionine residues in the redox activity of copper bound to alpha-synuclein.

    Science.gov (United States)

    Rodríguez, Esaú E; Arcos-López, Trinidad; Trujano-Ortiz, Lidia G; Fernández, Claudio O; González, Felipe J; Vela, Alberto; Quintanar, Liliana

    2016-09-01

    Amyloid aggregation of α-synuclein (AS) is one of the hallmarks of Parkinson's disease. The interaction of copper ions with the N-terminal region of AS promotes its amyloid aggregation and metal-catalyzed oxidation has been proposed as a plausible mechanism. The AS(1-6) fragment represents the minimal sequence that models copper coordination to this intrinsically disordered protein. In this study, we evaluated the role of methionine residues Met1 and Met5 in Cu(II) coordination to the AS(1-6) fragment, and in the redox activity of the Cu-AS(1-6) complex. Spectroscopic and electronic structure calculations show that Met1 may play a role as an axial ligand in the Cu(II)-AS(1-6) complex, while Met5 does not participate in metal coordination. Cyclic voltammetry and reactivity studies demonstrate that Met residues play an important role in the reduction and reoxidation processes of this complex. However, Met1 plays a more important role than Met5, as substitution of Met1 by Ile decreases the reduction potential of the Cu-AS(1-6) complex by ~80 mV, causing a significant decrease in its rate of reduction. Reoxidation of the complex by oxygen results in oxidation of the Met residues to sulfoxide, being Met1 more susceptible to copper-catalyzed oxidation than Met5. The sulfoxide species can suffer elimination of methanesulfenic acid, rendering a peptide with no thioether moiety, which would impair the ability of AS to bind Cu(I) ions. Overall, our study underscores the important roles that Met1 plays in copper coordination and the reactivity of the Cu-AS complex.

  18. Arabidopsis MKS1 is involved in basal immunity and requires an intact N-terminal domain for proper function.

    Directory of Open Access Journals (Sweden)

    Klaus Petersen

    Full Text Available BACKGROUND: Innate immune signaling pathways in animals and plants are regulated by mitogen-activated protein kinase (MAPK cascades. MAP kinase 4 (MPK4 functions downstream of innate immune receptors via a nuclear substrate MKS1 to regulate the activity of the WRKY33 transcription factor, which in turn controls the production of anti-microbial phytoalexins. METHODOLOGY/PRINCIPAL FINDINGS: We investigate the role of MKS1 in basal resistance and the importance of its N- and C-terminal domains for MKS1 function. We used the information that mks1 loss-of-function partially suppresses the mpk4 loss-of-function phenotype, and that transgenic expression of functional MKS1 in mpk4/mks1 double mutants reverted the mpk4 dwarf phenotype. Transformation of mks1/mpk4 with mutant versions of MKS1 constructs showed that a single amino acid substitution in a putative MAP kinase docking domain, MKS1-L32A, or a truncated MKS1 version unable to interact with WRKY33, were deficient in reverting the double mutant to the mpk4 phenotype. These results demonstrate functional requirement in MKS1 for the interaction with MPK4 and WRKY33. In addition, nuclear localization of MKS1 was shown to depend on an intact N-terminal domain. Furthermore, loss-of-function mks1 mutants exhibited increased susceptibility to strains of Pseudomonas syringae and Hyaloperonospora arabidopsidis, indicating that MKS1 plays a role in basal defense responses. CONCLUSIONS: Taken together, our results indicate that MKS1 function and subcellular location requires an intact N-terminus important for both MPK4 and WRKY33 interactions.

  19. The prognostic value of N-terminal proB-type natriuretic peptide in patients with acute respiratory distress syndrome

    Science.gov (United States)

    Lai, Chih-Cheng; Sung, Mei-I.; Ho, Chung-Han; Liu, Hsiao-Hua; Chen, Chin-Ming; Chiang, Shyh-Ren; Chao, Chien-Ming; Liu, Wei-Lun; Hsing, Shu-Chen; Cheng, Kuo-Chen

    2017-01-01

    We investigated whether N-terminal proB-type natriuretic peptide (NT-proBNP) predicts the prognosis of patients with acute respiratory distress syndrome (ARDS). Between December 1, 2012, and May 31, 2015, this observational study recruited patients admitted to our tertiary medical center who met the Berlin criteria for ARDS and who had their NT-proBNP measured. The main outcome was 28-day mortality. We enrolled 61 patients who met the Berlin criteria for ARDS: 7 were classified as mild, 29 as moderate, and 25 as severe. The median APACHE II scores were 23 (interquartile range [IQR], 18–28), and SOFA scores were 11 (IQR, 8–13). The median lung injury score was 3.0 (IQR, 2.50–3.25), and the median level of NT-proBNP was 2011 pg/ml (IQR, 579–7216). Thirty-four patients died during this study, and the 28-day mortality rate was 55.7%. Patients who die were older and had significantly (all p < 0.05) higher APACHE II scores and NT-proBNP levels than did patients who survived. Multivariate analysis identified age (HR: 1.546, 95% CI: 1.174–2.035, p = 0.0019) and NT-proBNP (HR: 1.009, 95% CI: 1.004–1.013, p = 0.0001) as significant risk factors of death. NT-proBNP was associated with poor outcomes for patients with ARDS, and its level predicted mortality. PMID:28322314

  20. Proteolytic cleavage of stingray phospholipase A2: Isolation and biochemical characterization of an active N-terminal form

    Directory of Open Access Journals (Sweden)

    Mejdoub Hafedh

    2011-07-01

    Full Text Available Abstract Background Mammalian GIB-PLA2 are well characterized. In contrast, much less is known about aquatic ones. The aquatic world contains a wide variety of living species and, hence represents a great potential for discovering new lipolytic enzymes. The aim of this study was to check some biochemical and structural properties of a marine stingray phospholipase A2 (SPLA2. Results The effect of some proteolytic enzymes on SPLA2 was checked. Chymotrypsin and trypsin were able to hydrolyze SPLA2 in different ways. In both cases, only N-terminal fragments were accumulated during the hydrolysis, whereas no C-terminal fragment was obtained in either case. Tryptic and chymotryptic attack generated 13 kDa and 12 kDa forms of SPLA2, respectively. Interestingly, the SPLA2 13 kDa form was inactive, whereas the SPLA2 12 kDa form conserved almost its full phospholipase activity. In the absence of bile slats both native and 12kDa SPLA2 failed to catalyse the hydrolysis of PC emulsion. When bile salts were pre-incubated with the substrate, the native kinetic protein remained linear for more than 25 min, whereas the 12 kDa form activity was found to decrease rapidly. Furthermore, The SPLA2 activity was dependent on Ca2+; other cations (Mg2+, Mn2+, Cd2+ and Zn2+ reduced the enzymatic activity notably, suggesting that the arrangement of the catalytic site presents an exclusive structure for Ca2+. Conclusions Although marine and mammal pancreatic PLA2 share a high amino acid sequence homology, polyclonal antibodies directed against SPLA2 failed to recognize mammal PLA2 like the dromedary pancreatic one. Further investigations are needed to identify key residues involved in substrate recognition responsible for biochemical differences between the 2 classes of phospholipases.

  1. Mutation of androgen receptor N-terminal phosphorylation site Tyr-267 leads to inhibition of nuclear translocation and DNA binding.

    Science.gov (United States)

    Karaca, Mehmet; Liu, Yuanbo; Zhang, Zhentao; De Silva, Dinuka; Parker, Joel S; Earp, H Shelton; Whang, Young E

    2015-01-01

    Reactivation of androgen receptor (AR) may drive recurrent prostate cancer in castrate patients. Ack1 tyrosine kinase is overexpressed in prostate cancer and promotes castrate resistant xenograft tumor growth and enhances androgen target gene expression and AR recruitment to enhancers. Ack1 phosphorylates AR at Tyr-267 and possibly Tyr-363, both in the N-terminal transactivation domain. In this study, the role of these phosphorylation sites was investigated by characterizing the phosphorylation site mutants in the context of full length and truncated AR lacking the ligand-binding domain. Y267F and Y363F mutants showed decreased transactivation of reporters. Expression of wild type full length and truncated AR in LNCaP cells increased cell proliferation in androgen-depleted conditions and increased colony formation. However, the Y267F mutant of full length and truncated AR was defective in stimulating cell proliferation. The Y363F mutant was less severely affected than the Y267F mutant. The full length AR Y267F mutant was defective in nuclear translocation induced by androgen or Ack1 kinase. The truncated AR was constitutively localized to the nucleus. Chromatin immunoprecipitation analysis showed that it was recruited to the target enhancers without androgen. The truncated Y267F AR mutant did not exhibit constitutive nuclear localization and androgen enhancer binding activity. These results support the concept that phosphorylation of Tyr-267, and to a lesser extent Tyr-363, is required for AR nuclear translocation and recruitment and DNA binding and provide a rationale for development of novel approaches to inhibit AR activity.

  2. Type I Collagen Synthesis Marker Procollagen I N-Terminal Peptide (PINP) in Prostate Cancer Patients Undergoing Intermittent Androgen Suppression

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Gerhard, E-mail: gerhard.hamilton@toc.lbg.ac.at; Olszewski-Hamilton, Ulrike [Ludwig Boltzmann Cluster of Translational of Oncology, Nussdorfer Strasse 64, Vienna A-1090 (Austria); Theyer, Gerhard [Hospital Kittsee, Kittsee A-2421, Burgenland (Austria)

    2011-09-15

    Intermittent androgen suppression (IAS) therapy for prostate cancer patients attempts to maintain the hormone dependence of the tumor cells by cycles alternating between androgen suppression (AS) and treatment cessation till a certain prostate-specific antigen (PSA) threshold is reached. Side effects are expected to be reduced, compared to standard continuous androgen suppression (CAS) therapy. The present study examined the effect of IAS on bone metabolism by determinations of serum procollagen I N-terminal peptide (PINP), a biochemical marker of collagen synthesis. A total of 105 treatment cycles of 58 patients with prostate cancer stages ≥pT2 was studied assessing testosterone, PSA and PINP levels at monthly intervals. During phases of AS lasting for up to nine months PSA levels were reversibly reduced, indicating apoptotic regression of the prostatic tumors. Within the first cycle PINP increased at the end of the AS period and peaked in the treatment cessation phase. During the following two cycles a similar pattern was observed for PINP, except a break in collagen synthesis as indicated by low PINP levels in the first months off treatment. Therefore, measurements of the serum PINP concentration indicated increased bone matrix synthesis in response to >6 months of AS, which uninterruptedly continued into the first treatment cessation phase, with a break into each of the following two pauses. In summary, synthesis of bone matrix collagen increases while degradation decreases during off-treatment phases in patients undergoing IAS. Although a direct relationship between bone matrix turnover and risk of fractures is difficult to establish, IAS for treatment of biochemical progression of prostate tumors is expected to reduce osteoporosis in elderly men often at high risk for bone fractures representing a highly suitable patient population for this kind of therapy.

  3. Role of the N-terminal peptide of amelogenin on osteoblastic differentiation of human mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    R Olivares-Navarrete

    2014-07-01

    Full Text Available Porcine enamel matrix derivative (pEMD, a complex mixture of proteins and peptides including full-length amelogenin protein, splice variants, and proteolytic peptides, is used clinically with a carrier to regenerate supportive tissue around teeth. During application, pEMD self-assembles as nanospheres and precipitates as a three-dimensional matrix to facilitate cell migration and differentiation. Amelogenin, the primary constituent of pEMD, stimulates osteoblast differentiation, but it is unclear what specific roles other components of pEMD play in determining biological response. This study examined the potential of one constituent of pEMD, the N-terminal amelogenin peptide (NTAP, to promote osteoblastic differentiation of human mesenchymal stem cells (MSCs and to elucidate possible signaling pathways involved. Effects of porcine NTAP on MSC cultures were compared to those of recombinant human amelogenin. While amelogenin induced MSC osteoblastic differentiation, a more robust osteoblastic response was seen after NTAP treatment. A phospho-kinase proteasome array measuring phosphorylation of 35 proteins indicated that protein kinase C (PKC, extracellular signal-regulated kinase 1/2 (ERK1/2, and β-catenin were highly phosphorylated by NTAP. This was confirmed by measuring PKC activity and levels of phospho-ERK1/2 and β-catenin. Both amelogenin and NTAP increased PKC, but NTAP induced higher phosho-ERK1/2 and phospho-β-catenin than amelogenin. ERK1/2 inhibition blocked both amelogenin- and NTAP-induced increases in RUNX2, ALP, OCN, COL1, and BMP2. The results demonstrate that NTAP induces osteogenic differentiation of MSCs via PKC and ERK1/2 activation and β-catenin degradation. NTAP may be an active bone regeneration component of amelogenin, and may play this role in pEMD-stimulated periodontal regeneration.

  4. Glutamate dehydrogenase isoforms with N-terminal (His)6- or FLAG-tag retain their kinetic properties and cellular localization.

    Science.gov (United States)

    Pajęcka, Kamilla; Nielsen, Camilla Wendel; Hauge, Anne; Zaganas, Ioannis; Bak, Lasse K; Schousboe, Arne; Plaitakis, Andreas; Waagepetersen, Helle S

    2014-01-01

    Glutamate dehydrogenase (GDH) is a crucial enzyme on the crossroads of amino acid and energy metabolism and it is operating in all domains of life. According to current knowledge GDH is present only in one functional isoform in most animals, including mice. In addition to this housekeeping enzyme (hGDH1 in humans), humans and apes have acquired a second isoform (hGDH2) with a distinct tissue expression profile. In the current study we have cloned both mouse and human GDH constructs containing FLAG and (His)6 small genetically-encoded tags, respectively. The hGDH1 and hGDH2 constructs containing N-terminal (His)6 tags were successfully expressed in Sf9 cells and the recombinant proteins were isolated to ≥95 % purity in a two-step procedure involving ammonium sulfate precipitation and Ni(2+)-based immobilized metal ion affinity chromatography. To explore whether the presence of the FLAG and (His)6 tags affects the cellular localization and functionality of the GDH isoforms, we studied the subcellular distribution of the expressed enzymes as well as their regulation by adenosine diphosphate monopotassium salt (ADP) and guanosine-5'-triphosphate sodium salt (GTP). Through immunoblot analysis of the mitochondrial and cytosolic fraction of the HEK cells expressing the recombinant proteins we found that neither FLAG nor (His)6 tag disturbs the mitochondrial localization of GDH. The addition of the small tags to the N-terminus of the mature mitochondrial mouse GDH1 or human hGDH1 and hGDH2 did not change the ADP activation or GTP inhibition pattern of the proteins as compared to their untagged counterparts. However, the addition of FLAG tag to the C-terminus of the mouse GDH left the recombinant protein fivefold less sensitive to ADP activation. This finding highlights the necessity of the functional characterization of recombinant proteins containing even the smallest available tags.

  5. Hereditary angioedema in a Jordanian family with a novel missense mutation in the C1-inhibitor N-terminal domain.

    Science.gov (United States)

    Jaradat, Saied A; Caccia, Sonia; Rawashdeh, Rifaat; Melhem, Motasem; Al-Hawamdeh, Ali; Carzaniga, Thomas; Haddad, Hazem

    2016-03-01

    Hereditary angioedema due to C1-inhibitor deficiency (C1-INH-HAE) is an autosomal dominant disease caused by mutations in the SERPING1 gene. A Jordanian family, including 14 individuals with C1-INH-HAE clinical symptoms, was studied. In the propositus and his parents, SERPING1 had four mutations leading to amino acid substitutions. Two are known polymorphic variants (c.167T>C; p.Val34Ala and c.1438G>A; p.Val458Met), the others are newly described. One (c.203C>T; p.Thr46Ile) is located in the N-terminal domain of the C1-inhibitor protein and segregates with angioedema symptoms in the family. The other (c.800C>T; p.Ala245Val) belongs to the serpin domain, and derives from the unaffected father. DNA from additional 24 family members were screened for c.203C>T mutation in the target gene. All individuals heterozygous for the c.203C>T mutation had antigenic and functional plasma levels of C1-inhibitor below 50% of normal, confirming the diagnosis of type I C1-INH-HAE. Angioedema symptoms were present in 14 of 16 subjects carrier for the c.203T allele. Among these subjects, those carrying the c.800T variation had more severe and frequent symptoms than subjects without this mutation. This family-based study provides the first evidence that multiple amino acid substitutions in SERPING1 could influence C1-INH-HAE phenotype.

  6. N-terminal {beta}{sub 2}-adrenergic receptor polymorphisms do not correlate with bronchodilator response in asthma families

    Energy Technology Data Exchange (ETDEWEB)

    Holyroyd, K.J.; Dragwa, C.; Xu, J. [Johns Hopkins Medical Institutions, Baltimore, MD (United States)] [and others

    1994-09-01

    Family and twin studies have suggested that susceptibility to asthma is inherited. One clinically relevant phenotype in asthma is the bronchodilator response to beta adrenergic therapy (reversibility) which may also be inherited and vary among asthmatics. Two polymorphisms of the {beta}{sub 2}-adrenergic receptor common to both asthmatic and normal individuals have been reported. One polymorphism, an amino acid polymorphism at position 16, correlated in one study with the need for long-term corticosteriod use in a population of asthmatics. It is conceivable that the increased use of corticosteroids needed to control symptoms in these patients may be explained by a decreased responsiveness to brochodilators mediated through this amino acid polymorphism in the {beta}{sub 2}-adrenergic receptor. However, the response to {beta}{sub 2} bronchodilators was not tested in these patients. In our Dutch asthma families, DNA sequencing of the {beta}{sub 2}-adrenergic receptor has been performed for N-terminal polymorphisms at amino acid positions 16 and 27 in over 100 individuals, and no correlation was found with the increase of FEV{sub 1} in response to bronchodilator. Linkage analysis between bronchodilator response and marker D5S412 near the {beta}{sub 2}-adrenergic receptor gene was performed in 286 sibpairs from these families. Using a bronchodilator response of >10% in FEV{sub 1} as a qualitative definition of affected individuals, there were 145 unaffected sibpairs, 121 sibpairs where one was affected, and 20 in which both were affected. Linear regression analysis of these sibpair data suggested possible linkage (p=0.007). This supports further examination of the {beta}{sub 2}-adrenergic receptor and its regulatory regions for polymorphisms that correlate with the bronchodilator response in asthma families.

  7. c-Jun N-terminal kinase regulates mitochondrial bioenergetics by modulating pyruvate dehydrogenase activity in primary cortical neurons.

    Science.gov (United States)

    Zhou, Qiongqiong; Lam, Philip Y; Han, Derick; Cadenas, Enrique

    2008-01-01

    This study examines the role of c-jun N-terminal kinase (JNK) in mitochondrial signaling and bioenergetics in primary cortical neurons and isolated rat brain mitochondria. Exposure of neurons to either anisomycin (an activator of JNK/p38 mitogen-activated protein kinases) or H2O2 resulted in activation (phosphorylation) of JNK (mostly p46(JNK1)) and its translocation to mitochondria. Experiments with mitochondria isolated from either rat brain or primary cortical neurons and incubated with proteinase K revealed that phosphorylated JNK was associated with the outer mitochondrial membrane; this association resulted in the phosphorylation of the E(1alpha) subunit of pyruvate dehydrogenase, a key enzyme that catalyzes the oxidative decarboxylation of pyruvate and that links two major metabolic pathways: glycolysis and the tricarboxylic acid cycle. JNK-mediated phosphorylation of pyruvate dehydrogenase was not observed in experiments carried out with mitoplasts, thus suggesting the requirement of intact, functional mitochondria for this effect. JNK-mediated phosphorylation of pyruvate dehydrogenase was associated with a decline in its activity and, consequently, a shift to anaerobic pyruvate metabolism: the latter was confirmed by increased accumulation of lactic acid and decreased overall energy production (ATP levels). Pyruvate dehydrogenase appears to be a specific phosphorylation target for JNK, for other kinases, such as protein kinase A and protein kinase C did not elicit pyruvate dehydrogenase phosphorylation and did not decrease the activity of the complex. These results suggest that JNK mediates a signaling pathway that regulates metabolic functions in mitochondria as part of a network that coordinates cytosolic and mitochondrial processes relevant for cell function.

  8. Relationship of the plasma urotensin Ⅱ with proadrenomedullin N-terminal 20 peptide in patients with congestive heart failure

    Institute of Scientific and Technical Information of China (English)

    钟萍; 李志樑; 吴宏超; 唐朝枢; 陆青

    2003-01-01

    Objective: To understand the role of urotensin Ⅱ(UⅡ) and proadrenomedullin N-terminal 20 peptide (PAMP), a fragment of proadrenomedullin (proADM) possessing biological activity, in the pathophysiological process of congestive heart failure (CHF) by observing the variation of their plasma levels and exploring their interrelations. Methods: Plasma UⅡ and PAMP levels were measured by radioimmunoassay in 52 patients with CHF and 14 healthy subjects. Left ventricular ejection fraction (LVEF) and the ratio of E/A were determined by echocardiography. Results: The plasma UⅡ level was significantly lower in patients with CHF than the healthy subjects (1.5±1.0 pg/ml vs 4.3±1.2 pg/ml, P<0.05), while plasma PAMP level was significantly higher in the former group (30.6±5.8 pg/ml vs 21.0±6.6 pg/ml P<0.05). The levels of UⅡ and PAMP were parallel with the severity of CHF, and significant correlation of plasma levels of UⅡ with LVEF (r=0.530, P=0.000) and the ratio of E/A (r=0.618, P=0.000) was noted. LVEF and ratio of E/A were found to be inversely correlated with plasma PAMP levels in the patients (r=-0.568, P=0.000; r=-0.350, P=0.004). Also found was the significant correlation between plasma UⅡ and PAMP levels (r=-0.528, P=0.000). The treatment of the patients resulted in increased plasma UⅡ levels and lowered PAMP levels. Conclusion: The variations of plasma levels of UⅡ and PAMP are parallel with the severity of CHF, suggesting their cooperative actions in the pathophysiology of CHF.

  9. Runx2-I isoform contributes to fetal bone formation even in the absence of specific N-terminal amino acids.

    Directory of Open Access Journals (Sweden)

    Hideaki Okura

    Full Text Available The Runt-related transcription factor 2 (Runx2 gene encodes the transcription factor Runx2, which is the master regulator of osteoblast development; insufficiency of this protein causes disorders of bone development such as cleidocranial dysplasia. Runx2 has two isoforms, Runx2-II and Runx2-I, and production of each isoform is controlled by a unique promoter: a distal promoter (P1 and a proximal promoter (P2, respectively. Although several studies have focused on differences and similarities between the two Runx2 isoforms, their individual roles in bone formation have not yet been determined conclusively, partly because a Runx2-I-targeted mouse model is not available. In this study, we established a novel Runx2-manipulated mouse model in which the first ATG of Runx2-I was replaced with TGA (a stop codon, and a neomycin-resistant gene (neo cassette was inserted at the first intron of Runx2-I. Homozygous Runx2-Ineo/neo mice showed severely reduced expression of Runx2-I, whereas Runx2-II expression was largely retained. Runx2-Ineo/neo mice showed neonatal lethality, and in these mice, intramembranous ossification was more severely defective than endochondral ossification, presumably because of the greater involvement of Runx2-I, compared with that of Runx2-II in intramembranous ossification. Interestingly, the depletion of neo rescued the above-described phenotypes, indicating that the isoform-specific N-terminal region of Runx2-I is not functionally essential for bone development. Taken together, our results provide a novel clue leading to a better understanding of the roles of Runx2 isoforms in osteoblast development.

  10. The hydrophobic motif of ROCK2 requires association with the N-terminal extension for kinase activity.

    Science.gov (United States)

    Couzens, Amber L; Saridakis, Vivian; Scheid, Michael P

    2009-04-01

    ROCK (Rho-associated coiled-coil kinase) 2 is a member of the AGC kinase family that plays an essential role downstream of Rho in actin cytoskeleton assembly and contractility. The process of ROCK2 activation is complex and requires suppression of an autoinhibitory mechanism that is facilitated by Rho binding. ROCK2 harbours a C-terminal extension within the kinase domain that contains a hydrophobic cluster of phenylalanine and tyrosine residues surrounding a key threonine residue. In growth-factor-stimulated AGC kinases, the hydrophobic motif is important for the transition of the kinase from inactive to active complex and requires phosphorylation of the conserved serine/threonine residue. Less is understood about the contribution that the hydrophobic motif plays in the activation of ROCK, and the role of the hydrophobic motif threonine at position 405. In the present study, we show that this residue of ROCK is essential for substrate phosphorylation and kinase domain dimerization. However, in contrast with the growth-factor-activated AGC kinases, a phosphomimetic residue at position 405 was inhibitory for ROCK2 activity and dimerization. A soluble hydrophobic motif peptide allosterically activated ROCK2 In vitro, but not the equivalent peptide with Asp(405) substitution. Mechanistically, both ROCK2 activity and dimerization were dependent upon the interaction between Thr(405) of the hydrophobic motif and Asp(39) of the N-terminal extension. The reciprocal exchange of these residues was permissive for kinase activity, but dimerization was lost. These results support the rationale for development of small-molecule inhibitors designed to block ROCK activation by selectively interfering with hydrophobic motif-mediated activation-state transition and dimer formation.

  11. Neuronal entry and high neurotoxicity of botulinum neurotoxin A require its N-terminal binding sub-domain.

    Science.gov (United States)

    Wang, Jiafu; Meng, Jianghui; Nugent, Marc; Tang, Minhong; Dolly, J Oliver

    2017-03-15

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known, due to inhibiting the neuronal release of acetylcholine and causing flaccid paralysis. Most BoNT serotypes target neurons by binding to synaptic vesicle proteins and gangliosides via a C-terminal binding sub-domain (HCC). However, the role of their conserved N-terminal sub-domain (HCN) has not been established. Herein, we created a mutant form of recombinant BoNT/A lacking HCN (rAΔHCN) and showed that the lethality of this mutant is reduced 3.3 × 10(4)-fold compared to wild-type BoNT/A. Accordingly, low concentrations of rAΔHCN failed to bind either synaptic vesicle protein 2C or neurons, unlike the high-affinity neuronal binding obtained with (125)I-BoNT/A (Kd = 0.46 nM). At a higher concentration, rAΔHCN did bind to cultured sensory neurons and cluster on the surface, even after 24 h exposure. In contrast, BoNT/A became internalised and its light chain appeared associated with the plasmalemma, and partially co-localised with vesicle-associated membrane protein 2 in some vesicular compartments. We further found that a point mutation (W985L) within HCN reduced the toxicity over 10-fold, while this mutant maintained the same level of binding to neurons as wild type BoNT/A, suggesting that HCN makes additional contributions to productive internalization/translocation steps beyond binding to neurons.

  12. High efficiency adenovirus-mediated expression of truncated N-terminal huntingtin fragment (htt552) in primary rat astrocytes

    Institute of Scientific and Technical Information of China (English)

    Linhui Wang; Fang Lin; Junchao Wu; Zhenghong Qin

    2009-01-01

    Huntington's disease (HD) is caused by an expansion of polyglutamine tract in N-terminus of huntingtin (htt).The mutation of htt leads to dysfunction and premature death of striatal and cortical neurons. However, the effects of htt mutation on glia remain largely unknown.This study aimed to establish a glia HD model using an adenoviral vector to express wild-type and mutant N-terminal huntingtin fragment 1-552 amino acids (htt552) in rat primary cortical astrocytes. We have eval-uated optimal conditions for the infection of astrocytes with adenovirai vectors, and the kinetics of the expression of htt552 in astrocytes. The majority of astroeytes expressed the transgene after infection. At 24 h post-infection, the highest rate of infection was 89 + 3% for the wild-type (htt552-18Q) with a multiplicity of infection (m.o.i.) of 80, and the highest rate of infection was 91 +4% for the mutant type (htt552-100Q) with the same viral dose. The duration of expression of htt552 lasted for about 7 days with a relatively high level from 1 to 4 days post-infection. Mutant huntingtin (htt552-100Q) pro-duced the characteristic HD pathology after 3 days by the appearance of cytoplasmic aggregates and intranue-lear inclusions. The result of MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliu mbromide)assay showed that the inhibition of viability by virus on astrocytes was also dose-dependent. To obtain high infection rate and low toxicity, the viral dose with an m.o.i, of 40 was optimal to our cell model. The present study demonstrates that adenovirai-mediated expression of mutant htt provides an advantageous system for his-tological and biochemical analysis of HD pathogenesis in primary cortical astrocyte cultures.

  13. Molecular clone and characterization of c-Jun N-terminal kinases 2 from orange-spotted grouper, Epinephelus coioides.

    Science.gov (United States)

    Guo, Minglan; Wei, Jingguang; Zhou, Yongcan; Qin, Qiwei

    2016-02-01

    c-Jun N-terminal kinase 2 (JNK2) is a multifunctional mitogen-activated protein kinases involving in cell differentiation and proliferation, apoptosis, immune response and inflammatory conditions. In this study, we reported a new JNK2 (Ec-JNK2) derived from orange-spotted grouper, Epinephelus coioides. The full-length cDNA of Ec-JNK2 was 1920 bp in size, containing a 174 bp 5'-untranslated region (UTR), 483 bp 3'-UTR, and a 1263 bp open reading frame (ORF), which encoded a putative protein of 420 amino acids. The deduced protein sequence of Ec-JNK2 contained a conserved Thr-Pro-Tyr (TPY) motif in the domain of serine/threonine protein kinase (S-TKc). Ec-JNK2 has been found to involve in the immune response to pathogen challenges in vivo, and the infection of Singapore grouper iridovirus (SGIV) in vitro. Immunofluorescence staining showed that Ec-JNK2 was localized in the cytoplasm of grouper spleen (GS) cells, and moved to the nucleus after infecting with SGIV. Ec-JNK2 distributed in all immune-related tissues examined. After challenging with lipopolysaccharide (LPS), SGIV and polyriboinosinic polyribocytidylic acid (poly I:C), the mRNA expression of Ec-JNK2 was significantly (P orange-spotted grouper. Over-expressing Ec-JNK2 in fathead minnow (FHM) cells increased the SGIV infection and replication, while over-expressing the dominant-negative Ec-JNK2Δ181-183 mutant decreased it. These results indicated that Ec-JNK2 could be an important molecule in the successful infection and evasion of SGIV.

  14. Mutation of androgen receptor N-terminal phosphorylation site Tyr-267 leads to inhibition of nuclear translocation and DNA binding.

    Directory of Open Access Journals (Sweden)

    Mehmet Karaca

    Full Text Available Reactivation of androgen receptor (AR may drive recurrent prostate cancer in castrate patients. Ack1 tyrosine kinase is overexpressed in prostate cancer and promotes castrate resistant xenograft tumor growth and enhances androgen target gene expression and AR recruitment to enhancers. Ack1 phosphorylates AR at Tyr-267 and possibly Tyr-363, both in the N-terminal transactivation domain. In this study, the role of these phosphorylation sites was investigated by characterizing the phosphorylation site mutants in the context of full length and truncated AR lacking the ligand-binding domain. Y267F and Y363F mutants showed decreased transactivation of reporters. Expression of wild type full length and truncated AR in LNCaP cells increased cell proliferation in androgen-depleted conditions and increased colony formation. However, the Y267F mutant of full length and truncated AR was defective in stimulating cell proliferation. The Y363F mutant was less severely affected than the Y267F mutant. The full length AR Y267F mutant was defective in nuclear translocation induced by androgen or Ack1 kinase. The truncated AR was constitutively localized to the nucleus. Chromatin immunoprecipitation analysis showed that it was recruited to the target enhancers without androgen. The truncated Y267F AR mutant did not exhibit constitutive nuclear localization and androgen enhancer binding activity. These results support the concept that phosphorylation of Tyr-267, and to a lesser extent Tyr-363, is required for AR nuclear translocation and recruitment and DNA binding and provide a rationale for development of novel approaches to inhibit AR activity.

