WorldWideScience

Sample records for circulating fluidised bed

  1. Bed-To-Wall Heat Transfer in a Supercritical Circulating Fluidised Bed Boiler

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2014-06-01

    Full Text Available The purpose of this work is to find a correlation for heat transfer to walls in a 1296 t/h supercritical circulating fluidised bed (CFB boiler. The effect of bed-to-wall heat transfer coefficient in a long active heat transfer surface was discussed, excluding the radiation component. Experiments for four different unit loads (i.e. 100% MCR, 80% MCR, 60% MCR and 40% MCR were conducted at a constant excess air ratio and high level of bed pressure (ca. 6 kPa in each test run. The empirical correlation of the heat transfer coefficient in a large-scale CFB boiler was mainly determined by two key operating parameters, suspension density and bed temperature. Furthermore, data processing was used in order to develop empirical correlation ranges between 3.05 to 5.35 m·s-1 for gas superficial velocity, 0.25 to 0.51 for the ratio of the secondary to the primary air, 1028 to 1137K for bed temperature inside the furnace chamber of a commercial CFB boiler, and 1.20 to 553 kg·m-3 for suspension density. The suspension density was specified on the base of pressure measurements inside the boiler’s combustion chamber using pressure sensors. Pressure measurements were collected at the measuring ports situated on the front wall of the combustion chamber. The obtained correlation of the heat transfer coefficient is in agreement with the data obtained from typical industrial CFB boilers.

  2. Fluidised bed heat exchangers

    International Nuclear Information System (INIS)

    Problems that have arisen during the initial stages of development of fluidised bed boilers in which heat transfer surfaces are immersed in fluidised solids are discussed. The very high heat transfer coefficients that are obtained under these conditions can be exploited to reduce the total heat transfer surface to a fraction of that in normal boilers. However, with the high heat flux levels involved, tube stressing becomes more important and it is advantageous to use smaller diameter tubes. One of the initial problems was that the pumping power absorbed by the fluidised bed appeared to be high. The relative influence of the fluidising velocity (and the corresponding bed area), tube diameter, tube spacing, heat transfer coefficient and bed temperature on pumping power and overall cost was determined. This showed the importance of close tube packing and research was undertaken to see if this would adversely affect the heat transfer coefficient. Pressure operation also reduces the pumping power. Fouling and corrosion tests in beds burning coal suggest that higher temperatures could be reached reliably and cost studies show that, provided the better refractory metals are used, the cost of achieving higher temperatures is not unduly high. It now remains to demonstrate at large scale that the proposed systems are viable and that the methods incorporated to overcome start up and part lead running problems are satisfactory. The promising role of these heat transfer techniques in other applications is briefly discussed

  3. Particle motion in fluidised beds

    International Nuclear Information System (INIS)

    Gas fluidised beds are important components in many process industries, e.g. coal combustors and granulators, but not much is known about the movement of the solids. Positron Emission Particle Tracking (PEPT) enables the movement of a single, radioactive tracer particle to be followed rapidly and faithfully. Experiments were carried out in columns sized between 70 and 240mm. diameter, operating in the bubbling regime at ambient process conditions using particles of group B and D (Geldart Classification). Particle motion was tracked and the data applied to models for particle movement at the gas distributor as well as close to other surfaces and to models for particle circulation in beds of cohesive particles. In the light of these data, models for particle and bubble interaction, particle circulation, segregation, attrition, erosion, heat transfer and fluidised bed scale-up rules were reassessed. Particle motion is directly caused by bubble motion, and their velocities were found to be equal for particles travelling in a bubble. PEPT enables particle circulation to be measured, giving a more accurate correlation for future predictions. Particle motion follows the scale-up rules based on similarities of the bubble motion in the bed. A new group of parameters was identified controlling the amount of attrition in fluidised beds and a new model to predict attrition is proposed. (author)

  4. Fluidised bed cereal cooking

    International Nuclear Information System (INIS)

    Man has been cooking food for thousands of years for a number of reasons: to improve flavour and palatability, sterilise, increase digestibility, improve texture and colour. Increasingly more advanced techniques are employed today in food production plants to engineer foods with many different properties. With this in mind manufacturers are constantly seeking to improve processing techniques and apply new or different technologies (such as microwaves, RF and extrusion) to develop foods with new properties (like puffed texture starches) and to increase process efficiencies (energy efficiency, water reduction). This thesis reports on work undertaken to demonstrate the potential to achieve high temperature starch conversion of whole wheat grains in a fluidised bed, thereby reducing the amount of water required and processing time. Specifically, wheat from the farm at 14% water content is cooked in a fluidised bed. The fluidised bed heats the wheat quickly by convective heating. In addition, energy can be delivered directly to the grain by microwave heating during fluidisation. Degree of starch conversion is determined by measuring the reduction in size of endotherm of reaction as observed by Differential Scanning Calorimetry. The fluidising gas, processing temperature and starting moisture content were varied in order to investigate their effect on the cooking process. A mathematical model based on energy and species concentration equations was developed to help understand the internal grain processes. The model coupled the thermal energy equation with water diffusion. The effect of water evaporation was represented as a thermal sink in the energy equation. Popular kinetic models from literature were adapted to predict the degree of starch conversion. The model gives solutions consistent with experimental data and physical intuition. A commercial computational fluid dynamics package was used to study simple airflow and particle tracks in the fluidisation column. A

  5. Sulphation of calcium-based sorbents in circulating fluidised beds under oxy-fuel combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Francisco Garcia-Labiano; Luis F. de Diego; Alberto Abad; Pilar Gayan; Margarita de las Obras-Loscertales; Aranzazu Rufas; Juan Adanez [Instituto de Carboquimica (CSIC), Zaragoza (Spain). Dept. Energy and Environment

    2009-07-01

    Sulphur Retention (SR) by calcium-based sorbents is a process highly dependent on the temperature and CO{sub 2} concentration. In circulating fluidised beds combustors (CFBC's) operating under oxy-fuel conditions, the sulphation process takes place in atmospheres enriched in CO{sub 2} with bed concentrations that can vary from 40 to 95%. Under so high CO{sub 2} concentrations, very different from that in conventional coal combustion atmosphere with air, the calcination and sulphation behaviour of the sorbent must be defined to optimise the SR process in the combustor. The objective of this work was to determine the SO{sub 2} retention capacity of a Spanish limestone at typical oxy-fuel conditions in CFBC's. Long term duration tests of sulphation (up to 24 h), to simulate the residence time of sorbents in CFBC's, were carried out by thermogravimetric analysis (TGA). Clear behaviour differences were found under calcining and non-calcining conditions. Especially relevant was the result obtained at calcining conditions but close to the thermodynamic temperature given for sorbent calcination. This situation must be avoided in CFBC's because the CO{sub 2} produced inside the particle during calcination can destroy the particles if a non-porous sulphate product layer has been formed around the particle. The effect of the main variables on the sorbent sulphation such as SO{sub 2} concentration, temperature, and particle size were analysed in the long term TGA tests. These data were also used to determine the kinetic parameters for the sulphation under oxy-fuel combustion conditions, which were able to adequately predict the sulphation conversion values in a wide range of operating conditions. 20 refs., 5 figs., 2 tabs.

  6. Gasification of leached orujillo (olive oil waste) in a pilot plant circulating fluidised bed reactor. Preliminary results

    International Nuclear Information System (INIS)

    Nearly a quarter of the world's olive oil production takes place in Spain, where energy companies are starting to exploit the potential of the residues from this industry as biomass fuel for energy production. Approximately, 2 million t/yr of orujillo (a residual by-product of the olive oil production industry) are generated in Spain. Fluidised bed gasification is considered to be the most advanced method for thermochemical conversion of various biomass fuels to energy. Ash-related problems such as sintering, agglomeration, deposition, erosion and corrosion, which are due to the low melting point of ash in the agroresidues, are the main obstacles for economical and viable application of this conversion method for energy exploitation of the specific residues. The leaching (washing) of inorganic constituents from biomass leads to changes in inorganic composition and substantial improvements in ash thermal behaviour under gasification conditions. Leached orujillo has been tested in a 300 kWth atmospheric circulating fluidised-bed (CFB) gasification facility using air as a fluidisation agent. In this paper, the effect of experimental conditions on gasification process with the aim of enhancing the gas production and improving its composition and energetic content was analysed. The first tests have demonstrated that the CFB test rig operates adequately and makes it possible to carry out gasification experiments with orujillo as a fuel. The lower heating value of the producer gas obtained is 3.8 MJ/Nm3 at the lowest temperature (780 deg. C). The carbon conversion in orujillo gasification at the 800 deg. C set points was in the range of 81.0-86.9%. The increase in equivalence ratio did not improve carbon conversion significantly. The gas yield increases when equivalence ratio increases

  7. Realisation of a combustion pilot using a circulating fluidised bed of coal

    Energy Technology Data Exchange (ETDEWEB)

    Baussand, P.; Lassagne, L.; Jacob, V.R.; Azay, P.; Kaluzny, P.; Foster, P. [Greca, Grenoble (France)

    2000-07-01

    The authors present the processes which led to the realization of a combustion pilot using a Circulating Fluidized bed that can burn various fuels. To meet this aim, a pilot functional analysis of the needs was conducted in order to determine the schedule of conditions as close as possible to the expectations of the laboratory. This pilot had to be modular to carry out various combustions such as coal and household refuse. The first results concerning the combustion of coal are also presented, which show that this pilot is functional.

  8. A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste

    Energy Technology Data Exchange (ETDEWEB)

    McIlveen-Wright, D.R.; Huang, Y.; McMullan, J.T. [NICERT, University of Ulster at Jordanstown, Newtownabbey BT37 0QB, Northern Ireland (United Kingdom); Pinto, F.; Franco, C.; Gulyurtlu, I. [INETI-DEECA, Estrada do Paco do Lumiar, 22, 1649-038 Lisboa (Portugal); Armesto, L.; Cabanillas, A. [CIEMAT, Avda Complutense, 22, 28040 Madrid (Spain); Caballero, M.A.; Aznar, M.P. [Chemical and Environmental Engineering Department, Centro Politecnico Superior, Maria de Luna, University of Saragossa, 50018 Saragossa (Spain)

    2006-09-15

    Environmental regulations concerning emission limitations from the use of fossil fuels in large combustion plants have stimulated interest in biomass for electricity generation. The main objective of the present study was to examine the technical and economic viability of using combustion and gasification of coal mixed with biomass and plastic wastes, with the aim of developing an environmentally acceptable process to decrease their amounts in the waste stream through energy recovery. Mixtures of a high ash coal with biomass and/or plastic using fluidised bed technologies (combustion and gasification) were considered. Experiments were carried out in laboratory and pilot plant fluidised bed systems on the combustion and air/catalyst and air/steam gasification of these feedstocks and the data obtained were used in the techno-economic analyses. The experimental results were used in simulations of medium to large-scale circulating fluidised bed (CFB) power generation plants. Techno-economic analysis of the modelled CFB combustion systems showed efficiencies of around 40.5% (and around 46.5% for the modelled CFB gasification systems) when fuelled solely by coal, which were only minimally affected by co-firing with up to 20% biomass and/or wastes. Specific investments were found to be around $2150/kWe to $2400/kWe ($1350/kWe to $1450/kWe) and break-even electricity selling prices to be around $68/MWh to $78/MWh ($49/MWh to $54/MWh). Their emissions were found to be within the emission limit values of the large combustion plant directive. Fluidised bed technologies were found to be very suitable for co-firing coal and biomass and/or plastic waste and to offer good options for the replacement of obsolete or polluting power plants. (author)

  9. A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste

    International Nuclear Information System (INIS)

    Environmental regulations concerning emission limitations from the use of fossil fuels in large combustion plants have stimulated interest in biomass for electricity generation. The main objective of the present study was to examine the technical and economic viability of using combustion and gasification of coal mixed with biomass and plastic wastes, with the aim of developing an environmentally acceptable process to decrease their amounts in the waste stream through energy recovery. Mixtures of a high ash coal with biomass and/or plastic using fluidised bed technologies (combustion and gasification) were considered. Experiments were carried out in laboratory and pilot plant fluidised bed systems on the combustion and air/catalyst and air/steam gasification of these feedstocks and the data obtained were used in the techno-economic analyses. The experimental results were used in simulations of medium to large-scale circulating fluidised bed (CFB) power generation plants. Techno-economic analysis of the modelled CFB combustion systems showed efficiencies of around 40.5% (and around 46.5% for the modelled CFB gasification systems) when fuelled solely by coal, which were only minimally affected by co-firing with up to 20% biomass and/or wastes. Specific investments were found to be around $2150/kWe to $2400/kWe ($1350/kWe to $1450/kWe) and break-even electricity selling prices to be around $68/MWh to $78/MWh ($49/MWh to $54/MWh). Their emissions were found to be within the emission limit values of the large combustion plant directive. Fluidised bed technologies were found to be very suitable for co-firing coal and biomass and/or plastic waste and to offer good options for the replacement of obsolete or polluting power plants. (author)

  10. Fluidised-bed combustion of gasification residue

    Energy Technology Data Exchange (ETDEWEB)

    Korpela, T.; Kudjoi, A.; Hippinen, I.; Heinolainen, A.; Suominen, M.; Lu Yong [Helsinki Univ. of Technology (Finland). Lab of Energy Economics and Power Plant Engineering

    1996-12-01

    Partial gasification processes have been presented as possibilities for future power production. In the processes, the solid materials removed from a gasifier (i.e. fly ash and bed material) contain unburnt fuel and the fuel conversion is increased by burning this gasification residue either in an atmospheric or a pressurised fluidised-bed. In this project, which is a part of European JOULE 2 EXTENSION research programme, the main research objectives are the behaviour of calcium and sulphur compounds in solids and the emissions of sulphur dioxide and nitrogen oxides (NO{sub x} and N{sub 2}O) in pressurised fluidised-bed combustion of gasification residues. (author)

  11. Pressurised fluidised bed power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, S.A.; Anderson, L. [ABB Carbon AB, Finspong (Sweden)

    1997-12-31

    The combined experience from almost 75,000 hours of operation on widely different coals in Pressurised Fluidised bed Combined-cycle (PFBC) plants in Sweden, Spain, the US and Japan have demonstrated the viability of ABB`s PFBC technology and the general simplicity of the concept, as well as plant control principles and serviceability. This technology is now commercially offered world-wide and PFBC is being recognized as a competitive solution for power and for combined heat and power applications. The combined-cycle feature makes PFBC highly efficient for power generation. When compared with conventional power plants, and for the same steam conditions, a PFBC plant typically produces at least 10% more electricity from the same amount of coal. There is potential for future additional efficiency increases. The coals used so far in the existing PFBC power plants include bituminous coals with a wide range of sulphur and ash contents, and a sub-bituminous Spanish `black lignite` with extremely high and variable levels of sulphur, ash, and moisture. Brown coal from the eastern parts of Germany will be used as the fuel in a newly ordered PFBC plant in Cottbus, Germany. Oil shale, petcoke, anthracite, and different types of biomass mixed with coal are presently being considered for other PFBC projects under discussion. PFBC is suitable for greenfield plants, but a market also exists for PFBC repowering of older steam plants. Repowering provides an opportunity to convert older, low capacity factor units into assets that lower the system`s production costs as well as improving environmental performance. Ash utilisation also holds promise, elevating the ash from a disposable waste to a valuable resource. 6 refs., 3 figs., 1 tab.

  12. Ruedersdorf cement works substitutes raw material and fuel by means of a circulating fluidised bed; Roh- und Brennstoffsubstitution mit einer Zirkulierenden Wirbelschicht im Zementwerk Ruedersdorf

    Energy Technology Data Exchange (ETDEWEB)

    Scur, P. [Ruedersdorfer Zement GmbH, Ruedersdorf (Germany)

    1998-09-01

    The purpose of the present paper is to point out the great potential the cement industry holds for the utilisation of waste materials. There are meanwhile sufficient studies and measuring results to demonstrate the environmental acceptability of the processes and products involved. The solution found for Ruedersdorf cement kiln of using a circulating a fluidised bed for waste utilisation is a good example of the potential still available for conserving natural resources and landfill area. Efficient industrial applications of this kind should become a future mainstay of the waste industry. [Deutsch] In dem vorliegenden Beitrag sollte gezeigt werden, dass die Zementindustrie ueber ein hohes Potential zur thermischen und stofflichen Verwertung von Abfallstoffen verfuegt. Es liegen ausreichende Untersuchungen und konkrete Messergebnisse vor, mit denen die Umweltvertraeglichkeit von Prozess und Produkt nachgewiesen werden kann. Die Loesung zur Abfallverwertung an der Ruedersdorfer Zementofenanlage mit Hilfe einer Zirkulierenden Wirbelschicht ist ein Beispiel fuer die Reserven zur Schonung natuerlicher Ressourcen und zur Einsparung von Deponieraeumen. Derartige sinnvolle industrielle Einsatzmoeglichkeiten sollten ein wichtiges Standbein fuer die zukuenftige Abfallwirtschaft sein. (orig.)

  13. Quantitative evaluation of minerals in fly ashes of biomass, coal and biomass-coal mixture derived from circulating fluidised bed combustion technology

    International Nuclear Information System (INIS)

    The chemical and mineralogical composition of fly ash samples collected from laboratory scale circulating fluidised bed (CFB) combustion facility have been investigated. Three fly ashes were collected from the second cyclone in a 50 kW laboratory scale boiler, after the combustion of different solid fuels. Characterisation of the fly ash samples was conducted by means of X-ray fluorescence (XRF), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Quantitative analysis of the crystalline (mineral) and amorphous phases in each ash sample was carried out using the Rietveld-based Siroquant system, with an added spike of ZnO to evaluate the amorphous content. SiO2 is the dominant oxide in the fly ashes, with CaO, Al2O3 and Fe2O3 also present in significant proportions. XRD results show that all three fly ashes contain quartz, anhydrite, hematite, illite and amorphous phases. The minerals calcite, feldspar, lime and periclase are present in ashes derived from Polish coal and/or woodchips. Ash from FBC combustion of a Greek lignite contains abundant illite, whereas illite is present only in minor proportions in the other ash samples.

  14. Quantitative evaluation of minerals in fly ashes of biomass, coal and biomass-coal mixture derived from circulating fluidised bed combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Koukouzas, N.; Ward, C.R.; Papanikolaou, D.; Li, Z.S.; Ketikidis, C. [Institute of Solid Fuels Technology & Applications, Athens (Greece)

    2009-09-15

    The chemical and mineralogical composition of fly ash samples collected from laboratory scale circulating fluidised bed (CFB) combustion facility have been investigated. Three fly ashes were collected from the second cyclone in a 50 kW laboratory scale boiler, after the combustion of different solid fuels. Characterisation of the fly ash samples was conducted by means of X-ray fluorescence (XRF), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Quantitative analysis of the crystalline (mineral) and amorphous phases in each ash sample was carried out using the Rietveld-based Siroquant system, with an added spike of ZnO to evaluate the amorphous content. SiO{sub 2} is the dominant oxide in the fly ashes, with CaO, Al{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} also present in significant proportions. XRD results show that all three fly ashes contain quartz, anhydrite, hematite, illite and amorphous phases. The minerals calcite, feldspar, lime and periclase are present in ashes derived from Polish coal and/or woodchips. Ash from FBC combustion of a Greek lignite contains abundant illite, whereas illite is present only in minor proportions in the other ash samples.

  15. Quantitative evaluation of minerals in fly ashes of biomass, coal and biomass-coal mixture derived from circulating fluidised bed combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Koukouzas, Nikolaos, E-mail: koukouzas@certh.gr [Centre for Research and Technology Hellas, Institute for Solid Fuels Technology and Applications, Mesogeion Ave. 357-359, 15231 Halandri, Athens (Greece); Ward, Colin R. [School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052 (Australia); Papanikolaou, Dimitra [Centre for Research and Technology Hellas, Institute for Solid Fuels Technology and Applications, Mesogeion Ave. 357-359, 15231 Halandri, Athens (Greece); Li, Zhongsheng [School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052 (Australia); Ketikidis, Chrisovalantis [Centre for Research and Technology Hellas, Institute for Solid Fuels Technology and Applications, Mesogeion Ave. 357-359, 15231 Halandri, Athens (Greece)

    2009-09-30

    The chemical and mineralogical composition of fly ash samples collected from laboratory scale circulating fluidised bed (CFB) combustion facility have been investigated. Three fly ashes were collected from the second cyclone in a 50 kW laboratory scale boiler, after the combustion of different solid fuels. Characterisation of the fly ash samples was conducted by means of X-ray fluorescence (XRF), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Quantitative analysis of the crystalline (mineral) and amorphous phases in each ash sample was carried out using the Rietveld-based Siroquant system, with an added spike of ZnO to evaluate the amorphous content. SiO{sub 2} is the dominant oxide in the fly ashes, with CaO, Al{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} also present in significant proportions. XRD results show that all three fly ashes contain quartz, anhydrite, hematite, illite and amorphous phases. The minerals calcite, feldspar, lime and periclase are present in ashes derived from Polish coal and/or woodchips. Ash from FBC combustion of a Greek lignite contains abundant illite, whereas illite is present only in minor proportions in the other ash samples.

  16. A Three-Dimensional Numerical Study of Gas-Particle Flow and Chemical Reactions in Circulating Fluidised Bed Reactors

    DEFF Research Database (Denmark)

    Hansen, Kim Granly

    Three-dimensional Computational Fluid Dynamics (CFD) simulations of Circulating Fluidized Beds (CFB's) have been performed. The computations are performed using a 3D multiphase computational fluid dynamics code with an Eulerian description of both gas and particle phases. The turbulent motion of...... the particulate phase is modeled using the kinetic theory for granular flow, and the gas phase turbulence is modeled using a Sub-Grid-Scale model. A computational study of a cold flowing CFB riser has been performed. The results have been compared to experimental findings of particle volume fraction......, particle axial velocity, and pressure drop provided as a blind test in connection with the 10th International Workshop on Two-Phase Flow Prediction held in Merseburg, Germany, 2002. The simulated profiles are in good qualitative agreement with the experiments, but the extend of the radial solid segregation...

  17. Design and characterisation of fluidised bed cooling towers

    OpenAIRE

    Mbua Egbe, Louis

    2001-01-01

    This thesis discusses the operating characteristics and design of fluidised bed cooling towers (FBCT), which may be used to cool hot water for industrial purposes. Limited data exist for such a three-phase fluidised bed acting as a cooling tower. This motivated some early workers to investigate its usefulness in cooling tower applications and they showed that the FBCT produces heat and mass transfer rates much higher than in conventional fixed-bed towers. Despite this advantage, the FBCT has ...

  18. New Developments in Spinning Fluidised Bed Incineration Technology

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    At the present time, the sewage treatment plants in the UK produce about 25 million tons of sewage sludge each year at a concentration of 4% solids. New regulations forbid sea dumping and in the near future new incinerators will be required to dispose of about 5 million tons per year. Bubbling fluidised bed incinerators are widely used to burn sewage sludge at a typical consumption rate of about 0.02kg(dry)·s-1·m2, and it follows that over 300 conventional fluidised bed incinerators of 3m diameter could be required to cope with the increased demand.At Sheffield University Waste Incineration Centre (SUWIC) research work is being carried out to develop a novel spinning fluidised bed incinerator. The key factor to note is that when air flows up through a bed of near mono-sized particles, it fluidises when the pressure drop across the bed is equal to the weight of the bed. Normally, the weight of the bed is determined by gravity. However, if the bed is contained by a cylindrical air distributor 'plate' that is rotating rapidly about its axis, then the effective weight of the bed can be increased dramatically. The airflow passing through the bed can be increased proportionally to the "g" level produced by the rotation and it follows that the process has been intensified. In exploratory tests with a spinning fluidised bed we have achieved combustion intensities with coal combustion as high as 100MW/m3. A problem with burning coal is that it was difficult to remove the heat and rotating water seals had to be used to transfer cooling water into the bed. In the case of sewage and other sludges, this problem does not exist since the flue gases can remove the small amount of heat released. The rotating fluidised bed sludge incinerator is a novel device, which is very compact. It is able to solve the turndown problem encountered with conventional fluidised beds by simply changing the rotation speed. Bearing in mind that a centrifugal sludge de-watering unit is already used

  19. VOC emission control by circulating fluidized bed adsorption; Controle de l'emission de composes organiques volatils par adsorption en lit fluidise circulant

    Energy Technology Data Exchange (ETDEWEB)

    Song, W.

    2003-12-15

    This work deals with the circulating fluidized bed technology, applied to the elimination by adsorption of volatile organic compounds (VOCs), like toluene, in a gas flow. In the process, the adsorbent (millimetric spherical grains of micro-porous carbon) is moved by a strong flow rate of gas inside a vertical tube without lining. Mass and heat transfers are very important and important volumes of compounds can be processed. This work presents the determination of the adsorption equilibrium, the description of the experimental facility and of the results of experiments, the development of an original model of the process which combines a flow model and a mass transfer model, a parametric study of this model, and finally, some extensions of the process principle to staged operations with pressure variation or temperature variation cycles. (J.S.)

  20. Biofluid process: fluidised-bed gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, A. [ATEKO a.s., Hradec Kralove (Czech Republic)

    1996-12-31

    Fluidised-bed gasification of biomass was developed by ATEKO by using long-term experience from coal gasification. An experimental unit was built and a number of tests, first with sawdust gasification, were carried out. A gas combustion engine combined with a power generator was installed and operated in power production. (orig.)

  1. Defluidisation of fluidised beds during gasification of biomass

    International Nuclear Information System (INIS)

    Defluidisation and agglomeration during fluidised bed gasification of biomass is analysed and discussed. It is argued that the agglomeration and defluidisation processes, in principle, closely resemble those that determine the behaviour of glass during glass processing. Crucial properties for working with glass melts are the viscosity, stickiness, surface tension, etc. It is, however, (very) difficult to theoretically quantify these properties through thermodynamics or other theoretical means. Hence it will be problematic to theoretically predict agglomeration and defluidisation. Models for predicting defluidisation must therefore probably be of an empirical nature. As a consequence of this, a number of fluidised bed gasification tests were empirically analysed with respect to defluidisation. In total 145 tests were evaluated; of these 51 defluidised or exhibited some kind of bed disturbance. A number of fuels and bed materials were included in the analysis using a multivariate statistical approach. Based on the analysis an empirical regression equation for predicting the defluidisation temperature during fluidised bed gasification is suggested. -- Highlights: → An empirical regression equation for predicting the defluidisation temperature is suggested. → Alkali and pressure lowers the defluidisation temperatures, whilst Ca and Mg has the opposite effect. → Magnesite as bed material relative to quartz or olivine sand increase defluidisation temperatures with more than 100 oC.

  2. Coal. Fluidized bed, a world record; Charbon. Lit fluidise: record mondial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    In April 1996, the `Societe Provencale du Lit Fluidise`, a subsidiary of Electricite de France (EDF) has put into service in Gardanne, the most powerful circulating fluidized bed boiler in the world, producing 600 MWt; it was constructed by GEC Alsthom Stein Industrie, and will strongly reduce the SO{sub 2} emissions from the coal power plant of Gardanne, which use a highly sulfurous coal. New regulations concerning the French coal industry are also introduced

  3. Discrete element modelling of fluidised bed spray granulation

    OpenAIRE

    Goldschmidt, MJV; Weijers, GGC; Boerefijn, R; Kuipers, JAM Hans

    2002-01-01

    A novel discrete element spray granulation model capturing the key features of fluidised bed hydrodynamics, liquid-solid contacting and agglomeration is presented. The model computes the motion of every individual particle and droplet in the system, considering the gas phase as a continuum. Micro scale processes such as particle-particle collisions, droplet-particle coalescence and agglomeration are directly taken into account by simple closure models. Simulations of the hydrodynamic behaviou...

  4. Bubbling fluidised bed gasification of wheat straw-gasifier performance using mullite as bed material

    OpenAIRE

    Mac an Bhaird, Seán T.; Hemmingway, Phil; Walsh, Eilín; McDonnell, Kevin; et al.

    2015-01-01

    The adoption of wheat straw as a fuel for gasification processes has been hindered due to a lack of experience and its propensity to cause bed agglomeration in fluidised bed gasifiers. In this study wheat straw was gasified in a small scale, air blown bubbling fluidised bed using mullite as bed material. The gasifier was successfully operated and isothermal bed conditions maintained at temperatures up to 750 ◦C. Below this temperature, the gasifier was operated at equivalence ratios from 0.1 ...

  5. Modelling of seed drying in fluidised and spouted bed dryers

    OpenAIRE

    Jittanit, W.; Srzednicki, G.; Driscoll, R

    2010-01-01

    Drying experiments were conducted in the fluidised bed dryer (FBD) and spouted bed dryer (SBD) at temperature 40-80°C using maize, rice and wheat seed samples. The experimental data were fitted into four thin-layer drying models by least square method. As a result, Page’s model and two-compartment model were the best-fitted models. Due to the limitation of these models, Page’s model and the twocompartment model were modified by adding the drying temperature term. Subsequently, these models co...

  6. A CFD Model for Fluid Dynamics in a Gas-fluidised Bed

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kai; Stefano Brandani

    2004-01-01

    A modified particle bed model derived from the two-fluid momentum balance equations was employed to predict the gas-fluidised bed behaviour. Additional terms are included in both the fluid and the particle momentum balance equations to take into account the effect of the dispersed solid phase. This model has been extended to two-dimensional formulations and has been implemented in the commercial code CFX 4.3. The model correctly simulates the homogeneous fluidisation of Geldart Group A and the bubbling fluidisation of Geldart Group B in gas-solid fluidised beds.

  7. TREATMENT OF POME BY PILOT PLANT ANAEROBIC FLUIDISED BED REACTOR

    OpenAIRE

    Abdullah Al-Mamun; Azni Idris

    2010-01-01

    A pilot scale anaerobic fluidised bed reactor (AnFBR) of 2000 L capacity was studied to determine its performance to treat palm oil mill effluent (POME). The pilot plant was operated at ambient temperature with diluted POME as substrate. It took 17 days for the start-up of the reactor with pre-seeded sand media. The AnFBR was capable to remove a large portion of organics at relatively shorter retention time. Maximum and minimum COD removal efficiency of 85% and 65% were attained at a ...

  8. Mineralogy and chemistry of conventional and fluidised bed coal ashes

    Directory of Open Access Journals (Sweden)

    Sulovský P

    2002-03-01

    Full Text Available Coal combustion residues represent very abundant inorganic waste materials. The change from conventional combustion of powdered North Bohemian brown coal to its combustion in fluidised bed boilers in several Czech power and heating plants calls for detailed mineralogical and geochemical characterisation of the combustion residues. The main differences between fly ashes from both combustion systems result from different burning temperatures and differing systems of desulphurisation (coeval with combustion / post-combustion. Both these factors influence the chemical and phase compositions as well as the speciation of trace elements. The study further shows that the validity of the surface enrichment model (Linton et al. 1975 can be limited.

  9. TREATMENT OF POME BY PILOT PLANT ANAEROBIC FLUIDISED BED REACTOR

    Directory of Open Access Journals (Sweden)

    Abdullah Al-Mamun

    2010-09-01

    Full Text Available A pilot scale anaerobic fluidised bed reactor (AnFBR of 2000 L capacity was studied to determine its performance to treat palm oil mill effluent (POME. The pilot plant was operated at ambient temperature with diluted POME as substrate. It took 17 days for the start-up of the reactor with pre-seeded sand media. The AnFBR was capable to remove a large portion of organics at relatively shorter retention time. Maximum and minimum COD removal efficiency of 85% and 65% were attained at a loading rate of 4.0 and 13.8 kgCOD/m3.d. BOD and TSS removal rates varied within the range of 64% - 91% and 68% - 89%, respectively. The AnFBR exhibited low sludge production with lower sludge volume indices (SVI. Maximum and minimum effluent indices for the effluent were 35 mL/g and 11 mL/g, respectively. Low SVI values indicated that, anaerobic fluidised bed reactors generate less sludge with fast settling properties. Promising performance at ambient temperature and for detention time shorter than the present practices supported the possibility of AnFBR to treat POME to meet the new requirement set by the DOE Malaysia.

  10. Fuzzy control structure for an anaerobic fluidised bed

    Science.gov (United States)

    Hernández, Salvador Carlos; Sanchez, Edgar N.; Béteau, Jean-François

    2012-12-01

    This article deals with the design of a fuzzy control strategy for a fluidised bed reactor, which is used for anaerobic wastewater treatment. This strategy is composed of a supervisor system and two PI L/A controllers. In addition, a biomass observer, designed on the basis of the Takagi-Sugeno approach considering a principal component analysis, is used with supervision proposals. The supervisor is also designed following the Takagi-Sugeno methodology; it detects the process state, selects and applies the most adequate control action in order to avoid the washout region. On the other side, two control actions are designed for bicarbonate regulation using the PI/LA technique: adding a base and dilution rate. These control actions, as well as the open loop operation, are selected by the supervisor in order to reject disturbances on the substrate influent allowing at the same time a high methane production. The applicability of the proposed structure in a fluidised bed reactor is illustrated via simulations.

  11. Remediation of ash problems in fluidised-bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Vuthaluru, H.B.; Zhang, D.K. [Curtin University of Technology, Perth, WA (Australia). School of Chemical Engineering

    2001-03-01

    The paper reports the control methods for mitigating particle agglomeration and bed defluidisation during fluidised-bed combustion of low-rank coals. A laboratory scale spouted-bed combustion system is used to study the effectiveness of several control methods including the use of alternative bed materials, mineral additives, pretreatment of coal and coal blending. Sillimanite, bauxite, calcite and magnesite were used as alternative bed materials whereas mineral additives viz. clay, kaosil and bauxite were injected into the combustion system while burning South Australian low-rank coal at 800{degree}C. Samples of the same coal subjected to water-washing, Al pretreatment and Ca pretreatment are also tested in the spouted-bed combustor. In addition, experiments were conducted with several coal blends prepared at ratios of 50:50 and 90:10 from two lignites and one sub-bituminous coal. Experiments showed that all the control methods are effective to different extends in reducing ash problems and resulted in extended combustion operation. Tests with alternative bed materials and mineral additives showed trouble free-operation for longer periods (7-12 h at 800{degree}C) than with sand runs at the same bed temperature. Wet pretreatment and coal blending were also found to be effective and resulted in extended combustion operation (9-12 h at 800{degree}C). Chemical analyses indicated that formation of low temperature eutectics was suppressed by Al/Ca/Mg-rich phases in ash coating of bed particles. This was identified as the main mechanism for prevention of ash problems observed with the use of alternative bed materials, mineral additives, pretreated coals and coal blends. 23 refs., 9 figs., 7 tabs.

  12. Beneficiation of pulverized coal combustion fly ash in fluidised bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cammarota, A.; Chirone, R.; Solimene, R.; Urciuolo, M. [Istituto di Ricerche sulla Combustione - C.N.R., P.le V. Tecchio 80, 80125 Napoli (Italy)

    2008-07-15

    The paper addresses the thermal treatment of pulverized coal combustion fly ash belonging to the group C of Geldart powder classification in unconventional configurations of fluidised bed reactors. A sound-assisted fluidised bed combustor operated at 850 and 750 C, and a fluidised bed combustor characterized by a conical geometry, operated at 850 C, are the two lab-scale reactors tested. Combustion experiments have been carried out at different air excesses, ranging between 10% and 170%, and in the case of the conical fluidization column with different bed inventory. Both tested configurations have been proved to be efficient to reduce the carbon content initially present in the fly ash of 11%{sub w}, to a very low level, generally smaller than 1%{sub w}. Both the fly ash residence time in the reactor and the air excess strongly influenced the reactor performance. Residence times of 3-4 min and 10-60 min have been estimated for experiments carried out with the sound-assisted fluidised bed combustor and with the conical fluidised bed combustor, respectively. Regarding the possibility of a concurrent reduction of unburned carbon in the ash and of a particle size separation of the beneficiated material, on the basis of the obtained experimental data, the sound-assisted fluidised bed combustor is not able to separate the broad particle size distribution of the fly ash in different outlet solid streams. The use of a conical fluidised bed combustor is promising to realize an efficient separation of the inlet broad particle size distribution of the fly ash fed to the reactor into narrower outlet solid streams extracted from different locations: combustor exit, top and bottom of the bed. In this framework a hydrodynamic characterization of binary mixtures in a conical fluidised bed column carried out at ambient and high temperature (850 C) has demonstrated that the operating conditions of the conical fluidised bed combustor can be chosen on the basis of a compromise

  13. Analysis of bed agglomeration during gasification of wheat straw in a bubbling fluidised bed gasifier using mullite as bed material

    OpenAIRE

    Mac an Bhaird, Seán T.; Walsh, Eilín; Hemmingway, Phil; McDonnell, Kevin; et al.

    2014-01-01

    The quantity and composition of the ash content of straw poses technical challenges to its thermal conversion and have been widely reported to cause severe ash sintering and bed agglomeration during fluidised bed gasification. Literature indicates that a combination of reactor design and bed material measures is required to avoid defluidisation at temperatures above 800 °C. Using scanning electron microscopy and energy dispersive X-ray spectroscopy this study investigated the initial agglomer...

  14. Experimental study of the mechanisms of CO{sub 2} capture by calcium cycle under circulating fluidized bed conditions; Etude experimentale des mecanismes de capture du CO{sub 2} par cycle calcium en lit fluidise circulant

    Energy Technology Data Exchange (ETDEWEB)

    Hoteit, A

    2006-06-15

    The work undertaken in this Thesis in partnership with department R and D of ALSTOM Power Boilers, CEMEX and the ADEME, relates to the experimental study of various phenomena associated to CO{sub 2} capture under circulating fluidized bed conditions. The size of particles, temperature and the CO{sub 2} concentration have an influence on the limestone calcination reaction. The reaction of carbonation of lime is not total. During successive cycles of calcination/carbonation, the rate of carbonation obtained with hydrated lime is increasingly higher than that obtained with the lime. Under continuously reducing conditions, the decomposition of sulphates present in the bed ashes is not total. This decomposition is total under reduction/oxidation cycles. A modeling of calcination allowed to determine the intrinsic kinetic constants of calcination and carbonation. (author)

  15. The fission power of a conceptual fluidised bed thermal nuclear reactor

    International Nuclear Information System (INIS)

    The fluidised bed thermal nuclear reactor investigated in this paper is an innovative reactor design in which 1 mm diameter TRISO-coated fuel particles are fluidised by helium gas coolant in a 2,5 m diameter and 6 m high cylindrical bed. The coolant flow rate provides part of the reactivity control mechanism. The TRISO-coated particles have an enriched uranium oxide kernel surrounded by layers of porous carbon, pyrolytic carbon and silicon carbide. This paper presents detailed transient modelling results of this conceptual fluidised bed thermal nuclear reactor obtained using the FETCH nuclear criticality model. Previous work has provided evidence to suggest that such a reactor can be dynamically stable for low power outputs of ∝20 MWt. This work focuses on a reactor with a much higher thermal output of 100 MWt. To simulate the fluidised bed reactor the FETCH model has been used to solve the neutron transport equation in full-phase space, coupled to multi-phase gas-particle fluid dynamics. The main difficulty in modelling such a reactor is that its reactivity is a sensitive function of the fuel particle distribution inside the inner fluidised bed reactor cavity. This fuel particle distribution varies chaotically with time which is the root cause of the reactor's power variability. (orig.)

  16. Experimental measurement of variation of heat transfer coefficient and temperature gradients in 16'' deep fluidised beds

    International Nuclear Information System (INIS)

    The object of the experiments was to choose suitable particulate materials for a fluidised bed cooler, to test a deep fluidised bed for uniformity of heat transfer coefficient, and to explore the temperature distribution in a centrally heated annular fluidised bed. This memorandum records the techniques used and some of the practical aspects involved, together with the performance results obtained, for the assistance of other experimenters who may wish to use fluidised beds as a laboratory technique. Mathematical correlation of the results has not been attempted since some of the properties of the bed material were not known and to determine them was beyond the scope of the work programme. Rather, we have compared our results with those of other experimenters. Graphite tubes, for use in steady state thermal stress experiments, are to be heated by a graphite radiant heater situated in the bore and cooled on the outer surface. The tubes are 2 cm. bore, 8 cm. outside diameter and 48 cm. long. The outside temperature of the tubes is to be between 500 deg. C. and 1500 deg. C. It is estimated that the heat transfer rate required for fracture at the outer surface is 30 watts/cm2. This could readily be achieved by cooling with liquid metals, water or high velocity gas. However, serious problems of either materials compatibility or mechanical complexity make these undesirable. A water-cooled fluidised bed of compatible solids fluidised with nitrogen gas can overcome most of these problems and give heat transfer coefficients close to that required, vis. about 0.1 w/cm C . A coolant bed about 20'' long would be required and an annulus of about 2'' radial width round the specimen was considered to be practicable

  17. Comparison of waste water treatment between completely mixed and fluidised bed reactor; development and structure of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Toman, M.; Mejac, B.

    1988-08-01

    The aerobic biological treatment of waste water from production of semisynthetic antibiotics in a completely mixed reactor and in a fluidised bed reactor was studied. The formation and development of new biomass on the sand of a fluidised bed was observed, so that differences in the structure of organisms of the concomitant biocenosis could be detected. In a fluidised bed reactor the same quality of treatednwater was gained on account of a 4-5 times higher volumetric and hydraulic loading as it was the case with a conventional activated sludge plant. The biocenosis of the fluidised bed was abundant in individua and species. The biofilm of the sand depended on substrate degradation rate as well as on rubbing among the sand particles. An optimal biofilm developed on the sand of a fluidised bed reactor 10 to 15 days after the experiment had began, and that condition remained unchanged as the experiment continued.

  18. Status and future prospects of fluidised bed firing systems in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Nies, Michael [Stadtwerke Duisburg AG, Duisburg (Germany); Niemeyer, Peter [Ahlstrom Osnabrueck GmbH, Osnabrueck (Germany); Roeper, Bernhard [RWE Power AG, Grevenbroich (Germany); Werther, Joachim [Hamburg Univ. of Technology, Hamburg (Germany); Mueller, Ludwig [VGB PowerTech e.V., Essen (Germany)

    2012-07-01

    Until the 1990s, fluidised bed combustion was restricted to 350 MW of output, today, plants up to 600 MW are possible. The most important German concepts are presented by selected examples. These comprise mainly co-generation plants and industrial power plants with process steam extraction, biomass-fired plants with 20 MW as well as waste incineration plants and sewage sludge mono combustion system. According to market conditions, it is to be expected that decentralised plants with heat utilisation and flexible duo unit plants as well as fluidised bed combustion plants are going to be competitive. (orig.)

  19. A CFD approach on the effect of particle size on char entrainment in bubbling fluidised bed reactors

    International Nuclear Information System (INIS)

    The fluid - particle interaction inside a 41.7 mg s-1 fluidised bed reactor is modelled. Three char particles of sizes 500 μm, 250 μm, and 100 μm are injected into the fluidised bed and the momentum transport from the fluidising gas and fluidised sand is modelled. Due to the fluidising conditions and reactor design the char particles will either be entrained from the reactor or remain inside the bubbling bed. The particle size is the factor that differentiates the particle motion inside the reactor and their efficient entrainment out of it. A 3-Dimensional simulation has been performed with a completele revised momentum transport model for bubble three-phase flow according to the literature as an extension to the commercial finite volume code FLUENT 6.2.

  20. Study of the behaviour of gaseous pollutants during the incineration of municipal solid waste in a circulating fluidized bed; Etude du devenir des polluants gazeux lors de l`incineration d`ordures menageres en lit fluidise circulant

    Energy Technology Data Exchange (ETDEWEB)

    Desroches-Ducarne, E.

    1997-09-30

    The Circulating Fluidized Bed (CFB) combustor seems to be a promising tool, being able to burn a variety of fuels whilst maintaining low emissions levels. The present work describes an experimental and theoretical investigation into the formation and destruction of acid gases (HCl and SO{sub 2}) and nitrogen oxides (NO and N{sub 2}O) during Municipal Solid Waste incineration. Experiments were conducted on six different fuels (namely MSW, mixtures of wood, paper, plastics, polyethylene...). The effect of five parameters (temperature, excess air, air staging, calcium addition and moisture) on the emissions levels was investigated. A statistical study on the experimental data allowed us to quantify the impact of the operating conditions and the influence of the fuel characteristics. A mathematical model has been developed which includes the main physical and chemical steps of combustion in CFB and which predicts the pollutant emissions under various operating conditions. A parametric study of the influence of operating conditions on emissions showed that in most cases the trends predicted by the model are in agreement with the experimental observations. (author) 175 refs.

  1. Formation and destruction mechanisms of nitrogen oxides during coal combustion in circulating fluidized beds; Mecanismes de formation et de destruction des oxydes d`azote lors de la combustion du charbon en lit fluidise circulant

    Energy Technology Data Exchange (ETDEWEB)

    Borrel, G.; Lecuyer, I. [Universite du Haut-Rhin, 68 - Mulhouse (France)

    1997-01-01

    Formation and reduction of nitrogen oxides (NO and N{sub 2}O) during coal combustion in a circulating fluidized bed (CFBC) are very complicated and yet badly known. The aim of the present study was to better characterize these phenomena on a small-sized experimental unit (reactor diameter: 5 cm), with the possibility to re-inject the solids in the bottom of the furnace, as in a real industrial unit. This should allow then to develop a numerical set of chemical reactions involving the nitrogen oxides. The experimental results showed that coal ash plays a great role in reducing nitrogen oxides, the determining parameter being the quantity of unburnt carbon remaining in the ash. The study then detailed the interaction between nitrogen oxides and de-volatilized (char) according to the temperature, NO{sub x} concentration and the mass of solid. In the absence of oxygen small quantities of char can very significantly reduce NO as well as N{sub 2}O. It was possible to establish destruction kinetics on these particles, and orders of reaction could be determined versus the NO{sub x} concentration and the char particle mass (heterogeneous phase chemical reactions). Then, the coal pyrolysis study enabled to identify the products released during coal devolatilization and thermogravimetric analyses displayed several successive weight losses due CO, CO{sub 2} and CH{sub 4} releases, during a linear temperature increase. Lastly coal combustion was studied in the small pilot with variable experimental conditions. Using the previous experimental was studied in the small pilot with variable experimental conditions. Using the previous experimental results, a model was developed to calculate NO{sub x} concentrations during the coal combustion and validated. The NO and N{sub 2}O contents calculated are thoroughly correlated with the experimental data whatever the injection carbon/oxygen ratio is. (author) 96 refs.

  2. Experimental and predicted approaches for biomass gasification with enriched air-steam in a fluidised bed.

    Science.gov (United States)

    Fu, Qirang; Huang, Yaji; Niu, Miaomiao; Yang, Gaoqiang; Shao, Zhiwei

    2014-10-01

    Thermo-chemical gasification of sawdust refuse-derived fuel was performed on a bench-scale fluidised bed gasifier with enriched air and steam as fluidising and oxidising agents. Dolomite as a natural mineral catalyst was used as bed material to reform tars and hydrocarbons. A series of experiments were carried out under typical operating conditions for gasification, as reported in the article. A modified equilibrium model, based on equilibrium constants, was developed to predict the gasification process. The sensitivity analysis of operating parameters, such as the fluidisation velocity, oxygen percentage of the enriched air and steam to biomass ratios on the produced gas composition, lower heating value, carbon conversion and cold gas efficiency was investigated. The results showed that the predicted syngas composition was in better agreement with the experimental data compared with the original equilibrium model. The higher fluidisation velocity enhanced gas-solid mixing, heat and mass transfers, and carbon fines elutriation, simultaneously. With the increase of oxygen percentage from 21% to 45%, the lower heating value of syngas increased from 5.52 MJ m(-3) to 7.75 MJ m(-3) and cold gas efficiency from 49.09% to 61.39%. The introduction of steam improved gas quality, but a higher steam to biomass ratio could decrease carbon conversion and gasification efficiency owing to a low steam temperature. The optimal value of steam to biomass ratio in this work was 1.0. PMID:25265865

  3. Performance of entrained flow and fluidised bed biomass gasifiers on different scales

    International Nuclear Information System (INIS)

    Highlights: ► Gasification of biomass in fluidised bed and entrained flow reactors is modelled. ► The systems are evaluated for a thermal input from 10 MW to 500 MW. ► Special attention is given to the preconditioning methods for biomass. ► Fluidised bed and entrained flow gasifiers are compared in terms of efficiency and costs. - Abstract: This biomass gasification process study compares the energetic and economic efficiencies of a dual fluidised bed and an oxygen-blown entrained flow gasifier from 10 MWth to 500 MWth. While fluidised bed gasification became the most applied technology for biomass in small and medium scale facilities, entrained flow gasification technology is still used exclusively for industrial scale coal gasification. Therefore, it is analysed whether and for which capacity the entrained flow technology is an energetically and economically efficient option for the thermo-chemical conversion of biomass. Special attention is given to the pre-conditioning methods for biomass to enable the application in an entrained flow gasifier. Process chains are selected for the two gasifier types and subsequently transformed to simulation models. The simulation results show that the performance of both gasifier types is similar for the production of a pressurised product gas (2.5 MPa). The cold gas efficiency of the fluidised bed is 76–79% and about 0.5–2 percentage points higher than for the entrained flow reactor. The net efficiencies of both technologies are similar and between 64% and 71% depending on scale. The auxiliary power consumption of the entrained flow reactor is caused mainly by the air separation unit, the oxygen compression, and the fuel pulverisation, whereas the fluidised bed requires additional power mainly for gas compression. The costs for the product gas are determined as between €4.2 cent/kWh (500 MWth) and €7.4 cent/kWh (10 MWth) in the economic analysis of both technologies. The study indicates that the entrained flow

  4. Residues characterisation from the fluidised bed combustion of East London's solid recovered fuel

    OpenAIRE

    Balampanis, Dimitris E.; Pollard, Simon J. T.; Simms, N; Longhurst, Philip J.; Coulon, Frederic; Villa, Raffaella

    2010-01-01

    Waste thermal treatment in Europe is moving towards the utilisation of the combustible output of mechanical, biological treatment (MBT) plants. The standardisation of solid recovered fuels (SRF) is expected to support this trend and increase the amount of the generated combustion residues. In this work, the residues and especially the fly ashes from the fluidised bed combustion (FBC) of East London’s NCV 3, Cl 2, and Hg 1 class SRF, are characterised. The following toxicity ...

  5. Effect of bed temperature and bed composition on agglomeration during gasification of high-sodium, high-sulphur lignite in a spouted fluidised bed

    Energy Technology Data Exchange (ETDEWEB)

    D.P. McCullough; P.J. Mullinger; P.J. Ashman [University of Adelaide, Adelaide, SA (Australia). Cooperative Research Centre for Clean Power from Lignite, School of Chemical Engineering

    2003-07-01

    Fluidised bed gasification (FBG) is an alternative process for coal utilisation that delivers improved efficiencies and lower temperature operation compared to conventional technology. Agglomeration and defluidisation are phenomena that have the potential to occur within fluidised bed reactors, which can interrupt stable process operation. While extensive work has been carried out investigating fluidised bed combustion of lignite, relatively little work has been carried out for lignite under fluidised bed gasification conditions. Gasification of high sodium, high sulphur content lignite in a spouted bed gasifier (SBG) indicates that agglomeration and defluidisation is only an issue when maximum bed temperature exceeds approximately 850{degree}C and air/fuel ratios of 2.5 outside of these conditions, defluidisation is not detected. It is also demonstrated that defluidisation occurs before agglomeration, rather than as a result of agglomeration as previously thought. The Rosin-Rammler method of describing particle size distribution is found to yield appropriate variables for quantification of the extent of agglomeration taking place in cases where defluidisation is a factor. However, it has been shown by this method that while initial results indicated that agglomeration extent varies directly with maximum bed temperature, further results have shown that other variables, such as superficial velocity, have a significant impact on the extent of agglomeration. Investigations are currently continuing. 9 refs., 8 figs., 9 tabs.

  6. Model of fragmentation of limestone particles during thermal shock and calcination in fluidised beds

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, J.; Pikkarainen, T.; Tourunen, A.; Rasanen, M.; Jantti, T. [VTT Technical Research Center, Jyvaskyla (Finland)

    2008-11-15

    Fragmentation of limestone due to thermal shock and calcination in a fluidised bed was studied through experiments and modelling. The time for heating was estimated by model calculations and the time for calcination by measurements. Fragmentation due to thermal shock was carried out by experiments in a CO{sub 2} atmosphere in order to prevent the effect of calcination. It was found to be much less than fragmentation due to calcination. Average particle sizes before and after fragmentation are presented for several types of limestone. The effects of particle size and gas composition on the primary fragmentation were studied through experiments. Increasing the fluidisation velocity increased the tendency to fragment. The evolution of the particle size distribution (PSD) of limestone particles due to thermal shock and during calcination (or simultaneous calcination and sulphation) were calculated using a population balance model. Fragmentation due to thermal shock is treated as an instantaneous process. The fragmentation frequency during calcination is presented as exponentially decaying over time. In addition to the final PSD, this model also predicts the PSD during the calcination process. The fragmentation was practically found to end after 10 min. Furthermore. a population balance method to calculate the particle size distribution and amount of limestone in fluidised beds in dynamic and steady state, when feeding history is known, is presented.

  7. An extended version of the countercurrent backmixing model suitable for solid mixing in two-dimensional fluidised beds

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, J.C.; Grasa, G. [CSIC, Inst. Carboquimica, Zaragoza (Spain). Dept. of Energy & Environment

    2001-10-08

    A new mathematical model to describe axial and lateral mixing in fluidised beds is presented. The model is an extension of previous versions of the countercurrent backmixing model (CCBM) that were restricted to axial mixing only. The fluidised bed is divided into parallel 'mixing columns', which are convective currents induced by the bubbles. Each mixing column has a central upflowing stream of solids and two adjacent moving downwards. The practical application of the model requires a minimum knowledge of the bubble properties and the definition of one empirical parameter: the exchange coefficient between countercurrent phases, K. The model can be rapidly solved with the proposed algorithm and reproduces semi-quantitatively the main features observed in mixing experiments carried out in a bidimensional fluidised bed of coal and PVC as tracer.

  8. Optimum temperature for sulphur retention in fluidised beds working under oxy-fuel combustion conditions

    OpenAIRE

    Diego Poza, Luis F. de; Rufas, Aránzazu; García Labiano, Francisco; Obras-Loscertales, Margarita de las; Abad Secades, Alberto; Gayán Sanz, Pilar; Adánez Elorza, Juan

    2013-01-01

    Oxy-fuel combustion is one of the leading options for power generation with CO 2 capture. The process consists of burning the fuel with a mixture of nearly pure oxygen and a CO 2 -rich recycled flue gas, result- ing in a product flue gas from the boiler containing mainly CO 2 and H 2 O. Among the possible boiler types, fluidised bed combustors are very appropriate for the oxy-fuel process because they allow the in situ des- ulphurisation by feeding Ca-based...

  9. Hot waste-to-energy flue gas treatment using an integrated fluidised bed reactor

    International Nuclear Information System (INIS)

    This paper describes an innovative process to increase superheated steam temperatures in waste-to-energy (WTE) plants. This solution is mainly characterised by a fluidised bed reactor in which hot flue gas is treated both chemically and mechanically. This approach, together with gas recirculation, increases the energy conversion efficiency, and raises the superheated steam temperature without decreasing the useful life of the superheater. This paper presents new experimental data obtained from the test facility installed at the Hera S.p.A. WTE plant in Forli, Italy; discusses changes that can be implemented to increase the duration of experimental testing; offers suggestions for the design of an industrial solution

  10. Calcium-based sorbents behaviour during sulphation at oxy-fuel fluidised bed combustion conditions

    OpenAIRE

    García Labiano, Francisco; Rufas, Aránzazu; Diego Poza, Luis F. de; Obras-Loscertales, Margarita de las; Gayán Sanz, Pilar; Abad Secades, Alberto; Adánez Elorza, Juan

    2011-01-01

    Sulphur capture by calcium-based sorbents is a process highly dependent on the temperature and CO2 concentration. In oxy-fuel combustion in fluidised beds (FB), CO2 concentration in the flue gas may be enriched up to 95%. Under so high CO2 concentration, different from that in conventional coal combustion with air, the calcination and sulphation behaviour of the sorbent must be defined to determine the optimum operating temperature in the FB combustors. In this work, the SO2 retention capacit...

  11. Gasification of biomass and coal in a pressurised fluidised bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J.; Jong, W. de; Hein, K.R.G. [Technische Univ. Delft (Netherlands)

    1998-09-01

    During a 3 year (1996-1998) multinational JOULE project, partly funded by the EU, experimental and theoretical research is being done on co-gasification of biomass (pelletised straw and Miscanthus) and coal in a pressurised fluidised bed reactor. The influence of feedstock and operating conditions on gasification characteristics has been studied using a 1.5 MW{sub th} gasifier, which has been operated at a pressure of 5 bar and temperatures up to 900 C. The project and the test rig are described and results obtained in the first part of the project are presented and analysed. (orig.)

  12. Energy recovery from sewage sludge by means of fluidised bed gasification.

    Science.gov (United States)

    Gross, Bodo; Eder, Christian; Grziwa, Peter; Horst, Juri; Kimmerle, Klaus

    2008-01-01

    Because of its potential harmful impact on the environment, disposal of sewage sludge is becoming a major problem all over the world. Today the available disposal measures are at the crossroads. One alternative would be to continue its usage as fertiliser or to abandon it. Due to the discussions about soil contamination caused by sewage sludge, some countries have already prohibited its application in agriculture. In these countries, thermal treatment is now presenting the most common alternative. This report describes two suitable methods to directly convert sewage sludge into useful energy on-site at the wastewater treatment plant. Both processes consist mainly of four devices: dewatering and drying of the sewage sludge, gasification by means of fluidised bed technology (followed by a gas cleaning step) and production of useful energy via CHP units as the final step. The process described first (ETVS-Process) is using a high pressure technique for the initial dewatering and a fluidised bed technology utilising waste heat from the overall process for drying. In the second process (NTVS-Process) in addition to the waste heat, solar radiation is utilised. The subsequent measures--gasification, gas cleaning and electric and thermal power generation--are identical in both processes. The ETVS-Process and the NTVS-Process are self-sustaining in terms of energy use; actually a surplus of heat and electricity is generated in both processes. PMID:17919896

  13. Recommendations for conversions of grate fired boilers to fluidising beds; Anvisningar foer konvertering av rosterpannor till fluidiserad baeddteknik

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Lars; Ingman, Rolf [AaF Energikonsult AB, Stockholm (Sweden)

    2001-03-01

    This report gives advice and recommendations for retrofitting of grate fired boilers to fluidising beds. Nine plants have been visited and experiences from these conversion projects have been gathered and analysed. Among the important points planning, fuel specification, heat balance calculations and clarifying of delivery limits can be mentioned. It is also important not to underestimate the need for education of the operational staff.

  14. Polycyclic aromatic compounds in oils derived from the fluidised bed pyrolysis of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Paul T.; Nazzal, Jamal M. [Department of Fuel and Energy, The University of Leeds, Leeds (United Kingdom)

    1995-12-01

    Oil shale was pyrolysed in a 10 cm diameterx100 cm high fluidised bed reactor with nitrogen as the fluidising gas at pyrolysis temperatures of 400, 450, 520, 570 and 620C. The gases were analysed by packed column gas chromatography. The condensed pyrolytic oils were analysed for their content of polycyclic aromatic compounds (PAC), including polycyclic aromatic hydrocarbons (PAH), sulphur-PAH (PASH) and nitrogen-PAH (PANH). The oils were fractionated into chemical classes using mini-column liquid chromatography followed by analysis using capillary column gas chromatography with flame ionisation detection (GC/FID) and capillary column GC with mass spectrometry (GC/MS) for identification and quantification of PAH. PASH and PANH were identified in the chemical class fractions using capillary column GC with selective detection and GC/MS. The pyrolytic shale oils were found to contain significant concentrations of PAH, PASH and PANH. The concentrations of PAC were increased with increasing reactor temperature and residence time. The PAH consisted mainly of naphthalene, fluorene and phenanthrene and their alkylated homologues, and lower concentrations of fluoranthene, pyrene and chrysene. The PASH identified included benzothiophene, and dibenzothiophene, and the PANH identified including indole and carbazole and their alkylated derivatives. Some of the PAC identified have been reported to be mutagenic and/or carcinogenic

  15. Alkali retention/separation during bagasse gasification: a comparison between a fluidised bed and a cyclone gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Gabra, M. [Lulea University of Technology (Sweden). Div. of Energy Engineering; Energy Technology Centre, Pitea (Sweden); Nordin, A. [Umea University (Sweden). Dept. of Inorganic Chemistry; Ohman, M. [Energy Technology Centre, Pitea (Sweden); Umea University (Sweden). Dept. of Inorganic Chemistry; Kjellstrom, B. [Lulea University of Technology (Sweden). Div. of Energy Engineering

    2001-12-01

    Biomass fuelled integrated gasification/gas turbines (BIG/GTS) have been found to be one of the most promising technologies to maximise electricity output in the sugar industry. However, biomass fuels contain alkali metals (Na and K) which may be released during the gasification processes and cause deleterious effects on the downstream hardware (e.g. the blades of gas turbines). Much research has therefore been focused on different kinds of gas cleaning. Most of these projects are using a fluidised bed gasifier and includes extensive gas cleaning which leads to a high capital investment. Increasing alkali retention/separation during the gasification may lead to improved producer gas quality and reduced costs for gas cleaning. However, very little quantitative information is available about the actual potential of this effect. In the present work, comparative bench-scale tests of bagasse gasification were therefore run in an isothermal fluidised bed gasifier and in a cyclone gasifier to evaluate which gasification process is most attractive as regards alkali retention/separation, and to try to elucidate the mechanisms responsible for the retention. The alkali retention in the fluidised bed gasifier was found to be in the range of 12-4% whereas in the cyclone gasifier the alkali separation was found to be about 70%. No significant coating of the fluidised bed's bed material particles could be observed. The SEM/EDS and the elemental maps of the bed material show that a non-sticky ash matrix consisting of mainly Si, AI and K were distributed in a solid form separated from the particles of bed material. This indicates the formation of a high temperature melting potassium containing silicate phase, which is continuously scavenged and lost from the bed through elutriation. (author)

  16. Environmental management in a fluidised bed thermal power station in Jharia coalfield

    International Nuclear Information System (INIS)

    Tata Steel has installed a 10-MW fluidised bed thermal power plant in its Jamadoba group of collieries in Jharia coalfield to generate electricity from the washery rejects, which were a major source of environmental pollution. The washery rejects having about 64% ash and 26.67% carbon are used as fuel in the plant. The plant has been provided with measures to minimise pollution by avoiding formation of NOx due to low temperature of 850-400 degC at atmospheric pressure, collecting over 90% of fly-ash in ESP and then placing it in safe areas, by utilising the coarse ash as stowing material and controlling noise levels within the permissible limits. The effluents are suitably treated to maintain pH from 7.5 to 8.5, reduce TSS below 100 mg/l and eliminate the presence of oil and gases. Brief details of various equipment have also been given. (author)

  17. Forest biomass waste combustion in a pilot-scale bubbling fluidised bed combustor

    International Nuclear Information System (INIS)

    Combustion experiments of forest biomass waste in a pilot-scale bubbling fluidised bed combustor were performed under the following conditions: i) bed temperature in the range 750-800 oC, ii) excess air in the range 10-100%, and iii) air staging (80% primary air and 20% secondary air). Longitudinal pressure, temperature and gas composition profiles along the reactor were obtained. The combustion progress along the reactor, here defined as the biomass carbon conversion to CO2, was calculated based on the measured CO2 concentration at several locations. It was found that 75-80% of the biomass carbon was converted to CO2 in the region located below the freeboard first centimetres, that is, the region that includes the bed and the splash zone. Based on the CO2 and NO concentrations in the exit flue gas, it was found that the overall biomass carbon conversion to CO2 was in the range 97.2-99.3%, indicating high combustion efficiency, whereas the biomass nitrogen conversion to NO was lower than 8%. Concerning the Portuguese regulation about gaseous emissions from industrial biomass combustion, namely, the accomplishment of CO, NO and volatile organic compounds (VOC) (expressed as carbon) emission limits, the set of adequate operating conditions includes bed temperatures in the range 750oC-800 oC, excess air levels in the range 20%-60%, and air staging with secondary air accounting for 20% of total combustion air.

