WorldWideScience

Sample records for circulating hem-endothelial marker

  1. Analysis of circulating hem-endothelial marker RNA levels in preterm infants

    Directory of Open Access Journals (Sweden)

    Kuint Jacob

    2009-06-01

    Full Text Available Abstract Background Circulating endothelial cells may serve as novel markers of angiogenesis. These include a subset of hem-endothelial progenitor cells that play a vital role in vascular growth and repair. The presence and clinical implications of circulating RNA levels as an expression for hematopoietic and endothelial-specific markers have not been previously evaluated in preterm infants. This study aims to determine circulating RNA levels of hem-endothelial marker genes in peripheral blood of preterm infants and begin to correlate these findings with prenatal complications. Methods Peripheral blood samples from seventeen preterm neonates were analyzed at three consecutive post-delivery time points (day 3–5, 10–15 and 30. Using quantitative reverse transcription-polymerase chain reaction we studied the expression patterns of previously established hem-endothelial-specific progenitor-associated genes (AC133, Tie-2, Flk-1 (VEGFR2 and Scl/Tal1 in association with characteristics of prematurity and preterm morbidity. Results Circulating Tie-2 and SCL/Tal1 RNA levels displayed an inverse correlation to gestational age (GA. We observed significantly elevated Tie-2 levels in preterm infants born to mothers with amnionitis, and in infants with sustained brain echogenicity on brain sonography. Other markers showed similar expression patterns yet we could not demonstrate statistically significant correlations. Conclusion These preliminary findings suggest that circulating RNA levels especially Tie2 and SCL decline with maturation and might relate to some preterm complication. Further prospective follow up of larger cohorts are required to establish this association.

  2. Tumor endothelial markers define novel subsets of cancer-specific circulating endothelial cells associated with antitumor efficacy

    Science.gov (United States)

    Mehran, Reza; Nilsson, Monique; Khajavi, Mehrdad; Du, Zhiqiang; Cascone, Tina; Wu, Hua Kang; Cortes, Andrea; Xu, Li; Zurita, Amado; Schier, Robert; Riedel, Bernhard; El-Zein, Randa; Heymach, John V.

    2014-01-01

    Circulating endothelial cells (CEC) are derived from multiple sources including bone marrow (circulating endothelial progenitors [CEP]) and established vasculature (mature CEC). Although CEC have shown promise as a biomarker for cancer patients, their utility has been limited in part by the lack of specificity for tumor vasculature and the different non-malignant causes that can impact CEC. Tumor endothelial markers (TEM) are antigens enriched in tumor vs non-malignant endothelia. We hypothesized that TEMs may be detectable on CEC and that these circulating TEM+ endothelial cells (CTEC) may be a more specific marker for cancer and tumor response than standard CEC. We found that tumor-bearing mice had a relative increase in numbers of circulating CTEC, specifically with increased levels of TEM7 and TEM8 expression. Following treatment with various vascular targeting agents, we observed a decrease in CTEC that correlated with the reductions in tumor growth. We extended these findings to human clinical samples and observed that CTEC were present in esophageal cancer and non-small cell lung cancer (NSCLC) patients (N=40) and their levels decreased after surgical resection. These results demonstrate that CTEC are detectable in preclinical cancer models and cancer patients. Further, they suggest that CTEC offer a novel cancer-associated marker that may be useful as a blood-based surrogate for assessing the presence of tumor vasculature and antiangiogenic drug activity. PMID:24626092

  3. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor; Kong, Say Li; Sengupta, Debarka; Tan, Iain B; Phyo, Wai Min; Lee, Daniel; Hu, Min; Iliescu, Ciprian; Alexander, Irina; Goh, Wei Lin; Rahmani, Mehran; Suhaimi, Nur-Afidah Mohamed; Vo, Jess H; Tai, Joyce A; Tan, Joanna H; Chua, Clarinda; Ten, Rachel; Lim, Wan Jun; Chew, Min Hoe; Hauser, Charlotte; van Dam, Rob M; Lim, Wei-Yen; Prabhakar, Shyam; Lim, Bing; Koh, Poh Koon; Robson, Paul; Ying, Jackie Y; Hillmer, Axel M; Tan, Min-Han

    2016-01-01

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  4. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor

    2016-06-29

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  5. Circulating endothelial cells as marker of endothelial damage in male hypogonadism.

    Science.gov (United States)

    Milardi, Domenico; Grande, Giuseppe; Giampietro, Antonella; Vendittelli, Francesca; Palumbo, Sara; Tartaglione, Linda; Marana, Riccardo; Pontecorvi, Alfredo; de Marinis, Laura; Zuppi, Cecilia; Capoluongo, Ettore

    2012-01-01

    Testosterone deficiency has become a frequently diagnosed condition in today's society affected by epidemic obesity, and is associated with cardiovascular risk. Recent studies have established the importance of altered vascular endothelium function in cardiovascular disease. The damage to the endothelium might also cause endothelial cell detachment, resulting in increased numbers of circulating endothelial cells (CEC) within the bloodstream. To evaluate whether hypogonadism could modify CEC count in peripheral bloodstream, we investigated peripheral blood CEC count using the CellSearch System, a semiautomatic method to accurately and reliably enumerate CECs, which are sorted based on a CD146(+), CD105(+), DAPI(+), CD45(-) phenotype, in a population of 20 patients with hypogonadism. The control group comprised 10 age- and sex-matched healthy participants. CEC count per milliliter was significantly increased in patients with hypogonadism vs the control group. In the group with hypogonadism, an inverse exponential correlation was present between testosterone levels and CEC count per milliliter. A direct linear correlation was present between waist circumference and CECs and between body mass index and CECs. The regression analysis showed that testosterone was the significant independent determinant of CECs. Our results underline that male hypogonadism is associated with endothelial dysfunction. The correlation between CEC and waist circumference underlines that visceral obesity may be synergically implicated in this regulation. Future studies are required to unveil the mechanisms involved in the pathogenesis of testosterone-induced endothelial disfunction, which may provide novel therapeutic targets to be incorporated in the management of hypogonadism.

  6. Obstructive sleep apnoea syndrome, endothelial function and markers of endothelialization. Changes after CPAP.

    Science.gov (United States)

    Muñoz-Hernandez, Rocio; Vallejo-Vaz, Antonio J; Sanchez Armengol, Angeles; Moreno-Luna, Rafael; Caballero-Eraso, Candela; Macher, Hada C; Villar, Jose; Merino, Ana M; Castell, Javier; Capote, Francisco; Stiefel, Pablo

    2015-01-01

    This study tries to assess the endothelial function in vivo using flow-mediated dilatation (FMD) and several biomarkers of endothelium formation/restoration and damage in patients with obstructive sleep apnoea (OSA) syndrome at baseline and after three months with CPAP therapy. Observational study, before and after CPAP therapy. We studied 30 patients with apnoea/hypopnoea index (AHI) >15/h that were compared with themselves after three months of CPAP therapy. FMD was assessed non-invasively in vivo using the Laser-Doppler flowmetry. Circulating cell-free DNA (cf-DNA) and microparticles (MPs) were measured as markers of endothelial damage and the vascular endothelial growth factor (VEGF) was determined as a marker of endothelial restoration process. After three month with CPAP, FMD significantly increased (1072.26 ± 483.21 vs. 1604.38 ± 915.69 PU, pDNA and MPs significantly decreased (187.93 ± 115.81 vs. 121.28 ± 78.98 pg/ml, p<0.01, and 69.60 ± 62.60 vs. 39.82 ± 22.14 U/μL, p<0.05, respectively) and VEGF levels increased (585.02 ± 246.06 vs. 641.11 ± 212.69 pg/ml, p<0.05). These changes were higher in patients with more severe disease. There was a relationship between markers of damage (r = -0.53, p<0.005) but not between markers of damage and restoration, thus suggesting that both types of markers should be measured together. CPAP therapy improves FMD. This improvement may be related to an increase of endothelial restoration process and a decrease of endothelial damage.

  7. Circulating endothelial cells are increased in chronic myeloid leukemia blast crisis

    Directory of Open Access Journals (Sweden)

    C.R.T. Godoy

    2015-06-01

    Full Text Available We measured circulating endothelial precursor cells (EPCs, activated circulating endothelial cells (aCECs, and mature circulating endothelial cells (mCECs using four-color multiparametric flow cytometry in the peripheral blood of 84 chronic myeloid leukemia (CML patients and 65 healthy controls; and vascular endothelial growth factor (VEGF by quantitative real-time PCR in 50 CML patients and 32 healthy controls. Because of an increase in mCECs, the median percentage of CECs in CML blast crisis (0.0146% was significantly higher than in healthy subjects (0.0059%, P0.05. In addition, VEGF gene expression was significantly higher in all phases of CML: 0.245 in blast crisis, 0.320 in the active phase, and 0.330 in chronic phase patients than it was in healthy subjects (0.145. In conclusion, CML in blast crisis had increased levels of CECs and VEGF gene expression, which may serve as markers of disease progression and may become targets for the management of CML.

  8. Obstructive sleep apnoea syndrome, endothelial function and markers of endothelialization. Changes after CPAP.

    Directory of Open Access Journals (Sweden)

    Rocio Muñoz-Hernandez

    Full Text Available This study tries to assess the endothelial function in vivo using flow-mediated dilatation (FMD and several biomarkers of endothelium formation/restoration and damage in patients with obstructive sleep apnoea (OSA syndrome at baseline and after three months with CPAP therapy.Observational study, before and after CPAP therapy.We studied 30 patients with apnoea/hypopnoea index (AHI >15/h that were compared with themselves after three months of CPAP therapy. FMD was assessed non-invasively in vivo using the Laser-Doppler flowmetry. Circulating cell-free DNA (cf-DNA and microparticles (MPs were measured as markers of endothelial damage and the vascular endothelial growth factor (VEGF was determined as a marker of endothelial restoration process.After three month with CPAP, FMD significantly increased (1072.26 ± 483.21 vs. 1604.38 ± 915.69 PU, p< 0.005 cf-DNA and MPs significantly decreased (187.93 ± 115.81 vs. 121.28 ± 78.98 pg/ml, p<0.01, and 69.60 ± 62.60 vs. 39.82 ± 22.14 U/μL, p<0.05, respectively and VEGF levels increased (585.02 ± 246.06 vs. 641.11 ± 212.69 pg/ml, p<0.05. These changes were higher in patients with more severe disease. There was a relationship between markers of damage (r = -0.53, p<0.005 but not between markers of damage and restoration, thus suggesting that both types of markers should be measured together.CPAP therapy improves FMD. This improvement may be related to an increase of endothelial restoration process and a decrease of endothelial damage.

  9. Kalirin and CHD7: novel endothelial dysfunction indicators in circulating extracellular vesicles from hypertensive patients with albuminuria

    Science.gov (United States)

    de la Cuesta, Fernando; Baldan-Martin, Montserrat; Moreno-Luna, Rafael; Alvarez-Llamas, Gloria; Gonzalez-Calero, Laura; Mourino-Alvarez, Laura; Sastre-Oliva, Tamara; López, Juan A.; Vázquez, Jesús; Ruiz-Hurtado, Gema; Segura, Julian; Vivanco, Fernando; Ruilope, Luis M.; Barderas, Maria G.

    2017-01-01

    Despite of the great advances in anti-hypertensive therapies, many patients under Renin-Angiotensin- System (RAS) suppression develop albuminuria, which is a clear indicator of therapeutic inefficiency. Hence, indicators of vascular function are needed to assess patients’ condition and help deciding future therapies. Proteomic analysis of circulating extracellular vesicles (EVs) showed two proteins, kalirin and chromodomain-helicase-DNA-binding protein 7 (CHD7), increased in albuminuric patients. A positive correlation of both with the expression of the endothelial activation marker E-selectin was found in EVs. In vitro analysis using TNFα-treated adult human endothelial cells proved their involvement in endothelial cell activation. Hence, we propose protein levels of kalirin and CHD7 in circulating EVs as novel endothelial dysfunction markers to monitor vascular condition in hypertensive patients with albuminuria. PMID:28152519

  10. Circulating Endothelial Cells in Patients with Heart Failure and Left Ventricular Dysfunction

    Science.gov (United States)

    Martínez-Sales, Vicenta; Sánchez-Lázaro, Ignacio; Vila, Virtudes; Almenar, Luis; Contreras, Teresa; Reganon, Edelmiro

    2011-01-01

    Introduction and Aims: Acute and chronic heart failure may manifest different degrees of endothelial damage and angiogenesis. Circulating endothelial cells (CEC) have been identified as marker of vascular damage. The aim of our study was to evaluate the evolution of the CEC at different stages of patients with heart failure. We also investigated a potential correlation between CEC and markers of vascular damage and angiogenesis. Methods: We studied 32 heart failure patients at hospital admission (acute phase) and at revision after 3 months (stable phase) and 32 controls. Circulating markers of endothelial damage (CEC; von Willebrand factor, vWF and soluble E-selectin, sEsel) and angiogenesis (vascular endothelial growth factor, VEGF and thrombospondin-1) were quantified. Results: Levels of CEC, vWF, sEsel and VEGF are significantly higher in heart failure patients than in controls. Levels of CEC (36.9 ± 15.3 vs. 21.5 ± 10.0 cells/ml; p < 0.001), vWF (325 ± 101 vs. 231 ± 82%; p < 0.001) and VEGF (26.3 ± 15.2 vs. 21.9 ± 11.9 ng/ml; p < 0.001) are significantly higher in the acute phase than in the stable phase of heart failure. CEC levels correlate with vWF and VEGF. Results show than 100% of patients in acute phase and 37.5% in stable phase have levels of CEC higher than the 99th percentile of the distribution of controls (16 cells/ml). Therefore, increases in CEC represent a relative risk of 9.5 for heart failure patients suffering from acute phase. Conclusions: CEC, in addition to being elevated in heart failure, correlate with vWF levels, providing further support for CEC as markers of endothelial damage. Levels of CEC are associated with the acute phase of heart failure and could be used as a marker of the worsening in heart failure. PMID:21897001

  11. Osteocalcin expression by circulating endothelial progenitor cells in patients with coronary atherosclerosis.

    Science.gov (United States)

    Gössl, Mario; Mödder, Ulrike I; Atkinson, Elizabeth J; Lerman, Amir; Khosla, Sundeep

    2008-10-14

    This study was designed to test whether patients with coronary atherosclerosis have increases in circulating endothelial progenitor cells (EPCs) expressing an osteogenic phenotype. Increasing evidence indicates a link between bone and the vasculature, and bone marrow and circulating osteogenic cells have been identified by staining for the osteoblastic marker, osteocalcin (OCN). Endothelial progenitor cells contribute to vascular repair, but repair of vascular injury may result in calcification. Using cell surface markers (CD34, CD133, kinase insert domain receptor [KDR]) to identify EPCs, we examined whether patients with coronary atherosclerosis had increases in the percentage of EPCs expressing OCN. We studied 72 patients undergoing invasive coronary assessment: control patients (normal coronary arteries and no endothelial dysfunction, n = 21) versus 2 groups with coronary atherosclerosis-early coronary atherosclerosis (normal coronary arteries but with endothelial dysfunction, n = 22) and late coronary atherosclerosis (severe, multivessel coronary artery disease, n = 29). Peripheral blood mononuclear cells were analyzed using flow cytometry. Compared with control patients, patients with early or late coronary atherosclerosis had significant increases (approximately 2-fold) in the percentage of CD34+/KDR+ and CD34+/CD133+/KDR+ cells costaining for OCN. Even larger increases were noted in the early and late coronary atherosclerosis patients in the percentage of CD34+/CD133-/KDR+ cells costaining for OCN (5- and 2-fold, p < 0.001 and 0.05, respectively). A higher percentage of EPCs express OCN in patients with coronary atherosclerosis compared with subjects with normal endothelial function and no structural coronary artery disease. These findings have potential implications for the mechanisms of vascular calcification and for the development of novel markers for coronary atherosclerosis.

  12. Extraembryonic origin of circulating endothelial cells.

    Directory of Open Access Journals (Sweden)

    Luc Pardanaud

    Full Text Available Circulating endothelial cells (CEC are contained in the bone marrow and peripheral blood of adult humans and participate to the revascularization of ischemic tissues. These cells represent attractive targets for cell or gene therapy aimed at improving ischemic revascularization or inhibition of tumor angiogenesis. The embryonic origin of CEC has not been addressed previously. Here we use quail-chick chimeras to study CEC origin and participation to the developing vasculature. CEC are traced with different markers, in particular the QH1 antibody recognizing only quail endothelial cells. Using yolk-sac chimeras, where quail embryos are grafted onto chick yolk sacs and vice-versa, we show that CEC are generated in the yolk sac. These cells are mobilized during wound healing, demonstrating their participation to angiogenic repair processes. Furthermore, we found that the allantois is also able to give rise to CEC in situ. In contrast to the yolk sac and allantois, the embryo proper does not produce CEC. Our results show that CEC exclusively originate from extra-embryonic territories made with splanchnopleural mesoderm and endoderm, while definitive hematopoietic stem cells and endothelial cells are of intra-embryonic origin.

  13. Extraembryonic origin of circulating endothelial cells.

    Science.gov (United States)

    Pardanaud, Luc; Eichmann, Anne

    2011-01-01

    Circulating endothelial cells (CEC) are contained in the bone marrow and peripheral blood of adult humans and participate to the revascularization of ischemic tissues. These cells represent attractive targets for cell or gene therapy aimed at improving ischemic revascularization or inhibition of tumor angiogenesis. The embryonic origin of CEC has not been addressed previously. Here we use quail-chick chimeras to study CEC origin and participation to the developing vasculature. CEC are traced with different markers, in particular the QH1 antibody recognizing only quail endothelial cells. Using yolk-sac chimeras, where quail embryos are grafted onto chick yolk sacs and vice-versa, we show that CEC are generated in the yolk sac. These cells are mobilized during wound healing, demonstrating their participation to angiogenic repair processes. Furthermore, we found that the allantois is also able to give rise to CEC in situ. In contrast to the yolk sac and allantois, the embryo proper does not produce CEC. Our results show that CEC exclusively originate from extra-embryonic territories made with splanchnopleural mesoderm and endoderm, while definitive hematopoietic stem cells and endothelial cells are of intra-embryonic origin.

  14. Circulating Markers of Endothelial Dysfunction Interact With Proteinuria in Predicting Mortality in Renal Transplant Recipients

    NARCIS (Netherlands)

    van Ree, Rutger M.; Oterdoom, Leendert H.; de Vries, Aiko P.J.; Homan van der Heide, Jaap J.; van Son, Willem J.; Navis, Gerjan; Gans, Reinold O.B.; Bakker, Stephan J L

    2008-01-01

    BACKGROUND: Proteinuria is associated with endothelial dysfunction (ED) and increased mortality. We investigated whether urinary protein excretion (UPE) is correlated with markers of ED and whether these markers affect the association of proteinuria with mortality in renal transplant recipients

  15. Circulating markers of endothelial dysfunction interact with proteinuria in predicting mortality in renal transplant recipients

    NARCIS (Netherlands)

    van Ree, Rutger M.; Oterdoom, Leendert H.; de Vries, Aiko P. J.; Homan van der Heide, Jaap J.; van Son, Willem J.; Navis, Gerjan; Gans, Reinold O. B.; Bakker, Stephan J. L.

    2008-01-01

    Proteinuria is associated with endothelial dysfunction (ED) and increased mortality. We investigated whether urinary protein excretion (UPE) is correlated with markers of ED and whether these markers affect the association of proteinuria with mortality in renal transplant recipients (RTR). Six

  16. Human endothelial precursor cells express tumor endothelial marker 1/endosialin/CD248.

    Science.gov (United States)

    Bagley, Rebecca G; Rouleau, Cecile; St Martin, Thia; Boutin, Paula; Weber, William; Ruzek, Melanie; Honma, Nakayuki; Nacht, Mariana; Shankara, Srinivas; Kataoka, Shiro; Ishida, Isao; Roberts, Bruce L; Teicher, Beverly A

    2008-08-01

    Angiogenesis occurs during normal physiologic processes as well as under pathologic conditions such as tumor growth. Serial analysis of gene expression profiling revealed genes [tumor endothelial markers (TEM)] that are overexpressed in tumor endothelial cells compared with normal adult endothelial cells. Because blood vessel development of malignant tumors under certain conditions may include endothelial precursor cells (EPC) recruited from bone marrow, we investigated TEM expression in EPC. The expression of TEM1 or endosialin (CD248) and other TEM has been discovered in a population of vascular endothelial growth factor receptor 2+/CD31+/CD45-/VE-cadherin+ EPC derived from human CD133+/CD34+ cells. EPC share some properties with fully differentiated endothelial cells from normal tissue, yet reverse transcription-PCR and flow cytometry reveal that EPC express higher levels of endosialin at the molecular and protein levels. The elevated expression of endosialin in EPC versus mature endothelial cells suggests that endosialin is involved in the earlier stages of tumor angiogenesis. Anti-endosialin antibodies inhibited EPC migration and tube formation in vitro. In vivo, immunohistochemistry indicated that human EPC continued to express endosialin protein in a Matrigel plug angiogenesis assay established in nude mice. Anti-endosialin antibodies delivered systemically at 25 mg/kg were also able to inhibit circulating murine EPC in nude mice bearing s.c. SKNAS tumors. EPC and bone marrow-derived cells have been shown previously to incorporate into malignant blood vessels in some instances, yet they remain controversial in the field. The data presented here on endothelial genes that are up-regulated in tumor vasculature and in EPC support the hypothesis that the angiogenesis process in cancer can involve EPC.

  17. Dynamics of circulating endothelial cells and endothelial progenitor cells in breast cancer patients receiving cytotoxic chemotherapy

    Directory of Open Access Journals (Sweden)

    Kuo Yu-Hsuan

    2012-12-01

    Full Text Available Abstract Background The abundance of circulating endothelial cells (CECs and circulating endothelial progenitor cells (CEPs, which serve as surrogate markers for angiogenesis, may be affected by chemotherapy. We studied their dynamic change during consecutive cycles of chemotherapy. Methods We collected blood samples from 15 breast cancer patients, who received a total of 56 courses of systemic chemotherapy, and measured the CECs, viable CECs (V-CECs, and CEPs by six-color flow cytometry within the seven days prior to chemotherapy, twice a week during the first and second cycles of chemotherapy, and then once a week during the subsequent cycles. Results The CEC, V-CEC, and CEP levels all significantly decreased from day 1 of treatment to the first week of chemotherapy. After one week of chemotherapy, the CEC and V-CEC levels returned to a level similar to day 1. The CEP level remained significantly reduced after the first week of chemotherapy, but gradually rebounded until the next course of chemotherapy. After six cycles of chemotherapy, the total number of CEC and V-CEC cells trended toward a decrease and the CEP cells toward an increase. Clinical factors, including the existence of a tumor, chemotherapy regimens, and the use of granulocyte colony stimulating factor, did not significantly affect these results. Conclusions The CEC and CEP counts change dynamically during each course of chemotherapy and after the chemotherapy cycles, providing background data for any future study planning to use CECs and CEPs as surrogate markers of angiogenesis in antiangiogenesis treatments combined with chemotherapy.

  18. Circulating Endothelial Microparticles: A Key Hallmark of Atherosclerosis Progression

    Directory of Open Access Journals (Sweden)

    Keshav Raj Paudel

    2016-01-01

    Full Text Available The levels of circulating microparticles (MPs are raised in various cardiovascular diseases. Their increased level in plasma is regarded as a biomarker of alteration in vascular function. The prominent MPs present in blood are endothelial microparticles (EMPs described as complex submicron (0.1 to 1.0 μm vesicles like structure, released in response to endothelium cell activation or apoptosis. EMPs possess both physiological and pathological effects and may promote oxidative stress and vascular inflammation. EMPs release is triggered by inducer like angiotensin II, lipopolysaccharide, and hydrogen peroxide leading to the progression of atherosclerosis. However, there are multiple physiological pathways for EMPs generation like NADPH oxidase derived endothelial ROS formation, Rho kinase pathway, and mitogen-activated protein kinases. Endothelial dysfunction is a key initiating event in atherosclerotic plaque formation. Atheroemboli, resulting from ruptured carotid plaques, is a major cause of stroke. Increasing evidence suggests that EMPs play an important role in the pathogenesis of cardiovascular disease, acting as a marker of damage, either exacerbating disease progression or triggering a repair response. In this regard, it has been suggested that EMPs have the potential to act as biomarkers of disease status. This review aims to provide updated information of EMPs in relation to atherosclerosis pathogenesis.

  19. [Circulating endothelial cells: biomarkers for monitoring activity of antiangiogenic therapy].

    Science.gov (United States)

    Farace, Françoise; Bidart, Jean-Michel

    2007-07-01

    Tumor vessel formation is largely dependent on the recruitment of endothelial cells. Rare in healthy individuals, circulating endothelial cells (CEC) are shed from vessel walls and enter the circulation reflecting endothelial damage or dysfunction. Increased numbers of CEC have been documented in different types of cancer. Recent studies have suggested the role for CEC in tumor angiogenesis, but whose presence could also reflect normal endothelium perturbation in cancer. Originating from the bone marrow rather than from vessel walls, endothelial progenitor cells (EPC) are mobilized following tissue ischemia and may be recruited to complement local angiogenesis supplied by existing endothelium. Recently, studies in mouse models suggest that the circulating fraction of endothelial progenitors (CEP) is involved in tumor angiogenesis but their contribution is less clear in humans. The detection of CEC and CEP is difficult and impeded by the rarity of these cells. They may have important clinical implication as novel biomarkers susceptible to predict more efficiently and rapidly the therapeutic response to anti-angiogenic treatments. However, a methodological consensus would be necessary in order to correctly evaluate the clinical interest of CEC and CEP in patients.

  20. Endothelial and circulating progenitor cells in hematological diseases and allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Ruggeri, Annalisa; Paviglianiti, Annalisa; Volt, Fernanda; Kenzey, Chantal; Rafii, Hanadi; Rocha, Vanderson; Gluckman, Eliane

    2017-10-12

    Circulating endothelial cells (CECs), originated form endothelial progenitors (EPCs) are mature cells which are not associated with vessel walls, and that are detached from the endothelium. Normally, they are present in insignificant amounts in the peripheral blood of healthy individuals. On the other hand, elevated CECs and EPCs levels have been reported in the peripheral blood of patients with different types of cancers and some other diseases. Consequently, CECs and EPCs represent a potential biomarker in several clinical conditions involving endothelial turnover and remodeling, such as hematological diseases. These cells may be involved in disease progression and the neoplastic angiogenesis process. Moreover, CESs and EPCs are probably involved in endothelial damage that is a marker of several complications following allogeneic hematopoietic stem cell transplantation. This review aims to provide an overview on the characterization of CECs and EPCs, describe isolation methods and to identify the potential role of these cells in hematological diseases and hematopoietic stem cell transplantation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Hypoxia Mediated Release of Endothelial Microparticles and Increased Association of S100A12 with Circulating Neutrophils

    Directory of Open Access Journals (Sweden)

    Rebecca V. Vince

    2009-01-01

    Full Text Available Microparticles are released from the endothelium under normal homeostatic conditions and have been shown elevated in disease states, most notably those characterised by endothelial dysfunction. The endothelium is sensitive to oxidative stress/status and vascular cell adhesion molecule-1 (VCAM-1 expression is upregulated upon activated endothelium, furthermore the presence of VCAM-1 on microparticles is known. S100A12, a calcium binding protein part of the S100 family, is shown to be present on circulating leukocytes and is thought a sensitive marker to local inflammatory process, which may be driven by oxidative stress. Eight healthy males were subjected to breathing hypoxic air (15% O2, approximately equivalent to 3000 metres altitude for 80 minutes in a temperature controlled laboratory and venous blood samples were processed immediately for VCAM-1 microparticles (VCAM-1 MP and S100A12 association with leukocytes by flow cytometry. A pre-hypoxic blood sample was used for comparison. Both VCAM-1 MP and S100A12 association with neutrophils were significantly elevated post hypoxic breathing later declining to levels observed in the pre-test samples. A similar trend was observed in both cases and a correlation may exist between these two markers in response to hypoxia. These data offer evidence using novel markers of endothelial and circulating blood responses to hypoxia.

  2. Emerging Role of Endothelial and Inflammatory Markers in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Menha Swellam

    2009-01-01

    Full Text Available Objectives: Endothelial disturbance and excess inflammatory response are pathogenic mechanisms in pre-eclampsia (PE. Authors determine the clinical diagnostic role for thrombomodulin (TM, plasminogen activator inhibitor-1 (PAI-1 as endothelial markers and C-reactive protein (CRP, and interlukin-6 (IL-6 as inflammatory markers when tested independently or in combinations.

  3. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    Science.gov (United States)

    Tracy, Russell P.; Parikh, Megha A.; Hoffman, Eric A.; Shimbo, Daichi; Austin, John H. M.; Smith, Benjamin M.; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R. Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema. PMID:28291826

  4. Circulating endothelial cells and procoagulant microparticles in patients with glioblastoma: prognostic value.

    Directory of Open Access Journals (Sweden)

    Gaspar Reynés

    Full Text Available AIM: Circulating endothelial cells and microparticles are prognostic factors in cancer. However, their prognostic and predictive value in patients with glioblastoma is unclear. The objective of this study was to investigate the potential prognostic value of circulating endothelial cells and microparticles in patients with newly diagnosed glioblastoma treated with standard radiotherapy and concomitant temozolomide. In addition, we have analyzed the methylation status of the MGMT promoter. METHODS: Peripheral blood samples were obtained before and at the end of the concomitant treatment. Blood samples from healthy volunteers were also obtained as controls. Endothelial cells were measured by an immunomagnetic technique and immunofluorescence microscopy. Microparticles were quantified by flow cytometry. Microparticle-mediated procoagulant activity was measured by endogen thrombin generation and by phospholipid-dependent clotting time. Methylation status of MGMT promoter was determined by multiplex ligation-dependent probe amplification. RESULTS: Pretreatment levels of circulating endothelial cells and microparticles were higher in patients than in controls (p<0.001. After treatment, levels of microparticles and thrombin generation decreased, and phospholipid-dependent clotting time increased significantly. A high pretreatment endothelial cell count, corresponding to the 99(th percentile in controls, was associated with poor overall survival. MGMT promoter methylation was present in 27% of tumor samples and was associated to a higher overall survival (66 weeks vs 30 weeks, p<0.004. CONCLUSION: Levels of circulating endothelial cells may have prognostic value in patients with glioblastoma.

  5. Prognostic values of tumor endothelial markers in patients with colorectal cancer

    OpenAIRE

    Rmali, KA; Puntis, MCA; Jiang, WG

    2005-01-01

    AIM: Tumor endothelial markers (TEMs) are a newly discovered family of endothelial markers associated with tumor specific angiogenesis. This study sought to examine the levels of expression (qualitatively and quantitatively) for TEMs in human colon cancer.

  6. Culture and Characterization of Circulating Endothelial Progenitor Cells in Patients with Renal Cell Carcinoma.

    Science.gov (United States)

    Gu, Wenyu; Sun, Wei; Guo, Changcheng; Yan, Yang; Liu, Min; Yao, Xudong; Yang, Bin; Zheng, Junhua

    2015-07-01

    Although emerging evidence demonstrates increased circulating endothelial progenitor cells in patients with solid tumors, to our knowledge it is still unknown whether such cells can be cultured from patients with highly angiogenic renal cell carcinoma. We cultured and characterized circulating endothelial progenitor cells from patients with renal cell carcinoma. The circulating endothelial progenitor cell level (percent of CD45(-)CD34(+) VEGF-R2(+) cells in total peripheral blood mononuclear cells) was quantified in 47 patients with renal cell carcinoma and 40 healthy controls. Peripheral blood mononuclear cells were then isolated from 33 patients with renal cell carcinoma and 30 healthy controls to culture and characterize circulating endothelial progenitor cells. The circulating endothelial progenitor cell level was significantly higher in patients with renal cell carcinoma than in healthy controls (0.276% vs 0.086%, p cells first emerged significantly earlier in patient than in control preparations (6.72 vs 14.67 days, p culture success rate (87.8% vs 40.0% of participants) and the number of colonies (10.06 vs 1.83) were significantly greater for patients than for controls (each p cell level correlated positively with the number of patient colonies (r = 0.762, p Cells cultured from patients and controls showed a similar growth pattern, immunophenotype, ability to uptake Ac-LDL and bind lectin, and form capillary tubes in vitro. However, significantly more VEGF-R2(+) circulating endothelial progenitor cells were found in preparations from patients with renal cell carcinoma than from healthy controls (21.1% vs 13.4%, p cell colonies, a higher cell culture success rate and more colonies were found for patients with renal cell carcinoma than for healthy controls. Results indicate the important significance of VEGF-R2(+) circulating endothelial progenitors in patients with renal cell carcinoma. Copyright © 2015 American Urological Association Education and Research

  7. Citrus Polyphenol Hesperidin Stimulates Production of Nitric Oxide in Endothelial Cells while Improving Endothelial Function and Reducing Inflammatory Markers in Patients with Metabolic Syndrome

    Science.gov (United States)

    Rizza, Stefano; Muniyappa, Ranganath; Iantorno, Micaela; Kim, Jeong-a; Chen, Hui; Pullikotil, Philomena; Senese, Nicoletta; Tesauro, Manfredi; Lauro, Davide; Cardillo, Carmine

    2011-01-01

    Context: Hesperidin, a citrus flavonoid, and its metabolite hesperetin may have vascular actions relevant to their health benefits. Molecular and physiological mechanisms of hesperetin actions are unknown. Objective: We tested whether hesperetin stimulates production of nitric oxide (NO) from vascular endothelium and evaluated endothelial function in subjects with metabolic syndrome on oral hesperidin therapy. Design, Setting, and Interventions: Cellular mechanisms of action of hesperetin were evaluated in bovine aortic endothelial cells (BAEC) in primary culture. A randomized, placebo-controlled, double-blind, crossover trial examined whether oral hesperidin administration (500 mg once daily for 3 wk) improves endothelial function in individuals with metabolic syndrome (n = 24). Main Outcome Measure: We measured the difference in brachial artery flow-mediated dilation between placebo and hesperidin treatment periods. Results: Treatment of BAEC with hesperetin acutely stimulated phosphorylation of Src, Akt, AMP kinase, and endothelial NO synthase to produce NO; this required generation of H2O2. Increased adhesion of monocytes to BAEC and expression of vascular cell adhesion molecule-1 in response to TNF-α treatment was reduced by pretreatment with hesperetin. In the clinical study, when compared with placebo, hesperidin treatment increased flow-mediated dilation (10.26 ± 1.19 vs. 7.78 ± 0.76%; P = 0.02) and reduced concentrations of circulating inflammatory biomarkers (high-sensitivity C-reactive protein, serum amyloid A protein, soluble E-selectin). Conclusions: Novel mechanisms for hesperetin action in endothelial cells inform effects of oral hesperidin treatment to improve endothelial dysfunction and reduce circulating markers of inflammation in our exploratory clinical trial. Hesperetin has vasculoprotective actions that may explain beneficial cardiovascular effects of citrus consumption. PMID:21346065

  8. Donor-derived circulating endothelial cells after kidney transplantation

    NARCIS (Netherlands)

    Popa, ER; Kas-Deelen, AM; Hepkema, BG; van Son, WJ; The, TH; Harmsen, MC

    2002-01-01

    Background. In solid-organ transplantation, the allograft vasculature, in particular the endothelium, is prone to injury inflicted by peritransplantational and posttransplantational factors. Previously, we have shown that circulating endothelial cells (cEC) can be detected in the peripheral blood of

  9. Characterization of a distinct population of circulating human non-adherent endothelial forming cells and their recruitment via intercellular adhesion molecule-3.

    Directory of Open Access Journals (Sweden)

    Sarah L Appleby

    Full Text Available Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133(+ population of non-adherent endothelial forming cells (naEFCs which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38 together with mature endothelial cell markers (VEGFR2, CD144 and CD31. These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8 or myeloid markers (CD11b and CD14 which distinguishes them from 'early' endothelial progenitor cells (EPCs. Functional studies demonstrated that these naEFCs (i bound Ulex europaeus lectin, (ii demonstrated acetylated-low density lipoprotein uptake, (iii increased vascular cell adhesion molecule (VCAM-1 surface expression in response to tumor necrosis factor and (iv in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs. Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis.

  10. Characterization of a Distinct Population of Circulating Human Non-Adherent Endothelial Forming Cells and Their Recruitment via Intercellular Adhesion Molecule-3

    Science.gov (United States)

    Thompson, Emma J.; Barrett, Jeffrey M.; Tooley, Katie; Sen, Shaundeep; Sun, Wai Yan; Grose, Randall; Nicholson, Ian; Levina, Vitalina; Cooke, Ira; Talbo, Gert; Lopez, Angel F.; Bonder, Claudine S.

    2012-01-01

    Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis. PMID:23144795

  11. Influence of sex on the number of circulating endothelial microparticles and microRNA expression in middle-aged adults.

    Science.gov (United States)

    Bammert, Tyler D; Hijmans, Jamie G; Kavlich, Philip J; Lincenberg, Grace M; Reiakvam, Whitney R; Fay, Ryan T; Greiner, Jared J; Stauffer, Brian L; DeSouza, Christopher A

    2017-08-01

    What is the central question of this study? Are there sex-related differences in the number of circulating endothelial microparticles (EMPs) and microparticle microRNA expression in middle-aged adult humans? What is the main finding and its importance? Although the numbers of circulating endothelial microparticles do not differ between middle-aged men and women, there are sex-related differences in the expression of miR-125a in activation-derived EMPs and miR-34a in apoptosis-derived EMPs. Differences in circulating endothelial microparticle microRNA content may provide new insight into the sex-related disparity in the risk and prevalence of vascular disease in middle-aged adults. The aims of this study were to determine: (i) whether circulating concentrations of endothelial microparticles (EMPs) differ in middle-aged men compared with women; and (ii) whether there are sex-related differences in microRNA expression in EMPs. Peripheral blood was collected from 30 sedentary adults: 15 men (56 ± 6 years old) and 15 women (56 ± 5 years old). Endothelial microparticles were defined by markers of activation (CD62e + ) or apoptosis (CD31 + /CD42b - ) by flow cytometry. Expression of microRNA (miR-34a, 92a, 125a and 126) in activation- and apoptosis-derived EMPs was measured by RT-PCR. Circulating activation- (33 ± 31 versus 39 ± 35 microparticles μl -1 ) and apoptosis-derived EMPs (49 ± 54 versus 42 ± 43 microparticles μl -1 ) were not significantly different between men and women. Expression of miR-125a (2.23 ± 2.01 versus 6.95 ± 3.99 a.u.) was lower (∼215%; P < 0.05) in activation-derived EMPs, whereas expression of miR-34a (1.17 ± 1.43 versus 0.38 ± 0.35 a.u.) was higher (∼210%; P < 0.05) in apoptosis-derived EMPs from men compared with women. Expression of microRNA in circulating EMPs may provide new insight into sex-related differences in cardiovascular disease. © 2017 The Authors. Experimental Physiology © 2017 The

  12. Circulating endothelial cells in patients with venous thromboembolism and myeloproliferative neoplasms.

    Directory of Open Access Journals (Sweden)

    Cláudia Torres

    Full Text Available BACKGROUND: Circulating endothelial cells (CEC may be a biomarker of vascular injury and pro-thrombotic tendency, while circulating endothelial progenitor cells (CEP may be an indicator for angiogenesis and vascular remodelling. However, there is not a universally accepted standardized protocol to identify and quantify these cells and its clinical relevancy remains to be established. OBJECTIVES: To quantify CEC and CEP in patients with venous thromboembolism (VTE and with myeloproliferative neoplasms (MPN, to characterize the CEC for the expression of activation (CD54, CD62E and procoagulant (CD142 markers and to investigate whether they correlate with other clinical and laboratory data. PATIENTS AND METHODS: Sixteen patients with VTE, 17 patients with MPN and 20 healthy individuals were studied. The CEC and CEP were quantified and characterized in the blood using flow cytometry, and the demographic, clinical and laboratory data were obtained from hospital records. RESULTS: We found the CEC counts were higher in both patient groups as compared to controls, whereas increased numbers of CEP were found only in patients with MPN. In addition, all disease groups had higher numbers of CD62E+ CEC as compared to controls, whereas only patients with VTE had increased numbers of CD142+ and CD54+ CEC. Moreover, the numbers of total and CD62+ CEC correlated positively with the white blood cells (WBC counts in both groups of patients, while the numbers of CEP correlated positively with the WBC counts only in patients with MPN. In addition, in patients with VTE a positive correlation was found between the numbers of CD54+ CEC and the antithrombin levels, as well as between the CD142+ CEC counts and the number of thrombotic events. CONCLUSIONS: Our study suggests that CEC counts may reveal endothelial injury in patients with VTE and MPN and that CEC may express different activation-related phenotypes depending on the disease status.

  13. Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis

    Science.gov (United States)

    Lacroix, Romaric; Plawinski, Laurent; Robert, Stéphane; Doeuvre, Loïc; Sabatier, Florence; Martinez de Lizarrondo, Sara; Mezzapesa, Anna; Anfosso, Francine; Leroyer, Aurelie S.; Poullin, Pascale; Jourde, Noémie; Njock, Makon-Sébastien; Boulanger, Chantal M.; Anglés-Cano, Eduardo; Dignat-George, Françoise

    2012-01-01

    Background We recently assigned a new fibrinolytic function to cell-derived microparticles in vitro. In this study we explored the relevance of this novel property of microparticles to the in vivo situation. Design and Methods Circulating microparticles were isolated from the plasma of patients with thrombotic thrombocytopenic purpura or cardiovascular disease and from healthy subjects. Microparticles were also obtained from purified human blood cell subpopulations. The plasminogen activators on microparticles were identified by flow cytometry and enzyme-linked immunosorbent assays; their capacity to generate plasmin was quantified with a chromogenic assay and their fibrinolytic activity was determined by zymography. Results Circulating microparticles isolated from patients generate a range of plasmin activity at their surface. This property was related to a variable content of urokinase-type plasminogen activator and/or tissue plasminogen activator. Using distinct microparticle subpopulations, we demonstrated that plasmin is generated on endothelial and leukocyte microparticles, but not on microparticles of platelet or erythrocyte origin. Leukocyte-derived microparticles bear urokinase-type plasminogen activator and its receptor whereas endothelial microparticles carry tissue plasminogen activator and tissue plasminogen activator/inhibitor complexes. Conclusions Endothelial and leukocyte microparticles, bearing respectively tissue plasminogen activator or urokinase-type plasminogen activator, support a part of the fibrinolytic activity in the circulation which is modulated in pathological settings. Awareness of this blood-borne fibrinolytic activity conveyed by microparticles provides a more comprehensive view of the role of microparticles in the hemostatic equilibrium. PMID:22733025

  14. Impact of vitamin D supplementation on endothelial and inflammatory markers in adults: A systematic review.

    Science.gov (United States)

    Agbalalah, Tari; Hughes, Stephen F; Freeborn, Ellen J; Mushtaq, Sohail

    2017-10-01

    This systematic review aims to evaluate randomised controlled trials (RCTs) investigating the effect of vitamin D supplementation on endothelial function and inflammation in adults. An electronic search of published randomised controlled trials, using Cochrane, Pubmed and Medline databases was conducted, with the search terms related to vitamin D and endothelial function. Inclusion criteria were RCTs in adult humans with a measure of vitamin D status using serum/plasma 25(OH)D and studies which administered the intervention through the oral route. Among the 1107 studies retrieved, 29 studies met the full inclusion criteria for this systematic review. Overall, 8 studies reported significant improvements in the endothelial/inflammatory biomarkers/parameters measured. However, in 2 out of the 8 studies, improvements were reported at interim time points, but improvements were absent post-intervention. The remaining 21 trial studies did not show significant improvements in the markers of interest measured. Evidence from the studies included in this systematic review did not demonstrate that vitamin D supplementation in adults, results in an improvement in circulating inflammatory and endothelial function biomarkers/parameters. This systematic review does not therefore support the use of vitamin D supplementation as a therapeutic or preventative measure for CVD in this respect. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  15. Chemistry and Molecular Dynamics Simulations of Heme b-HemQ and Coproheme-HemQ.

    Science.gov (United States)

    Hofbauer, Stefan; Dalla Sega, Marco; Scheiblbrandner, Stefan; Jandova, Zuzana; Schaffner, Irene; Mlynek, Georg; Djinović-Carugo, Kristina; Battistuzzi, Gianantonio; Furtmüller, Paul G; Oostenbrink, Chris; Obinger, Christian

    2016-09-27

    Recently, a novel pathway for heme b biosynthesis in Gram-positive bacteria has been proposed. The final poorly understood step is catalyzed by an enzyme called HemQ and includes two decarboxylation reactions leading from coproheme to heme b. Coproheme has been suggested to act as both substrate and redox active cofactor in this reaction. In the study presented here, we focus on HemQs from Listeria monocytogenes (LmHemQ) and Staphylococcus aureus (SaHemQ) recombinantly produced as apoproteins in Escherichia coli. We demonstrate the rapid and two-phase uptake of coproheme by both apo forms and the significant differences in thermal stability of the apo forms, coproheme-HemQ and heme b-HemQ. Reduction of ferric high-spin coproheme-HemQ to the ferrous form is shown to be enthalpically favored but entropically disfavored with standard reduction potentials of -205 ± 3 mV for LmHemQ and -207 ± 3 mV for SaHemQ versus the standard hydrogen electrode at pH 7.0. Redox thermodynamics suggests the presence of a pronounced H-bonding network and restricted solvent mobility in the heme cavity. Binding of cyanide to the sixth coproheme position is monophasic but relatively slow (∼1 × 10(4) M(-1) s(-1)). On the basis of the available structures of apo-HemQ and modeling of both loaded forms, molecular dynamics simulation allowed analysis of the interaction of coproheme and heme b with the protein as well as the role of the flexibility at the proximal heme cavity and the substrate access channel for coproheme binding and heme b release. Obtained data are discussed with respect to the proposed function of HemQ in monoderm bacteria.

  16. Ticagrelor Improves Endothelial Function by Decreasing Circulating Epidermal Growth Factor (EGF

    Directory of Open Access Journals (Sweden)

    Francesco Vieceli Dalla Sega

    2018-04-01

    Full Text Available Ticagrelor is one of the most powerful P2Y12 inhibitor. We have recently reported that, in patients with concomitant Stable Coronary Artery Disease (SCAD and Chronic Obstructive Pulmonary Disease (COPD undergoing percutaneous coronary intervention (PCI, treatment with ticagrelor, as compared to clopidogrel, is associated with an improvement of the endothelial function (Clinical Trial NCT02519608. In the present study, we showed that, in the same population, after 1 month treatment with ticagrelor, but not with clopidogrel, there is a decrease of the circulating levels of epidermal growth factor (EGF and that these changes in circulating levels of EGF correlate with on-treatment platelet reactivity. Furthermore, in human umbilical vein endothelial cells (HUVEC incubated with sera of the patients treated with ticagrelor, but not with clopidogrel there is an increase of p-eNOS levels. Finally, analyzing the changes in EGF and p-eNOS levels after treatment, we observed an inverse correlation between p-eNOS and EGF changes only in the ticagrelor group. Causality between EGF and eNOS activation was assessed in vitro in HUVEC where we showed that EGF decreases eNOS activity in a dose dependent manner. Taken together our data indicate that ticagrelor improves endothelial function by lowering circulating EGF that results in the activation of eNOS in the vascular endothelium.

  17. Circulating vascular endothelial growth factor during the normal menstrual cycle

    NARCIS (Netherlands)

    Kusumanto, YH; Hospers, GAP; Sluiter, WJ; Dam, WA; Meijer, C; Mulder, NH

    2004-01-01

    Background: The purpose of the study was to investigate whether cycle-related variations in circulating Vascular Endothelial Growth Factor (VEGF) levels would increase the metastatic potential at specific times during the menstrual cycle. Materials and Methods: VEGF levels in serum and whole blood

  18. [Circulating endothelial progenitor cell levels in treated hypertensive patients].

    Science.gov (United States)

    Maroun-Eid, C; Ortega-Hernández, A; Abad, M; García-Donaire, J A; Barbero, A; Reinares, L; Martell-Claros, N; Gómez-Garre, D

    2015-01-01

    Most optimally treated hypertensive patients still have an around 50% increased risk of any cardiovascular event, suggesting the possible existence of unidentified risk factors. In the last years there has been evidence of the essential role of circulating endothelial progenitor cells (EPCs) in the maintenance of endothelial integrity and function, increasing the interest in their involvement in cardiovascular disease. In this study, the circulating levels of EPCs and vascular endothelial growth factor (VEGF) are investigated in treated hypertensive patients with adequate control of blood pressure (BP). Blood samples were collected from treated hypertensive patients with controlled BP. Plasma levels of EPCs CD34+/KDR+ and CD34+/VE-cadherin+ were quantified by flow cytometry. Plasma concentration of VEGF was determined by ELISA. A group of healthy subjects without cardiovascular risk factors was included as controls. A total of 108 hypertensive patients were included (61±12 years, 47.2% men) of which 82.4% showed BP<140/90 mmHg, 91.7% and 81.5% controlled diabetes (HbA1c <7%) and cLDL (<130 or 100 mg/dL), respectively, and 85.2% were non-smokers. Around 45% of them were obese. Although patients had cardiovascular parameters within normal ranges, they showed significantly lower levels of CD34+/KDR+ and CD34+/VE-cadherin+ compared with healthy control group, although plasma VEGF concentration was higher in patients than in controls. Despite an optimal treatment, hypertensive patients show a decreased number of circulating EPCs that could be, at least in part, responsible for their residual cardiovascular risk, suggesting that these cells could be a therapeutic target. Copyright © 2015 SEHLELHA. Published by Elsevier España, S.L.U. All rights reserved.

  19. Nutraceutical augmentation of circulating endothelial progenitor cells and hematopoietic stem cells in human subjects.

    Science.gov (United States)

    Mikirova, Nina A; Jackson, James A; Hunninghake, Ron; Kenyon, Julian; Chan, Kyle W H; Swindlehurst, Cathy A; Minev, Boris; Patel, Amit N; Murphy, Michael P; Smith, Leonard; Ramos, Famela; Ichim, Thomas E; Riordan, Neil H

    2010-04-08

    The medical significance of circulating endothelial or hematopoietic progenitors is becoming increasing recognized. While therapeutic augmentation of circulating progenitor cells using G-CSF has resulted in promising preclinical and early clinical data for several degenerative conditions, this approach is limited by cost and inability to perform chronic administration. Stem-Kine is a food supplement that was previously reported to augment circulating EPC in a pilot study. Here we report a trial in 18 healthy volunteers administered Stem-Kine twice daily for a 2 week period. Significant increases in circulating CD133 and CD34 cells were observed at days 1, 2, 7, and 14 subsequent to initiation of administration, which correlated with increased hematopoietic progenitors as detected by the HALO assay. Augmentation of EPC numbers in circulation was detected by KDR-1/CD34 staining and colony forming assays. These data suggest Stem-Kine supplementation may be useful as a stimulator of reparative processes associated with mobilization of hematopoietic and endothelial progenitors.

  20. Nutraceutical augmentation of circulating endothelial progenitor cells and hematopoietic stem cells in human subjects

    Directory of Open Access Journals (Sweden)

    Minev Boris

    2010-04-01

    Full Text Available Abstract The medical significance of circulating endothelial or hematopoietic progenitors is becoming increasing recognized. While therapeutic augmentation of circulating progenitor cells using G-CSF has resulted in promising preclinical and early clinical data for several degenerative conditions, this approach is limited by cost and inability to perform chronic administration. Stem-Kine is a food supplement that was previously reported to augment circulating EPC in a pilot study. Here we report a trial in 18 healthy volunteers administered Stem-Kine twice daily for a 2 week period. Significant increases in circulating CD133 and CD34 cells were observed at days 1, 2, 7, and 14 subsequent to initiation of administration, which correlated with increased hematopoietic progenitors as detected by the HALO assay. Augmentation of EPC numbers in circulation was detected by KDR-1/CD34 staining and colony forming assays. These data suggest Stem-Kine supplementation may be useful as a stimulator of reparative processes associated with mobilization of hematopoietic and endothelial progenitors.

  1. Infantile hemangioma-derived stem cells and endothelial cells are inhibited by class 3 semaphorins

    International Nuclear Information System (INIS)

    Nakayama, Hironao; Huang, Lan; Kelly, Ryan P.; Oudenaarden, Clara R.L.; Dagher, Adelle; Hofmann, Nicole A.; Moses, Marsha A.; Bischoff, Joyce; Klagsbrun, Michael

    2015-01-01

    Class 3 semaphorins were discovered as a family of axon guidance molecules, but are now known to be involved in diverse biologic processes. In this study, we investigated the anti-angiogenic potential of SEMA3E and SEMA3F (SEMA3E&F) in infantile hemangioma (IH). IH is a common vascular tumor that involves both vasculogenesis and angiogenesis. Our lab has identified and isolated hemangioma stem cells (HemSC), glucose transporter 1 positive (GLUT1 + ) endothelial cells (designated as GLUT1 sel cells) based on anti-GLUT1 magnetic beads selection and GLUT1-negative endothelial cells (named HemEC). We have shown that these types of cells play important roles in hemangiogenesis. We report here that SEMA3E inhibited HemEC migration and proliferation while SEMA3F was able to suppress the migration and proliferation in all three types of cells. Confocal microscopy showed that stress fibers in HemEC were reduced by SEMA3E&F and that stress fibers in HemSC were decreased by SEMA3F, which led to cytoskeletal collapse and loss of cell motility in both cell types. Additionally, SEMA3E&F were able to inhibit vascular endothelial growth factor (VEGF)-induced sprouts in all three types of cells. Further, SEMA3E&F reduced the level of p-VEGFR2 and its downstream p-ERK in HemEC. These results demonstrate that SEMA3E&F inhibit IH cell proliferation and suppress the angiogenic activities of migration and sprout formation. SEMA3E&F may have therapeutic potential to treat or prevent growth of highly proliferative IH. - Highlights: • SEMA3E&F reduce actin stress fibers and induce cytoskeletal collapse in HemEC. • SEMA3E&F inhibit angiogenic activities of HemEC. • SEMA3E&F can interrupt the VEGF-A-VEGFR2-ERK signaling pathway in HemEC. • Plexin D1 and NRP2 are induced during HemSC/GLUT1 sel -to-EC differentiation

  2. Infantile hemangioma-derived stem cells and endothelial cells are inhibited by class 3 semaphorins

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Hironao [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295 (Japan); Huang, Lan [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Kelly, Ryan P.; Oudenaarden, Clara R.L. [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Dagher, Adelle; Hofmann, Nicole A.; Moses, Marsha A. [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Bischoff, Joyce, E-mail: joyce.bischoff@childrens.harvard.edu [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Klagsbrun, Michael, E-mail: michael.klagsbrun@childrens.harvard.edu [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Pathology, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States)

    2015-08-14

    Class 3 semaphorins were discovered as a family of axon guidance molecules, but are now known to be involved in diverse biologic processes. In this study, we investigated the anti-angiogenic potential of SEMA3E and SEMA3F (SEMA3E&F) in infantile hemangioma (IH). IH is a common vascular tumor that involves both vasculogenesis and angiogenesis. Our lab has identified and isolated hemangioma stem cells (HemSC), glucose transporter 1 positive (GLUT1{sup +}) endothelial cells (designated as GLUT1{sup sel} cells) based on anti-GLUT1 magnetic beads selection and GLUT1-negative endothelial cells (named HemEC). We have shown that these types of cells play important roles in hemangiogenesis. We report here that SEMA3E inhibited HemEC migration and proliferation while SEMA3F was able to suppress the migration and proliferation in all three types of cells. Confocal microscopy showed that stress fibers in HemEC were reduced by SEMA3E&F and that stress fibers in HemSC were decreased by SEMA3F, which led to cytoskeletal collapse and loss of cell motility in both cell types. Additionally, SEMA3E&F were able to inhibit vascular endothelial growth factor (VEGF)-induced sprouts in all three types of cells. Further, SEMA3E&F reduced the level of p-VEGFR2 and its downstream p-ERK in HemEC. These results demonstrate that SEMA3E&F inhibit IH cell proliferation and suppress the angiogenic activities of migration and sprout formation. SEMA3E&F may have therapeutic potential to treat or prevent growth of highly proliferative IH. - Highlights: • SEMA3E&F reduce actin stress fibers and induce cytoskeletal collapse in HemEC. • SEMA3E&F inhibit angiogenic activities of HemEC. • SEMA3E&F can interrupt the VEGF-A-VEGFR2-ERK signaling pathway in HemEC. • Plexin D1 and NRP2 are induced during HemSC/GLUT1{sup sel}-to-EC differentiation.

  3. Circulating endothelial cells (CECs and E-selectin: Predictors of preeclampsia

    Directory of Open Access Journals (Sweden)

    Ferdous Mehrabian

    2012-01-01

    Full Text Available Background: Circulating endothelial cells (CECs and E-selectin are known as sensitive and specific markers of en-dothelial dysfunction. This study investigated whether CECs and E-selectin are surrogate biomarkers of preeclampsia and if measurement of CECs and E-selectin, early in the third trimester, could be a means of predicting preeclampsia. Methods: In this prospective, descriptive-analytic study, rollover test was performed on 523 pregnant women during 28-30 weeks of gestation. CECs were measured by anti-CD 146-driven immunomagnetic isolation in women with posi-tive rollover test. They were followed up prospectively until delivery without any active intervention. Women with and without preeclampsia were determined. The number of CECs and level of E-selectin were compared in the two studied groups. Results: From the 47 pregnant women with positive rollover test who were selected and followed up, 22 individuals were diagnosed with preeclampsia while the remainder were normotensive. Mean CEC numbers was significantly high-er in preeclamptic women than normal pregnancies (24.7 cells/mL vs. 13 cells/mL. The best cut-off point for CEC numbers was 6.5 with a sensitivity of 78.9% and a specificity of 69.1%. The level of E-selectin was significantly higher in mothers with preeclampsia (p < 0.05. Conclusions: Higher levels of CECs and E-selectin in women with positive rollover test who developed preeclampsia prior to onset of the complication were predictive of preeclampsia. However, larger studies are needed to confirm these findings.

  4. Crystallization and preliminary X-ray diffraction analysis of the haem-binding protein HemS from Yersinia enterocolitica

    International Nuclear Information System (INIS)

    Schneider, Sabine; Paoli, Massimo

    2005-01-01

    The haem binding protein HemS from Y. enterocolitica has been crystallized in complex with its ligand. The crystals diffracted X-rays to 2.6 Å in-house. Bacteria have evolved strategies to acquire iron from their environment. Pathogenic microbes rely on specialized proteins to ‘steal’ haem from their host and use it as an iron source. HemS is the ultimate recipient of a molecular-relay system for haem uptake in Gram-negative species, functioning as the cytosolic carrier of haem. Soluble expression and high-quality diffraction crystals were obtained for HemS from Yersinia enterocolitica. Crystals belong to the orthorhombic space group I222, with unit-cell parameters a = 74.86, b = 77.45, c = 114.09 Å, and diffract X-rays to 2.6 Å spacing in-house. Determination of the structure of the haem–HemS complex will reveal the molecular basis of haem binding

  5. Crystallization and preliminary X-ray diffraction analysis of the haem-binding protein HemS from Yersinia enterocolitica

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Sabine; Paoli, Massimo, E-mail: max.paoli@nottingham.ac.uk [School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2005-08-01

    The haem binding protein HemS from Y. enterocolitica has been crystallized in complex with its ligand. The crystals diffracted X-rays to 2.6 Å in-house. Bacteria have evolved strategies to acquire iron from their environment. Pathogenic microbes rely on specialized proteins to ‘steal’ haem from their host and use it as an iron source. HemS is the ultimate recipient of a molecular-relay system for haem uptake in Gram-negative species, functioning as the cytosolic carrier of haem. Soluble expression and high-quality diffraction crystals were obtained for HemS from Yersinia enterocolitica. Crystals belong to the orthorhombic space group I222, with unit-cell parameters a = 74.86, b = 77.45, c = 114.09 Å, and diffract X-rays to 2.6 Å spacing in-house. Determination of the structure of the haem–HemS complex will reveal the molecular basis of haem binding.

  6. Total hip and knee replacement surgery results in changes in leukocyte and endothelial markers

    Directory of Open Access Journals (Sweden)

    Maclean Kirsty M

    2010-01-01

    Full Text Available Abstract Background It is estimated that over 8 million people in the United Kingdom suffer from osteoarthritis. These patients may require orthopaedic surgical intervention to help alleviate their clinical condition. Investigations presented here was to test the hypothesis that total hip replacement (THR and total knee replacement (TKR orthopaedic surgery result in changes to leukocyte and endothelial markers thus increasing inflammatory reactions postoperatively. Methods During this 'pilot study', ten test subjects were all scheduled for THR or TKR elective surgery due to osteoarthritis. Leukocyte concentrations were measured using an automated full blood count analyser. Leukocyte CD11b (Mac-1 and CD62L cell surface expression, intracellular production of H2O2 and elastase were measured as markers of leukocyte function. Von Willebrand factor (vWF and soluble intercellular adhesion molecule-1 (sICAM-1 were measured as markers of endothelial activation. Results The results obtained during this study demonstrate that THR and TKR orthopaedic surgery result in similar changes of leukocyte and endothelial markers, suggestive of increased inflammatory reactions postoperatively. Specifically, THR and TKR surgery resulted in a leukocytosis, this being demonstrated by an increase in the total leukocyte concentration following surgery. Evidence of leukocyte activation was demonstrated by a decrease in CD62L expression and an increase in CD11b expression by neutrophils and monocytes respectively. An increase in the intracellular H2O2 production by neutrophils and monocytes and in the leukocyte elastase concentrations was also evident of leukocyte activation following orthopaedic surgery. With respect to endothelial activation, increases in vWF and sICAM-1 concentrations were demonstrated following surgery. Conclusion In general it appeared that most of the leukocyte and endothelial markers measured during these studies peaked between days 1

  7. Improving the characterization of endothelial progenitor cell subsets by an optimized FACS protocol.

    Directory of Open Access Journals (Sweden)

    Karin Huizer

    Full Text Available The characterization of circulating endothelial progenitor cells (EPCs is fundamental to any study related to angiogenesis. Unfortunately, current literature lacks consistency in the definition of EPC subsets due to variations in isolation strategies and inconsistencies in the use of lineage markers. Here we address critical points in the identification of hematopoietic progenitor cells (HPCs, circulating endothelial cells (CECs, and culture-generated outgrowth endothelial cells (OECs from blood samples of healthy adults (AB and umbilical cord (UCB. Peripheral blood mononuclear cells (PBMCs were enriched using a Ficoll-based gradient followed by an optimized staining and gating strategy to enrich for the target cells. Sorted EPC populations were subjected to RT-PCR for tracing the expression of markers beyond the limits of cell surface-based immunophenotyping. Using CD34, CD133 and c-kit staining, combined with FSC and SSC, we succeeded in the accurate and reproducible identification of four HPC subgroups and found significant differences in the respective populations in AB vs. UCB. Co-expression analysis of endothelial markers on HPCs revealed a complex pattern characterized by various subpopulations. CECs were identified by using CD34, KDR, CD45, and additional endothelial markers, and were subdivided according to their apoptotic state and expression of c-kit. Comparison of UCB-CECs vs. AB-CECs revealed significant differences in CD34 and KDR levels. OECs were grown from PBMC-fractions We found that viable c-kit+ CECs are a candidate circulating precursor for CECs. RT-PCR to angiogenic factors and receptors revealed that all EPC subsets expressed angiogenesis-related molecules. Taken together, the improvements in immunophenotyping and gating strategies resulted in accurate identification and comparison of better defined cell populations in a single procedure.

  8. Heme degrading protein HemS is involved in oxidative stress response of Bartonella henselae.

    Directory of Open Access Journals (Sweden)

    MaFeng Liu

    Full Text Available Bartonellae are hemotropic bacteria, agents of emerging zoonoses. These bacteria are heme auxotroph Alphaproteobacteria which must import heme for supporting their growth, as they cannot synthesize it. Therefore, Bartonella genome encodes for a complete heme uptake system allowing the transportation of this compound across the outer membrane, the periplasm and the inner membranes. Heme has been proposed to be used as an iron source for Bartonella since these bacteria do not synthesize a complete system required for iron Fe³⁺ uptake. Similarly to other bacteria which use heme as an iron source, Bartonellae must transport this compound into the cytoplasm and degrade it to allow the release of iron from the tetrapyrrole ring. For Bartonella, the gene cluster devoted to the synthesis of the complete heme uptake system also contains a gene encoding for a polypeptide that shares homologies with heme trafficking or degrading enzymes. Using complementation of an E. coli mutant strain impaired in heme degradation, we demonstrated that HemS from Bartonella henselae expressed in E. coli allows the release of iron from heme. Purified HemS from B. henselae binds heme and can degrade it in the presence of a suitable electron donor, ascorbate or NADPH-cytochrome P450 reductase. Knocking down the expression of HemS in B. henselae reduces its ability to face H₂O₂ induced oxidative stress.

  9. Impairment of circulating endothelial progenitors in Down syndrome

    Directory of Open Access Journals (Sweden)

    Costa Valerio

    2010-09-01

    Full Text Available Abstract Background Pathological angiogenesis represents a critical issue in the progression of many diseases. Down syndrome is postulated to be a systemic anti-angiogenesis disease model, possibly due to increased expression of anti-angiogenic regulators on chromosome 21. The aim of our study was to elucidate some features of circulating endothelial progenitor cells in the context of this syndrome. Methods Circulating endothelial progenitors of Down syndrome affected individuals were isolated, in vitro cultured and analyzed by confocal and transmission electron microscopy. ELISA was performed to measure SDF-1α plasma levels in Down syndrome and euploid individuals. Moreover, qRT-PCR was used to quantify expression levels of CXCL12 gene and of its receptor in progenitor cells. The functional impairment of Down progenitors was evaluated through their susceptibility to hydroperoxide-induced oxidative stress with BODIPY assay and the major vulnerability to the infection with human pathogens. The differential expression of crucial genes in Down progenitor cells was evaluated by microarray analysis. Results We detected a marked decrease of progenitors' number in young Down individuals compared to euploid, cell size increase and some major detrimental morphological changes. Moreover, Down syndrome patients also exhibited decreased SDF-1α plasma levels and their progenitors had a reduced expression of SDF-1α encoding gene and of its membrane receptor. We further demonstrated that their progenitor cells are more susceptible to hydroperoxide-induced oxidative stress and infection with Bartonella henselae. Further, we observed that most of the differentially expressed genes belong to angiogenesis, immune response and inflammation pathways, and that infected progenitors with trisomy 21 have a more pronounced perturbation of immune response genes than infected euploid cells. Conclusions Our data provide evidences for a reduced number and altered

  10. Plasma levels of stromal cell-derived factor-1 (CXCL12) and circulating endothelial progenitor cells in women with idiopathic heavy menstrual bleeding.

    Science.gov (United States)

    Elsheikh, E; Andersson, E; Sylvén, C; Ericzon, B-G; Palmblad, J; Mints, M

    2014-01-01

    Do plasma levels of stromal cell-derived factor-1 (CXCL12, sometimes termed SDF-1) and the numbers of circulating endothelial progenitor cells (EPCs), EPC colony-forming units (EPC-CFU) and mature endothelial cells (ECs) differ between women with idiopathic heavy menstrual bleeding of endometrial origin (HMB-E) and controls and are they related to plasma levels of other angiogenic growth factors? Angiogenesis is altered in women with HMB-E, characterized by a reduction in mean plasma levels of CXCL12, a low number of EPCs-CFUs and a high level of circulating ECs. Plasma levels of CXCL12 are significantly higher during the proliferative than the secretory phase of the menstrual cycle in healthy women and exhibit a negative correlation with blood EPC-CFUs. A prospective cohort study in a university hospital setting. Between 2008 and 2009 10 HMB-E patients were recruited from Karolinska University Hospital. Ten healthy women were also included in the analysis. Ten healthy control women and 10 HMB-E patients, all with regular menstrual cycles, provided 4 blood samples during a single menstrual cycle: 2 in the proliferative phase, 1 at ovulation and 1 in the secretory phase. We assessed plasma levels of CXCL12, vascular endothelial growth factor A(165) (VEGFA), basic fibroblast growth factor (bFGF) and granulocyte and granulocyte-macrophage colony-stimulating factors by ELISA. We counted circulating EPC-CFUs by culture, and ECs and EPCs by flow cytometry and immunostaining for cell surface markers. Plasma levels of CXCL12 were significantly lower in HMB-E patients compared with control women (P Market Insurance. The authors have no conflict of interest to declare.

  11. Aging and Cardiometabolic Risk in European HEMS Pilots: An Assessment of Occupational Old-Age Limits as a Regulatory Risk Management Strategy.

    Science.gov (United States)

    Bauer, Hans; Nowak, Dennis; Herbig, Britta

    2017-12-11

    Old-age limits are imposed in some occupations in an effort to ensure public safety. In aviation, the "Age 60 Rule" limits permissible flight operations conducted by pilots aged 60 and over. Using a retrospective cohort design, we assessed this rule's validity by comparing age-related change rates of cardiometabolic incapacitation risk markers in European helicopter emergency medical service (HEMS) pilots near age 60 with those in younger pilots. Specifically, individual clinical, laboratory, and electrocardiogram (ECG)-based risk markers and an overall cardiovascular event risk score were determined from aeromedical examination records of 66 German, Austrian, Polish, and Czech HEMS pilots (average follow-up 8.52 years). Risk marker change rates were assessed using linear mixed models and generalized additive models. Body mass index increases over time were slower in pilots near age 60 compared to younger pilots, and fasting glucose levels increased only in the latter. Whereas the lipid profile remained unchanged in the latter, it improved in the former. An ECG-based arrhythmia risk marker increased in younger pilots, which persisted in the older pilots. Six-month risk of a fatal cardiovascular event (in or out of cockpit) was estimated between 0% and 0.3%. Between 41% and 95% of risk marker variability was due to unexplained time-stable between-person differences. To conclude, the cardiometabolic risk marker profile of HEMS pilots appears to improve over time in pilots near age 60, compared to younger pilots. Given large stable interindividual differences, we recommend individualized risk assessment of HEMS pilots near age 60 instead of general grounding. © 2017 Society for Risk Analysis.

  12. The association between circulating endothelial progenitor cells and coronary collateral formation.

    Science.gov (United States)

    Tokgözoğlu, Lale; Yorgun, Hikmet; Gürses, Kadri Murat; Canpolat, Uğur; Ateş, Ahmet Hakan; Tülümen, Erol; Kaya, Ergün Barış; Aytemir, Kudret; Kabakçı, Giray; Tuncer, Murat; Oto, Ali

    2011-12-01

    We investigated the relationship between coronary collateral formation and circulating endothelial progenitor cells (EPC) in patients undergoing coronary angiography. Circulating CD133(+)/34(+) and CD34(+)/KDR(+) EPCs were determined in 68 patients (normal coronary vessels in 24 patients and coronary artery disease (CAD) in 44 patients) (age: 58.7 ± 10.1, 64.7% male). Circulating EPCs were higher among patients with normal coronary vessels compared to patients with CAD for CD133(+)/34(+) (p collateral formation (p collateral formation after adjustment for other cardiovascular risk factors and extent of CAD (p = 0.037). In patients with severe coronary stenosis, those with increased circulating EPCs had better collateral formation compared to those with lower EPC counts. Our findings implicate that in addition to presence of critical stenosis, intact response of bone marrow is necessary for collateral formation in CAD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Circulating endothelial progenitor cells: a new approach to anti-aging medicine?

    Directory of Open Access Journals (Sweden)

    Patel Amit N

    2009-12-01

    Full Text Available Abstract Endothelial dysfunction is associated with major causes of morbidity and mortality, as well as numerous age-related conditions. The possibility of preserving or even rejuvenating endothelial function offers a potent means of preventing/treating some of the most fearful aspects of aging such as loss of mental, cardiovascular, and sexual function. Endothelial precursor cells (EPC provide a continual source of replenishment for damaged or senescent blood vessels. In this review we discuss the biological relevance of circulating EPC in a variety of pathologies in order to build the case that these cells act as an endogenous mechanism of regeneration. Factors controlling EPC mobilization, migration, and function, as well as therapeutic interventions based on mobilization of EPC will be reviewed. We conclude by discussing several clinically-relevant approaches to EPC mobilization and provide preliminary data on a food supplement, Stem-Kine, which enhanced EPC mobilization in human subjects.

  14. Circulating histones are mediators of trauma-associated lung injury.

    Science.gov (United States)

    Abrams, Simon T; Zhang, Nan; Manson, Joanna; Liu, Tingting; Dart, Caroline; Baluwa, Florence; Wang, Susan Siyu; Brohi, Karim; Kipar, Anja; Yu, Weiping; Wang, Guozheng; Toh, Cheng-Hock

    2013-01-15

    Acute lung injury is a common complication after severe trauma, which predisposes patients to multiple organ failure. This syndrome largely accounts for the late mortality that arises and despite many theories, the pathological mechanism is not fully understood. Discovery of histone-induced toxicity in mice presents a new dimension for elucidating the underlying pathophysiology. To investigate the pathological roles of circulating histones in trauma-induced lung injury. Circulating histone levels in patients with severe trauma were determined and correlated with respiratory failure and Sequential Organ Failure Assessment (SOFA) scores. Their cause-effect relationship was studied using cells and mouse models. In a cohort of 52 patients with severe nonthoracic blunt trauma, circulating histones surged immediately after trauma to levels that were toxic to cultured endothelial cells. The high levels were significantly associated with the incidence of acute lung injury and SOFA scores, as well as markers of endothelial damage and coagulation activation. In in vitro systems, histones damaged endothelial cells, stimulated cytokine release, and induced neutrophil extracellular trap formation and myeloperoxidase release. Cellular toxicity resulted from their direct membrane interaction and resultant calcium influx. In mouse models, cytokines and markers for endothelial damage and coagulation activation significantly increased immediately after trauma or histone infusion. Pathological examinations showed that lungs were the predominantly affected organ with edema, hemorrhage, microvascular thrombosis, and neutrophil congestion. An anti-histone antibody could reduce these changes and protect mice from histone-induced lethality. This study elucidates a new mechanism for acute lung injury after severe trauma and proposes that circulating histones are viable therapeutic targets for improving survival outcomes in patients.

  15. Circulating Histones Are Mediators of Trauma-associated Lung Injury

    Science.gov (United States)

    Abrams, Simon T.; Zhang, Nan; Manson, Joanna; Liu, Tingting; Dart, Caroline; Baluwa, Florence; Wang, Susan Siyu; Brohi, Karim; Kipar, Anja; Yu, Weiping

    2013-01-01

    Rationale: Acute lung injury is a common complication after severe trauma, which predisposes patients to multiple organ failure. This syndrome largely accounts for the late mortality that arises and despite many theories, the pathological mechanism is not fully understood. Discovery of histone-induced toxicity in mice presents a new dimension for elucidating the underlying pathophysiology. Objectives: To investigate the pathological roles of circulating histones in trauma-induced lung injury. Methods: Circulating histone levels in patients with severe trauma were determined and correlated with respiratory failure and Sequential Organ Failure Assessment (SOFA) scores. Their cause–effect relationship was studied using cells and mouse models. Measurements and Main Results: In a cohort of 52 patients with severe nonthoracic blunt trauma, circulating histones surged immediately after trauma to levels that were toxic to cultured endothelial cells. The high levels were significantly associated with the incidence of acute lung injury and SOFA scores, as well as markers of endothelial damage and coagulation activation. In in vitro systems, histones damaged endothelial cells, stimulated cytokine release, and induced neutrophil extracellular trap formation and myeloperoxidase release. Cellular toxicity resulted from their direct membrane interaction and resultant calcium influx. In mouse models, cytokines and markers for endothelial damage and coagulation activation significantly increased immediately after trauma or histone infusion. Pathological examinations showed that lungs were the predominantly affected organ with edema, hemorrhage, microvascular thrombosis, and neutrophil congestion. An anti-histone antibody could reduce these changes and protect mice from histone-induced lethality. Conclusions: This study elucidates a new mechanism for acute lung injury after severe trauma and proposes that circulating histones are viable therapeutic targets for improving survival

  16. Endothelial marker-expressing stromal cells are critical for kidney formation.

    Science.gov (United States)

    Mukherjee, Elina; Maringer, Katherine; Papke, Emily; Bushnell, Daniel; Schaefer, Caitlin; Kramann, Rafael; Ho, Jacqueline; Humphreys, Benjamin D; Bates, Carlton; Sims-Lucas, Sunder

    2017-09-01

    Kidneys are highly vascularized and contain many distinct vascular beds. However, the origins of renal endothelial cells and roles of the developing endothelia in the formation of the kidney are unclear. We have shown that the Foxd1-positive renal stroma gives rise to endothelial marker-expressing progenitors that are incorporated within a subset of peritubular capillaries; however, the significance of these cells is unclear. The purpose of this study was to determine whether deletion of Flk1 in the Foxd1 stroma was important for renal development. To that end, we conditionally deleted Flk1 (critical for endothelial cell development) in the renal stroma by breeding-floxed Flk1 mice ( Flk1 fl/fl ) with Foxd1cre mice to generate Foxd1cre; Flk1 fl/fl ( Flk1 ST-/- ) mice. We then performed FACsorting, histological, morphometric, and metabolic analyses of Flk1 ST-/- vs. control mice. We confirmed decreased expression of endothelial markers in the renal stroma of Flk1 ST-/- kidneys via flow sorting and immunostaining, and upon interrogation of embryonic and postnatal Flk1 ST-/- mice, we found they had dilated peritubular capillaries. Three-dimensional reconstructions showed reduced ureteric branching and fewer nephrons in developing Flk1 ST-/- kidneys vs. Juvenile Flk1 ST-/- kidneys displayed renal papillary hypoplasia and a paucity of collecting ducts. Twenty-four-hour urine collections revealed that postnatal Flk1 ST-/- mice had urinary-concentrating defects. Thus, while lineage-tracing revealed that the renal cortical stroma gave rise to a small subset of endothelial progenitors, these Flk1-expressing stromal cells are critical for patterning the peritubular capillaries. Also, loss of Flk1 in the renal stroma leads to nonautonomous-patterning defects in ureteric lineages. Copyright © 2017 the American Physiological Society.

  17. Thrombomodulin and von Willebrand factor as markers of radiation-induced endothelial injury

    International Nuclear Information System (INIS)

    Zhou Quansheng; Zhao Yimin; Li Peixia; Bai Xia; Ruan Changgeng

    1992-02-01

    Cultured confluent human umbilical vein endothelial cells were irradiated in vitro by 60 Co-gamma ray at doses from 0 to 50 Gy. After irradiation Thrombomodulin in the supernatants of endothelial cell culture medium, on the surface of the cells and within the cells was measured at different times over six days. At twenty-four hours after irradiation, an increase in the release of Thrombomodulin and von Willebrand factor from irradiated endothelial cells and an increase in the number of molecules and the activity of Thrombomodulin on the surface of the cells were observed, which were radiation-dose dependent. The capacity of the cells to produce and release Thrombomodulin was decreased from two to six days after exposure to 60 Co-gamma ray. Our data indicate that radiation can injure endothelial cells and that Thrombomodulin may be as a marker of radiation-induced endothelial cell injury. The relationship between dysfunction of irradiated endothelial cells and the pathological mechanisms of acute radiation sickness are discussed

  18. Circulating endothelial cells: a potential parameter of organ damage in sickle cell anemia?

    NARCIS (Netherlands)

    Strijbos, Michiel H.; Landburg, Precious P.; Nur, Erfan; Teerlink, Tom; Leebeek, Frank W. G.; Rijneveld, Anita W.; Biemond, Bart J.; Sleijfer, Stefan; Gratama, Jan W.; Duits, Ashley J.; Schnog, John-John B.

    2009-01-01

    Objective laboratory tools are needed to monitor developing organ damage in sickle cell disease (SCD). Circulating endothelial cells (CECs) are indicative of vascular injury. We determined whether elevated CEC can be detected in asymptomatic SCD with the CellSearch system and whether the CEC count

  19. The Splicing Factor SRSF1 as a Marker for Endothelial Senescence

    Science.gov (United States)

    Blanco, Francisco Javier; Bernabéu, Carmelo

    2012-01-01

    Aging is the major risk factor per se for the development of cardiovascular diseases. The senescence of the endothelial cells (ECs) that line the lumen of blood vessels is the cellular basis for these age-dependent vascular pathologies, including atherosclerosis and hypertension. During their lifespan, ECs may reach a stage of senescence by two different pathways; a replicative one derived from their preprogrammed finite number of cell divisions; and one induced by stress stimuli. Also, certain physiological stimuli, such as transforming growth factor-β, are able to modulate cellular senescence. Currently, the cellular aging process is being widely studied to identify novel molecular markers whose changes correlate with senescence. This review focuses on the regulation of alternative splicing mediated by the serine–arginine splicing factor 1 (SRSF1, or ASF/SF2) during endothelial senescence, a process that is associated with a differential subcellular localization of SRSF1, which typically exhibits a scattered distribution throughout the cytoplasm. Based on its senescence-dependent involvement in alternative splicing, we postulate that SRSF1 is a key marker of EC senescence, regulating the expression of alternative isoforms of target genes such as endoglin (ENG), vascular endothelial growth factor A (VEGFA), tissue factor (T3), or lamin A (LMNA) that integrate in a common molecular senescence program. PMID:22470345

  20. [Undifferentiated cutaneous angiosarcoma of the head: identification by the endothelial marker Ulex europaeus agglutinin I].

    Science.gov (United States)

    Bork, K; Fries, J; Hoede, N; Korting, G W; Dienes, P

    1985-06-01

    Cutaneous angiosarcoma of the head is a rare tumor of the elderly and can occur in an undifferentiated form without any clinical or histological signs of the vascular origin of this tumor. In these cases, the tumor can be identified by using endothelial cell markers, such as factor-VIII-related antigen and ulex europaeus agglutinin I, in an immunofluorescence technique or a peroxidase-antiperoxidase method. A 78-year-old patient is described who died within 18 months from such a tumor, which was diagnosed using the endothelial cell marker, ulex europaeus agglutinin I.

  1. FE-Simulation Of Hemming In The Automotive Industry

    International Nuclear Information System (INIS)

    Sigvant, Mats; Mattiasson, Kjell

    2005-01-01

    This paper summarizes and presents the most important results from a research project on FE simulation of hemming carried out at Volvo Cars Body Components and Chalmers University of Technology. In the automotive industry, hemming is used to join two sheet metal panels by bending the flange of the outer panel over the inner one. The final goal of the project was to simulate all of the hemming steps of production parts. In order to make three-dimensional simulations of hemming possible within reasonable simulation times, it is necessary to use shell elements and not solid elements. On the other hand, the radius of curvature of the outer part in the folded area is very small, normally of the same order of magnitude as the sheet thickness. This fact raises the question if shell elements are applicable in FE simulation of hemming. One part of the project was therefore a thorough investigation of the order of magnitude of the errors resulting from the use of shell elements in FE simulation of hemming. Another part of the project was devoted to three-dimensional simulations of the hemming of an automotive hood. The influence on the roll-in from several parameters, such as shell element formulation, adhesives, and anisotropy was studied. Finally, results from a forming simulation were also mapped to the flanging and hemming models in order to study the influence from the stamping of the outer panel on the roll-in

  2. The non-alcoholic fraction of beer increases stromal cell derived factor 1 and the number of circulating endothelial progenitor cells in high cardiovascular risk subjects: a randomized clinical trial.

    Science.gov (United States)

    Chiva-Blanch, Gemma; Condines, Ximena; Magraner, Emma; Roth, Irene; Valderas-Martínez, Palmira; Arranz, Sara; Casas, Rosa; Martínez-Huélamo, Miriam; Vallverdú-Queralt, Anna; Quifer-Rada, Paola; Lamuela-Raventos, Rosa M; Estruch, Ramon

    2014-04-01

    Moderate alcohol consumption is associated with a decrease in cardiovascular risk, but fermented beverages seem to confer greater cardiovascular protection due to their polyphenolic content. Circulating endothelial progenitor cells (EPC) are bone-marrow-derived stem cells with the ability to repair and maintain endothelial integrity and function and are considered as a surrogate marker of vascular function and cumulative cardiovascular risk. Nevertheless, no study has been carried out on the effects of moderate beer consumption on the number of circulating EPC in high cardiovascular risk patients. To compare the effects of moderate consumption of beer, non-alcoholic beer and gin on the number of circulating EPC and EPC-mobilizing factors. In this crossover trial, 33 men at high cardiovascular risk were randomized to receive beer (30 g alcohol/d), the equivalent amount of polyphenols in the form of non-alcoholic beer, or gin (30 g alcohol/d) for 4 weeks. Diet and physical exercise were carefully monitored. The number of circulating EPC and EPC-mobilizing factors were determined at baseline and after each intervention. After the beer and non-alcoholic beer interventions, the number of circulating EPC significantly increased by 8 and 5 units, respectively, while no significant differences were observed after the gin period. In correlation, stromal cell derived factor 1 increased significantly after the non-alcoholic and the beer interventions. The non-alcoholic fraction of beer increases the number of circulating EPC in peripheral blood from high cardiovascular risk subjects. http://www.controlled-trials.com/ISRCTN95345245 ISRCTN95345245. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. RELATIONSHIP OF THE MARKERS OF ENDOTHELIAL DYSFUNCTION AND FIBROSIS IN CHRONIC HEPATITIS AND CIRRHOSIS

    Directory of Open Access Journals (Sweden)

    V. V. Shchekotov

    2014-07-01

    Full Text Available The aim – assessing the relationship of markers of endothelial dysfunction and fibrosis (AF in patients with chronic viral hepatitis and liver cirrhosis (LC.Materials and methods. We examined 40 patients with chronic hepatitis C in the phase of reactivation. The second group included 15 patients with viral CP in stage of decompensation. Using the method of ELISA tests was studied evaluating the functional state of endothelium in the blood serum with a level of total nitrogen oxide (OA, endothelin-1 (ET-1, vascular-endothelial growth factor (VEFR. Evaluated the functional activity of Willebrand factor (WF, calculated the number of desquamated endothelial cells (DETS in blood plasma, determined the level of hyaluronic acid (HA in serum. Established diagnostic sensitivity (Qh, specificity (DS and efficiency (DE of laboratory parameters.Results. In chronic hepatitis (CH found an inverse significant relationship of HA and OA, and direct relationship with Civil ET-1, VEFR, WF, indicating the association of fibrosis with the severity of the damage of the endothelium. Patients with CKD also had a direct correlation between HA and ET-1,VEFR, PV. Ratio of aspartate and alanine aminotransferase (AST/ALT with hCG was associated with OA, ET-1, VEFR, DETS. In patients with CKD significant coefficient de Rytis nteractions with OA, ET-1, VEFR are found. At the point of separating the concentration of SC > 120.0 ng / ml for the diagnosis of CKD has Qh 92 %, FS –76 %, DE – 82 %. In evaluating the operating characteristics of the indicators of endothelial dysfunction capacity of tests to stratify CG and CP were installed, the sensitivity was 73–92 %, specificity – 50–96 %, and efficiency – 69–86 %.Conclusion. CG and CP demonstrated the relationship of indicators of endothelial dysfunction with markers OP – HA, AST/ALT. The results suggest that indicators of endothelial damage may serve as indirect markers of AF.

  4. RELATIONSHIP OF THE MARKERS OF ENDOTHELIAL DYSFUNCTION AND FIBROSIS IN CHRONIC HEPATITIS AND CIRRHOSIS

    Directory of Open Access Journals (Sweden)

    V. V. Shchekotov

    2011-01-01

    Full Text Available The aim – assessing the relationship of markers of endothelial dysfunction and fibrosis (AF in patients with chronic viral hepatitis and liver cirrhosis (LC.Materials and methods. We examined 40 patients with chronic hepatitis C in the phase of reactivation. The second group included 15 patients with viral CP in stage of decompensation. Using the method of ELISA tests was studied evaluating the functional state of endothelium in the blood serum with a level of total nitrogen oxide (OA, endothelin-1 (ET-1, vascular-endothelial growth factor (VEFR. Evaluated the functional activity of Willebrand factor (WF, calculated the number of desquamated endothelial cells (DETS in blood plasma, determined the level of hyaluronic acid (HA in serum. Established diagnostic sensitivity (Qh, specificity (DS and efficiency (DE of laboratory parameters.Results. In chronic hepatitis (CH found an inverse significant relationship of HA and OA, and direct relationship with Civil ET-1, VEFR, WF, indicating the association of fibrosis with the severity of the damage of the endothelium. Patients with CKD also had a direct correlation between HA and ET-1,VEFR, PV. Ratio of aspartate and alanine aminotransferase (AST/ALT with hCG was associated with OA, ET-1, VEFR, DETS. In patients with CKD significant coefficient de Rytis nteractions with OA, ET-1, VEFR are found. At the point of separating the concentration of SC > 120.0 ng / ml for the diagnosis of CKD has Qh 92 %, FS –76 %, DE – 82 %. In evaluating the operating characteristics of the indicators of endothelial dysfunction capacity of tests to stratify CG and CP were installed, the sensitivity was 73–92 %, specificity – 50–96 %, and efficiency – 69–86 %.Conclusion. CG and CP demonstrated the relationship of indicators of endothelial dysfunction with markers OP – HA, AST/ALT. The results suggest that indicators of endothelial damage may serve as indirect markers of AF.