  15. Novel intracellular N-terminal truncated matrix metalloproteinase-2 isoform in skeletal muscle ischemia-reperfusion injury.

    Science.gov (United States)

    Joshi, Sunil K; Lee, Lawrence; Lovett, David H; Kang, Heejae; Kim, Hubert T; Delgado, Cynthia; Liu, Xuhui

    2016-03-01

    Ischemia-reperfusion injury (IRI) occurs when blood returns to tissues following a period of ischemia. Reintroduction of blood flow results in the production of free radicals and reactive oxygen species that damage cells. Skeletal muscle IRI is commonly seen in orthopedic trauma patients. Experimental studies in other organ systems have elucidated the importance of extracellular and intracellular matrix metalloproteinase-2 (MMP-2) isoforms in regulating tissue damage in the setting of oxidant stress resulting from IRI. Although the extracellular full-length isoform of MMP-2 (FL-MMP-2) has been previously studied in the setting of skeletal muscle IRI, studies investigating the role of the N-terminal truncated isoform (NTT-MMP-2) in this setting are lacking. In this study, we first demonstrated significant increases in FL- and NTT-MMP-2 gene expression in C2C12 myoblast cells responding to re-oxygenation following hypoxia in vitro. We then evaluated the expression of FL- and NTT-MMP-2 in modulating skeletal muscle IRI using a previously validated murine model. NTT-MMP-2, but not FL-MMP-2 expression was significantly increased in skeletal muscle following IRI. Moreover, the expression of toll-like receptors (TLRs) -2 and -4, IL-6, OAS-1A, and CXCL1 was also significantly up-regulated following IRI. Treatment with the potent anti-oxidant pyrrolidine dithiocarbamate (PDTC) significantly suppressed NTT-MMP-2, but not FL-MMP-2 expression and improved muscle viability following IRI. This data suggests that NTT-MMP-2, but not FL-MMP-2, is the major isoform of MMP-2 involved in skeletal muscle IRI.

  16. The Herpes Simplex Virus Protein pUL31 Escorts Nucleocapsids to Sites of Nuclear Egress, a Process Coordinated by Its N-Terminal Domain

    Science.gov (United States)

    Nagel, Claus-Henning; Binz, Anne; Sodeik, Beate; Bauerfeind, Rudolf; Bailer, Susanne M.

    2015-01-01

    Progeny capsids of herpesviruses leave the nucleus by budding through the nuclear envelope. Two viral proteins, the membrane protein pUL34 and the nucleo-phosphoprotein pUL31 form the nuclear egress complex that is required for capsid egress out of the nucleus. All pUL31 orthologs are composed of a diverse N-terminal domain with 1 to 3 basic patches and a conserved C-terminal domain. To decipher the functions of the N-terminal domain, we have generated several Herpes simplex virus mutants and show here that the N-terminal domain of pUL31 is essential with basic patches being critical for viral propagation. pUL31 and pUL34 entered the nucleus independently of each other via separate routes and the N-terminal domain of pUL31 was required to prevent their premature interaction in the cytoplasm. Unexpectedly, a classical bipartite nuclear localization signal embedded in this domain was not required for nuclear import of pUL31. In the nucleus, pUL31 associated with the nuclear envelope and newly formed capsids. Viral mutants lacking the N-terminal domain or with its basic patches neutralized still associated with nucleocapsids but were unable to translocate them to the nuclear envelope. Replacing the authentic basic patches with a novel artificial one resulted in HSV1(17+)Lox-UL31-hbpmp1mp2, that was viable but delayed in nuclear egress and compromised in viral production. Thus, while the C-terminal domain of pUL31 is sufficient for the interaction with nucleocapsids, the N-terminal domain was essential for capsid translocation to sites of nuclear egress and a coordinated interaction with pUL34. Our data indicate an orchestrated sequence of events with pUL31 binding to nucleocapsids and escorting them to the inner nuclear envelope. We propose a common mechanism for herpesviral nuclear egress: pUL31 is required for intranuclear translocation of nucleocapsids and subsequent interaction with pUL34 thereby coupling capsid maturation with primary envelopment. PMID:26083367

  17. The Herpes Simplex Virus Protein pUL31 Escorts Nucleocapsids to Sites of Nuclear Egress, a Process Coordinated by Its N-Terminal Domain.

    Directory of Open Access Journals (Sweden)

    Christina Funk

    2015-06-01

    Full Text Available Progeny capsids of herpesviruses leave the nucleus by budding through the nuclear envelope. Two viral proteins, the membrane protein pUL34 and the nucleo-phosphoprotein pUL31 form the nuclear egress complex that is required for capsid egress out of the nucleus. All pUL31 orthologs are composed of a diverse N-terminal domain with 1 to 3 basic patches and a conserved C-terminal domain. To decipher the functions of the N-terminal domain, we have generated several Herpes simplex virus mutants and show here that the N-terminal domain of pUL31 is essential with basic patches being critical for viral propagation. pUL31 and pUL34 entered the nucleus independently of each other via separate routes and the N-terminal domain of pUL31 was required to prevent their premature interaction in the cytoplasm. Unexpectedly, a classical bipartite nuclear localization signal embedded in this domain was not required for nuclear import of pUL31. In the nucleus, pUL31 associated with the nuclear envelope and newly formed capsids. Viral mutants lacking the N-terminal domain or with its basic patches neutralized still associated with nucleocapsids but were unable to translocate them to the nuclear envelope. Replacing the authentic basic patches with a novel artificial one resulted in HSV1(17+Lox-UL31-hbpmp1mp2, that was viable but delayed in nuclear egress and compromised in viral production. Thus, while the C-terminal domain of pUL31 is sufficient for the interaction with nucleocapsids, the N-terminal domain was essential for capsid translocation to sites of nuclear egress and a coordinated interaction with pUL34. Our data indicate an orchestrated sequence of events with pUL31 binding to nucleocapsids and escorting them to the inner nuclear envelope. We propose a common mechanism for herpesviral nuclear egress: pUL31 is required for intranuclear translocation of nucleocapsids and subsequent interaction with pUL34 thereby coupling capsid maturation with primary

  18. The N-terminal cytoplasmic region of NCBE displays features of an intrinsic disordered structure and represents a novel target for specific drug screening

    Directory of Open Access Journals (Sweden)

    Kaare eBjerregaard-Andersen

    2013-11-01

    Full Text Available The sodium dependent bicarbonate transporter NCBE/NBCn2 is predominantly expressed in the central nervous system (CNS. The highest protein abundance is found in the choroid plexus. The primary function of this integral plasma membrane transport protein is to regulate intracellular neuronal pH and probably to maintain the pH homeostasis across the blood-cerebrospinal fluid barrier (CSFB. NCBE has a transmembrane region consisting of 10 predicted α-helices. The N- and C- termini are both cytoplasmic, with a large N-terminal domain (Nt-NCBE and a relatively small C-terminal domain (Ct-NCBE. The cytoplasmic N-terminal domain is likely involved in bicarbonate recognition and transport and contains key areas of regulation through pH sensing and protein - protein interactions (PPIs. Intrinsic disordered proteins (IDPs and regions (IDPRs are defined as not having any rigid three-dimensional structure under physiological conditions and are believed to be involved in signaling networks in which specific, though with low affinity, PPIs play an important role in the signaling event. We show that NCBE and other SLC4 family members have a high level of predicted intrinsic disorder prevalent in the cytoplasmic regions. To provide biophysical evidence for the IDPR predicted in Nt-NCBE, we isolated recombinant NCBE from E. coli and purified it to >99 % purity and used it to perform differential scanning fluorescence spectroscopy (DSF, in the search for small molecules that induce secondary or tertiary structure. This will promote the current need to develop selective drugs for individual SLC4 family members. We have also determined a low resolution X-ray crystal structure of the N-terminal core domain at 4.0 Å resolution. The N-terminal cytoplasmic domain of AE1 (cdb3 shares a similar fold with the N-terminal core domain of NCBE. The crystal conditions for the full-length N-terminal domain have been explored, however, only the core domain forms diffracting

  19. Nonrandom distribution of iron in circulating human transferrin.

    Science.gov (United States)

    Zak, O; Aisen, P

    1986-07-01

    By combining the urea gel electrophoresis technique of Makey and Seal with Western immunoblotting, a method has been developed for analyzing the distribution of iron between the two sites of circulating human transferrin. The new method avoids exposure of samples to a nonphysiologic pH that may promote removal or redistribution of iron from the protein; this facilitates examination of multiple samples at one time. Analysis of 21 freshly drawn specimens from normal human subjects confirms previous reports that iron is not randomly distributed in the specific sites of transferrin. Rather, there is a considerable range in the ratio of occupancies of N-terminal and C-terminal sites (N:C ratio), from 0.31 to 6.87 in the present study, with the N-terminal site predominantly occupied in most subjects. The N:C ratio correlates modestly with serum iron concentration (r = .54). Possible flaws in studies indicating a random occupancy of the specific sites of circulating transferrin may lie in the low pH to which samples may be exposed during procedures based on isoelectric focusing or in drawing inferences from data considering only total monoferric transferrin rather than the two distinguishable monoferric species.

  20. A highly conserved N-terminal sequence for teleost vitellogenin with potential value to the biochemistry, molecular biology and pathology of vitellogenesis

    Science.gov (United States)

    Folmar, L.D.; Denslow, N.D.; Wallace, R.A.; LaFleur, G.; Gross, T.S.; Bonomelli, S.; Sullivan, C.V.

    1995-01-01

    N-terminal amino acid sequences for vitellogenin (Vtg) from six species of teleost fish (striped bass, mummichog, pinfish, brown bullhead, medaka, yellow perch and the sturgeon) are compared with published N-terminal Vtg sequences for the lamprey, clawed frog and domestic chicken. Striped bass and mummichog had 100% identical amino acids between positions 7 and 21, while pinfish, brown bullhead, sturgeon, lamprey, Xenopus and chicken had 87%, 93%, 60%, 47%, 47-60%) for four transcripts and had 40% identical, respectively, with striped bass for the same positions. Partial sequences obtained for medaka and yellow perch were 100% identical between positions 5 to 10. The potential utility of this conserved sequence for studies on the biochemistry, molecular biology and pathology of vitellogenesis is discussed.

  1. The N-terminal domain of NifA determines the temperature sensitivity of NifA in Klebsiella pneumoniae and Enterobacter cloacae

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The NifA protein is the central regulator of the nitrogen fixation genes.It activates transcription of nif genes by an alternative holoenzyme form of RNA polymerase containing the σ54 factor.The NifA protein from Klebsiella pneumoniae consists of the N-terminal domain of unknown function,the central catalytic domain with ATPase activity and the C-terminal DNA-binding domain.The Kp NifA protein is sensitive to temperature,while the Enterobacter cloacae NifA protein is less sensitive to temperature than Kp NifA.Our results show that the N-terminal domain of NifA plays the decisive role in the temperature sensitivity of the protein.

  2. The N-terminal cellulose-binding domain of EGXA increases thermal stability of xylanase and changes its specific activities on different substrates

    Institute of Scientific and Technical Information of China (English)

    Ming Ding; Yigang Teng; Qiuyu Yin; Jie Zhao; Fukun Zhao

    2008-01-01

    A full-length EGXA enzyme from a mollusk, Ampullaria crossean, was cloned into pFastBac vector and then heterogeneously expressed in insect Tn5 cells. Its natural N-terminal signal peptide worked well in the insect Tn5 cells.The recombinant EGXA was a 63 kDa protein and had active endo-β-1,4-glucanase (EC 3.2.1.4) and endo-β-1,4-xylanase (EC 3.2.1.8). The specific activity of endo-β-1,4-xylanase was higher than in the EGX, which was purified from the stomach tissues of Ampullaria crossen. The N-terminal cellulosebinding domain of EGXA made it bind to cellulose and xylan more efficiently. This cellulose-binding domain also increased the thermal stability of this recombinant enzyme and decreased the recombinant EGXA's specific activities on p-nitrophenyi-β-D-cellobioside and sodium carboxymethyl cellulose.

  3. Identification of an antigenic domain in the N-terminal region of avian hepatitis E virus (HEV) capsid protein that is not common to swine and human HEVs.

    Science.gov (United States)

    Wang, Lizhen; Sun, Yani; Du, Taofeng; Wang, Chengbao; Xiao, Shuqi; Mu, Yang; Zhang, Gaiping; Liu, Lihong; Widén, Frederik; Hsu, Walter H; Zhao, Qin; Zhou, En-Min

    2014-12-01

    The antigenic domains located in the C-terminal 268 amino acid residues of avian hepatitis E virus (HEV) capsid protein have been characterized. This region shares common epitopes with swine and human HEVs. However, epitopes in the N-terminal 338 amino acid residues have never been reported. In this study, an antigenic domain located between amino acids 23 and 85 was identified by indirect ELISA using the truncated recombinant capsid proteins as coating antigens and anti-avian HEV chicken sera as primary antibodies. In addition, this domain did not react with anti-swine and human HEV sera. These results indicated that the N-terminal 338 amino acid residues of avian HEV capsid protein do not share common epitopes with swine and human HEVs. This finding is important for our understanding of the antigenicity of the avian HEV capsid protein. Furthermore, it has important implications in the selection of viral antigens for serological diagnosis.

  4. The N-terminal domain of NifA determines the temperature sensitivity of Nif A in Klebsiella pneumoniae and Enterobacter cloacae

    Institute of Scientific and Technical Information of China (English)

    顾剑颖; 俞冠翘; 朱家璧; 沈善炯

    2000-01-01

    The NifA protein is the central regulator of the nitrogen fixation genes. It activates transcription of nif genes by an alternative holoenzyme form of RNA polymerase containing the σ54 factor. The NifA protein from Klebsiella pneumoniae consists of the N-terminal domain of unknown function, the central catalytic domain with ATPase activity and the C-terminal DNA-binding domain. The Kp NifA protein is sensitive to temperature, while the Enterobacter cloacae NifA protein is less sensitive to temperature than Kp NifA. Our results show that the N-terminal domain of NifA plays the decisive role in the temperature sensitivity of the protein.

  5. The N-terminal β-sheet of peroxiredoxin 4 in the large yellow croaker Pseudosciaena crocea is involved in its biological functions.

    Directory of Open Access Journals (Sweden)

    Yinnan Mu

    Full Text Available Peroxiredoxins (Prxs are thiol-specific antioxidant proteins that exhibit peroxidase and peroxynitrite reductase activities involved in the reduction of reactive oxygen species. The peroxiredoxin Prx4 from the large yellow croaker Pseudosciaena crocea is a typical 2-Cys Prx with an N-terminal signal peptide. We solved the crystal structure of Prx4 at 1.90 Å and revealed an N-terminal antiparallel β-sheet that contributes to the dimer interface. Deletion of this β-sheet decreased the in vitro peroxidase activity to about 50% of the wild-type. In vivo assays further demonstrated that removal of this β-sheet led to some impairment in the ability of Prx4 to negatively regulate nuclear factor-κB (NF-κB activity and to perform its role in anti-bacterial immunity. These results provide new insights into the structure and function relationship of a peroxiredoxin from bony fish.

  6. N-terminal isoforms of the large-conductance Ca²⁺-activated K⁺ channel are differentially modulated by the auxiliary β1-subunit.

    Science.gov (United States)

    Lorca, Ramón A; Stamnes, Susan J; Pillai, Meghan K; Hsiao, Jordy J; Wright, Michael E; England, Sarah K

    2014-04-04

    The large-conductance Ca(2+)-activated K(+) (BK(Ca)) channel is essential for maintaining the membrane in a hyperpolarized state, thereby regulating neuronal excitability, smooth muscle contraction, and secretion. The BK(Ca) α-subunit has three predicted initiation codons that generate proteins with N-terminal ends starting with the amino acid sequences MANG, MSSN, or MDAL. Because the N-terminal region and first transmembrane domain of the α-subunit are required for modulation by auxiliary β1-subunits, we examined whether β1 differentially modulates the N-terminal BK(Ca) α-subunit isoforms. In the absence of β1, all isoforms had similar single-channel conductances and voltage-dependent activation. However, whereas β1 did not modulate the voltage-activation curve of MSSN, β1 induced a significant leftward shift of the voltage activation curves of both the MDAL and MANG isoforms. These shifts, of which the MDAL was larger, occurred at both 10 μM and 100 μM Ca(2+). The β1-subunit increased the open dwell times of all three isoforms and decreased the closed dwell times of MANG and MDAL but increased the closed dwell times of MSSN. The distinct modulation of voltage activation by the β1-subunit may be due to the differential effect of β1 on burst duration and interburst intervals observed among these isoforms. Additionally, we observed that the related β2-subunit induced comparable leftward shifts in the voltage-activation curves of all three isoforms, indicating that the differential modulation of these isoforms was specific to β1. These findings suggest that the relative expression of the N-terminal isoforms can fine-tune BK(Ca) channel activity in cells, highlighting a novel mechanism of BK(Ca) channel regulation.

  7. Genetic complementation analysis showed distinct contributions of the N-terminal tail of H2A.Z to epigenetic regulations.

    Science.gov (United States)

    Kusakabe, Masayuki; Oku, Hiroyuki; Matsuda, Ryo; Hori, Tetsuya; Muto, Akihiko; Igarashi, Kazuhiko; Fukagawa, Tatsuo; Harata, Masahiko

    2016-02-01

    H2A.Z is one of the most evolutionally conserved histone variants. In vertebrates, this histone variant has two isoforms, H2A.Z.1 and H2A.Z.2, each of which is coded by an individual gene. H2A.Z is involved in multiple epigenetic regulations, and in humans, it also has relevance to carcinogenesis. In this study, we used the H2A.Z DKO cells, in which both H2A.Z isoform genes could be inducibly knocked out, for the functional analysis of H2A.Z by a genetic complementation assay, as the first example of its kind in vertebrates. Ectopically expressed wild-type H2A.Z and two N-terminal mutants, a nonacetylable H2A.Z mutant and a chimera in which the N-terminal tail of H2A.Z.1 was replaced with that of the canonical H2A, complemented the mitotic defects of H2A.Z DKO cells similarly, suggesting that both acetylation and distinctive sequence of the N-terminal tail of H2A.Z are not required for mitotic progression. In contrast, each one of these three forms of H2A.Z complemented the transcriptional defects of H2A.Z DKO cells differently. These results suggest that the N-terminal tail of vertebrate H2A.Z makes distinctively different contributions to these epigenetic events. Our results also imply that this genetic complementation system is a novel and useful tool for the functional analysis of H2A.Z.

  8. N-terminal of Papaya ringspot virus type-W (PRSV-W) helper component proteinase (HC-Pro) is essential for PRSV systemic infection in zucchini.

    Science.gov (United States)

    Yap, Yun-Kiam; Duangjit, Janejira; Panyim, Sakol

    2009-06-01

    The Papaya ringspot virus (PRSV) is one of the limiting factors affecting papaya and cucurbits production worldwide. PRSV belongs to the potyvirus genus which consists of 30% of known plant viruses. Two serological closely related strains, namely type-P and -W, have been reported. PRSV type-P infects both papaya and cucurbits, while type-W infects only cucurbits. The genome of PRSV Thailand isolate consists of a (+) RNA molecule of 10323 nucleotides, which is first translated into a single polypeptide and further cleaved by three viral encoded proteases into ten gene products. Helper-component proteinase (HC-Pro), which is encoded by the 2nd cistron of the potyviral genome, has been implicated in aphid transmission, viral movement, viral replication and suppression of host viral defense system. Studies of the Tobacco etch virus (TEV), Lettuce mosaic virus (LMV), Onion yellow dwarf virus (OYDV) and Wheat streak mosaic virus (WSMV) indicate that the N-terminal of HC-Pro is dispensable for systemic infection in their respective hosts. However, deletion analysis of the Tobacco vein mottling virus (TVMV) indicates otherwise. In this study, we examined whether HC-Pro is essential for PRSV systemic infection in cucurbits and the role of its N-terminal in systemic infection. Our results indicated that HC-Pro is indispensable for PRSV infection in zucchini. Deletion analysis of PRSV HC-Pro showed that deletion of as few as 54 amino acids at the N-terminal of HC-Pro completely abolished the infectivity of the corresponding cDNA clone. Therefore, it is proposed that the N-terminal of HC-Pro is involved in systemic infection of PRSV, in addition to its conserved function in aphid transmission.

  9. Chromophore incorporation, Pr to Pfr kinetics, and Pfr thermal reversion of recombinant N-terminal fragments of phytochrome A and B chromoproteins.

    Science.gov (United States)

    Remberg, A; Ruddat, A; Braslavsky, S E; Gärtner, W; Schaffner, K

    1998-07-14

    N-Terminal apoprotein fragments of oat phytochrome A (phyA) of 65 kDa (amino acids 1-595) and potato phyB of 66 kDa (1-596) were heterologously expressed in Escherichia coli and in the yeasts Saccharomyces cerevisiae and Pichia pastoris, and assembled with phytochromobilin (PthetaB; native chromophore) and phycocyanobilin (PCB). The phyA65 apoprotein from yeast showed a monoexponential assembly kinetics after an initial steep rise, whereas the corresponding apoprotein from E. coli showed only a slow monoexponential assembly. The phyB66 apoprotein incorporated either chromophore more slowly than the phyA65s, with biexponential kinetics. With all apoproteins, PthetaB was incorporated faster than PCB. The thermal stabilities of the Pfr forms of the N-terminal halves are similar to those known for the full-length recombinant phytochromes: oat phyA65 Pfr is highly stable, whereas potato phyB66 Pfr is rapidly converted into Pr. Thus, neither the C-terminal domain nor homodimer formation regulates this property. Rather, it is a characteristic of the phytochrome indicating its origin from mono- or dicots. The Pr to Pfr kinetics of the N-terminal phyA65 and phyB66 are different. The primary photoproduct I700 of phyA65-PCB decayed monoexponentially and the PthetaB analogue biexponentially, whereas the phyB66 I700 decayed monoexponentially irrespective of the chromophore incorporated. The formation of Pfr from Pr is faster with the N-terminal halves than with the full-length phytochromes, indicating an involvement of the C-terminal domain in the relatively slow protein conformational changes.

  10. Peptides derived from human galectin-3 N-terminal tail interact with its carbohydrate recognition domain in a phosphorylation-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Berbís, M. Álvaro [Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid (Spain); André, Sabine [Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians University, 80539 Munich (Germany); Cañada, F. Javier [Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid (Spain); Pipkorn, Rüdiger [Central Peptide Synthesis Unit, German Cancer Research Center, 69120 Heidelberg (Germany); Ippel, Hans [Department of Biochemistry, CARIM, University of Maastricht, Maastricht (Netherlands); Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Mayo, Kevin H. [Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Kübler, Dieter [Biomolecular Interactions, German Cancer Research Center, 69120 Heidelberg (Germany); Gabius, Hans-Joachim [Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians University, 80539 Munich (Germany); Jiménez-Barbero, Jesús, E-mail: jjbarbero@cib.csic.es [Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid (Spain)

    2014-01-03

    Highlights: •Galectin-3 is composed of a carbohydrate recognition domain and an N-terminal tail. •Synthetic peptides derived from the tail are shown to interact with the CRD. •This interaction is modulated by Ser- and Tyr-phosphorylation of the peptides. -- Abstract: Galectin-3 (Gal-3) is a multi-functional effector protein that functions in the cytoplasm and the nucleus, as well as extracellularly following non-classical secretion. Structurally, Gal-3 is unique among galectins with its carbohydrate recognition domain (CRD) attached to a rather long N-terminal tail composed mostly of collagen-like repeats (nine in the human protein) and terminating in a short non-collagenous terminal peptide sequence unique in this lectin family and not yet fully explored. Although several Ser and Tyr sites within the N-terminal tail can be phosphorylated, the physiological significance of this post-translational modification remains unclear. Here, we used a series of synthetic (phospho)peptides derived from the tail to assess phosphorylation-mediated interactions with {sup 15}N-labeled Gal-3 CRD. HSQC-derived chemical shift perturbations revealed selective interactions at the backface of the CRD that were attenuated by phosphorylation of Tyr 107 and Tyr 118, while phosphorylation of Ser 6 and Ser 12 was essential. Controls with sequence scrambling underscored inherent specificity. Our studies shed light on how phosphorylation of the N-terminal tail may impact on Gal-3 function and prompt further studies using phosphorylated full-length protein.

  11. N-terminal pro-B-type natriuretic peptide as a marker of blunt cardiac contusion in trauma.

    Science.gov (United States)

    Dogan, Halil; Sarikaya, Sezgin; Neijmann, Sebnem Tekin; Uysal, Emin; Yucel, Neslihan; Ozucelik, Dogac Niyazi; Okuturlar, Yıldız; Solak, Suleyman; Sever, Nurten; Ayan, Cem

    2015-01-01

    Cardiac contusion is usually caused by blunt chest trauma and, although it is potentially a life-threatening condition, the diagnosis of a myocardial contusion is difficult because of non-specific symptoms and the lack of an ideal test to detect myocardial damage. Cardiac enzymes, such as creatine kinase (CK), creatine kinase MB fraction (CK-MB), cardiac troponin I (cTn-I), and cardiac troponin T (cTn-T) were used in previous studies to demonstrate the blunt cardiac contusion (BCC). Each of these diagnostic tests alone is not effective for diagnosis of BCC. The aim of this study was to investigate the serum heart-type fatty acid binding protein (h-FABP), N-terminal pro-B-type natriuretic peptide (NT-proBNP), CK, CK-MB, and cTn-I levels as a marker of BCC in blunt chest trauma in rats. The eighteen Wistar albino rats were randomly allocated to two groups; group I (control) (n=8) and group II (blunt chest trauma) (n=10). Isolated BCC was induced by the method described by Raghavendran et al. (2005). All rats were observed in their cages and blood samples were collected after five hours of trauma for the analysis of serum h-FABP, NT-pro BNP, CK, CK-MB, and cTn-I levels. The mean serum NT-pro BNP was significantly different between group I and II (10.3 ± 2.10 ng/L versus 15.4 ± 3.68 ng/L, respectively; P=0.0001). NT-pro BNP level >13 ng/ml had a sensitivity of 87.5%, a specificity of 70%, a positive predictive value of 70%, and a negative predictive value of 87.5% for predicting blunt chest trauma (area under curve was 0.794 and P=0.037). There was no significant difference between two groups in serum h-FABP, CK, CK-MB and c Tn-I levels. A relation between NT-Pro BNP and BCC was shown in this study. Serum NT-proBNP levels significantly increased with BCC after 5 hours of the blunt chest trauma. The use of NT-proBNP as an adjunct to other diagnostic tests, such as troponins, electrocardiography (ECG), chest x-ray and echocardiogram may be beneficial for diagnosis of

  12. Annexin A1 N-terminal derived peptide Ac2-26 stimulates fibroblast migration in high glucose conditions.

    Directory of Open Access Journals (Sweden)

    Valentina Bizzarro

    Full Text Available Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we have evaluated whether Annexin A1 derived peptide Ac2-26 stimulates fibroblast migration in high glucose conditions. Using normal human skin fibroblasts WS1 in low glucose (LG or high glucose (HG we observed the enrichment of Annexin A1 protein at cell movement structures like lamellipodial extrusions and interestingly, a significant decrease in levels of the protein in HG conditions. The analysis of the translocation of Annexin A1 to cell membrane showed lower levels of Annexin A1 in both membrane pool and supernatants of WS1 cells treated with HG. Wound-healing assays using cell line transfected with Annexin A1 siRNAs indicated a slowing down in migration speed of cells suggesting that Annexin A1 has a role in the migration of WS1 cells. In order to analyze the role of extracellular Annexin A1 in cell migration, we have performed wound-healing assays using Ac2-26 showing that peptide was able to increase fibroblast cell migration in HG conditions. Experiments on the mobilization of intracellular calcium and analysis of p-ERK expression confirmed the activity of the FPR1 following stimulation with the peptide Ac2-26. A wound-healing assay on WS1 cells in the presence of the FPR agonist fMLP, of the FPR antagonist CsH and in the presence of Ac2-26 indicated that Annexin A1 influences fibroblast cell migration under HG conditions acting through FPR receptors whose expression was slightly increased in HG. In conclusion, these data demonstrate that (i Annexin A1 is involved in migration of WS1 cells, through interaction with FPRs; (ii N- terminal peptide of Annexin A1 Ac2-26 is able to stimulate direct migration of WS1 cells in high glucose treatment possibly due to the increased receptor expression observed in hyperglycemia conditions.

  13. Dissecting functions of the N-terminal domain and GAS-site recognition in STAT3 nuclear trafficking.

    Science.gov (United States)

    Martincuks, Antons; Fahrenkamp, Dirk; Haan, Serge; Herrmann, Andreas; Küster, Andrea; Müller-Newen, Gerhard

    2016-08-01

    Signal transducer and activator of transcription 3 (STAT3) is a ubiquitous transcription factor involved in many biological processes, including hematopoiesis, inflammation and cancer progression. Cytokine-induced gene transcription greatly depends on tyrosine phosphorylation of STAT3 on a single tyrosine residue with subsequent nuclear accumulation and specific DNA sequence (GAS) recognition. In this study, we analyzed the roles of the conserved STAT3 N-terminal domain (NTD) and GAS-element binding ability of STAT3 in nucleocytoplasmic trafficking. Our results demonstrate the nonessential role of GAS-element recognition for both cytokine-induced and basal nuclear import of STAT3. Substitution of five key amino acids within the DNA-binding domain rendered STAT3 unable to bind to GAS-elements while still maintaining the ability for nuclear localization. In turn, deletion of the NTD markedly decreased nuclear accumulation upon IL-6 treatment resulting in a prolonged accumulation of phosphorylated dimers in the cytoplasm, at the same time preserving specific DNA recognition ability of the truncation mutant. Observed defect in nuclear localization could not be explained by flawed importin-α binding, since both wild-type and NTD deletion mutant of STAT3 could precipitate both full-length and autoinhibitory domain (∆IBB) deletion mutants of importin-α5, as well as ∆IBB-α3 and ∆IBB-α7 isoforms independently of IL-6 stimulation. Despite its inability to translocate to the nucleus upon IL-6 stimulation, the NTD lacking mutant still showed nuclear accumulation in resting cells similar to wild-type upon inhibition of nuclear export by leptomycin B. At the same time, blocking the nuclear export pathway could not rescue cytoplasmic trapping of phosphorylated STAT3 molecules without NTD. Moreover, STAT3 mutant with dysfunctional SH2 domain (R609Q) also localized in the nucleus of unstimulated cells after nuclear export blocking, while upon cytokine treatment the

  14. Structural and functional characterization of the Geobacillus copper nitrite reductase: involvement of the unique N-terminal region in the interprotein electron transfer with its redox partner.

    Science.gov (United States)

    Fukuda, Yohta; Koteishi, Hiroyasu; Yoneda, Ryohei; Tamada, Taro; Takami, Hideto; Inoue, Tsuyoshi; Nojiri, Masaki

    2014-03-01

    The crystal structures of copper-containing nitrite reductase (CuNiR) from the thermophilic Gram-positive bacterium Geobacillus kaustophilus HTA426 and the amino (N)-terminal 68 residue-deleted mutant were determined at resolutions of 1.3Å and 1.8Å, respectively. Both structures show a striking resemblance with the overall structure of the well-known CuNiRs composed of two Greek key β-barrel domains; however, a remarkable structural difference was found in the N-terminal region. The unique region has one β-strand and one α-helix extended to the northern surface of the type-1 copper site. The superposition of the Geobacillus CuNiR model on the electron-transfer complex structure of CuNiR with the redox partner cytochrome c551 in other denitrifier system led us to infer that this region contributes to the transient binding with the partner protein during the interprotein electron transfer reaction in the Geobacillus system. Furthermore, electron-transfer kinetics experiments using N-terminal residue-deleted mutant and the redox partner, Geobacillus cytochrome c551, were carried out. These structural and kinetics studies demonstrate that the region is directly involved in the specific partner recognition.