  18. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor.

    OpenAIRE

    Wagland, Stuart Thomas; Kilgallon, P.; Coveney, R.; Garg, A; Smith, Richard; Longhurst, Philip J.; Pollard, Simon J. T.; Simms, Nigel J

    2011-01-01

    An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50kW fluidised bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical trea...

  19. Validation of the flux number as scaling parameter for top-spray fluidised bed systems

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, P.; Jensen, Anker Degn

    2008-01-01

    2SO4 using Dextrin as binder in three top-spray fluidised bed scales, i.e. a small-scale (type: GEA Aeromatic-Fielder Strea-1), medium-scale (type: Niro MP-1) and large-scale (type: GEA MP-2/3). Following the parameter guidelines adapted from the original patent description, the flux number was...... tested in the preferred range of 3.5-4.5 as well as with a value of 4.7 in a total of 24 experiments. The agglomeration tendency was observed to decrease with increasing flux number on an overall basis, but coating conditions with flux number values below 4.5 resulted in a complete collapse of the bed....... Coating conditions with flux number values of 4.5 and 4.7 were however successful in terms of agglomeration tendency and match of particle size fractions, but indicated in addition a strong influence of nozzle pressure. The present paper suggests even narrower boundaries for the flux number compared to...

  20. Occurrence of bromine in fluidised bed combustion of solid recovered fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vainikka, P.

    2011-12-15

    Corrosive ash species are the single most important factor limiting the electric efficiency of steam boiler plants fired with waste or biomass. Chlorine has been found to have a central role in the chemistry involved as it reduces the melting temperature of ash, forms corrosive vapour and gas species in the furnace and halogenated deposits on boiler heat transfer surfaces. In this context chlorine has been extensively researched. At the time of writing this thesis there was hardly any published data available on the occurrence of bromine (Br) in the aforementioned context. The objective of this work was to review the occurrence of bromine in solid fuels and characterise the behaviour of bromine in full-scale fluidised bed combustion. The review on the occurrence of bromine in solid fuels revealed that in anthropogenic wastes bromine is mainly found in connection to flame retarded substances. Several weight percentages of bromine can be found in plastics treated with brominated flame retardants (BFRs). Bromine is typically found some 100-200 mg kg-1 in mixed municipal solid wastes (MSW). Bromine may be enriched in fuels with high share of plastics, such as solid recovered fuel (SRF) or refuse derived fuel (RDF). Up to 2000 mg kg-1 was found as a monthly average in SRF, typical levels being 20-200 mg kg-1. Wastewater sludge from paper mills may contain bromine 20-100 mg kg-1 due the use of bromine based biocides. In other fuels bromine may be found in significant amounts in marine influenced coal deposits and peat as well as in biomass treated with brominated pesticides. In the experimental part SRF, spruce bark and wastewater sludge from a paper mill were co-fired in a full- scale bubbling fluidised bed (BFB) boiler, and the collected fuels, aerosols and waterwall deposits were analysed with the focus on the fate of bromine. Bromine was mainly found to form water soluble high vapour pressure alkali metal halides in the furnace - in the form of KBr(g) and NaBr(g) as

  1. Reactive Gas Solids Flow in Circulating Fluidised Beds

    DEFF Research Database (Denmark)

    Hjertager, Bjørn Helge; Solberg, Tron; Hansen, Kim Granly

    2005-01-01

    Progress in modelling and simulation of flow processes in gas/particle systems carried out at the authors? research group are presented. Emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi fluid techniques. Turbulence modelling strategies for gas...

  2. Thermal treatment of electronic waste in a fluidised bed and chemical digestion of solid products.

    Science.gov (United States)

    Woynarowska, Amelia; Żukowski, Witold; Żelazny, Sylwester

    2016-07-01

    The article presents the results of e-waste thermal treatment in a fluidised bed reactor and solid products digestion under acidic conditions. During the processes, measurements of carbon monoxide, carbon dioxide, volatile organic compounds, nitrogen oxides, sulphur dioxide, hydrogen chloride, hydrogen bromide, hydrogen cyanide, ammonia, phenol, aliphatic and aromatic hydrocarbons, hydrogen fluoride and phosgene were carried out. Several digestion tests of the solid residue in sulphuric acid (VI) at 25 °C-65 °C, for 55 min-24 h were conducted. In each case, the dilution method was used, i.e. preliminary digestion in concentrated sulphuric acid (VI) (95%) for 40 min, and then dilution to expected concentrations (30%-50%). Most preferred results were obtained using sulphuric acid (VI) with a target concentration of 40% at 65 °C, where the leaching degrees were 76.56% for copper, 71.67% for iron, 91.89% for zinc and 97.40% for tin. The time necessary to effectively carry out the digestion process was 220 min. PMID:27245176

  3. Residues characterisation from the fluidised bed combustion of East London's solid recovered fuel.

    Science.gov (United States)

    Balampanis, D E; Pollard, S J T; Simms, N; Longhurst, P; Coulon, F; Villa, R

    2010-07-01

    Waste thermal treatment in Europe is moving towards the utilisation of the combustible output of mechanical, biological treatment (MBT) plants. The standardisation of solid recovered fuels (SRF) is expected to support this trend and increase the amount of the generated combustion residues. In this work, the residues and especially the fly ashes from the fluidised bed combustion (FBC) of East London's NCV 3, Cl 2, and Hg 1 class SRF, are characterised. The following toxicity indicators have been studied: leachable chlorine, organochlorides expressed as pentachlorobenzene and hexachlorobenzene, and the heavy metals Cu, Cr, Cd, Zn, Ni, and Pb. Furthermore the mineralogical pattern of the ashes has been studied by means of XRD and SEM-EDS. The results suggest that these SRF derived ashes have significantly lower quantities of Cu, Cd, Pb, Zn, leachable Cl, and organochlorides when compared to other literature values from traditional waste thermal treatment applications. This fact highlights the importance of modern separation technologies employed in MBT plants for the removal of components rich in metals and chlorine from the combustible output fraction of SRF resulting to less hazardous residues. PMID:20231082

  4. Steam gasification of various feedstocks at a dual fluidised bed gasifier: Impacts of operation conditions and bed materials

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Christoph; Koppatz, Stefan; Hofbauer, Hermann [Vienna University of Technology, Institute of Chemical Engineering, Vienna (Austria)

    2011-03-15

    Gasification of biomass is an attractive technology for combined heat and power production as well as for synthesis processes such as production of liquid and gaseous biofuels. Dual fluidised bed (DFB) technology offers the advantage of a nearly nitrogen-free product gas mainly consisting of H{sub 2}, CO, CO{sub 2} and CH{sub 4}. The DFB steam gasification process has been developed at Vienna University of Technology over the last 15 years using cold flow models, laboratory units, mathematical modelling and simulation. The main findings of the experimental work at a 100-kW pilot scale unit are presented. Different fuels (wood pellets, wood chips, lignite, coal, etc.) and different bed materials (natural minerals such as olivine, limestones, calcites, etc. as well as modified olivines) have been tested and the influence on tar content as well as gas composition was measured and compared among the different components. Moreover, the influence of operating parameters such as fuel moisture content, steam/fuel ratio and gasification temperature on the product gas has been investigated. DFB steam gasification of solid biomass coupled with CO{sub 2} capture, the so-called absorption enhanced reforming (AER) process, is highlighted. The experiments in pilot scale led to commercial realisation of this technology in demonstration scale. Summarising, the DFB system offers excellent fuel flexibility to be used in advanced power cycles as well as in polygeneration applications. (orig.)

  5. Co-firing of pressed sugar beet pulp with coal in a laboratory-scale fluidised bed combustor

    International Nuclear Information System (INIS)

    Highlights: • Pressed pulp (71% moisture) has been successfully co-fired with coal. • Maximum pulp proportion in the blend for successful operation was 50%. • Effect of moisture can increase throughput of fluidised bed. • No agglomeration observed during extended co-firing tests. • NOx emissions were observed to be reduced during co-firing. - Abstract: Relatively cheap, poor quality, unprepared biomass materials can be difficult to burn efficiently on a large commercial scale because of their variable composition, relatively low calorific values and high moisture contents. Consequently it is often necessary to co-fire these materials with a hydrocarbon support fuel to ensure stable and efficient combustion. Fluidised bed combustion (FBC) is a promising method for burning mixtures of fuels with widely differing individual characteristics although there is a need for further information on the “optimum” conditions for efficient operation as well as on the proportions of support fuel which should be used in particular applications. This paper is therefore concerned with co-firing of coal with pressed sugar beet pulp, (a solid biomass with an average moisture content of 71%), in a lab scale (<25 kW net thermal input) fluidised bed combustor. The project was undertaken in collaboration with British Sugar plc. who operate a large coal-fired fluidised bed, with a nominal thermal rating of 40 MW, to generate hot combustion gases for use in subsequent drying applications. The combustion characteristics of different coal and pressed pulp mixtures were investigated over a wide range of operating conditions. For stable combustion the maximum proportion of pulp by mass in the blended fuel was limited to 50%. However under these co-firing conditions a fixed bed temperature can be achieved with 20% lower fluidising air (when compared with coal alone) since evaporation of the moisture in the pressed pulp provides additional cooling of the bed. This reduction in

  6. Co-gasification of meat and bone meal with coal in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    E. Cascarosa; L. Gasco; G. Gea; J.L. Sanchez; J. Arauzo [Universidad de Zaragoza (Spain). Thermochemical Processes Group

    2011-08-15

    After the Bovine Spongiform Encephalopathy illness appeared, the meat and bone meat (MBM) produced from animal residues became an important waste. In spite of being a possible fuel due to its heating value (around 21.4 MJ/kg), an important fraction of the meat and bone meal is being sent to landfills. The aim of this work is to evaluate the co-gasification of low percentages of meat and bone meal with coal in a fluidised bed reactor as a potential waste management alternative. The effect of the bed temperature (800-900{sup o}C), the equivalence ratio (0.25-0.35) and the percentage of MBM in the solid fed (0-1 wt.%) on the co-gasification product yields and properties is evaluated. The results show the addition of 1 wt.% of MBM in a coal gasification process increases the gas and the liquid yield and decreases the solid yield at 900{sup o}C and 0.35 of temperature and equivalence ratio operational conditions. At operational conditions of 900{sup o}C and equivalence ratio of 0.35, the specific yield to gas (y{sub gas}) increases from 3.18 m{sup 3}(STP)/kg to 4.47 m{sup 3}(STP)/kg. The gas energy yield decreased 24.1% and the lower heating value of the gas decreases from 3.36 MJ/m{sup 3}(STP) to 2.16 MJ/m{sup 3}(STP). The concentration of the main gas components (H{sub 2}, CO and CO{sub 2}) hardly varies with the addition of MBM, however the light hydrocarbon concentrations decrease and the H{sub 2}S concentration increases at the higher temperature (900{sup o}C). 32 refs., 9 figs., 7 tabs.

  7. Behaviour of meat and bonemeal/peat pellets in a bench scale fluidised bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    McDonnell, K.; Desmond, J.; Leahy, J.J.; Howard-Hildige, R.; Ward, S. [University College Dublin, Dublin (Ireland). Agriculture and Food Engineering Department

    2001-01-01

    As a result of the recent Bovine Spongiform Encephalopathy crisis in the European beef industry, safe animal by-product disposal is currently being addressed. One such disposal option is the combustion of by-product material such as meat and bone meal (MBM) in a fluidised bed combustor (FBC) for the purpose of energy recovery. Two short series of combustion tests were conducted on a FBC at the University of Twente, the Netherlands. In the first series, pellets (10 mm in diameter and approximately 10 mm in length) were made from a mixture of MBM and milled peat, at MBM inclusion rates of 0%, 30%, 50%, 70% and 100%. In the second series of tests, the pellets were commercially made and were 4.8 mm in diameter and between 12 and 15 mm long. These pellets had a weight of about 0.3 g and contained 0%, 25%, 35%, 50% and 100% MBM inclusion with the peat. Both sets of pellets were combusted at 800{degree}C. The residence times in the FBC varied from 300 s (25% MBM inclusion) to 120 s (100% MBM inclusion) for the first series of pellets. Increasing compaction pressure increased the residence time. For the second series of pellets, the residence time varied from about 300 s (25% MBM inclusion) to 100 s (100% MBM inclusion). MBM was found to be a volatile product (about 65%) and co-firing it with milled peat in a pelleted feed format reduces its volatile intensity. Pellets made from 100% bone based meal remained intact within the bed and are thought to have undergone a process of calcination during combustion. A maximum MBM inclusion rate of 35% with milled peat in a pellet is recommended.

  8. Combustion studies of high moisture content waste in a fluidised bed.

    Science.gov (United States)

    Suksankraisorn, K; Patumsawad, S; Fungtammasan, B

    2003-01-01

    The combustion of three high moisture content waste materials in a fluidised bed combustor has been investigated and a comparison with co-firing of these materials with coal in the same combustor has been made. Waste materials burnt were olive oil waste, municipal solid waste and potato, which is representative of vegetable waste. Mixtures of up to 20% mass concentration water in the waste were fed to the combustor. Above that value the moisture content was too high to sustain combustion without addition of coal. Measurements of CO, NOx, SO2 temperatures were made and the carbon combustion efficiency evaluated. Co-firing with coal resulted in markedly higher combustion efficiencies with an increase of approximately 10-80% when burning the simulated MSW. However, this was much lower than the value of 93% when coal was burnt on its own. It was also much lower than the value obtained, average 90%, when co-firing potato and olive oil waste with coal and there was little difference in the combustion efficiency between the two types of waste and with increasing moisture content. It was concluded that the high ash content of the simulated MSW 26%, compared with 5% in the other two waste materials resulted in slower burning and consequently the char particles were elutriated from the bed without being fully burnt. In term of gaseous emissions during co-combustion, CO emission is relatively insensitive to change in waste fraction. While emission of SO2 can be reduced as the waste fraction increases as a result of fuel-S dilution. But in terms of percent fuel-S converted, it is actually increased by increasing waste fraction. Emissions of NO and N2O increase slightly with MSW fraction. PMID:12893016

  9. An Analytical Solution Applied to Heat and Mass Transfer in a Vibrated Fluidised Bed Dryer

    Energy Technology Data Exchange (ETDEWEB)

    Picado, Apolinar

    2011-07-01

    A mathematical model for the drying of particulate solids in a continuous vibrated fluidised bed dryer was developed and applied to the drying of grain wetted with a single liquid and porous particles containing multicomponent liquid mixtures. Simple equipment and material models were applied to describe the process. In the plug-flow equipment model, a thin layer of particles moving forward and well mixed in the direction of the gas flow was regarded; thus, only the longitudinal changes of particle moisture content and composition as well as temperature along the dryer were considered. Concerning the material model, mass and heat transfer in a single isolated particle was studied. For grain wetted with a single liquid, mass and heat transfer within the particles was described by effective transfer coefficients. Assuming a constant effective mass transport coefficient and effective thermal conductivity of the wet particles, analytical solutions of the mass and energy balances were obtained. The variation of both transport coefficients along the dryer was taken into account by a stepwise application of the analytical solution in space intervals with non-uniform inlet conditions and averaged coefficients from previous locations in the dryer. Calculation results were verified by comparison with experimental data from the literature. There was fairly good agreement between experimental data and simulation but the results depend strongly on the correlation used to calculate heat and mass transfer coefficients. For the case of particles containing a multicomponent liquid mixture dried in the vibrated fluidised bed dryer, interactive diffusion and heat conduction were considered the main mechanisms for mass and heat transfer within the particles. Assuming a constant matrix of effective multicomponent diffusion coefficients and thermal conductivity of the wet particles, analytical solutions of the diffusion and conduction equations were obtained. The equations for mass

  10. Liquid transportation fuels via large-scale fluidised-bed gasification of lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Hannula, I.; Kurkela, E.

    2013-04-15

    With the objective of gaining a better understanding of the system design trade-offs and economics that pertain to biomass-to-liquids processes, 20 individual BTL plant designs were evaluated based on their technical and economic performance. The investigation was focused on gasification-based processes that enable the conversion of biomass to methanol, dimethyl ether, Fischer-Tropsch liquids or synthetic gasoline at a large (300 MWth of biomass) scale. The biomass conversion technology was based on pressurised steam/O2-blown fluidised-bed gasification, followed by hot-gas filtration and catalytic conversion of hydrocarbons and tars. This technology has seen extensive development and demonstration activities in Finland during the recent years and newly generated experimental data has also been used in our simulation models. Our study included conceptual design issues, process descriptions, mass and energy balances and production cost estimates. Several studies exist that discuss the overall efficiency and economics of biomass conversion to transportation liquids, but very few studies have presented a detailed comparison between various syntheses using consistent process designs and uniform cost database. In addition, no studies exist that examine and compare BTL plant designs using the same front-end configuration as described in this work. Our analysis shows that it is possible to produce sustainable low-carbon fuels from lignocellulosic biomass with first-law efficiency in the range of 49.6-66.7% depending on the end-product and process conditions. Production cost estimates were calculated assuming Nth plant economics and without public investment support, CO2 credits or tax assumptions. They are 58-65 euro/MWh for methanol, 58-66 euro/MWh for DME, 64-75 euro/MWh for Fischer-Tropsch liquids and 68-78 euro/MWh for synthetic gasoline. (orig.)

  11. Gaseous emissions in pressurised fluidised-bed combustion. Analysis and summary of the pilot experiments; Kaasumaiset paeaestoet paineistetussa leijukerrospoltossa. Koetulosten kaesittely ja yhteenveto

    Energy Technology Data Exchange (ETDEWEB)

    Korpela, T.; Hippinen, I.; Konkola, M. [Helsinki Univ. of Technology, Espoo (Finland)

    1996-12-01

    The influence of operating conditions on gaseous emissions in pressurised fluidised-bed combustion have been studied. The research objectives have been behaviour of sulphur absorbents and reduction of sulphur dioxide emissions, reduction of nitrogen oxide emissions, release of vapour-phase alkalimetals and carbon monoxide emissions. The sulphur capture capacities of calcium-based sorbents under PFBC conditions have been studied at a pressurised fluidised-bed reactor and at a pressurised thermogravimetric apparatus. The project has also connected results of the experimental PFBC at HUT/EVO. (author)

  12. Results concerning a clean co-combustion technology of waste biomass with fossil fuel, in a pilot fluidised bed combustion facility

    Energy Technology Data Exchange (ETDEWEB)

    Ionel, Ioana; Trif-Tordai, Gavril; Ungureanu, Corneliu; Popescu, Francisc; Lontis, Nicolae [Politehnica Univ. Timisoara (Romania). Faculty for Mechanical Engineering

    2008-07-01

    The research focuses on a facility, the experimental results, interpretation and future plans concerning a new developed technology of using waste renewable energy by applying the cocombustion of waste biomass with coal, in a fluidised bed system. The experimental facility is working entirely in accordance to the allowed limits for the exhaust flue gas concentration, with special concern for typical pollutants. The experiments conclude that the technology is cleaner, has as main advantage the possibility to reduce both the SO{sub 2} and CO{sub 2} exhaust in comparison to standard fossil fuel combustion, under comparable circumstances. The combustion is occurring in a stable fluidised bed. (orig.)

  13. Gasification of hay in a bench scale fluidised bed reactor with emphasis on the suitability for gas turbines

    International Nuclear Information System (INIS)

    Thermal gasification of pasture plants (hay) is so far considered as difficult mainly due to the high amount of inorganics (ash, alkalis). Under certain circumstances it could be an additional resource for power production. There has been some experiments to test hay in gasification plants but most lack inorganic analysis. A bubbling fluidized bed was set up and gasification experiments with extensive analysis of the gas composition was conducted. Dolomite, silica and alumina particles were used as bed material. Silica proved to work successfully at 700 °C. Ash experiments showed that at higher temperatures silica forms compounds that melt and lead to unstable gasification conditions. Dolomite proved to be not stable enough for fluidised bed conditions, since it was ground down to smaller particles and subsequently entrained. Alumina was the best bed material tested, which was used up to 750 °C with good results. The longest run was 10 h at 750 °C without defluidisation. Despite the low temperature in the process the bulk tar concentration was low. The heating value of the gas was good (4–6 MJ m−3). The concentration of sodium and potassium in the syngas after the warm gas filter at 400 °C is low enough towards a cofiring IGCC application with 10% energy input from hay. -- Highlights: ► Stable gasification of hay in a fluidised bed could be established. ► Corrosion promoting contaminants were successfully measured. ► Axial profile measurements of permanent gases are reported. ► Axial profile of the evolution of the volume flow is reported.

  14. Strategies to reduce gaseous KCl and chlorine in deposits during combustion of biomass in fluidised bed boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kassman, Haakan

    2012-11-01

    Combustion of a biomass with an enhanced content of alkali and chlorine (Cl) can result in operational problems including deposit formation and superheater corrosion. The strategies applied to reduce such problems include co-combustion and the use of additives. In this work, measures were investigated in order to decrease the risk of superheater corrosion by reducing gaseous KCl and the content of chlorine in deposits. The strategies applied were sulphation of KCl by sulphur/sulphate containing additives (i.e. elemental sulphur (S) and ammonium sulphate (AS)) and co-combustion with peat. Both sulphation of KCl and capture of potassium (K) in ash components can be of importance when peat is used. The experiments were mainly performed in a 12 MW circulation fluidised bed (CFB) boiler equipped for research purposes but also in a full-scale CFB boiler. The results were evaluated by means of IACM (on-line measurements of gaseous KCl), conventional gas analysis, deposit and corrosion probe measurements and ash analysis. Ammonium sulphate performed significantly better than elemental sulphur. Thus the presence of SO{sub 3} (i.e. AS) is of greater importance than that of SO{sub 2} (i.e. S) for sulphation of gaseous KCl and reduction of chlorine in deposits. Only a minor reduction of gaseous KCl was obtained during co-combustion with peat although chlorine in the deposits was greatly reduced. This reduction was supposedly due to capture of K by reactive components from the peat ash in parallel to sulphation of KCl. These compounds remained unidentified. The effect of volatile combustibles on the sulphation of gaseous KCl was investigated. The poorest sulphation was attained during injection of ammonium sulphate in the upper part of the combustion chamber during the lowest air excess ratio. The explanation for this is that SO{sub 3} was partly consumed by side reactions due to the presence of combustibles. These experimental results were supported by modelling, although the

  15. Stabilization of ash from combustion of MSW in a fluidised bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, Britt-Marie; Wilewska, Magda [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Environmental Inorganic Chemistry

    2004-06-01

    Due to restrictions against the land filling of combustible waste and directives from authorities that favour energy recovery from the waste, combustion of household waste is becoming more common. Even though combustion of MSW reduces the volume of waste to be handled by approximately 90%, it produces ash residues containing most of the metals present in the original fuel and a number of other species carried through the boiler or formed during combustion. The residues can be divided into three categories: 1. Stable, inert ash that can be utilised in, for example, construction applications 2. Ash that is stable enough to be land filled as nonhazardous waste 3. Ash that contains large amounts of soluble components and potentially toxic metal species. The regulations considering leaching of ash components set limits for the release of soluble salts and toxic metals. Some fly ashes show low leachability for metals but gives a salt release that is too close to the limit for total dissolved solids. Since fly ash from FBC boilers represent the largest volume of ash from these boilers there is a need for a simple and cheap treatment method that reduces the amount of soluble salts, i.e. NaCl, KCl etc, in the ash. After stabilisation, the ash is supposed to go into a more stable category. The aim of this project has been to investigate the applicability of a method to wash such an ash with water. The work included laboratory studies of the ash properties, the water washing process, filtration properties of the ash slurry and also tests of the method in pilot scale at a full scale boiler. This work has been concentrated towards the investigation of cyclone ash from a bubbling fluidised bed boiler in Lidkoeping fired with 100% household waste. Elemental composition of ash samples before and after washing/filtration was determined by AAS or ICP after a suitable dissolution of the sample. The mineralogy of ash samples was analysed using X-ray powder diffractometry. This method

  16. Comparison between finite volume and lattice-Boltzmann method simulations of gas-fluidised beds: bed expansion and particle-fluid interaction force

    Science.gov (United States)

    Third, J. R.; Chen, Y.; Müller, C. R.

    2016-07-01

    Lattice-Boltzmann method (LBM) simulations of a gas-fluidised bed have been performed. In contrast to the current state-of-the-art coupled computational fluid dynamics-discrete element method (CFD-DEM) simulations, the LBM does not require a closure relationship for the particle-fluid interaction force. Instead, the particle-fluid interaction can be calculated directly from the detailed flow profile around the particles. Here a comparison is performed between CFD-DEM and LBM simulations of a small fluidised bed. Simulations are performed for two different values of the superficial gas velocity and it is found that the LBM predicts a larger bed expansion for both flowrates. Furthermore the particle-fluid interaction force obtained for LBM simulations is compared to the force which would be predicted by a CFD-DEM model under the same conditions. On average the force predicted by the CFD-DEM closure relationship is found to be significantly smaller than the force obtained from the LBM.

  17. Co-firing of Thai lignite and municipal solid waste (MSW) in a fluidised bed: Effect of MSW moisture content

    Energy Technology Data Exchange (ETDEWEB)

    Suksankraisorn, K.; Patumsawad, S.; Fungtammasan, B. [KMUTNB, Bangkok (Thailand). Dept. of Mechanical Engineering

    2010-12-15

    Co-firing investigation of a high-moisture-content municipal solid waste (MSW) with Thai lignite have been performed in a laboratory-scale fluidised bed to study the effects of MSW moisture content on the combustion and emission characteristics of major gaseous pollutants. In this study the comparison of 35%- and 60%-moisture MSWs were tested. The results show that the bed temperature in the case of 35%-moisture content is higher than for in case of 60%-moisture content due to the difference of physical properties of the fuel. The combustion efficiency for the case of 35%-moisture MSW is higher than that for 60%-moisture MSW due to higher bed temperature at lower waste moisture content. The synergistic effect of the co-firing of lignite with MSW reduces the emission of CO leading to increase in combustion efficiency. CO concentration for the case of 35%-moisture content is generally lower, and is much less sensitive to the level of excess air. Both the concentration values of SO{sub 2} and the fuel-S converted are lower for lower moisture content waste, particularly at high mass fraction of waste. The fuel mixture with low-moisture in waste gives higher fuel-N conversion to NO whereas the fuel-N conversion to N2O is higher for higher moisture content waste, particularly at high excess air.

  18. Testing of downstream catalysts for tar destruction with a guard bed in a fluidised bed biomass gasifier at pilot plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M.P.; Frances, E.; Campos, I.J.; Martin, J.A.; Gil, J. [Saragossa Univ. (Spain). Dept. of Chemistry and Environment Engineering; Corella, J. [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1996-12-31

    A new pilot plant for advanced gasification of biomass in a fast fluidised bed is now fully operative at University of Saragossa, Spain. It is a `3rd generation` pilot plant. It has been built up after having used two previous pilot plants for biomass gasification. The main characteristic of this pilot plant is that it has two catalytic reactors connected in series, downstream the biomass gasifier. Such reactors, of 4 cm i.d., are placed in a slip stream in a by-pass from the main gasifier exit gas. The gasification is made at atmospheric pressure, with flow rates of 3-50 kg/in, using steam + O{sub 2} mixtures as the gasifying agent. Several commercial Ni steam-reforming catalyst are being tested under a realistic raw gas composition. Tar eliminations or destructions higher than 99 % are easily achieved. (orig.) 2 refs.

  19. Chemical and ecotoxicological characterization of ashes obtained from sewage sludge combustion in a fluidised-bed reactor

    International Nuclear Information System (INIS)

    In 1999, the DEECA/INETI and the UBiA/FCT/UNL started a researching project on the partition of heavy metals during the combustion of stabilised sewage sludge (Biogran[reg]), in a fluidised-bed reactor, and on the quality of the bottom ashes and fly ashes produced. This project was entitled Bimetal and was funded by the Portuguese Foundation for Science and Technology. In this paper only the results on the combustion of Biogran[reg]) are reported. The combustion process was performed in two different trials, in which different amounts of sewage sludge and time of combustion were applied. Several ash samples were collected from the bed (bottom ashes) and from two cyclones (first cyclone and second cyclone ashes). Sewage sludge, bed material (sand) and ash samples were submitted to the leaching process defined in the European leaching standard EN 12457-2. The eluates were characterized for a set of inorganic chemical species. The ecotoxicological levels of the eluates were determined for two biological indicators (Vibrio fischeri and Daphnia magna). The results were compared with the limit values of the CEMWE French Regulation. The samples were also ranked according to an index based on the chemical characterization of the eluates. It was observed an increase of the concentration of metals along the combustion system. The ashes trapped in the second cyclone, for both combustion trials, showed the highest concentration of metals in the eluates. Chemically, the ashes of the second cyclone were the most different ones. In the ecotoxicological point of view, the ecotoxicity levels of the eluates of the ashes, for both combustion cycles, did not follow the same pattern as observed for the chemical characterization. The ashes of the first cyclone showed the highest ecotoxicity levels for V. fischeri and D. magna. This difference on chemical and ecotoxicological results proves the need for performing both chemical and ecotoxicological characterizations of the sub

  20. Chemical and ecotoxicological characterization of ashes obtained from sewage sludge combustion in a fluidised-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lapa, N. [Environmental Biotechnology Researching Unit (UBiA), Faculty of Science and Technology (FCT), New University of Lisbon - UNL, Ed. Departamental, piso 3, gabinete 377, Quinta da Torre, 2829-516 Caparica (Portugal)]. E-mail: ncsn@fct.unl.pt; Barbosa, R. [Environmental Biotechnology Researching Unit (UBiA), Faculty of Science and Technology (FCT), New University of Lisbon - UNL, Ed. Departamental, piso 3, gabinete 377, Quinta da Torre, 2829-516 Caparica (Portugal); Lopes, M.H. [National Institute of Engineering, Technology and Innovation (INETI), Department of Energetic Engineering and Environmental Control (DEECA). Edificio J, Estrada do Paco do Lumiar, 22, 1649-038 Lisbon (Portugal); Mendes, B. [Environmental Biotechnology Researching Unit (UBiA), Faculty of Science and Technology (FCT), New University of Lisbon - UNL, Ed. Departamental, piso 3, gabinete 377, Quinta da Torre, 2829-516 Caparica (Portugal); Abelha, P. [National Institute of Engineering, Technology and Innovation (INETI), Department of Energetic Engineering and Environmental Control (DEECA). Edificio J, Estrada do Paco do Lumiar, 22, 1649-038 Lisbon (Portugal); Gulyurtlu, I. [National Institute of Engineering, Technology and Innovation (INETI), Department of Energetic Engineering and Environmental Control (DEECA). Edificio J, Estrada do Paco do Lumiar, 22, 1649-038 Lisbon (Portugal); Santos Oliveira, J. [Environmental Biotechnology Researching Unit (UBiA), Faculty of Science and Technology (FCT), New University of Lisbon - UNL, Ed. Departamental, piso 3, gabinete 377, Quinta da Torre, 2829-516 Caparica (Portugal)

    2007-08-17

    In 1999, the DEECA/INETI and the UBiA/FCT/UNL started a researching project on the partition of heavy metals during the combustion of stabilised sewage sludge (Biogran[reg]), in a fluidised-bed reactor, and on the quality of the bottom ashes and fly ashes produced. This project was entitled Bimetal and was funded by the Portuguese Foundation for Science and Technology. In this paper only the results on the combustion of Biogran[reg]) are reported. The combustion process was performed in two different trials, in which different amounts of sewage sludge and time of combustion were applied. Several ash samples were collected from the bed (bottom ashes) and from two cyclones (first cyclone and second cyclone ashes). Sewage sludge, bed material (sand) and ash samples were submitted to the leaching process defined in the European leaching standard EN 12457-2. The eluates were characterized for a set of inorganic chemical species. The ecotoxicological levels of the eluates were determined for two biological indicators (Vibrio fischeri and Daphnia magna). The results were compared with the limit values of the CEMWE French Regulation. The samples were also ranked according to an index based on the chemical characterization of the eluates. It was observed an increase of the concentration of metals along the combustion system. The ashes trapped in the second cyclone, for both combustion trials, showed the highest concentration of metals in the eluates. Chemically, the ashes of the second cyclone were the most different ones. In the ecotoxicological point of view, the ecotoxicity levels of the eluates of the ashes, for both combustion cycles, did not follow the same pattern as observed for the chemical characterization. The ashes of the first cyclone showed the highest ecotoxicity levels for V. fischeri and D. magna. This difference on chemical and ecotoxicological results proves the need for performing both chemical and ecotoxicological characterizations of the sub

  1. Co-firing of biomass and other wastes in fluidised bed systems

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Lopes, H.; Boavida, D.; Abelha, P. [INETI/DEECA, Lisboa (Portugal); Werther, J.; Hartge, E.-U.; Wischnewski, R. [TU Hamburg-Harburg (Georgia); Leckner, B.; Amand, L.-E.; Davidsson, K. [Chalmers Univ. of Technology (Sweden); Salatino, P.; Chirone, R.; Scala, F.; Urciuolo, M. [Dipartimento di Ingegneria Chimica, Universita di Napoli Frederico II and Istituto di Ricerche sulla Combustione (Italy); Oliveira, J.F.; Lapa, N.

    2006-07-01

    A project on co-firing in large-scale power plants burning coal is currently funded by the European Commission. It is called COPOWER. The project involves 10 organisations from 6 countries. The project involves combustion studies over the full spectrum of equipment size, ranging from small laboratory-scale reactors and pilot plants, to investigate fundamentals and operating parameters, to proving trials on a commercial power plant in Duisburg. The power plant uses a circulating fluidized bed boiler. The results to be obtained are to be compared as function of scale-up. There are two different coals, 3 types of biomass and 2 kinds of waste materials are to be used for blending with coal for co-firing tests. The baseline values are obtained during a campaign of one month at the power station and the results are used for comparison with those to be obtained in other units of various sizes. Future tests will be implemented with the objective to achieve improvement on baseline values. The fuels to be used are already characterized. There are ongoing studies to determine reactivities of fuels and chars produced from the fuels. Reactivities are determined not only for individual fuels but also for blends to be used. Presently pilot-scale combustion tests are also undertaken to study the effect of blending coal with different types of biomass and waste materials. The potential for synergy to improve combustion is investigated. Simultaneously, studies to verify the availability of biomass and waste materials in Portugal, Turkey and Italy have been undertaken. Techno-economic barriers for the future use of biomass and other waste materials are identified. The potential of using these materials in coal fired power stations has been assessed. The conclusions will also be reported.

  2. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor

    International Nuclear Information System (INIS)

    An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidised bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal + 10% SRF) fuel mixture were found to be within the acceptable range and were generally lower than that obtained for coal + 10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel.

  3. CO-COMBUSTION OF REFUSE DERIVED FUEL WITH COAL IN A FLUIDISED BED COMBUSTOR

    OpenAIRE

    W. A. Wan Ab Karim Ghani; Alias, A. B.; K.R.CLIFFE

    2009-01-01

    Power generation from biomass is an attractive technology which utilizes municipal solid waste-based refused derived fuel. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from refuse derived fuel was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those from pure coal combustion. This study proved that the blending effect had incre...

  4. Interactions between SO2 and NOx emissions in fluidised bed combustion of coal. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.

    1994-01-01

    ;Contents: Introduction; The emissions of SO2 and NOx and their interactions in fluidized-bed combustion (FBC) of coal; SO2 and NOx emissions in FBC of coal: a literature survey; Oxidation of NH3 in a fixed bed; Oxidation of NH3: influence of SO2, CO and CO2; Modeling SO2 and NOx emissions in AFBC: a simple approach; Modeling SO2 and NOx emissions in CFBC; Modeling SO2 and NOx emissions in FBC: a fundamental approach; Optimization and Conclusions.

  5. Cofiring of difficult fuels: The effect of Ca-based sorbents on the gas chemistry in fluidised bed combustion; Kalsiumpohjaisten lisaeaineiden vaikutus leijukerrospolton kaasukemiaan vaikeiden polttoaineiden sekapoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Aeijaelae, M.; Partanen, J.; Fabritius, M.; Elo, T.; Virta, A.K. [Imatran Voima Oy, Vantaa (Finland)

    1997-10-01

    The objective of this project is to establish the effects of Ca-based sorbents on sulphur, halogen and alkaline chemistry in fluidised bed combustion of difficult fuels, and to find out any restrictions on the use of these sorbents. The aim is to acquire sufficient knowledge to ensure the operational reliability of power plants and to minimise the emissions and costs of flue gas cleaning. The results enable the owner to anticipate necessary changes associated with slagging, fouling and emission control in the existing power plants, when there are plans to increase the range of fuels used. (orig.)

  6. The analysis of furnace wall deposits in a low-NO{sub x} waste wood-fired bubbling fluidised bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Alipour, Yousef [KTH Royal Institute of Technology, Stockholm (Sweden). Div. of Surface and Corrosion Science; Viklund, Peter [Swerea - KIMAB, Kista (Sweden); Henderson, Pamela [Vattenfall Research and Development, Stockholm (Sweden)

    2012-07-01

    Increasing use is being made of biomass as fuel for electricity production as the price of natural wood continues to rise. Therefore, more use is being made of waste wood (recycled wood). However, waste wood contains more chlorine, zinc and lead, which are believed to increase corrosion rates. Corrosion problems have occurred on the furnace walls of a fluidised bed boiler firing 100 % waste wood under low-NO{sub x} conditions. The deposits have been collected and analysed in order to understand the impact of the fuel. (orig.)

  7. CO-COMBUSTION OF REFUSE DERIVED FUEL WITH COAL IN A FLUIDISED BED COMBUSTOR

    Directory of Open Access Journals (Sweden)

    W. A. WAN AB KARIM GHANI

    2009-03-01

    Full Text Available Power generation from biomass is an attractive technology which utilizes municipal solid waste-based refused derived fuel. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from refuse derived fuel was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those from pure coal combustion. This study proved that the blending effect had increased the carbon combustion efficiency up to 12% as compared to single MSW-based RDF. Carbon monoxide levels fluctuated between 200-1600 ppm were observed when coal is added. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimum modification of existing coal-fired boilers.

  8. SIMULATION OF THE DRYING CHARACTERISTICS OF GROUND NEEM SEEDS IN A FLUIDISED BED

    OpenAIRE

    A. KUYE; C.O.C. Oko; S. N. NNAMCHI

    2007-01-01

    The neem seed is a good source of neem oil as well as insecticides and pesticides. The oil and insecticides can be extracted by two consecutive leaching of neem seed kernels with hexane and ethanol. This work presents a model for simulating the drying of neem seeds in a fluidized bed. Experimental values obtained from literature were used to validate the model prediction. The drying simulation results show that there was a good agreement between the experimental values and the corresponding m...

  9. Carbonation of Mg(OH){sub 2} in a pressurised fluidised bed for CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Fagerlund, J.

    2012-07-01

    To date, a number of methods to accelerate natural weathering or in other words increase the CO{sub 2} uptake rate of various minerals have been suggested; commonly this is known as mineral carbonation or CO{sub 2} mineralisation. A brief literature review of recently published articles in this field is presented, showing that the interest in mineral carbonation is increasing. However, it should be noted that mineral carbonation is only one option in a larger portfolio of various carbon dioxide capture and storage (CCS) alternatives. Unlike many other options, the CO{sub 2} mineralisation option considered in this thesis is largely founded on the possibility to utilise the exothermic nature of magnesium carbonation and based on this notion, it has been divided into three steps. The first two steps are energy demanding, while the third step is energy 'negative', and in theory, the source of the energy required in the first two steps. Unfortunately, however, the energy demanded by the first two steps, Mg extraction and Mg(OH){sub 2} production, is (currently) much higher than what could be generated by the subsequent Mg(OH){sub 2} carbonation step. Nevertheless, opportunities to reduce the energy intensity of the process in question are still being investigated, and while an energy-neutral carbonation process might be difficult to achieve, energy requirements can still be rendered industrially acceptable (and comparable to or even better than for other CCS methods). The main focus of this thesis lies with the third step, Mg(OH){sub 2} carbonation, which is performed using a pressurised fluidised bed (PFB). The elevated CO{sub 2} pressure conditions (typically approx 20 bar) allow for the carbonation reaction to take place at higher temperatures (typically approx 500 deg C) than otherwise due to thermodynamic constraints on carbonate stability. The increase in reaction rate as a function of temperature follows the Arrhenius equation of exponential increase

  10. Air-steam gasification of different types of coals using fluidised bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Othman, N.F. [TNB Research Sdn. Bhd., Kawasan Inst. Penyelidikan, Selangor Darul Ehsan (Malaysia); Bosrooh, M.H.; Majid, K.A. [Tenaga National Univ., Selangor (Malaysia)

    2008-07-01

    Coal gasification has been touted as being the cleanest technology for producing energy from coal. The coal reserve in Malaysia is 1712 million tonnes of coal ranging from lignite to anthracite. Lignite and sub-bituminous coals have shown potential to be easily gasified and suitable for Integrated Gasification Combined Cycle (IGCC) power generation. This laboratory study investigated the gasification of Adaro, DEJ, Hunter Valley, Merit Pila and Mukah Balingian coals. The study made use of an atmospheric fluidized bed gasifier using air and air-steam as the fluidizing media. Gas chromatography was used to determination the producer gas compositions. The gasification experiments were conducted at a bed temperature of 600 degrees C. The influence of air and steam as the gasifying agents in the gasification process was studied, and the producer gas compositions were compared according to the type of gasifying agent. Air-steam gasification revealed a significant increase in carbon monoxide, carbon dioxide, methane and hydrogen content in the producer gas compared with the air gasification. The study also showed that hydrogen, carbon monoxide and methane were significantly higher in the sub-bituminous coal than in the bituminous coal. The quality of the producer gas improved, as steam was introduced as the gasifying agent. 10 refs., 4 tabs., 2 figs.

  11. Feasibility study - Lowered bed temperature in Fluidised Bed boilers for waste; Foerstudie - Saenkt baeddtemperatur i FB-pannor foer avfallsfoerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Fredrik

    2009-01-15

    Waste incineration generally serves two purposes; 1) dispose of waste and 2) generation of heat and power. In the process of power production from waste fuels, the steam temperatures in super heaters are generally limited by the severe fouling and corrosion that occurs at elevated material temperatures, caused by high concentrations of alkali metals and chloride in the flue gas and fly ash. The overall aim of a continuation of present project is to determine if a reduced temperature of the bed zone in a fluidized bed waste incinerator reduces the amount of alkali chlorides in the flue gas. If so, a reduced bed temperature might enable increased steam temperature in super heaters, or, at unchanged steam temperature, improve the lifespan of the super heaters. The results from the project are of interest for plant owners wishing to improve performance of existing plants. The results may also be used to modify the design of future plants by boiler manufacturers. The aim of present pre-study was to determine how far the bed temperature can be reduced in a waste fired fluidized bed boiler in Boraas while maintaining a stable operation with sufficient combustion temperature in the freeboard to fulfil the directives of waste incineration. A continuation of the project will be based on the results from present study. The work is based on experiments at the test boiler. During the present study, no other measurements were performed apart from some sampling of bed material and ashes at different modes of operation. The experiments show that it is possible to alter the air and recycled flue gas in such a manner that the bed temperature is reduced from about 870 deg C to 700 deg C at 100% load and normal fuel mixture, while fulfilling the directive of 850 deg C at 2 seconds. Within normal variations of the fuel properties, however, the bed temperature increases to somewhat above 700 deg C if the fuel turns dry, while it falls below 650 deg C when the fuel turns wet. With

  12. Hydrodynamic study of the turbulent fluidized beds; Etude hydrodynamique des lits fluidises turbulents

    Energy Technology Data Exchange (ETDEWEB)

    Taxil, I.

    1996-12-20

    Gas-solid turbulent fluidization has already been widely studied in the literature. However, its definition and specificities remain controversial and confused. Most of the studies focussed on the turbulent transition velocities are based on wall pressure drop fluctuations studies. In this work, we first characterize the turbulent regime with the classical study of pressure drop signals with standard deviation analysis, completed with a more specific frequency analysis and also by a stochastic analysis. Then, we evaluate bubble flow properties. Experimental results have been obtained in a 0.2 m I.D. fluidized bed expanding to 0.4 m I.D. in the freeboard in order to limit entrainment at high fluidization velocities. The so lid used was FCC catalyst. It was fluidized by air at ambient conditions. The superficial fluidization velocity ranged 0.2 to 2 m/s. Fast response transducers recorded pressure drop at the wall and bubble flow properties (bubble size, bubble velocity and bubble frequency) could be deduced from a light reflected signal at various bed locations with optical fibers. It has been shown the turbulent regime is delimited by two velocities: Uc (onset of turbulent regime) and Utr (onset of transport regime), which can be determined based on standard deviations, dominant frequencies and width of wave land of pressure signals. The stochastic analysis confirms that the signal enriches in frequencies in the turbulent regime. Bubble size and bubble velocity could be correlated to the main superficial gas velocity. The main change in bubble flow in the turbulent regime was shown to be the stagnation of the bubble frequency at its maximum value. It was also shown that the bubble flow properties in the turbulent regime imply a strong aeration of the emulsion phase. (authors) 76 refs.

  13. Steam gasification of almond shells in a fluidised bed reactor: the influence of temperature and particle size on product yield and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Rapagna, Sergio; Latif, Ajmal [Universita di L`Aquila (Italy). Dip. di Chimica, Ingegneria Chimica e Materiali

    1997-09-01

    The steam gasification of ground almond shells has been carried out in a continuous, bench scale, fluidised bed reactor in order to evaluate the effects of particle size and operating temperature on the product yield and distribution. The mean particle size was varied from nearly 300{mu}m to over 1 mm and the bed temperature from 600 to 800{sup o}C. The results reveal that for smaller particle sizes differences in product yield and distribution practically disappear as the higher temperature bound is approached, whereas for particles above 1 mm in diameter the yield continues to increase over the entire temperature range, never reaching that attained by the smaller particle systems. This behaviour is indicative of the increasing significance of extra-and/or intra-particle heat transfer limitations with increasing particle size. (author)

  14. Hydrodynamics of circulating and bubbling fluidized beds

    International Nuclear Information System (INIS)

    This paper reports that a review of modeling of the hydrodynamics of fluidization of bubbling beds showed that inviscid two-fluid models were able to predict a great deal of the behavior of bubbling beds because the dominant mechanism of energy dissipation is the drag between the particles and the fluid. The formation, the growth and the bursting of bubbles were predicted. Predicted wall-to-bed heat transfer coefficients and velocity profiles of jets agreed with measurements. Time average porosity distributions agreed with measurements done using gamma-ray densitometers without the use of any adjustable parameters. However, inviscid models could not correctly predict rates of erosion around tubes immersed into fluidized beds. To correctly model such behavior, granular stresses involving solids viscosity were added into the computer model. This viscosity arises due to random collision of particles. Several models fro this viscosity were investigated and the results compared to measurements of solids distributions in two-dimensional beds and to particle velocities reported in the literature. While in the case of bubbling beds the solids viscosity plays the role of a correction, modeling of a circulating fluidized bed (CFB) without a viscosity is not possible. Recent experimental data obtained at IIT and at IGT show that in CFB the solids viscous dissipation is responsible for as much as half of the pressure drop. From such measurement, solids viscosities were computed. These were used in the two fluid hydrodynamic model, to predict radial solids distributions and solids velocities which matched the experimental distributions. Most important, the model predicted cluster formation and transient internal circulation which is responsible for the favorable characteristics of CFBs, such as good wall-to-bed heat transfer. Video tape movies of computations compared favorably with high speed movies of the experiments

  15. Transients in a circulating fluidized bed boiler

    OpenAIRE

    Baskakov, A. P.; Munts, V. A.; Pavlyuk, E. Yu.

    2013-01-01

    Transients in a circulating fluidized bed boiler firing biomass are considered. An attempt is made to describe transients with the use of concepts applied in the automatic control theory. The parameters calculated from an analysis of unsteady heat balance equations are compared with the experimental data obtained in the 12-MW boiler of the Chalmers University of Technology. It is demonstrated that these equations describe the transient modes of operation with good accuracy. Dependences for ca...

  16. Circulating fluidized bed boilers design and operations

    CERN Document Server

    Basu, Prabir

    1991-01-01

    This book provides practicing engineers and students with insight into the design and operation of circulating fluidized bed (CFB) boilers. Through a combination of theoretical concepts and practical experience, this book gives the reader a basic understanding of the many aspects of this subject.Important environmental considerations, including solid waste disposal and predicted emissions, are addressed individually in separate chapters. This book places an emphasis on combustion, hydrodynamics, heat transfer, and material issues, and illustrates these concepts with numerous examples of pres

  17. Ash management in circulating fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    K. Redemann; E.-U. Hartge; J. Werther [Hamburg University of Technology, Hamburg (Germany). Institute of Solids Process Engineering and Particle Technology

    2008-12-15

    Ash management in fluidized bed combustion systems means keeping the particle size distribution of the bed inventory in a given range. A dynamic particle population balancing model was developed for this purpose. It was successfully applied to a refuse-derived fuel fired combustor and a coal-fired circulating fluidized bed combustor. Both were large-scale commercial units. The model uses the concept of the attrited ash particle size distribution which represents the particle size distribution of the attrited ash including the generated fines and replaces the consideration of the particle attrition in the model calculations. The model offers the possibility to gain additional information about the particle size distributions and the solids mass flows at any location of the fluidized bed system. In addition, the model provides information about the dynamic behavior of the plant and about mean residence times of particle size classes in the plant. Uncertainties about the ash formation characteristics of fuels make the management of the bed inventory a very important issue. In this context the population balancing model is used to predict the plant behavior under various operating conditions. The results of the calculations carried out give useful information about the possibilities to manage the ash inventory of such a plant. It could be shown that the recirculation of a fine fraction of the bottom drain solids is a very effective method to manage the particle size distribution of the bed inventory. The calculation results further reveal that the mean residence time of particles is strongly dependent on their size. 21 refs., 19 figs., 4 tabs.

  18. Modeling biomass gasification in circulating fluidized beds

    Science.gov (United States)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  19. Boiling Heat Transfer in Circulating Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39mm ID and 2.0m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum. The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.

  20. Boiling Heat Transfer in Circulating Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    张利斌; 李修伦

    2001-01-01

    A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39 mm ID and 2.0 m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum.The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.

  1. Nucla circulating atmospheric fluidized bed demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-31

    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  2. Transients in a circulating fluidized bed boiler

    Science.gov (United States)

    Baskakov, A. P.; Munts, V. A.; Pavlyuk, E. Yu.

    2013-11-01

    Transients in a circulating fluidized bed boiler firing biomass are considered. An attempt is made to describe transients with the use of concepts applied in the automatic control theory. The parameters calculated from an analysis of unsteady heat balance equations are compared with the experimental data obtained in the 12-MW boiler of the Chalmers University of Technology. It is demonstrated that these equations describe the transient modes of operation with good accuracy. Dependences for calculating the time constants of unsteady processes are obtained.

  3. Hydrodynamic modeling of a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Afsin Gungor; Nurdil Eskin [Istanbul Technical University, Istanbul (Turkey). Mechanical Engineering Faculty

    2007-03-15

    Hydrodynamics plays a crucial role in defining the performance of circulating fluidized beds (CFB). The numerical simulation of CFBs is very important in the prediction of its flow behavior. From this point of view, in the present study a dynamic two dimensional model is developed considering the hydrodynamic behavior of CFB. In the modeling, the CFB riser is analyzed in two regions: The bottom zone in turbulent fluidization regime is modeled in detail as two-phase flow which is subdivided into a solid-free bubble phase and a solid-laden emulsion phase. In the upper zone core-annulus solids flow structure is established. Simulation model takes into account the axial and radial distribution of voidage, velocity and pressure drop for gas and solid phase, and solids volume fraction and particle size distribution for solid phase. The model results are compared with and validated against atmospheric cold bed CFB units' experimental data given in the literature for axial and radial distribution of void fraction, solids volume fraction and particle velocity, total pressure drop along the bed height and radial solids flux.

  4. CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT

    Energy Technology Data Exchange (ETDEWEB)

    Jukkola, Glen

    2010-06-30

    Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power’s Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: • scale up of gas to solid heat transfer • high temperature finned surface design • the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas

  5. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Raymond E.; Heller, Thomas J.; Bush, Stuart A.

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  6. Nucla circulating atmospheric fluidized bed demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Raymond E.

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  7. Mineralogical and elemental composition of fly ash from pilot scale fluidised bed combustion of lignite, bituminous coal, wood chips and their blends

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaos Koukouzas; Jouni Hamalainen; Dimitra Papanikolaou; Antti Tourunen; Timo Jantti [Institute for Solid Fuels Technology and Applications, Ptolemais (Greece). Centre for Research and Technology Hellas

    2007-09-15

    The chemical and mineralogical composition of fly ash samples collected from different parts of a laboratory and a pilot scale CFB facility has been investigated. The fabric filter and the second cyclone of the two facilities were chosen as sampling points. The fuels used were Greek lignite (from the Florina basin), Polish coal and wood chips. Characterization of the fly ash samples was conducted by means of X-ray fluorescence (XRF), inductive coupled plasma-optical emission spectrometry (ICP-OES), thermogravimetric analysis (TGA), particle size distribution (PSD) and X-ray diffraction (XRD). According to the chemical analyses the produced fly ashes are rich in CaO. Moreover, SiO{sub 2} is the dominant oxide in fly ash with Al{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} found in considerable quantities. Results obtained by XRD showed that the major mineral phase of fly ash is quartz, while other mineral phases that are occurred are maghemite, hematite, periclase, rutile, gehlenite and anhydrite. The ICP-OES analysis showed rather low levels of trace elements, especially for As and Cr, in many of the ashes included in this study compared to coal ash from fluidised bed combustion in general. 23 refs., 3 figs., 5 tabs.

  8. Dual fluidized bed design for the fast pyrolysis of biomass

    Science.gov (United States)

    A mechanism for the transport of solids between fluidised beds in dual fluidised bed systems for the fast pyrolysis of biomass process was selected. This mechanism makes use of an overflow standpipe to transport solids from the fluidised bed used for the combustion reactions to a second fluidised be...

  9. COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Essam A

    2013-01-09

    Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations to study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.

  10. Investigations into the control of agglomeration and defluidisation during fluidised-bed combustion of low-rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Vuthaluru, H.B.; Linjewile, T.M.; Zhang, D.; Manzoori, A.R. [University of Adelaide, Adelaide, SA (Australia). Dept. of Chemical Engineering

    1999-03-01

    A laboratory scale spouted bed combustor was used to study the effectiveness of various control methodologies in alleviating ash-related problems such as particle agglomeration and bed defluidisation during bed combustion of low-rank coals. The three control techniques investigated are: (1) the use of mineral additives; (2) alternative bed materials; and (3) pretreatment of coal. Mineral additives including dolomite, two clays and gibbsite, were injected into the spouted bed combustor while burning a South Australian low-rank coal at 800{degree}C. Samples of the same coal treated with Al, water washing and acid washing were also tested in the spouted bed combustor. In addition, experiments were also conducted with alternative bed materials including bauxite and calcined sillimanite. Experiments showed that the three techniques reported in this paper are effective to different extents in reducing particle agglomeration and defluidisation. Among the mineral additives tested, gibbsite and a clay additive rich in kaolinite and sillimanite were found to be most effective. The use of calcined sillimanite and bauxite as alterative bed materials extended the combustion time before defluidisation occurred by 7 and 10 times, respectively, compared to silica sand. While A1 pretreatment and water-washing were found effective for control of agglomeration and defluidisation, acid-washing did not improve the operation of the bed burning this particular coal. Al enrichment in ash coating of bed particles which suppress the formation of Na and S rich eutectics was identified as the main mechanism for prevention of agglomeration and defluidisation by these control techniques. 10 refs., 4 figs., 3 tabs.

  11. Methods of forming a fluidized bed of circulating particles

    Science.gov (United States)

    Marshall, Douglas W.

    2011-05-24

    There is disclosed an apparatus for forming a fluidized bed of circulating particles. In an embodiment, the apparatus includes a bottom portion having a sidewall, the sidewall defining a curvilinear profile, and the bottom portion configured to contain a bed of particles; and a gas inlet configured to produce a column of gas to carry entrained particles therein. There is disclosed a method of forming a fluidized bed of circulating particles. In an embodiment, the method includes positioning particles within a bottom portion having a sidewall, the sidewall defining a curvilinear profile; producing a column of gas directed upwardly through a gas inlet; carrying entrained particles in the column of gas to produce a fountain of particles over the fluidized bed of circulating particles and subside in the particle bed until being directed inwardly into the column of gas within the curvilinear profile.

  12. The development and use of a laboratory scale reactor to study aspects of gasification in an air blown fluidised bed

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, A.; Zhuo, Y.; Reed, G.P.; Paterson, N.; Dugwell, D.R.; Kandiyoti, R. [Imperial College London, London (United Kingdom). Dept of Chemical Engineering

    2006-07-01

    A laboratory scale reactor has been used to study aspects of air blown, spouted bed gasifiers. The effects of operating conditions on the release of fuel-N has been studied using both coal and sewage sludge. The work has clarified the reactions involved and shown that steam has an important effect on the formation of NH{sub 3} from both volatile-N and char-N. The HCN concentration depends strongly on the residence time at temperature and on the presence (and depth) of a char bed. Trace element results indicate that bed temperatures above 900{sup o}C enhanced depletion of Ba, Pb and Zn from the bed residue and their enrichment in the fines. Mercury and selenium were released and their subsequent capture required low temperature filters operating below 120{sup o}C. The reactor was modified to enable char samples to be prepared and collected under controlled conditions. Results show the decreasing reactivity of the char with increasing temperature, time, pressure and particle size. There appears to be an initial decrease in reactivity during pyrolysis and a further longer- term decrease caused by graphitisation. 10 refs., 8 figs., 6 tabs.

  13. Investigation of coalescence kinetics of microcristalline cellulose in fluidised bed spray agglomeration: experimental studies and modelling approach

    Directory of Open Access Journals (Sweden)

    M. Peglow

    2005-06-01

    Full Text Available In this paper a model for fluidized bed spray agglomeration is presented. To describe the processes of heat and mass transfer, a physical based model is derived. The model takes evaporation process from the wetted particles as well as the effects of transfer phenomena between suspension gas and bypass gas into account. The change of particle size distribution during agglomeration, modeled by population balances, is linked to the heat and mass transfer model. A new technique is derived to extract agglomeration and nucleation rates from experimental data. Comparisons of experiments and simulations are presented.

  14. Aerobic Biodegradation of Vinegar Containing Waste Water by Mixed Culture Bacteria from Soil in Fluidised Bed Reactor

    Directory of Open Access Journals (Sweden)

    Subba Rao Kumbha

    2014-09-01

    Full Text Available The present study is focussed on biodegradation of the vinegar effluents by mixed culture bacteria isolated from the soil. The presence of acetic acid in the vinegar plant effluent contaminates the water and soil erodes if the effluent is released into the soil, ultimately contaminate the ground water table. It is necessary to remove acetic acid from the vinegar plant effluents. The technique used in this study in order to remove biodegradable matter is Aerobic Biodegradation. Varying initial concentrations of vinegar is synthetically prepared in the laboratory, which resembled the effluent released from the vinegar plant by adding the vinegar of 1%, 4%, 7% to 1250 ml water respectively. The mixed culture bacteria from the soil grown on standard Lysogeny Broth medium and introduced into the aerobic fluidized bed reactor after 24 hours and the bacteria (Bacilli, Coccibiodegraded the organic matter i.e., acetic acid present in the sample. Samples analysed for vinegar concentration, DO and salinity, electrical conductivity for every 24hr, 48hr, and 72hr by volumetric analysis. The pH, DO, salinity, electrical conductivity and concentrations of the each samples measured for every 24hr, 48hr, and 72hr respectively. The pH of 1%, 4% & 7% samples varied from 6 to 9, 5 to 8.5 & 3 to 7 respectively from day1 to day3. The dissolved oxygen altered from 4ppm to 1ppm for 1% sample from day1 to day3 and from 5ppm to 2ppm for 4% vinegar sample for day1 o day3. Electrical conductivity of 1% vinegar sample increased from 52 to 58 from day1 to day3.