  5. Usefulness of vitamin A binding protein as a marker for capillary endothelial permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ishizaka, Akitoshi; Suzuki, Yukio; Kanazawa, Minoru; Kubo, Atsushi; Kawashiro, Takeo [Keio Univ., Tokyo (Japan). School of Medicine

    1992-06-01

    We performed a preliminary study to assess the usefulness of Vitamin A binding protein (VABP) as a gamma-camera marker for capillary endothelial permeability. We used a guinea pig model of endotoxin (LPS) induced acute lung injury. We calculated the concentration ratio of either {sup 125}I-albumin or {sup 125}I-VABP in lung tissue to that in plasma (tissue plasma ratio; T/P) as a parameter of capillary endothelial permeability. {sup 99m}Tc-diethylene triamine pentaacetic acid (DTPA) was used as marker for pulmonary interstitial volume. We estimated wet to dry lung weight ratio as a parameter of lung water accumulation (W/D). LPS increased the T/P of {sup 125}I-albumin and W/D, suggesting the development of permeability edema. The T/P for {sup 125}I-VABP was also increased, indicating that {sup 125}I-VABP can be used to detect elevated capillary endothelial permeability. In both groups, LPS and saline, the T/P was higher for {sup 125}I-VABP than for {sup 125}I-albumin. These data suggest that the pulmonary capillary endothelium is more permeable to VABP than albumin. (author).

  6. Endurance Capacity Is Not Correlated with Endothelial Function in Male University Students

    Science.gov (United States)

    Wu, Fang; Su, Chen; Fan, Zhen-guo; Zhu, Zhu; Tao, Jun; Huang, Yi-jun

    2014-01-01

    Background Endurance capacity, assessed by 1000-meter (1000 m) run of male university students, is an indicator of cardiovascular fitness in Chinese students physical fitness surveillance. Although cardiovascular fitness is related to endothelial function closely in patients with cardiovascular diseases, it remains unclear whether endurance capacity correlates with endothelial function, especially with circulating endothelial microparticles (EMPs), a new sensitive marker of endothelial dysfunction in young students. The present study aimed to investigate the relationship between endurance capacity and endothelial function in male university students. Methods Forty-seven healthy male university students (mean age, 20.1±0.6 years; mean height, 172.4±6.3 cm; and mean weight, 60.0±8.2 kg) were recruited in this study. The measurement procedure of 1000 m run time was followed to Chinese national students Constitutional Health Criterion. Endothelium function was assessed by flow-mediated vasodilation (FMD) in the brachial artery measured by ultrasonic imaging, and the level of circulating EMPs was measured by flow cytometry. Cardiovascular fitness indicator - maximal oxygen uptake (VO2 max) - was also measured on a cycle ergometer using a portable gas analyzer. Results 1000 m run time was correlated with VO2max (r = −0.399, p0.05). Conclusion The correlations between endurance capacity or cardiovascular fitness and endothelial function were not found in healthy Chinese male university students. These results suggest that endurance capacity may not reflect endothelial function in healthy young adults with well preserved FMD and low level of circulating CD31+/CD42-EMPs. PMID:25101975

  7. Influence of depression and anxiety on circulating endothelial progenitor cells in patients with acute coronary syndromes.

    Science.gov (United States)

    Felice, Francesca; Di Stefano, Rossella; Pini, Stefano; Mazzotta, Gianfranco; Bovenzi, Francesco M; Bertoli, Daniele; Abelli, Marianna; Borelli, Lucia; Cardini, Alessandra; Lari, Lisa; Gesi, Camilla; Michi, Paola; Morrone, Doralisa; Gnudi, Luigi; Balbarini, Alberto

    2015-05-01

    Circulating endothelial progenitor cells (EPCs) are related to endothelial function and progression of coronary artery disease. There is evidence of decreased numbers of circulating EPCs in patients with a current episode of major depression. We investigated the relationships between the level of circulating EPCs and depression and anxiety in patients with acute coronary syndrome (ACS). Patients with ACS admitted to three Cardiology Intensive Care Units were evaluated by the SCID-I to determine the presence of lifetime and/or current mood and anxiety disorders according to DSM-IV criteria. The EPCs were defined as CD133(+) CD34(+) KDR(+) and evaluated by flow cytometry. All patients underwent standardized cardiological and psychopathological evaluations. Parametric and nonparametric statistical tests were performed where appropriate. Out of 111 ACS patients, 57 were found to have a DSM-IV lifetime or current mood or anxiety disorder at the time of the inclusion in the study. The ACS group with mood or anxiety disorders showed a significant decrease in circulating EPC number compared with ACS patients without affective disorders. In addition, EPC levels correlated negatively with severity of depression and anxiety at index ACS episode. The current study indicates that EPCs circulate in decreased numbers in ACS patients with depression or anxiety and, therefore, contribute to explore new perspectives in the pathophysiology of the association between cardiovascular disorders and affective disorders. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Prognostic Value of CD109+ Circulating Endothelial Cells in Recurrent Glioblastomas Treated with Bevacizumab and Irinotecan

    Science.gov (United States)

    Cuppini, Lucia; Calleri, Angelica; Bruzzone, Maria Grazia; Prodi, Elena; Anghileri, Elena; Pellegatta, Serena; Mancuso, Patrizia; Porrati, Paola; Di Stefano, Anna Luisa; Ceroni, Mauro; Bertolini, Francesco; Finocchiaro, Gaetano; Eoli, Marica

    2013-01-01

    Background Recent data suggest that circulating endothelial and progenitor cells (CECs and CEPs, respectively) may have predictive potential in cancer patients treated with bevacizumab, the antibody recognizing vascular endothelial growth factor (VEGF). Here we report on CECs and CEPs investigated in 68 patients affected by recurrent glioblastoma (rGBM) treated with bevacizumab and irinotecan and two Independent Datasets of rGBM patients respectively treated with bevacizumab alone (n=32, independent dataset A: IDA) and classical antiblastic chemotherapy (n=14, independent dataset B: IDB). Methods rGBM patients with KPS ≥50 were treated until progression, as defined by MRI with RANO criteria. CECs expressing CD109, a marker of tumor endothelial cells, as well as other CEC and CEP subtypes, were investigated by six-color flow cytometry. Results A baseline count of CD109+ CEC higher than 41.1/ml (1st quartile) was associated with increased progression free survival (PFS; 20 versus 9 weeks, P=0.008) and overall survival (OS; 32 versus 23 weeks, P=0.03). Longer PFS (25 versus 8 weeks, P=0.02) and OS (27 versus 17 weeks, P=0.03) were also confirmed in IDA with CD109+ CECs higher than 41.1/ml but not in IDB. Patients treated with bevacizumab with or without irinotecan that were free from MRI progression after two months of treatment had significant decrease of CD109+ CECs: median PFS was 19 weeks; median OS 29 weeks. The presence of two non-contiguous lesions (distant disease) at baseline was an independent predictor of shorter PFS and OS (P<0.001). Conclusions Data encourage further studies on the predictive potential of CD109+ CECs in GBM patients treated with bevacizumab. PMID:24069296

  9. Effects of a Physical Activity Program on Markers of Endothelial Dysfunction, Oxidative Stress, and Metabolic Status in Adolescents with Metabolic Syndrome

    Science.gov (United States)

    Camarillo-Romero, Eneida; Dominguez-Garcia, Ma Victoria; Amaya-Chavez, Araceli; Camarillo-Romero, Maria del Socorro; Talavera-Piña, Juan; Huitron-Bravo, Gerardo; Majluf-Cruz, Abraham

    2012-01-01

    The metabolic syndrome (MetS) is a precursor of diabetes. Physical activity (PA) improves endothelial dysfunction and may benefit patients with MetS. Aims. To evaluate the effect of a physical activity (PA) program on markers of endothelial dysfunction and oxidative stress in adolescents with (MetS). Methods. We carried out a cohort study of 38 adolescents with and without MetS (18 females and 20 males). All participants completed a 3-month PA program. All variables of the MetS as well as markers of endothelial dysfunction and oxidative stress tests were evaluated. Results. Females with and without MetS showed significant differences for almost all components of the MetS, whereas males were significantly different in half of the components. After the PA program, components of the MetS were not different from baseline values except for HDL-C levels. Some baseline endothelial dysfunction markers were significantly different among adolescents with and without MetS; however, after the PA program, most of these markers significantly improved in subjects with and without MetS. Conclusion. PA improves the markers of endothelial dysfunction in adolescents with MetS although other changes in the components of the MetS were not observed. Perhaps the benefits of PA on all components of MetS would appear after a PA program with a longer duration. PMID:22888450

  10. The level of circulating endothelial progenitor cells may be associated with the occurrence and recurrence of chronic subdural hematoma

    Directory of Open Access Journals (Sweden)

    Yan Song

    2013-01-01

    Full Text Available OBJECTIVES: The onset of chronic subdural hematoma may be associated with direct or indirect minor injuries to the head or a poorly repaired vascular injury. Endothelial progenitor cells happen to be one of the key factors involved in hemostasis and vascular repair. This study was designed to observe the levels of endothelial progenitor cells, white blood cells, platelets, and other indicators in the peripheral blood of patients diagnosed with chronic subdural hematoma to determine the possible relationship between the endothelial progenitor cells and the occurrence, development, and outcomes of chronic subdural hematoma. METHOD: We enrolled 30 patients with diagnosed chronic subdural hematoma by computer tomography scanning and operating procedure at Tianjin Medical University General Hospital from July 2009 to July 2011. Meanwhile, we collected 30 cases of peripheral blood samples from healthy volunteers over the age of 50. Approximately 2 ml of blood was taken from veins of the elbow to test the peripheral blood routine and coagulation function. The content of endothelial progenitor cells in peripheral blood mononuclear cells was determined by flow cytometry. RESULTS: The level of endothelial progenitor cells in peripheral blood was significantly lower in preoperational patients with chronic subdural hematomas than in controls. There were no significant differences between the two groups regarding the blood routine and coagulation function. However, the levels of circulating endothelial progenitor cells were significantly different between the recurrent group and the non-recurrent group. CONCLUSIONS: The level of circulating endothelial progenitor cells in chronic subdural hematoma patients was significantly lower than the level in healthy controls. Meanwhile, the level of endothelial progenitor cells in recurrent patients was significantly lower than the level in patients without recurrence. Endothelial progenitor cells may be related to the

  11. Selected markers of endothelial dysfunction in patients with subclinical and overt hyperthyroidism

    International Nuclear Information System (INIS)

    Modzelewska, A.; Szelachowska, M.; Zonenberg, A.; Abdelrazek, S.; Nikolajuk, A.; Gorska, M.

    2006-01-01

    Introduction: There are many factors causing endothelial dysfunction. The aim was to observe chosen markers of endothelial function in patients with subclinical and overt hyperthyroidism. Material and methods: We studied 97 patients with hyperthyroidism: 51 with subclinical (44 F/7 M; mean age 49.3 ± 15.9 y) and 46 patients with overt (39 F/7 M, mean age 50.4 ± 13.2 y). The control comprised of 39 healthy volunteers (26 F/13 M, mean age 47.5 ± 11.8 y). Concentration of TSH, FT3, FT4 were measured by MEIA, TPO Ab, TG Ab, E-selectin, interleukin 6, VCAM-1, ICAM-1 by ELISA. Results: The goiter was found in 71 persons 63F/8M, mean age 49.9 ± 15.3 y, (42-subclinical, 29-overt). Morbus Graves--Basedow was diagnosed in 26 persons, 20 F/6 M, mean age 49.5 ± 12.8 y (9-subclinical, 17-overt). There were no significant differences serum concentration of E-selectin, IL-6, ICAM-1 in patients with subclinical and overt hyperthyroidism compared to the control. Statistically significant differences were shown between concentration of IL-6 in patients with Graves-Basedow compared with the control (p < 0.05). Significance of VCAM-1 values were found in the patients with subclinical and overt hyperthyroidism compared to the control (p < 0.001; p < 0.001, respectively). Conclusions: Among persons with overt and subclinical hyperthyroidism occurs endothelial dysfunction which doesn't depends on exciting cause of thyrotoxicosis but on degree of hyperthyroidism. Elevated concentrations of endothelial markers may confirm that persons with thyroid disorders are extremely exposed to the occurrence of the cardiovascular diseases. (author)

  12. The relationship of vascular endothelial marker and endothelium-dependent vasodilatation in patients with essential hypertension

    International Nuclear Information System (INIS)

    Chen Yongjian; Zhou Yonglie; Hu Qingfeng; Qiu Liannv

    2009-01-01

    Objective: To explore the relationship of vascular endothelial marker and endothelium-dependent vasodilatation in patients with essential hypertension (EH). Methods: Plasma endothlium (ET-1) (with RIA) and von Willber factor (vWF)(with ELISA) levels were measured both before and after 12 wks' treatment in 56 patients with essential hypertension and 32 controls. The brachial artery endothelium-dependent vasodilatation function was examined with high resolving color doppler ultra-sonography. The 56 patients with EH were of two groups A. high and very high risk, n=26 B. low and moderate risk, n=30. Results: Plasma levels of ET-1, vWF in patients with EH as a whole were significantly higher than those in controls group [(53.3±16.2)pg/ml vs(42.5±8.5)pg/ml, (158.2±28.6)% vs(130.6±35.2)%], endothelium-dependent vasodilatation function wasmuch reduced in patients with EH(7.5±4.2)% vs controls(12.3±4.3)%. Among the patients, values in Group A were significantly different from those in Group B. After treatment for 12 weeks, plasma ET-1 and vWF and endothelium-dependent vasodilatation function were significantly improved. There was negative correlation between vascular endothelial marker levels and endothelium-dependent vasodilatation function. Conclusion: The endothelium-dependent vasodilatation function was impaired and plasma ET-1 and vWF levels were increased in patients with EH, the endothelial dysfunction was closely associated with the risk level of EH. Vascular endothelial markers were useful indicators for evaluation of the endothelium-dependent vasodilatation function. (authors)

  13. Urine albumin to creatinine ratio: A marker of early endothelial dysfunction in youth

    Science.gov (United States)

    The urine albumin-to-creatinine ratio (UACR) is a useful predictor of cardiovascular (CV) events in adults. Its relationship to vascular function in children is not clear. We investigated whether UACR was related to insulin resistance and endothelial function, a marker of subclinical atherosclerosis...

  14. Circulating endothelial progenitor cells, Th1/Th2/Th17-related cytokines, and endothelial dysfunction in resistant hypertension.

    Science.gov (United States)

    Magen, Eli; Feldman, Arie; Cohen, Ziona; Alon, Dora Ben; Minz, Evegeny; Chernyavsky, Alexey; Linov, Lina; Mishal, Joseph; Schlezinger, Menacham; Sthoeger, Zev

    2010-02-01

    A possible link between chronic vascular inflammation and arterial hypertension is now an object of intensive studies. To compare Th1/Th2/Th17 cells-related cytokines, circulating endothelial progenitor cells (EPC), and endothelial function in subjects with resistant arterial hypertension (RAH) and controlled arterial hypertension (CAH). Blood pressure was measured by electronic sphygmomanometer. EPC were identified as CD34+/CD133+/kinase insert domain receptor (KDR)+ cells by flow cytometry. Th1/Th2/Th17 cells-related cytokines were identified using the Human Th1/Th2/Th17 Cytokines MultiAnalyte ELISArray Kit. Endothelium-dependent (FMD) vasodilatation of brachial artery was measured by Doppler ultrasound scanning. RAH group (n = 20) and CAH group (n = 20) and 17 healthy individuals (control group) were recruited. In the RAH group, lower blood levels of EPC number (42.4 +/- 16.7 cells/mL) and EPC% (0.19 +/- 0.08%) were observed than in the CAH group (93.1 +/- 88.7 cells/mL; P = 0.017; 0.27 +/- 0.17; P = 0.036) and control group (68.5 +/- 63.6 cells/mL; P < 0.001; 0.28 +/- 0.17%; P = 0.003), respectively. Plasma transforming growth factor-beta1 levels were significantly higher in the RAH group (1767 +/- 364 pg/mL) than in the CAH group (1292 +/- 349; P < 0.001) and in control group (1203 +/- 419 pg/mL; P < 0.001). In the RAH group, statistically significant negative correlation was observed between systolic blood pressure and EPC% (r = -0.72, P < 0.01). FMD in the RAH group was significantly lower (5.5 +/- 0.8%) than in the CAH group (9.2 +/- 1.4; P < 0.001) and in healthy controls (10.1 +/- 1.1%; P < 0.001). RAH is characterized by reduced circulating EPC, substantial endothelial dysfunction, and increased plasma transforming growth factor-beta1 levels.

  15. Acute myocardial infarction is associated with endothelial glycocalyx and cell damage and a parallel increase in circulating catecholamines

    DEFF Research Database (Denmark)

    Ostrowski, Sisse R; Pedersen, Sune H; Jensen, Jan S

    2013-01-01

    INTRODUCTION: Excessive sympathoadrenal activation in critical illness contributes directly to organ damage, and high concentrations of catecholamines damage the vascular endothelium. This study investigated associations between potential drivers of sympathoadrenal activation, circulating...... catecholamines and biomarkers of endothelial damage and outcome in ST segment elevation myocardial infarction (STEMI)-patients, hypothesizing that the catecholamine surge would reflect shock degree and correlate with biomarkers of endothelial damage. METHODS: This was a prospective study of 678 consecutive STEMI...

  16. Prognostic value of tumour endothelial markers in patients with endometrial cancer

    Science.gov (United States)

    BERSINGER, NICK A.; SCHNEIDER, BRIGITTE; VORBURGER, STEPHAN A.; JOHANN, SILKE; CANDINAS, DANIEL; MUELLER, MICHAEL D.

    2010-01-01

    Endometrial cancer is one of the more frequent and most lethal gynaecological cancer types. Since it occurs more frequently in elderly and overweight patients, a pre-operative staging method would be beneficial. The growth of solid neoplasms is always accompanied by neovascularisation. Tumour endothelial markers (TEMs) are a group of recently described endothelial cell surface markers that appear to be specific to neoplastic tissue. This study aimed to investigate the potential usefulness of TEM assessment in the endometrium by comparing the transcriptional expression of TEMs in the normal endometrium with endometroid adenocarcinoma tissue. Tissues were lysed and the RNA was extracted, assessed and reverse transcribed in one batch. Real-time quantitative PCR was performed for TEM-1, -2, -6, -7, -7r and -8. GAPDH, β-actin and ribosomal protein L13A (RPL13A) were used as control genes. TEM-8 showed the highest expression level in all of the groups. TEM-1 showed higher expression levels in the normal endometrium than in the tumour tissues. For the remaining TEMs, we found a higher expression in the cancer samples than in the normal endometria. Statistical significance of this difference was achieved for TEM-1, -2 and-7. No clear correlation was noted between the tumour stage and the level of TEM-1, -6 and -8 expression. Apart from TEM-6, the highest expression in FIGO I cancer stages was noted in the remaining TEMs. Our results showed that for most of these tumour endothelial markers, gene expression was slightly higher in the endometrial carcinoma tissue samples than in the endometrium of normal cycling women. However, with the possible exception of TEM-8 and -6, absolute expression levels were generally low, indicating that most TEMs may only be specifically expressed in a restricted number of cancer types (e.g., colorectal). Therefore, TEMs may not be useful in the context of endometrial cancer. PMID:22966283

  17. Prognostic value of tumour endothelial markers in patients with endometrial cancer.

    Science.gov (United States)

    Bersinger, Nick A; Schneider, Brigitte; Vorburger, Stephan A; Johann, Silke; Candinas, Daniel; Mueller, Michael D

    2010-01-01

    Endometrial cancer is one of the more frequent and most lethal gynaecological cancer types. Since it occurs more frequently in elderly and overweight patients, a pre-operative staging method would be beneficial. The growth of solid neoplasms is always accompanied by neovascularisation. Tumour endothelial markers (TEMs) are a group of recently described endothelial cell surface markers that appear to be specific to neoplastic tissue. This study aimed to investigate the potential usefulness of TEM assessment in the endometrium by comparing the transcriptional expression of TEMs in the normal endometrium with endometroid adenocarcinoma tissue. Tissues were lysed and the RNA was extracted, assessed and reverse transcribed in one batch. Real-time quantitative PCR was performed for TEM-1, -2, -6, -7, -7r and -8. GAPDH, β-actin and ribosomal protein L13A (RPL13A) were used as control genes. TEM-8 showed the highest expression level in all of the groups. TEM-1 showed higher expression levels in the normal endometrium than in the tumour tissues. For the remaining TEMs, we found a higher expression in the cancer samples than in the normal endometria. Statistical significance of this difference was achieved for TEM-1, -2 and-7. No clear correlation was noted between the tumour stage and the level of TEM-1, -6 and -8 expression. Apart from TEM-6, the highest expression in FIGO I cancer stages was noted in the remaining TEMs. Our results showed that for most of these tumour endothelial markers, gene expression was slightly higher in the endometrial carcinoma tissue samples than in the endometrium of normal cycling women. However, with the possible exception of TEM-8 and -6, absolute expression levels were generally low, indicating that most TEMs may only be specifically expressed in a restricted number of cancer types (e.g., colorectal). Therefore, TEMs may not be useful in the context of endometrial cancer.

  18. Elevated circulating soluble thrombomodulin activity, tissue factor activity and circulating procoagulant phospholipids: new and useful markers for pre-eclampsia?

    Science.gov (United States)

    Rousseau, Aurélie; Favier, Rémi; Van Dreden, Patrick

    2009-09-01

    One of the most frequently proposed mechanisms for pre-eclampsia refers to uteroplacental thrombosis. However, the contribution of classical thrombotic risk factors remains questionable. The aims of this study were to investigate the activities of thrombomodulin, tissue factor and procoagulant phospholipids to assess endothelial cell injury in pregnant women with pre-eclampsia and to compare them with other classical markers of vascular injury and thrombotic risk. Using three new functional assays we studied the plasma levels of these new markers in 35 healthy women, 30 healthy pregnant women, and 35 women with pre-eclampsia. We found that plasma levels of thrombomodulin activity, tissue factor activity and procoagulant phospholipids were significantly elevated in women with pre-eclampsia versus normal pregnant and non-pregnant women. It is thus suggested that elevated levels of these parameters in pre-eclampsia may reflect vascular endothelium damage, and may be a more valuable biomarker than antigen for the assessment of endothelial damage in pre-eclampsia. The high increased levels of procoagulant phospholipids and tissue factor activities in pre-eclampsia could suggest that the procoagulant potential may be implicated in this complication and makes these markers very promising for the understanding, follow-up and therapeutic handling of complicated pregnancy.

  19. Sustained apnea induces endothelial activation.

    Science.gov (United States)

    Eichhorn, Lars; Dolscheid-Pommerich, Ramona; Erdfelder, Felix; Ayub, Muhammad Ajmal; Schmitz, Theresa; Werner, Nikos; Jansen, Felix

    2017-09-01

    Apnea diving has gained worldwide popularity, even though the pathophysiological consequences of this challenging sport on the human body are poorly investigated and understood. This study aims to assess the influence of sustained apnea in healthy volunteers on circulating microparticles (MPs) and microRNAs (miRs), which are established biomarkers reflecting vascular function. Short intermittent hypoxia due to voluntary breath-holding affects circulating levels of endothelial cell-derived MPs (EMPs) and endothelial cell-derived miRs. Under dry laboratory conditions, 10 trained apneic divers performed maximal breath-hold. Venous blood samples were taken, once before and at 4 defined points in time after apnea. Samples were analyzed for circulating EMPs and endothelial miRs. Average apnea time was 329 seconds (±103), and SpO 2 at the end of apnea was 79% (±12). Apnea was associated with a time-dependent increase of circulating endothelial cell-derived EMPs and endothelial miRs. Levels of circulating EMPs in the bloodstream reached a peak 4 hours after the apnea period and returned to baseline levels after 24 hours. Circulating miR-126 levels were elevated at all time points after a single voluntary maximal apnea, whereas miR-26 levels were elevated significantly only after 30 minutes and 4 hours. Also miR-21 and miR-92 levels increased, but did not reach the level of significance. Even a single maximal breath-hold induces acute endothelial activation and should be performed with great caution by subjects with preexisting vascular diseases. Voluntary apnea might be used as a model to simulate changes in endothelial function caused by hypoxia in humans. © 2017 Wiley Periodicals, Inc.

  20. HEMS inter-facility transfer: a case-mix analysis.

    Science.gov (United States)

    Di Rocco, Damien; Pasquier, Mathieu; Albrecht, Eric; Carron, Pierre-Nicolas; Dami, Fabrice

    2018-05-16

    Helicopter emergency medical services (HEMS) are popular rescue systems despite inconsistent evidence in the scientific literature to support their use for primary interventions, as well as for inter-facility transfer (IFT). There is little research about IFT by HEMS, hence questions remain about the appropriateness of this method of transport. The aim of this study was to describe a case-mix of operational and medical characteristics for IFT activity of a sole HEMS base, and identify indicators of over-triage. This is a retrospective study on HEMS IFT over 36 months, from January 1st 2013 to December 31st 2015. Medical and operational data from the database of the Emergency Department of Lausanne University Hospital, which provides the emergency physicians for this helicopter base, were reviewed. It included distance and time of flight transport, type of care during flight, and estimated distance of transport if conducted by ground. There were 2194 HEMS missions including 979 IFT (44.6%). Most transfers involved adults (> 17 years old; 799 patients, 81.6%). Forty patients (4.1%) were classified as having benefitted from resuscitation or life-saving measures performed in flight, 615 (62.8%) from emergency treatment and 324 (33.1%) from simple clinical examination. The median distance by air between hospitals was 35.4 km. The estimated median distance by road was 47.7 km. The median duration time from origin to destination by air was 12 min. This case-mix of IFTs by HEMS presents a high severity. There are many signs in favour of over-triage. We propose indicators to help choosing whether HEMS is the most appropriate mean of transport to perform the transfer regarding patient condition, geography, and medical competences available aboard ground ambulances; this may reduce over-triage.

  1. Endovascular treatment of chronic cerebro spinal venous insufficiency in patients with multiple sclerosis modifies circulating markers of endothelial dysfunction and coagulation activation: a prospective study.

    Science.gov (United States)

    Napolitano, Mariasanta; Bruno, Aldo; Mastrangelo, Diego; De Vizia, Marcella; Bernardo, Benedetto; Rosa, Buonagura; De Lucia, Domenico

    2014-10-01

    We performed a monocentric observational prospective study to evaluate coagulation activation and endothelial dysfunction parameters in patients with multiple sclerosis undergoing endovascular treatment for cerebro-spinal-venous insufficiency. Between February 2011 and July 2012, 144 endovascular procedures in 110 patients with multiple sclerosis and chronical cerebro-spinal venous insufficiency were performed and they were prospectively analyzed. Each patient was included in the study according to previously published criteria, assessed by the investigators before enrollment. Endothelial dysfunction and coagulation activation parameters were determined before the procedure and during follow-up at 1, 3, 6, 9, 12, 15 and 18 months after treatment, respectively. After the endovascular procedure, patients were treated with standard therapies, with the addition of mesoglycan. Fifty-five percent of patients experienced a favorable outcome of multiple sclerosis within 1 month after treatment, 25% regressed in the following 3 months, 24.9% did not experience any benefit. In only 0.1% patients, acute recurrence was observed and it was treated with high-dose immunosuppressive therapy. No major complications were observed. Coagulation activation and endothelial dysfunction parameters were shown to be reduced at 1 month and stable up to 12-month follow-up, and they were furthermore associated with a good clinical outcome. Endovascular procedures performed by a qualified staff are well tolerated; they can be associated with other currently adopted treatments. Correlations between inflammation, coagulation activation and neurodegenerative disorders are here supported by the observed variations in plasma levels of markers of coagulation activation and endothelial dysfunction.

  2. Quantification of circulating endothelial progenitor cells using the modified ISHAGE protocol.

    Directory of Open Access Journals (Sweden)

    Caroline Schmidt-Lucke

    2010-11-01

    Full Text Available Circulating endothelial progenitor cells (EPC, involved in endothelial regeneration, neovascularisation, and determination of prognosis in cardiovascular disease can be characterised with functional assays or using immunofluorescence and flow cytometry. Combinations of markers, including CD34+KDR+ or CD133+KDR+, are used. This approach, however may not consider all characteristics of EPC. The lack of a standardised protocol with regards to reagents and gating strategies may account for the widespread inter-laboratory variations in quantification of EPC. We, therefore developed a novel protocol adapted from the standardised so-called ISHAGE protocol for enumeration of haematopoietic stem cells to enable comparison of clinical and laboratory data.In 25 control subjects, 65 patients with coronary artery disease (CAD; 40 stable CAD, 25 acute coronary syndrome/acute myocardial infarction (ACS, EPC were quantified using the following approach: Whole blood was incubated with CD45, KDR, and CD34. The ISHAGE sequential strategy was used, and finally, CD45(dimCD34(+ cells were quantified for KDR. A minimum of 100 CD34(+ events were collected. For comparison, CD45(+CD34(+ and CD45(-CD34(+ were analysed simultaneously. The number of CD45(dimCD34(+KDR(+ cells only were significantly higher in healthy controls compared to patients with CAD or ACS (p = 0.005 each, p<0.001 for trend. An inverse correlation of CD45(dimCD34(+KDR(+ with disease activity (r = -0.475, p<0.001 was confirmed. Only CD45(dimCD34(+KDR(+ correlated inversely with the number of diseased coronaries (r = -0.344; p<0.005. In a second study, a 4-week de-novo treatment of atorvastatin in stable CAD evoked an increase only of CD45(dimCD34(+KDR(+ EPC (p<0.05. CD45(+CD34(+KDR(+ and CD45(-CD34(+KDR(+ were indifferent between the three groups.Our newly established protocol adopted from the standardised ISHAGE protocol achieved higher accuracy in EPC enumeration confirming previous

  3. Circulating VEGF as a biological marker in patients with rheumatoid arthritis? Preanalytical and biological variability in healthy persons and in patients

    DEFF Research Database (Denmark)

    Hetland, Merete Lund; Christensen, Ib Jarle; Lottenburger, Tine

    2008-01-01

    /ml (range: non-detectable to 352); serum: 328 pg/ml (53-1791)) were independent of gender and age. Short- and long-term biologic variability included diurnal variation (sampling should take place after 7 AM) and impact of exercise (increased VEGF immediately after bicycling normalised within 1 hour......BACKGROUND: Soluble vascular endothelial growth factor (VEGF) is a promising biomarker in monitoring rheumatoid arthritis (RA), but studies of pre-analytical and biologic variability are few. METHODS: VEGF was measured by ELISA methods in serum and plasma from healthy persons and RA patients. Pre......). CONCLUSIONS: Pre-analytical factors and biologic variability including diurnal variation and impact of exercise should be accounted for in future studies that include circulating VEGF as a biological marker....

  4. Effect of benfotiamine on advanced glycation endproducts and markers of endothelial dysfunction and inflammation in diabetic nephropathy.

    Directory of Open Access Journals (Sweden)

    Alaa Alkhalaf

    Full Text Available Formation of advanced glycation endproducts (AGEs, endothelial dysfunction, and low-grade inflammation are intermediate pathways of hyperglycemia-induced vascular complications. We investigated the effect of benfotiamine on markers of these pathways in patients with type 2 diabetes and nephropathy.Patients with type 2 diabetes and urinary albumin excretion in the high-normal and microalbuminuric range (15-300 mg/24h were randomized to receive benfotiamine (n = 39 or placebo (n = 43. Plasma and urinary AGEs (N(ε-(carboxymethyl lysine [CML], N(ε-(Carboxyethyl lysine [CEL], and 5-hydro-5-methylimidazolone [MG-H1] and plasma markers of endothelial dysfunction (soluble vascular cell adhesion molecule-1 [sVCAM-1], soluble intercellular adhesion molecule-1 [sICAM-1], soluble E-selectin and low-grade inflammation (high-sensitivity C-reactive protein [hs-CRP], serum amyloid-A [SAA], myeloperoxidase [MPO] were measured at baseline and after 6 and 12 weeks.Compared to placebo, benfotiamine did not result in significant reductions in plasma or urinary AGEs or plasma markers of endothelial dysfunction and low-grade inflammation.Benfotiamine for 12 weeks did not significantly affect intermediate pathways of hyperglycemia-induced vascular complications. TRIAL REGRISTRATION: ClinicalTrials.gov NCT00565318.

  5. Effect of benfotiamine on advanced glycation endproducts and markers of endothelial dysfunction and inflammation in diabetic nephropathy.

    Science.gov (United States)

    Alkhalaf, Alaa; Kleefstra, Nanne; Groenier, Klaas H; Bilo, Henk J G; Gans, Reinold O B; Heeringa, Peter; Scheijen, Jean L; Schalkwijk, Casper G; Navis, Gerjan J; Bakker, Stephan J L

    2012-01-01

    Formation of advanced glycation endproducts (AGEs), endothelial dysfunction, and low-grade inflammation are intermediate pathways of hyperglycemia-induced vascular complications. We investigated the effect of benfotiamine on markers of these pathways in patients with type 2 diabetes and nephropathy. Patients with type 2 diabetes and urinary albumin excretion in the high-normal and microalbuminuric range (15-300 mg/24h) were randomized to receive benfotiamine (n = 39) or placebo (n = 43). Plasma and urinary AGEs (N(ε)-(carboxymethyl) lysine [CML], N(ε)-(Carboxyethyl) lysine [CEL], and 5-hydro-5-methylimidazolone [MG-H1]) and plasma markers of endothelial dysfunction (soluble vascular cell adhesion molecule-1 [sVCAM-1], soluble intercellular adhesion molecule-1 [sICAM-1], soluble E-selectin) and low-grade inflammation (high-sensitivity C-reactive protein [hs-CRP], serum amyloid-A [SAA], myeloperoxidase [MPO]) were measured at baseline and after 6 and 12 weeks. Compared to placebo, benfotiamine did not result in significant reductions in plasma or urinary AGEs or plasma markers of endothelial dysfunction and low-grade inflammation. Benfotiamine for 12 weeks did not significantly affect intermediate pathways of hyperglycemia-induced vascular complications. TRIAL REGRISTRATION: ClinicalTrials.gov NCT00565318.

  6. Increased circulating endothelial apoptotic microparticle to endothelial progenitor cell ratio is associated with subsequent decline in glomerular filtration rate in hypertensive patients.

    Directory of Open Access Journals (Sweden)

    Chien-Yi Hsu

    Full Text Available BACKGROUND: Recent research indicates hypertensive patients with microalbuminuria have decreased endothelial progenitor cells (EPCs and increased levels of endothelial apoptotic microparticles (EMP. However, whether these changes are related to a subsequent decline in glomerular filtration rate (GFR remains unclear. METHODS AND RESULTS: We enrolled totally 100 hypertensive out-patients with eGFR ≥ 30 mL/min/1.73 m(2. The mean annual rate of GFR decline (△GFR/y was -1.49 ± 3.26 mL/min/1.73 m(2 per year during the follow-up period (34 ± 6 months. Flow cytometry was used to assess circulating EPC (CD34(+/KDR(+ and EMP levels (CD31(+/annexin V(+ in peripheral blood. The △GFR/y was correlated with the EMP to EPC ratio (r= -0.465, p<0.001, microalbuminuria (r= -0.329, p=0.001, and the Framingham risk score (r= -0.245, p=0.013. When we divided the patients into 4 groups according to the EMP to EPC ratio, there was an association between the EMP to EPC ratio and the ΔGFR/y (mean ΔGFR/y: 0.08 ± 3.04 vs. -0.50 ± 2.84 vs. -1.25 ± 2.49 vs. -4.42 ± 2.82, p<0.001. Multivariate analysis indicated that increased EMP to EPC ratio is an independent predictor of ΔeGFR/y. CONCLUSIONS: An increased circulating EMP to EPC ratio is associated with subsequent decline in GFR in hypertensive patients, which suggests endothelial damage with reduced vascular repair capacity may contribute to further deterioration of renal function in patients with hypertension.

  7. Association between markers of endothelial dysfunction and early signs of renal dysfunction in pediatric obesity and type 1 diabetes.

    Science.gov (United States)

    Marcovecchio, M L; de Giorgis, T; Di Giovanni, I; Chiavaroli, V; Chiarelli, F; Mohn, A

    2017-06-01

    To evaluate whether circulating markers of endothelial dysfunction, such as intercellular adhesion molecule-1 (ICAM-1) and myeloperoxidase (MPO), are increased in youth with obesity and in those with type 1 diabetes (T1D) at similar levels, and whether their levels are associated with markers of renal function. A total of 60 obese youth [M/F: 30/30, age: 12.5 ± 2.8 yr; body mass index (BMI) z-score: 2.26 ± 0.46], 30 with T1D (M/F: 15/15; age: 12.9 ± 2.4 yr; BMI z-score: 0.45 ± 0.77), and 30 healthy controls (M/F: 15/15, age: 12.4 ± 3.3 yr, BMI z-score: -0.25 ± 0.56) were recruited. Anthropometric measurements were assessed and a blood sample was collected to measure ICAM-1, MPO, creatinine, cystatin C and lipid levels. A 24-h urine collection was obtained for assessing albumin excretion rate (AER). Levels of ICAM-1 and MPO were significantly higher in obese [ICAM-1: 0.606 (0.460-1.033) µg/mL; MPO: 136.6 (69.7-220.8) ng/mL] and T1D children [ICAM-1: 0.729 (0.507-0.990) µg/mL; MPO: 139.5 (51.0-321.3) ng/mL] compared with control children [ICAM-1: 0.395 (0.272-0.596) µg/mL MPO: 41.3 (39.7-106.9) ng/mL], whereas no significant difference was found between T1D and obese children. BMI z-score was significantly associated with ICAM-1 (β = 0.21, p = 0.02) and MPO (β = 0.41, p 1). A statistically significant association was also found between ICAM-1 and markers of renal function (AER: β = 0.21, p = 0.03; e-GFR: β = 0.19, p = 0.04), after adjusting for BMI. Obese children have increased markers of endothelial dysfunction and early signs of renal damage, similarly to children with T1D, confirming obesity to be a cardiovascular risk factor as T1D. The association between ICAM-1 with e-GFR and AER confirm the known the association between general endothelial and renal dysfunction. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Physalis minima Leaves Extract Induces Re-Endothelialization in Deoxycorticosterone Acetate-Salt-Induced Endothelial Dysfunction in Rats

    Directory of Open Access Journals (Sweden)

    Dian Nugrahenny

    2018-02-01

    Full Text Available The administration of deoxy-corticosterone acetate (DOCA-salt can induce oxidative stress leading to decrease the bioavailability of nitric oxide (NO, increase senescence of circulating endothelial progenitor cells (EPCs, thus contributing to endothelial dysfunction. This study was aimed to investigate the effects of Physalis minima L. leaves extract on serum NO levels, circulating EPCs number, and histopathology of tail artery endothelial cells in DOCA-salt-induced endothelial dysfunction in rats. Twenty-five male Wistar rats were randomly divided into five groups: rats without any treatment (normal, rats treated with DOCA (10 mg/kgBW s.c. twice weekly and given 0.9% NaCl to drink ad libitum for 6 weeks, and DOCA-salt-induced rats orally supplemented with P. minima leaves extract at doses of 500, 1500, or 2500 mg/kgBW for 4 weeks. Serum NO levels were measured by colorimetry. The number of circulating EPCs (CD34+/CD133+ cells was determined by flow cytometry. The tail artery sections were histologically processed with hematoxylin-eosin staining. DOCA-salt-induced rats showed significantly (p<0.05 decrease in serum NO levels and circulating EPCs number compared to the normal. There was also more detached tail artery endothelial cells in DOCA-salt-induced rats. P. minima leaves extract at a dose of 500 mg/kgBW significantly (p<0.05 increased serum NO level and circulating EPCs number, and also induced an optimal re-endothelialization in DOCA-salt-induced rats. P. minima leave extract dose-dependently increases NO bioavailability contributing to enhanced EPCs mobilization, thereby promoting re-endothelialization in DOCA-salt-induced endothelial dysfunction in rats.

  9. Prehospital resuscitation with hypertonic saline-dextran modulates inflammatory, coagulation and endothelial activation marker profiles in severe traumatic brain injured patients

    Directory of Open Access Journals (Sweden)

    Morrison Laurie J

    2010-01-01

    Full Text Available Abstract Background Traumatic brain injury (TBI initiates interrelated inflammatory and coagulation cascades characterized by wide-spread cellular activation, induction of leukocyte and endothelial cell adhesion molecules and release of soluble pro/antiinflammatory cytokines and thrombotic mediators. Resuscitative care is focused on optimizing cerebral perfusion and reducing secondary injury processes. Hypertonic saline is an effective osmotherapeutic agent for the treatment of intracranial hypertension and has immunomodulatory properties that may confer neuroprotection. This study examined the impact of hypertonic fluids on inflammatory/coagulation cascades in isolated head injury. Methods Using a prospective, randomized controlled trial we investigated the impact of prehospital resuscitation of severe TBI (GCS vs 0.9% normal saline (NS, on selected cellular and soluble inflammatory/coagulation markers. Serial blood samples were drawn from 65 patients (30 HSD, 35 NS at the time of hospital admission and at 12, 24, and 48-h post-resuscitation. Flow cytometry was used to analyze leukocyte cell-surface adhesion (CD62L, CD11b and degranulation (CD63, CD66b molecules. Circulating concentrations of soluble (sL- and sE-selectins (sL-, sE-selectins, vascular and intercellular adhesion molecules (sVCAM-1, sICAM-1, pro/antiinflammatory cytokines [tumor necrosis factor (TNF-α and interleukin (IL-10], tissue factor (sTF, thrombomodulin (sTM and D-dimers (D-D were assessed by enzyme immunoassay. Twenty-five healthy subjects were studied as a control group. Results TBI provoked marked alterations in a majority of the inflammatory/coagulation markers assessed in all patients. Relative to control, NS patients showed up to a 2-fold higher surface expression of CD62L, CD11b and CD66b on polymorphonuclear neutrophils (PMNs and monocytes that persisted for 48-h. HSD blunted the expression of these cell-surface activation/adhesion molecules at all time-points to

  10. Endothelial cell marker PAL-E reactivity in brain tumor, developing brain, and brain disease

    NARCIS (Netherlands)

    Leenstra, S.; Troost, D.; Das, P. K.; Claessen, N.; Becker, A. E.; Bosch, D. A.

    1993-01-01

    The endothelial cell marker PAL-E is not reactive to vessels in the normal brain. The present study concerns the PAL-E reactivity in brain tumors in contrast to normal brain and nonneoplastic brain disease. A total of 122 specimens were examined: brain tumors (n = 94), nonneoplastic brain disease (n

  11. Quantitative determination of circulating endothelial cells in persons with low dose radioactivity exposure

    International Nuclear Information System (INIS)

    Al-Massarani, Gh.; Najjar, F.

    2013-04-01

    The aim of this study was to determine the risk of occupational exposure to low doses of ionizing radiation on the endothelium detachment through the quantification of circulating endothelial cells (CEC) in the peripheral blood of 63 workers in the Atomic Energy Commission in Syria (AECS) using a Magnetic Immuno-separation technique (IMS) and compare the results with 28 healthy (controls) is not exposed during their careers for any type of ionizing radiation. Our study showed for the first time the significantly increasing in the circulating endothelial cells count (P <0.0001) when employees are exposed to low doses of radiation less than 50 mSv. This result with previous studies about the late effects of radiation, assuming the existence of impact late radiation exposure on the cohesion of the endothelium, despite the lack of correlation with radiation dose measured during the past four years of work in AECS (between 2006-2010). This is due to several reasons, including the small sample size and lack of commitment by some workers develop individual control films during some periods of their work. The prospective studies for such workers can allow us to know if the rise in the number of CEC will be considered an early indicator for the risk of a cardiovascular disease when workers exposed to low-doses of ionizing radiation( tens of millisievert) that up to date are considered harmless (author).

  12. Muscle sympathetic nerve activity is related to a surrogate marker of endothelial function in healthy individuals.

    Directory of Open Access Journals (Sweden)

    Yrsa Bergmann Sverrisdóttir

    Full Text Available BACKGROUND: Evidence from animal studies indicates the importance of an interaction between the sympathetic nervous system and the endothelium for cardiovascular regulation. However the interaction between these two systems remains largely unexplored in humans. The aim of this study was to investigate whether directly recorded sympathetic vasoconstrictor outflow is related to a surrogate marker of endothelial function in healthy individuals. METHODS AND RESULTS: In 10 healthy normotensive subjects (3 f/7 m, (age 37+/-11 yrs, (BMI 24+/-3 kg/m(2 direct recordings of sympathetic action potentials to the muscle vascular bed (MSNA were performed and endothelial function estimated with the Reactive Hyperaemia- Peripheral Arterial Tonometry (RH-PAT technique. Blood samples were taken and time spent on leisure-time physical activities was estimated. In all subjects the rate between resting flow and the maximum flow, the Reactive Hyperemic index (RH-PAT index, was within the normal range (1.9-3.3 and MSNA was as expected for age and gender (13-44 burst/minute. RH-PAT index was inversely related to MSNA (r = -0.8, p = 0.005. RH-PAT index and MSNA were reciprocally related to time (h/week spent on physical activity (p = 0.005 and p = 0.006 respectively and platelet concentration (PLT (p = 0.02 and p = 0.004 respectively. CONCLUSIONS: Our results show that sympathetic nerve activity is related to a surrogate marker of endothelial function in healthy normotensive individuals, indicating that sympathetic outflow may be modulated by changes in endothelial function. In this study time spent on physical activity is identified as a predictor of sympathetic nerve activity and endothelial function in a group of healthy individuals. The results are of importance in understanding mechanisms underlying sympathetic activation in conditions associated with endothelial dysfunction and emphasise the importance of a daily exercise routine for maintenance of cardiovascular

  13. The neutrophil-to-lymphocyte ratio as a marker of systemic endothelial dysfunction in asymptomatic subjects.

    Science.gov (United States)

    Martínez-Urbistondo, Diego; Beltrán, Almudena; Beloqui, Oscar; Huerta, Ana

    2016-01-01

    The neutrophil-to-lymphocyte ratio has demonstrated to be a prognostic inflammatory marker in cardiovascular disease. The objective of this study is to evaluate the association between neutrophil-to-lymphocyte ratio and pathologic urinary albumin/creatinine ratio as an early marker of cardiovascular risk and systemic endothelial dysfunction, associated with microvascular disease, in asymptomatic subjects. A unicenter cross-sectional study was conducted, including 1816 asymptomatic subjects. Patients with previous cardiovascular disease, those who were treated with ACE inhibitors and/or angiotensin II receptor blockers and patients with albumin/creatinine ratio over 300mg/g were excluded. The outcome of the study was the presence of a pathologic urinary albumin/creatinine ratio. The neutrophil-to-lymphocyte ratio was significantly associated with altered urinary albumin/creatinine ratio in the univariate analysis and after adjustment for other known endothelial and cardiovascular risk factors (age, hypertension, dyslipidaemia, diabetes or altered glomerular filtration rate). Based on the sensitivity and specificity of different neutrophil-to-lymphocyte ratio thresholds, 3 risk groups were created for altered urinary albumin/creatinine ratio: low risk in those with neutrophil-to-lymphocyte ratio 3. These groups were found to have a statistically significant and independent prognostic power for altered urinary albumin/creatinine ratio in asymptomatic patients. The neutrophil-to-lymphocyte ratio appears to be a cost-efficient, non-invasive and independent potential marker of systemic endothelial dysfunction in asymptomatic subjects. Copyright © 2015 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  14. Tumor endothelial marker 5 expression in endothelial cells during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Vallon, Mario, E-mail: m.vallon@arcor.de [Nuklearmedizinische Klinik und Poliklinik, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Rohde, Franziska; Janssen, Klaus-Peter [Chirurgische Klinik und Poliklinik, Technische Universitaet Muenchen, Munich (Germany); Essler, Markus [Nuklearmedizinische Klinik und Poliklinik, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany)

    2010-02-01

    Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile, an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.

  15. Reversing resistance to vascular-disrupting agents by blocking late mobilization of circulating endothelial progenitor cells.

    Science.gov (United States)

    Taylor, Melissa; Billiot, Fanny; Marty, Virginie; Rouffiac, Valérie; Cohen, Patrick; Tournay, Elodie; Opolon, Paule; Louache, Fawzia; Vassal, Gilles; Laplace-Builhé, Corinne; Vielh, Philippe; Soria, Jean-Charles; Farace, Françoise

    2012-05-01

    The prevailing concept is that immediate mobilization of bone marrow-derived circulating endothelial progenitor cells (CEP) is a key mechanism mediating tumor resistance to vascular-disrupting agents (VDA). Here, we show that administration of VDA to tumor-bearing mice induces 2 distinct peaks in CEPs: an early, unspecific CEP efflux followed by a late yet more dramatic tumor-specific CEP burst that infiltrates tumors and is recruited to vessels. Combination with antiangiogenic drugs could not disrupt the early peak but completely abrogated the late VDA-induced CEP burst, blunted bone marrow-derived cell recruitment to tumors, and resulted in striking antitumor efficacy, indicating that the late CEP burst might be crucial to tumor recovery after VDA therapy. CEP and circulating endothelial cell kinetics in VDA-treated patients with cancer were remarkably consistent with our preclinical data. These findings expand the current understanding of vasculogenic "rebounds" that may be targeted to improve VDA-based strategies. Our findings suggest that resistance to VDA therapy may be strongly mediated by late, rather than early, tumor-specific recruitment of CEPs, the suppression of which resulted in increased VDA-mediated antitumor efficacy. VDA-based therapy might thus be significantly enhanced by combination strategies targeting late CEP mobilization. © 2012 AACR

  16. Plasma concentration of selected biochemical markers of endothelial dysfunction in women with various severity of chronic venous insufficiency (CVI-A pilot study.

    Directory of Open Access Journals (Sweden)

    Magdalena Budzyń

    Full Text Available Although the endothelial dysfunction is considered to be implicated in the pathogenesis of chronic venous insufficiency (CVI the endothelial status in patients with venous disorders is still not fully evaluated. Therefore the aim of the study was to measure the concentration of selected markers of endothelial dysfunction: von Willebrand factor (vWf, soluble P-selectin (sP-selectin, soluble thrombomodulin (sTM and soluble VE-cadherin (sVE-cadherin in CVI women who constitute the most numerous group of patients suffering from venous disease.Forty four women with CVI were involved in the study and divided into subgroups based on CEAP classification. Concentration of vWf, sP-selectin, sTM and sVE-cadherin were measured and compared with those obtained in 25 healthy age and sex-matched women.It was found that the concentration of sTM increased and sVEcadherin decreased along with disease severity in CVI women. A significant rise of sTM was observed especially in CVI women, with the highest inflammation status reflected by hsCRP or elastase concentration, and in CVI women with a high oxidative stress manifested by an increased plasma MDA. A significant fall of circulating sVE-cadherin was reported in CVI women with moderate to highest intensity of inflammation and oxidative stress. There was no change in vWF and sP-selectin concentration at any stage of CVI severity.The results of the present study demonstrate the presence of endothelial dysfunction in women suffering from CVI which seems to progress with the disease severity and may be associated with inflammation and enhanced oxidative stress.

  17. Biomarkers Discovery for Colorectal Cancer: A Review on Tumor Endothelial Markers as Perspective Candidates

    Directory of Open Access Journals (Sweden)

    Łukasz Pietrzyk

    2016-01-01

    Full Text Available Colorectal cancer (CRC is the third most common cancer in the world. The early detection of CRC, during the promotion/progression stages, is an enormous challenge for a successful outcome and remains a fundamental problem in clinical approach. Despite the continuous advancement in diagnostic and therapeutic methods, there is a need for discovery of sensitive and specific, noninvasive biomarkers. Tumor endothelial markers (TEMs are associated with tumor-specific angiogenesis and are potentially useful to discriminate between tumor and normal endothelium. The most promising TEMs for oncogenic signaling in CRC appeared to be the TEM1, TEM5, TEM7, and TEM8. Overexpression of TEMs especially TEM1, TEM7, and TEM8 in colorectal tumor tissue compared to healthy tissue suggests their role in tumor blood vessels formation. Thus TEMs appear to be perspective candidates for early detection, monitoring, and treatment of CRC patients. This review provides an update on recent data on tumor endothelial markers and their possible use as biomarkers for screening, diagnosis, and therapy of colorectal cancer patients.

  18. Biomarkers Discovery for Colorectal Cancer: A Review on Tumor Endothelial Markers as Perspective Candidates.

    Science.gov (United States)

    Pietrzyk, Łukasz

    2016-01-01

    Colorectal cancer (CRC) is the third most common cancer in the world. The early detection of CRC, during the promotion/progression stages, is an enormous challenge for a successful outcome and remains a fundamental problem in clinical approach. Despite the continuous advancement in diagnostic and therapeutic methods, there is a need for discovery of sensitive and specific, noninvasive biomarkers. Tumor endothelial markers (TEMs) are associated with tumor-specific angiogenesis and are potentially useful to discriminate between tumor and normal endothelium. The most promising TEMs for oncogenic signaling in CRC appeared to be the TEM1, TEM5, TEM7, and TEM8. Overexpression of TEMs especially TEM1, TEM7, and TEM8 in colorectal tumor tissue compared to healthy tissue suggests their role in tumor blood vessels formation. Thus TEMs appear to be perspective candidates for early detection, monitoring, and treatment of CRC patients. This review provides an update on recent data on tumor endothelial markers and their possible use as biomarkers for screening, diagnosis, and therapy of colorectal cancer patients.

  19. Glycan Markers as Potential Immunological Targets in Circulating Tumor Cells.

    Science.gov (United States)

    Wang, Denong; Wu, Lisa; Liu, Xiaohe

    2017-01-01

    We present here an experimental approach for exploring a new class of tumor biomarkers that are overexpressed by circulating tumor cells (CTCs) and are likely targetable in immunotherapy against tumor metastasis. Using carbohydrate microarrays, anti-tumor monoclonal antibodies (mAbs) were scanned against a large panel of carbohydrate antigens to identify potential tumor glycan markers. Subsequently, flow cytometry and fiber-optic array scanning technology (FAST) were applied to determine whether the identified targets are tumor-specific cell-surface markers and are, therefore, likely suitable for targeted immunotherapy. Finally, the tumor glycan-specific antibodies identified were validated using cancer patients' blood samples for their performance in CTC-detection and immunotyping analysis. In this article, identifying breast CTC-specific glycan markers and targeting mAbs serve as examples to illustrate this tumor biomarker discovery strategy.

  20. The dynamic change of endothelial cell, endothelin and 6-K-PGF1α in circulating blood of the patients with coronary heart disease

    International Nuclear Information System (INIS)

    Xia Zhiyun; Wang Linglin; Zou Songhai

    1995-01-01

    With the circulating endothelial cell (CEC) as an indicator of vessel endothelial cell (VEC) injury, and plasma endothelin (ET) and prostaglandin F 1α (PGI 2 ) reflecting the functional change of the VEC, a comparative study between 85 patients with coronary heart disease and 30 normal health, and also a dynamic observation of 50 patients with unstable angina pectoris and 20 patients with acute myocardial infarction (AMI) were reported. The result showed that in patients with coronary heart disease, peripheral blood circulating CEC and ET level was increased (P 2 decreased (P<0.01). All these were more significant in patients with unstable angina pectoris and myocardial infarction, and its magnitude correlated closely with the severity of the disease. All these showed that the VEC injury and the imbalance of its endothelial relaxing and contracting factors have played an important role in the pathogenesis of coronary heart disease

  1. The effect of diet and exercise on markers of endothelial function in overweight and obese women with polycystic ovary syndrome.

    Science.gov (United States)

    Thomson, R L; Brinkworth, G D; Noakes, M; Clifton, P M; Norman, R J; Buckley, J D

    2012-07-01

    Women with polycystic ovary syndrome (PCOS) present with vascular abnormalities, including elevated markers of endothelial dysfunction. There is limited evidence for the effect of lifestyle modification and weight loss on these markers. The aim of this study was to determine if 20 weeks of a high-protein energy-restricted diet with or without exercise in women with PCOS could improve endothelial function. This is a secondary analysis of a subset of 50 overweight/obese women with PCOS (age: 30.3 ± 6.3 years; BMI: 36.5 ± 5.7 kg/m(2)) from a previous study. Participants were randomly assigned by computer generation to one of three 20-week interventions: diet only (DO; n = 14, ≈ 6000 kJ/day), diet and aerobic exercise (DA; n = 16, ≈ 6000 kJ/day and five walking sessions/week) and diet and combined aerobic-resistance exercise (DC; n = 20, ≈ 6000 kJ/day, three walking and two strength sessions/week). At Weeks 0 and 20, weight, markers of endothelial function [vascular cell adhesion molecule-1 (sVCAM-1), inter-cellular adhesion molecule-1 (sICAM-1), plasminogen activator inhibitor-1 (PAI-1) and asymmetric dimethylarginine (ADMA)], insulin resistance and hormonal profile were assessed. All three treatments resulted in significant weight loss (DO 7.9 ± 1.2%, DA 11.0 ± 1.6%, DC 8.8 ± 1.1; P Exercise training provided no additional benefit to following a high-protein, hypocaloric diet on markers of endothelial function in overweight/obese women with PCOS.

  2. [Placental atherosclerosis and markers of endothelial dysfunction in infants born to mothers with gestational diabetes].

    Science.gov (United States)

    López Morales, Cruz Mónica; Brito Zurita, Olga Rosa; González Heredia, Ricardo; Cruz López, Miguel; Méndez Padrón, Araceli; Matute Briseño, Juan Antonio

    2016-08-05

    The pathophysiology of gestational diabetes itself causes hyperstimulation of adipose tissue and of the placenta cells increasing the production of inflammatory cytokines, which cause changes in the tissues exposed such as the placenta and foetus. Therefore, the objective of this study was to compare metabolic markers and endothelial dysfunction in umbilical cord blood, as well as to determine the presence of atherosclerosis in the placentas of newborn infants of patients with gestational diabetes and in patients with normally progressing pregnancies. An analytical cross-sectional study was carried out in 84 patients, obtaining data such as age, smoking and weight gain in pregnancy; the gestational age of the newborns was determined by Capurro, and their weight and destination subsequent to birth, the placentas were also collected in order to look for atherosclerosis through histological studies and glucose, insulin, VLDL-C, HDL-C, triglycerides, cholesterol, fibrinogen, PCR and markers of endothelial dysfunction (adiponectin, VCAM-1, ICAM-1 and IL-6) were determined in blood samples obtained from the umbilical cord. Placental atherosclerosis presented in 28.94% of the group with gestational diabetes compared to 10.52% of the group with normally progressing pregnancies (P=.044); differences were found in glucose, cholesterol, triglycerides, fibrinogen, HOMA-IR, PCR-us, HDL-C, not in VLDL-C. Twenty-one point five percent of the newborns of the gestational diabetes patients required hospitalization, against 5.2% in the control group, Pregnancies that involve diabetes have higher proportion of atherosclerosis, hospitalization of the newborn, insulin resistance, as well as elevation of markers associated with inflammation and endothelial dysfunction in umbilical cord blood. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  3. Data regarding association between serum osteoprotegerin level, numerous of circulating endothelial-derived and mononuclear-derived progenitor cells in patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Alexander E. Berezin

    2016-09-01

    Full Text Available Metabolic syndrome (MetS is defined as cluster of multiple metabolic and cardiovascular (CV abnormalities included abdominal obesity, high-normal blood pressure, dyslipidaemia, and impaired fasting glucose tolerance that exhibits has a growing prevalence worldwide. We investigated whether an elevated level of osteoprotegerin (OPG predicts imbalance between different phenotypes of circulating endothelial (EPCs and mononuclear (MPCs progenitor cells in MetS patients. We have analyzed data regarding dysmetabolic disorder subjects without known CV disease, as well as with known type two diabetes mellitus. All patients have given their informed written consent for participation in the study. This article contains data on the independent predictors of depletion in numerous of circulating EPCs and MPCs in MetS patients. The data are supplemental to our original research article describing detailed associations of elevated OPG level in MetS patients with numerous of EPCs and MPCs beyond traditional CV risk factors. Keywords: Metabolic syndrome, Osteoprotegerin, Circulating endothelial derived progenitor cells, Mononuclear-derived progenitor cells

  4. Obesity suppresses circulating level and function of endothelial progenitor cells and heart function

    Directory of Open Access Journals (Sweden)

    Tsai Tzu-Hsien

    2012-07-01

    Full Text Available Abstract Background and aim This study tested the hypothesis that obesity suppresses circulating number as well as the function of endothelial progenitor cells (EPCs and left ventricular ejection fraction (LVEF. Methods High fat diet (45 Kcal% fat was given to 8-week-old C57BL/6 J mice (n = 8 for 20 weeks to induce obesity (group 1. Another age-matched group (n = 8 were fed with control diet for 20 weeks as controls (group 2. The animals were sacrificed at the end of 20 weeks after obesity induction. Results By the end of study period, the heart weight, body weight, abdominal fat weight, serum levels of total cholesterol and fasting blood sugar were remarkably higher in group 1 than in group 2 (all p Conclusions Obesity diminished circulating EPC level, impaired the recovery of damaged endothelium, suppressed EPC angiogenesis ability and LVEF, and increased LV remodeling.

  5. Circulating endothelial progenitor cells do not contribute to regeneration of endothelium after murine arterial injury

    DEFF Research Database (Denmark)

    Hagensen, Mette; Raarup, Merete Krog; Mortensen, Martin Bødtker

    2012-01-01

    into endothelial cells (ECs). We tested this theory in a murine arterial injury model using carotid artery transplants and fluorescent reporter mice. METHODS AND RESULTS: Wire-injured carotid artery segments from wild-type mice were transplanted into TIE2-GFP transgenic mice expressing green fluorescent protein...... (GFP) in ECs. We found that the endothelium regenerated with GFP(+) ECs as a function of time, evolving from the anastomosis sites towards the centre of the transplant. A migration front of ECs at Day 7 was verified by scanning electron microscopy and by bright-field microscopy using recipient TIE2-lac......Z mice with endothelial β-galactosidase expression. These experiments indicated migration of flanking ECs rather than homing of circulating cells as the underlying mechanism. To confirm this, we interposed non-injured wild-type carotid artery segments between the denuded transplant and the TIE2-GFP...

  6. Plasma markers of inflammation and hemostatic and endothelial activity in naturally overweight and obese dogs.

    Science.gov (United States)

    Barić Rafaj, R; Kuleš, J; Marinculić, A; Tvarijonaviciute, A; Ceron, J; Mihaljević, Ž; Tumpa, A; Mrljak, V

    2017-01-06

    Obesity is one of the most prevalent health problems in the canine population. While haemostatic parameters and markers of endothelial function have been evaluated in various disease conditions in dogs, there are no studies of these markers in canine obesity. This study was designed to evaluate the effect of naturally gained weight excess and obesity on inflammatory, hemostatic and endothelial biomarkers in dogs. A total of 37 overweight and obese dogs were compared with 28 normal weight dogs. Overweight and obese dogs had significantly elevated concentrations of serum interleukin-6 (IL-6) and C-reactive protein (hsCRP). Number of platelets, activity of factor X and factor VII were significantly higher, while activated partial thromboplastine time (aPTT) and soluble plasminogen activator receptor (suPAR) were significantly decreased. Statistical analysis of high mobility group box - 1 protein (HMGB-1), soluble intercellular adhesive molecule -1 (sICAM-1) and plasminogen activator inhibitor type 1 (PAI-1) concentrations did not show significant differences between the total overweight and obese group and the normal weight group of dogs. Analytical changes in the dogs in our study reflects that weight excess in dogs can be associated with a chronic low degree of inflammation and a hypercoagulable state, where primary and secondary hemostasis are both affected. However obesity is not associated with impairment of endothelial function in dogs.

  7. Pdgfrb-Cre targets lymphatic endothelial cells of both venous and non-venous origins.

    Science.gov (United States)

    Ulvmar, Maria H; Martinez-Corral, Ines; Stanczuk, Lukas; Mäkinen, Taija

    2016-06-01

    The Pdgfrb-Cre line has been used as a tool to specifically target pericytes and vascular smooth muscle cells. Recent studies showed additional targeting of cardiac and mesenteric lymphatic endothelial cells (LECs) by the Pdgfrb-Cre transgene. In the heart, this was suggested to provide evidence for a previously unknown nonvenous source of LECs originating from yolk sac (YS) hemogenic endothelium (HemEC). Here we show that Pdgfrb-Cre does not, however, target YS HemEC or YS-derived erythro-myeloid progenitors (EMPs). Instead, a high proportion of ECs in embryonic blood vessels of multiple organs, as well as venous-derived LECs were targeted. Assessment of temporal Cre activity using the R26-mTmG double reporter suggested recent occurrence of Pdgfrb-Cre recombination in both blood and lymphatic ECs. It thus cannot be excluded that Pdgfrb-Cre mediated targeting of LECs is due to de novo expression of the Pdgfrb-Cre transgene or their previously established venous endothelial origin. Importantly, Pdgfrb-Cre targeting of LECs does not provide evidence for YS HemEC origin of the lymphatic vasculature. Our results highlight the need for careful interpretation of lineage tracing using constitutive Cre lines that cannot discriminate active from historical expression. The early vascular targeting by the Pdgfrb-Cre also warrants consideration for its use in studies of mural cells. genesis 54:350-358, 2016. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc.

  8. Role of pigment epithelium-derived factor in the involution of hemangioma: Autocrine growth inhibition of hemangioma-derived endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-Jin [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Yun, Jang-Hyuk; Heo, Jong-Ik [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Lee, Eun Hui [Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Min, Hye Sook [Department of Pathology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Choi, Tae Hyun, E-mail: psthchoi@snu.ac.kr [Department of Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Department of Pediatric Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Cho, Chung-Hyun, E-mail: iamhyun@snu.ac.kr [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Cancer Research Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of)

    2014-11-14

    Highlights: • PEDF was expressed and induced during the involuting phase of IH. • PEDF inhibited the cell growth of the involuting HemECs in an autocrine manner. • PEDF suppression restored the impaired cell growth of the involuting HemECs. - Abstract: Hemangioma is a benign tumor derived from abnormal blood vessel growth. Unlike other vascular tumor counterparts, a hemangioma is known to proliferate during its early stage but it is followed by a stage of involution where regression of the tumor occurs. The critical onset leading to the involution of hemangioma is currently not well understood. This study focused on the molecular identities of the involution of hemangioma. We demonstrated that a soluble factor released from the involuting phase of hemangioma-derived endothelial cells (HemECs) and identified pigment epithelium-derived factor (PEDF) as an anti-angiogenic factor that was associated with the growth inhibition of the involuting HemECs. The growth inhibition of the involuting HemECs was reversed by suppression of PEDF in the involuting HemECs. Furthermore, we found that PEDF was more up-regulated in the involuting phase of hemangioma tissues than in the proliferating or the involuted. Taken together, we propose that PEDF accelerates the involution of hemangioma by growth inhibition of HemECs in an autocrine manner. The regulatory mechanism of PEDF expression could be a potential therapeutic target to treat hemangiomas.

  9. Endothelial glycocalyx on brain endothelial cells is lost in experimental cerebral malaria

    DEFF Research Database (Denmark)

    Hempel, Casper; Hyttel, Poul; Kurtzhals, Jørgen Al

    2014-01-01

    We hypothesized that the glycocalyx, which is important for endothelial integrity, is lost in severe malaria. C57BL/6 mice were infected with Plasmodium berghei ANKA, resulting in cerebral malaria, or P. chabaudi AS, resulting in uncomplicated malaria. We visualized the glycocalyx with transmission...... electron microscopy and measured circulating glycosaminoglycans by dot blot and ELISA. The glycocalyx was degraded in brain vasculature in cerebral and to a lesser degree uncomplicated malaria. It was affected on both intact and apoptotic endothelial cells. Circulating glycosaminoglycan levels suggested...

  10. E-selectin mediates stem cell adhesion and formation of blood vessels in a murine model of infantile hemangioma.

    Science.gov (United States)

    Smadja, David M; Mulliken, John B; Bischoff, Joyce

    2012-12-01

    Hemangioma stem cells (HemSCs) are multipotent cells isolated from infantile hemangioma (IH), which form hemangioma-like lesions when injected subcutaneously into immune-deficient mice. In this murine model, HemSCs are the primary target of corticosteroid, a mainstay therapy for problematic IH. The relationship between HemSCs and endothelial cells that reside in IH is not clearly understood. Adhesive interactions might be critical for the preferential accumulation of HemSCs and/or endothelial cells in the tumor. Therefore, we studied the interactions between HemSCs and endothelial cells (HemECs) isolated from IH surgical specimens. We found that HemECs isolated from proliferating phase IH, but not involuting phase, constitutively express E-selectin, a cell adhesion molecule not present in quiescent endothelial cells. E-selectin was further increased when HemECs were exposed to vascular endothelial growth factor-A or tumor necrosis factor-α. In vitro, HemSC migration and adhesion was enhanced by recombinant E-selectin but not P-selectin; both processes were neutralized by E-selectin-blocking antibodies. E-selectin-positive HemECs also stimulated migration and adhesion of HemSCs. In vivo, neutralizing antibodies to E-selectin strongly inhibited formation of blood vessels when HemSCs and HemECs were co-implanted in Matrigel. These data suggest that endothelial E-selectin could be a major ligand for HemSCs and thereby promote cellular interactions and vasculogenesis in IH. We propose that constitutively expressed E-selectin on endothelial cells in the proliferating phase is one mediator of the stem cell tropism in IH. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Effect of Benfotiamine on Advanced Glycation Endproducts and Markers of Endothelial Dysfunction and Inflammation in Diabetic Nephropathy

    NARCIS (Netherlands)

    Alkhalaf, Alaa; Kleefstra, Nanne; Groenier, Klaas H.; Bilo, Henk J. G.; Gans, Reinold O. B.; Heeringa, Peter; Scheijen, Jean L.; Schalkwijk, Casper G.; Navis, Gerjan J.; Bakker, Stephan J. L.

    2012-01-01

    Background: Formation of advanced glycation endproducts (AGEs), endothelial dysfunction, and low-grade inflammation are intermediate pathways of hyperglycemia-induced vascular complications. We investigated the effect of benfotiamine on markers of these pathways in patients with type 2 diabetes and

  12. Effect of Low Level Ionizing Radiation on Endothelial Progenitor Cells in Atherosclerotic Patients with Lower Limb Ischemia

    International Nuclear Information System (INIS)

    Taha, E.F.S.

    2013-01-01

    events and in vascular homeostasis (Martí-Fàbregas et al., 2013). It is currently known that EPCs are circulating peripheral blood mononuclear cells (PBMNCs) that are mobilized from the bone marrow or other tissue on an ongoing basis, with large numbers being mobilized in response to tissue ischemia (Shi et al., 2012). These bone–marrow-derived cells were identified in the peripheral blood and were shown to proliferate and differentiate in vitro into endothelial cells. Therefore, they were termed EPCs. In the circulation, these cells are most commonly identified by certain membrane markers including the hematopoietic progenitor cell markers cluster of differentiation 34 (CD34) and human kinase insert domain receptor (KDR) which is the receptor for vascular endothelial growth factor (VEGF). The actual population of circulating EPCs represents between 0.0001% and 0.05% of total white blood cells in the peripheral blood. Such diversity can result from differences in antibody affinity or the health status of an individual (Berger and Lavie, 2011)

  13. High Circulating Adrenaline Levels at Admission Predict Increased Mortality After Trauma

    DEFF Research Database (Denmark)

    Johansson, Pär Ingemar; Stensballe, Jakob; Rasmussen, Lars Simon

    2012-01-01

    partial thromboplastin time, international normalized ratio, hematology, biochemistry, circulating adrenaline and noradrenaline, 11 biomarkers of tissue and endothelial damage, glycocalyx degradation, natural anticoagulation and fibrinolysis (histone-complexed DNA fragments, high-mobility group box 1......:: The adrenaline level was increased in nonsurvivors (p = 0.026), it was independently associated with increased activated partial thromboplastin time (p = 0.034) and syndecan-1 (p = 0.007), a marker of glycocalyx degradation, and it correlated with biomarkers of tissue and endothelial damage (histone......-complexed DNA, high-mobility group box 1, soluble thrombomodulin) and hyperfibrinolysis (tissue-type plasminogen activator, d-dimer). Furthermore, nonsurvivors had higher syndecan-1, tissue factor pathway inhibitor, and d-dimer levels (all p adrenaline was independently associated with 30...

  14. La biometría hemática

    Directory of Open Access Journals (Sweden)

    N López-Santiago

    2016-06-01

    Full Text Available La biometría hemática, o citometría hemática como también se le conoce, es el examen de laboratorio de mayor utilidad y más frecuentemente solicitado por el clínico. Esto es debido a que en un solo estudio se analizan tres líneas celulares completamente diferentes: eritroide, leucocitaria y plaquetaria, que no sólo orientan a patologías hematológicas; sino también a enfermedades de diferentes órganos y sistemas.

  15. Medical Emergency Workload of a Regional UK HEMS Service.

    Science.gov (United States)

    McQueen, Carl; Crombie, Nick; Cormack, Stef; Wheaton, Steve

    2015-01-01

    Regionalized trauma networks have been established in England to centralize specialist care at dedicated centers of excellence throughout the country. Helicopter emergency medical services (HEMS) in the West Midlands region have been redesigned to form an integrated component of such systems. The continued use of such valuable and scarce resources for medical emergencies requires evaluation. A retrospective review of mission data for a regional Air Ambulance Service in England over a two year period. Medical emergencies continue to contribute a large proportion of the overall workload of the service. Requirement for advanced interventions at the scene was rare, with less than 10% of patients attended by HEMS teams having care needs that fall beyond the scope of standard paramedic practice. Dynamic solutions are needed to ensure that HEMS support for cases of medical emergency are appropriately targeted to incidents in which clinical benefit is conferred to the patient. Intelligent tasking of appropriate resources has the potential to improve the HEMS response to medical emergencies while optimizing the availability of resources to respond to other incidents, most notably cases of major trauma. Copyright © 2015 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  16. [The role of endothelial cells and endothelial precursor cells in angiogenesis].

    Science.gov (United States)

    Poreba, Małgorzata; Usnarska-Zubkiewicz, Lidia; Kuliczkowski, Kazimierz

    2006-01-01

    Endothelium plays a key role in maintenance of vascular homeostasis in human organism. According to new data endothelial cells and hematopoietic cells have a common precursor in prenatal life--a hemangioblast, which explains the fact of sharing the same determinants on the surface of both type of cells. Circulating endothelial precursors were identified in adults and this suggests that hemangioblasts may be present not only during embriogenesis. In some clinical situations the increased numbers of endothelial cells and endothelial precursors were noted, and especially in patients with neoplastic diseases, which is probably the result of increased angiogenesis. Endothelial precursors are thought to be the promice for therapeutic purposes in future--to increase local angiogenesis.

  17. HEMS in Slovenia: one country, four models, different quality outcomes.

    Science.gov (United States)

    Klemenc-Ketis, Zalika; Tomazin, Iztok; Kersnik, Janko

    2012-01-01

    The objective of this study was to determine the quality of patient care using quality indicators in 4 different Slovenian helicopter emergency medical service (HEMS) models. This was a cross-sectional study of all 4 HEMS in Slovenia. We collected data on quality for the period from July 2003 to August 2008, in a sample of all eligible patients that were managed by HEMS during the study period (N = 833). We obtained the following data on emergency operations: the time and organizational features of the operation; the description of the patients' condition; and the on-site diagnostic and treatment procedures. We used the following as quality indicators: the number of resuscitated patients that were intubated; the number of patients with a Glasgow Coma Scale (GCS) score of # 8 that were intubated; the number of patients with acute coronary syndrome that received treatment with morphine, oxygen, nitroglycerine, and aspirin (MONA); the number of patients with a National Advisory Committee on Aeronautics (NACA) scale score of $ 4 with an intravenous line; the number of patients with a NACA score of $ 5 that were given oxygen; and the number of patients with a NACA score of $ 4 that were given appropriate analgesic treatment. Across all HEMS bases, 36 (87.8%) resuscitated patients were intubated; 122 (81.9%) patients with GCS # 8 were intubated; 149 (89.2%) patients with ACS were given MONA treatment; 52 (92.9%) patients with a NACA score of $ 4 were given an intravenous line; 254 (92.7%) patients with a NACA score of $ 5 were given oxygen; and 18 (32.7%) trauma patients with a NACA score of $ 4 were given intravenous analgesics. The quality of patient management in HEMS in Slovenia is affected by the callout procedure, the presence or absence of a fixed rope, the type of helicopter operator, and the provider of the doctor in the helicopter team. The data from our study indicates that the quality of patient management in HEMS in Slovenia is high. It also seems that

  18. Chromogranin A as circulating marker for diagnosis and management of neuroendocrine neoplasms: more flaws than fame.

    Science.gov (United States)

    Marotta, Vincenzo; Zatelli, Maria Chiara; Sciammarella, Concetta; Ambrosio, Maria Rosaria; Bondanelli, Marta; Colao, Annamaria; Faggiano, Antongiulio

    2018-01-01

    Owing to the heterogeneity of neuroendocrine neoplasms (NENs), the availability of reliable circulating markers is critical for improving diagnostics, prognostic stratification, follow-up and definition of treatment strategy. This review is focused on chromogranin A (CgA), a hydrophilic glycoprotein present in large dense core vesicles of neuroendocrine cells. Despite being long identified as the most useful NEN-related circulating marker, clinical application of CgA is controversial. CgA assays still lack standardization, thus hampering not only clinical management but also the comparison between different analyses. In the diagnostic setting, clinical utility of CgA is limited as hampered by (a) the variety of oncological and non-oncological conditions affecting marker levels, which impairs specificity; (b) the fact that 30-50% of NENs show normal CgA, which impairs sensitivity. Regarding the prognostic phase, there is prospective evidence which demonstrates that advanced NENs secreting CgA have poorer outcome, as compared with those showing non-elevated marker levels. Although the identification of cut-offs allowing a proper risk stratification of CgA-secreting patients has not been performed, this represents the most important clinical application of the marker. By contrast, based on prospective studies, the trend of elevated circulating CgA does not represent a valid indicator of morphological evolution and has therefore no utility for the follow-up phase. Ultimately, current knowledge about the role of the marker for the definition of treatment strategy is poor and is limited by the small number of available studies, their prevalent retrospective nature and the absence of control groups of untreated subjects. © 2018 Society for Endocrinology.

  19. Increased endothelial and macrophage markers are associated with disease severity and mortality in scrub typhus.

    Science.gov (United States)

    Otterdal, Kari; Janardhanan, Jeshina; Astrup, Elisabeth; Ueland, Thor; Prakash, John A J; Lekva, Tove; Abraham, O C; Thomas, Kurien; Damås, Jan Kristian; Mathews, Prasad; Mathai, Dilip; Aukrust, Pål; Varghese, George M

    2014-11-01

    Scrub typhus is endemic in the Asia-Pacific region. Mortality is high even with treatment, and further knowledge of the immune response during this infection is needed. This study was aimed at comparing plasma levels of monocyte/macrophage and endothelial related inflammatory markers in patients and controls in South India and to explore a possible correlation to disease severity and clinical outcome. Plasma levels of ALCAM, VCAM-1, sCD163, sCD14, YKL-40 and MIF were measured in scrub typhus patients (n = 129), healthy controls (n = 31) and in infectious disease controls (n = 31), both in the acute phase and after recovery, by enzyme immunoassays. Patients had markedly elevated levels of all mediators in the acute phase, differing from both healthy and infectious disease controls. During follow-up levels of ALCAM, VCAM-1, sCD14 and YKL-40 remained elevated compared to levels in healthy controls. High plasma ALCAM, VCAM-1, sCD163, sCD14, and MIF, and in particular YKL-40 were all associated with disease severity and ALCAM, sCD163, MIF and especially YKL-40, were associated with mortality. Our findings show that scrub typhus is characterized by elevated levels of monocyte/macrophage and endothelial related markers. These inflammatory markers, and in particular YKL-40, may contribute to disease severity and clinical outcome. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  20. Analysis of correlations between selected endothelial cell activation markers, disease activity, and nailfold capillaroscopy microvascular changes in systemic lupus erythematosus patients.

    Science.gov (United States)

    Ciołkiewicz, Mariusz; Kuryliszyn-Moskal, Anna; Klimiuk, Piotr Adrian

    2010-02-01

    The aim of the study was to evaluate the correlation between selected serum endothelial cell activation markers such as vascular endothelial growth factor (VEGF), endothelin-1 (ET-1), soluble thrombomodulin (sTM), soluble E-selectin (sE-selectin), disease activity, and microvascular changes determined by nailfold capillaroscopy in patients with systemic lupus erythematosus (SLE). Serum levels of VEGF, ET-1, sTM, and sE-selectin were determined by an enzyme-linked immunosorbent assay in 80 SLE patients. The disease activity was measured with Systemic Lupus Erythematosus Disease Activity Index score. Nailfold capillaroscopy was performed in all patients. Positive correlation was found between VEGF and both ET-1 (r = 0.294, p nailfold capillaroscopy (r = 0.458, p nailfold capillaroscopy. The relationship between changes in nailfold capillaroscopy, endothelial cell activation markers, and the clinical activity of SLE points to an important role of microvascular abnormalities in the clinical manifestation of the disease.

  1. De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer

    Directory of Open Access Journals (Sweden)

    Wu Xiwei

    2012-03-01

    Full Text Available Abstract Background MicroRNAs (miRNAs have been recently detected in the circulation of cancer patients, where they are associated with clinical parameters. Discovery profiling of circulating small RNAs has not been reported in breast cancer (BC, and was carried out in this study to identify blood-based small RNA markers of BC clinical outcome. Methods The pre-treatment sera of 42 stage II-III locally advanced and inflammatory BC patients who received neoadjuvant chemotherapy (NCT followed by surgical tumor resection were analyzed for marker identification by deep sequencing all circulating small RNAs. An independent validation cohort of 26 stage II-III BC patients was used to assess the power of identified miRNA markers. Results More than 800 miRNA species were detected in the circulation, and observed patterns showed association with histopathological profiles of BC. Groups of circulating miRNAs differentially associated with ER/PR/HER2 status and inflammatory BC were identified. The relative levels of selected miRNAs measured by PCR showed consistency with their abundance determined by deep sequencing. Two circulating miRNAs, miR-375 and miR-122, exhibited strong correlations with clinical outcomes, including NCT response and relapse with metastatic disease. In the validation cohort, higher levels of circulating miR-122 specifically predicted metastatic recurrence in stage II-III BC patients. Conclusions Our study indicates that certain miRNAs can serve as potential blood-based biomarkers for NCT response, and that miR-122 prevalence in the circulation predicts BC metastasis in early-stage patients. These results may allow optimized chemotherapy treatments and preventive anti-metastasis interventions in future clinical applications.

  2. Arachidonic acid metabolites and endothelial dysfunction of portal hypertension.

    Science.gov (United States)

    Sacerdoti, David; Pesce, Paola; Di Pascoli, Marco; Brocco, Silvia; Cecchetto, Lara; Bolognesi, Massimo

    2015-07-01

    Increased resistance to portal flow and increased portal inflow due to mesenteric vasodilatation represent the main factors causing portal hypertension in cirrhosis. Endothelial cell dysfunction, defined as an imbalance between the synthesis, release, and effect of endothelial mediators of vascular tone, inflammation, thrombosis, and angiogenesis, plays a major role in the increase of resistance in portal circulation, in the decrease in the mesenteric one, in the development of collateral circulation. Reduced response to vasodilators in liver sinusoids and increased response in the mesenteric arterioles, and, viceversa, increased response to vasoconstrictors in the portal-sinusoidal circulation and decreased response in the mesenteric arterioles are also relevant to the pathophysiology of portal hypertension. Arachidonic acid (AA) metabolites through the three pathways, cyclooxygenase (COX), lipoxygenase, and cytochrome P450 monooxygenase and epoxygenase, are involved in endothelial dysfunction of portal hypertension. Increased thromboxane-A2 production by liver sinusoidal endothelial cells (LSECs) via increased COX-1 activity/expression, increased leukotriens, increased epoxyeicosatrienoic acids (EETs) (dilators of the peripheral arterial circulation, but vasoconstrictors of the portal-sinusoidal circulation), represent a major component in the increased portal resistance, in the decreased portal response to vasodilators and in the hyper-response to vasoconstrictors. Increased prostacyclin (PGI2) via COX-1 and COX-2 overexpression, and increased EETs/heme-oxygenase-1/K channels/gap junctions (endothelial derived hyperpolarizing factor system) play a major role in mesenteric vasodilatation, hyporeactivity to vasoconstrictors, and hyper-response to vasodilators. EETs, mediators of liver regeneration after hepatectomy and of angiogenesis, may play a role in the development of regenerative nodules and collateral circulation, through stimulation of vascular endothelial

  3. New insights into circulating FABP4: Interaction with cytokeratin 1 on endothelial cell membranes.

    Science.gov (United States)

    Saavedra, Paula; Girona, Josefa; Bosquet, Alba; Guaita, Sandra; Canela, Núria; Aragonès, Gemma; Heras, Mercedes; Masana, Lluís

    2015-11-01

    Fatty acid-binding protein 4 (FABP4) is an adipose tissue-secreted adipokine that is involved in the regulation of energetic metabolism and inflammation. Increased levels of circulating FABP4 have been detected in individuals with cardiovascular risk factors. Recent studies have demonstrated that FABP4 has a direct effect on peripheral tissues, specifically promoting vascular dysfunction; however, its mechanism of action is unknown. The objective of this work was to assess the specific interactions between exogenous FABP4 and the plasma membranes of endothelial cells. Immunofluorescence assays showed that exogenous FABP4 localized along the plasma membranes of human umbilical vein endothelial cells (HUVECs), interacting specifically with plasma membrane proteins. Anti-FABP4 immunoblotting revealed two covalent protein complexes containing FABP4 and its putative receptor; these complexes were approximately 108 kDa and 77 kDa in size. Proteomics and mass spectrometry experiments revealed that cytokeratin 1 (CK1) was the FABP4-binding protein. An anti-CK1 immunoblot confirmed the presence of CK1. FABP4-CK1 complexes were also detected in HAECs, HCASMCs, HepG2 cells and THP-1 cells. Pharmacological FABP4 inhibition by BMS309403 results in a slight decrease in the formation of these complexes, indicating that fatty acids may play a role in FABP4 functionality. In addition, we demonstrated that exogenous FABP4 crosses the plasma membrane to enter the cytoplasm and nucleus in HUVECs. These findings indicate that exogenous FABP4 interacts with plasma membrane proteins, specifically CK1. These data contribute to our current knowledge regarding the mechanism of action of circulating FABP4.

  4. Circulating tumor cells and miRNAs as prognostic markers in neuroendocrine neoplasms.

    Science.gov (United States)

    Zatelli, Maria Chiara; Grossrubatscher, Erika Maria; Guadagno, Elia; Sciammarella, Concetta; Faggiano, Antongiulio; Colao, Annamaria

    2017-06-01

    The prognosis of neuroendocrine neoplasms (NENs) is widely variable and has been shown to associate with several tissue- and blood-based biomarkers in different settings. The identification of prognostic factors predicting NEN outcome is of paramount importance to select the best clinical management for these patients. Prognostic markers have been intensively investigated, also taking advantage of the most modern techniques, in the perspective of personalized medicine and appropriate resource utilization. This review summarizes the available data on the possible role of circulating tumor cells and microRNAs as prognostic markers in NENs. © 2017 Society for Endocrinology.

