Sample records for circulating fluid bed

  1. Macroscopic modelling of fluid dynamics in large-scale circulating fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Pallares, David; Johnsson, Filip [Department of Energy and Environment, Energy Conversion, Chalmers University of Technology, SE 412 96 Goeteborg (Sweden)


    Macroscopic (semi-empirical) models for fluid dynamics of circulating fluidized bed (CFB) units are presented, with emphasize on applications for conditions relevant to industrial units such as fluidized-bed combustors. In order to make a structured analysis of the models, the CFB unit is divided into 6 fluid dynamical zones, which have been shown to exhibit different fluid-dynamical behaviour (bottom bed, freeboard, exit zone, exit duct, cyclone and downcomer and particle seal). The paper summarizes the main basis and assumptions for each model together with major advantages and drawbacks. In addition, a practical example on how a selected set of these local models can be linked to an overall model of the fluid dynamics of the entire CFB loop is presented. It is shown that it is possible to reach good agreement between the overall model and experimental data from industrial units. (author)

  2. Recent circulating fluid bed (CFB) boiler projects in the U. S. and Europe

    Energy Technology Data Exchange (ETDEWEB)

    Lund, T.; Anders, R.; Capuano, L.; Fox, S.; Plass, L.


    Lurgi Chemie and Huettentechnik has developed the circulating fluid bed process for solid fuel combustion and steam generation. This process has been commercially proven at Luenen, West Germany. Lurgi Chemie is also currently building two additional CFB boilers in Germany which will produce 595,000 pph and 331,000 pph of steam, respectively. In the U.S., Lurgi Corporation and Combustion Engineering have signed an agreement to jointly design, manufacture and sell CFB plants in the U.S. and Canada. The circular fluid bed process itself is a system which can burn a wide variety of inexpensive, low grade solid fules efficiently, economically and in an environmentally acceptable manner. The details of these CFB boilers are examined in this article.

  3. Circulating fluidized bed hydrodynamics experiments for the multiphase fluid dynamics research consortium (MFDRC).

    Energy Technology Data Exchange (ETDEWEB)

    Oelfke, John Barry; Torczynski, John Robert; O' Hern, Timothy John; Tortora, Paul Richard; Bhusarapu, Satish (; ); Trujillo, Steven Mathew


    An experimental program was conducted to study the multiphase gas-solid flow in a pilot-scale circulating fluidized bed (CFB). This report describes the CFB experimental facility assembled for this program, the diagnostics developed and/or applied to make measurements in the riser section of the CFB, and the data acquired for several different flow conditions. Primary data acquired included pressures around the flow loop and solids loadings at selected locations in the riser. Tomographic techniques using gamma radiation and electrical capacitance were used to determine radial profiles of solids volume fraction in the riser, and axial profiles of the integrated solids volume fraction were produced. Computer Aided Radioactive Particle Tracking was used to measure solids velocities, fluxes, and residence time distributions. In addition, a series of computational fluid dynamics simulations was performed using the commercial code Arenaflow{trademark}.

  4. Fluid-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, G.; Schoebotham, N.


    In Energy Equipment Company's two-stage fluidized bed system, partial combustion in a fluidized bed is followed by burn-off of the generated gases above the bed. The system can be retrofitted to existing boilers, and can burn small, high ash coal efficiently. It has advantages when used as a hot gas generator for process drying. Tests on a boiler at a Cadbury Schweppes plant are reported.

  5. LT-CFB. Applications and follow-up. Oestkraft. Appendix 2. [Low Temperature Circulating Fluid Bed gasifier]; LT-CFB. Anvendelsesmuligheder og opfoelgning. Oestkraft. Bilag 2

    Energy Technology Data Exchange (ETDEWEB)



    This appendix describes a feasibility study on the gasification of straw in a Low Temperature Circulating Fluid Bed (LT-CFB) at the CHP plant Oestkraft Production A/S. The straw to be used is assumed purchased from local farmers. The annual amount of straw is estimated at 20,000 tons. The straw's upper calorific value is 20.1 MJ / kg. Distributed on 8760 annual operating hours the straw will have a thermal efficiency in the gasifier at 8.3 MW (net calorific value). The product gas from the gasifier is used as a supplemental fuel in an existing boiler, which today is fired with coal or oil. The feasibility study includes a comprehensive proposal for construction of the facility, forecasting of investment and the development of economy model to calculate the profitability of the project. The project proposal is based on the plant annually using 20,000 tons of straw for product gas over 8,760 production hours. The result of the economic analyses shows that the costs exceed the income, and thus there is a negative payback period for the project. Investment demand is calculated to approx. 66 million DKK. (LN)


    Energy Technology Data Exchange (ETDEWEB)

    Jukkola, Glen


    Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power’s Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: • scale up of gas to solid heat transfer • high temperature finned surface design • the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas

  7. Analysis of circulating fluidized bed combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Takehiko; Shimizu, Tadaaki; Yang, Guilin


    Fluidized bed combustors are commercialized as a technology to combust solid fuels with higher efficiency and lower emission and have functions of both combustion and simultaneous desulfurization and NOx reduction with dense phase fluidized beds but it is not so easy to realize these problems. The technology of circulating fluidized bed coal combustion is expected to offer potential break-through of various problems. But the details are not reported so far. Quantitative analysis of present situations was conducted and future problems were shown with officially available informations. This analysis includes the circulating rate and loading of solids, heat recovery and heat transfer rate as a function of loading of solids, the design of cyclones related to high solid concentration within the combustor, sulfur retention with reduced Ca/S ratio and problems related to NOx reduction to be developed in future. (51 refs, 23 figs, 8 tabs)

  8. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)


    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  9. Circulating fluidized bed boilers design and operations

    CERN Document Server

    Basu, Prabir


    This book provides practicing engineers and students with insight into the design and operation of circulating fluidized bed (CFB) boilers. Through a combination of theoretical concepts and practical experience, this book gives the reader a basic understanding of the many aspects of this subject.Important environmental considerations, including solid waste disposal and predicted emissions, are addressed individually in separate chapters. This book places an emphasis on combustion, hydrodynamics, heat transfer, and material issues, and illustrates these concepts with numerous examples of pres

  10. Nucla circulating atmospheric fluidized bed demonstration project

    Energy Technology Data Exchange (ETDEWEB)


    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  11. Fluid bed solids heater. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Preuit, L. C.


    A solids heater which operates at up to 2000 F was designed, fabricated, installed and operated through checkout at the Morgantown Energy Technology Center at Morgantown, West Virginia. The system, designated the 2000 F Fluid Bed Solids Heater (FBSH) uses a fluidized bed to heat limestone to 600 F and aluminium oxide or silicon carbide to 2000 F and discharges heated solids upon demand. The FBSH with added valve handling and pressurization equipment is known as the Valve Hot Solids Test Unit and is intended for use by the US Department of Energy for testing of valves for severe service applications in coal conversion and utilization processes. The FBSH as designed and supplied by Combustion Power Company includes process equipment, controls, the enclosing building and other associated equipment. In the 600 F range of operation it can circulate limestone through two valve test trains simultaneously on a continuous basis. Only one valve test train is used for 2000 F solids and operation in that range is also continuous. Limestone, crushed to minus 5/16 size, is heated, discharged, and recycled at a maximum average rate of 250 lb/min while aluminum oxide or silicon carbide, No. 8 grit, is circulated at rates up to 167 lb/min. The FBSH control system is designed for automatic operation, and capability is included for external computerized data acquisition and/or supervisory control. An operating and maintenance manual and as-built drawings have been submitted. This report describes the FBSH equipment, its design basis, and its operation. It has been prepared and submitted in fulfillment of Contract Number DIAC05-77ET10499.

  12. Nucla circulating atmospheric fluidized bed demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Raymond E.


    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  13. Single particle behaviour in circulating fluidized bed combustors

    DEFF Research Database (Denmark)

    Erik Weinell, Claus


    An investigation of single particle behaviour in a circulating fluidized bed combustor is described, relating to sulphur capture reactions by limestone under alternate oxidizing and reducing conditions present in a circulating fluidized bed combustor, and to the devolatilization and burn out...

  14. Scale-up guidelines for a circulating fluidized bed biomass pyrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    Haslinger, W.; Hofbauer, H. [Technische Univ., Vienna (Austria); Gavriil, L.; Boukis, I. [Center for Renewable Energy Sources (Greece)


    A new circulating fluidized bed design has been proposed and successfully operated at lab scale (10 kg/h biomass feed). This fluidized bed system consists of a bubbling bottom bed, above this bottom bed a riser, a cyclone and a return leg. The heat necessary for the pyrolysis process is produced in the bottom bed by burning some solid residue from the pyrolysis that circulates together with the bed material as the bottom bed is fluidized with air. The flue gas from the bottom bed enters into the riser and serves there as transport gas. The circulation rate is very sensitive to the amount of bed inventory and the fluidization velocities. As the riser uses the flue gas of the dense bottom bed the ratio of the cross sections of the two fluidized beds has to be in a certain range to get a satisfying operation. The fluid mechanic behavior of this new circulating fluidized bed pyrolyzer has been studied using three different cold flow models. One cold flow model was built for the existing 10 kg/h lab scale pyrolyzer according to Glicksman's (1984) similarity rules. The purpose of this cold model was to study the fluid mechanics and optimize the performance with respect to the pyrolysis process. For scale-up purposes further cold flow models (135 kg/h, 1000 kg/h) have been designed, built and investigated intensively. The idea and the new design of the pyrolyzer, the results of the experimental work as well as the scale-up criteria will be presented. (orig.)

  15. Numerical simulation of a full-loop circulating fluidized bed under different operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yupeng [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Musser, Jordan M. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Li, Tingwen [National Energy Technology Lab. (NETL), Morgantown, WV (United States); AECOM, Morgantown, WV (United States); Rogers, William A. [National Energy Technology Lab. (NETL), Morgantown, WV (United States)


    Both experimental and computational studies of the fluidization of high-density polyethylene (HDPE) particles in a small-scale full-loop circulating fluidized bed are conducted. Experimental measurements of pressure drop are taken at different locations along the bed. The solids circulation rate is measured with an advanced Particle Image Velocimetry (PIV) technique. The bed height of the quasi-static region in the standpipe is also measured. Comparative numerical simulations are performed with a Computational Fluid Dynamics solver utilizing a Discrete Element Method (CFD-DEM). This paper reports a detailed and direct comparison between CFD-DEM results and experimental data for realistic gas-solid fluidization in a full-loop circulating fluidized bed system. The comparison reveals good agreement with respect to system component pressure drop and inventory height in the standpipe. In addition, the effect of different drag laws applied within the CFD simulation is examined and compared with experimental results.