  15. Refractory experience in circulating fluidized bed combustors, Task 7

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  16. Modeling of Sulfur Retention in Circulating Fluidized Bed Coal Combustors

    Institute of Scientific and Technical Information of China (English)

    乔锐; 吕俊复; 刘青; 吴学安; 岳光溪

    2001-01-01

    A comprehensive model for predicting the sulfur retention performance in circulating fluidized bedcombustors was developed which involves the different residence times, the wide particle size distribution andthe different forms of sulfur in the coal. In addition, the reductive decomposition of CaSO4 is highlighted. Thesimulation results from the model show that the sulfur contents, the bed temperature, the sorbent particle sizedistribution and the sorbent activity or the maximum conversion rate can significantly influence the sulfuretention performance in circulating fluidized bed (CFB) combustors.``

  17. Circulating fluidized bed biological reactor for nutrients removal

    Institute of Scientific and Technical Information of China (English)

    Yubo CUI; Hongbo LIU; Chunxue BAI

    2008-01-01

    A new biological nitrogen removal process, which is named herein "The circulating fluidized bed bio-reactor (CFBBR)", was developed for simultaneous removal of nitrogen and organic matter. This process was composed of an anaerobic bed (Riser), aerobic bed (Downer) and connecting device. Influent and nitrified liquid from the aerobic bed enters the anaerobic bed from the bottom of the anaerobic bed, completing the removal of nitrogen and organic matter. The system performance under the conditions of different inflow loadings and nitrified liquid recirculation rates ranging from 200% to 600% was examined. From a technical and economic point of view, the optimum nitrified liquid recirculation rate was 400%. With a shortest total retention time of 2.5 h (0.8 h in the anaerobic bed and 1.5 h in the aerobic bed) and a nitrified liquid recir-culation rate of 400% based on the intluent flow rate, the average removal efficiencies of total nitrogen (TN) and sol-uble chemical oxygen demand (SCOD) were found to be 88% and 95%, respectively. The average effluent concentra-tions of TN and SCOD were 3.5 mg/L and 16 mg/L, respectively. The volatile suspended solid (VSS) concentra-tion, nitrification rate and denitrification rate in the system were less than 1.0 g/L, 0.026-0.1 g NH4+-N/g VSS.d, and 0.016-0.074 g NOx--N/g VSS.d, respectively.

  18. Multiple model identification of a cold flow circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Panday, Rupen; Famouri, P.; Woerner, B.D.; Turton, R.; •Ludlow, J.C.; Shadle, L.J.; Boyle, E.J.

    2008-05-13

    Solids circulation rate is an important parameter that is essential to the control and improved performance of a circulating fluidized bed system. The present work focuses on the identification of a cold flow circulating fluidized bed using a multiple model identification technique that considers the given set-up as a nonlinear dynamic system and predicts the solids circulation rate as a function of riser aeration, move air flow rate, and total riser pressure drop. The predictor model obtained from this technique is trained on glass beads data sets in which riser aeration and move air flow are varied randomly one at a time. The global linear state space model obtained from the N4SID algorithm is trained on the same data set and the prediction results of solids circulation rate from both these algorithms are tested against data obtained at operating conditions different from the training data. The comparison between the two methods shows that the prediction results obtained from the multiple model technique are better than those obtained from the global linear model. The number of local models is increased from two to five and two third order state space models are sufficient for the present sets of data.

  19. Bed inventory overturn in a circulating fluid bed riser with pant-leg structure

    Energy Technology Data Exchange (ETDEWEB)

    Jinjing Li; Wei Wang; Hairui Yang; Junfu Lv; Guangxi Yue [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education

    2009-05-15

    The special phenomenon, nominated as bed inventory overturn, in circulating fluid bed (CFB) riser with pant-leg structure was studied with model calculation and experimental work. A compounded pressure drop mathematic model was developed and validated with the experimental data in a cold experimental test rig. The model calculation results agree well with the measured data. In addition, the intensity of bed inventory overturn is directly proportional to the fluidizing velocity and is inversely proportional to the branch point height. The results in the present study provide significant information for the design and operation of a CFB boiler with pant-leg structure. 15 refs., 10 figs., 1 tab.

  20. Combustion of Jordanian oil shale using circulating fluidized bed

    International Nuclear Information System (INIS)

    this study re[resents design and manufacturing of a lab-scale circulating fluidized bed (C.F.B) to burn low grade fuel such as Jordanian oil shale. Hydrodynamic properties of C.F.B. were studied like minimum fluidization velocity, circulation flux and carryover rate. a hot run was firstly conducted by the combustion of L.P.G. to start up the combustion process. It proceeds until reaching the minimum burning temperature of oil shale particles, at which time the LPG supply was gradually reduced and oil shale feeding started. soon after reaching a self sustainable condition of oil shale particles, the LPG supply was cut off. The main combustion variables were investigated such as air to fuel ratios, temperature profiles across the bed, exhaust gas analysis and combustion efficiency. a combustion intensity of 859 kg/hr.m2 and combustion efficiency of 96% were achieved. (authors). 19 refs., 9 tab., 18 fig

  1. Circulating fluidized bed coal-saving optimization control method

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tengfei; Li, Dewei; Xi, Yugeng; Zhou, Wu [Shanghai Jiao Tong Univ., Shanghai (China). Dept. of Automation; Ministry of Education, Shanghai (China). Key Lab. of System Control and Information Processing; Yin, Debin [Shanghai Xinhua Control Technology (Group) Co., Ltd., Shanghai (China)

    2013-07-01

    The circulating fluidized bed boiler is widely used in thermal power plants. With the proposal of energy-saving emission reduction, how to reduce coal consumption while ensure the output steam quality at the same time has become an important topic. This paper combines the technology of RTO (real-time optimization) and zone control in DMC (dynamic matrix control) to achieve this goal. The proposed method adds the coal consumption into the objective function of DMC controller and the operation point of the boiler is permitted to change within a zone which can be set according to the actual requirements of the circulating fluidized bed boiler. The zone control in DMC provides the freedom to reduce the coal consumption and achieves the economic optimal target. Compared to the simple use of constrained DMC control, the proposed method is verified to be remarkable coal-saving by the case study of a 150 t/h boiler of a power plant in Sichuan.

  2. Propylene polymerization in a circulating slugging fluidized bed reactor

    OpenAIRE

    Putten, van, J.P.M.

    2004-01-01

    The work presented in this thesis is concerned with research on the riser of a circulating fluidized bed system for olefin polymerization. In the riser section, fluidization takes place in the transporting slugging mode and polymer particles are produced in the riser in a non-isothermal way. Properties of the polymerization reaction and of the hydrodynamics were studied and their behavior with respect to conditions in the reactor were described. A reactor model was constructed that accurately...

  3. Parametric Study of NOx Emissions in Circulating Fluidized Bed Combustor

    International Nuclear Information System (INIS)

    Fluidized bed combustion behavior of coal and biomass is of practical interest due to its significant involvement in heating systems and power plant operations. This combustion behavior has been studied by many experimental techniques. . Use of biomass in coal-fired power plants results in high efficiencies and fuel diversity. Co-combustion experiments were carried out in a pilot scale test facility of circulating fluidized bed combustor (70KW). Effect of operating parameters on the NOx emissions is studied while burning coal with wheat straw. Relation between NOx emissions and operating parameters like bed temperature, excess air ratio, air staging, Ca/S molar ratio and fluidizing air velocity have been studied and discussed. (author)

  4. Chemical looping reactor system design double loop circulating fluidized bed (DLCFB)

    Energy Technology Data Exchange (ETDEWEB)

    Bischi, Aldo

    2012-05-15

    Chemical looping combustion (CLC) is continuously gaining more importance among the carbon capture and storage (CCS) technologies. It is an unmixed combustion process which takes place in two steps. An effective way to realize CLC is to use two interconnected fluidized beds and a metallic powder circulating among them, acting as oxygen carrier. The metallic powder oxidizes at high temperature in one of the two reactors, the air reactor (AR). It reacts in a highly exothermic reaction with the oxygen of the injected fluidising air. Afterwards the particles are sent to the other reactor where the fuel is injected, the fuel reactor (FR). There, they transport heat and oxygen necessary for the reaction with the injected fuel to take place. At high temperatures, the particle's oxygen reacts with the fuel producing Co2 and steam, and the particles are ready to start the loop again. The overall reaction, the sum of the enthalpy changes of the oxygen carrier oxidation and reduction reactions, is the same as for the conventional combustion. Two are the key features, which make CLC promising both for costs and capture efficiency. First, the high inherent irreversibility of the conventional combustion is avoided because the energy is utilized stepwise. Second, the Co2 is intrinsically separated within the process; so there is in principle no need either of extra carbon capture devices or of expensive air separation units to produce oxygen for oxy-combustion. A lot of effort is taking place worldwide on the development of new chemical looping oxygen carrier particles, reactor systems and processes. The current work is focused on the reactor system: a new design is presented, for the construction of an atmospheric 150kWth prototype working with gaseous fuel and possibly with inexpensive oxygen carriers derived from industrial by-products or natural minerals. It consists of two circulating fluidized beds capable to operate in fast fluidization regime; this will increase the

  5. The PSFBD process. A key technology for future lignite-fired power plants. Pressurised steam fluidised bed drying from the test facility to a large-scale power plant; Das DDWT-Verfahren als Schluesseltechnologie zukuenftiger Braunkohlekraftwerke. Druckaufgeladene Dampfwirbelschicht-Trocknung von der Versuchsanlage zum Kraftwerk

    Energy Technology Data Exchange (ETDEWEB)

    Asegehegn, Teklay W.; Lechner, Stefan; Merzsch, Matthias; Schreiber, Matthias; Silbermann, Rico; Krautz, Hans Joachim [Brandenburgische Technische Univ. Cottbus (Germany). Lehrstuhl Kraftwerkstechnik; Hoehne, Olaf [Vattenfall Europe Generation AG, Cottbus (Germany). Thermal and Biomass Technology

    2011-07-01

    Pressurised Steam Fluidised Bed Drying (PSFBD) of lignite was developed to make future power plants more efficient whilst simultaneously reducing carbon dioxide emissions. The first test facility was developed by the Brandenburg University of Technology in Cottbus and commissioned in 2002. A second plant is currently in operation at Vattenfall's pilot plant. Both the plants delivered valuable results of more than eight years research and development. (orig.)

  6. Cold-Flow Circulating Fluidized-Bed Identification

    Energy Technology Data Exchange (ETDEWEB)

    Parviz Famouri

    2005-07-01

    In a variety of industrial applications, the use of a circulating fluidized bed (CFB) provides various advantages, such as reducing environmental pollution and increasing process efficiency. The application of circulating fluidized bed technology contributes to the improvement of gas-solid contact, reduction of the cross-sectional area with the use of higher superficial velocities, the use of the solids circulation rate as an additional control variable, and superior radial mixing, Grace et al. [1]. In order to improve raw material usage and utility consumption, optimization and control of CFB is very important, and an accurate, real time model is required to describe and quantify the process. Currently there is no accepted way to construct a reliable model for such a complex CFB system using traditional methods, especially at the pilot or industrial scale. Three major obstacles in characterizing the system are: 1) chaotic nature of the system; 2) non-linearity of the system, and 3) number of immeasurable unknowns internal to the system,[2]. Advanced control theories and methods have the ability to characterize the system, and can overcome all three of these obstacles. These methods will be discussed in this report.

  7. State of the art and the future fuel portfolio of fluidized bed combustion systems; Status und kuenftiges Brennstoffportfolio bei Wirbelschichtfeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Szentannai, Pal; Friebert, Arpad; Winter, Franz [Technische Univ. Wien (Austria). Inst. fuer Verfahrens-, Umwelttechnik und technische Biowissenschaften

    2008-07-01

    Coal, biomass and substitute fuels energetically can be used efficiently and with low pollution in fluidized bed plants. In comparison to biomass there are significant differences between the circulating and stationary fluidized bed technology. The stationary fluidised bed is fed predominantly with biomasses and residual substances. Coal usually is the basis fuel in the circulating fluidised bed. Biomass and residual substances frequently are course-fired. The state of the art is the employment of a broad fuel mixture in small and large fluidized-bed combustion systems. Future developments present an increased use of sewage sludge, fluidized bed combustion systems with wood as a basis fuel, utilization of household waste and the gas production.

  8. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. Annual report, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association`s NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  9. Gasification of sawdust in pressurised internally circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, R.; Lindblom, M. [Lund Univ. (Sweden). Dept. of Chemical Engineering

    1996-12-31

    A test plant for pressurised gasification of biofuels in a internally circulating fluidized bed has been built at the department of Chemical Engineering II at the University of Lund. The design performance is set to maximum 20 bar and 1 050 deg C at a thermal input of 100 kW or a maximum fuel input of 18 kg/in. The primary task is to study pressurised gasification of biofuels in relation to process requirements of the IGCC concept (integrated gasification combined cycle processes), which includes studies in different areas of hot gas clean-up in reducing atmosphere for gas turbine applications. (orig.)

  10. Research and design of 330 MW circulating fluidized bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xianbin; Shi, Zhenghai; Huang, Zhong [Thermal Power Research Institute, Xi' an (China); Jiang, Minhua [China Huaneg Group, Beijing (China); Yu, Long; Zhang, Yanjun; Wang, Fengjun; Zhang, Man [Harbin Boiler CO., Ltd, Harbin (China)

    2013-07-01

    Based on research and manufacture of 210MW circulating fluidized bed (CFB) boiler, the key technologies of large CFB boiler have been Research, the plan design of 330MW CFB boiler have been performed, construction design of key components and scaling up characteristics were analysed, The 330MW CFB boiler designed demonstration project has been put into commercial operation, It is the largest capacity CFB boiler operated in china now, Operation of 330MW CFB boiler was stable and good performance has been proved.

  11. Mathematical simulation of working processes in the furnace of a circulating fluidized bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    V.A. Dvoinishnikov; A.V. Larkov [Moscow Power Engineering Institute, Moscow (Russian Federation)

    2009-01-15

    A software system developed for simulating and calculating boiler furnaces with circulating fluidized beds is described. The main principles on which the system is constructed are outlined, and the physical and mathematical models of processes in circulating fluidized bed furnaces are described together with the calculation algorithm. Results from a study of analyzing the effect the grinding fineness of initial fuel particles has on the processes in a circulating fluidized bed furnace are presented.

  12. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-03-29

    Foster Wheeler Development Corporation is working under DOE contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ({approx}2500 to 2800 F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate

  13. Bed-inventory Overturn Mechanism for Pant-leg Circulating Fluidized Bed Boilers

    CERN Document Server

    Wang, Zhe; Yang, Zhiwei; West, Logan; Li, Zheng

    2011-01-01

    A numerical model was established to investigate the lateral mass transfer as well as the mechanism of bed-inventory overturn inside a pant-leg circulating fluidized bed (CFB), which are of great importance to maintain safe and efficient operation of the CFB. Results show that the special flow structure in which the solid particle volume fraction along the central line of the pant-leg CFB is relative high enlarges the lateral mass transfer rate and make it more possible for bed inventory overturn. Although the lateral pressure difference generated from lateral mass transfer inhibits continuing lateral mass transfer, providing the pant-leg CFB with self-balancing ability to some extent, the primary flow rate change due to the outlet pressure change often disable the self-balancing ability by continually enhancing the flow rate difference. As the flow rate of the primary air fan is more sensitive to its outlet pressure, it is easier to lead to bed inventory overturn. While when the solid particle is easier to c...

  14. Single-particle behaviour in circulating fluidized beds

    DEFF Research Database (Denmark)

    Weinell, Claus Erik; Dam-Johansen, Kim; Johnsson, Jan Erik

    1997-01-01

    This paper describes an experimental investigation of single-particle behaviour in a cold pilot-scale model of a circulating fluidized bed combustor (CFBC). In the system, sand is recirculated by means of air. Pressure measurements along the riser are used to determine the suspension density. A...... density, which results in a decreased number of particle observations for the larger particles with the riser height. The experiments show that the mean particle residence times in the zones above and below the secondary air inlet are almost independent of the particle characteristics. The overall mean...... radioactive tracking facility, which detects single radioactive particles, is developed and applied to determine the dynamic picture of the particle trajectories in the simulated boiler. The tracer particles are observed to move between the zone above and below the secondary air inlet with a mean frequency of...

  15. Nucla circulating atmospheric fluidized bed demonstration project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute`s decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  16. Attempts on cardoon gasification in two different circulating fluidized beds

    Directory of Open Access Journals (Sweden)

    Chr. Christodoulou

    2014-11-01

    Full Text Available Few tests have been carried out in order to evaluate the use of cardoon in gasification and combustion applications most of the researchers dealt with agglomeration problems. The aim of this work is to deal with the agglomeration problem and to present a solution for the utilization of this biofuel at a near industrial application scale. For this reason, two experiments were conducted, one in TU Delft and one in Centre for Research and Technology Hellas (CERTH, using fuel cardoon and 50% w/w cardoon blended with 50% w/w giant reed respectively. Both experimental campaigns were carried out in similar atmospheric circulating fluidized bed gasifiers. Apart from the feedstock, the other differences were the gasification medium and the bed material used in each trial. The oxidizing agent at TUD׳s run was O2/steam, whereas CERTH׳s tests used air. When experiments with the cardoon 50% w/w–giant reed 50% w/w blend were performed no agglomeration problems were presented. Consequently, gasification could be achieved in higher temperature than that of pure cardoon which led to the reduction of tar concentration.

  17. INVESTIGATION INTO MALDISTRIBUTION IN A CIRCULATING FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    Qingjie Guo; Joachim Werther; Ernst-Ulrich Hartge

    2003-01-01

    Experiments on maldistribution were conducted in a 8.5 m high, 1 m ×0.3 m cross-section circulating fluidized bed equipped with a 33 bubble-cap distributor. There exists an uneven distribution in flow rate, the bubble caps in the center region having larger flow rates than those next to the wall. Flow resistance has been found to be the dominating factor influencing gas flow rate distribution. Increasing superficial gas velocity improves flow rate distribution for a low pressure-drop distributor. For a high pressure-drop distributor, superficial gas velocity has little effect on flow rate distribution. A ratio of maximum flow rate through a bubble cap to average flow rate through all bubble caps (Vmax/Vav) characterizes the flow rate distribution. Distributor-to-bed pressure drop ratio (△Pd/△Pr) is another necessary parameter to achieve even flow distribution. A correlation between these two ratios is developed for predicting flow rate maldi stribution in CFB bubble-cap distributor.

  18. Heavy metal characterization of circulating fluidized bed derived biomass ash.

    Science.gov (United States)

    Li, Lianming; Yu, Chunjiang; Bai, Jisong; Wang, Qinhui; Luo, Zhongyang

    2012-09-30

    Although the direct combustion of biomass for energy that applies circulating fluidized bed (CFB) technology is steadily expanding worldwide, only few studies have conducted an environmental assessment of biomass ash thus far. Therefore, this study aims to integrate information on the environmental effects of biomass ash. We investigated the concentration of heavy metal in biomass ash samples (bottom ash, cyclone ash, and filter ash) derived from a CFB boiler that combusted agricultural and forest residues at a biomass power plant (2×12 MW) in China. Ash samples were gathered for the digestion and leaching test. The heavy metal content in the solution and the leachate was studied via an inductively coupled plasma-mass spectrometer and a Malvern Mastersizer 2000 mercury analyzer. Measurements for the chemical composition, particle size distribution, and the surface morphology were carried out. Most of the metals in cyclone ash particles were enriched, whereas Ti and Hg were enriched in filter ash. Residence time contributed most to heavy metal enrichment. Under HJ/T 300 conditions, the heavy metals showed serious leaching characteristics. Under EN 12457-2 conditions, leaching behavior was hardly detected. PMID:22840499

  19. Destruction and formation of PCDD/Fs in a fluidised bed combustor co-incinerating automotive shredder residue with refuse derived fuel and wastewater treatment sludge.

    Science.gov (United States)

    Van Caneghem, J; Vermeulen, I; Block, C; Van Brecht, A; Van Royen, P; Jaspers, M; Wauters, G; Vandecasteele, C

    2012-03-15

    During an eight day trial automotive shredder residue (ASR) was added to the usual waste feed of a Fluidized Bed Combustor (FBC) for waste-to-energy conversion; the input waste mix consisted of 25% ASR, 25% refuse-derived fuel (RDF) and 50% wastewater treatment (WWT) sludge. All inputs and outputs were sampled and the concentration of the 17 PCDD/Fs with TEF-values was determined in order to obtain "PCDD/F fingerprints". The ASR contained approximately 9000 ng PCDD/Fs/kg(DW), six times more than the RDF and 10 times more than the WWT sludge. The fingerprint of ASR and RDF was dominated by HpCDD and OCDD, which accounted for 90% of the total PDDD/F content, whereas the WWT sludge contained relatively more HpCDFs and OCDF (together 70%). The flue gas cleaning residue (FGCR) and fly and boiler ash contained approximately 30,000 and 2500 ng PCDD/Fs/kg(DW), respectively. The fingerprints of these outputs were also dominated by HpCDFs and OCDF. The bottom ash contained only OCDD and OCDF, in total 8 ng PCDD/Fs/kg (DW). From the comparison of the bottom ash fingerprints with the fingerprints of the other output fractions and of the inputs, it could be concluded that the PCDD/Fs in the waste were destroyed and new PCDD/Fs were formed in the post combustion process by de novo synthesis. During the ASR-co-incineration, the PCDD/F congener concentrations in the fly and boiler ash, FGCR and flue gas were 1.25-10 times higher compared to the same output fractions generated during incineration of the usual waste mix (70% RDF and 30% WWT sludge). The concentration of the higher chlorinated PCDD/Fs increased most. As these congeners have the lowest TEF-factors, the total PCDD/F output, expressed in kg TEQ/year, of the FBC did not increase significantly when ASR was co-incinerated. Due to the relatively high copper levels in the ASR, the copper concentrations in the FBCs outputs increased. As copper catalysis the de novo syntheses, this could explain the increase in PCDD

  20. Properties of Concrete Incorporating Bed Ash from Circulating Fluidized Bed Combustion and Ground Granulates Blast-furnace Slag

    Institute of Scientific and Technical Information of China (English)

    CHENG An; HSU Hui-Mi; CHAO Sao-Jeng

    2011-01-01

    The properties of concrete incorporating circulating fluidized bed combustion (CFBC) bed ash and ground granulates blast-furnace slag (GGBS) were studied. Compressive strength,drying shrinkage, mercury intrusion porosimetry (MIP), scanning electronic microscopy (SEM), and X-ray diffraction (XRD) of concrete samples containing CFBC bed ash and GGBS were used. This work used initial surface absorption test (ISAT) and rapid chloride penetration test (RCPT) on concrete to measure the absorption and the ability of concrete to resist chloride ion characteristics for different concrete samples containing CFBC bed ash and GGBS. Open circuit potential (OCP), direct current polarization resistance were obtained to evaluate rebar corrosion. The CFBC bed ash was X-ray amorphous and consist of SiO2, A12O3 and CaO compounds. As the replacement of CFBC for sand increases, the rate of initial surface absorption (ISA) increases but compressive strength decreases.When the content of CFBC bed ash replacement for sand maintains constant, the replacement of GGBS for cement increases, compressive strength increases but the rate of ISA decreases. Chloride and corrosion resistance of rebar significantly improve by utilizing a proper amount of CFBC bed ash and GGBS in concrete.

  1. Circulating hyaluronate: concentration in different vascular beds in man

    DEFF Research Database (Denmark)

    Bentsen, K D; Henriksen, Jens Henrik Sahl; Laurent, T C

    1986-01-01

    The plasma concentration of hyaluronate (hyaluronic acid; HA) was measured in different vascular beds in order to determine regional kinetics of endogenous HA in fasting, supine subjects with normal (n = 6) or moderately decreased kidney function (n = 9). In both groups hepatic venous HA was...

  2. Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler.

    Science.gov (United States)

    You, Changfu; Xu, Xuchang

    2008-04-01

    Ventilation air methane (VAM) accounts for 60-80% of the total emissions from coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible. PMID:18505001

  3. Application of fluidised particles as turbulence promoters in ultrafiltration Improvement of flux and rejection

    NARCIS (Netherlands)

    Noordman, T.R.; Jonge, de A.; Wesselingh, J.A.; Bel, W.; Dekker, M.; Voorde, ter E.; Grijpma, S.D.

    2002-01-01

    To prevent fouling of ultrafiltration membranes during processing of protein solutions, a high degree of turbulence should be introduced in the feed solution, keeping the energy consumption as low as possible. For this purpose, the application of fluidised beds at the upstream side of the membrane c

  4. STUDY ON THE OVERALL PRESSURE BALANCE OF A DOWNFLOW CIRCULATING FLUIDIZED BED SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Hengzhi Chen; Dawei Yang; Hongzhong Li; Shiyu Tan

    2006-01-01

    A pressure balance model for a circulating fluidized bed unit that incorporates a downer has been proposed. The model predictions were validated with the experimental data obtained from a special cold-model circulating fluidized bed. Comparison of the operation stability between a CFB downer and a CFB riser has been carried out. Only one critical gas velocity exists in the CFB-riser for a given riser solids flux, while there can be many critical gas velocities for the operation of a CFB downer. Therefore, it is possible to achieve high solids concentration in a CFB downer if appropriate operating conditions are used.

  5. RADIAL PROFILE OF THE SOLID FRACTION IN A LIQUID-SOLID CIRCULATING FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    Tiefeng Wang; Jinfu Wang; Jing Lin; Yong Jin

    2003-01-01

    @@ Liquid-solid circulating fluidized beds have a number of attractive features suitable for processes where liquid-solid contact is important (Liang et al., 1996; Zhang et al., 2002).Liang et al. (1996) and Zheng et al. (2002) studied the radial profile of the solid fraction in the liquid-solid circulating fluidization regime and found that it is not uniform, unlike the conventional liquid-solid fluidized bed. This non-uniformity can affect reactant concentration distribution, mass transfer and ultimately reactant conversion.Therefore, information on the radial flow structure is crucial to reactor design and process optimization.

  6. Refractory experience in circulating fluidized bed combustors, Task 7. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  7. Prediction of the particle circulation rate in a draft tube spouted bed suspension dryer

    OpenAIRE

    ZORANA LJ. ARSENIJEVIC; ZELJKO B. GRBAVCIC; RADMILA V. GARIC-GRULOVIC

    2006-01-01

    A model for predicting the particle circulation rate in a draft tube spouted bed dryer with inert particles is proposed and verified. The calculation algorithm requires three input values: the gas velocity in the draft tube, one data point for the static pressure in the draft tube, and the pressure gradient in the annulus. The particle circulation rate can be estimated by solving the continuity andmomentum equations for turbulent accelerating two-phase flow. The numerical solution is based on...

  8. Coffee parchment in fluidisation

    OpenAIRE

    Elkin Mauricio López Fontal

    2010-01-01

    All coffee is harvested as cherry grains which are then crushed and extracted traditionally or by applying the Becolsub method. Once the coffee parchment obtained has been washed, it is naturally or mechanically dried. Static dryers are the most used mechanical dryers, generally producing lack of uniformity in the grain’s final humidity content which must range from 10% to 12% b.h. Drying by fluidization was used in the present research work; this turns a solid particle bed into a suspended a...

  9. A study on Heat Transfer for Immersed Tube in Internally Circulating Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    TianWendong; HaoJinhua; 等

    1999-01-01

    Heat transfer coefficients for horizontally immersed tubes have been studied in a model of ICFB(Inter-nally Circulating Fluidized Bed).The characteristics in ICFB were found to be significantly different from those in bubbing bed.There is a flowing zone with high velocity in the heat exchange zone.The heat transfer coefficients strongly depend on the fluidized velocity in the flowing zone.The heat exchange process and suitable bed temperature can be controlled according to this feature.Based on the results of the experiments,a formulation for heat transfer has been developed.

  10. Steam gasification of coal using a pressurized circulating fluidized bed

    International Nuclear Information System (INIS)

    Subject of this investigation is the process engineering of a coal gasification using nuclear heat. A special aspect is the efficiency. To this purpose a new method for calculating the kinetics of hard coal steam gasification in a fluidized bed is presented. It is used for evaluations of gasification kinetics in a large-scale process on the basis of laboratory-scale experiments. The method is verified by experimental data from a large-scale gasifier. The investment costs and the operating costs of the designed process are estimated. (orig.)

  11. Laser Doppler anemometry measurements in a circulating fluidized bed of metal particles

    DEFF Research Database (Denmark)

    Ibsen, Claus Hübbe; Solberg, Tron; Hjertager, Bjørn Helge;

    2002-01-01

    Laser Doppler Anemometry (LDA) measurements were performed in a 1/9 scale model of a 12 MW circulating fluidized bed (CFB) boiler. The model was operated according to scaling laws. The 2D-LDA system used was positioned in two different ways to obtain the three velocity components u, v and w of the...

  12. Heat Transfer in a Liquid-Solid Circulating Fluidized Bed Reactor with Low Surface Tension Media

    Institute of Scientific and Technical Information of China (English)

    HR Jin; H Lim; DH Lim; Y Kang; Ki-Won Jun

    2013-01-01

    Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 m, respectively. Effects of liquid velocity, particle size, surface tension of liquid phase and solid circulation rate on the overall heat transfer coefficient were examined. The heat transfer coefficient increased with increasing particle size or solid cir-culation rate due to the higher potential of particles to contact with the heater surface and promote turbulence near the heater surface. The value of heat transfer coefficient increased gradually with increase in the surface tension of liquid phase, due to the slight increase of solid holdup. The heat transfer coefficient increased with the liquid veloc-ity even in the higher range, due to the solid circulation prevented the decrease in solid holdup, in contrast to that in the conventional liquid-solid fluidized beds. The values of heat transfer coefficient were well correlated in terms of dimensionless groups as well as operating variables.

  13. 3D CFD simulation of hydrodynamics of a 150 MWe circulating fluidized bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Nan Zhang; Bona Lu; Wei Wang; Jinghai Li [Chinese Academy of Sciences, Beijing (China). Institute of Process Engineering

    2010-08-15

    An Eulerian granular multiphase model with a drag coefficient based on the energy minimization multi-scale (EMMS) model was used to perform a three-dimensional (3D), full-loop, time-dependent simulation of hydrodynamics of a 150 MWe circulating fluidized bed (CFB) boiler. Simulation results were presented in terms of the pressure profile around the whole loop of solids circulation, profiles of solids volume fraction and solids vertical velocity, as well as the non-uniform distribution of solid fluxes into two parallel cyclones.

  14. Thermodynamic optimisation and computational analysis of irreversibilities in a small-scale wood-fired circulating fluidised bed adiabatic combustor

    International Nuclear Information System (INIS)

    An analysis of irreversibilities generated due to combustion in an adiabatic combustor burning wood was conducted. This was done for a reactant mixture varying from a rich to a lean mixture. A non-adiabatic non-premixed combustion model of a numerical code was used to simulate the combustion process where the solid fuel was modelled by using the ultimate analysis data. The entropy generation rates due to the combustion and frictional pressure drop processes were computed to eventually arrive at the irreversibilities generated. It was found that the entropy generation rate due to frictional pressure drop was negligible when compared to that due to combustion. It was also found that a minimum in irreversibilities generated was achieved when the Air–Fuel mass ratio was 4.9, which corresponds to an equivalence ratio of 1.64, which are lower than the respective Air–Fuel mass ratio and equivalence ratio for complete combustion with theoretical amount of air of 8.02 and 1. - Highlights: • Entropy generation rate in an adiabatic combustor firing pine wood was investigated. • Most entropy generation rate due to combustion process. • Minimum entropy generation rate was found to occur for an Air–Fuel mass ratio of 4.9. • Molar fractions of species H2 and H2O are equal at minimum entropy generation rate

  15. Development of an Internally Circulating Fluidized Bed Membrane Reactor for Hydrogen Production from Natural Gas

    Institute of Scientific and Technical Information of China (English)

    XIE Dong-lai; GRACE John R; LIM C Jim

    2006-01-01

    An innovative Internally Circulating Fluidized Bed Membrane Reactor (ICFBMR) was designed and operated for ultra-pure hydrogen production from natural gas. The reactor includes internal catalyst solids circulation for conveying heat between a reforming zone and an oxidation zone. In the reforming zone, catalyst particles are transported upwards by reactant gas where steam reforming reactions are taking place and hydrogen is permeating through the membrane surfaces. Air is injected into the oxidation zone to generate heat which is carried by catalyst particles to the reforming zone supporting the endothermic steam reforming reaction. The technology development process is introduced: cold model test,pilot plant and industrial demonstration unit. The process flow diagram and key components of each unit are described.The ICFBMR process has the potential to provide improved performance relative to conventional SMR fixed-bed tubular reactors.

  16. Evaluations of wall shear stress in the standpipe of a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Monazam, E.R.; Shadle, L.J.

    2008-05-13

    Shear stress was obtained in the standpipe of a Circulating Fluidized Bed (CFB) for a light cork particles under a variety of flow conditions. The shear stress data were estimated using incremental gas phase pressure drop readings, and an estimate of the bed height to predict the hydrostatic pressure drop [(dp/dy) = ρs (1-ε) g+4τsw/D]. In addition, we have also obtained data on aeration rate in the standpipe, particle circulation rate and riser gas flow rate. Analysis of the results using a one-dimensional momentum equation reveal that the observed forced per unit area may be attributed to wall friction. The resulting shear stress demonstrates that as the aeration air in the standpipe was increased the shear at the wall was decreased. An attempt was made to model solids friction factor as a function of particle velocity and it was compared to the other literature correlations.

  17. MULTIFRACTAL ANALYSIS OF PARTICLE-FLUID SYSTEM IN A CIRCULATING FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    Liping; Ma; Weixing; Huang; Yanfu; Shi; Huarui; Yu; Jingxu; Zhu

    2005-01-01

    In this paper, multifractal analysis together with wavelet transform modulus maxima (WTMM) method is used to analyze the fluctuating signals of circulating fluidized bed (CFB). Singularity spectrum shows that the gas-particle flow in CFB has multifractal character. Motion behavior of the particle-fluid system of CFB can be described by singularity spectrum. Intermittency index can be used to determine the transition of flow regime from fast fluidization to pneumatic conveying.

  18. Influence of dissolved oxygen in nitrification kinetics in a circulating bed reactor

    OpenAIRE

    V. Lazarova; R. Nogueira; J. Manem; Melo, L. F.

    1997-01-01

    The influence of dissolved oxygen concentration in nitrification kinetics was studied in a new biofilm reactor, the circulating bed reactor (CBR). The study was carried out partly at laboratory scale with synthetic water containing inorganic carbon and nitrogen compounds, and partly at pilot scale for secondary and tertiary nitrification of municipal wastewater. The experimental results showed that, either the ammonia or the oxygen concentration could be limiting for the nitrification rate...

  19. A small scale regularly packed circulating fluidized bed. Part I: Hydrodynamics.

    OpenAIRE

    Ham, van, M.; Prins, W.; Swaaij, van, Wim P.M.

    1994-01-01

    The present investigation is based on the idea of intensifying the gas¿solids contact in a circulating fluidized bed by introducing obstacles into it. Such obstacles may effectively suppress radial inhomogeneities in the solids flux and concentration, increase the dynamic solids hold-up, and break up solids clusters. This article (Part I) deals with the hydrodynamics (pressure drop and solids hold-up) investigated at ambient conditions, for cocurrent upward flow of air and microsize solid par...

  20. Chemical Looping Reactor System Design : Double Loop Circulating Fluidized Bed (DLCFB)

    OpenAIRE

    Bischi, Aldo

    2012-01-01

    Chemical looping combustion (CLC) is continuously gaining more importance among the carbon capture and storage (CCS) technologies. It is an unmixed combustion process which takes place in two steps. An effective way to realize CLC is to use two interconnected fluidized beds and a metallic powder circulating among them, acting as oxygen carrier. The metallic powder oxidizes at high temperature in one of the two reactors, the air reactor (AR). It reacts in a highly exothermic reaction with the ...

  1. Circulating fluidized bed combustion in the turbulent regime: Modeling of carbon combustion efficiency and sulfur retention

    Energy Technology Data Exchange (ETDEWEB)

    Adanez, J.; Gayan, P.; Grasa, G.; Diego, L.F. de; Armesto, L.; Cabanillas, A.

    1999-07-01

    In this work carbon combustion efficiencies and sulfur retentions in CFBC under the turbulent regime were studied. Experimental results were obtained from the combustion of a lignite and an anthracite with a limestone in a CBF pilot plant with 20 cm internal diameter and 6.5 m height. The effect of operating conditions such as coal and limestone particle size distributions, temperature, excess air, air velocity and Ca/S molar ratio on carbon combustion efficiency and sulfur retention was studied. On the other hand, a mathematical model for the carbon combustion efficiencies and sulfur retentions in circulating fluidized bed combustors operating under the turbulent regime was developed. The model has been developed considering the hydrodynamics behavior of a turbulent bed, the kinetics of carbon combustion and sulfur retention in the riser. The hydrodynamics characteristics of the turbulent regime were previously studied in a cold pilot plant and equations to determine the axial and radial voidage in the bed were proposed. A core-annulus structure in the dilute region of the bed was found in this regime. Carbon combustion and sulfur retention were modeled by modifying a model developed for fast beds and taking into account turbulent regime characteristics. The experimental results of carbon combustion efficiencies and sulfur retentions were compared with those predicted by the model and a good correlation was found for all the conditions used.

  2. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2015-09-01

    Full Text Available This paper focuses on assessment of the effect of flue gas recirculation (FGR on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  3. Comparative studies of a circulating fluidized bed and a stationary fluidized bed

    International Nuclear Information System (INIS)

    The objectives of the test were to compare the CFB to the SFB in order to learn how they perform with various fuels, especially how the smaller fractions of the fuel influence the combustion and the NOx-emissions. The fuels used were whole and crushed peat as well as forestry waste with and without woodchips. The SFB handled all the tested fuels well at emission levels of 60-90 mg/MJfuel. The lowest levels were maintained with uncrushed peat. This CFB only performed well with uncrushed peat. Hence this is the only fuel of the ones tested impossible to feed the ordinary way. During the test uncrushed peat was fed directly into the boilerhouse bin. The reason is the variable flow of fine material generating carbon monoxide. The fine material is also transported to the cyclone and is finally burned there. Therefore the cyclone temperature is higher for fine particles than for uncrushed peat at a certain bed temperature. In the SFB, the injection level of the air influenced the NOx-emissions. When both secondary and tertiary air was used, the NOx-emission decreased from 150 to 80 mg/MJfuel. This effect is probably due to lower and more even combustion temperature in the top of the furnace. When forestry refuse is used, the tertiary air tends to increase the CO-emission. In the CFB, the NOx-emission is proportional to the cyclone temperature and the oxygen level. For practical reasons, such as possible oxygen level with CO and cyclone temperature due to fine material, the NOx-level is different, but knowing the oxygen and cyclone temperature it is possible to predict the NOx-emission. With peat as fuel the carbon residue content in the fly ash was higher in the SFB compared to the CFB. (Orig.). (3 refs., numerous figs. and tabs.)

  4. Cleaning and Heat Transfer in Heat Exchanger with Circulating Fluidized Beds

    Science.gov (United States)

    Kang, Ho Keun; Ahn, Soo Whan; Choi, Jong Woong; Lee, Byung Chang

    2010-06-01

    Fluidized bed type heat exchangers are known to increase the heat transfer and prevent the fouling. For proper design of circulating fluidized bed heat exchanger it is important to know the effect of design and operating parameters on the bed to the wall heat transfer coefficient. The present experimental and numerical study was conducted to investigate the effects of circulating solid particles on the characteristics of fluid flow, heat transfer and cleaning effect in the fluidized bed vertical shell and tube type heat exchanger with counterflow, at which a variety of solid particles such as glass (3 mmF), aluminum (2˜3 mmF), steel (2˜2.5 mmF), copper (2.5 mmF) and sand (2˜4 mmF) were used in the fluidized bed with a smooth tube. Seven different solid particles have the same volume, and the effects of various parameters such as water flow rates, particle diameter, materials and geometry were investigated. The present experimental and numerical results showed that the flow velocity range for collision of particles to the tube wall was higher with heavier density solid particles, and the increase in heat transfer was in the order of sand, copper, steel, aluminum, and glass. This behaviour might be attributed to the parameters such as surface roughness or particle heat capacity. Fouling examination using 25,500 ppm of ferric oxide (Fe2O3) revealed that the tube inside wall is cleaned by a mild and continuous scouring action of fluidized solid particles. The fluidized solid particles not only keep the surface clean, but they also break up the boundary layer improving the heat transfer coefficient even at low fluid velocities.

  5. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-07-30

    This purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period April 1, 2005 through June 30, 2005. The following tasks have been completed. First, the new Combustion Laboratory was occupied on June 15, 2005, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final painting stage. Second, the fabrication and manufacturing contract for the CFBC Facility was awarded to Sterling Boiler & Mechanical, Inc. of Evansville, Indiana. Sterling is manufacturing the assembly and component parts of the CFBC system. The erection of the CFBC system is expected to start September 1, 2005. Third, mercury emissions from the cofiring of coal and chicken waste was studied experimentally in the laboratory-scale simulated fluidized-bed combustion facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described.

  6. Modelling of a circulating fluidized bed using computational fluid dynamic software

    Energy Technology Data Exchange (ETDEWEB)

    Torres, E.C.; Steward, F. [New Brunswick Univ., Centre for Nuclear Research, Fredericton, NB (Canada); Pugsley, T. [New Brunswick Univ., Dept. of Chemical Engineering, Fredericton, NB (Canada)

    1998-09-01

    A computational fluid dynamics (CFD) software called `FLUENT` was used to model the hydrodynamics of the riser of a laboratory scale circulating fluidized bed. A circulating fluidized bed is a type of fluidized bed that operates at high gas velocities. Its two most important applications are for combustion purposes and for fluid catalytic cracking. Results from the simulated cold model were compared with experimental data. Predictions of the model were in good agreement with trends observed experimentally.The two main considerations when applying CFD to the experimental set-up are granular multiphase models and the turbulence conditions for the gas and solid phases. The time dependent model provides outputs that predict the radial and axial distribution of the gas and solids in the riser which correspond to different operating conditions of riser solids mass flux and gas velocity. By introducing more accurate particle flow data at the entrance and at the walls into the boundary conditions the CFD model could be significantly improved.9 refs., 1 tab., 10 figs.

  7. Simulation of NOx emission in circulating fluidized beds burning low-grade fuels

    Energy Technology Data Exchange (ETDEWEB)

    Afsin Gungor [Nigde University, Nigde (Turkey). Faculty of Engineering and Architecture

    2009-05-15

    Nitrogen oxides are a major environmental pollutant resulting from combustion. This paper presents a modeling study of pollutant NOx emission resulting from low-grade fuel combustion in a circulating fluidized bed. The simulation model accounts for the axial and radial distribution of NOx emission in a circulating fluidized bed (CFB). The model results are compared with and validated against experimental data both for small-size and industrial-size CFBs that use different types of low-grade fuels given in the literature. The present study proves that CFB combustion demonstrated by both experimental data and model predictions produces low and acceptable levels of NOx emissions resulting from the combustion of low-grade fuels. Developed model can also investigate the effects of different operational parameters on overall NOx emission. As a result of this investigation, both experimental data and model predictions show that NOx emission increases with the bed temperature but decreases with excess air if other parameters are kept unchanged. 37 refs., 5 figs., 5 tabs.

  8. Segregation and mixing effects in the riser of a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Mitali Das; Meenakshi Banerjee; R.K. Sah [Indian Institute of Technology, Kharagpur (India). Department of Chemical Engineering

    2007-09-15

    Segregation and mixing effects of binary mixtures of particles having difference in sizes and densities were studied in 0.1016 m-diameter riser of a circulating fluidized bed at gas velocities between 2.01 and 4.681 m/s and solids circulation rate between 12.5 and 50 kg/m{sup 2}s. Two groups of bed materials (three quartz sand-spent fcc catalyst mixtures with different initial mass % of sand and two coal-iron mixtures, one with almost same sizes but with different densities and the other having both different sizes and densities) were used. Using local axial mass % of heavier/coarser particles and their mean sizes the extent of segregation was evaluated. The influence of operating conditions like superficial gas velocity and solids circulation rate on segregation was examined and found that with their increase segregation effects generally tend to decrease and a uniform mixture conforming to initial composition of the mixture results. Using the data available in the literature and those of the present authors an empirical correlation to obtain the extent of segregation in CFBs has been proposed.

  9. Experimental investigation on a 0.35 MWth coal-fired horizontal circulating fluidized bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Aihong; Li, Qinghai; Zhang, Yanguo; Wang, Zhaojun; Dang, Wenda [Tsinghua Univ., Beijing (China); Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering

    2013-07-01

    The capacities of industrial coal-fired boilers are normally less than 20-30 MWe. And these coal-fired boilers of low capacity are facing the severe situation of low efficiency and heavy environmental pollution. Hence, an innovative horizontal circulating fluidized bed (HCFB) boiler was developed to enhance heat efficiency and reduce pollutant emission of industrial boilers in China. The chamber in the HCFB boiler consists of primary combustion chamber, secondary combustion chamber and burnout chamber, which were combined horizontally side by side. To verify the conception of horizontal fluidized circulation and to obtain the characteristic data, a 0.35 MWth coal-combustion HCFB boiler was designed and installed to perform some experiments of combustion and mass circulation. In the boiler there were two mass circulating paths, one is inner circulating through the inertia separator and another was external circulating through the cyclone separator. The connection bottom of the secondary chamber and the burnout chamber was designed as an inertia separator, in which separated and collected solid materials were returned to the primary combustion. In fact the secondary separator was a small cyclone separator connecting to the exit of the burnout chamber. Heat efficiency and separating efficiency of the experimental boiler were measured and analyzed. Furthermore, mass and temperature distribution along the chambers height were also investigated. The results showed that the heat efficiency of the bare boiler was 82%. The mass balance based on ash content was measured and analyzed. Separating efficiency of the inertia separator and cyclone separator was 60 and 99.9%, respectively. It showed that the two stage material separation and circulation enhanced coal combustion in the HCFB boiler and help to minimize the height of the furnace.

  10. The study of solid circulation rate in a compartmented fluidized bed gasifier (CFBG)

    Science.gov (United States)

    Wee, S. K.; Pok, Y. W.; Law, M. C.; Lee, V. C. C.

    2016-06-01

    Biomass waste has been abundantly available in Malaysia since the booming of palm oil industry. In order to tackle this issue, gasification is seen a promising technology to convert waste into energy. In view of the heat requirement for endothermic gasification reaction as well as the complex design and operation of multiple fluidized beds, compartmented fluidized bed gasifier (CFBG) with the combustor and the gasifier as separate compartments is proposed. As such, solid circulation rate (SCR) is one of the essential parameters for steady gasification and combustion to be realized in their respective compartments. Experimental and numerical studies (CFD) on the effect of static bed height, main bed aeration, riser aeration and v-valve aeration on SCR have been conducted in a cold- flow CFBG model with only river sand as the fluidizing medium. At lower operating range, the numerical simulations under-predict the SCR as compared to that of the experimental results. Also, it predicts slightly different trends over the range. On the other hand, at higher operating range, the numerical simulations are able to capture those trends as observed in the experimental results at the lower operating range. Overall, the numerical results compare reasonably well with that of the experimental works.

  11. Circulating fluidized bed combustion ash characterization. The case of the Provence 250 MW unit

    Energy Technology Data Exchange (ETDEWEB)

    Lecuyer, I.; Leduc, M. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches; Lefevre, R.; Ausset, P. [Paris-12 Univ., Creteil (France). Lab. Interuniversitaire des Systemes Atmospheriques

    1997-05-01

    The Provence 250 MW Circulating Fluidized Bed Combustion Unit (Gardanne, France) is burning a high sulfur (2 to 4%), high ash content (30%) local lignite. This peculiar fuel already contains about 15% of CaO which allows it to capture the sulfur dioxide in situ without adding any complementary sorbent. The ash chemical composition (bed ash and ESP ash) that reflects the particularities of the coal is presented. SEM and DRX observations confirm the presence of anhydrite CaSO{sub 4}, lime, CaS, quartz and traces of hematite. Most of particles are roughly-shaped but microspheres can also be detected in fly ash. The very high sulfate content may be worrying for the environment in disposals. Hardened samples do not seem to retain compounds from leaching: high quantities of calcium and sulfates are still leached from these crushed samples. (author) 10 refs.

  12. Synthesis gas production using oxygen storage materials as oxygen carrier over circulating fluidized bed

    Institute of Scientific and Technical Information of China (English)

    DAI Xiaoping; YU Changchun; LI Ranjia; WU Qiong; HAO Zhengping

    2008-01-01

    A novel process for synthesis gas production over Circulating Fluidized Bed (CFB) using oxygen storage materials as oxygen carrier was reported. First, oxygen in the air was chemically fixed and converted to lattice oxygen of oxygen storage materials over regenerator, and then methane was selectively oxidized to synthesis gas with lattice oxygen of oxygen storage materials over riser reactor. The results from simulation reaction of CFB by sequential redox reaction on a fixed bed reactor using lanthanum-based perovskite LaFeO3 and La0.8Sr0.2Fe0.9Co0.1O3 oxides prepared by sol-gel, suggested that the depleted oxygen species could be regenerated, and methane could be oxidized to synthesis gas by lattice oxygen with high selectivity. The partial oxidation of methane to synthesis gas over CFB using lattice oxygen of the oxygen storage materials instead of gaseous oxygen should be possibly applicable.

  13. A New Dry Flue Gas Desulfurization Process-Underfeed Circulating Spouted Bed

    Science.gov (United States)

    Tao, M.; Jin, B. S.; Yang, Y. P.

    Applying an underfeed system, the underfeed circulating spouted bed was designed as a desulfurization reactor. The main objective of the technology is to improve the mixing effect and distribution uniformity of solid particles, and therefore to advance the desulfurization efficiency and calcium utility. In this article, a series of experimental studies were conducted to investigate the fluidization behavior of the solid-gas two-phase flow in the riser. The results show that the technology can distinctly improve the distribution of gas velocity and particle flux on sections compared with the facefeed style. Analysis of pressure fluctuation signals indicates that the operation parameters have significant influence on the flow field in the reaction bed. The existence of injecting flow near the underfeed nozzle has an evident effect on strengthening the particle mixing.

  14. Nucla circulating atmospheric fluidized bed demonstration project. Quarterly technical progress report, October--December 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-31

    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  15. Feasibility of Combustion of Petroleum Coke in 230t/h Circulating Fluidized Bed Boiler

    Institute of Scientific and Technical Information of China (English)

    HAN Dong-tai; SONG Zheng-chang; XU Tao

    2003-01-01

    In order to reuse the high sulfur petroleum coke, the waste in chemical industry, as fuel of power plant for energy recovery, the combustion property of petroleum coke was researched experimentally in circulating fluidized bed (CFB) boiler. The performance of the boiler in burning mixed fuel with different ratios of coal to petroleum coke is obtained. Based on the experimental data, Factors influencing the stability of combustion,thermal efficiency of boiler, and emissions and desulphurisation are discussed. This study demonstrates that the combustion of petroleum coke in CFB boiler is applicable, and has great significance on the design and operation of CFB boiler to burn petroleum coke.

  16. Co-firing of paper mill sludge and coal in an industrial circulating fluidized bed boiler.

    Science.gov (United States)

    Tsai, Meng-Yuan; Wu, Keng-Tung; Huang, Chin-Cheng; Lee, Hom-Ti

    2002-01-01

    Co-firing of coal and paper mill sludge was conducted in a 103 MWth circulating fluidized bed boiler to investigate the effect of the sludge feeding rate on emissions of SOx, NOx, and CO. The preliminary results show that emissions of SOx and Nx decrease with increasing sludge feeding rate, but CO shows the reverse tendency due to the decrease in combustion temperature caused by a large amount of moisture in the sludge. All emissions met the local environmental requirements. The combustion ashes could be recycled as feed materials in the cement manufacturing process. PMID:12099502

  17. THREE -PHASE CIRCULATING FLUIDIZED BED EVAPORATOR FOR WHEAT STRAW BLACK LIQUOR EVAPORATION

    Institute of Scientific and Technical Information of China (English)

    Yuan-yuanJia

    2004-01-01

    A novel vapor-liquid-solid circulating fluidized bed evaporator, meaning for enhancing heat transfer and preventing fouling, is applied to wheat straw black liquor, which is the primary pollutant in China's papermaking industry. It is treated by alkali recovery, in which evaporation is a key process. The experimental results show that the vapor-liquid-solid three-phase boiling heat transfer coefficient is enhanced by 20%-40% than that of vapor-liquid two-phase boiling flow, also, the novel evaporator exhibits an excellent function of fouling prevention.

  18. THREE -PHASE CIRCULATING FLUIDIZED BED EVAPORATOR FOR WHEAT STRAW BLACK LIQUOR EVAPORATION

    Institute of Scientific and Technical Information of China (English)

    Yuan-yuan Jia

    2004-01-01

    A novel vapor-liquid-solid circulating fluidized bed evaporator, meaning for enhancing heat transfer and preventing fouling, is applied to wheat straw black liquor, which is the primary pollutant in China′s papermaking industry. It is treated by alkali recovery,in which evaporation is a key process. The experimental results show that the vapor-liquid-solid three-phase boiling heat transfer coefficient is enhanced by 20% ~40% than that of vapor-liquid two-phase boiling flow, also, the novel evaporator exhibits an excellent function of fouling prevention.

  19. Circulating fluidized-bed technologies for the conversion of biomass into energy

    International Nuclear Information System (INIS)

    The paper introduces circulating fluidized-bed (CFB) combustion and CFB gasification. CFB combustion units are state-of-the-art and have proven their ability to convert biomass into power and/or steam. The existing units and projects in developing countries are discussed as examples of conventional technology. To illustrate advanced technologies, CFB gasification is discussed. Important process parameters of plants already in operation or under construction in developed countries are shown, Criteria for the selection of CFB combustion or gasification based on available feedstocks and products required are discussed. Finally, a procedure for implementing Lurgi's CFB technology in developing countries is proposed. (author)

  20. Rotational asymmetry of reactant concentration and its evolution in a circulating fluidized bed riser

    Institute of Scientific and Technical Information of China (English)

    Dongbing Li; Ajay K. Ray; Madhumita B. Ray; Jesse Zhu

    2012-01-01

    Rotational asymmetric distribution of reactant (ozone) concentration and its evolution along with the gas-solid reactive flow were studied in a 76 mm i.d.,10.2 m high circulating fluidized bed (CFB) riser reactor.The superficial gas velocity ranged from 3 to 5 m/s and the solids circulation rates were 50 and 100kg/(m2 s).Experimental results show that the asymmetry of reactant distribution can extend to a height close to the length of flow developing zone of the CFB riser reactor and then disappears.Based on the hydrodynamics of the gas and solid phases in the solids entrance region,this asymmetry can be attributed to the effect of the solids entrance structure.

  1. Apparatus, components and operating methods for circulating fluidized bed transport gasifiers and reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2015-02-24

    The improvements proposed in this invention provide a reliable apparatus and method to gasify low rank coals in a class of pressurized circulating fluidized bed reactors termed "transport gasifier." The embodiments overcome a number of operability and reliability problems with existing gasifiers. The systems and methods address issues related to distribution of gasification agent without the use of internals, management of heat release to avoid any agglomeration and clinker formation, specific design of bends to withstand the highly erosive environment due to high solid particles circulation rates, design of a standpipe cyclone to withstand high temperature gasification environment, compact design of seal-leg that can handle high mass solids flux, design of nozzles that eliminate plugging, uniform aeration of large diameter Standpipe, oxidant injection at the cyclone exits to effectively modulate gasifier exit temperature and reduction in overall height of the gasifier with a modified non-mechanical valve.

  2. Prediction of the particle circulation rate in a draft tube spouted bed suspension dryer

    Directory of Open Access Journals (Sweden)

    ZORANA LJ. ARSENIJEVIC

    2006-04-01

    Full Text Available A model for predicting the particle circulation rate in a draft tube spouted bed dryer with inert particles is proposed and verified. The calculation algorithm requires three input values: the gas velocity in the draft tube, one data point for the static pressure in the draft tube, and the pressure gradient in the annulus. The particle circulation rate can be estimated by solving the continuity andmomentum equations for turbulent accelerating two-phase flow. The numerical solution is based on an iterative procedure until the assumed value of the particle circulation rate produces the prescribed value of the fluid static pressure at a certain axial position. Experiments were performed in a cylindrical column of 215 mm diameter with a draft tube of 70 mm diameter and length of 900 mm. Polyetylene pellets were used as the inert particles with a diameter of 3.3 mm, a density of 921 kg/m3 and a sphericity of 0.873. The model predictions of the particle circulation rate are in good agreement with the experimental data.

  3. Process Analysis of Lignite Circulating Fluidized Bed Boiler Coupled with Pyrolysis Topping

    Science.gov (United States)

    Wang, Baoqun; Dong, Li; Wang, Yin; Matsuzawa, Y.; Xu, Guangwen

    We developed a comprehensive process model in ASPEN Plus to simulate the energy and mass balances of a lignite-fueled atmospheric circulating fluidized bed (CFB) boiler integrated with coal predrying and pyrolysis topping. In this model, it is assumed that the heat from exhausted flue gas was employed for coal predrying, and the sensible heat derived from circulated bed material was used for the pyrolysis topping (endothermic process). The simulation was conducted with respectto the Yunnan Kaiyuan CFB boiler, and two representative lignite coals from Xiao Long Tan (XLT) and Xin Shao (XS) were considered. The result shows that the predrying of coal with the sensible heat of above 363 K from flue gas, the amount of coal consumed in the boiler can be reduced by 3.5% and 5.3% for XLT lignite and XS lignite, respectively. It was also found that integration of pyrolysis topping with the boiler increased the coal consumption of the boiler, and the extent of consumption-increase varies with the yields of tar and gas in the pyrolysis topping process. For agas yield of 5.2% and a tar yield of 5-6%, the consumption of XS lignite increased by about 20% comparing to that in the case without topping.

  4. Pilot development of polygeneration process of circulating fluidized bed combustion combined with coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Qu, X. [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan (China); Graduate School, Chinese Academy of Sciences, Beijing (China); Liang, P. [College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao (China); Wang, Z. [Ningbo Branch of Academy of Ordnace Science, Ningbo (China); Zhang, R.; Sun, D.; Bi, J. [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan (China); Gong, X. [Hengyuan Coal Electrochemical Co., Ltd, Fugu (China); Gan, Z. [State Key Laboratory of Low Carbon Energy, ENN Science and Technology Ltd, Langfang (China)

    2011-01-15

    A pilot polygeneration process of a 75 t h{sup -1} circulating fluidized bed (CFB) boiler combined with a moving bed coal pyrolyzer was developed based on laboratory-scale experimental results. The process operation showed good consistency and integration between boiler and pyrolyzer. Some critical operating parameters such as hot ash split flow from the CFB boiler to the pyrolyzer, mixing of hot ash and coal particles, control of pyrolysis temperature and solid inventory in the pyrolyzer, and pyrolysis gas clean-up were investigated. Yields of 6.0 wt-% tar and 8.0 wt-% gas with a heating value of about 26 MJ m{sup -3} at 600 C were obtained. Particulate content in tar was restrained less than 4.0 wt-% by using a granular filter of the moving bed. Operation results showed that this pilot polygeneration process was successfully scaled up. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Filtration of dust in a circulating granular bed filter with conical louver plates (CGBF-CLPs).

    Science.gov (United States)

    Bai, Jing-Cheng; Wu, Shu-Yii; Lee, An-Sheng; Chu, Chen-Yeon

    2007-04-01

    A novel circulating granular bed filter with conical louver plates (CGBF-CLPs) was designed to remove dust particulates from the flue gas stream of a coal power plant. The purpose of this investigation was to evaluate the performance of the CGBF-CLPs. Dust collection efficiency and pressure drop data were analyzed to determine better operating conditions. The effect of solid mass flow rate, collector particle size and dust/collector particles separator types on the dust collection efficiency and pressure drop in the CGBF-CLPs were investigated in this study. The solid mass flow rate (B) varied from 15.59+/-0.44 to 20.36+/-0.68 g s(-1) and the initial average collector particle sizes were 1500 and 795 microm, respectively. Two types of separators, a cyclone and an inertial one, for separating the dust and collector particles were used in the CGBF-CLPs system. An Air Personal Sampler (SKC PCXR8) was used to determine the inlet and outlet dust concentrations. A differential pressure transmitter and data acquisition system were used to measure the pressure drop. Experimental results showed that the highest dust collection efficiency was 99.59% when the solid mass flow rate was 17.08+/-0.48 g s(-1) and the initial average collector particle size was 795 microm with the cyclone type separator. The results showed that the attrition fines of the original collector particles returning to the granular bed filter (GBF) reduced bed voidage. This phenomenon significantly increased the dust collection efficiency in the CGBF-CLPs. As a consequence, a bigger bed voidage creates a lower dust collection efficiency in the GBF. PMID:16996207

  6. Modelling transient 3D multi-phase criticality in fluidised granular materials - the FETCH code

    International Nuclear Information System (INIS)

    The development and application of a generic model for modelling criticality in fluidised granular materials is described within the Finite Element Transient Criticality (FETCH) code - which models criticality transients in spatial and temporal detail from fundamental principles, as far as is currently possible. The neutronics model in FETCH solves the neutron transport in full phase space with a spherical harmonics angle of travel representation, multi-group in neutron energy, Crank Nicholson based in time stepping, and finite elements in space. The fluids representation coupled with the neutronics model is a two-fluid-granular-temperature model, also finite element fased. A separate fluid is used to represent the liquid/vapour gas and the solid fuel particle phases, respectively. Particle-particle, particle-wall interactions are modelled using a kinetic theory approach on an analogy between the motion of gas molecules subject to binary collisions and granular flows. This model has been extensively validated by comparison with fluidised bed experimental results. Gas-fluidised beds involve particles that are often extremely agitated (measured by granular temperature) and can thus be viewed as a particularly demanding application of the two-fluid model. Liquid fluidised systems are of criticality interest, but these can become demanding with the production of gases (e.g. radiolytic and water vapour) and large fluid/particle velocities in energetic transients. We present results from a test transient model in which fissile material (239Pu) is presented as spherical granules subsiding in water, located in a tank initially at constant temperature and at two alternative over-pressures in order to verify the theoretical model implemented in FETCH. (author)

  7. Circulating fluidized bed hydrodynamics experiments for the multiphase fluid dynamics research consortium (MFDRC).

    Energy Technology Data Exchange (ETDEWEB)

    Oelfke, John Barry; Torczynski, John Robert; O' Hern, Timothy John; Tortora, Paul Richard; Bhusarapu, Satish (; ); Trujillo, Steven Mathew

    2006-08-01

    An experimental program was conducted to study the multiphase gas-solid flow in a pilot-scale circulating fluidized bed (CFB). This report describes the CFB experimental facility assembled for this program, the diagnostics developed and/or applied to make measurements in the riser section of the CFB, and the data acquired for several different flow conditions. Primary data acquired included pressures around the flow loop and solids loadings at selected locations in the riser. Tomographic techniques using gamma radiation and electrical capacitance were used to determine radial profiles of solids volume fraction in the riser, and axial profiles of the integrated solids volume fraction were produced. Computer Aided Radioactive Particle Tracking was used to measure solids velocities, fluxes, and residence time distributions. In addition, a series of computational fluid dynamics simulations was performed using the commercial code Arenaflow{trademark}.