  5. Heparin defends against the toxicity of circulating histones in sepsis.

    Science.gov (United States)

    Wang, Feifei; Zhang, Naipu; Li, Biru; Liu, Lanbo; Ding, Lei; Wang, Ying; Zhu, Yimin; Mo, Xi; Cao, Qing

    2015-06-01

    Although circulating histones were demonstrated as major mediators of death in septic mice models, their roles in septic patients are not clarified. The present study sought to evaluate the clinical relevance of the circulating histone levels in septic children, and the antagonizing effects of heparin on circulating histones. Histone levels in the plasma of septic children were significantly higher than healthy controls, and positively correlated with disease severity. Histone treatment could activate NF-κB pathway of the endothelial cells and induce the secretion of large amount of cytokines that further amplify inflammation, subsequently leading to organ damage. Co-injection of low dose heparin with lethal dose histones could protect mouse from organ damage and death by antagonizing circulating histones, and similar effects were also observed in other septic models. Collectively, these findings indicated that circulating histones might serve as key factors in the pathogenesis of sepsis and their levels in plasma might be a marker for disease progression and prognosis. Furthermore, low dose heparin might be an effective therapy to hamper sepsis progression and reduce the mortality.

  6. Circulating macrophage activation markers, CD163 and CD206, are associated with disease severity and treatment response in patients with autoimmune hepatitis

    DEFF Research Database (Denmark)

    Grønbæk, Henning; Kazankov, Konstantin; Jessen, Niels

    Circulating macrophage activation markers, CD163 and CD206, are associated with disease severity and treatment response in patients with autoimmune hepatitis......Circulating macrophage activation markers, CD163 and CD206, are associated with disease severity and treatment response in patients with autoimmune hepatitis...

  7. Characterization of HEM silicon for solar cells. [Heat Exchanger Method

    Science.gov (United States)

    Dumas, K. A.; Khattak, C. P.; Schmid, F.

    1981-01-01

    The Heat Exchanger Method (HEM) is a promising low-cost ingot casting process for material used for solar cells. This is the only method that is capable of casting single crystal ingots with a square cross section using a directional solidification technique. This paper describes the chemical, mechanical and electrical properties of the HEM silicon material as a function of position within the ingot.

  8. Impact of Home Energy Monitoring and Management Systems (HEMS) : Triple-A: Stimulating the Adoption of low-carbon technologies by homeowners through increased Awareness and easy Access D2.1.1. Report on impact of HEMS

    NARCIS (Netherlands)

    Meijer, F.M.; Straub, A.; Mlecnik, E.

    2018-01-01

    This report answers the question: How can HEMS be used to influence energy-saving behaviour of homeowners? Lessons regarding the feedback from HEMS to influence energy-saving behaviour have been explored and specifications of HEMS to influence energy saving by households are given.
    Generally,

  9. Circulating Endothelial-Derived Activated Microparticle: A Useful Biomarker for Predicting One-Year Mortality in Patients with Advanced Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Chin-Chou Wang

    2014-01-01

    Full Text Available Background. This study tested the hypothesis that circulating microparticles (MPs are useful biomarkers for predicting one-year mortality in patients with end-stage non-small cell lung cancer (ES-NSCLC. Methods and Results. One hundred seven patients were prospectively enrolled into the study between April 2011 and February 2012, and each patient received regular follow-up after enrollment. Levels of four MPs in circulation, (1 platelet-derived activated MPs (PDAc-MPs, (2 platelet-derived apoptotic MPs (PDAp-MPs, (3 endothelial-derived activated MPs (EDAc-MPs, and (4 endothelial-derived apoptotic MPs (EDAp-MPs, were measured just after the patient was enrolled into the study using flow cytometry. Patients who survived for more than one year were categorized into group 1 (n=56 (one-year survivors and patients who survived less than one year were categorized into group 2 (n=51 (one-year nonsurvivors. Male gender, incidence of liver metastasis, progression of disease after first-line treatment, poor performance status, and the Charlson comorbidity index were significantly higher in group 2 than in group 1 (all P<0.05. Additionally, as measured by flow cytometry, only the circulating level of EDAc-MPs was found to be significantly higher in group 2 than in group 1 (P=0.006. Multivariate analysis demonstrated that circulating level of EDAc-MPs along with brain metastasis and male gender significantly and independently predictive of one-year mortality (all P<0.035. Conclusion. Circulating EDAc-MPs may be a useful biomarker predictive of one-year morality in ES-NSCLC patients.

  10. Mobilization of endothelial precursor cells: systemic vascular response to musculoskeletal trauma.

    LENUS (Irish Health Repository)

    Laing, A J

    2012-02-03

    Postnatal vasculogenesis, the process by which vascular committed bone marrow stem cells or endothelial precursor cells (EPC) migrate, differentiate, and incorporate into the nacent endothelium contributing to physiological and pathological neovascularization, has stimulated much interest. Its contribution to tumor nonvascularization, wound healing, and revascularization associated with skeletal and cardiac muscles ischaemia is established. We evaluated the mobilization of EPCs in response to musculoskeletal trauma. Blood from patients (n = 15) following AO type 42a1 closed diaphyseal tibial fractures was analyzed for CD34 and AC133 cell surface marker expression. Immunomagnetically enriched CD34+ mononuclear cell (MNC(CD34+)) populations were cultured and examined for phenotypic and functional vascular endothelial differentiation. Circulating MNC(CD34+) levels increased sevenfold by day 3 postinjury. Circulating MNC(AC133+) increased 2.5-fold. Enriched MNC(CD34+) populations from day 3 samples in culture exhibited cell cluster formation with sprouting spindles. These cells bound UEA-1 and incorporated fluorescent DiI-Ac-LDL intracellularily. Our findings suggest a systemic provascular response is initiated in response to musculoskeletal trauma. Its therapeutic manipulation may have implications for the potential enhancement of fracture healing.

  11. Longitudinal assessment of maternal endothelial function and markers of inflammation and placental function throughout pregnancy in lean and obese mothers.

    Science.gov (United States)

    Stewart, Frances M; Freeman, Dilys J; Ramsay, Jane E; Greer, Ian A; Caslake, Muriel; Ferrell, William R

    2007-03-01

    Obesity in pregnancy is increasing and is a risk factor for metabolic pathology such as preeclampsia. In the nonpregnant, obesity is associated with dyslipidemia, vascular dysfunction, and low-grade chronic inflammation. Our aim was to measure microvascular endothelial function in lean and obese pregnant women at intervals throughout their pregnancies and at 4 months after delivery. Plasma markers of endothelial function, inflammation, and placental function and their association with microvascular function were also assessed. Women in the 1st trimester of pregnancy were recruited, 30 with a body mass index (BMI) less than 30 kg/m(2) and 30 with a BMI more than or equal to 30 kg/m(2) matched for age, parity, and smoking status. In vivo endothelial-dependent and -independent microvascular function was measured using laser Doppler imaging in the 1st, 2nd, and 3rd trimesters of pregnancy and at 4 months postnatal. Plasma markers of endothelial activation [soluble intercellular cell adhesion molecule-1 (sVCAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), von Willebrand factor (vWF), and plasminogen activator inhibitor (PAI)-1], inflammation (IL-6, TNFalpha, C-reactive protein, and IL-10), and placental function (PAI-1/PAI-2 ratio) were also assessed at each time point. The pattern of improving endothelial function during pregnancy was the same for lean and obese, but endothelial-dependent vasodilation was significantly lower (P lean women but declined to near 1st trimester levels in the obese (lean/obese difference, 115%; P lean response being greater than obese (P = 0.021), and response declined in both groups in the postpartum period. In multivariate analysis, time of sampling had the most impact on endothelial-independent function [18.5% (adjusted sum of squares expressed as a percentage of total means squared), P lean 0.30 (0.21-0.47), P lean counterparts. There was a higher PAI-1/ PAI-2 ratio in the 1st trimester in obese women, which improved later in

  12. Key endothelial cell angiogenic mechanisms are stimulated by the circulating milieu in sickle cell disease and attenuated by hydroxyurea

    Science.gov (United States)

    Lopes, Flavia C. M.; Traina, Fabiola; Almeida, Camila B.; Leonardo, Flavia C.; Franco-Penteado, Carla F.; Garrido, Vanessa T.; Colella, Marina P.; Soares, Raquel; Olalla-Saad, Sara T.; Costa, Fernando F.; Conran, Nicola

    2015-01-01

    As hypoxia-induced inflammatory angiogenesis may contribute to the manifestations of sickle cell disease, we compared the angiogenic molecular profiles of plasma from sickle cell disease individuals and correlated these with in vitro endothelial cell-mediated angiogenesis-stimulating activity and in vivo neovascularization. Bioplex demonstrated that plasma from patients with steady-state sickle cell anemia contained elevated concentrations of pro-angiogenic factors (angiopoietin-1, basic fibroblast growth factor, vascular endothelial growth factor, vascular endothelial growth factor-D and placental growth factor) and displayed potent pro-angiogenic activity, significantly increasing endothelial cell proliferation, migration and capillary-like structure formation. In vivo neovascularization of Matrigel plugs was significantly greater in sickle cell disease mice than in non-sickle cell disease mice, consistent with an up-regulation of angiogenesis in the disease. In plasma from patients with hemoglobin SC disease without proliferative retinopathy, anti-angiogenic endostatin and thrombospondin-2 were significantly elevated. In contrast, plasma from hemoglobin SC individuals with proliferative retinopathy had a pro-angiogenic profile and more significant effects on endothelial cell proliferation and capillary formation than plasma from patients without retinopathy. Hydroxyurea therapy was associated with significant reductions in plasma angiogenic factors and inhibition of endothelial cell-mediated angiogenic mechanisms and neovascularization. Thus, individuals with sickle cell anemia or hemoglobin SC disease with retinopathy present a highly angiogenic circulating milieu, capable of stimulating key endothelial cell-mediated angiogenic mechanisms. Combination anti-angiogenic therapy to prevent the progression of unregulated neovascularization and associated manifestations in sickle cell disease, such as pulmonary hypertension, may be indicated; furthermore, the

  13. Circulating microRNA-200 Family as Diagnostic Marker in Hepatocellular Carcinoma.

    Directory of Open Access Journals (Sweden)

    Sameer A Dhayat

    Full Text Available In this clinical study, we aimed to evaluate the role of circulating microRNA-200 family as a non-invasive tool to identify patients with cirrhosis-associated hepatocellular carcinoma (HCC.Prognosis of HCC remains poor with increasing incidence worldwide, mainly related to liver cirrhosis. So far, no reliable molecular targets exist for early detection of HCC at surgically manageable stages. Recently, we identified members of the microRNA-200 family as potential diagnostic markers of cirrhosis-associated HCC in patient tissue samples. Their value as circulating biomarkers for HCC remained undefined.Blood samples and clinicopathological data of consecutive patients with liver diseases were collected prospectively. Expression of the microRNA-200 family was investigated by qRT-PCR in blood serum samples of 22 HCC patients with and without cirrhosis. Serum samples of patients with non-cancerous chronic liver cirrhosis (n = 22 and of healthy volunteers (n = 15 served as controls.MicroRNA-141 and microRNA-200a were significantly downregulated in blood serum of patients with HCC compared to liver cirrhosis (p<0.007 and healthy controls (p<0.002. MicroRNA-141 and microRNA-200a could well discriminate patients with cirrhosis-associated HCC from healthy volunteers with area under the receiver-operating characteristic curve (AUC values of 0.85 and 0.82, respectively. Additionally, both microRNAs could differentiate between HCC and non-cancerous liver cirrhosis with a fair accuracy.Circulating microRNA-200 family members are significantly deregulated in patients with HCC and liver cirrhosis. Further studies are necessary to confirm the diagnostic value of the microRNA-200 family as accurate serum marker for cirrhosis-associated HCC.

  14. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles.

    Science.gov (United States)

    Jansen, Felix; Yang, Xiaoyan; Hoelscher, Marion; Cattelan, Arianna; Schmitz, Theresa; Proebsting, Sebastian; Wenzel, Daniela; Vosen, Sarah; Franklin, Bernardo S; Fleischmann, Bernd K; Nickenig, Georg; Werner, Nikos

    2013-10-29

    Repair of the endothelium after vascular injury is crucial for preserving endothelial integrity and preventing the development of vascular disease. The underlying mechanisms of endothelial cell repair are largely unknown. We sought to investigate whether endothelial microparticles (EMPs), released from apoptotic endothelial cells (ECs), influence EC repair. Systemic treatment of mice with EMPs after electric denudation of the endothelium accelerated reendothelialization in vivo. In vitro experiments revealed that EMP uptake in ECs promotes EC migration and proliferation, both critical steps in endothelial repair. To dissect the underlying mechanisms, Taqman microRNA array was performed, and microRNA (miR)-126 was identified as the predominantly expressed miR in EMPs. The following experiments demonstrated that miR-126 was transported into recipient human coronary artery endothelial cells by EMPs and functionally regulated the target protein sprouty-related, EVH1 domain-containing protein 1 (SPRED1). Knockdown of miR-126 in EMPs abrogated EMP-mediated effects on human coronary artery endothelial cell migration and proliferation in vitro and reendothelialization in vivo. Interestingly, after simulating diabetic conditions, EMPs derived from glucose-treated ECs contained significantly lower amounts of miR-126 and showed reduced endothelial repair capacity in vitro and in vivo. Finally, expression analysis of miR-126 in circulating microparticles from 176 patients with stable coronary artery disease with and without diabetes mellitus revealed a significantly reduced miR-126 expression in circulating microparticles from diabetic patients. Endothelial microparticles promote vascular endothelial repair by delivering functional miR-126 into recipient cells. In pathological hyperglycemic conditions, EMP-mediated miR-126-induced EC repair is altered.

  15. Endothelial RIG-I activation impairs endothelial function

    International Nuclear Information System (INIS)

    Asdonk, Tobias; Motz, Inga; Werner, Nikos; Coch, Christoph; Barchet, Winfried; Hartmann, Gunther; Nickenig, Georg; Zimmer, Sebastian

    2012-01-01

    Highlights: ► RIG-I activation impairs endothelial function in vivo. ► RIG-I activation alters HCAEC biology in vitro. ► EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 μg of the RIG-ligand 3pRNA (RNA with triphosphate at the 5′end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  16. Interleukin-3 greatly expands non-adherent endothelial forming cells with pro-angiogenic properties

    Directory of Open Access Journals (Sweden)

    Lachlan M. Moldenhauer

    2015-05-01

    Full Text Available Circulating endothelial progenitor cells (EPCs provide revascularisation for cardiovascular disease and the expansion of these cells opens up the possibility of their use as a cell therapy. Herein we show that interleukin-3 (IL3 strongly expands a population of human non-adherent endothelial forming cells (EXnaEFCs with low immunogenicity as well as pro-angiogenic capabilities in vivo, making their therapeutic utilisation a realistic option. Non-adherent CD133+ EFCs isolated from human umbilical cord blood and cultured under different conditions were maximally expanded by day 12 in the presence of IL3 at which time a 350-fold increase in cell number was obtained. Cell surface marker phenotyping confirmed expression of the hematopoietic progenitor cell markers CD133, CD117 and CD34, vascular cell markers VEGFR2 and CD31, dim expression of CD45 and absence of myeloid markers CD14 and CD11b. Functional experiments revealed that EXnaEFCs exhibited classical properties of endothelial cells (ECs, namely binding of Ulex europaeus lectin, up-take of acetylated-low density lipoprotein and contribution to EC tube formation in vitro. These EXnaEFCs demonstrated a pro-angiogenic phenotype within two independent in vivo rodent models. Firstly, a Matrigel plug assay showed increased vascularisation in mice. Secondly, a rat model of acute myocardial infarction demonstrated reduced heart damage as determined by lower levels of serum creatinine and a modest increase in heart functionality. Taken together, these studies show IL3 as a potent growth factor for human CD133+ cell expansion with clear pro-angiogenic properties (in vitro and in vivo and thus may provide clinical utility for humans in the future.

  17. Inflammation, Endothelial Dysfunction and Arterial Stiffness as Therapeutic Targets in Cardiovascular Medicine.

    Science.gov (United States)

    Della Corte, Vittoriano; Tuttolomondo, Antonino; Pecoraro, Rosaria; Di Raimondo, Domenico; Vassallo, Valerio; Pinto, Antonio

    2016-01-01

    In the last decades, many factors thought to be associated with the atherosclerotic process and cardiovascular events have been studied, and some of these have been shown to correlate with clinical outcome, such as arterial stiffness, endothelial dysfunction and immunoinflammatory markers. Arterial stiffness is an important surrogate marker that describes the capability of an artery to expand and contract in response to pressure changes. It can be assessed with different techniques, such as the evaluation of PWV and AIx. It is related to central systolic pressure and it is an independent predictor of cardiovascular morbidity and mortality in hypertensive patients, type 2 diabetes, end-stage renal disease and in elderly populations. The endothelium has emerged as the key regulator of vascular homeostasis, in fact, it has not merely a barrier function but also acts as an active signal transducer for circulating influences that modify the vessel wall phenotype. When its function is lost, it predisposes the vasculature to vasoconstriction, leukocyte adherence, platelet activation, thrombosis and atherosclerosis. Non-invasive methods were developed to evaluate endothelial function, such as the assesment of FMD, L-FMC and RHI. Moreover in the last years, a large number of studies have clarified the role of inflammation and the underlying cellular and molecular mechanisms that contribute to atherogenesis. For clinical purposes, the most promising inflammatory biomarker appears to be CRP and a variety of population-based studies have showed that baseline CRP levels predict future cardiovascular events. Each of the markers listed above has its importance from the pathophysiological and clinical point of view, and those can also be good therapeutic targets. However, it must be stressed that assessments of these vascular markers are not mutually exclusive, but rather complementary and those can offer different views of the same pathology. The purpose of this review is to

  18. Measurement of Circulating Cytokines and Immune-Activation Markers by Multiplex Technology in the Clinical Setting: What Are We Really Measuring?

    Science.gov (United States)

    Aziz, Najib

    2015-01-01

    Measurement of circulating cytokine levels can provide important information in the study of the pathogenesis of disease. John L. Fahey was a pioneer in the measurement of circulating cytokines and immune-activation markers and a leader in the quality assessment/control of assays for measurement of circulating cytokines. Insights into the measurement of circulating cytokines, including consideration of multiplex assays, are presented here.

  19. Endothelial activation markers (VCAM-1, vWF in patients with chronic hepatitis C and insulin resistance

    Directory of Open Access Journals (Sweden)

    T. V. Antonova

    2012-01-01

    Full Text Available Blood markers of endothelial activation (sVCAM-1, vWF: Ag in patients with chronic hepatitis C in the presence of insulin resistance, metabolic syndrome and its components had been evaluated. The study included 69 patients with chronic hepatitis C with oligosymptomatic the disease. In one third of cases of chronic hepatitis C (33.3% showed improvement in the blood content of sVCAM-1 and / or vWF: Ag. In patients with chronic hepatitis C with insulin resistance, metabolic syndrome significantly more often found signs adhesion of endothelial dysfunction (increased blood concentrations of sVCAM-1 than in patients without these disorders. Found that in patients with severe hepatic fibrosis in patients with chronic hepatitis C blood concentration sVCAM-1 is significantly higher compared to patients with early stages of fibrosis (F0-F2, including those in patients without insulin resistance. These data suggest the multivariate development of endothelial dysfunction in chronic hepatitis C.

  20. Effects of simulated altitude (normobaric hypoxia on cardiorespiratory parameters and circulating endothelial precursors in healthy subjects

    Directory of Open Access Journals (Sweden)

    Pierini Alberto

    2007-08-01

    Full Text Available Abstract Background Circulating Endothelial Precursors (PB-EPCs are involved in the maintenance of the endothelial compartment being promptly mobilized after injuries of the vascular endothelium, but the effects of a brief normobaric hypoxia on PB-EPCs in healthy subjects are scarcely studied. Methods Clinical and molecular parameters were investigated in healthy subjects (n = 8 in basal conditions (T0 and after 1 h of normobaric hypoxia (T1, with Inspiratory Fraction of Oxygen set at 11.2% simulating 4850 mt of altitude. Blood samples were obtained at T0 and T1, as well as 7 days after hypoxia (T2. Results In all studied subjects we observed a prompt and significant increase in PB-EPCs, with a return to basal value at T2. The induction of hypoxia was confirmed by Alveolar Oxygen Partial Pressure (PAO2 and Spot Oxygen Saturation decreases. Heart rate increased, but arterial pressure and respiratory response were unaffected. The change in PB-EPCs percent from T0 to T1 was inversely related to PAO2 at T1. Rapid (T1 increases in serum levels of hepatocyte growth factor and erythropoietin, as well as in cellular PB-EPCs-expression of Hypoxia Inducible Factor-1α were observed. Conclusion In conclusion, the endothelial compartment seems quite responsive to standardized brief hypoxia, possibly important for PB-EPCs activation and recruitment.

  1. Endothelial RIG-I activation impairs endothelial function

    Energy Technology Data Exchange (ETDEWEB)

    Asdonk, Tobias, E-mail: tobias.asdonk@ukb.uni-bonn.de [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Motz, Inga; Werner, Nikos [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Coch, Christoph; Barchet, Winfried; Hartmann, Gunther [Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Nickenig, Georg; Zimmer, Sebastian [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  2. EPO Receptor Gain-of-Function Causes Hereditary Polycythemia, Alters CD34+ Cell Differentiation and Increases Circulating Endothelial Precursors

    Science.gov (United States)

    Perrotta, Silverio; Cucciolla, Valeria; Ferraro, Marcella; Ronzoni, Luisa; Tramontano, Annunziata; Rossi, Francesca; Scudieri, Anna Chiara; Borriello, Adriana; Roberti, Domenico; Nobili, Bruno; Cappellini, Maria Domenica; Oliva, Adriana; Amendola, Giovanni; Migliaccio, Anna Rita; Mancuso, Patrizia; Martin-Padura, Ines; Bertolini, Francesco; Yoon, Donghoon; Prchal, Josef T.; Della Ragione, Fulvio

    2010-01-01

    Background Gain-of-function of erythropoietin receptor (EPOR) mutations represent the major cause of primary hereditary polycythemia. EPOR is also found in non-erythroid tissues, although its physiological role is still undefined. Methodology/Principal Findings We describe a family with polycythemia due to a heterozygous mutation of the EPOR gene that causes a G→T change at nucleotide 1251 of exon 8. The novel EPOR G1251T mutation results in the replacement of a glutamate residue by a stop codon at amino acid 393. Differently from polycythemia vera, EPOR G1251T CD34+ cells proliferate and differentiate towards the erythroid phenotype in the presence of minimal amounts of EPO. Moreover, the affected individuals show a 20-fold increase of circulating endothelial precursors. The analysis of erythroid precursor membranes demonstrates a heretofore undescribed accumulation of the truncated EPOR, probably due to the absence of residues involved in the EPO-dependent receptor internalization and degradation. Mutated receptor expression in EPOR-negative cells results in EPOR and Stat5 phosphorylation. Moreover, patient erythroid precursors present an increased activation of EPOR and its effectors, including Stat5 and Erk1/2 pathway. Conclusions/Significance Our data provide an unanticipated mechanism for autosomal dominant inherited polycythemia due to a heterozygous EPOR mutation and suggest a regulatory role of EPO/EPOR pathway in human circulating endothelial precursors homeostasis. PMID:20700488

  3. Circulating Endothelial Microparticles and Correlation of Serum 1,25-Dihydroxyvitamin D with Adiponectin, Nonesterified Fatty Acids, and Glycerol from Middle-Aged Men in China

    Directory of Open Access Journals (Sweden)

    Zhongxiao Wan

    2016-01-01

    Full Text Available The aim of the present study is (1 to determine the correlation between circulating 1,25-dihydroxyvitamin D [25(OHD] and adiponectin, nonesterified fatty acids (NEFAs, and glycerol and (2 to determine the alterations in circulating endothelial microparticles (EMPs in Chinese male subjects with increased body mass index (BMI. A total of 45 male adults were enrolled with varied BMI [i.e., lean, overweight (OW, and obese (OB, N=15 per group]. Blood samples were collected under overnight fasting condition, and plasma was isolated for the measurement of endothelial microparticles (EMPs, total and high-molecular weight (HMW adiponectin, 25(OHD, nonesterified fatty acids (NEFAs, and glycerol. Circulating 25(OHD levels were inversely associated with total adiponectin, NEFA, and glycerol levels. There is no difference for CD62E+ or CD31+/CD42b− EMPs among 3 groups. In Chinese male adults with varied BMI, an inverse correlation existed between 25(OHD levels and total adiponectin, NEFA, and glycerol levels; and there is no significant difference for CD62E+ or CD31+/CD42b− EMPs among lean, overweight, and obese subjects.

  4. Late Release of Circulating Endothelial Cells and Endothelial Progenitor Cells after Chemotherapy Predicts Response and Survival in Cancer Patients

    Directory of Open Access Journals (Sweden)

    Jeanine M. Roodhart

    2010-01-01

    Full Text Available We and others have previously demonstrated that the acute release of progenitor cells in response to chemotherapy actually reduces the efficacy of the chemotherapy. Here, we take these data further and investigate the clinical relevance of circulating endothelial (progenitor cells (CE(PCs and modulatory cytokines in patients after chemotherapy with relation to progression-free and overall survival (PFS/OS. Patients treated with various chemotherapeutics were included. Blood sampling was performed at baseline, 4 hours, and 7 and 21 days after chemotherapy. The mononuclear cell fraction was analyzed for CE(PC by FACS analysis. Plasma was analyzed for cytokines by ELISA or Luminex technique. CE(PCs were correlated with response and PFS/OS using Cox proportional hazard regression analysis. We measured CE(PCs and cytokines in 71 patients. Only patients treated with paclitaxel showed an immediate increase in endothelial progenitor cell 4 hours after start of treatment. These immediate changes did not correlate with response or survival. After 7 and 21 days of chemotherapy, a large and consistent increase in CE(PC was found (P < .01, independent of the type of chemotherapy. Changes in CE(PC levels at day 7 correlated with an increase in tumor volume after three cycles of chemotherapy and predicted PFS/OS, regardless of the tumor type or chemotherapy. These findings indicate that the late release of CE(PC is a common phenomenon after chemotherapeutic treatment. The correlation with a clinical response and survival provides further support for the biologic relevance of these cells in patients' prognosis and stresses their possible use as a therapeutic target.

  5. Identification of the enzymatic basis for δ-aminolevulinic acid auxotrophy in a hemA mutant of escherichia coli

    International Nuclear Information System (INIS)

    Avissar, Y.J.; Beale, S.I.

    1989-01-01

    The hemA mutation of Escherichia coli K-12 confers a requirement for δ-aminolevulinic acid (ALA). Cell extract prepared from the hemA strain SASX41B was incapable of producing ALA from either glutamate or glutamyl-tRNA, whereas extract of the hem + strain HB101 formed colorimetrically detectable amounts of ALA and transferred label from 1-[ 14 C]glutamate and 3,4-[ 3 H]glutamyl-tRNA to ALA. Extracts of both strains converted glutamate-1-semialdehyde to ALA and were capable of aminoacylating tRNA Glu . Glutamyl-tRNA formed by extracts of both strains could be converted to ALA by the extract of hem + cells. The extract of hemA cells did not convert glutamyl-tRNA formed by either strain to ALA. However, the hemA cell extract, when supplemented in vitro with glutamyl-tRNA dehydrogenase isolated from Chlorella vulgaris cells, formed about as much ALA as did the unsupplemented hem + cell extract. We conclude from these observations that the enzyme activity that is lacking in the ALA auxotrophic strain carrying the hemA mutation is that of glutamyl-tRNA dehydrogenase

  6. Optimized multiparametric flow cytometric analysis of circulating endothelial cells and their subpopulations in peripheral blood of patients with solid tumors: a technical analysis.

    Science.gov (United States)

    Zhou, Fangbin; Zhou, Yaying; Yang, Ming; Wen, Jinli; Dong, Jun; Tan, Wenyong

    2018-01-01

    Circulating endothelial cells (CECs) and their subpopulations could be potential novel biomarkers for various malignancies. However, reliable enumerable methods are warranted to further improve their clinical utility. This study aimed to optimize a flow cytometric method (FCM) assay for CECs and subpopulations in peripheral blood for patients with solid cancers. An FCM assay was used to detect and identify CECs. A panel of 60 blood samples, including 44 metastatic cancer patients and 16 healthy controls, were used in this study. Some key issues of CEC enumeration, including sample material and anticoagulant selection, optimal titration of antibodies, lysis/wash procedures of blood sample preparation, conditions of sample storage, sufficient cell events to enhance the signal, fluorescence-minus-one controls instead of isotype controls to reduce background noise, optimal selection of cell surface markers, and evaluating the reproducibility of our method, were integrated and investigated. Wilcoxon and Mann-Whitney U tests were used to determine statistically significant differences. In this validation study, we refined a five-color FCM method to detect CECs and their subpopulations in peripheral blood of patients with solid tumors. Several key technical issues regarding preanalytical elements, FCM data acquisition, and analysis were addressed. Furthermore, we clinically validated the utility of our method. The baseline levels of mature CECs, endothelial progenitor cells, and activated CECs were higher in cancer patients than healthy subjects ( P technical issues found in previously published assays and validated the reproducibility and sensitivity of our proposed method. Future work is required to explore the potential of our optimized method in clinical oncologic applications.

  7. Clinical significance of nailfold capillaroscopy in systemic lupus erythematosus: correlation with endothelial cell activation markers and disease activity.

    Science.gov (United States)

    Kuryliszyn-Moskal, A; Ciolkiewicz, M; Klimiuk, P A; Sierakowski, S

    2009-01-01

    To evaluate whether nailfold capillaroscopy (NC) changes are associated with the main serum endothelial cell activation markers and the disease activity of systemic lupus erythematosus (SLE). Serum levels of vascular endothelial growth factor (VEGF), endothelin-1 (ET-1), soluble E-selectin (sE-selectin), and soluble thrombomodulin (sTM) were determined by an enzyme-linked immunosorbent assay (ELISA) in 80 SLE patients and 33 healthy controls. Nailfold capillary abnormalities were seen in 74 out of 80 (92.5%) SLE patients. A normal capillaroscopic pattern or mild changes were found in 33 (41.25%) and moderate/severe abnormalities in 47 (58.75%) of all SLE patients. In SLE patients a capillaroscopic score >1 was more frequently associated with the presence of internal organ involvement (p 1 and controls. SLE patients with severe/moderate capillaroscopic abnormalities showed significantly higher VEGF serum levels than patients with mild changes (p < 0.001). Moreover, there was a significant positive correlation between the severity of capillaroscopic changes and the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) (p < 0.005) as well as between capillaroscopic score and VEGF serum levels (p < 0.001). Our findings confirm the usefulness of NC as a non-invasive technique for the evaluation of microvascular involvement in SLE patients. A relationship between changes in NC, endothelial cell activation markers and clinical features of SLE suggest an important role for microvascular abnormalities in clinical manifestation of the disease.

  8. Helicopter emergency medical services (HEMS) over-triage and the financial implications for major trauma centres in NSW, Australia.

    Science.gov (United States)

    Taylor, Colman B; Curtis, Kate; Jan, Stephen; Newcombe, Mark

    2013-07-01

    In NSW Australia, a formal trauma system including the use of helicopter emergency medical services (HEMS) has existed for over 20 years. Despite providing many advantages in NSW, HEMS patients are frequently over-triaged; leading to financial implications for major trauma centres that receive HEMS patients. The aim of this study was to investigate the financial implications of HEMS over-triage from the perspective of major trauma centres in NSW. The study sample included all trauma patients transported via HEMS to 12 major trauma centres in NSW during the period: 1 July 2008 to 30 June 2009. Clinical data were gathered from individual hospital trauma registries and merged with financial information obtained from casemix units at respective hospitals. HEMS over-triage was estimated based on the local definition of minor to moderate trauma (ISS≤12) and hospital length of stay of less than 24 hrs. The actual treatment costs were determined and compared to state-wide peer group averages to obtain estimates of potential funding discrepancies. A total of 707 patients transported by HEMS were identified, including 72% pre-hospital (PH; n=507) and 28% inter-hospital (IH; n=200) transports. Over-triage was estimated at 51% for PH patients and 29% for IH patients. Compared to PH patients, IH patients were more costly to treat on average (IH: $42,604; PH: $25,162), however PH patients were more costly overall ($12,329,618 [PH]; $8,265,152 [IH]). When comparing actual treatment costs to peer group averages we found potential funding discrepancies ranging between 4% and 32% across patient groups. Using a sensitivity analysis, the potential funding discrepancy increased with increasing levels of over-triage. HEMS patients are frequently over-triaged in NSW, leading to funding implications for major trauma centres. In general, HEMS patient treatment costs are higher than the peer group average and the potential funding discrepancy varies by injury severity and the type of

  9. Increasing the efficiency of designing hemming processes by using an element-based metamodel approach

    Science.gov (United States)

    Kaiser, C.; Roll, K.; Volk, W.

    2017-09-01

    In the automotive industry, the manufacturing of automotive outer panels requires hemming processes in which two sheet metal parts are joined together by bending the flange of the outer part over the inner part. Because of decreasing development times and the steadily growing number of vehicle derivatives, an efficient digital product and process validation is necessary. Commonly used simulations, which are based on the finite element method, demand significant modelling effort, which results in disadvantages especially in the early product development phase. To increase the efficiency of designing hemming processes this paper presents a hemming-specific metamodel approach. The approach includes a part analysis in which the outline of the automotive outer panels is initially split into individual segments. By doing a para-metrization of each of the segments and assigning basic geometric shapes, the outline of the part is approximated. Based on this, the hemming parameters such as flange length, roll-in, wrinkling and plastic strains are calculated for each of the geometric basic shapes by performing a meta-model-based segmental product validation. The metamodel is based on an element similar formulation that includes a reference dataset of various geometric basic shapes. A random automotive outer panel can now be analysed and optimized based on the hemming-specific database. By implementing this approach into a planning system, an efficient optimization of designing hemming processes will be enabled. Furthermore, valuable time and cost benefits can be realized in a vehicle’s development process.

  10. Effects of breed, gender, exercise and white-coat effect on markers of endothelial function in dogs

    DEFF Research Database (Denmark)

    Moesgaard, Sophia Gry; Holte, A.V.; Mogensen, T.

    2007-01-01

    This study examines how systemic biomarkers of endothelial function and nitric oxide metabolism are affected by exercise in dogs. Furthermore, breed variation and white-coat effect have been tested by sampling three different dog breeds both in their home and in a clinical setting. Short......-term exercise increased plasma nitrate and nitrite (NOx) and von Willebrand factor (vWf). There was significant difference between Pointers and the small dog breeds Cairn Terriers and Cavalier King Charles Spaniels in the general plasma levels of vWf and asymmetric dimethylarginine (ADMA9. NOx and vWf were...... significantly higher when the sample was taken in the laboratory cf. at home, whereas ADMA and L-arginine were significantly lower. In conclusion, both short-term exercise and white-coat effect influence several plasma markers of endothelial function depending also on the breed and gender of the dogs...

  11. Elevated procoagulant endothelial and tissue factor expressing microparticles in women with recurrent pregnancy loss.

    Directory of Open Access Journals (Sweden)

    Rucha Patil

    Full Text Available BACKGROUND: 15% of reproducing couples suffer from pregnancy loss(PL and recurs in 2-3%. One of the most frequently hypothesized causes of unexplained PL refers to a defective maternal haemostatic response leading to uteroplacental thrombosis. Hereditary thrombophilia and antiphospholipid antibodies have been extensively described as risk factors for PL in women with unknown aetiology. Recently, a new marker has emerged: the cell-derived procoagulant circulating microparticles(MPs which have been reported to have a major role in many thrombosis complicated diseases. This study aims to analyze the significance of procoagulant MPs in women suffering from unexplained recurrent pregnancy loss(RPL, and characterize their cellular origin. METHOD AND FINDINGS: 115 women with RPL were analyzed for common thrombophilia markers and different cell derived MPs-total annexinV, platelet(CD41a, endothelial(CD146,CD62e, leukocyte(CD45, erythrocyte(CD235a and tissue factor(CD142(TF expressing MPs and were compared with 20 healthy non-pregnant women. Methodology for MP analysis was standardized by participating in the "Vascular Biology Scientific and Standardization Committee workshop". RESULTS: Total annexinV, TF and endothelial MPs were found significantly increased(p<0.05, 95% confidence interval in women with RPL. The procoagulant activity of MPs measured by STA-PPL clotting time assay was found in correspondence with annexinV MP levels, wherein the clot time was shortened in samples with increased MP levels. Differences in platelet, leukocyte and erythrocyte derived MPs were not significant. Thirty seven of 115 women were found to carry any of the acquired or hereditary thrombophilia markers. No significant differences were seen in the MP profile of women with and without thrombophilia marker. CONCLUSION: The presence of elevated endothelial, TF and phosphatidylserine expressing MPs at a distance (at least 3 months from the PL suggests a continued chronic

  12. Towards Efficient Energy Management: Defining HEMS, AMI and Smart Grid Objectives

    DEFF Research Database (Denmark)

    Rossello Busquet, Ana; Kardaras, Georgios; Soler, José

    2011-01-01

    electricity in the grid will also help to reduce the increase of energy consumption in the future. In order to reduce energy consumption in home environments, researches have been designing Home Energy Management Systems (HEMS). In addition, Advanced Metering Infrastructure (AMI) and smart grids are also...... being developed to distribute and produce electricity efficiently. This paper presents the high level goals and requirements of HEMS. Additionally, it gives an overview of Advanced Metering Infrastructure benefits and smart grids objectives....

  13. Endothelial dysfunction after non-cardiac surgery

    DEFF Research Database (Denmark)

    Søndergaard, E S; Fonnes, S; Gögenur, I

    2015-01-01

    was to systematically review the literature to evaluate the association between non-cardiac surgery and non-invasive markers of endothelial function. METHODS: A systematic search was conducted in MEDLINE, EMBASE and Cochrane Library Database according to the PRISMA guidelines. Endothelial dysfunction was described only...... transplantation and vascular surgery respectively) had an improvement in endothelial dysfunction 1 month after surgery. CONCLUSION: Endothelial function changes in relation to surgery. Assessment of endothelial function by non-invasive measures has the potential to guide clinicians in the prevention or treatment...

  14. The Hem protein mediates neuronal migration by inhibiting WAVE degradation and functions opposite of Abelson tyrosine kinase

    Science.gov (United States)

    Zhu, Zengrong; Bhat, Krishna Moorthi

    2011-01-01

    In the nervous system, neurons form in different regions, then they migrate and occupy specific positions. We have previously shown that RP2/sib, a well-studied neuronal pair in the Drosophila ventral nerve cord (VNC), has a complex migration route. Here, we show that the Hem protein, via the WAVE complex, regulates migration of GMC-1 and its progeny RP2 neuron. In Hem or WAVE mutants, RP2 neuron either abnormally migrates, crossing the midline from one hemisegment to the contralateral hemisegment, or does not migrate at al and fail to send out its axon projection. We report that Hem regulates neuronal migration through stabilizing WAVE. Since Hem and WAVE normally form a complex, our data argues that in the absence of Hem, WAVE, which is presumably no longer in a complex, becomes susceptible to degradation. We also find that Abelson Tyrosine kinase affects RP2 migration in a similar manner as Hem and WAVE, and appears to operate via WAVE. However, while Abl negatively regulates the levels of WAVE, it regulates migration via regulating the activity of WAVE. Our results also show that during the degradation of WAVE, Hem function is opposite to that of and downstream of Abl. PMID:21726548

  15. Optimized multiparametric flow cytometric analysis of circulating endothelial cells and their subpopulations in peripheral blood of patients with solid tumors: a technical analysis

    Directory of Open Access Journals (Sweden)

    Zhou F

    2018-03-01

    Full Text Available Fangbin Zhou,1,2 Yaying Zhou,3 Ming Yang,1 Jinli Wen,3 Jun Dong,4 Wenyong Tan1 1Department of Oncology, The Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen, People’s Republic of China; 2Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, People’s Republic of China; 3Clinical Medical Research Center, The Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen, People’s Republic of China; 4Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, People’s Republic of China Background: Circulating endothelial cells (CECs and their subpopulations could be potential novel biomarkers for various malignancies. However, reliable enumerable methods are warranted to further improve their clinical utility. This study aimed to optimize a flow cytometric method (FCM assay for CECs and subpopulations in peripheral blood for patients with solid cancers.Patients and methods: An FCM assay was used to detect and identify CECs. A panel of 60 blood samples, including 44 metastatic cancer patients and 16 healthy controls, were used in this study. Some key issues of CEC enumeration, including sample material and anticoagulant selection, optimal titration of antibodies, lysis/wash procedures of blood sample preparation, conditions of sample storage, sufficient cell events to enhance the signal, fluorescence-minus-one controls instead of isotype controls to reduce background noise, optimal selection of cell surface markers, and evaluating the reproducibility of our method, were integrated and investigated. Wilcoxon and Mann–Whitney U tests were used to determine statistically significant differences.Results: In this validation study, we refined a five-color FCM method to detect CECs and their subpopulations in peripheral blood of patients

  16. Circulating endothelial progenitor cell numbers are not associated with donor organ age or allograft vasculopathy in cardiac transplant recipients.

    Science.gov (United States)

    Thomas, H E; Parry, G; Dark, J H; Arthur, H M; Keavney, B D

    2009-02-01

    Increasing age is associated with reduced numbers of circulating endothelial progenitor cells (EPCs). It is unclear whether this relates to depletion or impairment of bone marrow progenitors, or to deficient mobilization signals from aging tissues. In cardiac transplant patients, one previous study has reported an association between circulating EPCs and the risk of cardiac allograft vasculopathy (CAV). We investigated whether increased donor heart age, a strong risk factor for CAV, was associated with reduced circulating EPC numbers in a group of cardiac transplant recipients matched for factors which influence EPC numbers, but with maximally discordant donor heart ages. We identified 32 patient pairs, matched for factors known to influence EPC numbers, but who had discordant donor heart ages by at least 20 years. EPCs were quantified using flow cytometry for absolute counts of cells expressing all the combinations of CD45, CD34, CD133 and the kinase domain receptor (KDR). There were no significant differences in the numbers of circulating EPCs between patients with old or young donor heart age. There was no association between the presence of CAV and circulating EPC numbers. We suggest that the increased susceptibility to CAV of older donor hearts is not mediated via circulating EPCs. Our results are consistent with the theory that the normal age-related decline in EPC numbers relates to bone marrow aging rather than failure of target tissues to induce EPC mobilization.

  17. Kinetics of circulating endothelial progenitor cells in patients undergoing carotid artery surgery

    Directory of Open Access Journals (Sweden)

    Kalender G

    2016-12-01

    Full Text Available G Kalender,1 A Kornberger,2 M Lisy,1 Andres Beiras-Fernandez,2 UA Stock2 1Deparment of General, Thoracic and Vascular Surgery, Hoechst Hospital, 2Department of Thoracic and Cardiovascular Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany Aim: Endothelial progenitor cells (EPCs are primitive cells found in the bone marrow and peripheral blood (PB. In particular, the potential of EPCs to differentiate into mature endothelial cells remains of high interest for clinical applications such as bio-functionalized patches for autologous seeding after implantation. The objective of this study was to determine EPCs’ kinetics in patients undergoing carotid artery thromboendarterectomy (CTEA and patch angioplasty. Methods: Twenty CTEA patients were included (15 male, mean age 76 years. PB samples were taken at 1 day preoperatively, and at 1, 3, and 5 days postoperatively. Flow cytometric analysis was performed for CD34, CD133, KDR, and CD45. Expression of KDR, SDF-1α, and G-CSF was analyzed by means of enzyme-linked immunosorbent assay. Results: Fluorescence-activated cell sorting analysis revealed 0.031%±0.016% (% of PB mononuclear cells KDR+ cells and 0.052%±0.022% CD45-/CD34+/CD133+ cells, preoperatively. A 33% decrease of CD45–/CD34+/CD133+ cells was observed at day 1 after surgery. However, a relative number (compared to initial preoperative values of CD45-/CD34+/CD133+ cells was found on day 3 (82% and on day 5 (94% postoperatively. More profound upregulated levels of CD45–CD34+/CD133+ cells were observed for diabetic (+47% compared to nondiabetic and male (+38% compared to female patients. No significant postoperative time-dependent differences were found in numbers of KDR+ cells and the concentrations of the cytokines KDR and G-CSF. However, the SDF-1α levels decreased significantly on day 1 postoperatively but returned to preoperative levels by day 3. Conclusion: CTEA results in short-term downregulation of circulating

  18. Endothelial Progenitor Cells for Diagnosis and Prognosis in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Caterina Oriana Aragona

    2016-01-01

    Full Text Available Objective. To identify, evaluate, and synthesize evidence on the predictive power of circulating endothelial progenitor cells (EPCs in cardiovascular disease, through a systematic review of quantitative studies. Data Sources. MEDLINE was searched using keywords related to “endothelial progenitor cells” and “endothelium” and, for the different categories, respectively, “smoking”; “blood pressure”; “diabetes mellitus” or “insulin resistance”; “dyslipidemia”; “aging” or “elderly”; “angina pectoris” or “myocardial infarction”; “stroke” or “cerebrovascular disease”; “homocysteine”; “C-reactive protein”; “vitamin D”. Study Selection. Database hits were evaluated against explicit inclusion criteria. From 927 database hits, 43 quantitative studies were included. Data Syntheses. EPC count has been suggested for cardiovascular risk estimation in the clinical practice, since it is currently accepted that EPCs can work as proangiogenic support cells, maintaining their importance as regenerative/reparative potential, and also as prognostic markers. Conclusions. EPCs showed an important role in identifying cardiovascular risk conditions, and to suggest their evaluation as predictor of outcomes appears to be reasonable in different defined clinical settings. Due to their capability of proliferation, circulation, and the development of functional progeny, great interest has been directed to therapeutic use of progenitor cells in atherosclerotic diseases. This trial is registered with registration number: Prospero CRD42015023717.

  19. Towards Efficient Energy Management: Defining HEMS and Smart Grid Objectives

    DEFF Research Database (Denmark)

    Rossello Busquet, Ana; Soler, José

    2011-01-01

    in home environments, researches have been designing Home Energy Management Systems (HEMS). Efficiently managing and distributing electricity in the grid will also help to reduce the increase of energy consumption in the future. The power grid is evolving into the Smart Grid, which is being developed...... to distribute and produce electricity more efficiently. This paper presents the high level goals and requirements of HEMS and the Smart Grid. Additionally, it provides an overview on how Information and Communication Technologies (ICT) is involved in the Smart Grid and how they help to achieve the emerging...... functionalities that the Smart Grid can provide....

  20. Circulating microbial products and acute phase proteins as markers of pathogenesis in lymphatic filarial disease.

    Directory of Open Access Journals (Sweden)

    R Anuradha

    Full Text Available Lymphatic filariasis can be associated with development of serious pathology in the form of lymphedema, hydrocele, and elephantiasis in a subset of infected patients. Dysregulated host inflammatory responses leading to systemic immune activation are thought to play a central role in filarial disease pathogenesis. We measured the plasma levels of microbial translocation markers, acute phase proteins, and inflammatory cytokines in individuals with chronic filarial pathology with (CP Ag+ or without (CP Ag- active infection; with clinically asymptomatic infections (INF; and in those without infection (endemic normal [EN]. Comparisons between the two actively infected groups (CP Ag+ compared to INF and those without active infection (CP Ag- compared to EN were used preliminarily to identify markers of pathogenesis. Thereafter, we tested for group effects among all the four groups using linear models on the log transformed responses of the markers. Our data suggest that circulating levels of microbial translocation products (lipopolysaccharide and LPS-binding protein, acute phase proteins (haptoglobin and serum amyloid protein-A, and inflammatory cytokines (IL-1β, IL-12, and TNF-α are associated with pathogenesis of disease in lymphatic filarial infection and implicate an important role for circulating microbial products and acute phase proteins.

  1. Effects of Ingestion of Different Amounts of Carbohydrate after Endurance Exercise on Circulating Cytokines and Markers of Neutrophil Activation

    Directory of Open Access Journals (Sweden)

    Kumpei Tanisawa

    2018-04-01

    Full Text Available We aimed to examine the effects of ingestion of different amounts of carbohydrate (CHO after endurance exercise on neutrophil count, circulating cytokine levels, and the markers of neutrophil activation and muscle damage. Nine participants completed three separate experimental trials consisting of 1 h of cycling exercise at 70% V · O2 max, followed by ingestion of 1.2 g CHO·kg body mass−1·h−1 (HCHO trial, 0.2 g CHO·kg body mass−1·h−1 (LCHO trial, or placebo (PLA trial during the 2 h recovery phase in random order. Circulating glucose, insulin, and cytokine levels, blood cell counts, and the markers of neutrophil activation and muscle damage were measured. The concentrations of plasma glucose and serum insulin at 1 h after exercise were higher in the HCHO trial than in the LCHO and PLA trials. Although there were significant main effects of time on several variables, including neutrophil count, cytokine levels, and the markers of neutrophil activation and muscle damage, significant time × trial interactions were not observed for any variables. These results suggest that CHO ingestion after endurance exercise does not enhance exercise-induced increase in circulating neutrophil and cytokine levels and markers of neutrophil activation and muscle damage, regardless of the amount of CHO ingested.

  2. Ascorbic acid attenuates endothelial permeability triggered by cell-free hemoglobin.

    Science.gov (United States)

    Kuck, Jamie L; Bastarache, Julie A; Shaver, Ciara M; Fessel, Joshua P; Dikalov, Sergey I; May, James M; Ware, Lorraine B

    2018-01-01

    Increased endothelial permeability is central to shock and organ dysfunction in sepsis but therapeutics targeted to known mediators of increased endothelial permeability have been unsuccessful in patient studies. We previously reported that cell-free hemoglobin (CFH) is elevated in the majority of patients with sepsis and is associated with organ dysfunction, poor clinical outcomes and elevated markers of oxidant injury. Others have shown that Vitamin C (ascorbate) may have endothelial protective effects in sepsis. In this study, we tested the hypothesis that high levels of CFH, as seen in the circulation of patients with sepsis, disrupt endothelial barrier integrity. Human umbilical vein endothelial cells (HUVEC) were grown to confluence and treated with CFH with or without ascorbate. Monolayer permeability was measured by Electric Cell-substrate Impedance Sensing (ECIS) or transfer of 14 C-inulin. Viability was measured by trypan blue exclusion. Intracellular ascorbate was measured by HPLC. CFH increased permeability in a dose- and time-dependent manner with 1 mg/ml of CFH increasing inulin transfer by 50% without affecting cell viability. CFH (1 mg/ml) also caused a dramatic reduction in intracellular ascorbate in the same time frame (1.4 mM without CFH, 0.23 mM 18 h after 1 mg/ml CFH, p < 0.05). Pre-treatment of HUVECs with ascorbate attenuated CFH induced permeability. CFH increases endothelial permeability in part through depletion of intracellular ascorbate. Supplementation of ascorbate can attenuate increases in permeability mediated by CFH suggesting a possible therapeutic approach in sepsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Implementation of a mechanical CPR device in a physician staffed HEMS - a prospective observational study.

    Science.gov (United States)

    Rauch, Simon; Strapazzon, Giacomo; Brodmann, Monika; Fop, Ernst; Masoner, Christian; Rauch, Lydia; Forti, Alessandro; Pietsch, Urs; Mair, Peter; Brugger, Hermann

    2018-04-28

    In this prospective, observational study we describe the incidence and characteristics of out of hospital cardiac arrest (OHCA) cases who received mechanical CPR, after the implementation of a mechanical CPR device (LUCAS 2; Physio Control, Redmond, WA, USA) in a physician staffed helicopter emergency medical service (HEMS) in South Tyrol, Italy. During the study period (06/2013-04/2016), 525 OHCA cases were registered by the dispatch centre, 271 (51.6%) were assisted by HEMS. LUCAS 2 was applied in 18 (6.6%) of all HEMS-assisted OHCA patients; ten were treated with LUCAS 2 at the scene only, and eight were transported to hospital with ongoing CPR. Two (11.1%) of the 18 patients survived long term with full neurologic recovery. In seven of eight patients transferred to hospital with ongoing CPR, CPR was ceased in the emergency room without further intervention. Retrospectively, all HEMS-assisted OHCA cases were screened for proposed indication criteria for prolonged CPR. Thirteen patients fulfilled these criteria, but only two of them were transported to hospital. Based on these results, we propose a standard operating procedure for HEMS-assisted patients with refractory OHCA in a region without hospitals with ECLS capacity.

  4. Evaluation of a multi-marker immunomagnetic enrichment assay for the quantification of circulating melanoma cells

    Directory of Open Access Journals (Sweden)

    Freeman James B

    2012-09-01

    Full Text Available Abstract Background Circulating melanoma cells (CMCs are thought to be valuable in improving measures of prognosis in melanoma patients and may be a useful marker of residual disease to identify non-metastatic patients requiring adjuvant therapy. We investigated whether immunomagnetic enrichment targeting multiple markers allows more efficient enrichment of CMCs from patient peripheral blood than targeting a single marker. Furthermore, we aimed to determine whether the number of CMCs in patient blood was associated with disease stage. Methods We captured CMCs by targeting the melanoma associated markers MCSP and MCAM as well as the melanoma stem cell markers ABCB5 and CD271, both individually and in combination, by immunomagnetic enrichment. CMCs were enriched and quantified from the peripheral blood of 10 non-metastatic and 13 metastatic melanoma patients. Results Targeting all markers in combination resulted in the enrichment of more CMCs than when any individual marker was targeted (p  Conclusions Our results demonstrated that a combination of markers should be targeted for optimal isolation of CMCs. In addition, there are significantly more CMCs in metastatic patients compared with non-metastatic patients and therefore quantification of CMCs may prove to be a useful marker of disease progression.

  5. Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia

    Science.gov (United States)

    Possomato-Vieira, José S.; Khalil, Raouf A.

    2016-01-01

    Preeclampsia is a pregnancy-related disorder characterized by hypertension, and could lead to maternal and fetal morbidity and mortality. Although the causative factors and pathophysiological mechanisms are unclear, endothelial dysfunction is a major hallmark of preeclampsia. Clinical tests and experimental research have suggested that generalized endotheliosis in the systemic, renal, cerebral and hepatic circulation could decrease endothelium-derived vasodilators such as nitric oxide, prostacyclin and hyperpolarization factor and increase vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction, hypertension and other manifestation of preeclampsia. In search for the upstream mechanisms that could cause endothelial dysfunction, certain genetic, demographic and environmental risk factors have been suggested to cause abnormal expression of uteroplacental integrins, cytokines and matrix metalloproteinases, leading to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate spiral arteries remodeling, reduced uterine perfusion pressure (RUPP), and placental ischemia/hypoxia. RUPP may cause imbalance between the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the pro-angiogenic factors vascular endothelial growth factor and placental growth factor, or stimulate the release of other circulating bioactive factors such as inflammatory cytokines, hypoxia-inducible factor-1, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could then target endothelial cells and cause generalized endothelial dysfunction. Therapeutic options are currently limited, but understanding the factors involved in endothelial dysfunction could help design new approaches for prediction and management of preeclampsia. PMID:27451103

  6. Circulating Inflammatory Mediators as Potential Prognostic Markers of Human Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Giuseppe Di Caro

    Full Text Available Cytokines and chemokines in the tumor microenvironment drive metastatic development and their serum levels might mirror the ongoing inflammatory reaction at the tumor site. Novel highly sensitive tools are needed to identify colorectal cancer patients at high risk of recurrence that should be more closely monitored during post-surgical follow up. Here we study whether circulating inflammatory markers might be used to predict recurrence in CRC patients.Circulating levels of the inflammatory cytokines IL-1, IL-6, IL-10, TNFalpha, CCL2, CXCL8, VEGF and the acute phase protein Pentraxin-3 were measured by ELISA in preoperative serum samples prospectively collected from a cohort of sixty-nine patients undergoing surgical resection for stage 0-IV CRC and associated with post-operative disease recurrence.Cox multivariate analysis showed that combined high levels (≥ROC cut off-value of CXCL8, VEGF and Pentraxin3 were associated with increased risk of disease recurrence [HR: 14.28; 95%CI: (3.13-65.1] independently of TNM staging. Kaplan-Meier analysis showed that CXCL8, VEGF and Pentraxin3 levels were significantly associated with worse survival (P<0.001.Circulating inflammatory mediators efficiently predicted postoperative recurrence after CRC surgery. Therefore, this study suggest that their validation in large-scale clinical trials may help in tailoring CRC post-surgical management.

  7. Endothelial progenitor cells (EPCs) in ageing and age-related diseases: How currently available treatment modalities affect EPC biology, atherosclerosis, and cardiovascular outcomes.

    Science.gov (United States)

    Altabas, Velimir; Altabas, Karmela; Kirigin, Lora

    2016-10-01

    Endothelial progenitor cells (EPCs) are mononuclear cells that circulate in the blood and are derived from different tissues, expressing cell surface markers that are similar to mature endothelial cells. The discovery of EPCs has lead to new insights in vascular repair and atherosclerosis and also a new theory for ageing. EPCs from the bone marrow and some other organs aid in vascular repair by migrating to distant vessels where they differentiate into mature endothelial cells and replace old and injured endothelial cells. The ability of EPCs to repair vascular damage depends on their number and functionality. Currently marketed drugs used in a variety of diseases can modulate these characteristics. In this review, the effect of currently available treatment options for cardiovascular and metabolic disorders on EPC biology will be discussed. The various EPC-based therapies that will be discussed include lipid-lowering agents, antihypertensive agents, antidiabetic drugs, phosphodiesteraze inhibitors, hormones, as well as EPC capturing stents. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Recovery and well-being among Helicopter Emergency Medical Service (HEMS) pilots.

    Science.gov (United States)

    Radstaak, Mirjam; Geurts, Sabine A E; Beckers, Debby G J; Brosschot, Jos F; Kompier, Michiel A J

    2014-07-01

    This study investigated the effects of a compressed working week with high cognitive and emotional work demands within the population of Dutch Helicopter Emergency Medical Service (HEMS) pilots. Work stressors were measured and levels of well-being were examined before, during and after a series of day and night shifts. Results revealed that (i) the start of a series of day shifts was more taxing for well-being than the start of a series of night shifts, (ii) there were no differences in the decrease in well-being during day and night shifts, (iii) distress during shifts was more strongly related to a decrease in well-being during night than during day shifts and (iv) it took HEMS pilots more time to recover from a series of night shifts than from a series of day shifts. It is concluded that HEMS pilots should not start earlier during day shifts, nor have longer series of night shifts. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  9. The effects of smoking on vascular endothelial growth factor and inflammation markers: A case-control study.

    Science.gov (United States)

    Ugur, Merve Guzeldulger; Kutlu, Ruhusen; Kilinc, Ibrahim

    2017-12-15

    Chronic obstructive pulmonary disease (COPD) is a type of obstructive lung disease characterized by long-term poor airflow. Tobacco smoking is the most common cause of COPD. In this study, we aimed to assess the vascular endothelial growth factor (VEGF) and inflammation markers on smokers and non-smoking individuals. Our study was a case-control study and 175 individuals who want to give up smoking constituted the case group. As a control group, 175 individuals who never smoked. The mean age of 350 participants was 35.83 ± 13.11 years. Educational status of the non-smokers was significantly higher than that of the smoking group (P study, IL-6 inflammatory marker and VEGF levels were found to be high and IL-10 anti-inflammatory marker was discovered to be low in smokers. For this reason, raising awareness in the society about the harms of smoking and encouraging people to give it up have become more challenging to counteract the inflammatory effects of smoking in human body and to prevent many smoking-related diseases. © 2017 John Wiley & Sons Ltd.

  10. Circulating Cellular Adhesion Molecules and Cognitive Function: The Coronary Artery Risk Development in Young Adults Study

    Directory of Open Access Journals (Sweden)

    Cynthia Yursun Yoon

    2017-05-01

    Full Text Available ObjectiveHigher circulating concentrations of cellular adhesion molecules (CAMs can be used as markers of endothelial dysfunction. Given that the brain is highly vascularized, we assessed whether endothelial function is associated with cognitive performance.MethodWithin the Coronary Artery Risk Development in Young Adults (CARDIA Study, excluding N = 54 with stroke before year 25, we studied CAMs among N = 2,690 black and white men and women in CARDIA year 7 (1992–1993, ages 25–37 and N = 2,848 in CARDIA year 15 (2000–2001, ages 33–45. We included subjects with levels of circulating soluble CAMs measured in year 7 or 15 and cognitive function testing in year 25 (2010–2011, ages 43–55. Using multiple regression analysis, we evaluated the association between CAMs and year 25 cognitive test scores: Rey Auditory Verbal Learning Test (RAVLT, memory, Digit Symbol Substitution Test (DSST, speed of processing, and the Stroop Test (executive function.ResultAll CAM concentrations were greater in year 15 vs. year 7. Adjusting for age, race, sex, education, smoking, alcohol, diet, physical activity, participants in the fourth vs. the first quartile of CARDIA year 7 of circulating intercellular adhesion molecule-1 (ICAM-1 scored worse on RAVLT, DSST, and Stroop Test (p ≤ 0.05 in CARDIA year 25. Other CAMs showed little association with cognitive test scores. Findings were similar for ICAM-1 assessed at year 15. Adjustment for possibly mediating physical factors attenuated the findings.ConclusionHigher circulating ICAM-1 at average ages 32 and 40 was associated with lower cognitive skills at average age 50. The study is consistent with the hypothesis that endothelial dysfunction is associated with worse short-term memory, speed of processing, and executive function.

  11. Circulating Cellular Adhesion Molecules and Cognitive Function: The Coronary Artery Risk Development in Young Adults Study.

    Science.gov (United States)

    Yoon, Cynthia Yursun; Steffen, Lyn M; Gross, Myron D; Launer, Lenore J; Odegaard, Andrew; Reiner, Alexander; Sanchez, Otto; Yaffe, Kristine; Sidney, Stephen; Jacobs, David R

    2017-01-01

    Higher circulating concentrations of cellular adhesion molecules (CAMs) can be used as markers of endothelial dysfunction. Given that the brain is highly vascularized, we assessed whether endothelial function is associated with cognitive performance. Within the Coronary Artery Risk Development in Young Adults (CARDIA) Study, excluding N  = 54 with stroke before year 25, we studied CAMs among N  = 2,690 black and white men and women in CARDIA year 7 (1992-1993, ages 25-37) and N  = 2,848 in CARDIA year 15 (2000-2001, ages 33-45). We included subjects with levels of circulating soluble CAMs measured in year 7 or 15 and cognitive function testing in year 25 (2010-2011, ages 43-55). Using multiple regression analysis, we evaluated the association between CAMs and year 25 cognitive test scores: Rey Auditory Verbal Learning Test (RAVLT, memory), Digit Symbol Substitution Test (DSST, speed of processing), and the Stroop Test (executive function). All CAM concentrations were greater in year 15 vs. year 7. Adjusting for age, race, sex, education, smoking, alcohol, diet, physical activity, participants in the fourth vs. the first quartile of CARDIA year 7 of circulating intercellular adhesion molecule-1 (ICAM-1) scored worse on RAVLT, DSST, and Stroop Test ( p  ≤ 0.05) in CARDIA year 25. Other CAMs showed little association with cognitive test scores. Findings were similar for ICAM-1 assessed at year 15. Adjustment for possibly mediating physical factors attenuated the findings. Higher circulating ICAM-1 at average ages 32 and 40 was associated with lower cognitive skills at average age 50. The study is consistent with the hypothesis that endothelial dysfunction is associated with worse short-term memory, speed of processing, and executive function.

  12. Circulating, cell-free DNA as a marker for exercise load in intermittent sports

    OpenAIRE

    Haller, Nils; Helmig, Susanne; Taenny, Pascal; Petry, Julian; Schmidt, Sebastian; Simon, Perikles

    2018-01-01

    Background Attempts to establish a biomarker reflecting individual player load in intermittent sports such as football have failed so far. Increases in circulating DNA (cfDNA) have been demonstrated in various endurance sports settings. While it has been proposed that cfDNA could be a suitable marker for player load in intermittent sports, the effects on cfDNA of repeated sprinting as an essential feature in intermittent sports are unknown. For the first time, we assessed both alterations of ...

  13. Differential Effects of Leptin and Adiponectin in Endothelial Angiogenesis

    Directory of Open Access Journals (Sweden)

    Raghu Adya

    2015-01-01

    Full Text Available Obesity is a major health burden with an increased risk of cardiovascular morbidity and mortality. Endothelial dysfunction is pivotal to the development of cardiovascular disease (CVD. In relation to this, adipose tissue secreted factors termed “adipokines” have been reported to modulate endothelial dysfunction. In this review, we focus on two of the most abundant circulating adipokines, that is, leptin and adiponectin, in the development of endothelial dysfunction. Leptin has been documented to influence a multitude of organ systems, that is, central nervous system (appetite regulation, satiety factor and cardiovascular system (endothelial dysfunction leading to atherosclerosis. Adiponectin, circulating at a much higher concentration, exists in different molecular weight forms, essentially made up of the collagenous fraction and a globular domain, the latter being investigated minimally for its involvement in proinflammatory processes including activation of NF-κβ and endothelial adhesion molecules. The opposing actions of the two forms of adiponectin in endothelial cells have been recently demonstrated. Additionally, a local and systemic change to multimeric forms of adiponectin has gained importance. Thus detailed investigations on the potential interplay between these adipokines would likely result in better understanding of the missing links connecting CVD, adipokines, and obesity.

  14. Endothelial Function in Migraine With Aura – A Systematic Review

    DEFF Research Database (Denmark)

    Butt, Jawad H; Franzmann, Ulriche; Kruuse, Christina

    2015-01-01

    in migraineurs, and several studies on endothelial markers in the areas of inflammation, oxidative stress, and coagulation found increased endothelial activation in migraineurs, particularly in MA. One study, assessing cerebral endothelial function using transcranial Doppler sonography, reported lower...

  15. SLC25 Family Member Genetic Interactions Identify a Role for HEM25 in Yeast Electron Transport Chain Stability.

    Science.gov (United States)

    Dufay, J Noelia; Fernández-Murray, J Pedro; McMaster, Christopher R

    2017-06-07

    The SLC25 family member SLC25A38 (Hem25 in yeast) was recently identified as a mitochondrial glycine transporter that provides substrate to initiate heme/hemoglobin synthesis. Mutations in the human SLC25A38 gene cause congenital sideroblastic anemia. The full extent to which SLC25 family members coregulate heme synthesis with other mitochondrial functions is not clear. In this study, we surveyed 29 nonessential SLC25 family members in Saccharomyces cerevisiae for their ability to support growth in the presence and absence of HEM25 Six SLC25 family members were identified that were required for growth or for heme synthesis in cells lacking Hem25 function. Importantly, we determined that loss of function of the SLC25 family member Flx1, which imports FAD into mitochondria, together with loss of function of Hem25, resulted in inability to grow on media that required yeast cells to supply energy using mitochondrial respiration. We report that specific components of complexes of the electron transport chain are decreased in the absence of Flx1 and Hem25 function. In addition, we show that mitochondria from flx1 Δ hem25 Δ cells contain uncharacterized Cox2-containing high molecular weight aggregates. The functions of Flx1 and Hem25 provide a facile explanation for the decrease in heme level, and in specific electron transport chain complex components. Copyright © 2017 Dufay et al.

  16. SLC25 Family Member Genetic Interactions Identify a Role for HEM25 in Yeast Electron Transport Chain Stability

    Directory of Open Access Journals (Sweden)

    J. Noelia Dufay

    2017-06-01

    Full Text Available The SLC25 family member SLC25A38 (Hem25 in yeast was recently identified as a mitochondrial glycine transporter that provides substrate to initiate heme/hemoglobin synthesis. Mutations in the human SLC25A38 gene cause congenital sideroblastic anemia. The full extent to which SLC25 family members coregulate heme synthesis with other mitochondrial functions is not clear. In this study, we surveyed 29 nonessential SLC25 family members in Saccharomyces cerevisiae for their ability to support growth in the presence and absence of HEM25. Six SLC25 family members were identified that were required for growth or for heme synthesis in cells lacking Hem25 function. Importantly, we determined that loss of function of the SLC25 family member Flx1, which imports FAD into mitochondria, together with loss of function of Hem25, resulted in inability to grow on media that required yeast cells to supply energy using mitochondrial respiration. We report that specific components of complexes of the electron transport chain are decreased in the absence of Flx1 and Hem25 function. In addition, we show that mitochondria from flx1Δ hem25Δ cells contain uncharacterized Cox2-containing high molecular weight aggregates. The functions of Flx1 and Hem25 provide a facile explanation for the decrease in heme level, and in specific electron transport chain complex components.

  17. Endothelial cell markers in vascular neoplasms: an immunohistochemical study comparing factor VIII-related antigen, blood group specific antigens, 6-keto-PGF1 alpha, and Ulex europaeus 1 lectin.

    Science.gov (United States)

    Little, D; Said, J W; Siegel, R J; Fealy, M; Fishbein, M C

    1986-06-01

    Markers for endothelial cells including Ulex europaeus 1 lectin, blood group A, B, and H, and the prostaglandin metabolite 6-keto-PGF1 alpha were evaluated in paraffin secretions from formalin-fixed benign and malignant vascular neoplasms using a variety of immunohistochemical techniques, and results compared with staining for factor VIII-related antigen. Staining for Ulex appeared more sensitive than factor VIII-related antigen in identifying poorly differentiated neoplasms including haemangiosarcomas and spindle cell proliferations in Kaposi's sarcoma. Staining for blood group related antigens correlated with blood group in all cases. Ulex europaeus 1 lectin was the only marker for endothelial cells in lymphangiomas.

  18. Proinflammatory Stimulation of Toll-Like Receptor 9 with High Dose CpG ODN 1826 Impairs Endothelial Regeneration and Promotes Atherosclerosis in Mice.

    Directory of Open Access Journals (Sweden)

    Alexander O Krogmann

    Full Text Available Toll-like receptors (TLR of the innate immune system have been closely linked with the development of atherosclerotic lesions. TLR9 is activated by unmethylated CpG motifs within ssDNA, but also by CpG motifs in nucleic acids released during vascular apoptosis and necrosis. The role of TLR9 in vascular disease remains controversial and we sought to investigate the effects of a proinflammatory TLR9 stimulation in mice.TLR9-stimulation with high dose CpG ODN at concentrations between 6.25 nM to 30 nM induced a significant proinflammatory cytokine response in mice. This was associated with impaired reendothelialization upon acute denudation of the carotid and increased numbers of circulating endothelial microparticles, as a marker for amplified endothelial damage. Chronic TLR9 agonism in apolipoprotein E-deficient (ApoE-/- mice fed a cholesterol-rich diet increased aortic production of reactive oxygen species, the number of circulating endothelial microparticles, circulating sca-1/flk-1 positive cells, and most importantly augmented atherosclerotic plaque formation when compared to vehicle treated animals. Importantly, high concentrations of CpG ODN are required for these proatherogenic effects.Systemic stimulation of TLR9 with high dose CpG ODN impaired reendothelialization upon acute vascular injury and increased atherosclerotic plaque development in ApoE-/- mice. Further studies are necessary to fully decipher the contradictory finding of TLR9 agonism in vascular biology.

  19. Imaging tumor endothelial marker 8 using an 18F-labeled peptide

    International Nuclear Information System (INIS)

    Quan, Qimeng; Yang, Min; Gao, Haokao; Zhu, Lei; Lin, Xin; Guo, Ning; Chen, Xiaoyuan; Zhang, Guixiang; Eden, Henry S.; Niu, Gang

    2011-01-01

    Tumor endothelial marker 8 (TEM8) has been reported to be upregulated in both tumor cells and tumor-associated endothelial cells in several cancer types. TEM8 antagonists and TEM8-targeted delivery of toxins have been developed as effective cancer therapeutics. The ability to image TEM8 expression would be of use in evaluating TEM8-targeted cancer therapy. A 13-meric peptide, KYNDRLPLYISNP (QQM), identified from the small loop in domain IV of protective antigen of anthrax toxin was evaluated for TEM8 binding and labeled with 18 F for small-animal PET imaging in both UM-SCC1 head-and-neck cancer and MDA-MB-435 melanoma models. A modified ELISA showed that QQM peptide bound specifically to the extracellular vWA domain of TEM8 with an IC 50 value of 304 nM. Coupling 4-nitrophenyl 2- 18 F-fluoropropionate with QQM gave almost quantitative yield and a high specific activity (79.2 ± 7.4 TBq/mmol, n = 5) of 18 F-FP-QQM at the end of synthesis. 18 F-FP-QQM showed predominantly renal clearance and had significantly higher accumulation in TEM8 high-expressing UM-SCC1 tumors (2.96 ± 0.84 %ID/g at 1 h after injection) than TEM8 low-expressing MDA-MB-435 tumors (1.38 ± 0.56 %ID/g at 1 h after injection). QQM peptide bound specifically to the extracellular domain of TEM8. 18 F-FP-QQM peptide tracer would be a promising lead compound for measuring TEM8 expression. Further efforts to improve the affinity and specificity of the tracer and to increase its metabolic stability are warranted. (orig.)

  20. Endothelial microparticles: Pathogenic or passive players in endothelial dysfunction in autoimmune rheumatic diseases?

    Science.gov (United States)

    McCarthy, E M; Wilkinson, F L; Parker, B; Alexander, M Y

    2016-11-01

    Autoimmune rheumatic diseases are characterised by systemic inflammation and complex immunopathology, with an increased risk of cardiovascular disease, initiated by endothelial dysfunction in a chronic inflammatory environment. Endothelial microparticles (EMPs) are released into the circulation from activated endothelial cells and may therefore, reflect disease severity, vascular and endothelial dysfunction, that could influence disease pathogenesis via autocrine/paracrine signalling. The exact function of EMPs in rheumatic disease remains unknown, and this has initiated research to elucidate EMP composition and function, which may be determined by the mode of endothelial activation and the micro environment. To date, EMPs are thought to play a role in angiogenesis, thrombosis and inflammation by transferring specific proteins and microRNAs (miRs) to target cells. Here, we review the mechanisms underlying the generation and composition of EMPs and the clinical and experimental studies describing the involvement of EMPs in rheumatic diseases, since we have previously shown endothelial dysfunction and an elevated risk of cardiovascular disease are characteristics in systemic lupus erythematosus. We will also discuss the potential of EMPs as future biomarkers of cardiovascular risk in these diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma

    Science.gov (United States)

    Xu, Rui-Hua; Wei, Wei; Krawczyk, Michal; Wang, Wenqiu; Luo, Huiyan; Flagg, Ken; Yi, Shaohua; Shi, William; Quan, Qingli; Li, Kang; Zheng, Lianghong; Zhang, Heng; Caughey, Bennett A.; Zhao, Qi; Hou, Jiayi; Zhang, Runze; Xu, Yanxin; Cai, Huimin; Li, Gen; Hou, Rui; Zhong, Zheng; Lin, Danni; Fu, Xin; Zhu, Jie; Duan, Yaou; Yu, Meixing; Ying, Binwu; Zhang, Wengeng; Wang, Juan; Zhang, Edward; Zhang, Charlotte; Li, Oulan; Guo, Rongping; Carter, Hannah; Zhu, Jian-Kang; Hao, Xiaoke; Zhang, Kang

    2017-11-01

    An effective blood-based method for the diagnosis and prognosis of hepatocellular carcinoma (HCC) has not yet been developed. Circulating tumour DNA (ctDNA) carrying cancer-specific genetic and epigenetic aberrations may enable a noninvasive `liquid biopsy' for diagnosis and monitoring of cancer. Here, we identified an HCC-specific methylation marker panel by comparing HCC tissue and normal blood leukocytes and showed that methylation profiles of HCC tumour DNA and matched plasma ctDNA are highly correlated. Using cfDNA samples from a large cohort of 1,098 HCC patients and 835 normal controls, we constructed a diagnostic prediction model that showed high diagnostic specificity and sensitivity (P < 0.001) and was highly correlated with tumour burden, treatment response, and stage. Additionally, we constructed a prognostic prediction model that effectively predicted prognosis and survival (P < 0.001). Together, these findings demonstrate in a large clinical cohort the utility of ctDNA methylation markers in the diagnosis, surveillance, and prognosis of HCC.

  2. The Small Protein HemP Is a Transcriptional Activator for the Hemin Uptake Operon in Burkholderia multivorans ATCC 17616.

    Science.gov (United States)

    Sato, Takuya; Nonoyama, Shouta; Kimura, Akane; Nagata, Yuji; Ohtsubo, Yoshiyuki; Tsuda, Masataka

    2017-08-15

    Iron and heme play very important roles in various metabolic functions in bacteria, and their intracellular homeostasis is maintained because high concentrations of free forms of these molecules greatly facilitate the Fenton reaction-mediated production of large amounts of reactive oxygen species that severely damage various biomolecules. The ferric uptake regulator (Fur) from Burkholderia multivorans ATCC 17616 is an iron-responsive global transcriptional regulator, and its fur deletant exhibits pleiotropic phenotypes. In this study, we found that the phenotypes of the fur deletant were suppressed by an additional mutation in hemP The transcription of hemP was negatively regulated by Fur under iron-replete conditions and was constitutive in the fur deletant. Growth of a hemP deletant was severely impaired in a medium containing hemin as the sole iron source, demonstrating the important role of HemP in hemin utilization. HemP was required as a transcriptional activator that specifically binds the promoter-containing region upstream of a Fur-repressive hmuRSTUV operon, which encodes the proteins for hemin uptake. A hmuR deletant was still able to grow using hemin as the sole iron source, albeit at a rate clearly lower than that of the wild-type strain. These results strongly suggested (i) the involvement of HmuR in hemin uptake and (ii) the presence in ATCC 17616 of at least part of other unknown hemin uptake systems whose expression depends on the HemP function. Our in vitro analysis also indicated high-affinity binding of HemP to hemin, and such a property might modulate transcriptional activation of the hmu operon. IMPORTANCE Although the hmuRSTUV genes for the utilization of hemin as a sole iron source have been identified in a few Burkholderia strains, the regulatory expression of these genes has remained unknown. Our analysis in this study using B. multivorans ATCC 17616 showed that its HemP protein is required for expression of the hmuRSTUV operon, and the

  3. Can TIE-2 expressing monocytes represent a novel marker for hepatocellular carcinoma?

    Science.gov (United States)

    Dapas, Barbara; Grassi, Mario; Grassi, Gabriele

    2014-08-01

    Hepatocellular carcinoma (HCC), the predominant form of primary liver cancer, is a global health problem representing the sixth most common cancer and the third cause of cancer related death worldwide. The number of deaths per year in HCC is comparable to the incidence number, underlying the aggressive behavior of HCC and the modest efficacy of available curative treatments. Effective HCC treatment is problematic also due to the lack of early and specific diagnostic markers. In this regard, particular interest has been put on the tyrosine kinase with Ig and endothelial growth factor (EGF) homology domains 2 (TIE2), a receptor of angiopoietins, predominantly present on endothelial cells but also observed on monocytes [TIE-2-expressing monocytes (TEMs)]. Recently, a work by Matsubara et al. showed that the amount of circulating TEMs is higher in hepatitis virus C (HCV)/HCC patients compared to HCV patients or healthy subjects. Additionally the authors showed that TEMs have a diagnostic potential for HCC. Whereas the molecular mechanisms responsible for this observation remain elusive and further studies are necessary to confirm this finding, the work of Matsubara et al. may contribute to the identification of a novel HCC prognostic and diagnostic marker.

  4. Blood markers of coagulation, fibrinolysis, endothelial dysfunction and inflammation in lacunar stroke versus non-lacunar stroke and non-stroke: systematic review and meta-analysis.

    Science.gov (United States)

    Wiseman, Stewart; Marlborough, Fergal; Doubal, Fergus; Webb, David J; Wardlaw, Joanna

    2014-01-01

    The cause of cerebral small vessel disease is not fully understood, yet it is important, accounting for about 25% of all strokes. It also increases the risk of having another stroke and contributes to about 40% of dementias. Various processes have been implicated, including microatheroma, endothelial dysfunction and inflammation. A previous review investigated endothelial dysfunction in lacunar stroke versus mostly non-stroke controls while another looked at markers of inflammation and endothelial damage in ischaemic stroke in general. We have focused on blood markers between clinically evident lacunar stroke and other subtypes of ischaemic stroke, thereby controlling for stroke in general. We systematically assessed the literature for studies comparing blood markers of coagulation, fibrinolysis, endothelial dysfunction and inflammation in lacunar stroke versus non-stroke controls or other ischaemic stroke subtypes. We assessed the quality of included papers and meta-analysed results. We split the analysis on time of blood draw in relation to the stroke. We identified 1,468 full papers of which 42 were eligible for inclusion, including 4,816 ischaemic strokes, of which 2,196 were lacunar and 2,500 non-stroke controls. Most studies subtyped stroke using TOAST. The definition of lacunar stroke varied between studies. Markers of coagulation/fibrinolysis (tissue plasminogen activator (tPA), plasminogen activator inhibitor (PAI), fibrinogen, D-dimer) were higher in lacunar stroke versus non-stroke although fibrinogen was no different to non-stroke in the acute phase. tPA and PAI were no different between lacunar and non-lacunar stroke. Fibrinogen and D-dimer were significantly lower in lacunar stroke compared to other ischaemic strokes, both acutely and chronically. Markers of endothelial dysfunction (homocysteine, von Willebrand Factor (vWF), E-selectin, P-selectin, intercellular adhesion molecule-1 (ICAM), vascular cellular adhesion molecule-1 (VCAM)) were higher or

  5. Smoking decreases the level of circulating CD34+ progenitor cells in young healthy women - a pilot study

    Directory of Open Access Journals (Sweden)

    Baumann Gert

    2010-05-01

    Full Text Available Abstract Background Decreased levels of circulating bone marrow-derived progenitor cells have been associated with risk factors and cardiovascular diseases. Smoking is the most important modifiable risk factor for atherosclerosis in young women. The aim of this pilot study was to assess in healthy premenopausal women without other risk factors for cardiovascular disease the influence of nicotine abuse on the number of circulating progenitor cells in relation to endothelial function. Methods The number of endothelial progenitor cells, measured as colony-forming units in a cell-culture assay (EPC-CFU and the number of circulating CD34 + and CD34 + /CD133 + cells, measured by flow cytometry, was estimated in 32 women at the menstrual phase of the menstrual cycle. In addition, flow-mediated dilation (FMD was assessed as a marker for vascular function. In a subgroup of these women (n = 20, progenitor cells were also investigated at the mid-follicular and luteal phases of the menstrual cycle. Results Compared to non-smokers, the abundance of circulating CD34 + cells was significantly lower in smoking women in the menstrual, mid-luteal, and mid-follicular phases of the menstrual cycle. The number of CD34 + progenitor cells was revealed to have significant positive correlation with FMD in young healthy women, whereas CD34 + /CD133 + progenitor cells and EPC-CFU showed no significant correlation. Conclusion The number of CD34 + progenitor cells positively correlates with FMD in young healthy women and is decreased by smoking.

  6. Endothelial dysfunction in the regulation of portal hypertension

    Science.gov (United States)

    Iwakiri, Yasuko

    2013-01-01

    Portal hypertension is caused by an increased intrahepatic resistance, a major consequence of cirrhosis. Endothelial dysfunction in liver sinusoidal endothelial cells (LSECs) decreases the production of vasodilators, such as nitric oxide (NO) and favors vasoconstriction. This contributes to an increased vascular resistance in the intrahepatic/sinusoidal microcirculation. Portal hypertension, once developed, causes endothelial cell (EC) dysfunction in the extrahepatic, i.e. splanchnic and systemic, circulation. Unlike LSEC dysfunction, EC dysfunction in the splanchnic and systemic circulation overproduces vasodilator molecules, leading to arterial vasodilatation. In addition, portal hypertension leads to the formation of portosystemic collateral vessels. Both arterial vasodilatation and portosystemic collateral vessel formation exacerbate portal hypertension by increasing the blood flow through the portal vein. Pathologic consequences, such as esophageal varices and ascites, result. While the sequence of pathological vascular events in cirrhosis and portal hypertension have been elucidated, the underlying cellular and molecular mechanisms causing EC dysfunctions are not yet fully understood. This review article summarizes the current cellular and molecular studies on EC dysfunctions found during the development of cirrhosis and portal hypertension with a focus on intra- and extrahepatic circulation. The article ends by discussing future directions of study for EC dysfunctions. PMID:21745318

  7. Vildagliptin, but not glibenclamide, increases circulating endothelial progenitor cell number: a 12-month randomized controlled trial in patients with type 2 diabetes.

    Science.gov (United States)

    Dei Cas, Alessandra; Spigoni, Valentina; Cito, Monia; Aldigeri, Raffaella; Ridolfi, Valentina; Marchesi, Elisabetta; Marina, Michela; Derlindati, Eleonora; Aloe, Rosalia; Bonadonna, Riccardo C; Zavaroni, Ivana

    2017-02-23

    Fewer circulating endothelial progenitor cells (EPCs) and increased plasma (C-term) stromal cell-derived factor 1α (SDF-1α), a substrate of DPP-4, are biomarkers, and perhaps mediators, of cardiovascular risk and mortality. Short-term/acute treatment with DPP-4 inhibitors improve EPC bioavailability; however, long-term effects of DPP-4i on EPCs bioavailability/plasma (C-term) SDF-1α are unknown. Randomized (2:1) open-label trial to compare the effects of vildagliptin (V) (100 mg/day) vs glibenclamide (G) (2.5 mg bid to a maximal dose of 5 mg bid) on circulating EPC levels at 4 and 12 months of treatment in 64 patients with type 2 diabetes in metformin failure. At baseline, and after 4 and 12 months, main clinical/biohumoral parameters, inflammatory biomarkers, concomitant therapies, EPC number (CD34 + /CD133 + /KDR + /10 6 cytometric events) and plasma (C-term) SDF-1α (R&D system) were assessed. Baseline characteristics were comparable in the two groups. V and G similarly and significantly (p < 0.0001) improved glucose control. At 12 months, V significantly increased EPC number (p < 0.05) and significantly reduced (C-term) SDF-1α plasma levels (p < 0.01) compared to G, with no differences in inflammatory biomarkers. V exerts a long-term favorable effect on EPC and (C-term) SDF-1α levels at glucose equipoise, thereby implying a putative beneficial effect on vascular integrity. Trial registration Clinical Trials number: NCT01822548; name: Effect of Vildagliptin vs. Glibenclamide on Circulating Endothelial Progenitor Cell Number Type 2 Diabetes. Registered 28 March, 2013.

  8. Characterization of fetal cells from the maternal circulation by microarray gene expression analysis - Could the extravillous trophoblasts be a target for future cell-based non-invasive prenatal diagnosis?

    DEFF Research Database (Denmark)

    Hatt, Lotte; Brinch, Marie; Singh, Ripudaman

    2014-01-01

    stem cell microarray analysis. Results: 39 genes were identified as candidates for unique fetal cell markers. More than half of these are genes known to be expressed in the placenta, especially in extravillous trophoblasts (EVTs). Immunohistochemical staining of placental tissue confirmed CD105......Introduction: Circulating fetal cells in maternal blood provide a tool for risk-free, non-invasive prenatal diagnosis. However, fetal cells in the maternal circulation are scarce, and to effectively isolate enough of them for reliable diagnostics, it is crucial to know which fetal cell type......(s) should be targeted. Materials and Methods: Fetal cells were enriched from maternal blood by magnetic-activated cell sorting using the endothelial cell marker CD105 and identified by XY fluorescence in situ hybridization. Expression pattern was compared between fetal cells and maternal blood cells using...

  9. Quantification of circulating mature endothelial cells using a whole blood four-color flow cytometric assay.

    Science.gov (United States)

    Jacques, Nathalie; Vimond, Nadege; Conforti, Rosa; Griscelli, Franck; Lecluse, Yann; Laplanche, Agnes; Malka, David; Vielh, Philippe; Farace, Françoise

    2008-09-15

    Circulating endothelial cells (CEC) are currently proposed as a potential biomarker for measuring the impact of anti-angiogenic treatments in cancer. However, the lack of consensus on the appropriate method of CEC measurement has led to conflicting data in cancer patients. A validated assay adapted for evaluating the clinical utility of CEC in large cohorts of patients undergoing anti-angiogenic treatments is needed. We developed a four-color flow cytometric assay to measure CEC as CD31(+), CD146(+), CD45(-), 7-amino-actinomycin-D (7AAD)(-) events in whole blood. The distinctive features of the assay are: (1) staining of 1 ml whole blood, (2) use of a whole blood IgPE control to measure accurately background noise, (3) accumulation of a large number of events (almost 5 10(6)) to ensure statistical analysis, and (4) use of 10 microm fluorescent microbeads to evaluate the event size. Assay reproducibility was determined in duplicate aliquots of samples drawn from 20 metastatic cancer patients. Assay linearity was tested by spiking whole blood with low numbers of HUVEC. Five-color flow cytometric experiments with CD144 were performed to confirm the endothelial origin of the cells. CEC were measured in 20 healthy individuals and 125 patients with metastatic cancer. Reproducibility was good between duplicate aliquots (r(2)=0.948, mean difference between duplicates of 0.86 CEC/ml). Detected HUVEC correlated with spiked HUVEC (r(2)=0.916, mean recovery of 100.3%). Co-staining of CD31, CD146 and CD144 confirmed the endothelial nature of cells identified as CEC. Median CEC levels were 6.5/ml (range, 0-15) in healthy individuals and 15.0/ml (range, 0-179) in patients with metastatic carcinoma (p<0.001). The assay proposed here allows reproducible and sensitive measurement of CEC by flow cytometry and could help evaluate CEC as biomarkers of anti-angiogenic therapies in large cohorts of patients.