  15. Functional analysis of the extended N-terminal region in PLC-δ1 (MlPLC-δ1) from the mud loach, Misgurnus mizolepis.

    Science.gov (United States)

    Kim, Na Young; Ahn, Sang Jung; Kim, Moo-Sang; Seo, Jung Soo; Jung, Se Hwan; Park, Sung Hwan; Lee, Hyung Ho; Chung, Joon Ki

    2014-01-01

    Mud loach phospholipase C-δ1 (MlPLC-δ1) contains all the characteristic domains found in mammalian PLC-δ isozymes (pleckstrin homology domain, EF-hands, X–Y catalytic region, and C2 domain) as well as an extended 26-amino acid (aa)-long N-terminal region that is an alternative splice form of PLC-δ1 and is novel to vertebrate PLC-δ. In the present structure-function analysis, deletion of the extended N-terminal region caused complete loss of phosphatidylinositol (PI)- and phosphatidylinositol 4,5-bisphosphate (PIP2)-hydrolyzing activity in MlPLC-δ1. Additionally, recombinant full-length MlPLC-δ1 PLC activity was reduced in a dose-dependent manner by coincubation with the 26-aa protein fragment. Using a protein-lipid overlay assay, both full-length MlPLC-δ1 and the 26-aa protein fragment had substantial affinity for PIP2, whereas deletion of the 26-aa region from MlPLC-δ1 (MlPLC-δ1-deletion) resulted in lower affinity for PIP2. These results suggest that the novel N-terminal exon of MlPLC-δ1 could play an important role in the regulation of PLC-δ1.

  16. NMR solution structure of the N-terminal domain of hERG and its interaction with the S4-S5 linker

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingxin; Gayen, Shovanlal; Chen, Angela Shuyi; Huang, Qiwei; Raida, Manfred [Experimental Therapeutics Center, The Agency for Science, Technology and Research, 31 Biopolis Way Nanos, 03-01, Singapore 138669 (Singapore); Kang, CongBao, E-mail: cbkang@etc.a-star.edu.sg [Experimental Therapeutics Center, The Agency for Science, Technology and Research, 31 Biopolis Way Nanos, 03-01, Singapore 138669 (Singapore)

    2010-12-03

    Research highlights: {yields} The N-terminal domain (NTD, eag domain) containing 135 residues of hERG was expressed and purified from E. coli cells. {yields} Solution structure of NTD was determined with NMR spectroscopy. {yields} The alpha-helical region (residues 13-23) was demonstrated to possess the characteristics of an amphipathic helix. {yields} NMR titration confirmed the interaction between NTD and the peptide from the S4-S5 linker. -- Abstract: The human Ether-a-go-go Related Gene (hERG) potassium channel mediates the rapid delayed rectifier current (IKr) in the cardiac action potential. Mutations in the 135 amino acid residue N-terminal domain (NTD) cause channel dysfunction or mis-translocation. To study the structure of NTD, it was overexpressed and purified from Escherichia coli cells using affinity purification and gel filtration chromatography. The purified protein behaved as a monomer under purification conditions. Far- and near-UV, circular dichroism (CD) and solution nuclear magnetic resonance (NMR) studies showed that the purified protein was well-folded. The solution structure of NTD was obtained and the N-terminal residues 13-23 forming an amphipathic helix which may be important for the protein-protein or protein-membrane interactions. NMR titration experiment also demonstrated that residues from 88 to 94 in NTD are important for the molecular interaction with the peptide derived from the S4-S5 linker.

  17. Structural Basis for Recognition of H3T3ph and Smac/DIABLO N-terminal Peptides by Human Survivin

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jiamu; Kelly, Alexander E.; Funabiki, Hironori; Patel, Dinshaw J. (MSKCC); (Rockefeller)

    2012-03-02

    Survivin is an inhibitor of apoptosis family protein implicated in apoptosis and mitosis. In apoptosis, it has been shown to recognize the Smac/DIABLO protein. It is also a component of the chromosomal passenger complex, a key player during mitosis. Recently, Survivin was identified in vitro and in vivo as the direct binding partner for phosphorylated Thr3 on histone H3 (H3T3ph). We have undertaken structural and binding studies to investigate the molecular basis underlying recognition of H3T3ph and Smac/DIABLO N-terminal peptides by Survivin. Our crystallographic studies establish recognition of N-terminal Ala in both complexes and identify intermolecular hydrogen-bonding interactions in the Survivin phosphate-binding pocket that contribute to H3T3ph mark recognition. In addition, our calorimetric data establish that Survivin binds tighter to the H3T3ph-containing peptide relative to the N-terminal Smac/DIABLO peptide, and this preference can be reversed through structure-guided mutations that increase the hydrophobicity of the phosphate-binding pocket.

  18. Substrate-inhibitor interactions in the kinetics of alpha-amylase inhibition by ragi alpha-amylase/trypsin inhibitor (RATI) and its various N-terminal fragments.

    Science.gov (United States)

    Alam, N; Gourinath, S; Dey, S; Srinivasan, A; Singh, T P

    2001-04-10

    The ragi alpha-amylase/trypsin bifunctional inhibitor (RATI) from Indian finger millet, Ragi (Eleucine coracana Gaertneri), represents a new class of cereal inhibitor family. It exhibits a completely new motif of trypsin inhibitory site and is not found in any known trypsin inhibitor structures. The alpha-amylase inhibitory site resides at the N-terminal region. These two sites are independent of each other and the inhibitor forms a ternary (1:1:1) complex with trypsin and alpha-amylase. The trypsin inhibition follows a simple competitive inhibition obeying the canonical serine protease inhibitor mechanism. However, the alpha-amylase inhibition kinetics is a complex one if larger (> or =7 glucose units) substrate is used. While a complete inhibition of trypsin activity can be achieved, the inhibition of amylase is not complete even at very high molar concentration. We have isolated the N-terminal fragment (10 amino acids long) by CNBr hydrolysis of RATI. This fragment shows a simple competitive inhibition of alpha-amylase activity. We have also synthesized various peptides homologous to the N-terminal sequence of RATI. These peptides also show a normal competitive inhibition of alpha-amylase with varying potencies. It has also been shown that RATI binds to the larger substrates of alpha-amylase. In light of these observations, we have reexamined the binding of proteinaceous inhibitors to alpha-amylase and its implications on the mechanism and kinetics of inhibition.

  19. Roles of N-terminal fatty acid acylations in membrane compartment partitioning: Arabidopsis h-type thioredoxins as a case study.

    Science.gov (United States)

    Traverso, José A; Micalella, Chiara; Martinez, Aude; Brown, Spencer C; Satiat-Jeunemaître, Béatrice; Meinnel, Thierry; Giglione, Carmela

    2013-03-01

    N-terminal fatty acylations (N-myristoylation [MYR] and S-palmitoylation [PAL]) are crucial modifications affecting 2 to 4% of eukaryotic proteins. The role of these modifications is to target proteins to membranes. Predictive tools have revealed unexpected targets of these acylations in Arabidopsis thaliana and other plants. However, little is known about how N-terminal lipidation governs membrane compartmentalization of proteins in plants. We show here that h-type thioredoxins (h-TRXs) cluster in four evolutionary subgroups displaying strictly conserved N-terminal modifications. It was predicted that one subgroup undergoes only MYR and another undergoes both MYR and PAL. We used plant TRXs as a model protein family to explore the effect of MYR alone or MYR and PAL in the same family of proteins. We used a high-throughput biochemical strategy to assess MYR of specific TRXs. Moreover, various TRX-green fluorescent protein fusions revealed that MYR localized protein to the endomembrane system and that partitioning between this membrane compartment and the cytosol correlated with the catalytic efficiency of the N-myristoyltransferase acting at the N terminus of the TRXs. Generalization of these results was obtained using several randomly selected Arabidopsis proteins displaying a MYR site only. Finally, we demonstrated that a palmitoylatable Cys residue flanking the MYR site is crucial to localize proteins to micropatching zones of the plasma membrane.

  20. Roles of N-Terminal Fatty Acid Acylations in Membrane Compartment Partitioning: Arabidopsis h-Type Thioredoxins as a Case Study[C][W

    Science.gov (United States)

    Traverso, José A.; Micalella, Chiara; Martinez, Aude; Brown, Spencer C.; Satiat-Jeunemaître, Béatrice; Meinnel, Thierry; Giglione, Carmela

    2013-01-01

    N-terminal fatty acylations (N-myristoylation [MYR] and S-palmitoylation [PAL]) are crucial modifications affecting 2 to 4% of eukaryotic proteins. The role of these modifications is to target proteins to membranes. Predictive tools have revealed unexpected targets of these acylations in Arabidopsis thaliana and other plants. However, little is known about how N-terminal lipidation governs membrane compartmentalization of proteins in plants. We show here that h-type thioredoxins (h-TRXs) cluster in four evolutionary subgroups displaying strictly conserved N-terminal modifications. It was predicted that one subgroup undergoes only MYR and another undergoes both MYR and PAL. We used plant TRXs as a model protein family to explore the effect of MYR alone or MYR and PAL in the same family of proteins. We used a high-throughput biochemical strategy to assess MYR of specific TRXs. Moreover, various TRX–green fluorescent protein fusions revealed that MYR localized protein to the endomembrane system and that partitioning between this membrane compartment and the cytosol correlated with the catalytic efficiency of the N-myristoyltransferase acting at the N terminus of the TRXs. Generalization of these results was obtained using several randomly selected Arabidopsis proteins displaying a MYR site only. Finally, we demonstrated that a palmitoylatable Cys residue flanking the MYR site is crucial to localize proteins to micropatching zones of the plasma membrane. PMID:23543785

  1. Modeling of the N-terminal Section and the Lumenal Loop of Trimeric Light Harvesting Complex II (LHCII) by Using EPR.

    Science.gov (United States)

    Fehr, Niklas; Dietz, Carsten; Polyhach, Yevhen; von Hagens, Tona; Jeschke, Gunnar; Paulsen, Harald

    2015-10-23

    The major light harvesting complex II (LHCII) of green plants plays a key role in the absorption of sunlight, the regulation of photosynthesis, and in preventing photodamage by excess light. The latter two functions are thought to involve the lumenal loop and the N-terminal domain. Their structure and mobility in an aqueous environment are only partially known. Electron paramagnetic resonance (EPR) has been used to measure the structure of these hydrophilic protein domains in detergent-solubilized LHCII. A new technique is introduced to prepare LHCII trimers in which only one monomer is spin-labeled. These heterogeneous trimers allow to measure intra-molecular distances within one LHCII monomer in the context of a trimer by using double electron-electron resonance (DEER). These data together with data from electron spin echo envelope modulation (ESEEM) allowed to model the N-terminal protein section, which has not been resolved in current crystal structures, and the lumenal loop domain. The N-terminal domain covers only a restricted area above the superhelix in LHCII, which is consistent with the "Velcro" hypothesis to explain thylakoid grana stacking (Standfuss, J., van Terwisscha Scheltinga, A. C., Lamborghini, M., and Kühlbrandt, W. (2005) EMBO J. 24, 919-928). The conformation of the lumenal loop domain is surprisingly different between LHCII monomers and trimers but not between complexes with and without neoxanthin bound.

  2. The N-terminal repeat and the ligand binding domain A of SdrI protein is involved in hydrophobicity of S. saprophyticus.

    Science.gov (United States)

    Kleine, Britta; Ali, Liaqat; Wobser, Dominique; Sakιnç, Türkân

    2015-03-01

    Staphylococcus saprophyticus is an important cause of urinary tract infection, and its cell surface hydrophobicity may contribute to virulence by facilitating adherence of the organism to uroepithelia. S. saprophyticus expresses the surface protein SdrI, a member of the serine-aspartate repeat (SD) protein family, which has multifunctional properties. The SdrI knock out mutant has a reduced hydrophobicity index (HPI) of 25%, and expressed in the non-hydrophobic Staphylococcus carnosus strain TM300 causes hydrophobicity. Using hydrophobic interaction chromatography (HIC), we confined the hydrophobic site of SdrI to the N-terminal repeat region. S. saprophyticus strains carrying different plasmid constructs lacking either the N-terminal repeats, both B or SD-repeats were less hydrophobic than wild type and fully complemented SdrI mutant (HPI: 51%). The surface hydrophobicity and HPI of both wild type and the complemented strain were also influenced by calcium (Ca(2+)) and were reduced from 81.3% and 82.4% to 10.9% and 12.3%, respectively. This study confirms that the SdrI protein of S. saprophyticus is a crucial factor for surface hydrophobicity and also gives a first significant functional description of the N-terminal repeats, which in conjunction with the B-repeats form an optimal hydrophobic conformation.

  3. N-terminal GNBP homology domain of Gram-negative binding protein 3 functions as a beta-1,3-glucan binding motif in Tenebrio molitor.

    Science.gov (United States)

    Lee, Hanna; Kwon, Hyun-Mi; Park, Ji-Won; Kurokawa, Kenji; Lee, Bok Luel

    2009-08-31

    The Toll signalling pathway in invertebrates is responsible for defense against Gram-positive bacteria and fungi, leading to the expression of antimicrobial peptides via NF-kappaB-like transcription factors. Gram-negative binding protein 3 (GNBP3) detects beta-1,3-glucan, a fungal cell wall component, and activates a three step serine protease cascade for activation of the Toll signalling pathway. Here, we showed that the recombinant N-terminal domain of Tenebrio molitor GNBP3 bound to beta-1,3-glucan, but did not activate down-stream serine protease cascade in vitro. Reversely, the N-terminal domain blocked GNBP3-mediated serine protease cascade activation in vitro and also inhibited beta-1,3-glucan-mediated antimicrobial peptide induction in Tenebrio molitor larvae. These results suggest that the N-terminal GNBP homology domain of GNBP3 functions as a beta-1,3-glucan binding domain and the C-terminal domain of GNBP3 may be required for the recruitment of immediate down-stream serine protease zymogen during Toll signalling pathway activation.

  4. Associativity of subclinical thyroid dysfunction with serum NT-pro-brain natriuretic peptide%亚临床甲状腺功能异常与血清NT-pro-BNP水平相关性的研究

    Institute of Scientific and Technical Information of China (English)

    金丹玲; 许艳玲; 刘兆军

    2012-01-01

    目的:研究亚临床甲状腺功能异常患者血浆中NT-pro-BNP浓度的差异.方法:选取2002年至2010年亚临床甲状腺功能异常住院患者122例,年龄23~ 82岁.其中男性54例,女性68例.根据血清TSH水平分为:A组,亚临床甲减1组(TSH4.5~9.9 mU·L-1,n=26);B组,亚临床甲减2组(TSH≥10 mU·L-1,n =30);C组,亚临床甲亢1组(TSH 0.1 ~0.44 mU·L-1,n=24);D组,亚临床甲亢2组(TSH<0.1 mU·L-1,n =21);E组,甲状腺功能正常组(TSH 0.45 ~4.5 mU·L-1,n=21).测定每组患者血清NT-pro-BNP浓度.结果:D组血清NT-pro-BNP浓度较E组增高(95% CI:57.8477~ 168.5159,P<0.05),较C组显著增高(95% CI:11.5080~ 138.5656,P<0.05).A组和B组血清NT-pro-BNP浓度较E组无明显差异(P>0.05).受试者体质量指数、空腹血糖水平、左室质量指数与血浆NT-pro-BNP浓度没有相关性.结论:亚临床甲亢患者TSH <0.1 mU·L-1时,心力衰竭的发生风险明显增加.%Objective: To evaluate the serum NT- pro- brain natriuretic peptide ( NT- pro- BNP) in different subgroup of the subclinical thyroid dysfunction. Methods: 122 patients to be in hospital in the department of endocrinology and cardiology from the year 2002 to 2010, who, on the basis of plasma levels of TSH, were divided into subclinical hypothyroidism 1 group (TSH 4. 5-9. 9 mU·L-1 ,n =26) , subclinical hypothyroidism 2 group (TSH ≥ 10 mU · L-1, n = 30 ) , subclinical hyperthyroidism 1 group ( TSH 2s 0. 1 , < 0. 45 mU · L -1 , n = 24 ) , subclinical hyperthyroidism 2 group ( TSH < 0. 1 mU·L-1,n =21) , control subjects with normal thyroid profile TSH (0.45-4.5 mU·L-1 ,n =21) , to evaluate the serum NT-pro-BNP. Results: Compared to control subjects, subclinical hyperthyroidism were characterized by higher serum NT- pro- BNP, this increase was particularly pronounced in subclinical hyperthyroidism 2 ( TSH < 0. 1 mU · L -1 ) compared to subelinical hyperthyroidism 1 ( TSH ≥ 0. 1 , <0. 45 mU·L-1), serum NT-pro-BNP did not

  5. Structure of the recombinant N-terminal lobe of human lactoferrin at 2.0 A resolution.

    Science.gov (United States)

    Day, C L; Anderson, B F; Tweedie, J W; Baker, E N

    1993-08-20

    The three-dimensional structure of the N-terminal half-molecule of human lactoferrin, LfN, prepared by recombinant DNA methods, has been determined by X-ray crystallography at 2.0 A resolution. The protein is in its iron-bound form and is deglycosylated. X-ray diffraction data were obtained by diffractometry to 3.2 A resolution and synchrotron data collection, using Weissenberg photography with imaging plates, to 1.8 A resolution. The structure was solved by molecular replacement, using the N-lobe of native diferric human lactoferrin (Lf) as search model. Restrained least squares refinement (program TNT) has resulted in a model structure with an R-factor of 0.184 for all data 34,180 (reflections) in the resolution range 8.0 to 2.0 A. The model comprises 2490 protein atoms (residues 4 to 327), 1 Fe3+, 1 CO3(2-) and 180 solvent molecules, all regarded as water. The structure of LfN is essentially the same as that of the N-lobe of intact Lf, being folded into two similar alpha/beta domains, with the Fe3+ and CO3(2-) bound in a specific site in the interdomain cleft. These details are not affected by either deglycosylation or expression in a non-native system. At the C terminus, however, the conformation of residues 321 to 333 is changed. Whereas in Lf residues 321 to 332 form a helix crossing between the domains at the back of the iron site, in LfN residues 321 to 326 have an extended conformation, forming a third interdomain beta-strand, and residues 328 to 333 appear disordered. The conformational change is attributed to the loss of stabilizing interactions from the C-lobe and is mediated by two Gly residues, at positions 321 and 323. It is further proposed that the conformational change is responsible for the more facile iron release properties of LfN, by its effect on the hinge mechanism and increased solvent exposure of residues near the back of the iron site. Other details of the polypeptide chain conformation and the binding site have also been analysed. Two

  6. c-Jun N-terminal kinase is required for thermotherapy-induced apoptosis in human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Feng Xiao; Bin Liu; Qing-Xian Zhu

    2012-01-01

    AIM:To investigate the role of c-Jun N-terminal kinase (JNK) in thermotherapy-induced apoptosis in human gastric cancer SGC-7901 cells.METHODS:Human gastric cancer SGC-7901 cells were cultured in vitro.Following thermotherapy at 43 ℃ for 0,0.5,1,2 or 3 h,the cells were cultured for a further 24 h with or without the JNK specific inhibitor,SP600125 for 2 h.Apoptosis was evaluated by immunohistochemistry [terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)] and flow cytometry (Annexin vs propidium iodide).Cell proliferation was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.The production of p-JNK,Bcl-2,Bax and caspase-3 proteins was evaluated by Western blotting.The expression of JNK at mRNA level was determined by reverse transcription polymerase chain reaction.RESULTS:The Proliferation of gastric carcinoma SGC-7901 cells was significantly inhibited following thermotherapy,and was 32.7%,30.6%,43.8% and 52.9% at 0.5,1,2 and 3 h post-thermotherapy,respectively.Flow cytometry analysis revealed an increased population of SGC-7901 cells in G0/G1 phase,but a reduced population in S phase following therrnotherapy for 1 or 2 h,compared to untreated cells (P < 0.05).The increased number of SGC-7901 cells in G0/G1 phase was consistent with induced apoptosis (flow cytometry) following thermotherapy for 0.5,1,2 or 3 h,compared to the untreated group (46.5% ± 0.23%,39.9% ± 0.53%,56.6% ±0.35% and 50.4% ± 0.29% vs 7.3% ± 0.10%,P < 0.01),respectively.This was supported by the TUNEL assay (48.2% ± 0.4%,40.1% ± 0.2%,61.2% ± 0.29% and 52.0% ± 0.42% vs 12.2% ± 0.22%,P < 0.01) respectively.More importantly,the expression of p-JNK protein and JNK mRNA levels were significantly higher at 0.5 h than at 0 h post-treatment (P < 0.01),and peaked at 2 h.A similar pattem was detected for Bax and caspase-3 proteins.Bcl-2 increased at 0.5 h,peaked at 1 h,and then decreased

  7. Superficial disposition of the N-terminal region of the surfactant protein SP-C and the absence of specific SP-B-SP-C interactions in phospholipid bilayers

    DEFF Research Database (Denmark)

    Plasencia, I; Cruz, A; Casals, C;

    2001-01-01

    A dansylated form of porcine surfactant-associated protein C (Dns-SP-C), bearing a single dansyl group at its N-terminal end, has been used to characterize the lipid-protein and protein-protein interactions of SP-C reconstituted in phospholipid bilayers, using fluorescence spectroscopy. The fluor......A dansylated form of porcine surfactant-associated protein C (Dns-SP-C), bearing a single dansyl group at its N-terminal end, has been used to characterize the lipid-protein and protein-protein interactions of SP-C reconstituted in phospholipid bilayers, using fluorescence spectroscopy...... of the N-terminal segment of the protein into less polar environments that originate during protein lateral segregation. This suggests that conformation and interactions of the N-terminal segment of SP-C could be important in regulating the lateral distribution of the protein in surfactant bilayers...

  8. The N-Terminal Peptides of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion Channel Have Different Helical Propensities.

    Science.gov (United States)

    Guardiani, Carlo; Scorciapino, Mariano Andrea; Amodeo, Giuseppe Federico; Grdadolnik, Joze; Pappalardo, Giuseppe; De Pinto, Vito; Ceccarelli, Matteo; Casu, Mariano

    2015-09-15

    The voltage-dependent anion channel (VDAC) is the main mitochondrial porin allowing the exchange of ions and metabolites between the cytosol and the mitochondrion. In addition, VDAC was found to actively interact with proteins playing a fundamental role in the regulation of apoptosis and being of central interest in cancer research. VDAC is a large transmembrane β-barrel channel, whose N-terminal helical fragment adheres to the channel interior, partially closing the pore. This fragment is considered to play a key role in protein stability and function as well as in the interaction with apoptosis-related proteins. Three VDAC isoforms are differently expressed in higher eukaryotes, for which distinct and complementary roles are proposed. In this work, the folding propensity of their N-terminal fragments has been compared. By using multiple spectroscopic techniques, and complementing the experimental results with theoretical computer-assisted approaches, we have characterized their conformational equilibrium. Significant differences were found in the intrinsic helical propensity of the three peptides, decreasing in the following order: hVDAC2 > hVDAC3 > hVDAC1. In light of the models proposed in the literature to explain voltage gating, selectivity, and permeability, as well as interactions with functionally related proteins, our results suggest that the different chemicophysical properties of the N-terminal domain are possibly correlated to different functions for the three isoforms. The overall emerging picture is that a similar transmembrane water accessible conduit has been equipped with not identical domains, whose differences can modulate the functional roles of the three VDAC isoforms.

  9. Immunization with the DNA-encoding N-terminal domain of proteophosphoglycan of Leishmania donovani generates Th1-type immunoprotective response against experimental visceral leishmaniasis.

    Science.gov (United States)

    Samant, Mukesh; Gupta, Reema; Kumari, Shraddha; Misra, Pragya; Khare, Prashant; Kushawaha, Pramod Kumar; Sahasrabuddhe, Amogh Anant; Dube, Anuradha

    2009-07-01

    Leishmania produce several types of mucin-like glycoproteins called proteophosphoglycans (PPGs) which exist as secretory as well as surface-bound forms in both promastigotes and amastigotes. The structure and function of PPGs have been reported to be species and stage specific as in the case of Leishmania major and Leishmania mexicana; there has been no such information available for Leishmania donovani. We have recently demonstrated that PPG is differentially expressed in sodium stibogluconate-sensitive and -resistant clinical isolates of L. donovani. To further elucidate the structure and function of the ppg gene of L. donovani, a partial sequence of its N-terminal domain of 1.6 kb containing the majority of antigenic determinants, was successfully cloned and expressed in prokaryotic as well as mammalian cells. We further evaluated the DNA-encoding N-terminal domain of the ppg gene as a vaccine in golden hamsters (Mesocricetus auratus) against the L. donovani challenge. The prophylactic efficacy to the tune of approximately 80% was observed in vaccinated hamsters and all of them could survive beyond 6 mo after challenge. The efficacy was supported by a surge in inducible NO synthase, IFN-gamma, TNF-alpha, and IL-12 mRNA levels along with extreme down-regulation of TGF-beta, IL-4, and IL-10. A rise in the level of Leishmania-specific IgG2 was also observed which was indicative of enhanced cellular immune response. The results suggest the N-terminal domain of L. donovani ppg as a potential DNA vaccine against visceral leishmaniasis.

  10. The N-terminal domain of the thermo-regulated surface protein PrpA of Enterococcus faecium binds to fibrinogen, fibronectin and platelets.

    Science.gov (United States)

    Guzmán Prieto, Ana M; Urbanus, Rolf T; Zhang, Xinglin; Bierschenk, Damien; Koekman, C Arnold; van Luit-Asbroek, Miranda; Ouwerkerk, Janneke P; Pape, Marieke; Paganelli, Fernanda L; Wobser, Dominique; Huebner, Johannes; Hendrickx, Antoni P A; Bonten, Marc J M; Willems, Rob J L; van Schaik, Willem

    2015-12-17

    Enterococcus faecium is a commensal of the mammalian gastrointestinal tract, but is also found in non-enteric environments where it can grow between 10 °C and 45 °C. E. faecium has recently emerged as a multi-drug resistant nosocomial pathogen. We hypothesized that genes involved in the colonization and infection of mammals exhibit temperature-regulated expression control and we therefore performed a transcriptome analysis of the clinical isolate E. faecium E1162, during mid-exponential growth at 25 °C and 37 °C. One of the genes that exhibited differential expression between 25 °C and 37 °C, was predicted to encode a peptidoglycan-anchored surface protein. The N-terminal domain of this protein is unique to E. faecium and closely related enterococci, while the C-terminal domain is homologous to the Streptococcus agalactiae surface protein BibA. This region of the protein contains proline-rich repeats, leading us to name the protein PrpA for proline-rich protein A. We found that PrpA is a surface-exposed protein which is most abundant during exponential growth at 37 °C in E. faecium E1162. The heterologously expressed and purified N-terminal domain of PrpA was able to bind to the extracellular matrix proteins fibrinogen and fibronectin. In addition, the N-terminal domain of PrpA interacted with both non-activated and activated platelets.

  11. Phosphorylation and the N-terminal extension of the regulatory light chain help orient and align the myosin heads in Drosophila flight muscle

    Energy Technology Data Exchange (ETDEWEB)

    Farman, Gerrie P.; Miller, Mark S.; Reedy, Mary C.; Soto-Adames, Felipe N.; Vigoreaux, Jim O.; Maughan, David W.; Irving, Thomas C.; (IIT); (Vermont); (Duke)

    2010-02-02

    X-ray diffraction of the indirect flight muscle (IFM) in living Drosophila at rest and electron microscopy of intact and glycerinated IFM was used to compare the effects of mutations in the regulatory light chain (RLC) on sarcomeric structure. Truncation of the RLC N-terminal extension (Dmlc2{sup {Delta}2-46}) or disruption of the phosphorylation sites by substituting alanines (Dmlc2{sup S66A, S67A}) decreased the equatorial intensity ratio (I{sub 20}/I{sub 10}), indicating decreased myosin mass associated with the thin filaments. Phosphorylation site disruption (Dmlc2{sup S66A, S67A}), but not N-terminal extension truncation (Dmlc2{sup {Delta}2-46}), decreased the 14.5 nm reflection intensity, indicating a spread of the axial distribution of the myosin heads. The arrangement of thick filaments and myosin heads in electron micrographs of the phosphorylation mutant (Dmlc2{sup S66A, S67A}) appeared normal in the relaxed and rigor states, but when calcium activated, fewer myosin heads formed cross-bridges. In transgenic flies with both alterations to the RLC (Dmlc2{sup {Delta}2-46; S66A, S67A}), the effects of the dual mutation were additive. The results suggest that the RLC N-terminal extension serves as a 'tether' to help pre-position the myosin heads for attachment to actin, while phosphorylation of the RLC promotes head orientations that allow optimal interactions with the thin filament.

  12. Crystal structure of the N-terminal anticodon-binding domain of the nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori.

    Science.gov (United States)

    Songsiriritthigul, Chomphunuch; Suebka, Suwimon; Chen, Chun Jung; Fuengfuloy, Pitchayada; Chuawong, Pitak

    2017-02-01

    The N-terminal anticodon-binding domain of the nondiscriminating aspartyl-tRNA synthetase (ND-AspRS) plays a crucial role in the recognition of both tRNA(Asp) and tRNA(Asn). Here, the first X-ray crystal structure of the N-terminal domain of this enzyme (ND-AspRS1-104) from the human-pathogenic bacterium Helicobacter pylori is reported at 2.0 Å resolution. The apo form of H. pylori ND-AspRS1-104 shares high structural similarity with the N-terminal anticodon-binding domains of the discriminating aspartyl-tRNA synthetase (D-AspRS) from Escherichia coli and ND-AspRS from Pseudomonas aeruginosa, allowing recognition elements to be proposed for tRNA(Asp) and tRNA(Asn). It is proposed that a long loop (Arg77-Lys90) in this H. pylori domain influences its relaxed tRNA specificity, such that it is classified as nondiscriminating. A structural comparison between D-AspRS from E. coli and ND-AspRS from P. aeruginosa suggests that turns E and F (78GAGL81 and 83NPKL86) in H. pylori ND-AspRS play a crucial role in anticodon recognition. Accordingly, the conserved Pro84 in turn F facilitates the recognition of the anticodons of tRNA(Asp) ((34)GUC(36)) and tRNA(Asn) ((34)GUU(36)). The absence of the amide H atom allows both C and U bases to be accommodated in the tRNA-recognition site.

  13. Molecular determinants of interactions between the N-terminal domain and the transmembrane core that modulate hERG K+ channel gating.