  8. Effects of circulating fluidized bed combustion (CFBC) fly ashes as filler on the performances of asphalt

    Energy Technology Data Exchange (ETDEWEB)

    Qin Li; Hui Xu; Xiaoru Fu; Chen Chen; Jianping Zhai [Nanjing University, Nanjing (China). State Key Laboratory of Pollution Control and Resource Reuse

    2009-03-15

    This work investigated the potential of utilizing circulating fluidized bed combustion (CFBC) fly ashes (CFAs) as alternative filler, substituting mineral powders (MPs) that are widely used in asphalt concrete. Physico-chemical characteristics of the CFAs and MPs, as well as effects of different mix designs of CFAs and asphalt on asphalt performances were examined, including moisture susceptibility, viscosity, ductility, softening point, penetration, and antiaging performances. The results of the study show that generally the CFAs have greater effects than the MPs on improving the performances of asphalt, and that the specific surface area (SSA), free CaO (f-CaO), morphology, and mineralogical phases of the CFAs are more favorable than those of the MPs respectively, while the alkaline values, hydrophilic coefficients, particle size distributions (PSDs), and water contents of the two fillers are similar. It is suggested that CFAs may be more suitable than MPs for the use as asphalt concrete filler.

  9. Study on Reactivity of Circulating Fluidized Bed Combustion Fly Ashes in the Presence of Water

    Directory of Open Access Journals (Sweden)

    Salain I.M.A.K.

    2010-01-01

    Full Text Available A study on reactivity of four different Circulating Fluidized Bed Combustion (CFBC fly ashes has been realized in the presence of water. Paste of each ash was prepared and analyzed for its setting time, expansion and strength. The products of hydration, and their evolutions over a period of time were identified by X-ray diffraction and differential thermal analysis. The results of this study show that the reactivity of the CFBC fly ashes is strongly related to their chemical composition, essentially to their quantity of silica, alumina, lime and sulfate, which promote principally the formation of ettringite, gypsum and C-S-H. It is further noted that the intensity and the proportion of these phases determine the hydration behavior of the CFBC fly ashes.

  10. Heat transfer in a large-scale circulating fluidized bed boiler

    Institute of Scientific and Technical Information of China (English)

    CHENG Leming; WANG Qinhui; SHI Zhenglun; LUO Zhongyang; NI Mingjiang; CEN Kefa

    2007-01-01

    Heat transfer of a furnace in a large-scale circulating fluidized bed (CFB) boiler was studied based on the analysis of available heat transfer coefficient data from typical industrial CFB boilers and measured data from a 12 MWe,a 50 MWe and a 135 MWe CFB boiler.The heat transfer of heat exchanger surfaces in a furnace,in a steam/water cooled cyclone,in an external heat exchanger and in the backpass was also reviewed.Empirical correlation of heat transfer coefficient was suggested after calculating the two key parameters,solids suspension density and furnace temperature.The correlation approach agrees well with the data from the large-scale CFB boilers.

  11. Circulating fluidized bed combustion in the turbulent regime: modelling of carbon combustion efficiency and sulphur retention

    Energy Technology Data Exchange (ETDEWEB)

    Adanez, J.; Gayan, P.; Grasa, G.; de Diego, L.F.; Armesto, L.; Cabanillas, A. [Instituto de Carboquimica (CSIC), Zaragoza (Spain). Dept. of Energy and Environment

    2001-08-10

    A model has been developed considering the hydrodynamic behaviour of a turbulent circulating fluidized bed, the kinetics of coal combustion and sulphur retention in the riser. The hydrodynamic characteristics of the turbulent fluidization regime were integrated together with the kinetic submodels of char combustion and sulphur retention by limestone. From the combustion of a lignite and an anthracite with limestone addition in a hot CBF pilot plant of 20 cm internal diameter and 6.5 m high, the effect of operating conditions such as temperature, excess air, air velocity, Ca/S molar ratio, coal and limestone particle size distributions on carbon combustion efficiency and sulphur retention were studied. The experimental results were compared with those predicted by the model and a good correlation was found for all the conditions used. 56 refs., 10 figs., 1 tab.

  12. Dynamical features extracted from the solids circulation trajectories in gas-liquid-solid fluidized bed

    International Nuclear Information System (INIS)

    Qualitative Dynamic Tools (QDTs) are implemented to infer, from Radioactive Particle Tracking (RPT) experiments, dynamical features of the solid trajectories in a 3-D three-phase fluidized bed. The discrete bubble and coalesced bubble flow regimes are examined for large heavy as well as light particles.The spatial distributions of the solid trajectory interconnectivity, related to the local information loss rates (ILR), are evaluated and compared with the Kolmogoroff entropies estimated from time series of characteristic variables. The point-wise information loss rates calculated from the local divergence of particle trajectories are related to the local values of the turbulence intensities. The relationship among the local ILR and turbulence intensities in the discrete bubble flow regime differs from that calculated for the bubble coalesced flow regime. Some features of the circulating bubbles are inferred from the tracer particle trajectory. (author)

  13. Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash

    Institute of Scientific and Technical Information of China (English)

    Ze Liu; Ning-ning Shao; Dong-min Wang; Jun-feng Qin; Tian-yong Huang; Wei Song; Mu-xi Lin; Jin-sha Yuan; Zhen Wang

    2014-01-01

    In recent years, circulating fluidized bed combustion fly ash (CFA) is used as a raw material for geopolymer synthesis. Hydrogen peroxide was employed as a foaming agent to prepare CFA-based foam geopolymer. The particle distribution, mineral composition, and chemical composition of CFA were examined firstly. Geopolymerization products were characterized by mechanical testing, scanning elec-tron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). The CFA-based foam geopolymer was successfully fabri-cated with different contents of hydrogen peroxide and exhibited uncompleted alkali reaction and reasonable strength with relative low atomic ratios of Si/Al and Si/Na. Type-C CFA in this research could be recycled as an alternative source material for geopolymer production.

  14. Characteristics modeling for supercritical circulating fluidized bed boiler working in oxy-combustion technology

    Science.gov (United States)

    Balicki, Adrian; Bartela, Łukasz

    2014-06-01

    Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of `zeroemission' technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.

  15. Modified graphical autocatalytic set model of combustion process in circulating fluidized bed boiler

    Science.gov (United States)

    Yusof, Nurul Syazwani; Bakar, Sumarni Abu; Ismail, Razidah

    2014-07-01

    Circulating Fluidized Bed Boiler (CFB) is a device for generating steam by burning fossil fuels in a furnace operating under a special hydrodynamic condition. Autocatalytic Set has provided a graphical model of chemical reactions that occurred during combustion process in CFB. Eight important chemical substances known as species were represented as nodes and catalytic relationships between nodes are represented by the edges in the graph. In this paper, the model is extended and modified by considering other relevant chemical reactions that also exist during the process. Catalytic relationship among the species in the model is discussed. The result reveals that the modified model is able to gives more explanation of the relationship among the species during the process at initial time t.

  16. Numerical and experimental study on flue gas desulfurization in the underfeed circulating spouted bed

    Energy Technology Data Exchange (ETDEWEB)

    Tao, M.; Jin, B.S.; Zhong, W.Q.; Yang, Y.P.; Xiao, R. [Southeast University, Nanjing (China). School of Energy & Environment

    2010-05-01

    An underfeed circulating spouted bed (UCSB) reactor was used as a desulfurization apparatus. In this study, an attempt was made to build a mathematical 3D model which couples the complicated flow and chemical reactions in the interest of system analysis and sulfur removal data analysis. A simplified reaction model was developed to describe the SO{sub 2} absorption process. Humidifying, evaporation, neutralization reaction have been considered in the model while the dissolution and ionization of calcium hydroxide are neglected. The effect of operating parameters including feed style, injecting velocity, jet water flow rate, humidifying style on sulfur removal efficiency were investigated. The results show that the calculation gives a good description of the experimental data under the range of operating conditions. It indicates that the model is successful in predicting the desulfurization efficiency of the UCSB system.

  17. Second law analysis of heat transfer surfaces in circulating fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Gungor, Afsin [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Nigde University, 51100 Nigde (Turkey)

    2009-07-15

    The correct sizing of the heat transfer surfaces is important to ensure proper operation, load turndown, and optimization of circulating fluidized beds (CFBs). From this point of view, in this study, the thermodynamic second law analysis of heat transfer surfaces in CFBs is investigated theoretically in order to define the parameters that affect the system efficiency. Using a previously developed 2D CFB model which uses the particle-based approach and integrates and simultaneously predicts the hydrodynamics and combustion aspects, second law efficiency and entropy generation values are obtained at different height and volume ratios of the heat transfer surfaces for CFBs. Besides that, the influences of the water flow rates and heat exchanger tube diameters on the second law efficiency are investigated. Through this analysis, the dimensions, arrangement and type of the heat transfer surfaces which achieve maximum efficiency are obtained. (author)

  18. Prediction of Co-Firing Characteristics of Wastes in Circulating Fluidized Bed by Fuel Properties

    Science.gov (United States)

    Murakami, Takahiro; Suda, Toshiyuki

    The purpose of this study is to experimentally investigate the co-firing characteristics of different kinds of wastes in circulating fluidized bed combustors, and further to correlate the acquired combustion efficiency with fuel property parameters. The tested individual fuels were wasted tire, RPF, wood tip, RDF and coal, which typified the fuels with distinctively different contents of volatile matters. Coal was employed to represent the fuel containing particularly low volatile matters. The experiments were carried out in a pilot circulating fluidized bed combustor, and varied parameters included the fuel blending ratio, furnace temperature and secondary air ratio. The acquired results indicated that co-firing wasted tire and RPF led to higher CO concentration in the flue gas than firing RPF independently, and this CO concentration increased with increasing the blending ratio of wasted tire. The lower volatile matter content, higher carbon to hydrogen ratio (C⁄H ratio) and carbon to oxygen ratio (C⁄O ratio) of wasted tire than those of RPF were suggested to be responsible for the results. The study also found that the available combustion efficiencies in co-firing various pairs of the tested fuels were correlative with the volatile matter contents, C⁄H and C⁄O ratios of the blended fuels estimated as the weighed sums of the same property parameters of individual fuels. This allows thus a simple determination of the co-firing efficiency of any fuel blend from calculating the blend‧s fuel property parameters using the fuel blending ratio as a weight.

  19. Biomass gasification in a circulating fluidized bed; Vergasung von Biomasse in der zirkulierenden Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Ising, M.; Hoelder, D.; Backhaus, C.; Althaus, W. [Fraunhofer Inst. fuer Umwelt-, Sicherheits- und Energietechnik UMSICHT, Oberhausen (Germany)

    1998-09-01

    Biomass gasification in a circulating fluidized bed, in combination with a gas engine or gas burner, is a promising option for energetic use of biomass. Economic efficiency analyses on the basis of the UMSICHT plant show that this technology for combined heat and power generation from biomass is promising also for the range below 10 MW. The economic situation of any plant must be considered for the specific boundary conditions imposed by the power supply industry. The feasibility of the process was tested in a demonstration plant at Oberhausen. The plant was optimized further in extensive test series, and a number of tar reduction processes were investigated and improved on. The authors now intend to prove that gasification in a circulating fluidized bed combined with a gas engine cogeneration plant is feasible in continuous operation. (orig./SR) [Deutsch] Die Vergasung von Biomasse in der zirkulierenden Wirbelschicht ist in Kombination mit einem Gasmotor oder einem Gasbrenner eine vielversprechende Option fuer die energetische Biomassenutzung. Wirtschaftlichkeitsbetrachtungen auf Basis der UMSICHT-Anlage zeigen, dass diese Technologie fuer die gekoppelte Strom- und Waermeerzeugung aus Biomasse auch im Leistungsbereich unter 10 MW grosse Chancen verspricht. Dabei ist die oekonomische Situation einer Anlage im Einzelfall unter Beachtung der energiewirtschaftlichen Randbedingungen zu beurteilen. Durch den Betrieb einer Demonstrationsanlage in Oberhausen konnte die Funktion des Verfahrens nachgewiesen werden. In weiteren umfangreichen Versuchsreihen werden die Anlage weiter optimiert und verschiedene Konzepte zur Teerminderung untersucht und weiterentwickelt. Angestrebt ist der Nachweis des Dauerbetriebs von ZWS-Vergasung zusammen mit dem Gasmotoren-BHKW. (orig./SR)

  20. Numerical simulations of the industrial circulating fluidized bed boiler under air- and oxy-fuel combustion

    International Nuclear Information System (INIS)

    Measured and numerical results of air-fuel combustion process within large scale industrial circulating fluidized bed (CFB) boiler is presented in this paper. For numerical simulations the industrial compact CFB boiler was selected. Numerical simulations were carried out using three-dimensional model where the dense particulate transport phenomenon was simultaneously modelled with combustion process. The fluidization process was modelled using the hybrid Euler-Lagrange approach. The impact of the geometrical model simplification on predicted mass distribution and temperature profiles over CFB boiler combustion chamber two kinds of geometrical models were used, namely the complete model which consist of combustion chamber, solid separators, external solid super-heaters and simplified boiler geometry which was reduced to the combustion chamber. The evaluated temperature and pressure profiles during numerical simulations were compared against measured data collected during boiler air-fuel operation. Collected data was also used for validating numerical model of the oxy-fuel combustion model. Stability of the model and its sensitivity on changes of several input parameters were studied. The comparison of the pressure and temperature profiles for all considered cases gave comparable trends in contrary to measured data. Moreover, some additional test was carried out the check the influence of radiative heat transfer on predicted temperature profile within the CFB boiler. - Highlights: • Hybrid Euler-Lagrange approach was used for modelling particle transport, air- and oxy-fuel combustion process. • Numerical results were validated against measured data. • The influence of different boiler operating conditions on calculated temperature profile was investigated. • New strategy for resolving particle transport in circulating fluidized bed was shown

  1. Co-combustion of agricultural wastes in a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Huseyin Topal; Aysel T. Atimtay [Gazi University, Ankara (Turkey). Dept. of Mechanical Engineering

    2005-07-01

    In this study a circulating fluidized bed combustion (CFBC) of 125 mm inside diameter and 1800 mm height was used to investigate the co-combustion characteristics of peach and apricot stones produced as a waste from the fruit juice industry, and sunflower stems produced as a waste from the edible oil industry with a lignite coal. Lignite coal is a coal most widely used in Turkey. On-line concentrations of O{sub 2}, CO, CO{sub 2}, SO{sub 2}, NOx and total hydrocarbons (C{sub m}H{sub n}) were measured in the flue gas during combustion experiments. By changing the operating parameters the variation of emissions of various pollutants were studied. During combustion tests, it was observed that the volatile matter from agro-wastes quickly volatilizes and mostly burn in the riser. The temperature profiles along the bed and the rise also confirmed this phenomenon. It was found that as the volatile matter content of agro-waste increases, the combustion efficiency increases and the combustion takes place more in the upper region of the riser. These results suggest that agro-wastes are potential fuels that can be utilized for clean energy production by using CFBC in countries where agricultural activities are heavy. 3 refs., 4 figs., 5 tabs.

  2. Multi-scale simulation of chemical looping combustion in dual circulating fluidized bed

    International Nuclear Information System (INIS)

    Highlights: • A modified multi-scale gas–solid flow-reaction coupled model is developed. • Multi-scale characteristic of chemical looping combustion system is investigated. • Predicted results show a good agreement with experimental data. - Abstract: Chemical looping combustion (CLC) in an interconnected fluidized bed has attracted more and more attention owing to its novel technology with inherent separation of CO2. In recent years, some models have been developed to investigate the gas-particle flow and reactive characteristics during the CLC process. However, multi-scale structures in reactors make it complex to perform a simulation. In the current work, a multi-scale gas–solid flow-reaction coupled model is developed and applied to the simulation of the CLC process in a dual circulating fluidized bed (DCFB) system with consideration of the impact of multi-scale structures on chemical reactions, mass and heat transfer. By comparisons of gas pressure and gas components with experimental data, the present model shows a better prediction. The influence of clusters on the gas compositions and temperature field is analyzed

  3. Biological nutrient removal from leachate using a pilot liquid-solid circulating fluidized bed bioreactor (LSCFB).

    Science.gov (United States)

    Eldyasti, Ahmed; Chowdhury, Nabin; Nakhla, George; Zhu, Jesse

    2010-09-15

    Biological treatment of landfill leachate is a concern due to toxicity, high ammonia, low biodegradable organic matter concentrations, and low carbon-to-nitrogen ratio. To study the reliability and commercial viability of leachate treatment using an integrated liquid-solid circulating fluidized bed bioreactor (LSCFB), a pilot-scale LSCFB was established at the Adelaide Pollution Control Plant, London, Ontario, Canada. Anoxic and aerobic columns were used to optimize carbon and nutrient removal capability from leachate using 600 microm lava rock with a total porosity of 61%, at empty bed contact times (EBCTs) of 0.55, 0.49, and 0.41 d. The LSCFB achieved COD, nitrogen, and phosphorus removal efficiencies of 85%, 80%, and 70%, respectively at a low carbon-to-nitrogen ratio of 3:1 and nutrients loading rates of 2.15 kg COD/(m(3) d), 0.70 kg N/(m(3) d), and 0.014 kg P/(m(3) d), as compared with 60-77% COD and 70-79% nitrogen removal efficiencies achieved by upflow anaerobic sludge blanket (UASB) and moving bed bioreactor (MBBR), respectively. The LSCFB effluent characterized by

  4. A comparative study of the circulating and fixed bed reactors running. Application to the isobutyric acid oxy-dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Bechara, R.; Lakraa, M.; Vanhove, D.; Pietrzyk, S. [Ecole Nationale Superieure de Chimie de Lille, 59 - Villeneuve d`Ascq (France); Hecquet, G. [Societe Nationale Elf-Aquitaine (France)

    1995-12-31

    This work deals with the study of the catalytic oxy-dehydrogenation process of the isobutyric acid in methacrylic acid on a Fe-Cs-P-O catalyst. The reaction has been carried out on two facilities: a circulating bed pilot reactor and a bench-scale packed bed reactor. Although there are considerable differences between the two reactors, a comparison has been established. When the reaction is carried out in the circulating bed reactor, an important ratio of carbonaceous species remain adsorbed at the catalyst surface. A more extensive analysis of the catalyst surface suggest that the main part of this adsorbed phase is probably methacrylic acid. (O.M.). 8 refs., 1 fig., 1 tab.

  5. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US

  6. Effect of Air Staging and Limestone Addition on Emissions of SO2 and NOx in Circulating Fluidized Bed Combustion

    International Nuclear Information System (INIS)

    The object of this work is to provide more detailed knowledge about the effect of air staging and its relation to the addition of limestone on the emissions of SO2 and NOx from fluidized bed combustors. This knowledge can be used in models of (circulating) fluidized bed combustors for the development of control strategies. The effect of air staging can be divided in to two parts: (1) The effect on the hydrodynamics in a circulating fluidized bed; and (2) The effect on the local gas concentrations, especially the O2 concentration. In this work the influence of both these effects on the SO2 and NOx emissions from (circulating) fluidized bed combustors with air staging was investigated. In Chapter 2 the influence air staging and the use of secondary air injection on the hydrodynamics in a circulating fluidized beds is described. In the first section of that chapter a literature review is given. In the second section an experimental study is presented on the solids distribution and circulation rate under different air staging conditions. Chapter 3 presents fixed bed studies on the SO2 retention by limestone. To understand the influence of air staging, the effect of oxygen on the SO2 retention was investigated. The kinetics were determined and the so-called grain model was used to model the SO2 retention. In Chapter 4 an extensive study was made on the kinetics of the formation of NO from NH3 and the influence of oxygen on these reactions. The kinetics and the activation energies of both homogenous reactions and reactions catalyzed by limestone were determined and the effect of oxygen was investigated. Chapter 5 presents an experimental study and modeling work on the effect of water and CO2 on the reactivity of limestone. It was found that the presence of water reduced the reactivity of limestone significantly. In Chapter 6 the oxidation of NH3 over partially sulphated limestone is studied. A model is developed that describes the NO formation and selectivity as a

  7. Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash.

    Science.gov (United States)

    Chen, Chen; Li, Qin; Shen, Lifeng; Zhai, Jianping

    2012-06-01

    This paper presents a study on geopolymer bricks manufactured using bottom ash from circulating fluidized bed combustion (CFBC). The alkali activators used for synthesis were sodium silicate, sodium hydroxide, and potassium hydroxide and lithium hydroxide solutions. The study included the impact of alkali activator on compressive strength. The reaction products were analysed by XRD, FT-IR and SEM/EDS. The compressive strength of bricks was dependent on the modulus of the sodium silicate activator and the type and concentration of alkali activator. The highest compressive strength could be gained when the modulus was 1.5, and the value could reach 16.1 MPa (7 d after manufacture) and 21.9 MPa (28 d after manufacture). Under pure alkaline systems, the compressive strength was in the order of 10 M KOH > 10 M NaOH > 5 M LiOH > 5 M KOH > 5 M NaOH. Quartz was the only crystalline phase in the original bottom ash, and no new crystalline phase was found after the reaction. The main product of reaction was amorphous alkali aluminosilicate gel and a small amount of crystalline phase was also found by SEM. PMID:22856304

  8. Study on the flow in the pipelines of the support system of circulating fluidized bed

    Science.gov (United States)

    Meng, L.; Yang, J.; Zhou, L. J.; Wang, Z. W.; Zhuang, X. H.

    2013-12-01

    In the support system of Circulating Fluidized Bed (Below referred to as CFB) of thermal power plant, the pipelines of primary wind are used for transporting the cold air to the boiler, which is important in controlling and combustion effect. The pipeline design will greatly affect the energy loss of the system, and accordingly affect the thermal power plant economic benefits and production environment. Three-dimensional numerical simulation is carried out for the pipeline internal flow field of a thermal power plant in this paper. Firstly three turbulence models were compared and the results showed that the SST k-ω model converged better and the energy losses predicted were closer to the experimental results. The influence of the pipeline design form on the flow characteristics are analysed, then the optimization designs of the pipeline are proposed according to the energy loss distribution of the flow field, in order to reduce energy loss and improve the efficiency of tunnel. The optimization plan turned out to be efficacious; about 36% of the pressure loss is reduced.

  9. CFD simulation of smooth and T-abrupt exits in circulating fluidized bed risers

    Institute of Scientific and Technical Information of China (English)

    Xuezhi Wu; Fan Jiang; Xiang Xu; Yunhan Xiao

    2010-01-01

    Gas-solid flow in circulating fluidized bed(CFB)risers depends not only on operating conditions but also on exit configurations.Few studies investigated the effects of exit configurations on flow structure using computational fluid dynamics(CFD).This paper provides a 2D two-fluid model to simulate a cold bench-scale square cross-section riser with smooth and T-abrupt exits.The drag force between the gas and solid phases plays an important role in CFD.Since the drag force model based on homogeneous twophase flow,such as the Wen-Yu correlation,could not capture the heterogeneous structures in gas-solid flow,the structure-dependent energy-minimization multi-scale(EMMS)drag force model(Wang.Ge,&Li,2008),applicable for Geldart B particles(sand),was integrated into the two-fluid model.The calculated axial solids hold-up profiles were respectively exponential curve for smooth exit and C-shaped curve for T-abrupt exit,both consistent with experimental data.This study once again proves the key role of drag force in CFD simulation and also shows the validity of CFD simulation(two-fluid model)to describe exit effects on gas-solid flow in CFB risers.

  10. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Kunlei Liu; John T. Riley

    2004-04-01

    The purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the quarter January--March 2004. The following tasks have been completed. First, plans for the renovation of space for a new Combustion Laboratory for the CFBC Facility have progressed smoothly. Second, the design calculations, including the mass balances, energy balances, heat transfer, and strength calculations have been completed. Third, considerable modifications have been made on the draft design of the CFBC Facility based on discussions conducted during the project kick-off meeting held on January 13, 2004 at the National Energy Technology Laboratory (NETL). Comments received from various experts were also used to improve the design. Finally, the drawings of all assembly parts have been completed in order to develop specifications for the fabrication of individual parts. At the same time, the proposed work for the next quarter has been outlined in this report.

  11. Characteristics modeling for supercritical circulating fluidized bed boiler working in oxy-combustion technology

    Directory of Open Access Journals (Sweden)

    Balicki Adrian

    2014-06-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of ‘zeroemission’ technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.

  12. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    Science.gov (United States)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling

  13. Numerical Modeling of Reactive Multiphase Flow for FCC and Hot Gas Desulfurization Circulating Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-07-01

    This work was carried out to understand the behavior of the solid and gas phases in a CFB riser. Only the riser is modeled as a straight pipe. A model with linear algebraic approximation to solids viscosity of the form, {musubs} = 5.34{epsisubs}, ({espisubs} is the solids volume fraction) with an appropriate boundary condition at the wall obtained by approximate momentum balance solution at the wall to acount for the solids recirculation is tested against experimental results. The work done was to predict the flow patterns in the CFB risers from available experimental data, including data from a 7.5-cm-ID CFB riser at the Illinois Institute of Technology and data from a 20.0-cm-ID CFB riser at the Particulate Solid Research, Inc., facility. This research aims at modeling the removal of hydrogen sulfide from hot coal gas using zinc oxide as the sorbent in a circulating fluidized bed and in the process indentifying the parameters that affect the performance of the sulfidation reactor. Two different gas-solid reaction models, the unreacted shrinking core (USC) and the grain model were applied to take into account chemical reaction resistances. Also two different approaches were used to affect the hydrodynamics of the process streams. The first model takes into account the effect of micro-scale particle clustering by adjusting the gas-particle drag law and the second one assumes a turbulent core with pseudo-steady state boundary condition at the wall. A comparison is made with experimental results.

  14. CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATING FLUIDIZED BED GASIFICATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Fan

    2006-05-30

    Foster Wheeler has completed work under a U.S. Department of Energy cooperative agreement to develop a gasification equipment module that can serve as a building block for a variety of advanced, coal-fueled plants. When linked with other equipment blocks also under development, studies have shown that Foster Wheeler's gasification module can enable an electric generating plant to operate with an efficiency exceeding 60 percent (coal higher heating value basis) while producing near zero emissions of traditional stack gas pollutants. The heart of the equipment module is a pressurized circulating fluidized bed (PCFB) that is used to gasify the coal; it can operate with either air or oxygen and produces a coal-derived syngas without the formation of corrosive slag or sticky ash that can reduce plant availabilities. Rather than fuel a gas turbine for combined cycle power generation, the syngas can alternatively be processed to produce clean fuels and or chemicals. As a result, the study described herein was conducted to determine the performance and economics of using the syngas to produce hydrogen for sale to a nearby refinery in a hydrogen-electricity co-production plant setting. The plant is fueled with Pittsburgh No. 8 coal, produces 99.95 percent pure hydrogen at a rate of 260 tons per day and generates 255 MWe of power for sale. Based on an electricity sell price of $45/MWhr, the hydrogen has a 10-year levelized production cost of $6.75 per million Btu; this price is competitive with hydrogen produced by steam methane reforming at a natural gas price of $4/MMBtu. Hence, coal-fueled, PCFB gasifier-based plants appear to be a viable means for either high efficiency power generation or co-production of hydrogen and electricity. This report describes the PCFB gasifier-based plant, presents its performance and economics, and compares it to other coal-based and natural gas based hydrogen production technologies.

  15. Properties of geopolymer from circulating fluidized bed combustion coal bottom ash

    International Nuclear Information System (INIS)

    Research highlights: → Dry cured geopolymers exhibit a heterogeneous and porous gel matrix. → The Si/Na atomic ratio of the main reaction product (N-A-S-H gel) is close to 1. → Low Si/Na ratio (0.5) correspond to a more crystalline stage of the N-A-S-H gel. → N-A-S-H gel has small pores which facilitate the escape of moisture when it is heated. → N-A-S-H gel became more amorphous, attaining higher Si/Al ratio of 4.54 at 800 deg. C. - Abstract: Compressive strength, atomic ratios and microstructure of geopolymer mortars (GM) made from circulating fluidized bed combustion (CFBC) coal bottom ash (CBA) were investigated to observe the effect of air curing at ambient temperature (AC) at 20 deg. C and 90% RH, dry curing (DC) at 80 deg. C and 40% RH for 20 h. The 28-d compressive strength of GM exposed to AC (GM-AC) and DC (GM-DC) were 26.23 and 24.14 MPa, respectively. The Si/Na atomic ratio of the main reaction product (N-A-S-H gel) was close to 1. Geopolymer gel (apparently crystalline) having low Si/Na ratio (0.5) may correspond to a more advanced or developed stage of the aluminosilicate gel. It was observed that the geopolymerization was completed before the N-A-S-H gel formed when Si/Na ratio of GM is close to 2. The color of the GM changed from pink to grey and the structure became denser with almost no pores, when the temperature increased from 400 to 800 deg. C. The N-A-S-H gel became more amorphous due to the sintering reactions attaining Si/Al and Si/Na ratios of 4.54 and 0.98, respectively.

  16. Gamma ray tomography and solid phase hold-up measurements in a gas-solid circulating fluidized bed

    International Nuclear Information System (INIS)

    Chemical industry has numerous cases wherein reactions are carried between reactants that exist in different phases. Equipment designed for such a reaction is called multiphase reactor and intimate contact between the phases in any multiphase reactor is a must to achieve high efficiencies. When the reactants are in gas and solid phases or when the solid phase is a catalyst or a product to be dried in a gas stream, better contact efficiency can be achieved by suspending fine solids in the high velocity of fluid streams. A number of configurations are possible for carrying out such operations, such as rotary bed, fixed bed, moving bed, and fluidized bed and its several sub-configurations. Circulating fluidized bed (Cf) is a special mode of fluidization, and comprises of a tall riser column in which the solids are fluidized at high carrier phase velocity (gas and/or liquid). The entrained solids are captured in a cyclone or bag filters and returned back to the bottom of the riser continuously. CFB has found important applications in petroleum and power industry. Fluidized catalytic cracking of crude naphtha to petroleum products is carried out in a CFB system wherein the catalyst particles are suspended and entrained at high temperature in gasified naphtha in the riser column. Naphtha cracking is a multi-million dollar application of CFB and requires close study for efficiency and performance. Optimized operation of a CFB requires knowledge of solid phase holdup profiles and residence time distribution in the riser column. Attempts, direct and indirect, have been made to accurately measure these quantities. Use of radioisotopes offers a powerful and cost effective method for estimating both solid phase holdup profiles as well as residence time distribution in continuous multiphase flow. Efforts were therefore made through this investigation to determine solid phase axial and radial holdup profiles in the riser section of a 'cold' gas-solid circulating fluidized bed

  17. JV Task 108 - Circulating Fluidized-Bed Combustion and Combustion Testing of Turkish Tufanbeyli Coal

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Hajicek; Jay Gunderson; Ann Henderson; Stephen Sollom; Joshua Stanislowski

    2007-08-15

    Two combustion tests were performed at the Energy & Environmental Research Center (EERC) using Tufanbeyli coal from Turkey. The tests were performed in a circulating fluidized-bed combustor (CFBC) and a pulverized coal-fired furnace, referred to as the combustion test facility (CTF). One of the goals of the project was to determine the type of furnace best suited to this coal. The coal is high in moisture, ash, and sulfur and has a low heating value. Both the moisture and the sulfur proved problematic for the CTF tests. The fuel had to be dried to less than 37% moisture before it could be pulverized and further dried to about 25% moisture to allow more uniform feeding into the combustor. During some tests, water was injected into the furnace to simulate the level of flue gas moisture had the fuel been fed without drying. A spray dryer was used downstream of the baghouse to remove sufficient sulfur to meet the EERC emission standards permitted by the North Dakota Department of Health. In addition to a test matrix varying excess air, burner swirl, and load, two longer-term tests were performed to evaluate the fouling potential of the coal at two different temperatures. At the lower temperature (1051 C), very little ash was deposited on the probes, but deposition did occur on the walls upstream of the probe bank, forcing an early end to the test after 2 hours and 40 minutes of testing. At the higher temperature (1116 C), ash deposition on the probes was significant, resulting in termination of the test after only 40 minutes. The same coal was burned in the CFBC, but because the CFBC uses a larger size of material, it was able to feed this coal at a higher moisture content (average of 40.1%) compared to the CTF (ranging from 24.2% to 26.9%). Sulfur control was achieved with the addition of limestone to the bed, although the high calcium-to-sulfur rate required to reduce SO{sub 2} emissions resulted in heat loss (through limestone calcination) and additional ash

  18. Bottom ash from fluidising bed boilers as filler material in district heating pipe culverts. Chemical and geotechnical characterisation; Pannsand som kringfyllnadsmaterial foer fjaerrvaermeroergravar. Kemisk och geoteknisk karaktaerisering av fluidbaeddsand

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Roger; Rogbeck, Jan; Suer, Pascal

    2004-01-01

    Bottom ashes from fluid bed boilers have been characterised, both geotechnically and chemically, in order to investigate the possibility to use them as filler material in district heating pipe culverts. Bottom ashes from both biofuel boilers and waste boilers are represented in this project. The companies which ashes have been characterised are Sundsvall Energi AB, Sydkraft OestVaerme AB, Sydkraft MaelarVaerme AB, Eskilstuna Miljoe och Energi, Stora Enso Fors, Soederenergi and Fortum Vaerme. A total of ten ashes have been analysed where three ashes originates from Sundsvall Energi AB, two from Sydkraft OestVaerme AB and one from the each of the remaining companies. The chemical analyses have been performed both on fresh ashes and on ashes aged for three months. The geotechnical analyses performed are grain size distribution, packing abilities and permeability. Chemical analyses performed are total content, available content, leaching tests (leaching both by shaking method and column procedure) and organic analyses (PAH, EOX, TOC, dioxin and fenol). The geotechnical analyses show that the ashes fulfils the demands that are put on the filler material used in district heating pipe culverts. When using the ashes in applications, light compaction should be performed due to the risk of crushing the material which may cause an increased amount of fine material. The leachability of fine material is larger than for coarse material. The ashes are relatively insensitive to precipitation. Bio fuel based bottom ashes have a lower content of environmental affecting substances than waste fuel based ashes. This is also shown in the leaching analyses. The leaching water from fresh ashes contains a higher concentration of leachable components than aged ashes. When aged the pH in the ashes decreases due to carbon uptake and hydration and this makes metals as Pb, Cu, Cr and Zn less mobile. On the other hand, an increase in leachability of Sb, Mo and SO{sub 4} is shown when the ashes

  19. An Experimental Study of Liquid-Solid Flow in a Circulating Fluidized Bed of Varying Liquid Viscosity

    Directory of Open Access Journals (Sweden)

    nirmala sundaram

    2015-01-01

    Full Text Available Hydrodynamics plays a major role in the design of an industrial liquid-solid circulating fluidized bed (LSCFB system. Till date, research investigations have been carried out with tap water as a liquid phase in an LSCFB. But still there is a limited understanding regarding the circulation of particles in an LSCFB with viscous fluids. The aim of our study was to characterize the hydrodynamics in an LSCFB with varying viscosity. Experiments were conducted in a fluidized bed riser of 0.1 m diameter by 2.4 m height with different viscous liquids to study the effects of the operating parameters, namely, primary velocity, secondary velocity, and total velocity, on the hydrodynamic characteristics of the LSCFB with reference to its solid holdup, solid circulation rate, and particle velocity. Experiments were conducted using water and glycerol at different concentrations, and the solid particles (sand and resin of different densities, but same diameter were used in the experiment. The results indicate that the solid holdup in the riser was axially uniform for viscous liquids, which increased with an increase in auxiliary velocity. The average solid holdup decreased with an increase in total velocity, and it increased with an increase in liquid viscosity as the critical transitional velocity decreased with an increase in viscosity. The solid circulation rate was found to be increased with increased total velocity, auxiliary velocity, and viscosity.

  20. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new

  1. Experimental study on the reuse of spent rapidly hydrated sorbent for circulating fluidized bed flue gas desulfurization.

    Science.gov (United States)

    Li, Yuan; Zheng, Kai; You, Changfu

    2011-11-01

    Rapidly hydrated sorbent, prepared by rapidly hydrating adhesive carrier particles and lime, is a highly effective sorbent for moderate temperature circulating fluidized bed flue gas desulfurization (CFB-FGD) process. The residence time of fine calcium-containing particles in CFB reactors increases by adhering on the surface of larger adhesive carrier particles, which contributes to higher sorbent calcium conversion ratio. The circulation ash of CFB boilers (α-adhesive carrier particles) and the spent sorbent (β and γ-adhesive carrier particles) were used as adhesive carrier particles for producing the rapidly hydrated sorbent. Particle physical characteristic analysis, abrasion characteristics in fluidized bed and desulfurization characteristics in TGA and CFB-FGD systems were investigated for various types of rapidly hydrated sorbent (α, β, and γ-sorbent). The adhesion ability of γ-sorbent was 50.1% higher than that of α-sorbent. The abrasion ratio of β and γ-sorbent was 16.7% lower than that of α-sorbent. The desulfurization abilities of the three sorbent in TGA were almost same. The desulfurization efficiency in the CFB-FGD system was up to 95% at the bed temperature of 750 °C for the β-sorbent. PMID:21928832

  2. Biomass Gasification in Internal Circulating Fluidized Beds: a Thermodynamic Predictive Tool

    Czech Academy of Sciences Publication Activity Database

    Miccio, F.; Svoboda, Karel; Schosger, J.-P.; Baxter, D.

    2008-01-01

    Roč. 25, č. 4 (2008), s. 721-726. ISSN 0256-1115 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidized bed * gasification * fluidized bed Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.830, year: 2008

  3. Encapsulated multicellular spheroids of rat hepatocytes produce albumin and urea in a spouted bed circulating culture system.

    Science.gov (United States)

    Takabatake, H; Koide, N; Tsuji, T

    1991-12-01

    Multicellular spheroids are spherical cell-aggregates that retain tridimensional architecture and tissue-specific functions. For use of multicellular spheroids of hepatocytes in a bioreactor for hybrid artificial liver support, we studied the effect of encapsulation and circulating culture on their integrity and tissue-specific functions. Multicellular spheroids of rat hepatocytes were encapsulated into microdroplets of calcium alginate gel and were used as a bioreactor in medium circulating in a spouted bed chamber. Approximately 10% of the hepatocytes of an adult rat were entrapped in a bioreactor chamber, connected to a gas exchanger and a medium reservoir. The total bed volume of the system was 250 ml. The pH and DO2 of the hormonally defined circulating medium was maintained constantly. Albumin and urea were produced in a linear fashion for 64 h at the rates of 0.02 micrograms/microgram cell protein/day and 0.15-0.2 ng/micrograms cell protein/day, respectively. Viability and structural stability of the spheroids were well preserved after the culture period. These results indicate that these encapsulated multicellular hepatocyte spheroids will provide a useful bioreactor for the continuous production of albumin, in vitro and also a prototype hybrid artificial liver support. PMID:1763969

  4. Experimental study of the mechanisms of CO2 capture by calcium cycle under circulating fluidized bed conditions

    International Nuclear Information System (INIS)

    The work undertaken in this Thesis in partnership with department R and D of ALSTOM Power Boilers, CEMEX and the ADEME, relates to the experimental study of various phenomena associated to CO2 capture under circulating fluidized bed conditions. The size of particles, temperature and the CO2 concentration have an influence on the limestone calcination reaction. The reaction of carbonation of lime is not total. During successive cycles of calcination/carbonation, the rate of carbonation obtained with hydrated lime is increasingly higher than that obtained with the lime. Under continuously reducing conditions, the decomposition of sulphates present in the bed ashes is not total. This decomposition is total under reduction/oxidation cycles. A modeling of calcination allowed to determine the intrinsic kinetic constants of calcination and carbonation. (author)

  5. Recycling of composite materials using fluidised bed processes

    OpenAIRE

    Fenwick, Neal

    1996-01-01

    Lightweight engineering plastics have been increasingly used in automotive applications(3), this tends toward more fuel efficient vehicles(1). Glass reinforced plastics commonly include thermosetting polymers. These cannot be re-moulded, unlike thermoplastics, thus thermoset scrap is currently disposed of in landfill. This is increasingly targeted by legislation(14) and is becoming more expensive. This thesis describes work to maximise resource recovery from scrap thermoset composites. A...

  6. Chemical Processes Related to Combustion in Fluidised Bed

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, Britt-Marie; Lindqvist, Oliver [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Environmental Inorganic Chemistry

    2002-12-01

    This report covers work that has been carried out in the combustion chemistry group at the Dept. of Environmental Inorganic Chemistry, Chalmers, within the STEM project 12859-1, during the period 2000-07-01 to 2002-06-30. The work was comprised of the following parts: Sulphur chemistry under pressurised and atmospheric conditions; Gas/solid reactions related to sintering and fouling; Chemistry of volatile metals in combustion; Ash leaching properties; Theoretical modelling of the interactions between ions in a solution and mineral surfaces; Some related issues and co-operations with other departments. The work on sulphur chemistry has been a central issue in our group and it has now been finalised with a PhD thesis discussing some aspects of the sulphation of limestone under pressurised conditions. The influence of a number of parameters on the sulphation efficiency was investigated and compared with similar studies under atmospheric conditions. In a special study it was shown that the influence of alternating calcining - non-calcining conditions on the conversion was substantial. In addition, the oxidation of CaS and sulphided limestone was studied and a regeneration method for the sulphide sorbent was proposed. In the project part concerning gas - solid reactions that are relevant to sintering and fouling, the application of an on-line measurement technique for the study of alkali metal capture by kaolin or other sorbents is described. A new reactor set-up has been constructed and the initial results from this set up are promising. The chemistry of cadmium in combustion of MSW and biomass is the object of a PhD project. This work has been concentrated on the task of identifying Cd-compounds in fly ash samples. It has now come to a point where enough data has been collected to make it possible to give an indication about the Cd speciation in some ash types. In MSW ash particles, cadmium seem to occur mainly as chloride, oxide and sulphate. The work will continue with evaluation of other biomass ash particles and, as an extension, the speciation of Cu and Zn will be studied as well. Ash fractions from combustion of MSW in a BFB boiler have been investigated regarding composition and leaching properties, i.e. environmental impact risks. The release of salts from the cyclone ash fraction can be minimised by the application of a simple washing process, thus securing that the leaching of soluble substances stays within the regulative limits. The MSW ash - water systems contain some interesting chemical issues, such as the interactions between Cr(VI) and reducing substances like Al-metal. The understanding of such chemical processes is important since it gives a possibility to predict effects of a change in ash composition. An even more detailed understanding of interactions between a solution containing ions and particle surfaces can be gained by theoretical modelling. In this project (and with additional unding from Aangpannefoereningens Forskningsstiftelse) a theoretical description of ion-ion interactions and the solid-liquid-interface has been developed. Some related issues are also included in this report. The publication of a paper on the reactions of ammonia in the presence of a calcining limestone surface is one of them. A review paper on the influence of combustion conditions on the properties of fly ash and its applicability as a cement replacement in concrete is another. The licentiate thesis describing the sampling and measurement of Cd in flue gas is also included since it was finalised during the present period. A co-operation project involving the Geology Dept. at Goeteborg Univ. and our group is briefly discussed. This project concerns the utilisation of granules produced from wood ash and dolomite as nutrient source for forest soil. Finally, the plans for our flue gas simulator facility are discussed.

  7. Hydrodynamic and solid residence time distribution in a circulating fluidized bed: experimental and 3D computational study

    OpenAIRE

    Andreux, Régis; Petit, Geoffrey; Hemati, Mehrdji; Simonin, Olivier

    2008-01-01

    Vertical profiles of local pressure, horizontal profiles of net vertical solid mass flux, and residence time distributions (RTD) of the solid phase are experimentally assessed in the riser of a small scale cold Circulating Fluidized Bed of 9 m high having a square cross section of 1111 cm. Air (density 1.2 kg/m3, dynamic viscosity 1.8×10-5 Pa.s) and typical FCC particles (density 1400 kg/m3, mean diameter 70 mm) are used. The superficial gas velocity is kept constant at 7 m/s while the soli...

  8. Measurement of particle recirculation rate with radioactive tracer particles in a large scale circulating fluidized bed boiler

    International Nuclear Information System (INIS)

    Measurements of particle recirculation rate were made with a pulse injection of radioactive tracer particles in a 80 MWth circulating fluidized bed boiler, Grenaa, Denmark. Two batches of tracer particles were injected to the standpipe at full load and at part load. The response curves of the impulse injection were measured by a set of successive detectors at different locations of the standpipe. The response curves are successfully described by a cascade-tanks model. The particle recirculation rates estimated are about 9.5 kg/[m2.s] at full load and about 2 kg/[m2.s] at part load. (au)

  9. Experimental Study of Stabilized Soil Utilizing Circulating Fluidized Bed Combustion Desulfurization Ash with Carbide Slag and Desulfurization Gypsum

    OpenAIRE

    Shao, Dezhi; Liu, Jinlong; Huang, Xin

    2015-01-01

    This paper discusses the feasibility of preparing soil stabilizer which is circulating fluidized bed combustion ash-based, supplemented with carbide slag and desulfurization gypsum, composed entirely of complete industrial wastes. The results show that CFBC ash has better pozzolanic activity than fly ash. When stabilizer total content is 10% and the ratio of CFBC ash : carbide slag : desulfurization gypsum is 7.2 : 1.8 : 1, compressive strength of stabilized soil can reach the maximum of 2.12...

  10. Development of Methane and Nitrous Oxide Emission Factors for the Biomass Fired Circulating Fluidized Bed Combustion Power Plant

    OpenAIRE

    Chang-Sang Cho; Jae-Hwan Sa; Ki-Kyo Lim; Tae-Mi Youk; Seung-Jin Kim; Seul-Ki Lee; Eui-Chan Jeon

    2012-01-01

    This study makes use of this distinction to analyze the exhaust gas concentration and fuel of the circulating fluidized bed (CFB) boiler that mainly uses wood biomass, and to develop the emission factors of Methane (CH4), Nitrous oxide (N2O). The fuels used as energy sources in the subject working sites are Wood Chip Fuel (WCF), RDF and Refused Plastic Fuel (RPF) of which heating values are 11.9 TJ/Gg, 17.1 TJ/Gg, and 31.2 TJ/Gg, respectively. The average concentrations of CH4 and N2O were me...

  11. Innovative Method Using Magnetic Particle Tracking to Measure Solids Circulation in a Spouted Bed

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Ms. Emily [Waynesburg University; Halow, John [Waynesburg University; Daw, C Stuart [ORNL

    2010-01-01

    We describe an innovative method for measuring particle motion inside spouted fluidized beds. The method uses a magnetic tracer particle, which follows the bulk particle flow and is continuously tracked by multiple magnetic field detectors located outside the bed. We analyze signals from the detectors to determine the tracer position at each instant in time. From statistical analysis of the tracer trajectory, characteristic measures of the bulk particle flow, such as the average recirculation frequency, can be determined as a function of operating conditions. For experiments with a range of particle sizes and densities in a 3.9-cm-diameter spouted bed, we find that average solids recirculation rates correlate with excess velocity (superficial minus minimum spouting velocity), particle density, and bed depth.

  12. Innovative method using magnetic particle tracking to measure solids circulation in a spouted fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Ms. Emily [Waynesburg University; Halow, John [Waynesburg University; Daw, C Stuart [ORNL

    2009-01-01

    We describe an innovative method for measuring particle motion inside spouted fluidized beds. The method uses a magnetic tracer particle, which follows the bulk particle flow and is continuously tracked by multiple magnetic field detectors located outside the bed. We analyze signals from the detectors to determine the tracer position at each instant in time. From statistical analysis of the tracer trajectory, characteristic measures of the bulk particle flow, such as the average recirculation frequency, can be determined as a function of operating conditions. For experiments with a range of particle sizes and densities in a 3.9-cm-diameter spouted bed, we find that average solids recirculation rates correlate with excess velocity (superficial minus minimum spouting velocity), particle density, and bed depth.

  13. Characterization of ashes from a 100 kWth pilot-scale circulating fluidized bed with oxy-fuel combustion

    International Nuclear Information System (INIS)

    Highlights: → Oxy-fuel combustion was carried out in a 100 kWth circulating fluidized bed. → Coal and petroleum coke are fuels together with limestone added for SO2 capture. → The ashes produced are characterized and compared with air-firing CFBC ash. → The dominant calcium compounds in the ash are CaCO3 and CaSO4 rather than CaO. - Abstract: Oxy-fuel combustion experiments have been carried out on an oxygen-fired 100 kWth mini-circulating fluidized bed combustion (CFBC) facility. Coal and petroleum coke were used as fuel together with different limestones (and fixed Ca:S molar ratios) premixed with the fuel, for in situ SO2 capture. The bed ash (BA) and fly ash (FA) samples produced from this unit were collected and characterized to obtain physical and chemical properties of the ash samples. The characterization methods used included X-ray fluorescence (XRF), X-ray diffraction (XRD), char carbon and free lime analysis, thermogravimetric analysis (TGA), and surface analysis. The main purpose of this work is to characterize the CFBC ashes from oxy-fuel firing to obtain a better understanding of the combustion process, and to identify any significant differences from the ash generated by a conventional air-fired CFBC. The primary difference in the sulfur capture mechanism between atmospheric air-fired and oxy-fuel FBC, at typical FBC temperatures (∼850 oC), is that, in the air-fired case the limestone sorbents calcine, whereas the partial pressure of CO2 in oxy-fuel FBC is high enough to prevent calcination, and hence the sulfation process should mimic that seen in pressurized FBC (PFBC). Here, the char carbon content in the fly ash was much higher than that in the bed ash, and was also high by comparison with ash obtained from conventional commercial air-firing CFBC units. In addition, measurements of the free lime content in the bed and fly ash showed that the unreacted Ca sorbent was present primarily as CaCO3, indicating that sulfur capture in the oxy

  14. Modelling of N2O Reduction in a Circulating Fluidized Bed Boiler

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Åmand, Lars Erik; Dam-Johansen, Kim;

    1996-01-01

    The addition of limestone for sulphur retention in Fluidized Bed Combustion (FBC) has been observed to influence the emission of N2O, and in many cases a lower emission was observed. The catalytic activity of a Danish limestone (Stevns Chalk) for decomposition of N2O in a laboratory fixed bed...... quartz reactor was measured. It was found that calcined Stevns Chalk is a very active catalyst for N2O decomposition in an inert atmosphere compared to bed material, i.e. a mixture of ash and sand. However, in FBC the limestone is exposed to a mixture of gases, including CO, CO2 and SO2, and sulphation...... uncalcined or recarbonated limestone had negligible activity. Sulphation of the calcined limestone under oxidizing conditions lowered the activity, however sulphidation under reducing conditions showed that CaS is an active catalyst for the reduction of N2O by CO. Without CO present a gas solid reaction...

  15. Modeling N2O Reduction and Decomposition in a Circulating Fluidized bed Boiler

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Åmand, Lars-Erik; Dam-Johansen, Kim;

    1996-01-01

    combustion chamber and the cyclone was calculated taking three mechanisms into account: Reduction by char, catalytic decomposition over bed material and thermal decomposition. The calculated destruction rate was in good agreement with the measured destruction of N2O injected at different levels in the boiler...... decomposition over bed material, and homogeneous thermal decomposition was negligible. However, at higher levels in the combustor the solids concentration is lower: at the top 60% of the N2O destruction was due to thermal decomposition and in the cyclone heterogeneous destruction of N2O was insignificant. It...

  16. Behavior of Alkali Metals and Ash in a Low-Temperature Circulating Fluidized Bed (LTCFB) Gasifier

    DEFF Research Database (Denmark)

    Narayan, Vikas; Jensen, Peter Arendt; Henriksen, Ulrik Birk;

    2016-01-01

    W and a 6 MW LTCFBgasifier. Of the total fuel ash entering the system, the largest fraction (40−50%) was retained in the secondary cyclone bottoms,while a lower amount (8−10%) was released as dust in the exit gas. Most of the alkali and alkaline earth metals were retained inthe solid ash, along with Si......, the low reactor temperature ensures that high-alkali biomass fuels canbe used without risk of bed defluidization. This paper presents the first investigation of the fate of alkali metals and ash in lowtemperaturegasifiers. Measurements on bed material and product gas dust samples were made on a 100 k...

  17. Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-06-30

    This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the Clean Coal Technology Program. The project would demonstrate circulating fluidized bed (CFB) combustion technology at JEA's existing Northside Generating Station in Jacksonville, Florida, about 9 miles northeast of the downtown area of Jacksonville. The new CFB combustor would use coal and petroleum coke to generate nearly 300 MW of electricity by repowering the existing Unit 2 steam turbine, a 297.5-MW unit that has been out of service since 1983. The proposed project is expected to demonstrate emission levels of sulfur dioxide (SO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter that would be lower than Clean Air Act limits while at the same time producing power more efficiently and at less cost than conventional coal utilization technologies. At their own risk, JEA has begun initial construction activities without DOE funding. Construction would take approximately two years and, consistent with the original JEA schedule, would be completed in December 2001. Demonstration of the proposed project would be conducted during a 2-year period from March 2002 until March 2004. In addition, JEA plans to repower the currently operating Unit 1 steam turbine about 6 to 12 months after the Unit 2 repowering without cost-shared funding from DOE. Although the proposed project consists of only the Unit 2 repowering, this EIS analyzes the Unit 1 repowering as a related action. The EIS also considers three reasonably foreseeable scenarios that could result from the no-action alternative in which DOE would not provide cost-shared funding for the proposed project. The proposed action, in which DOE would provide cost-shared finding for the proposed project, is DOE's preferred alternative. The EIS evaluates the principal environmental issues, including air quality

  18. Characterization of ashes from a 100 kWth pilot-scale circulating fluidized bed with oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.H.; Wang, C.B.; Tan, Y.W.; Jia, L.F.; Anthony, E.J. [Natural Resources Canada, Ottawa, ON (Canada)

    2011-09-15

    Oxy-fuel combustion experiments have been carried out on an oxygen-fired 100 kW(th) mini-circulating fluidized bed combustion (CFBC) facility. Coal and petroleum coke were used as fuel together with different limestones (and fixed Ca:S molar ratios) premixed with the fuel, for in situ SO{sub 2} capture. The bed ash (BA) and fly ash (FA) samples produced from this unit were collected and characterized to obtain physical and chemical properties of the ash samples. The characterization methods used included X-ray fluorescence (XRF), X-ray diffraction (XRD), char carbon and free lime analysis, thermogravimetric analysis (TGA), and surface analysis. The main purpose of this work is to characterize the CFBC ashes from oxy-fuel firing to obtain a better understanding of the combustion process, and to identify any significant differences from the ash generated by a conventional air-fired CFBC. The primary difference in the sulfur capture mechanism between atmospheric air-fired and oxy-fuel FBC, at typical FBC temperatures (similar to 850{sup o}C), is that, in the air-fired case the limestone sorbents calcine, whereas the partial pressure of CO{sub 2} in oxy-fuel FBC is high enough to prevent calcination, and hence the sulfation process should mimic that seen in pressurized FBC (PFBC). Here, the char carbon content in the fly ash was much higher than that in the bed ash, and was also high by comparison with ash obtained from conventional commercial air-firing CFBC units. In addition, measurements of the free lime content in the bed and fly ash showed that the unreacted Ca sorbent was present primarily as CaCO{sub 3}, indicating that sulfur capture in the oxy-fuel combustor occurred via direct sulfation.

  19. Steam gasification of coal cokes by internally circulating fluidized-bed reactor by concentrated Xe-light radiation for solar syngas production

    International Nuclear Information System (INIS)

    A laboratory-scale prototype windowed reactor using a fluidized bed of coal coke particles was tested for thermochemical gasification using concentrated Xe light radiation as an energy source. The fluidized-bed reactor, designed to be combined with a solar reflective tower or beam-down optics, is evaluated for steam gasification of coal coke according to gasification performance: CO, H2, and CO2 production rates; carbon conversion; light-to-chemical efficiency. Internal circulation of coal coke particles inside the reactor increases gasification performance, which is further enhanced by higher steam partial pressure of the inlet gas. - Highlights: • A reactor prototype was designed for solar steam gasification by beam-down optics. • Particle circulation homogenizes temperature distribution across all bed layers. • The reactor design of internal circulation improved gasification performances

  20. Synthesis of Linear Alkylbenzene in a Novel Liquid-Solid Circulating Moving Bed Reactor

    Institute of Scientific and Technical Information of China (English)

    韩明汉; 徐聪; 崔哲; 金涌

    2004-01-01

    For the alkylation of benzene with long-chain olefins, using Hβ zeolite catalyst as replacement of HF or A1Cl3 has the advantages of no corrosion, less environmental pollution, and much more 2-phenyl isomer, which has the highest biodegradability and solubility, and better detergent properties among the related isomers. The characterization of the coke shows that the deactivation of catalyst is caused by the jam of bulkier molecules, such as naphthalene, indane and linear alkylbenzenes, which are too big to move quickly in the intracrystalline pores of catalyst. The deactivated catalyst can be regenerated by benzene washing at higher temperature. To make the processes of reaction and regeneration continuous, a novel moving bed reactor is developed. Comparing with the processes with fixed bed reactors, the processes in this work have the advantages of continuous operation, low temperature, low pressure, low mole ratio of benzene to olefins, and high weight hourly space velocity.Keywords t3 zeolite, alkylation, linear alkylbenzene, moving bed reactor

  1. Experimental Study of Stabilized Soil Utilizing Circulating Fluidized Bed Combustion Desulfurization Ash with Carbide Slag and Desulfurization Gypsum

    Directory of Open Access Journals (Sweden)

    Dezhi Shao

    2015-01-01

    Full Text Available This paper discusses the feasibility of preparing soil stabilizer which is circulating fluidized bed combustion ash-based, supplemented with carbide slag and desulfurization gypsum, composed entirely of complete industrial wastes. The results show that CFBC ash has better pozzolanic activity than fly ash. When stabilizer total content is 10% and the ratio of CFBC ash : carbide slag : desulfurization gypsum is 7.2 : 1.8 : 1, compressive strength of stabilized soil can reach the maximum of 2.12 MPa at the age of 28 d of curing. Stabilizer can meet the strength requirements of cement-soil mixing pile composite foundation and cement-soil mixing pile waterproof curtain.

  2. Modeling oxy-fuel combustion in a 3D circulating fluidized bed using the hybrid Euler–Lagrange approach

    International Nuclear Information System (INIS)

    Results of experiments and numerical simulations of the coal oxy-fuel combustion process in an experimental circulating fluidized bed (CFB) are presented in this paper. The simulations were carried out using the hybrid Euler–Lagrange approach to model the dense particle transport in the CFB pilot installation combined with a model of the combustion process. The main aim of presented work is to demonstrate the applicability of the hybrid Euler–Lagrange technique for modeling the particle transport process in the CFB, which also includes the coal combustion process modeling. To the best knowledge of the authors, there is no implementation of the hybrid Euler–Lagrange Dense Discrete Phase Model (DDPM) approach for modeling the CFB in the 3D domain with combustion process simulations, which is available in literature. Both the experiments and numerical simulations were carried out for three oxidizer compositions O2/CO2, i.e. 21, 30, and 35% of the oxygen volume fraction. In order to investigate the numerical model sensitivity when combustion conditions change, additional tests were evaluated for case with 35% of the oxygen for three excess oxygen ratios equal to 1.05, 1.15, and 1.25. The important aspect of modeling the radiative heat transfer during the fluidization process combined with oxy-fuel combustion was also investigated. The set of numerical simulations was performed for different radiation model configurations. The numerical results were compared with the temperature profile measured within the combustion chamber of the pilot test rig. - Highlights: • Hybrid Euler–Lagrange approach has been used for modelling particle transport. • Numerical results have been validated against experimental data. • New strategy for resolving particle transport in circulating fluidized bed has been shown

  3. Soy protein recovery in a solvent-free process using continuous liquid-solid circulating fluidized bed ion exchanger.

    Science.gov (United States)

    Prince, Andrew; Bassi, Amarjeet S; Haas, Christine; Zhu, Jesse X; Dawe, Jennifer

    2012-01-01

    Soy protein concentrates and soy protein isolates act as ingredients in bakery, meat and dairy products, baby formulas, starting materials for spun textured vegetable products, and other nutritional supplements. In this study, the effectiveness of a liquid-solid circulating fluidized bed (LSCFB) ion exchanger is demonstrated for the recovery of soluble soy proteins from full fat and defatted soy flour. Under steady-state operating conditions, about 50% of the proteins could be recovered from the feed streams entering the ion exchanger. The LSCFB was shown to be a promising system for the recovery of soy protein from both defatted and full fat soy flour solutions. As the ion exchange process captures dissolved proteins, the system may offer a less damaging form of processing compared with the acid precipitation process where soy protein aggregates form and functionality is affected. In addition, the LSCFB allows simultaneous adsorption and desorption of the proteins allowing for a continuous operation. No prefiltration of feed containing suspended particles is required as well, because fluidization is used in place of packed bed technology to improve on current ion exchange processes. PMID:22002948

  4. Flow Regime Study in a Circulating Fluidized Bed Riser with an Abrupt Exit: [1] High Density Suspension

    Energy Technology Data Exchange (ETDEWEB)

    Mei, J.S.; Lee, G.T.; Seachman, S.M.; Ludlow, J.C.; Shadle, L.J.

    2008-05-13

    Flow regime study was conducted in a 0.3 m diameter, 15.5 m tall circulating fluidized bed (CFB) riser with an abrupt exit at the National Energy Technology Laboratory of the U. S. Department of Energy. A statistical designed test series was conducted including four (4) operating set points and a duplicated center point (therefore a total of 6 operating set points). Glass beads of mean diameter 200 μm and particle density of 2,430 kg/m3 were used as bed material. The CFB riser was operated at various superficial gas velocities ranging from 5.6 to 7.6 m/s and solid mass flux from a low of 86 to a high of 303 kg/m2-s. Results of the apparent solids fraction profile as well as the radial particle velocity profile were analyzed in order to identify the presence of Dense Suspension Upflow (DSU) conditions. DSU regime was found to exist at the bottom of the riser, while the middle section of the riser was still exhibiting core-annular flow structure. Due to the abrupt geometry of the exit, the DSU regime was also found at the top of the riser. In addition the effects of the azimuthal angle, riser gas velocity, and mass solids flux on the particle velocity were investigated and are discussed in this paper.

  5. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.