  10. Prognostic significance of endothelial dysfunctional markers of the first stage of chronic kidney disease

    Directory of Open Access Journals (Sweden)

    M. M. Mnuskina

    2014-01-01

    Full Text Available Non-adaptive remodeling of cardiovascular system and progressive kidney damage at chronic kidney disease (CKD is associated with the development of endothelial dysfunction (ED and apoptosis. The aim of this research was to study the changes of indicators of apoptosis and ED in patients with CKD 1 stage throughout 12 months. Complex biochemical, immunoferment and tool methods were applied at patient examinations. Arterial pressure of all observed patients was resolved on target values in 12 months. However, the indicators of endothelium-dependent vasodilation (EDV increased in 55 patients (1st group, and the peak of circulating blood volume in skin microvessels in 22 patients (2nd group wasn't changed: 134±4 % и 136±4 %, p>0.1. The level of the annexin A5 reduced from 3.5±0.47 to 1.27±0.31 ng/ml (p0.1 in 2nd group. Diurnal excretion of sodium chloride decreased from 6.8±0.57 g/d to 2.8±0.39 g/d (p<0.05 in patients of 1st group. Dynamics of these indicators was not marked in patients of 2nd group: accordingly from 7.39±0.63 g/d to 7.01±0.65 g/d. Diurnal excretion of sodium chloride reflected the salt intake in patients with CKD 1 stage is associated with disturbance of endothelial-dependent vasodilation and apoptosis.

  11. Triglycerides as an early pathophysiological marker of endothelial dysfunction in nondiabetic women with a previous history of gestational diabetes.

    Science.gov (United States)

    Sokup, Alina; Góralczyk, Barbara; Góralczyk, Krzysztof; Rość, Danuta

    2012-02-01

    To investigate whether baseline triglyceride levels are associated with early glucose dysregulation and/or cardiovascular risk in women with a previous history of gestational diabetes. Prospective postpregnancy cohort study. Polish university hospitals. Participants included 125 women with previous gestational diabetes and 40 women with normal glucose regulation during pregnancy. All women were studied 2-24 months (mean 12 ± 10 months) after the index pregnancy. Women with previous gestational diabetes were divided into tertiles in accordance with baseline triglyceride levels. We assessed glucose regulation (oral glucose tolerance test), insulin resistance (homeostasis model assessment), markers of endothelial dysfunction (soluble: intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, tissue plasminogen activator antigen, von Willebrand factor antigen), fibrinolysis (plasminogen activator inhibitor antigen), inflammation (high-sensitivity C-reactive protein) and lipid levels. Women with previous gestational diabetes (78% normal glucose regulation, 22% impaired glucose tolerance) had a high cardiometabolic risk profile compared with control women (100% normal glucose regulation). Baseline triglycerides >0.83 mmol/l were associated with a higher prevalence of impaired glucose tolerance, higher high-sensitivity C-reactive protein and triglyceride/high-density lipoprotein-cholesterol ratio. Triglycerides >1.22 mmol/l were associated with higher body fat indexes, higher insulin resistance, higher levels of endothelial dysfunction biomarkers, higher plasminogen activator inhibitor antigen and dyslipidemia. Only E-selectin was independently associated with triglyceride levels. Baseline triglyceride levels are a cardiovascular risk marker as well as a pathophysiological parameter independently associated with endothelial dysfunction in nondiabetic women with previous gestational diabetes at 2-24 months after an index pregnancy. Normalization of

  12. Identified metabolic signature for assessing red blood cell unit quality is associated with endothelial damage markers and clinical outcomes

    DEFF Research Database (Denmark)

    Bordbar, Aarash; Johansson, Pär I.; Paglia, Giuseppe

    2016-01-01

    shown no difference of clinical outcome for patients receiving old or fresh RBCs. An overlooked but essential issue in assessing RBC unit quality and ultimately designing the necessary clinical trials is a metric for what constitutes an old or fresh RBC unit. STUDY DESIGN AND METHODS: Twenty RBC units...... years and endothelial damage markers in healthy volunteers undergoing autologous transfusions. CONCLUSION: The state of RBC metabolism may be a better indicator of cellular quality than traditional hematologic variables....

  13. Mesenchymal Stem/Multipotent Stromal Cells from Human Decidua Basalis Reduce Endothelial Cell Activation.

    Science.gov (United States)

    Alshabibi, Manal A; Al Huqail, Al Joharah; Khatlani, Tanvir; Abomaray, Fawaz M; Alaskar, Ahmed S; Alawad, Abdullah O; Kalionis, Bill; Abumaree, Mohamed Hassan

    2017-09-15

    Recently, we reported the isolation and characterization of mesenchymal stem cells from the decidua basalis of human placenta (DBMSCs). These cells express a unique combination of molecules involved in many important cellular functions, which make them good candidates for cell-based therapies. The endothelium is a highly specialized, metabolically active interface between blood and the underlying tissues. Inflammatory factors stimulate the endothelium to undergo a change to a proinflammatory and procoagulant state (ie, endothelial cell activation). An initial response to endothelial cell activation is monocyte adhesion. Activation typically involves increased proliferation and enhanced expression of adhesion and inflammatory markers by endothelial cells. Sustained endothelial cell activation leads to a type of damage to the body associated with inflammatory diseases, such as atherosclerosis. In this study, we examined the ability of DBMSCs to protect endothelial cells from activation through monocyte adhesion, by modulating endothelial proliferation, migration, adhesion, and inflammatory marker expression. Endothelial cells were cocultured with DBMSCs, monocytes, monocyte-pretreated with DBMSCs and DBMSC-pretreated with monocytes were also evaluated. Monocyte adhesion to endothelial cells was examined following treatment with DBMSCs. Expression of endothelial cell adhesion and inflammatory markers was also analyzed. The interaction between DBMSCs and monocytes reduced endothelial cell proliferation and monocyte adhesion to endothelial cells. In contrast, endothelial cell migration increased in response to DBMSCs and monocytes. Endothelial cell expression of adhesion and inflammatory molecules was reduced by DBMSCs and DBMSC-pretreated with monocytes. The mechanism of reduced endothelial proliferation involved enhanced phosphorylation of the tumor suppressor protein p53. Our study shows for the first time that DBMSCs protect endothelial cells from activation by

  14. Endothelial actions of atrial and B-type natriuretic peptides.

    Science.gov (United States)

    Kuhn, Michaela

    2012-05-01

    The cardiac hormone atrial natriuretic peptide (ANP) is critically involved in the maintenance of arterial blood pressure and intravascular volume homeostasis. Its cGMP-producing GC-A receptor is densely expressed in the microvascular endothelium of the lung and systemic circulation, but the functional relevance is controversial. Some studies reported that ANP stimulates endothelial cell permeability, whereas others described that the peptide attenuates endothelial barrier dysfunction provoked by inflammatory agents such as thrombin or histamine. Many studies in vitro addressed the effects of ANP on endothelial proliferation and migration. Again, both pro- and anti-angiogenic properties were described. To unravel the role of the endothelial actions of ANP in vivo, we inactivated the murine GC-A gene selectively in endothelial cells by homologous loxP/Cre-mediated recombination. Our studies in these mice indicate that ANP, via endothelial GC-A, increases endothelial albumin permeability in the microcirculation of the skin and skeletal muscle. This effect is critically involved in the endocrine hypovolaemic, hypotensive actions of the cardiac hormone. On the other hand the homologous GC-A-activating B-type NP (BNP), which is produced by cardiac myocytes and many other cell types in response to stressors such as hypoxia, possibly exerts more paracrine than endocrine actions. For instance, within the ischaemic skeletal muscle BNP released from activated satellite cells can improve the regeneration of neighbouring endothelia. This review will focus on recent advancements in our understanding of endothelial NP/GC-A signalling in the pulmonary versus systemic circulation. It will discuss possible mechanisms accounting for the discrepant observations made for the endothelial actions of this hormone-receptor system and distinguish between (patho)physiological and pharmacological actions. Lastly it will emphasize the potential therapeutical implications derived from the

  15. Effect of onion peel extract on endothelial function and endothelial progenitor cells in overweight and obese individuals.

    Science.gov (United States)

    Choi, Eun-Yong; Lee, Hansongyi; Woo, Jong Shin; Jang, Hyun Hee; Hwang, Seung Joon; Kim, Hyun Soo; Kim, Woo-Sik; Kim, Young-Seol; Choue, Ryowon; Cha, Yong-Jun; Yim, Jung-Eun; Kim, Weon

    2015-09-01

    Acute or chronic intake of polyphenol-rich foods has been reported to improve endothelial function. Quercetin, found abundantly in onion, is a potent antioxidant flavonoid. The aim of this study was to investigate whether consumption of onion peel extract (OPE) improves endothelial function in healthy overweight and obese individuals. This was a randomized double-blind, placebo-controlled study. Seventy-two healthy overweight and obese participants were randomly assigned to receive a red, soft capsule of OPE (100 mg quercetin/d, 50 mg quercetin twice daily; n = 36 participants) or an identical placebo capsule (n = 36) for 12 wk. Endothelial function, defined by flow-mediated dilation (FMD), circulating endothelial progenitor cells (EPCs) by flow cytometry, and laboratory test were determined at baseline and after treatment. Baseline characteristics and laboratory findings did not significantly differ between the two groups. Compared with baseline values, the OPE group showed significantly improved FMD at 12 wk (from 12.5 ± 5.2 to 15.2 ± 6.1; P = 0.002), whereas the placebo group showed no difference. Nitroglycerin-mediated dilation did not change in either group. EPC counts (44.2 ± 25.6 versus 52.3 ± 18.6; P = 0.005) and the percentage of EPCs were significantly increased in the OPE group. When FMD was divided into quartiles, rate of patients with endothelial dysfunction defined as lowest quartile (cutoff value, 8.6%) of FMD improved from 26% to 9% by OPE. Medium-term administration of OPE an improvement in FMD and circulating EPCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. An analysis of endothelial microparticles as a function of cell surface antibodies and centrifugation techniques.

    Science.gov (United States)

    Venable, Adam S; Williams, Randall R; Haviland, David L; McFarlin, Brian K

    2014-04-01

    Chronic vascular disease is partially characterized by the presence of lesions along the vascular endothelial wall. Current FDA-approved clinical techniques lack the ability to measure very early changes in endothelial cell health. When endothelial cells are damaged, they release endothelial microparticles (EMPs) into circulation. Thus, blood EMP concentration may represent a useful cardiovascular disease biomarker. Despite the potential value of EMPs, current flow cytometry techniques may not consistently distinguish EMPs from other small cell particles. The purpose of this study was to use imaging flow cytometry to modify existing methods of identifying EMPs based on cell-surface receptor expression and visual morphology. Platelet poor plasma (PPP) was isolated using four different techniques, each utilizing a two-step serial centrifugation process. The cell-surface markers used in this study were selected based on those that are commonly reported in the literature. PPP (100μL) was labeled with CD31, CD42a, CD45, CD51, CD66b, and CD144 for 30-min in dark on ice. Based on replicated experiments, EMPs were best identified by cell-surface CD144 expression relative to other commonly reported EMP markers (CD31 & CD51). It is important to note that contaminating LMPs, GMPs, and PMPs were thought to be removed in the preparation of PPP. However, upon analysis of prepared samples staining CD31 against CD51 revealed a double-positive population that was less than 1% EMPs. In contrast, when using CD144 to identify EMPs, ~87% of observed particles were free of contaminating microparticles. Using a counterstain of CD42a, this purity can be improved to over 99%. More research is needed to understand how our improved EMP measurement method can be used in experimental models measuring acute vascular responses or chronic vascular diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. The hemocytes of Panstrogyllus Megistus (Hemiptera: Reduviidae Os hemócitos de Panstrongylus megistus (Hemiptera: Reduviidae

    Directory of Open Access Journals (Sweden)

    Margherita Anna Barracco

    1987-09-01

    Full Text Available Five hemocyte types were identified in the hemolymph of Panstrongylus megistus by phase contrast and common light microscopy using some histochemical methods. These are: Prohemocytes, small cells presenting a great nucleus/cytoplasm ratio; Plasmatocytes, the most numerous hemocytes, are polymorphic cells mainly characterized by a large amount of lysosomes; Granulocytes, hemocytes very similar to plasmatocytes which contain cytoplasmic granules and are especially rich in polysaccharides; Oenocytoids, cells presenting a small nucleus and a thick cytoplasm; they show many small round vacuoles when observed in Giemsa smears and many cytoplasmic granules under phase microscopy; Adipohemocytes, very large hemocytes, presenting many fat droplet inclusions which could correspond to free fat bodies which entered the hemolymph. Only prohemocytes and plasmatocytes can be clearly classified; all the other hemocyte types have a more ambiguous classification.Cinco tipos de hemócitos foram identificados na hemolinfa de Panstrongylus megistus através da microscopia de constraste de fase e de luz, usando alguns testes histoquímicos: Pró-hemócitos-células pequenas que mostram uma grande relação núcleocitoplasmática; Plasmotócitos-células polimporficas, que se caracterizam principalmente pela sua grande abundância em lisossomos - são os hemócitos mais numerosos; Granulócitos-células muito semelhantes aos plasmatócitos que contêm grânulos citoplasmáticos particularmente ricos em polissacarídeos; Enocitóides-hemócitos que apresentam um núcleo pequeno e cujo citoplasma basofílico revela-se muito denso e homogênio - mostram uma série de pequenos vacúolos esféricos quando observados nos esfregaços corados pelo Giemsa, mas a microscopia de fase revela uma grande quantidade de pequenos grânulo ao invés de vacúolos; Adipo-hemócitos-hemócitos muito grandes que contêm uma grande quantidade de inclusões lípicas - poderiam corresponder a

  18. Effect of a prolonged endurance marathon on vascular endothelial and inflammation markers in runners with exercise-induced hypertension.

    Science.gov (United States)

    Jee, Haemi; Park, Jaehyun; Oh, Jae-Gun; Lee, Yoon-Hee; Shin, Kyung-A; Kim, Young-Joo

    2013-06-01

    The aim of this study was to observe the changes in endothelial and inflammatory markers in middle-aged male runners with exercise-induced hypertension (EIH) at baseline and at 100-km, 200-km, and 308-km checkpoints during a prolonged endurance ultramarathon. Among a total of 62 ultramarathon volunteers, 8 with systolic blood pressure higher than 210 mm Hg and 8 with normal systolic blood pressure were selected for this study. The subjects were designated to EIH and control (CON) groups. Blood was collected for the analysis of soluble vascular cell adhesion molecule-1, soluble E-selectin, leukocytes, creatine kinase, and high-sensitivity C-reactive protein. Soluble vascular cell adhesion molecule-1 showed a significantly greater increase in the EIH group than in the CON group at 100 km and 200 km. Soluble E-selectin also showed a significantly greater increase in the EIH group than in the CON group at 100 km. Leukocytes significantly increased in the EIH group than in the CON group at 308 km. Creatine kinase and high-sensitivity C-reactive protein showed no group differences. Leukocytes, creatine kinase, and high-sensitivity C-reactive protein showed delayed-onset increases in both groups. Increased exercise intensity may stimulate greater endothelial responses independent of the inflammatory markers in EIH. The loss of a protective effect may be greater in those with EIH than in CONs. Acknowledging and prescribing proper exercise intensity may be critical in preventing possible vascular-related complications in runners with EIH.

  19. The influence of persistent pathogens on circulating levels of inflammatory markers: a cross-sectional analysis from the Multi-Ethnic Study of Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Szklo Moyses

    2010-11-01

    Full Text Available Abstract Background Systemic inflammation is linked to cardiovascular risk, but the influence of persistent pathogens, which are conventionally dichotomously categorized, on circulating levels of inflammatory markers is not clear. Antibody levels of pathogens have not been examined in relation to inflammation. Methods Using data from a subsample of the Multi-Ethnic Study of Atherosclerosis, we examined circulating levels of interleukin-6 (IL-6, C-reactive protein (CRP and fibrinogen in relation to five common persistent pathogens: cytomegalovirus, herpes simplex virus-1, Hepatitis A virus, Helicobacter pylori and Chlamydia pneumoniae. We tested the hypothesis that the number of seropositive pathogens (based on conventional cut-off points would not be as sensitive a marker of inflammation as immune response measured by antibody levels to pathogens. Results High antibody response to multiple pathogens showed graded and significant associations with IL-6 (p Conclusions High antibody response to pathogens was a more consistent marker of inflammatory outcomes compared to seropositivity alone and high antibody response to multiple pathogens was a stronger marker compared to any single pathogen.

  20. Comparative effects of enzogenol and vitamin C supplementation versus vitamin C alone on endothelial function and biochemical markers of oxidative stress and inflammation in chronic smokers.

    Science.gov (United States)

    Young, Joanna M; Shand, Brett I; McGregor, Patrice M; Scott, Russell S; Frampton, Christopher M

    2006-01-01

    Chronic smoking is associated with endothelial dysfunction and inflammation, with oxidative stress contributing to both these processes. In this study, we investigated the effect of combined antioxidant treatment with Enzogenol, a flavonoid extract from the bark of Pinus radiata and vitamin C, over and above vitamin C alone, on endothelial function, plasma markers of inflammation and oxidative stress, blood pressure (BP) and anthropometrics. Forty-four chronic smokers without established cardiovascular disease were assigned randomly to receive either 480 mg Enzogenol and 60 mg vitamin C, or 60 mg vitamin C alone daily for 12 weeks. Endothelial function in the brachial artery was assessed by flow-mediated vasodilation (FMD). FMD improved in both treatment groups (p effect on macrovascular endothelial function over and above that seen in the vitamin C alone group. However, Enzogenol did demonstrate additional favourable effects on protein oxidative damage and fibrinogen levels.

  1. Daily consumption for six weeks of a lignan complex isolated from flaxseed does not affect endothelial function in healthy postmenopausal women

    DEFF Research Database (Denmark)

    Hallund, Jesper; Tetens, Inge; Bügel, Susanne

    2006-01-01

    The occurrence of menopause is associated with an increased risk of cardiovascular events, and this has partly been attributed to the decline in circulating levels of estrogen. A lignan complex rich in the plant lignan secoisolariciresinol diglucoside (SDG) was isolated from flaxseed. SDG...... is metabolized by the colonic microflora to the mammalian lignans enterodiol and enterolactone and is hypothesized to be cardioprotective due to their structural similarity to estrogen. The aim of this study was to investigate the effect of a lignan complex, providing 600 mg/d of SDG, on markers of endothelial...

  2. Increased Circulating Endothelial Microparticles Associated with PAK4 Play a Key Role in Ventilation-Induced Lung Injury Process

    Directory of Open Access Journals (Sweden)

    Shuming Pan

    2017-01-01

    Full Text Available Inappropriate mechanical ventilation (MV can result in ventilator-induced lung injury (VILI. Probing mechanisms of VILI and searching for effective methods are current areas of research focus on VILI. The present study aimed to probe into mechanisms of endothelial microparticles (EMPs in VILI and the protective effects of Tetramethylpyrazine (TMP against VILI. In this study, C57BL/6 and TLR4KO mouse MV models were used to explore the function of EMPs associated with p21 activated kinases-4 (PAK-4 in VILI. Both the C57BL/6 and TLR4 KO groups were subdivided into a mechanical ventilation (MV group, a TMP + MV group, and a control group. After four hours of high tidal volume (20 ml/kg MV, the degree of lung injury and the protective effects of TMP were assessed. VILI inhibited the cytoskeleton-regulating protein of PAK4 and was accompanied by an increased circulating EMP level. The intercellular junction protein of β-catenin was also decreased accompanied by a thickening alveolar wall, increased lung W/D values, and neutrophil infiltration. TMP alleviated VILI via decreasing circulating EMPs, stabilizing intercellular junctions, and alleviating neutrophil infiltration.

  3. Impact of Obstructive Sleep Apnea Syndrome on Endothelial Function, Arterial Stiffening, and Serum Inflammatory Markers: An Updated Meta-analysis and Metaregression of 18 Studies.

    Science.gov (United States)

    Wang, Jiayang; Yu, Wenyuan; Gao, Mingxin; Zhang, Fan; Gu, Chengxiong; Yu, Yang; Wei, Yongxiang

    2015-11-13

    Obstructive sleep apnea syndrome (OSAS) has been indicated to contribute to the development of cardiovascular disease; however, the underlying mechanism remains unclear. This study aimed to test the hypothesis that OSAS may be associated with cardiovascular disease by elevating serum levels of inflammatory markers and causing arterial stiffening and endothelial dysfunction. Related scientific reports published from January 1, 2006, to June 30, 2015, were searched in the following electronic literature databases: PubMed, Excerpta Medica Database, ISI Web of Science, Directory of Open Access Journals, and the Cochrane Library. The association of OSAS with serum levels of inflammatory markers, endothelial dysfunction, and arterial stiffening were investigated. Overall, 18 eligible articles containing 736 patients with OSAS and 424 healthy persons were included in this meta-analysis. Flow-mediated dilation in patients with moderate-severe OSAS was significantly lower than that in controls (standardized mean difference -1.02, 95% CI -1.31 to -0.73, Preactive protein and C-reactive protein (standardized mean difference 0.58, 95% CI 0.42-0.73, P<0.0001) were significantly higher in patients with OSAS than in controls. OSAS, particularly moderate-severe OSAS, appeared to reduce endothelial function, increase arterial stiffness, and cause chronic inflammation, leading to the development of cardiovascular disease. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  4. Erythropoietin and vascular endothelial growth factor as risk markers for severe hypoglycaemia in type 1 diabetes

    DEFF Research Database (Denmark)

    Kristensen, P L; Pedersen-Bjergaard, U; Schalkwijk, C

    2010-01-01

    OBJECTIVE: Circulating erythropoietin (EPO) and vascular endothelial growth factor (VEGF) increase during hypoglycaemia and may represent protective hormonal counter-regulatory responses. We tested the hypothesis that low levels of EPO and VEGF are associated with a higher frequency of severe....... Plasma EPO and serum VEGF levels were measured at baseline with ELISA. Events of severe hypoglycaemia defined by third party assistance were recorded and validated in telephone interviews within 24 h. RESULTS: Totally 235 episodes of severe hypoglycaemia (1.1 episodes per patient-year) were reported...... mass index, HbAlc, C-peptide level or hypoglycaemia awareness status. The levels of VEGF were positively associated with age and female sex. CONCLUSIONS: Although several studies suggest that VEGF and EPO may affect brain function during hypoglycaemia, this study does not support random VEGF or EPO...

  5. The role of shear stress and altered tissue properties on endothelial to mesenchymal transformation and tumor-endothelial cell interaction.

    Science.gov (United States)

    Mina, Sara G; Huang, Peter; Murray, Bruce T; Mahler, Gretchen J

    2017-07-01

    Tumor development is influenced by stromal cells in aspects including invasion, growth, angiogenesis, and metastasis. Activated fibroblasts are one group of stromal cells involved in cancer metastasis, and one source of activated fibroblasts is endothelial to mesenchymal transformation (EndMT). EndMT begins when the endothelial cells delaminate from the cell monolayer, lose cell-cell contacts, lose endothelial markers such as vascular endothelial-cadherin (VE-cadherin), gain mesenchymal markers like alpha-smooth muscle actin (α-SMA), and acquire mesenchymal cell-like properties. A three-dimensional (3D) culture microfluidic device was developed for investigating the role of steady low shear stress (1 dyne/cm 2 ) and altered extracellular matrix (ECM) composition and stiffness on EndMT. Shear stresses resulting from fluid flow within tumor tissue are relevant to both cancer metastasis and treatment effectiveness. Low and oscillatory shear stress rates have been shown to enhance the invasion of metastatic cancer cells through specific changes in actin and tubulin remodeling. The 3D ECM within the device was composed of type I collagen and glycosaminoglycans (GAGs), hyaluronic acid and chondroitin sulfate. An increase in collagen and GAGs has been observed in the solid tumor microenvironment and has been correlated with poor prognosis in many different cancer types. In this study, it was found that ECM composition and low shear stress upregulated EndMT, including upregulation of mesenchymal-like markers (α-SMA and Snail) and downregulated endothelial marker protein and gene expression (VE-cadherin). Furthermore, this novel model was utilized to investigate the role of EndMT in breast cancer cell proliferation and migration. Cancer cell spheroids were embedded within the 3D ECM of the microfluidic device. The results using this device show for the first time that the breast cancer spheroid size is dependent on shear stress and that the cancer cell migration rate

  6. Endothelial markers in malignant vascular tumours of the liver: superiority of QB-END/10 over von Willebrand factor and Ulex europaeus agglutinin 1.

    Science.gov (United States)

    Anthony, P P; Ramani, P

    1991-01-01

    A new monoclonal antibody, QB-END/10, raised against the CD34 antigen in human endothelial cell membranes and haemopoietic progenitor cells, was studied for its usefulness as a marker of neoplastic vascular cells in 21 angiosarcomas and seven malignant haemangioendotheliomas of the liver. QB-END/10 was both more sensitive and more specific than Von Willebrand factor (VWF) and Ulex europaeus 1 agglutinin (UEA-1) in labelling endothelial cells and it did not cross react with epithelia as UEA-1 often does. Staining was uniformly strong and clear in all histological variants of these two tumours. QB-END/10 should prove particularly useful in the differential diagnosis of malignant vascular tumours of the liver.

  7. Endothelial function and dysfunction: clinical significance and assessment

    Directory of Open Access Journals (Sweden)

    Shaghayegh Haghjooyejavanmard

    2008-08-01

    Full Text Available

    • Over the past two decades, investigators have increasingly recognized the importance of the endothelium as a centralregulator of vascular and body homeostasis. The endothelial lining represents an organ of 1.5 kg in an adult, which is distributed throughout the body. The endothelium is versatile and multifunctional. In addition to its role as a selective permeability barrier, it has many synthetic and metabolic properties, including modulation of vascular tone and blood flow, regulation of immune and inflammatory responses, and regulation of coagulation, fibrinolysis and thrombosis. Endothelial dysfunction (ED is a frequently used term, which can be referred to abnormalities in various physiological functions of the endothelium, and it is known as a key variable in the pathogenesis of several diseases and their complications. Finding suitable markers for endothelial damage or ED is certainly of interest. Established and emerging techniques to detect ED are divided into three large families of functional, cellular, and biochemical markers. Instead of performing single assessments, it may be much more valuable to determine various biological aspects of endothelium. It seems that there is likely a spectrum between normality, endothelial activation (by inflammatory cytokines, endothelial dysfunction (e.g., impairment of nitric oxide, resulting in loss of regulation of vascular tone and endothelial damage (e.g., atherosclerosis. In this review we review the importance of endothelium and its activation, biomarkers and dysfunction.
    •  KEYWORDS: Endothelial function, endothelium, Disease.

  8. Coronary and peripheral endothelial function in HIV patients studied with positron emission tomography and flow-mediated dilation: relation to hypercholesterolemia

    Energy Technology Data Exchange (ETDEWEB)

    Lebech, Anne-Mette [Copenhagen University Hospital, Department of Infectious Diseases, Hvidovre (Denmark); Hvidovre University Hospital, Department of Infectious Diseases, Hvidovre (Denmark); Kristoffersen, Ulrik Sloth; Kjaer, Andreas [Rigshospitalet University Hospital, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen (Denmark); University of Copenhagen, Cluster for Molecular Imaging, Copenhagen (Denmark); Wiinberg, Niels; Petersen, Claus Leth [Frederiksberg University Hospital, Department of Clinical Physiology and Nuclear Medicine, Frederiksberg (Denmark); Kofoed, Kristian; Andersen, Ove [Copenhagen University Hospital, Department of Infectious Diseases, Hvidovre (Denmark); Copenhagen University Hospital, Clinical Research Unit, Hvidovre (Denmark); Hesse, Birger [Rigshospitalet University Hospital, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen (Denmark); Gerstoft, Jan [Rigshospitalet University Hospital, Department of Infectious Diseases, Copenhagen (Denmark)

    2008-11-15

    The mechanisms underlying increased cardiovascular risk in HIV patients in antiretroviral therapy (ART) are not known. Our aim was to study the endothelial function of the coronary arteries by cardiac perfusion positron emission tomography (PET), in HIV patients with normal or high cholesterol levels. Flow mediated dilation (FMD) of the brachial artery and circulating endothelial markers were also assessed. HIV patients in ART with total cholesterol {<=} 5.5 mmol/L (215 mg/dL; n = 13) or total cholesterol {>=} 6.5 mmol/L (254 mg/dL; n = 12) and healthy controls (n = 14) were included. {sup 13}NH{sub 3} perfusion PET, FMD, and measurement of plasma levels of E-Selectin, ICAM-1, VCAM-1, tPAI-1, and hs-CRP were performed. Baseline myocardial perfusion and the coronary flow reserve measured by PET (3.2 {+-} 0.3, 3.2 {+-} 0.3 and 3.0 {+-} 0.3; ns) was similar in HIV patients with normal or high total cholesterol and controls. FMD did not differ between the groups and was 4.6 {+-} 1.1%, 5.1 {+-} 1.2%, and 4.6 {+-} 0.8%, respectively. Increased levels of plasma E-Selectin, ICAM-1, tPAI-1, and hs-CRP were found in HIV patients when compared to controls (p < 0.05). E-Selectin and ICAM-1 levels were higher in HIV patients receiving protease inhibitors (PI) compared to those not receiving PI (p < 0.05). None of the measured endothelial biomarkers differed between the normal and high cholesterol HIV groups. In ART-treated HIV patients with a low overall cardiovascular risk, no sign of endothelial dysfunction was found not even in hypercholesterolemic patients. Also, the increased level of plasma endothelial markers found in HIV patients was not related to hypercholesterolemia. (orig.)

  9. Què hem anat a fer a la NASA

    OpenAIRE

    Miguélez Ortiz, Xavier; Gallardo, Beatriz

    2009-01-01

    Som dos enginyers de telecomunicació de la UPC, el Xavier i la Beatriz, que treballem de manera directa i indirecta en el sector aeroespacial i que aquest estiu passat hem participat en un programa de la International Space University (ISU). Ho expliquem a continuació i us animem a participar-hi en les próximes edicions.

  10. HemOnc.org: A Collaborative Online Knowledge Platform for Oncology Professionals.

    Science.gov (United States)

    Warner, Jeremy L; Cowan, Andrew J; Hall, Aric C; Yang, Peter C

    2015-05-01

    Cancer care involves extensive knowledge about numerous chemotherapy drugs and chemotherapy regimens. This information is constantly evolving, and there has been no freely available, comprehensive, centralized repository of chemotherapy information to date. We created an online, freely accessible, ad-free, collaborative wiki of chemotherapy information entitled HemOnc.org to address the unmet need for a central repository of this information. This Web site was developed with wiki development software and is hosted on a cloud platform. Chemotherapy drug and regimen information (including regimen variants), as well as other information of interest to hematology/oncology professionals, is housed on the site in a fully referenced and standardized format. Accredited users are allowed to freely contribute information to the site. From its inception in November 2011, HemOnc.org has grown rapidly and most recently has detailed information on 383 drugs and 1,298 distinct chemotherapy regimens (not counting variants) in 92 disease subtypes. There are regularly more than 2,000 visitors per week from the United States and international locations. A user evaluation demonstrated that users find the site useful, usable, and recommendable. HemOnc.org is now the largest free source of chemotherapy drug and regimen information and is widely used. Future enhancements, including more metadata about drugs and increasingly detailed efficacy and toxicity information, will continue to improve the value of the resource. Copyright © 2015 by American Society of Clinical Oncology.

  11. Folic acid: a marker of endothelial function in type 2 diabetes?

    Directory of Open Access Journals (Sweden)

    Arduino A Mangoni

    2005-04-01

    Full Text Available Arduino A Mangoni1, Roy A Sherwood2, Belinda Asonganyi2, Emma L Ouldred3, Stephen Thomas4, Stephen HD Jackson31Department of Clinical Pharmacology, Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, SA, Australia; 2Clinical Biochemistry, King’s College Hospital, London, UK; 3Department of Health Care of the Elderly, Guy’s, King’s, and St Thomas’ School of Medicine, King’s College, London, UK; 4Department of Diabetic Medicine, King’s College Hospital, London, UKObjectives: Endothelial dysfunction is a common feature of type 2 diabetes. Recent studies suggest that the B-vitamin folic acid exerts direct beneficial effects on endothelial function, beyond the well known homocysteine lowering effects. Therefore, folic acid might represent a novel “biomarker” of endothelial function. We sought to determine whether plasma levels of folic acid determine endothelial-dependent vasodilation in patients with type 2 diabetes.Methods: Forearm arterial blood flow (FABF was measured at baseline and during intrabrachial infusion of the endothelial-dependent vasodilator acetylcholine (15 µg/min and the endothelial-independent vasodilator sodium nitroprusside (2 µg/min in 26 type 2 diabetic patients (age 56.5 ± 0.9 years, means ± SEM with no history of cardiovascular disease.Results: FABF ratio (ie, the ratio between the infused and control forearm FABF significantly increased during acetylcholine (1.10 ± 0.04 vs 1.52 ± 0.07, p < 0.001 and sodium nitroprusside (1.12 ± 0.11 vs 1.62 ± 0.06, p < 0.001 infusions. After correcting for age, gender, diabetes duration, smoking, hypertension, body mass index, microalbuminuria, glycated hemoglobin, low-density lipoprotein cholesterol, and homocysteine, multiple regression analysis showed that plasma folic acid concentration was the only independent determinant (p = 0.037, R2 = 0.22 of acetylcholine-mediated, but not sodium nitroprusside-mediated, vasodilatation

  12. Effects of spinach nitrate on insulin resistance, endothelial dysfunction markers and inflammation in mice with high-fat and high-fructose consumption

    Directory of Open Access Journals (Sweden)

    Ting Li

    2016-09-01

    Full Text Available Background: Insulin resistance, which is associated with an increased risk of cardiovascular morbidity and mortality, has become a leading nutrition problem. Inorganic nitrate enriched in spinach has been demonstrated to reverse the pathological features of insulin resistance and endothelial dysfunction. However, the effects of a direct intake of nitrate-enriched spinach on insulin resistance and endothelial dysfunction have not been studied. Objective: To investigate the effects of spinach nitrate on insulin resistance, lipid metabolism, endothelial function, and inflammation in mice fed with a high-fat and high-fructose diet. Design: A diet intervention of spinach with or without nitrate was performed in mice. A high-fat and high-fructose diet was used to cause insulin resistance, endothelial dysfunction, and inflammation in mice. The impacts of spinach nitrate on lipid profile, insulin resistance, markers of endothelial function, and inflammation were determined in mice. Results: Spinach nitrate improved the vascular endothelial function of the mice with high-fat and high-fructose consumption, as evidenced by the elevated plasma nitrite level, increased serum nitric oxide (NO level and decreased serum ET-1 level after spinach nitrate intervention. Spinach nitrate also reduced serum triglycerides, total cholesterol, and low-density lipoprotein-cholesterol levels and elevated serum high-density lipoprotein-cholesterol levels in the mice fed with a high-fat and high-fructose diet. Mice receiving spinach with 60 mg/kg of nitrate (1.02±0.34 showed a significantly low homeostasis model assessment-insulin resistance index as compared with the model mice (2.05±0.58, which is indicating that spinach nitrate could effectively improve the insulin resistance. In addition, spinach nitrate remarkably decreased the elevated serum C-reactive protein, tumor necrosis factor α, and interleukin-6 levels induced by a high-fat and high-fructose diet

  13. Robust 1D inversion and analysis of helicopter electromagnetic (HEM) data

    DEFF Research Database (Denmark)

    Tølbøll, R.J.; Christensen, N.B.

    2006-01-01

    but can resolve layer boundary to a depth of more than 100 m. Modeling experiments also show that the effect of altimeter errors on the inversion results is serious. We suggest a new interpretation scheme for HEM data founded solely on full nonlinear 1D inversion and providing layered-earth models...... of test flights were performed using a frequency-domain, helicopter-borne electromagnetic (HEM) system. We perform a theoretical examination of the resolution capabilities of the applied system. Quantitative model parameter analyses show that the system only weakly resolves conductive, near-surface layers...... supported by datamisfit parameters and a quantitative model-parameter analysis. The backbone of the scheme is the removal of cultural coupling effects followed by a multilayer inversion that in turn provides reliable starting models for a subsequent few-layer inversion. A new procedure for correlation...

  14. Endothelial cell labeling with indium-111-oxine as a marker of cell attachment to bioprosthetic surfaces

    International Nuclear Information System (INIS)

    Sharefkin, J.B.; Lather, C.; Smith, M.; Rich, N.M.

    1983-01-01

    Canine vascular endothelium labeled with indium-111-oxine was used as a marker of cell attachment to vascular prosthetic surfaces with complex textures. Primarily cultured and freshly harvested endothelial cells both took up the label rapidly. An average of 72% of a 32 micro Ci labeling dose was taken up by 1.5 X 10(6) cells in 10 min in serum-free medium. Over 95% of freshly labeled cells were viable by trypan blue tests and only 5% of the label was released after 1 h incubations at 37 degrees C. Labeled and unlabeled cells had similar rates of attachment to plastic dishes. Scanning electron microscopic studies showed that labeled cells retained their ability to spread on tissue culture dishes even at low (1%) serum levels. Labeled endothelial cells seeded onto Dacron or expanded polytetrafluoroethylene vascular prostheses by methods used in current surgical models could be identified by autoradiography of microscopic sections of the prostheses, and the efficiency of cell attachment to the prosthesis could be measured by gamma counting. Indium-111 labeling affords a simple and rapid way to measure initial cell attachment to, and distribution on, vascular prosthetic materials. The method could also allow measurement of early cell loss from a flow surface in vivo by using external gamma imaging

  15. Numerical Simulations and Design Optimization of the PHT Loop of Natural Circulation BWR

    Directory of Open Access Journals (Sweden)

    G. V. Durga Prasad

    2008-01-01

    Full Text Available Mathematical modeling and numerical simulation of natural circulation boiling water reactor (NCBWR are very important in order to study its performance for different designs and various off-design conditions and for design optimization. In the present work, parametric studies of the primary heat transport loop of NCBWR have been performed using lumped parameter models and RELAP5/MOD3.4 code. The lumped parameter models are based on the drift flux model and homogeneous equilibrium mixture (HEM model of two-phase flow. Numerical simulations are performed with both models. Compared to the results obtained from the HEM model, those obtained from the drift flux model are closer to RELAP5. The variations of critical heat flux with various geometric parameters and operating conditions are thoroughly investigated. The material required to construct the primary heat transport (PHT loop of NCBWR has been minimized using sequential quadratic programming. The stability of NCBWR has also been verified at the optimum point.

  16. HemX is required for production of 2-ketogluconate, the predominant organic anion required for inorganic phosphate solubilization by Burkholderia sp. Ha185.

    Science.gov (United States)

    Hsu, Pei-Chun Lisa; Condron, Leo; O'Callaghan, Maureen; Hurst, Mark R H

    2015-12-01

    The bacterium Burkholderia sp. Ha185 readily solubilizes inorganic phosphate by releasing the low molecular weight organic anion, 2-ketogluconate. Using random transposon mutagenesis and in silico analysis, a mutation that caused almost complete abolition of phosphate solubilization was located within hemX, which is part of the hem operon. Burkholderia sp. Ha185 HemX is a multidomain protein, predicted to encode a bifunctional uroporphyrinogen-III synthetase/uroporphyrin-III C-methyltransferase, which has not previously been implicated in phosphate solubilization. Complementation of hemX restored the ability of the mutant to solubilize phosphate in both plate and liquid cultures. Based on a combination of organic-anion profiling, quantitative polymerase chain reaction and in silico analyses, hemX was confirmed to be solely responsible for hydroxyapatite solubilization in Burkholderia sp. Ha185. It is proposed that the biosynthesis of a yet to be determined redox cofactor by HemX is the main pathway for generating 2-ketogluconate via a haem-dependent gluconate 2-dehydrogenase in Burkholderia sp. Ha185. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Aging-associated oxidized albumin promotes cellular senescence and endothelial damage

    Directory of Open Access Journals (Sweden)

    Luna C

    2016-02-01

    Full Text Available Carlos Luna,1,* Matilde Alique,2,* Estefanía Navalmoral,2 Maria-Victoria Noci,3 Lourdes Bohorquez-Magro,2 Julia Carracedo,1 Rafael Ramírez2 1Nephrology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC, Reina Sofía University Hospital, Córdoba, Spain; 2Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Madrid, Spain; 3Anesthesia Unit, Reina sofía University Hospital, Córdoba, Spain*These authors contributed equally to this work Abstract: Increased levels of oxidized proteins with aging have been considered a cardiovascular risk factor. However, it is unclear whether oxidized albumin, which is the most abundant serum protein, induces endothelial damage. The results of this study indicated that with aging processes, the levels of oxidized proteins as well as endothelial microparticles release increased, a novel marker of endothelial damage. Among these, oxidized albumin seems to play a principal role. Through in vitro studies, endothelial cells cultured with oxidized albumin exhibited an increment of endothelial damage markers such as adhesion molecules and apoptosis levels. In addition, albumin oxidation increased the amount of endothelial microparticles that were released. Moreover, endothelial cells with increased oxidative stress undergo senescence. In addition, endothelial cells cultured with oxidized albumin shown a reduction in endothelial cell migration measured by wound healing. As a result, we provide the first evidence that oxidized albumin induces endothelial injury which then contributes to the increase of cardiovascular disease in the elderly subjects.Keywords: elderly, oxidative stress, microparticles, vascular damage

  18. Mouse lung contains endothelial progenitors with high capacity to form blood and lymphatic vessels

    Directory of Open Access Journals (Sweden)

    Barleon Bernhard

    2010-07-01

    Full Text Available Abstract Background Postnatal endothelial progenitor cells (EPCs have been successfully isolated from whole bone marrow, blood and the walls of conduit vessels. They can, therefore, be classified into circulating and resident progenitor cells. The differentiation capacity of resident lung endothelial progenitor cells from mouse has not been evaluated. Results In an attempt to isolate differentiated mature endothelial cells from mouse lung we found that the lung contains EPCs with a high vasculogenic capacity and capability of de novo vasculogenesis for blood and lymph vessels. Mouse lung microvascular endothelial cells (MLMVECs were isolated by selection of CD31+ cells. Whereas the majority of the CD31+ cells did not divide, some scattered cells started to proliferate giving rise to large colonies (> 3000 cells/colony. These highly dividing cells possess the capacity to integrate into various types of vessels including blood and lymph vessels unveiling the existence of local microvascular endothelial progenitor cells (LMEPCs in adult mouse lung. EPCs could be amplified > passage 30 and still expressed panendothelial markers as well as the progenitor cell antigens, but not antigens for immune cells and hematopoietic stem cells. A high percentage of these cells are also positive for Lyve1, Prox1, podoplanin and VEGFR-3 indicating that a considerabe fraction of the cells are committed to develop lymphatic endothelium. Clonogenic highly proliferating cells from limiting dilution assays were also bipotent. Combined in vitro and in vivo spheroid and matrigel assays revealed that these EPCs exhibit vasculogenic capacity by forming functional blood and lymph vessels. Conclusion The lung contains large numbers of EPCs that display commitment for both types of vessels, suggesting that lung blood and lymphatic endothelial cells are derived from a single progenitor cell.

  19. Criteria Considerations for Establishment of Hems Operations

    Directory of Open Access Journals (Sweden)

    Borivoj Galović

    2007-05-01

    Full Text Available The importance of the "golden hour"; for optimal efficiencyof helicopter operations in emergency medical service (HEMSto meet the "golden hour" requirement the unconditional requirementis to establish a net of operational units to cover theentire area of the Republic of Croatia, capable to operate withinwide integrated area (international services. It is additionalback-up, not a competition to road and sea EMS vehicles. Therequired standards; HEMS operation, following complementarytraffic policy, i. e. complementary policy in line of trafficsystem integration within wider region, with reference to standards,must entirely comply with globally accepted standards.Republic of Croatia 's obvious objectives are traffic integrationinto EU (European Union traffic system. Cost analyses; It isstressed that coherent traffic policy can by certain instrumentsreduce traffic assigned external cost in national budget. Significanttraffic external cost includes cost of traffic accidents, environmentimpacts and traffic jams, and could be reduced byestablishmentof multi-purpose helicopter operations. SWOTanalyses should be made as for any other strategy or project.Technical-technological criteria and other considerations;Considering technical-technological criteria for relief of criticalsituations in traffic, it is obvious that one helicopter type cannotcomply to all multi-purpose requirements that traffic sets beforeus - EMS on open roads, sea, mountains and urban trafficcongested area, and search and rescue operations. However,common factor for all types is compliance to global standardsand regulations. In the paper, some examples of HEMS operationsin the EU States are mentioned.

  20. The acute exposure effects of inhaled nickel nanoparticles on murine endothelial progenitor cells.

    Science.gov (United States)

    Liberda, Eric N; Cuevas, Azita K; Qu, Qingshan; Chen, Lung Chi

    2014-08-01

    The discovery of endothelial progenitor cells (EPCs) may help to explain observed cardiovascular effects associated with inhaled nickel nanoparticle exposures, such as increases in vascular inflammation, generation of reactive oxygen species, altered vasomotor tone and potentiated atherosclerosis in murine species. Following an acute whole body inhalation exposure to 500 µg/m(3) of nickel nanoparticles for 5 h, bone marrow EPCs from C57BL/6 mice were isolated. EPCs were harvested for their RNA or used in a variety of assays including chemotaxis, tube formation and proliferation. Gene expression was assessed for important receptors involved in EPC mobilization and homing using RT-PCR methods. EPCs, circulating endothelial progenitor cells (CEPCs), circulating endothelial cells (CECs) and endothelial microparticles (EMPs) were quantified on a BD FACSCalibur to examine endothelial damage and repair associated with the exposure. Acute exposure to inhaled nickel nanoparticles significantly increased both bone marrow EPCs as well as their levels in circulation (CEPCs). CECs were significantly elevated indicating that endothelial damage occurred due to the exposure. There was no significant difference in EMPs between the two groups. Tube formation and chemotaxis, but not proliferation, of bone marrow EPCs was impaired in the nickel nanoparticle exposed group. These results coincided with a decrease in the mRNA of receptors involved in EPC mobilization and homing. These data provide new insight into how an acute nickel nanoparticle exposure to half of the current Occupational Safety & Health Administration (OSHA) permissible exposure limit may adversely affect EPCs and exacerbate cardiovascular disease states.

  1. Effect of colorectal cancer on the number of normal stem cells circulating in peripheral blood.

    Science.gov (United States)

    Marlicz, Wojciech; Sielatycka, Katarzyna; Serwin, Karol; Kubis, Ewa; Tkacz, Marta; Głuszko, Rafał; Białek, Andrzej; Starzyńska, Teresa; Ratajczak, Mariusz Z

    2016-12-01

    Bone marrow (BM) residing stem cells are mobilized from their BM niches into peripheral blood (PB) in several pathological situations including tissue organ injury and systemic inflammation. We recently reported that the number of BM-derived stem cells (SCs) increases in patients with pancreatic and stomach cancer. Accordingly, we observed higher numbers of circulating very small embryonic/epiblast‑like stem cells (VSELs) and mesenchymal stem cells (MSCs) that were associated with the activation of pro-mobilizing complement cascade and an elevated level of sphingosine-1 phosphate (S1P) in PB plasma. We wondered if a similar correlation occurs in patients with colorectal cancer (CRC). A total of 46 patients were enrolled in this study: 17 with CRC, 18 with benign colonic adenomas (BCA) and 11 healthy individuals. By employing fluorescence-activated cell sorting (FACS) we evaluated the number of BM-derived SCs circulating in PB: i) CD34+/Lin-/CD45- and CD133-/Lin-/CD45- VSELs; ii) CD45-/CD105+/CD90+/CD29+ MSCs; iii) CD45-/CD34+/CD133+/KDR+ endothelial progenitor cells (EPCs); and iv) CD133+/Lin-/CD45+ or CD34+/Lin-/CD45+ cells enriched for hematopoietic stem/progenitor cells (HSPCs). In parallel, we measured in the PB parameters regulating the egress of SCs from BM into PB. In contrast to pancreatic and gastric cancer patients, CRC subjects presented neither an increase in the number of circulating SCs nor the activation of pro-mobilizing factors such as complement, coagulation and fibrinolytic cascade, circulating stromal derived factor 1 (SDF‑1), vascular endothelial growth factor (VEGF) and intestinal permeability marker (zonulin). In conclusion, mobilization of SCs in cancer patients depends on the type of malignancy and its ability to activate pro-mobilization cascades.

  2. Thrombomodulin, von Willebrand factor and E-selectin as plasma markers of endothelial damage/dysfunction and activation in pregnancy induced hypertension.

    Science.gov (United States)

    Nadar, Sunil K; Al Yemeni, Eman; Blann, Andrew D; Lip, Gregory Y H

    2004-01-01

    Endothelial disturbance (whether activation, dysfunction or damage) is a likely pathogenic mechanism in pre-eclampsia and pregnancy-induced hypertension (PIH). We set out to determine which of three plasma markers of endothelial disturbance, indicating endothelial activation (E-selectin) or damage/dysfunction (von Willebrand factor (vWf), soluble thrombomodulin), would provide the best discriminator of PIH compared to normotensive pregnancy. Cross-sectional study of 36 consecutive women with PIH (age 31+/-6 years) and 36 consecutive women with normotensive pregnancies (age 29+/-5 years) of similar parity. Plasma levels of vWf, E-selectin and thrombomodulin were measured using ELISA. As expected, women with PIH had significantly higher levels of plasma vWf (by 19%, p=0.003), E-selectin (by 40%, p<0.001) and thrombomodulin (by 61%, p=0.01) than normotensive women. However, on stepwise multiple regression analysis, only thrombomodulin was an independent significant predictor of the presence of PIH (p=0.023). We conclude that although vWf, E-selectin and thrombomodulin are all raised in PIH, only thrombomodulin was independently associated with PIH. This molecule could potentially be useful in monitoring and in providing clues in aetiology and pathophysiology, and may have implications for the clinical complications associated with PIH.

  3. Differential Impact of Acute High-Intensity Exercise on Circulating Endothelial Microparticles and Insulin Resistance between Overweight/Obese Males and Females

    Science.gov (United States)

    Durrer, Cody; Robinson, Emily; Wan, Zhongxiao; Martinez, Nic; Hummel, Michelle L.; Jenkins, Nathan T.; Kilpatrick, Marcus W.; Little, Jonathan P.

    2015-01-01

    Background An acute bout of exercise can improve endothelial function and insulin sensitivity when measured on the day following exercise. Our aim was to compare acute high-intensity continuous exercise (HICE) to high-intensity interval exercise (HIIE) on circulating endothelial microparticles (EMPs) and insulin sensitivity in overweight/obese men and women. Methods Inactive males (BMI = 30 ± 3, 25 ± 6 yr, n = 6) and females (BMI = 28 ± 2, 21 ± 3 yr, n = 7) participated in three experimental trials in a randomized counterbalanced crossover design: 1) No exercise control (Control); 2) HICE (20 min cycling @ just above ventilatory threshold); 3) HIIE (10 X 1-min @ ∼90% peak aerobic power). Exercise conditions were matched for external work and diet was controlled post-exercise. Fasting blood samples were obtained ∼18 hr after each condition. CD62E+ and CD31+/CD42b- EMPs were assessed by flow cytometry and insulin resistance (IR) was estimated by homeostasis model assessment (HOMA-IR). Results There was a significant sex X exercise interaction for CD62E+ EMPs, CD31+/CD42b- EMPs, and HOMA-IR (all Pexercise type. There was a significant increase in HOMA-IR in males but a decrease in females following HIIE compared to Control (Pobese males and females appear to respond differently to acute bouts of high-intensity exercise. A single session of HICE and HIIE reduced circulating EMPs measured on the morning following exercise in males but in females CD62E+ EMPs were increased following HICE. Next day HOMA-IR paradoxically increased in males but was reduced in females following HIIE. Future research is needed to investigate mechanisms responsible for potential differential responses between males and females. PMID:25710559

  4. Impact of age and gender interaction on circulating endothelial progenitor cells in healthy subjects.

    Science.gov (United States)

    Rousseau, Alexandra; Ayoubi, Fida; Deveaux, Christel; Charbit, Beny; Delmau, Catherine; Christin-Maitre, Sophie; Jaillon, Patrice; Uzan, Georges; Simon, Tabassome

    2010-02-01

    To assess the level of circulating endothelial progenitor cells (CEPC) in cycling women compared with men and menopausal women. Controlled clinical study. Healthy, nonsmoking volunteers. Twelve women, aged 18-40 years, with regular menstrual cycles, 12 menopausal women, and two groups of 12 age-matched men were recruited. Women did not receive any hormone therapy. Collection of 20 mL of peripheral blood. The number of CEPC, defined as (Lin-/7AAD-/CD34+/CD133+/KDR+) cells per 10(6) mononuclear cells (MNC), was measured by flow cytometry. The number of CEPC was significantly higher in cycling women than in age-matched men and menopausal women (26.5 per 10(6) MNC vs. 10.5 per 10(6) MNC vs. 10 per 10(6) MNC, respectively). The number of CEPC was similar in menopausal women, age-matched, and young men. The number of CEPC is influenced by an age-gender interaction. This phenomenon may explain in part the better vascular repair and relative cardiovascular protection in younger women as compared with age-matched men. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Chronic congestive heart failure is associated with a phenotypic shift of intramyocardial endothelial cells

    NARCIS (Netherlands)

    Marijianowski, M. M.; van Laar, M.; Bras, J.; Becker, A. E.

    1995-01-01

    There is evidence that patients with chronic congestive heart failure have endothelial cell-related abnormalities of the peripheral circulation and the coronary microvasculature. For that reason, we have studied the phenotypic expression of endothelial cells in hearts of patients with congestive

  6. Persistent Inflammation and Endothelial Activation in HIV-1 Infected Patients after 12 Years of Antiretroviral Therapy

    DEFF Research Database (Denmark)

    Rönsholt, Frederikke F; Ullum, Henrik; Katzenstein, Terese L

    2013-01-01

    The study investigated markers of inflammation and endothelial activation in HIV infected patients after 12 years of successful combination antiretroviral treatment (cART).......The study investigated markers of inflammation and endothelial activation in HIV infected patients after 12 years of successful combination antiretroviral treatment (cART)....

  7. Secondhand smoke exposure and endothelial stress in children and adolescents.

    Science.gov (United States)

    Groner, Judith A; Huang, Hong; Nagaraja, Haikady; Kuck, Jennifer; Bauer, John Anthony

    2015-01-01

    Links between secondhand smoke exposure and cardiovascular disease in adults are well established. Little is known about the impact of this exposure on cardiovascular status during childhood. The purpose of this study was to investigate relationships between secondhand smoke exposure in children and adolescents and cardiovascular disease risk--systemic inflammation, endothelial stress, and endothelial repair. A total of 145 subjects, aged 9 to 18 years, were studied. Tobacco smoke exposure was determined by hair nicotine level. Cardiovascular risk was assessed by markers of systemic inflammation (C-reactive protein [CRP] and adiponectin); by soluble intercellular adhesion molecule 1 (s-ICAM1), which measures endothelial activation after surface vascular injury; and by endothelial repair. This was measured by prevalence of endothelial progenitor cells (EPCs), which are bone marrow-derived cells that home preferentially to sites of vascular damage. Hair nicotine was directly correlated with s-ICAM1 (r = 0.4090, P Secondhand smoke exposure during childhood and adolescence is detrimental to vascular health because s-ICAM1 is a marker for endothelial activation and stress after vascular surface injury, and EPCs contribute to vascular repair. The fact that body mass index is also a factor in the model predicting s-ICAM1 is concerning, in that 2 risk factors may both contribute to endothelial stress. Copyright © 2015 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  8. High plasma homocyst(e)ine levels in elderly Japanese patients are associated with increased cardiovascular disease risk independently from markers of coagulation activation and endothelial cell damage.

    Science.gov (United States)

    Kario, K; Duell, P B; Matsuo, T; Sakata, T; Kato, H; Shimada, K; Miyata, T

    2001-08-01

    Elevated plasma homocyst(e)ine is a risk factor for cardiovascular disease (CVD) in many populations, but the relationship between homocyst(e)ine and CVD in Japanese subjects has been unclear. It has been hypothesized that the link between homocyst(e)ine and CVD may be mediated in part by activation of coagulation and endothelial cell injury in the elderly Japanese subjects. To further evaluate this hypothesis, the present cross-sectional study was designed to assess the relationships among plasma homocyst(e)ine concentrations, risk of CVD, and markers of coagulation (fibrinogen, FVII, F1+2, FVIIa and FXIIa) and endothelial cell damage (vWF and thrombomodulin) in 146 elderly Japanese subjects (79 healthy controls and 67 patients with CVD). The geometric mean (range) of plasma homocyst(e)ine concentrations was 10.2 (3.2--33) micromol/l in 79 Japanese healthy elderly subjects. As expected, healthy female and male elderly subjects had homocyst(e)ine levels that were 2.5 and 5.3 micromol/; higher, respectively, compared to healthy young control subjects (n=62). Healthy young and elderly men had homocyst(e)ine levels that were 1.7 and 4.5 micromol/l higher, respectively, compared to values in women. This higher plasma homocyst(e)ine levels in the elderly subjects were negatively correlated with levels of folic acid, albumin and total cholesterol, but were not significantly related to markers of coagulation or endothelial cell-damage. The results of multiple logistic regression analyses suggested that high homocyst(e)ine levels were independently related to CVD risk. In addition, levels of FVIIa, and F1+2 were significantly higher in elderly Japanese patients with CVD compared to elderly subjects without CVD, but were unrelated to plasma homocyst(e)ine concentrations. In summary, elevated plasma concentrations of homocyst(e)ine, FVIIa, and F1+2 were associated with increased risk of CVD in elderly male and female Japanese subjects, but the association between homocyst

  9. Carnosol promotes endothelial differentiation under H2O2-induced oxidative stress

    Directory of Open Access Journals (Sweden)

    Ou Shulin

    2017-01-01

    Full Text Available Oxidative stress causes deregulation of endothelial cell differentiation. Carnosol is a potent antioxidant and antiinflammatory compound. In the present study, we examined whether the antioxidant effect of carnosol might protect bone marrow stem cells against H2O2-induced oxidative stress and promote endothelial differentiation. We examined cell viability by the MTT assay; oxidative stress and apoptosis were analyzed through changes in ROS levels, apoptotic ratio and caspase-3 activity; changes in protein expression of OCT-4, Flk-1, CD31 and Nrf-2 were assessed by Western blot analysis. H2O2 treatment increased oxidative stress and reduced cell viability, while the stem cell marker OCT-4 and endothelial markers Flk-1, CD31 were significantly downregulated as a result of the treatment with H2O2. Treatment with carnosol improved the antioxidant status, increased OCT-4 expression and promoted endothelial differentiation. This study provides evidence that carnosol could increase the antioxidant defense mechanism and promote endothelial differentiation.

  10. The signature of circulating microparticles in heart failure patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Alexander E Berezin

    2016-11-01

    Full Text Available The role of pattern of circulating endothelial cell-derived microparticles, platelet-derived microparticles (PMPs, and monocyte-derived microparticles (MMPs in metabolic syndrome (MetS patients with chronic heart failure (CHF is not still understood. The aim of the study was to investigate a pattern of circulating microparticles (MPs in MetS patients with CHF in relation to neurohumoral and inflammatory activation. The study retrospectively involved 101 patients with MetS and 35 healthy volunteers. Biomarkers were measured at baseline of the study. The results of the study have shown that numerous circulating PMPs- and MMPs in subjects with MetS (with or without CHF insufficiently distinguished from level obtained in healthy volunteers. We found elevated level of CD31+/annexin V+ MPs in association with lower level of CD62E+ MPs. Therefore, we found that biomarkers of biomechanical stress serum N-terminal brain natriuretic peptide and inflammation (high-sensitive C-reactive protein ,osteoprotegerin remain statistically significant predictors for decreased CD62E+ to CD31+/annexin V+ ratio in MetS patients with CHF. In conclusion, decreased CD62E+ to CD31+/annexin V+ ratio reflected that impaired immune phenotype of MPs may be discussed as a surrogate marker of CHF development in MetS population.

  11. Arterial Injury and Endothelial Repair: Rapid Recovery of Function after Mechanical Injury in Healthy Volunteers

    Directory of Open Access Journals (Sweden)

    Lindsey Tilling

    2014-01-01

    Full Text Available Objective. Previous studies suggest a protracted course of recovery after mechanical endothelial injury; confounders may include degree of injury and concomitant endothelial dysfunction. We sought to define the time course of endothelial function recovery using flow-mediated dilation (FMD, after ischaemia-reperfusion (IR and mechanical injury in patients and healthy volunteers. The contribution of circulating CD133+/CD34+/VEGFR2+ “endothelial progenitor” (EPC or repair cells to endothelial repair was also examined. Methods. 28 healthy volunteers aged 18–35 years underwent transient forearm ischaemia induced by cuff inflation around the proximal biceps and radial artery mechanical injury induced by inserting a wire through a cannula. A more severe mechanical injury was induced using an arterial sheath and catheter inserted into the radial artery of 18 patients undergoing angiography. Results. IR and mechanical injury produced immediate impairment of FMD (from 6.5 ± 1.2% to 2.9 ± 2.2% and from 7.4 ± 2.3% to 1.5 ± 1.6% for IR and injury, resp., each P<0.001 but recovered within 6 hours and 2 days, respectively. FMD took up to 4 months to recover in patients. Circulating EPC did not change significantly during the injury/recovery period in all subjects. Conclusions. Recovery of endothelial function after IR and mechanical injury is rapid and not associated with a change in circulating EPC.

  12. Activation of Endothelial Nitric Oxide (eNOS Occurs through Different Membrane Domains in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Jason Tran

    Full Text Available Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC with cholesterol and the oxysterol 7-ketocholesterol (7KC. Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1 colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells.

  13. Angiogenesis gene expression in murine endothelial cells during post-pneumonectomy lung growth

    Directory of Open Access Journals (Sweden)

    Konerding Moritz A

    2011-07-01

    Full Text Available Abstract Although blood vessel growth occurs readily in the systemic bronchial circulation, angiogenesis in the pulmonary circulation is rare. Compensatory lung growth after pneumonectomy is an experimental model with presumed alveolar capillary angiogenesis. To investigate the genes participating in murine neoalveolarization, we studied the expression of angiogenesis genes in lung endothelial cells. After left pneumonectomy, the remaining right lung was examined on days 3, 6, 14 and 21days after surgery and compared to both no surgery and sham thoracotomy controls. The lungs were enzymatically digested and CD31+ endothelial cells were isolated using flow cytometry cell sorting. The transcriptional profile of the CD31+ endothelial cells was assessed using quantitative real-time polymerase chain reaction (PCR arrays. Focusing on 84 angiogenesis-associated genes, we identified 22 genes with greater than 4-fold regulation and significantly enhanced transcription (p

  14. Functional activities of receptors for tumor necrosis factor-alpha on human vascular endothelial cells.

    NARCIS (Netherlands)

    Paleolog, E.M.; Delasalle, S.A.; Buurman, W.A.; Feldmann, M.

    1994-01-01

    Tumor necrosis factor-alpha (TNF-alpha) plays a critical role in the control of endothelial cell function and hence in regulating traffic of circulating cells into tissues in vivo. Stimulation of endothelial cells in vitro by TNF-alpha increases the surface expression of leukocyte adhesion

  15. Recovery and well-being among Helicopter Emergency Medical Service (HEMS) pilots

    NARCIS (Netherlands)

    Radstaak, M.; Geurts, S.A.E.; Beckers, D.G.J.; Brosschot, J.F.; Kompier, M.A.J.

    2014-01-01

    This study investigated the effects of a compressed working week with high cognitive and emotional work demands within the population of Dutch Helicopter Emergency Medical Service (HEMS) pilots. Work stressors were measured and levels of well-being were examined before, during and after a series of

  16. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    Science.gov (United States)

    Westerweel, Peter E; Teraa, Martin; Rafii, Shahin; Jaspers, Janneke E; White, Ian A; Hooper, Andrea T; Doevendans, Pieter A; Verhaar, Marianne C

    2013-01-01

    Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment. Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+)Flk-1(+) EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+) hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  17. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Peter E Westerweel

    Full Text Available Circulating Endothelial Progenitor Cell (EPC levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment.Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+Flk-1(+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+ hematopoietic progenitor cells (HPC and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed.In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro.EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  18. The cost-effectiveness of physician staffed Helicopter Emergency Medical Service (HEMS) transport to a major trauma centre in NSW, Australia.

    Science.gov (United States)

    Taylor, Colman; Jan, Stephen; Curtis, Kate; Tzannes, Alex; Li, Qiang; Palmer, Cameron; Dickson, Cara; Myburgh, John

    2012-11-01

    Helicopter Emergency Medical Services (HEMS) are highly resource-intensive facilities that are well established as part of trauma systems in many high-income countries. We evaluated the cost-effectiveness of a physician-staffed HEMS intervention in combination with treatment at a major trauma centre versus ground ambulance or indirect transport (via a referral hospital) in New South Wales (NSW), Australia. Cost and effectiveness estimates were derived from a cohort of trauma patients arriving at St George Hospital in NSW, Australia during an 11-year period. Adjusted estimates of in-hospital mortality were derived using logistic regression and adjusted hospital costs were estimated through a general linear model incorporating a gamma distribution and log link. These estimates along with other assumptions were incorporated into a Markov model with an annual cycle length to estimate a cost per life saved and a cost per life-year saved at one year and over a patient's lifetime respectively in three patient groups (all patients; patients with serious injury [Injury Severity Score>12]; patients with traumatic brain injury [TBI]). Results showed HEMS to be more costly but more effective at reducing in-hospital mortality leading to a cost per life saved of $1,566,379, $533,781 and $519,787 in all patients, patients with serious injury and patients with TBI respectively. When modelled over a patient's lifetime, the improved mortality associated with HEMS led to a cost per life year saved of $96,524, $50,035 and $49,159 in the three patient groups respectively. Sensitivity analyses revealed a higher probability of HEMS being cost-effective in patients with serious injury and TBI. Our investigation confirms a HEMS intervention is associated with improved mortality in trauma patients, especially in patients with serious injury and TBI. The improved benefit of HEMS in patients with serious injury and TBI leads to improved estimated cost-effectiveness. Copyright © 2012 Elsevier

  19. Efficient Generation of Human Embryonic Stem Cell-Derived Corneal Endothelial Cells by Directed Differentiation.

    Directory of Open Access Journals (Sweden)

    Kathryn L McCabe

    Full Text Available To generate human embryonic stem cell derived corneal endothelial cells (hESC-CECs for transplantation in patients with corneal endothelial dystrophies.Feeder-free hESC-CECs were generated by a directed differentiation protocol. hESC-CECs were characterized by morphology, expression of corneal endothelial markers, and microarray analysis of gene expression.hESC-CECs were nearly identical morphologically to primary human corneal endothelial cells, expressed Zona Occludens 1 (ZO-1 and Na+/K+ATPaseα1 (ATPA1 on the apical surface in monolayer culture, and produced the key proteins of Descemet's membrane, Collagen VIIIα1 and VIIIα2 (COL8A1 and 8A2. Quantitative PCR analysis revealed expression of all corneal endothelial pump transcripts. hESC-CECs were 96% similar to primary human adult CECs by microarray analysis.hESC-CECs are morphologically similar, express corneal endothelial cell markers and express a nearly identical complement of genes compared to human adult corneal endothelial cells. hESC-CECs may be a suitable alternative to donor-derived corneal endothelium.

  20. Maternal biomarkers of endothelial dysfunction and preterm delivery.

    Directory of Open Access Journals (Sweden)

    Xinhua Chen

    Full Text Available Endothelial dysfunction is key to the development of atherosclerosis. Preterm delivery foreshadows later maternal cardiovascular disease (CVD, but it is not known if endothelial dysfunction also occurs. We prospectively measured circulating biomarkers of endothelial dysfunction in pregnant women with preterm or term delivery.We conducted a case-control study nested within a large prospective epidemiological study of young, generally healthy pregnant women. Women who delivered preterm (<37 completed weeks gestation, n = 240 and controls who delivered at term (n = 439 were included. Pregnancies complicated by preeclampsia were analyzed separately. Circulating endothelial dysfunction biomarkers included soluble intercellular adhesion molecule-1 (sICAM-1, vascular cell adhesion molecule-1 (sVCAM-1 and soluble E-selectin (sE-selectin.Elevated levels of sICAM-1 and sVCAM-1 were positively associated with preterm delivery independent of usual risk factors. At entry (∼16 wks, the adjusted odds ratio (AOR was 1.73 (95% confidence interval (CI 1.09-2.74 for the highest quartile of sICAM-1 versus the lowest quartile and for sVCAM-1 the AOR was 2.17 (95% CI 1.36-3.46. When analysis was limited to cases with a spontaneous preterm delivery, the results were unchanged. Similar results were obtained for the 3rd trimester (∼30 wks. Elevated sE-selectin was increased only in preterm delivery complicated by preeclampsia; risk was increased at entry (AOR 2.32, 95% CI 1.22-4.40 and in the 3rd trimester (AOR 3.37, 95% CI 1.78-6.39.Impaired endothelial function as indicated by increased levels of soluble molecules commonly secreted by endothelial cells is a pathogenic precursor to CVD that is also present in women with preterm delivery. Our findings underscore the need for follow-up studies to determine if improving endothelial function prevents later CVD risk in women.

  1. Isolated tumor endothelial cells maintain specific character during long-term culture

    International Nuclear Information System (INIS)

    Matsuda, Kohei; Ohga, Noritaka; Hida, Yasuhiro; Muraki, Chikara; Tsuchiya, Kunihiko; Kurosu, Takuro; Akino, Tomoshige; Shih, Shou-Ching

    2010-01-01

    Tumor angiogenesis is necessary for solid tumor progression and metastasis. Increasing evidence indicates that tumor endothelial cells (TECs) are more relevant to the study of tumor angiogenesis than normal endothelial cells (NECs) because their morphologies and gene expression are different from NECs. However, it is challenging to isolate and culture large numbers of pure ECs from tumor tissue since the percentage of ECs is only about 1-2% and tumor cells and fibroblasts easily overgrow them. In addition, there has been concern that isolated TECs may lose their special phenotype once they are dissociated from tumor cells. In this study, we have successfully purified murine TECs from four different human tumor xenografts and NECs from murine dermal tissue. Isolated ECs expressed endothelial markers, such as CD31, VE-cadherin (CD144), and endoglin (CD105), for more than 3 months after isolation. TECs maintained tumor endothelial-specific markers, such as tumor endothelial marker 8 (TEM8) and aminopeptidase N (APN), as in tumor blood vessels in vivo. In addition, TECs were more proliferative and motile than NECs. TECs showed a higher response to VEGF and higher expression of VEGF receptors-1 and -2 than NECs did. Stem cell antigen-1 was up-regulated in all four TECs, suggesting that they have a kind of stemness. Cultured TECs maintain distinct biological differences from NECs as in vivo. In conclusion, it was suggested that TECs are relevant material for tumor angiogenesis research.

  2. Endocannabinoid receptor blockade increases vascular endothelial growth factor and inflammatory markers in obese women with polycystic ovary syndrome.

    Science.gov (United States)

    Sathyapalan, Thozhukat; Javed, Zeeshan; Kilpatrick, Eric S; Coady, Anne-Marie; Atkin, Stephen L

    2017-03-01

    Animal studies suggest that cannabinoid receptor-1 (CB-1) blockade reduces inflammation and neovascularization by decreasing vascular endothelial growth factor (VEGF) levels associated with a reduction in inflammatory markers, thereby potentially reducing cardiovascular risk. To determine the impact of CB1 antagonism by rimonabant on VEGF and inflammatory markers in obese PCOS women. Randomized, open-labelled parallel study. Endocrinology outpatient clinic in a referral centre. Twenty patients with PCOS (PCOS) and biochemical hyperandrogenaemia with a body mass index of ≥30 kg/m 2 were recruited. Patients were randomized to 1·5 g daily of metformin or 20 mg daily of rimonabant. Post hoc review to detect VEGF and pro-inflammatory cytokines TNF-α, IL-1β, IL-1ra, IL-2, IL6, IL-8, IL-10 and MCP-1 before and after 12 weeks of treatment. After 12 weeks of rimonabant treatment, there was a significant increase in VEGF (99·2 ± 17·6 vs 116·2 ± 15·8 pg/ml, P weight loss. © 2016 John Wiley & Sons Ltd.

  3. Omega-3 Fatty Acid Supplementation Improves Endothelial Function in Primary Antiphospholipid Syndrome: A Small-Scale Randomized Double-Blind Placebo-Controlled Trial.

    Science.gov (United States)

    Felau, Sheylla M; Sales, Lucas P; Solis, Marina Y; Hayashi, Ana Paula; Roschel, Hamilton; Sá-Pinto, Ana Lúcia; Andrade, Danieli Castro Oliveira De; Katayama, Keyla Y; Irigoyen, Maria Claudia; Consolim-Colombo, Fernanda; Bonfa, Eloisa; Gualano, Bruno; Benatti, Fabiana B

    2018-01-01

    Endothelial cells are thought to play a central role in the pathogenesis of antiphospholipid syndrome (APS). Omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation has been shown to improve endothelial function in a number of diseases; thus, it could be of high clinical relevance in APS. The aim of this study was to evaluate the efficacy of n-3 PUFA supplementation on endothelial function (primary outcome) of patients with primary APS (PAPS). A 16-week randomized clinical trial was conducted with 22 adult women with PAPS. Patients were randomly assigned (1:1) to receive placebo (PL, n  = 11) or n-3 PUFA (ω-3, n  = 11) supplementation. Before (pre) and after (post) 16 weeks of the intervention, patients were assessed for endothelial function (peripheral artery tonometry) (primary outcome). Patients were also assessed for systemic markers of endothelial cell activation, inflammatory markers, dietary intake, international normalized ratio (INR), and adverse effects. At post, ω-3 group presented significant increases in endothelial function estimates reactive hyperemia index (RHI) and logarithmic transformation of RHI (LnRHI) when compared with PL (+13 vs. -12%, p  = 0.06, ES = 0.9; and +23 vs. -22%, p  = 0.02, ES = 1.0). No changes were observed for e-selectin, vascular adhesion molecule-1, and fibrinogen levels ( p  > 0.05). In addition, ω-3 group showed decreased circulating levels of interleukin-10 (-4 vs. +45%, p  = 0.04, ES = -0.9) and tumor necrosis factor (-13 vs. +0.3%, p  = 0.04, ES = -0.95) and a tendency toward a lower intercellular adhesion molecule-1 response (+3 vs. +48%, p  = 0.1, ES = -0.7) at post when compared with PL. No changes in dietary intake, INR, or self-reported adverse effects were observed. In conclusion, 16 weeks of n-3 PUFA supplementation improved endothelial function in patients with well-controlled PAPS. These results support a role of n-3 PUFA supplementation as an

  4. Omega-3 Fatty Acid Supplementation Improves Endothelial Function in Primary Antiphospholipid Syndrome: A Small-Scale Randomized Double-Blind Placebo-Controlled Trial

    Science.gov (United States)

    Felau, Sheylla M.; Sales, Lucas P.; Solis, Marina Y.; Hayashi, Ana Paula; Roschel, Hamilton; Sá-Pinto, Ana Lúcia; Andrade, Danieli Castro Oliveira De; Katayama, Keyla Y.; Irigoyen, Maria Claudia; Consolim-Colombo, Fernanda; Bonfa, Eloisa; Gualano, Bruno; Benatti, Fabiana B.

    2018-01-01

    Endothelial cells are thought to play a central role in the pathogenesis of antiphospholipid syndrome (APS). Omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation has been shown to improve endothelial function in a number of diseases; thus, it could be of high clinical relevance in APS. The aim of this study was to evaluate the efficacy of n-3 PUFA supplementation on endothelial function (primary outcome) of patients with primary APS (PAPS). A 16-week randomized clinical trial was conducted with 22 adult women with PAPS. Patients were randomly assigned (1:1) to receive placebo (PL, n = 11) or n-3 PUFA (ω-3, n = 11) supplementation. Before (pre) and after (post) 16 weeks of the intervention, patients were assessed for endothelial function (peripheral artery tonometry) (primary outcome). Patients were also assessed for systemic markers of endothelial cell activation, inflammatory markers, dietary intake, international normalized ratio (INR), and adverse effects. At post, ω-3 group presented significant increases in endothelial function estimates reactive hyperemia index (RHI) and logarithmic transformation of RHI (LnRHI) when compared with PL (+13 vs. −12%, p = 0.06, ES = 0.9; and +23 vs. −22%, p = 0.02, ES = 1.0). No changes were observed for e-selectin, vascular adhesion molecule-1, and fibrinogen levels (p > 0.05). In addition, ω-3 group showed decreased circulating levels of interleukin-10 (−4 vs. +45%, p = 0.04, ES = −0.9) and tumor necrosis factor (−13 vs. +0.3%, p = 0.04, ES = −0.95) and a tendency toward a lower intercellular adhesion molecule-1 response (+3 vs. +48%, p = 0.1, ES = −0.7) at post when compared with PL. No changes in dietary intake, INR, or self-reported adverse effects were observed. In conclusion, 16 weeks of n-3 PUFA supplementation improved endothelial function in patients with well-controlled PAPS. These results support a role of n-3 PUFA supplementation as an

  5. Favorable prognosis of operable non-small cell lung cancer (NSCLC) patients harboring an increased expression of tumor endothelial markers (TEMs).

    Science.gov (United States)

    Pircher, Andreas; Fiegl, Michael; Untergasser, Gerold; Heidegger, Isabel; Medinger, Michael; Kern, Johann; Hilbe, Wolfgang

    2013-08-01

    Genome analyses of endothelial cells identified genes specifically expressed by tumor endothelial cells, called tumor endothelial markers (TEMs). Currently there are no data available concerning the role of TEMs in non-small cell lung cancer (NSCLC). Therefore, the aim of this study was to investigate the role of TEMs in NSCLC in vitro and in vivo. First we evaluated the expression of various TEMs (Robo4, Clec14 and ECSCR) by qRT-PCR and Western blot analyses in three NSCLC cell lines (A549, Calu1, Colo699) and compared them to human umbilical vein endothelial cells (HUVECs), endothelial colony forming cells (ECFCs) and human bronchial epithelial cells (HBEpCs). Next the expression of TEMs was measured in resected tumor tissue of NSCLC patients (n = 63) by qRT-PCR and compared to adjacent non-cancerous lung tissue (n = 52). Further, immunohistochemical analysis of Robo4 expression in tumor tissue (n = 33) and adjacent non-cancerous tissue (n = 27) was performed. We found that NSCLC cell lines and HBEpC did not express TEMs on the mRNA level compared to HUVECs (p = 0.001). In the contrary, a significant up-regulation of Robo4 and Clec14 was found in tumor samples (Robo4 p = 0.03, Clec14 p = 0.002). Both facts clearly indicate that these proteins are allocated to the tumor stromal department. Correlation with clinical data showed that increased TEM expression correlated with prolonged overall survival of operated NSCLC patients (Robo4 high 120.5 vs. Robo4 low 47.6 months, Clec14 high 108.1 vs. Clec14 low 54.5 months and ECSCR high 120.5 vs. ECSCR low 42.2 months). In summary, we found that TEMs are overexpressed in NSCLC stromal tissue and that an increased TEM expression correlated with an increased overall survival in early stage NSCLC. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Plasma factors in severe early-onset preeclampsia do not substantially alter endothelial gene expression in vitro

    NARCIS (Netherlands)

    Donker, RB; Asgeirsdottir, SA; Gerbens, F; van Pamus, MG; Kallenberg, CGM; Meerman, GJT; Aarnoudse, JG; Molema, G

    OBJECTIVE: Systemic endothelial dysfunction is a central feature in the pathophysiology of preeclampsia. Its cell biologic and molecular basis is poorly understood. One leading hypothesis argues that endothelial dysfunction is caused by (at present largely unknown) circulating factors released from

  7. Impact of obesity control on circulating level of endothelial progenitor cells and angiogenesis in response to ischemic stimulation

    Directory of Open Access Journals (Sweden)

    Chen Yung-Lung

    2012-07-01

    Full Text Available Abstract Background and aim We tested the hypothesis that obesity reduced circulating number of endothelial progenitor cells (EPCs, angiogenic ability, and blood flow in ischemic tissue that could be reversed after obesity control. Methods 8-week-old C57BL/6J mice (n = 27 were equally divided into group 1 (fed with 22-week control diet, group 2 (22-week high fat diet, and group 3 (14-week high fat diet, followed by 8-week control diet. Critical limb ischemia (CLI was induced at week 20 in groups 2 and 3. The animals were sacrificed at the end of 22 weeks. Results Heart weight, body weight, abdominal fat weight, serum total cholesterol level, and fasting blood sugar were highest in group 2 (all p  Conclusion Obesity suppressed abilities of angiogenesis and recovery from CLI that were reversed by obesity control.

  8. Melanosomal dynamics assessed with a live-cell fluorescent melanosomal marker.

    Directory of Open Access Journals (Sweden)

    Jan M Bruder

    Full Text Available Melanocytes present in skin and other organs synthesize and store melanin pigment within membrane-delimited organelles called melanosomes. Exposure of human skin to ultraviolet radiation (UV stimulates melanin production in melanosomes, followed by transfer of melanosomes from melanocytes to neighboring keratinocytes. Melanosomal function is critical for protecting skin against UV radiation, but the mechanisms underlying melanosomal movement and transfer are not well understood. Here we report a novel fluorescent melanosomal marker, which we used to measure real-time melanosomal dynamics in live human epidermal melanocytes (HEMs and transfer in melanocyte-keratinocyte co-cultures. A fluorescent fusion protein of Ocular Albinism 1 (OA1 localized to melanosomes in both B16-F1 cells and HEMs, and its expression did not significantly alter melanosomal distribution. Live-cell tracking of OA1-GFP-tagged melanosomes revealed a bimodal kinetic profile, with melanosomes exhibiting combinations of slow and fast movement. We also found that exposure to UV radiation increased the fraction of melanosomes exhibiting fast versus slow movement. In addition, using OA1-GFP in live co-cultures, we monitored melanosomal transfer using time-lapse microscopy. These results highlight OA1-GFP as a specific and effective melanosomal marker for live-cell studies, reveal new aspects of melanosomal dynamics and transfer, and are relevant to understanding the skin's physiological response to UV radiation.

  9. More pronounced effect of acute exercise-induced increase in circulating inflammatory markers in obese compared to lean subjects

    DEFF Research Database (Denmark)

    Christiansen, Tore; Paulsen, Søren Kildeberg; Bruun, Jens Meldgaard

    2010-01-01

    in circulation, and on gene expression on these infammatory marker in skeletal muscle (SM) and adipose tissue (AT) biopsies. Material and Methods: 15 lean males and females (BMI 22.4±2 kg/m2) and 16 obese males and females (BMI 31.6±3 kg/m2) exercised for 120 minutes by ergometer bicycling at moderate intensity......Objective: Exercise modulates the immune system and in young males acute exercise has been found associated with increased systemic level of infam-matory markers such as IL-6 and IL-8. In this study we investigated the impact of obesity on the exercise induced release of infammatory markers...... (55-60% of maximal heart rate). Blood samples were obtained at baseline (T0), after 60 minutes of bicycling (T=60), after 120 minutes of bicycling (T=120), whereas biopsies from AT and SM were obtained at T0 and T120. Results: Divided into weight-status, plasma levels of IL-8 and TNFα were at T=120...

  10. A gender difference in circulating neutrophils in malnourished patients with COPD

    Directory of Open Access Journals (Sweden)

    Sven Larsson

    2011-01-01

    Full Text Available Sven Larsson1, Anita Nordenson1, Pernilla Glader1, Shigemi Yoshihara2, Anders Lindén1, Frode Slinde31Department of Internal Medicine/Respiratory Medicine and Allergology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; 2Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan; 3Department of Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SwedenBackground: Circulating markers of inflammation in chronic obstructive pulmonary disease (COPD may correlate to disease progression and extrapulmonary complications such as malnourishment. However, surprisingly little is known about gender-related differences for circulating inflammatory markers in COPD.Purpose: To characterize differences in circulating markers of inflammation in malnourished female and male patients with COPD.Subjects: Thirty female and 11 male patients with a clinical diagnosis of COPD and malnourishment were examined. A group of control subjects without evidence of COPD was recruited for comparison of some variables.Methods: Blood samples were drawn, and the following parameters were studied: leukocytes and differential counts, C-reactive protein (CRP, tumor necrosis factor-α, interleukin (IL-6 and IL-8, myeloperoxidase (MPO, neutrophil elastase (NE, intracellular adhesion molecule-1, vascular endothelial adhesion molecule-1, and E-selectin.Results: The mean neutrophil concentration was significantly (P = 0.019 higher in female (4.5 × 109/L than in male patients with COPD (3.5 × 109/L and significantly higher than in female control subjects (3.1 × 109/L (P , 0.01, n = 85. The mean CRP values were considerably higher in female (4.9 mg/mL than in male patients with COPD (1.5 mg/mL, but the difference was not statistically significant (P = 0.20. The mean concentrations of IL-6 and IL-8 tended to be higher in female than in male patients with COPD, but these differences did not reach statistical

  11. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases.

    Science.gov (United States)

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-11-01

    Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-alpha) and also induced allogeneic naive CD4(+) T cells to proliferate and to produce type 1 cytokines such as interferon-gamma and tumor necrosis factor-alpha. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and

  12. High-intensity Interval training enhances mobilization/functionality of endothelial progenitor cells and depressed shedding of vascular endothelial cells undergoing hypoxia.

    Science.gov (United States)

    Tsai, Hsing-Hua; Lin, Chin-Pu; Lin, Yi-Hui; Hsu, Chih-Chin; Wang, Jong-Shyan

    2016-12-01

    Exercise training improves endothelium-dependent vasodilation, whereas hypoxic stress causes vascular endothelial dysfunction. Monocyte-derived endothelial progenitor cells (Mon-EPCs) contribute to vascular repair process by differentiating into endothelial cells. This study investigates how high-intensity interval (HIT) and moderate-intensity continuous (MCT) exercise training affect circulating Mon-EPC levels and EPC functionality under hypoxic condition. Sixty healthy sedentary males were randomized to engage in either HIT (3-min intervals at 40 and 80 % VO 2max for five repetitions, n = 20) or MCT (sustained 60 % VO 2max , n = 20) for 30 min/day, 5 days/week for 6 weeks, or to a control group (CTL) that did not received exercise intervention (n = 20). Mon-EPC characteristics and EPC functionality under hypoxic exercise (HE, 100 W under 12 % O 2 ) were determined before and after HIT, MCT, and CTL. The results demonstrated that after the intervention, the HIT group exhibited larger improvements in VO 2peak , estimated peak cardiac output (Q C ), and estimated peak perfusions of frontal cerebral lobe (Q FC ) and vastus lateralis (Q VL ) than the MCT group. Furthermore, HIT (a) increased circulating CD14 ++ /CD16 - /CD34 + /KDR + (Mon-1 EPC) and CD14 ++ /CD16 + /CD34 + /KDR + (Mon-2 EPC) cell counts, (b) promoted the migration and tube formation of EPCs, (c) diminished the shedding of endothelial (CD34 - /KDR + /phosphatidylserine + ) cells, and (d) elevated plasma nitrite plus nitrate, stromal cell-derived factor-1, matrix metalloproteinase-9, and vascular endothelial growth factor-A concentrations at rest or following HE, compared to those of MCT. In addition, Mon-1 and -2 EPC counts were directly related to VO 2peak and estimated peak Q C , Q FC , and Q VL . HIT is superior to MCT for improving hemodynamic adaptation and Mon-EPC production. Moreover, HIT effectively enhances EPC functionality and suppresses endothelial injury undergoing hypoxia.

  13. Effects of gastric bypass surgery followed by supervised physical training on inflammation and endothelial function

    DEFF Research Database (Denmark)

    Stolberg, Charlotte Røn; Mundbjerg, Lene Hymøller; Funch-Jensen, Peter

    2018-01-01

    Background and aims: Obesity and physical inactivity are both associated with low-grade inflammation and endothelial dysfunction. Bariatric surgery improves markers of inflammation and endothelial function, but it is unknown if physical training after bariatric surgery can improve these markers...... even further. Therefore, we aimed to investigate the effects of Roux-en-Y gastric bypass (RYGB) followed by physical training on markers of low-grade inflammation and endothelial function. Methods: Sixty patients approved for RYGB underwent examinations pre-surgery, 6, 12, and 24 months post......-surgery. Six months post-surgery, they were randomized 1:1 to an intervention group or a control group. The interventions consisted of two weekly sessions of supervised moderate intensity physical training for a period of 26 weeks. Fasting blood samples were analyzed for concentrations of interleukin 6 (IL-6...