    Directory of Open Access Journals (Sweden)

    Jorge Fernández-Trillo

    Full Text Available A conserved eag domain in the cytoplasmic amino terminus of the human ether-a-go-go-related gene (hERG potassium channel is critical for its slow deactivation gating. Introduction of gene fragments encoding the eag domain are able to restore normal deactivation properties of channels from which most of the amino terminus has been deleted, and also those lacking exclusively the eag domain or carrying a single point mutation in the initial residues of the N-terminus. Deactivation slowing in the presence of the recombinant domain is not observed with channels carrying a specific Y542C point mutation in the S4-S5 linker. On the other hand, mutations in some initial positions of the recombinant fragment also impair its ability to restore normal deactivation. Fluorescence resonance energy transfer (FRET analysis of fluorophore-tagged proteins under total internal reflection fluorescence (TIRF conditions revealed a substantial level of FRET between the introduced N-terminal eag fragments and the eag domain-deleted channels expressed at the membrane, but not between the recombinant eag domain and full-length channels with an intact amino terminus. The FRET signals were also minimized when the recombinant eag fragments carried single point mutations in the initial portion of their amino end, and when Y542C mutated channels were used. These data suggest that the restoration of normal deactivation gating by the N-terminal recombinant eag fragment is an intrinsic effect of this domain directed by the interaction of its N-terminal segment with the gating machinery, likely at the level of the S4-S5 linker.

  14. The N-Terminal Propeptide of Vibrio vulnificus Extracellular Metalloprotease Is both an Inhibitor of and a Substrate for the Enzyme▿

    OpenAIRE

    2007-01-01

    Vibrio vulnificus, a marine bacterium capable of causing wound infection and septicemia, secretes a 45-kDa metalloprotease (vEP) with many biological activities. The precursor of vEP consists of four regions: a signal peptide, an N-terminal propeptide (nPP), a C-terminal propeptide, and the mature protease. Two forms of vEP—vEP-45, which contains the mature protease plus the C-terminal propeptide, and vEP-34, which contains only the mature protease—were expressed in Escherichia coli and purif...

  15. Quantification of the N-terminal propeptide of human procollagen type I (PINP): comparison of ELISA and RIA with respect to different molecular forms

    DEFF Research Database (Denmark)

    Jensen, Charlotte Harken; Hansen, M; Brandt, J

    1998-01-01

    This paper compares the results of procollagen type I N-terminal propeptide (PINP) quantification by radioimmunoassay (RIA) and enzyme linked immunosorbent assay (ELISA). PINP in serum from a patient with uremic hyperparathyroidism was measured in RIA and ELISA to 20 micrograms l-1 and 116...... micrograms l-1 and the corresponding concentrations in dialysis fluid were 94.5 micrograms l-1 and 140 micrograms l-1, respectively. PINP antigen appears in two distinct peaks following size chromatography and the two peak fractions display immunological identity and identical M(r)'s (27 kDa: SDS...

  16. The crystal structure of Z-Aib-Gly-Aib-Leu-Aib-OtBu, the synthetic, protected N-terminal pentapeptide of trichotoxin.

    Science.gov (United States)

    Gessmann, R; Brueckner, H; Kokkinidis, M

    1991-01-01

    Z-Aib-Gly-Aib-Leu-Aib-OtBu, the alpha-aminoisobutyric acid (Aib)-containing N-terminal pentapeptide of the antibiotic trichotoxin, has been studied by x-ray crystallography. The molecule forms a right-handed helix with a reversal of the sense of the helix at the C-terminus. Torsion angles and hydrogen bonding pattern are consistent with a mixed 3(10)-/alpha-helical conformation. In the crystal, continuous columns are formed by head-to-tail arrangement of hydrogen-bonded molecules along the helix axis. The helical columns associate via hydrogen bonds forming closely packed parallel pairs.

  17. Function and Subunit Interactions of the N-terminal Domain of Subunit a (Vph1p) of the Yeast V-ATPase*

    OpenAIRE

    Qi, Jie; Forgac, Michael

    2008-01-01

    The vacuolar (H+)-ATPases (V-ATPases) are ATP-dependent proton pumps that operate by a rotary mechanism in which ATP hydrolysis drives rotation of a ring of proteolipid subunits relative to subunit a within the integral V0 domain. In vivo dissociation of the V-ATPase (an important regulatory mechanism) generates a V0 domain that does not passively conduct protons. EM analysis indicates that the N-terminal domain of subunit a approaches the rotary subunits in free V0, ...

  18. Structural characterization of the N-terminal mineral modification domains from the molluscan crystal-modulating biomineralization proteins, AP7 and AP24.

    Science.gov (United States)

    Wustman, Brandon A; Morse, Daniel E; Evans, John Spencer

    2004-08-05

    The AP7 and AP24 proteins represent a class of mineral-interaction polypeptides that are found in the aragonite-containing nacre layer of mollusk shell (H. rufescens). These proteins have been shown to preferentially interfere with calcium carbonate mineral growth in vitro. It is believed that both proteins play an important role in aragonite polymorph selection in the mollusk shell. Previously, we demonstrated the 1-30 amino acid (AA) N-terminal sequences of AP7 and AP24 represent mineral interaction/modification domains in both proteins, as evidenced by their ability to frustrate calcium carbonate crystal growth at step edge regions. In this present report, using free N-terminal, C(alpha)-amide "capped" synthetic polypeptides representing the 1-30 AA regions of AP7 (AP7-1 polypeptide) and AP24 (AP24-1 polypeptide) and NMR spectroscopy, we confirm that both N-terminal sequences possess putative Ca (II) interaction polyanionic sequence regions (2 x -DD- in AP7-1, -DDDED- in AP24-1) that are random coil-like in structure. However, with regard to the remaining sequences regions, each polypeptide features unique structural differences. AP7-1 possesses an extended beta-strand or polyproline type II-like structure within the A11-M10, S12-V13, and S28-I27 sequence regions, with the remaining sequence regions adopting a random-coil-like structure, a trait common to other polyelectrolyte mineral-associated polypeptide sequences. Conversely, AP24-1 possesses random coil-like structure within A1-S9 and Q14-N16 sequence regions, and evidence for turn-like, bend, or loop conformation within the G10-N13, Q17-N24, and M29-F30 sequence regions, similar to the structures identified within the putative elastomeric proteins Lustrin A and sea urchin spicule matrix proteins. The similarities and differences in AP7 and AP24 N-terminal domain structure are discussed with regard to joint AP7-AP24 protein modification of calcium carbonate growth.

  19. Detection and functional characterization of a 215 amino acid N-terminal extension in the Xanthomonas type III effector XopD.

    Science.gov (United States)

    Canonne, Joanne; Marino, Daniel; Noël, Laurent D; Arechaga, Ignacio; Pichereaux, Carole; Rossignol, Michel; Roby, Dominique; Rivas, Susana

    2010-12-22

    During evolution, pathogens have developed a variety of strategies to suppress plant-triggered immunity and promote successful infection. In Gram-negative phytopathogenic bacteria, the so-called type III protein secretion system works as a molecular syringe to inject type III effectors (T3Es) into plant cells. The XopD T3E from the strain 85-10 of Xanthomonas campestris pathovar vesicatoria (Xcv) delays the onset of symptom development and alters basal defence responses to promote pathogen growth in infected tomato leaves. XopD was previously described as a modular protein that contains (i) an N-terminal DNA-binding domain (DBD), (ii) two tandemly repeated EAR (ERF-associated amphiphillic repression) motifs involved in transcriptional repression, and (iii) a C-terminal cysteine protease domain, involved in release of SUMO (small ubiquitin-like modifier) from SUMO-modified proteins. Here, we show that the XopD protein that is produced and secreted by Xcv presents an additional N-terminal extension of 215 amino acids. Closer analysis of this newly identified N-terminal domain shows a low complexity region rich in lysine, alanine and glutamic acid residues (KAE-rich) with high propensity to form coiled-coil structures that confers to XopD the ability to form dimers when expressed in E. coli. The full length XopD protein identified in this study (XopD(1-760)) displays stronger repression of the XopD plant target promoter PR1, as compared to the XopD version annotated in the public databases (XopD(216-760)). Furthermore, the N-terminal extension of XopD, which is absent in XopD(216-760), is essential for XopD type III-dependent secretion and, therefore, for complementation of an Xcv mutant strain deleted from XopD in its ability to delay symptom development in tomato susceptible cultivars. The identification of the complete sequence of XopD opens new perspectives for future studies on the XopD protein and its virulence-associated functions in planta.

  20. Left-handed helical preference in an achiral peptide chain is induced by an L-amino acid in an N-terminal type II β-turn.

    Science.gov (United States)

    De Poli, Matteo; De Zotti, Marta; Raftery, James; Aguilar, Juan A; Morris, Gareth A; Clayden, Jonathan

    2013-03-15

    Oligomers of the achiral amino acid Aib adopt helical conformations in which the screw-sense may be controlled by a single N-terminal residue. Using crystallographic and NMR techniques, we show that the left- or right-handed sense of helical induction arises from the nature of the β-turn at the N terminus: the tertiary amino acid L-Val induces a left-handed type II β-turn in both the solid state and in solution, while the corresponding quaternary amino acid L-α-methylvaline induces a right-handed type III β-turn.

  1. Functional roles of the non-catalytic calcium-binding sites in the N-terminal domain of human peptidylarginine deiminase 4.

    Science.gov (United States)

    Liu, Yi-Liang; Tsai, I-Chen; Chang, Chia-Wei; Liao, Ya-Fan; Liu, Guang-Yaw; Hung, Hui-Chih

    2013-01-01

    This study investigated the functional roles of the N-terminal Ca(2+) ion-binding sites, in terms of enzyme catalysis and stability, of peptidylarginine deiminase 4 (PAD4). Amino acid residues located in the N-terminal Ca(2+)-binding site of PAD4 were mutated to disrupt the binding of Ca(2+) ions. Kinetic data suggest that Asp155, Asp157 and Asp179, which directly coordinate Ca3 and Ca4, are essential for catalysis in PAD4. For D155A, D157A and D179A, the k(cat)/K(m,BAEE) values were 0.02, 0.63 and 0.01 s(-1)mM(-1) (20.8 s(-1)mM(-1) for WT), respectively. Asn153 and Asp176 are directly coordinated with Ca3 and indirectly coordinated with Ca5 via a water molecule. However, N153A displayed low enzymatic activity with a k(cat) value of 0.3 s(-1) (13.3 s(-1) for wild-type), whereas D176A retained some catalytic power with a k(cat) of 9.7 s(-1). Asp168 is the direct ligand for Ca5, and Ca5 coordination by Glu252 is mediated by two water molecules. However, mutation of these two residues to Ala did not cause a reduction in the k(cat)/K(m,BAEE) values, which indicates that the binding of Ca5 may not be required for PAD4 enzymatic activity. The possible conformational changes of these PAD4 mutants were examined. Thermal stability analysis of the PAD4 mutants in the absence or presence of Ca(2+) indicated that the conformational stability of the enzyme is highly dependent on Ca(2+) ions. In addition, the results of urea-induced denaturation for the N153, D155, D157 and D179 series mutants further suggest that the binding of Ca(2+) ions in the N-terminal Ca(2+)-binding site stabilizes the overall conformational stability of PAD4. Therefore, our data strongly suggest that the N-terminal Ca(2+) ions play critical roles in the full activation of the PAD4 enzyme.

  2. Functional roles of the non-catalytic calcium-binding sites in the N-terminal domain of human peptidylarginine deiminase 4.

    Directory of Open Access Journals (Sweden)

    Yi-Liang Liu

    Full Text Available This study investigated the functional roles of the N-terminal Ca(2+ ion-binding sites, in terms of enzyme catalysis and stability, of peptidylarginine deiminase 4 (PAD4. Amino acid residues located in the N-terminal Ca(2+-binding site of PAD4 were mutated to disrupt the binding of Ca(2+ ions. Kinetic data suggest that Asp155, Asp157 and Asp179, which directly coordinate Ca3 and Ca4, are essential for catalysis in PAD4. For D155A, D157A and D179A, the k(cat/K(m,BAEE values were 0.02, 0.63 and 0.01 s(-1mM(-1 (20.8 s(-1mM(-1 for WT, respectively. Asn153 and Asp176 are directly coordinated with Ca3 and indirectly coordinated with Ca5 via a water molecule. However, N153A displayed low enzymatic activity with a k(cat value of 0.3 s(-1 (13.3 s(-1 for wild-type, whereas D176A retained some catalytic power with a k(cat of 9.7 s(-1. Asp168 is the direct ligand for Ca5, and Ca5 coordination by Glu252 is mediated by two water molecules. However, mutation of these two residues to Ala did not cause a reduction in the k(cat/K(m,BAEE values, which indicates that the binding of Ca5 may not be required for PAD4 enzymatic activity. The possible conformational changes of these PAD4 mutants were examined. Thermal stability analysis of the PAD4 mutants in the absence or presence of Ca(2+ indicated that the conformational stability of the enzyme is highly dependent on Ca(2+ ions. In addition, the results of urea-induced denaturation for the N153, D155, D157 and D179 series mutants further suggest that the binding of Ca(2+ ions in the N-terminal Ca(2+-binding site stabilizes the overall conformational stability of PAD4. Therefore, our data strongly suggest that the N-terminal Ca(2+ ions play critical roles in the full activation of the PAD4 enzyme.

  3. Cationic liposomes enhance targeted delivery and expression of exogenous DNA mediated by N-terminal modified poly(L-lysine)-antibody conjugate in mouse lung endothelial cells.

    Science.gov (United States)

    Trubetskoy, V S; Torchilin, V P; Kennel, S; Huang, L

    1992-07-15

    A new and improved system for targeted gene delivery and expression is described. Transfection efficiency of N-terminal modified poly(L-lysine) (NPLL) conjugated with anti-thrombomodulin antibody 34A can be improved by adding to the system a lipophilic component, cationic liposomes. DNA, antibody conjugate and cationic liposomes form a ternary electrostatic complex which preserves the ability to bind specifically to the target cells. At the same time the addition of liposomes enhance the specific transfection efficiency of antibody-polylysine/DNA binary complex by 10 to 20-fold in mouse lung endothelial cells in culture.

  4. Use of N-terminal modified poly(L-lysine)-antibody conjugate as a carrier for targeted gene delivery in mouse lung endothelial cells.

    Science.gov (United States)

    Trubetskoy, V S; Torchilin, V P; Kennel, S J; Huang, L

    1992-01-01

    A DNA targeted delivery and expression system has been designed based on an N-terminal modified poly(L-lysine) (NPLL)-antibody conjugate, which readily forms a complex with plasmid DNA. Monoclonal antibodies against the cell-surface thrombomodulin conjugated with NPLL were used for targeted delivery of foreign plasmid DNA to an antigen-expressing mouse lung endothelial cell line in vitro and to mouse lungs in vivo. In both cases significant amounts of DNA can be specifically bound to the target cells or tissues. Specific gene expression was observed in the treated mouse lung endothelial cells.

  5. Functional dissection of the N-terminal sequence of Clostridium sp. G0005 glucoamylase: identification of components critical for folding the catalytic domain and for constructing the active site structure.

    Science.gov (United States)

    Sakaguchi, Masayoshi; Matsushima, Yudai; Nagamine, Yusuke; Matsuhashi, Tomoki; Honda, Shotaro; Okuda, Shoi; Ohno, Misa; Sugahara, Yasusato; Shin, Yongchol; Oyama, Fumitaka; Kawakita, Masao

    2017-03-01

    Clostridium sp. G0005 glucoamylase (CGA) is composed of a β-sandwich domain (BD), a linker, and a catalytic domain (CD). In the present study, CGA was expressed in Escherichia coli as inclusion bodies when the N-terminal region (39 amino acid residues) of the BD was truncated. To further elucidate the role of the N-terminal region of the BD, we constructed N-terminally truncated proteins (Δ19, Δ24, Δ29, and Δ34) and assessed their solubility and activity. Although all evaluated proteins were soluble, their hydrolytic activities toward maltotriose as a substrate varied: Δ19 and Δ24 were almost as active as CGA, but the activity of Δ29 was substantially lower, and Δ34 exhibited little hydrolytic activity. Subsequent truncation analysis of the N-terminal region sequence between residues 25 and 28 revealed that truncation of less than 26 residues did not affect CGA activity, whereas truncation of 26 or more residues resulted in a substantial loss of activity. Based on further site-directed mutagenesis and N-terminal sequence analysis, we concluded that the 26XaaXaaTrp28 sequence of CGA is important in exhibiting CGA activity. These results suggest that the N-terminal region of the BD in bacterial GAs may function not only in folding the protein into the correct structure but also in constructing a competent active site for catalyzing the hydrolytic reaction.

  6. Crystallization and X-ray analysis of the T = 4 particle of hepatitis B capsid protein with an N-terminal extension

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Wen Siang [Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); McNae, Iain W.; Ho, Kok Lian; Walkinshaw, Malcolm D., E-mail: m.walkinshaw@ed.ac.uk [Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR,Scotland (United Kingdom); Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2007-08-01

    Hepatitis B virus capsids have significant potential as carriers for immunogenic peptides. The crystal structure of the T = 4 particle of hepatitis B core protein containing an N-terminal extension reveals that the fusion peptide is exposed on the exterior of the particle. Hepatitis B core (HBc) particles have been extensively exploited as carriers for foreign immunological epitopes in the development of multicomponent vaccines and diagnostic reagents. Crystals of the T = 4 HBc particle were grown in PEG 20 000, ammonium sulfate and various types of alcohols. A temperature jump from 277 or 283 to 290 K was found to enhance crystal growth. A crystal grown using MPD as a cryoprotectant diffracted X-rays to 7.7 Å resolution and data were collected to 99.6% completeness at 8.9 Å. The crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 352.3, b = 465.5, c = 645.0 Å. The electron-density map reveals a protrusion that is consistent with the N-terminus extending out from the surface of the capsid. The structure presented here supports the idea that N-terminal insertions can be exploited in the development of diagnostic reagents, multicomponent vaccines and delivery vehicles into mammalian cells.

  7. Depletion of histone N-terminal-acetyltransferase Naa40 induces p53-independent apoptosis in colorectal cancer cells via the mitochondrial pathway.

    Science.gov (United States)

    Pavlou, Demetria; Kirmizis, Antonis

    2016-03-01

    Protein N-terminal acetylation is an abundant post-translational modification in eukaryotes implicated in various fundamental cellular and biochemical processes. This modification is catalysed by evolutionarily conserved N-terminal acetyltransferases (NATs) whose deregulation has been linked to cancer development and thus, are emerging as useful diagnostic and therapeutic targets. Naa40 is a highly selective NAT that acetylates the amino-termini of histones H4 and H2A and acts as a sensor of cell growth in yeast. In the present study, we examine the role of Naa40 in cancer cell survival. We demonstrate that depletion of Naa40 in HCT116 and HT-29 colorectal cancer cells decreases cell survival by enhancing apoptosis, whereas Naa40 reduction in non-cancerous mouse embryonic fibroblasts has no effect on cell viability. Specifically, Naa40 knockdown in colon cancer cells activates the mitochondrial caspase-9-mediated apoptotic cascade. Consistent with this, we show that caspase-9 activation is required for the induced apoptosis because treatment of cells with an irreversible caspase-9 inhibitor impedes apoptosis when Naa40 is depleted. Furthermore, the effect of Naa40-depletion on cell-death is mediated through a p53-independent mechanism since p53-null HCT116 cells still undergo apoptosis upon reduction of the acetyltransferase. Altogether, these findings reveal an anti-apoptotic role for Naa40 and exhibit its potential as a therapeutic target in colorectal cancers.

  8. Investigating Mutations to Reduce Huntingtin Aggregation by Increasing Htt-N-Terminal Stability and Weakening Interactions with PolyQ Domain

    Science.gov (United States)

    Mazza-Anthony, Cody; Waldispühl, Jérôme

    2016-01-01

    Huntington's disease is a fatal autosomal genetic disorder characterized by an expanded glutamine-coding CAG repeat sequence in the huntingtin (Htt) exon 1 gene. The Htt protein associated with the disease misfolds into toxic oligomers and aggregate fibril structures. Competing models for the misfolding and aggregation phenomena have suggested the role of the Htt-N-terminal region and the CAG trinucleotide repeats (polyQ domain) in affecting aggregation propensities and misfolding. In particular, one model suggests a correlation between structural stability and the emergence of toxic oligomers, whereas a second model proposes that molecular interactions with the extended polyQ domain increase aggregation propensity. In this paper, we computationally explore the potential to reduce Htt aggregation by addressing the aggregation causes outlined in both models. We investigate the mutation landscape of the Htt-N-terminal region and explore amino acid residue mutations that affect its structural stability and hydrophobic interactions with the polyQ domain. Out of the millions of 3-point mutation combinations that we explored, the (L4K E12K K15E) was the most promising mutation combination that addressed aggregation causes in both models. The mutant structure exhibited extreme alpha-helical stability, low amyloidogenicity potential, a hydrophobic residue replacement, and removal of a solvent-inaccessible intermolecular side chain that assists oligomerization. PMID:28096892

  9. NMR solution structure of the N-terminal domain of hERG and its interaction with the S4-S5 linker.

    Science.gov (United States)

    Li, Qingxin; Gayen, Shovanlal; Chen, Angela Shuyi; Huang, Qiwei; Raida, Manfred; Kang, Congbao

    2010-12-03

    The human Ether-à-go-go Related Gene (hERG) potassium channel mediates the rapid delayed rectifier current (IKr) in the cardiac action potential. Mutations in the 135 amino acid residue N-terminal domain (NTD) cause channel dysfunction or mis-translocation. To study the structure of NTD, it was overexpressed and purified from Escherichia coli cells using affinity purification and gel filtration chromatography. The purified protein behaved as a monomer under purification conditions. Far- and near-UV, circular dichroism (CD) and solution nuclear magnetic resonance (NMR) studies showed that the purified protein was well-folded. The solution structure of NTD was obtained and the N-terminal residues 13-23 forming an amphipathic helix which may be important for the protein-protein or protein-membrane interactions. NMR titration experiment also demonstrated that residues from 88 to 94 in NTD are important for the molecular interaction with the peptide derived from the S4-S5 linker.

  10. An N-terminal glycine to cysteine mutation in the collagen COL1A1 gene produces moderately severe osteogenesis imperfecta

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, W.; Scott, L.; Cohn, D. [Cedars-Sinai Medical Center, Los Angeles, CA (United States)

    1994-09-01

    Osteogenesis imperfecta (OI) is usually due to mutations in the type I procollagen genes COL1A1 and COL1A2. Point mutations close to the N-terminus are generally milder than those near the C-terminus of the molecule (the gradient hypothesis of collagen mutations). We describe a patient with moderately severe OI due to a mutation in the N-terminal portion of the triple helical domain of the {alpha}1(I) chain. Electrophoretic analysis of collagen isolated from fibroblast cultures suggested the abnormal presence of a cysteine in the N-terminal portion of the {alpha}1(I) chain. Five overlapping DNA fragments amplified from fibroblast RNA were screened for mutations using single strand conformational polymorphism (SSCP) and heteroduplex analyses. Direct DNA sequence analysis of the single positive fragment demonstrated a G to T transversion, corresponding to a glycine to cysteine substitution at position 226 of the triple helical domain of the {alpha}1(I) chain. The mutation was confirmed by restriction enzyme analysis of amplified genomic DNA. The mutation was not present in fibroblasts from either phenotypically normal parent. Combining this mutation with other reported mutations, glycine to cysteine substitutions at positions 205, 211, 223, and 226 produce a moderately severe phenotype whereas flanking mutations at positions 175 and 382 produce a mild phenotype. This data supports a regional rather than a gradient model of the relationship between the nature and location of type I collagen mutations and OI phenotype.

  11. BtcA, A class IA type III chaperone, interacts with the BteA N-terminal domain through a globular/non-globular mechanism.

    Directory of Open Access Journals (Sweden)

    Chen Guttman

    Full Text Available Bordetella pertussis, the etiological agent of "whooping cough" disease, utilizes the type III secretion system (T3SS to deliver a 69 kDa cytotoxic effector protein, BteA, directly into the host cells. As with other T3SS effectors, prior to its secretion BteA binds BtcA, a 13.9 kDa protein predicted to act as a T3SS class IA chaperone. While this interaction had been characterized for such effector-chaperone pairs in other pathogens, it has yet to be fully investigated in Bordetella. Here we provide the first biochemical proof that BtcA is indeed a class IA chaperone, responsible for the binding of BteA's N-terminal domain. We bring forth extensive evidence that BtcA binds its substrate effector through a dual-interface binding mechanism comprising of non-globular and bi-globular interactions at a moderate micromolar level binding affinity. We demonstrate that the non-globular interactions involve the first 31 N-terminal residues of BteA287 and their removal leads to destabilization of the effector-chaperone complex and lower binding affinities to BtcA. These findings represent an important first step towards a molecular understanding of BteA secretion and cell entry.

  12. Activation of c-Jun N-terminal kinase and apoptosis in endothelial cells mediated by endogenous generation of hydrogen peroxide

    Science.gov (United States)

    Ramachandran, Anup; Moellering, Douglas; Go, Young-Mi; Shiva, Sruti; Levonen, Anna-Liisa; Jo, Hanjoong; Patel, Rakesh P.; Parthasarathy, Sampath; Darley-Usmar, Victor M.

    2002-01-01

    Reactive oxygen species have been implicated in the activation of signal transduction pathways. However, extracellular addition of oxidants such as hydrogen peroxide (H2O2) often requires concentrations that cannot be readily achieved under physiological conditions to activate biological responses such as apoptosis. Explanations for this discrepancy have included increased metabolism of H2O2 in the extracellular environment and compartmentalization within the cell. We have addressed this issue experimentally by examining the induction of apoptosis of endothelial cells induced by exogenous addition of H2O2 and by a redox cycling agent, 2,3-dimethoxy-1,4-naphthoquinone, that generates H2O2 in cells. Here we show that low nanomolar steady-state concentrations (0.1-0.5 nmol x min(-1) x 10(6) cells) of H2O2 generated intracellularly activate c-Jun N terminal kinase and initiate apoptosis in endothelial cells. A comparison with bolus hydrogen peroxide suggests that the low rate of intracellular formation of this reactive oxygen species results in a similar profile of activation for both c-Jun N terminal kinase and the initiation of apoptosis. However, a detailed analysis reveals important differences in both the duration and profile for activation of these signaling pathways.

  13. Specific amplification of gene encoding N-terminal region of catalase-peroxidase protein (KatG-N) for diagnosis of disseminated MAC disease in HIV patients.

    Science.gov (United States)

    Latawa, Romica; Singh, Krishna Kumar; Wanchu, Ajay; Sethi, Sunil; Sharma, Kusum; Sharma, Aman; Laal, Suman; Verma, Indu

    2014-10-01

    Disseminated Mycobacterium avium-intracellulare complex (MAC) infection is considered as severe complication of advanced HIV/AIDS disease. Currently available various laboratory investigations have not only limited ability to discriminate between MAC infection and tuberculosis but are also laborious and time consuming. The aim of this study was, therefore, to design a molecular-based strategy for specific detection of MAC and its differentiation from Mycobacterium tuberculosis (M. tb) isolated from the blood specimens of HIV patients. A simple PCR was developed based on the amplification of 120-bp katG-N gene corresponding to the first 40 amino acids of N-terminal catalase-peroxidase (KatG) protein of Mycobacterium avium that shows only ~13% sequence homology by clustal W alignment to N-terminal region of M. tb KatG protein. This assay allowed the accurate and rapid detection of MAC bacteremia, distinguishing it from M. tb in a single PCR reaction without any need for sequencing or hybridization protocol to be performed thereafter. This study produced enough evidence that a significant proportion of Indian HIV patients have disseminated MAC bacteremia, suggesting the utility of M. avium katG-N gene PCR for early detection of MAC disease in HIV patients.

  14. N-terminal aliphatic residues dictate the structure, stability, assembly, and small molecule binding of the coiled-coil region of cartilage oligomeric matrix protein.

    Science.gov (United States)

    Gunasekar, Susheel K; Asnani, Mukta; Limbad, Chandani; Haghpanah, Jennifer S; Hom, Wendy; Barra, Hanna; Nanda, Soumya; Lu, Min; Montclare, Jin Kim

    2009-09-15

    The coiled-coil domain of cartilage oligomeric matrix protein (COMPcc) assembles into a homopentamer that naturally recognizes the small molecule 1,25-dihydroxyvitamin D(3) (vit D). To identify the residues critical for the structure, stability, oligomerization, and binding to vit D as well as two other small molecules, all-trans-retinol (ATR) and curcumin (CCM), here we perform an alanine scanning mutagenesis study. Ten residues lining the hydrophobic pocket of COMPcc were mutated into alanine; of the mutated residues, the N-terminal aliphatic residues L37, L44, V47, and L51 are responsible for maintaining the structure and function. Furthermore, two polar residues, T40 and Q54, within the N-terminal region when converted into alanine improve the alpha-helical structure, stability, and self-assembly behavior. Helical stability, oligomerization, and binding appear to be linked in a manner in which mutations that abolish helical structure and assembly bind poorly to vit D, ATR, and CCM. These results provide not only insight into COMPcc and its functional role but also useful guidelines for the design of stable, pentameric coiled-coils capable of selectively storing and delivering various small molecules.

  15. The influenza fusion peptide promotes lipid polar head intrusion through hydrogen bonding with phosphates and N-terminal membrane insertion depth.

    Science.gov (United States)

    Légaré, Sébastien; Lagüe, Patrick

    2014-09-01

    Influenza infection requires fusion between the virus envelope and a host cell endosomal membrane. The influenza hemagglutinin fusion peptide (FP) is essential to viral membrane fusion. It was recently proposed that FPs would fuse membranes by increasing lipid tail protrusion, a membrane fusion transition state. The details of how FPs induce lipid tail protrusion, however, remain to be elucidated. To decipher the molecular mechanism by which FPs promote lipid tail protrusion, we performed molecular dynamics simulations of the wild-type (WT) FP, fusogenic mutant F9A, and nonfusogenic mutant W14A in model bilayers. This article presents the peptide-lipid interaction responsible for lipid tail protrusion and a related lipid perturbation, polar head intrusion, where polar heads are sunk under the membrane surface. The backbone amides from the four N-terminal peptide residues, deeply inserted in the membrane, promoted both perturbations through H bonding with lipid phosphates. Polar head intrusion correlated with peptides N-terminal insertion depth and activity: the N-termini of WT and F9A were inserted deeper into the membrane than nonfusogenic W14A. Based on these results, we propose that FP-induced polar head intrusion would complement lipid tail protrusion in catalyzing membrane fusion by reducing repulsions between juxtaposed membranes headgroups. The presented model provides a framework for further research on membrane fusion and influenza antivirals.

  16. The N-terminal fragment of Acanthamoeba polyphaga mimivirus tyrosyl-tRNA synthetase (TyrRS(apm)) is a monomer in solution.

    Science.gov (United States)

    Choudhury, Aparajita; Banerjee, Rajat

    2013-03-18

    Acanthamoeba polyphaga mimivirus tyrosyl-tRNA synthetase (TyrRSapm) was the first reported aminoacyl-tRNA synthetase of viral origin. The previous crystal structure of TyrRSapm showed a non-canonical orientation of the dimer conformation and the CP1 domain, responsible for dimer formation, displays a major modification of a motif structurally conserved in other TyrRS structures. An earlier study reported that Bacillus stearothermophilus N-terminal TyrRS exists as a dimer under native conditions. N-terminal TyrRSapm (ΔTyrRSapm, 1-234 aa) was constructed to remove the C-terminal anticodon-binding domain. Here we show by Ferguson plot analysis and analytical ultracentrifugation that ΔTyrRSapm exists as a monomer and contains a disulfide-bridge. The ΔTyrRSapm loses the ability to bind tRNA(Tyr), however it remains active in pyrophosphate exchange with similar ligand dissociation constants as the full-length enzyme.