    Science.gov (United States)

    Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua

    2015-12-01

    Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes. PMID:26278370

  6. Simulation of emission performance and combustion efficiency in biomass fired circulating fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Gungor, Afsin [Nigde University, Faculty of Engineering and Architecture, Department of Mechanical Engineering, 51100 Nigde (Turkey)

    2010-04-15

    In this study, the combustion efficiency and the emission performance of biomass fired CFBs are tested via a previously published 2D model [Gungor A. Two-dimensional biomass combustion modeling of CFB. Fuel 2008; 87: 1453-1468.] against two published comprehensive data sets. The model efficiently simulates the outcome with respect to the excess air values, which is the main parameter that is verified. The combustion efficiency of OC changes between 82.25 and 98.66% as the excess air increases from 10 to 116% with the maximum error of about 8.59%. The rice husk combustion efficiency changes between 98.05 and 97.56% as the bed operational velocity increases from 1.2 to 1.5 m s{sup -1} with the maximum error of about 7.60%. CO and NO{sub x} emissions increase with increasing bed operational velocity. Increasing excess air results in slightly higher levels of NO{sub x} emission. A significant amount of combustion occurs in the upper zone due to the high volatile content of the biomass fuels. (author)

  7. FLOW STRUCTURE FORMATION AND EVOLUTION IN CIRCULATING GAS-FLUIDIZED BEDS

    Institute of Scientific and Technical Information of China (English)

    Jie Li; J. A. M. Kuipers

    2004-01-01

    The occurrence of heterogeneous flow structures in gas-particle flows seriously affects the gas-solid contacting and transport processes in high-velocity gas-fluidized beds. Particles do not disperse uniformly in the flow but pass through the bed in a swarm of clusters. The so-called "core-annulus" structure in the radial direction and "S" shaped axial distribution of solids concentration characterize the typical flow structure in the system.A computational study, using the discrete particle approach based on molecular dynamics techniques, has been carried out to explore the mechanisms underlying formation of the clusters and the core-annulus structure. Based on energy budget analysis including work done by the drag force, kinetic energy, rotational energy, potential energy, and energy dissipation due to particle-particle and particle-wall collisions, the role of gas-solid interaction and inelastic collisions between the particles are elucidated.It is concluded that the competition between gas-solid interaction and particle-particle interaction determines the pattern formation in high-velocity gas-solid flows: if the gas-solid interaction (under elevated pressure) dominates, most of particle energy obtained by drag from the gas phase is partitioned such that particle potential energy is raised, leading to a uniform flow structure. Otherwise, a heterogeneous pattern exists, which could be induced by both particle-particle collisions and gas-solid interaction. Although both factors could cause the flow instability, the non-linear drag force is demonstrated to be the necessary condition to trigger heterogeneous flow structure formation. As gas velocity increases and goes beyond a critical value, the fluid-particle interaction suppresses particle collisional dissipation, and as a consequence a more homogeneous flow regime is formed.

  8. Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant

    International Nuclear Information System (INIS)

    Highlights: • A lignite pyrolysis-based polygeneration plant was proposed and modeled. • Polygeneration plant has a 9.04% point higher efficiency than CFB power plant. • Polygeneration plant increases ca. 14% point of IRR based on CFB power plant. • Electricity price rise makes polygeneration plant less competitive. - Abstract: Lignite-based polygeneration system has been considered as a feasible technology to realize clean and efficient utilization of coal resources. A newly polygeneration system has been proposed, featuring the combination of a 2 × 300 MW circulating fluidized bed (CFB) power plant and atmospheric pressure fluidized bed pyrolyzers. Xiaolongtan lignite is pyrolyzed in pyrolyzers. Pyrolyzed volatiles are further utilized for the co-generation of methanol, oil, and electricity, while char residues are fired in CFB boilers to maintain the full load condition of boilers. Detailed system models were built, and the optimum operation parameters of the polygeneration plant were sought. Technical and economic performances of optimum design of the polygeneration plant were analyzed and compared with those of the conventional CFB power plant based on the evaluation of energy and exergy efficiency, internal rate of return (IRR), and payback period. Results revealed that system efficiency and the IRR of the polygeneration plant are ca. 9% and 14% points higher than those of the power plant, respectively. The study also analyzed the effects of market fluctuations on the economic condition of the polygeneration plant, and found that prices of fuel, material, and products have great impacts on the economic characteristics of the polygeneration plant. Polygeneration plant is more economic than CFB power plant even when prices fluctuate within a wide range. This paper provides a thorough evaluation of the polygeneration plant, and the study indicates that the proposed polygeneration plant has a bright prospect

  9. Experiences in sulphur capture in a 30 MWth Circulating Fluidized Bed boiler under oxy-combustion conditions

    International Nuclear Information System (INIS)

    CO2 and SO2 from fossil fuel combustion are contributors to greenhouse effect and acid rain respectively. Oxy-combustion technology produces a highly concentrated CO2 stream almost ready for capture. Circulating Fluidized Bed (CFB) boiler technology allows in-situ injection of calcium-based sorbents for efficient SO2 capture. CIUDEN's 30 MWth CFB boiler, supplied by Foster Wheeler and located at the Technology Development Centre for CO2 Capture and Transport (es.CO2) in Spain, is the first of its kind for executing test runs at large pilot scale under both air-combustion and oxy-combustion conditions. In this work, SO2 emissions under different scenarios have been evaluated. Variables such as limestone composition, Ca/S molar ratio and bed temperature among others have been considered along different test runs in both air-combustion and oxy-combustion conditions to analyse its influence on SO2 abatement. Fly and bottom ash, together with flue gas analysis have been carried-out. Desulphurization performance tests results are presented. - Highlights: •Sulphur capture efficiency (%) was higher in oxy-combustion compared to air-combustion in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. •For a Ca/S molar ratio higher than 2.6 there was barely any improvement on sulphur capture efficiency for both air-combustion and oxy-combustion conditions in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. •Optimum temperature for sulphur capture at a fixed Ca/S molar ratio is around 880–890 °C under oxy-combustion conditions and for anthracite coal with limestone as sorbent in a 30 MW thermal CFB boiler

  10. Coupling of a radiative heat transfer model and a three-dimensional combustion model for a circulating fluidized bed furnace

    International Nuclear Information System (INIS)

    A 3D semi-empirical model for reactive two-phase flow in a circulating fluidized bed furnace (CFB3D) is modified by implementing the radiative zone method to solve the radiation heat transfer. The radiative properties of the gas and particle phase have been calculated using detailed information of gas and particle distribution obtained from the CFB3D model. A recently published WSGGM for oxygen-fired combustion has been used to calculate the absorption coefficient of gaseous combustion products. The results of implementing the radiative zonal approach have been compared with those obtained using empirical radiative correlations. The temperature field obtained by using the radiative zone method is more uniform than the one obtained by empirical correlation, and the total heat flux to the wall is slightly higher. The long distance effect of radiation has been found more important in the upper furnace where the gas is the dominant phase. Detailed discussion concerning the obtained results is presented.- Highlights: • Radiative zone model is used to analyze a large scale CFB furnace. • A semi-empirical model for CFB processes is presented. • The radiative effect of long distance is taken into account. • The geometric optic is used for radiative properties of particles. • The WSGGM is used for radiative properties of combustion gases

  11. Feasibility study on solidification of municipal solid waste incinerator fly ash with circulating fluidized bed combustion coal fly ash.

    Science.gov (United States)

    Liu, Wenshi; Hou, Haobo; Zhang, Chuhao; Zhang, Dajie

    2009-05-01

    The objective of this study was to assess the feasibility of solidification of municipal solid waste incinerator (MSWI) fly ash with circulation fluidized bed combustion (CFBC) fly ash, which is unsuitable as a cement replacement due to its high amounts of carbon, lime and anhydrite. The solidification process was conducted on samples prepared from MSWI fly ash, binders (cement clinkers and CFBC fly ash were mixed at two replacement ratios) and water (water/solid weight ratio = 0.4), among which the MSWI fly ash replaced each binder at the ratio of 0, 20, 40, 60 and 80% by dry weight. The samples were subjected to compressive strength tests and Toxicity Characteristic Leaching Procedure and the results showed that all solidified MSWI fly ash can meet the landfill standard imposed by US EPA after 28 days of curing. Micro-analysis (X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectrophotometry) revealed that the main hydrate products were C-S-H gel and ettringite, which have a positive effect on heavy metals retention. Therefore, this method provides a possibility to achieve a cheap and effective solution for MSWI fly ash management and use for CFBC fly ash. PMID:19423575

  12. Experimental and mechanism studies on simultaneous desulfurization and denitrification from flue gas using a flue gas circulating fluidized bed

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The oxidizing highly reactive absorbent was prepared from fly ash,industry lime,and an oxidizing additive M.Experiments of simultaneous desulfurization and denitrification were carried out in a flue gas circulating fluidized bed(CFB).The effects of influencing factors and calcium availability were also investigated on the removal efficiencies of desulfurization and denitrification.Removal efficiencies of 95.5%for SO2 and 64.8%for NO were obtained respectively under the optimal experimental conditions. The component of the spent absorbent was analyzed with chemical analysis methods.The results in- dicated that more nitrogen species appeared in the spent absorbent except sulfur species.A scanning electron microscope(SEM)and an accessory X-ray energy spectrometer were used to observe micro-properties of the samples,including fly ash,oxidizing highly reactive absorbent and spent absorbent.The simultaneous removal mechanism of SO2 and NO based on this absorbent was pro- posed according to the experimental results.

  13. Development of methane and nitrous oxide emission factors for the biomass fired circulating fluidized bed combustion power plant.

    Science.gov (United States)

    Cho, Chang-Sang; Sa, Jae-Hwan; Lim, Ki-Kyo; Youk, Tae-Mi; Kim, Seung-Jin; Lee, Seul-Ki; Jeon, Eui-Chan

    2012-01-01

    This study makes use of this distinction to analyze the exhaust gas concentration and fuel of the circulating fluidized bed (CFB) boiler that mainly uses wood biomass, and to develop the emission factors of Methane (CH(4)), Nitrous oxide (N(2)O). The fuels used as energy sources in the subject working sites are Wood Chip Fuel (WCF), RDF and Refused Plastic Fuel (RPF) of which heating values are 11.9 TJ/Gg, 17.1 TJ/Gg, and 31.2 TJ/Gg, respectively. The average concentrations of CH(4) and N(2)O were measured to be 2.78 ppm and 7.68 ppm, respectively. The analyzed values and data collected from the field survey were used to calculate the emission factor of CH(4) and N(2)O exhausted from the CFB boiler. As a result, the emission factors of CH(4) and N(2)O are 1.4 kg/TJ (0.9-1.9 kg/TJ) and 4.0 kg/TJ (2.9-5.3 kg/TJ) within a 95% confidence interval. Biomass combined with the combustion technology for the CFB boiler proved to be more effective in reducing the N(2)O emission, compared to the emission factor of the CFB boiler using fossil fuel. PMID:23365540

  14. Development of Methane and Nitrous Oxide Emission Factors for the Biomass Fired Circulating Fluidized Bed Combustion Power Plant

    Directory of Open Access Journals (Sweden)

    Chang-Sang Cho

    2012-01-01

    Full Text Available This study makes use of this distinction to analyze the exhaust gas concentration and fuel of the circulating fluidized bed (CFB boiler that mainly uses wood biomass, and to develop the emission factors of Methane (CH4, Nitrous oxide (N2O. The fuels used as energy sources in the subject working sites are Wood Chip Fuel (WCF, RDF and Refused Plastic Fuel (RPF of which heating values are 11.9 TJ/Gg, 17.1 TJ/Gg, and 31.2 TJ/Gg, respectively. The average concentrations of CH4 and N2O were measured to be 2.78 ppm and 7.68 ppm, respectively. The analyzed values and data collected from the field survey were used to calculate the emission factor of CH4 and N2O exhausted from the CFB boiler. As a result, the emission factors of CH4 and N2O are 1.4 kg/TJ (0.9–1.9 kg/TJ and 4.0 kg/TJ (2.9–5.3 kg/TJ within a 95% confidence interval. Biomass combined with the combustion technology for the CFB boiler proved to be more effective in reducing the N2O emission, compared to the emission factor of the CFB boiler using fossil fuel.

  15. Simulations of a Circulating Fluidized Bed Chemical Looping Combustion System Utilizing Gaseous Fuel Simulation de la combustion en boucle chimique d’une charge gazeuse dans un lit fluidisé circulant

    OpenAIRE

    Mahalatkar K.; Kuhlman J.; Huckaby E.D.; O’Brien T.

    2011-01-01

    Numerical studies using Computational Fluid Dynamics (CFD) have been carried out for a complete circulating fluidized bed chemical looping combustor described in the literature (Abad et al., 2006 Fuel 85, 1174-1185). There have been extensive experimental studies in Chemical Looping Combustion (CLC), however CFD simulations of this concept are quite limited. The CLC experiments that were simulated used methane as fuel. A 2-D continuum model was used to describe both the gas and solid phases. ...

  16. Experimental findings on thermal use of residues and biofuels in circulating fluidized bed combustion systems; Experimentelle Ergebnisse zur thermischen Nutzung von Rest- und Biobrennstoffen in zirkulierenden Wirbelschichtfeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, W.; Brunne, T.; Girndt, H. [Technische Univ. Dresden (Germany); Albrecht, J. [Lurgi Lentjes Babcock, Frankfurt am Main (Germany); Youssef, M. [Minia Univ. (Egypt)

    1996-12-31

    The energy Engineering Institute of Dresden Technical University investigated the combustion and emission characteristics of a number of combustion systems, including a circulating fluidized bed system with a capacity of 0.3 MW{sub th}. Egypt`s sugar cane industry produces large volumes of bagasse. The conbustion and emission characteristics of this biofuel in a circulating fludized bed combustion systems were investigated in a joint research project of the University of Minia and Dresden Technical University. (orig.) [Deutsch] Am Institut fuer Energietechnik der TU Dresden wird das Verbrennungs- und Emissionsverhalten verschiedenster Brennstoffe in unterschiedlichen Feuerungssystemen untersucht. Neben anderen Pilotanlagen steht eine zirkulierende Wirbelschichtfeuerung (ZWFS) mit einer Leistung von 0.3 MW{sub th} zur Verfuegung. In der Zuckerrohrindustrie Aegyptens fallen grosse Mengen von Bagasse an. In einer gemeinsamen Forschungsarbeit zwischen der Universitaet Minia und der TU Dresden sollte das Verbrennungs- und Emissionsverhalten dieses Biobrennstoffes in einer ZWSF untersucht werden. (orig)

  17. Gas Bypassing and Circulation of Sand and Char Particles in a Dual System with Fluidized Bed and Pneumatic Transport – Effects of Design and Operation Parameters

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Kalisz, S.; Martinec, J.; Pohořelý, Michael

    Praha : Process Engineering Publisher, 2008, s. 955. ISBN 978-80-02-02050-9. [18th International Congress of Chemical and Process Engineering CHISA 2008. Praha (CZ), 24.08.2008-28.08.2008] Grant ostatní: ECRD(XE) RFCR-CT-2007-00005 Institutional research plan: CEZ:AV0Z40720504 Keywords : circulating flow * solids * fluidized bed Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  18. Circulation of Sand and Char Particles in a System with Fluidized Bed and Pneumatic Transport - Effects of Design and Operation Parameters.

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Kalisz, S.; Martinec, J.; Baxter, D.; Miccio, F.

    Bratislava : Slovak Society of Chemical Engineering, 2007 - (Markoš, J.; Štefuca, V.), s. 260 ISBN 978-80-227-2640-5. [International Conference of Slovak Society of Chemical Engineering /34./. Tatranské Matliare (SK), 21.05.2007-25.05.2007] Institutional research plan: CEZ:AV0Z40720504 Keywords : circulating flow * solids * fluidized bed Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  19. Experimental study on fuel oil combustion in circulating fluidized bed; Estudio experimental sobre la combustion de combustoleo en lecho fluidizado circulante

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Rangel, Ricardo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    The Instituto de Investigaciones Electricas (IIE) developed a circulating fluidized bed combustor of 0.5 thermal MW unique in its type in Latin America. The Bachelor`s thesis entitled ``Experimental Study on Fuel Oil Combustion in Circulating Fluidized Bed`` was performed operating this combustor with the purpose of determining the feasibility of burning heavy fuel oil in a stable and sustained form, as well as the effect of the addition of calcium carbonate to the combustor. The results of the experimental trials showed heavy fuel oil can be burned in a circulating fluidized bed, with low sulfur dioxide emissions. During the conduction of the experiments a sulfur retention of 43% was achieved with a Ca/S relationship of 4.5. [Espanol] El Instituto de Investigaciones Electricas (IIE) desarrollo un combustor de lecho fluidizado circulante de 0.5 MW termicos de potencia, unico en su tipo en Latinoamerica. La tesis de licenciatura titulada Estudio Experimental sobre la Combustion de Combustoleo en Lecho Fluidizado Circulante se realizo operando dicho combustor, con el proposito de determinar la factibilidad de quemar combustoleo pesado en forma estable y autosostenida, asi como la influencia que tiene la adicion de carbonato de calcio al lecho. Los resultados de los ensayos experimentales mostraron que se puede quemar combustoleo pesado en un lecho fluidizado circulante, con bajas emisiones de bioxido de azufre. Durante la experimentacion se logro una retencion de azufre del 43%, con una relacion Ca/S de 4.5.

  20. THE EXPERIMENTAL STUDY OF COMBUSTION STABILITY IN THE INTERNAL CIRCULATING FLUIDIZED BED%内旋流流化床燃烧稳定性研究

    Institute of Scientific and Technical Information of China (English)

    田文栋; 魏小林; 黎军; 吴东垠; 盛宏至

    2001-01-01

    Invariable and even combustion temperature is necessary for the municipal solid waste (MSW) incineration to decrease the emission of air pollutants. In thispaper, The combustion temperature stability in the dense phase bed zone and temperature distributions in the incinerator have been studied by adjustin gmass of processed waste, types of waste and particles thickness of bed in theinternal circulating fluidized bed (ICFB).%城市生活垃圾焚烧需要稳定均匀的温度来减少燃烧产生的大气污染物。采用内旋流流化床进行了垃圾焚烧实验,通过改变垃圾处理量、垃圾种类和流化床浓相床区高度,研究了浓相床区温度的稳定性和焚烧炉内温度分布。

  1. Co-firing option of palm shell waste and Malaysian coal blends in a circulating fluidized bed

    International Nuclear Information System (INIS)

    Palm oil shell waste is one of the main agriculture wastes in Malaysia. In order to utilize these wastes efficiently, pyrolysis of oil-palm shell waste was first carried out using Thermogravimetric analysis (TGA). The effects of heating rate on the pyrolytic properties were investigated to evaluate its suitability for co-firing. The TGA analyses of oil palm shell waste and Malaysian coal blends suggests that there is an obvious lateral shift in the thermo grams for different heating rate. Kinetics calculations were also done using integral method. For palm shell waste powder it was found that the activation energies ranged from 112-119 kJ/mole and for the Mukah coal blends it ranged from 93.3 -100.8 kJ/mole. Combustion studies for palm shell wastes and coal blends were done in a hot circulating fluidized-bed (CFB) test rig. This is the first practical experience of using this type of rig in Malaysia. The temperature dependence on the combustion and emission behaviour were identified. The effects of variation of primary air and feed rate have also been analyzed and their influence on emissions has been established. The combustion studies of palm shell wastes were done and it was found that the emission of NOx ranged from 20-164 ppm while the CO emissions were high for some operating conditions. For the co-firing studies, the NOx and CO deceased with the percentage increase in the blending ratio of coal with palm shell waste.. The optimum blending ratio was found to be in a ratio of 40 percent coal and 60 percent Mukah coal. It was also found that Mukah coal show agglomeration behaviour with when it is blended in 80% ratio. (author)

  2. Stearic acid coating on circulating fluidized bed combustion fly ashes and its effect on the mechanical performance of polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Nina [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Zhang, Ping, E-mail: pingzhang@swust.edu.cn [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); Song, Lixian; Kang, Ming; Lu, Zhongyuan [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); Zheng, Rong [Sichuan Jinhe Group Co., Ltd., Mianyang 621010 (China)

    2013-08-15

    The aim of this work was to test circulating fluidized bed combustion fly ashes (CFAs) for its potential to be utilized in polymer composites manufacturing to improve its toughness. CFAs was coated by stearic acid and used in the composite of polypropylene/ethylene vinyl acetate/high density polyethylene (PP/EVA/HDPE) by molding process method. The resulting coated and uncoated CFAs were fully characterized by particle size analyzer, contact angles, powder X-ray diffraction (XRD), thermogravimetric analysis/differential thermal analysis (TGA/DTA), Brunauer–Emmett–Teller (BET), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The stearic acid coated onto the surface of CFAs particles in the physical and chemical ways, and the total clad ratio reached 2.05% by measuring TGA/DTA curve. The percentage of CFAs particles focused to a narrow range 2–4 μm and the median mean size was 3.2 μm more than uncoated CFAs. The properties of hydrophobic and dispersive of CFAs particles improved and original activity was reserved after stearic acid coating. The stearic acid was verified as a coupling agent by how much effect it had on the mechanical properties. It showed the elongation at break of PP/EVA/HDPE reinforced with 15 wt% coated CFAs (c-CFAs) was 80.20% and higher than that of the uncoated. The stearic acid treatment of CFAs is a very promising approach to improve the mechanical strength due to the incorporation of stearic acid on the CFAs surface, and hence, further enhances the potential for recycling CFAs as a suitable filler material in polymer composites.

  3. Stearic acid coating on circulating fluidized bed combustion fly ashes and its effect on the mechanical performance of polymer composites

    International Nuclear Information System (INIS)

    The aim of this work was to test circulating fluidized bed combustion fly ashes (CFAs) for its potential to be utilized in polymer composites manufacturing to improve its toughness. CFAs was coated by stearic acid and used in the composite of polypropylene/ethylene vinyl acetate/high density polyethylene (PP/EVA/HDPE) by molding process method. The resulting coated and uncoated CFAs were fully characterized by particle size analyzer, contact angles, powder X-ray diffraction (XRD), thermogravimetric analysis/differential thermal analysis (TGA/DTA), Brunauer–Emmett–Teller (BET), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The stearic acid coated onto the surface of CFAs particles in the physical and chemical ways, and the total clad ratio reached 2.05% by measuring TGA/DTA curve. The percentage of CFAs particles focused to a narrow range 2–4 μm and the median mean size was 3.2 μm more than uncoated CFAs. The properties of hydrophobic and dispersive of CFAs particles improved and original activity was reserved after stearic acid coating. The stearic acid was verified as a coupling agent by how much effect it had on the mechanical properties. It showed the elongation at break of PP/EVA/HDPE reinforced with 15 wt% coated CFAs (c-CFAs) was 80.20% and higher than that of the uncoated. The stearic acid treatment of CFAs is a very promising approach to improve the mechanical strength due to the incorporation of stearic acid on the CFAs surface, and hence, further enhances the potential for recycling CFAs as a suitable filler material in polymer composites.

  4. Measurement and model based interpretation of the temperature distribution in combustion chambers of industrial scale fluidized-bed combustion power plants; Messung und modellgestuetzte Interpretation von Temperaturverteilungen in den Brennkammern grosstechnischer Wirbelschichtkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Ratschow, L.; Wischnewski, R.; Hartge, E.U.; Werther, J. [Technische Universitaet Hamburg-Harburg, Hamburg (Germany). Institut fuer Feststoffverfahrenstechnik und Partikeltechnologie

    2009-07-01

    The cross section of the combustion chamber directly results from the performance of the power station. For example, Block 3 of the power station Turow in Poland has a combustion cross section of 200 m{sup 2} with an output of 250 MW{sub e}. If the height of approximately 45 m still is considered additionally, a very large reaction volume results. From this, locally different reaction conditions result. But straight the transverse mixture of gas and solid is small in the circulating fluidised bed. As a result, in the area of the fluidized bed three-dimensional concentration distributions are formed out involving a temperature distribution. In the contribution under consideration the authors report on measurements and simulations of such temperature distributions in a three-dimensional model.

  5. Batch top-spray fluid bed coating: Scale-up insight using dynamic heat- and mass-transfer modelling

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, P.; Jensen, Anker Degn

    2009-01-01

    A mathematical model was developed for batch top-spray fluid bed coating processes based on Ronsse et al. [2007a.b. Combined population balance and thermodynamic modelling of the batch top-spray fluidised bed coating process. Part I-model development and validation. journal of Food Engineering 78......, 296-307; Combined population balance and thermodynamic modelling of the batch top-spray fluidised bed coating process. Part II-model and process analysis. journal of Food Engineering 78, 308-322]. The model is based on one-dimensional discretisation of the fluid bed into a number of well-mixed control......-TEC Anhydro) production-scale, the gradients become too large to use the simple combined drying force/relative droplet size scale-up approach without also increasing the inlet fluidisation air temperature significantly. Instead, scale-up in terms of combinations of the viscous Stokes theory with simulated...

  6. Characteristics of axial and radial segregation of single and mixed particle system based on terminal settling velocity in the riser of a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Das, M.; Meikap, B.C.; Saha, R.K. [Indian Institute of Technology, Kharagpur (India). Dept. of Chemical Engineering

    2008-12-15

    Axial and radial segregation and mixing of single and mixed particle systems were studied for the various sizes and densities in a 10.16cm diameter riser of a circulating fluidized bed (CFB) based on terminal settling velocity of particles. The gas velocities were maintained in the range of 2.01-4.681 m/s and solid circulation rate between 12.5 and 50 kg/m{sup 2}s. Three quartz sand-FCC catalyst mixtures with different initial weight % of sand and two coal-iron ore mixtures were used. The difference in local mean particle sizes of the components of the binary mixture has been observed in the riser of a CFB. Due to the larger mean particle size of sand and due to their lower solid density, the measured particle sizes of this fraction show higher values than FCC. For the same size of bed materials consisting of coal and iron ore mixture the variation of the mean particle size for both has been found to be very narrow. Again the axial segregation for the coal/iron ore mixture has been studied in terms of terminal settling velocity of the particles. The result showed a continuous classification of bed materials along the riser of a CFB.

  7. Pilot-scale experience with biological nutrient removal and biomass yield reduction in a liquid-solid circulating fluidized bed bioreactor.

    Science.gov (United States)

    Chowdhury, Nabin; Nakhla, George; Zhu, Jesse; Islam, Mohammad

    2010-01-01

    A pilot-scale liquid-solid circulating fluidized bed (LSCFB) bioreactor was developed at the Adelaide Pollution Control Plant, London, Ontario, Canada, to study its commercial viability for biological nutrient removal. Lava rock particles of 600 microm were used as a biomass carrier media. The LSCFB removed approximately 90% organic, 80% nitrogen, and 70% phosphorus at loading rates of 4.12 kg COD/m3 x d, 0.26 kg N/m3 x d, and 0.052 kg P/m3 x d, and an empty bed contact time of 1.5 hours. Effluent characterized by clarifier removed suspended solids removal without chemicals. A significant reduction (approximately 75%) in biomass yield to 0.12 to 0.16 g VSS/g chemical oxygen demand (COD) was observed, primarily because of long biological solids retention time (SRT) of 20 to 39 days and a combination of anoxic and aerobic COD consumption. PMID:20942332

  8. Convection and segregation in fluidised granular systems exposed to two-dimensional vibration

    Science.gov (United States)

    Windows-Yule, C. R. K.

    2016-03-01

    Convection and segregation in granular systems not only provide a rich phenomenology of scientifically interesting behaviours but are also crucial to numerous ‘real-world’ processes ranging from important and widely used industrial procedures to potentially cataclysmic geophysical phenomena. Simple, small-scale experimental or simulated test systems are often employed by researchers in order to gain an understanding of the fundamental physics underlying the behaviours of granular media. Such systems have been the subject of extensive research over several decades, with numerous system geometries and manners of producing excitation explored. Energy is commonly provided to granular assemblies through the application of vibration—the simplicity of the dynamical systems produced and the high degree of control afforded over their behaviour make vibrated granular beds a valuable canonical system by which to explore a diverse range of phenomena. Although a wide variety of vibrated systems have been explored in the existing literature, the vast majority are exposed to vibration along only a single spatial direction. In this paper, we study highly fluidised systems subjected to strong, multi-directional driving, providing a first insight into the dynamics and behaviours of these systems which may potentially hold valuable new information relevant to important industrial and natural processes. With a particular focus on the processes of convection and segregation, we analyse the various states and phase transitions exhibited by our system, detailing a number of previously unobserved dynamical phenomena and system states.

  9. A new fluidized bed combustion system to capture CO{sub 2} with CaO

    Energy Technology Data Exchange (ETDEWEB)

    J. Carlos Abanades; Diego Alvarez; Gemma Grasa; Enric Soley; Jesus Pajares [Instituto Nacional del Carbon (CSIC), Oviedo (Spain)

    2005-07-01

    A combustion system that includes CO{sub 2} capture, and comprises three interconnected fluidized beds, is described. Coal is first burned in a circulating fluidised bed combustor at temperatures around 1000{sup o}C in the presence of a large flow of CaO, that is acting here as a heat carrier. After heat recovery, these gases enter a second circulating fluidized bed operating at around 650{sup o}C where they meet again CaO particles, capturing the CO{sub 2} in the flue gas as CaCO{sub 3}. The CaCO{sub 3} particles are separated from the gas and sent to a calciner fluidized by steam and CO{sub 2}. The heat required for calcination is supplied by the particles of CaO circulating from the high temperature combustor. Since the separation of CO{sub 2} is carried out at high temperatures, there are negligible efficiency penalties. In this work we focus on the effect of sorbent performance on the operating variables expected in the different units. Multicycle carbonation-calcination-combustion tests have been carried out with natural limestones at conditions representative of their life in the circulating system. The decay in sorbent capacity has been measured up to 500 cycles. The consequences of the rapid decay, but also the stability found in long cycle numbers (between 5-10% Ca conversion) are discussed in terms of the solid flow requirements to achieve a given CO{sub 2} separation efficiency. It is shown that this is a promising system where only relatively modest make up flows of limestone are required to maintain the activity in the CO{sub 2} capture loop and to purge the system of inert components. 22 refs., 6 figs., 2 tab.

  10. Improvement of Combustion Characteristics in Fluidized Bed

    International Nuclear Information System (INIS)

    The present investigation is directed towards the experimental study of the effect of a new design of the bed temperature on the overall thermal efficiency and heat transfer by conduction, convection and radiation in gaseous fuel-fluidized bed combustion system. The experiments are performed on a water-cooled fluidized bed model furnace with cylindrical cross-section of 0.25 m diameter and its height is 0.60 m. the fluidising medium used is sand particles with average diameter 1.5 mm. The bed temperature is varied between 700 degree C and 1100 degree C. Measurements f carbon dioxide, carbon monoxide and oxygen concentrations are carried out by using water-cooled sampling probe, and infrared and paramagnetic analyzers. The results obtained show that the bed temperature, the total heat transfer to the wall and the bed combustion efficiency increase with the decrease of the air-fuel ratio. It is also found that 91% of the total heat transfer is in the fluidising part of the bed and most of this heat is transferred by convection from hot sand particles to the wall. Two empirical formulae for the calculation of the wall heat transfer coefficient and the particle convective heat transfer coefficient are proposed. A verification of the proposed empirical formulae is made by comparing the calculated values with the experimental results.

  11. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; John Gaudlip; Matthew Lapinsky; Rhett McLaren; William Serencsits; Neil Raskin; Tom Steitz; Joseph J. Battista

    2003-03-26

    The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.

  12. Investigation on SO{sub 2} emission from 410t/h circulating fluidized bed boiler burning petroleum coke and coal

    Energy Technology Data Exchange (ETDEWEB)

    Lun-Bo Duan; Xiao-Ping Chen; Ying-Jie Li; Cai Liang; Chang-Sui Zhao [Southeast University, Nanjing (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education

    2010-03-15

    Effects of operation parameters including bed temperature, Ca/S molar ratio, excess air coefficient, fly ash recirculation rate and limestone microstructure on SO{sub 2} emission were investigated on a 410t/h circulating fluidized bed (CFB) boiler burning petroleum coke and coal. Results show that for different fuels, SO{sub 2} emission is correspondingly related to the sulfur content in it under the same operation conditions. With increasing bed temperature, SO{sub 2} concentration in the flue gas reduces first and then increases. There is an optimal desulfurization temperature. For burning bituminous coal (BC) only or 70% BC + 30% petroleum coke (PC), the optimal desulfurization temperature is about 850{sup o}C, while it is about 850-870{sup o}C for burning 50% anthracite (AN) + 50% PC. SO{sub 2} emission decreases with the increase in Ca/S ratio, excess air coefficient and fly ash recirculation rate. Microstructure of limestone has distinct effects on their SO{sub 2} retention capacity, and larger specific surface area and higher specific pore volume lead to stronger SO{sub 2} capture activities. The optimal temperature, Ca/S ratio and excess air coefficient for different fuels are recommended for industrial application.

  13. Boiler plants completed in record time

    International Nuclear Information System (INIS)

    Bubbling fluidised bed (BFB) combustion has steadily increased its share of the boiler market in recent years, particularly in the Nordic region, where it is particularly well-suited to handling the high moisture content biofuels produced and used by the forest products industry. Foster Wheeler is the world's leading supplier of fluidised bed combustion technology. Over 200 of the more than 300 fluidised bed boilers supplied by the company are circulating fluidised bed (CFB) designs, a market in which Foster Wheeler has more than a 40% share. Foster Wheeler Energia Oy supplied the Myllykoski project at Anjalankoski with a fluidised bed boiler, auxiliary steam boilers, and flue gas scrubber systems

  14. Some test results of Maritsa East lignite mine- first large-scale circulating fluidized bed combustion - as the basis of the restructuring process

    International Nuclear Information System (INIS)

    One of the consequences of energy sector restructuring in the transition countries is an increasing number of shareholders interested in profitable power plants. The traditional energy sector structural and operating paradigms evolved together, in symbiosis. power generation from coal is still negatively associated with severe pollutant emissions like NOx, SO2. In Bulgaria particularly power generation relies on the Maritsa-East coal mine as the single national energy source. The coal has an extremely poor quality (high sulphur, ash and water content) yielding high emissions of pollutants during combustion. The first large-scale test of circulating fluidized bed combustion (CFB) of Maritsa-East coal mine took place in 1998. For this purpose, test facilities in Austria Energy and Environment (AEE) and RWE's power plant Niederraussen were used. This analysis is very important for the management of National Energy Company as regards restructuring and privatisation. (author)

  15. 260t/h circulating fluidized bed boiler cleaning practices%260t/h循环流化床锅炉清洗实践

    Institute of Scientific and Technical Information of China (English)

    吴新汩; 杨次雄

    2012-01-01

    This paper circulating fluidized bed boiler(CFB) boiler water system new cleaning purposes,washing circuit set,get ready to work before cleaning,washing steps,the cleaning process of testing,cleaning quality assessment for a specific discussion.%本文对循环流化床锅炉(CFB)新建锅炉汽水系统的清洗目的、清洗回路的设置、清洗前得准备工作、清洗步骤、清洗过程的检测、清洗质量的评定进行了具体的论述。

  16. Survey of radionuclide emissions from coal-fired power plants and examination of impacts from a proposed circulating fluidized bed boiler power plant

    International Nuclear Information System (INIS)

    This paper presents the results of a literature survey that examined radionuclide emissions from coal-fired power plants. Literature references from both the US and foreign countries are presented. Emphasis is placed on references from the US because the radionuclide emissions from coal-fired power plants are related to radionuclide concentrations in the coal, which vary widely throughout the world. The radionuclides were identified and quantified for various existing power plants reported in the literature. Applicable radionuclide emissions criteria discovered in the literature search were then applied to a proposed circulating fluidized bed boiler power plant. Based upon the derived radionuclide emission rates applied to the proposed power plant, an air quality modeling analysis was performed. The estimated ambient concentrations were compared to the most relevant existing regulatory ambient levels for radionuclides

  17. Numerical Studies of the Gas-Solid Hydrodynamics at High Temperature in the Riser of a Bench-Scale Circulating Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Maximilian J. Hodapp

    2012-01-01

    Full Text Available The hydrodynamics of circulating fluidized beds (CFBs is a complex phenomenon that can drastically vary depending on operational setup and geometrical configuration. A research of the literature shows that studies for the prediction of key variables in CFB systems operating at high temperature still need to be implemented aiming at applications in energy conversion, such as combustion, gasification, or fast pyrolysis of solid fuels. In this work the computational fluid dynamics (CFD technique was used for modeling and simulation of the hydrodynamics of a preheating gas-solid flow in a cylindrical bed section. For the CFD simulations, the two-fluid approach was used to represent the gas-solid flow with the k-epsilon turbulence model being applied for the gas phase and the kinetic theory of granular flow (KTGF for the properties of the dispersed phase. The information obtained from a semiempirical model was used to implement the initial condition of the simulation. The CFD results were in accordance with experimental data obtained from a bench-scale CFB system and from predictions of the semiempirical model. The initial condition applied in this work was shown to be a viable alternative to a more common constant solid mass flux boundary condition.

  18. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke; Joseph J. Battista

    2001-03-31

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives.

  19. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    International Nuclear Information System (INIS)

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives

  20. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    International Nuclear Information System (INIS)

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels

  1. Experimental on fly ash recirculation with bottom feeding to improve the performance of a circulating fluidized bed boiler co-burning coal sludge

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lunbo; Xu, Guiling; Liu, Daoyin; Chen, Xiaoping; Zhao, Changsui [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    With the aim of reducing carbon content in fly ash, fly ash recirculation with bottom feeding (FARBF) technology was applied to a 75 t/h Circulating Fluidized Bed (CFB) boiler burning mixture of coal and coal sludge. And industrial experiments were carried out to investigate the influence of FARBF technology on the combustion performance and pollutant emission characteristics of the CFB boiler. Results show that as the recirculation rate of fly ash increases, the CFB dense bed temperature decreases while the furnace outlet temperature increases, and the temperature distribution in the furnace becomes uniform. Compared with the conditions without fly ash recirculation, the combustion efficiency increases from 92 to 95% when the recirculation rate increases to 8 t/h, and the desulfurization efficiency also increases significantly. As the recirculation rate increases, the emissions of NO and CO decrease, but the particulate emission increases. The present study indicates that FARBF technology can improve the combustion performance and desulfurization efficiency for the CFB boilers burning coal sludge, and this can bring large economical and environmental benefits in China.

  2. Co-firing of oil sludge with coal-water slurry in an industrial internal circulating fluidized bed boiler.

    Science.gov (United States)

    Liu, Jianguo; Jiang, Xiumin; Zhou, Lingsheng; Wang, Hui; Han, Xiangxin

    2009-08-15

    Incineration has been proven to be an alternative for disposal of sludge with its unique characteristics to minimize the volume and recover energy. In this paper, a new fluidized bed (FB) incineration system for treating oil sludge is presented. Co-firing of oil sludge with coal-water slurry (CWS) was investigated in the new incineration system to study combustion characteristics, gaseous pollutant emissions and ash management. The study results show the co-firing of oil sludge with CWS in FB has good operating characteristic. CWS as an auxiliary fuel can flexibly control the dense bed temperatures by adjusting its feeding rate. All emissions met the local environmental requirements. The CO emission was less than 1 ppm or essentially zero; the emissions of SO(2) and NO(x) were 120-220 and 120-160 mg/Nm(3), respectively. The heavy metal analyses of the bottom ash and the fly ash by ICP/AES show that the combustion ashes could be recycled as soil for farming. PMID:19249155

  3. A Study of Solid Particles Feeding Tehnic by Fluidization Une technique d'alimentation en particules solides par fluidisation

    Directory of Open Access Journals (Sweden)

    Dolignier J.-C.

    2006-12-01

    Full Text Available The study of heterogeneous reactions in a drop tube furnace, at a laboratory scale, needs a continuous feeding and dispersing technic to yield mass flow rates as low as 1 g/h. In the present work, a solution based on fluidization, is proposed. A mixture of lime and sand is fluidized at a superficial velocity higher than the free fall velocity of the lime particles which are therefore carried over by the fluidizing gas stream out of the bed. The effects of various parameters such as the particles diameter, the lime content in the solid mixture, the height of the fluidized bed and the gas fluidizing velocity, on the flow have been investigated. The operating conditions leading to the obtention of a constant solid rate have been optimized. A simple method of evaluating the mass of the evacuated and dispersed lime particles have been developed, and satisfactory results were obtained. L'étude des réactions hétérogènes dans un four à chute à l'échelle du laboratoire nécessite l'utilisation d'une technique d'alimentation et de dispersion afin de débiter des masses de solides autour de 1 g/h. Dans ce présent travail, une technique basée sur la fluidisation est proposée. Un mélange de chaux et de sable est fluidisé à une vitesse superficielle plus élevée que la vitesse terminale de chute des particules de chaux, qui par conséquent sont transportées hors du lit. L'influence des divers paramètres tels que le diamètre des particules, le pourcentage de chaux dans le mélange, la hauteur du lit et la vitesse de fluidisation du gaz sur l'écoulement ont été étudiés. Les conditions opératoires permettant d'obtenir des débits de solides constants ont été optimisées. Une méthode relativement simple permettant d'évaluer la quantité de solide évacuée a été développée et des résultats satisfaisants ont été obtenus.

  4. Measurement of Gas Velocities in the Presence of Solids in the Riser of a Cold Flow Circulating Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Spenik, J. (REM Engineering Services, Morgantown, WV); Ludlow, J.C.; Compston, R.; Breault, R.W.

    2007-01-01

    The local gas velocity and the intensity of the gas turbulence in a gas/solid flow are a required measurement in validating the gas and solids flow structure predicted by computational fluid dynamic (CFD) models in fluid bed and transport reactors. The high concentration and velocities of solids, however, make the use of traditional gas velocity measurement devices such as pitot tubes, hot wire anemometers and other such devices difficult. A method of determining these velocities has been devised at the National Energy Technology Laboratory employing tracer gas. The technique developed measures the time average local axial velocity gas component of a gas/solid flow using an injected tracer gas which induces changes in the heat transfer characteristics of the gas mixture. A small amount of helium is injected upstream a known distance from a self-heated thermistor. The thermistor, protected from the solids by means of a filter, is exposed to gases that are continuously extracted from the flow. Changes in the convective heat transfer characteristics of the gas are indicated by voltage variations across a Wheatstone bridge. When pulsed injections of helium are introduced to the riser flow the change in convective heat transfer coefficient of the gas can be rapidly and accurately determined with this instrument. By knowing the separation distance between the helium injection point and the thermistor extraction location as well as the time delay between injection and detection, the gas velocity can easily be calculated. Variations in the measured gas velocities also allow the turbulence intensity of the gas to be estimated.

  5. Biodegradation of 2,4,6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation

    International Nuclear Information System (INIS)

    For the aerobic biodegradation of the fungicide and defoliant 2,4,6-trichlorophenol (2,4,6-TCP), a bench-scale packed-bed bioreactor equipped with a net draft tube riser for liquid circulation and oxygenation (PB-ALR) was constructed. To obtain a high packed-bed volume relative to the whole bioreactor volume, a high AD/AR ratio was used. Reactor's downcomer was packed with a porous support of volcanic stone fragments. PB-ALR hydrodynamics and oxygen mass transfer behavior was evaluated and compared to the observed behavior of the unpacked reactor operating as an internal airlift reactor (ALR). Overall gas holdup values εG, and zonal oxygen mass transfer coefficients determined at various airflow rates in the PB-ALR, were higher than those obtained with the ALR. When comparing mixing time values obtained in both cases, a slight increment in mixing time was observed when reactor was operated as a PB-ALR. By using a mixed microbial community, the biofilm reactor was used to evaluate the aerobic biodegradation of 2,4,6-TCP. Three bacterial strains identified as Burkholderia sp., Burkholderia kururiensis and Stenotrophomonas sp. constituted the microbial consortium able to cometabolically degrade the 2,4,6-TCP, using phenol as primary substrate. This consortium removed 100% of phenol and near 99% of 2,4,6-TCP. Mineralization and dehalogenation of 2,4,6-TCP was evidenced by high COD removal efficiencies (∼95%), and by the stoichiometric release of chloride ions from the halogenated compound (∼80%). Finally, it was observed that the microbial consortium was also capable to metabolize 2,4,6-TCP without phenol as primary substrate, with high removal efficiencies (near 100% for 2,4,6-TCP, 92% for COD and 88% for chloride ions)

  6. Biodegradation of 2,4,6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-De Jesus, A.; Romano-Baez, F.J.; Leyva-Amezcua, L.; Juarez-Ramirez, C.; Ruiz-Ordaz, N. [Departamento de Ingenieria Bioquimica, Escuela Nacional de Ciencias Biologicas, IPN. Prol. Carpio y Plan de Ayala, Colonia Santo Tomas, s/n. CP 11340, Mexico, D.F. (Mexico); Galindez-Mayer, J. [Departamento de Ingenieria Bioquimica, Escuela Nacional de Ciencias Biologicas, IPN. Prol. Carpio y Plan de Ayala, Colonia Santo Tomas, s/n. CP 11340, Mexico, D.F. (Mexico)], E-mail: cmayer@encb.ipn.mx

    2009-01-30

    For the aerobic biodegradation of the fungicide and defoliant 2,4,6-trichlorophenol (2,4,6-TCP), a bench-scale packed-bed bioreactor equipped with a net draft tube riser for liquid circulation and oxygenation (PB-ALR) was constructed. To obtain a high packed-bed volume relative to the whole bioreactor volume, a high A{sub D}/A{sub R} ratio was used. Reactor's downcomer was packed with a porous support of volcanic stone fragments. PB-ALR hydrodynamics and oxygen mass transfer behavior was evaluated and compared to the observed behavior of the unpacked reactor operating as an internal airlift reactor (ALR). Overall gas holdup values {epsilon}{sub G}, and zonal oxygen mass transfer coefficients determined at various airflow rates in the PB-ALR, were higher than those obtained with the ALR. When comparing mixing time values obtained in both cases, a slight increment in mixing time was observed when reactor was operated as a PB-ALR. By using a mixed microbial community, the biofilm reactor was used to evaluate the aerobic biodegradation of 2,4,6-TCP. Three bacterial strains identified as Burkholderia sp., Burkholderia kururiensis and Stenotrophomonas sp. constituted the microbial consortium able to cometabolically degrade the 2,4,6-TCP, using phenol as primary substrate. This consortium removed 100% of phenol and near 99% of 2,4,6-TCP. Mineralization and dehalogenation of 2,4,6-TCP was evidenced by high COD removal efficiencies ({approx}95%), and by the stoichiometric release of chloride ions from the halogenated compound ({approx}80%). Finally, it was observed that the microbial consortium was also capable to metabolize 2,4,6-TCP without phenol as primary substrate, with high removal efficiencies (near 100% for 2,4,6-TCP, 92% for COD and 88% for chloride ions)

  7. Reprint of “Experiences in sulphur capture in a 30 MWth Circulating Fluidized Bed boiler under oxy-combustion conditions”

    International Nuclear Information System (INIS)

    CO2 and SO2 from fossil fuel combustion are contributors to greenhouse effect and acid rain respectively. Oxy-combustion technology produces a highly concentrated CO2 stream almost ready for capture. Circulating Fluidized Bed (CFB) boiler technology allows in-situ injection of calcium-based sorbents for efficient SO2 capture. CIUDEN's 30 MWth CFB boiler, supplied by Foster Wheeler and located at the Technology Development Centre for CO2 Capture and Transport (es.CO2) in Spain, is the first of its kind for executing test runs at large pilot scale under both air-combustion and oxy-combustion conditions. In this work, SO2 emissions under different scenarios have been evaluated. Variables such as limestone composition, Ca/S molar ratio and bed temperature among others have been considered along different test runs in both air-combustion and oxy-combustion conditions to analyse its influence on SO2 abatement. Fly and bottom ash, together with flue gas analysis have been carried-out. Desulphurization performance tests results are presented. - Highlights: • Sulphur capture efficiency (%) was higher in oxy-combustion compared to air-combustion in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. • For a Ca/S molar ratio higher than 2.6 there was barely any improvement on sulphur capture efficiency for both air-combustion and oxy-combustion conditions in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. • Optimum temperature for sulphur capture at a fixed Ca/S molar ratio is around 880–890 °C under oxy-combustion conditions and for anthracite coal with limestone as sorbent in a 30 MW thermal CFB boiler

  8. Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Marashdeh, Qussai [Tech4imaging LLC, Columbus, OH (United States)

    2013-02-01

    A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi

  9. Circulating fluidized bed gasification of low rank coal: Influence of O2/C molar ratio on gasification performance and sulphur transformation

    Science.gov (United States)

    Zhang, Haixia; Zhang, Yukui; Zhu, Zhiping; Lu, Qinggang

    2016-08-01

    To promote the utilization efficiency of coal resources, and to assist with the control of sulphur during gasification and/or downstream processes, it is essential to gain basic knowledge of sulphur transformation associated with gasification performance. In this research we investigated the influence of O2/C molar ratio both on gasification performance and sulphur transformation of a low rank coal, and the sulphur transformation mechanism was also discussed. Experiments were performed in a circulating fluidized bed gasifier with O2/C molar ratio ranging from 0.39 to 0.78 mol/mol. The results showed that increasing the O2/C molar ratio from 0.39 to 0.78 mol/mol can increase carbon conversion from 57.65% to 91.92%, and increase sulphur release ratio from 29.66% to 63.11%. The increase of O2/C molar ratio favors the formation of H2S, and also favors the retained sulphur transforming to more stable forms. Due to the reducing conditions of coal gasification, H2S is the main form of the released sulphur, which could be formed by decomposition of pyrite and by secondary reactions. Bottom char shows lower sulphur content than fly ash, and mainly exist as sulphates. X-ray photoelectron spectroscopy (XPS) measurements also show that the intensity of pyrite declines and the intensity of sulphates increases for fly ash and bottom char, and the change is more obvious for bottom char. During CFB gasification process, bigger char particles circulate in the system and have longer residence time for further reaction, which favors the release of sulphur species and can enhance the retained sulphur transforming to more stable forms.

  10. SOLIDS CIRCULATION RATE OF ULTRA-FINE POWDERS IN SPOUTED BED WITH DRAFT TUBE%超细粉在导向管喷动床中的固体循环速率

    Institute of Scientific and Technical Information of China (English)

    周勇; 马兰; 石炎福

    2004-01-01

    Ultra-fine powders are difficult to be fluidized due to the strong particle to particle cohesiveness.However, the authors' experiments showed that the ultra-fine powder CaCO3 could be stably fluidized in a spouted bed with a draft tube. The effects of geometric and operating parameters on solid circulation rate of ultra-fine powder CaCO3 were investigated in a 120 mm diameter transparent semicircular spouted bed with a draft tube. Three draft tubes with different sizes were used in this study. It was found that the solids circulation rate was mainly dependent on the drawing rate of the gas jet from the nozzle, then on the gas transport capacity in the draft tube. With increasing gas feed rate, distance between the nozzle and the draft tube inlet and draft tube diameter, the solids circulation rate could be increased. Based on the jet theory, a quantitative correlation was proposed for predicting the solid circulation rate of ultra-fine powders in a spouted bed with a draft tube by taking into account the gas transport capacity in the draft tube.

  11. Finial Scientific/Technical Report: Application of a Circulating Fluidized Bed Process for the Chemical Looping Combustion of Solid Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Wei-Ping Pan; Dr. John T. Riley

    2005-10-10

    Chemical Looping Combustion is a novel combustion technology for the inherent separation of the greenhouse gas, CO{sub 2}. In 1983, Richter and Knoche proposed reversible combustion, which utilized both the oxidation and reduction of metal. Metal associated with its oxidized form as an oxygen carrier was circulated between two reactors--oxidizer and reducer. In the reducer, the solid oxygen carrier reacts with the fuel to produce CO{sub 2}, H{sub 2}O and elemental metal only. Pure CO{sub 2} will be obtained in the exit gas stream from the reducer after H{sub 2}O is condensed. The pure CO{sub 2} is ready for subsequent sequestration. In the oxidizer, the elemental metal reacts with air to form metal oxide and separate oxygen from nitrogen. Only nitrogen and some unused oxygen are emitted from the oxidizer. The advantage of CLC compared to normal combustion is that CO{sub 2} is not diluted with nitrogen but obtained in a relatively pure form without any energy needed for separation. In addition to the energy-free purification of CO{sub 2}, the CLC process also provides two other benefits. First, NO{sub x} formation can be largely eliminated. Secondly, the thermal efficiency of a CLC system is very high. Presently, the CLC process has only been used with natural gas. An oxygen carrier based on an energy balance analysis and thermodynamics analysis was selected. Copper (Cu) seems to be the best choice for the CLC system for solid fuels. From this project, the mechanisms of CuO reduction by solid fuels may be as follows: (1) If pyrolysis products of solid fuels are available, reduction of CuO could start at about 400 C or less. (2) If pyrolysis products of solid fuels are unavailable and the reduction temperature is lower, reduction of CuO could occur at an onset temperature of about 500 C, char gasification reactivity in CO{sub 2} was lower at lower temperatures. (3) If pyrolysis products of solid fuels are unavailable and the reduction temperature is higher than 750 C

  12. Simulations of a Circulating Fluidized Bed Chemical Looping Combustion System Utilizing Gaseous Fuel Simulation de la combustion en boucle chimique d’une charge gazeuse dans un lit fluidisé circulant

    Directory of Open Access Journals (Sweden)

    Mahalatkar K.

    2011-05-01

    Full Text Available Numerical studies using Computational Fluid Dynamics (CFD have been carried out for a complete circulating fluidized bed chemical looping combustor described in the literature (Abad et al., 2006 Fuel 85, 1174-1185. There have been extensive experimental studies in Chemical Looping Combustion (CLC, however CFD simulations of this concept are quite limited. The CLC experiments that were simulated used methane as fuel. A 2-D continuum model was used to describe both the gas and solid phases. Detailed sub-models to account for fluid-particle and particleparticle interaction forces were included. Global models of fuel and carrier chemistry were utilized. The results obtained from CFD were compared with experimental outlet species concentrations, solid circulation rates, solid mass distribution in the reactors, and leakage and dilution rates. The transient CFD simulations provided a reasonable match with the reported experimental data. Des études numériques de simulation des écoulements (CFD ont été réalisées sur un lit fluidisé circulant opérant en combustion par boucle chimique (CLC décrit dans la littérature (Abad et al., 2006 Fuel 85, 1174-1185. Si de nombreuses études expérimentales ont été conduites pour étudier le procédé CLC, les études concernant la simulation des écoulements par CFD de ce concept sont très limitées. Le système de combustion en boucle chimique simulé dans cette étude concerne la combustion d’une charge gazeuse (méthane. Un modèle 2-D à deux phases continues a été utilisé pour décrire les phases gaz et solide avec des sous-modèles détaillés pour décrire les forces d’interactions entre fluideparticule et particule-particule. Des modèles cinétiques globaux ont été intégrés pour décrire les réactions de combustion et de transformation du matériau transporteur d’oxygène. Les résultats obtenus par CFD ont été comparés aux concentrations expérimentales mesurées des diff

  13. Emissions of SO2, NO and N2O in a circulating fluidized bed combustor during co-firing coal and biomass.

    Science.gov (United States)

    Xie, Jian-jun; Yang, Xue-min; Zhang, Lei; Ding, Tong-li; Song, Wen-li; Lin, Wei-gang

    2007-01-01

    This paper presents the experimental investigations of the emissions of SO2, NO and N20 in a bench scale circulating fluidized bed combustor for coal combustion and co-firing coal and biomass. The thermal capacity of the combustor is 30 kW. The setup is electrically heated during startup. The influence of the excess air, the degree of the air staging, the biomass share and the feeding position of the fuels on the emissions of SO2, NO and N2O were studied. The results showed that an increase in the biomass shares resulted in an increase of the CO concentration in the flue gas, probably due to the high volatile content of the biomass. In co-firing, the emission of SO2 increased with increasing biomass share slightly, however, non-linear increase relationship between SO2 emission and fuel sulfur content was observed. Air staging significantly decreased the NO emission without raising the SO2 level. Although the change of the fuel feeding position from riser to downer resulted in a decrease in the NO emission level, no obvious change was observed for the SO2 level. Taking the coal feeding position R as a reference, the relative NO emission could significantly decrease during co-firing coal and biomass when feeding fuel at position D and keeping the first stage stoichiometry greater than 0.95. The possible mechanisms of the sulfur and nitrogen chemistry at these conditions were discussed and the ways of simultaneous reduction of SO2, NO and N20 were proposed. PMID:17913163

  14. Photocatalytic oxidation of Rhodamine B in a three-phase internal circulating fluidized bed with TiO2/SiO2 as photocatalyst

    Institute of Scientific and Technical Information of China (English)

    YOU Hong; SUN Li-xin; LUO Wei-nan; LIU Ting

    2010-01-01

    A novel photoreactor of three-phase internal circulating fluidized bed was applied to the degradation of Rhodamine B with TiO/SiO2 catalyst and TiO2 powder,respectively.The experimental results showed that the photocatalytic activity of TiO2/SiO2 catalyst was much higher than that of TiO2 powder under the same condition,and the half life of Rhodamine B using TiO2/SiO2 was 9.5 min,much lower than 63 min when using TiO2 powder.Moreover,TiO2/SiO2 had a good adsorption capacity of Rhodamine B,which played an important role on degradation.In addition,it was found that the degradation kinetics of Rodamine B with TiO2/SiO2 catalyst did not follow the first order reaction.The degradation kinetics model in terms of the adsorption process of catalyst and the analytic solution of reactant degradation rate in liquid phase could be deduced,which consisted of two parts.The first part was due to the adsorption,while the second part was due to the photocatalysis.In the beginning of the reaction,the adsorption process was dominant.However,when the adsorption achieved a balance,the degradation of Rhodamine B in liquid phase and solid phase was mainly caused by photocatalysis and the degradation kinetics model conformed to the first order reaction.

  15. The enrichment of natural radionuclides in oil shale-fired power plants in Estonia--the impact of new circulating fluidized bed technology.

    Science.gov (United States)

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-03-01

    Burning oil shale to produce electricity has a dominant position in Estonia's energy sector. Around 90% of the overall electric energy production originates from the Narva Power Plants. The technology in use has been significantly renovated - two older types of pulverized fuel burning (PF) energy production units were replaced with new circulating fluidized bed (CFB) technology. Additional filter systems have been added to PF boilers to reduce emissions. Oil shale contains various amounts of natural radionuclides. These radionuclides concentrate and become enriched in different boiler ash fractions. More volatile isotopes will be partially emitted to the atmosphere via flue gases and fly ash. To our knowledge, there has been no previous study for CFB boiler systems on natural radionuclide enrichment and their atmospheric emissions. Ash samples were collected from Eesti Power Plant's CFB boiler. These samples were processed and analyzed with gamma spectrometry. Activity concentrations (Bq/kg) and enrichment factors were calculated for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides and for (40)K in different CFB boiler ash fractions. Results from the CFB boiler ash sample analysis showed an increase in the activity concentrations and enrichment factors (up to 4.5) from the furnace toward the electrostatic precipitator block. The volatile radionuclide ((210)Pb and (40)K) activity concentrations in CFB boilers were evenly distributed in finer ash fractions. Activity balance calculations showed discrepancies between input (via oil shale) and output (via ash fractions) activities for some radionuclides ((238)U, (226)Ra, (210)Pb). This refers to a situation where the missing part of the activity (around 20% for these radionuclides) is emitted to the atmosphere. Also different behavior patterns were detected for the two Ra isotopes, (226)Ra and (228)Ra. A part of (226)Ra input activity, unlike (228)Ra, was undetectable in the

  16. Gasification of secondary fuels in a circulating fluidized bed for energetic use in cement production; Vergasung von Sekundaerbrennstoffen in der zirkulierenden Wirbelschicht zur energetischen Nutzung fuer die Zementherstellung

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, J.; Gafron, B. [Lurgi Umwelt GmbH, Frankfurt am Main (Germany); Scur, P.; Wirthwein, R. [Ruedersdorfer Zement GmbH (Germany)

    1998-09-01

    Ruedersforf cement factory was commissioned a century ago as one of the first in Germany. After the plant was taken over by Readymix AG, a comprehensive sanitation concept was carried through. The plant has a production capacity of 8000 t/d of cement clinkers which are produced in a new kiln with a capacity of 6000 t/d and two modernized kilns each with a capacity of 1000 t/d. Reduction of energy consumption was the main goal of modernisation, with fuel gas generation in a circulating fluidized bed as a key element. The unit provides 40 % of the energy consumed by the clinker production process and is also used for selective ash production up to 25 t/h. The ash is used as a raw material for cement production. (orig./SR) [Deutsch] Bereits vor 100 Jahren wurde eine der ersten Zementfabriken in Deutschland am Standort Ruedersdorf in Betrieb genommen. Zum Erhalt der Wettbewerbsfaehigkeit wurde nach der Uebernahme des Werkes Ruedersdorf durch die Readymix AG ein umfangreiches Sanierungskonzept in die Wege geleitet. Bei einer Produktionskapazitaet von ca. 8 000 t Klinker pro Tag werden eine neue Ofenanlage mit einer Kapazitaet von 6 000 t/Tag sowie 2 sanierte kleine Anlagen zu je 1000 t/Tag betrieben. In der neuen Ofenanlage werden alle Moeglichkeiten genutzt, den Energiebedarf fuer die Klinkerproduktion zu senken. Eine wesentliche neue innovative Komponente ist dabei eine Brenngaserzeugung in einer Zirkulierenden Wirbelschicht, ueber die im folgenden berichtet werden soll. Die Anlage kann bis zu 40% des Energiebedarfes des Zementprozesses liefern. Weiterhin wird mit der ZWS eine gezielte Ascheproduktion, bis zu 25 t/h, betrieben. Diese Aschen sind Teil der Rohstoffrezeptur an der Rohmuehle. (orig./SR)

  17. Adaptive monitoring of emissions in energy boilers using self-organizing maps: An application to a biomass-fired CFB (circulating fluidized bed)

    International Nuclear Information System (INIS)

    Improvement of energy efficiency, reduction of operating costs, and reduction of harmful emissions released into the atmosphere are issues of major concern in modern energy plants. While air emissions have to be restricted due to tightening environmental legislation, at the same time it is ever more important to be able to respond quickly to any changes in the load demand or fuel quality. As unpredictability increases with changing fuel quality and more complex operational strategies, undesired phenomena such as increased emission release rates may become more likely. Therefore, it is crucial that emission monitoring systems are able to adapt to varying conditions, and advanced methodologies are needed for monitoring and decision-support. In this paper a novel approach for advanced monitoring of emissions in CFB (circulating fluidized bed) boilers is described. In this approach a model based on SOM (self-organizing maps) is updated regularly to respond to the prevailing condition of the boiler. After creating each model a new set of measurements is input to the system, and the current state of the process is determined using vector distance calculation. Finally, the system evaluates the current condition and may alert if a preset limit defined for each emission component is exceeded. - Highlights: • An adaptive monitoring approach based on self-organizing maps is presented. • The system can monitor the current state of a combustion process and its emissions. • The system is designed to alert when the preset limits defined for emissions are exceeded. • Due to regular updating routine the system is able to adapt to changing conditions. • The application is demonstrated using data from a biomass-fired energy boiler

  18. Nitrogen compounds in pressurised fluidised bed gasification of biomass and fossil fuels

    NARCIS (Netherlands)

    De Jong, W.