  14. Ultrastructural studies of the hemocytes of Panstrongylus megistus (Hemiptera: Reduvidae Ultra-estrutura dos hemócitos de Panstrongylus megistus (Hemiptera: Reduviidae

    Directory of Open Access Journals (Sweden)

    Margherita A. Barracco

    1989-06-01

    Full Text Available Ultrastructural analyses revealed the presence of six hemocyte types in the hemolymph of Panstrogylus megistus, partially confirming our previous results obtained through light microscopy. Prohemocytes: small, round hemocytes with a thin cytoplasm layer, espcieally rich in free ribosomes and poor in membranous systems. Plasmatocytes: polymorphic cells, whose cytoplasm contains many lysosomes and a well developed rough endoplasmic reticulum (RER.They are extremely phagocytic. Sometimes, they show a large vacuolation. Granulocytes: granular hemocytes whose granules show different degrees of electrondensity. Most of them, have an internal structuration. Coagulocytes: oval or elongated hemocytes, which show pronounced perinuclear cisternae as normally observed in coagulocytes. The cytoplasm is usually electrondense, poor in membranous systems and contains many labile granules. Oenocytoids: large and very stable hemocytes, whose homogeneous cytoplasme is rich in loose ribosomes and poor in membranous systems. Adipohemocytes: large cells, containing several characteristic lipid droplets. The cytoplasm is also rich in glycogen, RER and large mitochondria. The total and differential hemocyte count (THC and DHC were also calculated for this reduviid. THC increases from 2,900 hemocytes/cubic millimeter of hemolymph in the 4th intar to 4,350 in the 5th and then, decreases to 1,950 in the adults. Plasmatocytes and coagulocytes are the predominant hemocyte types.Estudos ao microscópio eletrônico de transmissão revelaram a presença de seis tipos de hemócitos na hemolinfa de Panstrongylus megistus. Estes resultados confirmam parcialmente os obtidos anteriormente através da microscopia de luz. Pró-hemócitos: células pequenas e arredondadas, cuja delgada faixa citoplasmática é especialmente rica em ribossomos livres e pobre em sistemas membranosos. Plasmatócitos: células polimórficas, cujo citoplasma caracteriza-se por um retículo endoplasm

  15. [Validation of the Omron HEM-650 wrist blood pressure device using the British Hypertension Society protocol in emergency patients in Hong Kong].

    Science.gov (United States)

    Hung, Kevin KC; Lai, W Y; Cocks, Robert A; Rainer, Timothy H; Graham, Colin A

    2015-10-01

    Automated wrist cuff blood pressure (BP) devices are more compact and easier to use, particularly when access to the upper arm is restricted, for example in emergencies. We tested the Omron HEM-650 wrist device using the validation criteria of the British Hypertension Society (BHS) protocol in a major emergency department (ED) in Hong Kong. 85 patients had three measurements each by both the Omron HEM-650 wrist device and the mercury sphygmomanometer. The conventional automated BP with arm cuff was also measured using an oscillometric (Colin BP-88S NXT) device for comparison. The Omron HEM-650 achieved a grade B for both systolic and diastolic BP and demonstrated acceptable accuracy and reliability in Chinese patients in the emergency setting. The Omron HEM 650 wrist device can be recommended for use in adult emergency patients. Further research is warranted for its use in pregnant women and critically ill patients.

  16. Endothelial progenitor cell mobilization and increased intravascular nitric oxide in patients undergoing cardiac rehabilitation.

    Science.gov (United States)

    Paul, Jonathan D; Powell, Tiffany M; Thompson, Michael; Benjamin, Moshe; Rodrigo, Maria; Carlow, Andrea; Annavajjhala, Vidhya; Shiva, Sruti; Dejam, Andre; Gladwin, Mark T; McCoy, J Philip; Zalos, Gloria; Press, Beverly; Murphy, Mandy; Hill, Jonathan M; Csako, Gyorgy; Waclawiw, Myron A; Cannon, Richard O

    2007-01-01

    We investigated whether cardiac rehabilitation participation increases circulating endothelial progenitor cells (EPCs) and benefits vasculature in patients already on stable therapy previously shown to augment EPCs and improve endothelial function. Forty-six of 50 patients with coronary artery disease completed a 36-session cardiac rehabilitation program: 45 were treated with HMG-CoA reductase inhibitor (statin) therapy > or = 1 month (average baseline low-density lipoprotein cholesterol = 81 mg/dL). Mononuclear cells isolated from blood were quantified for EPCs by flow cytometry (CD133/VEGFR-2 cells) and assayed in culture for EPC colony-forming units (CFUs). In 23 patients, EPCs were stained for annexin-V as a marker of apoptosis, and nitrite was measured in blood as an indicator of intravascular nitric oxide. Endothelial progenitor cells increased from 35 +/- 5 to 63 +/- 10 cells/mL, and EPC-CFUs increased from 0.9 +/- 0.2 to 3.1 +/- 0.6 per well (both P < .01), but 11 patients had no increase in either measure. Those patients whose EPCs increased from baseline showed significant increases in nitrite and reduction in annexin-V staining (both P < .01) versus no change in patients without increase in EPCs. Over the course of the program, EPCs increased prior to increase in nitrite in the blood. Cardiac rehabilitation in patients receiving stable statin therapy and with low-density lipoprotein cholesterol at goal increases EPC number, EPC survival, and endothelial differentiation potential, associated with increased nitric oxide in the blood. Although this response was observed in most patients, a significant minority showed neither EPC mobilization nor increased nitric oxide in the blood.

  17. A novel minimally-invasive method to sample human endothelial cells for molecular profiling.

    Directory of Open Access Journals (Sweden)

    Stephen W Waldo

    Full Text Available The endothelium is a key mediator of vascular homeostasis and cardiovascular health. Molecular research on the human endothelium may provide insight into the mechanisms underlying cardiovascular disease. Prior methodology used to isolate human endothelial cells has suffered from poor yields and contamination with other cell types. We thus sought to develop a minimally invasive technique to obtain endothelial cells derived from human subjects with higher yields and purity.Nine healthy volunteers underwent endothelial cell harvesting from antecubital veins using guidewires. Fluorescence-activated cell sorting (FACS was subsequently used to purify endothelial cells from contaminating cells using endothelial surface markers (CD34/CD105/CD146 with the concomitant absence of leukocyte and platelet specific markers (CD11b/CD45. Endothelial lineage in the purified cell population was confirmed by expression of endothelial specific genes and microRNA using quantitative polymerase chain reaction (PCR.A median of 4,212 (IQR: 2161-6583 endothelial cells were isolated from each subject. Quantitative PCR demonstrated higher expression of von Willebrand Factor (vWF, P<0.001, nitric oxide synthase 3 (NOS3, P<0.001 and vascular cell adhesion molecule 1 (VCAM-1, P<0.003 in the endothelial population compared to similarly isolated leukocytes. Similarly, the level of endothelial specific microRNA-126 was higher in the purified endothelial cells (P<0.001.This state-of-the-art technique isolates human endothelial cells for molecular analysis in higher purity and greater numbers than previously possible. This approach will expedite research on the molecular mechanisms of human cardiovascular disease, elucidating its pathophysiology and potential therapeutic targets.

  18. Lymphatic endothelial cell line (CH3) from a recurrent retroperitoneal lymphangioma.

    Science.gov (United States)

    Way, D; Hendrix, M; Witte, M; Witte, C; Nagle, R; Davis, J

    1987-09-01

    An endothelial cell line derived from a massive recurrent chyle-containing retroperitoneal lymphangioma was isolated in monolayer culture. Scanning and transmission electron microscopy and immunohistochemistry confirmed a close resemblance to blood vascular endothelium with typical cobblestone morphology, positive immunofluorescence staining for endothelial marker Factor VIII-associated antigen and fibronectin, and prominent Weibel-Palade bodies. The endothelial cells also exhibited other ultrastructural features characteristic of lymphatic endothelium, including sparse microvillous surface projections, overlapping intercellular junctions, and abundant intermediate filaments. This endothelial cell line represents a new source of proliferating lymphatic endothelium for future study, including structural and functional comparison to blood vascular endothelium.

  19. Comparison of endothelial progenitor cells in Parkinson's disease patients treated with levodopa and levodopa/COMT inhibitor.

    Directory of Open Access Journals (Sweden)

    Phil Hyu Lee

    Full Text Available BACKGROUND: Levodopa treatment in Parkinson's disease (PD increases in serum homocysteine levels due to its metabolism via catechol O-methyltransferase. Endothelial progenitor cells (EPCs have the capacity to differentiate into mature endothelial cells and are markers for endothelial functions and cardiovascular risks. Along with traditional vascular risk factors, hyperhomocysteinemia is known to decrease the level of EPCs. In the present study, we hypothesized that that levodopa-induced hyperhomocysteinemia leads to a change in EPC levels. METHODOLOGY/PRINCIPAL FINDINGS: We prospectively enrolled PD patients who had been prescribed either levodopa/carbidopa (PD-L group, n = 28 or levodopa/carbidopa/COMT inhibitor (PD-LC group, n = 25 for more than 1 year. The number of circulating EPCs was measured by flow cytometry using dual staining of anti-CD34 and anti-KDR antibodies. The EPCs were divided into tertiles based on their distributions and a logistic regression analysis was used to estimate independent predictors of the highest tertile of EPCs. The number of endothelial progenitor cells was significantly decreased in PD-L patients (118±99/mL compared with either PD-LC patients (269±258/mL, p = 0.007 or controls (206±204/mL, p = 0.012. The level of homocysteine was significantly increased in PD-L patients (14.9±5.3 µmol/L compared with either PD-LC patients (11.9±3.0 µmol/L, p = 0.028 or controls (11.1±2.5 µmol/L, p = 0.012. The level of homocysteine was negatively correlated with endothelial progenitor cell levels (r = -0.252, p = 0.028 and was an independent predictor of the highest tertile of endothelial progenitor cell levels (OR; 0.749 [95% CI: 0.584-0.961]. CONCLUSIONS/SIGNIFICANCE: These data indicate that a higher consumption of EPC for restoration of endothelial damage may be associated with chronic levodopa treatment in PD patients.

  20. Endothelial remodelling and intracellular calcium machinery.

    Science.gov (United States)

    Moccia, F; Tanzi, F; Munaron, L

    2014-05-01

    Rather being an inert barrier between vessel lumen and surrounding tissues, vascular endothelium plays a key role in the maintenance of cardiovascular homeostasis. The de-endothelialization of blood vessels is regarded as the early event that results in the onset of severe vascular disorders, including atherosclerosis, acute myocardial infarction, brain stroke, and aortic aneurysm. Restoration of the endothelial lining may be accomplished by the activation of neighbouring endothelial cells (ECs) freed by contact inhibition and by circulating endothelial progenitor cells (EPCs). Intracellular Ca(2+) signalling is essential to promote wound healing: however, the molecular underpinnings of the Ca(2+) response to injury are yet to be fully elucidated. Similarly, the components of the Ca(2+) toolkit that drive EPC incorporation into denuded vessels are far from being fully elucidated. The present review will survey the current knowledge on the role of Ca(2+) signalling in endothelial repair and in EPC activation. We propose that endothelial regeneration might be boosted by intraluminal release of specific Ca(2+) channel agonists or by gene transfer strategies aiming to enhance the expression of the most suitable Ca(2+) channels at the wound site. In this view, connexin (Cx) channels/hemichannels and store-operated Ca(2+) entry (SOCE) stand amid the most proper routes to therapeutically induce the regrowth of denuded vessels. Cx stimulation might trigger the proliferative and migratory behaviour of ECs facing the lesion site, whereas activation of SOCE is likely to favour EPC homing to the wounded vessel.

  1. Triazole RGD antagonist reverts TGFβ1-induced endothelial-to-mesenchymal transition in endothelial precursor cells.

    Science.gov (United States)

    Bianchini, Francesca; Peppicelli, Silvia; Fabbrizzi, Pierangelo; Biagioni, Alessio; Mazzanti, Benedetta; Menchi, Gloria; Calorini, Lido; Pupi, Alberto; Trabocchi, Andrea

    2017-01-01

    Fibrosis is the dramatic consequence of a dysregulated reparative process in which activated fibroblasts (myofibroblasts) and Transforming Growth Factor β1 (TGFβ1) play a central role. When exposed to TGFβ1, fibroblast and epithelial cells differentiate in myofibroblasts; in addition, endothelial cells may undergo endothelial-to-mesenchymal transition (EndoMT) and actively participate to the progression of fibrosis. Recently, the role of αv integrins, which recognize the Arg-Gly-Asp (RGD) tripeptide, in the release and signal transduction activation of TGFβ1 became evident. In this study, we present a class of triazole-derived RGD antagonists that interact with αvβ3 integrin. Above different compounds, the RGD-2 specifically interferes with integrin-dependent TGFβ1 EndoMT in Endothelial Colony-Forming Cells (ECPCs) derived from circulating Endothelial Precursor Cells (ECPCs). The RGD-2 decreases the amount of membrane-associated TGFβ1, and reduces both ALK5/TGFβ1 type I receptor expression and Smad2 phosphorylation in ECPCs. We found that RGD-2 antagonist reverts EndoMT, reducing α-smooth muscle actin (α-SMA) and vimentin expression in differentiated ECPCs. Our results outline the critical role of integrin in fibrosis progression and account for the opportunity of using integrins as target for anti-fibrotic therapeutic treatment.

  2. Validation of the Omron HEM-7320-LA, upper arm blood pressure monitor with Intelli Wrap Technology Cuff HEM-FL1 for self-measurement and clinic use according to the European Society of Hypertension International Protocol revision 2010 in the Mexican population.

    Science.gov (United States)

    Grover-Páez, Fernando; Cardona-Muñoz, Ernesto G; Cardona-Müller, David; Guzmán-Saldívar, Víctor H; Rodríguez-De la Cerda, Mariana; Jiménez-Cázarez, Mayra B; Totsuka-Sutto, Sylvia E; Alanis-Sánchez, Guillermo A; Ramos-Becerra, Carlos G

    2017-12-01

    The aim of this study was to determine the accuracy of the Omron HEM-7320-LA with Intelli Wrap technology cuff HEM-FL1 for self-measurement and clinic blood pressure (BP) measurement according to the European Society of Hypertension International Protocol revision 2010. The evaluation was performed in 39 individuals. The mean age of the participants was 47.9±14 years; systolic BP was 145.2±24.3 mmHg (range: 97-190), diastolic BP was 90.9±12.9 mmHg (range: 68-120), and arm circumference was 30.8±4 cm (range: 25-38.5). The device successfully fulfilled the established criteria of the validation protocol. The device overestimated systolic BP by 0.6±5.7 mmHg and diastolic BP by 2.2±5.1 mmHg. The specially designed cuff HEM-FL1 to cover a broad range of arm circumferences and self-placement fulfilled the requirements of the International Protocol.

  3. Analysis of Circulating Vascular Endothelial Growth Factor and Its Soluble Receptors in Patients with Different Forms of Chronic Urticaria

    Directory of Open Access Journals (Sweden)

    Julia Jagodzinska

    2015-01-01

    Full Text Available Background. Vascular endothelial growth factor (VEGF is a powerful enhancer of vascular permeability and inflammatory response; however its significance in chronic urticaria is poorly recognised. Aim. To compare free circulating levels of VEGF and its soluble receptors (sVEGFR1 and VEGFR2 in patients with different forms of chronic urticaria. Methods. The concentrations of VEGF and its receptors in plateletpoor plasma (PPP/plasma were measured using enzyme-linked immunosorbent assay in chronic urticaria: (1 chronic spontaneous urticaria (CSU with positive autologous serum skin test (ASST, (2 CSU with negative response to ASST, (3 CSU with concomitant euthyroid Hashimoto’s thyroiditis (CSU/Hashimoto, (4 delayed pressure urticaria (DPU, and the healthy subjects. Results. There were no significant differences in VEGF concentration in PPP between CSU groups and the healthy subjects. Contrary, VEGF concentration was significantly higher in DPU and CSU/Hashimoto patients as compared with the healthy subjects and CSU groups. Furthermore, VEGF value in CSU/Hashimoto patients during the remission was similar to that of the active period and significantly higher than the healthy subjects; VEGF concentration was significantly correlated with TSH. Plasma concentrations of sVEGF1 and sVEGF2 were similar in chronic urticaria patients and the healthy subjects. Conclusions. Increased free circulating VEGF concentration may result from the urticarial process itself as well as concomitant Hashimoto’s thyroiditis.

  4. Detection and Quantification of Vascular Endothelial Growth Factor Receptor Tyrosine Kinases in Primary Human Endothelial Cells.

    Science.gov (United States)

    Fearnley, Gareth W; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-01-01

    Proteins differ widely in their pattern of expression depending on organism, tissue, and regulation in response to changing conditions. In the mammalian vasculature, the endothelium responds to vascular endothelial growth factors (VEGFs) via membrane-bound receptor tyrosine kinases (VEGFRs) to modulate many aspects of vascular physiology including vasculogenesis, angiogenesis, and blood pressure. Studies on VEGFR biology are thus dependent on detecting expression levels in different cell types and evaluating how changes in protein levels correlate with changing conditions including circulating VEGF levels. Here, we present a robust immunoblot-based protocol for detecting and quantifying VEGFRs in human endothelial cells. Using internal and external standards, we can rapidly evaluate receptor copy number and assess how this is altered in response to the cellular environment.

  5. Circulating fibrosis markers, eosinophil cationic protein and eosinophil protein X in patients with Wuchereria bancrofti infection: association with clinical status

    Directory of Open Access Journals (Sweden)

    Esterre P.

    2006-06-01

    Full Text Available We measured the concentrations of several circulating fibrosis markers (type I collagen I, type III procollagen, hyaluronan and eosinophil granule proteins (ECP and EPX in lymphatic filariasis patients to investigate their relationship with clinical, parasitological and immunological data. This study was conducted in Polynesian patients with various stages of the disease (acute lymphangitis, chyluria, hydrocoele, elephantiasis, a closely related microbial lymphangitis and endemic controls. We observed modifications of the different markers in this pathology. Serum type I collagen and PIIINP were decreased. Serum hyaluronan, linked to perilymphatic granulomatous inflammation, was significantly increased in acute lymphangitis and elephantiasis patients. Serum ECP was also increased, at the limit of significance in our sample, in elephantiasis patients. These two last markers, already validated in another helminth disease, schistosomiasis, have potential interest in terms of follow-up of morbidity in these parasitic diseases.

  6. CURRENT METHODS OF ENDOTHELIAL DYSFUNCTION ASSESSMENT AND THEIR POSSIBLE USE IN THE PRACTICAL MEDICINE

    Directory of Open Access Journals (Sweden)

    A. V. Shabrov

    2016-01-01

    Full Text Available A review contains a description of the most common methods of evaluation and monitoring of "endothelial dysfunction" that are assessed in terms of their information content and applicability in the practice of medicine. The term "endothelial function" is interpreted primarily as a function of the regulation of capillary blood flow, carried out by the expense of the dynamic change of the phase of vasoconstriction and vasodilatation in vessels of resistive type (in accordance with the changing needs of cellular metabolism. Assessment of endothelial dysfunction is understood as a generalized indicator of the extent and nature of violations of the regulation of peripheral circulation. It includes an assessment of imbalances between endotheliumdependent vasoconstrictor and vasodilating factors or mismatch of the local and central regulation of capillary blood flow in response to various functional tests or other effects (eg, cold test, or test with local ischemia. All methods of endothelial dysfunction assessment in the survey are divided into invasive and non-invasive. The main feature of invasive methods lies in the direct effect on the endothelium of the coronary or other vessels by introducing into these vessels vasoactive substances such as acetylcholine. Response to the test (vasoconstriction or vasodilation is evaluated by coronary angiography or by ultrasound. Non-invasive methods of the assessment of endothelial dysfunction or functions of regulation of the peripheral circulation are regarded as the most promising for widespread use. There are two basic methods that underlie functional tests: methods PAT (peripheral arterial tone and PHG (polyhepatography. Assessment of endothelial dysfunction in many modern scientific researches is important. They are regarded as the causative factors of many different diseases. Such assessments can be useful in everyday medical practice. Assessment of endothelial function provides the clinician with

  7. A role for activated endothelial cells in red blood cell clearance: implications for vasopathology

    DEFF Research Database (Denmark)

    Fens, Marcel H A M; van Wijk, Richard; Andringa, Grietje

    2012-01-01

    with endothelial cells, marked erythrophagocytosis occurred in the presence of lactadherin under both static and flow conditions. As a consequence, intracellular organization was disturbed and endothelial cells were seen to change shape (‘rounding up’). Increased expression of apoptotic markers indicated...

  8. Endothelial dysfunction, vascular disease and stroke: the ARTICO study.

    Science.gov (United States)

    Roquer, J; Segura, T; Serena, J; Castillo, J

    2009-01-01

    Endothelial dysfunction is a fundamental step in the atherosclerotic disease process. Its presence is a risk factor for the development of clinical events, and may represent a marker of atherothrombotic burden. Also, endothelial dysfunction contributes to enhanced plaque vulnerability, may trigger plaque rupture, and favors thrombus formation. The assessment of endothelial vasomotion is a useful marker of atherosclerotic vascular disease. There are different methods to assess endothelial function: endothelium-dependent vasodilatation brachial flow-mediated dilation, cerebrovascular reactivity to L-arginine, and the determination of some biomarkers such as microalbuminuria, platelet function, and C-reactive protein. Endothelial dysfunction has been observed in stroke patients and has been related to stroke physiopathology, stroke subtypes, clinical severity and outcome. Resting ankle-brachial index (ABI) is also considered an indicator of generalized atherosclerosis, and a low ABI is associated with an increase in stroke incidence in the elderly. Despite all these data, there are no studies analyzing the predictive value of ABI for new cardiovascular events in patients after suffering an acute ischemic stroke. ARTICO is an ongoing prospective, observational, multicenter study being performed in 50 Spanish hospitals. The aim of the ARTICO study is to evaluate the prognostic value of a pathological ABI (ARTICO study will increase the knowledge of patient outcome after ischemic stroke and may help to improve our ability to detect patients at high risk of stroke recurrence or major cardiovascular events. (c) 2009 S. Karger AG, Basel.

  9. The High Energy Materials Science Beamline (HEMS) at PETRA III

    International Nuclear Information System (INIS)

    Schell, Norbert; King, Andrew; Beckmann, Felix; Ruhnau, Hans-Ulrich; Kirchhof, Rene; Kiehn, Ruediger; Mueller, Martin; Schreyer, Andreas

    2010-01-01

    The HEMS Beamline at the German high-brilliance synchrotron radiation storage ring PETRA III is fully tunable between 30 and 250 keV and optimized for sub-micrometer focusing. Approximately 70 % of the beamtime will be dedicated to Materials Research. Fundamental research will encompass metallurgy, physics and chemistry with first experiments planned for the investigation of the relationship between macroscopic and micro-structural properties of polycrystalline materials, grain-grain-interactions, and the development of smart materials or processes. For this purpose a 3D-microsctructure-mapper has been designed. Applied research for manufacturing process optimization will benefit from high flux in combination with ultra-fast detector systems allowing complex and highly dynamic in-situ studies of micro-structural transformations, e.g. during welding processes. The beamline infrastructure allows accommodation of large and heavy user provided equipment. Experiments targeting the industrial user community will be based on well established techniques with standardized evaluation, allowing full service measurements, e.g. for tomography and texture determination. The beamline consists of a five meter in-vacuum undulator, a general optics hutch, an in-house test facility and three independent experimental hutches working alternately, plus additional set-up and storage space for long-term experiments. HEMS is under commissioning as one of the first beamlines running at PETRA III.

  10. The Effects of Inhaled Nickel Nanoparticles on Murine Endothelial Progenitor Cells

    Science.gov (United States)

    Liberda, Eric N.

    Introduction. Particulate air pollution, specifically nickel found on or in particulate matter, has been associated with an increased risk of mortality in human population studies and can cause increases in vascular inflammation, generate reactive oxygen species, alter vasomotor tone, and potentiate atherosclerosis in murine exposures. With the discovery of endothelial progenitor cells (EPCs), a door has been opened which may explain these observed cardiovascular effects associated with inhaled air particles and nickel exposure. In order to further quantify the effects of inhaled nickel nanoparticles and attempt to elucidate how the observed findings from other studies may occur, several whole body inhalation exposure experiments to nickel nanoparticles were performed. Methods. Following whole body exposure to approximately 500mug/m3 of nickel nanoparticles for 5 hrs, bone marrow EPCs from C57BL/6 mice were isolated. EPCs were harvested for their RNA or used in a variety of assays including chemotaxis, tube formation, and proliferation. Gene expression was assessed for important receptors involved in EPC mobilization and homing using RT-PCR methods. EPCs, circulating endothelial progenitor cells, circulating endothelial cells (CECs), and endothelial microparticles (EMPs) were quantified on a BD FACSCalibur to examine endothelial damage and repair associated with the inhalation exposure. Plasma proteins were assessed using the 2D DIGE proteomic approach and commercially available ELISAs. Results and Conclusions. Exposure to inhaled nickel nanoparticles significantly increased both bone marrow EPCs as well as their levels in circulation. CECs were significantly upregulated suggesting that endothelial damage occurred due to the exposure. There was no significant difference in EMPs between the two groups. Tube formation and chemotaxis, but not proliferation, of bone marrow EPCs was impaired in the nickel nanoparticle exposed group. This decrease in EPC function

  11. Immunohistochemical Examination on the Distribution of Cells Expressed Lymphatic Endothelial Marker Podoplanin and LYVE-1 in the Mouse Tongue Tissue

    Science.gov (United States)

    Noda, Yuya; Amano, Ikuko; Hata, Minoru; Kojima, Hiroshi; Sawa, Yoshihiko

    2010-01-01

    The clinical study for lingual disease requires the detailed investigation of the lingual lymphatic network and lymphatic marker-positive cells. Recently, it has been reported that several tissue cells and leukocytes express lymphatic markers, LYVE-1 and podoplanin. This study was aimed to clarify the lingual distribution of cells expressing LYVE-1 and podoplanin. In the mouse tongue, podoplanin is expressed in nerve sheaths, lingual gland myoepithelial cells, and lymphatic vessels. LYVE-1 is expressed in the macrophage marker Mac-1-positive cells as well as lymphatic vessels, while factor-VIII was detected in only blood endothelial cells. α-SMA was detected in vascular smooth muscle and myoepithelial cells. Therefore, identification of lymphatic vessels in lingual glands, the combination of LYVE-1 and factor-VIII, or LYVE-1 and Mac-1 is useful because myoepithelial cells express podoplanin and α-SMA. The immunostaining of factor-VIII on lymphatic vessels was masked by the immunostaining to LYVE-1 or podoplanin because lymphatic vessels express factor-VIII to a far lesser extent than blood vessels. Therefore, except for the salivary glands, the combination of podoplanin and α-SMA, or factor-VIII is useful to identify lymphatic vessels and blood vessels with smooth muscle, or blood capillaries. PMID:20514293

  12. The Prognostic Value of Haplotypes in the Vascular Endothelial Growth Factor

    DEFF Research Database (Denmark)

    Hansen, Torben Frøstrup; Spindler, Karen-Lise Garm; Andersen, Rikke Fredslund

    2010-01-01

    Abstract: New prognostic markers in patients with colorectal cancer (CRC) are a prerequisite for individualized treatment. Prognostic importance of single nucleotide polymorphisms (SNPs) in the vascular endothelial growth factor A (VEGF-A) gene has been proposed. The objective of the present study...... using the PHASE program. The prognostic influence was evaluated using Kaplan-Meir plots and log rank tests. Cox regression method was used to analyze the independent prognostic importance of different markers. All three SNPs were significantly related to survival. A haplotype combination, responsible...... findings in a second and independent cohort. Haplotype combinations call for further investigation. Keywords: colorectal neoplasm; single nucleotide polymorphisms; haplotypes; vascular endothelial growth factor A; survival...

  13. Postpartum Circulating Markers of Inflammation and the Systemic Acute-Phase Response After Early-Onset Preeclampsia.

    Science.gov (United States)

    van Rijn, Bas B; Bruinse, Hein W; Veerbeek, Jan H; Post Uiterweer, Emiel D; Koenen, Steven V; van der Bom, Johanna G; Rijkers, Ger T; Roest, Mark; Franx, Arie

    2016-02-01

    Preeclampsia is an inflammatory-mediated hypertensive disorder of pregnancy and seems to be an early indicator of increased cardiovascular risk, but mechanisms underlying this association are unclear. In this study, we identified levels of circulating inflammatory markers and dynamic changes in the systemic acute-phase response in 44 women with a history of severe early-onset preeclampsia, compared with 29 controls with only uneventful pregnancies at 1.5 to 3.5 years postpartum. Models used were in vivo seasonal influenza vaccination and in vitro whole-blood culture with T-cell stimulants and the toll-like receptor-4 ligand lipopolysaccharide. Outcome measures were C-reactive protein, interleukin-6 (IL-6), IL-18, fibrinogen, myeloperoxidase, and a panel of 13 cytokines representative of the innate and adaptive inflammatory response, in addition to established cardiovascular markers. The in vivo acute-phase response was higher for women with previous preeclampsia than that for controls without such a history, although only significant for C-reactive protein (P=0.04). Preeclampsia was associated with higher IL-1β (Ppreeclampsia: an adaptive response cluster associated with increased C-reactive protein and IL-6 before and after vaccination, increased weight, and low high-density lipoprotein cholesterol; and a toll-like receptor-4 mediated the cluster associated with increased IL-18 before and after vaccination but not associated with other cardiovascular markers. Furthermore, we found interactions between previous preeclampsia, common TLR4 gene variants, and the IL-18 response to vaccination. In conclusion, preeclampsia is associated with alterations in the inflammatory response postpartum mostly independent of other established cardiovascular risk markers. © 2015 American Heart Association, Inc.

  14. Short-term effects of air pollution, markers of endothelial activation, and coagulation to predict major adverse cardiovascular events in patients with acute coronary syndrome: insights from AIRACOS study.

    Science.gov (United States)

    Dominguez-Rodriguez, Alberto; Abreu-Gonzalez, Pedro; Rodríguez, Sergio; Avanzas, Pablo; Juarez-Prera, Ruben A

    2017-07-01

    The aim of this study was to determine whether markers of inflammation and coagulation are associated with short-term particulate matter exposure and predict major adverse cardiovascular events at 360 d in patients with acute coronary syndrome (ACS). We included 307 consecutive patients, and assessed the average concentrations of data on atmospheric pollution in ambient air and meteorological variables from 1 d up to 7 d prior to admission. In patients with ACS, the markers of endothelial activation and coagulation, but not black carbon exposure, are associated with major adverse cardiovascular events at one-year follow-up.

  15. Serum Markers of Endothelial Dysfunction and Inflammation Increase in Hypertension with Prediabetes Mellitus.

    Science.gov (United States)

    Huang, Zhouqing; Chen, Chen; Li, Sheng; Kong, Fanqi; Shan, Peiren; Huang, Weijian

    2016-06-01

    The aim of this study was to examine endothelial dysfunction and inflammation in hypertension and prediabetes by studying adhesion molecules and inflammatory factors. This study included 133 outpatients. Participants were categorized into three groups based on the presence or absence of hypertension and prediabetes: control subjects without prediabetes and hypertension (N group, n = 39); patients with hypertension only (H group, n = 34); and patients with hypertension and prediabetes (HD group, n = 60). Hypertension was diagnosed according to JNC7 criteria. Prediabetes was defined according to 2010 American Diabetes Association criteria. Plasma was isolated from overnight fasting blood samples for enzyme-linked immunosorbent assay (ELISA) analysis of concentrations of intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), P-selectin, and interleukin-6 (IL-6) as indicators of endothelial function and inflammation. We found that the H and HD groups showed significantly higher levels of all four biomarkers compared with the N group (all p Prediabetes and hypertension induce endothelial dysfunction and inflammation by elevating levels of soluble adhesion molecules and inflammatory cytokines. The comorbidity of these diseases may exacerbate inflammation and endothelial dysfunction by enhancing the expression of ICAM-1 and TNF-α.

  16. Alterations in triglyceride rich lipoproteins are related to endothelial dysfunction in metabolic syndrome.

    Science.gov (United States)

    Lucero, Diego; López, Graciela I; Gorzalczany, Susana; Duarte, Mariano; González Ballerga, Esteban; Sordá, Juan; Schreier, Laura; Zago, Valeria

    2016-08-01

    Our aim was to analyze the effect of circulating triglyceride rich lipoprotein (TRL) on endothelial function in metabolic syndrome (MetS). We studied 40 patients with MetS (ATPIII), divided into those presenting normal endothelial function (n=19) and those with endothelial dysfunction (n=21) by means of the evaluation of pulse wave velocity, before and after brachial artery ischemia. In fasting serum we measured lipid and lipoprotein profile, insulin and glucose (HOMA-IR). Moreover, isolated TRL (d<1006g/l) were chemically characterized. In parallel, using randomly selected TRL from MetS patients with endothelial dysfunction (n=6) and MetS patients with normal endothelial function (n=6), the ability of TRL to inhibit ACh-induced vasorelaxation (10(-9)-10(-5)mM) on aortic rings previously pre-contracted by noradrenaline (10(-8)mM) was evaluated. Interestingly, TRL isolated from MetS patients presenting endothelial dysfunction showed triglyceride over-enrichment (59.1±4.8 vs. 54.1±4.7%; p=0.04), even after adjusting by potential confounders (p=0.05). In addition, while TRL resulting from both MetS groups significantly inhibited endothelium dependent vasorelaxation (p<0.001), TRL from MetS patients with endothelial dysfunction showed a strong tendency to a greater inhibition of vasorelaxation (p=0.06). Moreover, TRL-triglyceride (%) showed a strong tendency to correlate with the grade of vasorelaxation inhibition exerted by TRL (r=0.60; p=0.05). These results, taken together, would allow inferring for the first time that the predominance of triglyceride over-enriched TRL in circulation in MetS would induce endothelial dysfunction, contributing to the inherent cardiovascular risk of MetS. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  17. The impact of acute high-intensity interval exercise on biomarkers of cardiovascular health in type 2 diabetes.

    Science.gov (United States)

    Francois, Monique E; Little, Jonathan P

    2017-08-01

    High-intensity interval training (HIIT) interventions improve cardiovascular health, yet the acute effects on circulating and functional biomarkers of cardiovascular function are unclear in individuals with type 2 diabetes (T2D). To explore this, we conducted two investigations to examine the acute response to HIIT in individuals with T2D. Study 1 measured blood pressure, endothelial-dependent dilation, circulating measures of endothelial activation, and troponin T, 30 min and 2 h after HIIT (7 × 1-min intervals) in T2D (n = 8) and age-matched normoglycemic controls (CTL; n = 8). Study 2 assessed circulating measures of endothelial activation and troponin T, 30 min, and 24 h after HIIT (10 × 1-min intervals) in ten previously trained T2D men. In study 1, markers of endothelial function and activation within the first 2 h after HIIT did not differ from baseline between T2D and CTL participants, except at 30 min after HIIT for glucose, which was reduced more in T2D than CTL (by -0.8 ± 1.2 mmol/L, p = 0.04), and VCAM-1, which was reduced more 30 min after HIIT in CTL compared to T2D (by -187 ± 221 ng/mL, p = 0.05). Study 2 saw no significant difference in any circulating markers of endothelial activation and troponin T, 30 min, and 24 h after HIIT in trained T2D males. Exploratory findings from these two studies suggest that acute HIIT does not substantially alter circulating and functional markers of cardio(vascular) health in individuals with T2D who are unaccustomed (study 1) and accustomed to HIIT (study 2).

  18. X ve Y Kuşağı: Hemşirelerin Meslek Dayanışması İle İş Doyumu Arasındaki İlişki

    OpenAIRE

    KARASU, Fatma; AYLAZ, Rukuye

    2017-01-01

    Amaç:Bu araştırma, X ve Y kuşağındaki hemşirelerin meslek dayanışması ile iş doyumuarasındaki ilişkisini belirlemek amacıyla yapılmıştır. Gereç ve Yöntem: Kesitsel nitelikteki araştırmanın evrenini devlethastanesinde çalışan hemşireler oluşturmuş, örneklem seçimine gidilmeyerekevrenin tamamı örnekleme dahil edilmiş ve 01.02.2017-01.03.2017 tarihleriarasında çalışmayı kabul eden toplamda 145 hemşireye ulaşılmıştır. Veri toplamaformunda, hemşirelerin sosyo-demografik özellikleri, Hemşirelerde M...

  19. Quantitative analysis of TEM-8 and CEA tumor markers indicating free tumor cells in the peripheral blood of colorectal cancer patients.

    Science.gov (United States)

    Raeisossadati, Reza; Farshchian, Moein; Ganji, Azita; Tavassoli, Alieza; Velayati, Arash; Dadkhah, Ezzat; Chavoshi, Somaye; Mehrabi Bahar, Mostafa; Memar, Bahram; Rajabi Mashhadi, Mohammad Taghi; Naseh, Hossein; Forghanifard, Mohammad Mahdi; Moghbeli, Meysam; Moaven, Omeed; Abbaszadegan, Mohammad Reza

    2011-10-01

    Colorectal cancer (CRC) remains the third most common cancer in the world. Approximately in 50 percent of patients, metastatic disease is a major cause of death. Therefore, early diagnosis of CRC is crucial for a successful outcome. For the detection of circulating cancer cells, this study applied a sensitive method that employed specific tumor markers for early detection. A total of 80 blood samples from 40 CRC patients and 40 age-matched healthy controls were collected for the study. The circulating mRNA levels of two CRC tumor markers, tumor endothelial marker 8 (TEM-8) and carcinoembryogenic antigen (CEA) were evaluated using an absolute quantitative real-time PCR assay in a Stratagene Mx-3000P real-time PCR system. GAPDH was used as the endogenous control. TEM-8 and CEA were primarily detected more in the CRC patients rather than in the controls: 22/40 vs 9/40, p=0.009 and 30/40 vs 11/40, p=0.00054, respectively. In the CRC patients, the mRNA level of these markers was significantly higher in comparison to the normal controls (p=0.018 and 0.01). The overall sensitivity of this panel was 65% with a specificity of 75%. Statistical analysis for demographic variants did not reach significant values. TEM-8 and CEA markers were detected more frequently and in significantly higher levels in the blood samples of patients compared with samples from age-matched healthy controls. The copy number of CEA and TEM-8 mRNA, as detected by a real-time quantitative PCR, appears to be a promising marker for evaluating the risk of tumor spread.

  20. Magnetizable stent-grafts enable endothelial cell capture

    Science.gov (United States)

    Tefft, Brandon J.; Uthamaraj, Susheil; Harburn, J. Jonathan; Hlinomaz, Ota; Lerman, Amir; Dragomir-Daescu, Dan; Sandhu, Gurpreet S.

    2017-04-01

    Emerging nanotechnologies have enabled the use of magnetic forces to guide the movement of magnetically-labeled cells, drugs, and other therapeutic agents. Endothelial cells labeled with superparamagnetic iron oxide nanoparticles (SPION) have previously been captured on the surface of magnetizable 2205 duplex stainless steel stents in a porcine coronary implantation model. Recently, we have coated these stents with electrospun polyurethane nanofibers to fabricate prototype stent-grafts. Facilitated endothelialization may help improve the healing of arteries treated with stent-grafts, reduce the risk of thrombosis and restenosis, and enable small-caliber applications. When placed in a SPION-labeled endothelial cell suspension in the presence of an external magnetic field, magnetized stent-grafts successfully captured cells to the surface regions adjacent to the stent struts. Implantation within the coronary circulation of pigs (n=13) followed immediately by SPION-labeled autologous endothelial cell delivery resulted in widely patent devices with a thin, uniform neointima and no signs of thrombosis or inflammation at 7 days. Furthermore, the magnetized stent-grafts successfully captured and retained SPION-labeled endothelial cells to select regions adjacent to stent struts and between stent struts, whereas the non-magnetized control stent-grafts did not. Early results with these prototype devices are encouraging and further refinements will be necessary in order to achieve more uniform cell capture and complete endothelialization. Once optimized, this approach may lead to more rapid and complete healing of vascular stent-grafts with a concomitant improvement in long-term device performance.

  1. Development and Integration of a HEMS with an Advanced Smart Metering Infrastructure

    OpenAIRE

    Diaz, Enrique Rodriguez; Palacios-Garcia, Emilio; Savaghebi, Mehdi; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2016-01-01

    Advanced metering infrastructures (AMI) are required for the future smart grid operation by providing useful information about users’ behavior as well as grid performance such as the consumption and power quality. This paper is focused on the development of a LabVIEW application for user-interface and implementation of a Home Energy Management System (HEMS) based on AMI.

  2. Normal endothelial function in patients with mild-to-moderate psoriasis: a case-control study

    DEFF Research Database (Denmark)

    Jensen, Peter R; Zachariae, Claus; Hansen, Peter

    2011-01-01

    Evidence is increasing that severe psoriasis is an independent cardiovascular risk factor. Results from case-control studies of endothelial dysfunction, a marker of early atherosclerosis, in patients with moderate-to-severe psoriasis have been conflicting and were conducted with operator-dependen......Evidence is increasing that severe psoriasis is an independent cardiovascular risk factor. Results from case-control studies of endothelial dysfunction, a marker of early atherosclerosis, in patients with moderate-to-severe psoriasis have been conflicting and were conducted with operator......-dependent and technically demanding ultrasound measurement of brachial artery flow-mediated vasodilation. Therefore, we decided to measure endothelial function and other cardiovascular risk factors in patients with mild-to-moderate psoriasis (n = 30) and controls (n = 30) using a newer and relatively operator......-independent technique. No difference was detected between the groups with regards to endothelial function. However, despite the patients experiencing rather mild psoriasis they did exhibit higher levels of certain cardiovascular risk factors, including waist circumference, resting heart rate, systolic and diastolic...

  3. Tumor and Endothelial Cell Hybrids Participate in Glioblastoma Vasculature

    Directory of Open Access Journals (Sweden)

    Soufiane El Hallani

    2014-01-01

    Full Text Available Background. Recently antiangiogenic therapy with bevacizumab has shown a high but transient efficacy in glioblastoma (GBM. Indeed, GBM is one of the most angiogenic human tumors and endothelial proliferation is a hallmark of the disease. We therefore hypothesized that tumor cells may participate in endothelial proliferation of GBM. Materials and Methods. We used EGFR FISH Probe to detect EGFR amplification and anti-CD31, CD105, VE-cadherin, and vWF to identify endothelial cells. Endothelial and GBM cells were grown separately, labeled with GFP and DsRed lentiviruses, and then cocultured with or without contact. Results. In a subset of GBM tissues, we found that several tumor endothelial cells carry EGFR amplification, characteristic of GBM tumor cells. This observation was reproduced in vitro: when tumor stem cells derived from GBM were grown in the presence of human endothelial cells, a fraction of them acquired endothelial markers (CD31, CD105, VE-cadherin, and vWF. By transduction with GFP and DsRed expressing lentiviral vectors, we demonstrate that this phenomenon is due to cell fusion and not transdifferentiation. Conclusion. A fraction of GBM stem cells thus has the capacity to fuse with endothelial cells and the resulting hybrids may participate in tumor microvascular proliferation and in treatment resistance.

  4. Role of endothelial function in coronary slow-flow phenomenon with angiographically normal coronaries

    Directory of Open Access Journals (Sweden)

    Srikanth Nathani

    2016-01-01

    Conclusion: Coronary slow flow phenomenon is a marker of atherosclerosis (as documented by carotid intima media thickness and our study has also shown that endothelial function is significantly impaired in patients with coronary slow flow (as documented by impaired endothelial dependent vasodilatation than that of patients with normal epicardial coronaries with normal flow.

  5. Secondhand Smoke Exposure and Preclinical Markers of Cardiovascular Risk in Toddlers.

    Science.gov (United States)

    Groner, Judith A; Huang, Hong; Joshi, Mandar S; Eastman, Nicholas; Nicholson, Lisa; Bauer, John Anthony

    2017-10-01

    To investigate relationships between secondhand smoke exposure in young children and several preclinical markers of cardiovascular risk that have been established as relevant to adult populations. There were 139 children, 2-5 years of age, enrolled in a cross-sectional study. Secondhand smoke exposure was objectively determined by hair nicotine level; a comprehensive panel of clinical markers (morning blood pressure, fasting glucose and insulin, lipid profiles, inflammation) and research markers (markers of oxidation, endothelial stress, and endothelial repair) of cardiovascular risk status were assessed. Univariate and multivariate linear regression were used to evaluate relationships between secondhand smoke exposure and cardiovascular risk markers. Hair nicotine levels were correlated directly with blood pressure and serum C-reactive protein, and inversely correlated with serum high-density lipoprotein cholesterol and endothelial cell progenitor cell prevalence. In multivariate analyses, these relationships remained when controlled for age, sex, body mass index z-score, maternal education, and method of payment. Additionally, in multivariate analyses, hair nicotine level was significantly negatively correlated with total antioxidant capacity. These results support the view that secondhand smoke exposure in the very young has a detectable relationship with several markers of cardiovascular risk, long before the emergence of clinical disease. Further studies to define mechanisms and strategies to prevent and mitigate these risks early in life are warranted. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Endothelial cell proliferation in swine experimental aneurysm after coil embolization.

    Directory of Open Access Journals (Sweden)

    Yumiko Mitome-Mishima

    Full Text Available After coil embolization, recanalization in cerebral aneurysms adversely influences long-term prognosis. Proliferation of endothelial cells on the coil surface may reduce the incidence of recanalization and further improve outcomes after coil embolization. We aimed to map the expression of proliferating tissue over the aneurysmal orifice and define the temporal profile of tissue growth in a swine experimental aneurysm model. We compared the outcomes after spontaneous thrombosis with those of coil embolization using histological and morphological techniques. In aneurysms that we not coiled, spontaneous thrombosis was observed, and weak, easily detachable proliferating tissue was evident in the aneurysmal neck. In contrast, in the coil embolization group, histological analysis showed endothelial-like cells lining the aneurysmal opening. Moreover, immunohistochemical and morphological analysis suggested that these cells were immature endothelial cells. Our results indicated the existence of endothelial cell proliferation 1 week after coil embolization and showed immature endothelial cells in septal tissue between the systemic circulation and the aneurysm. These findings suggest that endothelial cells are lead to and proliferate in the former aneurysmal orifice. This is the first examination to evaluate the temporal change of proliferating tissue in a swine experimental aneurysm model.

  7. CD13 is a novel mediator of monocytic/endothelial cell adhesion

    DEFF Research Database (Denmark)

    Mina-Osorio, Paola; Winnicka, Beata; O'Conor, Catherine

    2008-01-01

    During inflammation, cell surface adhesion molecules guide the adhesion and migration of circulating leukocytes across the endothelial cells lining the blood vessels to access the site of injury. The transmembrane molecule CD13 is expressed on monocytes and endothelial cells and has been shown...... to mediate homotypic cell adhesion, which may imply a role for CD13 in inflammatory monocyte trafficking. Here, we show that ligation and clustering of CD13 by mAb or viral ligands potently induce myeloid cell/endothelial adhesion in a signal transduction-dependent manner involving monocytic cytoskeletal...... rearrangement and filopodia formation. Treatment with soluble recombinant (r)CD13 blocks this CD13-dependent adhesion, and CD13 molecules from monocytic and endothelial cells are present in the same immunocomplex, suggesting a direct participation of CD13 in the adhesive interaction. This concept...

  8. [Interaction of FABP4 with plasma membrane proteins of endothelial cells].

    Science.gov (United States)

    Saavedra, Paula; Girona, Josefa; Aragonès, Gemma; Cabré, Anna; Guaita, Sandra; Heras, Mercedes; Masana, Lluís

    2015-01-01

    Fatty acid binding protein (FABP4) is an adipose tissue-secreted adipokine implicated in the regulation of the energetic metabolism and inflammation. High levels of circulating FABP4 have been described in people with obesity, atherogenic dyslipidemia, diabetes and metabolic syndrome. Recent studies have demonstrated that FABP4 could have a direct effect on peripheral tissues and, specifically, on vascular function. It is still unknown how the interaction between FABP4 and the endothelial cells is produced to prompt these effects on vascular function. The objective of this work is studying the interaction between FABP4 and the plasma membrane proteins of endothelial cells. HUVEC cells were incubated with and without FABP4 (100 ng/ml) for 5 minutes. Immunolocalization of FABP4 was studied by confocal microscopy. The results showed that FABP4 colocalizates with CD31, a membrane protein marker. A strategy which combines 6XHistidine-tag FABP4 (FABP4-His), incubations with or without FABP4-His (100 ng/ml), formaldehyde cross-linking, cellular membrane protein extraction and western blot, was designed to study the FABP4 interactions with membrane proteins of HUVECs. The results showed different western blot profiles depending of the incubation with or without FABP4-His. The immunoblot revelead three covalent protein complexes of about 108, 77 and 33 kDa containing FAPB4 and its putative receptor. The existence of a specific binding protein complex able to bind FABP4 to endothelial cells is supported by these results. The obtained results will permit us advance in the molecular knowledge of FABP4 effects as well as use this protein and its receptor as therapeutic target to prevent cardiovascular. Copyright © 2014 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  9. Eestlane säästab idaeurooplasest kaks korda vähem / Margit Aedla

    Index Scriptorium Estoniae

    Aedla, Margit, 1970-

    2006-01-01

    Eestlaste vähesest säästmisest ja selle põhjustest. Lisa: Miks peaks rohkem investeerima? Graafik: Võrdlus teiste Kesk- ja Ida-Euroopa riikidega näitab, et eestlased säästavad vähem. Diagramm: Enamik eestlasi säästab täna pensioni II samba varal

  10. circHECTD1 promotes the silica-induced pulmonary endothelial-mesenchymal transition via HECTD1.

    Science.gov (United States)

    Fang, Shencun; Guo, Huifang; Cheng, Yusi; Zhou, Zewei; Zhang, Wei; Han, Bing; Luo, Wei; Wang, Jing; Xie, Weiping; Chao, Jie

    2018-03-14

    Excessive proliferation and migration of fibroblasts contribute to pulmonary fibrosis in silicosis, and both epithelial cells and endothelial cells participate in the accumulation of fibroblasts via the epithelial-mesenchymal transition (EMT) and the endothelial-mesenchymal transition (EndMT), respectively. A mouse endothelial cell line (MML1) was exposed to silicon dioxide (SiO 2 , 50 μg/cm 2 ), and immunofluorescence and western blot analyses were performed to evaluate levels of specific endothelial and mesenchymal markers and to elucidate the mechanisms by which SiO 2 induces the EndMT. Functional changes were evaluated by analyzing cell migration and proliferation. The mRNA and circular RNA (circRNA) levels were measured using qPCR and fluorescent in situ hybridization (FISH). Lung tissue samples from both Tie2-GFP mice exposed to SiO 2 and silicosis patients were applied to confirm the observations from in vitro experiments. Based on the results from the current study, SiO 2 increased the expression of mesenchymal markers (type I collagen (COL1A1), type III collagen (COL3A1) and alpha smooth muscle actin (α-SMA/Acta2)) and decreased the expression of endothelial markers (vascular endothelial cadherin (VE-Cad/Cdh 5) and platelet endothelial cell adhesion molecule-1 (PECAM1)), indicating the occurrence of the EndMT in response to SiO 2 exposure both in vivo and in vitro. SiO 2 concomitantly increased circHECTD1 expression, which, in turn, inhibited HECTD1 protein expression. SiO 2 -induced increases in cell proliferation, migration, and changes in marker levels were restored by either a small interfering RNA (siRNA) targeting circHECTD1 or overexpression of HECTD1 via the CRISPR/Cas9 system, confirming the involvement of the circHECTD1/HECTD1 pathway in the EndMT. Moreover, tissue samples from SiO 2 -exposed mice and silicosis patients confirmed the EndMT and change in HECTD1 expression. Our findings reveal a potentially new function for the circHECTD1/HECTD

  11. Magnetizable stent-grafts enable endothelial cell capture

    Energy Technology Data Exchange (ETDEWEB)

    Tefft, Brandon J. [Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (United States); Uthamaraj, Susheil [Division of Engineering, Mayo Clinic, Rochester, MN (United States); Harburn, J. Jonathan [School of Medicine, Pharmacy and Health, Durham University, Stockton-on-Tees (United Kingdom); Hlinomaz, Ota [Department of Cardioangiology, St. Anne' s University Hospital, Brno (Czech Republic); Lerman, Amir [Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (United States); Dragomir-Daescu, Dan [Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN (United States); Sandhu, Gurpreet S., E-mail: sandhu.gurpreet@mayo.edu [Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (United States)

    2017-04-01

    Emerging nanotechnologies have enabled the use of magnetic forces to guide the movement of magnetically-labeled cells, drugs, and other therapeutic agents. Endothelial cells labeled with superparamagnetic iron oxide nanoparticles (SPION) have previously been captured on the surface of magnetizable 2205 duplex stainless steel stents in a porcine coronary implantation model. Recently, we have coated these stents with electrospun polyurethane nanofibers to fabricate prototype stent-grafts. Facilitated endothelialization may help improve the healing of arteries treated with stent-grafts, reduce the risk of thrombosis and restenosis, and enable small-caliber applications. When placed in a SPION-labeled endothelial cell suspension in the presence of an external magnetic field, magnetized stent-grafts successfully captured cells to the surface regions adjacent to the stent struts. Implantation within the coronary circulation of pigs (n=13) followed immediately by SPION-labeled autologous endothelial cell delivery resulted in widely patent devices with a thin, uniform neointima and no signs of thrombosis or inflammation at 7 days. Furthermore, the magnetized stent-grafts successfully captured and retained SPION-labeled endothelial cells to select regions adjacent to stent struts and between stent struts, whereas the non-magnetized control stent-grafts did not. Early results with these prototype devices are encouraging and further refinements will be necessary in order to achieve more uniform cell capture and complete endothelialization. Once optimized, this approach may lead to more rapid and complete healing of vascular stent-grafts with a concomitant improvement in long-term device performance. - Highlights: • Magnetic stent-grafts were made from 2205 steel stents and polyurethane nanofibers. • Stent-grafts remained patent and formed a thin and uniform neointima when implanted. • Stent-grafts captured endothelial cells labeled with magnetic nanoparticles.

  12. Performance of Circulating Placental Growth Factor as A Screening Marker for Diagnosis of Ovarian Endometriosis: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Cinzia Zucchini

    2016-12-01

    Full Text Available Background: The aim of this study is to compare the circulating placental growth factor (PlGF concentration in women with and without endometrioma to verify the performance of this marker to diagnose the disease. Materials and Methods: In this case-control study, thirteen women with histological diagnosis of ovarian endometriosis were compared with women without endometriosis disease. PlGF plasma levels of endometriotic patients and controls were investigated using a fluorescence immunoassay technique. Results: PlGF showed a direct correlation with body mass index (BMI only in the control group (P=0.013. After adjustment for BMI values, PlGF median value in endometriosis group (14.7 pg/mL resulted higher than in control group (13.8 pg/ mL, P=0.004. Conclusion: PlGF is a promising peripheral blood marker that can discriminate between patients with and without ovarian endometriosis.

  13. The Drosophila HEM-2/NAP1 homolog KETTE controls axonal pathfinding and cytoskeletal organization.

    Science.gov (United States)

    Hummel, T; Leifker, K; Klämbt, C

    2000-04-01

    In Drosophila, the correct formation of the segmental commissures depends on neuron-glial interactions at the midline. The VUM midline neurons extend axons along which glial cells migrate in between anterior and posterior commissures. Here, we show that the gene kette is required for the normal projection of the VUM axons and subsequently disrupts glial migration. Axonal projection defects are also found for many other moto- and interneurons. In addition, kette affects the cell morphology of mesodermal and epidermal derivatives, which show an abnormal actin cytoskeleton. The KETTE protein is homologous to the transmembrane protein HEM-2/NAP1 evolutionary conserved from worms to vertebrates. In vitro analysis has shown a specific interaction of the vertebrate HEM-2/NAP1 with the SH2-SH3 adapter protein NCK and the small GTPase RAC1, which both have been implicated in regulating cytoskeleton organization and axonal growth. Hypomorphic kette mutations lead to axonal defects similar to mutations in the Drosophila NCK homolog dreadlocks. Furthermore, we show that kette and dock mutants genetically interact. NCK is thought to interact with the small G proteins RAC1 and CDC42, which play a role in axonal growth. In line with these observations, a kette phenocopy can be obtained following directed expression of mutant DCDC42 or DRAC1 in the CNS midline. In addition, the kette mutant phenotype can be partially rescued by expression of an activated DRAC1 transgene. Our data suggest an important role of the HEM-2 protein in cytoskeletal organization during axonal pathfinding.

  14. Endothelial progenitor cell subsets and preeclampsia: Findings and controversies

    Directory of Open Access Journals (Sweden)

    Armin Attar

    2017-10-01

    Full Text Available Vascular remodeling is an essential component of gestation. Endothelial progenitor cells (EPCs play an important role in the regulation of vascular homeostasis. The results of studies measuring the number of EPCs in normal pregnancies and in preeclampsia have been highly controversial or even contradictory because of some variations in technical issues and different methodologies enumerating three distinct subsets of EPCs: circulating angiogenic cells (CAC, colony forming unit endothelial cells (CFU-ECs, and endothelial colony-forming cells (ECFCs. In general, most studies have shown an increase in the number of CACs in the maternal circulation with a progression in the gestational age in normal pregnancies, while functional capacities measured by CFU-ECs and ECFCs remain intact. In the case of preeclampsia, mobilization of CACs and ECFCs occurs in the peripheral blood of pregnant women, but the functional capacities shown by culture of the derived colony-forming assays (CFU-EC and ECFC assays are altered. Furthermore, the number of all EPC subsets will be reduced in umbilical cord blood in the case of preeclampsia. As EPCs play an important role in the homeostasis of vascular networks, the difference in their frequency and functionality in normal pregnancies and those with preeclampsia can be expected. In this review, there was an attempt to provide a justification for these controversies.

  15. Coronary collateral circulation in patients with chronic coronary total occlusion; its relationship with cardiac risk markers and SYNTAX score.

    Science.gov (United States)

    Börekçi, A; Gür, M; Şeker, T; Baykan, A O; Özaltun, B; Karakoyun, S; Karakurt, A; Türkoğlu, C; Makça, I; Çaylı, M

    2015-09-01

    Compared to patients without a collateral supply, long-term cardiac mortality is reduced in patients with well-developed coronary collateral circulation (CCC). Cardiovascular risk markers, such as N-terminal pro-brain natriuretic peptide (NT-proBNP), high-sensitive C-reactive protein (hs-CRP) and high-sensitive cardiac troponin T (hs-cTnT) are independent predictors for cardiovascular mortality. The main goal of this study was to examine the relationship between CCC and cardiovascular risk markers. We prospectively enrolled 427 stable coronary artery disease patients with chronic total occlusion (mean age: 57.5±11.1 years). The patients were divided into two groups, according to their Rentrop scores: (a) poorly developed CCC group (Rentrop 0 and 1) and (b) well-developed CCC group (Rentrop 2 and 3). NT-proBNP, hs-CRP, hs-cTnT, uric acid and other biochemical markers were also measured. The SYNTAX score was calculated for all patients. The patients in the poorly developed CCC group had higher frequencies of diabetes and hypertension (prisk markers, such as NT-proBNP, hs-cTnT and hs-CRP are independently associated with CCC in stable coronary artery disease with chronic total occlusion. © The Author(s) 2014.

  16. System design and equipment reliability for wide web working at Hem Heath Colliery

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L

    1982-02-01

    This paper outlines the challenge to mining engineers on system design and reliability of equipment and how Hem Heath Colliery in the UK, is meeting this challenge, by describing current systems of work and equipment on the faces, summarising experience gained with succeeding faces, the results achieved, and posing considerations for the future.

  17. Correlation of circulating CD133+ progenitor subclasses with a mild phenotype in Duchenne muscular dystrophy patients.

    Directory of Open Access Journals (Sweden)

    Chiara Marchesi

    2008-05-01

    Full Text Available Various prognostic serum and cellular markers have been identified for many diseases, such as cardiovascular diseases and tumor pathologies. Here we assessed whether the levels of certain stem cells may predict the progression of Duchenne muscular dystrophy (DMD.The levels of several subpopulations of circulating stem cells expressing the CD133 antigen were determined by flow cytometry in 70 DMD patients. The correlation between the levels and clinical status was assessed by statistical analysis. The median (+/-SD age of the population was 10.66+/-3.81 (range 3 to 20 years. The levels of CD133+CXCR4+CD34- stem cells were significantly higher in DMD patients compared to healthy controls (mean+/-standard deviation: 17.38+/-1.38 vs. 11.0+/-1.70; P = 0.03 with a tendency towards decreased levels in older patients. Moreover, the levels of this subpopulation of cells correlated with the clinical condition. In a subgroup of 19 DMD patients after 24 months of follow-up, increased levels of CD133+CXCR4+CD34- cells was shown to be associated with a phenotype characterised by slower disease progression. The circulating CD133+CXCR4+CD34- cells in patients from different ages did not exhibit significant differences in their myogenic and endothelial in vitro differentiation capacity.Our results suggest that levels of CD133+CXCR4+CD34- could function as a new prognostic clinical marker for the progression of DMD.

  18. Endothelial-to-Osteoblast Conversion Generates Osteoblastic Metastasis of Prostate Cancer.

    Science.gov (United States)

    Lin, Song-Chang; Lee, Yu-Chen; Yu, Guoyu; Cheng, Chien-Jui; Zhou, Xin; Chu, Khoi; Murshed, Monzur; Le, Nhat-Tu; Baseler, Laura; Abe, Jun-Ichi; Fujiwara, Keigi; deCrombrugghe, Benoit; Logothetis, Christopher J; Gallick, Gary E; Yu-Lee, Li-Yuan; Maity, Sankar N; Lin, Sue-Hwa

    2017-06-05

    Prostate cancer (PCa) bone metastasis is frequently associated with bone-forming lesions, but the source of the osteoblastic lesions remains unclear. We show that the tumor-induced bone derives partly from tumor-associated endothelial cells that have undergone endothelial-to-osteoblast (EC-to-OSB) conversion. The tumor-associated osteoblasts in PCa bone metastasis specimens and patient-derived xenografts (PDXs) were found to co-express endothelial marker Tie-2. BMP4, identified in PDX-conditioned medium, promoted EC-to-OSB conversion of 2H11 endothelial cells. BMP4 overexpression in non-osteogenic C4-2b PCa cells led to ectopic bone formation under subcutaneous implantation. Tumor-induced bone was reduced in trigenic mice (Tie2 cre /Osx f/f /SCID) with endothelial-specific deletion of osteoblast cell-fate determinant OSX compared with bigenic mice (Osx f/f /SCID). Thus, tumor-induced EC-to-OSB conversion is one mechanism that leads to osteoblastic bone metastasis of PCa. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Sun Ginseng Protects Endothelial Progenitor Cells From Senescence Associated Apoptosis

    Science.gov (United States)

    Im, Wooseok; Chung, Jin-Young; Bhan, Jaejun; Lim, Jiyeon; Lee, Soon-Tae; Chu, Kon; Kim, Manho

    2012-01-01

    Endothelial progenitor cells (EPC) are a population of cells that circulate in the blood stream. They play a role in angiogenesis and, therefore, can be prognostic markers of vascular repair. Ginsenoside Rg3 prevents endothelial cell apoptosis through the inhibition of the mitochondrial caspase pathway. It also affects estrogen activity, which reduces EPC senescence. Sun ginseng (SG), which is heat-processed ginseng, has a high content of ginsenosides. The purpose of this study was to investigate the protective effects of SG on senescence-associated apoptosis in EPCs. In order to isolate EPCs, mononuclear cells of human blood buffy coats were cultured and characterized by their uptake of acetylated low-density lipoprotein (acLDL) and their binding of Ulex europaeus agglutinin I (ulex-lectin). Flow cytometry with annexin-V staining was performed in order to assess early and late apoptosis. Senescence was determined by β-galactosidase (β-gal) staining. Staining with 4′-6-Diamidino-2-phenylindole verified that most adherent cells (93±2.7%) were acLDL-positive and ulex-lectin-positive. The percentage of β-gal-positive EPCs was decreased from 93.8±2.0% to 62.5±3.6% by SG treatment. A fluorescence-activated cell sorter (FACS) analysis showed that 4.9% of EPCs were late apoptotic in controls. Sun ginseng decreased the apoptotic cell population by 39% in the late stage of apoptosis from control baseline levels. In conclusion, these results show antisenescent and antiapoptotic effects of SG in human-derived EPCs, indicating that SG can enhance EPC-mediated repair mechanisms. PMID:23717107

  20. Circulating cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia determined by multiplex suspension array

    Directory of Open Access Journals (Sweden)

    Bekő Gabriella

    2010-12-01

    Full Text Available Abstract Background Preeclampsia is a severe complication of pregnancy characterized by an excessive maternal systemic inflammatory response with activation of both the innate and adaptive arms of the immune system. Cytokines, chemokines and adhesion molecules are central to innate and adaptive immune processes. The purpose of this study was to determine circulating levels of cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia in a comprehensive manner, and to investigate their relationship to the clinical features and laboratory parameters of the study participants, including markers of overall inflammation (C-reactive protein, endothelial activation (von Willebrand factor antigen and endothelial injury (fibronectin, oxidative stress (malondialdehyde and trophoblast debris (cell-free fetal DNA. Results Serum levels of interleukin (IL-1beta, IL-1 receptor antagonist (IL-1ra, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p40, IL-12p70, IL-18, interferon (IFN-gamma, tumor necrosis factor (TNF-alpha, transforming growth factor (TGF-beta1, interferon-gamma-inducible protein (IP-10, monocyte chemotactic protein (MCP-1, intercellular adhesion molecule (ICAM-1 and vascular cell adhesion molecule (VCAM-1 were measured in 60 preeclamptic patients, 60 healthy pregnant women and 59 healthy non-pregnant women by multiplex suspension array and ELISA. In normal pregnancy, the relative abundance of circulating IL-18 over IL-12p70 and the relative deficiency of the bioactive IL-12p70 in relation to IL-12p40 might favour Th2-type immunity. Although decreased IL-1ra, TNF-alpha and MCP-1 concentrations of healthy pregnant relative to non-pregnant women reflect anti-inflammatory changes in circulating cytokine profile, their decreased serum IL-10 and increased IP-10 levels might drive pro-inflammatory responses. In addition to a shift towards Th1-type immunity (expressed by the increased IL-2/IL-4 and IFN-gamma/IL-4 ratios, circulating levels of

  1. Alteration of protein expression pattern of vascular endothelial growth factor (VEGF) from soluble to cell-associated isoform during tumourigenesis

    International Nuclear Information System (INIS)

    Cressey, Ratchada; Wattananupong, Onusa; Lertprasertsuke, Nirush; Vinitketkumnuen, Usanee

    2005-01-01

    Vascular endothelial growth factor (VEGF) is a potent mitogen for endothelial cells, and its expression has been correlated with increased tumour angiogenesis. Although numerous publications dealing with the measurement of circulating VEGF for diagnostic and therapeutic monitoring have been published, the relationship between the production of tissue VEGF and its concentration in blood is still unclear. The aims of this study were to determine: 1) The expression pattern of VEGF isoforms at the protein level in colorectal and lung adenocarcinoma in comparison to the pattern in corresponding adjacent normal tissues 2) The relationship between the expression pattern of VEGF and total level of circulating VEGF in the blood to clarify whether the results of measuring circulating VEGF can be used to predict VEGF expression in tumour tissues. Ninety-four tissue samples were obtained from patients, 76 colorectal tumour tissues and 18 lung tumour tissues. VEGF protein expression pattern and total circulating VEGF were examined using western blot and capture ELISA, respectively. Three major protein bands were predominately detected in tumour samples with an apparent molecular mass under reducing conditions of 18, 23 and 26 kDa. The 18 kDa VEGF protein was expressed equally in both normal and colorectal tumour tissues and predominately expressed in normal tissues of lung, whereas the 23 and 26 kDa protein was only detected at higher levels in tumour tissues. The 18, 23 and 26 kDa proteins are believed to represent the VEGF 121 , the VEGF 165 and the VEGF 189 , respectively. There was a significant correlation of the expression of VEGF 165 with a smaller tumour size maximum diameter <5 cm (p < 0.05), and there was a significant correlation of VEGF 189 with advanced clinical stage of colorectal tumours. The measurement of total circulating VEGF in serum revealed that cancer patients significantly (p < 0.001) possessed a higher level of circulating VEGF (1081 ± 652 pg/ml in

  2. Cilostazol activates function of bone marrow-derived endothelial progenitor cell for re-endothelialization in a carotid balloon injury model.

    Directory of Open Access Journals (Sweden)

    Rie Kawabe-Yako

    Full Text Available BACKGROUND: Cilostazol(CLZ has been used as a vasodilating anti-platelet drug clinically and demonstrated to inhibit proliferation of smooth muscle cells and effect on endothelial cells. However, the effect of CLZ on re-endothelialization including bone marrow (BM-derived endothelial progenitor cell (EPC contribution is unclear. We have investigated the hypothesis that CLZ might accelerate re-endothelialization with EPCs. METHODOLOGY/PRINCIPAL FINDINGS: Balloon carotid denudation was performed in male Sprague-Dawley rats. CLZ group was given CLZ mixed feed from 2 weeks before carotid injury. Control group was fed normal diet. CLZ accelerated re-endothelialization at 2 weeks after surgery and resulted in a significant reduction of neointima formation 4 weeks after surgery compared with that in control group. CLZ also increased the number of circulating EPCs throughout the time course. We examined the contribution of BM-derived EPCs to re-endothelialization by BM transplantation from Tie2/lacZ mice to nude rats. The number of Tie2-regulated X-gal positive cells on injured arterial luminal surface was increased at 2 weeks after surgery in CLZ group compared with that in control group. In vitro, CLZ enhanced proliferation, adhesion and migration activity, and differentiation with mRNA upregulation of adhesion molecule integrin αvβ3, chemokine receptor CXCR4 and growth factor VEGF assessed by real-time RT-PCR in rat BM-derived cultured EPCs. In addition, CLZ markedly increased the expression of SDF-1α that is a ligand of CXCR4 receptor in EPCs, in the media following vascular injury. CONCLUSIONS/SIGNIFICANCE: CLZ promotes EPC mobilization from BM and EPC recruitment to sites of arterial injury, and thereby inhibited neointima formation with acceleration of re-endothelialization with EPCs as well as pre-existing endothelial cells in a rat carotid balloon injury model. CLZ could be not only an anti-platelet agent but also a promising tool for

  3. Endothelial induced EMT in breast epithelial cells with stem cell properties

    DEFF Research Database (Denmark)

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla

    2011-01-01

    endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression...... of keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high)/CD24(low) ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D......492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close...

  4. Pentoxifylline, inflammation, and endothelial function in HIV-infected persons: a randomized, placebo-controlled trial.

    Directory of Open Access Journals (Sweden)

    Samir K Gupta

    Full Text Available Untreated HIV may increase the risk of cardiovascular events. Our preliminary in vitro and in vivo research suggests that pentoxifylline (PTX reduces vascular inflammation and improves endothelial function in HIV-infected persons not requiring antiretroviral therapy.We performed a randomized, placebo-controlled trial of PTX 400 mg orally thrice daily for 8 weeks in 26 participants. The primary endpoint was change in flow-mediated dilation (FMD of the brachial artery after 8 weeks. Nitroglycerin-mediated dilation (NTGMD and circulating markers of inflammation, cellular immune activation, coagulation, and metabolism were also assessed.The difference in mean absolute change (SD in FMD after 8 weeks between the placebo [-1.06 (1.45%] and PTX [-1.93 (3.03%] groups was not significant (P = 0.44. No differences in NTGMD were observed. The only significant between-group difference in the changes in biomarkers from baseline to week 8 was in soluble tumor necrosis factor receptor-1 (sTNFRI [-83.2 pg/mL in the placebo group vs. +65.9 pg/mL in the PTX group; P = 0.03]. PTX was generally well-tolerated.PTX did not improve endothelial function and unexpectedly increased the inflammatory biomarker sTNFRI in HIV-infected participants not requiring antiretroviral therapy. Additional interventional research is needed to reduce inflammation and cardiovascular risk in this population.ClinicalTrials.gov NCT00796822.

  5. Circulating, cell-free DNA as a marker for exercise load in intermittent sports.

    Science.gov (United States)

    Haller, Nils; Helmig, Susanne; Taenny, Pascal; Petry, Julian; Schmidt, Sebastian; Simon, Perikles

    2018-01-01

    Attempts to establish a biomarker reflecting individual player load in intermittent sports such as football have failed so far. Increases in circulating DNA (cfDNA) have been demonstrated in various endurance sports settings. While it has been proposed that cfDNA could be a suitable marker for player load in intermittent sports, the effects on cfDNA of repeated sprinting as an essential feature in intermittent sports are unknown. For the first time, we assessed both alterations of cfDNA due to repeated maximal sprints and due to a professional football game. Nine participants were subjected to a standardised sprint training session with cross-over design of five maximal sprints of 40 meters with either "short" (1 minute) or "long" pauses (5 minutes). Capillary cfDNA and lactate were measured after every sprint and venous cfDNA before and after each series of sprints. Moreover, capillary cfDNA and lactate values were taken in 23 professional football players before and after incremental exercise testing, during the course of a training week at rest (baseline) and in all 17 enrolled players following a season game. Lactate and venous cfDNA increased more pronounced during "short" compared to "long" (1.4-fold, p = 0.032 and 1.7-fold, p = 0.016) and cfDNA correlated significantly with lactate (r = 0.69; psports. In contrast to the potential of more established blood-based markers like IL-6, CK, or CRP, cfDNA shows by far the strongest fold-change and a high correlation with a particular load related aspect in professional football.

  6. Effect of dietary advanced glycation end products on postprandial appetite, inflammation, and endothelial activation in healthy overweight individuals

    DEFF Research Database (Denmark)

    Poulsen, Malene Wibe; Bak, Monika Judyta; Andersen, Jeanette Marker

    2014-01-01

    Advanced glycation end products (AGEs) formed in food during high-heat cooking may induce overeating and inflammation. We investigated whether AGE contents in a single meal affect postprandial appetite and markers of inflammation, endothelial activation, and oxidative stress.......Advanced glycation end products (AGEs) formed in food during high-heat cooking may induce overeating and inflammation. We investigated whether AGE contents in a single meal affect postprandial appetite and markers of inflammation, endothelial activation, and oxidative stress....

  7. Endothelial biocompatibility and accumulation of SPION under flow conditions

    International Nuclear Information System (INIS)

    Matuszak, Jasmin; Zaloga, Jan; Friedrich, Ralf P.; Lyer, Stefan; Nowak, Johannes; Odenbach, Stefan; Alexiou, Christoph; Cicha, Iwona

    2015-01-01

    Magnetic targeting is considered a promising method to accumulate the nanoparticles at the sites of atherosclerotic lesions, but little is known about the biological effects of magnetic nanoparticles on the vascular wall. Here, we investigated endothelial cell growth and vitality upon treatment with SPION (0–60 µg/mL) using two complementing methods: real-time cell analysis and live-cell microscopy. Moreover, the uptake of circulating superparamagnetic iron oxide nanoparticles (SPIONs) was assessed in an in vitro model of arterial bifurcations. At the tested concentrations, SPIONs were well tolerated and had no major influence on endothelial cell growth. Our results further showed a uniform distribution of endothelial SPION uptake independent of channel geometry or hemodynamic conditions: In the absence of magnetic force, no increase in accumulation of SPIONs at non-uniform shear stress region at the outer walls of bifurcation was observed. Application of external magnet allowed enhanced accumulation of SPIONs at the regions of non-uniform shear stress. Increased uptake of SPIONs at non-uniform shear stress region was well tolerated by endothelial cells (ECs) and did not affect endothelial cell viability or attachment. These findings indicate that magnetic targeting can constitute a promising and safe technique for the delivery of imaging and therapeutic nanoparticles to atherosclerotic lesions

  8. Endothelial biocompatibility and accumulation of SPION under flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Matuszak, Jasmin; Zaloga, Jan; Friedrich, Ralf P.; Lyer, Stefan [Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Stiftungsprofessur for Nanomedicine, University Hospital Erlangen, Erlangen (Germany); Nowak, Johannes; Odenbach, Stefan [Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, Dresden (Germany); Alexiou, Christoph [Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Stiftungsprofessur for Nanomedicine, University Hospital Erlangen, Erlangen (Germany); Cicha, Iwona, E-mail: Iwona_Cicha@yahoo.com [Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Stiftungsprofessur for Nanomedicine, University Hospital Erlangen, Erlangen (Germany)

    2015-04-15

    Magnetic targeting is considered a promising method to accumulate the nanoparticles at the sites of atherosclerotic lesions, but little is known about the biological effects of magnetic nanoparticles on the vascular wall. Here, we investigated endothelial cell growth and vitality upon treatment with SPION (0–60 µg/mL) using two complementing methods: real-time cell analysis and live-cell microscopy. Moreover, the uptake of circulating superparamagnetic iron oxide nanoparticles (SPIONs) was assessed in an in vitro model of arterial bifurcations. At the tested concentrations, SPIONs were well tolerated and had no major influence on endothelial cell growth. Our results further showed a uniform distribution of endothelial SPION uptake independent of channel geometry or hemodynamic conditions: In the absence of magnetic force, no increase in accumulation of SPIONs at non-uniform shear stress region at the outer walls of bifurcation was observed. Application of external magnet allowed enhanced accumulation of SPIONs at the regions of non-uniform shear stress. Increased uptake of SPIONs at non-uniform shear stress region was well tolerated by endothelial cells (ECs) and did not affect endothelial cell viability or attachment. These findings indicate that magnetic targeting can constitute a promising and safe technique for the delivery of imaging and therapeutic nanoparticles to atherosclerotic lesions.

  9. Role of glutathione biosynthesis in endothelial dysfunction and fibrosis

    Directory of Open Access Journals (Sweden)

    Cristina Espinosa-Díez

    2018-04-01

    Full Text Available Glutathione (GSH biosynthesis is essential for cellular redox homeostasis and antioxidant defense. The rate-limiting step requires glutamate-cysteine ligase (GCL, which is composed of the catalytic (GCLc and the modulatory (GCLm subunits. To evaluate the contribution of GCLc to endothelial function we generated an endothelial-specific Gclc haplo-insufficient mouse model (Gclc e/+ mice. In murine lung endothelial cells (MLEC derived from these mice we observed a 50% reduction in GCLc levels compared to lung fibroblasts from the same mice. MLEC obtained from haplo-insufficient mice showed significant reduction in GSH levels as well as increased basal and stimulated ROS levels, reduced phosphorylation of eNOS (Ser 1177 and increased eNOS S-glutathionylation, compared to MLEC from wild type (WT mice. Studies in mesenteric arteries demonstrated impaired endothelium-dependent vasodilation in Gclc(e/+ male mice, which was corrected by pre-incubation with GSH-ethyl-ester and BH4. To study the contribution of endothelial GSH synthesis to renal fibrosis we employed the unilateral ureteral obstruction model in WT and Gclc(e/+ mice. We observed that obstructed kidneys from Gclc(e/+ mice exhibited increased deposition of fibrotic markers and reduced Nrf2 levels. We conclude that the preservation of endothelial GSH biosynthesis is not only critical for endothelial function but also in anti-fibrotic responses. Keywords: Glutamate-cysteine ligase, ROS, Glutathione, Endothelial dysfunction, Kidney Fibrosis

  10. Erythropoietin Receptor Positive Circulating Progenitor Cells and Endothelial Progenitor Cells in Patients with Different Stages of Diabetic Retinopathy

    Institute of Scientific and Technical Information of China (English)

    Liu-mei Hu; Guo-xu Xu; Guo-tong XU; Wei-ye Li; Xia Lei; Bo Ma; Yu Zhang; Yan Yan; Ya-lan Wu; Ge-zhi Xu; Wen Ye; Ling Wang

    2011-01-01

    Objective To investigate the possible involvement of erythropoietin (EPO)/erythropoietin receptor(EPOR) system in neovascularization and vascular regeneration in diabetic retinopathy (DR).Methods EPOR positive circulating progenitor cells (CPCs: CD34+) and endothelial progenitor cells (EPCs: CD34+KDR+) were assessed by flow cytometry in type 2 diabetic patients with different stages of DR. The cohort consisted of age- and sex-matched control patients without diabetes (n=7), non-prolif-erative DR (NPDR, n=7), proliferative DR (PDR, n=8), and PDR complicated with diabetic nephropathy (PDR-DN, n=7). Results The numbers of EPOR+ CPCs and EPOR+ EPCs were reduced remarkably in NPDR compared with the control group (both P<0.01), whereas rebounded in PDR and PDR-DN groups in varying degrees. Similar changes were observed in respect of the proportion of EPOR+ CPCs in CPCs (NPDR vs.control, P< 0.01) and that of EPOR+ EPCs in EPCs (NPDR vs. control, P< 0.05). Conclusion Exogenous EPO, mediated via the EPO/EPOR system of EPCs, may alleviate the im-paired vascular regeneration in NPDR, whereas it might aggravate retinal neovascularization in PDR due to a rebound of EPOR+ EPCs associated with ischemia.

  11. Hemólise produzida por Candida tropicalis isoladas de amostras clínicas Hemolysis produced by Candida tropicalis isolates from clinical samples

    Directory of Open Access Journals (Sweden)

    Emanuele Júlio Galvão de França

    2010-06-01

    Full Text Available INTRODUÇÃO: Leveduras do gênero Candida são responsáveis pela maioria das infecções fúngicas em humanos. Candida tropicalis tem sido uma das mais comumente isoladas dentre as espécies não-albicans. O objetivo foi analisar a hemólise in vitro promovida por isolados clínicos de C. tropicalis provenientes de sangue e outras amostras clínicas de pacientes internados no Hospital Universitário da UEL, PR-Brasil. MÉTODOS: Foi avaliada a hemólise promovida por 28 isolados clínicos de C. tropicalis, sendo os isolados agrupados em classes de acordo com os níveis de hemólise. RESULTADOS: A maioria dos isolados de sangue apresentou hemólise fraca (+, enquanto as classes de hemólise forte (+++ e muito forte (++++ foram as predominantes nos isolados de outras amostras clínicas como urina, lesão de unha e secreção traqueal, embora não tenham sido detectadas diferenças estatísticas (p>0,05. CONCLUSÕES: Isolados de C. tropicalis, obtidos de diferentes amostras clínicas, apresentam capacidade de promover hemólise in vitro.INTRODUCTION: Yeasts belonging to the genus Candida are responsible for the majority of fungal infections in humans. Candida tropicalis has been one of most commonly isolated non-albicans species. To analyze in vitro hemolysis promoted by clinical isolates of C. tropicalis obtained from blood and other clinical samples from hospitalized patients at the University Hospital of Londrina State University, Paraná, Brazil. METHODS: The hemolysis promoted by 28 clinical isolates of C. tropicalis was evaluated, and the isolates were grouped into classes according to the hemolysis levels. RESULTS: The majority of the blood isolates showed weak hemolysis (+, while the classes of strong hemolysis (+++ and very strong hemolysis (++++ predominated among isolates from other clinical samples such as urine, nail lesions and tracheal secretions. However, no statistical differences were detected (p> 0.05. CONCLUSIONS: Isolates of C

  12. Impact of diabetic serum on endothelial cells: An in-vitro-analysis of endothelial dysfunction in diabetes mellitus type 2

    International Nuclear Information System (INIS)

    Muenzel, Daniela; Lehle, Karla; Haubner, Frank; Schmid, Christof; Birnbaum, Dietrich E.; Preuner, Juergen G.

    2007-01-01

    Diabetic endothelial dysfunction was characterized by altered levels of adhesion molecules and cytokines. Aim of our study was to evaluate the effects of diabetic serum on cell-growth and proinflammatory markers in human saphenous vein endothelial cells (HSVEC) from diabetic and non-diabetic patients. Diabetic serum showed (1) complementary proliferative activity for non-diabetic and diabetic HSVEC, (2) unchanged surface expression of adhesion molecules, and (3) elevated levels of sICAM-1 in HSVEC of all donors. The concentration of sVCAM-1 was increased only in diabetic cells. The proinflammatory state of diabetic HSVEC characterized by increased levels of cytokines was compensated. We concluded that even under normoglycemic conditions the serum itself contains critical factors leading to abnormal regulation of inflammation in diabetics. We introduced an in vitro model of diabetes representing the endothelial situation at the beginning of diabetes (non-diabetic cells/diabetic serum) as well as the diabetic chronic state (diabetic cells/diabetic serum)

  13. Absences of Endothelial Microvesicle Changes in the Presence of the Endotheliopathy of Trauma

    DEFF Research Database (Denmark)

    Wade, Charles E; Matijevic, Nena; Wang, Yao-Wei W

    2018-01-01

    thrombomodulin levels. Based on thrombelastography, EOT had reductions in clot initiation, amplification, propagation and strength, and a greater frequency of transfusion, 92% vs 33%. There were no differences in EMVs irrespective of the antibody used. Plasma norepinephrine, sE-selectin, sVE-cadherin and histone....... Endothelial microvesicles (EMVs) represent cellular damage. We hypothesized that EOT is associated with endothelial damage and apoptosis resulting in an increase in circulating EMVs. METHODS: Prospective, observational study enrolling severely injured patients. Twelve patients with EOT, based on elevated...... by flow cytometry using varied monoclonal antibodies associated with endothelial cells. Significance was set at p Syndecan-1, 230 (158, 293) vs. 19 (14, 25) ng/ml, epinephrine and soluble...

  14. A PEDF-Derived Peptide Inhibits Retinal Neovascularization and Blocks Mobilization of Bone Marrow-Derived Endothelial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Richard Longeras

    2012-01-01

    Full Text Available Proliferative diabetic retinopathy is characterized by pathological retinal neovascularization, mediated by both angiogenesis (involving mature endothelial cells and vasculogenesis (involving bone marrow-derived circulating endothelial progenitor cells (EPCs. Pigment epithelium-derived factor (PEDF contains an N-terminal 34-amino acid peptide (PEDF-34 that has antiangiogenic properties. Herein, we present a novel finding that PEDF-34 also possesses antivasculogenic activity. In the oxygen-induced retinopathy (OIR model using transgenic mice that have Tie2 promoter-driven GFP expression, we quantified Tie2GFP+ cells in bone marrow and peripheral blood by fluorescence-activated cell sorting (FACS. OIR significantly increased the number of circulating Tie2-GFP+ at P16, correlating with the peak progression of neovascularization. Daily intraperitoneal injections of PEDF-34 into OIR mice decreased the number of Tie2-GFP+ cells in the circulation at P16 by 65% but did not affect the number of Tie2-GFP+ cells in the bone marrow. These studies suggest that PEDF-34 attenuates EPC mobilization from the bone marrow into the blood circulation during retinal neovascularization.

  15. Low-Intensity Pulsed Ultrasound Prevents the Oxidative Stress Induced Endothelial-Mesenchymal Transition in Human Aortic Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Jiamin Li

    2018-02-01

    Full Text Available Background/Aims: Endothelial-mesenchymal transition (EndMT has been shown to take part in the generation and progression of diverse diseases, involving a series of changes leading to a loss of their endothelial characteristics and an acquirement of properties typical of mesenchymal cells. Low-intensity pulsed ultrasound (LIPUS is a new therapeutic option that has been successfully used in fracture healing. However, whether LIPUS can inhibit oxidative stress-induced endothelial cell damages through inhibiting EndMT remained unknown. This study aimed to investigate the protective effects of LIPUS against oxidative stress-induced endothelial cell damages and the underlying mechanisms. Methods: EndMT was induced by H2O2 (100 µm for seven days. Human aortic endothelial cells (HAECs were exposed to H2O2 with or without LIPUS treatment for seven days. The expression of EndMT markers (CD31, VE-cadherin, FSP1 and α-SMA were analyzed. The levels of total and phosphorylated PI3K and AKT proteins were detected by Western Blot analysis. Cell chemotaxis was determined by wound healing and transwell assay. Results: LIPUS relieved EndMT by decreasing ROS accumulation and increasing activation of the PI3K signaling cascade. LIPUS alleviated the migration of EndMT-derived mesenchymal-like cells through reducing extracellular matrix (ECM deposition that is associated with matrix metallopeptidase (MMP proteolytic activity and collagen production. Conclusion: LIPUS produces cytoprotective effects against oxidative injuries to endothelial cells through suppressing the oxidative stress-induced EndMT, activating the PI3K/AKT pathway under oxidative stress, and limiting cell migration and excessive ECM deposition.