  17. Pushing the limits of sulfur SAD phasing: de novo structure solution of the N-terminal domain of the ectodomain of HCV E1

    Energy Technology Data Exchange (ETDEWEB)

    El Omari, Kamel; Iourin, Oleg; Kadlec, Jan [University of Oxford, Oxford OX3 7BN (United Kingdom); Fearn, Richard; Hall, David R. [Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Harlos, Karl [University of Oxford, Oxford OX3 7BN (United Kingdom); Grimes, Jonathan M.; Stuart, David I., E-mail: dave@strubi.ox.ac.uk [University of Oxford, Oxford OX3 7BN (United Kingdom); Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2014-08-01

    The sulfur SAD phasing method was successfully used to determine the structure of the N-terminal domain of HCV E1 from low-resolution diffracting crystals by combining data from 32 crystals. Single-wavelength anomalous dispersion of S atoms (S-SAD) is an elegant phasing method to determine crystal structures that does not require heavy-atom incorporation or selenomethionine derivatization. Nevertheless, this technique has been limited by the paucity of the signal at the usual X-ray wavelengths, requiring very accurate measurement of the anomalous differences. Here, the data collection and structure solution of the N-terminal domain of the ectodomain of HCV E1 from crystals that diffracted very weakly is reported. By combining the data from 32 crystals, it was possible to solve the sulfur substructure and calculate initial maps at 7 Å resolution, and after density modication and phase extension using a higher resolution native data set to 3.5 Å resolution model building was achievable.

  18. Structural analysis of the starfish SALMFamide neuropeptides S1 and S2: the N-terminal region of S2 facilitates self-association.

    Science.gov (United States)

    Otara, Claire B; Jones, Christopher E; Younan, Nadine D; Viles, John H; Elphick, Maurice R

    2014-02-01

    The neuropeptides S1 (GFNSALMFamide) and S2 (SGPYSFNSGLTFamide), which share sequence similarity, were discovered in the starfish Asterias rubens and are prototypical members of the SALMFamide family of neuropeptides in echinoderms. SALMFamide neuropeptides act as muscle relaxants and both S1 and S2 cause relaxation of cardiac stomach and tube foot preparations in vitro but S2 is an order of magnitude more potent than S1. Here we investigated a structural basis for this difference in potency using spectroscopic techniques. Circular dichroism spectroscopy showed that S1 does not have a defined structure in aqueous solution and this was supported by 2D nuclear magnetic resonance experiments. In contrast, we found that S2 has a well-defined conformation in aqueous solution. However, the conformation of S2 was concentration dependent, with increasing concentration inducing a transition from an unstructured to a structured conformation. Interestingly, this property of S2 was not observed in an N-terminally truncated analogue of S2 (short S2 or SS2; SFNSGLTFamide). Collectively, the data obtained indicate that the N-terminal region of S2 facilitates peptide self-association at high concentrations, which may have relevance to the biosynthesis and/or bioactivity of S2 in vivo.

  19. Characterization of Mutants of Human Small Heat Shock Protein HspB1 Carrying Replacements in the N-Terminal Domain and Associated with Hereditary Motor Neuron Diseases.

    Directory of Open Access Journals (Sweden)

    Lydia K Muranova

    Full Text Available Physico-chemical properties of the mutations G34R, P39L and E41K in the N-terminal domain of human heat shock protein B1 (HspB1, which have been associated with hereditary motor neuron neuropathy, were analyzed. Heat-induced aggregation of all mutants started at lower temperatures than for the wild type protein. All mutations decreased susceptibility of the N- and C-terminal parts of HspB1 to chymotrypsinolysis. All mutants formed stable homooligomers with a slightly larger apparent molecular weight compared to the wild type protein. All mutations analyzed decreased or completely prevented phosphorylation-induced dissociation of HspB1 oligomers. When mixed with HspB6 and heated, all mutants yielded heterooligomers with apparent molecular weights close to ~400 kDa. Finally, the three HspB1 mutants possessed lower chaperone-like activity towards model substrates (lysozyme, malate dehydrogenase and insulin compared to the wild type protein, conversely the environmental probe bis-ANS yielded higher fluorescence with the mutants than with the wild type protein. Thus, in vitro the analyzed N-terminal mutations increase stability of large HspB1 homooligomers, prevent their phosphorylation-dependent dissociation, modulate their interaction with HspB6 and decrease their chaperoning capacity, preventing normal functioning of HspB1.

  20. Regulatory roles of the N-terminal domain based on crystal structures of human pyruvate dehydrogenase kinase 2 containing physiological and synthetic ligands.

    Science.gov (United States)

    Knoechel, Thorsten R; Tucker, Alec D; Robinson, Colin M; Phillips, Chris; Taylor, Wendy; Bungay, Peter J; Kasten, Shane A; Roche, Thomas E; Brown, David G

    2006-01-17

    Pyruvate dehydrogenase kinase (PDHK) regulates the activity of the pyruvate dehydrogenase multienzyme complex. PDHK inhibition provides a route for therapeutic intervention in diabetes and cardiovascular disorders. We report crystal structures of human PDHK isozyme 2 complexed with physiological and synthetic ligands. Several of the PDHK2 structures disclosed have C-terminal cross arms that span a large trough region between the N-terminal regulatory (R) domains of the PDHK2 dimers. The structures containing bound ATP and ADP demonstrate variation in the conformation of the active site lid, residues 316-321, which enclose the nucleotide beta and gamma phosphates at the active site in the C-terminal catalytic domain. We have identified three novel ligand binding sites located in the R domain of PDHK2. Dichloroacetate (DCA) binds at the pyruvate binding site in the center of the R domain, which together with ADP, induces significant changes at the active site. Nov3r and AZ12 inhibitors bind at the lipoamide binding site that is located at one end of the R domain. Pfz3 (an allosteric inhibitor) binds in an extended site at the other end of the R domain. We conclude that the N-terminal domain of PDHK has a key regulatory function and propose that the different inhibitor classes act by discrete mechanisms. The structures we describe provide insights that can be used for structure-based design of PDHK inhibitors.

  1. N-terminal guanidinylation of TIPP (Tyr-Tic-Phe-Phe) peptides results in major changes of the opioid activity profile.

    Science.gov (United States)

    Weltrowska, Grazyna; Nguyen, Thi M-D; Chung, Nga N; Wilkes, Brian C; Schiller, Peter W

    2013-09-15

    Derivatives of peptides of the TIPP (Tyr-Tic-Phe-Phe; Tic=1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) family containing a guanidino (Guan) function in place of the N-terminal amino group were synthesized in an effort to improve their blood-brain barrier permeability. Unexpectedly, N-terminal amidination significantly altered the in vitro opioid activity profiles. Guan-analogues of TIPP-related δ opioid antagonists showed δ partial agonist or mixed δ partial agonist/μ partial agonist activity. Guanidinylation of the mixed μ agonist/δ antagonists H-Dmt-Tic-Phe-Phe-NH2 (DIPP-NH2) and H-Dmt-TicΨ[CH2NH]Phe-Phe-NH2 (DIPP-NH2[Ψ]) converted them to mixed μ agonist/δ agonists. A docking study revealed distinct positioning of DIPP-NH2 and Guan-DIPP-NH2 in the δ receptor binding site. Lys(3)-analogues of DIPP-NH2 and DIPP-NH2[Ψ] (guanidinylated or non-guanidinylated) turned out to be mixed μ/κ agonists with δ antagonist-, δ partial agonist- or δ full agonist activity. Compounds with some of the observed mixed opioid activity profiles have therapeutic potential as analgesics with reduced side effects or for treatment of cocaine addiction.

  2. Glycosylation of the N-terminal potential N-glycosylation sites in the human α1,3-fucosyltransferase V and -VI (hFucTV and -VI)

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Bross, Peter Gerd; Ørntoft, Torben Falck

    2000-01-01

    Human alpha1,3-fucosyltransferase V and -VI (hFucTV and -VI) each contain four potential N-glycosylation sites (hFucTV: Asn60, Asn105, Asn167 and Asn198 and hFucTVI: Asn46, Asn91, Asn153 and Asn184). Glycosylation of the two N-terminal potential N-glycosylation sites (hFucTV: Asn60, Asn105 and h......FucTVI: Asn46 and Asn91) have never been studied in detail. In the present study, we have analysed the glycosylation of these potential N-glycosylation sites. Initially, we compared the molecular mass of hFucTV and -VI expressed in COS-7 cells treated with tunicamycin with the mass of the proteins...... in untreated cells. The difference in molecular mass between the proteins in treated and untreated cells corresponded to the presence of at least three N-linked glycans. We then made a series of mutants, in which the asparagine residues in the N-terminal potential N-glycosylation sites were replaced...

  3. Relationship between impaired glycation and the N-terminal structure of the Hb Görwihl [beta5(A2)Pro-->Ala] variant.

    Science.gov (United States)

    Ito, Shigenori; Nakahari, Takashi; Yamamoto, Daisuke

    2010-01-01

    We studied the structural environment surrounding the beta-N-terminal glycation site of a hemoglobin (Hb) molecule in which the proline residue at beta5(A2) was substituted by alanine in silico. By computer analysis that used Protein Data Bank data (PDB ID: 1BZ0), we tried to clarify the reason for impaired glycation of Hb Görwihl [beta5(A2)Pro-->Ala]. On the basis of the results, we predicted that the glycation site would have the following characteristics: 1) glycation of the beta-N-terminus of Hb is probably accelerated by the neighboring histidine residue at beta2(NA2), which acts as an acid-base catalyst via a phosphate-mediated proton transfer; and 2) the mutation beta5(A2)Pro-->Ala would bring about impaired glycation of the N-terminal residue by forming an electrostatic bond between the alpha amino group of beta1(NA1)Val and beta carboxyl group of beta79(EF3)Asp.

  4. A TPR domain-containing N-terminal module of MPS1 is required for its kinetochore localization by Aurora B.

    Science.gov (United States)

    Nijenhuis, Wilco; von Castelmur, Eleonore; Littler, Dene; De Marco, Valeria; Tromer, Eelco; Vleugel, Mathijs; van Osch, Maria H J; Snel, Berend; Perrakis, Anastassis; Kops, Geert J P L

    2013-04-15

    The mitotic checkpoint ensures correct chromosome segregation by delaying cell cycle progression until all kinetochores have attached to the mitotic spindle. In this paper, we show that the mitotic checkpoint kinase MPS1 contains an N-terminal localization module, organized in an N-terminal extension (NTE) and a tetratricopeptide repeat (TPR) domain, for which we have determined the crystal structure. Although the module was necessary for kinetochore localization of MPS1 and essential for the mitotic checkpoint, the predominant kinetochore binding activity resided within the NTE. MPS1 localization further required HEC1 and Aurora B activity. We show that MPS1 localization to kinetochores depended on the calponin homology domain of HEC1 but not on Aurora B-dependent phosphorylation of the HEC1 tail. Rather, the TPR domain was the critical mediator of Aurora B control over MPS1 localization, as its deletion rendered MPS1 localization insensitive to Aurora B inhibition. These data are consistent with a model in which Aurora B activity relieves a TPR-dependent inhibitory constraint on MPS1 localization.

  5. Ionic interaction of myosin loop 2 with residues located beyond the N-terminal part of actin probed by chemical cross-linking.

    Science.gov (United States)

    Pliszka, Barbara; Martin, Brian M; Karczewska, Emilia

    2008-02-01

    To probe ionic contacts of skeletal muscle myosin with negatively charged residues located beyond the N-terminal part of actin, myosin subfragment 1 (S1) and actin split by ECP32 protease (ECP-actin) were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). We have found that unmodified S1 can be cross-linked not only to the N-terminal part, but also to the C-terminal 36 kDa fragment of ECP-actin. Subsequent experiments performed on S1 cleaved by elastase or trypsin indicate that the cross-linking site in S1 is located within loop 2. This site is composed of Lys-636 and Lys-637 and can interact with negatively charged residues of the 36 kDa actin fragment, most probably with Glu-99 and Glu-100. Cross-links are formed both in the absence and presence of MgATP.P(i) analog, although the addition of nucleotide decreases the efficiency of the cross-linking reaction.

  6. Effect of size and N-terminal residue characteristics on bacterial cell penetration and antibacterial activity of the proline-rich peptide Bac7.

    Science.gov (United States)

    Guida, Filomena; Benincasa, Monica; Zahariev, Sotir; Scocchi, Marco; Berti, Federico; Gennaro, Renato; Tossi, Alessandro

    2015-02-12

    Bac7 is a proline-rich antimicrobial peptide, selective for Gram-negative bacteria, which acts intracellularly after membrane translocation. Progressively shortened fragments of Bac7 allowed determining the minimal sequence required for entry and antimicrobial activity as a 16-residue, N-terminal fragment, while further shortening led to a marked decrease in both functions. Furthermore, two N-terminal arginine residues were required for efficient translocation and activity. Analogues in which these residues were omitted, or where the side chain steric or physicochemical characteristics were systematically altered, were tested on different Escherichia coli strains, including a mutant with a destabilized outer membrane and one lacking the relevant SbmA membrane transport protein. H-bonding capacity, stereochemistry, and charge, in that order, played a determining role for efficient transit through both the outer and cytoplasmic membranes. Our studies allowed building a more detailed model for the mode-of-action of Bac7, and confirming its potential as an anti-infective agent, also suggesting it may be a vehicle for internalization of other antibiotic cargo.

  7. Role for c-jun N-terminal kinase in treatment-refractory acute myeloid leukemia (AML): signaling to multidrug-efflux and hyperproliferation.

    Science.gov (United States)

    Cripe, L D; Gelfanov, V M; Smith, E A; Spigel, D R; Phillips, C A; Gabig, T G; Jung, S-H; Fyffe, J; Hartman, A D; Kneebone, P; Mercola, D; Burgess, G S; Boswell, H S

    2002-05-01

    A relationship was proved between constitutive activity of leukemic cell c-jun-N-terminal kinase (JNK) and treatment failure in AML. Specifically, early treatment failure was predicted by the presence of constitutive JNK activity. The mechanistic origins of this association was sought. A multidrug resistant leukemic cell line, HL-60/ADR, characterized by hyperexpression of c-jun and JNK activity, was transfected with a mutant c-jun vector, whose substrate N-terminal c-jun serines were mutated. Down-regulated expression occurred of c-jun/AP-1-dependent genes, catalase and glutathione-S-transferase (GST) pi, which participate in cellular homeostasis to oxidative stress and xenobiotic exposure. MRP-efflux was abrogated in HL-60/ADR cells with dominant-negative c-jun, perhaps because MRP1 protein expression was also lost. Heightened sensitivity to daunorubicin resulted in cells subjected to this change. Biochemical analysis in 67 primary adult AML samples established a statistical correlation between cellular expression of c-jun and JNK activity, JNK activity with hyperleukocytosis at presentation of disease, and with exuberant MRP efflux. These findings reflect the survival role for c-jun/AP-1 and its regulatory kinase previously demonstrated for yeast in homeostatic response to oxidative stress and in operation of ATP-binding cassette efflux pumps, and may support evolutionary conservation of such function. Thus, JNK and c-jun may be salient drug targets in multidrug resistant AML.

  8. The N-terminal leucine-zipper motif in PTRF/cavin-1 is essential and sufficient for its caveolae-association

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Zhuang [State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Laboratory of System Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Zou, Xinle [State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Wang, Hongzhong; Lei, Jigang; Wu, Yuan [State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Laboratory of System Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Liao, Kan, E-mail: kliao@sibs.ac.cn [State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Laboratory of System Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China)

    2015-01-16

    Highlight: • The N-terminal leucine-zipper motif in PTRF/cavin-1 determines caveolar association. • Different cellular localization of PTRF/cavin-1 influences its serine 389 and 391 phosphorylation state. • PTRF/cavin-1 regulates cell motility via its caveolar association. - Abstract: PTRF/cavin-1 is a protein of two lives. Its reported functions in ribosomal RNA synthesis and in caveolae formation happen in two different cellular locations: nucleus vs. plasma membrane. Here, we identified that the N-terminal leucine-zipper motif in PTRF/cavin-1 was essential for the protein to be associated with caveolae in plasma membrane. It could counteract the effect of nuclear localization sequence in the molecule (AA 235–251). Deletion of this leucine-zipper motif from PTRF/cavin-1 caused the mutant to be exclusively localized in nuclei. The fusion of this leucine-zipper motif with histone 2A, which is a nuclear protein, could induce the fusion protein to be exported from nucleus. Cell migration was greatly inhibited in PTRF/cavin-1{sup −/−} mouse embryonic fibroblasts (MEFs). The inhibited cell motility could only be rescued by exogenous cavin-1 but not the leucine-zipper motif deleted cavin-1 mutant. Plasma membrane dynamics is an important factor in cell motility control. Our results suggested that the membrane dynamics in cell migration is affected by caveolae associated PTRF/cavin-1.

  9. W-F substitutions in apomyoglobin increase the local flexibility of the N-terminal region causing amyloid aggregation: a H/D exchange study.

    Science.gov (United States)

    Infusini, Giuseppe; Iannuzzi, Clara; Vilasi, Silvia; Maritato, Rosa; Birolo, Leila; Pagnozzi, Daniela; Pucci, Piero; Irace, Gaetano; Sirangelo, Ivana

    2013-08-01

    Myoglobin is an α-helical globular protein containing two highly conserved tryptophanyl residues at positions 7 and 14 in the N-terminal region. The simultaneous substitution of the two residues impairs the productive folding of the protein making the polypeptide chain highly prone to aggregate forming amyloid fibrils at physiological pH and room temperature. The role played by tryptophanyl residues in driving the productive folding process was investigated by providing structural details at low resolution of compact intermediate of three mutated apomyoglobins, i.e., W7F, W14F and the amyloid forming mutant W7FW14F. In particular, we followed the hydrogen/deuterium exchange rate of protein segments using proteolysis with pepsin followed by mass spectrometry analysis. The results revealed significant differences in the N-terminal region, consisting in an alteration of the physico-chemical properties of the 7-11 segment for W7F and in an increase of local flexibility of the 12-29 segment for W14F. In the double trypthophanyl substituted mutant, these effects are additive and impair the formation of native-like contacts and favour inter-chain interactions leading to protein aggregation and amyloid formation at physiological pH.

  10. Relationship between renalase and N-terminal pro-B-type Natriuretic Peptide (NT pro-BNP in haemodialysis patients

    Directory of Open Access Journals (Sweden)

    Marcin Dziedzic

    2014-03-01

    Full Text Available Introduction. Our knowledge in the field of cause of deaths in dialysis patients is rapidly expanding, yet we still do not fully understand how renalase regulates the processes of cardiovascular disease developing in end-stage renal disease. Increased sympathetic nerve activity observed in chronic kidney diseases due to raised catecholamines in plasma results from the absence of renalase. Renalase synthesized and secreted by the kidneys participate in the regulation of sympathetic tone and blood pressure. A family of natriuretic peptides has been identified – NT pro-BNP – which seems to be the best predictor of clinical outcome and marker of extracellular fluid overload, as well as predicting mortality, irrespective of renal function. Objective. The aim of the presented study was to investigate renalase concentration and investigate associations between NT-proBNP, as well as analyzed parameters in haemodialysis patients. Materials and method. The study was conducted among residents of the municipality and neighbouring villages in the province of Lublin, central-eastern Poland. 49 male subjects on haemodialysis, aged 65.3 ± 14.2 years, median time on haemodialysis: 37.5 months, were included. All study subjects underwent haemodialysis 3 times a week. The mean concentration of renalase in the entire study population was 126.59 ± 32.63 ng/mL. The circulating levels of NT-proBNP was 813.64 ± 706.96 pg/mL. A significant inverse correlation was found between NT-proBNP and renalase plasma levels (R = –0.3, P = 0.03. Conclusions. Inverse correlation between NT-proBNP and renalase plasma levels in haemodialysis patients were due to impaired kidney function, accompanied by increased sympathetic nerve activity, which have an impact on the development of hypertension and cardiovascular complications.

  11. An N-terminally truncated envelope protein encoded by a human endogenous retrovirus W locus on chromosome Xq22.3

    Directory of Open Access Journals (Sweden)

    Roebke Christina

    2010-08-01

    Full Text Available Abstract Background We previously showed that the envelope (env sequence of a human endogenous retrovirus (HERV-W locus on chromosome Xq22.3 is transcribed in human peripheral blood mononuclear cells. The env open reading frame (ORF of this locus is interrupted by a premature stop at codon 39, but otherwise harbors a long ORF for an N-terminally truncated 475 amino acid Env protein, starting at an in-frame ATG at codon 68. We set out to characterize the protein encoded by that ORF. Results Transient expression of the 475 amino acid Xq22.3 HERV-W env ORF produced an N-terminally truncated HERV-W Env protein, as detected by the monoclonal anti-HERV-W Env antibodies 6A2B2 and 13H5A5. Remarkably, reversion of the stop at codon 39 in Xq22.3 HERV-W env reconstituted a full-length HERV-W Xq22.3 Env protein. Similar to the full-length HERV-W Env protein Syncytin-1, reconstituted full-length Xq22.3 HERV-W Env is glycosylated, forms oligomers, and is expressed at the cell surface. In contrast, Xq22.3 HERV-W Env is unglycosylated, does not form oligomers, and is located intracellularly, probably due to lack of a signal peptide. Finally, we reconfirm by immunohistochemistry that monoclonal antibody 6A2B2 detects an antigen expressed in placenta and multiple sclerosis brain lesions. Conclusions A partially defective HERV-W env gene located on chromosome Xq22.3, which we propose to designate ERVWE2, has retained coding capacity and can produce ex vivo an N-terminally truncated Env protein, named N-Trenv. Detection of an antigen by 6A2B2 in placenta and multiple sclerosis lesions opens the possibility that N-Trenv could be expressed in vivo. More generally, our findings are compatible with the idea that defective HERV elements may be capable of producing incomplete HERV proteins that, speculatively, may exert functions in human physiology or pathology.

  12. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase.

    Science.gov (United States)

    Paksi, Zoltán; Jancsó, Attila; Pacello, Francesca; Nagy, Nóra; Battistoni, Andrea; Gajda, Tamás

    2008-09-01

    The Cu,Zn superoxide dismutase (Cu,ZnSOD) isolated from Haemophilus ducreyi possesses a His-rich N-terminal metal binding domain, which has been previously proposed to play a copper(II) chaperoning role. To analyze the metal binding ability and selectivity of the histidine-rich domain we have carried out thermodynamic and solution structural analysis of the copper(II) and zinc(II) complexes of a peptide corresponding to the first 11 amino acids of the enzyme (H(2)N-HGDHMHNHDTK-OH, L). This peptide has highly versatile metal binding ability and provides one and three high affinity binding sites for zinc(II) and copper(II), respectively. In equimolar solutions the MHL complexes are dominant in the neutral pH-range with protonated lysine epsilon-amino group. As a consequence of its multidentate nature, L binds zinc and copper with extraordinary high affinity (K(D,Zn)=1.6x10(-9)M and K(D,Cu)=5.0x10(-12)M at pH 7.4) and appears as the strongest zinc(II) and copper(II) chelator between the His-rich peptides so far investigated. These K(D) values support the already proposed role of the N-terminal His-rich region of H. ducreyi Cu,ZnSOD in copper recruitment under metal starvation, and indicate a similar function in the zinc(II) uptake, too. The kinetics of copper(II) transfer from L to the active site of Cu-free N-deleted H. ducreyi Cu,ZnSOD showed significant pH and copper-to-peptide ratio dependence, indicating specific structural requirements during the metal ion transfer to the active site. Interestingly, the complex CuHL has significant superoxide dismutase like activity, which may suggest multifunctional role of the copper(II)-bound N-terminal His-rich domain of H. ducreyi Cu,ZnSOD.

  13. Supramaximal elevation in B-type natriuretic peptide and its N-terminal fragment levels in anephric patients with heart failure: a case series

    Directory of Open Access Journals (Sweden)

    Ting John YC

    2012-10-01

    Full Text Available Abstract Introduction Little is known about the responses of natriuretic peptides to developing congestive heart failure in ‘anephric’ end-stage kidney disease. Case presentation We present three consecutive cases of surgically-induced anephric patients in a critical care environment: a 28-year-old Caucasian woman (with congestive heart failure, a 42-year-old Caucasian woman (without congestive heart failure, and a 23-year-old Caucasian woman (without congestive heart failure. Our limited study data indicate that cut-off values advocated for B-type natriuretic peptide and its N-terminal fragment to ‘rule out’ congestive heart failure in two of our end-stage kidney disease patients (without congestive heart failure are largely appropriate for anephric patients. However, our index (first patient developed congestive heart failure accompanied by the phenomenon of massive and persistent elevation of these natriuretic levels. Conclusion Our findings suggest that patients from the anephric subclass suffering from congestive heart failure will develop supramaximal elevation of B-type natriuretic peptide and its N-terminal fragment, implying the need for dramatically higher cut-off values with respective magnitudes of the order of 50-fold (B-type natriuretic peptide ~5780pmol/L; 20,000ng/L to 100-fold (N-terminal fragment ~11,800pmol/L; 100,000ng/L higher than current values used to ‘rule in’ congestive heart failure. Further research will be required to delineate those cut-off values. The role of our devised ‘Blood Volume – B-type natriuretic peptide feedback control system’ on ‘anatomical’ and ‘functional’ anephric patients led to significant mathematically-enriched arguments supporting our proposal that this model provides plausible explanations for the study findings, and the model lends support to the important hypothesis that these two groups of anephric patients inflicted with congestive heart failure should effectively

  14. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  15. Natural insertions within the N-terminal region of the coat protein of Maize dwarf mosaic potyvirus (MDMV) have an effect on the RNA stability.

    Science.gov (United States)

    Petrik, Kathrin; Sebestyén, Endre; Gell, Gyöngyvér; Balázs, Ervin

    2010-02-01

    A 13 amino acid residue insertion was found in the N-terminal region of the coat protein of several Maize dwarf mosaic virus isolates (MDMV). These insertions seem to be the result of a direct duplication event, but differ in some positions. In order to evaluate the influence of the insertion on the RNA secondary structure and stability, the RNA secondary structures and minimum free energies (MFE) of all existing MDMV coat protein sequences were estimated using three different softwares, the Vienna RNA Package, NUPACK, and UNAFold, and compared to the secondary structure and MFE of various random sequence collections preserving the nucleotide distribution of MDMV. The bioinformatic analysis showed that the insertion stabilizes the RNA structure of the coat protein gene.

  16. The N-Terminal GYPSY Motif Is Required for Pilin-Specific Sortase SrtC1 Functionality in Lactobacillus rhamnosus Strain GG.

    Science.gov (United States)

    Douillard, François P; Rasinkangas, Pia; Bhattacharjee, Arnab; Palva, Airi; de Vos, Willem M

    2016-01-01

    Predominantly identified in pathogenic Gram-positive bacteria, sortase-dependent pili are also found in commensal species, such as the probiotic-marketed strain Lactobacillus rhamnosus strain GG. Pili are typically associated with host colonization, immune signalling and biofilm formation. Comparative analysis of the N-terminal domains of pilin-specific sortases from various piliated Gram-positive bacteria identified a conserved motif, called GYPSY, within the signal sequence. We investigated the function and role of the GYPSY residues by directed mutagenesis in homologous (rod-shaped) and heterologous (coccoid-shaped) expression systems for pilus formation. Substitutions of some of the GYPSY residues, and more specifically the proline residue, were found to have a direct impact on the degree of piliation of Lb. rhamnosus GG. The present findings uncover a new signalling element involved in the functionality of pilin-specific sortases controlling the pilus biogenesis of Lb. rhamnosus GG and related piliated Gram-positive species.

  17. Catalytic roles of lysines (K9, K27, K31) in the N-terminal domain in human adenylate kinase by random site-directed mutagenesis.

    Science.gov (United States)

    Ayabe, T; Park, S K; Takenaka, H; Sumida, M; Uesugi, S; Takenaka, O; Hamada, M

    1996-11-01

    To elucidate lysine residues in the N-terminal domain of human cytosolic adenylate kinase (hAK1, EC 2.7.4.3), random site-directed mutagenesis of K9, K27, and K31 residues was performed, and six mutants were analyzed by steady-state kinetics. K9 residue may play an important role in catalysis by interacting with AMP2-. K27 and K31 residues appear to play a functional role in catalysis by interacting with MgATP2-. In human AK, the epsilon-amino group in the side chain of these lysine residues would be essential for phosphoryl transfer between MgATP2- and AMP2- during transition state.

  18. Copper Binding and Subsequent Aggregation of α-Synuclein Are Modulated by N-Terminal Acetylation and Ablated by the H50Q Missense Mutation.

    Science.gov (United States)

    Mason, Rebecca J; Paskins, Aimee R; Dalton, Caroline F; Smith, David P

    2016-08-30

    The Parkinson's disease-associated protein α-synuclein exhibits significant conformational heterogeneity. Bacterially expressed α-synuclein is known to bind to copper, resulting in the formation of aggregation-prone compact conformations. However, in vivo, α-synuclein undergoes acetylation at its N-terminus. Here the effect of this modification and the pathological H50Q mutation on copper binding and subsequent conformational transitions were investigated by electrospray ionization-ion mobility spectrometry-mass spectrometry. We demonstrate that acetylation perturbs the ability of α-synuclein to bind copper and that the H50Q missense mutation in the presence of N-terminal acetylation prevents copper binding. These modifications and mutations prevent the formation of the most compact conformations and inhibit copper-induced aggregation.

  19. c-Jun N-terminal kinase 3 expression in the retina of ocular hypertension mice: a possible target to reduce ganglion cell apoptosis

    Directory of Open Access Journals (Sweden)

    Yue He

    2015-01-01

    Full Text Available Glaucoma, a type of optic neuropathy, is characterized by the loss of retinal ganglion cells. It remains controversial whether c-Jun N-terminal kinase (JNK participates in the apoptosis of retinal ganglion cells in glaucoma. This study sought to explore a possible mechanism of action of JNK signaling pathway in glaucoma-induced retinal optic nerve damage. We established a mouse model of chronic ocular hypertension by reducing the aqueous humor followed by photocoagulation using the laser ignition method. Results showed significant pathological changes in the ocular tissues after the injury. Apoptosis of retinal ganglion cells increased with increased intraocular pressure, as did JNK3 mRNA expression in the retina. These data indicated that the increased expression of JNK3 mRNA was strongly associated with the increase in intraocular pressure in the retina, and correlated positively with the apoptosis of retinal ganglion cells.

  20. Stress-induced phosphorylation of c-Jun-N-terminal kinases and nuclear translocation of Hsp70 in the Wistar rat hippocampus

    Directory of Open Access Journals (Sweden)

    Adžić M.

    2009-01-01

    Full Text Available Glucocorticoids are key regulators of the neuroendocrine stress response in the hippocampus. Their action is partly mediated through the subfamily of MAPKs termed c-Jun-N-terminal kinases (JNKs,whose activation correlates with neurodegeneration. The stress response also involves activation of cell protective mechanisms through various heat shock proteins (HSPs that mediate neuroprotection. We followed both JNKs and Hsp70 signals in the cytoplasmic and nuclear compartments of the hippocampus of Wistar male rats exposed to acute, chronic, and combined stress. The activity of JNK1 was decreased in both compartments by all three types of stress, while the activity of cytoplasmic JNK2/3 was elevated in acute and unaltered or lowered in chronic and combined stress. Under all stress conditions, Hsp70 translocation to the nucleus was markedly increased. The results suggest that neurodegenerative signaling of JNKs may be counteracted by increase of nuclear Hsp70,especially under chronic stress.