    2005-01-01

    Fossil fuels still dominate the energy supply in modern societies. The resources, however, are depleting. Therefore, other energy sources are to be exploited further within this century. Biomass is one of the practically CO2 neutral, renewable contributors to the future energy production. Nowadays m

  19. Comparative evaluation of SRF and RDF co-combustion with coal in a fluidised bed combustor

    OpenAIRE

    Garg, A; Smith, Richard; Longhurst, Philip J.; Pollard, Simon J. T.; Simms, Nigel J; D. Hill

    2007-01-01

    The experimental study reported here was carried out to assess the feasibility of municipal solid waste (MSW) derived solid recovered fuel (SRF) in energy recovery applications. SRF was prepared by grinding and blending the major MSW constituents such as paper, plastics, wood and textile. The percentage of various constituents was the same as from the Ecodeco process employing bio- drying followed by mechanical treatment. The heating value of synthetic SRF was ca. 21 MJ/kg (...

  20. Fundamental studies of synthesis-gas production based on fluidised-bed gasification of biomass (UCGFunda)

    Energy Technology Data Exchange (ETDEWEB)

    Reinikainen, M.; Moilanen, A.; Simell, P.; Hannula, I.; Nasrullah, M.; Kurkela, E. (VTT Technical Research Centre of Finland, Espoo (Finland))

    2009-10-15

    The research is directed towards methods of producing transportation bio-fuels via the synthesis-gas route, with emphasis on the synthesis-gas production and gas cleaning steps. The subtopics of the research project are (1) fuel characterisation and ash behaviour in the gasification step, (2) reaction mechanisms related to gas cleaning, (3) evaluations of alternative process configurations and applications and (4) international co-operation. VTT itself finances also two additional subtopics: (5) new analysis techniques and (6) hydrogen from biomass via gasification. A lot of data on the reactivity and ash sintering properties of various kinds of biomasses has been obtained in the project and the information will now be formulated into a mathematical model. In addition to catalysis also thermal reactions play an important role in gas cleaning. Both experimental and modelling work on both of the reaction types is being carried out. Three techno-economic evaluations on alternative and competing technologies will be completed in the coming year. International development in syngas technology has been closely monitored in all subtopics as well as by participating in relevant IEA-tasks. New analysis techniques developed in the project have proven very useful and for instance a fast on-line tar analysis method is now well established. (orig.)

  1. Fundamental studies of synthesis-gas production based on fluidised-bed gasification of biomass - UCGFUNDA

    Energy Technology Data Exchange (ETDEWEB)

    Reinikainen, M. [VTT Technical Research Centre of Finland, Espoo (Finland)], email: matti.reinikainen@vtt.fi

    2012-07-01

    The project was directed towards improved methods of producing transportation bio-fuels via the synthesis-gas route. The aim of the project was to broaden and deepen the knowledge base and, in particular, generate new fundamental information about the most critical process steps from the point of view of the realisation of the technology. The subtopics of the research project were: (1) Fuel characterisation and ash behaviour in the gasification step (2) Reaction mechanisms related to gas cleaning, in particular the reactions of hydrocarbons at gasification temperatures, during hot-gas filtration and on catalytic surfaces (3) Evaluations of alternative process configurations and applications (4) Monitoring of developments elsewhere in the world (5) New analysis techniques (6) Hydrogen from biomass via gasification.

  2. Fundamental studies of synthesis-gas production based on fluidised-bed gasification of biomass - UCGFunda

    Energy Technology Data Exchange (ETDEWEB)

    Reinikainen, M.; Moilanen, A.; Simell, P.; Hannula, I.; Kurkela, E. (VTT Technical Research Centre of Finland, Espoo (Finland)), Email: matti.reinikainen@vtt.fi; Suominen, T.P. (Aabo Akademi, Turku (Finland). Lab. of Industrial Chemistry and Reaction Engineering); Linnekoski, J.; Roenkkoenen, E. (Aalto University, School of Science and Technology, Espoo (Finland). Lab. of Industrial Chemistry.)

    2010-10-15

    The research is directed towards methods of producing transportation bio-fuels via the synthesis-gas route, with emphasis on the synthesis-gas production and gas cleaning steps. The subtopics of the research project are (1) fuel characterisation and ash behaviour in the gasification step, (2) reaction mechanisms related to gas cleaning, (3) evaluations of alternative process configurations and applications and (4) international cooperation. VTT itself finances also two additional subtopics: (5) new analysis techniques and (6) hydrogen from biomass via gasification. The project comprises experimental work, modelling, techno-economic evaluations as well as studies based on literature. The project is steered by a wide industrial consortium and the research work is carried out by VTT, Aalto University and Aabo Akademi. International development in syngas technology has been closely monitored in all subtopics as well as by participating in relevant IEA-tasks. (orig.)

  3. A new process control strategy for aqueous film coating of pellets in fluidised bed

    DEFF Research Database (Denmark)

    Larsen, C.C.; Sonnergaard, Jørn; Bertelsen, Pernille Scholdan;

    2003-01-01

    controlling factor. The type of pellets affected the maximum spray rate. A thermodynamic model for the coating process is employed throughout the process and not just during steady state. The thermodynamic model is incorporated into a new process control strategy. The process control strategy is based on in......-process calculation of degree of utilisation of the potential evaporation energy (DUE) of the outlet air and the relative outlet air humidity (RH). The spray rate is maximised using set points of DUE and RH as control parameters. The product temperature is controlled simultaneously by regulating the inlet air...

  4. Utilization of post-reclamation dusts by combustion and oxidising in a pulsating, fluidised bed

    OpenAIRE

    Dańko, J.; Holtzer, M.; Dańko, R.

    2008-01-01

    Invcaigations of thc urilization process of durn. originated from thc mcchanical scclamatbn of uscd moulding sands with Furfury1 alcohol.werc pcrformcd. Colnbustion and oxidat ion processes of pulvcriscd and scparatetl in cycloncs binding agcnts and othcr organiccomponents wcrc carricd out in thc thcrmal mlairncr wherc a grain hcd ~mdcnvent pulsating fluidisat ion cithcs by thc atmnsphcric air orhy oxypcn cnriched air. Factors dclcrmining an effective pcrlormancc of dusls utilization by oxidi...

  5. Co-gasification of biomass and coal in a pressurised fluidised bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Andries, L.; Hein, K.R.G. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Delft Univ. of Technology (Netherlands)

    1996-12-31

    The Laboratory for Thermal Power Engineering of the Delft University of Technology is participating in an EU funded, international, R + D project which is designed to aid European industry in addressing issues regarding co-utilisation of biomass and/or waste in advanced coal conversion processes. The project comprises three main programmes, each of which includes a number of smaller subprogrammes. The three main programmes are: Coal-biomass systems component development and design; Coal-biomass environmental studies; Techno-economic assessment studies. (orig)

  6. Mathematical Determination of Thermal Load for Fluidised Bed Furnaces Using Sawdust

    Directory of Open Access Journals (Sweden)

    Antonescu Nicolae

    2014-06-01

    Full Text Available For technical applications, a physical model capable of predicting the particle evolution in the burning process along its trajectory through the furnace is very useful. There are two major demands: all the thermo-dynamic processes that describe the particle burning process must be accounted and the model must be written in such equation terms to allow the intervention for parameter settings and particle definition. The computations were performed for the following parameters: furnace average temperature between 700 and 1200 °C, size of the sawdust particle from 4 to 6 mm and fix carbon ignition between 500 and 900 °C. The values obtained for the characteristic parameters of the burning process ranged from 30 to 60 [kg/(h·m3] for the gravimetrical burning speed WGh and from 150 to 280 [kW/m3] for the volumetric thermal load of the furnace QV. The main conclusion was that the calculus results are in good agreement with the experimental data from the pilot installations and the real-case measurements in the sawdust working boiler furnaces or pre-burning chambers. Another very important conclusion is that the process speed variation, when the furnace temperature changes, confirms the thermo-kinetic predictions, namely that the burning process speed decreases when the furnace temperature increases.

  7. Particulate Emissions from Fluidised Bed Combustion of Ligite with Mineral Sorbents

    Czech Academy of Sciences Publication Activity Database

    Smolík, Jiří; Schwarz, Jaroslav; Ondráčková, Lucie; Veselý, Václav; Sýkorová, Ivana; Kučera, Jan; Havránek, Vladimír

    2000-01-01

    Roč. 31, Suppl. 1 (2000), s. S670-S671. ISSN 0021-8502. [European Aerosol Conference 2000. Dublin, 03.09.2000-08.09.2000] R&D Projects: GA ČR GA104/00/1297; GA AV ČR IAA2046904 Institutional research plan: CEZ:AV0Z4072921; CEZ:AV0Z3046908 Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.071, year: 2000

  8. PlanHab: the combined and separate effects of 16 days of bed rest and normobaric hypoxic confinement on circulating lipids and indices of insulin sensitivity in healthy men.

    Science.gov (United States)

    Simpson, Elizabeth J; Debevec, Tadej; Eiken, Ola; Mekjavic, Igor; Macdonald, Ian A

    2016-04-15

    PlanHab is a planetary habitat simulation study. The atmosphere within future space habitats is anticipated to have reduced Po2, but information is scarce as to how physiological systems may respond to combined exposure to moderate hypoxia and reduced gravity. This study investigated, using a randomized-crossover design, how insulin sensitivity, glucose tolerance, and circulating lipids were affected by 16 days of horizontal bed rest in normobaric normoxia [NBR: FiO2 = 0.209; PiO2 = 133.1 (0.3) mmHg], horizontal bed rest in normobaric hypoxia [HBR: FiO2 = 0.141 (0.004); PiO2 = 90.0 (0.4) mmHg], and confinement in normobaric hypoxia combined with daily moderate intensity exercise (HAMB). A mixed-meal tolerance test, with arterialized-venous blood sampling, was performed in 11 healthy, nonobese men (25-45 yr) before (V1) and on the morning ofday 17of each intervention (V2). Postprandial glucose and c-peptide response were increased at V2 of both bed rest interventions (PHypoxia did not alter the adverse effects of bed rest on insulin sensitivity and glucose tolerance but appeared to increase insulin clearance. The negative effect of bed rest on HDL was compounded in hypoxia, which may have implications for long-term health of those living in future space habitats. PMID:26769956

  9. Study on mercury migration in a circulating fluidized bed combustion boiler%循环流化床燃煤锅炉中的汞迁移研究

    Institute of Scientific and Technical Information of China (English)

    武成利; 曹晏; 李寒旭; 潘伟平

    2012-01-01

    采用美国环保署颁布的吸附剂吸附汞采样方法30B(USEPA 40 CFR Part 60 30B)采集燃煤烟气中汞.选择一循环流化床燃煤机组进行现场采样,吸附剂吸附烟囱处烟气中的汞、入炉煤样、锅炉底灰、静电除尘器飞灰等样品同时采集.对该机组中汞质量平衡率进行衡算,通过汞质量平衡率说明了汞采样方法的准确性和有效性.评价了汞在飞灰、底灰和烟气中的分布,循环流化床锅炉底灰中对脱汞的贡献率仅0.55%,飞灰脱除汞的效率高达83.37%,剩余的16.08%的汞排放入大气环境,表明循环流化床机组是有效控制汞的清洁煤燃烧技术.%Mercury concentrations in the flue gas at the stack were measured using a sorbent trap method as per United States Environmental Protection Agency Method 30B (I. E. , USEPA 40 CFR Part 60 30B), and the sampling method has merits of convenient setup, simply operation and fast analysis. Field tests were conducted at a unit of the Circulating Fluidized Bed Combustion (CFBC). During the course of sampling the mercury in the flue gas, coal samples, bottom ash and fly ash were collected and analyzed. Rates of mercury material balance though the unit were calculated, and correctness and validity of mercury sampling method were certified. Mercury distributions in fly ash, bottom ash and flue gas were evaluated, and the results showed that firstly bottom ash of CFBC removed only 0. 55% of total mercury, secondly removal efficiency of fly ash reaching 83. 37% , in the end 16.08% of total mercury was emitted to the air. The determined data of mercury emissions show that the CFBC is a clean coal combustion technology of effectively removing mercury.

  10. Analysis of the Causes of Circulating Fluidized Bed Boiler Water Wall Leakage%循环流化床锅炉水冷壁泄漏分析

    Institute of Scientific and Technical Information of China (English)

    徐伟; 李武荣

    2015-01-01

    This article describes a leakage of the circulating fluidized bed boiler water wall that appeared for the first time in the refinery .Through ultrasound scans, water cooling wall tube bundle remote field eddy current and wall thickness testing, to find all the defects of water wall tubes. At the same time, the damaged pipe is cut and analyzed by means of chemical composition analysis, mechanical performance analysis, pipeline anatomical analysis, corrosion products analysis, metallographic analysis, energy spectrum analysis and investigation of water quality. According to the results of the analysis and comparison of various typical characteristics of heating surface of boiler corrosion, it is found that the main causes of water wall leakage of boiler is low water quality qualified rate and the water cooled wall soda evaporation caused in the water cooled wall furnace alkalinity of local high and the occurrence of alkali corrosion resistance, eventually leading to water wall tube thinning intensity decreased leakage. Subsequent to take water wall damaged parts of the local replacement, water wall chemical cleaning measures to remedy, and strengthen the boiler water quality management for the prevention, the overall operation of the boiler starts again get a improvement.%本文针对炼厂内循环流化床锅炉首次出现的水冷壁泄漏,通过对水冷壁管束进行超声波扫描、远场涡流和壁厚检测,找到水冷壁管的缺陷部位。同时对受损管段割管进行化学成分分析、力学性能分析、管道解剖分析、腐蚀产物分析、金相分析、能谱分析以及水质调查,找出造成水冷壁泄漏的主要原因是锅炉水质合格率偏低以及水冷壁管中的汽水蒸发浓缩造成炉水碱度局部过高而引发碱腐蚀,最终导致水冷壁管减薄,强度不足发生泄漏。后续采取水冷壁受损部位局部更换、水冷壁化学清洗措施进行处理,同时加强锅炉水质管理进行

  11. The enrichment of natural radionuclides in oil shale-fired power plants in Estonia – The impact of new circulating fluidized bed technology

    International Nuclear Information System (INIS)

    Burning oil shale to produce electricity has a dominant position in Estonia's energy sector. Around 90% of the overall electric energy production originates from the Narva Power Plants. The technology in use has been significantly renovated – two older types of pulverized fuel burning (PF) energy production units were replaced with new circulating fluidized bed (CFB) technology. Additional filter systems have been added to PF boilers to reduce emissions. Oil shale contains various amounts of natural radionuclides. These radionuclides concentrate and become enriched in different boiler ash fractions. More volatile isotopes will be partially emitted to the atmosphere via flue gases and fly ash. To our knowledge, there has been no previous study for CFB boiler systems on natural radionuclide enrichment and their atmospheric emissions. Ash samples were collected from Eesti Power Plant's CFB boiler. These samples were processed and analyzed with gamma spectrometry. Activity concentrations (Bq/kg) and enrichment factors were calculated for the 238U (238U, 226Ra, 210Pb) and 232Th (232Th, 228Ra) family radionuclides and for 40K in different CFB boiler ash fractions. Results from the CFB boiler ash sample analysis showed an increase in the activity concentrations and enrichment factors (up to 4.5) from the furnace toward the electrostatic precipitator block. The volatile radionuclide (210Pb and 40K) activity concentrations in CFB boilers were evenly distributed in finer ash fractions. Activity balance calculations showed discrepancies between input (via oil shale) and output (via ash fractions) activities for some radionuclides (238U, 226Ra, 210Pb). This refers to a situation where the missing part of the activity (around 20% for these radionuclides) is emitted to the atmosphere. Also different behavior patterns were detected for the two Ra isotopes, 226Ra and 228Ra. A part of 226Ra input activity, unlike 228Ra, was undetectable in the solid ash fractions of the

  12. Review of Study on Character and Development of Spouted Circulating Fluidized Bed Equipments for Biomass Fast Pyrolysis%喷动循环流化床生物质快速热解设备的特性分析与发展研究综述

    Institute of Scientific and Technical Information of China (English)

    任学勇; 常建民; 王鹏起; 苟进胜; 张立塔; 佟立成

    2009-01-01

    Present situations of domestic and foreign researches on biomass fast pyrolysis devices are summarized.Detailed accounts on spouted bed and circulating fluidized bed are stated and more in-depth analysis on spouted circulating fluidized bed is given.The orientation of research on spouted circulating fluidized bed fast pyrolysis devices is explored.%简要综述了生物质快速热解设备研究的国内外现状,继而详述了喷动床和循环流化床,重点对喷动循环流化床作了较深入的探析,探讨了喷动循环流化床快速热解设备研究的发展方向.

  13. EMERGING TECHNOLOGY BULLETIN: SPOUTED BED REACTOR

    Science.gov (United States)

    The Spouted Bed Reactor (SBR) technology utilizes the unique attributes of the "spouting " fluidization regime, which can provide heat transfer rates comparable to traditional fluid beds, while providing robust circulation of highly heterogeneous solids, concurrent with very agg...

  14. 增压导向式喷动流化床固体颗粒循环速率的关联%Solid Circulating Rate in a Spouted-fluidized Bed with Draft Tube at Elevated Pressure

    Institute of Scientific and Technical Information of China (English)

    刘向东; 章名耀

    2001-01-01

    The effects of operating factors, such as spouting velocity, fluidizing velocity, pressure and particle size on solid circulating rate in a spouted-fluidized bed with draft tube were investigated. The experimental results showed that the spouting velocity was the most important factor. The solid circulating rate increased with increasing fluidizing velocity and pressure, and decreased with increasing mean particle diameter. Based on the experimental results, an empirical correlation of the solid circulating rate was established. This work is helpful to designing the carbide furnace in the second generation PFBC-CC system.%实验考察了喷动气速度、流化气速度、压力以及颗粒尺寸对增压导向式喷动流化床固体颗粒循环速率的影响规律,并归纳出关联式,为正在开发的第二代增压流化床联合循环发电系统(2GPFBC-CC)中关键部件-炭化炉的放大设计提供了帮助.

  15. Simplified Modeling of Circulating Flow of Solids between a Fluidized Bed and a Vertical Pneumatic Transport Tube Reactor Connected by Orifices

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Baxter, D.; Miccio, F.; Kalisz, S.; Pohořelý, Michael

    -: -, 2008 - (Baxter, D.; Bay, B.), s. 1-21 ISBN N. [BIOGASTECH. Gebze (TR), 09.04.2008-11.04.2008] Grant ostatní: RFCR(XE) CT/2007/00005 Institutional research plan: CEZ:AV0Z40720504 Source of funding: R - rámcový projekt EK Keywords : fluidized bed * pneumatic transport * solids Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  16. 落叶松树皮喷动循环流化床快速热解的影响因素%Influence Factors of Larch Bark Fast Pyrolysis in Spouting-Circulating Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    王鹏起; 常建民; 杜洪双; 李瑞; 何明明; 张立塔

    2009-01-01

    对喷动循环流化床落叶松树皮快速热解过程中反应温度、物料粒径、进料速率及气体流量对热解产物产率的影响以及这4个因素共同作用对生物油产率的影响进行研究.结果表明:反应温度是影响热解产物产率的主要因素,气体流量影响较显著,在试验范围内物料粒径、进料速率影响不显著;喷动循环流化床最佳制备液体产物--生物油快速热解工艺条件为:反应温度550℃,物料粒径0.2~0.3 mm,进料速率20r·min~(-1),气体流量25m~3·h~(-1).%An experimental studied on the influence of larch bark fast pyrolysis in spouting-circulating fluidized bed products yield, in the pyrolysis process of reaction temperature, gas flow, particle size and feed rate, and the effects of the four factors in the interaction of bio-oil yield. The results show that: reaction temperature is the main factor that influences of pyrolysis yield of products, gas flow shows obvious influence, particle size and feed rate have no significant influence; spouting-circulating fluidized bed pyrolysis optimum conditions: reaction temperature 550℃ .particle size 0.2 ~ 0.3 mm,feed rate 20rmin-1,gas flow 25 m~3·h~-1).

  17. Equilibrium and kinetic studies of sorption of 2.4-dichlorophenol onto 2 mixtures: bamboo biochar plus calcium sulphate (BC and hydroxyapatite plus bamboo biochar plus calcium sulphate (HBC, in a fluidized bed circulation column

    Directory of Open Access Journals (Sweden)

    Alamin Ahmed Hassan

    2016-06-01

    Full Text Available Sorption studies were carried out to investigate removal of 2.4-dichlorophenol (2.4-DCP from aqueous solution in a fluidized bed by two types of adsorbent mixtures: BC (Bamboo char plus Calcium sulphate, and HBC (Hydroxyapatite plus Bamboo char plus Calcium sulphate; both manufactured in ball shape. The main material bamboo char was characterized by FTIR, DTA and SEM. The adsorption experiments were conducted in a fluidized bed circulation column. Adsorption, isotherms and kinetic studies were established under 180 min operating process time, at different initial 2.4-DCP solution concentrations ranging from 5–10 mg/L, and at different flow rates ranging from 0.25–0.75 L/min. The data obtained fitted well for both the Langmuir and Freundlich isotherm models; indicating favorable condition of monolayer adsorption. The kinetics of both adsorbents complies with the pseudo second-order kinetic model. BC was proven a new effective composite and low cost adsorbent which can be applied in the field of wastewater treatment, and it can also play an important role in industry water treatment.

  18. Ash related bed agglomeration during fluidized bed combustion, further development of the classification method based on CCSEM; CCSEM-luokitusmenetelmaen jatkokehittaeminen tuhkan aiheuttaman agglomeroitumisen tutkimisessa leiju- ja kiertopetipoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, R.; Patrikainen, T.; Heikkinen, R.; Tiainen, M.; Virtanen, M. [Oulu Univ. (Finland). Inst. of Chemistry

    1997-10-01

    The scope of this project is to use the information and experience gained from the development of classification method to predict ash related problems like bed agglomeration during fluidised combustion. If boilers have to be shut down due to slagging or agglomeration of the bed material may cause significant economic losses for the entire energy production chain. Mineral classification methods based on the scanning electron microscopy are commonly used for coal ash investigation. In this work different biomass, peat, and peat-wood ash, fluidised-bed materials, and bed agglomerates were analysed with SEM-EDS combined with automatic image analysis software. The properties of ash particles are different depending on the fuel type. If biomass like wood or bark are added to peat the resulting ash has different properties. Due to the low mineral content in the original peat and to the fact that the majority of inorganic material is bound to the organic matrix, the classification has turned out to be less informative than was hoped. However, good results are obtained the by use of quasiternary diagrams. With these diagrams the distribution of particle composition is easily illustrated and thus meaningful prediction can be made of the slagging and agglomerating properties of ash. The content of ten different elements are determined for each particle by SEM-EDS combined with Link AIA software. The composition of the diagram corners can be varied Freely within these ten elements. (orig.)

  19. 市政污泥热电厂循环流化床协同焚烧技术验证研究%Validation of municipal sludge incineration in circulation fluidized bed boiler from a thermal power plant

    Institute of Scientific and Technical Information of China (English)

    朱化军; 徐俊; 刘伟京; 涂勇; 陈兆林; 张鸿涛

    2012-01-01

    以市政污泥为原料,利用某热电厂循环流化床锅炉进行协同焚烧验证研究.试验表明,循环流化床锅炉热电厂污泥协同焚烧的泥煤质量比可在0~0.3之间根据用户需求调节,炉膛燃烧温度〉850℃,烟气停留时间2.59s,符合《生活垃圾焚烧污染控制标准》(GB18485—2001)中850℃烟气停留时间〉2s的要求;脱硫塔烟气进出口NOx、SO2浓度低于锅炉未掺烧污泥前浓度,粉煤灰重金属含量低于《农用粉煤灰中污染物控制标准》(GB8173-87)中粉煤灰农用标准限值(在酸性土壤上:Cd5mg·kg-1,Pb250mg·kg-1),粉煤灰烧失量满足掺混前Ⅱ级品质要求.因此,循环流化床锅炉污泥协同焚烧可有效解决当地城镇污水厂污泥出路,最终实现污泥妥善、安全处置需求.%Incineration of municipal sludge with coal was investigated in a circulation fluidized bed from a thermal power plant.The results show that sludge /coal mass ratio was adjustable between 0 and 0.3 in the circulating fluidized bed boiler according to customer demand.The operating condition of combustion temperature was over 850 ℃ and flue gas residence time was 2.59s under the conditions,which complied with the requirement of the flue gas residence time ( 2 s) at 850 ℃ as prescribed in the pollution control standard on the municipal solid waste incineration (GB18485—2001).The smoke concentrations import and export of the desulfurization tower were lower than the pre-mixing sludge concentration.The heavy metal content in fly ash met the standard limit (Cd 5 mg·kg-1,Pb 250 mg·kg-1) in acid soil of control standards of pollutants in fly ash for agricultural use,and the fly-ash burning-loss amount met the Ⅱgrade quality requirements.Therefore,incineration of municipal sludge in the circulation fluidized bed was an effective way in municipal sludge treatment,which would finally achieve the safe disposal of sludge from local urban sewage plant.

  20. Particle size distribution of ashes and the behaviour of metals when firing Salix in a circulating fluidized bed boiler (CFB); Askans partikelfraktionsfoerdelning och metallernas beteende vid eldning av Salix i en CFB-panna

    Energy Technology Data Exchange (ETDEWEB)

    Sfiris, G.; Johansson, A. [Vattenfall Utveckling AB, Stockholm (Sweden); Valmari, T.; Kauppinen, E.; Pyykoenen, J.; Lyyraenen, J. [VTT Technical Research Centre of Finland, Espoo (Finland)

    1999-07-01

    This project is part of the Ash Recovery Programme aimed at establishing the environmental, technical and financial preconditions for returning wood ash to the forest. The programme is funded jointly by NUTEK, Sydkraft and Vattenfall. This report summarises the results of the experimental and modelling work to study the behaviour of the metals (especially Cd and K), after burning Salix in a 3-12 MW Circulating Fluidized Bed (CFB) boiler. The purpose of the study was to determine, using the experimental data, where cadmium and potassium condense, on what size particles they condense, and the decisive parameters governing these processes. Measurements of the fly ash particle size distribution carried out with a Berner Low Pressure Impactor (BLPI), coupled to a pre-cyclone. Samples were collected from three points: in the convection path at 650 deg C, after the convection path but before the secondary cyclone (160 deg C), and after the bag house (150 deg C). Wet chemical sampling was made for Cd, K, Zn and Pb, with three types of sampling equipment: collection of both particles and gas, collection of particles only, and analysis of the gas phase only. Analysis was made of samples from two places in the convection path (650 deg C and 250 deg C). Samples of bed material, bottom ash and fly ash have been subjected to scanning electron microscopy (SEM), and in addition a few fly ash particles, sampled after the convection path, were subjected to energy dispersive X-ray analysis (EDX). Based on experimental results, modelling work was carried out with an equilibrium model and with a general aerosol computer model ABC (Aerosol Behaviour in Combustion)

  1. 基于Aspen Plus软件的循环流化床烟气脱硫模型%A model of flue gas desulfurization for circulating fluidized bed using Aspen Plus

    Institute of Scientific and Technical Information of China (English)

    颜湘华; 朱廷钰; 王威; 何京东

    2009-01-01

    Model study and flow simulation of circulating fluidized bed flue gas desulfurization (CFB-FGD) were described in this pa-per. The mathematic model of flue gas desulfurization for circulating fluidized bed (CFB) was buih on the basis of element analysis for mass transfer of SO2. The enhancement of the desulfurization reaction in the process of mass transfer of SO2 was analyzed with the doub-le-membrane theory in the model. And the real formation process of slurry droplet was accounted with the theory of inertia collision. And then a simulation study of CFB-FGD was conducted based on Aspen Plus, where a module subroutine was programmed in FOR-TRAN based on this model. The influences of the key parameters such as calcium-to-sulfur ration (Ca/S), flux of spay water, concen-tration of sorbent particles and water drop size on the desulfurization efficiency were analyzed. The modeling results were compared with the experimental data and the comparing results showed that this model could preferably predict the real trends, This paper would help the application of CFB-FGD as references.%本文研究和模拟循环流化床烟气脱硫的流程和模型.以微元分析SO2的传质为基础,建立循环流化床烟气脱硫的数学模型,模型用双膜理论分析脱硫反应对SO2传质过程的增强影响,并采用惯性碰撞理论解释浆滴的形成过程.借助Aspen Plus过程模拟平台,用FORTRAN语言编写基于该模型的用户单元模块,模拟循环流化床烟气脱硫工艺,分析Ca/S、增湿水量、塔内颗粒物浓度、水滴粒径等参数对脱硫的影响,模拟计算结果和实验数据的对比显示模型能如实反映实际的趋势.本文为应用循环流化床烟气脱硫技术提供参考.

  2. A Shannon Information Entropy Analysis of Pressure Fluctuation Signals From an Underfed Circulating Spouted Bed%底饲进料循环喷动床内压力脉动信号的SHANNON信息熵分析

    Institute of Scientific and Technical Information of China (English)

    陶敏; 金保升; 杨亚平; 薛玉兰

    2009-01-01

    To study the gas-solid two phase flow characteristics of an underfed circulating spouted bed,the authors have measured the pressure fluctuation signals at various heights in the axial direction of a reaction tower through a cold-state test,analyzed the pressure signals by using Shannon information entropy and compared the influence of different operating conditions on the gas-solid two-phase flow in the tower.It has been found that the pressure fluctuation and its power spectrum display different characteristics at different heights of bed layers and Shannon information entropy can reflect very well the complexity and stability degree of the characteristic signals.Enhancing the fluidized velocity and circulation ratio can lead to an increase of particle concentration in the axial direction of the tower,thus enhancing the amplitude of the pressure fluctuation.To increase the jet flow velocity and heighten the nozzle location can intensify the gas-solid turbulent flow at the bottom of the tower and Shannon information entropy can be increased accordingly.%为了研究底饲进料循环喷动床内气固两相流的流动特性,通过冷态实验测量反应塔内轴向不同高度上的压力脉动信号.应用SHANNON信息熵分析压力信号,并比较不同操作条件对塔内气固流动的影响.结果表明:压力脉动及其功率谱在不同床层高度上表现出不同的特性;SHANNON信息熵能够很好地反映特征信号的复杂程度和稳定程度;提高流化速度和循环倍率能够导致塔内轴向上的颗粒浓度上升,从而使压力脉动的幅度增加;提高喷射速度和喷嘴位置,能使反应塔底部气固湍动更加强烈,SHANNON信息熵随之上升.

  3. 循环流化床锅炉结焦原因分析及对策%Analysis of Causes for Coking of Circulating Fluidized Bed Boiler and Counter-Measures

    Institute of Scientific and Technical Information of China (English)

    王伟

    2011-01-01

    结焦是循环流化床锅炉运行中较为常见的故障,直接影响到锅炉的安全经济运行.根据几年来流化床锅炉调试和运行经验,循环流化床锅炉结焦的原因主要是炉内流化工况不良或操作失误等,使床料局部或整体温度超过灰的熔点.提出加强燃料监督、强化运行管理、严格控制设备参数、降低飞灰残碳含量等措施,以避免循环流化床锅炉结焦.%Coking is a common trouble in the operation of the circulating fluidized bed boiler, directly affecting the safe and economic operation of the boiler. Based on the experience gained in the debugging and operation of the boiler, the reasons for coking are mainly poor fluidization work condition in the boiler or faulty operation, causing the local or bulk temperature of the charge to exceed the ash fusion point. Measures are proposed, including strengthening the supervision of the fuel and operation management, strictly controlling the equipment parameters, and lowering the residual carbon content of the fly ash, so as to prevent coking in the furnace.

  4. Studies on ash behavior during co-combustion of paper sludge in fluidized bed boilers

    OpenAIRE

    Coda, Beatrice

    2004-01-01

    The present work analysis the ash behaviour and the environmental impact with respect to the toxic trace metals (e.g. Cu, Pb, Zn, Cd, Mn, Cr, Ni) upon co-combustion of paper sludge, a waste deriving from the treatment of recovered paper, with coal and coal/biomass blends in fluidised bed combustors designed for energy production or steam generation. The study, conducted in the framework of a European research project aiming at widening the spectrum of fuels utilised by coal-fired and coal...

  5. Fundamental studies of synthesis-gas production based on fluidised-bed gasification of biomass-UCGFunda

    Energy Technology Data Exchange (ETDEWEB)

    Reinikainen, M.; Moilanen, A.; Simell, P.; Hannula, I.; Kurkela, E. (VTT Technical Research Centre of Finland, Espoo (Finland)), e-mail: matti.reinikainen@vtt.fi; Suominen, T. P. (Aabo Akademi, Turku (Finland), Teknisk Kemi och Reaktionsteknik), e-mail: timo.suominen@abo.fi; Linnekoski, J. (Aalto Univ., School of Science and Technology, Espoo (Finland), Lab. of Industrial Chemistry)

    2011-11-15

    The research was directed towards methods of producing transportation bio-fuels via the synthesis-gas route, with emphasis on the synthesis-gas production and gas cleaning steps. The subtopics of the research project were (1) fuel characterisation and ash behaviour in the gasification step, (2) reaction mechanisms related to gas cleaning, (3) evaluations of alternative process configurations and applications and (4) international cooperation. VTT itself financed also two additional subtopics: (5) new analysis techniques and (6) hydrogen from biomass via gasification. The project comprised experimental work, modelling, techno-economic evaluations as well as studies based on literature. The project was steered by a wide industrial consortium and the research work was carried out by VTT, Aalto University and Aabo Akademi. International development in syngas technology was closely monitored in all subtopics as well as by participating in relevant IEA-tasks. More information on the project can be found on project webpage http://www.vtt.fi/proj/ucgfunda/ (orig.)

  6. Flow Pattern Identification of Fluidized Beds Using ECT

    Institute of Scientific and Technical Information of China (English)

    S. Liu; W.Q. Yang; H. Wang; G. Yan; Z. Pan

    2001-01-01

    Electrical capacitance tomography (ECT) was applied in measuring solids distribution in square circulating fluidized beds. The fluidization conditions varied from bubbling fluidized bed to circulating fluidized bed. In the whole range of fluidization conditions, ECT was able to instantaneously provide the solids concentration and voids distributions in the fluidized beds. According to the acquired data from ECT and reconstructed image,different fluidization regimes can also be identified.

  7. Development of a fluid bed weak base ion exchange process for the recovery of uranium

    International Nuclear Information System (INIS)

    The ability to recover uranium from leach solutions containing suspended solids using continuous counter-current fluid bed ion exchange is the key to reducing post leach recovery costs. Weak base resins offer the advantage of higher product purity over strong base resins and details of a laboratory programme are given in which the fluidisation, extraction and elution properties of a series of weak base resins were examined for their usefulness in the fluid bed contactor. A macroporous polystyrene resin selected from the laboratory tests has been tested on the pilot plant scale and it was concluded that resins of this type are suitable for use in the fluid bed contactor. These resins may therefore be considered for use in low cost recovery operations. During the pilot plant programme a simple method of predicting column operation based on laboratory scale stir tests was developed. (author)

  8. The experimental study on new type baking-free brick prepared the circulating fluidized bed boiler (CFBB) ash%循环流化床锅炉灰渣制备新型免烧砖的试验研究

    Institute of Scientific and Technical Information of China (English)

    黄鑫; 夏举佩; 周新涛

    2014-01-01

    本文以循环流化床锅炉(C FBB )灰渣为主要原料,通过实验获得了其制备免烧砖的最佳工艺配料为:石灰7%、飞灰43%、底渣30%、骨料瓜子石20%。通过蒸汽养护和自然养护对比,发现在低石灰掺量时,自然养护效果明显低于蒸汽养护,但随着石灰用量的增加,二者差异逐渐缩小,当高于7%时,检测结果基本一致,在此基础上,通过扩大性工业试验,采用自然养护方式,可生产标号为150的免烧砖砌块。%In this paper ,circulating fluidized bed boiler (CFBB) ash is used as the main raw material for preparing baking free brick to obtain through experiment the optimal ingredients as follows :7% lime ,43%fly ash ,30% bottom ash ,20% aggregate of oval stone .By steam curing and natural curing contrast ,we find that the effect of nature curing is significantly lower than the steam curing .But with the increasing of lime dosage ,the difference is gradually reduced .When lime dosage is higher than 7% ,the test results are basically consistent .On this basis ,unburned block labeled 150 can be produced using natural curing method through the expansion of industrial test .

  9. Fetal Circulation

    Science.gov (United States)

    ... Pressure High Blood Pressure Tools & Resources Stroke More Fetal Circulation Updated:Jul 8,2016 click to enlarge The ... fetal heart. These two bypass pathways in the fetal circulation make it possible for most fetuses to survive ...

  10. Variability of bed drag on cohesive beds under wave action

    Science.gov (United States)

    Safak, Ilgar

    2016-01-01

    Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10  m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  11. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE

    Energy Technology Data Exchange (ETDEWEB)

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

    2004-10-27

    Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and

  12. Heat transfer to immersed horizontal tubes in gas fluidized bed dryers

    Energy Technology Data Exchange (ETDEWEB)

    Jonassen, Ola

    1999-10-01

    The main objective of this study was to construct heat pump fluidized bed dryers of the FHT type with improved dewatering capacity for a given size of the dryer. The use of heat exchangers immersed in the fluidized bed drying chambers is an important part of the FHT (Fluidized Bed High Temperature Heat Pump Dryer) concept. A pilot plant FHT dryer was built and successfully tested on fish meal raw material and seaweed. The plant included two fluidized bed drying chambers with immersed heat exchangers. The gain in water vapor of the drying air through the chambers was increased up to four times that of adiabatic drying. The energy saving concept was retained as a SMER ratio of 3.5 to 4.7 was measured in the same tests. Therefore optimization of the immersed heat exchangers was considered the most important single objective for this work. The optimization study of the heat exchangers was confined to the actual operating conditions for the dryers using: (1) Bubbling gas fluidized beds were used, (2) air as the only type of fluidising gas, (3) beds at atmospheric pressure, (4) bed temperatures below 100 {sup o}C, (5) fluidized particles of Geldart classes B and D, (6) horizontal tube banks for the immersed heat exchanger, and the influence of radiation heat transfer was ignored. The heat transfer study was confined to the fluidized bed side of the heat exchanger surface. It was concluded early in this work that the bubbles play a major role in generating the particle circulation inside the bed and hence also in heat transfer. Publications describing the most important bubble induced mechanisms contributing to high rates of heat transfer were found to be limited. Therefore the first part of this study was aimed at establishing a method for locating and measuring the size and rise velocity of bubbles inside the bed. The method established through this work using differential pressure measurements from two static pressure probes was used later in the study of heat transfer

  13. Fluidization Characteristics of a Prototype Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    F. ABERUAGBA

    2005-01-01

    Full Text Available The fluidization characteristics of a prototype-fluidized bed laboratory reactor were understudied in order to investigate the suitable conditions at which the dehydrogenation reaction of butane could be carried out. To achieve this, a reactor with an effective volume of 1100ml was fabricated and coupled with temperature and pressure accessories.Zeolites were obtained from the market and clay obtained from different sources and pre-treated was used as catalyst. Airflow at high velocity between 3000-7000ml/hr was used as the fluidising medium to obtain the bed characteristics while butane gas was used to obtain the dehydrogenation kinetics.The temperature of the reactor system was varied between 353K and 413K while maintaining constant pressure of 1.5 105 N/m2 through a manifold gauge and a constant catalyst weight. Various methods such as pressure fluctuations, visual observations, and bed expansion were used to determine the transition velocity at which fluidization begins. It was observed that this depends on factors such as mean particle size, particle size distribution, and column diameter.The minimum fluidizing velocity obtained for zeolite was 0.0133m/s and 0.0102m/s for treated clay materials both for a particle size of 250μm. The conversion of butane over the catalysts showed an increase in both cases with a maximum at 0.9813 at 413K. This decreases as the reaction progresses.

  14. Lung Circulation.

    Science.gov (United States)

    Suresh, Karthik; Shimoda, Larissa A

    2016-01-01

    The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed. © 2016 American Physiological Society. Compr Physiol 6:897-943, 2016. PMID:27065170

  15. Experimental Investigation on Addition of Anticorrosive Agent in a 50-MW Biomass-Fired Circulating Fluidized Bed Boiler%生物质循环流化床锅炉掺烧防腐蚀剂的试验研究

    Institute of Scientific and Technical Information of China (English)

    宋景慧; 谭巍

    2014-01-01

    Experiments on combustion of pure biomass and biomass with anticorrosive agent were carried out in a 50-MW biomass-fired circulating fluidized bed boiler. The anticorrosive agent has a porous structure and mainly contains magnesium oxide (MgO), kaolin, activated alumina (Al2O3) and foamer. Results obtained in experiments show that, boiler thermal efficiency was weakly influenced by the anticorrosive agent, and contents of K and Cl in flue ash decreased as contrast to the increase of K and Cl in furnace slag. When the mass percentage of anticorrosive agent is 3%, in the flue ash, the K values ranged from 7.62%to 5.69%, and Cl values reduced from 3.86%to 2.35%. While in furnace slag, the values K varied from 4.03%to 4.71%, and Cl values increased from 756.58 mg/kg to 1 121.31 mg/kg. Due to the anticorrosive agent, the content of HCl in flue gas decreased from 25 mg/Nm3 to 15 mg/Nm3, as the emission of NO increased from 268 mg/Nm3 to 309 mg/Nm3.%在亚洲最大的50 MW生物质循环流化床直燃锅炉上进行了掺烧防腐蚀剂的燃烧试验,防腐蚀剂采用多孔膜结构,主要成分是MgO、高岭土、活性Al2O3和发泡剂,试验结果表明:掺烧防腐蚀剂不会降低锅炉热效率,且能够有效地降低飞灰中K、Cl元素的含量,将其固留在炉渣中。当防腐蚀剂添加量占总燃料质量的3%时,飞灰中的K元素含量由7.62%下降为5.69%,Cl元素含量由3.86%下降为2.35%;而炉渣中的K元素含量由4.03%上升为4.71%,Cl元素含量由756.58 mg/kg上升为1121.31 mg/kg;同时烟气中的HCl排放量由25 mg/Nm3下降为15 mg/Nm3,NO含量由268 mg/Nm3上升为309 mg/Nm3。

  16. 循环流化床富氧燃烧NO和N2O的排放特性%NO and N2O Emission Characteristics of Oxy-Fuel Circulating Fluidized Bed Combustion

    Institute of Scientific and Technical Information of China (English)

    李伟; 李诗媛; 徐明新; 吕清刚

    2015-01-01

    Experiments were carried out in a 50,kW circulating fluidized bed(CFB)combustor under the O2/CO2at-mosphere. The combustion temperature was within the range of 800—950,℃,and the inlet oxygen concentration was within the range of 25%—50%,. The effects of combustion temperature,inlet oxygen concentration and excess oxy-gen coefficient on NO and N2O emission characteristics were studied. The results show that the N conversion rate un-der the O2/CO2,firing mode is much lower than that under the air firing mode. As the inlet oxygen concentration in-creases,the NO emission increases and while N2O emission decreases. With the increase of excess oxygen coefficient,both NO and N2O emissions and N conversion rate increase. It can be concluded that increasing tempera-ture and inlet oxygen concentration and decreasing excess oxygen coefficient areboth beneficial to the decrease of N conversion rate oxy-fuel CFB combustion.%在50,kW循环流化床燃烧试验台上对大同煤和神木半焦进行了O2/CO2气氛的富氧燃烧试验,试验的进口氧气体积分数为25%,~50%,,燃烧温度为800~950,℃.试验研究的目标是获得燃烧温度、进口氧气体积分数和过量氧气系数等因素对循环流化床富氧燃烧过程中 NO 和 N2O 的排放特性以及燃料 N 转化率的影响.研究结果表明,与空气气氛相比,O2/CO2气氛下的燃料N转化率明显降低;随着进口氧气体积分数增加,NO的排放下降,而N2O 的排放则升高;随着过量氧气系数的增加,NO、N2O 的排放以及燃料 N 转化率均呈增加趋势.在循环流化床富氧燃烧中,提高燃烧温度、进口氧气体积分数以及降低过量氧气系数都能有效降低燃料N转化率,抑制氮氧化物的排放.

  17. Direct Utilization of Circulating Fluidized Bed Combustion Ash of Distilled Spirits Lees as Fertilizer%白酒糟循环流化床燃烧灰直接肥料化利用

    Institute of Scientific and Technical Information of China (English)

    宋扬; 汪印; 姚常斌; 张玉明; 王昶; 易彬; 杨俊; 许光文

    2011-01-01

    研究了白酒糟循环流化床燃烧灰直接作为肥料的可能性和效果,以其为肥料种植油菜,考察了油菜在5种土壤中发芽和生长情况.结果表明,白酒糟燃烧灰对不同生长阶段的油菜有不同影响,对壤质土中的油菜发芽有抑制作用,但能明显改善粘性土壤中油菜的生长环境,油菜的净增量和产量都有明显增加.白酒糟燃烧灰还能提高酸性土壤pH值,使土壤环境向中性(pH 6.97~7.74)变,有利于腐殖酸分解和植物生长.土壤与白酒糟燃烧灰质量比为5:1时,与原土相比,泸州国窖红土壤、泸州青稞土壤及富阳土壤中油菜净增量分别为80.1%,80.9%,163.6%,表明利用白酒糟燃烧灰作为植物生长肥料是可行的.%The feasibility of utilizing the circulating fluidized bed combustion ash of distilled spirits lees as fertilizer was investigated. The rape culture experiment was carried out in 5 different kinds of soils, and the rape growth states in the germination and growth stages were measured to evaluate the effect of adding ash to the soils as fertilizer. The results show that the ash exhibited different effects on the rape growth in different culture stages. There was an antibiastic effect on the rape growth in the germination stage in a loamy soil, but the rape growth was much improved when adding the ash to a clayey soil. The latter led the mature rape to having obviously increased net height and weight. The ash could change the pH value of acid soil into neutral state, facilitating the humic acid decomposition and plant growth. Comparing the soils at soil:ash=5:l(ω) with original soil, the increased amplitudes of net height of rape in Guojiaohong Turang, Qingke Turang and Fuyang Turang were 80.1%, 80.9% and 163.6%, respectively. As consequence, it was feasible and effective to use directly the combustion ash of distilled spirits lees as fertilizer.

  18. Research report of FY 1997 on the environmentally acceptable coal utilization system introduction support project. Follow-up project on circulating fluidized bed boiler introduction (Calaca Batangas Thermal Power Station); 1997 nendo chosa hokokusho. Kankyo chowagata sekitan riyo system donyu shien jigyo (junkan ryudosho boiler ni kakawaru follow up jigyo (Calaca Batangas karyoku hatsudensho))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For the follow-up project, to promote the diffusion of results of the clean coal technology (CCT) model projects, experts of circulating fluidized bed boilers were dispatched, to guide and advise for the operation of facilities introduced in these projects. The purpose of these projects is to diffuse the CCTs, and to support the promotion of environmental measures. Some guidance and advice about operation processes, data processing, operation regulation, maintenance, and boiler maintenance works were provided to the Ministry of Energy and Electric Power Corporation of the Philippines. Semirara, Malangas, and Samar coals in the Philippines were used for the tests. The boiler facilities could be operated by Philippine operators themselves. Based on the guidance and advice about operation processes, combustion tests using various Philippine coals were also planned and conducted by themselves. The maintenance techniques were transferred to Philippine operators through the inspection, repair and advice. The Philippine side understood the technologies well, and the circulating fluidized bed boiler technology was independently educated in the Philippines. 23 figs., 16 tabs.

  19. Spouted bed electrowinning of zinc: Part II. Investigations of the dynamics of particles in large thin spouted beds

    Science.gov (United States)

    Verma, A.; Evans, J. W.; Salas-Morales, Juan Carlos

    1997-02-01

    The behavior of particles in thin spouted beds, mostly equipped with draft tubes, has been investigated. Three apparatuses have been used: a laboratory-scale cylindrical bed, a 2-m-tall “flat” (rectangular cross section) bed and a 2-m-wide flat bed, the last equipped with multiple draft tubes. Most of the results were obtained on the tall bed. Minimum spouting flow rate, pressure distribution, particle velocities, and solid circulation rates were determined as a function of bed geometry (including draft tube dimensions and position). Observations were made of the direction of liquid flow in the bed outside the draft tube and of the occurrence of zones in the bed where the particles appeared stationary. The wide bed was used to determine that there is a maximum separation between draft tubes beyond which particles cannot be kept in motion across the whole width of the bed.

  20. Internal dust recirculation system for a fluidized bed heat exchanger

    Science.gov (United States)

    Gamble, Robert L.; Garcia-Mallol, Juan A.

    1981-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided in a heat exchange relation to the bed and includes a steam drum disposed adjacent the bed and a tube bank extending between the steam drum and a water drum. The tube bank is located in the path of the effluent gases exiting from the bed and a baffle system is provided to separate the solid particulate matter from the effluent gases. The particulate matter is collected and injected back into the fluidized bed.

  1. Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes

    Science.gov (United States)

    Talmud, Fred M.; Garcia-Mallol, Juan-Antonio

    1980-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.

  2. Study of the Drying Kinetics of “Granny Smith” Apple in Fluid Bed Dryer

    Directory of Open Access Journals (Sweden)

    Darko Velić

    2007-12-01

    Full Text Available The drying characteristics of “Granny Smith” apple were investigated using a bench-scale fluidised bed drier at different temperatures and using blanching in hot water as pre treatment. Temperatures of fluidisation for non-treated and treated samples were 50, 60, 70 and 80 oC and airflow velocity 3.50 m s-1. The aim of the experiment was to get apples with approximately 9% water content, with good texture, rehydration capability and colour quality. The effect of temperatures and pre-treatment on the quality of dried apple samples was determined on the basis of colour and volume changes and reconstitution characteristics. Th e kinetic equations were estimated using logarithmic model. The results of the estimation have exhibited correspondence to experimental results. As a result of drying of non-treated apple at higher temperatures, drying time shortens, while rehydration properties improve. On the other hand, with the increase of the drying temperature, overall colour changes (ΔE of non-treated samples increase. The best results, shorter drying time and better rehydration properties, were obtained when samples were pre-treated by blanching in hot water.

  3. Solids mixing in spouted beds

    OpenAIRE

    Cook, H. H.; Bridgwater, J.; Professor J. Bridgwater

    1981-01-01

    Many industrial processes require contact between particles and a fluid or spray in order to effect drying, coating or granulation. One device capable of contacting fluid and particles efficiently is a spouted bed in which a jet of fluid is injected into solid particles. This forms an open channel or spout and induces material circulation in a downward moving annulus. For the continuous throughput of solids, knowledge is required of the mixing and particle motions within th...

  4. Fuel gas production from renewable biomass in a circulating fluidized bed as a bases for zero-CO{sub 2} power generation in a combined-cycle power plant; Brenngaserzeugung aus nachwachsenden Biomassen in der zirkulierenden Wirbelschicht als Grundlage fuer eine CO{sub 2}-neutrale Stromerzeugung in einem GUD Kraftwerk

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, J.; Loeffler, J.; Hirschfelder, H. [Lurgi Energie und Umwelt GmbH, Frankfurt am Main (Germany)

    1996-12-31

    A pilot circulating fluidized bed plant in the range of 1.7 MW{sub th} has been operated successfully with fossil fuels, residues, wood bark and wood chips, reet grass and sorghum pellets. Depending on the specifications for product gas and fuel quality, air, oxygen-enriched air or oxygen/steam mixtures are used as gasification agents in the gas generator. (orig) [Deutsch] In einer ZWS-Pilotanlage mit ca. 1.7 MW thermischer Leistung wurden bisher ausser fossilen und Abfallbrennstoffen auch Rindenabfaelle, Holzschnitzel, Schilfgras und Sorghumpellets erfolgreich zur Brenngaserzeugung eingesetzt. Entsprechend den Anforderungen an das Produktgas und der Brennstoffqualitaet wird Luft, sauerstoffangereicherte Luft oder Sauerstoff/Dampfgemische als Vergasungsmittel im ZWS-Gaserzeuger eingesetzt. (orig)

  5. Modelling of Devolatilization in Fluidized Bed Combustion

    DEFF Research Database (Denmark)

    Stenseng, Mette; Lin, Weigang; Johnsson, Jan Erik;

    1997-01-01

    A mathematical model is developed to describe the devolatilization process in a circulating fluidized bed combustor. The model is a combination of two submodels: single particle devolatilization and fluid dynamics. The single particle model includes the influence of both chemical kinetics and hea...

  6. Theoretical study of a solar fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bizarro, P.; Le Palec, G.; Daguenet, M. (Laboratoire de Thermodynamique et Energetique, Universite de Perpignan (France))

    1984-01-01

    The authors calculate numerically the temperature and concentration profiles in a catalytic packed bed reactor submitted to concentrated solar radiation. They examine the co-current case (gas circulates in the direction of heat flow) as well as the counter-current case (gas circulates in the opposite direction) and study the influence of various parameters on the chemical reaction rate.

  7. Tests of Bed Agglomeration Tendency Using a Rotating Furnace; Roterugn foer bedoemning av sintringsbenaegenhet

    Energy Technology Data Exchange (ETDEWEB)

    Larfeldt, Jenny; Zintl, Frank [TPS Termiska Processer AB, Nykoeping (Sweden)

    2003-08-01

    Bed sintering is a well known problem in fluidised bed boilers. In order to avoid bed sintering the bed material turn over ratio is high which leads a high consumption of bed material. This work aims at developing and evaluating a method for testing the bed agglomeration tendency of a FB bed material by using a rotating furnace. A rotating furnace has been designed and tests have shown that three temperatures describing the increasing agglomeration tendency can be evaluated; TA when several particles stick to each other and to the crucible wall, TB when half of the material sticks to the wall and TC when almost all the material forms a ball in the crucible. Comparison with bed agglomeration tests has shown that TA is between 80 deg C to 130 deg C lower than the bed agglomeration temperature from fluid bed tests. It is shown that TB is closer to the bed agglomeration temperature and finally that the temperature TC is higher than the bed agglomeration temperature. It is concluded that in the rotating furnace sticking of particles is visualised early, and that this sticking will not cause defluidisation of the bed until more than half of the material in the crucible is sticky. Repeated tests has been performed at a heating rate of 5 deg/minute and a rotating speed of 12 rpm and a furnace inclination of 20 deg was found to give distinct results in the evaluation. The evaluation has shown to be reproducible at lower temperatures. At higher temperatures, around 1,000 deg C, the evaluation was complicated by a poor picture quality which probably can be improved by proper cooling of the camera. It has also been shown that sticking of material in the rotating furnace could be detected at relatively low temperatures of 750 deg C that disappeared at higher temperatures. This is likely to be explained by melting salts that evaporates as temperature increase. At even higher temperatures the sticking reappeared until a ball was formed in the crucible. The latter sticking is

  8. Circulation economics

    DEFF Research Database (Denmark)

    Ingebrigtsen, Stig; Jakobsen, Ove

    2006-01-01

    Purpose - This paper is an attempt to advance the critical discussion regarding environmental and societal responsibility in economics and business. Design/methodology/approach - The paper presents and discusses as a holistic, organic perspective enabling innovative solutions to challenges...... concerning the responsible and efficient use of natural resources and the constructive interplay with culture. To reach the goal of sustainable development, the paper argues that it is necessary to make changes in several dimensions in mainstream economics. This change of perspective is called a turn towards...... presupposes a perspective integrating economic, natural and cultural values. Third, to organize the interplay between all stakeholders we introduce an arena for communicative cooperation. Originality/value - The paper concludes that circulation economics presupposes a change in paradigm, from a mechanistic...

  9. Chemical Processes Related to Combustion in Fluidised Bed. Report for the period 2002-07-01 to 2004-06-30

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, Britt-Marie; Lindqvist, Oliver [Chalmers University of Technology, Goeteborg (Sweden). Dep. of Environmental Inorganic Chemistry

    2005-02-01

    One part of the project was an investigation of the mechanism and kinetics of the absorption of potassium and cadmium in kaolin. Addition of kaolin has been suggested as a method to decrease problems like ash sintering, fouling and corrosion. The results showed that kaolin binds potassium effectively, especially if it is present as chloride or hydroxide. Reducing atmosphere and the presence of water vapour favours the absorption. The products are mainly silicates with low solubility. Cadmium is also absorbed by kaolin in a similar way. In the second part of the project, the chemical forms of some metals present in fly ash from combustion of MSW and bio fuels were studied. The most common Cd-compounds found were sulphate, oxide, chloride and silicate. It was also shown that Cd often is incorporated in calcium minerals, such as calcium silicates, CaO and CaC0{sub 3}, due to the fact that the ions Ca{sup 2+} and Cd{sup 2+} are almost similar in size and charge.

  10. Developments and operational experience with ceramic boiler wall protection systems in fluidised bed boilers; Entwicklungen und Betriebserfahrungen mit keramischen Rohrwandschutzsystemen in der Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Markus [Juenger + Graeter GmbH, Schwetzingen (Germany); Roschek, Dirk; Ipsen, Christoph [Stadtwerke Flensburg GmbH, Flensburg (Germany)

    2013-02-01

    More alternative fuels, such as biomass, refuse derived fuels, sewage sludge, meat and bone meal etc. are being used in conventional CFB power plants originally designed for coal combustion. However, co-combustion of these materials causes problems which are not always advantageous for continuous plant operation, i.e. mostly substantially higher fouling susceptibility of the plants was noticed. In some cases even a far greater tendency to boiler damage was observed as result of corrosion, erosion, and mechanical effects. Based on these constraints, the cooperation between Stadtwerke Flensburg and Juenger+Graeter (J+G) resulted in the development of a ceramic boiler wall protection system which would significantly reduce the susceptibility to boiler damage in the combustion chamber.

  11. Utilisation of forest chips, produced with different harvesting chains, in fluidised bed boilers of large power plants; Erilaisten korjuuketjujen tuottaman metsaehakkeen kaeyttoe suurten voimaloiden leijukerroskattiloissa - PUUT08

    Energy Technology Data Exchange (ETDEWEB)

    Orjala, M.; Ingalsuo, R. [VTT Energy, Jyvaeskylae (Finland)

    2001-07-01

    When combusting wood fuels the chemical composition of woof fuels can cause fouling and high-temperature corrosion of the heat transfer and superheater surfaces of the boiler. Problems are caused especially by forest chips, which include high quantities of needles and thin branches. Even though low alkali metal and chlorine contents are typical for wood fuels, the problem is that they are easily vaporised during combustion. Depending on the combustion conditions, the alkali metals can be oxidised to alkali metal oxides or they can form sulphates or chlorides. When combustion pure wood the sulphur content in combustion process is low and alkali metal compounds form chlorides easily, which can be condensed on the heat transfer surfaces of the boiler and form a significant high-temperature corrosion risk. If the sulphur content of the combustion process is increased e.g. by additional utilisation of peat, the chemistry of alkali metals is directed to formation of alkali metal sulphates instead of chlorides, and the chlorine liberated in the furnace forms gaseous hydrogen chloride (HCI). Hydrogen chloride, formed in combustion of wood fuels, is transferred in low concentrations in flue gases out of the boiler so it does not cause significant chlorine corrosion or emission risk. (orig.)

  12. Experimental investigation and mathematical modelling of the combustion of brown coal, refuse and mixed fuels in a circulating fluidized bed combustor; Experimentelle Untersuchung und mathematische Modellierung der Verbrennung von Braunkohle, Abfallstoffen und Mischbrennstoffen in einer zirkulierenden Wirbelschichtfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, W.; Brunne, T.; Hiller, A. [Technische Univ. Dresden (Germany). Inst. fuer Energietechnik; Albrecht, J. [Lurgi Umwelt GmbH, Frankfurt am Main (Germany); Quang, N. [Polytechnic Inst., Danang (Viet Nam)

    1998-09-01

    Extensive experiments on combustion of biological materials and residues in fluidized bed combustors and dust combustors have been carried out at the Department of Power Plant Engineering of Dresden University since the early nineties. Particular interest was taken in mixing brown coal with sewage sludge, sugar pulp and waste wood. The experiments were supplemented by modelling in a research project funded jointly by the BMBF and Messrs. Lurgi since early 1997. A combustion cell model designed by Siegen University is being modified for the new mixed fuels, and preliminary investigations were carried out on a batch reactor while the modelling work was continued. (orig.) [Deutsch] An dem Lehrstuhl fuer Kraftwerkstechnik der TU Dresden werden seit Anfang der 90-iger Jahre umfangreiche experimentelle Untersuchungen zur Verbrennung von Bio- und Reststoffen in Wirbelschicht- und Staubfeuerungen durchgefuehrt. Dabei war vor allem die Zufeuerung dieser Stoffe in Waermeerzeugeranlagen auf Braunkohlenbasis von besonderem Interesse. Experimentell konnte nachgewiesen werden, dass sowohl Biobrennstoffe als auch Abfaelle in zirkulierenden Wirbelschichtfeuerungen umweltschonend zur Waermeerzeugung eingesetzt werden koennen. Als Beispiel wird das an Hand von Braunkohle-Klaerschlammgemischen sowie Bagasse- und Holz-Braunkohlegemischen gezeigt. Neben den experimentellen Untersuchungen bietet die Modellierung der Verbrennungsvorgaenge ein geeignetes Mittel um Voraussagen zu anderen Mischungsanteilen sowie anderen geometrischen Abmessungen machen zu koennen. Seit Anfang 1997 wird dazu ein vom BMBF und der Firma Lurgi gefoerdertes Forschungsvorhaben bearbeitet. Ein von der Universitaet Gesamthochschule Siegen fuer die Braunkohleverbrennung konzipiertes Zellenmodell wird auf die neuen Brennstoffgemische erweitert. Da grundsaetzlich andere Stoffzusammensetzungen vorliegen, wurden an einem Batch-Reaktor Voruntersuchungen zum Pyrolyseverhalten der Brennstoffe durchgefuehrt. Erste

  13. Surviving Bed Rest

    Science.gov (United States)

    ... doctor will give you specific information about the duration of your bed rest. continue How Does Bed ... reading about high-risk pregnancy issues, learn about breastfeeding or how to encourage your child's development instead. ...

  14. Proceedings - Fourth annual fluidized bed conference

    International Nuclear Information System (INIS)

    The proceedings contain 14 papers which deal with the following topics: anthracite culm combustion for process heat and cogeneration; case histories describing the performance of circulating fluidized bed combustors (CFBC); design and economics of CFBC; pulverizers for coal and sorbent preparation; ash removal systems; and the status of independent power generation and the Clean Coal Technology Program. Appendices contain manufacturers' installation lists with details of customers, fuels, steam conditions, and applications. All papers have been processed separately for inclusion on the data base

  15. Top Ten Bed Bug Tips

    Science.gov (United States)

    ... have bed bugs, not fleas, ticks or other insects. You can compare your insect to the pictures on our Identifying bed bugs ... bedbugs Bed Bugs Home Learn about Bed Bugs — Characteristics of Bed Bugs — Finding Bed Bugs Protecting Your ...