  16. Functional and gene expression analysis of hTERT overexpressed endothelial cells

    Directory of Open Access Journals (Sweden)

    Haruna Takano

    2008-09-01

    Full Text Available Haruna Takano1, Satoshi Murasawa1,2, Takayuki Asahara1,2,31Institute of Biomedical Research and Innovation, Kobe, Japan; 2RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; 3Tokai University of School of Medicine, Tokai, JapanAbstract: Telomerase dysfunction contributes to cellular senescence. Recent advances indicate the importance of senescence in maintaining vascular cell function in vitro. Human telomerase reverse transcriptase (hTERT overexpression is thought to lead to resistance to apoptosis and oxidative stress. However, the mechanism in endothelial lineage cells is unclear. We tried to generate an immortal endothelial cell line from human umbilical vein endothelial cells using a no-virus system and examine the functional mechanisms of hTERT overexpressed endothelial cell senescence in vitro. High levels of hTERT genes and endothelial cell-specific markers were expressed during long-term culture. Also, angiogenic responses were observed in hTERT overexpressed endothelial cell. These cells showed a delay in senescence and appeared more resistant to stressed conditions. PI3K/Akt-related gene levels were enhanced in hTERT overexpressed endothelial cells. An up-regulated PI3K/Akt pathway caused by hTERT overexpression might contribute to anti-apoptosis and survival effects in endothelial lineage cells.Keywords: endothelial, telomerase, senescence, oxidative stress, anti-apoptosis, PI3K/Akt pathway

  17. Characterisation of human induced pluripotent stem cell-derived endothelial cells under shear stress using an easy-to-use microfluidic cell culture system.

    Science.gov (United States)

    Ohtani-Kaneko, Rsituko; Sato, Kenjiro; Tsutiya, Atsuhiro; Nakagawa, Yuka; Hashizume, Kazutoshi; Tazawa, Hidekatsu

    2017-10-09

    Induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) can contribute to elucidating the pathogenesis of heart and vascular diseases and developing their treatments. Their precise characteristics in fluid flow however remain unclear. Therefore, the aim of the present study is to characterise these features. We cultured three types of ECs in a microfluidic culture system: commercially available human iPS-ECs, human umbilical vein endothelial cells (HUVECs) and human umbilical artery endothelial cells (HUAECs). We then examined the mRNA expression levels of endothelial marker gene cluster of differentiation 31 (CD31), fit-related receptor tyrosine kinase (Flk-1), and the smooth muscle marker gene smooth muscle alpha-actin, and investigated changes in plasminogen activator inhibitor-1 (PAI-1) secretion and intracellular F-actin arrangement following heat stress. We also compared expressions of the arterial and venous marker genes ephrinB2 and EphB4, and the endothelial gap junction genes connexin (Cx) 37, 40, and 43 under fluidic shear stress to determine their arterial or venous characteristics. We found that iPS-ECs had similar endothelial marker gene expressions and exhibited similar increases in PAI-1 secretion under heat stress as HUVECs and HUAECs. In addition, F-actin arrangement in iPSC-ECs also responded to heat stress, as previously reported. However, they had different expression patterns of arterial and venous marker genes and Cx genes under different fluidic shear stress levels, showing that iPSC-ECs exhibit different characteristics from arterial and venous ECs. This microfluidic culture system equipped with variable shear stress control will provide an easy-to-use assay tool to examine characteristics of iPS-ECs generated by different protocols in various laboratories and contribute to basic and applied biomedical researches on iPS-ECs.

  18. Microalbuminuria, endothelial dysfunction and cardiovascular risk

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B

    2000-01-01

    Microalbuminuria was originally considered to be an important new risk factor for diabetic nephropathy. More recently, it has been convincingly shown that microalbuminuria is also an independent risk factor for cardiovascular morbidity and mortality in Type 1 and Type 2 diabetic patients. Even...... in the non-diabetic background population, microalbuminuria is a risk factor for cardiovascular mortality. What is the link between increased loss of albumin in urine and cardiovascular disease and mortality? As microalbuminuria is apparently associated with increased universal vascular sieving of albumin...... evidence of endothelial dysfunction in patients with microalbuminuria, which may be the common link accounting for the associations mentioned above. In this context, a number of markers of endothelial cell dysfunction have been found to be increased in patients with microalbuminuria. In addition, a number...

  19. The effects of smoking on levels of endothelial progenitor cells and microparticles in the blood of healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Fariborz Mobarrez

    Full Text Available BACKGROUND: Cigarette smoking, both active and passive, is one of the leading causes of morbidity and mortality in cardiovascular disease. To assess the impact of brief smoking on the vasculature, we determined levels of circulating endothelial progenitor cells (EPCs and circulating microparticles (MPs following the smoking of one cigarette by young, healthy intermittent smokers. MATERIALS AND METHODS: 12 healthy volunteers were randomized to either smoking or not smoking in a crossover fashion. Blood sampling was performed at baseline, 1, 4 and 24 hours following smoking/not smoking. The numbers of EPCs and MPs were determined by flow cytometry. MPs were measured from platelets, leukocytes and endothelial cells. Moreover, MPs were also labelled with anti-HMGB1 and SYTO 13 to assess the content of nuclear molecules. RESULTS: Active smoking of one cigarette caused an immediate and significant increase in the numbers of circulating EPCs and MPs of platelet-, endothelial- and leukocyte origin. Levels of MPs containing nuclear molecules were increased, of which the majority were positive for CD41 and CD45 (platelet- and leukocyte origin. CD144 (VE-cadherin or HMGB1 release did not significantly change during active smoking. CONCLUSION: Brief active smoking of one cigarette generated an acute release of EPC and MPs, of which the latter contained nuclear matter. Together, these results demonstrate acute effects of cigarette smoke on endothelial, platelet and leukocyte function as well as injury to the vascular wall.

  20. The effect of angiotensin-2 receptor blocker valsartan on circulating level of endothelial progenitor cells in diabetic patients with asymptomatic coronary artery disease.

    Science.gov (United States)

    Berezin, Alexander E; Kremzer, Alexander A; Martovitskaya, Yulia V; Samura, Tatyana A

    2015-01-01

    Decreased circulating endothelial progenitor cells (EPCs) are considered as strong and robust biomarkers for the prediction of cardiovascular outcomes in diabetic populations. The perspectives for modulating EPCs levels in T2DM with known coronary artery disease (CAD) with different drugs, affected mechanisms of improving mobilization of EPCs from tissue, are not still understood. To evaluate an effect of angiotensin-2 receptor blocker valsartan on circulating level of EPCs in diabetic patients with asymptomatic CAD. The study population was structured retrospectively after determining the CAD by contrast-enhanced spiral computed tomography angiography in 126 asymptomatic subjects. All subjects were distributed into two cohorts depending on daily doses of valsartan given. Low (80-160 mg daily orally) and high doses (240-320 mg daily orally) of valsartan were used and they were adjusted depending on achieving BP level less than 140/80 mmHg. The change from baseline in CD34(+) subset cells (frequencies and absolute values) was not significantly different between treatment cohorts. We found a significant increase of circulating level of CD14(+)CD309(+) cells in two patient cohorts. But more prominent change of CD14(+)CD309(+) cells was verified in subjects who were given valsartan in high daily doses when compared with persons who were included into cohort with low daily doses of the drug (1.96% versus 2.59%, respectively; Pvalsartan only. We found positive influence of angiotensin-2 receptor blocker valsartan in escalation doses on bone marrow-derived EPCs phenotyped as CD14(+)CD309(+) and CD14(+)CD309(+)Tie(2+) in T2DM patients with known asymptomatic CAD. Copyright © 2014 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  1. Successful in vitro expansion and differentiation of cord blood derived CD34+ cells into early endothelial progenitor cells reveals highly differential gene expression.

    Directory of Open Access Journals (Sweden)

    Ingo Ahrens

    Full Text Available Endothelial progenitor cells (EPCs can be purified from peripheral blood, bone marrow or cord blood and are typically defined by a limited number of cell surface markers and a few functional tests. A detailed in vitro characterization is often restricted by the low cell numbers of circulating EPCs. Therefore in vitro culturing and expansion methods are applied, which allow at least distinguishing two different types of EPCs, early and late EPCs. Herein, we describe an in vitro culture technique with the aim to generate high numbers of phenotypically, functionally and genetically defined early EPCs from human cord blood. Characterization of EPCs was done by flow cytometry, immunofluorescence microscopy, colony forming unit (CFU assay and endothelial tube formation assay. There was an average 48-fold increase in EPC numbers. EPCs expressed VEGFR-2, CD144, CD18, and CD61, and were positive for acetylated LDL uptake and ulex lectin binding. The cells stimulated endothelial tube formation only in co-cultures with mature endothelial cells and formed CFUs. Microarray analysis revealed highly up-regulated genes, including LL-37 (CAMP, PDK4, and alpha-2-macroglobulin. In addition, genes known to be associated with cardioprotective (GDF15 or pro-angiogenic (galectin-3 properties were also significantly up-regulated after a 72 h differentiation period on fibronectin. We present a novel method that allows to generate high numbers of phenotypically, functionally and genetically characterized early EPCs. Furthermore, we identified several genes newly linked to EPC differentiation, among them LL-37 (CAMP was the most up-regulated gene.

  2. Endothelial adhesion molecules and leukocyte integrins in preeclamptic patients.

    Science.gov (United States)

    Haller, H; Ziegler, E M; Homuth, V; Drab, M; Eichhorn, J; Nagy, Z; Busjahn, A; Vetter, K; Luft, F C

    1997-01-01

    Endothelial cell activation is important in the pathogenesis of preeclampsia; however, the nature of the activation is unknown. We investigated 22 patients with preeclampsia. 29 normotensive pregnancies, and 18 nonpregnant women to test the hypothesis that serum from preeclamptic patients induces expression of intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) and stimulates intracellular free calcium concentrations [Ca2+]i in cultured endothelial cells. We then asked whether the corresponding integrin adhesive counter receptors lymphocyte function-associated antigen-1 (CD11a/CD18), macrophage-1 antigen (CD11b/CD18), p150,95 (CD11c/CD18), and very late activation antigen-4 (CD49/CD29) are increased in patients with preeclampsia. In the pregnant women, the measurements were conducted both before and after delivery. Integrin expression was measured by fluorescent antibody cell sorting analysis using monoclonal antibodies. ICAM-1 and VCAM-1 were analyzed on endothelial cells by enzyme-linked immunosorbent assay. [Ca2+]i was measured with fura 2. Serum from preeclamptic patients increased endothelial cell ICAM-1 expression but not VCAM-1 expression. Preeclamptic patients' serum also increased [Ca2+]i in endothelial cells compared with serum from normal nonpregnant or normal pregnant women. Endothelial cell [Ca2+]i concentrations were correlated with the ICAM-1 expression in preeclamptic patients (r = .80, P preclampsia and normal pregnancy compared with the nonpregnant state. The expression decreased significantly after delivery in both groups. Our results demonstrate that serum from preeclamptic women induces increased ICAM-1 surface expression on endothelial cells, while the expression of the integrin counterreceptors was not different. The effect on endothelial cells may be related to an increase in [Ca2+]i. The effect on cultured endothelial cells and the rapid decrease after delivery suggests the presence of a circulating serum

  3. Hem-1 complexes are essential for Rac activation, actin polymerization, and myosin regulation during neutrophil chemotaxis.

    Directory of Open Access Journals (Sweden)

    Orion D Weiner

    2006-02-01

    Full Text Available Migrating cells need to make different actin assemblies at the cell's leading and trailing edges and to maintain physical separation of signals for these assemblies. This asymmetric control of activities represents one important form of cell polarity. There are significant gaps in our understanding of the components involved in generating and maintaining polarity during chemotaxis. Here we characterize a family of complexes (which we term leading edge complexes, scaffolded by hematopoietic protein 1 (Hem-1, that organize the neutrophil's leading edge. The Wiskott-Aldrich syndrome protein family Verprolin-homologous protein (WAVE2 complex, which mediates activation of actin polymerization by Rac, is only one member of this family. A subset of these leading edge complexes are biochemically separable from the WAVE2 complex and contain a diverse set of potential polarity-regulating proteins. RNA interference-mediated knockdown of Hem-1-containing complexes in neutrophil-like cells: (a dramatically impairs attractant-induced actin polymerization, polarity, and chemotaxis; (b substantially weakens Rac activation and phosphatidylinositol-(3,4,5-tris-phosphate production, disrupting the (phosphatidylinositol-(3,4,5-tris-phosphate/Rac/F-actin-mediated feedback circuit that organizes the leading edge; and (c prevents exclusion of activated myosin from the leading edge, perhaps by misregulating leading edge complexes that contain inhibitors of the Rho-actomyosin pathway. Taken together, these observations show that versatile Hem-1-containing complexes coordinate diverse regulatory signals at the leading edge of polarized neutrophils, including but not confined to those involving WAVE2-dependent actin polymerization.

  4. Circulating, cell-free DNA as a marker for exercise load in intermittent sports.

    Directory of Open Access Journals (Sweden)

    Nils Haller

    Full Text Available Attempts to establish a biomarker reflecting individual player load in intermittent sports such as football have failed so far. Increases in circulating DNA (cfDNA have been demonstrated in various endurance sports settings. While it has been proposed that cfDNA could be a suitable marker for player load in intermittent sports, the effects on cfDNA of repeated sprinting as an essential feature in intermittent sports are unknown. For the first time, we assessed both alterations of cfDNA due to repeated maximal sprints and due to a professional football game.Nine participants were subjected to a standardised sprint training session with cross-over design of five maximal sprints of 40 meters with either "short" (1 minute or "long" pauses (5 minutes. Capillary cfDNA and lactate were measured after every sprint and venous cfDNA before and after each series of sprints. Moreover, capillary cfDNA and lactate values were taken in 23 professional football players before and after incremental exercise testing, during the course of a training week at rest (baseline and in all 17 enrolled players following a season game.Lactate and venous cfDNA increased more pronounced during "short" compared to "long" (1.4-fold, p = 0.032 and 1.7-fold, p = 0.016 and cfDNA correlated significantly with lactate (r = 0.69; p<0.001. Incremental exercise testing increased cfDNA 7.0-fold (p<0.001. The season game increased cfDNA 22.7-fold (p<0.0001, while lactate showed a 2.0-fold (p = 0.09 increase compared to baseline. Fold-changes in cfDNA correlated with distance covered during game (spearman's r = 0.87, p = 0.0012, while no correlation between lactate and the tracking data could be found.We show for the first time that cfDNA could be an objective marker for distance covered in elite intermittent sports. In contrast to the potential of more established blood-based markers like IL-6, CK, or CRP, cfDNA shows by far the strongest fold-change and a high correlation with a

  5. Biomaterials trigger endothelial cell activation when co-incubated with human whole blood.

    Science.gov (United States)

    Herklotz, Manuela; Hanke, Jasmin; Hänsel, Stefanie; Drichel, Juliane; Marx, Monique; Maitz, Manfred F; Werner, Carsten

    2016-10-01

    Endothelial cell activation resulting from biomaterial contact or biomaterial-induced blood activation may in turn also affect hemostasis and inflammatory processes in the blood. Current in vitro hemocompatibility assays typically ignore these modulating effects of the endothelium. This study describes a co-incubation system of human whole blood, biomaterial and endothelial cells (ECs) that was developed to overcome this limitation. First, human endothelial cells were characterized in terms of their expression of coagulation- and inflammation-relevant markers in response to various activators. Subsequently, their capacity to regulate hemostasis as well as complement and granulocyte activation was monitored in a hemocompatibility assay. After blood contact, quiescent ECs exhibited anticoagulant and anti-inflammatory properties. When they were co-incubated with surfaces exhibiting pro-coagulant or pro-inflammatory characteristics, the ECs down-regulated coagulation but not complement or leukocyte activation. Analysis of intracellular levels of the endothelial activation markers E-selectin and tissue factor showed that co-incubation with model surfaces and blood significantly increased the activation state of ECs. Finally, the coagulation- and inflammation-modulating properties of the ECs were tested after blood/biomaterial exposure. Pre-activation of ECs by biomaterials in the blood induced a pro-coagulant and pro-inflammatory state of the ECs, wherein the pro-coagulant response was higher for biomaterial/blood pre-activated ECs than for TNF-α-pre-activated cells. This work provides evidence that biomaterials, even without directly contacting the endothelium, affect the endothelial activation state with and have consequences for plasmatic and cellular reactions in the blood. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Role of glutathione biosynthesis in endothelial dysfunction and fibrosis.

    Science.gov (United States)

    Espinosa-Díez, Cristina; Miguel, Verónica; Vallejo, Susana; Sánchez, Francisco J; Sandoval, Elena; Blanco, Eva; Cannata, Pablo; Peiró, Concepción; Sánchez-Ferrer, Carlos F; Lamas, Santiago

    2018-04-01

    Glutathione (GSH) biosynthesis is essential for cellular redox homeostasis and antioxidant defense. The rate-limiting step requires glutamate-cysteine ligase (GCL), which is composed of the catalytic (GCLc) and the modulatory (GCLm) subunits. To evaluate the contribution of GCLc to endothelial function we generated an endothelial-specific Gclc haplo-insufficient mouse model (Gclc e/+ mice). In murine lung endothelial cells (MLEC) derived from these mice we observed a 50% reduction in GCLc levels compared to lung fibroblasts from the same mice. MLEC obtained from haplo-insufficient mice showed significant reduction in GSH levels as well as increased basal and stimulated ROS levels, reduced phosphorylation of eNOS (Ser 1177) and increased eNOS S-glutathionylation, compared to MLEC from wild type (WT) mice. Studies in mesenteric arteries demonstrated impaired endothelium-dependent vasodilation in Gclc(e/+) male mice, which was corrected by pre-incubation with GSH-ethyl-ester and BH 4 . To study the contribution of endothelial GSH synthesis to renal fibrosis we employed the unilateral ureteral obstruction model in WT and Gclc(e/+) mice. We observed that obstructed kidneys from Gclc(e/+) mice exhibited increased deposition of fibrotic markers and reduced Nrf2 levels. We conclude that the preservation of endothelial GSH biosynthesis is not only critical for endothelial function but also in anti-fibrotic responses. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Endothelial cell oxidative stress and signal transduction

    Directory of Open Access Journals (Sweden)

    ROCIO FONCEA

    2000-01-01

    Full Text Available Endothelial dysfunction (ED is an early event in atherosclerotic disease, preceding clinical manifestations and complications. Increased reactive oxygen species (ROS have been implicated as important mechanisms that contribute to ED, and ROS’s may function as intracellular messengers that modulate signaling pathways. Several intracellular signal events stimulated by ROS have been defined, including the identification of two members of the mitogen activated protein kinase family (ERK1/2 and big MAP kinase, BMK1, tyrosine kinases (Src and Syk and different isoenzymes of PKC as redox-sensitive kinases. ROS regulation of signal transduction components include the modification in the activity of transcriptional factors such as NFkB and others that result in changes in gene expression and modifications in cellular responses. In order to understand the intracellular mechanisms induced by ROS in endothelial cells (EC, we are studying the response of human umbilical cord vein endothelial cells to increased ROS generation by different pro-atherogenic stimuli. Our results show that Homocysteine (Hcy and oxidized LDL (oxLDL enhance the activity and expression of oxidative stress markers, such as NFkB and heme oxygenase 1. These results suggest that these pro-atherogenic stimuli increase oxidative stress in EC, and thus explain the loss of endothelial function associated with the atherogenic process

  8. Fractalkine expression induces endothelial progenitor cell lysis by natural killer cells.

    Directory of Open Access Journals (Sweden)

    Dilyana Todorova

    Full Text Available BACKGROUND: Circulating CD34(+ cells, a population that includes endothelial progenitors, participate in the maintenance of endothelial integrity. Better understanding of the mechanisms that regulate their survival is crucial to improve their regenerative activity in cardiovascular and renal diseases. Chemokine-receptor cross talk is critical in regulating cell homeostasis. We hypothesized that cell surface expression of the chemokine fractalkine (FKN could target progenitor cell injury by Natural Killer (NK cells, thereby limiting their availability for vascular repair. METHODOLOGY/PRINCIPAL FINDINGS: We show that CD34(+-derived Endothelial Colony Forming Cells (ECFC can express FKN in response to TNF-α and IFN-γ inflammatory cytokines and that FKN expression by ECFC stimulates NK cell adhesion, NK cell-mediated ECFC lysis and microparticles release in vitro. The specific involvement of membrane FKN in these processes was demonstrated using FKN-transfected ECFC and anti-FKN blocking antibody. FKN expression was also evidenced on circulating CD34(+ progenitor cells and was detected at higher frequency in kidney transplant recipients, when compared to healthy controls. The proportion of CD34(+ cells expressing FKN was identified as an independent variable inversely correlated to CD34(+ progenitor cell count. We further showed that treatment of CD34(+ circulating cells isolated from adult blood donors with transplant serum or TNF-α/IFN-γ can induce FKN expression. CONCLUSIONS: Our data highlights a novel mechanism by which FKN expression on CD34(+ progenitor cells may target their NK cell mediated killing and participate to their immune depletion in transplant recipients. Considering the numerous diseased contexts shown to promote FKN expression, our data identify FKN as a hallmark of altered progenitor cell homeostasis with potential implications in better evaluation of vascular repair in patients.

  9. CIRCULATING MICROPARTICLES IN PATIENTS WITH ANTIPHOSPHOLIPID ANTIBODIES: CHARACTERIZATION AND ASSOCIATIONS

    Science.gov (United States)

    Chaturvedi, Shruti; Cockrell, Erin; Espinola, Ricardo; Hsi, Linda; Fulton, Stacey; Khan, Mohammad; Li, Liang; Fonseca, Fabio; Kundu, Suman; McCrae, Keith R.

    2014-01-01

    The antiphospholipid syndrome is characterized by venous or arterial thrombosis and/or recurrent fetal loss in the presence of circulating antiphospholipid antibodies. These antibodies cause activation of endothelial and other cell types leading to the release of microparticles with procoagulant and pro-inflammatory properties. The aims of this study were to characterize the levels of endothelial cell, monocyte, platelet derived, and tissue factor-bearing microparticles in patients with antiphospholipid antibodies, to determine the association of circulating microparticles with anticardiolipin and anti-β2-glycoprotein antibodies, and to define the cellular origin of microparticles that express tissue factor. Microparticle content within citrated blood from 47 patients with antiphospholipid antibodies and 144 healthy controls was analyzed within 2 hours of venipuncture. Levels of Annexin-V, CD105 and CD144 (endothelial derived), CD41 (platelet derived) and tissue factor positive microparticles were significantly higher in patients than controls. Though levels of CD14 (monocyte-derived) microparticles in patient plasma were not significantly increased, increased levels of CD14 and tissue factor positive microparticles were observed in patients. Levels of microparticles that stained for CD105 and CD144 showed a positive correlation with IgG (R = 0.60, p=0.006) and IgM anti-beta2-glycoprotein I antibodies (R=0.58, p=0.006). The elevation of endothelial and platelet derived microparticles in patients with APS and their correlation with anti-β2-glycoprotein I antibodies suggests a chronic state of vascular cell activation in these individuals and an important role for β2-glycoprotein I in development of the pro-thrombotic state associated with antiphospholipid antibodies. PMID:25467081

  10. Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling.

    Science.gov (United States)

    Borrell, Víctor; Marín, Oscar

    2006-10-01

    Cajal-Retzius cells are critical in the development of the cerebral cortex, but little is known about the mechanisms controlling their development. Three focal sources of Cajal-Retzius cells have been identified in mice-the cortical hem, the ventral pallium and the septum-from where they migrate tangentially to populate the cortical surface. Using a variety of tissue culture assays and in vivo manipulations, we demonstrate that the tangential migration of cortical hem-derived Cajal-Retzius cells is controlled by the meninges. We show that the meningeal membranes are a necessary and sufficient substrate for the tangential migration of Cajal-Retzius cells. We also show that the chemokine CXCL12 secreted by the meninges enhances the dispersion of Cajal-Retzius cells along the cortical surface, while retaining them within the marginal zone in a CXCR4-dependent manner. Thus, the meningeal membranes are fundamental in the development of Cajal-Retzius cells and, hence, in the normal development of the cerebral cortex.

  11. Transcytosis Involvement in Transport System and Endothelial Permeability of Vascular Leakage during Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Chanettee Chanthick

    2018-02-01

    Full Text Available The major role of endothelial cells is to maintain homeostasis of vascular permeability and to preserve the integrity of vascular vessels to prevent fluid leakage. Properly functioning endothelial cells promote physiological balance and stability for blood circulation and fluid components. A monolayer of endothelial cells has the ability to regulate paracellular and transcellular pathways for transport proteins, solutes, and fluid. In addition to the paracellular pathway, the transcellular pathway is another route of endothelial permeability that mediates vascular permeability under physiologic conditions. The transcellular pathway was found to be associated with an assortment of disease pathogeneses. The clinical manifestation of severe dengue infection in humans is vascular leakage and hemorrhagic diatheses. This review explores and describes the transcellular pathway, which is an alternate route of vascular permeability during dengue infection that corresponds with the pathologic finding of intact tight junction. This pathway may be the route of albumin transport that causes endothelial dysfunction during dengue virus infection.

  12. Endothelial dysfunction in rectal cancer patients chronically exposed to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rakhypbekov, Tolebay; Pak, Laura; Chaizhunusova, Nailya; Manambayeva, Zukhra; Tokanova, Sholpan; Madiyeva, Madina [Semey State Medical University, Semey (Kazakhstan); Inoue, Ken [Kochi University, Health Service Center, Kochi (Japan); Kawano, Noriyuki; Hoshi, Masaharu [Hiroshima University, Hiroshima (Japan); Takeichi, Nobuo [Takeichi Clinic, Hiroshima (Japan); Noso, Yoshihiro [Shimane University, Department of General Surgery, Faculty of Medicine, Shimane (Japan); Khozhayev, Arman; Molgazhdarov, Maulen [The Kazakh National Medical University of S.D.Asfendiyarov, Department of Oncology, Almaty (Kazakhstan); Olzhaev, Sayakhat [Almaty Regional Oncologic Hospital, Department of Oncology, Almaty (Kazakhstan)

    2017-08-15

    We sought to identify the features of endothelial function in rectal cancer patients who were exposed to chronic ionizing radiation from a nuclear test site in Kazakhstan. We examined 146 individuals, 76 of whom were rectal cancer patients. The existence of a complex of disturbances of the endothelium and hemostasis systems in patients vs non-patients was revealed. Endothelial dysfunction was expressed as an increase of nitric oxide (NO) production along with decreases in vasodilatation function, and increased levels of von Willebrand factor in blood, along with an increase in the number of circulating endotheliocytes. Significant correlations between indicators of endothelial function and vascular-platelet hemostasis were observed. These changes and their interrelations were expressed more strongly in the patients who lived in the contaminated area around the nuclear test site. Such patients could have an increased risk of thrombosis and other complications after the treatment of a malignant neoplasm. (orig.)

  13. Gene expression markers in circulating tumor cells may predict bone metastasis and response to hormonal treatment in breast cancer.

    Science.gov (United States)

    Wang, Haiying; Molina, Julian; Jiang, John; Ferber, Matthew; Pruthi, Sandhya; Jatkoe, Timothy; Derecho, Carlo; Rajpurohit, Yashoda; Zheng, Jian; Wang, Yixin

    2013-11-01

    Circulating tumor cells (CTCs) have recently attracted attention due to their potential as prognostic and predictive markers for the clinical management of metastatic breast cancer patients. The isolation of CTCs from patients may enable the molecular characterization of these cells, which may help establish a minimally invasive assay for the prediction of metastasis and further optimization of treatment. Molecular markers of proven clinical value may therefore be useful in predicting disease aggressiveness and response to treatment. In our earlier study, we identified a gene signature in breast cancer that appears to be significantly associated with bone metastasis. Among the genes that constitute this signature, trefoil factor 1 (TFF1) was identified as the most differentially expressed gene associated with bone metastasis. In this study, we investigated 25 candidate gene markers in the CTCs of metastatic breast cancer patients with different metastatic sites. The panel of the 25 markers was investigated in 80 baseline samples (first blood draw of CTCs) and 30 follow-up samples. In addition, 40 healthy blood donors (HBDs) were analyzed as controls. The assay was performed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with RNA extracted from CTCs captured by the CellSearch system. Our study indicated that 12 of the genes were uniquely expressed in CTCs and 10 were highly expressed in the CTCs obtained from patients compared to those obtained from HBDs. Among these genes, the expression of keratin 19 was highly correlated with the CTC count. The TFF1 expression in CTCs was a strong predictor of bone metastasis and the patients with a high expression of estrogen receptor β in CTCs exhibited a better response to hormonal treatment. Molecular characterization of these genes in CTCs may provide a better understanding of the mechanism underlying tumor metastasis and identify gene markers in CTCs for predicting disease progression and

  14. Protective effects on vascular endothelial cell in N'-nitro-L-arginine (L-NNA)-induced hypertensive rats from the combination of effective components of Uncaria rhynchophylla and Semen Raphani.

    Science.gov (United States)

    Li, Yunlun; Yang, Wenqing; Zhu, Qingjun; Yang, Jinguo; Wang, Zhen

    2015-08-01

    Endothelial dysfunction is closely associated with hypertension. Protection of vascular endothelial cell is the key to prevention and treatment of hypertension. Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid, isolated from traditional Chinese medicine Uncaria rbyncbopbylla and Semen Raphani respectively, exhibit properties of anti-hypertension and protection of blood vessels. In the present study, we observed the protective effect of the combined use of Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid to the vascular endothelial cell in N'-nitro-L-arginine-induced hypertensive rats and investigate the preliminary mechanism. Blood pressure was detected by non-invasive rats tail method to observe the anti-hypertension effect of drugs. Scanning electron microscopy was used to observe the integrity or shedding state of vascular endothelial cell. The amount of circulating endothelial cells and CD54 and CD62P expression on circulating endothelial cells were tested to evaluate the endothelium function. In this study, we found that the Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid compatibility can effectively lower the blood pressure, improve the structural integrity of vascular endothelium, and significantly reduce the number of circulating endothelial cells. Furthermore, the mean fluorescence intensity of CD54 and CD62P expressed showed decrease after the intervention of Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid compatibility. In conclusion, the combination of effective components of the Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid demonstrated good antihypertension effect and vascular endothelium protective effect. The preliminary mechanism of the protective effect may attribute to relieve the overall low-grade inflammation.

  15. Circulating Tumor Cell Count Correlates with Colorectal Neoplasm Progression and Is a Prognostic Marker for Distant Metastasis in Non-Metastatic Patients

    Science.gov (United States)

    Tsai, Wen-Sy; Chen, Jinn-Shiun; Shao, Hung-Jen; Wu, Jen-Chia; Lai-Ming, Jr.; Lu, Si-Hong; Hung, Tsung-Fu; Chiu, Yen-Chi; You, Jeng-Fu; Hsieh, Pao-Shiu; Yeh, Chien-Yuh; Hung, Hsin-Yuan; Chiang, Sum-Fu; Lin, Geng-Ping; Tang, Reiping; Chang, Ying-Chih

    2016-04-01

    Enumeration of circulating tumor cells (CTCs) has been proven as a prognostic marker for metastatic colorectal cancer (m-CRC) patients. However, the currently available techniques for capturing and enumerating CTCs lack of required sensitivity to be applicable as a prognostic marker for non-metastatic patients as CTCs are even more rare. We have developed a microfluidic device utilizing antibody-conjugated non-fouling coating to eliminate nonspecific binding and to promote the multivalent binding of target cells. We then established the correlation of CTC counts and neoplasm progression through applying this platform to capture and enumerate CTCs in 2 mL of peripheral blood from healthy (n = 27), benign (n = 21), non-metastatic (n = 95), and m-CRC (n = 15) patients. The results showed that the CTC counts progressed from 0, 1, 5, to 36. Importantly, after 2-year follow-up on the non-metastatic CRC patients, we found that those who had ≥5 CTCs were 8 times more likely to develop distant metastasis within one year after curable surgery than those who had marker for the non-metastatic CRC patients who are at high risk of early recurrence.

  16. Endothelial dysfunction and functional status of intestinal mucosal barrier in asphyxiated low birth weight infants

    Directory of Open Access Journals (Sweden)

    Huseynova S.A.

    2016-03-01

    Full Text Available Aim of study. The main prpose of present study was to determine the effect of endothelial dysfunction to the levels of markers of functional state of digestive system in infants with perinatal hypoxia. Materials and methods. The neuronal dysfunction was detected basing on the levels of NSE and NR2 antibodies. The functional state of gastrointestinal tract was estimated by IFABP, sLFABP, MUC-2, ITF, LBP. As the markers of endothelial dysfunction it was detected endotelin-1 and NO. The concentrations of markers were determined in peripheral blood of 66 preterm newborns exposure intrauterine hypoxia with 32–36 weeks of gestational age, which were classified as asphyxiated (1st group, n=30, non asphyxiated (2nd group, n=36 infants. Control group consisted of 22 healthy preterm babies. Results. It was not detected significant difference of NSE and NR2 antibodies levels between 1st and 2nd groups. The endothelin-1 concentrations significantly decreased in asphyxiated group in the background of high NO levels. The elevated level of IFABP in asphyxiated infants associated with compensative increasing of ITF and low anti endotoxine immunity. Conclusion. Endothelial dysfunction is one of the main factor resulting in hypoxic-ischemic injury of gastrointestinal tract in asphyxiated low birth weight infants.

  17. Utilisation of a Helicopter Emergency Medical Service (HEMS) for equestrian accidents in a regional major trauma network in the United Kingdom.

    Science.gov (United States)

    McQueen, Carl; Crombie, Nick; Cormack, Stef; George, Arun; Wheaton, Steve

    2015-05-01

    The utilisation of Helicopter Emergency Medical Services (HEMS) in response to equestrian accidents has been an integral part of operations for many years throughout the UK. The recent establishment of major trauma networks in the UK has placed great emphasis on the appropriate tasking of HEMS units to cases where added benefit can be provided and the incidence of time critical injury in cases of equestrian accidents has been shown to be low. This study assesses the impact made on the utilisation of the different HEMS resources for cases of equestrian accidents within the West Midlands following the launch of the regional trauma network. We present a retrospective analysis of all equestrian accidents attended by Midlands Air Ambulance (MAA) between 1 April 2012 and 1 April 2013. Data were abstracted from the MAA operational database relating to mission activations/scene attendances; team configuration (physician led and Critical Care Paramedic (CCP) led); on-scene interventions; mission timings and patient conveyance by helicopter. A total of 114 activations involved equestrian accidents (6% of overall workload). The contribution of equestrian accidents to overall workload was similar for physician led and CCP-led (69/1069) platforms (5% vs. 6%, p=0.50). Only three patients (3%) required pre-hospital RSI during the period analysed and there were no recorded cases of ketamine administration for analgesia/conscious sedation. In approximately half of all scene attendances patients did not require any medication to be administered by the HEMS team. The vast majority of incidents occurred in rural locations with over 80% of patients conveyed to hospital by helicopter. The average mission time for scene attendances resulting in conveyance by helicopter was in excess of 90 min on both types of platform. There is a clear requirement for the design and implementation of informed and intelligent tasking models to respond to the need for assistance in equestrian accidents

  18. Robust 1D inversion and analysis of helicopter electromagnetic (HEM) data

    DEFF Research Database (Denmark)

    Tølbøll, R.J.; Christensen, N.B.

    2006-01-01

    but can resolve layer boundary to a depth of more than 100 m. Modeling experiments also show that the effect of altimeter errors on the inversion results is serious. We suggest a new interpretation scheme for HEM data founded solely on full nonlinear 1D inversion and providing layered-earth models...... supported by datamisfit parameters and a quantitative model-parameter analysis. The backbone of the scheme is the removal of cultural coupling effects followed by a multilayer inversion that in turn provides reliable starting models for a subsequent few-layer inversion. A new procedure for correlation...

  19. Thrombomodulin as a marker for vascular tumors. Comparative study with factor VIII and Ulex europaeus I lectin.

    Science.gov (United States)

    Yonezawa, S; Maruyama, I; Sakae, K; Igata, A; Majerus, P W; Sato, E

    1987-10-01

    Thrombomodulin (TM) is a newly described endothelial cell-associated protein that functions as a potent natural anticoagulant by converting thrombin from a procoagulant protease to an anticoagulant. Various vascular tumors were characterized with immunoperoxidase staining with the use of a polyclonal anti-TM serum. The staining patterns of TM were compared with those of Factor VIII-related antigen (FVIII-RAG) and Ulex europaeus agglutinin-I (UEA-I), which have been used as markers for endothelial cells. The results showed that TM is a specific and a highly sensitive marker for angiosarcomas in comparison with FVIII-RAG or UEA-I. In contrast, UEA-I is more sensitive for benign vascular tumors than TM or FVIII-RAG. The other mesenchymal tumors of nonvascular origin showed negative staining for three endothelial markers. These results indicate that TM is a new specific and sensitive tool for the diagnosis of angiosarcomas.

  20. Successful transplantation of in vitro expanded human corneal endothelial precursors to corneal endothelial surface using a nanocomposite sheet

    Directory of Open Access Journals (Sweden)

    Parikumar P

    2011-01-01

    Full Text Available Background: Though the transplantation of in vitro expanded human corneal endothelial precursors in animal models of endothelial damage by injecting into the anterior chamber has been reported, the practical difficulties of accomplishing such procedure in human patients have been a hurdle to clinical translation. Here we report the successful transplantation of in vitro expanded human corneal precursor cells to an animal eye using a transparent Nano-composite sheet and their engraftment.Materials and Methods: Human Corneal endothelial cells (HCEC were isolated from human cadaver eyes with informed consent and expanded in the lab using a sphere forming assay in a novel Thermoreversible Gelation Polymer (TGP for 26 days. HCEC obtained by sphere forming assay were seeded in a novel Nano-composite sheet, which was made of PNIPA-NC gels by in-situ, free-radical polymerization of NIPA monomer in the presence of exfoliated clay (synthetic hectorite “Laponite XLG” uniformly dispersed in aqueous media. After a further seven days in vitro culture of HCEC in the Nano-composite sheet, cells were harvested and transplanted on cadaver-bovine eyes (n=3. The cells were injected between the corneal endothelial layer and the Nano-composite sheet that had been placed prior to the injection in close proximity to the endothelial layer. After three hours, the transplanted Nano-composite sheets were removed from the bovine eyes and subjected to microscopic examination. The corneas were subjected to Histo-pathological studies along with controls. Results: HCEC formed sphere like colonies in TGP which expressed relevant markers as confirmed by RT-PCR. Microscopic studies of the Nanosheets and histopathological studies of the cornea of the Bull’s eye revealed that the HCEC got engrafted to the corneal endothelial layer of the bovine eyes with no remnant cells in the Nanosheet. Conclusion: Transplantation of in vitro expanded donor human corneal endothelial cells

  1. VEGF-C and TGF-β reciprocally regulate mesenchymal stem cell commitment to differentiation into lymphatic endothelial or osteoblastic phenotypes.

    Science.gov (United States)

    Igarashi, Yasuyuki; Chosa, Naoyuki; Sawada, Shunsuke; Kondo, Hisatomo; Yaegashi, Takashi; Ishisaki, Akira

    2016-04-01

    The direction of mesenchymal stem cell (MSC) differentiation is regulated by stimulation with various growth factors and cytokines. We recently established MSC lines, [transforming growth factor-β (TGF-β)-responsive SG‑2 cells, bone morphogenetic protein (BMP)-responsive SG‑3 cells, and TGF-β/BMP-non-responsive SG‑5 cells], derived from the bone marrow of green fluorescent protein-transgenic mice. In this study, to compare gene expression profiles in these MSC lines, we used DNA microarray analysis to characterize the specific gene expression profiles observed in the TGF-β-responsive SG‑2 cells. Among the genes that were highly expressed in the SG‑2 cells, we focused on vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3), the gene product of FMS-like tyrosine kinase 4 (Flt4). We found that VEGF-C, a specific ligand of VEGFR3, significantly induced the cell proliferative activity, migratory ability (as shown by Transwell migration assay), as well as the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 in the SG‑2 cells. Additionally, VEGF-C significantly increased the expression of prospero homeobox 1 (Prox1) and lymphatic vessel endothelial hyaluronan receptor 1 (Lyve1), which are lymphatic endothelial cell markers, and decreased the expression of osteogenic differentiation marker genes in these cells. By contrast, TGF-β significantly increased the expression of early-phase osteogenic differentiation marker genes in the SG‑2 cells and markedly decreased the expression of lymphatic endothelial cell markers. The findings of our study strongly suggest the following: i) that VEGF-C promotes the proliferative activity and migratory ability of MSCs; and ii) VEGF-C and TGF-β reciprocally regulate MSC commitment to differentiation into lymphatic endothelial or osteoblastic phenotypes, respectively. Our findings provide new insight into the molecular mechanisms underlying the regenerative ability of MSCs.

  2. Physical exercise, fitness and dietary pattern and their relationship with circadian blood pressure pattern, augmentation index and endothelial dysfunction biological markers: EVIDENT study protocol

    Directory of Open Access Journals (Sweden)

    Nicolás Eguskiñe

    2010-05-01

    Full Text Available Abstract Background Healthy lifestyles may help to delay arterial aging. The purpose of this study is to analyze the relationship of physical activity and dietary pattern to the circadian pattern of blood pressure, central and peripheral blood pressure, pulse wave velocity, carotid intima-media thickness and biological markers of endothelial dysfunction in active and sedentary individuals without arteriosclerotic disease. Methods/Design Design: A cross-sectional multicenter study with six research groups. Subjects: From subjects of the PEPAF project cohort, in which 1,163 who were sedentary became active, 1,942 were sedentary and 2,346 were active. By stratified random sampling, 1,500 subjects will be included, 250 in each group. Primary measurements: We will evaluate height, weight, abdominal circumference, clinical and ambulatory blood pressure with the Radial Pulse Wave Acquisition Device (BPro, central blood pressure and augmentation index with Pulse Wave Application Software (A-Pulse and SphymgoCor System Px (Pulse Wave Analysis, pulse wave velocity (PWV with SphymgoCor System Px (Pulse Wave Velocity, nutritional pattern with a food intake frequency questionnaire, physical activity with the 7-day PAR questionnaire and accelerometer (Actigraph GT3X, physical fitness with the cycle ergometer (PWC-170, carotid intima-media thickness by ultrasound (Micromax, and endothelial dysfunction biological markers (endoglin and osteoprotegerin. Discussion Determining that sustained physical activity and the change from sedentary to active as well as a healthy diet improve circadian pattern, arterial elasticity and carotid intima-media thickness may help to propose lifestyle intervention programs. These interventions could improve the cardiovascular risk profile in some parameters not routinely assessed with traditional risk scales. From the results of this study, interventional approaches could be obtained to delay vascular aging that combine physical

  3. The interaction between circulating complement proteins and cutaneous microvascular endothelial cells in the development of childhood Henoch-Schonlein Purpura.

    Directory of Open Access Journals (Sweden)

    Yao-Hsu Yang

    Full Text Available In addition to IgA, the deposition of complement (C3 in dermal vessels is commonly found in Henoch-Schönlein purpura (HSP. The aim of this study is to elucidate the role of circulating complement proteins in the pathogenesis of childhood HSP.Plasma levels of C3a, C4a, C5a, and Bb in 30 HSP patients and 30 healthy controls were detected by enzyme-linked immunosorbent assay (ELISA. The expression of C3a receptor (C3aR, C5a receptor (CD88, E-selectin, intercellular adhesion molecule 1 (ICAM-1, C3, C5, interleukin (IL-8, monocyte chemotactic protein (MCP-1, and RANTES by human dermal microvascular endothelial cells (HMVEC-d was evaluated either by flow cytometry or by ELISA.At the acute stage, HSP patients had higher plasma levels of C3a (359.5 ± 115.3 vs. 183.3 ± 94.1 ng/ml, p < 0.0001, C5a (181.4 ± 86.1 vs. 33.7 ± 26.3 ng/ml, p < 0.0001, and Bb (3.7 ± 2.6 vs. 1.0 ± 0.6 μg/ml, p < 0.0001, but not C4a than healthy controls. Although HSP patient-derived acute phase plasma did not alter the presentation of C3aR and CD88 on HMVEC-d, it enhanced the production of endothelial C3 and C5. Moreover, C5a was shown in vitro to up-regulate the expression of IL-8, MCP-1, E-selectin, and ICAM-1 by HMVEC-d with a dose-dependent manner.In HSP, the activation of the complement system in part through the alternative pathway may have resulted in increased plasma levels of C3a and C5a, which, especially C5a, may play a role in the disease pathogenesis by activating endothelium of cutaneous small vessels.

  4. Associations of functional and biochemical parameters of endothelial dysfunction in postmenopausal women with a different state of carbohydrate metabolism

    Directory of Open Access Journals (Sweden)

    Lyudmila Aleksandrovna Ruyatkina

    2015-10-01

    Conclusions. We revealed the associations of metabolic, anthropometric, and hemodynamic factors as well as biochemical markers of endothelial dysfunction with microcirculation parameters in various modes of endothelial activity (basal, occlusion, and reperfusion in postmenopausal women according to their carbohydrate metabolism status; we also describe the effect of age on microvasculature vasomotion.

  5. Human Bone Derived Collagen for the Development of an Artificial Corneal Endothelial Graft. In Vivo Results in a Rabbit Model.

    Directory of Open Access Journals (Sweden)

    Natalia Vázquez

    Full Text Available Corneal keratoplasty (penetrating or lamellar using cadaveric human tissue, is nowadays the main treatment for corneal endotelial dysfunctions. However, there is a worldwide shortage of donor corneas available for transplantation and about 53% of the world's population have no access to corneal transplantation. Generating a complete cornea by tissue engineering is still a tough goal, but an endothelial lamellar graft might be an easier task. In this study, we developed a tissue engineered corneal endothelium by culturing human corneal endothelial cells on a human purified type I collagen membrane. Human corneal endothelial cells were cultured from corneal rims after corneal penetrating keratoplasty and type I collagen was isolated from remnant cancellous bone chips. Isolated type I collagen was analyzed by western blot, liquid chromatography -mass spectrometry and quantified using the exponentially modified protein abundance index. Later on, collagen solution was casted at room temperature obtaining an optically transparent and mechanically manageable membrane that supports the growth of human and rabbit corneal endothelial cells which expressed characteristic markers of corneal endothelium: zonula ocluddens-1 and Na+/K+ ATPase. To evaluate the therapeutic efficiency of our artificial endothelial grafts, human purified type I collagen membranes cultured with rabbit corneal endothelial cells were transplanted in New Zealand white rabbits that were kept under a minimal immunosuppression regimen. Transplanted corneas maintained transparency for as long as 6 weeks without obvious edema or immune rejection and maintaining the same endothelial markers that in a healthy cornea. In conclusion, it is possible to develop an artificial human corneal endothelial graft using remnant tissues that are not employed in transplant procedures. This artificial endothelial graft can restore the integrality of corneal endothelium in an experimental model of

  6. Endothelial function and insulin resistance in polycystic ovary syndrome: the effects of medical therapy.

    Science.gov (United States)

    Teede, Helena J; Meyer, Caroline; Hutchison, Samantha K; Zoungas, Sophia; McGrath, Barry P; Moran, Lisa J

    2010-01-01

    To assess the interaction between insulin resistance and endothelial function and the optimal treatment strategy addressing cardiovascular risk in polycystic ovary syndrome. Randomized controlled trial. Controlled clinical study. Overweight age- and body mass index-matched women with polycystic ovary syndrome. Six months metformin (1 g two times per day, n = 36) or oral contraceptive pill (OCP) (35 microg ethinyl E(2)-2 mg cytoproterone acetate, n = 30). Fasting and oral glucose tolerance test glucose and insulin levels, endothelial function (flow-mediated dilation, asymmetric dimethylarginine, plasminogen activator inhibitor-1, von Willebrand factor), inflammatory markers (high-sensitivity C-reactive protein), lipids, and hyperandrogenism. The OCP increased levels of glucose and insulin on oral glucose tolerance test, high-sensitivity C-reactive protein, triglycerides, and sex-hormone binding globulin and decreased levels of low-density lipoprotein cholesterol and T. Metformin decreased levels of fasting insulin, oral glucose tolerance test insulin, high-density lipoprotein cholesterol, and high-sensitivity C-reactive protein. Flow-mediated dilation increased only with metformin (+2.2% +/- 4.8%), whereas asymmetric dimethylarginine decreased equivalently for OCP and metformin (-0.3 +/- 0.1 vs. -0.1 +/- 0.1 mmol/L). Greater decreases in plasminogen activator inhibitor-1 occurred for the OCP than for metformin (-1.8 +/- 1.6 vs. -0.7 +/- 1.7 U/mL). In polycystic ovary syndrome, metformin improves insulin resistance, inflammatory markers, and endothelial function. The OCP worsens insulin resistance and glucose homeostasis, inflammatory markers, and triglycerides and has neutral or positive endothelial effects. The effect of the OCP on cardiovascular risk in polycystic ovary syndrome is unclear. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Cancer cells remodel themselves and vasculature to overcome the endothelial barrier.

    Science.gov (United States)

    Shenoy, Anitha K; Lu, Jianrong

    2016-10-01

    Metastasis refers to the spread of cancer cells from a primary tumor to distant organs mostly via the bloodstream. During the metastatic process, cancer cells invade blood vessels to enter circulation, and later exit the vasculature at a distant site. Endothelial cells that line blood vessels normally serve as a barrier to the movement of cells into or out of the blood. It is thus critical to understand how metastatic cancer cells overcome the endothelial barrier. Epithelial cancer cells acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT), which enables them to move toward vasculature. Cancer cells also express a variety of adhesion molecules that allow them to attach to vascular endothelium. Finally, cancer cells secrete or induce growth factors and cytokines to actively prompt vascular hyperpermeability that compromises endothelial barrier function and facilitates transmigration of cancer cells through the vascular wall. Elucidation of the mechanisms underlying metastatic dissemination may help develop new anti-metastasis therapeutics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Endothelial function in youth: A biomarker modulated by adiposity-related insulin resistance

    Science.gov (United States)

    To investigate the physical and metabolic determinants of endothelial dysfunction, an early marker of subclinical atherosclerosis, in normal weight and overweight adolescents with and without type 2 diabetes mellitus. A cross-sectional study of 81 adolescents: 21 normal weight, 25 overweight with no...

  9. Human Exposure Model (HEM): A modular, web-based application to characterize near-field chemical exposures and releases

    Science.gov (United States)

    The U.S. EPA’s Chemical Safety and Sustainability research program is developing the Human Exposure Model (HEM) to assess near-field exposures to chemicals that occur in various populations over the entire life cycle of a consumer product. The model will be implemented as a...

  10. An In Vitro Study of Differentiation of Hematopoietic Cells to Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Qi Ru Wang

    2011-01-01

    medium (ECCM. BM-EPCs were characterized in terms of phenotype, lineage potential, and their functional properties. Endothelial cell colonies derived from BM-EPC were cultured with ECCM for 3 months. Cultured EPC colony cells expressed endothelial cell markers and formed the capillary-like network in vitro. EPC colony cells expressed differential proliferative capacity; some of the colonies exhibited a high proliferative potential (HPP capacity up to 20 population doublings. More importantly, these HPP-EPCs expressed hematopoietic marker CD45, exhibited endocytic activities, and preserved some of the myeloid cell activity. In addition, the HPP-EPCs secrete various growth factors including VEGF and GM-CSF into the culture medium. The results demonstrate that these EPCs were primarily derived from hematopoietic origin of early precursor cells and maintained high proliferative potential capacity, a feature with a significant potential in the application of cell therapy in ischemic diseases.

  11. Hemşirelerde İşgücü Verimliliğini Etkileyen Faktörlerin Belirlenmesi

    OpenAIRE

    Dikmen, Yurdanur; Kara Yılmaz, Dilek; Başaran, Handenur; Filiz, Nasibe Yağmur

    2016-01-01

    Amaç:Buçalışma, hemşirelerin işgücü verimliliğini etkileyen faktörleri belirlemek amacıyla yapılmıştır. GereçveYöntemler:Tanımlayıcı ve analitik olarak planlanan araştırma Türkiye’nin kuzeybatısında bulunan bir kamu hastanesinde araştırmaya katılmaya gönüllü olan 156 hemşire ile yürütülmüştür. Veriler “Katılımcı Tanıtım Formu” ile işgücü verimliliğine etki eden faktörleri içeren Türkiye’de Özkoç (2005) tarafından geliştirilen anket formu ile toplanmıştır. Verilerinin analizinde; frek...

  12. Prognostic value of circulating VEGFR2+ bone marrow-derived progenitor cells in patients with advanced cancer.

    Science.gov (United States)

    Massard, Christophe; Borget, Isabelle; Le Deley, Marie Cécile; Taylor, Melissa; Gomez-Roca, Carlos; Soria, Jean Charles; Farace, Françoise

    2012-06-01

    We hypothesised that host-related markers, possibly reflecting tumour aggressiveness, such as circulating endothelial cells (CEC) and circulating VEGFR2(+) bone marrow-derived (BMD) progenitor cells, could have prognostic value in patients with advanced cancer enrolled in early anticancer drug development trials. Baseline CECs (CD45(-)CD31(+)CD146(+)7AAD(-) cells) and circulating VEGFR2(+)-BMD progenitor cells (defined as CD45(dim)CD34(+)VEGFR2(+)7AAD(-) cells) were measured by flow-cytometry in 71 and 58 patients included in phase 1 trials testing novel anti-vascular or anti-angiogenic agents. Correlations between levels of CECs, circulating VEGFR2(+)-BMD progenitor cells, clinical and biological prognostic factors (i.e. the Royal Marsden Hospital (RMH) score), and overall survival (OS) were studied. The median value of CECs was 12 CEC/ml (range 0-154/ml). The median level of VEGFR2(+)-BMD progenitor cells was 1.3% (range 0-32.5%) of circulating BMD-CD34(+) progenitors. While OS was not correlated with CEC levels, it was significantly worse in patients with high VEGFR2(+)-BMD progenitor levels (>1%) (median OS 9.0 versus 17.0 months), and with a RMH prognostic score >0 (median OS 9.0 versus 24.2 months). The prognostic value of VEGFR2(+)-BMD progenitor levels remained significant (hazard ratio (HR) = 2.3, 95% confidence interval (CI), 1.1-4.6, p = 0.02) after multivariate analysis. A composite VEGFR2(+)-BMD progenitor level/RHM score ≥ 2 was significantly associated with an increased risk of death compared to scores of 0 or 1 (median OS 9.0 versus 18.4 months, HR = 2.6 (95%CI, 1.2-5.8, p = 0.02)). High circulating VEGFR2(+)-BMD progenitor levels are associated with poor prognostics and when combined to classical clinical and biological parameters could provide a new tool for patient selection in early anticancer drug trials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Palmitic Acid Reduces Circulating Bone Formation Markers in Obese Animals and Impairs Osteoblast Activity via C16-Ceramide Accumulation.

    Science.gov (United States)

    Alsahli, Ahmad; Kiefhaber, Kathryn; Gold, Tziporah; Muluke, Munira; Jiang, Hongfeng; Cremers, Serge; Schulze-Späte, Ulrike

    2016-05-01

    Obesity and impaired lipid metabolism increase circulating and local fatty acid (FA) levels. Our previous studies showed that a high high-saturated -fat diet induced greater bone loss in mice than a high high-unsaturated-fat diet due to increased osteoclast numbers and activity. The impact of elevated FA levels on osteoblasts is not yet clear. We induced obesity in 4 week old male mice using a palmitic acid (PA)- or oleic acid (OA)-enriched high fat high-fat diet (HFD) (20 % of calories from FA), and compared them to mice on a normal (R) caloric diet (10 % of calories from FA). We collected serum to determine FA and bone metabolism marker levels. Primary osteoblasts were isolated; cultured in PA, OA, or control (C) medium; and assessed for mineralization activity, gene expression, and ceramide levels. Obese animals in the PA and OA groups had significantly lower serum levels of bone formation markers P1NP and OC compared to normal weight animals (*p < 0.001), with the lowest marker levels in animals on an PA-enriched HFD (*p < 0.001). Accordingly, elevated levels of PA significantly reduced osteoblast mineralization activity in vitro (*p < 0.05). Elevated PA intake significantly increased C16 ceramide accumulation. This accumulation was preventable through inhibition of SPT2 (serine palmitoyl transferase 2) using myriocin. Elevated levels of PA reduce osteoblast function in vitro and bone formation markers in vivo. Our findings suggest that saturated PA can compromise bone health by affecting osteoblasts, and identify a potential mechanism through which obesity promotes bone loss.

  14. Black Tea Increases Circulating Endothelial Progenitor Cells and Improves Flow Mediated Dilatation Counteracting Deleterious Effects from a Fat Load in Hypertensive Patients: A Randomized Controlled Study

    Science.gov (United States)

    Grassi, Davide; Draijer, Richard; Schalkwijk, Casper; Desideri, Giovambattista; D’Angeli, Anatolia; Francavilla, Sandro; Mulder, Theo; Ferri, Claudio

    2016-01-01

    (1) Background: Endothelial dysfunction predicts cardiovascular events. Circulating angiogenic cells (CACs) maintain and repair the endothelium regulating its function. Tea flavonoids reduce cardiovascular risk. We investigated the effects of black tea on the number of CACs and on flow-mediated dilation (FMD) before and after an oral fat in hypertensives; (2) Methods: In a randomized, double-blind, controlled, cross-over study, 19 patients were assigned to black tea (150 mg polyphenols) or a placebo twice a day for eight days. Measurements were obtained in a fasted state and after consuming whipping cream, and FMD was measured at baseline and after consumption of the products; (3) Results: Compared with the placebo, black tea ingestion increased functionally active CACs (36 ± 22 vs. 56 ± 21 cells per high-power field; p = 0.006) and FMD (5.0% ± 0.3% vs. 6.6% ± 0.3%, p FMD 1, 2, 3, and 4 h after consumption, with maximal response 2 h after intake (p FMD, while tea consumption counteracted FMD impairment (p < 0.0001); (4) Conclusions: We demonstrated the vascular protective properties of black tea by increasing the number of CACs and preventing endothelial dysfunction induced by acute oral fat load in hypertensive patients. Considering that tea is the most consumed beverage after water, our findings are of clinical relevance and interest. PMID:27854314

  15. Endothelial Proliferation and Increased Blood - Brain Barrier Permeability in the Basal Ganglia in a Rat Model of 3,4-Dihydrozyphenyl-L-Alanine-Induced Dyskinesia

    DEFF Research Database (Denmark)

    Westin, Jenny E.; Lindgren, Hanna S.; Gardi, Jonathan Eyal

    2006-01-01

    3,4-Dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinesia is associated with molecular and synaptic plasticity in the basal ganglia, but the occurrence of structural remodeling through cell genesis has not been explored. In this study, rats with 6-hydroxydopamine lesions received injections of th...... of angiogenesis and blood-brain barrier dysfunction in an experimental model of L-DOPA-induced dyskinesia. These microvascular changes are likely to affect the kinetics of L-DOPA entry into the brain, favoring the occurrence of motor complications....... dyskinesia. The vast majority (60-80%) of the newborn cells stained positively for endothelial markers. This endothelial proliferation was associated with an upregulation of immature endothelial markers (nestin) and a downregulation of endothelial barrier antigen on blood vessel walls. In addition......, dyskinetic rats exhibited a significant increase in total blood vessel length and a visible extravasation of serum albumin in the two structures in which endothelial proliferation was most pronounced (substantia nigra pars reticulata and entopeduncular nucleus). The present study provides the first evidence...

  16. Cross-Sectional Investigation of HEMS Activities in Europe: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Stefano Di Bartolomeo

    2014-01-01

    Full Text Available Objectives. To gather information on helicopter emergency medical services (HEMSs activities across Europe. Methods. Cross-sectional data-collection on daily (15 November 2013 activities of a sample of European HEMSs. A web-based questionnaire with both open and closed questions was used, developed by experts of the European Prehospital Research Alliance (EUPHOREA. Results. We invited 143 bases from 11 countries; 85 (60% reported base characteristics only and 73 (51% sample-day data too. The variety of base characteristics was enormous; that is, the target population ranged from 94.000 to 4.500.000. Of 158 requested primary missions, 62 (0.82 per base resulted in landing. Cardiac aetiology (36% and trauma (36% prevailed, mostly of life-threatening severity (43%, 0.64 per mission. Had HEMS been not dispatched, patients would have been attended by another physician in 67% of cases, by paramedics in 24%, and by nurses in 9%. On-board physicians estimated to have caused a major decrease of death risk in 47% of missions, possible decrease in 22%, minor benefit in 17%, no benefit in 11%, and damage in 3%. Earlier treatment and faster transport to hospital were the main reasons for benefit. The most frequent therapeutic procedure was drug administration (78% of missions; endotracheal intubation occurred in 25% of missions and was an option hardly offered by ground crews. Conclusions. The study proved feasible, establishing an embryonic network of European HEMS. The participation rate was low and limits the generalizability of the results. Fortunately, because of its cross-sectional characteristics and the handy availability of the web platform, the study is easily repeatable with an enhanced network.

  17. In Vitro Endothelial Cell Proliferation Assay Reveals Distinct Levels of Proangiogenic Cytokines Characterizing Sera of Healthy Subjects and of Patients with Heart Failure

    Directory of Open Access Journals (Sweden)

    Rebecca Voltan

    2014-01-01

    Full Text Available Although myocardial angiogenesis is thought to play an important role in heart failure (HF, the involvement of circulating proinflammatory and proangiogenic cytokines in the pathogenesis and/or prognosis of HF has not been deeply investigated. By using a highly standardized proliferation assay with human endothelial cells, we first demonstrated that sera from older (mean age 52±7.6 years; n=46 healthy donors promoted endothelial cell proliferation to a significantly higher extent compared to sera obtained from younger healthy donors (mean age 29±8.6 years; n=20. The promotion of endothelial cell proliferation was accompanied by high serum levels of several proangiogenic cytokines. When we assessed endothelial cell proliferation in response to HF patients’ sera, we observed that a subset of sera (n=11 promoted cell proliferation to a significantly lesser extent compared to the majority of sera (n=18. Also, in this case, the difference between the patient groups in the ability to induce endothelial cell proliferation correlated to significant (P<0.05 differences in serum proangiogenic cytokine levels. Unexpectedly, HF patients associated to the highest endothelial proliferation index showed the worst prognosis as evaluated in terms of subsequent cardiovascular events in the follow-up, suggesting that high levels of circulating proangiogenic cytokines might be related to a worse prognosis.

  18. A Novel Strategy for Detection and Enumeration of Circulating Rare Cell Populations in Metastatic Cancer Patients Using Automated Microfluidic Filtration and Multiplex Immunoassay.

    Directory of Open Access Journals (Sweden)

    Mark Jesus M Magbanua

    Full Text Available Size selection via filtration offers an antigen-independent approach for the enrichment of rare cell populations in blood of cancer patients. We evaluated the performance of a novel approach for multiplex rare cell detection in blood samples from metastatic breast (n = 19 and lung cancer patients (n = 21, and healthy controls (n = 30 using an automated microfluidic filtration and multiplex immunoassay strategy. Captured cells were enumerated after sequential staining for specific markers to identify circulating tumor cells (CTCs, circulating mesenchymal cells (CMCs, putative circulating stem cells (CSCs, and circulating endothelial cells (CECs. Preclinical validation experiments using cancer cells spiked into healthy blood demonstrated high recovery rate (mean = 85% and reproducibility of the assay. In clinical studies, CTCs and CMCs were detected in 35% and 58% of cancer patients, respectively, and were largely absent from healthy controls (3%, p = 0.001. Mean levels of CTCs were significantly higher in breast than in lung cancer patients (p = 0.03. Fifty-three percent (53% of cancer patients harbored putative CSCs, while none were detectable in healthy controls (p<0.0001. In contrast, CECs were observed in both cancer and control groups. Direct comparison of CellSearch® vs. our microfluidic filter method revealed moderate correlation (R2 = 0.46, kappa = 0.47. Serial blood analysis in breast cancer patients demonstrated the feasibility of monitoring circulating rare cell populations over time. Simultaneous assessment of CTCs, CMCs, CSCs and CECs may provide new tools to study mechanisms of disease progression and treatment response/resistance.

  19. A Novel Strategy for Detection and Enumeration of Circulating Rare Cell Populations in Metastatic Cancer Patients Using Automated Microfluidic Filtration and Multiplex Immunoassay.

    Science.gov (United States)

    Magbanua, Mark Jesus M; Pugia, Michael; Lee, Jin Sun; Jabon, Marc; Wang, Victoria; Gubens, Matthew; Marfurt, Karen; Pence, Julia; Sidhu, Harwinder; Uzgiris, Arejas; Rugo, Hope S; Park, John W

    2015-01-01

    Size selection via filtration offers an antigen-independent approach for the enrichment of rare cell populations in blood of cancer patients. We evaluated the performance of a novel approach for multiplex rare cell detection in blood samples from metastatic breast (n = 19) and lung cancer patients (n = 21), and healthy controls (n = 30) using an automated microfluidic filtration and multiplex immunoassay strategy. Captured cells were enumerated after sequential staining for specific markers to identify circulating tumor cells (CTCs), circulating mesenchymal cells (CMCs), putative circulating stem cells (CSCs), and circulating endothelial cells (CECs). Preclinical validation experiments using cancer cells spiked into healthy blood demonstrated high recovery rate (mean = 85%) and reproducibility of the assay. In clinical studies, CTCs and CMCs were detected in 35% and 58% of cancer patients, respectively, and were largely absent from healthy controls (3%, p = 0.001). Mean levels of CTCs were significantly higher in breast than in lung cancer patients (p = 0.03). Fifty-three percent (53%) of cancer patients harbored putative CSCs, while none were detectable in healthy controls (p<0.0001). In contrast, CECs were observed in both cancer and control groups. Direct comparison of CellSearch® vs. our microfluidic filter method revealed moderate correlation (R2 = 0.46, kappa = 0.47). Serial blood analysis in breast cancer patients demonstrated the feasibility of monitoring circulating rare cell populations over time. Simultaneous assessment of CTCs, CMCs, CSCs and CECs may provide new tools to study mechanisms of disease progression and treatment response/resistance.

  20. Lysophosphatidic acid stimulates thrombomodulin lectin-like domain shedding in human endothelial cells

    International Nuclear Information System (INIS)

    Wu Hualin; Lin ChiIou; Huang Yuanli; Chen, Pin-Shern; Kuo, Cheng-Hsiang; Chen, Mei-Shing; Wu, G.C.-C.; Shi, G.-Y.; Yang, H.-Y.; Lee Hsinyu

    2008-01-01

    Thrombomodulin (TM) is an anticoagulant glycoprotein highly expressed on endothelial cell surfaces. Increased levels of soluble TM in circulation have been widely accepted as an indicator of endothelial damage or dysfunction. Previous studies indicated that various proinflammatory factors stimulate TM shedding in various cell types such as smooth muscle cells and epithelial cells. Lysophosphatidic acid (LPA) is a bioactive lipid mediator present in biological fluids during endothelial damage or injury. In the present study, we first observed that LPA triggered TM shedding in human umbilical vein endothelial cells (HUVECs). By Cyflow analysis, we showed that the LPA-induced accessibility of antibodies to the endothelial growth factor (EGF)-like domain of TM is independent of matrix metalloproteinases (MMPs), while LPA-induced TM lectin-like domain shedding is MMP-dependent. Furthermore, a stable cell line expressing TM without its lectin-like domain exhibited a higher cell proliferation rate than a stable cell line expressing full-length TM. These results imply that LPA induces TM lectin-like domain shedding, which might contribute to the exposure of its EGF-like domain for EGF receptor (EGFR) binding, thereby stimulating subsequent cell proliferation. Based on our findings, we propose a novel mechanism for the exposure of TM EGF-like domain, which possibly mediates LPA-induced EGFR transactivation

  1. Dysregulation of endothelial colony-forming cell function by a negative feedback loop of circulating miR-146a and -146b in cardiovascular disease patients.

    Directory of Open Access Journals (Sweden)

    Ting-Yu Chang

    Full Text Available Functional impairment of endothelial colony-forming cells (ECFCs, a specific cell lineage of endothelial progenitor cells (EPCs is highly associated with the severity of coronary artery disease (CAD, the most common type of cardiovascular disease (CVD. Emerging evidence show that circulating microRNAs (miRNAs in CAD patients' body fluid hold a great potential as biomarkers. However, our knowledge of the role of circulating miRNA in regulating the function of ECFCs and the progression of CAD is still in its infancy. We showed that when ECFCs from healthy volunteers were incubated with conditioned medium or purified exosomes of cultured CAD ECFCs, the secretory factors from CAD ECFCs dysregulated migration and tube formation ability of healthy ECFCs. It is known that exosomes influence the physiology of recipient cells by introducing RNAs including miRNAs. By using small RNA sequencing (smRNA-seq, we deciphered the circulating miRNome in the plasma of healthy individual and CAD patients, and found that the plasma miRNA spectrum from CAD patients was significantly different from that of healthy control. Interestingly, smRNA-seq of both healthy and CAD ECFCs showed that twelve miRNAs that had a higher expression in the plasma of CAD patients also showed higher expression in CAD ECFCs when compared with healthy control. This result suggests that these miRNAs may be involved in the regulation of ECFC functions. For identification of potential mRNA targets of the differentially expressed miRNA in CAD patients, cDNA microarray analysis was performed to identify the angiogenesis-related genes that were down-regulated in CAD ECFCs and Pearson's correlation were used to identify miRNAs that were negatively correlated with the identified angiogenesis-related genes. RT-qPCR analysis of the five miRNAs that negatively correlated with the down-regulated angiogenesis-related genes in plasma and ECFC of CAD patients showed miR-146a-5p and miR-146b-5p up

  2. Modulating thrombotic diathesis in hereditary thrombophilia and antiphospholipid antibody syndrome: a role for circulating microparticles?

    Science.gov (United States)

    Campello, Elena; Radu, Claudia M; Spiezia, Luca; Simioni, Paolo

    2017-06-27

    Over the past decades, there have been great advances in the understanding of the pathogenesis of venous thromboembolism (VTE) in patients with inherited and acquired thrombophilia [mainly antiphospholipid antibody syndrome (APS)]. However, a number of questions remain unanswered. Prognostic markers capable of estimating the individual VTE risk would be of great use. Microparticles (MPs) are sub-micron membrane vesicles constitutively released from the surface of cells after cellular activation and apoptosis. The effects of MPs on thrombogenesis include the exposure of phopshatidylserine and the expression of tissue factor and MPs have been described in clinical studies as possible diagnostic and prognostic biomarkers for VTE. This review will provide a novel perspective on the current knowledge and research trends on the possible role of MPs in hereditary thrombophilia and APS. Basically, the published data show that circulating MPs may contribute to the development of VTE in thrombophilic carriers, both in mild and severe states. Moreover, the presence of endothelial-MPs and platelet-MPs has been described in antiphospholipid syndrome and seems to be directly linked to antiphospholipid antibodies and not to other underlying autoimmune disorders or the thrombotic event itself. In conclusion, circulating MPs may constitute an epiphenomenon of thrombophilia itself and could be up-regulated in acute particular conditions, promoting a global prothrombotic state up to the threshold of the clinical relevant thrombotic event.

  3. Maternal endothelial damage as a disorder shared by early preeclampsia, late preeclampsia and intrauterine growth restriction.

    Science.gov (United States)

    Kwiatkowski, Sebastian; Dołegowska, Barbara; Kwiatkowska, Ewa; Rzepka, Rafał; Marczuk, Natalia; Loj, Beata; Torbè, Andrzej

    2017-10-26

    Preeclampsia (PE) and intrauterine growth restriction (IUGR) are separate disease entities that have frequently been reported as sharing the same pathogenesis. In both of them, angiogenesis disorders and generalized endothelial damage with an accompanying inflammation are the dominant symptoms. In this study, we attempted to prove that both these processes demonstrate the same profile in early PE, late PE and IUGR patients, while the only difference is in the degree of exacerbation of the lesions. In 167 patients divided into four groups, three of those with early PE, late PE and IUGR and one control group, fms-like tyrosine kinase-1 (sFlt-1), placental growth factor (PlGF), high sensitive c-reactive protein (hsCRP) and fibronectin were determined. The behavior of these parameters in each of the groups was studied, and correlations between them were sought for. Higher concentrations of sFlt-1, hsCRP and fibronectin and a lower concentration of PlGF were found in the study groups compared to the control group. Significant correlations were observed between the factors concerned. The higher values of disordered angiogenesis markers, endothelial damage markers and inflammatory markers both in the PE and the intrauterine growth restriction (IUGR) groups suggest the existence of shared disorders in the development of these pathologies. The correlations between disordered angiogenesis markers and endothelial damage markers argue in favor of a mutual relationship between these two processes in the development of pathologies evolving as secondary to placental ischemia. The results obtained confirm that the lesion profiles are the same in both PE and IUGR patients, which can be utilized in developing common diagnostic criteria.

  4. Endotoxin-induced monocytic microparticles have contrasting effects on endothelial inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Beryl Wen

    Full Text Available Septic shock is a severe disease state characterised by the body's life threatening response to infection. Complex interactions between endothelial cells and circulating monocytes are responsible for microvasculature dysfunction contributing to the pathogenesis of this syndrome. Here, we intended to determine whether microparticles derived from activated monocytes contribute towards inflammatory processes and notably vascular permeability. We found that endotoxin stimulation of human monocytes enhances the release of microparticles of varying phenotypes and mRNA contents. Elevated numbers of LPS-induced monocytic microparticles (mMP expressed CD54 and contained higher levels of transcripts for pro-inflammatory cytokines such as TNF, IL-6 and IL-8. Using a prothrombin time assay, a greater reduction in plasma coagulation time was observed with LPS-induced mMP than with non-stimulated mMP. Co-incubation of mMP with the human brain endothelial cell line hCMEC/D3 triggered their time-dependent uptake and significantly enhanced endothelial microparticle release. Unexpectedly, mMP also modified signalling pathways by diminishing pSrc (tyr416 expression and promoted endothelial monolayer tightness, as demonstrated by endothelial impedance and permeability assays. Altogether, these data strongly suggest that LPS-induced mMP have contrasting effects on the intercellular communication network and display a dual potential: enhanced pro-inflammatory and procoagulant properties, together with protective function of the endothelium.

  5. MicroRNA-939 governs vascular integrity and angiogenesis through targeting γ-catenin in endothelial cells

    International Nuclear Information System (INIS)

    Hou, Shiqiang; Fang, Ming; Zhu, Qian; Liu, Ying; Liu, Liang; Li, Xinming

    2017-01-01

    Coronary collateral circulation (CCC) functions as a natural bypass in the event of coronary obstruction, which markedly improves prognosis in patients with coronary artery disease (CAD). MicroRNAs (miRNAs) have been implicated in multiple physiological and pathological processes, including angiogenesis involved in CCC growth. The roles that miRNA-939 (miR-939) plays in angiogenesis remain largely unknown. We conducted this study to explore the expression of miR-939 in CAD patients and its role in angiogenesis. For the first time, our results indicated that the expression of circulating miR-939 was down-regulated in patients with sufficient CCC compared with patients with poor CCC. Overexpression of miR-939 in primary human umbilical vein endothelial cells (HUVECs) significantly inhibited the proliferation, adhesion and tube formation, but promoted the migration of cells. In contrast, miR-939 knockdown exerted reverse effects. We further identified that γ-catenin was a novel target of miR-939 by translational repression, which could rescue the effects of miR-939 in HUVECs. In summary, this study revealed that the expression of circulating miR-939 was down-regulated in CAD patients with sufficient CCC. MiR-939 abolished vascular integrity and repressed angiogenesis through directly targeting γ-catenin. It provided a potential biomarker and a therapeutic target for CAD. - Highlights: • Circulating miR-939 is decreased in sufficient coronary collateral circulation. • MiR-939 abolishes vascular integrity in endothelial cells. • MiR-939 represses angiogenesis. • γ-catenin is a novel target of miR-939.

  6. Red meat intake, insulin resistance, and markers of endothelial function among Iranian women.

    Science.gov (United States)

    Barak, Farzaneh; Falahi, Ebrahim; Keshteli, Ammar Hassanzadeh; Yazdannik, Ahmadreza; Saneei, Parvane; Esmaillzadeh, Ahmad

    2015-02-01

    Few data, with conflicting findings, are available linking red meat consumption to indicators of insulin resistance and endothelial dysfunction. This study aimed to investigate the association of red meat consumption with insulin resistance and endothelial dysfunction among a sample of female nurses in Isfahan, Iran. This cross-sectional study was carried out among 420 female nurses who were selected by a multistage cluster random sampling method. Usual dietary intakes were assessed using a validated food frequency questionnaire. Red meat intake was calculated by summing up the consumption of all kinds of red meat in foods and processed meat in sausages and fast foods. To measure serum concentrations of adhesion molecules and glycemic indexes, a fasting blood sample was taken. After adjustment for potential confounders, high red meat intake was significantly associated with higher fasting plasma glucose, homeostasis model assessment of insulin resistance, and lower quantitative insulin sensitivity check index. Although high red meat intake was significantly associated with higher serum insulin levels and lower homeostasis model assessment of beta-cell function in the crude model, after controlling for BMI, the association was no longer significant. Red meat consumption was associated with high concentrations of E-selectin, soluble vascular cell adhesion molecule-1 (sVCAM-1), and soluble intercellular adhesion molecule-1 (sICAM-1) after adjustment for different potential confounders. We found that increased red meat intake was associated with high concentrations of plasma endothelial dysfunction biomarkers and abnormal glucose homeostasis among Iranian women. Prospective studies are required to confirm these findings. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Compressive elasticity of three-dimensional nanofiber matrix directs mesenchymal stem cell differentiation to vascular cells with endothelial or smooth muscle cell markers.

    Science.gov (United States)

    Wingate, K; Bonani, W; Tan, Y; Bryant, S J; Tan, W

    2012-04-01

    The importance of mesenchymal stem cells (MSC) in vascular regeneration is becoming increasingly recognized. However, few in vitro studies have been performed to identify the effects of environmental elasticity on the differentiation of MSC into vascular cell types. Electrospinning and photopolymerization techniques were used to fabricate a three-dimensional (3-D) polyethylene glycol dimethacrylate nanofiber hydrogel matrix with tunable elasticity for use as a cellular substrate. Compression testing demonstrated that the elastic modulus of the hydrated 3-D matrices ranged from 2 to 15 kPa, similar to the in vivo elasticity of the intima basement membrane and media layer. MSC seeded on rigid matrices (8-15 kPa) showed an increase in cell area compared with those seeded on soft matrices (2-5 kPa). Furthermore, the matrix elasticity guided the cells to express different vascular-specific phenotypes with high differentiation efficiency. Around 95% of MSC seeded on the 3-D matrices with an elasticity of 3 kPa showed Flk-1 endothelial markers within 24h, while only 20% of MSC seeded on the matrices with elasticity >8 kPa demonstrated Flk-1 marker. In contrast, ∼80% of MSC seeded on 3-D matrices with elasticity >8 kPa demonstrated smooth muscle α-actin marker within 24h, while fewer than 10% of MSC seeded on 3-D matrices with elasticity elasticity of the substrate could be a powerful tool for vascular tissue regeneration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Circulating Markers of Vascular Injury and Angiogenesis in ANCA-Associated Vasculitis

    Science.gov (United States)

    Monach, Paul A; Tomasson, Gunnar; Specks, Ulrich; Stone, John H; Cuthbertson, David; Krischer, Jeffrey; Ding, Linna; Fervenza, Fernando C; Fessler, Barri J; Hoffman, Gary S; Ikle, David; Kallenberg, Cees GM; Langford, Carol A; Mueller, Mark; Seo, Philip; St.Clair, E William; Spiera, Robert; Tchao, Nadia; Ytterberg, Steven R; Gu, Yi-Zhong; Snyder, Ronald D; Merkel, Peter A

    2011-01-01

    Objective To identify biomarkers that distinguish between active ANCA-associated vasculitis (AAV) and remission in a manner superior or complementary to established markers of systemic inflammation. Methods Markers of vascular injury and angiogenesis were measured before and after treatment in a large clinical trial in AAV. 163 subjects enrolled in the Rituximab in ANCA-Associated Vasculitis (RAVE) trial were studied. Serum levels of E-selectin, ICAM-3, MMP1, MMP3, MMP9, P-selectin, thrombomodulin, and VEGF were measured at study screening (time of active disease) and at month 6. ESR and CRP levels had been measured at the time of the clinical visit. The primary outcome was the difference in marker level between screening and month 6 among patients in remission (BVAS/WG score of 0) at month 6. Results All subjects had severe active vasculitis (mean BVAS/WG score 8.6 +/− 3.2 SD) at screening. Among the 123 subjects clinically in remission at month 6, levels of all markers except E-selectin showed significant declines. MMP3 levels were also higher among the 23 subjects with active disease at month 6 than among the 123 subjects in remission. MMP3 levels correlated weakly with ESR and CRP. Conclusion Many markers of vascular injury and angiogenesis are elevated in severe active AAV and decline with treatment, but MMP3 appears to distinguish active AAV from remission better than the other markers studied. Further study of MMP3 is warranted to determine its clinical utility in combination with conventional markers of inflammation and ANCA titers. PMID:21953143

  9. Astrocytes Can Adopt Endothelial Cell Fates in a p53-Dependent Manner.

    Science.gov (United States)

    Brumm, Andrew J; Nunez, Stefanie; Doroudchi, Mehdi M; Kawaguchi, Riki; Duan, Jinhzu; Pellegrini, Matteo; Lam, Larry; Carmichael, S Thomas; Deb, Arjun; Hinman, Jason D

    2017-08-01

    Astrocytes respond to a variety of CNS injuries by cellular enlargement, process outgrowth, and upregulation of extracellular matrix proteins that function to prevent expansion of the injured region. This astrocytic response, though critical to the acute injury response, results in the formation of a glial scar that inhibits neural repair. Scar-forming cells (fibroblasts) in the heart can undergo mesenchymal-endothelial transition into endothelial cell fates following cardiac injury in a process dependent on p53 that can be modulated to augment cardiac repair. Here, we sought to determine whether astrocytes, as the primary scar-forming cell of the CNS, are able to undergo a similar cellular phenotypic transition and adopt endothelial cell fates. Serum deprivation of differentiated astrocytes resulted in a change in cellular morphology and upregulation of endothelial cell marker genes. In a tube formation assay, serum-deprived astrocytes showed a substantial increase in vessel-like morphology that was comparable to human umbilical vein endothelial cells and dependent on p53. RNA sequencing of serum-deprived astrocytes demonstrated an expression profile that mimicked an endothelial rather than astrocyte transcriptome and identified p53 and angiogenic pathways as specifically upregulated. Inhibition of p53 with genetic or pharmacologic strategies inhibited astrocyte-endothelial transition. Astrocyte-endothelial cell transition could also be modulated by miR-194, a microRNA downstream of p53 that affects expression of genes regulating angiogenesis. Together, these studies demonstrate that differentiated astrocytes retain a stimulus-dependent mechanism for cellular transition into an endothelial phenotype that may modulate formation of the glial scar and promote injury-induced angiogenesis.

  10. Simultaneous isolation of vascular endothelial cells and mesenchymal stem cells from the human umbilical cord.

    Science.gov (United States)

    Kadam, Sachin S; Tiwari, Shubha; Bhonde, Ramesh R

    2009-01-01

    The umbilical cord represents the link between mother and fetus during pregnancy. This cord is usually discarded as a biological waste after the child's birth; however, its importance as a "store house" of stem cells has been explored recently. We developed a method of simultaneous isolation of endothelial cells (ECs) from the vein and mesenchymal stem cells from umbilical cord Wharton's jelly of the same cord. The isolation protocol has been simplified, modified, and improvised with respect to choice of enzyme and enzyme mixture, digestion time, cell yield, cell growth, and culture medium. Isolated human umbilical vascular ECs (hUVECs) were positive for von-Willibrand factor, a classical endothelial marker, and could form capillary-like structures when seeded on Matrigel, thus proving their functionality. The isolated human umbilical cord mesenchymal stem cells (hUCMSCs) were found positive for CD44, CD90, CD 73, and CD117 and were found negative for CD33, CD34, CD45, and CD105 surface markers; they were also positive for cytoskeleton markers of smooth muscle actin and vimentin. The hUCMSCs showed multilineage differentiation potential and differentiated into adipogenic, chondrogenic, osteogenic, and neuronal lineages under influence of lineage specific differentiation medium. Thus, isolating endothelial cells as well as mesenchymal cells from the same umbilical cord could lead to complete utilization of the available tissue for the tissue engineering and cell therapy.

  11. Inflammatory markers of radiation-induced late effects

    International Nuclear Information System (INIS)

    Dubner, D.; Gallegos, C.; Michelin, S.; Portas, M.

    2011-01-01

    Up to now there is no established parameters for the follow-up of delayed radiation injuries. Late toxicity is generally irreversible and can have devastating effects on quality of life of people exposed either accidentally or during therapeutic radiation treatments. Histologically, late manifestations of radiation damage include fibrosis, necrosis, atrophy and vascular lesions. Although many etiologies have been suggested regarding these late toxicities, persistent inflammation has been described as playing a key role. The recruitment of leukocytes from circulating blood is decisive in the inflammatory reaction. All the steps in the recruitment cascade are orchestrated by cell-adhesion molecules (CAMs) on both leukocytes and endothelial cells, and different subsets of CAMs are responsible for different steps in extravasation. A link between radiation –induced inflammatory processes and alterations in T-cell immunity are still demonstrable in the blood of A-bomb survivors. The following study was conducted to examine the response of the immune system in the inflammatory reactions in patients with late skin injuries after radiotherapy or interventional fluoroscopy procedures. The expression of adhesion molecules ICAM1 and β1-integrin on granulocytes and lymphocytes, as well as changes in subpopulations of T lymphocytes and the level of C-reactive protein, a well- studied inflammatory marker were evaluated. (authors)

  12. Circulating microparticles from patients with valvular heart disease and cardiac surgery inhibit endothelium-dependent vasodilation.

    Science.gov (United States)

    Fu, Li; Hu, Xiao-Xia; Lin, Ze-Bang; Chang, Feng-Jun; Ou, Zhi-Jun; Wang, Zhi-Ping; Ou, Jing-Song

    2015-09-01

    Vascular function is very important for maintaining circulation after cardiac surgery. Circulating microparticles (MPs) generated in various diseases play important roles in causing inflammation, coagulation, and vascular injury. However, the impact of MPs generated from patients who have valvular heart disease (VHD), before and after cardiac surgery, on vascular function remains unknown. This study is designed to investigate the impact of such MPs on vasodilation. Microparticles were isolated from age-matched healthy subjects and patients who had VHD, before cardiac surgery, and at 12 hours and 72 hours afterward. The number of MPs was measured and compared. Effects evaluated were of the impact of MPs on: vasodilation of mice aorta; the phosphorylation and expression of Akt, endothelial nitric oxide synthase (eNOS), protein kinase C-βII (PKC-βII), and p70 ribosomal protein S6 kinase (p70S6K); expression of caveolin-1; the association of eNOS with heat shock protein 90 (HSP90); and generation of nitric oxide and superoxide anion of human umbilical vein endothelial cells. Compared with the healthy subjects, VHD patients had significantly higher levels of circulating MPs and those MPs before cardiac surgery can: impair endothelium-dependent vasodilation; inhibit phosphorylation of Akt and eNOS; increase activation of PKC-βII and p70S6K; enhance expression of caveolin-1; reduce the association of HSP90 with eNOS; decrease nitric oxide production, and increase superoxide anion generation. These deleterious effects were even stronger in postoperative MPs. Our data demonstrate that MPs generated from VHD patients before and after cardiac surgery contributed to endothelial dysfunction, by uncoupling and inhibiting eNOS. Circulating MPs are potential therapeutic targets for the maintenance of vascular function postoperatively. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  13. Ulex europaeus I lectin as a marker for vascular endothelium in human tissues.