  1. Solution behavior of the intrinsically disordered N-terminal domain of the Retinoid X Receptor alpha in the context of full-length protein

    Science.gov (United States)

    Peluso-Iltis, Carole; Kieffer, Bruno; Svergun, Dmitri I.; Rochel, Natacha

    2016-01-01

    Retinoid X receptors (RXRs) are transcription factors with important functions in embryonic development, metabolic processes, differentiation and apoptosis. A particular feature of RXRs is their ability to act as obligatory heterodimerisation partners of class II nuclear receptors. At the same time, these receptors are also able to form homodimers that bind to direct repeat (DR1) hormone response elements. Since the discovery of RXRs, most of the studies focused on its ligand binding and DNA-binding domains, while its N-terminal domain (NTD) harboring a ligand-independent activation function remained poorly characterized. Here, we investigated the solution properties of the NTD domain of RXRα alone and in the context of the full-length receptor using small-angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy. We report the solution structure of the full-length homodimeric RXRα on DNA and show that the NTD remains highly flexible within this complex. PMID:26937780

  2. The scorpion toxin Bot IX is a potent member of the α-like family and has a unique N-terminal sequence extension.

    Science.gov (United States)

    Martin-Eauclaire, Marie-France; Salvatierra, Juan; Bosmans, Frank; Bougis, Pierre E

    2016-09-01

    We report the detailed chemical, immunological and pharmacological characterization of the α-toxin Bot IX from the Moroccan scorpion Buthus occitanus tunetanus venom. Bot IX, which consists of 70 amino acids, is a highly atypical toxin. It carries a unique N-terminal sequence extension and is highly lethal in mice. Voltage clamp recordings on oocytes expressing rat Nav1.2 or insect BgNav1 reveal that, similar to other α-like toxins, Bot IX inhibits fast inactivation of both variants. Moreover, Bot IX belongs to the same structural/immunological group as the α-like toxin Bot I. Remarkably, radioiodinated Bot IX competes efficiently with the classical α-toxin AaH II from Androctonus australis, and displays one of the highest affinities for Nav channels.

  3. A Lanthipeptide-like N-Terminal Leader Region Guides Peptide Epimerization by Radical SAM Epimerases: Implications for RiPP Evolution.

    Science.gov (United States)

    Fuchs, Sebastian W; Lackner, Gerald; Morinaka, Brandon I; Morishita, Yohei; Asai, Teigo; Riniker, Sereina; Piel, Jörn

    2016-09-26

    Ribosomally synthesized and posttranslationally modified peptide natural products (RiPPs) exhibit diverse structures and bioactivities and are classified into distinct biosynthetic families. A recently reported family is the proteusins, with the prototype members polytheonamides being generated by almost 50 maturation steps, including introduction of d-residues at multiple positions by an unusual radical SAM epimerase. A region in the protein-like N-terminal leader of proteusin precursors is identified that is crucial for epimerization. It resembles a precursor motif previously shown to mediate interaction in thioether bridge-formation in class I lanthipeptide biosynthesis. Beyond this region, similarities were identified between proteusin and further RiPP families, including class I lanthipeptides. The data suggest that common leader features guide distinct maturation types and that nitrile hydratase-like enzymes are ancestors of several RiPP classes.

  4. Higher Serum Concentrations of N-Terminal Pro-B-Type Natriuretic Peptide Associate with Prevalent Hypertension whereas Lower Associate with Incident Hypertension

    DEFF Research Database (Denmark)

    Seven, Ekim; Husemoen, Lise L N; Ibsen, Hans

    2015-01-01

    BACKGROUND: The role of the natriuretic peptides (NPs) in hypertension is complex. Thus, a higher blood NP concentration is a robust marker of pressure-induced cardiac damage in patients with hypertension, whereas genetically elevated NP concentrations are associated with a reduced risk...... of hypertension and overweight individuals presumably at high risk of hypertension have lower NP concentrations. OBJECTIVE: To investigate the associations between serum N-terminal pro-B-type natriuretic peptide (NT-proBNP), used as a surrogate marker for active BNP, and prevalent as well as 5-year incident...... and baseline blood pressure (only incident model), one standard deviation increase in baseline log-transformed NT-proBNP concentrations was on one side associated with a 21% higher risk of PHT (odds ratio [OR]: 1.21 [95% confidence interval (CI): 1.13-1.30], P

  5. Investigation of functional aspects of the N-terminal region of elongation factor Tu from Escherichia coli using a protein engineering approach

    DEFF Research Database (Denmark)

    Laurberg, M; Mansilla, Francisco; Clark, Brian F. C.

    1998-01-01

    importance for the factor to function properly. In this study, two lysines at positions 4 and 9 were mutated separately to alanine or glutamate. The resulting four point mutants were expressed and purified using the pGEX system. The untagged products were characterized with regard to guanine......The function of the N-terminal region of elongation factor Tu is still unexplained. Until recently, it has not been visible in electron density maps from x-ray crystallography studies, but the presence of several well conserved basic residues suggest that this part of the molecule is of structural......-nucleotide interaction, intrinsic GTPase activity, and binding of aminoacyl-tRNA (aa-tRNA). The results show that Lys9 is especially strongly involved in the association with guanine nucleotides and the binding of aa-tRNA. Also Lys4 plays a role in the association of GDP and GTP and is also of some importance in aa...

  6. Structure of the starch-debranching enzyme barley limit dextrinase reveals homology of the N-terminal domain to CBM21

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Abou Hachem, Maher; Svensson, Birte

    2012-01-01

    molecule in the active site and is virtually identical to the structures of HvLD in complex with the competitive inhibitors α-cyclodextrin and β-cyclodextrin solved to 2.5 and 2.1 Å resolution, respectively. However, three loops in the N-terminal domain that are shown here to resemble carbohydrate......Barley limit dextrinase (HvLD) is a debranching enzyme from glycoside hydrolase family 13 subfamily 13 (GH13_13) that hydrolyses α-1,6-glucosidic linkages in limit dextrins derived from amylopectin. The structure of HvLD was solved and refined to 1.9 Å resolution. The structure has a glycerol......-binding module family 21 were traceable and were included in the present HvLD structure but were too flexible to be traced and included in the structures of the two HvLD-inhibitor complexes....

  7. The heparin-binding site in tetranectin is located in the N-terminal region and binding does not involve the carbohydrate recognition domain

    DEFF Research Database (Denmark)

    Lorentsen, R H; Graversen, Jonas Heilskov; Caterer, N R

    2000-01-01

    in three exons. Exon 3 encodes the carbohydrate recognition domain, which binds to kringle 4 in plasminogen at low levels of Ca(2+). Exon 2 encodes an alpha-helix, which is necessary and sufficient to govern the trimerization of tetranectin by assembling into a triple-helical coiled-coil structural element......Tetranectin is a homotrimeric plasma and extracellular-matrix protein that binds plasminogen and complex sulphated polysaccharides including heparin. In terms of primary and tertiary structure, tetranectin is related to the collectin family of Ca(2+)-binding C-type lectins. Tetranectin is encoded....... Here we show that the heparin-binding site in tetranectin resides not in the carbohydrate recognition domain but within the N-terminal region, comprising the 16 amino acid residues encoded by exon 1. In particular, the lysine residues in the decapeptide segment KPKKIVNAKK (tetranectin residues 6...

  8. Purification and N-terminal sequence of a serine proteinase-like protein (BMK-CBP) from the venom of the Chinese scorpion (Buthus martensii Karsch).

    Science.gov (United States)

    Gao, Rong; Zhang, Yong; Gopalakrishnakone, Ponnampalam

    2008-08-01

    A serine proteinase-like protein was isolated from the venom of Chinese red scorpion (Buthus martensii Karsch) by combination of gel filtration, ion-exchange and reveres-phase chromatography and named BMK-CBP. The apparent molecular weight of BMK-CBP was identified as 33 kDa by SDS-PAGE under non-reducing condition. The sequence of N-terminal 40 amino acids was obtained by Edman degradation. The sequence shows highest similarity to proteinase from insect source. When tested with commonly used substrates of proteinase, no significant hydrolytic activity was observed for BMK-CBP. The purified BMK-CBP was found to bind to the cancer cell line MCF-7 and the cell binding ability was dose-dependent.

  9. Heterologous expression of the isopimaric acid pathway in Nicotiana benthamiana and the effect of N-terminal modifications of the involved cytochrome P450 enzyme

    DEFF Research Database (Denmark)

    Gnanasekaran, Thiyagarajan; Vavitsas, Konstantinos; Andersen-Ranberg, Johan;

    2015-01-01

    in the chloroplast and subsequently oxidized by a cytochrome P450, CYP720B4. RESULTS: We transiently expressed the isopimaric acid pathway in Nicotiana benthamiana leaves and enhanced its productivity by the expression of two rate-limiting steps in the pathway (providing the general precursor of diterpenes). This co...... enzymes. CONCLUSIONS: It is possible to localize a diterpenoid pathway from spruce fully within the chloroplast of N. benthamiana and a few modifications of the N-terminal sequences of the CYP720B4 can facilitate the expression of plant P450s in the plastids. The coupling of terpene biosynthesis closer......BACKGROUND: Plant terpenoids are known for their diversity, stereochemical complexity, and their commercial interest as pharmaceuticals, food additives, and cosmetics. Developing biotechnology approaches for the production of these compounds in heterologous hosts can increase their market...

  10. Thermal instability of the trimeric structure of the N-terminal propeptide of human procollagen type I in relation to assay technology

    DEFF Research Database (Denmark)

    Brandt, J; Krogh, T N; Jensen, Charlotte Harken

    1999-01-01

    The N-terminal propeptide of procollagen type I (PINP) appeared in two peaks after size chromatography. The high-molecular weight form was transformed to the low-molecular weight form during incubation at 37 degreesC, whereas the low-molecular weight form remained unchanged. The PINP concentrations...... in amniotic fluid and sera remained unchanged during 37 degreesC incubation when measured using an ELISA; however, concentrations decreased by 89-93% when measured using an RIA. The ELISA:RIA ratio varied from 1.1 to 2.9 in these fluids because of different size distributions and the inability of the RIA...... the following conclusions: (a) the trimeric structure of PINP is unstable at 37 degreesC; (b) the two molecular forms represent intact alpha1 chains in trimeric and monomeric forms; (c) thermal transition is an ongoing in vivo process; and (d) this is important in the choice of assay technology. Udgivelsesdato...

  11. The N-terminal domain of Npro of classical swine fever virus determines its stability and regulates type I IFN production.

    Science.gov (United States)

    Mine, Junki; Tamura, Tomokazu; Mitsuhashi, Kazuya; Okamatsu, Masatoshi; Parchariyanon, Sujira; Pinyochon, Wasana; Ruggli, Nicolas; Tratschin, Jon-Duri; Kida, Hiroshi; Sakoda, Yoshihiro

    2015-07-01

    The viral protein Npro is unique to the genus Pestivirus within the family Flaviviridae. After autocatalytic cleavage from the nascent polyprotein, Npro suppresses type I IFN (IFN-α/β) induction by mediating proteasomal degradation of IFN regulatory factor 3 (IRF-3). Previous studies found that the Npro-mediated IRF-3 degradation was dependent of a TRASH domain in the C-terminal half of Npro coordinating zinc by means of the amino acid residues C112, C134, D136 and C138. Interestingly, four classical swine fever virus (CSFV) isolates obtained from diseased pigs in Thailand in 1993 and 1998 did not suppress IFN-α/β induction despite the presence of an intact TRASH domain. Through systematic analyses, it was found that an amino acid mutation at position 40 or mutations at positions 17 and 61 in the N-terminal half of Npro of these four isolates were related to the lack of IRF-3-degrading activity. Restoring a histidine at position 40 or both a proline at position 17 and a lysine at position 61 based on the sequence of a functional Npro contributed to higher stability of the reconstructed Npro compared with the Npro from the Thai isolate. This led to enhanced interaction of Npro with IRF-3 along with its degradation by the proteasome. The results of the present study revealed that amino acid residues in the N-terminal domain of Npro are involved in the stability of Npro, in interaction of Npro with IRF-3 and subsequent degradation of IRF-3, leading to downregulation of IFN-α/β production.

  12. Positioning of cysteine residues within the N-terminal portion of the BST-2/tetherin ectodomain is important for functional dimerization of BST-2.

    Science.gov (United States)

    Welbourn, Sarah; Kao, Sandra; Du Pont, Kelly E; Andrew, Amy J; Berndsen, Christopher E; Strebel, Klaus

    2015-02-06

    BST-2/tetherin is a cellular host factor capable of restricting the release of a variety of enveloped viruses, including HIV-1. Structurally, BST-2 consists of an N-terminal cytoplasmic domain, a transmembrane domain, an ectodomain, and a C-terminal membrane anchor. The BST-2 ectodomain encodes three cysteine residues in its N-terminal half, each of which can contribute to the formation of cysteine-linked dimers. We previously reported that any one of the three cysteine residues is sufficient to produce functional BST-2 dimers. Here we investigated the importance of cysteine positioning on the ectodomain for functional dimerization of BST-2. Starting with a cysteine-free monomeric form of BST-2, individual cysteine residues were reintroduced at various locations throughout the ectodomain. The resulting BST-2 variants were tested for expression, dimerization, surface presentation, and inhibition of HIV-1 virus release. We found significant flexibility in the positioning of cysteine residues, although the propensity to form cysteine-linked dimers generally decreased with increasing distance from the N terminus. Interestingly, all BST-2 variants, including the one lacking all three ectodomain cysteines, retained the ability to form non-covalent dimers, and all of the BST-2 variants were efficiently expressed at the cell surface. Importantly, not all BST-2 variants capable of forming cysteine-linked dimers were functional, suggesting that cysteine-linked dimerization of BST-2 is necessary but not sufficient for inhibiting virus release. Our results expose new structural constraints governing the functional dimerization of BST-2, a property essential to its role as a restriction factor tethering viruses to the host cell.

  13. Remote His50 Acts as a Coordination Switch in the High-Affinity N-Terminal Centered Copper(II) Site of α-Synuclein.

    Science.gov (United States)

    De Ricco, Riccardo; Valensin, Daniela; Dell'Acqua, Simone; Casella, Luigi; Dorlet, Pierre; Faller, Peter; Hureau, Christelle

    2015-05-18

    Parkinson's disease (PD) etiology is closely linked to the aggregation of α-synuclein (αS). Copper(II) ions can bind to αS and may impact its aggregation propensity. As a consequence, deciphering the exact mode of Cu(II) binding to αS is important in the PD context. Several previous reports have shown some discrepancies in the description of the main Cu(II) site in αS, which are resolved here by a new scenario. Three Cu(II) species can be encountered, depending on the pH and the Cu:αS ratio. At low pH, Cu(II) is bound to the N-terminal part of the protein by the N-terminal amine, the adjacent deprotonated amide group of the Asp2 residue, and the carboxylate group from the side chain of the same Asp2. At pH 7.4, the imidazole group of remote His50 occupies the fourth labile equatorial position of the previous site. At high Cu(II):αS ratio (>1), His50 leaves the coordination sphere of the first Cu site centered at the N-terminus, because a second weak affinity site centered on His50 is now filled with Cu(II). In this new scheme, the remote His plays the role of a molecular switch and it can be anticipated that the binding of the remote His to the Cu(II) ion can induce different folding of the αS protein, having various aggregation propensity.

  14. Enhancement of HCV polytope DNA vaccine efficacy by fusion to an N-terminal fragment of heat shock protein gp96.

    Science.gov (United States)

    Pishraft-Sabet, Leila; Kosinska, Anna D; Rafati, Sima; Bolhassani, Azam; Taheri, Tahereh; Memarnejadian, Arash; Alavian, Seyed-Moayed; Roggendorf, Michael; Samimi-Rad, Katayoun

    2015-01-01

    Induction of a strong hepatitis C virus (HCV)-specific immune response plays a key role in control and clearance of the virus. A polytope (PT) DNA vaccine containing B- and T-cell epitopes could be a promising vaccination strategy against HCV, but its efficacy needs to be improved. The N-terminal domain of heat shock protein gp96 (NT(gp96)) has been shown to be a potent adjuvant for enhancing immunity. We constructed a PT DNA vaccine encoding four HCV immunodominant cytotoxic T lymphocyte epitopes (two HLA-A2- and two H2-D(d)-specific motifs) from the Core, E2, NS3 and NS5B antigens in addition to a T-helper CD4+ epitope from NS3 and a B-cell epitope from E2. The NT(gp96) was fused to the C- or N-terminal end of the PT DNA (PT-NT(gp96) or NT(gp96)-PT), and their potency was compared. Cellular and humoral immune responses against the expressed peptides were evaluated in CB6F1 mice. Our results showed that immunization of mice with PT DNA vaccine fused to NT(gp96) induced significantly stronger T-cell and antibody responses than PT DNA alone. Furthermore, the adjuvant activity of NT(gp96) was more efficient in the induction of immune responses when fused to the C-terminal end of the HCV DNA polytope. In conclusion, the NT(gp96) improved the efficacy of the DNA vaccine, and this immunomodulatory effect was dependent on the position of the fusion.

  15. Direct interaction between Tks proteins and the N-terminal proline-rich region (PRR) of NoxA1 mediates Nox1-dependent ROS generation.

    Science.gov (United States)

    Gianni, Davide; DerMardirossian, Céline; Bokoch, Gary M

    2011-01-01

    NADPH oxidase (Nox) family enzymes are one of the main sources of cellular reactive oxygen species (ROS), which have been implicated in several physiological and pathophysiological processes. To date seven members of this family have been reported, including Nox1-5 and Duox1 and 2. With the exception of Nox2, the regulation of the Nox enzymes is still poorly understood. Nox1 is highly expressed in the colon, and requires two cytosolic regulators, the organizer subunit NoxO1 and the activator subunit NoxA1, as well as the binding of Rac1 GTPase, for its activity. Recently, we identified the c-Src substrate proteins Tks4 and Tks5 as functional members of a p47(phox)-related organizer superfamily. As a functional consequence of this interaction, Nox1 localizes to invadopodia, actin-rich membrane protrusions of cancer cells which facilitate pericellular proteolysis and invasive behavior. Here, we report that Tks4 and Tks5 directly bind to NoxA1. Moreover, the integrity of the N-terminal PRR of NoxA1 is essential for this direct interaction with the Tks proteins. When the PRR in NoxA1 is disrupted, Tks proteins cannot bind NoxA1 and lose their ability to support Nox1-dependent ROS generation. Consistent with this, Tks4 and Tks5 are unable to act as organizers for Nox2 because of their inability to interact with p67(phox), which lacks the N-terminal PRR, thus conferring a unique specificity to Tks4 and 5. Taken together, these results clarify the molecular basis for the interaction between NoxA1 and the Tks proteins and may provide new insights into the pharmacological design of a more effective anti-metastatic strategy.

  16. Human/bovine chimeric MxA-like GTPases reveal a contribution of N-terminal domains to the magnitude of anti-influenza A activity.

    Science.gov (United States)

    Garigliany, Mutien-Marie; Cornet, Anne; Desmecht, Daniel

    2012-07-01

    Type I interferons (IFN-α/β) provide powerful and universal innate intracellular defense mechanisms against viruses. Among the antiviral effectors induced by IFN-α/β, Mx proteins of some species appear as key components of defense against influenza A viruses. The body of work published to date suggests that to exert anti-influenza activity, an Mx protein should possess a GTP-binding site, structural bases allowing multimerisation, and a specific C-terminal GTPase effector domain (GED). Both the human MxA and bovine Mx1 proteins meet these minimal requirements, but the bovine protein is more active against influenza viruses. Here, we measured the anti-influenza activity exerted by 2 human/bovine chimeric Mx proteins. We show that substituting the bovine GED for the human one in human MxA does not affect the magnitude of anti-influenza activity. Strikingly, however, substituting the human GED for the bovine one in bovine Mx1 yields a chimeric protein with a much higher anti-influenza activity than the human protein. We conclude, in contradiction to the hypothesis currently in vogue in the literature, that the GED is not the sole determinant controlling the magnitude of the anti-influenza activity exercised by an Mx protein that can bind GTP and multimerise. Our results suggest that 1 or several motifs that remain to be discovered, located N-terminally with regard to the GED, may interact with a viral component or a cellular factor so as to alter the viral cycle. Identifying, in the N-terminal portion of bovine Mx1, the motif(s) responsible for its higher anti-influenza activity could contribute to the development of new anti-influenza molecules.

  17. Three-dimensional structure of N-terminal domain of DnaB helicase and helicase-primase interactions in Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Tara Kashav

    Full Text Available Replication initiation is a crucial step in genome duplication and homohexameric DnaB helicase plays a central role in the replication initiation process by unwinding the duplex DNA and interacting with several other proteins during the process of replication. N-terminal domain of DnaB is critical for helicase activity and for DnaG primase interactions. We present here the crystal structure of the N-terminal domain (NTD of H. pylori DnaB (HpDnaB helicase at 2.2 A resolution and compare the structural differences among helicases and correlate with the functional differences. The structural details of NTD suggest that the linker region between NTD and C-terminal helicase domain plays a vital role in accurate assembly of NTD dimers. The sequence analysis of the linker regions from several helicases reveals that they should form four helix bundles. We also report the characterization of H. pylori DnaG primase and study the helicase-primase interactions, where HpDnaG primase stimulates DNA unwinding activity of HpDnaB suggesting presence of helicase-primase cohort at the replication fork. The protein-protein interaction study of C-terminal domain of primase and different deletion constructs of helicase suggests that linker is essential for proper conformation of NTD to interact strongly with HpDnaG. The surface charge distribution on the primase binding surface of NTDs of various helicases suggests that DnaB-DnaG interaction and stability of the complex is most probably charge dependent. Structure of the linker and helicase-primase interactions indicate that HpDnaB differs greatly from E.coli DnaB despite both belong to gram negative bacteria.

  18. The N-terminal hybrid binding domain of RNase HI from Thermotoga maritima is important for substrate binding and Mg2+-dependent activity.

    Science.gov (United States)

    Jongruja, Nujarin; You, Dong-Ju; Kanaya, Eiko; Koga, Yuichi; Takano, Kazufumi; Kanaya, Shigenori

    2010-11-01

    Thermotoga maritima ribonuclease H (RNase H) I (Tma-RNase HI) contains a hybrid binding domain (HBD) at the N-terminal region. To analyze the role of this HBD, Tma-RNase HI, Tma-W22A with the single mutation at the HBD, the C-terminal RNase H domain (Tma-CD) and the N-terminal domain containing the HBD (Tma-ND) were overproduced in Escherichia coli, purified and biochemically characterized. Tma-RNase HI prefers Mg(2+) to Mn(2+) for activity, and specifically loses most of the Mg(2+)-dependent activity on removal of the HBD and 87% of it by the mutation at the HBD. Tma-CD lost the ability to suppress the RNase H deficiency of an E. coli rnhA mutant, indicating that the HBD is responsible for in vivo RNase H activity. The cleavage-site specificities of Tma-RNase HI are not significantly changed on removal of the HBD, regardless of the metal cofactor. Binding analyses of the proteins to the substrate using surface plasmon resonance indicate that the binding affinity of Tma-RNase HI is greatly reduced on removal of the HBD or the mutation. These results indicate that there is a correlation between Mg(2+)-dependent activity and substrate binding affinity. Tma-CD was as stable as Tma-RNase HI, indicating that the HBD is not important for stability. The HBD of Tma-RNase HI is important not only for substrate binding, but also for Mg(2+)-dependent activity, probably because the HBD affects the interaction between the substrate and enzyme at the active site, such that the scissile phosphate group of the substrate and the Mg(2+) ion are arranged ideally.

  19. Studies on N-terminal glycation of peptides in hypoallergenic infant formulas: quantification of alpha-N-(2-furoylmethyl) amino acids.

    Science.gov (United States)

    Penndorf, Ilka; Biedermann, Daniela; Maurer, Sarah V; Henle, Thomas

    2007-02-01

    To obtain information about the extent of the early Maillard reaction between the N-termini of peptides and lactose, alpha-N-(2-furoylmethyl) amino acids (FMAAs) were quantified together with epsilon-N-(2-furoylmethyl)lysine (furosine) in acid hydrolyzates of hypoallergenic infant formulas, conventional infant formulas, and human milk samples using RP-HPLC with UV-detection. FMAAs are formed during acid hydrolysis of peptide-bound N-terminal Amadori products (APs), and furosine is formed from the Amadori products of peptide-bound lysine. Unambiguous identification was achieved by means of LC/MS and UV-spectroscopy using independently prepared reference material. The extent of acid-induced conversion of APs to FMAAs was studied by RP-HPLC with chemiluminescent nitrogen detection (CLND). Depending on the corresponding alpha-N-lactulosyl amino acid, between 6.0% and 18.1% of FMAAs were formed during hydrolysis for 23 h at 110 degrees C in 8 N HCl. From epsilon-N-lactulosyllysine, 50% furosine is formed under these conditions. Whereas furosine was detectable in all assayed samples, five different FMAAs, alpha-FM-Lys, alpha-FM-Ala, alpha-FM-Val, alpha-FM-Ile, and alpha-FM-Leu, were exclusively detected in acid hydrolyzates of hypoallergenic infant formulas in amounts ranging from 35 to 396 mumol/100 g protein. Taking the conversion factors into account, modification of N-terminal amino acids in peptides by reducing carbohydrates was between 0.3% and 8.4%. This has to be considered within the discussion concerning the nutritional quality of peptide-containing foods.

  20. The conserved residue Arg46 in the N-terminal heptad repeat domain of HIV-1 gp41 is critical for viral fusion and entry.

    Directory of Open Access Journals (Sweden)

    Xiaoyi Wang

    Full Text Available During the process of HIV-1 fusion with the target cell, the N-terminal heptad repeat (NHR of gp41 interacts with the C-terminal heptad repeat (CHR to form fusogenic six-helix bundle (6-HB core. We previously identified a crucial residue for 6-HB formation and virus entry--Lys63 (K63 in the C-terminal region of NHR (aa 54-70, which forms a hydrophobic cavity. It can form an important salt bridge with Asp121 (D121 in gp41 CHR. Here, we found another important conserved residue for virus fusion and entry, Arg46 (R46, in the N-terminal region of NHR (aa 35-53, which forms a hydrogen bond with a polar residue, Asn43 (N43, in NHR, as a part of the hydrogen-bond network. R46 can also form a salt bridge with a negatively charged residue, Glu137 (E137, in gp41 CHR. Substitution of R46 with the hydrophobic residue Ala (R46A or the negatively charged residue Glu (R46E resulted in disruption of the hydrogen bond network, breakage of the salt bridge and reduction of 6-HB's stability, leading to impairment of viral fusion and decreased inhibition of N36, an NHR peptide. Similarly, CHR peptide C34 with substitution of E137 for Ala (E137A or Arg (E137R also exhibited reduced inhibitory activity against HIV-1 infection and HIV-1-mediated cell-to-cell fusion. These results suggest that the positively charged residue R46 and its hydrogen bond network, together with the salt bridge between R46 and E137, are important for viral fusion and entry and may therefore serve as a target for designing novel HIV fusion/entry inhibitors.

  1. Role of N-terminal residues on folding and stability of C-phycoerythrin: simulation and urea-induced denaturation studies.

    Science.gov (United States)

    Anwer, Khalid; Sonani, Ravi; Madamwar, Datta; Singh, Parvesh; Khan, Faez; Bisetty, Krishna; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2015-01-01

    The conformational state of biliproteins can be determined by optical properties of the covalently linked chromophores. Recently determined crystal structure of truncated form of α-subunit of cyanobacterial phycoerythrin (αC-PE) from Phormidium tenue provides a new insight into the structure-function relationship of αC-PE. To compare their stabilities, we have measured urea-induced denaturation transitions of the full length αC-PE (FL-αC-PE) and truncated αC-PE (Tr-αC-PE) followed by observing changes in absorbance at 565 nm, fluorescence at 350 and 573 nm, and circular dichroism at 222 nm as a function of [urea], the molar concentration of urea. The transition curve of each protein was analyzed for ΔG(D)(0), the value of Gibbs free energy change on denaturation (ΔG(D)) in the absence of urea; m, the slope (=∂∆G(D)/∂[urea]), and C(m), the midpoint of the denaturation curve, i.e. [urea] at which ΔG(D) = 0. A difference of about 10% in ΔG(D)(0) observed between FL-αC-PE and Tr-αC-PE, suggests that the two proteins are almost equally stable, and the natural deletion of 31 residues from the N-terminal side of the full length protein does not alter its stability. Furthermore, normalization of probes shows that the urea-induced denaturation of both the proteins is a two-state process. Folding of both structural variants (Tr-αC-PE and FL-αC-PE) of P. tenue were also studied using molecular dynamics simulations at 300 K. The results show clearly that the stability of the proteins is evenly distributed over the whole structure indicating no significant role of N-terminal residues in the stability of both proteins.

  2. Structure of the N-terminal domain of the protein Expansion: an ‘Expansion’ to the Smad MH2 fold

    Energy Technology Data Exchange (ETDEWEB)

    Beich-Frandsen, Mads; Aragón, Eric [Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona (Spain); Llimargas, Marta [Institut de Biologia Molecular de Barcelona, IBMB–CSIC, Baldiri Reixac 10, 08028 Barcelona (Spain); Benach, Jordi [ALBA Synchrotron, BP 1413, km 3.3, Cerdanyola del Vallès (Spain); Riera, Antoni [Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona (Spain); Universitat de Barcelona, Martí i Franqués 1-11, 08028 Barcelona (Spain); Pous, Joan [Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona (Spain); Platform of Crystallography IBMB–CSIC, Baldiri Reixac 10, 08028 Barcelona (Spain); Macias, Maria J., E-mail: maria.macias@irbbarcelona.org [Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona (Spain); Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona (Spain)

    2015-04-01

    Expansion is a modular protein that is conserved in protostomes. The first structure of the N-terminal domain of Expansion has been determined at 1.6 Å resolution and the new Nα-MH2 domain was found to belong to the Smad/FHA superfamily of structures. Gene-expression changes observed in Drosophila embryos after inducing the transcription factor Tramtrack led to the identification of the protein Expansion. Expansion contains an N-terminal domain similar in sequence to the MH2 domain characteristic of Smad proteins, which are the central mediators of the effects of the TGF-β signalling pathway. Apart from Smads and Expansion, no other type of protein belonging to the known kingdoms of life contains MH2 domains. To compare the Expansion and Smad MH2 domains, the crystal structure of the Expansion domain was determined at 1.6 Å resolution, the first structure of a non-Smad MH2 domain to be characterized to date. The structure displays the main features of the canonical MH2 fold with two main differences: the addition of an α-helical region and the remodelling of a protein-interaction site that is conserved in the MH2 domain of Smads. Owing to these differences, to the new domain was referred to as Nα-MH2. Despite the presence of the Nα-MH2 domain, Expansion does not participate in TGF-β signalling; instead, it is required for other activities specific to the protostome phyla. Based on the structural similarities to the MH2 fold, it is proposed that the Nα-MH2 domain should be classified as a new member of the Smad/FHA superfamily.