  16. Presentation of a new plant design, based on an internally circulating fluidized bed system for catalytic cracking; Fluid Catalytic Cracking: Entwicklung einer neuartigen FCC-Anlage mit intern zirkulierendem Wirbelschichtsystem

    Energy Technology Data Exchange (ETDEWEB)

    Reichhold, A.; Fimberger, W.; Hofbauer, H. [Technische Univ. Vienna (Austria). Inst. fuer Verfahrenstechnik, Brennstofftechnik und Umwelttechnik


    An internally circulating fluidized bed system was developed for use as a catalytic cracking system. The plant (hot unit) was conceived for a feed rate of 1 to 4 kg/h. The hot unit was developed based on data obtained from literature (e.g. temperature, cat to oil ratio and contact time). Important fluid dynamic parameters, such as the circulation rate and the gas separation efficiency between reaction and regeneration zone were determined in an acrylic model (cold unit) at room temperature. Scaling relationships based on the theory of Glicksman were used as much as possible to design the cold unit in order to give similitude between cold and hot unit. Important parameters influencing the catalyst circulation rate could be determined exactly. Gas separation efficiency measurements between reaction and regeneration zone proved the safety of the system. The setting of the parameters during the trials was determined based on data from the cold unit and literature (e.g. temperature, cat to oil ratio, and contact time). The trials in the hot unit were carried out with vacuum gas oil and FCC-equilibrium catalyst. The experiments ran successfully and the analysis of the cracking products matched expectations. Furthermore the new system can also be used as a plant for other reactions such as catalytic alkylation and isomerisation. (orig.) [Deutsch] Ein intern zirkulierendes Wirbelschichtsystem zur Durchfuehrung des Fluid Catalytic Cracking Verfahrens wurde entwickelt. Die Technikumsanlage wurde fuer eine Feedrate von ca. 1 bis 4 kg/h ausgelegt. Basierend auf Daten aus der Literatur (z.B. Temperatur, Kat-Oel-Verhaeltnis und Kontaktzeit) wurde das Heissmodell aus einer Spezialstahllegierung gefertigt und aufgebaut. Wichtige stroemungsmechanische Parameter, wie die Umlaufrate und Gastrenneffizienz zwischen dem Reaktor und dem Regenerator, wurden in einem Modell aus Acrylglas (sogenanntes Kaltmodell) bei Raumtemperatur bestimmt. Um die Aehnlichkeit zwischen dem Kalt- und dem

  17. Modeling an oil shale fluid bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vasalos, I.A.; Lefkopoulos, A.; Georgiadou, M.


    Oil shale retorting involves heating of solid particles and pyrolysis of the organic matter to produce hydrocarbon liquid shale oil. During the pyrolysis process, part of the organic material remains in the inorganic matrix as coke residue. Combustion of the coke residue can provide the energy necessary for retorting. In this paper the use of a fluid bed combustor to burn the coke residue is examined. The basis for predicting the performance of the fluid bed combustor is the application of the two-phase theory of fluidization. The carbon burning efficiency was calculated as a function of temperature, pressure, and bubble size. For the same conditions, the carbonate decomposition and the associated energy loss were also established. Conditions were found which make feasible complete carbon combustion with minimum carbonate decomposition.

  18. Modeling an oil shale fluid bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vasalos, I.A.; Lefkopoulos, A.; Georgiadou, M.


    Oil shale retorting involves heating of solid particles and pyrolysis of the organic matter to produce hydrocarbon liquid--shale oil. During the pyrolysis process part of the organic material remains in the inorganic matrix as coke residue. Combustion of the coke residue can provide the energy necessary for retorting. In this paper the use of a fluid bed combustor to burn the coke residue is examined. The basis for predicting the performance of the fluid bed combustor is the application of the two-phase theory of fluidization. The carbon burning efficiency was calculated as a function of temperature, pressure, and bubble size. For the same conditions the carbonate decomposition and the associated energy loss was also established.

  19. Cold flow model investigations of the countercurrent flow of a dual circulating fluidized bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Johannes C.; Proell, Tobias; Kitzler, Hannes; Pfeifer, Christoph; Hofbauer, Hermann [Vienna University of Technology, Institute of Chemical Engineering, Vienna (Austria)


    A novel fluidized bed gasification concept with enhanced gas-particle interaction combining two circulating fluidized bed reactors is proposed. Cold flow model results show the feasibility of the concept with regard to fluid dynamics. The aim of the design is to generate a nitrogen (N{sub 2}) free product gas with low tars and fines contents. Therefore, the system is divided into an air/combustion and a fuel/gasification reactor. Two gas streams are obtained separately. The two reactors are interconnected via loop seals to assure the global circulation of bed material and to avoid gas leakages from one reactor to the other. The global circulation rate is driven by the gas velocity in the air/combustion reactor. Furthermore, the fuel/gasification reactor itself is a circulating fluidized bed with the special characteristic of almost countercurrent flow conditions for the gas phase and bed material particles. By simple geometrical modifications, it is possible to achieve well-mixed flow conditions in the fuel/gasification reactor along the full height. The gas velocity and the geometrical properties in the fuel/gasification reactor are chosen in such a way that the entrainment of coarse particles is low at the top. Due to the dispersed downward movement of the bed material particles and the feedstock input at defined locations of the fuel/gasification reactor, no volatiles are produced in the upper regions and the problems of insufficient gas phase conversion and high tar contents are avoided. (orig.)

  20. Refractory experience in circulating fluidized bed combustors, Task 7

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.


    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  1. Overall modelling of circulating fluidised bed boilers

    Energy Technology Data Exchange (ETDEWEB)

    Werner, A.; Grausam, M.; Linzer, W. [Technische Univ., Vienna (Austria). Inst. fuer Technische Waermelehre; Loeffler, G.; Winter, F.; Hofbauer, H. [Technische Univ., Vienna (Austria). Inst. for Chemical Engineering, Fuel and Environmental Technology


    In the following an engineering simulation program for CFB-boilers is presented, which has been developed during the last years at ITW. Some parts of the model have been designed during a cooperation of different departments of TU. As a result the NO{sub x}/N{sub 2}O-model, which will be described more detailed in the following, was contributed from the Institute for Chemical Engineering. Studies about secondary air injection (and mixing) where done from the Institute of Fluid Dynamics and Heat Transfer. The main purposes of the simulator are the calculation of composition and size distribution of the boiler's inventory material, the determination of the heat flows at the heat exchanger surfaces installed to the furnace and the determination of flue gas composition, where especially the nitrogen compounds and SO{sub 2} are considered. (orig.)

  2. Circulating hyaluronate: concentration in different vascular beds in man

    DEFF Research Database (Denmark)

    Bentsen, K D; Henriksen, Jens Henrik Sahl; Laurent, T C


    The plasma concentration of hyaluronate (hyaluronic acid; HA) was measured in different vascular beds in order to determine regional kinetics of endogenous HA in fasting, supine subjects with normal (n = 6) or moderately decreased kidney function (n = 9). In both groups hepatic venous HA was sign......The plasma concentration of hyaluronate (hyaluronic acid; HA) was measured in different vascular beds in order to determine regional kinetics of endogenous HA in fasting, supine subjects with normal (n = 6) or moderately decreased kidney function (n = 9). In both groups hepatic venous HA...... abnormally high values of circulating HA in patients with diseases in these organs....

  3. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. 1990 Annual report

    Energy Technology Data Exchange (ETDEWEB)


    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  4. Gasification of sawdust in pressurised internally circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, R.; Lindblom, M. [Lund Univ. (Sweden). Dept. of Chemical Engineering


    A test plant for pressurised gasification of biofuels in a internally circulating fluidized bed has been built at the department of Chemical Engineering II at the University of Lund. The design performance is set to maximum 20 bar and 1 050 deg C at a thermal input of 100 kW or a maximum fuel input of 18 kg/in. The primary task is to study pressurised gasification of biofuels in relation to process requirements of the IGCC concept (integrated gasification combined cycle processes), which includes studies in different areas of hot gas clean-up in reducing atmosphere for gas turbine applications. (orig.)

  5. Ten residual biomass fuels for circulating fluidized-bed gasification

    Energy Technology Data Exchange (ETDEWEB)

    Drift, A. van der; Doorn, J. van [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Vermeulen, J.W. [NV Afvalzorg, Haarlem (Netherlands)


    In co-operation with a Dutch company (NV Afvalzorg) and the Dutch agency for energy and environment (Novem), ECN has successfully tested 10 different biomass residues in its 500 kW{sub th} circulating fluidized-bed gasification facility. Among the fuels used as demolition wood (both puree and mixed with sewage sludge and paper sludge), verge grass, railroad ties, cacao shells and different woody fuels. Railroad ties turn out to contain very little (heavy) metals. Initially, fuel feeding problems often impeded smooth operation. Contrary to feeding systems, the circulating fluidized-bed gasification process itself seems very flexible concerning the conversion of different kinds of biomass fuels. The fuel moisture content is one of the most important fuel characteristics. More moisture means that more air is needed to maintain the process temperature resulting in better carbon conversion and lower tar emission but also lower product gas heating value and lower cold gas efficiency. So, for a good comparison of the gasification behaviour of different fuels, the moisture content should be similar. However, the moisture content should be defined on an ash-free basis rather than on total mass (the usual way). Some of the ashes produced and retained in the second cyclone were analysed both for elemental composition and leaching behaviour. It turned out that the leaching rate of Mo and Br, elements only present in small concentrations, are preventing the ash to be considered as inert material according to the Dutch legislation for dumping on landfill sites. (Author)

  6. Bed-To-Wall Heat Transfer in a Supercritical Circulating Fluidised Bed Boiler

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur


    Full Text Available The purpose of this work is to find a correlation for heat transfer to walls in a 1296 t/h supercritical circulating fluidised bed (CFB boiler. The effect of bed-to-wall heat transfer coefficient in a long active heat transfer surface was discussed, excluding the radiation component. Experiments for four different unit loads (i.e. 100% MCR, 80% MCR, 60% MCR and 40% MCR were conducted at a constant excess air ratio and high level of bed pressure (ca. 6 kPa in each test run. The empirical correlation of the heat transfer coefficient in a large-scale CFB boiler was mainly determined by two key operating parameters, suspension density and bed temperature. Furthermore, data processing was used in order to develop empirical correlation ranges between 3.05 to 5.35 m·s-1 for gas superficial velocity, 0.25 to 0.51 for the ratio of the secondary to the primary air, 1028 to 1137K for bed temperature inside the furnace chamber of a commercial CFB boiler, and 1.20 to 553 kg·m-3 for suspension density. The suspension density was specified on the base of pressure measurements inside the boiler’s combustion chamber using pressure sensors. Pressure measurements were collected at the measuring ports situated on the front wall of the combustion chamber. The obtained correlation of the heat transfer coefficient is in agreement with the data obtained from typical industrial CFB boilers.

  7. Computational fluid dynamics analysis of aerosol deposition in pebble beds (United States)

    Mkhosi, Margaret Msongi


    The Pebble Bed Modular Reactor is a high temperature gas cooled reactor which uses helium gas as a coolant. The reactor uses spherical graphite pebbles as fuel. The fuel design is inherently resistant to the release of the radioactive material up to high temperatures; therefore, the plant can withstand a broad spectrum of accidents with limited release of radionuclides to the environment. Despite safety features of the concepts, these reactors still contain large inventories of radioactive materials. The transport of most of the radioactive materials in an accident occurs in the form of aerosol particles. In this dissertation, the limits of applicability of existing computational fluid dynamics code FLUENT to the prediction of aerosol transport have been explored. The code was run using the Reynolds Averaged Navier-Stokes turbulence models to determine the effects of different turbulence models on the prediction of aerosol particle deposition. Analyses were performed for up to three unit cells in the orthorhombic configuration. For low flow conditions representing natural circulation driven flow, the laminar flow model was used and the results were compared with existing experimental data for packed beds. The results compares well with experimental data in the low flow regime. For conditions corresponding to normal operating of the reactor, analyses were performed using the standard k-ɛ turbulence model. From the inertial deposition results, a correlation that can be used to estimate the deposition of aerosol particles within pebble beds given inlet flow conditions has been developed. These results were converted into a dimensionless form as a function of a modified Stokes number. Based on results obtained in the laminar regime and for individual pebbles, the correlation developed for the inertial impaction component of deposition is believed to be credible. The form of the correlation developed also allows these results to be applied to pebble beds of different

  8. Single-particle behaviour in circulating fluidized beds

    DEFF Research Database (Denmark)

    Erik Weinell, Claus; Dam-Johansen, Kim; Johnsson, Jan Erik


    This paper describes an experimental investigation of single-particle behaviour in a cold pilot-scale model of a circulating fluidized bed combustor (CFBC). In the system, sand is recirculated by means of air. Pressure measurements along the riser are used to determine the suspension density....... A radioactive tracking facility, which detects single radioactive particles, is developed and applied to determine the dynamic picture of the particle trajectories in the simulated boiler. The tracer particles are observed to move between the zone above and below the secondary air inlet with a mean frequency...... of about 1 Hz under the present operating conditions. This relatively high frequency is due to the fact that most of the particle trajectories take place just around the secondary air inlet. It is found that the upward particle velocity in the upper dilute transport zone decreases with the particle size...