    Science.gov (United States)

    Holthöfer, H; Virtanen, I; Kariniemi, A L; Hormia, M; Linder, E; Miettinen, A

    1982-07-01

    Ulex europaeus I agglutinin, a lectin specific for some alpha-L-fucose-containing glycocompounds, was used in fluorescence microscopy to stain cryostat sections of human tissues. The endothelium of vessels of all sizes was stained ubiquitously in all tissues studied as judged by double staining with a known endothelial marker, antibodies against human clotting factor VIII. Cultured human umbilical vein endothelial cells, but not fibroblasts, also bound Ulex lectin. The staining was not affected by the blood group type of the tissue donor. In some tissues Ulex lectin presented additional binding to epithelial structures. Also, this was independent on the blood group or the ability of the tissue donor to secrete soluble blood group substances. Lotus tetragonolobus agglutinin, another lectin specific for some alpha-L-fucose-containing moieties failed to react with endothelial cells. Our results suggest that Ulex europaeus I agglutinin is a good histologic marker for endothelium in human tissues.

  14. Discovery of molecular markers to discriminate corneal endothelial cells in the human body

    NARCIS (Netherlands)

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji; Clevers, J.C.; van de Wetering, M.L.

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant

  15. Discovery of Molecular Markers to Discriminate Corneal Endothelial Cells in the Human Body

    NARCIS (Netherlands)

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji; Forrest, Alistair R. R.; Rehli, Michael; Baillie, J. Kenneth; de Hoon, Michiel J. L.; Haberle, Vanja; Lassmann, Timo; Kulakovskiy, Ivan V.; Lizio, Marina; Andersson, Robin; Mungall, Christopher J.; Meehan, Terrence F.; Schmeier, Sebastian; Bertin, Nicolas; Jørgensen, Mette; Dimont, Emmanuel; Arner, Erik; Schmidl, Christian; Schaefer, Ulf; Medvedeva, Yulia A.; Plessy, Charles; Vitezic, Morana; Severin, Jessica; Semple, Colin A.; Ishizu, Yuri; Francescatto, Margherita; Alam, Intikhab; Albanese, Davide; Altschuler, Gabriel M.; Archer, John A. C.; Arner, Peter; Babina, Magda; Baker, Sarah; Balwierz, Piotr J.; Beckhouse, Anthony G.; Pradhan-Bhatt, Swati; Blake, Judith A.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Geijtenbeek, Teunis B.

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant

  16. Circulating microparticles in severe pulmonary arterial hypertension increase intercellular adhesion molecule-1 expression selectively in pulmonary artery endothelium

    Directory of Open Access Journals (Sweden)

    Leslie A. Blair

    2016-10-01

    Full Text Available Abstract Background Microparticles (MPs stimulate inflammatory adhesion molecule expression in systemic vascular diseases, however it is unknown whether circulating MPs stimulate localized ICAM-1 expression in the heterogeneically distinct pulmonary endothelium during pulmonary arterial hypertension (PAH. Pulmonary vascular lesions with infiltrating inflammatory cells in PAH form in the pulmonary arteries and arterioles, but not the microcirculation. Therefore, we sought to determine whether circulating MPs from PAH stimulate pulmonary artery endothelial cell-selective ICAM-1 expression. Results Pulmonary artery endothelial cells (PAECs were exposed to MPs isolated from the circulation of a rat model of severe PAH. During late-stage (8-weeks PAH, but not early-stage (3-weeks, an increase in ICAM-1 was observed. To determine whether PAH MP-induced ICAM-1 was selective for a specific segment of the pulmonary circulation, pulmonary microvascular endothelial cells (PMVECs were exposed to late-stage PAH MPs and no increase in ICAM-1 was detected. A select population of circulating MPs, the late-stage endoglin + MPs, were used to assess their ability to stimulate ICAM-1 and it was determined that the endoglin + MPs were sufficient to promote ICAM-1 increases in the whole cell, but not surface only expression. Conclusions Late-stage, but not early-stage, MPs in a model of severe PAH selectively induce ICAM-1 in pulmonary artery endothelium, but not pulmonary microcirculation. Further, the selected endoglin + PAH MPs, but not endoglin + MPs from control, are sufficient to promote whole cell ICAM-1 in PAECs. The implications of this work are that MPs in late-stage PAH are capable of inducing ICAM-1 expression selectively in the pulmonary artery. ICAM-1 likely plays a significant role in the observed inflammatory cell recruitment, specifically to vascular lesions in the pulmonary artery and not the pulmonary microcirculation.

  17. Intravenous Lipid Infusion Induces Endoplasmic Reticulum Stress in Endothelial Cells and Blood Mononuclear Cells of Healthy Adults.

    Science.gov (United States)

    Tampakakis, Emmanouil; Tabit, Corey E; Holbrook, Monika; Linder, Erika A; Berk, Brittany D; Frame, Alissa A; Bretón-Romero, Rosa; Fetterman, Jessica L; Gokce, Noyan; Vita, Joseph A; Hamburg, Naomi M

    2016-01-11

    Endoplasmic reticulum (ER) stress and the subsequent unfolded protein response may initially be protective, but when prolonged, have been implicated in atherogenesis in diabetic conditions. Triglycerides and free fatty acids (FFAs) are elevated in patients with diabetes and may contribute to ER stress. We sought to evaluate the effect of acute FFA elevation on ER stress in endothelial and circulating white cells. Twenty-one healthy subjects were treated with intralipid (20%; 45 mL/h) plus heparin (12 U/kg/h) infusion for 5 hours. Along with increased triglyceride and FFA levels, intralipid/heparin infusion reduced the calf reactive hyperemic response without a change in conduit artery flow-mediated dilation consistent with microvascular dysfunction. To investigate the short-term effects of elevated triglycerides and FFA, we measured markers of ER stress in peripheral blood mononuclear cells (PBMCs) and vascular endothelial cells (VECs). In VECs, activating transcription factor 6 (ATF6) and phospho-inositol requiring kinase 1 (pIRE1) proteins were elevated after infusion (both P<0.05). In PBMCs, ATF6 and spliced X-box-binding protein 1 (XBP-1) gene expression increased by 2.0- and 2.5-fold, respectively (both P<0.05), whereas CHOP and GADD34 decreased by ≈67% and 74%, respectively (both P<0.01). ATF6 and pIRE1 protein levels also increased (both P<0.05), and confocal microscopy revealed the nuclear localization of ATF6 after infusion, suggesting activation. Along with microvascular dysfunction, intralipid infusion induced an early protective ER stress response evidenced by activation of ATF6 and IRE1 in both leukocytes and endothelial cells. Our results suggest a potential link between metabolic disturbances and ER stress that may be relevant to vascular disease. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  18. Hypoxia, leukocytes, and the pulmonary circulation.

    Science.gov (United States)

    Stenmark, Kurt R; Davie, Neil J; Reeves, John T; Frid, Maria G

    2005-02-01

    Data are rapidly accumulating in support of the idea that circulating monocytes and/or mononuclear fibrocytes are recruited to the pulmonary circulation of chronically hypoxic animals and that these cells play an important role in the pulmonary hypertensive process. Hypoxic induction of monocyte chemoattractant protein-1, stromal cell-derived factor-1, vascular endothelial growth factor-A, endothelin-1, and tumor growth factor-beta(1) in pulmonary vessel wall cells, either directly or indirectly via signals from hypoxic lung epithelial cells, may be a critical first step in the recruitment of circulating leukocytes to the pulmonary circulation. In addition, hypoxic stress appears to induce release of increased numbers of monocytic progenitor cells from the bone marrow, and these cells may have upregulated expression of receptors for the chemokines produced by the lung circulation, which thus facilitates their specific recruitment to the pulmonary site. Once present, macrophages/fibrocytes may exert paracrine effects on resident pulmonary vessel wall cells stimulating proliferation, phenotypic modulation, and migration of resident fibroblasts and smooth muscle cells. They may also contribute directly to the remodeling process through increased production of collagen and/or differentiation into myofibroblasts. In addition, they could play a critical role in initiating and/or supporting neovascularization of the pulmonary artery vasa vasorum. The expanded vasa network may then act as a conduit for further delivery of circulating mononuclear cells to the pulmonary arterial wall, creating a feedforward loop of pathological remodeling. Future studies will need to determine the mechanisms that selectively induce leukocyte/fibrocyte recruitment to the lung circulation under hypoxic conditions, their direct role in the remodeling process via production of extracellular matrix and/or differentiation into myofibroblasts, their impact on the phenotype of resident smooth muscle

  19. Circulating osteoprotegerin and soluble receptor activator of nuclear factor κB ligand in polycystic ovary syndrome: relationships to insulin resistance and endothelial dysfunction.

    Science.gov (United States)

    Pepene, Carmen Emanuela; Ilie, Ioana Rada; Marian, Ioan; Duncea, Ileana

    2011-01-01

    There is plenty of evidence that osteoprotegerin (OPG) is linked to subclinical vascular damage and predicts cardiovascular disease in high-risk populations. Our aim is to investigate the relationships of OPG/free soluble receptor activator of nuclear factor κB ligand (sRANKL) to insulin resistance, brachial artery flow-mediated vasodilation (FMD), and the carotid artery intima-media thickness (CIMT) in polycystic ovary syndrome (PCOS), a disorder characterized by hyperandrogenism, impaired glucose control, and endothelial injury. A cross-sectional, observational study. Hormonal and metabolic profiles, FMD, CIMT, serum OPG, and ampli-sRANKL were assessed in 64 young PCOS patients and 20 controls of similar age. Body composition was measured by dual energy X-ray absorptiometry. OPG was significantly lower in PCOS and related negatively to free testosterone and positively to estradiol (E(2)) levels. In multivariate analysis, OPG but not ampli-sRANKL correlated positively to fasting insulin, insulin sensitivity indices, and FMD. Neither OPG nor ampli-sRANKL was associated with CIMT. Significantly lower adjusted FMD values were demonstrated in women in the upper OPG quartile group (>2.65 pmol/l) compared with all other quartile groups together (P=0.012). In PCOS, multiple regression analysis retained E(2)/sex hormone-binding globulin ratio, fat mass, and homeostasis model assessment of insulin resistance as independent predictors of OPG. In PCOS, circulating OPG is related to both endothelial dysfunction and insulin resistance, independent of obesity and androgen excess, suggesting OPG as a useful biomarker of these effects. Further studies are needed to evaluate OPG in relation to cardiovascular events and cardiovascular mortality in PCOS.

  20. Effect of vitamin D on endothelial progenitor cells function.

    Directory of Open Access Journals (Sweden)

    Yoav Hammer

    Full Text Available Endothelial progenitor cells (EPCs are a population of bone marrow-derived cells, which have an important role in the process of endothelialization and vascular repair following injury. Impairment of EPCs, which occurs in patients with diabetes, was shown to be related to endothelial dysfunction, coronary artery disease (CAD and adverse clinical outcomes. Recent evidence has shown that calcitriol, the active hormone of vitamin D, has a favorable impact on the endothelium and cardiovascular system. There is limited data on the effect of vitamin D on EPCs function.To examine the in vitro effects of Calcitriol on EPCs from healthy subjects and patients with diabetes.Fifty-one patients with type 2 diabetes (60±11 years, 40% women, HbA1C: 9.1±0.8% and 23 healthy volunteers were recruited. EPCs were isolated and cultured with and without calcitriol. The capacity of the cells to form colony-forming units (CFUs, their viability (measured by MTT assay, KLF-10 levels and angiogenic markers were evaluated after 1 week of culture.In diabetic patients, EPC CFUs and cell viability were higher in EPCs exposed to calcitriol vs. EPCs not exposed to calcitriol [EPC CFUs: 1.25 (IQR 1.0-2.0 vs. 0.5 (IQR 0.5-1.9, p < 0.001; MTT:0.62 (IQR 0.44-0.93 vs. 0.52 (IQR 0.31-0.62, p = 0.001]. KLF-10 levels tended to be higher in EPCs exposed to vitamin D, with no differences in angiopoietic markers. In healthy subjects, calcitriol supplementation also resulted in higher cell viability [MTT: 0.23 (IQR 0.11-0.46 vs. 0.19 (0.09-0.39, p = 0.04], but without differences in CFU count or angiopoietic markers.In patients with diabetes mellitus, in vitro vitamin D supplementation improved EPCs capacity to form colonies and viability. Further studies regarding the mechanisms by which vitamin D exerts its effect are required.

  1. Circulating cell-derived microparticles in severe preeclampsia and in fetal growth restriction.

    Science.gov (United States)

    Alijotas-Reig, Jaume; Palacio-Garcia, Carles; Farran-Codina, Immaculada; Ruiz-Romance, Mar; Llurba, Elisa; Vilardell-Tarres, Miquel

    2012-02-01

    The behavior of the circulating microparticles (cMP) in severe preeclampsia (PE) and fetal growth restriction (FGR) is disputed. METHOD OF STUDY  Non-matched case-control study. Seventy cases of severe PE/HELLP/FGR were compared to 38 healthy pregnant women. Twenty healthy non-pregnant women acted as a control. cMP were analyzed using flow cytometry. Results are given as total (annexin-A5-ANXA5+), platelet (CD41+), leukocyte (CD45+), endothelial (CD144+CD31+//CD41-), and CD41-negative cMP/μL of plasma. Antiphospholipid antibodies (aPL) were analyzed through usual methods. Platelet and endothelial cMP increased in healthy pregnant women. PE whole group (PE±FGR) showed an increase in endothelial and CD41-negative, but not in platelet-derived, cMP. Comparing PE whole group versus healthy pregnant, we found cMP levels of endothelial and CD41- had increased. The cMP results obtained in PE group were similar to those of the PE whole group. Comparing PE group to isolated FGR, significant CD41-negative cMP increase was found in PE. According to its aPL positivity, a trend to decrease in leukocyte and endothelial-derived cMP was found in PE group. Normal pregnancy is accompanied by endothelial and platelet cell activation. Endothelial cell activation has been shown in PE but not in isolated FGR. In PE, aPL may contribute to endothelial and possibly to leukocyte cell activation. © 2011 John Wiley & Sons A/S.

  2. Lack of inhibitory effects of the anti-fibrotic drug imatinib on endothelial cell functions in vitro and in vivo.

    Science.gov (United States)

    Venalis, Paulius; Maurer, Britta; Akhmetshina, Alfiya; Busch, Nicole; Dees, Clara; Stürzl, Michael; Zwerina, Jochen; Jüngel, Astrid; Gay, Steffen; Schett, Georg; Distler, Oliver; Distler, Jörg H W

    2009-10-01

    Systemic sclerosis (SSc) is a systemic autoimmune disease that is characterized by microangiopathy with progressive loss of capillaries and tissue fibrosis. Imatinib exerts potent anti-fibrotic effects and is currently evaluated in clinical trials. The aim of the present study was to exclude that the anti-fibrotic effects of imatinib are complicated by inhibitory effects on endothelial cell functions, which might augment vascular disease in SSc. Endothelial cells and mice were treated with pharmacologically relevant concentrations of imatinib. The expression of markers of vascular activation was assessed with real-time PCR. Proliferation was analysed with the cell counting experiments and the MTT assay. Apoptosis was quantified with caspase 3 assays, annexin V in vitro and with TUNEL staining in vivo. Migration was studied with scratch and transwell assays. Tube forming was investigated with the matrigel assay. Imatinib did not alter the expression of markers of vascular activation. Imatinib did not increase the percentage of annexin V positive cells or the activity of caspase 3. No reduction in proliferation or metabolic activity of endothelial cells was observed. Imatinib did not affect migration of endothelial cells and did not reduce the formation of capillary tubes. Consistent with the in vitro data, no difference in the number of apoptotic endothelial cells was observed in vivo in mice treated with imatinib. Imatinib does not inhibit activation, viability, proliferation, migration or tube forming of endothelial cells in vitro and in vivo. Thus, treatment with imatinib might not augment further endothelial cell damage in SSc.

  3. RADIOAUTOGRAPHIC DEMONSTRATION OF 5-HYDROXYTRYPTAMINE-3H UPTAKE BY PULMONARY ENDOTHELIAL CELLS

    Science.gov (United States)

    Strum, Judy M.; Junod, Alain F.

    1972-01-01

    The lung is able to rapidly remove 5-hydroxytryptamme (5-HT) from the circulation by a Na+-dependent transport mechanism. In order to identify the sites of uptake, radioautographic studies were done on rat lungs which had been isolated and perfused with 5-HT-3H and 0 5 mM iproniazid, a monoamine oxidase inhibitor. In control experiments 10-4 M imipramine was added to the perfusate to inhibit the membrane transport of 5-HT At the light microscope level, silver grains were seen concentrated near capillaries and in the endothelium of large vessels From electron microscope radioautographs a semiquantitative grain count was made and 90% of the silver grains were observed over capillary endothelial cells. The grains were found over the nucleus and cytoplasm of the cell and shewed no preferential association with any particular cytoplasmic inclusion bodies, organelles, or vesicles Other cell types were unlabeled except for a few mast cells, certain vascular smooth muscle cells, and one nerve ending. This radioautographic demonstration of the cell type responsible for the rapid removal of 5-HT from the lung circulation clearly establishes the existence of a new metabolic role for pulmonary endothelial cells. PMID:5044755

  4. [Inflammation markers and endothelial disfunction in children with type 1 diabetes].

    Science.gov (United States)

    Velarde, María S; Del R Carrizo, Teresita; Prado, María M; Díaz, Elba I; Fonio, María C; Bazán, María C; Abregu, Adela V

    2010-01-01

    A subclinical inflammation state was detected in the early step of diabetes, which increases the serum levels of cytokines that induce acute-phase protein synthesis as C-reactive protein (PCR) and fibrinogen (Fg), stimulating the endothelial disfunction of adhesion molecules. Thirty patients (15 boys, 15 girls) with type 1 diabetes (DT1), without vascular complications, were studied. Their mean age and duration of diabetes were 11.8 +/- 2.1 and 3.9 +/- 3.2 years, respectively. The laboratory parameters evaluated were: blood leukocytes count, globular sedimentation velocity, fasting glycemia, glycosylated hemoglobin (HbA1c), high sensitivity PCR (uPCR), plasma soluble E-selectin (sE-S), sVCAM-1 and microalbuminuria. Increased levels of uPCR, sE-S and VCAM-1 were found, compared with the control group control [0.60 (0.30-1.25) vs. 0.20 (0.20-0.65) mg/l, p = 0.013], [108 (60-150) vs. 68 (56-82) ng/ml, p = 0.0031] y [750 (708-826) vs. 721 (674-751) ng/ml, p = 0.039] respectively. When diabetic patients were grouped according to duration of disease (3 and > de 3 years), uPCR values were higher in the second group. uPCR levels were better correlated with sE-S (r = 0.44, p = 0.03) and VCAM-1 (r = 0.49, p = 0.02). These results suggest the presence of pro-inflammatory and endothelial activation states, which are strongly associated with DT1.

  5. Transcellular transport of cobalamin in aortic endothelial cells.

    Science.gov (United States)

    Hannibal, Luciana; Bolisetty, Keerthana; Axhemi, Armend; DiBello, Patricia M; Quadros, Edward V; Fedosov, Sergey; Jacobsen, Donald W

    2018-05-09

    Cobalamin [Cbl (or B 12 )] deficiency causes megaloblastic anemia and a variety of neuropathies. However, homeostatic mechanisms of cyanocobalamin (CNCbl) and other Cbls by vascular endothelial cells are poorly understood. Herein, we describe our investigation into whether cultured bovine aortic endothelial cells (BAECs) perform transcytosis of B 12 , namely, the complex formed between serum transcobalamin and B 12 , designated as holo-transcobalamin (holo-TC). We show that cultured BAECs endocytose [ 57 Co]-CNCbl-TC (source material) via the CD320 receptor. The bound Cbl is transported across the cell both via exocytosis in its free form, [ 57 Co]-CNCbl, and via transcytosis as [ 57 Co]-CNCbl-TC. Transcellular mobilization of Cbl occurred in a bidirectional manner. A portion of the endocytosed [ 57 Co]-CNCbl was enzymatically processed by methylmalonic aciduria combined with homocystinuria type C (cblC) with subsequent formation of hydroxocobalamin, methylcobalamin, and adenosylcobalamin, which were also transported across the cell in a bidirectional manner. This demonstrates that transport mechanisms for Cbl in vascular endothelial cells do not discriminate between various β-axial ligands of the vitamin. Competition studies with apoprotein- and holo-TC and holo-intrinsic factor showed that only holo-TC was effective at inhibiting transcellular transport of Cbl. Incubation of BAECs with a blocking antibody against the extracellular domain of the CD320 receptor inhibited uptake and transcytosis by ∼40%. This study reveals that endothelial cells recycle uncommitted intracellular Cbl for downstream usage by other cell types and suggests that the endothelium is self-sufficient for the specific acquisition and subsequent distribution of circulating B 12 via the CD320 receptor. We posit that the endothelial lining of the vasculature is an essential component for the maintenance of serum-tissue homeostasis of B 12 .-Hannibal, L., Bolisetty, K., Axhemi, A., DiBello, P

  6. Supplementation with orange and blackcurrant juice, but not vitamin E, improves inflammatory markers in patients with peripheral arterial disease

    DEFF Research Database (Denmark)

    Dalgård, Christine; Nielsen, Flemming Steen; Morrow, Jason D

    2009-01-01

    Inflammation and endothelial activation are associated with an increased risk of CVD and epidemiological evidence suggests an association between levels of markers of inflammation or endothelial activation and the intake of fruit. Also, vitamin E, a fat-soluble antioxidant, has anti-inflammatory ...

  7. Astrocyte–endothelial interactions and blood–brain barrier permeability*

    Science.gov (United States)

    Abbott, N Joan

    2002-01-01

    The blood–brain barrier (BBB) is formed by brain endothelial cells lining the cerebral microvasculature, and is an important mechanism for protecting the brain from fluctuations in plasma composition, and from circulating agents such as neurotransmitters and xenobiotics capable of disturbing neural function. The barrier also plays an important role in the homeostatic regulation of the brain microenvironment necessary for the stable and co-ordinated activity of neurones. The BBB phenotype develops under the influence of associated brain cells, especially astrocytic glia, and consists of more complex tight junctions than in other capillary endothelia, and a number of specific transport and enzyme systems which regulate molecular traffic across the endothelial cells. Transporters characteristic of the BBB phenotype include both uptake mechanisms (e.g. GLUT-1 glucose carrier, L1 amino acid transporter) and efflux transporters (e.g. P-glycoprotein). In addition to a role in long-term barrier induction and maintenance, astrocytes and other cells can release chemical factors that modulate endothelial permeability over a time-scale of seconds to minutes. Cell culture models, both primary and cell lines, have been used to investigate aspects of barrier induction and modulation. Conditioned medium taken from growing glial cells can reproduce some of the inductive effects, evidence for involvement of diffusible factors. However, for some features of endothelial differentiation and induction, the extracellular matrix plays an important role. Several candidate molecules have been identified, capable of mimicking aspects of glial-mediated barrier induction of brain endothelium; these include TGFβ, GDNF, bFGF, IL-6 and steroids. In addition, factors secreted by brain endothelial cells including leukaemia inhibitory factor (LIF) have been shown to induce astrocytic differentiation. Thus endothelium and astrocytes are involved in two-way induction. Short-term modulation of brain

  8. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology.

    Science.gov (United States)

    Breitbach, Sarah; Tug, Suzan; Simon, Perikles

    2012-07-01

    The phenomenon of circulating cell-free DNA (cfDNA) concentrations is of importance for many biomedical disciplines including the field of exercise physiology. Increases of cfDNA due to exercise are described to be a potential hallmark for the overtraining syndrome and might be related to, or trigger adaptations of, immune function induced by strenuous exercise. At the same time, exercise provides a practicable model for studying the phenomenon of cfDNA that is described to be of pathophysiological relevance for different topics in clinical medicine like autoimmune diseases and cancer. In this review, we are summarizing the current knowledge of exercise-based acute and chronic alterations in cfDNA levels and their physiological significance. The effects of acute exercise on cfDNA concentrations have been investigated in resistance exercises and in continuous, stepwise and interval endurance exercises of different durations. cfDNA concentrations peaked immediately after acute exercise and showed a rapid return to baseline levels. Typical markers of skeletal muscle damage (creatine kinase, uric acid, C-reactive protein) show delayed kinetics compared with the cfDNA peak response. Exercise parameters such as intensity, duration or average energy expenditure do not explain the extent of increasing cfDNA concentrations after strenuous exercise. This could be due to complex processes inside the human organism during and after physical activity. Therefore, we hypothesize composite effects of different physiological stress parameters that come along with exercise to be responsible for increasing cfDNA concentrations. We suggest that due to acute stress, cfDNA levels increase rapidly by a spontaneous active or passive release mechanism that is not yet known. As a result of the rapid and parallel increase of cfDNA and lactate in an incremental treadmill test leading to exhaustion within 15-20 minutes, it is unlikely that cfDNA is released into the plasma by typical necrosis

  9. Black Tea Increases Circulating Endothelial Progenitor Cells and Improves Flow Mediated Dilatation Counteracting Deleterious Effects from a Fat Load in Hypertensive Patients: A Randomized Controlled Study

    Directory of Open Access Journals (Sweden)

    Davide Grassi

    2016-11-01

    Full Text Available (1 Background: Endothelial dysfunction predicts cardiovascular events. Circulating angiogenic cells (CACs maintain and repair the endothelium regulating its function. Tea flavonoids reduce cardiovascular risk. We investigated the effects of black tea on the number of CACs and on flow-mediated dilation (FMD before and after an oral fat in hypertensives; (2 Methods: In a randomized, double-blind, controlled, cross-over study, 19 patients were assigned to black tea (150 mg polyphenols or a placebo twice a day for eight days. Measurements were obtained in a fasted state and after consuming whipping cream, and FMD was measured at baseline and after consumption of the products; (3 Results: Compared with the placebo, black tea ingestion increased functionally active CACs (36 ± 22 vs. 56 ± 21 cells per high-power field; p = 0.006 and FMD (5.0% ± 0.3% vs. 6.6% ± 0.3%, p < 0.0001. Tea further increased FMD 1, 2, 3, and 4 h after consumption, with maximal response 2 h after intake (p < 0.0001. Fat challenge decreased FMD, while tea consumption counteracted FMD impairment (p < 0.0001; (4 Conclusions: We demonstrated the vascular protective properties of black tea by increasing the number of CACs and preventing endothelial dysfunction induced by acute oral fat load in hypertensive patients. Considering that tea is the most consumed beverage after water, our findings are of clinical relevance and interest.

  10. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells.

    Science.gov (United States)

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M; Eguchi, Satoru; Brown, Michael D; Park, Joon-Young

    2015-08-01

    The concept of enhancing structural integrity of mitochondria has emerged as a novel therapeutic option for cardiovascular disease. Flow-induced increase in laminar shear stress is a potent physiological stimulant associated with exercise, which exerts atheroprotective effects in the vasculature. However, the effect of laminar shear stress on mitochondrial remodeling within the vascular endothelium and its related functional consequences remain largely unknown. Using in vitro and in vivo complementary studies, here, we report that aerobic exercise alleviates the release of endothelial microparticles in prehypertensive individuals and that these salutary effects are, in part, mediated by shear stress-induced mitochondrial biogenesis. Circulating levels of total (CD31(+)/CD42a(-)) and activated (CD62E(+)) microparticles released by endothelial cells were significantly decreased (∼40% for both) after a 6-mo supervised aerobic exercise training program in individuals with prehypertension. In cultured human endothelial cells, laminar shear stress reduced the release of endothelial microparticles, which was accompanied by an increase in mitochondrial biogenesis through a sirtuin 1 (SIRT1)-dependent mechanism. Resveratrol, a SIRT1 activator, treatment showed similar effects. SIRT1 knockdown using small-interfering RNA completely abolished the protective effect of shear stress. Disruption of mitochondrial integrity by either antimycin A or peroxisome proliferator-activated receptor-γ coactivator-1α small-interfering RNA significantly increased the number of total, and activated, released endothelial microparticles, and shear stress restored these back to basal levels. Collectively, these data demonstrate a critical role of endothelial mitochondrial integrity in preserving endothelial homeostasis. Moreover, prolonged laminar shear stress, which is systemically elevated during aerobic exercise in the vessel wall, mitigates endothelial dysfunction by promoting

  11. Glycated haemoglobin: A marker of circulating lipids in patients with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Sheikh Ishaq

    2017-01-01

    Full Text Available Introduction: Type 2 diabetes mellitus (T2DM is a group of metabolic disorder and is an independent risk factor for cardiovascular disease and dyslipidaemia. Patients with T2DM have dyslipidaemia at wavering degrees, characterised by increased levels of triglyceride and low-density lipoprotein-cholesterol and decreased levels of high-density lipoprotein (HDL-cholesterol. In the present study, we evaluated glycated haemoglobin (HbA1c as a marker of circulating lipids in patients with T2DM. Methods: Two hundred and thirty-nine patients with T2DM were enrolled for the study. A detailed biochemical and lipid profile was done for all patients. Results: Of 239 cases, 96 (40% were male and 143 (60% were female. Of 239 patients, 53 (22% patients with T2DM had controlled glycaemia (HbA1c <6.5 and 186 (78% patients had uncontrolled glycaemia (HbA1c ≥6.5. Pearson's correlation of HbA1c with all lipid parameters was statistically significant. HbA1c, however, had an inverse correlation with HDL and had a significant direct correlation with fasting blood glucose. Conclusion: The study reveals that HbA1c is not only a reliable glycaemic index but can also be used as an important indicator of dyslipidaemia in patients with T2DM.

  12. Characterization of cryopreserved primary human corneal endothelial cells cultured in human serum-supplemented media

    Directory of Open Access Journals (Sweden)

    Lucas Monferrari Monteiro Vianna

    2016-02-01

    Full Text Available ABSTRACT Purpose: To compare cryopreserved human corneal endothelial cells (HCECs grown in human serum-supplemented media (HS-SM with cryopreserved HCECs grown in fetal bovine serum-supplemented media (FBS-SM. Methods: Three pairs of human corneas from donors aged 8, 28, and 31 years were obtained from the eye bank. From each pair, one cornea was used to start a HCEC culture using HS-SM; the other cornea was grown in FBS-SM. On reaching confluence, the six cell populations were frozen using 10% dimethyl sulfoxidecontaining medium. Thawed cells grown in HS-SM were compared with those grown in FBS-SM with respect to morphology, growth curves, immunohistochemistry, real time-reverse transcriptase polymerase chain reaction (RT-PCR for endothelial cell markers, and detachment time. Results: No difference in morphology was observed for cells grown in the two media before or after cryopreservation. By growth curves, cell counts after thawing were similar in both media, with a slight trend toward higher cell counts in FBS-SM. Cells grown in both the media demonstrated a similar expression of endothelial cell markers when assessed by immunohistochemistry, although HCEC marker gene expression was higher in cells grown in HS-SM than in those grown in FBS-SM as assessed by RT-PCR. With FBS-SM, there was a tendency of longer detachment time and lower cell passages. Conclusions: HS-SM was similar to FBS-SM for cryopreservation of cultured HCECs as assessed by analysis of cell morphology, proliferation, and protein expression, although marker gene expression was higher in cells grown in HS-SM than in those grown in FBS-SM. Detachment time was longer with FBS-SM and in lower passages.

  13. Disfunción endotelial y diabetes mellitus Endothelial dysfunction and diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Jeddú Cruz Hernández

    2012-08-01

    Full Text Available Introducción: la disfunción endotelial se presenta con frecuencia en los individuos con diabetes mellitus, debido a que las alteraciones vasculares que aparecen en esta enfermedad y que son provocadas por la hiperglucemia crónica, facilitan su aparición, a lo cual puede contribuir también la hipertensión arterial y la dislipidemia que se presentan en los diabéticos. Objetivo: describir algunos eventos implicados en la aparición de la disfunción endotelial en la diabetes mellitus, y aspectos relacionados con su diagnóstico y tratamiento. Desarrollo: entre los marcadores más importantes de disfunción endotelial en la diabetes mellitus se encuentran, la elevación de las moléculas de adhesión celular y de marcadores de inflamación, la microalbuminuria, la hiperhomocisteinemia, y el incremento de la hemoglobina glucosilada, de la endotelina-1 y del estrés oxidativo. Para el diagnóstico de disfunción endotelial se utilizan la medición de sustancias reguladoras de biofunciones sintetizadas por el endotelio y de otras reconocidas como marcadores de disfunción endotelial, y pruebas indirectas, algunas de las cuales son invasivas; y para su tratamiento, disímiles medidas terapéuticas medicamentosas o no. Conclusiones: es importante identificar la disfunción endotelial tempranamente en los diabéticos y tratarla, en caso de estar presente.Introduction: endothelial dysfunction frequently appears in individuals with diabetes mellitus, because vascular alterations derived from chronic hyperglycemia facilitate the occurrence of the disease, to which blood hypertension and dislipidemia of diabetics also contribute. Objective: to describe some events involved in the onset of endothelial dysfunction in diabetes mellitus and several aspects related to diagnosis and treatment. Development: among the most important markers of endothelial dysfunction in diabetes mellitus are the rises of cell adhesion molecules and inflammation markers

  14. Identification of a Monocyte Receptor on Herpesvirus-Infected Endothelial Cells

    Science.gov (United States)

    Etingin, Orli R.; Silverstein, Roy L.; Hajjar, David P.

    1991-08-01

    The adhesion of circulating blood cells to vascular endothelium may be an initial step in atherosclerosis, inflammation, and wound healing. One mechanism for promoting cell-cell adhesion involves the expression of adhesion molecules on the surface of the target cell. Herpes simplex virus infection of endothelium induces arterial injury and has been implicated in the development of human atherosclerosis. We now demonstrate that HSV-infected endothelial cells express the adhesion molecule GMP140 and that this requires cell surface expression of HSV glycoprotein C and local thrombin generation. Monocyte adhesion to HSV-infected endothelial cells was completely inhibited by anti-GMP140 antibodies but not by antibodies to other adhesion molecules such as VCAM and ELAM-1. The induction of GMP140 expression on HSV-infected endothelium may be an important pathophysiological mechanism in virus-induced cell injury and inflammation.

  15. Characterization of vascular endothelial progenitor cells from chicken bone marrow

    Directory of Open Access Journals (Sweden)

    Bai Chunyu

    2012-05-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPC are a type of stem cell used in the treatment of atherosclerosis, vascular injury and regeneration. At present, most of the EPCs studied are from human and mouse, whereas the study of poultry-derived EPCs has rarely been reported. In the present study, chicken bone marrow-derived EPCs were isolated and studied at the cellular level using immunofluorescence and RT-PCR. Results We found that the majority of chicken EPCs were spindle shaped. The growth-curves of chicken EPCs at passages (P 1, -5 and -9 were typically “S”-shaped. The viability of chicken EPCs, before and after cryopreservation was 92.2% and 81.1%, respectively. Thus, cryopreservation had no obvious effects on the viability of chicken EPCs. Dil-ac-LDL and FITC-UAE-1 uptake assays and immunofluorescent detection of the cell surface markers CD34, CD133, VEGFR-2 confirmed that the cells obtained in vitro were EPCs. Observation of endothelial-specific Weibel-Palade bodies using transmission electron microscopy further confirmed that the cells were of endothelial lineage. In addition, chicken EPCs differentiated into endothelial cells and smooth muscle cells upon induction with VEGF and PDGF-BB, respectively, suggesting that the chicken EPCs retained multipotency in vitro. Conclusions These results suggest that chicken EPCs not only have strong self-renewal capacity, but also the potential to differentiate into endothelial and smooth muscle cells. This research provides theoretical basis and experimental evidence for potential therapeutic application of endothelial progenitor cells in the treatment of atherosclerosis, vascular injury and diabetic complications.

  16. Endothelial dysfunction: a comprehensive appraisal

    Directory of Open Access Journals (Sweden)

    Vilariño Jorge O

    2006-02-01

    Full Text Available Abstract The endothelium is a thin monocelular layer that covers all the inner surface of the blood vessels, separating the circulating blood from the tissues. It is not an inactive organ, quite the opposite. It works as a receptor-efector organ and responds to each physical or chemical stimulus with the release of the correct substance with which it may maintain vasomotor balance and vascular-tissue homeostasis. It has the property of producing, independently, both agonistic and antagonistic substances that help to keep homeostasis and its function is not only autocrine, but also paracrine and endocrine. In this way it modulates the vascular smooth muscle cells producing relaxation or contraction, and therefore vasodilatation or vasoconstriction. The endothelium regulating homeostasis by controlling the production of prothrombotic and antithrombotic components, and fibrynolitics and antifibrynolitics. Also intervenes in cell proliferation and migration, in leukocyte adhesion and activation and in immunological and inflammatory processes. Cardiovascular risk factors cause oxidative stress that alters the endothelial cells capacity and leads to the so called endothelial "dysfunction" reducing its capacity to maintain homeostasis and leads to the development of pathological inflammatory processes and vascular disease. There are different techniques to evaluate the endothelium functional capacity, that depend on the amount of NO produced and the vasodilatation effect. The percentage of vasodilatation with respect to the basal value represents the endothelial functional capacity. Taking into account that shear stress is one of the most important stimulants for the synthesis and release of NO, the non-invasive technique most often used is the transient flow-modulate "endothelium-dependent" post-ischemic vasodilatation, performed on conductance arteries such as the brachial, radial or femoral arteries. This vasodilatation is compared with the

  17. Clinical value of circulating endothelial cell levels in metastatic colorectal cancer patients treated with first-line chemotherapy and bevacizumab.

    Science.gov (United States)

    Malka, D; Boige, V; Jacques, N; Vimond, N; Adenis, A; Boucher, E; Pierga, J Y; Conroy, T; Chauffert, B; François, E; Guichard, P; Galais, M P; Cvitkovic, F; Ducreux, M; Farace, F

    2012-04-01

    We investigated whether circulating endothelial cells (CECs) predict clinical outcome of first-line chemotherapy and bevacizumab in metastatic colorectal cancer (mCRC) patients. In a substudy of the randomized phase II FNCLCC ACCORD 13/0503 trial, CECs (CD45- CD31+ CD146+ 7-amino-actinomycin- cells) were enumerated in 99 patients by four-color flow cytometry at baseline and after one cycle of treatment. We correlated CEC levels with objective response rate (ORR), 6-month progression-free survival (PFS) rate (primary end point of the trial), PFS, and overall survival (OS). Multivariate analyses of potential prognostic factors, including CEC counts and Köhne score, were carried out. By multivariate analysis, high baseline CEC levels were the only independent prognostic factor for 6-month PFS rate (P < 0.01) and were independently associated with worse PFS (P = 0.02). High CEC levels after one cycle were the only independent prognostic factor for ORR (P = 0.03). High CEC levels at both time points independently predicted worse ORR (P = 0.025), 6-month PFS rate (P = 0.007), and PFS (P = 0.02). Köhne score was the only variable associated with OS. CEC levels at baseline and after one treatment cycle may independently predict ORR and PFS in mCRC patients starting first-line bevacizumab and chemotherapy.

  18. IL-20 activates human lymphatic endothelial cells causing cell signalling and tube formation

    DEFF Research Database (Denmark)

    Hammer, Troels; Tritsaris, Katerina; Hübschmann, Martin V

    2009-01-01

    IL-20 is an arteriogenic cytokine that remodels collateral networks in vivo, and plays a role in cellular organization. Here, we investigate its role in lymphangiogenesis using a lymphatic endothelial cell line, hTERT-HDLEC, which expresses the lymphatic markers LYVE-1 and podoplanin. Upon stimul...

  19. Naised peaksid maksma makse vähem ja mehed rohkem / Alberto Alesina, Andrea Ichino ; tõlk. Erik Aru

    Index Scriptorium Estoniae

    Alesina, Alberto

    2007-01-01

    Ettepanek on, et langetada naiste ja tõsta meeste tulumaksu, kuid vähem kui naiste oma alaneb. Naiste maksude alandamine on lihtsaim viis naiste tööhõive suurendamiseks. Autorid leiavad, et soopõhine maksustamine võiks pikema aja jooksul aidata muuta ka peresisest tööjaotust

  20. Vascular endothelial growth factor attachment to hydroxyapatite via self-assembled monolayers promotes angiogenic activity of endothelial cells

    International Nuclear Information System (INIS)

    Solomon, Kimberly D.; Ong, Joo L.

    2013-01-01

    Currently, tissue engineered constructs for critical sized bone defects are non-vascularized. There are many strategies used in order to promote vascularization, including delivery of growth factors such as vascular endothelial growth factor (VEGF). In this study, hydroxyapatite (HA) was coated with self-assembled monolayers (SAMs). The SAMs were in turn used to covalently bind VEGF to the surface of HA. The different SAM chain length ratios (phosphonoundecanoic acid (11-PUDA):16-phosphonohexadecanoic acid (16-PHDA) utilized in this study were 0:100, 25:75, 50:50, 75:25, and 100:0. Surfaces were characterized by contact angle (CA) and atomic force microscopy, and an in vitro VEGF release study was performed. It was observed that CA and root-mean-squared roughness were not significantly affected by the addition of SAMs, but that CA was significantly lowered with the addition of VEGF. VEGF release profiles of bound VEGF groups all demonstrated less initial burst release than adsorbed control, indicating that VEGF was retained on the HA surface when bound by SAMs. An in vitro study using human aortic endothelial cells (HAECs) demonstrated that bound VEGF increased metabolic activity and caused sustained production of angiopoietin-2, an angiogenic marker, over 28 days. In conclusion, SAMs provide a feasible option for growth factor delivery from HA surfaces, enhancing angiogenic activity of HAECs in vitro. - Highlights: • Vascular endothelial growth factor (VEGF) is attached to hydroxyapatite (HA). • Self-assembled monolayers (SAMs) delay the release of VEGF from hydroxyapatite. • SAM chain length ratio affects the total mass of VEGF released. • VEGF on HA up-regulates proliferation and angiogenic activity of endothelial cells

  1. Circulating Blood eNOS Contributes to the Regulation of Systemic Blood Pressure and Nitrite Homeostasis

    Science.gov (United States)

    Wood, Katherine C.; Cortese-Krott, Miriam M.; Kovacic, Jason C.; Noguchi, Audrey; Liu, Virginia B.; Wang, Xunde; Raghavachari, Nalini; Boehm, Manfred; Kato, Gregory J.; Kelm, Malte; Gladwin, Mark T.

    2013-01-01

    Objective Mice genetically deficient in endothelial nitric oxide synthase (eNOS−/−) are hypertensive with lower circulating nitrite levels, indicating the importance of constitutively produced nitric oxide (NO•) to blood pressure regulation and vascular homeostasis. While the current paradigm holds that this bioactivity derives specifically from expression of eNOS in endothelium, circulating blood cells also express eNOS protein. A functional red cell eNOS that modulates vascular NO• signaling has been proposed. Approach and Results To test the hypothesis that blood cells contribute to mammalian blood pressure regulation via eNOS-dependent NO• generation, we cross-transplanted WT and eNOS−/− mice, producing chimeras competent or deficient for eNOS expression in circulating blood cells. Surprisingly, we observed a significant contribution of both endothelial and circulating blood cell eNOS to blood pressure and systemic nitrite levels, the latter being a major component of the circulating NO• reservoir. These effects were abolished by the NOS inhibitor L-NAME and repristinated by the NOS substrate L-Arginine, and were independent of platelet or leukocyte depletion. Mouse erythrocytes were also found to carry an eNOS protein and convert 14C-Arginine into 14C-Citrulline in a NOS-dependent fashion. Conclusions These are the first studies to definitively establish a role for a blood borne eNOS, using cross transplant chimera models, that contributes to the regulation of blood pressure and nitrite homeostasis. This work provides evidence suggesting that erythrocyte eNOS may mediate this effect. PMID:23702660

  2. Vascular endothelial cell function and cardiovascular risk factors in patients with chronic renal failure

    DEFF Research Database (Denmark)

    Haaber, A B; Eidemak, I; Jensen, T

    1995-01-01

    Cardiovascular risk factors and markers of endothelial cell function were studied in nondiabetic patients with mild to moderate chronic renal failure. The transcapillary escape rate of albumin and the plasma concentrations of von Willebrand factor, fibrinogen, and plasma lipids were measured in 29...

  3. Probing the mechanical properties of TNF-α stimulated endothelial cell with atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Sei-Young Lee

    2011-01-01

    Full Text Available Sei-Young Lee1,2, Ana-Maria Zaske3, Tommaso Novellino1,4*, Delia Danila3, Mauro Ferrari1,5*, Jodie Conyers3, Paolo Decuzzi1,6*1Department of Nanomedicine and Biomedical Engineering, The University of Texas Medical School at Houston, Houston, TX, USA; 2Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA; 3CeTIR – Center for Translational Injury Research, The University of Texas Health Science Center at Houston, Houston, TX, USA; 4Department of Biomedical Engineering, Biomedical Campus University of Rome, Italy; 5MD Anderson Cancer Center, Houston, TX, USA; 6BioNEM – Center of Bio-Nanotechnology and Engineering for Medicine, University of Magna Graecia, Catanzaro, Italy; *Currently at Department of Nanomedicine and Biomedical Engineering, The Methodist Hospital Research Institute, Houston, TX, USAAbstract: TNF-α (tumor necrosis factor-α is a potent pro-inflammatory cytokine that regulates the permeability of blood and lymphatic vessels. The plasma concentration of TNF-α is elevated (> 1 pg/mL in several pathologies, including rheumatoid arthritis, atherosclerosis, cancer, pre-eclampsia; in obese individuals; and in trauma patients. To test whether circulating TNF-α could induce similar alterations in different districts along the vascular system, three endothelial cell lines, namely HUVEC, HPMEC, and HCAEC, were characterized in terms of 1 mechanical properties, employing atomic force microscopy; 2 cytoskeletal organization, through fluorescence microscopy; and 3 membrane overexpression of adhesion molecules, employing ELISA and immunostaining. Upon stimulation with TNF-α (10 ng/mL for 20 h, for all three endothelial cells, the mechanical stiffness increased by about 50% with a mean apparent elastic modulus of E ~5 ± 0.5 kPa (~3.3 ± 0.35 kPa for the control cells; the density of F-actin filaments increased in the apical and median planes; and the ICAM-1 receptors were overexpressed compared with

  4. High levels of circulating VEGFR2+ Bone marrow-derived progenitor cells correlate with metastatic disease in patients with pediatric solid malignancies.

    Science.gov (United States)

    Taylor, Melissa; Rössler, Jochen; Geoerger, Birgit; Laplanche, Agnès; Hartmann, Olivier; Vassal, Gilles; Farace, Françoise

    2009-07-15

    Pediatric solid malignancies display important angiogenic potential, and blocking tumor angiogenesis represents a new therapeutic approach for these patients. Recent studies have evidenced rare circulating cells with endothelial features contributing to tumor neovascularization and have shown the pivotal role of bone marrow-derived (BMD) progenitor cells in metastatic disease progression. We measured these cells in patients with pediatric solid malignancies as a prerequisite to clinical trials with antiangiogenic therapy. Peripheral blood was drawn from 45 patients with localized (n = 23) or metastatic (n = 22) disease, and 20 healthy subjects. Subsets of circulating vascular endothelial growth factor receptor (VEGFR)2+-BMD progenitor cells, defined as CD45-CD34+VEGFR2(KDR)+7AAD- and CD45(dim)CD34+VEGFR2+7AAD- events, were measured in progenitor-enriched fractions by flow cytometry. Mature circulating endothelial cells (CEC) were measured in whole blood as CD31+CD146+CD45-7AAD- viable events. Data were correlated with VEGF and sVEGFR2 plasma levels. The CD45-CD34+VEGFR2(KDR)+7AAD- subset represented <0.003% of circulating BMD progenitor cells (< or =0.05 cells/mL). However, the median level (range) of the CD45(dim)CD34+VEGFR2+7AAD- subset was higher in patients compared with healthy subjects, 1.5% (0%-10.3%) versus 0.3% (0%-1.6%) of circulating BMD progenitors (P < 0.0001), and differed significantly between patients with localized and metastatic disease, 0.7% (0%-8.6%) versus 2.9% (0.6%-10.3%) of circulating BMD progenitors (P < 0.001). Median CEC value was 7 cells/mL (0-152 cells/mL) and similar in all groups. Unlike VEGFR2+-BMD progenitors, neither CECs, VEGF, or sVEGFR2 plasma levels correlated with disease status. High levels of circulating VEGFR2+-BMD progenitor cells correlated with metastatic disease. Our study provides novel insights for angiogenesis mechanisms in pediatric solid malignancies for which antiangiogenic targeting of VEGFR2+-BMD progenitors

  5. Arginase promotes skeletal muscle arteriolar endothelial dysfunction in diabetic rats.

    Directory of Open Access Journals (Sweden)

    Fruzsina K. Johnson

    2013-05-01

    Full Text Available Endothelial dysfunction is a characteristic feature in diabetes that contributes to the development of vascular disease. Recently, arginase has been implicated in triggering endothelial dysfunction in diabetic patients and animals by competing with endothelial nitric oxide synthase for substrate L-arginine. While most studies have focused on the coronary circulation and large conduit blood vessels, the role of arginase in mediating diabetic endothelial dysfunction in other vascular beds has not been fully investigated. In the present study, we determined whether arginase contributes to endothelial dysfunction in skeletal muscle arterioles of diabetic rats. Diabetes was induced in male Sprague Dawley rats by streptozotocin injection. Four weeks after streptozotocin administration, blood glucose, glycated hemoglobin, and vascular arginase activity were significantly increased. In addition, a significant increase in arginase I and II mRNA expression was detected in gracilis muscle arterioles of diabetic rats compared to age-matched, vehicle control animals. To examine endothelial function, first-order gracilis muscle arterioles were isolated, cannulated in a pressure myograph system, exposed to graded levels of luminal flow, and internal vessel diameter measured. Increases in luminal flow (0-50µL/min caused progressive vasodilation in arterioles isolated from control, normoglycemic animals. However, flow-induced vasodilation was absent in arterioles obtained from streptozotocin-treated rats. Acute in-vitro pretreatment of blood vessels with the arginase inhibitors Nω-hydroxy-nor-L-arginine or S-(2-boronoethyl-L-cysteine restored flow-induced responses in arterioles from diabetic rats and abolished differences between diabetic and control animals. Similarly, acute in-vitro pretreatment with L-arginine returned flow-mediated vasodilation in vessels from diabetic animals to that of control rats. In contrast, D-arginine failed to restore flow

  6. A Cell Culture Approach to Optimized Human Corneal Endothelial Cell Function

    Science.gov (United States)

    Bartakova, Alena; Kuzmenko, Olga; Alvarez-Delfin, Karen; Kunzevitzky, Noelia J.; Goldberg, Jeffrey L.

    2018-01-01

    Purpose Cell-based therapies to replace corneal endothelium depend on culture methods to optimize human corneal endothelial cell (HCEC) function and minimize endothelial-mesenchymal transition (EnMT). Here we explore contribution of low-mitogenic media on stabilization of phenotypes in vitro that mimic those of HCECs in vivo. Methods HCECs were isolated from cadaveric donor corneas and expanded in vitro, comparing continuous presence of exogenous growth factors (“proliferative media”) to media without those factors (“stabilizing media”). Identity based on canonical morphology and expression of surface marker CD56, and function based on formation of tight junction barriers measured by trans-endothelial electrical resistance assays (TEER) were assessed. Results Primary HCECs cultured in proliferative media underwent EnMT after three to four passages, becoming increasingly fibroblastic. Stabilizing the cells before each passage by switching them to a media low in mitogenic growth factors and serum preserved canonical morphology and yielded a higher number of cells. HCECs cultured in stabilizing media increased both expression of the identity marker CD56 and also tight junction monolayer integrity compared to cells cultured without stabilization. Conclusions HCECs isolated from donor corneas and expanded in vitro with a low-mitogenic media stabilizing step before each passage demonstrate more canonical structural and functional features and defer EnMT, increasing the number of passages and total canonical cell yield. This approach may facilitate development of HCEC-based cell therapies. PMID:29625488

  7. Pulmonary endothelial activation caused by extracellular histones contributes to neutrophil activation in acute respiratory distress syndrome.

    Science.gov (United States)

    Zhang, Yanlin; Guan, Li; Yu, Jie; Zhao, Zanmei; Mao, Lijun; Li, Shuqiang; Zhao, Jinyuan

    2016-11-21

    During the acute respiratory distress syndrome (ARDS), neutrophils play a central role in the pathogenesis, and their activation requires interaction with the endothelium. Extracellular histones have been recognized as pivotal inflammatory mediators. This study was to investigate the role of pulmonary endothelial activation during the extracellular histone-induced inflammatory response in ARDS. ARDS was induced in male C57BL/6 mice by intravenous injection with lipopolysaccharide (LPS) or exogenous histones. Concurrent with LPS administration, anti-histone H4 antibody (anti-H4) or non-specific IgG was administered to study the role of extracellular histones. The circulating von Willebrand factor (vWF) and soluble thrombomodulin (sTM) were measured with ELISA kits at the preset time points. Myeloperoxidase (MPO) activity in lung tissue was measured with a MPO detection kit. The translocation of P-selectin and neutrophil infiltration were measured by immunohistochemical detection. For in vitro studies, histone H4 in the supernatant of mouse lung vascular endothelial cells (MLVECs) was measured by Western blot. The binding of extracellular histones with endothelial membrane was examined by confocal laser microscopy. Endothelial P-selectin translocation was measured by cell surface ELISA. Adhesion of neutrophils to MLVECs was assessed with a color video digital camera. The results showed that during LPS-induced ARDS extracellular histones caused endothelial and neutrophil activation, as seen by P-selectin translocation, release of vWF, an increase of circulating sTM, lung neutrophil infiltration and increased MPO activity. Extracellular histones directly bound and activated MLVECs in a dose-dependent manner. On the contrary, the direct stimulatory effect of exogenous histones on neutrophils was very limited, as measured by neutrophil adhesion and MPO activity. With the contribution of activated endothelium, extracellular histones could effectively activating

  8. Biomarkers of inflammation and endothelial dysfunction as predictors of pulse pressure and incident hypertension in type 1 diabetes

    DEFF Research Database (Denmark)

    Ferreira, Isabel; Hovind, Peter; Schalkwijk, Casper G

    2018-01-01

    AIMS/HYPOTHESIS: Vascular inflammation and endothelial dysfunction are thought to contribute to arterial stiffening and hypertension. This study aims to test this hypothesis with longitudinal data in the context of type 1 diabetes. METHODS: We investigated, in an inception cohort of 277 individuals...... with type 1 diabetes, the course, tracking and temporal inter-relationships of BP, specifically pulse pressure (a marker of arterial stiffening) and hypertension, and the following biomarkers of systemic and vascular inflammation/endothelial dysfunction: C-reactive protein (CRP), soluble intracellular...... endothelial dysfunction and inflammation in the development of premature arterial stiffening and hypertension in type 1 diabetes....

  9. Development and Integration of a HEMS with an Advanced Smart Metering Infrastructure

    DEFF Research Database (Denmark)

    Diaz, Enrique Rodriguez; Palacios-Garcia, Emilio; Savaghebi, Mehdi

    2016-01-01

    Advanced metering infrastructures (AMI) are required for the future smart grid operation by providing useful information about users’ behavior as well as grid performance such as the consumption and power quality. This paper is focused on the development of a LabVIEW application for user-interfac......Advanced metering infrastructures (AMI) are required for the future smart grid operation by providing useful information about users’ behavior as well as grid performance such as the consumption and power quality. This paper is focused on the development of a LabVIEW application for user......-interface and implementation of a Home Energy Management System (HEMS) based on AMI....

  10. Coronary and peripheral endothelial function in HIV patients studied with positron emission tomography and flow-mediated dilation: relation to hypercholesterolemia

    DEFF Research Database (Denmark)

    Lebech, Anne-Mette; Kristoffersen, Ulrik Sloth; Wiinberg, Niels

    2008-01-01

    BACKGROUND: The mechanisms underlying increased cardiovascular risk in HIV patients in antiretroviral therapy (ART) are not known. Our aim was to study the endothelial function of the coronary arteries by cardiac perfusion positron emission tomography (PET), in HIV patients with normal or high...... in hypercholesterolemic patients. Also, the increased level of plasma endothelial markers found in HIV patients was not related to hypercholesterolemia....

  11. Circulating CD34-positive cells, glomerular filtration rate and triglycerides in relation to hypertension.

    Science.gov (United States)

    Shimizu, Yuji; Sato, Shimpei; Koyamatsu, Jun; Yamanashi, Hirotomo; Nagayoshi, Mako; Kadota, Koichiro; Maeda, Takahiro

    2015-11-01

    Serum triglycerides have been reported to be independently associated with the development of chronic kidney disease (CKD), which is known to play a role in vascular disturbance. On the other hand, circulating CD34-positve cells, including endothelial progenitor cells, are reported to contribute to vascular repair. However, no studies have reported on the correlation between triglycerides and the number of CD34-positive cells. Since hypertension is well known factor for vascular impairment, the degree of correlation between serum triglycerides and circulating CD34-positve cells should account for hypertension status. We conducted a cross-sectional study of 274 elderly Japanese men aged ≥ 60 years (range 60-79 years) undergoing general health checkups. Multiple linear regression analysis of non-hypertensive subjects adjusting for classical cardiovascular risk factors showed that although triglyceride levels (1SD increments; 64 mg/dL) did not significantly correlate with glomerular filtration rate (GFR) (β = -2.06, p = 0.163), a significant positive correlation was seen between triglycerides and the number of circulating CD34-positive cells (β = 0.50, p = 0.004). In hypertensive subjects, a significant inverse correlation between triglycerides and GFR was observed (β = -2.66, p = 0.035), whereas no significant correlation between triglycerides and the number of circulating CD34-positive cells was noted (β = -0.004, p = 0.974). Since endothelial progenitor cells (CD34-positive cells) have been reported to contribute to vascular repair, our results indicate that in non-hypertensive subjects, triglycerides may stimulate an increase in circulating CD34-positive cells (vascular repair) by inducing vascular disturbance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Animal experimental research of the endothelialization of home-made atrial septal defect occluder device

    International Nuclear Information System (INIS)

    Chen Mingwu; Zhou Aiqing; Li Feng; Gao Wei; Yu Zhiqing; Tang Ning; Zhang Lan

    2003-01-01

    Objective: To evaluate the endothelialization of Chinese nitinol atrial septal defect occluder device. Methods: Atrial septal defect with controllable size was created by the Brockenborough needle and Rashkind balloon atrial septostomy, the occluder devices were implanted in six piglets (mean weight 7.5 kg). Two pigs were killed each time after 1 month, 3 months and 6 months after the device implantation and then the explanted devices were examined by scanning electron microscope (SEM). Results: The devices were found covering with collagen fibrosis together with diffuse endothelial cells spreading over the primer 1 month after implantation. The implants were covered mostly by neointima 3 months after implantation and completely covered by confluent endothelial cells 6 months after the implantation. Endothelial cells were not found on the smooth marker band at 3 months, however, did exist by 6 months. Conclusions: Home-made atrial septal defect occluder devices were mostly endothelialised 3 months after the implantation and did completely at 6 months

  13. Dynamic release and clearance of circulating microparticles during cardiac stress.

    Science.gov (United States)

    Augustine, Daniel; Ayers, Lisa V; Lima, Eduardo; Newton, Laura; Lewandowski, Adam J; Davis, Esther F; Ferry, Berne; Leeson, Paul

    2014-01-03

    Microparticles are cell-derived membrane vesicles, relevant to a range of biological responses and known to be elevated in cardiovascular disease. To investigate microparticle release during cardiac stress and how this response differs in those with vascular disease. We measured a comprehensive panel of circulating cell-derived microparticles by a standardized flow cytometric protocol in 119 patients referred for stress echocardiography. Procoagulant, platelet, erythrocyte, and endothelial but not leukocyte, granulocyte, or monocyte-derived microparticles were elevated immediately after a standardized dobutamine stress echocardiogram and decreased after 1 hour. Twenty-five patients developed stress-induced wall motion abnormalities suggestive of myocardial ischemia. They had similar baseline microparticle levels to those who did not develop ischemia, but, interestingly, their microparticle levels did not change during stress. Furthermore, no stress-induced increase was observed in those without inducible ischemia but with a history of vascular disease. Fourteen patients subsequently underwent coronary angiography. A microparticle rise during stress echocardiography had occurred only in those with normal coronary arteries. Procoagulant, platelet, erythrocyte, and endothelial microparticles are released during cardiac stress and then clear from the circulation during the next hour. This stress-induced rise seems to be a normal physiological response that is diminished in those with vascular disease.

  14. Expression of a retinoic acid signature in circulating CD34 cells from coronary artery disease patients

    Directory of Open Access Journals (Sweden)

    van der Laan Anja M

    2010-06-01

    Full Text Available Abstract Background Circulating CD34+ progenitor cells have the potential to differentiate into a variety of cells, including endothelial cells. Knowledge is still scarce about the transcriptional programs used by CD34+ cells from peripheral blood, and how these are affected in coronary artery disease (CAD patients. Results We performed a whole genome transcriptome analysis of CD34+ cells, CD4+ T cells, CD14+ monocytes, and macrophages from 12 patients with CAD and 11 matched controls. CD34+ cells, compared to other mononuclear cells from the same individuals, showed high levels of KRAB box transcription factors, known to be involved in gene silencing. This correlated with high expression levels in CD34+ cells for the progenitor markers HOXA5 and HOXA9, which are known to control expression of KRAB factor genes. The comparison of expression profiles of CD34+ cells from CAD patients and controls revealed a less naïve phenotype in patients' CD34+ cells, with increased expression of genes from the Mitogen Activated Kinase network and a lowered expression of a panel of histone genes, reaching levels comparable to that in more differentiated circulating cells. Furthermore, we observed a reduced expression of several genes involved in CXCR4-signaling and migration to SDF1/CXCL12. Conclusions The altered gene expression profile of CD34+ cells in CAD patients was related to activation/differentiation by a retinoic acid-induced differentiation program. These results suggest that circulating CD34+ cells in CAD patients are programmed by retinoic acid, leading to a reduced capacity to migrate to ischemic tissues.

  15. Viral-Cellular DNA Junctions as Molecular Markers for Assessing Intra-Tumor Heterogeneity in Cervical Cancer and for the Detection of Circulating Tumor DNA

    Directory of Open Access Journals (Sweden)

    Katrin Carow

    2017-09-01

    Full Text Available The development of cervical cancer is frequently accompanied by the integration of human papillomaviruses (HPV DNA into the host genome. Viral-cellular junction sequences, which arise in consequence, are highly tumor specific. By using these fragments as markers for tumor cell origin, we examined cervical cancer clonality in the context of intra-tumor heterogeneity. Moreover, we assessed the potential of these fragments as molecular tumor markers and analyzed their suitability for the detection of circulating tumor DNA in sera of cervical cancer patients. For intra-tumor heterogeneity analyses tumors of 8 patients with up to 5 integration sites per tumor were included. Tumor islands were micro-dissected from cryosections of several tissue blocks representing different regions of the tumor. Each micro-dissected tumor area served as template for a single junction-specific PCR. For the detection of circulating tumor-DNA (ctDNA junction-specific PCR-assays were applied to sera of 21 patients. Samples were collected preoperatively and during the course of disease. In 7 of 8 tumors the integration site(s were shown to be homogenously distributed throughout different tumor regions. Only one tumor displayed intra-tumor heterogeneity. In 5 of 21 analyzed preoperative serum samples we specifically detected junction fragments. Junction-based detection of ctDNA was significantly associated with reduced recurrence-free survival. Our study provides evidence that HPV-DNA integration is as an early step in cervical carcinogenesis. Clonality with respect to HPV integration opens new perspectives for the application of viral-cellular junction sites as molecular biomarkers in a clinical setting such as disease monitoring.

  16. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    International Nuclear Information System (INIS)

    Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin; Liu, Ke; Shang, Zheng-jun

    2014-01-01

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo

  17. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kai [Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Shandong Province (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Song, Yong [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Department of Stomatology, Liu Zhou People' s Hospital, Guangxi (China); Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Liu, Ke, E-mail: liuke.1999@aliyun.com [Department of Oral and Maxillofacial-Head and Neck oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Shang, Zheng-jun, E-mail: shangzhengjun@hotmail.com [Department of Oral and Maxillofacial-Head and Neck oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China)

    2014-10-15

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo.

  18. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance.

    Science.gov (United States)

    Moreno-Navarrete, José María; Sabater, Mònica; Ortega, Francisco; Ricart, Wifredo; Fernández-Real, José Manuel

    2012-01-01

    Zonulin is the only physiological mediator known to regulate intestinal permeability reversibly by modulating intercellular tight junctions. To investigate the relationship between intestinal permeability and obesity-associated metabolic disturbances in humans, we aimed to study circulating zonulin according to obesity and insulin resistance. Circulating zonulin (ELISA) was measured in 123 caucasian men in association with inflammatory and metabolic parameters (including minimal model-measured insulin sensitivity). Circulating zonulin increased with body mass index (BMI), waist to hip ratio (WHR), fasting insulin, fasting triglycerides, uric acid and IL-6, and negatively correlated with HDL-cholesterol and insulin sensitivity. In multiple regression analysis, insulin sensitivity (p = 0.002) contributed independently to circulating zonulin variance, after controlling for the effects of BMI, fasting triglycerides and age. When circulating IL-6 was added to this model, only BMI (p = 0.01) contributed independently to circulating zonulin variance. In conclusion, the relationship between insulin sensitivity and circulating zonulin might be mediated through the obesity-related circulating IL-6 increase.

  19. Mapping the distinctive populations of lymphatic endothelial cells in different zones of human lymph nodes.

    Directory of Open Access Journals (Sweden)

    Saem Mul Park

    Full Text Available The lymphatic sinuses in human lymph nodes (LNs are crucial to LN function yet their structure remains poorly defined. Much of our current knowledge of lymphatic sinuses derives from rodent models, however human LNs differ substantially in their sinus structure, most notably due to the presence of trabeculae and trabecular lymphatic sinuses that rodent LNs lack. Lymphatic sinuses are bounded and traversed by lymphatic endothelial cells (LECs. A better understanding of LECs in human LNs is likely to improve our understanding of the regulation of cell trafficking within LNs, now an important therapeutic target, as well as disease processes that involve lymphatic sinuses. We therefore sought to map all the LECs within human LNs using multicolor immunofluorescence microscopy to visualize the distribution of a range of putative markers. PROX1 was the only marker that uniquely identified the LECs lining and traversing all the sinuses in human LNs. In contrast, LYVE1 and STAB2 were only expressed by LECs in the paracortical and medullary sinuses in the vast majority of LNs studied, whilst the subcapsular and trabecular sinuses lacked these molecules. These data highlight the existence of at least two distinctive populations of LECs within human LNs. Of the other LEC markers, we confirmed VEGFR3 was not specific for LECs, and CD144 and CD31 stained both LECs and blood vascular endothelial cells (BECs; in contrast, CD59 and CD105 stained BECs but not LECs. We also showed that antigen-presenting cells (APCs in the sinuses could be clearly distinguished from LECs by their expression of CD169, and their lack of expression of PROX1 and STAB2, or endothelial markers such as CD144. However, both LECs and sinus APCs were stained with DCN46, an antibody commonly used to detect CD209.

  20. Impaired blood rheology is associated with endothelial dysfunction in patients with coronary risk factors.

    Science.gov (United States)

    Yagi, Hideki; Sumino, Hiroyuki; Aoki, Tomoyuki; Tsunekawa, Katsuhiko; Araki, Osamu; Kimura, Takao; Nara, Makoto; Ogiwara, Takayuki; Murakami, Masami

    2016-01-01

    To investigate the relationship between blood rheology and endothelial function in patients with coronary risk factors, brachial arterial flow-mediated vasodilatation (FMD), an index of endothelial function and blood passage time (BPT), an index of blood rheology, and fasting blood cell count, glucose metabolism, and plasma fibrinogen, lipid, C-reactive protein, and whole blood viscosity levels were measured in 95 patients with coronary risk factors and 37 healthy controls. Brachial arterial FMD after reactive hyperemia was assessed by ultrasonography. BPT was assessed using the microchannel method. In healthy controls, BPT significantly correlated with FMD (r = - 0.325, p index (BMI; r = 0.530, p measurement of blood rheology using the microchannel method may be useful in evaluating brachial arterial endothelial function as a marker of atherosclerosis in these patients.

  1. Maggot debridement therapy promotes diabetic foot wound healing by up-regulating endothelial cell activity.

    Science.gov (United States)

    Sun, Xinjuan; Chen, Jin'an; Zhang, Jie; Wang, Wei; Sun, Jinshan; Wang, Aiping

    2016-03-01

    To determine the role of maggot debridement therapy (MDT) on diabetic foot wound healing, we compared growth related factors in wounds before and after treatment. Furthermore, we utilized human umbilical vein endothelial cells (HUVECs) to explore responses to maggot excretions/secretions on markers of angiogenesis and proliferation. The results showed that there was neo-granulation and angiogenesis in diabetic foot wounds after MDT. Moreover, significant elevation in CD34 and CD68 levels was also observed in treated wounds. In vitro, ES increased HUVEC proliferation, improved tube formation, and increased expression of vascular endothelial growth factor receptor 2 in a dose dependent manner. These results demonstrate that MDT and maggot ES can promote diabetic foot wound healing by up-regulating endothelial cell activity. Copyright © 2016. Published by Elsevier Inc.

  2. Epidermal growth factor-like domain 7 is a marker of the endothelial lineage and active angiogenesis.

    Science.gov (United States)

    Bambino, Kathryn; Lacko, Lauretta A; Hajjar, Katherine A; Stuhlmann, Heidi

    2014-07-01

    Epidermal growth factor-like domain 7 (Egfl7) expression in the developing embryo is largely restricted to sites of mesodermal progenitors of angioblasts/hemangioblasts and the vascular endothelium. We hypothesize that Egfl7 marks the endothelial lineage during embryonic development, and can be used to define the emergence of endothelial progenitor cells, as well as to visualize newly-forming vasculature in the embryo and during the processes of physiologic and pathologic angiogenesis in the adult. We have generated a transgenic mouse strain that expresses enhanced green fluorescent protein (eGFP) under the control of a minimal Egfl7 regulatory sequence (Egfl7:eGFP). Expression of the transgene recapitulated that of endogenous Egfl7 at sites of vasculogenesis and angiogenesis in the allantois, yolk sac, and in the embryo proper. The transgene was not expressed in the quiescent endothelium of most adult organs. However, the uterus and ovary, which undergo vascular growth and remodeling throughout the estrus cycle, expressed high levels of Egfl7:eGFP. Importantly, expression of the Egfl7:eGFP transgene was induced in adult neovasculature. We also found that increased Egfl7 expression contributed to pathologic revascularization in the mouse retina. To our knowledge, this is the first mouse model that enables monitoring of endothelial cells at sites of active vasculogenesis and angiogenesis. This model also facilitated the isolation and characterization of EGFL7(+) endothelial cell populations by fluorescence activated cell sorting (FACS). Together, our results demonstrate that the Egfl7:eGFP reporter mouse is a valuable tool that can be used to elucidate the mechanisms by which blood vessels form during development and under pathologic circumstances. © 2014 Wiley Periodicals, Inc.

  3. Vasopressin-related copeptin is a novel predictor of early endothelial dysfunction in patients with adult polycystic kidney disease.

    Science.gov (United States)

    Kocyigit, Ismail; Yilmaz, Mahmut Ilker; Gungor, Ozkan; Eroglu, Eray; Unal, Aydin; Orscelik, Ozcan; Tokgoz, Bulent; Sipahioglu, Murat; Sen, Ahmet; Carrero, Juan Jesús; Oymak, Oktay; Axelsson, Jonas

    2016-11-30

    In this study, we examined the relative usefulness of serum copeptin levels as a surrogate marker of vasopressin (AVP) in adult polycystic kidney disease (ADPKD) by correlating it with baseline and longitudinal changes in markers of both renal function and common CVD manifestations (hypertensive vascular disease, atherosclerosis and endothelial dysfunction) that accompany the progression of this disease. We studied a cohort of young and otherwise healthy ADPKD patients (n = 235) and measured cardiovascular function using flow-mediation dilatation (FMD), carotid intima media thickness (cIMT) and pulse wave velocity (PWV), as well as serum copeptin (commercial ELISA, a stable marker of AVP activity). The same analyses were carried out at baseline and after 3 years of follow-up. At baseline, median eGFR was 69 mL/min./1.73 m 2 , mean FMD 6.9 ± 0.9%, cIMT 0.7 ± 0.1 mm, and PWV 8.1 ± 1.2 m/s. At follow-up, equivalent values were 65 (44-75) mL/min./1.73 m 2 , 5.8 ± 0.9%, 0.8 ± 0.1 mm. and 8.2 ± 1.3 m/s. with all changes statistically significant. Plasma copeptin also rose from 0.62 ± 0.12 to 0.94 ± 0.19 ng/mL and this change correlated with ΔeGFR (-0.33, p 0.76], and ΔPWV [cut-off:≤7.80]. Vascular dysfunction as reflected by FMD and cIMT, but not PWV or an altered cardiac geometry, precede most other signs of disease in ADPKD but is predicted by elevated levels of the circulating AVP-marker copeptin.

  4. Inhibition of protein kinase Cbeta does not improve endothelial function in type 2 diabetes.

    Science.gov (United States)

    Beckman, Joshua A; Goldfine, Allison B; Goldin, Alison; Prsic, Adnan; Kim, Sora; Creager, Mark A

    2010-08-01

    Antagonism of protein kinase Cbeta (PKCbeta) restores endothelial function in experimental models of diabetes and prevents vascular dysfunction in response to hyperglycemia in healthy humans. We tested the hypothesis that PKCbeta antagonism would improve vascular function in subjects with type 2 diabetes compared with healthy control subjects. The effect of PKCbeta was evaluated in a randomized, placebo-controlled, double-blinded crossover trial. The study was performed in the outpatient setting of a university medical center. Thirteen subjects with type 2 diabetes without evidence of cardiovascular disease and 15 healthy control subjects were recruited via newspaper advertisement. Subjects underwent a randomized, double-blind, crossover, placebo-controlled trial of the selective PKCbeta antagonist ruboxistaurin mesylate. Subjects received each treatment for 14 d. Endothelium-dependent and endothelium-independent vasodilation of forearm resistance vessels was measured with mercury-in-silastic, strain-gauge plethysmography during intraarterial administration of methacholine chloride and verapamil, respectively. Markers of inflammation, fibrinolysis, endothelial damage, and oxidative stress were measured after each treatment. Endothelium-dependent vasodilation of forearm resistance vessels was attenuated in diabetic subjects when compared with healthy subjects (P=0.001). Endothelium-independent vasodilation did not differ between groups (P value not significant). Ruboxistaurin did not significantly change endothelium-dependent or endothelium-independent vasodilation or blood-based markers of inflammation, fibrinolysis, endothelial damage, and oxidative stress in either diabetic or healthy subjects. Endothelial dysfunction of forearm resistance vessels was not improved by 2 wk of selective PKCbeta inhibition in patients with diabetes. These results suggest that PKCbeta does not contribute significantly to vascular dysfunction in otherwise healthy patients with type 2

  5. Increased expression of endothelial antigen PAL-E in human diabetic retinopathy correlates with microvascular leakage

    NARCIS (Netherlands)

    Schlingemann, R. O.; Hofman, P.; Vrensen, G. F.; Blaauwgeers, H. G.

    1999-01-01

    AIMS/HYPOTHESIS: The Pathologische Anatomie Leiden-Endothelium (PAL-E) antigen is a marker for loss of the blood-brain barrier function in brain tumours. It is endothelium specific and is associated with the endothelial plasmalemmal vesicles (caveolae) involved in transcellular transport. To test

  6. Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease.

    Science.gov (United States)

    Powell, Tiffany M; Paul, Jonathan D; Hill, Jonathan M; Thompson, Michael; Benjamin, Moshe; Rodrigo, Maria; McCoy, J Philip; Read, Elizabeth J; Khuu, Hanh M; Leitman, Susan F; Finkel, Toren; Cannon, Richard O

    2005-02-01

    Endothelial progenitor cells (EPCs) that may repair vascular injury are reduced in patients with coronary artery disease (CAD). We reasoned that EPC number and function may be increased by granulocyte colony-stimulating factor (G-CSF) used to mobilize hematopoietic progenitor cells in healthy donors. Sixteen CAD patients had reduced CD34(+)/CD133(+) (0.0224+/-0.0063% versus 0.121+/-0.038% mononuclear cells [MNCs], P<0.01) and CD133(+)/VEGFR-2(+) cells, consistent with EPC phenotype (0.00033+/-0.00015% versus 0.0017+/-0.0006% MNCs, P<0.01), compared with 7 healthy controls. Patients also had fewer clusters of cells in culture, with out-growth consistent with mature endothelial phenotype (2+/-1/well) compared with 16 healthy subjects at high risk (13+/-4/well, P<0.05) or 14 at low risk (22+/-3/well, P<0.001) for CAD. G-CSF 10 microg/kg per day for 5 days increased CD34(+)/CD133(+) cells from 0.5+/-0.2/microL to 59.5+/-10.6/microL and CD133(+)/ VEGFR-2(+) cells from 0.007+/-0.004/microL to 1.9+/-0.6/microL (both P<0.001). Also increased were CD133(+) cells that coexpressed the homing receptor CXCR4 (30.4+/-8.3/microL, P<0.05). Endothelial cell-forming clusters in 10 patients increased to 27+/-9/well after treatment (P<0.05), with a decline to 9+/-4/well at 2 weeks (P=0.06). Despite reduced EPCs compared with healthy controls, patients with CAD respond to G-CSF with increases in EPC number and homing receptor expression in the circulation and endothelial out-growth in culture. Endothelial progenitor cells (EPCs) are reduced in coronary artery disease. Granulocyte colony-stimulating factor (CSF) administered to patients increased: (1) CD133+/VEGFR-2+ cells consistent with EPC phenotype; (2) CD133+ cells coexpressing the chemokine receptor CXCR4, important for homing of EPCs to ischemic tissue; and (3) endothelial cell-forming clusters in culture. Whether EPCs mobilized into the circulation will be useful for the purpose of initiating vascular growth and myocyte repair

  7. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) and its receptor PROKR2 are associated to human colorectal cancer progression and peritoneal carcinomatosis.

    Science.gov (United States)

    Benlahfid, Mohammed; Traboulsi, Wael; Sergent, Frederic; Benharouga, Mohamed; Elhattabi, Khalid; Erguibi, Driss; Karkouri, Mehdi; Elattar, Hicham; Fadil, Abdelaziz; Fahmi, Yassine; Aboussaouira, Touria; Alfaidy, Nadia

    2018-02-06

    The highest risk factor for mortality among malignant tumors is metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor which biological activity is mediated via two G protein-coupled receptors, prokineticin receptor1 (PROKR1) and PROKR2. Recent studies suggested that EG-VEGF expression is deregulated in multiple cancers including colorectal cancer (CRC). Using distinctive CRC and peritoneal carcinomatosis (PC) cohorts and a corresponding control cohort, we determined the circulating levels of EG-VEGF and its in situ expression, and that of its related receptors. Circulating EG-VEGF levels were significantly increased in patients with metastatic PC compared to CRC and control patients (p< 0.05). Furthermore, according to clinicopathologic examinations, local EG-VEGF expression correlated with higher tumor and nodal stages (p< 0.001) of CRC. EG-VEGF and PROKR2 were highly expressed in colorectal primary lesions compared to positive controls. PROKR1 expression was lower and did not change in tumor specimens. Also, EG-VEGF and its receptor PROKR2 were differentially expressed in the colorectal primary lesions and in the control groups. Altogether these findings suggest that EG-VEGF/receptors system might be an important actor in the CRC progression into PC and might be involved in the ability of tumor cells to invade other organs. Circulating EG-VEGF could be proposed as a prognostic marker in human CRC and its progression into PC.

  8. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance.

    Directory of Open Access Journals (Sweden)

    José María Moreno-Navarrete

    Full Text Available Zonulin is the only physiological mediator known to regulate intestinal permeability reversibly by modulating intercellular tight junctions. To investigate the relationship between intestinal permeability and obesity-associated metabolic disturbances in humans, we aimed to study circulating zonulin according to obesity and insulin resistance. Circulating zonulin (ELISA was measured in 123 caucasian men in association with inflammatory and metabolic parameters (including minimal model-measured insulin sensitivity. Circulating zonulin increased with body mass index (BMI, waist to hip ratio (WHR, fasting insulin, fasting triglycerides, uric acid and IL-6, and negatively correlated with HDL-cholesterol and insulin sensitivity. In multiple regression analysis, insulin sensitivity (p = 0.002 contributed independently to circulating zonulin variance, after controlling for the effects of BMI, fasting triglycerides and age. When circulating IL-6 was added to this model, only BMI (p = 0.01 contributed independently to circulating zonulin variance. In conclusion, the relationship between insulin sensitivity and circulating zonulin might be mediated through the obesity-related circulating IL-6 increase.

  9. The predictive value of markers of fibrinolysis and endothelial dysfunction in the post thrombotic syndrome. A systematic review.

    Science.gov (United States)

    Rabinovich, Anat; Cohen, Jacqueline M; Kahn, Susan R

    2014-06-01

    The post thrombotic syndrome (PTS) develops in 20-40% of deep venous thrombosis (DVT) patients. Risk factors for PTS have not been well elucidated. Identification of risk factors would facilitate individualised risk assessment for PTS. We conducted a systematic review to determine whether biomarkers of fibrinolysis or endothelial dysfunction can predict the risk for PTS among DVT patients. Studies were identified by searching the electronic databases PubMed, EMBASE, Scopus and Web of science. We included studies published between 1990 and 2013, measured biomarker levels in adult DVT patients, and reported rates of PTS development. Fourteen studies were included: 11 investigated the association between D-dimer and PTS; three examined fibrinogen; two measured von Willebrand factor; one measured plasminogen activator inhibitor-1; one assessed ADAMTS-13 (A Disintegrin and Metalloprotease with Thrombospondin type 1 repeats) and one measured factor XIII activity. Studies varied with regards to inclusion criteria, definition of PTS, time point and method of biomarker measurement. We were unable to meta-analyse results due to marked clinical heterogeneity. Descriptively, a significant association with PTS was found for D-dimer in four studies and factor XIII in one study. Further prospective research is needed to elucidate whether these markers might be useful to predict PTS development.

  10. Obesity-Induced Endoplasmic Reticulum Stress Causes Lung Endothelial Dysfunction and Promotes Acute Lung Injury.

    Science.gov (United States)

    Shah, Dilip; Romero, Freddy; Guo, Zhi; Sun, Jianxin; Li, Jonathan; Kallen, Caleb B; Naik, Ulhas P; Summer, Ross

    2017-08-01

    Obesity is a significant risk factor for acute respiratory distress syndrome. The mechanisms underlying this association are unknown. We recently showed that diet-induced obese mice exhibit pulmonary vascular endothelial dysfunction, which is associated with enhanced susceptibility to LPS-induced acute lung injury. Here, we demonstrate that lung endothelial dysfunction in diet-induced obese mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins, including protein kinase R-like ER kinase, inositol-requiring enzyme α, and activating transcription factor 6, in whole lung and in primary lung endothelial cells isolated from diet-induced obese mice. Furthermore, we found that primary lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of diet-induced obese mice, including an increase in expression of endothelial adhesion molecules and a decrease in expression of endothelial cell-cell junctional proteins. Similar changes were observed in lung endothelial cells and in whole-lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation, indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-phenylbutyric acid, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in diet-induced obese mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium, leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the ER of pulmonary endothelial cells might protect against acute respiratory distress syndrome in obese

  11. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells

    International Nuclear Information System (INIS)

    Jantzen, Kim; Møller, Peter; Karottki, Dorina Gabriela; Olsen, Yulia; Bekö, Gabriel; Clausen, Geo; Hersoug, Lars-Georg; Loft, Steffen

    2016-01-01

    Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related to leukocyte-mediated oxidative stress. The study utilized a cross sectional design performed in 58 study participants from a larger cohort. Levels of circulating endothelial progenitor cells, defined as either late (CD34 + KDR + cells) or early (CD34 + CD133 + KDR + cells) subsets were measured using polychromatic flow cytometry. We additionally measured production of reactive oxygen species in leukocyte subsets (lymphocytes, monocytes and granulocytes) by flow cytometry using intracellular 2′,7′-dichlorofluoroscein. The measurements encompassed both basal levels of reactive oxygen species production and capacity for reactive oxygen species production for each leukocyte subset. We found that the late endothelial progenitor subset was negatively associated with levels of ultrafine particles measured within the participant residences and with reactive oxygen species production capacity in lymphocytes. Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate that exposure to fine and ultrafine particles derived from indoor sources may have adverse effects on human vascular health.

  12. Endothelial cell capture of heparin-binding growth factors under flow.

    Directory of Open Access Journals (Sweden)

    Bing Zhao

    2010-10-01

    Full Text Available Circulation is an important delivery method for both natural and synthetic molecules, but microenvironment interactions, regulated by endothelial cells and critical to the molecule's fate, are difficult to interpret using traditional approaches. In this work, we analyzed and predicted growth factor capture under flow using computer modeling and a three-dimensional experimental approach that includes pertinent circulation characteristics such as pulsatile flow, competing binding interactions, and limited bioavailability. An understanding of the controlling features of this process was desired. The experimental module consisted of a bioreactor with synthetic endothelial-lined hollow fibers under flow. The physical design of the system was incorporated into the model parameters. The heparin-binding growth factor fibroblast growth factor-2 (FGF-2 was used for both the experiments and simulations. Our computational model was composed of three parts: (1 media flow equations, (2 mass transport equations and (3 cell surface reaction equations. The model is based on the flow and reactions within a single hollow fiber and was scaled linearly by the total number of fibers for comparison with experimental results. Our model predicted, and experiments confirmed, that removal of heparan sulfate (HS from the system would result in a dramatic loss of binding by heparin-binding proteins, but not by proteins that do not bind heparin. The model further predicted a significant loss of bound protein at flow rates only slightly higher than average capillary flow rates, corroborated experimentally, suggesting that the probability of capture in a single pass at high flow rates is extremely low. Several other key parameters were investigated with the coupling between receptors and proteoglycans shown to have a critical impact on successful capture. The combined system offers opportunities to examine circulation capture in a straightforward quantitative manner that

  13. Clinical applications of circulating tumor DNA and circulating tumor cells in pancreatic cancer.

    Science.gov (United States)

    Riva, Francesca; Dronov, Oleksii I; Khomenko, Dmytro I; Huguet, Florence; Louvet, Christophe; Mariani, Pascale; Stern, Marc-Henri; Lantz, Olivier; Proudhon, Charlotte; Pierga, Jean-Yves; Bidard, Francois-Clement

    2016-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is the most frequent pancreatic cancer type and is characterized by a dismal prognosis due to late diagnosis, local tumor invasion, frequent distant metastases and poor sensitivity to current therapy. In this context, circulating tumor cells and circulating tumor DNA constitute easily accessible blood-borne tumor biomarkers that may prove their clinical interest for screening, early diagnosis and metastatic risk assessment of PDAC. Moreover these markers represent a tool to assess PDAC mutational landscape. In this review, together with key biological findings, we summarize the clinical results obtained using "liquid biopsies" at the different stages of the disease, for early and metastatic diagnosis as well as monitoring during therapy. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Endothelial dysfunction and reduced heart rate variability in patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Elena Nikolaevna Smirnova

    2018-03-01

    Full Text Available According to experts of the World Health Organization (WHO, metabolic syndrome (MS can be considered as pandemy of the XXI century, because its prevalence among the population of developed countries is about 25-35%. In this study with the purpose of complex investigation of the autonomic nervous system and endothelial function we included 66 patients with MS between the ages of 25 and 61 (46.9±9.9 years. A comparison group of apparently healthy individuals (16 individuals, average age of 45.3±2.3 years; P>0.05 was studied. To evaluate the response of microvascular tone, we used the method of wavelet analysis of skin temperature oscillations during cooling of the limb. All patients underwent the study of heart rate variability. The levels of insulin, endothelin-1, and vascular endothelial growth factor were determined using enzyme immunoassay. Patients with MS had significant differences in all metabolic parameters. Our study showed that in the group of MS there is a decrease of the variability of heart rhythm compared with the healthy group. Conducting cold test revealed signs of endothelial dysfunction in the MS group, which was manifested by the decrease of the index of vasodilation in the endothelial and neurogenic frequency range. In the study group we determined the increase in biochemical markers of endothelial dysfunction, which correlated with parameters of vasodilation. Also, the presence of endothelial dysfunction significantly correlated with signs of reduction of the variability of the heart rhythm.

  15. Source-specific social support and circulating inflammatory markers among white-collar employees.

    Science.gov (United States)

    Nakata, Akinori; Irie, Masahiro; Takahashi, Masaya

    2014-06-01

    Despite known beneficial effects of social support on cardiovascular health, the pathway through which sources of support (supervisor, coworkers, family/friends) influence inflammatory markers is not completely understood. We investigated the independent and moderating associations between social support and inflammatory markers. A total of 137 male white-collar employees underwent a blood draw for measurement of high-sensitive C-reactive protein (hs-CRP), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), monocyte and leukocyte counts, and completed a questionnaire on social support. Multivariable linear regression analyses controlling for covariates revealed that supervisor support was inversely associated with IL-6 (β = -0.24, p markers. Social support from the immediate supervisor may be a potential mechanism through which social support exerts beneficial effects on inflammatory markers in working men.