  3. The Tip of the Four N-Terminal α-Helices of Clostridium sordellii Lethal Toxin Contains the Interaction Site with Membrane Phosphatidylserine Facilitating Small GTPases Glucosylation

    Science.gov (United States)

    Varela Chavez, Carolina; Haustant, Georges Michel; Baron, Bruno; England, Patrick; Chenal, Alexandre; Pauillac, Serge; Blondel, Arnaud; Popoff, Michel-Robert

    2016-01-01

    Clostridium sordellii lethal toxin (TcsL) is a powerful virulence factor responsible for severe toxic shock in man and animals. TcsL belongs to the large clostridial glucosylating toxin (LCGT) family which inactivates small GTPases by glucosylation with uridine-diphosphate (UDP)-glucose as a cofactor. Notably, TcsL modifies Rac and Ras GTPases, leading to drastic alteration of the actin cytoskeleton and cell viability. TcsL enters cells via receptor-mediated endocytosis and delivers the N-terminal glucosylating domain (TcsL-cat) into the cytosol. TcsL-cat was found to preferentially bind to phosphatidylserine (PS)-containing membranes and to increase the glucosylation of Rac anchored to the lipid membrane. We have previously reported that the N-terminal four helical bundle structure (1–93 domain) recognizes a broad range of lipids, but that TcsL-cat specifically binds to PS and phosphatidic acid. Here, we show using mutagenesis that the PS binding site is localized on the tip of the four-helix bundle which is rich in positively-charged amino acids. Residues Y14, V15, F17, and R18 on loop 1, between helices 1 and 2, in coordination with R68 from loop 3, between helices 3 and 4, form a pocket which accommodates L-serine. The functional PS-binding site is required for TcsL-cat binding to the plasma membrane and subsequent cytotoxicity. TcsL-cat binding to PS facilitates a high enzymatic activity towards membrane-anchored Ras by about three orders of magnitude as compared to Ras in solution. The PS-binding site is conserved in LCGTs, which likely retain a common mechanism of binding to the membrane for their full activity towards membrane-bound GTPases. PMID:27023605

  4. The Tip of the Four N-Terminal α-Helices of Clostridium sordellii Lethal Toxin Contains the Interaction Site with Membrane Phosphatidylserine Facilitating Small GTPases Glucosylation

    Directory of Open Access Journals (Sweden)

    Carolina Varela Chavez

    2016-03-01

    Full Text Available Clostridium sordellii lethal toxin (TcsL is a powerful virulence factor responsible for severe toxic shock in man and animals. TcsL belongs to the large clostridial glucosylating toxin (LCGT family which inactivates small GTPases by glucosylation with uridine-diphosphate (UDP-glucose as a cofactor. Notably, TcsL modifies Rac and Ras GTPases, leading to drastic alteration of the actin cytoskeleton and cell viability. TcsL enters cells via receptor-mediated endocytosis and delivers the N-terminal glucosylating domain (TcsL-cat into the cytosol. TcsL-cat was found to preferentially bind to phosphatidylserine (PS-containing membranes and to increase the glucosylation of Rac anchored to the lipid membrane. We have previously reported that the N-terminal four helical bundle structure (1–93 domain recognizes a broad range of lipids, but that TcsL-cat specifically binds to PS and phosphatidic acid. Here, we show using mutagenesis that the PS binding site is localized on the tip of the four-helix bundle which is rich in positively-charged amino acids. Residues Y14, V15, F17, and R18 on loop 1, between helices 1 and 2, in coordination with R68 from loop 3, between helices 3 and 4, form a pocket which accommodates L-serine. The functional PS-binding site is required for TcsL-cat binding to the plasma membrane and subsequent cytotoxicity. TcsL-cat binding to PS facilitates a high enzymatic activity towards membrane-anchored Ras by about three orders of magnitude as compared to Ras in solution. The PS-binding site is conserved in LCGTs, which likely retain a common mechanism of binding to the membrane for their full activity towards membrane-bound GTPases.

  5. LC-MS/MS screening strategy for unknown adducts to N-terminal valine in hemoglobin applied to smokers and nonsmokers.

    Science.gov (United States)

    Carlsson, Henrik; von Stedingk, Hans; Nilsson, Ulrika; Törnqvist, Margareta

    2014-12-15

    Electrophilically reactive compounds have the ability to form adducts with nucleophilic sites in DNA and proteins, constituting a risk for toxic effects. Mass spectrometric detection of adducts to N-terminal valine in hemoglobin (Hb) after detachment by modified Edman degradation procedures is one approach for in vivo monitoring of exposure to electrophilic compounds/metabolites. So far, applications have been limited to one or a few selected reactive species, such as acrylamide and its metabolite glycidamide. This article presents a novel screening strategy for unknown Hb adducts to be used as a basis for an adductomic approach. The method is based on a modified Edman procedure, FIRE, specifically developed for LC-MS/MS analysis of N-terminal valine adducts in Hb detached as fluorescein thiohydantoin (FTH) derivatives. The aim is to detect and identify a priori unknown Hb adducts in human blood samples. Screening of valine adducts was performed by stepwise scanning of precursor ions in small mass increments, monitoring four fragments common for the FTH derivative of valine with different N-substitutions in the multiple-reaction mode, covering a mass range of 135 Da (m/z 503-638). Samples from six smokers and six nonsmokers were analyzed. Control experiments were performed to compare these results with known adducts and to check for artifactual formation of adducts. In all samples of smokers and nonsmokers, seven adducts were identified, of which six have previously been studied. Nineteen unknown adducts were observed, and 14 of those exhibited fragmentation patterns similar to earlier studied FTH derivatives of adducts to valine. Identification of the unknown adducts will be the focus of future work. The presented methodology is a promising screening tool using Hb adducts to indicate exposure to potentially toxic electrophilic compounds and metabolites.

  6. N-terminal glycation of proteins and peptides in foods and in vivo: evaluation of N-(2-furoylmethyl)valine in acid hydrolyzates of human hemoglobin.

    Science.gov (United States)

    Penndorf, Ilka; Li, Changhao; Schwarzenbolz, Uwe; Henle, Thomas

    2008-04-01

    Specific determination of N-(2-furoylmethyl)valine (FM-Val) together with furosine in acid hydrolyzates of human hemoglobin of healthy volunteers (n = 6) and diabetic patients (n = 14) by means of reversed-phase HPLC with electrospray ionization-time-of-flight mass spectroscopy is reported. Whereas FM-Val is formed during acid hydrolysis of the N-terminal hemoglobin adduct N-fructosylvaline, furosine results from acid degradation of lysine residues glycated at the epsilon-amino group. Quantification was based on the use of synthesized isotopomers, namely N-[2-(13C6)furoylmethyl]valine and N-epsilon-[2-(13C6)furoylmethyl]lysine, thus enabling interference-free detection and calibration. Taking the conversion factors into account, the amount of N-terminally bound N-fructosylvaline in human hemoglobin was between 518 and 774 pmol/mg protein for healthy volunteers and between 586 and 1426 pmol/mg protein for diabetic patients. Derivatization at the side chain of peptide-bound lysine residues to N-epsilon-fructosyllysine was from 1156 to 1753 pmol/mg protein for healthy controls and from 1191 to 2409 pmol/mg protein for diabetics. For these patients, the amount of N-fructosylvaline showed good correlation with the values for HbA(1c). The significantly higher relative extent of glycation at the N terminus compared to side-chain glycation points to a specific and intraindividual capacity for enzymatic deglycation in human erythrocytes, which can be assessed using the proposed method.

  7. High-resolution structure of the N-terminal endonuclease domain of the Lassa virus L polymerase in complex with magnesium ions.

    Directory of Open Access Journals (Sweden)

    Gregor D Wallat

    Full Text Available Lassa virus (LASV causes deadly hemorrhagic fever disease for which there are no vaccines and limited treatments. LASV-encoded L polymerase is required for viral RNA replication and transcription. The functional domains of L-a large protein of 2218 amino acid residues-are largely undefined, except for the centrally located RNA-dependent RNA polymerase (RdRP motif. Recent structural and functional analyses of the N-terminal region of the L protein from lymphocytic choriomeningitis virus (LCMV, which is in the same Arenaviridae family as LASV, have identified an endonuclease domain that presumably cleaves the cap structures of host mRNAs in order to initiate viral transcription. Here we present a high-resolution crystal structure of the N-terminal 173-aa region of the LASV L protein (LASV L173 in complex with magnesium ions at 1.72 Å. The structure is highly homologous to other known viral endonucleases of arena- (LCMV NL1, orthomyxo- (influenza virus PA, and bunyaviruses (La Crosse virus NL1. Although the catalytic residues (D89, E102 and K122 are highly conserved among the known viral endonucleases, LASV L endonuclease structure shows some notable differences. Our data collected from in vitro endonuclease assays and a reporter-based LASV minigenome transcriptional assay in mammalian cells confirm structural prediction of LASV L173 as an active endonuclease. The high-resolution structure of the LASV L endonuclease domain in complex with magnesium ions should aid the development of antivirals against lethal Lassa hemorrhagic fever.

  8. High-resolution structure of the N-terminal endonuclease domain of the Lassa virus L polymerase in complex with magnesium ions.

    Science.gov (United States)

    Wallat, Gregor D; Huang, Qinfeng; Wang, Wenjian; Dong, Haohao; Ly, Hinh; Liang, Yuying; Dong, Changjiang

    2014-01-01

    Lassa virus (LASV) causes deadly hemorrhagic fever disease for which there are no vaccines and limited treatments. LASV-encoded L polymerase is required for viral RNA replication and transcription. The functional domains of L-a large protein of 2218 amino acid residues-are largely undefined, except for the centrally located RNA-dependent RNA polymerase (RdRP) motif. Recent structural and functional analyses of the N-terminal region of the L protein from lymphocytic choriomeningitis virus (LCMV), which is in the same Arenaviridae family as LASV, have identified an endonuclease domain that presumably cleaves the cap structures of host mRNAs in order to initiate viral transcription. Here we present a high-resolution crystal structure of the N-terminal 173-aa region of the LASV L protein (LASV L173) in complex with magnesium ions at 1.72 Å. The structure is highly homologous to other known viral endonucleases of arena- (LCMV NL1), orthomyxo- (influenza virus PA), and bunyaviruses (La Crosse virus NL1). Although the catalytic residues (D89, E102 and K122) are highly conserved among the known viral endonucleases, LASV L endonuclease structure shows some notable differences. Our data collected from in vitro endonuclease assays and a reporter-based LASV minigenome transcriptional assay in mammalian cells confirm structural prediction of LASV L173 as an active endonuclease. The high-resolution structure of the LASV L endonuclease domain in complex with magnesium ions should aid the development of antivirals against lethal Lassa hemorrhagic fever.

  9. Abnormal splicing in the N-terminal variable region of cardiac troponin T impairs systolic function of the heart with preserved Frank-Starling compensation.

    Science.gov (United States)

    Feng, Han-Zhong; Chen, Guozhen; Nan, Changlong; Huang, Xupei; Jin, Jian-Ping

    2014-09-01

    Abnormal splice-out of the exon 7-encoded segment in the N-terminal variable region of cardiac troponin T (cTnT-ΔE7) was found in turkeys and, together with the inclusion of embryonic exon (eTnT), in adult dogs with a correlation with dilated cardiomyopathy. Overexpression of these cTnT variants in transgenic mouse hearts significantly decreased cardiac function. To further investigate the functional effect of cTnT-ΔE7 or ΔE7+eTnT in vivo under systemic regulation, echocardiography was carried out in single and double-transgenic mice. No atrial enlargement, ventricular hypertrophy or dilation was detected in the hearts of 2-month-old cTnT-ΔE7 and ΔE7+eTnT mice in comparison to wild-type controls, indicating a compensated state. However, left ventricular fractional shortening and ejection fraction were decreased in ΔE7 and ΔE7+eTnT mice, and the response to isoproterenol was lower in ΔE7+eTnT mice. Left ventricular outflow tract velocity and gradient were decreased in the transgenic mouse hearts, indicating decreased systolic function. Ex vivo working heart function showed that high afterload or low preload resulted in more severe decreases in the systolic function and energetic efficiency of cTnT-ΔE7 and ΔE7+eTnT hearts. On the other hand, increases in preload demonstrated preserved Frank-Starling responses and minimized the loss of cardiac function and efficiency. The data demonstrate that the N-terminal variable region of cardiac TnT regulates systolic function of the heart.

  10. Characterization of amino acid residues within the N-terminal region of Ubc9 that play a role in Ubc9 nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Sekhri, Palak [Department of Biological Sciences, Wayne State University, 5947 Gullen Mall, Detroit, MI 48202 (United States); Tao, Tao [School of Life Sciences, Xiamen University, Xiamen (China); Kaplan, Feige [Department of Human Genetics, McGill University, Montreal (Canada); Zhang, Xiang-Dong, E-mail: xzhang@wayne.edu [Department of Biological Sciences, Wayne State University, 5947 Gullen Mall, Detroit, MI 48202 (United States)

    2015-02-27

    As the sole E2 enzyme for SUMOylation, Ubc9 is predominantly nuclear. However, the underlying mechanisms of Ubc9 nuclear localization are still not well understood. Here we show that RNAi-depletion of Imp13, an importin known to mediate Ubc9 nuclear import, reduces both Ubc9 nuclear accumulation and global SUMOylation. Furthermore, Ubc9-R13A or Ubc9-H20D mutation previously shown to interrupt the interaction of Ubc9 with nucleus-enriched SUMOs reduces the nuclear enrichment of Ubc9, suggesting that the interaction of Ubc9 with the nuclear SUMOs may enhance Ubc9 nuclear retention. Moreover, Ubc9-R17E mutation, which is known to disrupt the interaction of Ubc9 with both SUMOs and Imp13, causes a greater decrease in Ubc9 nuclear accumulation than Ubc9-R13A or Ubc9-H20D mutation. Lastly, Ubc9-K74A/S89D mutations that perturb the interaction of Ubc9 with nucleus-enriched SUMOylation-consensus motifs has no effect on Ubc9 nuclear localization. Altogether, our results have elucidated that the amino acid residues within the N-terminal region of Ubc9 play a pivotal role in regulation of Ubc9 nuclear localization. - Highlights: • Imp13-mediated nuclear import of Ubc9 is critical for global SUMOylation. • Ubc9 mutations disrupting Ubc9-SUMO interaction decrease Ubc9 nuclear accumulation. • N-terminal amino acid residues of Ubc9 are critical for Ubc9 nuclear enrichment.

  11. Mountains and Tropical Circulation

    Science.gov (United States)

    Naiman, Z.; Goodman, P. J.; Krasting, J. P.; Malyshev, S.; Russell, J. L.; Stouffer, R. J.

    2015-12-01

    Observed tropical convection exhibits zonal asymmetries that strongly influence spatial precipitation patterns. The drivers of changes to this zonally-asymmetric Walker circulation on decadal and longer timescales have been the focus of significant recent research. Here we use two state-of-the-art earth system models to explore the impact of earth's mountains on the Walker circulation. When all land-surface topography is removed, the Walker circulation weakens by 33-59%. There is a ~30% decrease in global, large-scale upward vertical wind velocities in the middle of the troposphere, but only minor changes in global average convective mass flux, precipitation, surface and sea-surface temperatures. The zonally symmetric Hadley circulation is also largely unchanged. Following the spatial pattern of changes to large-scale vertical wind velocities, precipitation becomes less focused over the tropics. The weakening of the Walker circulation, but not the Hadley circulation, is similar to the behavior of climate models during radiative forcing experiments: in our simulations, the weakening is associated with changes in vertical wind velocities, rather than the hydrologic cycle. These results indicate suggest that mountain heights may significantly influence the Walker circulation on geologic time scales, and observed changes in tropical precipitation over millions of years may have been forced by changes in tropical orography.

  12. Alzheimer's Aβ peptides with disease-associated N-terminal modifications: influence of isomerisation, truncation and mutation on Cu2+ coordination.

    Directory of Open Access Journals (Sweden)

    Simon C Drew

    Full Text Available BACKGROUND: The amyloid-β (Aβ peptide is the primary component of the extracellular senile plaques characteristic of Alzheimer's disease (AD. The metals hypothesis implicates redox-active copper ions in the pathogenesis of AD and the Cu(2+ coordination of various Aβ peptides has been widely studied. A number of disease-associated modifications involving the first 3 residues are known, including isomerisation, mutation, truncation and cyclisation, but are yet to be characterised in detail. In particular, Aβ in plaques contain a significant amount of truncated pyroglutamate species, which appear to correlate with disease progression. METHODOLOGY/PRINCIPAL FINDINGS: We previously characterised three Cu(2+/Aβ1-16 coordination modes in the physiological pH range that involve the first two residues. Based upon our finding that the carbonyl of Ala2 is a Cu(2+ ligand, here we speculate on a hypothetical Cu(2+-mediated intramolecular cleavage mechanism as a source of truncations beginning at residue 3. Using EPR spectroscopy and site-specific isotopic labelling, we have also examined four Aβ peptides with biologically relevant N-terminal modifications, Aβ1[isoAsp]-16, Aβ1-16(A2V, Aβ3-16 and Aβ3[pE]-16. The recessive A2V mutation preserved the first coordination sphere of Cu(2+/Aβ, but altered the outer coordination sphere. Isomerisation of Asp1 produced a single dominant species involving a stable 5-membered Cu(2+ chelate at the amino terminus. The Aβ3-16 and Aβ3[pE]-16 peptides both exhibited an equilibrium between two Cu(2+ coordination modes between pH 6-9 with nominally the same first coordination sphere, but with a dramatically different pH dependence arising from differences in H-bonding interactions at the N-terminus. CONCLUSIONS/SIGNIFICANCE: N-terminal modifications significantly influence the Cu(2+ coordination of Aβ, which may be critical for alterations in aggregation propensity, redox-activity, resistance to degradation and the

  13. Alkaline proteinase inhibitor of Pseudomonas aeruginosa: a mutational and molecular dynamics study of the role of N-terminal residues in the inhibition of Pseudomonas alkaline proteinase.

    Science.gov (United States)

    Feltzer, Rhona E; Trent, John O; Gray, Robert D

    2003-07-11

    Alkaline proteinase inhibitor of Pseudomonas aeruginosa is a 11.5-kDa, high affinity inhibitor of the serralysin class of zinc-dependent proteinases secreted by several Gram-negative bacteria. X-ray crystallography of the proteinase-inhibitor complex reveals that five N-terminal inhibitor residues occupy the extended substrate binding site of the enzyme and that the catalytic zinc is chelated by the alpha-amino and carbonyl groups of the N-terminal residue of the inhibitor. In this study, we assessed the effect of alteration of inhibitor residues 2-5 on its affinity for Pseudomonas alkaline proteinase (APR) as derived from the ratio of the dissociation and associate rate constants for formation of the enzyme-inhibitor complex. The largest effect was observed at position Ser-2, which occupies the S1' pocket of the enzyme and donates a hydrogen bond to the carboxyl group of the catalytic Glu-177 of the proteinase. Substitution of Asp, Arg, or Trp at this position increased the dissociation constant KD by 35-, 180-, and 13-fold, respectively. Mutation at positions 3-5 of the trunk also resulted in a reduction in enzyme-inhibitor affinity, with the exception of an I4W mutant, which exhibited a 3-fold increase in affinity. Molecular dynamics simulation of the complex formation between the catalytic domain of APR and the S2D mutant showed that the carboxyl of Asp-2 interacts with the catalytic zinc, thereby partially neutralizing the negative charge that otherwise would clash with the carboxyl group of Glu-177 of APR. Simulation of the interaction between the alkaline proteinase and the I4W mutant revealed a major shift in the loop comprised of residues 189-200 of the enzyme that allowed formation of a stacking interaction between the aromatic rings of Ile-4 of the inhibitor and Tyr-158 of the proteinase. This new interaction could account for the observed increase in enzyme-inhibitor affinity.

  14. Three in-frame N-terminally different proteins are produced from the repressor locus of the Streptomyces bacteriophage phi C31.

    Science.gov (United States)

    Smith, M C; Owen, C E

    1991-11-01

    The sequence of the repressor locus, c, of the Streptomyces temperate phage, phi C31, was shown previously to contain an open reading frame encoding a 74 kDa protein. Further analysis of the transcriptional and translational products of the c gene shows a more complex pattern of expression. A nest of three in-frame N-terminally different, C-terminally identical proteins of 74, 54 and 42 kDa were found to be expressed from a corresponding nest of transcripts. The repressor proteins were produced in Escherichia coli and the 42 kDa protein was purified, verified by N-terminal sequencing, and used to raise antibody. The antibody cross-reacted in Western blots with the 74, 54 and 42 kDa proteins expressed in E. coli and Streptomyces lividans and from Streptomyces coelicolor phi C31 lysogens. Analysis of transcription of the c gene by S1 mapping and primer extension showed that the nest of transcripts encoding the repressor protein were induced after heat treatment of the cts locus (Sinclair and Bibb, 1989; this paper). Correspondingly, all three of the repressor proteins were induced. In addition to a promoter, cp1, which lies upstream of the 74 kDa open reading frame, the c locus contained at least one internal promoter, cp2, which transcribes DNA encoding the 54 and 42 kDa proteins. Transcripts initiating from cp3 were observed in RNA preparations from S. lividans containing the c gene deleted for cp1 and cp2, but gene fusions using DNA which should contain any putative promoting activity from this region transcriptionally fused to the xylE gene showed very low levels of expression of catechol 2,3 dioxygenase in S. lividans. The 74 kDa protein was not necessary for super-infection immunity. Data described here and current knowledge of the nature of other 'dual start' genes suggest a model for the regulation of lysis versus lysogeny in phi C31.

  15. Bunyaviridae RNA polymerases (L-protein have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription.

    Directory of Open Access Journals (Sweden)

    Juan Reguera

    Full Text Available Bunyaviruses are a large family of segmented RNA viruses which, like influenza virus, use a cap-snatching mechanism for transcription whereby short capped primers derived by endonucleolytic cleavage of host mRNAs are used by the viral RNA-dependent RNA polymerase (L-protein to transcribe viral mRNAs. It was recently shown that the cap-snatching endonuclease of influenza virus resides in a discrete N-terminal domain of the PA polymerase subunit. Here we structurally and functionally characterize a similar endonuclease in La Crosse orthobunyavirus (LACV L-protein. We expressed N-terminal fragments of the LACV L-protein and found that residues 1-180 have metal binding and divalent cation dependent nuclease activity analogous to that of influenza virus endonuclease. The 2.2 A resolution X-ray crystal structure of the domain confirms that LACV and influenza endonucleases have similar overall folds and identical two metal binding active sites. The in vitro activity of the LACV endonuclease could be abolished by point mutations in the active site or by binding 2,4-dioxo-4-phenylbutanoic acid (DPBA, a known influenza virus endonuclease inhibitor. A crystal structure with bound DPBA shows the inhibitor chelating two active site manganese ions. The essential role of this endonuclease in cap-dependent transcription was demonstrated by the loss of transcriptional activity in a RNP reconstitution system in cells upon making the same point mutations in the context of the full-length LACV L-protein. Using structure based sequence alignments we show that a similar endonuclease almost certainly exists at the N-terminus of L-proteins or PA polymerase subunits of essentially all known negative strand and cap-snatching segmented RNA viruses including arenaviruses (2 segments, bunyaviruses (3 segments, tenuiviruses (4-6 segments, and orthomyxoviruses (6-8 segments. This correspondence, together with the well-known mapping of the conserved polymerase motifs to the

  16. Influenza A virus virulence depends on two amino acids in the N-terminal domain of its NS1 protein facilitating inhibition of PKR.

    Science.gov (United States)

    Schierhorn, Kristina L; Jolmes, Fabian; Bespalowa, Julia; Saenger, Sandra; Peteranderl, Christin; Dzieciolowski, Julia; Budt, Matthias; Pleschka, Stephan; Herrmann, Andreas; Herold, Susanne; Wolff, Thorsten

    2017-03-01

    The RNA-dependent protein kinase (PKR) has broad antiviral activity inducing translational shut-down of viral and cellular genes and is therefore targeted by various viral proteins to facilitate pathogen propagation. The pleiotropic NS1 protein of influenza A virus acts as silencer of PKR activation and ascertains high level viral replication and virulence. However, the exact way of this inhibition remains controversial. To elucidate the structural requirements within the NS1 protein for PKR inhibition, we generated a set of mutant viruses identifying highly conserved arginine residues 35 and 46 within the NS1 N-terminus as being most critical not only for binding to and blocking activation of PKR, but also for efficient virus propagation. Biochemical and FRET-based interaction studies showed that mutation of each of R35 or R46 allowed formation of NS1 dimers, but eliminated any detectable binding to PKR as well as to dsRNA. Using in vitro and in vivo approaches of phenotypic restoration we demonstrate the essential role of the NS1 N-terminus for blocking PKR. The strong attenuation conferred by NS1 mutations R35A or R46A was substantially alleviated by stable knock-down of PKR in human cells. Intriguingly, both NS1 mutant viruses did not trigger any signs of disease in PKR(+/+) mice, but replicated to high titers in lungs of PKR(-/-) mice and caused lethal infections. These data not only establish the NS1 N-terminus as highly critical for neutralization of PKR's antiviral activity, but also identify this blockade as an indispensable contribution of NS1 to the viral life cycle.IMPORTANCE Influenza A virus inhibits activation of the RNA-dependent protein kinase PKR by means of its non-structural NS1 protein, but the underlying mode of inhibition is debated. Using mutational analysis, we identify arginine residues 35 and 46 within the N-terminal NS1 domain as highly critical for binding to and functional silencing of PKR. In addition, our data show that this is a

  17. Learning Circulant Sensing Kernels

    Science.gov (United States)

    2014-03-01

    learned dictionaries. Examples of analytic dictionaries include the discrete cosine basis, various wavelets bases , as well as tight frames. Some of them...Compressive sensing based high resolution channel estimation for OFDM system. To appear in IEEE Journal of Selected Topics in Signal Processing, Special...theoretical and computational properties to a (partial) circulant matrix of the same size, our discussions below are based exclusively on the circulant

  18. Joint detection of troponin T,high sensitivity C-reactive protein,N-terminal probrain natriuretic peptide applied in the diagnosis of acute coronary syndrome for elderly patients

    Institute of Scientific and Technical Information of China (English)

    赵月霞

    2012-01-01

    Objective To investigate the value of the joint detection of Troponin T(TnT) ,highsensitivity C-reactive protein (hs-CRP) and N-terminal probrain natriuretic peptide(NT-proBNP) for the clinical diagnosis of acute coronary syndrome(ACS) in elderly patients.

  19. Growth arrest- and DNA-damage-inducible 45beta gene inhibits c-Jun N-terminal kinase and extracellular signal-regulated kinase and decreases IL-1beta-induced apoptosis in insulin-producing INS-1E cells

    DEFF Research Database (Denmark)

    Larsen, Claus Morten; Døssing, M G; Papa, S;

    2006-01-01

    IL-1beta is a candidate mediator of apoptotic beta cell destruction, a process that leads to type 1 diabetes and progression of type 2 diabetes. IL-1beta activates beta cell c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38, all of which are members of the mitogen...

  20. Ligand-controlled interaction of histone acetyltransferase binding to ORC-1 (HBO1) with the N-terminal transactivating domain of progesterone receptor induces steroid receptor coactivator 1-dependent coactivation of transcription

    NARCIS (Netherlands)

    M. Georgiakaki (Maria); L.J. Blok (Leen); R. Milgrom (Roni); M. Lombès (Marc); A. Guiochon-Mantel (Anne); H. Loosfelt (Hugues); N. Chabbert-Buffet (Nathalie); B. Dasen (Boris); G. Meduri (Geri); S. Wenk (Sandra); L. Rajhi (Leila); L. Amazit (Larbi); A. Chauchereau (Anne); C.W. Burger (Curt)

    2006-01-01

    textabstractModulators of cofactor recruitment by nuclear receptors are expected to play an important role in the coordination of hormone-induced transactivation processes. To identify such factors interacting with the N-terminal domain (NTD) of the progesterone receptor (PR), we used this domain as

  1. Structure-based rationale for differential recognition of lacto- and neolacto- series glycosphingolipids by the N-terminal domain of human galectin-8

    Science.gov (United States)

    Bohari, Mohammad H.; Yu, Xing; Zick, Yehiel; Blanchard, Helen

    2016-12-01

    Glycosphingolipids are ubiquitous cell surface molecules undertaking fundamental cellular processes. Lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT) are the representative core structures for lacto- and neolacto-series glycosphingolipids. These glycolipids are the carriers to the blood group antigen and human natural killer antigens mainly found on blood cells, and are also principal components in human milk, contributing to infant health. The β-galactoside recognising galectins mediate various cellular functions of these glycosphingolipids. We report crystallographic structures of the galectin-8 N-terminal domain (galectin-8N) in complex with LNT and LNnT. We reveal the first example in which the non-reducing end of LNT binds to the primary binding site of a galectin, and provide a structure-based rationale for the significant ten-fold difference in binding affinities of galectin-8N toward LNT compared to LNnT, such a magnitude of difference not being observed for any other galectin. In addition, the LNnT complex showed that the unique Arg59 has ability to adopt a new orientation, and comparison of glycerol- and lactose-bound galectin-8N structures reveals a minimum atomic framework for ligand recognition. Overall, these results enhance our understanding of glycosphingolipids interactions with galectin-8N, and highlight a structure-based rationale for its significantly different affinity for components of biologically relevant glycosphingolipids.

  2. The N-terminal domain of the Drosophila retinoblastoma protein Rbf1 interacts with ORC and associates with chromatin in an E2F independent manner.

    Directory of Open Access Journals (Sweden)

    Joseph Ahlander

    Full Text Available BACKGROUND: The retinoblastoma (Rb tumor suppressor protein can function as a DNA replication inhibitor as well as a transcription factor. Regulation of DNA replication may occur through interaction of Rb with the origin recognition complex (ORC. PRINCIPAL FINDINGS: We characterized the interaction of Drosophila Rb, Rbf1, with ORC. Using expression of proteins in Drosophila S2 cells, we found that an N-terminal Rbf1 fragment (amino acids 1-345 is sufficient for Rbf1 association with ORC but does not bind to dE2F1. We also found that the C-terminal half of Rbf1 (amino acids 345-845 interacts with ORC. We observed that the amino-terminal domain of Rbf1 localizes to chromatin in vivo and associates with chromosomal regions implicated in replication initiation, including colocalization with Orc2 and acetylated histone H4. CONCLUSIONS/SIGNIFICANCE: Our results suggest that Rbf1 can associate with ORC and chromatin through domains independent of the E2F binding site. We infer that Rbf1 may play a role in regulating replication directly through its association with ORC and/or chromatin factors other than E2F. Our data suggest an important role for retinoblastoma family proteins in cell proliferation and tumor suppression through interaction with the replication initiation machinery.

  3. Diversified Structural Basis of a Conserved Molecular Mechanism for pH-Dependent Dimerization in Spider Silk N-Terminal Domains.

    Science.gov (United States)

    Otikovs, Martins; Chen, Gefei; Nordling, Kerstin; Landreh, Michael; Meng, Qing; Jörnvall, Hans; Kronqvist, Nina; Rising, Anna; Johansson, Jan; Jaudzems, Kristaps

    2015-08-17

    Conversion of spider silk proteins from soluble dope to insoluble fibers involves pH-dependent dimerization of the N-terminal domain (NT). This conversion is tightly regulated to prevent premature precipitation and enable rapid silk formation at the end of the duct. Three glutamic acid residues that mediate this process in the NT from Euprosthenops australis major ampullate spidroin 1 are well conserved among spidroins. However, NTs of minor ampullate spidroins from several species, including Araneus ventricosus ((Av)MiSp NT), lack one of the glutamic acids. Here we investigate the pH-dependent structural changes of (Av)MiSp NT, revealing that it uses the same mechanism but involves a non-conserved glutamic acid residue instead. Homology modeling of the structures of other MiSp NTs suggests that these harbor different compensatory residues. This indicates that, despite sequence variations, the molecular mechanism underlying pH-dependent dimerization of NT is conserved among different silk types.

  4. Pharmacological Inhibition of c-Jun N-terminal Kinase Reduces Food Intake and Sensitizes Leptin’s Anorectic Signaling Actions

    Science.gov (United States)

    Gao, Su; Howard, Shannon; LoGrasso, Philip V.