  9. Nucla circulating atmospheric fluidized bed demonstration project. Final report

    Energy Technology Data Exchange (ETDEWEB)


    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute`s decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  10. Attempts on cardoon gasification in two different circulating fluidized beds

    Directory of Open Access Journals (Sweden)

    Chr. Christodoulou


    Full Text Available Few tests have been carried out in order to evaluate the use of cardoon in gasification and combustion applications most of the researchers dealt with agglomeration problems. The aim of this work is to deal with the agglomeration problem and to present a solution for the utilization of this biofuel at a near industrial application scale. For this reason, two experiments were conducted, one in TU Delft and one in Centre for Research and Technology Hellas (CERTH, using fuel cardoon and 50% w/w cardoon blended with 50% w/w giant reed respectively. Both experimental campaigns were carried out in similar atmospheric circulating fluidized bed gasifiers. Apart from the feedstock, the other differences were the gasification medium and the bed material used in each trial. The oxidizing agent at TUD׳s run was O2/steam, whereas CERTH׳s tests used air. When experiments with the cardoon 50% w/w–giant reed 50% w/w blend were performed no agglomeration problems were presented. Consequently, gasification could be achieved in higher temperature than that of pure cardoon which led to the reduction of tar concentration.

  11. Experimental Exploration of Particle-Scale Bed Load Transport and Near-Bed Fluid Velocities (United States)

    Fathel, S. L.; Furbish, D. J.; Schmeeckle, M. W.


    Bed load sediment particles move as complex motions over the surface of a stream bed, accelerating and decelerating in response to the near-bed turbulence and due to particle-bed interactions. Using high-speed imagery of coarse sand particles on a planer bed surface, we track individual particle motions from start to stop, combined with measurements of near-bed fluid velocities to better characterize the relationship between these properties. These simultaneous measurements provide an initial step towards describing the dynamic relationship between the fluid and particle entrainment on the grain-scale. We start with an Eulerian a priori method wherein we grid the analyzed area and compare the fluid velocity time series to the entrainment time series within each grid space. We progressively increase the size of the grids and monitor the correlation between the two time series. We then use an a posteriori method that focuses on the fluid velocities in the vicinity of entrained particles both at the moment of entrainment and prior to the initiation of motion. We further our analysis of the relationship between particle motions and the near-bed fluid using detailed measurements of particle motions to calibrate estimates of the sediment load using a pixel differencing method. This allows us to examine connections between the fluid and particle activity over many frames rather than over the limited, manually tracked time period. Furthermore, this allows us to empirically define a distribution of particle wait times, or the duration of time between successive entrainment events over a set area, which acts to determine the transport intensity. Preliminary results suggest that there is not a clear correlation between near-bed fluid velocities and particle entrainment. In absence of a correlation we find that (1) we must think more deeply about collective entrainment and how it 'works', and (2) we must consider how the microstructure of the particles on the bed act to set up

  12. Rehydration ratio of fluid bed-dried vegetables

    Indian Academy of Sciences (India)

    Fluid-bed drying of vegetable pieces has been investigated. The vegetables used have been potatoes, parsley roots, celery roots and carrots of various dimensions. Starting water content was: potatoes 78%, parsley roots 85.1%, celery roots 93.6%, and carrots 88.6%. Temperatures of fluidisation have varied from 60° to ...

  13. Demonstration of an advanced circulation fludized bed coal combustor phase 1: Cold model study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Govind, R. [Cincinnati Univ., OH (United States). Dept. of Chemical Engineering


    It was found that there was a strong dependence of the density profile on the secondary air injection location and that there was a pronounced solid separation from the conveying gas, due to the swirl motion. Furthermore, the swirl motion generated strong internal circulation patterns and higher slip velocities than in the case of nonswirl motion as in an ordinary circulating fluidized bed. Radial solids flux profiles were measured at different axial locations. The general radial profile in a swirling circulating fluidized bed indicated an increased downward flow of solids near the bed walls, and strong variations in radial profiles along the axial height. For swirl numbers less than 0.9, which is typical for swirling circulating fluidized beds, there is no significant increase in erosion due to swirl motion inside the bed. Pending further investigation of swirl motion with combustion, at least from our cold model studies, no disadvantages due to the introduction of swirl motion were discovered.

  14. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rokkam, Ram [Iowa State Univ., Ames, IA (United States)


    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  15. Modeling N2O Reduction and Decomposition in a Circulating Fluidized bed Boiler

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Åmand, Lars-Erik; Dam-Johansen, Kim


    The N2O concentration was measured in a circulating fluidized bed boiler of commercial size. Kinetics for N2O reduction by char and catalytic reduction and decomposition over bed material from the combustor were determined in a laboratory fixed bed reactor. The destruction rate of N2O in the comb......The N2O concentration was measured in a circulating fluidized bed boiler of commercial size. Kinetics for N2O reduction by char and catalytic reduction and decomposition over bed material from the combustor were determined in a laboratory fixed bed reactor. The destruction rate of N2O...... in the combustion chamber and the cyclone was calculated taking three mechanisms into account: Reduction by char, catalytic decomposition over bed material and thermal decomposition. The calculated destruction rate was in good agreement with the measured destruction of N2O injected at different levels in the boiler...

  16. Fluid Bed Technology: Overview and Parameters for Process Selection


    Saurabh Srivastava; Garima Mishra


    Formulation development is the most emerging and upcoming face of pharmaceutical technology in the current era. It is contemporarily capturing the market leaps and bounds with recent trends and developments with its innovative techniques. The day-to-day advancements in the research have provided an edge to this brilliant branch of pharmaceutical sector for not only uplifting the pharmacy profession but also to conquer the diseased state for nurturing the health and humanity. The fluid-bed tec...

  17. Model-free adaptive control of supercritical circulating fluidized-bed boilers (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L


    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  18. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors (United States)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling

  19. Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler. (United States)

    You, Changfu; Xu, Xuchang


    Ventilation air methane (VAM) accounts for 60-80% of the total emissions from coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible.

  20. Standpipe models for diagnostics and control of a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Ludlow, James C. [retired; Panday, Rupen [REM Engineering PLLC


    Two models for a Circulating Fluidized Bed (CFB) standpipe were formulated, implemented and validated to estimate critical CFB operational parameters. The first model continuously estimates standpipe bed height using incremental pressure measurements within the standpipe. The second model estimates variations in the void fraction along the standpipe using the Ergun equation in conjunction with the overall pressure drop across the bed, solids circulation rate and the standpipe aeration flows introduced at different locations of the pipe. The importance of different standpipe parameters obtained from these models is discussed in terms of successful operation of the overall CFB system. Finally, the applications of these models are shown in improving the solids circulation rate measurement and in calculating riser inventory.

  1. Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Rong [Iowa State Univ., Ames, IA (United States)


    Fluidized beds (FB) reactors are widely used in the polymerization industry due to their superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local overheating of polymer particles and excessive agglomeration leading to FB reactors defluidization still persist and limit the range of operating temperatures that can be safely achieved in plant-scale reactors. Many people have been worked on the modeling of FB polymerization reactors, and quite a few models are available in the open literature, such as the well-mixed model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor. Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid dynamics on chemical reactor performance. For single-phase flows, CFD models for turbulent reacting flows are now well understood and routinely applied to investigate complex flows with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing rapidly and it is now possible to predict reasonably well the flow characteristics of gas-solid FB reactors with mono-dispersed, non-cohesive solids. This thesis is organized into seven chapters. In Chapter 2, an overview of fluidized bed polymerization reactors is given, and a simplified two-site kinetic mechanism are discussed. Some basic theories used in our work are given in detail in Chapter 3. First, the governing equations and other constitutive equations for the multi-fluid model are summarized, and the kinetic theory for describing the solid stress tensor is discussed. The detailed derivation of DQMOM for the population balance equation is given as the second section. In this section

  2. Reaction engineering simulations of oxidative coupling of methane in a circulating fluidized-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pannek, U.; Mleczko, L. [Bochum Univ. (Germany). Lehrstuhl fuer Technische Chemie


    Oxidative coupling of methane in a circulating fluidized-bed reactor was investigated by means of reaction engineering modeling and simulations. A model of the reactor that combines comprehensive kinetics of the OCM and a model for the description of the bed hydrodynamics was developed and applied to predict the reactor performance. The important goal of the simulations was a better understanding of the effect of the hydrodynamic conditions in the riser reactor on the reaction pathway and the product distribution. (orig.)

  3. Reactive Gas Solids Flow in Circulating Fluidised Beds

    DEFF Research Database (Denmark)

    Hjertager, Bjørn Helge; Solberg, Tron; Hansen, Kim Granly


    Progress in modelling and simulation of flow processes in gas/particle systems carried out at the authors? research group are presented. Emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi fluid techniques. Turbulence modelling strategies for gas....../particle flows based on the kinetic theory for granular flows are given. Sub models for the interfacial transfer processes and chemical kinetics modelling are presented. Examples are shown for several gas/particle systems including flow in risers, segregation by size and reacting systems....

  4. Refractory experience in circulating fluidized bed combustors, Task 7. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.


    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  5. Basic tests of in-furnace desulfurization in a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Fujima, Y.; Ichimura, S.; Ohshima, K.


    This paper reports a study of the relation between lime reactivity and the desulfurization efficiency achieved in a circulating fluidized bed equipped with lime injection. Theoretical calculations were made of the reaction between Ca and SO/sub 2/, based on the assumption that this reaction takes place in a dilute zone. The required reaction time for Ca particles was found to coincide closely with the residence time of particles in a dilute bed. The authors give an equation relating percentage desulfurization with the Ca particle circulation rate. 4 refs., 6 figs.

  6. Statistics of velocity fluctuations of Geldart A particles in a circulating fluidized bed riser (United States)

    Vaidheeswaran, Avinash; Shaffer, Franklin; Gopalan, Balaji


    The statistics of fluctuating velocity components are studied in the riser of a closed-loop circulating fluidized bed with fluid catalytic cracking catalyst particles. Our analysis shows distinct similarities as well as deviations compared to existing theories and bench-scale experiments. The study confirms anisotropic and non-Maxwellian distribution of fluctuating velocity components. The velocity distribution functions (VDFs) corresponding to transverse fluctuations exhibit symmetry, and follow a stretched-exponential behavior up to three standard deviations. The form of the transverse VDF is largely determined by interparticle interactions. The tails become more overpopulated with an increase in particle loading. The observed deviations from the Gaussian distribution are represented using the leading order term in the Sonine expansion, which is commonly used to approximate the VDFs in kinetic theory for granular flows. The vertical fluctuating VDFs are asymmetric and the skewness shifts as the wall is approached. In comparison to transverse fluctuations, the vertical VDF is determined by the local hydrodynamics. This is an observation of particle velocity fluctuations in a large-scale system and their quantitative comparison with the Maxwell-Boltzmann statistics.