  16. Final stage of first super-critical 460 MW CFB boiler construction. First experience

    Energy Technology Data Exchange (ETDEWEB)

    Ostrowski, Waldemar [PKE, Lagisza Power Plant (Poland); Goral, Damian [Foster Wheeler Energia Polska, Sosnowiec (Poland)

    2010-07-01

    Steam boilers with circulating fluidised bed combustion have been advanced in the past years and proved well as large-scale technology. A further step was the development and construction of a boiler with super-critical steam parameters and increased output. In 2002 the Polish utility Poludniowy Koncern Energetyczny SA awarded a contract to Foster Wheeler Energia Oy to erect a fluidised bed boiler for the Lagisza power plant. Construction of the 460 MW plant was started in 2006. The plant has been in commercial operation since 2009. (orig.)

  17. Design of gamma radiation equipment for studying a bubbling gas fluidized bed. Determination of a radial void fraction profile and bubble velocities in a 0.40 m column

    International Nuclear Information System (INIS)

    In this work the possibility of the use of gamma radiation in investigating bubbles in a large three dimensional gas-fluidised bed was examined. A measuring system was designed based upon the absorption of gamma radiation. As high energy (>100 keV) gamma radiation penetrates deeply into matter, it can be used to scan through a gas-solid fluidised bed. The attenuation of a beam of mono-energetic photons is related to the amount of solid particles in the path of the beam. With the gamma absorption technique two parameters can be determined: The void fraction and the bubble velocity. With one narrow beam of gamma radiation a chordal void fraction can be measured in the homogeneous part of the bed. An optimalisation procedure for the void fraction determination led to the choice of Cs-137 as radiation source. This optimalisation procedure concerned minimizing of the standard deviation in the determined chordal void fraction as a function of the energy of gamma radiation. With two narrow parallel beams placed at a distance of 12 cm above each other a bubble velocity can be obtained. A cross-correlation between the two detector responses gives the time shift between the two responses. The system was designed for velocity measurements in the non-homogeneous part of the column. A simulation of the two beam measurement method for an air fluidized bed, 0.40 m in diameter, of polystyrene particles led to the choice of 100 mCi for the source strength for each of the two Cs-137 sources. For a 100 mCi Cs-137 source a shielding of 8 cm of lead is necessary to comply with safety regulations, concerning the use of radioactive materials. A source holder was designed, containing two encapsulated 100 mCi Cs-137 sources, in accordance with the regulations in the licence of the Delft University of Technology for the use of encapsulated sources. (orig.)

  18. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    Energy Technology Data Exchange (ETDEWEB)

    Archie Robertson

    2003-07-23

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the April 1--June 30, 2003 time period.

  19. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    Energy Technology Data Exchange (ETDEWEB)

    Archie Robertson

    2002-07-10

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the April 1--June 30, 2002 time period.

  20. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    Energy Technology Data Exchange (ETDEWEB)

    Archie Robertson

    2003-10-29

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the July 1--September 30, 2003 time period.

  1. Development of Pressurized Circulating Fluidized Bed Partial Gasification Module (PGM)

    Energy Technology Data Exchange (ETDEWEB)

    A. Robertson

    2002-09-30

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the July 1-September 30, 2002 time period.

  2. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-01-30

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the October 1--December 31, 2002 time period.

  3. ECN contribution to the 10th European Conference 'Biomass for Energy and Industry'

    International Nuclear Information System (INIS)

    The titles of the six papers are: (1) Optimisation of Western European bioenergy and biomaterial strategies for greenhouse gas emission reduction in the 21st century; (2) Economically optimal production and allocation of biofuels for transport in the Netherlands; (3) Gasification of wood waste from public gardens for CHP production; (4) Circulating fluidized bed gasification experiments at ECN; (5) Bed-agglomeration in fluidisized-bed conversion of biomass; and (6) Combined production of chemicals and biomass with microalgae in a closed photobioreactor

  4. Bed In Summer

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In winter I get up at night And dress by yellow candle-light. In summer, quite the other way, I have to go to bed by day. I have to go to bed and see The birds still hopping on the tree, Or hear the grown-up people' s feet Still going past me in the stree

  5. Fluidized bed incinerator development

    International Nuclear Information System (INIS)

    A fluidized bed incinerator is being developed for burning rad contaminated solid and liquid waste materials. In situ neutralization of acid gases by the bed material, catalytic afterburning, and gas filtration are used to produce a clean flue gas without the use of aqueous scrubbing

  6. Artificial neural network models for biomass gasification in fluidized bed gasifiers

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Hernández, J. Alfredo; Bruno, Joan Carles;

    2013-01-01

    Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determin...... experimental data used R2 > 0.98. Furthermore a sensitivity analysis has been applied in each ANN model showing that all studied input variables are important....

  7. 煤和垃圾衍生燃料循环流化床混烧的试验研究%Experimental Investigation on Co-firing of Coal and Refuse-derived Fuel in a Pilot-scale Circulating Fluidized Bed Combustor

    Institute of Scientific and Technical Information of China (English)

    柏继松; 余春江; 李廉明; 李兴亮; 王勤辉; 骆仲泱

    2012-01-01

    Co-firing of coal and refuse derived fuel(RDF) were investigated using a thermogravimetric analyzer(TGA) and a pilot-scale circulating fluidized bed combustor(CFB).Results obtained in TGA experiment show that,during co-firing process,coal and RDF can largely maintain their own combustion characteristics,while the addition of RDF significantly improve the combustion performance of coal.The CFB experiment shows that,compared to coal combustion,co-firing makes the axial temperature distribution more uniform;The addition of RDF reduce the CO,NO,N2O,SO2 emissions,but it greatly increase the HCl concentration in flue gas;The Ca-based materials contained in RDF can remove SO2 through sulfate reaction,while the presence of HCl promotes this kind of desulfurization reaction;During co-firing conditions,with the bed temperature increase,not only the conversion of fuel N/S/Cl to gas pollutants increase,but also the SO2 and HCl removal reactions by Ca-based substances are inhibited,therefore,the NO,SO2,HCl concentration in flue gas increase.%分别在热重分析仪和0.5MW循环流化床燃烧系统上进行了煤和垃圾衍生燃料混烧实验。热重试验表明:混烧过程中,两者基本上保持各自的燃烧特性,同时垃圾衍生燃料的加入能显著提高煤粉的燃烧性能。循环流化床试验表明:相对于煤粉单独燃烧,混烧能使整个炉膛的温度分布更均匀;垃圾衍生燃料的加入降低了CO、NO、N2O、SO2的排放,但却大大增加了烟气中HCl的浓度;垃圾衍生燃料中的钙基物质能对SO2起到脱除作用,同时HCl的存在会促进钙基物质与SO2的反应;在混烧情况下,随着床层温度的升高,N、S、Cl等元素对气相污染物的转化率增加,同时,钙基物质对酸性气体SO2、HCl的脱除反应受到抑制,因此烟气中的NO、SO2、HCl等污染物浓度增加。

  8. Intestinal circulation during inhalation anesthesia

    International Nuclear Information System (INIS)

    This study was designed to evaluate the influence of inhalational agents on the intestinal circulation in an isolated loop preparation. Sixty dogs were studied, using three intestinal segments from each dog. Selected intestinal segments were pumped with aortic blood at a constant pressure of 100 mmHg. A mixture of 86Rb and 9-microns spheres labeled with 141Ce was injected into the arterial cannula supplying the intestinal loop, while mesenteric venous blood was collected for activity counting. A very strong and significant correlation was found between rubidium clearance and microsphere entrapment (r = 0.97, P less than 0.0001). Nitrous oxide anesthesia was accompanied by a higher vascular resistance (VR), lower flow (F), rubidium clearance (Cl-Rb), and microspheres entrapment (Cl-Sph) than pentobarbital anesthesia, indicating that the vascular bed in the intestinal segment was constricted and flow (total and nutritive) decreased. Halothane, enflurane, and isoflurane anesthesia were accompanied by a much lower arteriovenous oxygen content difference (AVDO2) and oxygen uptake than pentobarbital or nitrous oxide. Compared with pentobarbital, enflurane anesthesia was not accompanied by marked differences in VR, F, Cl-Rb, and Cl-Sph; halothane at 2 MAC decreased VR and increased F and Cl-Rb while isoflurane increased VR and decreased F. alpha-Adrenoceptor blockade with phentolamine (1 mg . kg-1) abolished isoflurane-induced vasoconstriction, suggesting that the increase in VR was mediated via circulating catecholamines

  9. Pressure Fluctuations as a Diagnostic Tool for Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    Ethan Bure; Joel R. Schroeder; Ramon De La Cruz; Robert C. Brown

    1998-05-01

    The purpose of this project was to investigate the origin of pressure fluctuations in fluidized bed systems. The study assessed the potential for using pressure fluctuations as an indicator of fluidized bed hydrodynamics in both laboratory scale cold-models and industrial scale boilers. Both bubbling fluidized beds and circulating fluidized beds were evaluated. Testing including both cold-flow models and laboratory and industrial-scale combustors operating at elevated temperatures. The study yielded several conclusions on the relationship of pressure fluctuations and hydrodynamic behavior in fluidized beds. The study revealed the importance of collecting sufficiently long data sets to capture low frequency (on the order of 1 Hz) pressure phenomena in fluidized beds. Past research has tended toward truncated data sets collected with high frequency response transducers, which miss much of the spectral structure of fluidized bed hydrodynamics. As a result, many previous studies have drawn conclusions concerning hydrodynamic similitude between model and prototype fluidized beds that is insupportable from the low resolution data presented.

  10. Enuresis (Bed-Wetting)

    Science.gov (United States)

    ... get out of bed to go to the bathroom. When do most children achieve bladder control? Children ... ask questions about your child's daytime and nighttime bathroom habits. Then your doctor will do a physical ...

  11. Particle fuel bed tests

    International Nuclear Information System (INIS)

    Gas-cooled reactors, using packed beds of small diameter coated fuel particles have been proposed for compact, high-power systems. The particulate fuel used in the tests was 800 microns in diameter, consisting of a thoria kernel coated with 200 microns of pyrocarbon. Typically, the bed of fuel particles was contained in a ceramic cylinder with porous metallic frits at each end. A dc voltage was applied to the metallic frits and the resulting electric current heated the bed. Heat was removed by passing coolant (helium or hydrogen) through the bed. Candidate frit materials, rhenium, nickel, zirconium carbide, and zirconium oxide were unaffected, while tungsten and tungsten-rhenium lost weight and strength. Zirconium-carbide particles were tested at 2000 K in H2 for 12 hours with no visible reaction or weight loss

  12. Tapered bed bioreactor

    Science.gov (United States)

    Scott, Charles D.; Hancher, Charles W.

    1977-01-01

    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  13. Bed rest and immunity

    Science.gov (United States)

    Sonnenfeld, Gerald; Aviles, Hernan; Butel, Janet S.; Shearer, William T.; Niesel, David; Pandya, Utpal; Allen, Christopher; Ochs, Hans D.; Blancher, Antoine; Abbal, Michel

    2007-02-01

    Space flight has been shown to result in altered immune responses. The current study was designed to investigate this possibility by using the bed rest model of some space flight conditions. A large number of women are included as subjects in the study. The hypothesis being tested is: 60 days head-down tilt bed rest of humans will affect the immune system and resistance to infection. Blood, urine and saliva samples will be obtained from bed rest subjects prior to, at intervals during, and after completion of 60 days of head-down tilt bed rest. Leukocyte blastogenesis, cytokine production and virus reactivation will be assessed. The ability of the subjects to respond appropriately to immunization with the neoantigen bacteriophage φX-174 will also be determined. Bed rest is being carried out at MEDES, Toulouse France, and the University of Texas Medical Branch, Galveston, TX. The studies to be carried out in France will also allow assessment of the effects of muscle/bone exercise and nutritional countermeasures on the immune system in addition to the effects of bed rest.

  14. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  15. Flow and combustion characteristics of a 2-dimensional spouted bed

    Science.gov (United States)

    Sawyer, R. F.; Hart, J. R.; Ohtake, K.

    1982-03-01

    A two dimensional spouted bed laboratory combustor was designed and constructed with the objective of studying the interaction among the gas flow, particle flow, and combustion. The facility, designed for a maximum thermal power of 20 kW, has a quartz front wall providing full optical access to particle flows and combustion processes. The combustor was characterized in terms of pressure, temperature, gas velocity, and particle velocity profiles and operating limits. Initial studies employed premixed propane and air and a fixed bed height, bed material, injector slot width, and combustor geometry. As in previous investigations of axisymmetric spouted beds, the ratio of particle mass circulation rate to jet mass flow rate was observed to be about ten. Combustion increased this ratio by about 10%. A pulsating mode of operation was noted with a characteristic frequency of about 10 Hz, controlled by the interaction of the particle and gas flows.

  16. Fluidization characteristics of rice husk in a bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Leon, M.A. [Dalhousie Univ., Halifax, NS (Canada). Dept. of Mechanical Engineering; Dutta, A. [Nova Scotia Agricultural College, Truro, NS (Canada). Biomass Conversion and Biofuels

    2010-02-15

    Rice husk is made of 75 per cent volatile matter and 25 per cent ash. The ash contains nearly 90 per cent high-grade amorphous silica that can be recovered if it is burnt or gasified at low temperature in a fluidized bed. Amorphous silica is in demand for high-performance cement with low permeability and superior strength. However, sand is often added to the fluidized bed to prevent slugging. The resulting husk-ash mixed with sand is a useless disposal burden that cannot be used in any applications. This study demonstrated how to fluidize rice husk in a wide bed without the presence of another granular solid such as sand. Experimental results from a circulating fluidized bed showed that bed cross-section has an important influence on the fluidization characteristics of rice husk. As the cross-section increases, it becomes easier to fluidize the husk without slugging. Particle size, sphericity, bulk density, and transport velocity of husk were measured in this study. The riser was operated under bubbling bed regimes. The minimum fluidization velocity was measured under different bed depths and cross-sections. The study confirmed that rice husk fluidized in a bed of sand can be kept in a pseudo fluidized state without mixing it with granular solid particles if the bed is large enough to avoid slug formation. The pseudo bubbling fluidized state is characterized by many micro-channels that constantly form and dissolve. The addition of smooth fine sand particles reduces the inter-particle friction, resulting in better bed fluidizing at lower gas velocity. 12 refs., 2 tabs., 5 figs.

  17. Lagrangian Approach to Study Catalytic Fluidized Bed Reactors

    Science.gov (United States)

    Madi, Hossein; Hossein Madi Team; Marcelo Kaufman Rechulski Collaboration; Christian Ludwig Collaboration; Tilman Schildhauer Collaboration

    2013-03-01

    Lagrangian approach of fluidized bed reactors is a method, which simulates the movement of catalyst particles (caused by the fluidization) by changing the gas composition around them. Application of such an investigation is in the analysis of the state of catalysts and surface reactions under quasi-operando conditions. The hydrodynamics of catalyst particles within a fluidized bed reactor was studied to improve a Lagrangian approach. A fluidized bed methanation employed in the production of Synthetic Natural Gas from wood was chosen as the case study. The Lagrangian perspective was modified and improved to include different particle circulation patterns, which were investigated through this study. Experiments were designed to evaluate the concepts of the model. The results indicate that the setup is able to perform the designed experiments and a good agreement between the simulation and the experimental results were observed. It has been shown that fluidized bed reactors, as opposed to fixed beds, can be used to avoid the deactivation of the methanation catalyst due to carbon deposits. Carbon deposition on the catalysts tested with the Lagrangian approach was investigated by temperature programmed oxidation (TPO) analysis of ex-situ catalyst samples. This investigation was done to identify the effects of particles velocity and their circulation patterns on the amount and type of deposited carbon on the catalyst surface. Ecole Polytechnique Federale de Lausanne(EPFL), Paul Scherrer Institute (PSI)

  18. in Spouted Bed

    Directory of Open Access Journals (Sweden)

    Bronislaw Buczek

    2013-01-01

    Full Text Available Samples of active coke, fresh and spent after cleaning flue gases from communal waste incinerators, were investigated. The outer layers of both coke particles were separately removed by comminution in a spouted bed. The samples of both active cokes were analysed by means of densities, mercury porosimetry, and adsorption technique. Remaining cores were examined to determine the degree of consumption of coke by the sorption of hazardous emissions (SO2, HCl, and heavy metals through its bed. Differences in contamination levels within the porous structure of the particles were estimated. The study demonstrated the effectiveness of commercial active coke in the cleaning of flue gases.

  19. Pulsed atmospheric fluidized-bed combustor development

    International Nuclear Information System (INIS)

    Pulsed atmospheric fluidized-bed combustion (PAFBC) is a unique and innovative coal-fueled technology that has the potential to meet these conditions and provide heat and/or process steam to small industrial, commercial, institutional and residential complexes. The potential of Pulse Atmospheric Fluidized Bed Combustion (PAFBC) technology has been amply demonstrated under the sponsorship of a previous DOE/METC contract (DE-AC21-88MC25069). The environmental performance of a coal-fired laboratory-scale system (1.5 million British Thermal Units per hour) (MMBtu/hr) significantly surpassed that of conventional bubbling and circulating fluidized-bed combustion units (see Table 1 for performance comparison). Prompted by these encouraging results in combustion, sulfur capture, emissions control, and enhanced heat transfer, Island Creek Coal Company (ICC) and Baltimore Thermal Energy Corporation expressed interest in the technology and offered to participate by providing host sites for field testing. EA's have been submitted independently for each of these field test sites. This submission addresses the preliminary testing of the PAFBC unit at Manufacturing and Technology Conversion International's (MTCI) Baltimore, MD facility

  20. Bed expansion crucible tests

    International Nuclear Information System (INIS)

    The Am/Cm program will vitrify the americium and curium currently stored in F-canyon. A batch flowsheet has been developed (with non-radioactive surrogate feed in place of the F-canyon solution) and tested full-scale in the 5-inch Cylindrical Induction Melter (CIM) facility at TNX. During a normal process run, a small bed expansion occurs when oxygen released from reduction of cerium (IV) oxide to cerium (III) oxide is trapped in highly viscous glass. The bed expansion is characterized by a foamy layer of glass that slowly expands as the oxygen is trapped and then dissipates when the viscosity of the foam becomes low enough to allow the oxygen to escape. Severe bed expansions were noted in the 5-inch CIM when re-heating after an interlock during the calcination phase of the heat cycle, escaping the confines of the melter vessel. In order to better understand the cause of the larger than normal bed expansion and to develop mitigating techniques, a series of three crucible tests were conducted

  1. Maximum spoutable bed height of spout-fluid bed

    Energy Technology Data Exchange (ETDEWEB)

    Wenqi Zhong; Mingyao Zhang; Baosheng Jin [Southeast University, Nanjing (China). Key Laboratory on Clean Coal Power Generation and Combustion Technology of Ministry of Education

    2006-11-15

    Experimental study on the maximum spoutable bed height of a spout-fluid bed (cross-section of 0.3 m x 0.03 m and height of 2 m) packed with Geldart group D particles has been carried out. The effects of particle size, spout nozzle size and fluidizing gas flow rate on the maximum spoutable bed height were studied. Experimental data were compared to some published experiments and predictions. The results show that the maximum spoutable bed height of spout-fluid bed decreases with increasing particle size and spout nozzle size, which appears the same trend to that of spouted beds. The increasing of fluidizing gas flow rate leads to a sharply decrease in the maximum spoutable bed height. The existent correlations of the maximum spoutable bed height in the literature were observed to involve large discrepancies. Additionally, the flow characteristics when bed materials deeper than the maximum spoutable height were summarized. Under this condition, the spout-fluid bed operated without a stable and coherent spout or fountain assembles the characteristics of jetting fluidized bed. Besides, the mechanisms of spout termination were investigated. It was found that slugging in the spout and growth of instabilities would cause the spout termination in spout-fluid bed.

  2. Concepts in Assisted Circulation

    OpenAIRE

    Lefemine, Armand A.; Dunbar, Jacob; DeLucia, Anthony

    1986-01-01

    Assisted circulation by extracorporeal and extracardiac bypass techniques must be based on the requirements of the heart and of the total body, though these may differ. The cardiac problem in cardiogenic shock is more likely to be a biventricular problem demanding decompression of both sides. Extra pulmonary oxygenation should be avoided because of complexity in long-term use. Principles of assisted circulation may be applied in an extra-thoracic temporary manner or as an intracorporeal long-...

  3. Getting Rid of Bed Bugs

    Science.gov (United States)

    ... how you select a company. Related Information Collaborative Strategy on Bed Bugs - highlights ways that all levels of government, community, academia and private industry can work together to reduce bed bugs across ...

  4. Pebble Bed Reactor Dust Production Model

    International Nuclear Information System (INIS)

    The operation of pebble bed reactors, including fuel circulation, can generate graphite dust, which in turn could be a concern for internal components; and to the near field in the remote event of a break in the coolant circuits. The design of the reactor system must, therefore, take the dust into account and the operation must include contingencies for dust removal and for mitigation of potential releases. Such planning requires a proper assessment of the dust inventory. This paper presents a predictive model of dust generation in an operating pebble bed with recirculating fuel. In this preliminary work the production model is based on the use of the assumption of proportionality between the dust production and the normal force and distance traveled. The model developed in this work uses the slip distances and the inter-pebble forces computed by the authors PEBBLES. The code, based on the discrete element method, simulates the relevant static and kinetic friction interactions between the pebbles as well as the recirculation of the pebbles through the reactor vessel. The interaction between pebbles and walls of the reactor vat is treated using the same approach. The amount of dust produced is proportional to the wear coefficient for adhesive wear (taken from literature) and to the slip volume, the product of the contact area and the slip distance. The paper will compare the predicted volume with the measured production rates. The simulation tallies the dust production based on the location of creation. Two peak production zones from intra pebble forces are predicted within the bed. The first zone is located near the pebble inlet chute due to the speed of the dropping pebbles. The second peak zone occurs lower in the reactor with increased pebble contact force due to the weight of supported pebbles. This paper presents the first use of a Discrete Element Method simulation of pebble bed dust production

  5. Automation of a fixed-bed continuous–flow reactor

    OpenAIRE

    Alcántara, R.; Canoira, L.; R. Conde; Fernández-Sánchez, J. M.; Navarro, A.

    1994-01-01

    This paper describes the design and operation of a laboratory plant with a fixed-bed continuous-flow reactor, fully automated and controlled from a personal computer. The automated variables include two gas flows, one liquid flow, six temperatures, two pressures, one circulation of a cooling liquid, and 10 electrovalves. An adaptive-predictive control system was used. The chemical process chosen to run the automated reactor was the conversion of methanol to gasoline over a ZSM-5 catalyst. Thi...

  6. Geomechanics of bedded salt

    International Nuclear Information System (INIS)

    Creep data from the literature search is reinterpreted by SGI, resulting in a better understanding of the temperature and stress state dependence of the octahedral creep rate and the octahedral shear strength. The concept of a transition strength between the elastic and the plastic states is in agreement with the data. The elastic and rheological properties of salt are described, and a set of constitutive equations is presented. The dependence of material properties on parameters such as temperature is considered. Findings on the permeability of salt are summarized, and the in-situ behavior of openings in bedded salt is described based on extensive engineering experience. A stress measuring system utilizing a finite element computer code is discussed. Geological factors affecting the stability of salt openings are considered, and the Stress Control Technique for designing stable openings in bedded salt formations is explained

  7. Gaussian Fibonacci Circulant Type Matrices

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    Full Text Available Circulant matrices have become important tools in solving integrable system, Hamiltonian structure, and integral equations. In this paper, we prove that Gaussian Fibonacci circulant type matrices are invertible matrices for n>2 and give the explicit determinants and the inverse matrices. Furthermore, the upper bounds for the spread on Gaussian Fibonacci circulant and left circulant matrices are presented, respectively.

  8. Test bed concentrator mirrors

    Science.gov (United States)

    Argoud, M. J.

    1980-05-01

    The test bed concentrator (TBC) was des point focusing distributed receiver (PFDR) systems. The reflective surface of the concentrator was fabricated using mirror facet designs and techniques. The facets are made by bonding mirrored glass to spherically-conducted substrates. Several aspects of earlier work were reevaluated for application to the TBC: optimum glass block size, material selection, environmental test, optical characteristics, and reliability. A detailed explanation of tooling, substrate preparation, testing techniques, and mirror assembly is presented.

  9. Effects of Immersed Surfaces on the Combustor Efficiency of Small-Scale Fluidized Beds

    Directory of Open Access Journals (Sweden)

    Nurdil Eskin

    2005-09-01

    Full Text Available In this study, effects of the different types of heat exchanger surfaces on the second law efficiency of a small-scale circulating fluidized bed (CFB combustor are analyzed and the results are compared with the bubbling fluidized bed coal combustor effectiveness values. Using a previously developed simulation program, combustor efficiency and entropy generation values are obtained at different operation velocities at different height and volume ratios of the immersed surfaces, both for circulating and bubbling fluidized bed combustors. Besides that, the influence of the immersed surface types on the combustor efficiency was compared for different fluidized bed combustors. Through this analysis, the dimensions, arrangement and type of the immersed surfaces which achieve maximum efficiency are obtained.

  10. Simulating the Dynamics of Spouted-Bed Nuclear Fuel Coaters

    Energy Technology Data Exchange (ETDEWEB)

    Pannala, Sreekanth [ORNL; Daw, C Stuart [ORNL; FINNEY, Charles E A [ORNL; Boyalakuntla, Dhanunjay S [ORNL; Syamlal, M [National Energy Technology Laboratory (NETL); O' Brien, T. J. [National Energy Technology Laboratory (NETL)

    2007-01-01

    We describe simulation studies of the dynamics of spouted beds used for CVD coating of nuclear fuel particles. Our principal modeling tool is the Multiphase Flow with Interphase eXchanges (MFIX) code that was originally developed by the National Energy Technology Laboratory (NETL) for fossil energy process applications. In addition to standard MFIX features that allow coupling of transient hydrodynamics, heat and mass transfer, and chemical kinetics, we employ special post-processing tools to track particle mixing and circulation as functions of operating conditions and bed design. We describe in detail one major feature of the dynamics, which is the occurrence of very regular spontaneous pulsations of gas and particle flow in the spout. These pulsations appear to be critically linked to the entrainment and circulation of solids, and they produce readily accessible dynamic pressure variations that can be used for direct comparisons of model predictions with experiments. Spouted-bed dynamics are important from a CVD perspective because they directly determine the magnitude and variability of the concentration and species gradients in the zone where reactant gases first come into contact with hot particles. As this unsteady spouted-bed environment differs from other types of CVD reactors, the design and scale-up of such reactors is likely to involve unique modeling issues. Our primary goal here is to lay the groundwork for how computational simulation can be used to address these modeling issues in the specific context of nuclear fuel particle coating.

  11. Simulating the dynamics of spouted-bed nuclear fuel coaters

    Energy Technology Data Exchange (ETDEWEB)

    Pannala, S.; Daw, C.S.; Finney, C.E.A.; Boyalakuntla, D. [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Syamlal, M.; O' Brien, T.J. [National Energy Technology Laboratory, Morgantown, WV, 26505 (United States)

    2007-09-15

    We describe simulation studies of the dynamics of spouted beds used for CVD coating of nuclear fuel particles. Our principal modeling tool is the Multiphase Flow with Interphase eXchanges (MFIX) code that was originally developed by the National Energy Technology Laboratory (NETL) for fossil energy process applications. In addition to standard MFIX features that allow coupling of transient hydrodynamics, heat and mass transfer, and chemical kinetics, we employ special post-processing tools to track particle mixing and circulation as functions of operating conditions and bed design. We describe in detail one major feature of the dynamics, which is the occurrence of very regular spontaneous pulsations of gas and particle flow in the spout. These pulsations appear to be critically linked to the entrainment and circulation of solids, and they produce readily accessible dynamic pressure variations that can be used for direct comparisons of model predictions with experiments. Spouted-bed dynamics are important from a CVD perspective because they directly determine the magnitude and variability of the concentration and species gradients in the zone where reactant gases first come into contact with hot particles. As this unsteady spouted-bed environment differs from other types of CVD reactors, the design and scale-up of such reactors is likely to involve unique modeling issues. Our primary goal here is to lay the groundwork for how computational simulation can be used to address these modeling issues in the specific context of nuclear fuel particle coating. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  12. Bed mixing dryer for high moisture content fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hulkkonen, S.; Heinonen, O. [Imatran Voima Oy, Vantaa (Finland)

    1997-12-31

    Bed mixing dryer is a new type of fuel drying technology for fluidized bed combustion. The idea is to extract hot bed material from the fluidized bed and use it as a heat source for drying the fuel. Drying occurs at steam atmosphere which makes it possible to recover the latent heat of evaporation to process. This improves the thermal efficiency of the power plant process considerably, especially in combined heat and power applications. Imatran Voima Oy (IVO) has developed the Bed Mixing Dryer technology since early 1990s. The first pilot plant was built in 1994 to IVO`s Kuusamo peat and wood fired power plant. The capacity of the plant is 6 MW{sub e} and 20 MW of district heat. In Kuusamo the dryer is connected to a bubbling fluidized bed. Since it`s commissioning the dryer has been used successfully for about 3000 hours during the heating season in wintertime. The second application of the technology will be a demonstration project in Oerebro (S). IVO Power Engineering Ltd will supply in 1997 a dryer to Oerebro Energi`s peat, wood and coal fired CHP plant equipped with circulating fluidized bed boiler. The fuel to be dried is sawdust with fuel input of about 60 MW. In Kuusamo the dryer produces 3 MW of additional district heat and in Oerebro 6 MW. The fuels in Kuusamo are peat, saw dust and bark. In addition to the municipal heat production this type of drying technology has its benefits in pulp and paper industry processes. Disposal of paper mill sludges is becoming more difficult and costly which has resulted in need of alternative treatment. Drying of the sludge before combustion in a boiler for power production is an attractive option. At the moment IVO is carrying out several studies to apply the Bed Mixing Dryer in pulp and paper industry processes. Economy of drying the sludge looks promising

  13. A study of the fluid dynamics of the spouted bed using CFD

    OpenAIRE

    C. R. Duarte; V. V. Murata; M. A. S. Barrozo

    2005-01-01

    The spouted bed has been used in drying, granulation, catalytic polymerization, residue treatment and coating of several materials. Its success is attributed to its solids circulation characteristics and excellent gas-particle contact. In this work the pattern of solids and gas flows in a spouted bed was numerically simulated using a Eulerian multiphase model. The computational work was significantly reduced for axisymmetric gas-solids flows. The simulated velocity and voidage profiles were c...

  14. High cell density and productivity culture of Chinese hamster ovary cells in a fluidized bed bioreactor

    OpenAIRE

    Kong, D.; Cardak, S.; Chen, M.; Gentz, R; Zhang, J.

    1999-01-01

    A recombinant Chinese hamster ovary clone was cultivated in a 2L Cytopilot Mini fluidized bed bioreactor using Cytoline 1 microcarriers and a 10L B. Braun stirred tank bioreactor with Cytodex 1 microcarriers. Cytoline 1 is a macroporous polyethylene microcarrier and Cytodex 1 is a solid DEAE-dextran microcarrier. Cytoline 1 microcarriers in the fluidized bed bioreactor were gently mixed by an uplifting flow. Circulation and sparging in Cytopilot Mini were separated from the fluidized microcar...

  15. Cardiovascular studies in the rhesus monkey. [brain circulation during stress

    Science.gov (United States)

    Stone, H. L.; Sandler, H.

    1977-01-01

    Criteria are given for selecting the macaca mulatta as the analogue of the human in the study of cerebral circulation, particularly the control of the cerebral vascular bed during normal and stressful conditions. Topics discussed include surgical preparation of subject; responses to changes in arterial pressure, oxygen, and carbon dioxide; innervation of cerebral vessels; cerebral flow response to acceleration; and cerebral blood flow and cerebellar stimulation.

  16. PULMONARY CIRCULATION AT EXERCISE

    OpenAIRE

    R. Naeije; CHESLER, N

    2012-01-01

    The pulmonary circulation is a high flow and low pressure circuit, with an average resistance of 1 mmHg.min.L−1 in young adults, increasing to 2.5 mmHg.min.L−1 over 4–6 decades of life. Pulmonary vascular mechanics at exercise are best described by distensible models. Exercise does not appear to affect the time constant of the pulmonary circulation or the longitudinal distribution of resistances. Very high flows are associated with high capillary pressures, up to a 20–25 mmHg threshold associ...

  17. Dependence of saltation parameters on bed roughness and bed porosity

    Czech Academy of Sciences Publication Activity Database

    Kharlamova, Irina; Vlasák, Pavel

    Prague : ITAM AS CR, v. v. i., 2012 - (Náprstek, J.; Fischer, C.), s. 625-629 ISBN 978-80-86246-40-6. [Engineering Mechanics 2012 /18./. Svratka (CZ), 14.05.2012-17.05.2012] R&D Projects: GA ČR GA103/09/1718 Institutional research plan: CEZ:AV0Z20600510 Keywords : saltation parameters * saltation length * saltation height * bed structure * normal distribution of bed particles * bed roughness Subject RIV: BK - Fluid Dynamics

  18. Coal Bed Methane Primer

    Energy Technology Data Exchange (ETDEWEB)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  19. Fluid bed solids heater. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Preuit, L. C.

    1980-01-01

    A solids heater which operates at up to 2000 F was designed, fabricated, installed and operated through checkout at the Morgantown Energy Technology Center at Morgantown, West Virginia. The system, designated the 2000 F Fluid Bed Solids Heater (FBSH) uses a fluidized bed to heat limestone to 600 F and aluminium oxide or silicon carbide to 2000 F and discharges heated solids upon demand. The FBSH with added valve handling and pressurization equipment is known as the Valve Hot Solids Test Unit and is intended for use by the US Department of Energy for testing of valves for severe service applications in coal conversion and utilization processes. The FBSH as designed and supplied by Combustion Power Company includes process equipment, controls, the enclosing building and other associated equipment. In the 600 F range of operation it can circulate limestone through two valve test trains simultaneously on a continuous basis. Only one valve test train is used for 2000 F solids and operation in that range is also continuous. Limestone, crushed to minus 5/16 size, is heated, discharged, and recycled at a maximum average rate of 250 lb/min while aluminum oxide or silicon carbide, No. 8 grit, is circulated at rates up to 167 lb/min. The FBSH control system is designed for automatic operation, and capability is included for external computerized data acquisition and/or supervisory control. An operating and maintenance manual and as-built drawings have been submitted. This report describes the FBSH equipment, its design basis, and its operation. It has been prepared and submitted in fulfillment of Contract Number DIAC05-77ET10499.

  20. The heat transfer mechanisms in fluidized beds; Laemmoensiirtomekanismit leijukerroksessa

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Blomster, A.M.; Kojola, H. [Helsinki Univ. of Technology, Espoo (Finland)

    1996-12-01

    The goal of the research project is to improve the accuracy of the heat transfer correlation in circulating fluidized beds and to define how the heat transfer is distributed in radiation and convection in the different parts of the fluidized bed. This will be carried out by studying the behaviour and heat transfer of the fluidized bed in the boundary layer near the wall. The total and radiative heat transfer as well as the particle concentration will be measured. Based on the data a correlation will be created. Two different measurement systems are used. The particle concentration is measured by a image-analysis system. A video camera and a Super VHS recorder are used to capture live images from the bed. The images are digitized and stored on a PC. The system has been used in previous research projects at our laboratory. In earlier projects all measurements have been carried out in cold environments. In this project the system will be modified for hot environments. The radiative heat transfer is measured by a radiative heat transfer probe connected to a PC via an A/D converter. The probe consists of a heat flow detector which is isolated from the bed by a sapphire window so that only the radiative part of the heat transfer is detected. The probe will be calibrated in a black body oven so that the effect of the conduction and the sapphire window can be separated. (author)

  1. Particle deposition in circular pipes with variable bed height

    International Nuclear Information System (INIS)

    Reynolds-averaged Navier-Stokes modelling of particle-laden turbulent flows is studied for circular pipes with simulated bed heights of 0, 0.25 and 0.5 of the pipe diameter. A Lagrangian particle tracking technique is used to predict the deposition of spherical particles with sizes ranging from 5-500 μm. Secondary flows are observed to be present in the circular pipe flows with bed heights of 0.25 and 0.5. For the larger particles the presence of a stationary flat bed is found not to influence the deposition rate. For particles <50 μm an increasing bed height, in general, is seen to lead to a decrease in the particle mean displacement from the pipe walls with time. For the smallest particles, the secondary flows in the pipe with a bed height of 0.5 are found to contribute to some re-circulation of the particles, with the mean displacement of particles from the pipe walls found to decrease with time before a further increase is observed.

  2. Dryout heat flux and flooding phenomena in debris beds consisting of homogeneous diameter particles

    International Nuclear Information System (INIS)

    Since the TMI-2 accident, which occurred in 1979, necessity of understanding phenomena associated with a severe accident have been recognized and researches have been conducted in many countries. During a severe accident of a light water reactor, a debris bed consisting of the degraded core materials would be formed. Because the debris bed continues to release decay heat, the debris bed would remelt when the coolable geometry is not maintained. Thus the degraded core coolability experiments to investigate the influence of the debris particle diameter and coolant flow conditions on the coolability of the debris bed and the flooding experiments to investigate the dependence of flooding phenomena on the configuration of the debris bed have been conducted in JAERI. From the degraded core coolability experiments, the following conclusions were derived; the coolability of debris beds would be improved by coolant supply into the beds, Lipinski's 1-dimensional model shows good agreement with the measured dryout heat flux for the beds under stagnant and forced flow conditions from the bottom of the beds, and the analytical model used for the case that coolant is fed by natural circulation through the downcomer reproduces the experimental results. And the following conclusions were given from the flooding experiments ; no dependence between bed height and the flooding constant exists for the beds lower than the critical bed height, flooding phenomena of the stratified beds would be dominated by the layer consisting of smaller particles, and the predicted dryout heat flux by the analytical model based on the flooding theory gives underestimation under stagnant condition. (author)

  3. Capacitively-Heated Fluidized Bed

    Science.gov (United States)

    Mchale, E. J.

    1982-01-01

    Fluidized-bed chamber in which particles in bed are capacitively heated produces high yields of polycrystalline silicon for semiconductor devices. Deposition of unrecoverable silicon on chamber wall is reduced, and amount of recoverable silicon depositing on seed particles in bed is increased. Particles also have a size and density suitable for direct handling without consolidation, unlike silicon dust produced in heated-wall chambers.

  4. Fluidized bed combustion: mixing and pollutant limitation

    Energy Technology Data Exchange (ETDEWEB)

    Leckner, B. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    1997-10-01

    Fluidized bed combustion (FBC) has been applied commercially during a few decades, and sufficient knowledge is gained to design boilers with sizes of up to several hundreds of megawatt thermal power (MW{sub th}). The knowledge of what goes on inside a large combustion chamber is still limited, however, and this impedes further optimization and efficient solution of problems that might occur. Despite this lack of knowledge the present survey deals with combustion chamber processes and discusses mixing and distribution of fuel and air in the combustion chamber and its importance for sulphur capture and reduction of emissions of nitrogen oxides. It is desirable to present the material in a general way and to cover the entire field of FBC. However, the scarce openly published information deals mostly with coal combustion in atmospheric circulating fluidized bed (CFB) combustors, and therefore this application will receive most attention, but reference is also made to pressurized combustion and to other fuels than coal. In this context the important work made in the LIEKKI project on the analysis of different fuels and on the influence of pressure should be especially pointed out. (orig.)

  5. The effect of lateral flooding on the coolability of irregular core debris beds

    Energy Technology Data Exchange (ETDEWEB)

    Takasuo, Eveliina, E-mail: eveliina.takasuo@vtt.f [VTT Technical Research Centre of Finland (Finland); Holmstroem, Stefan; Kinnunen, Tuomo; Pankakoski, Pekka H.; Hosio, Ensio; Lindholm, Ilona [VTT Technical Research Centre of Finland (Finland)

    2011-04-15

    The coolability of ex-vessel core debris is an important issue in the severe accident management strategy of, e.g. the Nordic boiling water reactors. In a core melt accident, the molten core material is expected to discharge into the containment and form a porous debris bed on the pedestal floor of a flooded lower drywell. The debris bed generates decay heat which must be removed by boiling in order to stabilize the debris bed and to prevent local dryout and possible re-melting of the material. The STYX test facility which consists of a cylindrical bed of irregular alumina particles has been used to investigate the effect of lateral coolant inflow on the dryout heat flux of the particle bed. The lateral flow was achieved by downcomers attached on the sides of the test rig. The downcomers provide coolant into the lower region of the bed by natural circulation. Both homogenous and stratified bed configurations have been examined. It was observed that the dryout heat flux is increased by 22-25% for the homogenous test bed compared to the case with no lateral flooding. For the stratified configuration with a fine particle layer on top of the bed, no significant increase in the dryout heat flux was observed. The experiments have been analyzed by using the MEWA-2D code. Models which include explicit consideration of gas-liquid friction were used in the calculations in order to realistically capture the lateral flow configuration.

  6. The effect of lateral flooding on the coolability of irregular core debris beds

    International Nuclear Information System (INIS)

    The coolability of ex-vessel core debris is an important issue in the severe accident management strategy of, e.g. the Nordic boiling water reactors. In a core melt accident, the molten core material is expected to discharge into the containment and form a porous debris bed on the pedestal floor of a flooded lower drywell. The debris bed generates decay heat which must be removed by boiling in order to stabilize the debris bed and to prevent local dryout and possible re-melting of the material. The STYX test facility which consists of a cylindrical bed of irregular alumina particles has been used to investigate the effect of lateral coolant inflow on the dryout heat flux of the particle bed. The lateral flow was achieved by downcomers attached on the sides of the test rig. The downcomers provide coolant into the lower region of the bed by natural circulation. Both homogenous and stratified bed configurations have been examined. It was observed that the dryout heat flux is increased by 22-25% for the homogenous test bed compared to the case with no lateral flooding. For the stratified configuration with a fine particle layer on top of the bed, no significant increase in the dryout heat flux was observed. The experiments have been analyzed by using the MEWA-2D code. Models which include explicit consideration of gas-liquid friction were used in the calculations in order to realistically capture the lateral flow configuration.

  7. Lightweight Magnetic Cooler With a Reversible Circulator

    Science.gov (United States)

    Chen, Weibo; McCormick, John

    2011-01-01

    A design of a highly efficient and lightweight space magnetic cooler has been developed that can continuously provide remote/distributed cooling at temperatures in the range of 2 K with a heat sink at about 15 K. The innovative design uses a cryogenic circulator that enables the cooler to operate at a high cycle frequency to achieve a large cooling capacity. The ability to provide remote/distributed cooling not only allows flexible integration with a payload and spacecraft, but also reduces the mass of the magnetic shields needed. The active magnetic regenerative refrigerator (AMRR) system is shown in the figure. This design mainly consists of two identical magnetic regenerators surrounded by their superconducting magnets and a reversible circulator. Each regenerator also has a heat exchanger at its warm end to reject the magnetization heat to the heat sink, and the two regenerators share a cold-end heat exchanger to absorb heat from a cooling target. The circulator controls the flow direction, which cycles in concert with the magnetic fields, to facilitate heat transfer. Helium enters the hot end of the demagnetized column, is cooled by the refrigerant, and passes into the cold-end heat exchanger to absorb heat. The helium then enters the cold end of the magnetized column, absorbing heat from the refrigerant, and enters the hot-end heat exchanger to reject the magnetization heat. The efficient heat transfer in the AMRR allows the system to operate at a relatively short cycle period to achieve a large cooling power. The key mechanical components in the magnetic cooler are the reversible circulator and the magnetic regenerators. The circulator uses non-contacting, self-acting gas bearings and clearance seals to achieve long life and vibration- free operation. There are no valves or mechanical wear in this circulator, so the reliability is predicted to be very high. The magnetic regenerator employs a structured bed configuration. The core consists of a stack of thin

  8. INTERNAL CIRCULATION ENVELOPES

    CERN Multimedia

    Mail Office

    2001-01-01

    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or a piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration.

  9. Ability of bed bug-detecting canines to locate live bed bugs and viable bed bug eggs.

    Science.gov (United States)

    Pfiester, Margie; Koehler, Philip G; Pereira, Roberto M

    2008-08-01

    The bed bug, Cimex lectularius L., like other bed bug species, is difficult to visually locate because it is cryptic. Detector dogs are useful for locating bed bugs because they use olfaction rather than vision. Dogs were trained to detect the bed bug (as few as one adult male or female) and viable bed bug eggs (five, collected 5-6 d after feeding) by using a modified food and verbal reward system. Their efficacy was tested with bed bugs and viable bed bug eggs placed in vented polyvinyl chloride containers. Dogs were able to discriminate bed bugs from Camponotus floridanus Buckley, Blattella germanica (L.), and Reticulitermes flavipes (Kollar), with a 97.5% positive indication rate (correct indication of bed bugs when present) and 0% false positives (incorrect indication of bed bugs when not present). Dogs also were able to discriminate live bed bugs and viable bed bug eggs from dead bed bugs, cast skins, and feces, with a 95% positive indication rate and a 3% false positive rate on bed bug feces. In a controlled experiment in hotel rooms, dogs were 98% accurate in locating live bed bugs. A pseudoscent prepared from pentane extraction of bed bugs was recognized by trained dogs as bed bug scent (100% indication). The pseudoscent could be used to facilitate detector dog training and quality assurance programs. If trained properly, dogs can be used effectively to locate live bed bugs and viable bed bug eggs. PMID:18767752

  10. LSP Composite Test Bed Design

    Science.gov (United States)

    Day, Arthur C.; Griess, Kenneth H.

    2013-01-01

    This document provides standalone information for the Lightning Strike Protection (LSP) Composite Substrate Test Bed Design. A six-sheet drawing set is reproduced for reference, as is some additional descriptive information on suitable sensors and use of the test bed.

  11. Prediction of dryout heat flux of volumetrically heated particulate beds packed with multi-size particles

    International Nuclear Information System (INIS)

    This paper presents MEWA code calculations for the experiments performed on the POMECO-HT facility to investigate the dryout heat flux of various particulate beds, with the objective to interpret the experimental data and validate the code. The code is then applied to coolability assessment for ex-vessel debris beds related to severe accident scenarios of a boiling water reactor (BWR). The characteristics of a prototypical debris bed, such as multidimensionality and multiple particle sizes are emphasized in this study. The volumetrically heated particulate beds of the POMECO-HT experiments are packed with multi-size particles and equipped with a downcomer to investigate the bottom-fed coolability by natural circulation which demands 2D simulation. The results show that the MEWA code is capable of predicting the coolability of the bed with a downcomer (2D) as well as the top-flooding bed whose dryout heat flux can also be predicted by the Reed model (1D). Given the effective particle diameter (1 mm) and porosity (0.45) defined from a few FCI tests, the ex-vessel debris beds for a BWR chosen here are coolable with varied margins: i) compared with a top-flooding bed (spreading over the entire floor of the cavity), the cylindrical configuration with an annular-gap water supply enhances the coolability comparison , but the gain is marginal since the large diameter of the bed prevents the side coolant from flowing into the center of the bed; ii) a heap-like debris bed reduces rather than improves coolability due to its considerable height and base diameter; iii) a stratified debris bed with a fine-particle layer on the top may challenge the coolability. (author)

  12. Do-it-yourself Bed Bug Control

    Science.gov (United States)

    ... Bed Bug Control Do-it-yourself Bed Bug Control Can you treat and eliminate the bed bugs ... all of the residents to participate. Achieving complete control can take weeks to months, depending on the ...

  13. Resolvability in Circulant Graphs

    Institute of Scientific and Technical Information of China (English)

    Muhammad SALMAN; Imran JAVAID; Muhammad Anwar CHAUDHRY

    2012-01-01

    A set W of the vertices of a connected graph G is called a resolving set for G if for every two distinct vertices u,v ∈ V(G) there is a vertex w ∈ W such that d(u,w) ≠ d(v,w).A resolving set of minimum cardinality is called a metric basis for G and the number of vertices in a metric basis is called the metric dimension of G,denoted by dim(G).For a vertex u of G and a subset S of V(G),the distance between u and S is the number mins∈s d(u,s).A k-partition H ={S1,S2,...,Sk} of V(G) is called a resolving partition if for every two distinct vertices u,v ∈ V(G) there is a set Si in Π such that d(u,Si) ≠ d(v,Si).The minimum k for which there is a resolving k-partition of V(G) is called the partition dimension of G,denoted by pd(G).The circulant graph is a graph with vertex set Zn,an additive group ofintegers modulo n,and two vertices labeled i and j adjacent if and only if i - j (mod n) ∈ C,where C C Zn has the property that C =-C and 0(∈) C.The circulant graph is denoted by Xn,△ where A =|C|.In this paper,we study the metric dimension of a family of circulant graphs Xn,3 with connection set C ={1,-n/2,n - 1} and prove that dim(Xn,3) is independent of choice of n by showing that 3 for all n =0 (mod 4),dim(X,n,3) ={ 4 for all n =2 (mod 4).We also study the partition dimension of a family of circulant graphs Xn,4 with connection set C ={±1,±2} and prove that pd(Xn,4) is independent of choice of n and show that pd(X5,4) =5 and 3 forall odd n≥9,pd(Xn,4) ={ 4 for all even n ≥ 6 and n =7.

  14. The Effect of Air Preheating in a Biomass CFB Gasifier using ASPEN Plus Simulation

    OpenAIRE

    Doherty, Wayne; Reynolds, Anthony; Kennedy, David

    2009-01-01

    In the context of climate change, increasing efficiency and energy security, biomass gasification is likely to play an important role in energy production. Atmospheric circulating fluidised bed (CFB) technology was selected for the current study. The primary objective of this research is to develop a computer simulation model of a CFB biomass gasifier that can accurately predict gasifier performance under various operating conditions. An original model was developed using ASPEN Plus (Advan...

  15. CO2 mitigation in advanced power cycles

    OpenAIRE

    Wolf, Jens

    2004-01-01

    This thesis encompasses CO2 mitigation using three different processes: i) natural gas-fired combined cycle with chemical looping combustion (CLC), ii) trigeneration of electrical power, hydrogen and district heating with extended CLC, iii) steam-based gasification of biomass integrated in an advanced power cycle. In CLC, a solid oxygen carrier circulates between two fluidised-bed reactors and transports oxygen from the combustion air to the fuel; thus, the fuel is not mixed with air and an i...

  16. Demanding fuel combustion. Metso CFB multifuel boiler experience in Stora Enso Ostroleka

    Energy Technology Data Exchange (ETDEWEB)

    Kulesza, Rafal [Stora Enso Poland S.A., Ostroleka (Poland)

    2013-04-01

    Stora Enso Poland erected a combined cycle power plant for supplying its Ostroleka mill with power and heat. The central component is a circulating fluidised bed combustion (CFB) boiler designed for multi-fuel combustion like biomass and residues of the paper mill. The thermal rating of the CFB boiler amounts to 164 MW and two turbines supply up to 43 MW of power. (orig.)

  17. Ash and heavy metals in fluidized bed-combustion; Tuhka ja raskasmetallit puuperaeisen jaetteen kerrosleijupoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Kaessi, T.; Aittoniemi, P. [IVO International, Vantaa (Finland)

    1996-12-01

    Combustion ashes and submicron fly ash particles were characterized in two industrial boilers (bubbling vs. circulating fluidized bed) burning paper mill deinking sludge and bark or wood as support fuel. Bulk samples from fly ash, circulating ash and bottom ash were analyzed. Fine particles in fly ash were monitored and sampled for microscopic studies. The mass size distribution of fly ash was measured and the chemical composition according to particle size was analyzed. The results showed that ash consists of large and friable clusters formed by sintering of small mineral particles originating from paper fillers. Very few ash particles were fused and they were found only among the smallest particles. No agglomerates of fused particles were found. If the residence time in furnace is long enough sintering may proceed further and ash structure grows more dense. No indication of ash vaporization was detected. These results were similar for bubbling and circulating fluidized bed boilers. (author)

  18. Circulation of Stars

    Science.gov (United States)

    Boitani, P.

    2016-01-01

    Since the dawn of man, contemplation of the stars has been a primary impulse in human beings, who proliferated their knowledge of the stars all over the world. Aristotle sees this as the product of primeval and perennial “wonder” which gives rise to what we call science, philosophy, and poetry. Astronomy, astrology, and star art (painting, architecture, literature, and music) go hand in hand through millennia in all cultures of the planet (and all use catasterisms to explain certain phenomena). Some of these developments are independent of each other, i.e., they take place in one culture independently of others. Some, on the other hand, are the product of the “circulation of stars.” There are two ways of looking at this. One seeks out forms, the other concentrates on the passing of specific lore from one area to another through time. The former relies on archetypes (for instance, with catasterism), the latter constitutes a historical process. In this paper I present some of the surprising ways in which the circulation of stars has occurred—from East to West, from East to the Far East, and from West to East, at times simultaneously.

  19. The heat transfer mechanisms in fluidized beds; Laemmoensiirtomekanismit leijukerroksessa

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Blomster, A.M.; Kojola, H. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Energy Technology and Environmental Protection

    1997-10-01

    The goal of the research project is to improve the accuracy of the heat transfer correlation in circulating fluidized beds and to define how the heat transfer is distributed in radiation and convection in the different parts of the fluidized bed. This will be carried out by studying the behaviour and the heat transfer of the fluidized bed in the boundary layer near the wall. During the project the concentration and the velocity of the sand particles are measured. The particle concentration and the particle velocity are measured by an image analysis system. A video camera and a Super VHS recorder are used to capture live images from the bed. The images are digitized and stored on a PC. The measured particle concentration was at highest slightly over 20 % on the straight wall. As expected, the velocity of the fluidizing gas had the most important role on the particle concentration. The experimental studies of the particle velocity were started last autumn 1996. The velocities of the particles were measured by using a multiple exposure technique. Afterwards the images captured were analyzed by performing a Fourier transform analysis. So far the results have been encouraging and the analyzing work will be ended this spring. (orig.)

  20. CFD simulations of a spouted bed equipment for particle coating

    Energy Technology Data Exchange (ETDEWEB)

    Wolff Filho, Germano Klaus; Cabral, Paulo Alexandre de Moraes [Centro Tecnologico do Exercito (CTEx-RJ), Rio de Janeiro, RJ (Brazil)]. E-mails: klauswolff@ctex.eb.br; paulo@ctex.eb.br

    2007-07-01

    Due to their solids circulation characteristics and excellent gas-particle contact, spouted beds have been used in several engineering applications, including nuclear fuel particles coatings. A laboratory scale equipment was mounted, aiming particles coating for use in nuclear fuel research. The line operates with a spouted bed reactor filled with particles on whose surface the deposition process happens. Some computational simulations, using the CFD commercial code PHOENICS{sup R} , were made in order to show some of the equipment possibilities and limitations. It's important to exhaust theoretical investigations about this kind of system, because experimental conditions seem to be dangerous, beyond associated difficulties in process control and operation. In this work, CFD simulations are used to obtain patterns of solids and gas flows. (author)

  1. Sea bed mapping and inspection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference has 24 presentations on the topics: Sea bed mapping, inspection, positioning, hydrography, marine archaeology, remote operation vehicles and computerized simulation technologies, oil field activities and plans, technological experiences and problems. (tk)

  2. Torsion testing of bed joints

    DEFF Research Database (Denmark)

    Hansen, Klavs Feilberg; Pedersen, Carsten Mørk

    2008-01-01

    This paper describes a simple test method for determining the torsion strength of a single bed joint between two bricks and presents results from testing using this test method. The setup for the torsion test is well defined, require minimal preparation of the test specimen and the test can be...... carried out directly in a normal testing machine. The torsion strength is believed to be the most important parameter in out-of-plane resistance of masonry walls subjected to bending about an axis perpendicular to the bed joints. The paper also contains a few test results from bending of small walls about...... an axis perpendicular to the bed joints, which indicate the close connection between these results and results from torsion tests. These characteristics make the torsion strength well suited to act as substitute parameter for the bending strength of masonry about an axis perpendicular to the bed...

  3. Ocean General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin-Ho; Ma, Po-Lun

    2012-09-30

    1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earth’s climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

  4. Trypanosoma cruzi: circulating antigens

    Directory of Open Access Journals (Sweden)

    V. Bongertz

    1981-03-01

    Full Text Available Circulating antigens were detected in sera of mice experimentally infected with a high close of Trypanosoma cruzi by reaction with sera from chronically infected mice. The immunodiffusion reaction between homologous acute and chronic sera produced four precipitation lines. By reaction with chronic mouse serum, circulating antingens were detected in sera from heavily infected hamsters, dogs, rabbits and in sera from chagasic patients. A reaction was also found in urine from acutely infected mice and dogs. Trypanosoma cruzi exoantigen was detected in trypanosome culture medium and in the supernatant of infected cell cultures. Attempts to isolate the antigens are described.Antígenos circulantes foram detectados em soros de camundongos infectados experimentalmente com elevadas doses de Trypanosoma cruzi pela reação com soros obtidos de camundongos em fase crônica de infecção. A reação de imunodifusão entre soros homólogos agudo e crônico produziu quatro linhas de precipitação. Por reação com soro crônico de camundongo antígenos circulantes foram detectados em soros de crícetos, cães e coelhos infectados com doses elevadas de Trypanosoma cruzi e em soros de pacientes chagásicos. Uma reação foi também observada com urina de camundongos e cães infectados de forma aguda. Exoantígeno de Trypanosoma cruzi foi detectado em meio de cultura de tripanosomas e em sobrenadantes de culturas de células infectadas. Tentativas de isolamento dos antigenos são descritas.

  5. Graphite waste incineration in a fluidized bed

    International Nuclear Information System (INIS)

    French gas-cooled reactors belonging to the Atomic Energy Commission (CEA), Electricite de France (EDF), Hifrensa (Spain), etc., commissioned between the 1950s and 1970s, have generated large quantities of graphite wastes, mainly in the form of spent fuel sleeves. Furthermore, some of these reactors scheduled for dismantling in the near future (such as the G2 and G3 reactors at Marcoule) have cores consisting of graphite blocks. Consequently, a fraction of the contaminated graphite, amounting to 6000 t in France for example, must be processed in the coming years. For this processing, incineration using a circulating fluidized bed combustor has been selected as a possible solution and validated. However, the first operation to be performed involves recovering this graphite waste, and particularly, first of all, the spent fuel sleeves that were stored in silos during the years of reactor operation. Subsequent to the final shutdown of the Spanish gas-cooled reactor unit, Vandellos 1, the operating utility Hifrensa awarded contracts to a Framatome Iberica SA/ENSA consortium for removing, sorting, and prepackaging of the waste stored in three silos on the Vandellos site, essentially graphite sleeves. On the other hand, a program to validate the Framatome fluidized bed incineration process was carried out using a prototype incinerator installed at Le Creusot, France. The validation program included 22 twelve-hour tests and one 120-hour test. Particular attention was paid to the safety aspects of this project. During the performance of the validation program, a preliminary safety assessment was carried out. An impact assessment was performed with the help of the French Institute for Protection and Nuclear Safety, taking into account the preliminary spectra supplied by the CEA and EDF, and the activities of the radionuclides susceptible of being released into the atmosphere during the incineration. (author). 4 refs, 11 figs, 1 tab

  6. Contribution of hydrodynamic characteristics on the performance of an aerobic biofilm conical fluidized bed.

    Science.gov (United States)

    Zhou, D; Bi, X T; Dong, S

    2011-01-01

    The performance of a conical fluidized bed (TFB) bioreactor, including the biofilm thickness, microbial space density, microbial cell matrix and its efficiency for COD degradation at a bed expansion ratio of 14 to 90%, was studied and compared with a cylindrical fluidized bed (CFB) bioreactor. The hydrodynamic characteristics of the TFB, especially the internal-circulation of bioparticles associated with its unique tapered geometry of the bed, created a much more uniform axial distribution of the bioparticles, leading to the formation of thinner and more compacted biofilms in the TFB compared to that in the CFB. The thinner biofilm in the TFB tended to be stable and possessed more than 6 times of microbial population density compared to the CFB. As a result, thinner biofilms in the TFB contributed to a higher COD removal efficiency, which remained at over 95% at operated expansion ratios, about 15 to 25% higher than that in the CFB. PMID:21436551

  7. A study of the fluid dynamics of the spouted bed using CFD

    Directory of Open Access Journals (Sweden)

    C. R. Duarte

    2005-06-01

    Full Text Available The spouted bed has been used in drying, granulation, catalytic polymerization, residue treatment and coating of several materials. Its success is attributed to its solids circulation characteristics and excellent gas-particle contact. In this work the pattern of solids and gas flows in a spouted bed was numerically simulated using a Eulerian multiphase model. The computational work was significantly reduced for axisymmetric gas-solids flows. The simulated velocity and voidage profiles were compared with results obtained in our laboratory (with a two-dimensional spouted bed using soybean seed and by He et al. (1994 (with a cylindrical spouted bed and glass sphere. The simulated results showed good agreement with the experimental data for both geometries studied.

  8. Fluid bed porosity equation for an inverse fluidized bed bioreactor with particles growing biofilm

    International Nuclear Information System (INIS)

    Fluid Bed Bioreactor performance is strongly affected by bed void fraction or bed porosity fluctuations. Particle size enlargement due to biofilm growth is an important factor that is involved in these variations and until now there are no mathematical equations that consider biofilm growth. In this work a mathematical equation is proposed to calculate bed void fraction in an inverse fluid bed bioreactor. (Author)

  9. TROPICAL METEOROLOGY & Climate: Hadley Circulation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jian; Vecchi, Gabriel A.

    2015-01-30

    The Hadley circulation, a prominent circulation feature characterized by rising air near the Equator and sinking air in the subtropics, defines the position of dry subtropical areas and is a fundamental regulator of the earth’s energy and momentum budgets. The character of the Hadley circulation, and its related precipitation regimes, exhibits variation and change in response to both climate variability and radiative forcing changes. The strength and position of the Hadley circulation change from year to year paced by El Niño and La Niña events. Over the last few decades of the twentieth century, the Hadley cell has expanded poleward in both hemispheres, with changes in atmospheric composition (including stratospheric ozone depletion and greenhouse gas increases) thought to have contributed to its expansion. This article introduces the basic phenomenology and driving mechanism of the Hadley circulation and discusses its variations under both natural and anthropogenic climate forcings.

  10. Sino-Danish Brain Circulation

    DEFF Research Database (Denmark)

    Bertelsen, Rasmus Gjedssø; Du, Xiangyun; Søndergaard, Morten Karnøe

    2014-01-01

    China is faced with urgent needs to develop an economically and environmentally sustainable economy based on innovation and knowledge. Brain circulation and research and business investments from the outside are central for this development. Sino-American brain circulation and research...... and investment by overseas researchers and entrepreneurs are well described. In that case, the US is the center of global R&D and S&T. However, the brain circulation and research and investments between a small open Scandinavian economy, such as Denmark, and the huge developing economy of China are not well...... understood. In this case, Denmark is very highly developed, but a satellite in the global R&D and S&T system. With time and the growth of China as a R&D and S&T power house, both Denmark and China will benefit from brain circulation between them. Such brain circulation is likely to play a key role in flows...