  16. Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/ Rho kinase pathways targeted to lipid rafts.

    Science.gov (United States)

    Burger, Dylan; Montezano, Augusto C; Nishigaki, Nobuhiro; He, Ying; Carter, Anthony; Touyz, Rhian M

    2011-08-01

    Circulating microparticles are increased in cardiovascular disease and may themselves promote oxidative stress and inflammation. Molecular mechanisms underlying their formation and signaling are unclear. We investigated the role of reactive oxygen species (ROS), Rho kinase, and lipid rafts in microparticle formation and examined their functional significance in endothelial cells (ECs). Microparticle formation from angiotensin II (Ang II)-stimulated ECs and apolipoprotein E(-/-) mice was assessed by annexin V or by CD144 staining and electron microscopy. Ang II promoted microparticle formation and increased EC O(2)(-) generation and Rho kinase activity. Ang II-stimulated effects were inhibited by irbesartan (Ang II receptor type I blocker) and fasudil (Rho kinase inhibitor). Methyl-β-cyclodextrin and nystatin, which disrupt lipid rafts/caveolae, blocked microparticle release. Functional responses, assessed in microparticle-stimulated ECs, revealed increased O(2)(-) production, enhanced vascular cell adhesion molecule/platelet-EC adhesion molecule expression, and augmented macrophage adhesion. Inhibition of epidermal growth factor receptor blocked the prooxidative and proinflammatory effects of microparticles. In vitro observations were confirmed in apolipoprotein E(-/-) mice, which displayed vascular inflammation and high levels of circulating endothelial microparticles, effects that were reduced by apocynin. We demonstrated direct actions of Ang II on endothelial microparticle release, mediated through NADPH oxidase, ROS, and Rho kinase targeted to lipid rafts. Microparticles themselves stimulated endothelial ROS formation and inflammatory responses. Our findings suggest a feedforward system whereby Ang II promotes EC injury through its own endothelial-derived microparticles.

  17. Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice.

    Science.gov (United States)

    Csiszar, Anna; Labinskyy, Nazar; Perez, Viviana; Recchia, Fabio A; Podlutsky, Andrej; Mukhopadhyay, Partha; Losonczy, Gyorgy; Pacher, Pal; Austad, Steven N; Bartke, Andrzej; Ungvari, Zoltan

    2008-11-01

    Hypopituitary Ames dwarf mice have low circulating growth hormone (GH)/IGF-I levels, and they have extended longevity and exhibit many symptoms of delayed aging. To elucidate the vascular consequences of Ames dwarfism we compared endothelial O2(-) and H2O2 production, mitochondrial reactive oxygen species (ROS) generation, expression of antioxidant enzymes, and nitric oxide (NO) production in aortas of Ames dwarf and wild-type control mice. In Ames dwarf aortas endothelial O2(-) and H2O2 production and ROS generation by mitochondria were enhanced compared with those in vessels of wild-type mice. In Ames dwarf aortas there was a less abundant expression of Mn-SOD, Cu,Zn-SOD, glutathione peroxidase (GPx)-1, and endothelial nitric oxide synthase (eNOS). NO production and acetylcholine-induced relaxation were also decreased in aortas of Ames dwarf mice. In cultured wild-type mouse aortas and in human coronary arterial endothelial cells treatment with GH and IGF significantly reduced cellular O2(-) and H2O2 production and ROS generation by mitochondria and upregulated expression of Mn-SOD, Cu,Zn-SOD, GPx-1, and eNOS. Thus GH and IGF-I promote antioxidant phenotypic changes in the endothelial cells, whereas Ames dwarfism leads to vascular oxidative stress.

  18. Histones Induce the Procoagulant Phenotype of Endothelial Cells through Tissue Factor Up-Regulation and Thrombomodulin Down-Regulation.

    Science.gov (United States)

    Kim, Ji Eun; Yoo, Hyun Ju; Gu, Ja Yoon; Kim, Hyun Kyung

    2016-01-01

    The high circulating levels of histones found in various thrombotic diseases may compromise the anticoagulant barrier of endothelial cells. We determined how histones affect endothelial procoagulant tissue factor (TF) and anticoagulant thrombomodulin (TM). Surface antigens, soluble forms, and mRNA levels of TF and TM were measured by flow cytometry, ELISA, and real-time RT-PCR, respectively. TF and TM activity were measured using procoagulant activity, thrombin generation, or chromogenic assays. Involvement of the toll-like receptor (TLR) was assessed using the neutralizing antibodies. Histones dose-dependently induced surface antigens, activity and mRNA levels of endothelial TF. Histone-treated endothelial cells significantly shortened the lag time and enhanced the endogenous thrombin potential of normal plasma, which was normalized by a TF neutralizing antibody. Histones induced phosphatidylserine and protein-disulfide isomerase expression in endothelial cells. Histones also reduced the surface antigen, activity, and mRNA levels of endothelial TM. Polysialic acid and heparin reversed the histone-induced TF up-regulation and TM down-regulation. Activated protein C did not affect the TF up-regulation, but interrupted TM down-regulation. TLR2, and TLR4 inhibitors partially blocked the TF up-regulation. Histones induced the endothelial procoagulant phenotype through TF up-regulation and TM down-regulation. The effects of histones were partly mediated by TLR2, TLR4. Strategies to inhibit the harmful effects of histones in endothelial cells may be required in order to prevent a thrombotic environment.

  19. Suppression of endothelial cell adhesion by XJP-1, a new phenolic compound derived from banana peel.

    Science.gov (United States)

    Fu, Rong; Yan, Tianhua; Wang, Qiujuan; Guo, Qinglong; Yao, Hequan; Wu, Xiaoming; Li, Yang

    2012-01-01

    The adhesion of monocytes to activated vascular endothelial cells is a critical event in the initiation of atherosclerosis. Adhesion is mediated by oxidized low-density lipoprotein (ox-LDL) which up-regulates inflammatory markers on endothelial cells. Here we report that (±) 7, 8-dihydroxy-3-methyl-isochromanone-4 (XJP-1), an inhibitor of ox-LDL-induced adhesion of monocytes to endothelial cells blocks cellular functions which are associated with adhesion. We show that XJP-1 down-regulates ox-LDL-induced over-expression of adhesion molecules (ICAM-1 and VCAM-1) in a dose-dependent manner in human umbilical vein endothelial cells (HUVECs), attenuates ox-LDL-induced up-regulation of low-density lipoprotein receptor (LOX)-1, decreases generation of reactive oxygen species (ROS), blocks translocation of nuclear factor-kappa B (NF-κB) activity, and prevents activation of c-Jun N-terminal kinase (JNK)/p38 pathways in endothelial cells. These findings suggest that XJP-1 may attenuate ox-LDL-induced endothelial adhesion of monocytes by blocking expression of adhesion molecules through suppressing ROS/NF-κB, JNK and p38 pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Circulating microRNAs in patients with active pulmonary tuberculosis.

    Science.gov (United States)

    Fu, Yurong; Yi, Zhengjun; Wu, Xiaoyan; Li, Jianhua; Xu, Fuliang

    2011-12-01

    Emerging evidence shows that microRNAs (miRNAs) play an important role in pathogen-host interactions. Circulating miRNAs have been repeatedly and stably detected in blood and hold promise to serve as molecular markers for diverse physiological and pathological conditions. To date, the relationship between circulating miRNAs and active pulmonary tuberculosis (TB) has not been reported. Using microarray-based expression profiling followed by real-time quantitative PCR validation, the levels of circulating miRNAs were compared between patients with active pulmonary tuberculosis and matched healthy controls. The receiver operating characteristic curve was used to evaluate the diagnostic effect of selected miRNA. Bioinformatic analysis was used to explore the potential roles of these circulating miRNAs in active pulmonary tuberculosis infection. Among 92 miRNAs significantly detected, 59 miRNAs were downregulated and 33 miRNAs were upregulated in the TB serum compared to their levels in the control serum. Interestingly, only two differentially expressed miRNAs were increased not only in the serum but also in the sputum of patients with active pulmonary tuberculosis compared to the levels for the healthy controls. Upregulated miR-29a could discriminate TB patients from healthy controls with reasonable sensitivity and specificity. A number of significantly enriched pathways regulated by these circulating miRNAs were predicted, and most of them were involved in acute-phase response, inflammatory response, and the regulation of the cytoskeleton. In all, for the first time our results revealed that a number of miRNAs were differentially expressed during active pulmonary tuberculosis infection, and circulating miR-29a has great potential to serve as a marker for the detection of active pulmonary tuberculosis infection.

  1. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells

    DEFF Research Database (Denmark)

    Jantzen, Kim; Møller, Peter Horn; Karottki, Dorina Gabriela

    2016-01-01

    . Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate......Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked...... to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related...

  2. Placental oxidative stress and maternal endothelial function in pregnant women with normotensive fetal growth restriction.

    Science.gov (United States)

    Yoshida, Atsumi; Watanabe, Kazushi; Iwasaki, Ai; Kimura, Chiharu; Matsushita, Hiroshi; Wakatsuki, Akihiko

    2018-04-01

    The purpose of this study was to investigate the relationship between placental oxidative stress and maternal endothelial function in pregnant women with normotensive fetal growth restriction (FGR). We examined serum concentrations of oxygen free radicals (d-ROMs), maternal angiogenic factor (PlGF), and sFlt-1, placental oxidative DNA damage, and maternal endothelial function in 17 women with early-onset preeclampsia (PE), 18 with late-onset PE, 14 with normotensive FGR, and 21 controls. Flow-mediated vasodilation (FMD) was assessed as a marker of maternal endothelial function. Immunohistochemical analysis was performed to measure the proportion of placental trophoblast cell nuclei staining positive for 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage. Maternal serum d-ROM, sFlt-1 concentrations, and FMD did not significantly differ between the control and normotensive FGR groups. The proportion of nuclei staining positive for 8-OHdG was significantly higher in the normotensive FGR group relative to the control group. Our findings demonstrate that, despite the presence of placental oxidative DNA damage as observed in PE patients, pregnant women with normotensive FGR show no increase in the concentrations of sFlt-1 and d-ROMs, or a decrease in FMD.

  3. Silicon Ingot Casting - Heat Exchanger Method (HEM). Multi-Wire Slicing - Fixed Abrasive Slicing Technique (Fast). Phase 4 Silicon Sheet Growth Development for the Large Area Sheet Task of the Low-Cost Solar Array Project

    Science.gov (United States)

    Schmid, F.

    1981-01-01

    The crystallinity of large HEM silicon ingots as a function of heat flow conditions is investigated. A balanced heat flow at the bottom of the ingot restricts spurious nucleation to the edge of the melted-back seed in contact with the crucible. Homogeneous resistivity distribution over all the ingot has been achieved. The positioning of diamonds electroplated on wirepacks used to slice silicon crystals is considered. The electroplating of diamonds on only the cutting edge is described and the improved slicing performance of these wires evaluated. An economic analysis of value added costs of HEM ingot casting and band saw sectioning indicates the projected add on cost of HEM is well below the 1986 allocation.

  4. Endothelial induced EMT in breast epithelial cells with stem cell properties.

    Directory of Open Access Journals (Sweden)

    Valgardur Sigurdsson

    Full Text Available Epithelial to mesenchymal transition (EMT is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M derived from D492, show reduced expression of keratins, a switch from E-Cadherin (E-Cad to N-Cadherin (N-Cad and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high/CD24(low ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal-like breast cancer contains cells with an EMT phenotype, most prominently close to vascular rich areas of these tumors. We conclude that endothelial cells are potent inducers of EMT and may play a role in progression of basal-like breast cancer.

  5. Endothelial induced EMT in breast epithelial cells with stem cell properties.

    Science.gov (United States)

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla; Fridriksdottir, Agla J R; Ringnér, Markus; Villadsen, Rene; Borg, Ake; Agnarsson, Bjarni A; Petersen, Ole William; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2011-01-01

    Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression of keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high)/CD24(low) ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal-like breast cancer contains cells with an EMT phenotype, most prominently close to vascular rich areas of these tumors. We conclude that endothelial cells are potent inducers of EMT and may play a role in progression of basal-like breast cancer.

  6. Isolation and characterization of conditionally immortalized mouse glomerular endothelial cell lines.

    Science.gov (United States)

    Rops, Angelique L; van der Vlag, Johan; Jacobs, Cor W; Dijkman, Henry B; Lensen, Joost F; Wijnhoven, Tessa J; van den Heuvel, Lambert P; van Kuppevelt, Toin H; Berden, Jo H

    2004-12-01

    The culture and establishment of glomerular cell lines has proven to be an important tool for the understanding of glomerular cell functions in glomerular physiology and pathology. Especially, the recent establishment of a conditionally immortalized visceral epithelial cell line has greatly boosted the research on podocyte biology. Glomeruli were isolated from H-2Kb-tsA58 transgenic mice that contain a gene encoding a temperature-sensitive variant of the SV40 large tumor antigen, facilitating proliferative growth at 33 degrees C and differentiation at 37 degrees C. Glomerular endothelial cells were isolated from glomerular outgrowth by magnetic beads loaded with CD31, CD105, GSL I-B4, and ULEX. Clonal cell lines were characterized by immunofluorescence staining with antibodies/lectins specific for markers of endothelial cells, podocytes, and mesangial cells. Putative glomerular endothelial cell lines were analyzed for (1) cytokine-induced expression of adhesion molecules; (2) tube formation on Matrigel coating; and (3) the presence of fenestrae. As judged by immunostaining for Wilms tumor-1, smooth muscle actin (SMA), podocalyxin, and von Willebrand factor (vWF), we obtained putative endothelial, podocyte and mesangial cell lines. The mouse glomerular endothelial cell clone #1 (mGEnC-1) was positive for vWF, podocalyxin, CD31, CD105, VE-cadherin, GSL I-B4, and ULEX, internalized acetylated-low-density lipoprotein (LDL), and showed increased expression of adhesion molecules after activation with proinflammatory cytokines. Furthermore, mGEnC-1 formed tubes and contained nondiaphragmed fenestrae. The mGEnC-1 represents a conditionally immortalized cell line with various characteristics of differentiated glomerular endothelial cells when cultured at 37 degrees C. Most important, mGEnC-1 contains nondiaphragmed fenestrae, which is a unique feature of glomerular endothelial cells.

  7. The dipeptidyl peptidase-4 (DPP-4) inhibitor teneligliptin functions as antioxidant on human endothelial cells exposed to chronic hyperglycemia and metabolic high-glucose memory.

    Science.gov (United States)

    Pujadas, Gemma; De Nigris, Valeria; Prattichizzo, Francesco; La Sala, Lucia; Testa, Roberto; Ceriello, Antonio

    2017-06-01

    Dipeptidyl peptidase-4 inhibitors are widely used in type 2 diabetes. Endothelium plays a crucial role maintaining vascular integrity and function. Chronic exposure to high glucose drives to endothelial dysfunction generating oxidative stress. Teneligliptin is a novel dipeptidyl peptidase-4 inhibitor with antioxidant properties. This study is aimed to verify a potential protective action of teneligliptin in endothelial cells exposed to high glucose. Human umbilical vein endothelial cells were cultured under normal (5 mmol/L) or high glucose (25 mmol/L) during 21 days, or at high glucose during 14 days followed by 7 days at normal glucose, to reproduce the high-metabolic memory state. During this period, different concentrations of teneligliptin (0.1, 1.0 and 3.0 µmol/L) or sitagliptin (0.5 µmol/L) were added to cells. Ribonucleic acid and protein expression were assessed for antioxidant response, proliferation, apoptosis and endoplasmic reticulum stress markers. Teneligliptin promotes the antioxidant response in human umbilical vein endothelial cells, reducing ROS levels and inducing Nrf2-target genes messenger ribonucleic acid expression. Teneligliptin, but not sitagliptin, reduces the expression of the nicotine amide adenine dinucleotide phosphate oxidase regulatory subunit P22 -phox , however, both blunt the high glucose-induced increase of TXNIP. Teneligliptin improves proliferation rates in human umbilical vein endothelial cells exposed to high glucose, regulating the expression of cell-cycle inhibitors markers (P53, P21 and P27), and reducing proapoptotic genes (BAX and CASP3), while promotes BCL2 expression. Teneligliptin ameliorates high glucose-induced endoplasmic reticulum stress reducing the expression of several markers (BIP, PERK, ATF4, CHOP, IRE1a and ATF6). Teneligliptin has antioxidant properties, ameliorates oxidative stress and apoptotic phenotype and it can overcome the metabolic memory effect, induced by chronic exposure to high

  8. IL-17A potentiates TNFα-induced secretion from human endothelial cells and alters barrier functions controlling neutrophils rights of passage

    DEFF Research Database (Denmark)

    Bosteen, Markus H; Tritsaris, Katerina; Hansen, Anker J

    2014-01-01

    Interleukin-17A (IL-17A) is an important pro-inflammatory cytokine that regulates leukocyte mobilization and recruitment. To better understand how IL-17A controls leukocyte trafficking across capillaries in the peripheral blood circulation, we used primary human dermal microvascular endothelial...

  9. Pinocembrin ex vivo preconditioning improves the therapeutic efficacy of endothelial progenitor cells in monocrotaline-induced pulmonary hypertension in rats.

    Science.gov (United States)

    Ahmed, Lamiaa A; Rizk, Sherine M; El-Maraghy, Shohda A

    2017-08-15

    Pulmonary hypertension is still not curable and the available current therapies can only alleviate symptoms without hindering the progression of disease. The present study was directed to investigate the possible modulatory effect of pinocembrin on endothelial progenitor cells transplanted in monocrotaline-induced pulmonary hypertension in rats. Pulmonary hypertension was induced by a single subcutaneous injection of monocrotaline (60mg/kg). Endothelial progenitor cells were in vitro preconditioned with pinocembrin (25mg/L) for 30min before being i.v. injected into rats 2weeks after monocrotaline administration. Four weeks after monocrotaline administration, blood pressure, electrocardiography and right ventricular systolic pressure were recorded. Rats were sacrificed and serum was separated for determination of endothelin-1 and asymmetric dimethylarginine levels. Right ventricles and lungs were isolated for estimation of tumor necrosis factor-alpha and transforming growth factor-beta contents as well as caspase-3 activity. Moreover, protein expression of matrix metalloproteinase-9 and endothelial nitric oxide synthase in addition to myocardial connexin-43 was assessed. Finally, histological analysis of pulmonary arteries, cardiomyocyte cross-sectional area and right ventricular hypertrophy was performed and cryosections were done for estimation of cell homing. Preconditioning with pinocembrin provided a significant improvement in endothelial progenitor cells' effect towards reducing monocrotaline-induced elevation of inflammatory, fibrogenic and apoptotic markers. Furthermore, preconditioned cells induced a significant amelioration of endothelial markers and cell homing and prevented monocrotaline-induced changes in right ventricular function and histological analysis compared with native cells alone. In conclusion, pinocembrin significantly improves the therapeutic efficacy of endothelial progenitor cells in monocrotaline-induced pulmonary hypertension in rats

  10. Inflammation, coagulation, endothelial dysfunction and oxidative stress in prediabetes--Biomarkers as a possible tool for early disease detection for rural screening.

    Science.gov (United States)

    Maschirow, L; Khalaf, K; Al-Aubaidy, H A; Jelinek, H F

    2015-06-01

    This study aims to increase understanding of the connection between oxidative stress and inflammation in diabetes disease progression to provide a basis for investigating improved diagnostic possibilities, treatment and prevention of prediabetes. Differences in the level of biochemical markers of oxidative stress (erythrocyte GSH/GSSG and urinary 8-isoprostane), inflammation (CRP, IL-6), endothelial dysfunction (plasma homocysteine, urinary 8-hydroxy-2-deoxy-guanosine) and coagulation/fibrinolysis (C5a, D-Dimer) were determined in prediabetes and control subjects. While no difference was found in the 8-isoprostane levels between the two groups, the erythrocyte GSH/GSSG ratio was significantly reduced in the prediabetes group compared to control, indicating increased oxidative stress in the prediabetic state. Both urinary 8-OHdG and surprisingly also plasma homocysteine were significantly elevated in the prediabetes group, indicating endothelial dysfunction. The inflammation markers were slightly elevated in the prediabetic subjects and the same trend was found for the coagulation/fibrinolysis markers C5a and D-Dimer. These results were however not significant. The small elevation of blood glucose levels in the prediabetic state may have a detectable influence on endothelial function as indicated by changes to 8-OHdG, indicating an increased DNA-damage and homocysteine release from endothelial cells. Increased oxidative stress as indicated by the reduced GSH/GSSG ratio is likely to be the link between the moderate hyperglycaemia in prediabetes and pathological changes in endothelial function, which in the long-term may promote atherogenesis and result in the development of cardiovascular disease. Early detection of prediabetes is essential to avoid diabetes development and the associated complications like cardiovascular disease. The GSH/GSSG ratio and biomarkers like urinary 8-OHdG and plasma homocysteine offer a possible tool for the assessment of prediabetes in

  11. Endothelial lipase is a major determinant of HDL level

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Tatsuro; Choi, Sungshin; Kundu, Ramendra K.; Hirata, Ken-Ichi; Rubin, Edward M.; Cooper, Allen D.; Quertermous, Thomas

    2003-01-30

    For the past three decades, epidemiologic studies have consistently demonstrated an inverse relationship between plasma HDL cholesterol (HDL-C) concentrations and coronary heart disease (CHD). Population-based studies have provided compelling evidence that low HDL-C levels are a risk factor for CHD, and several clinical interventions that increased plasma levels of HDL-C were associated with a reduction in CHD risk. These findings have stimulated extensive investigation into the determinants of plasma HDL-C levels. Turnover studies using radiolabeled apolipoprotein A-I, the major protein component of HDL, suggest that plasma HDL-C concentrations are highly correlated with the rate of clearance of apolipoprotein AI. However, the metabolic mechanisms by which HDL are catabolized have not been fully defined. Previous studies in humans with genetic deficiency of cholesteryl ester transfer protein, and in mice lacking the scavenger receptor BI (SR-BI), have demonstrated that these proteins participate in the removal of cholesterol from HDL, while observations in individuals with mutations in hepatic lipase indicate that this enzyme hydrolyzes HDL triglycerides. In this issue of the JCI, reports from laboratories of Tom Quertermous and Dan Rader now indicate that endothelial lipase (LIPG), a newly identified member of the lipase family, catalyzes the hydrolysis of HDL phospholipids and facilitates the clearance of HDL from the circulation. Endothelial lipase was initially cloned by both of these laboratories using entirely different strategies. Quertermous and his colleagues identified endothelial lipase as a transcript that was upregulated in cultured human umbilical vein endothelial cells undergoing tube formation, whereas the Rader group cloned endothelial lipase as a transcript that was upregulated in the human macrophage-like cell line THP-1 exposed to oxidized LDL. Database searches revealed that endothelial lipase shows strong sequence similarity to lipoprotein

  12. Platelet-derived stromal cell-derived factor-1 is required for the transformation of circulating monocytes into multipotential cells.

    Directory of Open Access Journals (Sweden)

    Noriyuki Seta

    Full Text Available BACKGROUND: We previously described a primitive cell population derived from human circulating CD14(+ monocytes, named monocyte-derived multipotential cells (MOMCs, which are capable of differentiating into mesenchymal and endothelial lineages. To generate MOMCs in vitro, monocytes are required to bind to fibronectin and be exposed to soluble factor(s derived from circulating CD14(- cells. The present study was conducted to identify factors that induce MOMC differentiation. METHODS: We cultured CD14(+ monocytes on fibronectin in the presence or absence of platelets, CD14(- peripheral blood mononuclear cells, platelet-conditioned medium, or candidate MOMC differentiation factors. The transformation of monocytes into MOMCs was assessed by the presence of spindle-shaped adherent cells, CD34 expression, and the potential to differentiate in vitro into mesenchymal and endothelial lineages. RESULTS: The presence of platelets or platelet-conditioned medium was required to generate MOMCs from monocytes. A screening of candidate platelet-derived soluble factors identified stromal cell-derived factor (SDF-1 as a requirement for generating MOMCs. Blocking an interaction between SDF-1 and its receptor CXCR4 inhibited MOMC generation, further confirming SDF-1's critical role in this process. Finally, circulating MOMC precursors were found to reside in the CD14(+CXCR4(high cell population. CONCLUSION: The interaction of SDF-1 with CXCR4 is essential for the transformation of circulating monocytes into MOMCs.

  13. Autoantigens targeted in scleroderma patients with vascular disease are enriched in endothelial lineage cells

    Science.gov (United States)

    McMahan, Zsuzsanna H.; Cottrell, Tricia R.; Wigley, Fredrick M.; Antiochos, Brendan; Zambidis, Elias T.; Park, Tea Soon; Halushka, Marc K.; Gutierrez-Alamillo, Laura; Cimbro, Raffaello; Rosen, Antony; Casciola-Rosen, Livia

    2016-01-01

    Objective Scleroderma patients with autoantibodies to centromere proteins (CENPs) and/or interferon-inducible protein 16 (IFI16) are at increased risk of severe vascular complications. We set out to define whether these autoantigens are enriched in cells of the vasculature. Methods Successive stages of embryoid bodies (EBs) as well as vascular progenitors were used to evaluate the expression of scleroderma autoantigens IFI16 and CENP by immunoblotting. CD31 was included to mark early blood vessels. IFI16 and CD31 expression were defined in skin paraffin sections from scleroderma patients and from healthy controls. IFI16 expression was determined by flow cytometry in circulating endothelial cells (CECs) and circulating progenitor cells (CPCs). Results Expression of CENP-A, IFI16 and CD31 was enriched in EBs at days 10 and 12 of differentiation, and particularly in cultures enriched in vascular progenitors (IFI16, CD31, CENPs A and-B). This pattern was distinct from that of comparator autoantigens. Immunohistochemical staining of skin paraffin sections showed enrichment of IFI16 in CD31-positive vascular endothelial cells in biopsies from scleroderma patients and normal controls. Flow cytometry analysis revealed IFI16 expression in CPCs, but minimal expression in CECs. Conclusion Expression of scleroderma autoantigens IFI16 and CENPs, which are associated with severe vascular disease, is increased in vascular progenitors and mature endothelial cells. High level, lineage-enriched expression of autoantigens may explain the striking association between clinical phenotypes and the immune targeting of specific autoantigens. PMID:27159521

  14. Cathepsin L is required for endothelial progenitor cell-induced neovascularization

    Energy Technology Data Exchange (ETDEWEB)

    Urbich, Carmen; Heeschen, Christopher; Aicher, Alexandra; Sasaki, Ken-ichiro; Bruhl, Thomas; Hofmann, Wolf K.; Peters, Christoph; Reinheckel, Thomas; Pennacchio, Len A.; Abolmaali, Nasreddin D.; Chavakis, Emmanouil; Zeiher, Andreas M.; Dimmeler, Stefanie

    2004-01-15

    Infusion of endothelial progenitor cells (EPCs), but not of mature endothelial cells (ECs), promotes neovascularization after ischemia. We performed a gene expression profiling of EPCs and ECs to identify genes, which might be important for the neovascularization capacity of EPCs. Intriguingly, the protease cathepsin L (CathL) was highly expressed in EPCs as opposed to ECs and is essential for matrix degradation and invasion by EPCs in vitro. CathL deficient mice showed impaired functional recovery after hind limb ischemia supporting the concept for an important role of CathL in postnatal neovascularization. Infused CathL deficient progenitor cells failed to home to sites of ischemia and to augment neovascularization. In contrast, over expression of CathL in mature ECs significantly enhanced their invasive activity and induced their neovascularization capacity in vivo. Taken together, CathL plays a crucial role for the integration of circulating EPCs into the ischemic tissue and is required for neovascularization mediated by EPCs.

  15. Femtosecond laser cutting of endothelial grafts: comparison of endothelial and epithelial applanation.

    Science.gov (United States)

    Bernard, Aurélien; He, Zhiguo; Gauthier, Anne Sophie; Trone, Marie Caroline; Baubeau, Emmanuel; Forest, Fabien; Dumollard, Jean Marc; Peocʼh, Michel; Thuret, Gilles; Gain, Philippe

    2015-02-01

    Stromal surface quality of endothelial lamellae cut for endothelial keratoplasty with a femtosecond laser (FSL) with epithelial applanation remains disappointing. Applanation of the endothelial side of the cornea, mounted inverted on an artificial chamber, has therefore been proposed to improve cut quality. We compared lamellar quality after FSL cutting using epithelial versus endothelial applanation. Lamellae were cut with an FSL from organ-cultured corneas. After randomization, 7 were cut with epithelial applanation and 7 with endothelial applanation. Lamellae of 50-, 75-, and 100-μm thickness were targeted. Thickness was measured by optical coherence tomography before and immediately after cutting. Viable endothelial cell density was quantified immediately after cutting using triple labeling with Hoechst/ethidium/calcein-AM coupled with image analysis with ImageJ. The stromal surface was evaluated by 9 masked observers using semiquantitative scoring of scanning electronic microscopy images. Histology of 2 samples was also analyzed before lamellar detachment. Precision (difference in target/actual thickness) and thickness regularity [coefficient of variation (CV) of 10 measurements] were significantly better with endothelial applanation (precision: 18 μm; range, 10-30; CV: 11%; range, 8-12) than with epithelial applanation (precision: 84 μm; range, 54-107; P = 0.002; CV: 24%; range, 13-47; P = 0.001). Endothelial applanation provided thinner lamellae. However, viable endothelial cell density was significantly lower after endothelial applanation (1183 cells/mm2; range, 787-1725 versus 1688 cells/mm2; range, 1288-2025; P = 0.018). FSL cutting of endothelial lamellae using endothelial applanation provides thinner more regular grafts with more predictable thickness than with conventional epithelial applanation but strongly reduces the pool of viable endothelial cells.

  16. Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green.

    Science.gov (United States)

    Namikawa, Tsutomu; Sato, Takayuki; Hanazaki, Kazuhiro

    2015-12-01

    Near-infrared (NIR) fluorescence imaging has better tissue penetration, allowing for the effective rejection of excitation light and detection deep inside organs. Indocyanine green (ICG) generates NIR fluorescence after illumination by an NIR ray, enabling real-time intraoperative visualization of superficial lymphatic channels and vessels transcutaneously. The HyperEye Medical System (HEMS) can simultaneously detect NIR rays under room light to provide color imaging, which enables visualization under bright light. Thus, NIR fluorescence imaging using ICG can provide for excellent diagnostic accuracy in detecting sentinel lymph nodes in cancer and microvascular circulation in various ischemic diseases, to assist us with intraoperative decision making. Including HEMS in this system could further improve the sentinel lymph node mapping and intraoperative identification of blood supply in reconstructive organs and ischemic diseases, making it more attractive than conventional imaging. Moreover, the development of new laparoscopic imaging systems equipped with NIR will allow fluorescence-guided surgery in a minimally invasive setting. Future directions, including the conjugation of NIR fluorophores to target specific cancer markers might be realistic technology with diagnostic and therapeutic benefits.

  17. Effect of delayed onset prostacyclin on markers of endothelial function and damage after subarachnoid hemorrhage

    DEFF Research Database (Denmark)

    Gybel-Brask, Mikkel; Rasmussen, Rune; Stensballe, Jakob

    2017-01-01

    Background: Subarachnoid hemorrhage (SAH) is a neurological emergency. Delayed ischemic neurological deficit is one of the main causes of poor outcome after SAH and is probably caused, at least in part, by cerebral vasospasm. The pathophysiology of this is multifaceted, but endothelial damage...

  18. Reduced saphenous vein prostacyclin production in the absence of endothelial detachment

    International Nuclear Information System (INIS)

    De Caterina, R.; Cruz-Bracho, M.R.; Alonso, D.R.; Subramanian, V.A.; Weksler, B.B.

    1988-01-01

    High-potassium cardioplegic solutions have been suspected of inducing vascular damage at coronary bypass surgery. In this study the authors compared prostacyclin production and endothelial morphology in saphenous vein segments perfused either with cardioplegic solutions with a potassium concentration of 20, 40 and 80 mEq/1, or with a control buffer (1) at 4 grade centigrades for 30 min; (2) at 37 grade centigrades for 15 min; (3) at 37 grade centigrades for 15 min after the addition of arachidonic acid. Prostacyclin production (6-keto-PGF 1α , pg/ml cm 2 endothelial surface area) in control treated segments was a function of temperature and of substrute availability, being (mean±SEM) 62.4±8.2 in setting (1); 309±34.7 in setting (2); and 1515.4±205.2 in setting (3). Cardioplegic solution containing 20 mEq/1 potassium did not alter prostacyclin production in any of these settings, whereas exposure of tissue to the 40 mEq/1 potassium solution decreased prostacyclin production in setting (21) and (2), and the solution containing 80 mEq/1 potassium decreased prostacyclin production in all three experimental conditions. Absence of endothelial detachment in all experimental settings was documented by immunoperoxidase staining of vascular cross-sections for the specific endothelial marker Factor VIII - related antigen and staining of ''en face'' preparations of endothelial surface with silver nitrate and silver nitrate-hematoxylin. These data indicate that cardioplegic solutions with a potassium concentration equal or greater than 40 mEq/1 can induce morphologically silent endothelial damage manifested by decreased prostacyclin production. The use of these solutions may predispose to possible thrombogenicity after coronary bypass surgery

  19. CMTM3 (CKLF-Like Marvel Transmembrane Domain 3) Mediates Angiogenesis by Regulating Cell Surface Availability of VE-Cadherin in Endothelial Adherens Junctions.

    Science.gov (United States)

    Chrifi, Ihsan; Louzao-Martinez, Laura; Brandt, Maarten; van Dijk, Christian G M; Burgisser, Petra; Zhu, Changbin; Kros, Johan M; Duncker, Dirk J; Cheng, Caroline

    2017-06-01

    Decrease in VE-cadherin adherens junctions reduces vascular stability, whereas disruption of adherens junctions is a requirement for neovessel sprouting during angiogenesis. Endocytosis plays a key role in regulating junctional strength by altering bioavailability of cell surface proteins, including VE-cadherin. Identification of new mediators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we assessed the function of CMTM3 (CKLF-like MARVEL transmembrane domain 3), which we have previously identified as highly expressed in Flk1 + endothelial progenitor cells during embryonic development. Using a 3-dimensional coculture of human umbilical vein endothelial cells-GFP (green fluorescent protein) and pericytes-RFP (red fluorescent protein), we demonstrated that siRNA-mediated CMTM3 silencing in human umbilical vein endothelial cells impairs angiogenesis. In vivo CMTM3 inhibition by morpholino injection in developing zebrafish larvae confirmed that CMTM3 expression is required for vascular sprouting. CMTM3 knockdown in human umbilical vein endothelial cells does not affect proliferation or migration. Intracellular staining demonstrated that CMTM3 colocalizes with early endosome markers EEA1 (early endosome marker 1) and Clathrin + vesicles and with cytosolic VE-cadherin in human umbilical vein endothelial cells. Adenovirus-mediated CMTM3 overexpression enhances endothelial endocytosis, shown by an increase in Clathrin + , EEA1 + , Rab11 + , Rab5 + , and Rab7 + vesicles. CMTM3 overexpression enhances, whereas CMTM3 knockdown decreases internalization of cell surface VE-cadherin in vitro. CMTM3 promotes loss of endothelial barrier function in thrombin-induced responses, shown by transendothelial electric resistance measurements in vitro. In this study, we have identified a new regulatory function for CMTM3 in angiogenesis. CMTM3 is involved in VE-cadherin turnover and is a regulator of the cell surface pool of VE-cadherin. Therefore, CMTM

  20. PMab-48 Recognizes Dog Podoplanin of Lymphatic Endothelial Cells.

    Science.gov (United States)

    Yamada, Shinji; Itai, Shunsuke; Kaneko, Mika K; Kato, Yukinari

    2018-02-01

    Podoplanin, a type I transmembrane glycoprotein, is a specific marker of lymphatic endothelial cells (LECs). Recently, we developed PMab-38, an anti-dog podoplanin monoclonal antibody that did not stain canine LECs. In this study, we newly developed PMab-48 against dog podoplanin. Immunohistochemical analysis revealed that PMab-48 reacts not only with canine squamous cell carcinoma cells but also with LECs of the normal colon. Therefore, PMab-48 may be useful in investigating the function of dog podoplanin in LECs.

  1. Home energy management (HEM) database: A list with coded attributes of 308 devices commercially available in the US.

    Science.gov (United States)

    Pritoni, Marco; Ford, Rebecca; Karlin, Beth; Sanguinetti, Angela

    2018-02-01

    Policymakers worldwide are currently discussing whether to include home energy management (HEM) products in their portfolio of technologies to reduce carbon emissions and improve grid reliability. However, very little data is available about these products. Here we present the results of an extensive review including 308 HEM products available on the US market in 2015-2016. We gathered these data from publicly available sources such as vendor websites, online marketplaces and other vendor documents. A coding guide was developed iteratively during the data collection and utilized to classify the devices. Each product was coded based on 96 distinct attributes, grouped into 11 categories: Identifying information, Product components, Hardware, Communication, Software, Information - feedback, Information - feedforward, Control, Utility interaction, Additional benefits and Usability. The codes describe product features and functionalities, user interaction and interoperability with other devices. A mix of binary attributes and more descriptive codes allow to sort and group data without losing important qualitative information. The information is stored in a large spreadsheet included with this article, along with an explanatory coding guide. This dataset is analyzed and described in a research article entitled "Categories and functionality of smart home technology for energy management" (Ford et al., 2017) [1].

  2. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration.

    Directory of Open Access Journals (Sweden)

    Carlos Salomon

    Full Text Available Studies completed to date provide persuasive evidence that placental cell-derived exosomes play a significant role in intercellular communication pathways that potentially contribute to placentation and development of materno-fetal vascular circulation. The aim of this study was to establish the gestational-age release profile and bioactivity of placental cell-derived exosome in maternal plasma. Plasma samples (n = 20 per pregnant group were obtained from non-pregnant and pregnant women in the first (FT, 6-12 weeks, second (ST, 22-24 weeks and third (TT, 32-38 weeks trimester. The number of exosomes and placental exosome contribution were determined by quantifying immunoreactive exosomal CD63 and placenta-specific marker (PLAP, respectively. The effect of exosomes isolated from FT, ST and TT on endothelial cell migration were established using a real-time, live-cell imaging system (Incucyte. Exosome plasma concentration was more than 50-fold greater in pregnant women than in non-pregnant women (p<0.001. During normal healthy pregnancy, the number of exosomes present in maternal plasma increased significantly with gestational age by more that two-fold (p<0.001. Exosomes isolated from FT, ST and TT increased endothelial cell migration by 1.9±0.1, 1.6±0.2 and 1.3±0.1-fold, respectively compared to the control. Pregnancy is associated with a dramatic increase in the number of exosomes present in plasma and maternal plasma exosomes are bioactive. While the role of placental cell-derived exosome in regulating maternal and/or fetal vascular responses remains to be elucidated, changes in exosome profile may be of clinical utility in the diagnosis of placental dysfunction.

  3. Generation of primary cultures of bovine brain endothelial cells and setup of cocultures with rat astrocytes

    DEFF Research Database (Denmark)

    Helms, Hans C; Brodin, Birger

    2014-01-01

    -brain barrier. The present protocol describes the setup of an in vitro coculture model based on primary cultures of endothelial cells from bovine brain microvessels and primary cultures of rat astrocytes. The model displays a high electrical tightness and expresses blood-brain barrier marker proteins....

  4. Endothelial Nitric Oxide Pathways in the Pathophysiology of Dengue: A Prospective Observational Study.

    Science.gov (United States)

    Yacoub, Sophie; Lam, Phung Khanh; Huynh, Trieu Trung; Nguyen Ho, Hong Hanh; Dong Thi, Hoai Tam; Van, Nguyen Thu; Lien, Le Thi; Ha, Quyen Nguyen Than; Le, Duyen Huynh Thi; Mongkolspaya, Juthathip; Culshaw, Abigail; Yeo, Tsin Wen; Wertheim, Heiman; Simmons, Cameron; Screaton, Gavin; Wills, Bridget

    2017-10-16

    Dengue can cause increased vascular permeability that may lead to hypovolemic shock. Endothelial dysfunction may underlie this; however, the association of endothelial nitric oxide (NO) pathways with disease severity is unknown. We performed a prospective observational study in 2 Vietnamese hospitals, assessing patients presenting early (dengue. The reactive hyperemic index (RHI), which measures endothelium-dependent vasodilation and is a surrogate marker of endothelial function and NO bioavailability, was evaluated using peripheral artery tonometry (EndoPAT), and plasma levels of l-arginine, arginase-1, and asymmetric dimethylarginine were measured at serial time-points. The main outcome of interest was plasma leakage severity. Three hundred fourteen patients were enrolled; median age of the participants was 21(interquartile range, 13-30) years. No difference was found in the endothelial parameters between dengue and other febrile illness. Considering dengue patients, the RHI was significantly lower for patients with severe plasma leakage compared to those with no leakage (1.46 vs 2.00; P dengue illness and correlates with hypoargininemia and high arginase-1 levels. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  5. Effects of a 12-week alpine skiing intervention on endothelial progenitor cells, peripheral arterial tone and endothelial biomarkers in the elderly

    DEFF Research Database (Denmark)

    Niederseer, David; Steidle-Kloc, Eva; Mayr, Matthias

    2016-01-01

    : +0.18±0.76) and CG (-0.39±0.85; p=0.045), as did homocysteine (IG: -1.3±1.3μmol/l; CG: -0.4±1.4μmol/l; p=0.037) while other endothelial biomarkers remained essentially unchanged. CONCLUSIONS: This study shows that skiing induces several beneficial effects on markers of atherogenesis including EPCs......, peripheral arterial tone and homocysteine. Our findings suggest that recreational alpine skiing may serve as a further mode of preventive exercise training, which might result in improved compliance with current recommendations....

  6. Mel-18, a mammalian Polycomb gene, regulates angiogenic gene expression of endothelial cells.

    Science.gov (United States)

    Jung, Ji-Hye; Choi, Hyun-Jung; Maeng, Yong-Sun; Choi, Jung-Yeon; Kim, Minhyung; Kwon, Ja-Young; Park, Yong-Won; Kim, Young-Myeong; Hwang, Daehee; Kwon, Young-Guen

    2010-10-01

    Mel-18 is a mammalian homolog of Polycomb group (PcG) genes. Microarray analysis revealed that Mel-18 expression was induced during endothelial progenitor cell (EPC) differentiation and correlates with the expression of EC-specific protein markers. Overexpression of Mel-18 promoted EPC differentiation and angiogenic activity of ECs. Accordingly, silencing Mel-18 inhibited EC migration and tube formation in vitro. Gene expression profiling showed that Mel-18 regulates angiogenic genes including kinase insert domain receptor (KDR), claudin 5, and angiopoietin-like 2. Our findings demonstrate, for the first time, that Mel-18 plays a significant role in the angiogenic function of ECs by regulating endothelial gene expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Differential Gene Expression of Primary Cultured Lymphatic and Blood Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Gregory M. Nelson

    2007-12-01

    Full Text Available Blood vascular endothelial cells (BECs and the developmentally related lymphatic endothelial cells (LECs create complementary, yet distinct vascular networks. Each endothelial cell type interacts with flowing fluid and circulating cells, yet each vascular system has evolved specialized gene expression programs and thus both cell types display different phenotypes. BECs and LECs express distinct genes that are unique to their specific vascular microenvironment. Tumors also take advantage of the molecules that are expressed in these vascular systems to enhance their metastatic potential. We completed transcriptome analyses on primary cultured LECs and BECs, where each comparative set was isolated from the same individual. Differences were resolved in the expression of several major categories, such as cell adhesion molecules (CAMs, cytokines, cytokine receptors. We have identified new molecules that are associated with BECs (e.g., claudin-9, CXCL11, neurexin-1, neurexin-2, the neuronal growth factor regulator-1 and LECs (e.g., claudin-7, CD58, hyaluronan and proteoglycan link protein 1 (HAPLN1, the poliovirus receptor-related 3 molecule that may lead to novel therapeutic treatments for diseases of lymphatic or blood vessels, including metastasis of cancer to lymph nodes or distant organs.

  8. Potential Biomarkers of Insulin Resistance and Atherosclerosis in Type 2 Diabetes Mellitus Patients with Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Sharifah Intan Qhadijah Syed Ikmal

    2013-01-01

    Full Text Available Type 2 diabetes mellitus patients with coronary artery disease have become a major public health concern. The occurrence of insulin resistance accompanied with endothelial dysfunction worsens the state of atherosclerosis in type 2 diabetes mellitus patients. The combination of insulin resistance and endothelial dysfunction leads to coronary artery disease and ischemic heart disease complications. A recognized biological marker, high-sensitivity C-reactive protein, has been used widely to assess the progression of atherosclerosis and inflammation. Along with coronary arterial damage and inflammatory processes, high-sensitivity C-reactive protein is considered as an essential atherosclerosis marker in patients with cardiovascular disease, but not as an insulin resistance marker in type 2 diabetes mellitus patients. A new biological marker that can act as a reliable indicator of both the exact state of insulin resistance and atherosclerosis is required to facilitate optimal health management of diabetic patients. Malfunctioning of insulin mechanism and endothelial dysfunction leads to innate immune activation and released several biological markers into circulation. This review examines potential biological markers, YKL-40, alpha-hydroxybutyrate, soluble CD36, leptin, resistin, interleukin-18, retinol binding protein-4, and chemerin, as they may play significant roles in insulin resistance and atherosclerosis in type 2 diabetes mellitus patients with coronary artery disease.

  9. Phosphatidylserine is a marker of tumor vasculature and a potential target for cancer imaging and therapy

    International Nuclear Information System (INIS)

    Ran, Sophia; Thorpe, Philip E.

    2002-01-01

    Purpose: (1) To determine whether exposure of phosphatidylserine (PS) occurs on vascular endothelium in solid tumors in mice. (2) To determine whether PS exposure can be induced on viable endothelial cells in tissue culture by conditions present in the tumor microenvironment. Methods and Materials: Externalized PS in vivo was detected by injecting mice with a monoclonal anti-PS antibody and examining frozen sections of tumors and normal tissues for anti-PS antibody bound to vascular endothelium. Apoptotic cells were identified by anti-active caspase-3 antibody or by TUNEL assay. PS exposure on cultured endothelial cells was determined by 125 I-annexin V binding. Results: Anti-PS antibody bound specifically to vascular endothelium in six tumor models. The percentage of PS-positive vessels ranged from 4% to 40% in different tumor types. Vascular endothelium in normal organs was unstained. Very few tumor vessels expressed apoptotic markers. Hypoxia/reoxygenation, acidity, inflammatory cytokines, thrombin, or hydrogen peroxide induced PS exposure on cultured endothelial cells without causing loss of viability. Conclusions: Vascular endothelial cells in tumors, but not in normal tissues, externalize PS. PS exposure might be induced by tumor-associated oxidative stress and activating cytokines. PS is an abundant and accessible marker of tumor vasculature and could be used for tumor imaging and therapy

  10. Revisited microanatomy of the corneal endothelial periphery: new evidence for continuous centripetal migration of endothelial cells in humans.

    Science.gov (United States)

    He, Zhiguo; Campolmi, Nelly; Gain, Philippe; Ha Thi, Binh Minh; Dumollard, Jean-Marc; Duband, Sébastien; Peoc'h, Michel; Piselli, Simone; Garraud, Olivier; Thuret, Gilles

    2012-11-01

    The control of corneal transparency depends on the integrity of its endothelial monolayer, which is considered nonregenerative in adult humans. In pathological situations, endothelial cell (EC) loss, not offset by mitosis, can lead to irreversible corneal edema and blindness. However, the hypothesis of a slow, clinically insufficient regeneration starting from the corneal periphery remains debatable. The authors have re-evaluated the microanatomy of the endothelium in order to identify structures likely to support this homeostasis model. Whole endothelia of 88 human corneas (not stored, and stored in organ culture) with mean donor age of 80 ± 12 years were analyzed using an original flat-mounting technique. In 61% of corneas, cells located at the extreme periphery (last 200 μm of the endothelium) were organized in small clusters with two to three cell layers around Hassall-Henle bodies. In 68% of corneas, peripheral ECs formed centripetal rows 830 ± 295 μm long, with Descemet membrane furrows visible by scanning electron microscopy. EC density was significantly higher in zones with cell rows. When immunostained, ECs in the extreme periphery exhibited lesser differentiation (ZO-1, Actin, Na/K ATPase, CoxIV) than ECs in the center of the cornea but preferentially expressed stem cell markers (Nestin, Telomerase, and occasionally breast cancer resistance protein) and, in rare cases, the proliferation marker Ki67. Stored corneas had fewer cell clusters but more Ki67-positive ECs. We identified a novel anatomic organization in the periphery of the human corneal endothelium, suggesting a continuous slow centripetal migration, throughout life, of ECs from specific niches. Copyright © 2012 AlphaMed Press.

  11. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity.

    Science.gov (United States)

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J; Miranda, Melroy X; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F; Verrey, François; Matter, Christian M

    2013-12-01

    Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.

  12. Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions.

    Science.gov (United States)

    Raasch, Martin; Rennert, Knut; Jahn, Tobias; Peters, Sven; Henkel, Thomas; Huber, Otmar; Schulz, Ingo; Becker, Holger; Lorkowski, Stefan; Funke, Harald; Mosig, Alexander

    2015-03-02

    Hemodynamic forces generated by the blood flow are of central importance for the function of endothelial cells (ECs), which form a biologically active cellular monolayer in blood vessels and serve as a selective barrier for macromolecular permeability. Mechanical stimulation of the endothelial monolayer induces morphological remodeling in its cytoskeleton. For in vitro studies on EC biology culture devices are desirable that simulate conditions of flow in blood vessels and allow flow-based adhesion/permeability assays under optimal perfusion conditions. With this aim we designed a biochip comprising a perfusable membrane that serves as cell culture platform multi-organ-tissue-flow (MOTiF biochip). This biochip allows an effective supply with nutrition medium, discharge of catabolic cell metabolites and defined application of shear stress to ECs under laminar flow conditions. To characterize EC layers cultured in the MOTiF biochip we investigated cell viability, expression of EC marker proteins and cell adhesion molecules of ECs dynamically cultured under low and high shear stress, and compared them with an endothelial culture in established two-dimensionally perfused flow chambers and under static conditions. We show that ECs cultured in the MOTiF biochip form a tight EC monolayer with increased cellular density, enhanced cell layer thickness, presumably as the result of a rapid and effective adaption to shear stress by remodeling of the cytoskeleton. Moreover, endothelial layers in the MOTiF biochip express higher amounts of EC marker proteins von-Willebrand-factor and PECAM-1. EC layers were highly responsive to stimulation with TNFα as detected at the level of ICAM-1, VCAM-1 and E-selectin expression and modulation of endothelial permeability in response to TNFα/IFNγ treatment under flow conditions. Compared to static and two-dimensionally perfused cell culture condition we consider MOTiF biochips as a valuable tool for studying EC biology in vitro under

  13. Loss of 51chromium, lactate dehydrogenase, and 111indium as indicators of endothelial cell injury

    International Nuclear Information System (INIS)

    Chopra, J.; Joist, J.H.; Webster, R.O.

    1987-01-01

    Injury to endothelial cells appears to be an important initial event in the pathogenesis of many diseases such as acute lung injury, venous and arterial thromboembolism, and atherosclerosis. Different methods for detecting damage to cultured endothelial cells have been described. However, their relative sensitivity as markers of endothelial cell damage has not been adequately determined. We compared the loss of 51 Chromium ( 51 Cr), the cytoplasmic enzyme lactate dehydrogenase (LDH), and 111 Indium ( 111 In) from endothelial cells upon exposure to several injurious agents. Cultured bovine pulmonary artery endothelial cells in confluent monolayers were labeled with 51 Cr or 111 Inoxine and exposed to increasing concentrations of the nonionic detergent, Triton X-100 (0.2 to 1%), hydrogen peroxide (1 to 500 microM), or neutrophils stimulated with phorbol myristate acetate. With all forms of injury, loss of 51 Cr occurred earlier and to a greater extent than LDH loss which in turn was greater than loss of 111 In. Substantial loss of 51 Cr was observed in the absence of appreciable ultrastructural damage to endothelial cell external membranes. The findings may reflect the relative ease with which small molecules such as adenine nucleotides ( 51 Cr-labeled) escape whereas larger molecules such as LDH and proteins binding 111 In are retained intracellularly. Thus, 51 Cr loss appears to be a more sensitive indicator of sublytic endothelial cell injury than either 111 In or LDH release

  14. Hemşirelerin problem çözme becerileri ve atılganlıkları arasındaki ilişkinin incelenmesi

    OpenAIRE

    Polat, Hatice

    2014-01-01

    Araştırma, hemşirelerin problem çözme becerileri ile atılganlıkları arasındaki ilişkinin incelenmesi amacıyla analitik- kesitsel olarak planlanmıştır. Araştırmanın evrenini 2011 yılı itibariyle ve araştırma takvimi süresince Muğla ili Muğla Üniversitesi Eğitim ve Araştırma Hastanesi'nde çalışan 300 hemşire oluşturmaktadır. Araştırma verileri, tanımlayıcı özellikleri içeren Kişisel Bilgi Formu, Rathus Atılganlık Envanteri ve Gözden Geçirilmiş Sosyal Sorun Çözme Envanteri (GGSSÇE) ile toplanmış...

  15. Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs).

    Science.gov (United States)

    DeStefano, Jackson G; Xu, Zinnia S; Williams, Ashley J; Yimam, Nahom; Searson, Peter C

    2017-08-04

    The endothelial cells that form the lumen of capillaries and microvessels are an important component of the blood-brain barrier. Cell phenotype is regulated by transducing a range of biomechanical and biochemical signals in the local microenvironment. Here we report on the role of shear stress in modulating the morphology, motility, proliferation, apoptosis, and protein and gene expression, of confluent monolayers of human brain microvascular endothelial cells derived from induced pluripotent stem cells. To assess the response of derived human brain microvascular endothelial cells (dhBMECs) to shear stress, confluent monolayers were formed in a microfluidic device. Monolayers were subjected to a shear stress of 4 or 12 dyne cm -2 for 40 h. Static conditions were used as the control. Live cell imaging was used to assess cell morphology, cell speed, persistence, and the rates of proliferation and apoptosis as a function of time. In addition, immunofluorescence imaging and protein and gene expression analysis of key markers of the blood-brain barrier were performed. Human brain microvascular endothelial cells exhibit a unique phenotype in response to shear stress compared to static conditions: (1) they do not elongate and align, (2) the rates of proliferation and apoptosis decrease significantly, (3) the mean displacement of individual cells within the monolayer over time is significantly decreased, (4) there is no cytoskeletal reorganization or formation of stress fibers within the cell, and (5) there is no change in expression levels of key blood-brain barrier markers. The characteristic response of dhBMECs to shear stress is significantly different from human and animal-derived endothelial cells from other tissues, suggesting that this unique phenotype that may be important in maintenance of the blood-brain barrier. The implications of this work are that: (1) in confluent monolayers of dhBMECs, tight junctions are formed under static conditions, (2) the formation

  16. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting.

    Science.gov (United States)

    Anselmo, Aaron C; Zhang, Mengwen; Kumar, Sunny; Vogus, Douglas R; Menegatti, Stefano; Helgeson, Matthew E; Mitragotri, Samir

    2015-03-24

    The impact of physical and chemical modifications of nanoparticles on their biological function has been systemically investigated and exploited to improve their circulation and targeting. However, the impact of nanoparticles' flexibility (i.e., elastic modulus) on their function has been explored to a far lesser extent, and the potential benefits of tuning nanoparticle elasticity are not clear. Here, we describe a method to synthesize polyethylene glycol (PEG)-based hydrogel nanoparticles of uniform size (200 nm) with elastic moduli ranging from 0.255 to 3000 kPa. These particles are used to investigate the role of particle elasticity on key functions including blood circulation time, biodistribution, antibody-mediated targeting, endocytosis, and phagocytosis. Our results demonstrate that softer nanoparticles (10 kPa) offer enhanced circulation and subsequently enhanced targeting compared to harder nanoparticles (3000 kPa) in vivo. Furthermore, in vitro experiments show that softer nanoparticles exhibit significantly reduced cellular uptake in immune cells (J774 macrophages), endothelial cells (bEnd.3), and cancer cells (4T1). Tuning nanoparticle elasticity potentially offers a method to improve the biological fate of nanoparticles by offering enhanced circulation, reduced immune system uptake, and improved targeting.

  17. Low intensity shear stress increases endothelial ELR+ CXC chemokine production via a focal adhesion kinase-p38{beta} MAPK-NF-{kappa}B pathway.

    Science.gov (United States)

    Shaik, Sadiq S; Soltau, Thomas D; Chaturvedi, Gaurav; Totapally, Balagangadhar; Hagood, James S; Andrews, William W; Athar, Mohammad; Voitenok, Nikolai N; Killingsworth, Cheryl R; Patel, Rakesh P; Fallon, Michael B; Maheshwari, Akhil

    2009-02-27

    CXC chemokines with a glutamate-leucine-arginine (ELR) tripeptide motif (ELR(+) CXC chemokines) play an important role in leukocyte trafficking into the tissues. For reasons that are not well elucidated, circulating leukocytes are recruited into the tissues mainly in small vessels such as capillaries and venules. Because ELR(+) CXC chemokines are important mediators of endothelial-leukocyte interaction, we compared chemokine expression by microvascular and aortic endothelium to investigate whether differences in chemokine expression by various endothelial types could, at least partially, explain the microvascular localization of endothelial-leukocyte interaction. Both in vitro and in vivo models indicate that ELR(+) CXC chemokine expression is higher in microvascular endothelium than in aortic endothelial cells. These differences can be explained on the basis of the preferential activation of endothelial chemokine production by low intensity shear stress. Low shear activated endothelial ELR(+) CXC chemokine production via cell surface heparan sulfates, beta(3)-integrins, focal adhesion kinase, the mitogen-activated protein kinase p38beta, mitogen- and stress-associated protein kinase-1, and the transcription factor.

  18. Production of soluble Neprilysin by endothelial cells

    International Nuclear Information System (INIS)

    Kuruppu, Sanjaya; Rajapakse, Niwanthi W.; Minond, Dmitriy; Smith, A. Ian

    2014-01-01

    Highlights: • A soluble full-length form of Neprilysin exists in media of endothelial cells. • Exosomal release is the key mechanism for the production of soluble Neprilysin. • Inhibition of ADAM-17 by specific inhibitors reduce Neprilysin release. • Exosome mediated release of Neprilysin is dependent on ADAM-17 activity. - Abstract: A non-membrane bound form of Neprilysin (NEP) with catalytic activity has the potential to cleave substrates throughout the circulation, thus leading to systemic effects of NEP. We used the endothelial cell line Ea.hy926 to identify the possible role of exosomes and A Disintegrin and Metalloprotease 17 (ADAM-17) in the production of non-membrane bound NEP. Using a bradykinin based quenched fluorescent substrate (40 μM) assay, we determined the activity of recombinant human NEP (rhNEP; 12 ng), and NEP in the media of endothelial cells (10% v/v; after 24 h incubation with cells) to be 9.35 ± 0.70 and 6.54 ± 0.41 μmols of substrate cleaved over 3 h, respectively. The presence of NEP in the media was also confirmed by Western blotting. At present there are no commercially available inhibitors specific for ADAM-17. We therefore synthesised two inhibitors TPI2155-14 and TPI2155-17, specific for ADAM-17 with IC 50 values of 5.36 and 4.32 μM, respectively. Treatment of cells with TPI2155-14 (15 μM) and TPI2155-17 (4.3 μM) resulted in a significant decrease in NEP activity in media (62.37 ± 1.43 and 38.30 ± 4.70, respectively as a % of control; P < 0.0001), implicating a possible role for ADAM-17 in NEP release. However, centrifuging media (100,000g for 1 h at 4 °C) removed all NEP activity from the supernatant indicating the likely role of exosomes in the release of NEP. Our data therefore indicated for the first time that NEP is released from endothelial cells via exosomes, and that this process is dependent on ADAM-17

  19. A systematic review and checklist presenting the main challenges for health economic modeling in personalized medicine : towards implementing patient-level models

    NARCIS (Netherlands)

    Degeling, Koen; Koffijberg, Hendrik; IJzerman, Maarten Joost

    2017-01-01

    Introduction: The ongoing development of genomic medicine and the use of molecular and imaging markers in personalized medicine (PM) has arguably challenged the field of health economic modeling (HEM). This study aims to provide detailed insights into the current status of HEM in PM, in order to

  20. Immobilization of serum albumin and peptide aptamer for EPC on polydopamine coated titanium surface for enhanced in-situ self-endothelialization

    International Nuclear Information System (INIS)

    Chen, Zhuoyue; Li, Quanli; Chen, Jialong; Luo, Rifang; Maitz, Manfred F.; Huang, Nan

    2016-01-01

    Restenosis and thrombosis are two major complications associated with vascular stents and grafts. The homing of circulating endothelial progenitor cells (EPCs) onto implant surfaces brings a new strategy to solve these problems by accelerating self -endothelialization in situ. Peptide aptamers with high affinity and specific recognition of EPCs can be immobilized to capture EPCs from the circulating blood. In this study, a biotinylated peptide aptamer (TPSLEQRTVYAK-GGGC-K-Biotin) for EPC, and bovine serum albumin (BSA) were co-immobilized onto titanium surface through avidin–biotin recognition to endow the surface with specific affinity for EPC and anti-platelet adhesion properties. Quartz crystal microbalance with dissipation (QCM-D), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and water contact angle measuring were adopted for coating characterization. EPC affinity and hemocompatibility of the coating were also investigated in vitro. The results demonstrated that aptamer and BSA co-immobilized surface significantly reduced platelet adhesion and fibrinogen adsorption/activation. Besides, such functional surface could remarkably enhance EPC adhesion, without affecting the behavior of endothelial cells (ECs) and smooth muscle cells (SMCs) obviously. The result shows the possibility of utilizing such a multifunctional surface in cardiovascular implants. - Highlights: • We construct a multifunctional surface based on immobilization of BSA and aptamer. • It can significantly reduce platelet adhesion and fibrinogen adsorption/activation. • Such functional surface could remarkably enhance EPC adhesion in vitro. • It can induce rapid self-endothelialization of the implant surface in situ in vivo. • It is possible to use such a multifunctional surface in cardiovascular implants.

  1. Immobilization of serum albumin and peptide aptamer for EPC on polydopamine coated titanium surface for enhanced in-situ self-endothelialization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhuoyue, E-mail: 362947953@qq.com [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031 (China); RegeMed Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi' an, 710069 (China); Li, Quanli [College of Stomology, Anhui Medical University, Hefei, 230032 (China); Chen, Jialong [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031 (China); College of Stomology, Anhui Medical University, Hefei, 230032 (China); Luo, Rifang [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031 (China); Maitz, Manfred F. [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031 (China); Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Dresden (Germany); Huang, Nan, E-mail: huangnan1956@163.com [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031 (China)

    2016-03-01

    Restenosis and thrombosis are two major complications associated with vascular stents and grafts. The homing of circulating endothelial progenitor cells (EPCs) onto implant surfaces brings a new strategy to solve these problems by accelerating self -endothelialization in situ. Peptide aptamers with high affinity and specific recognition of EPCs can be immobilized to capture EPCs from the circulating blood. In this study, a biotinylated peptide aptamer (TPSLEQRTVYAK-GGGC-K-Biotin) for EPC, and bovine serum albumin (BSA) were co-immobilized onto titanium surface through avidin–biotin recognition to endow the surface with specific affinity for EPC and anti-platelet adhesion properties. Quartz crystal microbalance with dissipation (QCM-D), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and water contact angle measuring were adopted for coating characterization. EPC affinity and hemocompatibility of the coating were also investigated in vitro. The results demonstrated that aptamer and BSA co-immobilized surface significantly reduced platelet adhesion and fibrinogen adsorption/activation. Besides, such functional surface could remarkably enhance EPC adhesion, without affecting the behavior of endothelial cells (ECs) and smooth muscle cells (SMCs) obviously. The result shows the possibility of utilizing such a multifunctional surface in cardiovascular implants. - Highlights: • We construct a multifunctional surface based on immobilization of BSA and aptamer. • It can significantly reduce platelet adhesion and fibrinogen adsorption/activation. • Such functional surface could remarkably enhance EPC adhesion in vitro. • It can induce rapid self-endothelialization of the implant surface in situ in vivo. • It is possible to use such a multifunctional surface in cardiovascular implants.

  2. The involvement of endothelial mediators in leprosy.

    Science.gov (United States)

    Nogueira, Maria Renata Sales; Latini, Ana Carla Pereira; Nogueira, Maria Esther Salles

    2016-10-01

    Leprosy is a chronic infectious disease that requires better understanding since it continues to be a significant health problem in many parts of the world. Leprosy reactions are acute inflammatory episodes regarded as the central etiology of nerve damage in the disease. The activation of endothelium is a relevant phenomenon to be investigated in leprosy reactions. The present study evaluated the expression of endothelial factors in skin lesions and serum samples of leprosy patients. Immunohistochemical analysis of skin samples and serum measurements of VCAM-1, VEGF, tissue factor and thrombomodulin were performed in 77 leprosy patients and 12 controls. We observed significant increase of VCAM-1 circulating levels in non-reactional leprosy (p = 0.0009). The immunostaining of VEGF and tissue factor was higher in endothelium of non-reactional leprosy (p = 0.02 for both) than healthy controls. Patients with type 1 reaction presented increased thrombomodulin serum levels, compared with non-reactional leprosy (p = 0.02). In type 2 reaction, no significant modifications were observed for the endothelial factors investigated. The anti-inflammatory and antimicrobial activities of the endotfhelial factors may play key-roles in the pathogenesis of leprosy and should be enrolled in studies focusing on alternative targets to improve the management of leprosy and its reactions.

  3. Effects of long- and short-term darbepoetin-α treatment on oxidative stress, inflammation and endothelial injury in ApoE knockout mice.

    Science.gov (United States)

    Özdemir, Evrim Dursun; Hanikoglu, Aysegul; Cort, Aysegul; Ozben, Beste; Suleymanlar, Gultekin; Ozben, Tomris

    2017-07-01

    Atherosclerosis and atherosclerosis-related complications are the main cause of death in the world. Vascular injury in response to inflammation and enhanced oxidant stress promotes endothelial dysfunction and leads to atherosclerotic lesions. Low-dose treatment with darbepoetin-α may be a potential therapeutic tool for endothelial injury and atherosclerosis. In order to study the effect of darbepoetin-α on endothelial injury and atherosclerosis, we used ApoE-/- mice as the atherosclerotic mice model. We monitored atherosclerosis and plaque formation histochemically in ApoE knockout mice at early and late stages of atherosclerosis. Darbepoetin-α was injected intraperitoneally at a dose of 0.1 μg/kg to ApoE-/- mice. The results of 2 ApoE-/- mice groups injected with darbepoetin-α (early and late stages of atherosclerosis) were compared to the results of the corresponding saline injected ApoE-/- mice groups and the control (C57BL/6) mice. Lipid profile (total cholesterol, triglyceride), inflammation (CRP, IL-6, histamine), endothelial injury (ICAM-1, selectin) and oxidative stress markers (lipid peroxidation, protein oxidation) were significantly increased in 4 atherosclerotic groups compared to the control group. Short-term darbepoetin-α had no marked effects on indicators of inflammation and endothelial injury in the ApoE knockout mice groups compared to the ApoE knockout mice not treated with darbepoetin-α, however, darbepoetin-α significantly decreased 8-isoprostane and protein carbonyl content. Long term darbepoetin-α treatment reduced oxidative stress in ApoE-/- mice. This study contributes to understanding and elucidating the biochemical changes occurring during early and late stages of atherosclerosis development regarding lipid profile, inflammation, endothelial injury and oxidative stress markers.

  4. Acute Coronary Syndromes: From The Laboratory Markers To The Coronary Vessels

    Directory of Open Access Journals (Sweden)

    Palazzuoli Alberto

    2006-01-01

    Full Text Available A number of "interesting" risk markers have been proposed as providing prognostic information in acute coronary syndromes (ACS. Elevation in plasma inflammatory and necrosis biomarkers have been related to future cardiovascular events in individuals with or without prior myocardial infarction. Recently BNP and pro-BNP are entered in clinical practice to recognize patients at major risk, providing incremental information respect to the traditional markers. Together with these laboratory indexes, a few of promising laboratory markers once easily available, could become useful in identification of patients at high risk. Several studies evaluated many markers of platelet aggregation, endothelial dysfunction and vascular thrombosis, but it is not yet clear whether each of the proposed markers may provide incremental predictive information. We describe, following the most studies reported in literature, the laboratory markers with potential clinical and prognostic power that could early help physicians in the identifi cation of patients with impaired coronary disease and more narrowed coronary arteries.

  5. TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice.

    Science.gov (United States)

    Li, Xiang; Han, Wei-Qing; Boini, Krishna M; Xia, Min; Zhang, Yang; Li, Pin-Lan

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 4 (DR4), have been implicated in the development of endothelial dysfunction and atherosclerosis. However, the signaling mechanism mediating DR4 activation leading to endothelial injury remains unclear. We recently demonstrated that ceramide production via hydrolysis of membrane sphingomyelin by acid sphingomyelinase (ASM) results in membrane raft (MR) clustering and the formation of important redox signaling platforms, which play a crucial role in amplifying redox signaling in endothelial cells leading to endothelial dysfunction. The present study aims to investigate whether TRAIL triggers MR clustering via lysosome fusion and ASM activation, thereby conducting transmembrane redox signaling and changing endothelial function. Using confocal microscopy, we found that TRAIL induced MR clustering and co-localized with DR4 in coronary arterial endothelial cells (CAECs) isolated from wild-type (Smpd1 (+/+)) mice. Furthermore, TRAIL triggered ASM translocation, ceramide production, and NADPH oxidase aggregation in MR clusters in Smpd1 ( +/+ ) CAECs, whereas these observations were not found in Smpd1 (-/-) CAECs. Moreover, ASM deficiency reduced TRAIL-induced O(2) (-[Symbol: see text]) production in CAECs and abolished TRAIL-induced impairment on endothelium-dependent vasodilation in small resistance arteries. By measuring fluorescence resonance energy transfer, we found that Lamp-1 (lysosome membrane marker protein) and ganglioside G(M1) (MR marker) were trafficking together in Smpd1 (+/+) CAECs, which was absent in Smpd1 (-/-) CAECs. Consistently, fluorescence imaging of living cells with specific lysosome probes demonstrated that TRAIL-induced lysosome fusion with membrane was also absent in Smpd1 (-/-) CAECs. Taken together, these results suggest that ASM is essential for TRAIL-induced lysosomal trafficking, membrane fusion and formation of MR redox signaling platforms

  6. Quantification of Circulating Free DNA as a Diagnostic Marker in Gall Bladder Cancer.

    Science.gov (United States)

    Kumari, Swati; Tewari, Shikha; Husain, Nuzhat; Agarwal, Akash; Pandey, Anshuman; Singhal, Ashish; Lohani, Mohtashim

    2017-01-01

    Gall bladder Carcinoma (GBC) is the fifth most common cancer of the digestive tract and frequently diagnosed in late stage of disease. Estimation of circulating free DNA (cfDNA) in serum has been applied as a "liquid biopsy" in several deep seated malignancies. Its value in diagnosis of gall bladder carcinoma has not been studied. The present study was designed to assess the role of cfDNA in the diagnosis of GBC and correlate levels with the TNM stage. Serum was collected from 34 patients with GBC and 39 age and sex matched controls including 22 cholecystitis and 17 healthy individuals. Serum cfDNA levels were measured through quantitative polymerase chain reaction (qPCR) by amplification of β-globin gene. Performance of the assay was calculated through the receiver operating characteristic (ROC) curve. The cfDNA level was significantly lower in healthy controls and cholecystitis (89.32 ± 59.76 ng/ml, 174.21 ± 99.93 ng/ml) compared to GBC (1245.91 ± 892.46 ng/ml, p = <0.001). The cfDNA level was significantly associated with TNM stage, lymph node involvement and jaundice (0.002, 0.027, and 0.041, respectively). Area under curve of ROC analysis for cancer group versus healthy and cholecystitis group was 1.00 and 0.983 with sensitivity of 100 %, 88.24 % and specificity of 100 % respectively. Quantitative analysis of cfDNA may distinguish cholecystitis and gall bladder carcinoma and may serve as new diagnostic, noninvasive marker adjunct to imaging for the diagnosis of GBC.

  7. CEA A BIOCHEMICAL MARKER FOR DIAGNOSIS AND PROGNOSIS OF GASTROINTESTINAL CANCER

    OpenAIRE

    Prathibha; Vishnu Datt

    2016-01-01

    Serum tumor markers (TM) are widely used for diagnosis and monitoring of treatment of cancer. Carcinoembryonic Antigen (CEA) is one of the most widely investigated tumor markers in gastrointestinal (GI) cancers. Estimation of circulating tumor markers is a non- invasive quantitative method. Serum levels of CEA were studied for diagnosis and prognosis of gastrointestinal malignancies. 140 subjects were undertaken out of which 35 normal and remaining 105 were GI cancer patients. Ser...

  8. Gene expression analysis of embryonic stem cells expressing VE-cadherin (CD144 during endothelial differentiation

    Directory of Open Access Journals (Sweden)

    Libermann Towia

    2008-05-01

    Full Text Available Abstract Background Endothelial differentiation occurs during normal vascular development in the developing embryo. This process is recapitulated in the adult when endothelial progenitor cells are generated in the bone marrow and can contribute to vascular repair or angiogenesis at sites of vascular injury or ischemia. The molecular mechanisms of endothelial differentiation remain incompletely understood. Novel approaches are needed to identify the factors that regulate endothelial differentiation. Methods Mouse embryonic stem (ES cells were used to further define the molecular mechanisms of endothelial differentiation. By flow cytometry a population of VEGF-R2 positive cells was identified as early as 2.5 days after differentiation of ES cells, and a subset of VEGF-R2+ cells, that were CD41 positive at 3.5 days. A separate population of VEGF-R2+ stem cells expressing the endothelial-specific marker CD144 (VE-cadherin was also identified at this same time point. Channels lined by VE-cadherin positive cells developed within the embryoid bodies (EBs formed by differentiating ES cells. VE-cadherin and CD41 expressing cells differentiate in close proximity to each other within the EBs, supporting the concept of a common origin for cells of hematopoietic and endothelial lineages. Results Microarray analysis of >45,000 transcripts was performed on RNA obtained from cells expressing VEGF-R2+, CD41+, and CD144+ and VEGF-R2-, CD41-, and CD144-. All microarray experiments were performed in duplicate using RNA obtained from independent experiments, for each subset of cells. Expression profiling confirmed the role of several genes involved in hematopoiesis, and identified several putative genes involved in endothelial differentiation. Conclusion The isolation of CD144+ cells during ES cell differentiation from embryoid bodies provides an excellent model system and method for identifying genes that are expressed during endothelial differentiation and that

  9. Normal saline influences coagulation and endothelial function after traumatic brain injury and hemorrhagic shock in pigs

    DEFF Research Database (Denmark)

    Dekker, Simone E; Sillesen, Martin; Bambakidis, Ted

    2014-01-01

    ), colloids (Hextend [HEX]), and fresh frozen plasma (FFP) resuscitation are associated with differential effects on coagulation and endothelial systems. METHODS: We subjected 15 Yorkshire swine to TBI and HS (40% blood volume), and kept in HS for 2 hours before resuscitation with NS, HEX, or FFP. Markers......BACKGROUND: Traumatic brain injury (TBI) and hemorrhagic shock (HS) are the leading causes of trauma-related deaths. These insults disrupt coagulation and endothelial systems. This study investigated whether previously reported differences in lesion size and brain swelling during normal saline (NS...... of endothelial activation (E-selectin, Intercellular adhesion molecule [ICAM]-1), coagulation activation (prothrombin fragment 1 + 2), and natural anticoagulation (activated protein C [aPC]) were determined in serum and brain whole cell lysates. RESULTS: Serum levels of aPC were greater in the NS group (203 ± 30...

  10. Association Between Inflammatory Markers and Progression to Kidney Dysfunction: Examining Different Assessment Windows in Patients With Type 1 Diabetes.

    Science.gov (United States)

    Baker, Nathaniel L; Hunt, Kelly J; Stevens, Danielle R; Jarai, Gabor; Rosen, Glenn D; Klein, Richard L; Virella, Gabriel; Lopes-Virella, Maria F

    2018-01-01

    To determine whether biomarkers of inflammation and endothelial dysfunction are associated with the development of kidney dysfunction and the time frame of their association. Biomarkers were measured at four time points during 28 years of treatment and follow-up in patients with type 1 diabetes in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) cohort. In addition to traditional biomarkers of inflammation (C-reactive protein and fibrinogen), we measured interleukin-6 (IL-6) and soluble tumor necrosis factor receptors 1 and 2 (sTNFR-1/2), markers of endothelial dysfunction (soluble intracellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin [sE-selectin]), and fibrinolysis (total and active plasminogen activator inhibitor-1 [PAI-1]). Renal outcomes were defined as progression to incident chronic kidney disease (stage 3 or more severe) or macroalbuminuria (albumin excretion rate ≥300 mg/24 h). Prospective multivariate event-time analyses were used to determine the association of each biomarker with each subsequent event within prespecified intervals (3-year and 10-year windows). Multivariate event-time models indicated that several markers of inflammation (sTNFR-1/2), endothelial dysfunction (sE-selectin), and clotting/fibrinolysis (fibrinogen and PAI-1) are significantly associated with subsequent development of kidney dysfunction. Although some markers showed variations in the associations between the follow-up windows examined, the results indicate that biomarkers (sTNFR-1/2, sE-selectin, PAI-1, and fibrinogen) are associated with progression to chronic kidney disease in both the 3-year and the 10-year windows. Plasma markers of inflammation, endothelial dysfunction, and clotting/fibrinolysis are associated with progression to kidney dysfunction in type 1 diabetes during both short-term and long-term follow-up. © 2017 by the American Diabetes Association.

  11. Involvement of the lysophosphatidic acid-generating enzyme autotaxin in lymphocyte-endothelial cell interactions.

    Science.gov (United States)

    Nakasaki, Tae; Tanaka, Toshiyuki; Okudaira, Shinichi; Hirosawa, Michi; Umemoto, Eiji; Otani, Kazuhiro; Jin, Soojung; Bai, Zhongbin; Hayasaka, Haruko; Fukui, Yoshinori; Aozasa, Katsuyuki; Fujita, Naoya; Tsuruo, Takashi; Ozono, Keiichi; Aoki, Junken; Miyasaka, Masayuki

    2008-11-01

    Autotaxin (ATX) is a secreted protein with lysophospholipase D activity that generates lysophosphatidic acid (LPA) from lysophosphatidylcholine. Here we report that functional ATX is selectively expressed in high endothelial venules (HEVs) of both lymph nodes and Peyer's patches. ATX expression was developmentally regulated and coincided with lymphocyte recruitment to the lymph nodes. In adults, ATX expression was independent of HEV-expressed chemokines such as CCL21 and CXCL13, innate immunity signals including those via TLR4 or MyD88, and of the extent of lymphocyte trafficking across the HEVs. ATX expression was induced in venules at sites of chronic inflammation. Receptors for the ATX enzyme product LPA were constitutively expressed in HEV endothelial cells (ECs). In vitro, LPA induced strong morphological changes in HEV ECs. Forced ATX expression caused cultured ECs to respond to lysophosphatidylcholine, up-regulating lymphocyte binding to the ECs in a LPA receptor-dependent manner under both static and flow conditions. Although in vivo depletion of circulating ATX did not affect lymphocyte trafficking into the lymph nodes, we surmise, based on the above data, that ATX expressed by HEVs acts on HEVs in situ to facilitate lymphocyte binding to ECs and that ATX in the general circulation does not play a major role in this process. Tissue-specific inactivation of ATX will verify this hypothesis in future studies of its mechanism of action.

  12. A small molecule-based strategy for endothelial differentiation and three-dimensional morphogenesis from human embryonic stem cells.

    Science.gov (United States)

    Geng, Yijie; Feng, Bradley

    2016-07-01

    The emerging models of human embryonic stem cell (hESC) self-organizing organoids provide a valuable in vitro platform for studying self-organizing processes that presumably mimic in vivo human developmental events. Here we report that through a chemical screen, we identified two novel and structurally similar small molecules BIR1 and BIR2 which robustly induced the self-organization of a balloon-shaped three-dimensional structure when applied to two-dimensional adherent hESC cultures in the absence of growth factors. Gene expression analyses and functional assays demonstrated an endothelial identity of this balloon-like structure, while cell surface marker analyses revealed a VE-cadherin(+)CD31(+)CD34(+)KDR(+)CD43(-) putative endothelial progenitor population. Furthermore, molecular marker labeling and morphological examinations characterized several other distinct DiI-Ac-LDL(+) multi-cellular modules and a VEGFR3(+) sprouting structure in the balloon cultures that likely represented intermediate structures of balloon-formation.

  13. A small molecule-based strategy for endothelial differentiation and three-dimensional morphogenesis from human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Yijie Geng

    2016-07-01

    Full Text Available The emerging models of human embryonic stem cell (hESC self-organizing organoids provide a valuable in vitro platform for studying self-organizing processes that presumably mimic in vivo human developmental events. Here we report that through a chemical screen, we identified two novel and structurally similar small molecules BIR1 and BIR2 which robustly induced the self-organization of a balloon-shaped three-dimensional structure when applied to two-dimensional adherent hESC cultures in the absence of growth factors. Gene expression analyses and functional assays demonstrated an endothelial identity of this balloon-like structure, while cell surface marker analyses revealed a VE-cadherin+CD31+CD34+KDR+CD43− putative endothelial progenitor population. Furthermore, molecular marker labeling and morphological examinations characterized several other distinct DiI-Ac-LDL+ multi-cellular modules and a VEGFR3+ sprouting structure in the balloon cultures that likely represented intermediate structures of balloon-formation.

  14. Clinical evaluation of the endothelial tie-2 crossmatch in ABO compatible and ABO incompatible renal transplants.

    Science.gov (United States)

    Kafetzi, Maria L; Boletis, John N; Melexopoulou, Christine A; Tsakris, Athanassios; Iniotaki, Aliki G; Doxiadis, Ilias I N

    2013-11-01

    The necessity of detection of other than the classical major histocompatibility complex (MHC) and MHC class I-related chain A (MICA) directed antibodies prior to organ transplantation has already been repeatedly reported. A commercial flow cytometric endothelial crossmatch (CM) using isolated peripheral blood tie-2 positive cells provides a tool to detect non-MHC antibodies in addition to antibodies directed to MHC class I and II. The vast majority of circulating tie-2 positive cells expresses HLA-DR but not the A, B blood group antigens. Tie-2 cells are circulating surrogate endothelial cells. In this retrospective study we evaluated the endothelial CM in 51 renal transplantations, 30 with ABO compatible grafts and 21 with ABO incompatible grafts. Fifteen of the ABO compatible recipients (group A) developed unexplained rejection episodes (RE) while the remaining 15 had no RE (group B). Five cases of group A and none of group B had a positive tie-2 CM before transplantation (p=0.042). A positive tie-2 CM was also correlated with graft failure in ABO compatible transplants (p=0.02). No significant correlation was found between a positive pre-transplant tie-2 CM and RE in the ABO incompatible group. This study strongly suggest that a positive tie-2 CM may predict post-transplantation complications in ABO compatible grafts while negative reactions are not predictive. The test is not significantly correlated with RE in ABO incompatible grafts possibly due to applied desensitization. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  15. Association of circulating endothelial cells with flow mediated vasodilation and disease activity in patients with systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Rania Gaber

    2014-03-01

    Conclusion: CEC is associated with endothelial dysfunction, disease activity and increased VCAM-1 levels in patients with SLE. These findings suggest a potential role of CEC in the pathophysiology of cardiovascular disease in these patients.

  16. The impact of decreases in air temperature and increases in ozone on markers of endothelial function in individuals having type-2 diabetes

    Science.gov (United States)

    Several studies have reported an association between air pollution and endothelial dysfunction, especially in individuals having diabetes. However, very few studies have examined the impact of air temperature on endothelial function. The objective of this analysis was to investig...

  17. Cutaneous chronic graft-versus-host disease does not have the abnormal endothelial phenotype or vascular rarefaction characteristic of systemic sclerosis.

    Directory of Open Access Journals (Sweden)

    Jo Nadine Fleming

    2009-07-01

    Full Text Available The clinical and histologic appearance of fibrosis in cutaneous lesions in chronic graft-versus -host disease (c-GVHD resembles the appearance of fibrosis in scleroderma (SSc. Recent studies identified distinctive structural changes in the superficial dermal microvasculature and matrix of SSc skin. We compared the dermal microvasculature in human c-GVHD to SSc to determine if c-GVHD is a suitable model for SSc.We analyzed skin biopsies of normal controls (n = 24, patients with SSc (n = 30 and c-GVHD with dermal fibrosis (n = 133. Immunostaining was employed to identify vessels, vascular smooth muscle, dermal matrix, and cell proliferation. C-GVHD and SSc had similar dermal matrix composition and vascular smooth muscle pathology, including intimal hyperplasia. SSc, however, differed significantly from c-GVHD in three ways. First, there were significantly fewer (p = 0.00001 average vessels in SSc biopsies (9.8 when compared with c-GVHD (16.5. Second, in SSc, endothelial markers were decreased significantly (19/19 and 12/14 for VE cadherin and vWF (p = <0.0001 and <0.05, respectively. In contrast, 0/13 c-GVHD biopsies showed loss of staining with canonical endothelial markers. Third, c-GVHD contained areas of microvascular endothelial proliferation not present in the SSc biopsies.The sclerosis associated with c-GVHD appears to resemble wound healing. Focal capillary proliferation occurs in early c-GVHD. In contrast, loss of canonical endothelial markers and dermal capillaries is seen in SSc, but not in c-GVHD. The loss of VE cadherin in SSc, in particular, may be related to microvascular rarefaction because VE cadherin is necessary for angiogenesis. C-GVHD is a suitable model for studying dermal fibrosis but may not be applicable for studying the microvascular alterations characteristic of SSc.

  18. New Year, New Name and New Milestones Scope — Journal of Circulating Biomarkers

    Directory of Open Access Journals (Sweden)

    Shidong Jia

    2014-04-01

    Full Text Available This editorial article introduces a renaming of journal Exosomes and Microvesicles (EXMV to the Journal of Circulating Biomarkers with a new editorial scope, mission and our approach for the upcoming year in relation to engaging at the international level, the translational art of the study of exosomes and microvesicles, and the interface between exosomes and microvesicles, circulating tumor cells, cell-free circulating DNA and circulating protein markers in precision medicine and drug development. There is a slight change in the members of the Editors in Chief, Editorial Board and extending collaborations to international societies, such as the American Society for Exosomes and Microvesicles (ASEMV.

  19. Lymph vessels: the forgotten second circulation in health and disease

    NARCIS (Netherlands)

    Adamczyk, Lukasz A.; Gordon, Kristiana; Kholová, Ivana; Meijer-Jorna, Lorine B.; Telinius, Niklas; Gallagher, Patrick J.; van der Wal, Allard C.; Baandrup, Ulrik

    2016-01-01

    The lymphatic circulation is still a somewhat forgotten part of the circulatory system. Despite this, novel insights in lymph angiogenesis in health and disease, application of immune markers for lymphatic growth and differentiation and also the introduction of new imaging techniques to visualize

  20. Osteogenic stimulatory conditions enhance growth and maturation of endothelial cell microvascular networks in culture with mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Torbjorn O Pedersen

    2012-12-01

    Full Text Available To optimize culture conditions for in vitro prevascularization of tissue-engineered bone constructs, the development of organotypic blood vessels under osteogenic stimulatory conditions (OM was investigated. Coculture of endothelial cells and mesenchymal stem cells was used to assess proangiogenic effects of mesenchymal stem cells on endothelial cells. Four different culture conditions were evaluated for their effect on development of microvascular endothelial cell networks. Mineralization, deposition of extracellular matrix, and perivascular gene expression were studied in OM. After 3 days, endothelial cells established elongated capillary-like networks, and upregulated expression of vascular markers was seen. After 15 days, all parameters evaluated were significantly increased for cultures in OM. Mature networks developed in OM presented lumens enveloped by basement membrane-like collagen IV, with obvious mineralization and upregulated perivascular gene expression from mesenchymal stem cells. Our results suggest osteogenic stimulatory conditions to be appropriate for in vitro development of vascularized bone implants for tissue engineering.