  7. An Experimental and Computational Study of Multiphase Flow Behaviour in Circulating Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    Mathiesen, Vidar


    Gas/solid flows have been studied extensively, mainly because they are important in nuclear, chemical and petroleum industries. This thesis describes an experiment done at two different circulating fluidized bed systems. Laser Doppler anemometry (LDA) and phase Doppler anemometry (PDA) were used to measure mean and fluctuating velocity, diameter and solids concentration. A typical core-annulus flow was obtained in both cases. The measurements show a relative mean velocity as well as a relative fluctuating velocity between different particle sizes. An axial segregation by size and its variation with the superficial gas velocity are demonstrated. Significant radial segregation is found in both risers. A three-dimensional Computational Fluid Dynamics model was developed based on Eulerian description of the phases where the kinetic theory of granular flow is the basis of the turbulence modelling in the solid phases. There are one gas phase and any number of solid phases. Simulations of flow behaviour in two- and three-dimensions agree well with experiments and the model is able to handle axial segregation by size for different superficial gas velocities and particle size distributions. 107 refs., 79 figs., 6 tabs.

  8. Hydrodynamics of a hybrid circulating fluidized bed reactor with a partitioned loop seal system

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Dal-Hee; Moon, Jong-Ho; Jin, Gyoung Tae; Shun, Dowon [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Yun, Minyoung; Park, Chan Seung; Norbeck, Joseph M. [University of California, Riverside (United States)


    A circulating fluidized bed (CFB) with a hybrid design has been developed and optimized for steam hydrogasification. The hybrid CFB is composed of a bubbling fluidized bed (BFB) type combustor and a fast fluidized bed (FB) type gasifier. Char is burnt in the combustor and the generated heat is supplied to the gasifier along with the bed materials. Two different types of fluidized beds are connected to each other with a newly developed partitioned loop seal to avoid direct contact between two separate gas streams flowing in each fluidized bed. Gas mixing tests were carried out with Air and Argon in a cold model hybrid CFB to test the loop seal efficiency. Increase in solid inventory in the loop seal can improve the gas separation efficiency. It can be realized at higher gas velocity in fast bed and with higher solid inventory in the loop seal system. In addition, bed hydrodynamics was investigated with varying gas flow conditions and particle sizes in order to obtain a full understanding of changes of solid holdup in the FB. The solid holdup in the FB increased with increasing gas velocity in the BFB. Conversely, increase in gas velocity in the FB contributed to reducing the solid holdup in the FB. It was observed that changing the particle size of bed material does not have a big impact on hydrodynamic parameters.

  9. Study on biomass circulation and gasification performance in a clapboard-type internal circulating fluidized bed gasifier. (United States)

    Zhou, Zhao-qiu; Ma, Long-long; Yin, Xiu-li; Wu, Chuang-zhi; Huang, Li-cheng; Wang, Chu


    We investigated the solid particle flow characteristics and biomass gasification in a clapboard-type internal circulating fluidized bed reactor. The effect of fluidization velocity on particle circulation rate and pressure distribution in the bed showed that fluidization velocities in the high and low velocity zones were the main operational parameters controlling particle circulation. The maximum internal circulation rates in the low velocity zone came almost within the range of velocities in the high velocity zone, when u(H)/u(mf)=2.2-2.4 for rice husk and u(H)/u(mf)=3.5-4.5 for quartz sand. In the gasification experiment, the air equivalence ratio (ER) was the main controlling parameter. Rice husk gasification gas had a maximum heating value of around 5000 kJ/m(3) when ER=0.22-0.26, and sawdust gasification gas reached around 6000-6500 kJ/m(3) when ER=0.175-0.24. The gasification efficiency of rice husk reached a maximum of 77% at ER=0.28, while the gasification efficiency of sawdust reached a maximum of 81% at ER=0.25.


    A model for fine particle agglomeration in circulating fluidized bed absorbers (CFBAS) has been developed. It can model the influence of different factors on agglomeration, such as the geometry of CFBAs, superficial gas velocity, initial particle size distribution, and type of ag...

  11. Page 1 Circulating fluidized bed reactor design and operation 43 4 ...

    Indian Academy of Sciences (India)

    For wood and other low sulphur fuels, lower or higher temperatures can be adopted. Combustion efficiencies for circulating beds are generally of the order of ... amount of external insulation on the recycle vessel and L-valve. Increasing the. Superficial gas velocity beyond about 10 m/s reduces the residence time of gas and.


    Energy Technology Data Exchange (ETDEWEB)

    Nsakala ya Nsakala; Gregory N. Liljedahl


    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US

  13. Results of theoretical and experimental studies of hydrodynamics of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors (United States)

    Ryabov, G. A.; Folomeev, O. M.; Sankin, D. A.; Melnikov, D. A.


    Problems of the calculation of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors (polygeneration systems for the production of electricity, heat, and useful products and chemical cycles of combustion and gasification of solid fuels)are considered. A method has been developed for the calculation of circulation loop of fuel particles with respect to boilers with circulating fluidized bed (CFB) and systems with interconnected reactors with fluidized bed (FB) and CFB. New dependences for the connection between the fluidizing agent flow (air, gas, and steam) and performance of reactors and for the whole system (solids flow rate, furnace and cyclone pressure drops, and bed level in the riser) are important elements of this method. Experimental studies of hydrodynamics of circulation loops on the aerodynamic unit have been conducted. Experimental values of pressure drop of the horizontal part of the L-valve, which satisfy the calculated dependence, have been obtained.

  14. Development of Catalytic Tar Decomposition in an Internally Circulating Fluidized-Bed Gasifier (United States)

    Xiao, Xianbin; Le, Due Dung; Morishita, Kayoko; Li, Liuyun; Takarada, Takayuki

    Biomass gasification in an Internally Circulating Fluidized-bed Gasifier (ICFG) using Ni/Ah03 as tar cracking catalyst is studied at low temperature. Reaction conditions of the catalyst bed are discussed, including catalytic temperature and steam ratio. High energy efficiency and hydrogen-rich, low-tar product gas can be achieved in a properly designed multi-stage gasification process, together with high-performance catalyst. In addition, considering the economical feasibility, a newly-developed Ni-loaded brown coal char is developed and evaluated as catalyst in a lab-scale fluidized bed gasifier with catalyst fixed bed. The new catalyst shows a good ability and a hopeful prospect oftar decomposition, gas quality improvement and catalytic stability.

  15. PEPT and discrete particle simulation study of spout-fluid bed regimes

    NARCIS (Netherlands)

    Link, J.M.; Deen, N.G.; Kuipers, J.A.M.; Fan, X.; Ingram, A.; Parker, D.J.; Wood, J.; Seville, J.P.K.


    The results of a combined experimental and simulation study on the flow regimes that can be encountered during spout-fluid bed operation are reported. A regime map for a three-dimensional (3D) spout-fluid bed was composed, employing spectral analysis of pressure drop fluctuations and fast video

  16. Control of the Fluid Viscosity in a Mock Circulation. (United States)

    Boës, Stefan; Ochsner, Gregor; Amacher, Raffael; Petrou, Anastasios; Meboldt, Mirko; Schmid Daners, Marianne


    A mock circulation allows the in vitro investigation, development, and testing of ventricular assist devices. An aqueous-glycerol solution is commonly used to mimic the viscosity of blood. Due to evaporation and temperature changes, the viscosity of the solution drifts from its initial value and therefore, deviates substantially from the targeted viscosity of blood. Additionally, the solution needs to be exchanged to account for changing viscosities when mimicking different hematocrits. This article presents a method to control the viscosity in a mock circulation. This method makes use of the relationship between temperature and viscosity of aqueous-glycerol solutions and employs the automatic control of the viscosity of the fluid. To that end, an existing mock circulation was extended with an industrial viscometer, temperature probes, and a heating nozzle band. The results obtained with different fluid viscosities show that a viscosity controller is vital for repeatable experimental conditions on mock circulations. With a mixture ratio of 49 mass percent of aqueous-glycerol solution, the controller can mimic a viscosity range corresponding to a hematocrit between 29 and 42% in a temperature range of 30-42°C. The control response has no overshoot and the settling time is 8.4 min for a viscosity step of 0.3 cP, equivalent to a hematocrit step of 3.6%. Two rotary blood pumps that are in clinical use are tested at different viscosities. At a flow rate of 5 L/min, both show a deviation of roughly 15 and 10% in motor current for high rotor speeds. The influence of different viscosities on the measured head pressure is negligible. Viscosity control for a mock circulation thus plays an important role for assessing the required motor current of ventricular assist devices. For the investigation of the power consumption of rotary blood pumps and the development of flow estimators where the motor current is a model input, an integrated viscosity controller is a valuable

  17. Circulating moving bed system for CO.sub.2 separation, and method of same

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Jeannine Elizabeth; Copeland, Robert James


    A circulating moving bed and process for separating a carbon dioxide from a gas stream is disclosed. The circulating moving bed can include an adsorption reactor and a desorption reactor, and a sorbent that moves through the two reactors. The sorbent can enter the adsorptive reactor and one end and move to an exit point distal to its entry point, while a CO.sub.2 feed stream can enter near the distal point and move countercurrently through the sorbent to exit at a position near the entry point of the sorbent. The sorbent can adsorb the CO.sub.2 by concentration swing adsorption and adsorptive displacement. The sorbent can then transfer to a regeneration reactor and can move countercurrently against a flow of steam through the regeneration reactor. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing desorption and desorptive displacement with steam.

  18. Potassium behaviour during combustion of wood in circulating fluidised bed power plants


    Valmari, Tuomas


    The behaviour of alkali metals, especially of potassium, during circulating fluidised bed combustion of wood-based fuels was studied experimentally in pilot-scale and industrial scale combustors. The fuels included willow, forest residue and waste wood co-combusted with paper mill sludge. As a result of this work, the main chemical and physical transformation mechanisms of potassium compounds in the combustion chamber and in the convective pass are presented in this thesis. Aerosol measur...