  11. Lignite air-steam gasification in the fluidized bed of iron-containing slag catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Yu. [Inst. of Chemistry of Natural Organic Materials, Academgorodok, Krasnoyarsk (Russian Federation)

    1995-12-01

    The influence of fluidized bed of iron-containing slag particles on air-steam gasification of powdered Kansk-Achinsk lignite in entrained flow was studied in pilot installation with productivity about 60 kg per hour. Slag of Martin process and boiler slag were used as catalytic active materials until their complete mechanical attrition. Two following methods of catalytic gasification of lignite were compared: the partial gasification in stationary fluidized bed of slag particles with degree of fuel conversion 40-70% and complete gasification in circulating bed of slag particles. In the first case only the most reactive part of fuel is gasified with the simultaneously formation of porous carbon residue with good sorption ability. It was found the catalytic fluidized bed improves heat transfer from combustion to reduction zone of gas-generator and increases the rate of fuel conversion at the temperature range 900-1000{degrees}C. At these temperatures the degree of conversion is depended considerably on the duration time of fuel particles in the catalytic fluidized bed. The influence of catalytic fluidized bed height and velocity of reaction mixture on the temperature profiles in the gas-generator was studied. The optimal relationship was found between the fluidized bed height and velocity of flow which makes possible to produce the gas with higher calorific value at maximum degree of fuel conversion.

  12. Clinical physiology of bed rest

    Science.gov (United States)

    Greenleaf, John E.

    1993-01-01

    Maintenance of optimal health in humans requires the proper balance between exercise, rest, and sleep as well as time in the upright position. About one-third of a lifetime is spent sleeping; and it is no coincidence that sleeping is performed in the horizontal position, the position in which gravitational influence on the body is minimal. Although enforced bed rest is necessary for the treatment of some ailments, in some cases it has probably been used unwisely. In addition to the lower hydrostatic pressure with the normally dependent regions of the cardiovascular system, body fuid compartments during bed rest in the horizontal body position, and virtual elimination of compression on the long bones of the skeletal system during bed rest (hypogravia), there is often reduction in energy metabolism due to the relative confinement (hypodynamia) and alteration of ambulatory circadian variations in metabolism, body temperature, and many hormonal systems. If patients are also moved to unfamiliar surroundings, they probably experience some feelings of anxiety and some sociopsychological problems. Adaptive physiological responses during bed rest are normal for that environment. They are attempts by the body to reduce unnecessary energy expenditure, to optimize its function, and to enhance its survival potential. Many of the deconditioning responses begin within the first day or two of bed rest; these early responses have prompted physicians to insist upon early resumption of the upright posture and ambulation of bedridden patients.

  13. Natural Circulation with Boiling

    International Nuclear Information System (INIS)

    A number of parameters with dominant influence on the power level at hydrodynamic instability in natural circulation, two-phase flow, have been studied experimentally. The geometrical dependent quantities were: the system driving head, the boiling channel and riser dimensions, the single-phase as well as the two phase flow restrictions. The parameters influencing the liquid properties were the system pressure and the test section inlet subcooling. The threshold of instability was determined by plotting the noise characteristics in the mass flow records against power. The flow responses to artificially obtained power disturbances at instability conditions were also measured in order to study the nature of hydrodynamic instability. The results presented give a review over relatively wide ranges of the main parameters, mainly concerning the coolant performance in both single and parallel boiling channel flow. With regard to the power limits the experimental results verified that the single boiling channel performance was intimately related to that of the parallel channels. In the latter case the additional inter-channel factors with attenuating effects were studied. Some optimum values of the parameters were observed

  14. The fixed bed nuclear reactor concept

    International Nuclear Information System (INIS)

    The core of a water moderated Fixed Bed Nuclear Reactor (FBNR), possessing, for instance, an electrical power of 40 MW, consists of 1.35 million fuel pellets (9.5 t) with a diameter of 1.5 cm each. The low enriched uranium fuel is made of TRISO type microspheres used in the HTGR, embedded in a graphite matrix and cladded by a shell of 1 mm SiC. Under any thinkable operational condition the fuel temperature will be below 400 C whereas its stability limit is at about 1600 C. The first characteristic of the FBNR is, therefore, its robust fuel under relatively 'cold' operating conditions and - due to the outer SiC - shell layer - the freedom from any hydrogen production. To operate the reactor the fuel pellets are pumped by a flow of water from below into the core regions where they form a stable fixed bed of about 4 cubic meter and become critical for energy production heating the outlet water to about 330 C (at 160 bar) which feeds a steam generator. The new safety feature is now the following: In case of any abnormity (e.g. external power failure, overheating etc.) the circulating pump stops and - due to gravity - the fuel pellets fall automatically out of the core region into a helical 'fuel chamber' underneath the core where their decay heat is transferred passively by natural circulation to a water tank housing the fuel chamber. The safety principle, applied here, is: The loss of an active component (circulating pump) induces a self-controlled, passively working shut-down manoeuvre accompanied by a foolproof decay heat removal without any emergency power system or any human interaction. The fuel chamber is sealed and is transported as the only reactor component to and from the reactor site. There is no possibility to irradiate fertile fuel, too. For a long-life core (larger than a 10 years cycle time) the fuel can either be poisoned by gadolinium-oxide or by a piston type core limiter adjusting the height and controlling thereby the number of the fuel pellets in

  15. Combined gas-steam power stations with pressurized fluidized bed combustion (PFBC) of coal

    Energy Technology Data Exchange (ETDEWEB)

    Grzegorczyk, W. (Energoprojekt, Warsaw (Poland))

    1990-11-01

    Presents pressurized fluidized bed combustion (PFBC) of coal that combines fluidized bed combustion with two-agent gas-steam circulation. PFBC permits clean combustion of coal with low calorific value and high ash and sulfur content. The ABB company offered a block for the Pruszkow power plant in Poland. Specifications of the block are given as: thermal power in fuel 430 MW and electrical power 175 MW. The boiler, gas turbine and turbine set are described. Technical and economic indices are given. The supplier attests that the emission values of 70 mg sulfur dioxide per MJ and 120 mg of nitrogen dioxide will not be exceeded under normal conditions.

  16. Arsenic removal via ZVI in a hybrid spouted vessel/fixed bed filter system

    OpenAIRE

    Calo, Joseph M.; Madhavan, Lakshmi; Kirchner, Johannes; Bain, Euan J.

    2012-01-01

    The description and operation of a novel, hybrid spouted vessel/fixed bed filter system for the removal of arsenic from water are presented. The system utilizes zero-valent iron (ZVI) particles circulating in a spouted vessel that continuously generates active colloidal iron corrosion products via the “self-polishing” action between ZVI source particles rolling in the moving bed that forms on the conical bottom of the spouted vessel. This action also serves as a “surface renewal” mechanism fo...

  17. Plasma assisted measurements of alkali metal concentrations in pressurised combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Haeyrinen, V. [Tampere Univ. of Technology (Finland)

    1997-10-01

    In this project the continuous alkali measurement method plasma excited alkali resonance line spectroscopy (PEARLS) was developed, tested and demonstrated in pressurised combustion facilities. The PEARLS method has been developed at Tampere University of Technology (TUT). During 1994-1996 the PEARLS method was developed from the laboratory level to an industrial prototype. The alkali measuring instrument has been tested and used for regular measurements in four different pressurised combustion installations ranging up to industrial pilot scale. The installations are: (1) a pressurised entrained flow reactor (PEFR) at VTT Energy in Jyvaeskylae, Finland (2) a pressurised fluidised bed combustion facility, called FRED, at DMT in Essen, Germany. (3) a 10 MW pressurised circulating fluidised bed combustion pilot plant at Foster Wheeler Energia Oy in Karhula, Finland (4) PFBC Research Facility at ABB Carbon in Finspaang, Sweden

  18. Improved Fluidized Bed Drying Technology for Wood Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Berghel, Jonas

    2004-04-01

    In this thesis, I discuss experiences from designing, building and evaluating two research plants, which use circulating, atmospheric pressure superheated steam as drying medium for drying sawdust in a fluidized bed. The increased use of pellets has created a demand for new drying equipment at the Swedish pellet plants. The underlying cause is that almost all of the available dried material, such as wood shavings, is already in use. The remaining biofuel materials, primarily wet sawdust need drying before entering the pellet process. The primary demands on the drying process were an uncomplicated design and efficient energy use. A key aim was to improve the drying technique used in the Swedish wood fuel system with specially interest on the control system. Sawdust has been tested in both a full scale and a laboratory scale dryers. The tests were done in a spouted bed. The product of the steam mass flow and the enthalpy difference limits the drying capacity. The tests showed that it is possible to use the temperature after the dryer as a control parameter for the outgoing moisture content in a spouted bed dryer. The results and conclusions can be very useful when designing a similar full scale drying system.

  19. 循环流化床垃圾焚烧炉混烧羊毛脂废料试验研究%Experimental Study on Co-firing of Lanolin Waste and Municipal Solid Waste in a Circulating Fluidized Bed Incinerator

    Institute of Scientific and Technical Information of China (English)

    马攀; 马增益; 陈继华; 刘渊源; 池涌; 严建华; 岑可法; 金忠财

    2012-01-01

    The objective of this work was to investigate the feasibility of utilizing lanolin waste as auxiliary fuel in a 400 t/d circulating fluidized bed(CFB) municipal solid waste incinerator(MSWI).The combustion stability,combustion efficiency and pollutant emissions were investigated during the co-firing of the MSW,coal and lanolin waste.The results show that the addition of lanolin waste leads to lower CO,N2O,SO2,particulate matter emissions and unburned carbon content in fly ash.The CFB combustion efficiency increases as the amount of lanolin waste adding from 0.7t/h to 1.8t/h.On the other hand,NO concentration increases with the amount of lanolin waste added and the variation of HCl content did not change remarkably.Raising furnace temperature causes increasing of NO emission and decreasing of CO emission.All gas emissions can meet the demands of the Chinese EPA standard.The study demonstrates the technical feasibility of lanolin waste as auxiliary fuel and CFB has a good adaptability.%以生活垃圾和煤混烧的400 t/d循环流化床垃圾焚烧锅炉为依托,对某大型生物医药公司的羊毛脂废料进行混烧的工业试验,了解混烧该废料对垃圾焚烧炉燃烧稳定性、炉膛温度、锅炉尾部常规污染物排放及飞灰含碳量的影响,以研究羊毛脂废料代替燃煤作为垃圾发电辅助燃料的可行性。试验表明,随着羊毛脂废料掺混量的增加,煤的添加量随之下降,烟气中的烟尘浓度,CO和SO2含量以及飞灰含碳量均有所下降;NO含量随掺混量的增加而增加,N2O随掺混量的增加而减少;HCl含量受掺混量影响不明显。随床温升高NO排放增加,CO排放下降,SO2和HCl浓度基本不变。试验表明循环流化床垃圾焚烧锅炉对羊毛脂废料具有良好的适应性。

  20. Advanced sorbent development progam; development of sorbents for moving-bed and fluidized-bed applications

    International Nuclear Information System (INIS)

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and

  1. ADVANCED SORBENT DEVELOPMENT PROGRAM DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    R.E Ayala; V.S. Venkataramani; Javad Abbasian; Rachid B. Slimane; Brett E. Williams; Minoo K. Zarnegar; James R. Wangerow; Andy H. Hill

    2000-03-31

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost

  2. ADVANCED SORBENT DEVELOPMENT PROGRAM; DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    AYALA, R E; VENKATARAMANI, V S

    1998-09-30

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 °C (900-1000 °F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 °C (650 °F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 °C (650-1000 °F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a

  3. The circulation physiology of agroecosystems

    Institute of Scientific and Technical Information of China (English)

    Cao Zhiping; Richard Dawson

    2007-01-01

    This paper represents an effort to enlarge the understanding of the biophysical foundation of agroecosystems by using an analogy with the circulation of the blood in the human body. The circulation function in the human body can be represented as arterial pressure. The factors affecting arterial pressure in the human body have direct counterparts in the cultivation-husbandry system. The relationship between circulation pressure and the factors affecting that pressure in the cultivation-husbandry system are similar to the relationship between the arterial pressure and factors affecting arterial pressure in the human body. Furthermore, circulation resistance in the cultivation-husbandry system can be shown to be analogous to the calculation of peripheral resistance in the human body by Poiseuille's formula.

  4. Physiology Of Prolonged Bed Rest

    Science.gov (United States)

    Greenleaf, John E.

    1991-01-01

    Report describes physiological effects of prolonged bed rest. Rest for periods of 24 hours or longer deconditions body to some extent; healing proceeds simultaneously with deconditioning. Report provides details on shifts in fluid electrolytes and loss of lean body mass, which comprises everything in body besides fat - that is, water, muscle, and bone. Based on published research.

  5. Experimental investigation of a draft tube spouted bed for effects of geometric parameters on operation

    Science.gov (United States)

    Azizaddini, Seyednezamaddin; Lin, Weigang; Dam-Johansen, Kim

    2016-06-01

    Experiments are performed in a draft tube spouted bed (DTSB) to investigate effects of the operating conditions and the geometric parameters on the hydrodynamics. Geometry parameters, such as heights of the entrained zone, draft tube inner diameter, inner angle of the conical section were studied. Increasing the draft tube inner diameter, sharper inner angle of the conical section and higher height of entrained zone increase the internal solid circulation rate and the pressure drop. Even though, for all different configurations, higher gas feeding rate leads to higher internal solid circulation rate considering a maximum value.

  6. Atmospheric Circulation of Terrestrial Exoplanets

    OpenAIRE

    Showman, Adam P.; Wordsworth, Robin D.; Merlis, Timothy M.; Kaspi, Yohai

    2013-01-01

    The investigation of planets around other stars began with the study of gas giants, but is now extending to the discovery and characterization of super-Earths and terrestrial planets. Motivated by this observational tide, we survey the basic dynamical principles governing the atmospheric circulation of terrestrial exoplanets, and discuss the interaction of their circulation with the hydrological cycle and global-scale climate feedbacks. Terrestrial exoplanets occupy a wide range of physical a...

  7. Pulling a patient up in bed

    Science.gov (United States)

    Moving a patient in bed ... takes at least two people to safely move a patient up in bed. Friction from rubbing can ... A slide sheet is the best way to prevent friction. If you do not have one, you ...

  8. Pulling a patient up in bed

    Science.gov (United States)

    Moving a patient in bed ... takes at least 2 people to safely move a patient up in bed. Friction from rubbing can ... A slide sheet is the best way to prevent friction. If you do not have one, you ...

  9. Using Acoustics to Determine Eelgrass Bed Distribution and to Assess the Seasonal Variation of Ecosystem Service

    Science.gov (United States)

    Sonoki, Shiori; Shao, Huamei; Morita, Yuka; Minami, Kenji; Shoji, Jun; Hori, Masakazu; Miyashita, Kazushi

    2016-01-01

    Eelgrass beds are an important source of primary production in coastal ecosystems. Understanding seasonal variation in the abundance and distribution of eelgrass is important for conservation, and the objectives of this study were to 1) monitor seasonal variation in eelgrass beds using an acoustic monitoring method (Quantitative echo sounder) and 2) broadly quantify the carbon circulation function. We obtained acoustic data of eelgrass beds in coastal areas north and east of Ikunojima Island. Surveys were conducted nine times over the 3-year period from 2011 to 2013 in order to monitor seasonal variation. Acoustic data were obtained and used to estimate the spatial distribution of eelgrass by geostatistical methods. To determine supporting services, we determined carbon sink and carbon fixation by eelgrass beds using data from the National Research Institute of Fisheries and Environment of Inland Sea (2011). The height and distribution of eelgrass beds were at a maximum in May and at a minimum in November of each year. Distribution trends were different between the north and east areas. Supporting services showed the same patterns throughout the year. The area of distribution was considered to be coincident with the life history of eelgrass. Distribution differed by area and changed yearly due to the effects of bottom characteristics and wind direction. Quantifying the supporting services of eelgrass beds was shown to be useful for managing the conservation of coastal ecosystems. PMID:26954673

  10. Heat Transfer in Segregated Fluidized Beds Part 2: Particle Motion and Its Effects on the Heat transfer in the Segregated Fluidized Beds

    Science.gov (United States)

    Gu, Yihua; Satoh, Isao; Saito, Takushi; Kawaguchi, Tatsuya

    In our previous paper, particle and temperature segregations in a fluidized bed of binary particle mixtures were experimentally examined, and heat transfer in the segregated fluidized bed was investigated. As the results, it was shown that the temperature segregation results mainly from low heat transfer coefficient through the interface layer, which exists between the flotsam-rich and jetsam-rich layers, and that the heat transfer coefficient increases rapidly with increasing the excess gas velocity. Following our previous paper, particle motion in the segregated fluidized bed was experimentally investigated in this paper, in order to make quantitative discussion on the relation between the heat transfer coefficient and particle motion in the interface layer. In the experiment, the Particle Imaging Velocimetry (PIV) method was applied to study the concentration and motion of particles in the segregated fluidized bed. A modified solid circulation model was built up to model the particle motion in the segregated fluidized bed. The experiment results showed that the vertical particle exchange rate of the interface layer increases with the excess gas velocity, and that the vertical heat transfer coefficient through the interface layer is mainly determined by the average particle exchange rate in the interface layer. Variations of the apparent thermal conductivity at different height in the particle layers were also determined by the vertical variation of the particle exchange rate. It was shown that the heat transfer coefficient or the thermal conductivity in the interface layer is influenced by the densities and specific heat capacities of the particles.

  11. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    KAUST Repository

    Yao, Fengchao

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow. Key Points Sinking occurs in a narrow boundary layer along the eastern boundary Surface western boundary current switches into an eastern boundary current Water exchange in the Strait of Bab el Mandeb is not hydraulically controlled © 2014. American Geophysical Union. All Rights Reserved.

  12. The Invertibility, Explicit Determinants, and Inverses of Circulant and Left Circulant and g-Circulant Matrices Involving Any Continuous Fibonacci and Lucas Numbers

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    Full Text Available Circulant matrices play an important role in solving delay differential equations. In this paper, circulant type matrices including the circulant and left circulant and g-circulant matrices with any continuous Fibonacci and Lucas numbers are considered. Firstly, the invertibility of the circulant matrix is discussed and the explicit determinant and the inverse matrices by constructing the transformation matrices are presented. Furthermore, the invertibility of the left circulant and g-circulant matrices is also studied. We obtain the explicit determinants and the inverse matrices of the left circulant and g-circulant matrices by utilizing the relationship between left circulant, g-circulant matrices and circulant matrix, respectively.

  13. Circulating Fibronectin Controls Tumor Growth

    Directory of Open Access Journals (Sweden)

    Anja von Au

    2013-08-01

    Full Text Available Fibronectin is ubiquitously expressed in the extracellular matrix, and experimental evidence has shown that it modulates blood vessel formation. The relative contribution of local and circulating fibronectin to blood vessel formation in vivo remains unknown despite evidence for unexpected roles of circulating fibronectin in various diseases. Using transgenic mouse models, we established that circulating fibronectin facilitates the growth of bone metastases by enhancing blood vessel formation and maturation. This effect is more relevant than that of fibronectin produced by endothelial cells and pericytes, which only exert a small additive effect on vessel maturation. Circulating fibronectin enhances its local production in tumors through a positive feedback loop and increases the amount of vascular endothelial growth factor (VEGF retained in the matrix. Both fibronectin and VEGF then cooperate to stimulate blood vessel formation. Fibronectin content in the tumor correlates with the number of blood vessels and tumor growth in the mouse models. Consistent with these results, examination of three separate arrays from patients with breast and prostate cancers revealed that a high staining intensity for fibronectin in tumors is associated with increased mortality. These results establish that circulating fibronectin modulates blood vessel formation and tumor growth by modifying the amount of and the response to VEGF. Furthermore, determination of the fibronectin content can serve as a prognostic biomarker for breast and prostate cancers and possibly other cancers.

  14. Review of acute cancer beds.

    LENUS (Irish Health Repository)

    Evans, D S

    2012-01-01

    A review of admissions to cancer services at University Hospital Galway (UHG) was undertaken to assess the appropriateness of hospital usage. All cancer specialty patients admitted from 26-28 May 2009 were reviewed (n = 82). Chi square tests, Exact tests, and One-way ANOVA were utilised to analyse key issues emerging from the data. Fifty (61%) were classified as emergencies. Twenty three (67%) occupied a designated cancer bed with 24 (30%) in outlying non-oncology wards. The mean length of stay was 29.3 days. Possible alternatives to admission were identified for 15 (19%) patients. There was no evidence of discharge planning for 50 (60%) admissions. There is considerable potential to make more appropriate utilisation of UHG for cancer patients, particularly in terms of reducing bed days and length of stay and the proportion of emergency cancer admissions, and further developing integrated systems of discharge planning.

  15. Better backs by better beds?

    DEFF Research Database (Denmark)

    Bergholdt, Kim; Fabricius, Rasmus N; Bendix, Tom

    2008-01-01

    STUDY DESIGN: A "randomized"/stratified, single-blinded, parallel-group study. OBJECTIVE.: To evaluate 3 structurally different mattresses relative influence on patients with chronic low back pain (CLBP). SUMMARY OF BACKGROUND DATA: In several advertisements, it is proclaimed that certain......-conforming foam mattress (Tempur), and (3) a hard mattress (Innovation Futon). At baseline and after 4 weeks, a blinded observer interviewed the patients on LBP levels (0-10), daily function (activities of daily living, 0-30), and on the amount of sleeping hours/night. RESULTS: Because of dropout of 19 patients...... using the probably most relevant "worst case" data. There were no relevant difference between the effects of the water bed and the foam bed. CONCLUSION: The Waterbed and foam mattress' did influence back symptoms, function and sleep more positively as apposed to the hard mattress, but the differences...

  16. Reactor vessel for pebble beds

    International Nuclear Information System (INIS)

    The wall and the bottom of the vessel for the gas-cooled pebble-bed reactor consist of numerous blocks of graphite or carbon rock piled up. They are held together by an exterior cylindrical or polygonal ring and supported by a foundation. The blocks form coherent sectors resp. annular sectors with well-defined separating lines. At high temperatures or load change operation these sectors behave like monolithic blocks expanding heely and contracting again, the center of the vessel remaining fixed. The forces causing the compression result from the own weight of the sectors and the weight of the pebble bed. This motion is supported by the convex arrangement of the opposite surfaces of the sectors and the supporting walls and by roller bearings. The bottom of the vessel may be designed funnel-shaped, in this way facilitating the removal of spheres. (DG)

  17. Bed bathing patients in hospital

    OpenAIRE

    L Downey; Lloyd, Hilary

    2008-01-01

    There are a number of circumstances that may affect an individual's ability to maintain personal hygiene. Hospitalised patients, and in particular those who are bedridden, may become dependent on nursing staff to carry out their hygiene needs. Assisting patients to maintain personal hygiene is a fundamental aspect of nursing care. However, it is a task often delegated to junior or newly qualified staff. This article focuses on the principles of bed bathing patients in hospital, correct proced...

  18. THE BAUXITES AND JELAR - BEDS

    Directory of Open Access Journals (Sweden)

    Krešimir Sakač

    1993-12-01

    Full Text Available Minor bauxite deposits and occurrences were formed in technically disturbed environments in the middle part of the Adriatic geotectonic unit in Dinarides, contemporary with the clastic Jelar-beds in the Late Lutetian time. Uneven chemical composition of these Eocene bauxites, their sporadic occurrences in developed paleorelief as well as characteristic petrographic composition of the immediate overlying rocks point out at different genetical conditions (the paper is published in Croatian.

  19. Executive function on the 16-day of bed rest in young healthy men

    Science.gov (United States)

    Ishizaki, Yuko; Fukuoka, Hideoki; Tanaka, Hidetaka; Ishizaki, Tatsuro; Fujii, Yuri; Hattori-Uchida, Yuko; Nakamura, Minako; Ohkawa, Kaoru; Kobayashi, Hodaka; Taniuchi, Shoichiro; Kaneko, Kazunari

    2009-05-01

    Microgravity due to prolonged bed rest may cause changes in cerebral circulation, which is related to brain function. We evaluate the effect of simulated microgravity due to a 6° head-down tilt bed rest experiment on executive function among 12 healthy young men. Four kinds of psychoneurological tests—the table tapping test, the trail making test, the pointing test and losing at rock-paper-scissors—were performed on the baseline and on day 16 of the experiment. There was no significant difference in the results between the baseline and day 16 on all tests, which indicated that executive function was not impaired by the 16-day 6° head-down tilting bed rest. However, we cannot conclude that microgravity did not affect executive function because of the possible contribution of the following factors: (1) the timing of tests, (2) the learning effect, or (3) changes in psychophysiology that were too small to affect higher brain function.

  20. Evaluation of wall boundary condition parameters for gas-solids fluidized bed simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tingwen [URS Corporation; Morgantown, WV (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Benyahia, Sofiane [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2013-10-01

    Wall boundary conditions for the solids phase have significant effects on numerical predictions of various gas-solids fluidized beds. Several models for the granular flow wall boundary condition are available in the open literature for numerical modeling of gas-solids flow. In this study, a model for specularity coefficient used in Johnson and Jackson boundary conditions by Li and Benyahia (AIChE Journal, 2012, 58, 2058-2068) is implemented in the open-source CFD code-MFIX. The variable specularity coefficient model provides a physical way to calculate the specularity coefficient needed by the partial-slip boundary conditions for the solids phase. Through a series of 2-D numerical simulations of bubbling fluidized bed and circulating fluidized bed riser, the model predicts qualitatively consistent trends to the previous studies. Furthermore, a quantitative comparison is conducted between numerical results of variable and constant specularity coefficients to investigate the effect of spatial and temporal variations in specularity coefficient.

  1. Method and apparatus for a combination moving bed thermal treatment reactor and moving bed filter

    Science.gov (United States)

    Badger, Phillip C.; Dunn, Jr., Kenneth J.

    2015-09-01

    A moving bed gasification/thermal treatment reactor includes a geometry in which moving bed reactor particles serve as both a moving bed filter and a heat carrier to provide thermal energy for thermal treatment reactions, such that the moving bed filter and the heat carrier are one and the same to remove solid particulates or droplets generated by thermal treatment processes or injected into the moving bed filter from other sources.

  2. The characteristics of bed agglomeration during fluidized bed combustion of eucalyptus bark

    International Nuclear Information System (INIS)

    The bed agglomeration behaviors were investigated experimentally when eucalyptus bark was burning tested in a laboratory scale fluidized bed reactor. The focuses of this work were the influences of operating conditions and bed materials on the bed agglomeration tendency and the elucidation in the behaviors of fuel inorganic elements and the governing mode of the agglomeration. It was found that the defluidization caused by the bed agglomeration was clearly detectable from the decrease in measured bed pressure. The growth of bed particle and accumulation of agglomerates during combustion provided the partial to complete defluidization. The defluidization was promoted by the increase of bed temperature and bed particle size, and the decrease of fluidizing air velocity. The SEM-EDS analyses revealed that the bed agglomeration was mainly attributed to the formation of potassium silicate compounds as liquid phase during the combustion. This was initiated by the chemical reaction between the bed particle and the released ash constituents. In this study, the inorganic migration from fuel particle to bed particle was likely dominated by the condensation/reaction. The thermodynamic examination by ternary phase diagram analysis corroborated that the liquid phase formation of the ash derived materials controlled the agglomeration. The alumina sand prevented the bed agglomeration since it was inactive in the formation of viscous molten substances during combustion at the observed temperatures. - Highlights: • The behaviors of bed agglomeration were studied during the fluidized bed combustion of eucalyptus bark. • The increase in bed temperature and sand size, and the decrease of air velocity promoted bed defluidization. • The formation of molten potassium silicate compounds conduced to the bed agglomeration. • Condensation/reaction was the dominant inorganic migration mechanism from fuel particle to bed particle. • The alumina sand prevented effectively the bed

  3. Energetic, ecologic and fluid-dynamic analysis of a fluidized bed gasifier operating with sugar cane bagasse

    International Nuclear Information System (INIS)

    This work aims to study the thermodynamic, ecological and fluid-dynamic aspects of a circulating fluidized bed gasifier using sugar cane bagasse as biomass, in order to estimate a model of its normal operation. In the initial stage was analysed the composition of biomass selected (sugar cane bagasse) and its lower heating value (LHV) was calculated. The energy balance of the gasifier was done, being the volumetric flow of air, synthesis gas and biomass estimated. Also the power produced by this gasifier was theoretically estimated. Then the circulating fluidized bed gasifier was designed for operation with approximately 100 kg/h of processed biomass. Cross-sectional area of the reactor, feeder size, diameter of the exit zone of the gases and minimum height of the expanded bed were selected. Some bed gasifier hydrodynamic factors were also studied. The minimum fluidization velocity, fluidization terminal velocity, and average fluidizing velocity were calculated, in order to understand the fluid-dynamic behaviour of gasification of this fuel. It was obtained a theoretical model that can support a possible prototype of circulating fluidized bed gasifier biomass. Finally, there were studied the ecological aspects of the gasifier, through an overall methodology. Ecological efficiencies were estimated for two scenarios: first considering the carbon cycle and thereafter disregarding the carbon cycle. In both cases, it can be proved the ecological viability of the project. -- Highlights: • we develop a methodology to size a fluidized bed gasifier. • we validate this methodology comparing to a fixed bed gasifier values. • we aggregate ecological efficiency to this methodology

  4. Atmospheric Circulation of Terrestrial Exoplanets

    CERN Document Server

    Showman, Adam P; Merlis, Timothy M; Kaspi, Yohai

    2013-01-01

    The investigation of planets around other stars began with the study of gas giants, but is now extending to the discovery and characterization of super-Earths and terrestrial planets. Motivated by this observational tide, we survey the basic dynamical principles governing the atmospheric circulation of terrestrial exoplanets, and discuss the interaction of their circulation with the hydrological cycle and global-scale climate feedbacks. Terrestrial exoplanets occupy a wide range of physical and dynamical conditions, only a small fraction of which have yet been explored in detail. Our approach is to lay out the fundamental dynamical principles governing the atmospheric circulation on terrestrial planets--broadly defined--and show how they can provide a foundation for understanding the atmospheric behavior of these worlds. We first survey basic atmospheric dynamics, including the role of geostrophy, baroclinic instabilities, and jets in the strongly rotating regime (the "extratropics") and the role of the Hadle...

  5. Bed to wall heat transfer in supercritical water fluidized bed: Comparison with the gas–solid fluidized bed

    International Nuclear Information System (INIS)

    Supercritical water (SCW) fluidized bed is a new reactor concept for gasification of wet biomass. In this paper, the Eulerian two-fluid model based on Kinetic Theory of Granular Flow in fluidized bed was established, and the physical model of movement of single bubble up the wall was adopted. The comparison studies of particle distribution, temperature distribution and transient heat transfer characteristics between the SCW and gas–solid fluidized bed were carried out. The results show that the bubble diameter and rise velocity in SCW fluidized bed are smaller than those in gas–solid fluidized bed. With the increasing solid volume fraction near the wall, the bed-to-wall heat transfer coefficient decreases in SCW fluidized bed, while it increases in gas–solid fluidized bed. What is more, the bed-to-wall heat transfer coefficient is sensitive to superficial velocity where the solid volume fraction is low, which is different from that in gas–solid fluidized bed

  6. Techno-Economic Study of Adsorption Processes for Pre-Combustion Carbon Capture at a Biomass CHP Plant

    OpenAIRE

    Oreggioni, Gabriel David; Friedrich, Daniel; Brandani, Stefano; Ahn, Hyungwoong

    2014-01-01

    An exemplary 10 MWth biomass CHP plant with a FICFB (Fast Internally Circulating Fluidised Bed) gasifier and Jenbacher type 6 gas engine was simulated to estimate the power and thermal outputs. The biomass-fuelled CHP plant was modified for carbon capture using either adsorption or amine process. It was found that a two-stage, two-bed PVSA (Pressure Vacuum Swing Adsorption) unit applied to syngas stream for pre-combustion capture spent less specific energy per captured CO2 than a conventional...

  7. VanderLaan Circulant Type Matrices

    Directory of Open Access Journals (Sweden)

    Hongyan Pan

    2015-01-01

    Full Text Available Circulant matrices have become a satisfactory tools in control methods for modern complex systems. In the paper, VanderLaan circulant type matrices are presented, which include VanderLaan circulant, left circulant, and g-circulant matrices. The nonsingularity of these special matrices is discussed by the surprising properties of VanderLaan numbers. The exact determinants of VanderLaan circulant type matrices are given by structuring transformation matrices, determinants of well-known tridiagonal matrices, and tridiagonal-like matrices. The explicit inverse matrices of these special matrices are obtained by structuring transformation matrices, inverses of known tridiagonal matrices, and quasi-tridiagonal matrices. Three kinds of norms and lower bound for the spread of VanderLaan circulant and left circulant matrix are given separately. And we gain the spectral norm of VanderLaan g-circulant matrix.

  8. Conservation of Circulation in Magnetohydrodynamics

    CERN Document Server

    Bekenstein, J D; Bekenstein, Jacob D.; Oron, Asaf

    2000-01-01

    We demonstrate, both at the Newtonian and (general) relativistic levels, theexistence of a generalization of Kelvin's circulation theorem (for pure fluids)which is applicable to perfect magnetohydrodynamics. The argument is based onthe least action principle for magnetohydrodynamic flow. Examples of the newconservation law are furnished. The new theorem should be helpful inidentifying new kinds of vortex phenomena distinct from magnetic ropes or fluidvortices.

  9. Neural Control of the Circulation

    Science.gov (United States)

    Thomas, Gail D.

    2011-01-01

    The purpose of this brief review is to highlight key concepts about the neural control of the circulation that graduate and medical students should be expected to incorporate into their general knowledge of human physiology. The focus is largely on the sympathetic nerves, which have a dominant role in cardiovascular control due to their effects to…

  10. Performance of a bench-scale fast fluidized bed carbonator

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll;

    2014-01-01

    The carbonate looping process is a promising technology for CO2 capture from flue gas. In this process, the CO2 capture efficiency depends on the performance of a carbonator that may be operated as a circulating fluidized bed (CFB). In this paper, the carbonator performance is investigated by...... applying a new experimental method with accurate control of the particle recirculation rate. The experimental results show that the inlet calcium to carbon molar ratio is the main factor on the CO2 capture efficiency in the carbonator, that is, increasing the inlet Ca/C from 4 to 13 results in increasing...... the CO2 capture efficiency from 40 to 85% with limestone having a maximum CO2 capture capacity of only 11.5%. Furthermore, a reactor model for a carbonator is developed based on the Kunii-Levenspiels model. A key parameter in the model is the particle distribution along the height of the reactor...

  11. Fluidized bed graphite waste incineration. Validation testing synopsis

    International Nuclear Information System (INIS)

    This experimental validation testing program made it possible to demonstrate that a safe and immediately operational process of contaminated graphite incineration is now ready for industrial use. The important parameters have all been quantified and their limits determined. The operation of the main components of the system as well as of the automated instrumentation and control system have been tested under conditions that are representative of normal industrial use. The possible incidents have been analyzed and simulated, which has enabled defining and testing devices and procedures to employ on a future full-scale industrial circulating fluidized bed graphite incinerator. Finally, as concerns both the gaseous releases and the nature and quantity of solid wastes produced, this validation testing program has provided precise and reliable data, necesary in particular for the qualification of an embedding process in view of final waste storage

  12. Pebble bed modular reactor (PBMR)

    International Nuclear Information System (INIS)

    In 1993, the pebble bed modular reactor (PBMR) was identified by ESKOM, the electric utility of South Africa, as a leading option for the installation of new generating capacity to their electric grid. This innovative nuclear power plant incorporates a closed cycle primary coolant system utilizing helium to transport heat energy directly from the modular pebble bed reactor to a recuperative power conversion unit with a single-shaft turbine/compressor/generator. This replacement of the steam cycle that is common in present nuclear power plants (NPP) with a direct gas cycle provides the benefits of simplification and a substantial increase in overall system efficiency with the attendant lowering of capital and operational costs. Although the historical development of this plant is interrelated to other types of high temperature gas cooled reactors (HTGRs), the principle focus herein is on the pebble bed (spherical) fuel element type reactor. The long-term development of this reactor type began in Germany by the KFA Nuclear Research Center (now FZJ). Two pebble bed plants were constructed in Germany, the 46 MW(th)/15 MW(e) Arbeitsgemeinshaft Versuchsreaktor (AVR) and the 750 MW(th)/296 MW(e) thorium high temperature reactor (THTR-300). Basically, these steam/electric plants validated the temperature and fission product retention capabilities of the ceramic (TRISO) coated fuel particle and the safety characteristics of the HTGR. Most notable of the operational achievements was with the AVR in sustaining longterm operation at an average core outlet temperature of 950 deg. C, and in demonstration of safety such as extended loss of forced cooling on the core. More details on the AVR and THTR-300 plants are provided The next evolution of the pebble bed plant began in the early 1980s with development of the modular reactor. This small reactor added the unique characteristic of being able to cool the core entirely by passive heat transfer mechanisms following postulated

  13. MICROTURBULENCE IN GRAVEL BED STREAMS

    Science.gov (United States)

    Papanicolaou, T.; Tsakiris, A. G.; Kramer, C. M.

    2009-12-01

    The overarching objective of this investigation was to evaluate the role of relative submergence on the formation and evolution of cluster microforms in gravel bed streams and its implications to bedload transport. Secondary objectives of this research included (1) a detailed analysis of mean flow measurements around a clast; and (2) a selected number of experimental runs where the mean flow characteristics are linked together with the bed micro-topography observations around a clast. It is hypothesized that the relative submergence is an important parameter in defining the feedback processes between the flow and clasts, which governs the flow patterns around the clasts, thus directly affecting the depositional patterns of the incoming sediments. To examine the validity of the hypothesis and meet the objectives of this research, 19 detailed experimental runs were conducted in a tilting, water recirculating laboratory flume under well-controlled conditions. A fixed array of clast-obstacles were placed atop a well-packed bed with uniform size glass beads. During the runs, multifractional spherical particles were fed upstream of the clast section at a predetermined rate. State-of-the-art techniques/instruments, such as imaging analysis software, Large Scale Particle Velocimeter (LSPIV) and an Acoustic Doppler Velocimetry (ADV) were employed to provide unique quantitative measurements for bedload fluxes, clast/clusters geomorphic patterns, and mean flow characteristics in the vicinity of the clusters. Different flow patterns were recorded for the high relative submergence (HRS) and low relative submergence (LRS) experimental runs. The ADV measurements provided improved insight about the governing flow mechanisms for the HRS runs. These mechanisms were described with flow upwelling at the center of the flume and downwelling occurring along the flume walls. Flow downwelling corresponded to an increase in the free surface velocity. Additionally, the visual observations

  14. Fixed bed nuclear reactor concept

    International Nuclear Information System (INIS)

    Full text: The fixed bed nuclear reactor (FBNR) is essentially a pressurized light water reactor (PWR) having spherical fuel elements constituting a suspended reactor core at its lowest bed porosity. The core is movable thus under any adverse condition, the fuel elements can leave the reactor core naturally through the force of gravity and fall into the passively cooled fuel chamber or leave the reactor all together entering the spent fuel pool. It is a small and modular reactor being simple in design. Its spent fuel is in such a convenient form and size that may be utilized directly as the source for irradiation and applications in agriculture and industry. This feature results in a positive impact on waste management and environmental protection. The principle features of the proposed reactor are that the concept is polyvalent, simple in design, may operate either as fixed or fluidized bed, have the core suspended contributing to inherent safety, passive cooling features of the reactor. The reactor is modular and has integrated primary system utilizing either water, supercritical steam or helium gas as its coolant. Some of the advantages of the proposed reactor are being modular, low environmental impact, exclusion of severe accidents, short construction period, flexible adaptation to demand, excellent load following characteristics, and competitive economics. The characteristics of the Fluidized Bed Nuclear Reactor (FBNR) concept may be analyzed under the light of the requirements set for the IV generation nuclear reactors. It is shown that FBNR meet the goals of (1) Providing sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel utilization for worldwide energy production, (2) Minimize and manage their nuclear waste and notably reduce the long term stewardship burden in the future, thereby improving protection for the public health and the environment, (3) Excel in safety and reliability

  15. Modeling N2O Reduction and Decomposition in a Circulating Fluidized bed Boiler

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Åmand, Lars-Erik; Dam-Johansen, Kim; Leckner, Bo

    1996-01-01

    . The conclusion is that in the bottom part of the combustor, where the solids concentration is about 1000 kg/m3 and the char content 2 wt%, heterogeneous reactions were the most important N2O destruction mechanisms. Reduction by char accounted for 80% of the N2O destruction, 20 % was due to catalytic...

  16. Simulation of gas and particle flow in a circulating fluidized bed; Kaasu- ja kiintoainevirtauksen simulointi kiertoleijukattilassa

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, S. [Aabo Akademi, Turku (Finland). Inst. of Heat Engineering

    1996-12-01

    The aim of this work was to study the effects of different parameters on the flow behaviour in a CFB riser by means of empirical models based on measurement data and a computer code based on macroscopic equations for multiphase flow. The effects of primary air velocity and riser geometry have been observed in the results. Simulation of secondary air flow proved to be problematic with the software used. In the project, also analyses of measurement data from cold model experiments has been performed. Moreover, the possibilities to use commercial CFD codes for simulation of gas-solids flow were investigated. The code FLUENT seemed promising. (author)

  17. Simulation of co-firing coal and biomass in circulating fluidized beds

    International Nuclear Information System (INIS)

    Highlights: ► The effect of the biomass share on CO, NOx and SO2 emissions are investigated. ► New model shows similar emissions trends for co-firing to industrial data. ► Biomass share has a positive effect on lowering the emissions in co-firing. - Abstract: In this study, the effect of the biomass share on CO, NOx and SO2 emissions are investigated to reveal the benefits of co-firing biomass and coal in CFBs by using a developed model. The results are compared with two published comprehensive data sets. The results show that CO, NOx and SO2 emissions decrease as the biomass share increases for industrial scale CFB combustors.

  18. A study of dilute to dense flow in a circulating fluidized bed

    DEFF Research Database (Denmark)

    Ibsen, Claus Hübbe; Solberg, Tron; Hjertager, Bjørn H.

    2001-01-01

    based on a Multiphase Computational Fluid Dynamics code, where the conservation equations for the solid phases are based on the kinetic theory of granular flow. The experimental data is used to evaluate the multiphase CFD code with alternative gas-solid drag models, which showed an improved agreement......This work concerns a experimental and numerical study on how the amount of particles influences the flow in the CFB. Experiments are performed with a 1D Laser and Phase doppler anemometry, whereby data of axial velocity, RMS velocity and particle diameter is obtained. The numerical simulations are...

  19. Energetic use of wood and biomass by circulating fluidized bed gasification. Final report

    International Nuclear Information System (INIS)

    The project's objective was the development and utilization of a biomass gasification process based on CFB-gasification with dry hot gas upgrading for IC-engine operation. Construction and operation of a test plant at pilot scale with 400 kW fuel input capacity. Development of a mathematical model for CFB-gasification. Reliable operation of CFB-gasifier, good results at partial load and good behaviour at changing the load. Air blown gasification of wood chips yielded lower heating values (LHV) up to 5500 kJ/m3 (s.T.p., dry) for the gas. Main attention to measures for tar removal. Target value was 3 (s.T.p.) for napthalene + PAH. Average amount of tar after CBF-gasifier at 3000-5000 mg/m3 (s.T.p.). Primary measures aiming at a decreased tar production were not suitable for achieving the target value. Several secondary measures were tested. Tars could almost completely be cracked or reformed by special catalysts. In continuous test runs of more than 100 h duration tar contents less than 50 mg/m3 were achieved. A scale up for a catalytic gas cleaning system based on the results is planned. Estimations of economics show the process concept to be advantegous for plants up to 30 MW fuel input capacity. Profitable costs for combined heat and power production from biomass can be expected. (orig.)

  20. Clean utilization of high sulphur petroleum coke by circulating fluidized bed combustion (CFBC) in Romania

    International Nuclear Information System (INIS)

    The economic and environmental problems caused by inefficient utilization of residual high-sulphur petroleum coke resulted from oil cracking in Romania is discussed. A special research programme applying CFBC technology has been carried out in the Institute for Power Equipment, Bucharest. The results from both laboratory facilities and pilot plant are presented. The main operating conditions and parameters are pointed out. Data on quality and composition of petroleum coke, combustion efficiency, temperature range in different zones and flue gas composition at distinct operating loads are given. The results obtained will be used for innovative design of CFBC boilers based on petroleum coke. A project for implementing a CFBC boiler in one of the Romanian oil refineries is being developed. An analysis of technical and economic advantages of these boilers for energy generation is presented

  1. The research of optimization design and numerical simulation for circulating fluidized bed furnace mouth expansion

    International Nuclear Information System (INIS)

    In this paper, the structure of 130 t/h CFB boiler furnace is optimized as a reference. The parameters were selected in the way of 0.618 methods, The research of structure optimization Numerical Simulation was carried out by the use of large-scale numerical flow calculation software FLUENT simulation. The results showed that adjusting the design of the furnace mouth expansion can improve the flow characteristics. It obtained a good flow characteristics in the expansion of an argument between 67 degree - 68 degree. (authors)

  2. Direct Causticizing for Black Liquor Gasification in a Circulating Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Scott Sinquefield; Xiaoyan Zeng, Alan Ball

    2010-03-02

    Gasification of black liquor (BLG) has distinct advantages over direct combustion in Tomlinson recovery boilers. In this project we seek to resolve causticizing issues in order to make pressurized BLG even more efficient and cost-effective. One advantage of BLG is that the inherent partial separation of sulfur and sodium during gasification lends itself to the use of proven high yield variants to conventional kraft pulping which require just such a separation. Processes such as polysulfide, split sulfidity, ASAQ, and MSSAQ can increase pulp yield from 1% to 10% over conventional kraft but require varying degrees of sulfur/sodium separation, which requires additional [and costly] processing in a conventional Tomlinson recovery process. However during gasification, the sulfur is partitioned between the gas and smelt phases, while the sodium all leaves in the smelt; thus creating the opportunity to produce sulfur-rich and sulfur-lean white liquors for specialty pulping processes. A second major incentive of BLG is the production of a combustible product gas, rich in H2 and CO. This product gas (a.k.a. “syngas”) can be used in gas turbines for combined cycle power generation (which is twice as efficient as the steam cycle alone), or it can be used as a precursor to form liquid fuels, such as dimethyl ether or Fischer Tropsh diesel. There is drawback to BLG, which has the potential to become a third major incentive if this work is successful. The causticizing load is greater for gasification of black liquor than for combustion in a Tomlinson boiler. So implementing BLG in an existing mill would require costly increases to the causticizing capacity. In situ causticizing [within the gasifier] would handle the entire causticizing load and therefore eliminate the lime cycle entirely. Previous work by the author and others has shown that titanate direct causticizing (i.e. in situ) works quite well for high-temperature BLG (950°C), but was limited to pressures below about 5 bar. It is desirable however to operate BLG at 20-30 bar for efficiency reasons related to either firing the syngas in a turbine, or catalytically forming liquid fuels. This work focused on achieving high direct causticizing yields at 20 bars pressure. The titanate direct causticizing reactions are inhibited by CO2. Previous work has shown that the partial pressure of CO2 should be kept below about 0.5 bar in order for the process to work. This translates to a total reactor pressure limit of about 5 bar for airblown BLG, and only 2 bar for O2-blown BLG. In this work a process was developed in which the CO2 partial pressure could be manipulated to a level under 0.5 bar with the total system pressure at 10 bar during O2-blown BLG. This fell short of our 20 bar goal but still represents a substantial increase in the pressure limit. A material and energy balance was performed, as well as first-pass economics based on capital and utilities costs. Compared to a reference case of using BLG with a conventional lime cycle [Larson, 2003], the IRR and NVP were estimated for further replacing the lime kiln with direct causticizing. The economics are strongly dependent on the price of lime kiln fuel. At $6/mmBTU the lime cycle is the clear choice. At $8/mmBTU the NPV is $10M with IRR of 17%. At $12/mmBTU the NPV is $45M with IRR of 36%. To further increase the total allowable pressure, the CO2 could be further decreased by further decreasing the temperature. Testing should be done at 750C. Also a small pilot should be built.

  3. Research on a Modified Smith Predictive Control Scheme of Main Steam Temperature of Circulating Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Dong Ze

    2012-07-01

    Full Text Available In order to solve the current difficulties of modeling for designing Intelligent Service Mobile Robot (ISMR, a new modeling method based on metasynthesis is proposed from the macro and micro levels. And the system analysis and design agent-oriented based on POMDP are provided in the same time. Finally, the two case studies are given and the experimental results have shown efficiency and rationality of this modeling method.

  4. Co-circulation of Usutu virus and West Nile virus in a reed bed ecosystem

    Czech Academy of Sciences Publication Activity Database

    Rudolf, Ivo; Bakonyi, T.; Šebesta, Oldřich; Mendel, Jan; Peško, Juraj; Betášová, Lenka; Blažejová, Hana; Venclíková, Kristýna; Straková, Petra; Nowotny, N.; Hubálek, Zdeněk

    2015-01-01

    Roč. 8, č. 520 (2015), s. 520. ISSN 1756-3305 EU Projects: European Commission(XE) 261504 - EDENEXT Institutional support: RVO:68081766 Keywords : Culex modestus * Usutu virus * West Nile virus * Flavivirus * Arbovirus * Surveillance * Mosquitoes Subject RIV: FN - Epidemiology, Contagious Diseases ; Clinical Immunology Impact factor: 3.430, year: 2014

  5. Fluid-bed process for SYNROC production

    International Nuclear Information System (INIS)

    SYNROC is a titanate-based ceramic waste developed for the immobilization of high-level nuclear reactor waste. Lawrence Livermore National Laboratory (LLNL) has investigated a fluid-bed technique for the large-scale production of SYNROC precursor powders. Making SYNROC in a fluid bed permits slurry drying, calcination and reduction-oxidation reactions to be carried out in a single unit. We present the results of SYNROC fluid-bed studies from two fluid-bed units 10 cm in diameter: an internally heated fluid-bed unit developed by Exxon Idaho and an externally heated unit constructed at LLNL. Bed operation over a range of temperatures, feed rates, fluidizing rates, and redox conditions indicate that SYNROC powders of a high density and a uniform particle size can be produced. These powders facilitate the densification step and yield dense ceramics (greater than 95% theoretical density) with well-developed phases and low leaching rates

  6. Spring packed particle bed fuel element

    International Nuclear Information System (INIS)

    This patent describes a gas cooled particle bed nuclear fuel element. It comprises: a porous inner frit; a porous outer frit attached to the inner frit by an end cap t a first end and radially guided by a shoulder at a second end, forming an annulus between the frits; a fuel particle bed in the annulus; a first compressive device at each end of the annulus; and a second compressive device positioned in the annulus within the fuel particle bed

  7. Fluidized bed combustion in praxis

    International Nuclear Information System (INIS)

    Operation at deregulated energy markets emphasize utilities competitiveness in power generation. This means power plant investment cost as well as operation and maintenance costs must be competitive to ensure economical performance. Improvements in competitiveness can also be achieved investing to modem combustion technology and this way improve power generation efficiency (lower fuel consumption). Other means to improve cost effectiveness are optimisation of daily operation and process control system but also improving fuel flexibility if feasible (fuel price). The other need for utilities in the future is of course environmental issues like reduction of CO2 emissions in particular. As known fluidized bed combustion offers many advantages that might be needed at future energy markets. These are superior fuel and operation flexibility, multi-fuel capability, environmental performance with inherently low NOx emissions due favourable combustion conditions and cost effective sulphur reduction applying in-furnace SO2 capture. These advantages makes fluidized bed combustion attractive alternative power generation in the future. The current trends for development of the technology are discussed in this paper. (authors)

  8. Studies on air ingress for pebble bed reactors

    International Nuclear Information System (INIS)

    A loss-of-coolant accident (LOCA) has been considered a critical event for helium-cooled pebbled bed reactors. Following helium depressurization, it is anticipated that unless countermeasures are taken air will enter the core through the break and then by molecular diffusion and ultimately by natural convection leading to oxidation of the in-core graphite structure and graphite pebbles. Thus, without any mitigating features a LOCA will lead to an air ingress event. The INEEL is studying such an event with two well-respected light water reactor transient response codes: RELAP5/ATHENA and MELCOR. To study the degree of graphite oxidation occurring due to an air ingress event, a MELCOR model of a reference pebble bed design was constructed. A modified version of MELCOR developed at INEEL, which includes graphite oxidation capabilities, and molecular diffusion of air into helium was used for these calculations. Results show that the lower reflector graphite consumes all of the oxygen before reaching the core. The results also show a long time delay between the time that the depressurization phase of the accident is over and the time that natural circulation air through the core occurs. (author)

  9. Gruppebaseret behandling af BED - et faseopdelt behandlingstilbud

    DEFF Research Database (Denmark)

    Laust, Jakob; Lau, Marianne Engelbrecht; Waaddegaard, Mette

    2015-01-01

    konsekvenser. BED blev i 2013 optaget i DSM-5 (Diagnostic and Statistical Manual of Mental Disorders) som en selvstændig diagnose og BED forventes medtaget i den forestående revision af det internationale diagnose system, ICD-11. Sundhedsstyrelsen gav på denne baggrund satspuljemidler til erfaringsopsamling......Titel: Afrapportering vedr. SATS-puljemidler til behandling og erfaringsopsamling vedr. BED for perioden 1. marts 2013 – 1. maj 2015. Baggrund: Binge Eating Disorder (BED), på dansk tvangsoverspisning, er en udbredt, men overset spiseforstyrrelse med alvorlige psykiske, fysiske og sociale...

  10. Dual-Fuel Fluidized Bed Combustor Prototype for Residential Heating: Steady-State and Dynamic Behavior

    Science.gov (United States)

    Cammarota, Antonio; Chirone, Riccardo; Miccio, Michele; Sollmene, Roberto; Urcluohr, Massimo

    Fluidized bed combustion of biogenic fuels can be recognized as an attractive option for an ecologically sustainable use of biofuels in residential applications. Nevertheless, biomass combustion in fluidized bed reactors presents some drawbacks that are mainly related to mixing/segregation of fuel particles/volatile matter during devolatilization inside the bed and in the freeboard or to bed agglomeration. A prototype of a 30-50 kWth fluidized bed boiler for residential heating has been designed to burn either a gaseous combustible or a solid biomass fuel or both fuels at the same time. The prototype has been equipped with a gas burner located in the wind-box to optimize the start-up stage of the boiler and with a fluidized bed characterized by a conical geometry ("Gulf Stream" circulation) to improve the mixing of the fuel particles during both devolatilization and char burn-out. The operation of the combustor adopting wood pellets as fuel has been investigated to evaluate their use in residential combustion applications. Steady-state thermally stable regimes of operation have been recognized analyzing both boiler temperatures and gaseous emissions. The optimization of the steady-state operation of the boiler in terms of gaseous emissions has been achieved by varying the nominal thermal power and air excess. An ad-hoc experimental campaign has been carried out to analyze the dynamic performance of the prototype as a response to changes of the demanded thermal power. On the basis of the experimental data, an interpretation of the dynamic behavior of the fluidized bed boiler has been proposed.

  11. Journalism as Cultures of Circulation

    DEFF Research Database (Denmark)

    Bødker, Henrik

    2013-01-01

    The universe of journalism has always consisted of interspersed texts, meanings and practices. Yet, much journalism research has often isolated either texts and/or contexts and as such assumed relations between professional practices, informed (rational) readers and (conceived) core texts...... of journalism. It is, however, more important than ever to shift attention away from texts to the processes through which they are circulated. This is partly because the many cultural forms of journalism (textual, institutional, technological, material, behavioural and imagined) are undergoing significant......, likes, comments, searches, journalist roles, writing and reading positions and identities etc. Such forms will be traced within the mediation of a specific event with the overall aim of beginning a theorization of the landscape of journalism as highly interrelated cultures of circulation....

  12. Proper Sizing of Circulation Pumps

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Nørgaard, Jørgen

    2007-01-01

    The paper describes the preliminary results from field tests of replacing various types of old pumps used for circulating water in heating systems in single- and double-family houses with new types of pumps. The tests were carried out in Denmark for the Danish Electricity Savings Trust, but the...... results can be applied to Europe in general. Despite the small sample of houses involved in the test, 15 houses, some rather safe conclusions can be drawn from the results, which showed that newly developed pumps with power consumption around 5-8 W, can perform the task of circulating the water...... sufficiently to keep the houses satisfactorily warm during the heating season of the test. The old replaced pumps used 5-10 times more power. In Europe alone, a gradual replacement of the present vastly oversized pumps with such small but sufficient pumps can save the construction of 17 large power plants as...

  13. Radioisotopic evaluation of portal circulation

    International Nuclear Information System (INIS)

    The use of a radio-tracer of portal circulation through the intestine, should prevent cruel punctures in the portal-vein or spleen as it is usually the case with traditional methods in the study of portal-system. The absorption of I-131 and Tc-99m, previously cheked in rabbits presented similar results in dogs. The time of circulation between terminal large-intestine and the liver (t-RF) was determined by external counting at hepatic level by recording radioactivity variation-time. In healthy animals the t-RF was from 20to 60 seconds, with average time of 42 seconds. In 2 animals with partial binding of portal-vein the t-RF went up to 110 and 120 seconds. (Author)

  14. Ocean circulation generated magnetic signals

    DEFF Research Database (Denmark)

    Manoj, C.; Kuvshinov, A.; Maus, S.;

    2006-01-01

    Conducting ocean water, as it flows through the Earth's magnetic field, generates secondary electric and magnetic fields. An assessment of the ocean-generated magnetic fields and their detectability may be of importance for geomagnetism and oceanography. Motivated by the clear identification of...... ocean tidal signatures in the CHAMP magnetic field data we estimate the ocean magnetic signals of steady flow using a global 3-D EM numerical solution. The required velocity data are from the ECCO ocean circulation experiment and alternatively from the OCCAM model for higher resolution. We assume an...... magnetic field, as compared to the ECCO simulation. Besides the expected signatures of the global circulation patterns, we find significant seasonal variability of ocean magnetic signals in the Indian and Western Pacific Oceans. Compared to seasonal variation, interannual variations produce weaker signals....

  15. The Sun's Shallow Meridional Circulation

    CERN Document Server

    Hathaway, David H

    2011-01-01

    The Sun's global meridional circulation is evident as a slow poleward flow at its surface. This flow is observed to carry magnetic elements poleward - producing the Sun's polar magnetic fields as a key part of the 11-year sunspot cycle. Current theories for the sunspot cycle assume that this surface flow is part of a circulation which sinks inward at the poles and turns equatorward at depths below 100 Mm. Here we use the advection of the Sun's convection cells by the meridional flow to map the flow velocity in latitude and depth. Our measurements show the largest cells clearly moving equatorward at depths below 35 Mm - the base of the Sun's surface shear layer. This surprisingly shallow return flow indicates the need for substantial revisions to solar/stellar dynamo theory.

  16. SPOUTED BED ELECTRODES (SBE) FOR DIRECT UTILIZATION OF CARBON IN FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Calo

    2004-12-01

    This Phase I project was focused on an investigation of spouted bed particulate electrodes for the direct utilization of solid carbon in fuel cells. This approach involves the use of a circulating carbon particle/molten carbonate slurry in the cell that provides a few critical functions: it (1) fuels the cell continuously with entrained carbon particles; (2) brings particles to the anode surfaces hydrodynamically; (3) removes ash from the anode surfaces and the cell hydrodynamically; (4) provides a facile means of cell temperature control due to its large thermal capacitance; (5) provides for electrolyte maintenance and control in the electrode separator(s); and (6) can (potentially) improve carbon conversion rates by ''pre-activating'' carbon particle surfaces via formation of intermediate oxygen surface complexes in the bulk molten carbonate. The approach of this scoping project was twofold: (1) adaptation and application of a CFD code, originally developed to simulate particle circulation in spouted bed electrolytic reactors, to carbon particle circulation in DCFC systems; and (2) experimental investigation of the hydrodynamics of carbon slurry circulation in DCFC systems using simulated slurry mixtures. The CFD model results demonstrated that slurry recirculation can be used to hydrodynamically feed carbon particles to anode surfaces. Variations of internal configurations were investigated in order to explore effects on contacting. It was shown that good contacting with inclined surfaces could be achieved even when the particles are of the same density as the molten carbonate. The use of CO{sub 2} product gas from the fuel cell as a ''lift-gas'' to circulate the slurry was also investigated with the model. The results showed that this is an effective method of slurry circulation; it entrains carbon particles more effectively in the draft duct and produces a somewhat slower recirculation rate, and thus higher residence

  17. Natural circulation systems: advantages and challenges

    International Nuclear Information System (INIS)

    This lecture briefly explains the principle of working of a natural circulation system, its various advantages and applications in nuclear and other industries. The major challenges to be overcome before the wide acceptance of natural circulation as the normal mode of coolant circulation in nuclear power reactors are briefly described. Classification of NCSs and the terminologies commonly encountered in natural circulation literature are also briefly explained. (author)

  18. The general circulation of the atmosphere

    OpenAIRE

    Schneider, Tapio

    2006-01-01

    Theories of how Earth's surface climate may change in the future, of how it may have been in the past, and of how it is related to climates of other planets must build upon a theory of the general circulation of the atmosphere. The view of the atmospheric general circulation presented here focuses not on Earth's general circulation as such but on a continuum of idealized circulations with axisymmetric flow statistics. Analyses of observational data for Earth's atmosphere, simulations with ide...

  19. Conservation of circulation in magnetohydrodynamics

    Science.gov (United States)

    Bekenstein; Oron

    2000-10-01

    We demonstrate at both the Newtonian and (general) relativistic levels the existence of a generalization of Kelvin's circulation theorem (for pure fluids) that is applicable to perfect magnetohydrodynamics. The argument is based on the least action principle for magnetohydrodynamic flow. Examples of the new conservation law are furnished. The new theorem should be helpful in identifying new kinds of vortex phenomena distinct from magnetic ropes or fluid vortices. PMID:11089118

  20. Electronic circulation of accounting documents

    OpenAIRE

    Kremláčková, Kateřina

    2014-01-01

    This thesis describes a circulation of accounting documents in an accounting entity, deals with legal requirements of the entire process and discusses it as a part of an internal control system of the entity. In connection with the theme of the work there are also defined legislative conditions for using information and communication technologies and introduced possibilities of involving these technologies in the process of processing of the accounting documents. Above all the electronic data...