    2017-01-01

    The role for c-Jun N-terminal Kinase (JNK) in the control of feeding and energy balance is not well understood. Here, by use of novel and highly selective JNK inhibitors, we investigated the actions of JNK in the control of feeding and body weight homeostasis. In lean mice, intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) administration of SR-3306, a brain-penetrant and selective pan-JNK (JNK1/2/3) inhibitor, reduced food intake and body weight. Moreover, i.p. and i.c.v. administrations of SR11935, a brain-penetrant and JNK2/3 isoform-selective inhibitor, exerted similar anorectic effects as SR3306, which suggests JNK2 or JNK3 mediates aspect of the anorectic effect by pan-JNK inhibition. Furthermore, daily i.p. injection of SR3306 (7 days) prevented the increases in food intake and weight gain in lean mice upon high-fat diet feeding, and this injection paradigm reduced high-fat intake and obesity in diet-induced obese (DIO) mice. In the DIO mice, JNK inhibition sensitized leptin’s anorectic effect, and enhanced leptin-induced STAT3 activation in the hypothalamus. The underlying mechanisms likely involve the downregulation of SOCS3 by JNK inhibition. Collectively, our data suggest that JNK activity promotes positive energy balance, and the therapeutic intervention inhibiting JNK activities represents a promising approach to ameliorate diet-induced obesity and leptin resistance. PMID:28165482

  5. Crystal Structure of the Nephila clavipes Major Ampullate Spidroin 1A N-terminal Domain Reveals Plasticity at the Dimer Interface.

    Science.gov (United States)

    Atkison, James H; Parnham, Stuart; Marcotte, William R; Olsen, Shaun K

    2016-09-02

    Spider dragline silk is a natural polymer harboring unique physical and biochemical properties that make it an ideal biomaterial. Artificial silk production requires an understanding of the in vivo mechanisms spiders use to convert soluble proteins, called spidroins, into insoluble fibers. Controlled dimerization of the spidroin N-terminal domain (NTD) is crucial to this process. Here, we report the crystal structure of the Nephila clavipes major ampullate spidroin NTD dimer. Comparison of our N. clavipes NTD structure with previously determined Euprosthenops australis NTD structures reveals subtle conformational alterations that lead to differences in how the subunits are arranged at the dimer interface. We observe a subset of contacts that are specific to each ortholog, as well as a substantial increase in asymmetry in the interactions observed at the N. clavipes NTD dimer interface. These asymmetric interactions include novel intermolecular salt bridges that provide new insights into the mechanism of NTD dimerization. We also observe a unique intramolecular "handshake" interaction between two conserved acidic residues that our data suggest adds an additional layer of complexity to the pH-sensitive relay mechanism for NTD dimerization. The results of a panel of tryptophan fluorescence dimerization assays probing the importance of these interactions support our structural observations. Based on our findings, we propose that conformational selectivity and plasticity at the NTD dimer interface play a role in the pH-dependent transition of the NTD from monomer to stably associated dimer as the spidroin progresses through the silk extrusion duct.

  6. Protective Effect of Lupeol Against Lipopolysaccharide-Induced Neuroinflammation via the p38/c-Jun N-Terminal Kinase Pathway in the Adult Mouse Brain.

    Science.gov (United States)

    Badshah, Haroon; Ali, Tahir; Shafiq-ur Rehman; Faiz-ul Amin; Ullah, Faheem; Kim, Tae Hyun; Kim, Myeong Ok

    2016-03-01

    Recent studies have demonstrated a close interaction between neuroinflammatory responses, increased production of inflammatory mediators, and neurodegeneration. Pathological findings in neurological diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease have shown common signs of neuroinflammation and neurodegeneration. Lupeol, a natural pentacyclic triterpene, has revealed a number of pharmacological properties including an anti-inflammatory activity. This study aimed to evaluate the effect of lupeol against lipopolysaccharide (LPS)-induced neuroinflammation in the cortex and hippocampus of adult mice. Our results showed that systemic administration of LPS induced glial cell production of proinflammatory cytokines, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), and interleukin (IL)-1β, while co-treatment with lupeol significantly inhibited the LPS-induced activation of microglia and astrocytes, and decreased the LPS-induced generation of TNF-α, iNOS, and IL-1β. The intracellular mechanism involved in the LPS-induced activation of inflammatory responses includes phosphorylation of P38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK), which was significantly inhibited by lupeol. We further elucidated that lupeol inhibited the LPS-induced activation of the mitochondrial apoptotic pathway and reversed the LPS-induced expression of apoptotic markers such as Bax, cytochrome C, caspase-9, and caspase-3. Taken together; our results suggest that lupeol inhibits LPS-induced microglial neuroinflammation via the P38-MAPK and JNK pathways and has therapeutic potential to treat various neuroinflammatory disorders.

  7. The Caenorhabditis elegans Ste20-related kinase and Rac-type small GTPase regulate the c-Jun N-terminal kinase signaling pathway mediating the stress response.

    Science.gov (United States)

    Fujiki, Kota; Mizuno, Tomoaki; Hisamoto, Naoki; Matsumoto, Kunihiro

    2010-02-01

    Mitogen-activated protein kinases (MAPKs) are integral to the mechanisms by which cells respond to physiological stimuli and a wide variety of environmental stresses. In Caenorhabditis elegans, the stress response is controlled by a c-Jun N-terminal kinase (JNK)-like MAPK signaling pathway, which is regulated by MLK-1 MAPK kinase kinase (MAPKKK), MEK-1 MAPKK, and KGB-1 JNK-like MAPK. In this study, we identify the max-2 gene encoding a C. elegans Ste20-related protein kinase as a component functioning upstream of the MLK-1-MEK-1-KGB-1 pathway. The max-2 loss-of-function mutation is defective in activation of KGB-1, resulting in hypersensitivity to heavy metals. Biochemical analysis reveals that MAX-2 activates MLK-1 through direct phosphorylation of a specific residue in the activation loop of the MLK-1 kinase domain. Our genetic data presented here also show that MIG-2 small GTPase functions upstream of MAX-2 in the KGB-1 pathway. These results suggest that MAX-2 and MIG-2 play a crucial role in mediating the heavy metal stress response regulated by the KGB-1 pathway.

  8. The phosphatidylinositol 3-kinase/Akt and c-Jun N-terminal kinase signaling in cancer: Alliance or contradiction? (Review).

    Science.gov (United States)

    Zhao, Hua-Fu; Wang, Jing; Tony To, Shing-Shun

    2015-08-01

    The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway and c-Jun N-terminal kinase (JNK) pathway are responsible for regulating a variety of cellular processes including cell growth, migration, invasion and apoptosis. These two pathways are essential to the development and progression of tumors. The dual roles of JNK signaling in apoptosis and tumor development determine the different interactions between the PI3K/Akt and JNK pathways. Activation of PI3K/Akt signaling can inhibit stress- and cytokine-induced JNK activation through Akt antagonizing and the formation of the JIP1-JNK module, as well as the activities of upstream kinases ASK1, MKK4/7 and MLK. On the other hand, hyperactivation of Akt and JNK is also found in cancers that harbor EGFR overexpression or loss of PTEN. Understanding the activation mechanism of PI3K/Akt and JNK pathways, as well as the interplays between these two pathways in cancer may contribute to the identification of novel therapeutic targets. In the present report, we summarized the current understanding of the PI3K/Akt and JNK signaling networks, as well as their biological roles in cancers. In addition, the interactions and regulatory network between PI3K/Akt and JNK pathways in cancer were discussed.

  9. Inhibition of Apoptosis in Prostate Cancer Cells by Androgens Is Mediated through Downregulation of c-Jun N-terminal Kinase Activation

    Directory of Open Access Journals (Sweden)

    Petra Isabel Lorenzo

    2008-05-01

    Full Text Available Androgen deprivation induces the regression of prostate tumors mainly due to an increase in the apoptosis rate; however, the molecular mechanisms underlying the antiapoptotic actions of androgens are not completely understood. We have studied the antiapoptotic effects of androgens in prostate cancer cells exposed to different proapoptotic stimuli. Terminal deoxynucleotidyl transferase-mediated nick-end labeling and nuclear fragmentation analyses demonstrated that androgens protect LNCaP prostate cancer cells from apoptosis induced by thapsigargin, the phorbol ester 12-O-tetradecanoyl-13-phorbol-acetate, or UV irradiation. These three stimuli require the activation of the c-Jun N-terminal kinase (JNK pathway to induce apoptosis and in all three cases, androgen treatment blocks JNK activation. Interestingly, okadaic acid, a phosphatase inhibitor that causes apoptosis in LNCaP cells, induces JNK activation that is also inhibited by androgens. Actinomycin D, the antiandrogen bicalutamide or specific androgen receptor (AR knockdown by small interfering RNA all blocked the inhibition of JNK activation mediated by androgens indicating that this activity requires AR-dependent transcriptional activation. These data suggest that the crosstalk between AR and JNK pathways may have important implications in prostate cancer progression and may provide targets for the development of new therapies.

  10. Role of Jun N-terminal Kinase (JNK) signaling in the wound healing and regeneration of a Drosophila melanogaster wing imaginal disc.

    Science.gov (United States)

    Mattila, Jaakko; Omelyanchuk, Leonid; Kyttälä, Satu; Turunen, Heikki; Nokkala, Seppo

    2005-01-01

    When a fragment of a Drosophila imaginal disc is cultured in growth permissive conditions, it either regenerates the missing structures or duplicates the pattern present in the fragment. This kind of pattern regulation is known to be epimorphic, i.e. the new pattern is generated by proliferation in a specialized tissue called the blastema. Pattern regulation is accompanied by the healing of the cut surfaces restoring the continuous epithelia. Wound healing has been considered to be the inductive signal to commence regenerative cell divisions. Although the general outlines of the proliferation dynamics in a regenerating imaginal disc blastema have been well studied, little is known about the mechanisms driving cells into the regenerative cell cycles. In this study, we have investigated the role of Jun N-terminal Kinase (JNK) signaling in the wound healing and regeneration of a Drosophila wing imaginal disc. By utilizing in vivo and in vitro culturing of incised and fragmented discs, we have been able to visualize the dynamics in cellular architecture and gene expression involved in the healing and regeneration process. Our results directly show that homotypic wound healing is not a prerequisite for regenerative cell divisions. We also show that JNK signaling participates in imaginal disc wound healing and is regulated by the physical dynamics of the process, as well as in recruiting cells into the regenerative cell cycles. A model describing the determination of blastema size is discussed.

  11. A specific isoform of poly(ADP-ribose) glycohydrolase is targeted to the mitochondrial matrix by a N-terminal mitochondrial targeting sequence

    Energy Technology Data Exchange (ETDEWEB)

    Whatcott, Clifford J. [Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, Tucson, AZ 85728 (United States); Meyer-Ficca, Mirella L.; Meyer, Ralph G. [Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, NBC Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania, Kennett Square, PA 19348 (United States); Jacobson, Myron K., E-mail: mjacobson@pharmacy.arizona.edu [Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, Tucson, AZ 85728 (United States)

    2009-12-10

    Poly(ADP-ribose) polymerases (PARPs) convert NAD to polymers of ADP-ribose that are converted to free ADP-ribose by poly(ADP-ribose) glycohydrolase (PARG). The activation of the nuclear enzyme PARP-1 following genotoxic stress has been linked to release of apoptosis inducing factor from the mitochondria, but the mechanisms by which signals are transmitted between nuclear and mitochondrial compartments are not well understood. The study reported here has examined the relationship between PARG and mitochondria in HeLa cells. Endogenous PARG associated with the mitochondrial fraction migrated in the range of 60 kDa. Transient transfection of cells with PARG expression constructs with amino acids encoded by exon 4 at the N-terminus was targeted to the mitochondria as demonstrated by subcellular fractionation and immunofluorescence microscopy of whole cells. Deletion and missense mutants allowed identification of a canonical N-terminal mitochondrial targeting sequence consisting of the first 16 amino acids encoded by PARG exon 4. Sub-mitochondrial localization experiments indicate that this mitochondrial PARG isoform is targeted to the mitochondrial matrix. The identification of a PARG isoform as a component of the mitochondrial matrix raises several interesting possibilities concerning mechanisms of nuclear-mitochondrial cross talk involved in regulation of cell death pathways.

  12. Electrostatics analysis of the mutational and pH effects of the N-terminal domain self-association of the major ampullate spidroin.

    Science.gov (United States)

    Barroso da Silva, Fernando Luís; Pasquali, Samuela; Derreumaux, Philippe; Dias, Luis Gustavo

    2016-07-07

    Spider silk is a fascinating material combining mechanical properties such as maximum strength and high toughness comparable or better than man-made materials, with biocompatible degradability characteristics. Experimental measurements have shown that pH triggers the dimer formation of the N-terminal domain (NTD) of the major ampullate spidroin 1 (MaSp 1). A coarse-grained model accounting for electrostatics, van der Waals and pH-dependent charge-fluctuation interactions, by means of Monte Carlo simulations, gave us a more comprehensive view of the NTD dimerization process. A detailed analysis of the electrostatic properties and free energy derivatives for the NTD homoassociation was carried out at different pH values and salt concentrations for the protein wild type and for several mutants. We observed an enhancement of dipole-dipole interactions at pH 6 due to the ionization of key amino acids, a process identified as the main driving force for dimerization. Analytical estimates based on the DVLO theory framework corroborate our findings. Molecular dynamics simulations using the OPEP coarse-grained force field for proteins show that the mutant E17Q is subject to larger structural fluctuations when compared to the wild type. Estimates of the association rate constants for this mutant were evaluated by the Debye-Smoluchowski theory and are in agreement with the experimental data when thermally relaxed structures are used instead of the crystallographic data. Our results can contribute to the design of new mutants with specific association properties.

  13. Hexokinase I N-terminal based peptide prevents the VDAC1-SOD1 G93A interaction and re-establishes ALS cell viability

    Science.gov (United States)

    Magrì, Andrea; Belfiore, Ramona; Reina, Simona; Tomasello, Marianna Flora; Di Rosa, Maria Carmela; Guarino, Francesca; Leggio, Loredana; De Pinto, Vito; Messina, Angela

    2016-01-01

    Superoxide Dismutase 1 mutants associate with 20–25% of familial Amyotrophic Lateral Sclerosis (ALS) cases, producing toxic aggregates on mitochondria, notably in spinal cord. The Voltage Dependent Anion Channel isoform 1 (VDAC1) in the outer mitochondrial membrane is a docking site for SOD1 G93A mutant in ALS mice and the physiological receptor of Hexokinase I (HK1), which is poorly expressed in mouse spinal cord. Our results demonstrate that HK1 competes with SOD1 G93A for binding VDAC1, suggesting that in ALS spinal cord the available HK1-binding sites could be used by SOD1 mutants for docking mitochondria, producing thus organelle dysfunction. We tested this model by studying the action of a HK1-N-terminal based peptide (NHK1). This NHK1 peptide specifically interacts with VDAC1, inhibits the SOD1 G93A binding to mitochondria and restores the viability of ALS model NSC34 cells. Altogether, our results suggest that NHK1 peptide could be developed as a therapeutic tool in ALS, predicting an effective role also in other proteinopathies. PMID:27721436

  14. Insights into the Function of the Unstructured N-Terminal Domain of Proteins 4.1R and 4.1G in Erythropoiesis

    Directory of Open Access Journals (Sweden)

    Wataru Nunomura

    2011-01-01

    Full Text Available Membrane skeletal protein 4.1R is the prototypical member of a family of four highly paralogous proteins that include 4.1G, 4.1N, and 4.1B. Two isoforms of 4.1R (4.1R135 and 4.1R80, as well as 4.1G, are expressed in erythroblasts during terminal differentiation, but only 4.1R80 is present in mature erythrocytes. One goal in the field is to better understand the complex regulation of cell type and isoform-specific expression of 4.1 proteins. To start answering these questions, we are studying in depth the important functions of 4.1 proteins in the organization and function of the membrane skeleton in erythrocytes. We have previously reported that the binding profiles of 4.1R80 and 4.1R135 to membrane proteins and calmodulin are very different despite the similar structure of the membrane-binding domain of 4.1G and 4.1R135. We have accumulated evidence for those differences being caused by the N-terminal 209 amino acids headpiece region (HP. Interestingly, the HP region is an unstructured domain. Here we present an overview of the differences and similarities between 4.1 isoforms and paralogs. We also discuss the biological significance of unstructured domains.

  15. Is N-terminal pro B-type natriuretic peptide (NT-proBNP) a useful screening test for angiographic findings in patients with stable coronary disease?

    DEFF Research Database (Denmark)

    Kragelund, Charlotte; Grønning, Bjørn; Omland, Torbjørn;

    2006-01-01

    BACKGROUND: Whether N-terminal pro B-type natriuretic peptide (NT-proBNP) is a useful screening tool for angiographic coronary artery disease in patients with angina is not known. Therefore, the purpose of this study was to assess the diagnostic test performance of NT-proBNP in detecting coronary......). The ability of NT-proBNP in detecting clinically significant coronary disease at angiography was modest, however, with sensitivity of 0.61, specificity 0.60, accuracy 61 (95% CI 58-64), positive likelihood ratio 1.5 (95% CI 1.3-1.8), negative likelihood ratio 0.7 (95% CI 0.6-0.8), and area under the ROC curve...... atherosclerotic lesions, as assessed by coronary angiography. METHODS: We examined 1034 patients referred for diagnostic angiography because of symptoms or signs of coronary artery disease. The diagnostic value of NT-proBNP in predicting clinically significant coronary disease was assessed. RESULTS: In a multiple...

  16. TAp73-mediated the activation of c-Jun N-terminal kinase enhances cellular chemosensitivity to cisplatin in ovarian cancer cells.

    Directory of Open Access Journals (Sweden)

    Pingde Zhang

    Full Text Available P73, one member of the tumor suppressor p53 family, shares highly structural and functional similarity to p53. Like p53, the transcriptionally active TAp73 can mediate cellular response to chemotherapeutic agents in human cancer cells by up-regulating the expressions of its pro-apoptotic target genes such as PUMA, Bax, NOXA. Here, we demonstrated a novel molecular mechanism for TAp73-mediated apoptosis in response to cisplatin in ovarian cancer cells, and that was irrespective of p53 status. We found that TAp73 acted as an activator of the c-Jun N-terminal kinase (JNK signaling pathway by up-regulating the expression of its target growth arrest and DNA-damage-inducible protein GADD45 alpha (GADD45α and subsequently activating mitogen-activated protein kinase kinase-4 (MKK4. Inhibition of JNK activity by a specific inhibitor or small interfering RNA (siRNA significantly abrogated TAp73-mediated apoptosis induced by cisplatin. Furthermore, inhibition of GADD45α by siRNA inactivated MKK4/JNK activities and also blocked TAp73-mediated apoptosis induction by cisplatin. Our study has demonstrated that TAp73 activated the JNK apoptotic signaling pathway in response to cisplatin in ovarian cancer cells.

  17. N-terminal pro b-type natriuretic peptide (NT-pro-BNP) -based score can predict in-hospital mortality in patients with heart failure.

    Science.gov (United States)

    Huang, Ya-Ting; Tseng, Yuan-Teng; Chu, Tung-Wei; Chen, John; Lai, Min-Yu; Tang, Woung-Ru; Shiao, Chih-Chung

    2016-07-14

    Serum N-terminal pro b-type natriuretic peptide (NT-pro-BNP) testing is recommended in the patients with heart failure (HF). We hypothesized that NT-pro-BNP, in combination with other clinical factors in terms of a novel NT-pro BNP-based score, may provide even better predictive power for in-hospital mortality among patients with HF. A retrospective study enrolled adult patients with hospitalization-requiring HF who fulfilled the predefined criteria during the period from January 2011 to December 2013. We proposed a novel scoring system consisting of several independent predictors including NT-pro-BNP for predicting in-hospital mortality, and then compared the prognosis-predictive power of the novel NT-pro BNP-based score with other prognosis-predictive scores. A total of 269 patients were enrolled in the current study. Factors such as "serum NT-pro-BNP level above 8100 mg/dl," "age above 79 years," "without taking angiotensin converting enzyme inhibitors/angiotensin receptor blocker," "without taking beta-blocker," "without taking loop diuretics," "with mechanical ventilator support," "with non-invasive ventilator support," "with vasopressors use," and "experience of cardio-pulmonary resuscitation" were found as independent predictors. A novel NT-pro BNP-based score composed of these risk factors was proposed with excellent predictability for in-hospital mortality. The proposed novel NT-pro BNP-based score was extremely effective in predicting in-hospital mortality in HF patients.

  18. Efficient production of HIV-1 virus-like particles from a mammalian expression vector requires the N-terminal capsid domain.

    Directory of Open Access Journals (Sweden)

    Pascal Jalaguier

    Full Text Available It is now well accepted that the structural protein Pr55(Gag is sufficient by itself to produce HIV-1 virus-like particles (VLPs. This polyprotein precursor contains different domains including matrix, capsid, SP1, nucleocapsid, SP2 and p6. In the present study, we wanted to determine by mutagenesis which region(s is essential to the production of VLPs when Pr55(Gag is inserted in a mammalian expression vector, which allows studying the protein of interest in the absence of other viral proteins. To do so, we first studied a minimal Pr55(Gag sequence called Gag min that was used previously. We found that Gag min fails to produce VLPs when expressed in an expression vector instead of within a molecular clone. This failure occurs early in the cell at the assembly of viral proteins. We then generated a series of deletion and substitution mutants, and examined their ability to produce VLPs by combining biochemical and microscopic approaches. We demonstrate that the matrix region is not necessary, but that the efficiency of VLP production depends strongly on the presence of its basic region. Moreover, the presence of the N-terminal domain of capsid is required for VLP production when Gag is expressed alone. These findings, combined with previous observations indicating that HIV-1 Pr55(Gag-derived VLPs act as potent stimulators of innate and acquired immunity, make the use of this strategy worth considering for vaccine development.

  19. Effects of c-Jun N-terminal kinase on Activin A/Smads signaling in PC12 cell suffered from oxygen-glucose deprivation.

    Science.gov (United States)

    Wang, J Q; Xu, Z H; Liang, W Z; He, J T; Cui, Y; Liu, H Y; Xue, L X; Shi, W; Shao, Y K; Mang, J; Xu, Z X

    2016-02-29

    Activin A (Act A), a member of transforming growth factor-β (TGF-β) superfamily, is an early gene in response to cerebral ischemia. Growing evidences confirm the neuroprotective effect of Act A in ischemic injury through Act A/Smads signal activation. In this process, regulation networks are involved in modulating the outcomes of Smads signaling. Among these regulators, crosstalk between c-Jun N-terminal kinase (JNK) and Smads signaling has been found in the TGF-β induced epithelial-mesenchymal transition. However, in neural ischemia, the speculative regulation between JNK and Act A/Smads signaling pathways has not been clarified. To explore this issue, an Oxygen Glucose Deprivation (OGD) model was introduced to nerve-like PC12 cells. We found that JNK signal activation occurred at the early time of OGD injury (1 h). Act A administration suppressed JNK phosphorylation. In addition, JNK inhibition could elevate the strength of Smads signaling and attenuate neural apoptosis after OGD injury. Our results indicated a negative regulation effect of JNK on Smads signaling in ischemic injury. Taken together, JNK, as a critical site for neural apoptosis and negative regulator for Act A/Smads signaling, was presumed to be a molecular therapeutic target for ischemia.

  20. Momordica charantia polysaccharides could protect against cerebral ischemia/reperfusion injury through inhibiting oxidative stress mediated c-Jun N-terminal kinase 3 signaling pathway.

    Science.gov (United States)

    Gong, Juanjuan; Sun, Fumou; Li, Yihang; Zhou, Xiaoling; Duan, Zhenzhen; Duan, Fugang; Zhao, Lei; Chen, Hansen; Qi, Suhua; Shen, Jiangang

    2015-04-01

    Momordica charantia (MC) is a medicinal plant for stroke treatment in Traditional Chinese Medicine, but its active compounds and molecular targets are unknown yet. M. charantia polysaccharide (MCP) is one of the important bioactive components in MC. In the present study, we tested the hypothesis that MCP has neuroprotective effects against cerebral ischemia/reperfusion injury through scavenging superoxide (O2(-)), nitric oxide (NO) and peroxynitrite (ONOO(-)) and inhibiting c-Jun N-terminal protein kinase (JNK3) signaling cascades. We conducted experiments with in vivo global and focal cerebral ischemia/reperfusion rat models and in vitro oxygen glucose deprivation (OGD) neural cells. The effects of MCP on apoptotic cell death and infarction volume, the bioactivities of scavenging O2(-), NO and ONOO(-), inhibiting lipid peroxidation and modulating JNK3 signaling pathway were investigated. Major results are summarized as below: (1) MCP dose-dependently attenuated apoptotic cell death in neural cells under OGD condition in vitro and reduced infarction volume in ischemic brains in vivo; (2) MCP had directing scavenging effects on NO, O2(-) and ONOO(-) and inhibited lipid peroxidation; (3) MCP inhibited the activations of JNK3/c-Jun/Fas-L and JNK3/cytochrome C/caspases-3 signaling cascades in ischemic brains in vivo. Taken together, we conclude that MCP could be a promising neuroprotective ingredient of M. charantia and its mechanisms could be at least in part attributed to its antioxidant activities and inhibiting JNK3 signaling cascades during cerebral ischemia/reperfusion injury.

  1. Effects of new sports tennis type exercise on aerobic capacity, follicle stimulating hormone and N-terminal telopeptide in the postmenopausal women

    Science.gov (United States)

    Shin, Hyun-Jae; Lee, Ha-Yan; Cho, Hye-Young; Park, Yun-Jin; Moon, Hyung-Hoon; Lee, Sung-Hwan; Lee, Sung-Ki; Kim, Myung-Ki

    2014-01-01

    Menopause is characterized by rapid decreases in bone mineral density, aerobic fitness, muscle strength, and balance. In the present study, we investigated the effects of new sports tennis type exercise on aerobic capacity, follicle stimulating hormone (FSH) and N-terminal telopeptide (NTX) in the postmenopausal women. Subjects were consisted of 20 postmenopausal women, who had not menstruated for at least 1 yr and had follicle-stimulating hormone levels > 35 mIU/L, estradiol levels< 40 pg/mL. The subjects were randomly divided into two groups: control group (n= 10), new sports tennis type exercise group (n= 10). New sports tennis type exercise was consisted of warm up (10 min), new sports tennis type exercise (40 min), cool down (10 min) 3 days a per week for 12 weeks. The aerobic capacities were increased by 12 weeks new sports tennis type exercise. New sports tennis type exercise significantly increased FSH and NTx levels, indicating biochemical markers of bone formation and resorption. These findings indicate that 12 weeks of new sports tennis type exercise can be effective in prevention of bone loss and enhancement of aerobic capacity in postmenopausal women. PMID:24877043

  2. Long-lasting mnemotropic effect of substance P and its N-terminal fragment (SP1-7 on avoidance learning

    Directory of Open Access Journals (Sweden)

    C. Tomaz

    1997-02-01

    Full Text Available We investigated the long-lasting effect of peripheral injection of the neuropeptide substance P (SP and of some N- or C-terminal SP fragments (SPN and SPC, respectively on retention test performance of avoidance learning. Male Wistar rats (220 to 280 g were trained in an inhibitory step-down avoidance task and tested 24 h or 21 days later. Immediately after the training trial rats received an intraperitoneal injection of SP (50 µg/kg, SPN 1-7 (167 µg/kg or SPC 7-11 (134 µg/kg. Control groups were injected with vehicle or SP 5 h after the training trial. The immediate post-training administration of SP and SPN, but not SPC, facilitated avoidance behavior in rats tested 24 h or 21 days later, i.e., the retention test latencies of the SP and SPN groups were significantly longer (P<0.05, Mann-Whitney U-test during both training-test intervals. These observations suggest that the memory-enhancing effect of SP is long-lasting and that the amino acid sequence responsible for this effect is encoded by its N-terminal part

  3. Coiled-coil interaction of N-terminal 36 residues of cyclase-associated protein with adenylyl cyclase is sufficient for its function in Saccharomyces cerevisiae ras pathway.

    Science.gov (United States)

    Nishida, Y; Shima, F; Sen, H; Tanaka, Y; Yanagihara, C; Yamawaki-Kataoka, Y; Kariya, K; Kataoka, T

    1998-10-23

    In the budding yeast Saccharomyces cerevisiae, association with the 70-kDa cyclase-associated protein (CAP) is required for proper response of adenylyl cyclase to Ras proteins. We show here that a small segment comprising the N-terminal 36 amino acid residues of CAP is sufficient for association with adenylyl cyclase as well as for its function in the Ras-adenylyl cyclase pathway as assayed by the ability to confer RAS2(Val-19)-dependent heat shock sensitivity to yeast cells. The CAP-binding site of adenylyl cyclase was mapped to a segment of 119 amino acid residues near its C terminus. Both of these regions contained tandem repetitions of a heptad motif alphaXXalphaXXX (where alpha represents a hydrophobic amino acid and X represents any amino acid), suggesting a coiled-coil interaction. When mutants of CAP defective in associating with adenylyl cyclase were isolated by screening of a pool of randomly mutagenized CAP, they were found to carry substitution mutations in one of the key hydrophobic residues in the heptad repeats. Furthermore, mutations of the key hydrophobic residues in the heptad repeats of adenylyl cyclase also resulted in loss of association with CAP. These results indicate the coiled-coil mechanism as a basis of the CAP-adenylyl cyclase interaction.

  4. c-Jun N-terminal kinase phosphorylation of MARCKSL1 determines actin stability and migration in neurons and in cancer cells.

    Science.gov (United States)

    Björkblom, Benny; Padzik, Artur; Mohammad, Hasan; Westerlund, Nina; Komulainen, Emilia; Hollos, Patrik; Parviainen, Lotta; Papageorgiou, Anastassios C; Iljin, Kristiina; Kallioniemi, Olli; Kallajoki, Markku; Courtney, Michael J; Mågård, Mats; James, Peter; Coffey, Eleanor T

    2012-09-01

    Cell migration is a fundamental biological function, critical during development and regeneration, whereas deregulated migration underlies neurological birth defects and cancer metastasis. MARCKS-like protein 1 (MARCKSL1) is widely expressed in nervous tissue, where, like Jun N-terminal protein kinase (JNK), it is required for neural tube formation, though the mechanism is unknown. Here we show that MARCKSL1 is directly phosphorylated by JNK on C-terminal residues (S120, T148, and T183). This phosphorylation enables MARCKSL1 to bundle and stabilize F-actin, increase filopodium numbers and dynamics, and retard migration in neurons. Conversely, when MARCKSL1 phosphorylation is inhibited, actin mobility increases and filopodium formation is compromised whereas lamellipodium formation is enhanced, as is cell migration. We find that MARCKSL1 mRNA is upregulated in a broad range of cancer types and that MARCKSL1 protein is strongly induced in primary prostate carcinomas. Gene knockdown in prostate cancer cells or in neurons reveals a critical role for MARCKSL1 in migration that is dependent on the phosphorylation state; phosphomimetic MARCKSL1 (MARCKSL1(S120D,T148D,T183D)) inhibits whereas dephospho-MARCKSL1(S120A,T148A,T183A) induces migration. In summary, these data show that JNK phosphorylation of MARCKSL1 regulates actin homeostasis, filopodium and lamellipodium formation, and neuronal migration under physiological conditions and that, when ectopically expressed in prostate cancer cells, MARCKSL1 again determines cell movement.

  5. Molecular insight into the role of