  19. Analyses of coal gasifier and circulating fluidized bed combustion equipment using data base

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Takehiko


    The construction of a coal and energy data base and the technical examples using it, such as coal gasifier and fluidized bed combustion equipment, were introduced. Wide ranges of data were collected to construct data base from gasifiers of 30 years ago or older to data reported in 1988 and design data of gasifiers under planning. The quantitative backup for the developing problems inherent to each gas-solid contact process and the relations between cold gas efficiency and factors influencing the cold gas efficiency which are improved along with the progress of technical development can be obtained. In the analysis of the fluidized bed coal combustion, the relation between thermal output and equipment's height was estimated with the mean wall surface heat transfer coefficient as the parameter. Further, the performane of particle withdrawal equipment was found to influence the combustion efficiency in the circulating fluidized bed combustion. (4 figs, 3 tabs, 2 refs)

  20. Behavior of Alkali Metals and Ash in a Low-Temperature Circulating Fluidized Bed (LTCFB) Gasifier

    DEFF Research Database (Denmark)

    Narayan, Vikas; Jensen, Peter Arendt; Henriksen, Ulrik Birk


    and a minor fraction of Cl. Most Cl and S were released in gaseous form, with chlorine partly asmethyl chloride. The tar in the product gas from the LTCFB gasifier contained only negligible amounts of potassium and otherinorganic elements. The release of condensed ash species from the system was controlled......A low-temperature circulating fluidized bed system (LTCFB) gasifier allows for pyrolysis and gasification to occurat low temperatures, thereby improving the retention of alkali and other inorganic elements within the system and minimizingthe amount of ash species in the product gas. In addition......, the low reactor temperature ensures that high-alkali biomass fuels canbe used without risk of bed defluidization. This paper presents the first investigation of the fate of alkali metals and ash in lowtemperaturegasifiers. Measurements on bed material and product gas dust samples were made on a 100 k...

  1. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur


    Full Text Available This paper focuses on assessment of the effect of flue gas recirculation (FGR on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  2. Rehydration ratio of fluid bed-dried vegetables

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The goal has been to obtain dry vegetables with 6% to 10% water content and of good rehydration quality. Experimental data. (bed height, gas temperature and velocity, pressure drop over the bed, drying time) have been measured and relevant values have been calculated. The results have shown that drying of ...

  3. Development of pressurized internally circulating fluidized bed combustion technology; Kaatsu naibu junkan ryudosho boiler no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, I. [Center for Coal Utilization, Japan, Tokyo (Japan); Nagato, S.; Toyoda, S. [Ebara Corp., Tokyo (Japan)


    The paper introduced support research on element technology needed for the design of hot models of the pressurized internally circulating fluidized bed combustion boiler in fiscal 1995 and specifications for testing facilities of 4MWt hot models after finishing the basic plan. The support research was conduced as follows: (a) In the test for analysis of cold model fluidization, it was confirmed that each characteristic value of hot models is higher than the target value. Further, calculation parameters required for computer simulation were measured and data on the design of air diffusion nozzle for 1 chamber wind box were sampled. (b) In the CWP conveyance characteristic survey, it was confirmed that it is possible to produce CWP having favorable properties. It was also confirmed that favorable conveyability can be maintained even if the piping size was reduced down to 25A. (c) In the gas pressure reducing test, basic data required for the design of gas pressure reducing equipment were sampled. Specifications for the fluidized bed combustion boiler of hot models are as follows: evaporation amount: 3070kg/h, steam pressure: 1.77MPa, fuel supply amount: 600kg-coal/h, boiler body: cylinder shape water tube internally circulating fluidized bed combustion boiler. 4 refs., 4 figs.

  4. Development of a generic engineering model for packed bed reactors using computational fluid dynamics

    NARCIS (Netherlands)

    Tuinstra, B.F.


    Packed bed reactors are used in many chemical processes. With the advent of modern computers, flow simulation (Computational Fluid Dynamics, CFD) can be an aid in the design of process equipment. For particulate systems like packed bed reactors, simulation of the flow around the particles is very

  5. Effects and control of humidity and particle mixing in fluid-bed granulation

    NARCIS (Netherlands)

    Schaafsma, SH; Kossen, NWF; Mos, MT; Blauw, L; Hoffmann, AC

    The novel technique of spraying binder liquid in pulses of short duration on a bubbling fluidized bed was used to study the effect liquid distribution, mixing, and relative humidity has on granule growth. Two important mixing zones in the fluid-bed granulation process are identified. First, the

  6. Armoring, stability, and transport driven by fluid flow over a granular bed (United States)

    Allen, Benjamin; Kudrolli, Arshad


    We discuss experiments investigating the evolution of a granular bed by a fluid flow as a function of shear rate at the fluid-bed interface. This is a model system to investigate a variety of physical examples including wind blowing over sand, sediment transport in rivers, tidal flows interacting with beaches, flows in slurry pipelines, and sand proppants in hydraulic fracturing. In order to examine the onset and entrainment of the granular bed under steady state conditions, we have constructed a novel conical rheometer system which allows a variable amount of shear to be applied to the granular bed. The grain-fluid system is index matched so that we can visualize the grains away from the sides as well as visualize the fluid flow above and below the interface by using fluorescent tracer particles. We demonstrate that the onset of erosion arises as particles rotate out of their stable position highlighting the importance of torque balance to onset. We find significant armoring of the bed, as the bed is sheared by the fluid flow. Above onset, at least three distinct regions of bed mobility can be found. We will discuss the measured integrated granular flux as a function of shear rate and compare them with empirical laws found in the geophysical literature. Supported by NSF Grant Number CBET 1335928.

  7. Laser Doppler anemometry measurements in a circulating fluidized bed of metal particles

    DEFF Research Database (Denmark)

    Ibsen, Claus Hübbe; Solberg, Tron; Hjertager, Bjørn Helge


    Laser Doppler Anemometry (LDA) measurements were performed in a 1/9 scale model of a 12 MW circulating fluidized bed (CFB) boiler. The model was operated according to scaling laws. The 2D-LDA system used was positioned in two different ways to obtain the three velocity components u, v and w...... of the solid phase from which the particle kinetic stresses were determined. The measured velocity profiles are in agreement with previous data from the full-scale boiler, i.e. showing a flat profile over the core region of the riser with a pronounced wall layer. The particle kinetic stresses are found...... to be anisotropic and strongly influenced by large scale effects originating from the bottom-bed bubbles....

  8. Controlling thermal properties of dense gas fluidized beds for concentrated solar power by internal and external solids circulation (United States)

    Ammendola, Paola; Bareschino, Piero; Chirone, Riccardo; Salatino, Piero; Solimene, Roberto


    Fluidization technology displays a long record of success stories, mostly related to applications to thermal and thermochemical processes, which are fostering extension to novel and relatively unexplored fields. Application of fluidized beds to collection and thermal storage of solar radiation in Concentrated Solar Power (CSP) is one of the most promising, a field which poses challenging issues and great opportunities to fluidization scientists and technologists. The potential of this growing field calls for reconsideration of some of the typical design and operation guidelines and criteria, with the goal of exploiting the inherently good thermal performances of gas-fluidized beds at their best. "Creative" and non-conventional design and operation of fluidized beds, like those based on internal and external solids circulation, may be beneficial to the enhancement of thermal diffusivity and surface-to-bed heat transfer, improving the potential for application in the very demanding context of CSP with thermal energy storage. This paper investigated: i) a fluidized bed configuration with an uneven distribution of the fluidizing gas to promote vortices in the scale of bed height (internal solids circulation); ii) a dual fluidized bed configuration characterized by an external solids circulation achieved by the operation of a riser and a bubbling fluidized bed. CFD simulations showed the hydrodynamics conditions under which the internal solids circulation was established. The hydrodynamic characterization of the external solids circulation was achieved by an experimental study carried out with different cold models. The dual fluidized bed system was optimized in terms of operating conditions and geometrical features of the connections between two fluidized beds.

  9. Spray-dried fluid-bed sorbents tests - CMP-5

    Energy Technology Data Exchange (ETDEWEB)

    Gangwal, S.K.; Gupta, R.P.


    The objective of this study is to determine the feasibility of manufacturing highly reactive and attrition-resistant zinc titanate sorbents by spray drying, suitable for bubbling (conventional) as well as transport-type fluidized-bed reactor systems.

  10. The generation and disposal of solid wastes from circulating fluidised bed combustion plant

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.; Tomlinson, P. (Ove Arup Partners, London (United Kingdom). Arup Environmental)


    This paper describes the environmental issues arising from proposals by British Coal and East Midlands Electricity to construct a circulating fluidised bed combustion (CFBC) Power Station and an associated waste disposal facility at Bilsthorpe in the East Midlands of England. CFBC ash is novel to the UK and the problems of co-disposal of ash and colliery spoil from the power station and adjacent deep coal mine at a surface disposal site are highlighted. The chemical and physical properties of the wastes, research on the revegetation of the ash/spoil mound and the design philosophy developed for the disposal site are reported. 3 refs., 2 figs., 7 tabs.

  11. Electrochemical Recovery of Gold from Waste Electric and Electronic Equipment Using Circulating Particulate Bed Reactor (CPBE) (United States)

    Ravinder, T.; Ali, U. F. M.; Ridwan, F. M.; Ibrahim, N.; Azmi, N. H.


    The utilization of electrochemical process recovery involving low reactant concentrations of metal requires electrodes with high mass transport rates and specific surface areas. This is essential to increase cross-sectional current densities whilst optimizing the capital and operating costs. Experimental results demonstrated that Circulating Particulate Bed Reactor (CPBE) is suitable for the recovery of low concentrations of gold from aqueous chloride solution containing {{AuCl}}4- and {{AuCl}}2- of less than 0.5 mol m-3(deposits were achieved with CPBE for Au deposition under mass transport control at 0.20 V (SCE).

  12. Nucla circulating atmospheric fluidized bed demonstration project. Quarterly technical progress report, October--December 1990

    Energy Technology Data Exchange (ETDEWEB)


    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  13. Observations on the decay of a thermocline in a rock bed with no net fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, D.E.; Clark, J.A.; Holstege, M.J.


    The transient thermal response of a rock bed with no net fluid flow is examined following all-day charging under clear sky conditions. The experimental system consists of 1.86 m/sup 2/ (20 ft/sup 2/) of flat-plate solar collectors using air as the working fluid, a flow control system, and a 0.357 m/sup 3/ (12.6 ft/sup 3/) rock bed for thermal energy storage. A thermocline is established in the bed during charging due to the timevarying nature of the collector outlet temperature. Experimental measurements of the temperature distribution in the bed for a 13-hour stagnation period allow a preliminary estimate of the loss of available energy in the storage medium. The net loss in thermodynamic availability is 30 percent. Since the temperatures in the upper regions of the bed are lower than those in the central regions at the end of charging under clear sky conditions, the possibility of natural convection motion of the fluid in the bed exists. An ''apparent'' local thermal diffusivity is calculated and from comparison with stagnant bed values indicates that natural convection motion may occur in the upper regions of the bed.

  14. Fluid Velocity Penetration Depth Within a Packed Bed of Particles for the Onset of Motion (United States)

    Beninati, M. L.; Yergey, B. A.; Marshall, J. S.


    A Discrete Element Method (DEM) for a three-dimensional analysis of particle flow in a virtual environment with conditions comparable to river bedload sediment transport is applied. Bedload sediment transport is important to environmental flows for studies of erosion, the transportation of pollutants and the formation of bed-forms. Previous sediment transport DEM studies have assumed the flow within the packed bed of particles to be negligible and have only allowed for the motion of the top most particles. For complex fluid velocity profiles, representative of actual river flows, a means for defining the fluid velocity profile within the bed is needed. In this study, the fluid flow is prescribed within the packed bed using an exponential decay velocity profile, and the region above the particle bed is simply prescribed by a linear shear velocity profile. Trials are conducted across several fluid velocity penetration depths and particle Reynolds numbers. Results indicate the particle velocity at the bed surface is strongly dependent on the penetration depth, and there is a critical depth for which the onset of particle motion occurs. The critical penetration depths agree with previous experimental observations, indicating the fluid velocity profile applied may be appropriate for future DEM sediment transport studies.

  15. Fluid bed adsorption of carbon dioxide on immobilized polyethyenimine (PEI): kinetic analysis and breakthrough behavior

    Energy Technology Data Exchange (ETDEWEB)

    Monazam, Esmail R.; Spenik,, James; Shadle, Lawrence J.


    The adsorption of carbon dioxide (CO{sub 2}) by immobilized polyethylenimine (PEI) on mesoporous silica was investigated in a fluid bed. The tests were performed to determine breakthrough behavior with varying bed temperature, flow rates and feed concentrations. Experimental breakthrough curves were analyzed using a theoretical 1D model developed by Bohart and Adams. The results showed that Bohart-Adams model was suitable for the normal description of breakthrough curve for the temperature ranges of 40-90{degree}C. The maximum capacity increased with temperature up to 70{degree}C and then decreased. The adsorption rate constant exhibited a negative temperature dependence decreasing as the temperature increased. Parameters characteristic of a fluid bed adsorber were inferred from these breakthrough curves including the breakthrough time, saturation time, critical reactor length, and length of mass transfer zone LMTZ. These parameters can be used to design fluid bed adsorption system without resolving the mechanistic contributions of dispersion, mixing, and intraparticle diffusion.

  16. Process Analysis of Lignite Circulating Fluidized Bed Boiler Coupled with Pyrolysis Topping (United States)

    Wang, Baoqun; Dong, Li; Wang, Yin; Matsuzawa, Y.; Xu, Guangwen

    We developed a comprehensive process model in ASPEN Plus to simulate the energy and mass balances of a lignite-fueled atmospheric circulating fluidized bed (CFB) boiler integrated with coal predrying and pyrolysis topping. In this model, it is assumed that the heat from exhausted flue gas was employed for coal predrying, and the sensible heat derived from circulated bed material was used for the pyrolysis topping (endothermic process). The simulation was conducted with respectto the Yunnan Kaiyuan CFB boiler, and two representative lignite coals from Xiao Long Tan (XLT) and Xin Shao (XS) were considered. The result shows that the predrying of coal with the sensible heat of above 363 K from flue gas, the amount of coal consumed in the boiler can be reduced by 3.5% and 5.3% for XLT lignite and XS lignite, respectively. It was also found that integration of pyrolysis topping with the boiler increased the coal consumption of the boiler, and the extent of consumption-increase varies with the yields of tar and gas in the pyrolysis topping process. For agas yield of 5.2% and a tar yield of 5-6%, the consumption of XS lignite increased by about 20% comparing to that in the case without topping.

  17. Comparison of an industrial FCC plant with a small internally circulating fluidized bed pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Reichhold, A.; Fimberger, W.; Hofbauer, H. [Technische Univ., Vienna (Austria). Inst. of Chemical Engineering


    A reaction/regeneration system with an internally circulating fluidized bed designed by Hofbauer and Reichhold is used for catalytic cracking. A hot unit with an internally circulating fluidized bed (reactor diameter 200 mm; reactor height 2500 mm; feed rate 5 kg/h) is used to reflect the operating conditions in large plants. The aim is to obtain the same product composition as a typical large industrial FCC plant. Experiments at different feed rates, different Cat to Oil (C/O) ratios and different riser and regenerator temperatures were carried out successfully. Operating conditions could be determined where the product quality obtained in the pilot plant exactly matched that of the industrial FCC-plant (gas 17%wt; gasoline 52%wt; residue (LCO + HCO) 26%wt; coke 5%wt). The reactor size allows the results to be viewed with more confidence than these from e.g. micro activity tests (MAT). Therefore, the plant can be used for testing different feedstocks, additives and catalysts for use in an industrial plant. (orig.)

  18. Simulation of fluid-solid coupling flow of coal-bed methane

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Liu, J.; Yang, J.; Zeng, M. [Tiandi Science and Technology Co. Ltd., Beijing (China). Coal Mining Branch


    Combining the fluid mechanics in porous media with the theory of elastic-plastic theory, and considering the interaction between deformation of coal framework and coal-bed flow, the mathematical models of coal-bed methane fluid-solid coupling flow and its numerical solution are given. Using finite element method the equations of fluid flow and coal framework deformation are dispersed. The functional equations were also given. Based on the FEM principle, the method to solving the coupling is developed. Lastly, a case study is carried out, and its simulation results show that the theory set out in this paper is correct. 5 refs., 1 fig.

  19. Simulation of circulating fluidized bed gasification for characteristic study of pakistani coal

    Directory of Open Access Journals (Sweden)

    Ramzan Naveed


    Full Text Available A process model for turbulent pressurized circulating fluidized-bed coal gasifier is created using ASPEN PLUS software. Both hydrodynamic and reaction kinetics parameter are taken into account, whose expressions for fluidized bed are adopted from the literature. Various reactor models available in ASPEN PLUS with calculator as External Block are nested to solve hydrodynamics and kinetics. Multiple operational parameters for a pilot-plant circulating fluidized-bed coal gasifier are used to demonstrate the effects on coal gasification characteristics. This paper presents detailed information regarding the simulation model, including robust analysis of the effect of stoichiometric ratio, steam to coal ratio, gasification temperature and gasification agent temperature. It is observed that, with the increase in the flow rate of air, the components hydrogen, carbon monoxide, carbon dioxide and methane reduce, which causes the Lower Heating Value (LHV of synthesis gas (Syn. Gas to decrease by about 29.3%, while increment in the steam flow rate shows a minute increase in heating value of only 0.8%. Stoichiometric ratio has a direct relationship to carbon conversion efficiency and carbon dioxide production. Increasing the steam to coal ratio boosts the production of hydrogen and carbon monoxide, and causes a drop in both carbon dioxide concentration and the conversion efficiency of carbon. High gasifying agent temperature is desired because of high concentration of CO and H2, increasing carbon conversion and LHV. A high gasifying agent temperature is the major factor that affects the coal gasification to enhance H2 and CO production rapidly along with other gasification characteristics.

  20. Synchronous droplets as a test bed for pulsatory active fluids (United States)

    Katsikis, Georgios; Prakash, Manu


    Collective behavior in many-body systems has been studied extensively focusing on a wide range of interacting entities including: flocking animals, sedimenting particles and microfluidic droplets among others. Here, we propose an experimental platform to explore an oscillatory active fluid with synchronous ferrofluid droplets immersed in an immiscible carrier fluid in a Hele-Shaw configuration. The droplets are organized and actuated on a 2-D uniform grid through application of a precessive magnetic field. The state of our system is dependent on three parameters: the grid occupancy with fluid droplets, the grid geometry and the magnetic field. We study the long range orientational order of our system over a range of those parameters by tracking the motion of the droplets and analyzing the PIV data of the carrier fluid flow. Numerical simulations are juxtaposed with experimental data for prediction of the system's behavior.

  1. Two-fluid spray atomisation and pneumatic nozzles for fluid bed coating/agglomeration purposes: A review

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, Poul; Jensen, Anker Degn


    In fluid bed processing in the chemical, food or pharmaceutical industries, pneumatic nozzles are typically used to convert binder or coating liquids into droplets. Producing fine droplets from liquids in a gas phase is termed atomisation, and it involves complex phenomena which are not yet fully...

  2. Using fluid bed granulation to improve the dissolution of poorly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Andrea Ikeda Takahashi


    Full Text Available In this study, fluid bed granulation was applied to improve the dissolution of nimodipine and spironolactone, two very poorly water-soluble drugs. Granules were obtained with different amounts of sodium dodecyl sulfate and croscarmellose sodium and then compressed into tablets. The dissolution behavior of the tablets was studied by comparing their dissolution profiles and dissolution efficiency with those obtained from physical mixtures of the drug and excipients subjected to similar conditions. Statistical analysis of the results demonstrated that the fluid bed granulation process improves the dissolution efficiency of both nimodipine and spironolactone tablets. The addition of either the surfactant or the disintegrant employed in the study proved to have a lower impact on this improvement in dissolution than the fluid bed granulation process.

  3. Surface Modification of Fine Particle by Plasma Grafting in a Circulating Fluidized Bed Reactor under Reduced Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sounghee [Woosuk University, Jinchon (Korea, Republic of)


    A plasma surface modification of powders has been carried out in a circulating fluidized bed reactor under reduced pressure. Polystyrene (PS) particles treated by plasma are grafted with polyethylene glycol (PEG) on the surface. The virgin, plasma-treated and grafted powders were characterized by DPPH method, FTIR, SEM and contact angle meter. The plasma-treated PS powders have well formed peroxide on the surface, By PEG grafting polymerization, PEG is well grafted and dispersed on the surface of the plasma-treated PS powders. The PEG-g-PS particle was successfully synthesized using the plasma circulating fluidized bed reactor under reduced pressure.

  4. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge

    DEFF Research Database (Denmark)

    Thomsen, Tobias Pape; Hauggaard-Nielsen, Henrik; Gøbel, Benny


    The study is part 2 of 2 in an investigation of gasification and co-gasification of municipal sewage sludge in low temperature gasifiers. In this work, solid residuals from thermal gasification and co-gasification of municipal sewage sludge were investigated for their potential use as fertilizer....... Ashes from five different low temperature circulating fluidized bed (LT-CFB) gasification campaigns including two mono-sludge campaigns, two sludge/straw mixed fuels campaigns and a straw reference campaign were compared. Experiments were conducted on two different LT-CFBs with thermal capacities of 100...... in a pot experiment with the most promising ash material. Co-gasification of straw and sludge in LT-CFB gasifiers produced ashes with a high content of recalcitrant C, phosphorus (P) and potassium (K), a low content of heavy metals (especially cadmium) and an improved plant P availability compared...

  5. Analysis of microalgae pellets combustion in a circulating fluidized-bed

    Directory of Open Access Journals (Sweden)

    Kosowska-Golachowska Monika


    Full Text Available Microalgae are expected to become an important source of highvalue products with several applications in a large number of areas of biotechnology and, especially, in biofuels production. The increasing interest in microalgae as a source of biofuel (so-called third generation biofuel is due to the several advantages. The objective of this study was to investigate combustion characteristics of microalgae (Oscillatoria sp. pellets burnt in a circulating fluidized-bed (CFB in terms of sample temperature profiles, ignition time, ignition temperature, devolatilization time and the burnout time. Spherical 10-mm microalgae pellets were tested at temperature of 850°C in a 12-kW bench-scale CFB combustor.

  6. Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash (United States)

    Liu, Ze; Shao, Ning-ning; Wang, Dong-min; Qin, Jun-feng; Huang, Tian-yong; Song, Wei; Lin, Mu-xi; Yuan, Jin-sha; Wang, Zhen


    In recent years, circulating fluidized bed combustion fly ash (CFA) is used as a raw material for geopolymer synthesis. Hydrogen peroxide was employed as a foaming agent to prepare CFA-based foam geopolymer. The particle distribution, mineral composition, and chemical composition of CFA were examined firstly. Geopolymerization products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). The CFA-based foam geopolymer was successfully fabricated with different contents of hydrogen peroxide and exhibited uncompleted alkali reaction and reasonable strength with relative low atomic ratios of Si/Al and Si/Na. Type-C CFA in this research could be recycled as an alternative source material for geopolymer production.

  7. Study on Reactivity of Circulating Fluidized Bed Combustion Fly Ashes in the Presence of Water

    Directory of Open Access Journals (Sweden)

    Salain I.M.A.K.


    Full Text Available A study on reactivity of four different Circulating Fluidized Bed Combustion (CFBC fly ashes has been realized in the presence of water. Paste of each ash was prepared and analyzed for its setting time, expansion and strength. The products of hydration, and their evolutions over a period of time were identified by X-ray diffraction and differential thermal analysis. The results of this study show that the reactivity of the CFBC fly ashes is strongly related to their chemical composition, essentially to their quantity of silica, alumina, lime and sulfate, which promote principally the formation of ettringite, gypsum and C-S-H. It is further noted that the intensity and the proportion of these phases determine the hydration behavior of the CFBC fly ashes.

  8. Biomass gasification in a circulating fluidized bed; Vergasung von Biomasse in der zirkulierenden Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Ising, M.; Hoelder, D.; Backhaus, C.; Althaus, W. [Fraunhofer Inst. fuer Umwelt-, Sicherheits- und Energietechnik UMSICHT, Oberhausen (Germany)


    Biomass gasification in a circulating fluidized bed, in combination with a gas engine or gas burner, is a promising option for energetic use of biomass. Economic efficiency analyses on the basis of the UMSICHT plant show that this technology for combined heat and power generation from biomass is promising also for the range below 10 MW. The economic situation of any plant must be considered for the specific boundary conditions imposed by the power supply industry. The feasibility of the process was tested in a demonstration plant at Oberhausen. The plant was optimized further in extensive test series, and a number of tar reduction processes were investigated and improved on. The authors now intend to prove that gasification in a circulating fluidized bed combined with a gas engine cogeneration plant is feasible in continuous operation. (orig./SR) [Deutsch] Die Vergasung von Biomasse in der zirkulierenden Wirbelschicht ist in Kombination mit einem Gasmotor oder einem Gasbrenner eine vielversprechende Option fuer die energetische Biomassenutzung. Wirtschaftlichkeitsbetrachtungen auf Basis der UMSICHT-Anlage zeigen, dass diese Technologie fuer die gekoppelte Strom- und Waermeerzeugung aus Biomasse auch im Leistungsbereich unter 10 MW grosse Chancen verspricht. Dabei ist die oekonomische Situation einer Anlage im Einzelfall unter Beachtung der energiewirtschaftlichen Randbedingungen zu beurteilen. Durch den Betrieb einer Demonstrationsanlage in Oberhausen konnte die Funktion des Verfahrens nachgewiesen werden. In weiteren umfangreichen Versuchsreihen werden die Anlage weiter optimiert und verschiedene Konzepte zur Teerminderung untersucht und weiterentwickelt. Angestrebt ist der Nachweis des Dauerbetriebs von ZWS-Vergasung zusammen mit dem Gasmotoren-BHKW. (orig./SR)

  9. Effects of biomass on dynamics of combustion in circulating fluidized beds

    Directory of Open Access Journals (Sweden)

    Tourunen Antti


    Full Text Available Fluidized bed technology is very suitable for the combustion of biomass Nevertheless substitution of coal with biomass affects boiler operation and especially dynamics and controllability. Non-homogeneity of biomass and fuel feeding disturbances cause process instability, such as variations in temperatures and pressures, which reduce lifetime of equipment and structures. Because of process instability higher air coefficient must be used in order to avoid CO emissions, which is not economical. Combustion profiles for coal, wood and peat, measured at the VTT Processes Pilot circulating fluidized bed reactor, have been compared. Process stability and char inventories have been studied by the measurements and the model. Biofuel are usually very reactive and their combustion profiles are quite different compared to coals. Because of high reactivity and low char content combustion process with biofuel is very sensitive for fuel feeding. Also low char inventory effect on load changes combined with combustion profile that differs from coals. Because of different combustion profile heat transfer can be a limiting factor in load changes despite the high reactivity and fast oxygen response.

  10. Benchmark Simulation of Natural Circulation Cooling System with Salt Working Fluid Using SAM

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, K. K.; Scarlat, R. O.; Hu, R.


    Liquid salt-cooled reactors, such as the Fluoride Salt-Cooled High-Temperature Reactor (FHR), offer passive decay heat removal through natural circulation using Direct Reactor Auxiliary Cooling System (DRACS) loops. The behavior of such systems should be well-understood through performance analysis. The advanced system thermal-hydraulics tool System Analysis Module (SAM) from Argonne National Laboratory has been selected for this purpose. The work presented here is part of a larger study in which SAM modeling capabilities are being enhanced for the system analyses of FHR or Molten Salt Reactors (MSR). Liquid salt thermophysical properties have been implemented in SAM, as well as properties of Dowtherm A, which is used as a simulant fluid for scaled experiments, for future code validation studies. Additional physics modules to represent phenomena specific to salt-cooled reactors, such as freezing of coolant, are being implemented in SAM. This study presents a useful first benchmark for the applicability of SAM to liquid salt-cooled reactors: it provides steady-state and transient comparisons for a salt reactor system. A RELAP5-3D model of the Mark-1 Pebble-Bed FHR (Mk1 PB-FHR), and in particular its DRACS loop for emergency heat removal, provides steady state and transient results for flow rates and temperatures in the system that are used here for code-to-code comparison with SAM. The transient studied is a loss of forced circulation with SCRAM event. To the knowledge of the authors, this is the first application of SAM to FHR or any other molten salt reactors. While building these models in SAM, any gaps in the code’s capability to simulate such systems are identified and addressed immediately, or listed as future improvements to the code.

  11. Oxygen Carrier Aided Combustion (OCAC of Wood Chips in a Semi-Commercial Circulating Fluidized Bed Boiler Using Manganese Ore as Bed Material

    Directory of Open Access Journals (Sweden)

    Magnus Rydén


    Full Text Available Oxygen Carrier Aided Combustion (OCAC is realized by using an active oxygen-carrying bed material in fluidized bed boilers. The active material is reduced in fuel rich parts of the boiler and oxidized in air rich parts. Advantages could be achieved such as new mechanisms for oxygen transport in space and time. Here calcined manganese ore has been used as active bed material in a 12 MWth circulating fluidized bed boiler. The fuel was wood chips and the campaign lasted more than two weeks. From an operational point of view, manganese ore worked excellently. From the temperature profile of the boiler it can be concluded that fuel conversion was facilitated, especially in the dense bottom bed. The effect did not always translate to reduced emissions, which suggests that final combustion in the cyclone outlet was also influenced. Substituting 10% of the sand bed with manganese ore made it possible to reduce the air to fuel ratio without generating large amounts of CO. The use of 100% manganese ore resulted in higher emissions of CO than the sand reference, but, when combined sulphur feeding, dramatic reductions in CO emissions, up to 90% compared to sand reference, was achieved.

  12. Velocity profiles and rheology of a granular bed sheared by a fluid flow (United States)

    Allen, Benjamin; Kudrolli, Arshad

    We discuss an experimental investigation of motion of a granular bed driven by a laminar fluid flow as a function of applied shear rate. This is a model system to investigate a variety of examples where such a situation arises including wind blowing over sand, sediment transport in rivers, slurries, and turbidity currents. We have developed an experimental apparatus which allows examination of the fluid as well as the grain dynamics both at the surface as well as deep into the bed under steady state conditions with refractive index matching technique. This allows us to obtain both the applied local shear stress by the fluid as well as the local strain rate inside the bed. We find that that the granular flux as a function of depth decays exponentially into the bed. Further, the velocity profile is observed to exhibit a crossover from a regime where particles are fully suspended to where there is bed load transport. We will discuss the observed velocity and density profiles in light of various models of granular suspensions. Supported by NSF CBET - 1335928.

  13. Gas−Solid Turbulent Flow in a Circulating Fluidized Bed Riser: Numerical Study of Binary Particle Systems

    NARCIS (Netherlands)

    He, Y.; Deen, N.G.; van Sint Annaland, M.; Kuipers, J.A.M.


    Numerical simulations were performed of a turbulent gas-particle multiphase flow in a circulating fluidized bed riser using a hard-sphere discrete particle model (DPM) for the particle phase and the Navier−Stokes equations for the gas phase, where the subgrid scale stresses (SGS) were modeled with

  14. Gas-solid two-phase turbulent flow in a circulating fluidized bed riser: an experimental and numerical study

    NARCIS (Netherlands)

    He, Y.; van Sint Annaland, M.; Deen, N.G.; Kuipers, J.A.M.


    Hydrodynamics of gas-particle two-phase turbulent flow in a circulating fluidized bed riser is studied experimentally by Particle Image Velocimetry (PIV) and numerically with the use of a 3D discrete hard sphere particle model (DPM). Mean particle velocities and RMS velocities are obtained and the

  15. Gas-Solid Turbulent Flow in a Circulating Fluidized Bed Riser; Numerical Study of Binary Particle Mixtures

    NARCIS (Netherlands)

    He, Y; Deen, N.G.; van Sint Annaland, M.; Kuipers, J.A.M.


    A numerical simulation was performed on a turbulent gas-particle multi-phase flow in a circulating fluidized bed riser based on a hard-sphere discrete particle model (DPM) for the particle phase and the Navier-Stokes equations for the gas phase. The sub-grid scale stresses (SGS) were modeled with

  16. Gas−Solid Turbulent Flow in a Circulating Fluidized Bed Riser: Experimental and Numerical Study of Monodisperse Particle Systems

    NARCIS (Netherlands)

    He, Y.; Deen, N.G.; van Sint Annaland, M.; Kuipers, J.A.M.


    Hydrodynamics of gas-particle two-phase turbulent flow in a circulating fluidized bed riser is studied experimentally by particle image velocimetry (PIV) and numerically with the use of a 3D discrete hard sphere particle model (DPM). The influence of the superficial gas velocity and the solids flux


    The two papers provide a general overview of the Ogden circulating bed combustion and summary data of both PCB laden soils for EPA-TSCA and a test on RCRA liquid organic wastes for the California Air Resources Board (CARB). This abstract will discuss the results of the PCB...

  18. Fluidization behavior in a circulating slugging fluidized bed reactor. Part I: Residence time and residence time distribution of polyethylene solids

    NARCIS (Netherlands)

    van Putten, I.C.; van Sint Annaland, M.; Weickert, G.


    Square nosed slugging fluidization behavior in a circulating fluidized bed riser using a polyethylene powder with a very wide particle size distribution was studied. In square nosed slugging fluidization the extent of mixing of particles of different size depends on the riser diameter, gas velocity,

  19. Application of Scaling-Law and CFD Modeling to Hydrodynamics of Circulating Biomass Fluidized Bed Gasifier

    Directory of Open Access Journals (Sweden)

    Mazda Biglari


    Full Text Available Two modeling approaches, the scaling-law and CFD (Computational Fluid Dynamics approaches, are presented in this paper. To save on experimental cost of the pilot plant, the scaling-law approach as a low-computational-cost method was adopted and a small scale column operating under ambient temperature and pressure was built. A series of laboratory tests and computer simulations were carried out to evaluate the hydrodynamic characteristics of a pilot fluidized-bed biomass gasifier. In the small scale column solids were fluidized. The pressure and other hydrodynamic properties were monitored for the validation of the scaling-law application. In addition to the scaling-law modeling method, the CFD approach was presented to simulate the gas-particle system in the small column. 2D CFD models were developed to simulate the hydrodynamic regime. The simulation results were validated with the experimental data from the small column. It was proved that the CFD model was able to accurately predict the hydrodynamics of the small column. The outcomes of this research present both the scaling law with the lower computational cost and the CFD modeling as a more robust method to suit various needs for the design of fluidized-bed gasifiers.

  20. The Hydrodynamic Stability of a Fluid-Particle Flow: Instabilities in Gas-Fluidized Beds (United States)

    Liu, Xue; Howley, Maureen A.; Johri, Jayati; Glasser, Benjamin J.


    A simplified model of an industrially relevant fluid-particle flow system is analyzed using linear stability theory. Instabilities of the uniform state of a fluidized bed are investigated in response to small flow perturbations. Students are expected to perform each step of the computational analysis, and physical insight into key mechanistic…

  1. A new fluid distribution system for scale-flexible expanded bed adsorption

    DEFF Research Database (Denmark)

    Hubbuch, Jürgen; Heebøll-Nielsen, Anders; Hobley, Timothy John


    . At a rotation rate of 2.5 rpm, no significant dead zones were observed, and a discrete band was formed that moved up through the bed. Furthermore, the pattern of dye movement could be used to calculate interstitial linear fluid velocities of 460 cm (.) h(-1) and 572 cm (.) h(-1) at the column wall and center...

  2. Flow regimes in a spout-fluid bed: a combined experimental and simulation study

    NARCIS (Netherlands)

    Link, J.M.; Cuypers, L.A.; Deen, N.G.; Kuipers, J.A.M.


    Spout¿fluid beds find a widespread application in the process industry for efficient contacting of large particles with a gas. However, detailed understanding of the complex behavior of these systems is lacking, which leads to significant scale-up problems in industry. In this paper we report

  3. Time and speed of fruit drying on batch fluid-beds

    Indian Academy of Sciences (India)

    The heat treatment of fruit is a very important and crucial process, where the nutritional quality of fruit can change, and ... degradation of nutrients and sensory properties. The heating rate of solids is ... Drying experiments have been conducted to investigate the fluid bed drying time for various fruits and the hydrodynamics of ...

  4. Modeling Fluid and Heat Transport in a New Type Thermal Isomerization Fluidized Bed Reactor (United States)

    Yang, Xiaoxiao; Fu, Zewu; Zhao, Yuying; Liu, Liujun; Li, Rui


    In the current work, with a new concept of resident ratio which impacts the reaction time, a fluid flow and heat transfer model were employed for simulating pressure drop, temperature profile and fluid flow properties of new type thermal isomerization reactor. The thermal isomerization experiment of β-pinenewas performed using the reactor. Momentum equation, energy equation and kinetic equationswere used to describe the fluid flow and heat transfer. The experimental results were in good agreement with theoretical simulation which indicated that the temperature difference between boundary and initial can be decreased by using steel balls and this modified fluidized bed can improve the yield and selectivity of the products effectively.

  5. Hydrodynamics of a dual fluidized-bed gasifier. Part 2: Simulation of solid circulation rate, pressure loop and stability

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, S.; Loeffler, G.; Bosch, K.; Hofbauer, H. [Vienna Univ. of Technology, Inst. of Chemical Engineering, Fuel Technology and Environmental Technology, Vienna (Austria)


    This paper focuses on the determination of the solids circulation of a CFB gasification system with a dual fluidized bed concept, and the distribution of the solid hold up under different fluidization conditions. A mathematical model of the riser was designed and implemented in a model of a dual fluidized bed system. This model contains routines for calculation of each section of the dual fluidized bed system. The behaviour of the system was analysed regarding changes in solid inventory and variations of geometry. A diagram is presented which allows an illustration of the influence of changes in the dual fluidized bed system configuration on the resulting stable operation points. Analysis concerning the effect of counter pressure on the combustion and gasification side confirms the role of the seal loop in stabilizing the operation of the gasification system. (Author)

  6. Fluid and salt supplementation effect on body hydration and electrolyte homeostasis during bed rest and ambulation (United States)

    Zorbas, Yan G.; Kakurin, Vassily J.; Kuznetsov, Nikolai A.; Yarullin, Vladimir L.


    Bed rest (BR) induces significant urinary and blood electrolyte changes, but little is known about the effect of fluid and salt supplements (FSS) on catabolism, hydration and electrolytes. The aim was to measure the effect of FSS on catabolism, body hydration and electrolytes during BR. Studies were done during 7 days of a pre-bed rest period and during 30 days of a rigorous bed rest period. Thirty male athletes aged, 24.6±7.6 years were chosen as subjects. They were divided into three groups: unsupplemented ambulatory control subjects (UACS), unsupplemented bed rested subjects (UBRS) and supplemented bed rested subjects (SBRS). The UBRS and SBRS groups were kept under a rigorous bed rest regime for 30 days. The SBRS daily took 30 ml water per kg body weight and 0.1 sodium chloride per kg body weight. Plasma sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) levels, urinary Na, K, Ca and Mg excretion, plasma osmolality, plasma protein level, whole blood hemoglobin (Hb) and hematocrit (Hct) level increased significantly ( p≤0.05), while plasma volume (PV), body weight, body fat, peak oxygen uptake, food and fluid intake decreased significantly ( p≤0.05) in the UBRS group when compared with the SBRS and UACS groups. In contrast, plasma and urinary electrolytes, osmolality, protein level, whole blood Hct and Hb level decreased significantly ( p≤0.05), while PV, fluid intake, body weight and peak oxygen uptake increased significantly ( p≤0.05) in the SBRS group when compared with the UBRS group. The measured parameters did not change significantly in the UACS group when compared with their baseline control values. The data indicate that FSS stabilizes electrolytes and body hydration during BR, while BR alone induces significant changes in electrolytes and body hydration. We conclude that FSS may be used to prevent catabolism and normalize body hydration status and electrolyte values during BR.

  7. Leaching Behavior of Circulating Fluidised Bed MSWI Air Pollution Control Residue in Washing Process

    Directory of Open Access Journals (Sweden)

    Zhiliang Chen


    Full Text Available In this study, air pollution control (APC residue is conducted with water washing process to reduce its chloride content. A novel electrical conductivily (EC measurement method is proposed to monitor the dynamic change of chloride concentrations in leachate as well as the chloride content of the residue. The method equally applies to various washing processes with different washing time, liquid/solid ratio and washing frequency. The results show that washing effectively extracts chloride salts from APC residues, including those from circulating fluidized bed (CFB municipal solid waste incineration (MSWI. The most appropriate liquid/solid ratio and washing time in the first washing are found to be around 4 L water per kg of APC residue and 30 min, respectively, and washing twice is required to obtain maximum dissolution. The pH value is the major controlling factor of the heavy metals speciation in leachate, while chloride concentration also affects the speciation of Cd. Water washing causes no perceptible transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs from the APC residue to leachate. The chloride concentration is strongly related with electrical conductivity (EC, as well as with the concentrations of calcium, sodium and potassium of washing water. Their regression analyses specify that soluble chloride salts and EC could act as an indirect indicator to monitor the change of chloride concentration and remaining chloride content, thus, contributing to the selection of the optimal washing conditions.

  8. Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation (United States)

    Seroussi, H.; Nakayama, Y.; Larour, E.; Menemenlis, D.; Morlighem, M.; Rignot, E.; Khazendar, A.


    The Amundsen Sea sector is experiencing the largest mass loss, glacier acceleration, and grounding line retreat in Antarctica. Enhanced intrusion of Circumpolar Deep Water onto the continental shelf has been proposed as the primary forcing mechanism for the retreat. Here we investigate the dynamics and evolution of Thwaites Glacier with a novel, fully coupled, ice-ocean numerical model. We obtain a significantly improved agreement with the observed pattern of glacial retreat using the coupled model. Coupled simulations over the coming decades indicate a continued mass loss at a sustained rate. Uncoupled simulations using a depth-dependent parameterization of sub-ice-shelf melt significantly overestimate the rate of grounding line retreat compared to the coupled model, as the parameterization does not capture the complexity of the ocean circulation associated with the formation of confined cavities during the retreat. Bed topography controls the pattern of grounding line retreat, while oceanic thermal forcing impacts the rate of grounding line retreat. The importance of oceanic forcing increases with time as Thwaites grounding line retreats farther inland.

  9. A simplified model of nitric oxide emission from a circulating fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, J.; Basu, P. [Technical University of Nova Scotia, Halifax, NS (Canada)


    A simplified mathematical model leading to a closed form of solution is developed for estimation of nitric oxide emission from a coal fired circulating fluidized bed (CFB) furnace. The furnace is divided into two sections: a lower section below and an upper section above the secondary air injection level. Reactions in the cyclone and the return leg are neglected. Furnace dimensions, coal feed rate, coal composition and furnace temperature are inputs to the model which was validated against several pilot scale and commercial units. Experimental results from two pilot plants and two commercial power plants agree with model predictions. A sensitivity analysis was carried out using the model to examine the effect of different operating parameters and coal properties on the overall NO emission from the furnace. It was found that excess air and furnace temperature are most important factors influencing the NO emission level. The primary to secondary air ratio influences the NO emission level reasonably. Properties of coal are other factors which affect the NO emission to a large extent. The model, though it involves some simplification, predicts the overall emission of NO with a level of accuracy accepted in commercial operation. 27 refs., 8 figs., 2 tabs.

  10. Diagnostics And Treatment Of Patients With Blood Circulation Insufficiency In Vertebrobasilar Bed

    Directory of Open Access Journals (Sweden)

    A.M. Khachatryan


    Full Text Available For improvement of treatment results of patients with vertebrobasilar insufficiency we have analyzed data of medical examination and treatment of 182 patients stayed in clinics of Hospital Surgery and Nervous System Diseases from the 1st of January of 2005 till the 30th of June of 2009. Method of screening diagnostics, quantitative and qualitative blood flow estimation by means of Doppler ultrasonic investigation and angiography have been performed. The cause of blood circulation insufficiency in the vertebrobasilar bed at 87 patients was vertebral artery syndrome and in 95 cases there were the significant hemodynamical damages of blood flow in aorta arch branches and intracranial arteries. The neuroangiotropic therapy has been made for all patients, but the clinical improvement period was short in most cases, more prolonged effect was observed in addition of conservative therapy with plasmapheresis by indications. In the complex treatment of patients with vertebrobasilar insufficiency accompanied by degenerative diseases of spine chemical sympathectomy of vertebral artery in the III segment in the form of procaine and spirit-procaine blockades was made in 116 and 69 cases accordingly. The surgical sympathectomy was made in 15 patients. The surgical operations were made in 62 of 95 patients with significant hemodynamic pathology of blood flow in the vertebrobasilar region. In most cases isolative and combinative reconstructive surgery on carotid arteries was carried out. It played a significant role in blood flow correction. Favorable postoperative results were observed in most cases (93, 5%

  11. Characteristics modeling for supercritical circulating fluidized bed boiler working in oxy-combustion technology

    Directory of Open Access Journals (Sweden)

    Balicki Adrian


    Full Text Available Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of ‘zeroemission’ technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.

  12. Parametric sensitivity analysis to investigate heptane reforming in circulating fast fluidized bed membrane reactors

    Directory of Open Access Journals (Sweden)

    M.E.E. Abashar


    Full Text Available In this paper, we present mathematical modeling and numerical simulation tools in searching the high parameter space of steam reforming of heptane for the key design parameters, which have the potential to give high heptane conversion, high hydrogen yield and hydrogen to carbon monoxide ratio within the industrial limits for the syngas used as a feedstock for the gas to liquid processes (GTL. The system under consideration is the novel circulating fast fluidized bed membrane reactor (CFFBMR. The simulation results show that the hydrogen membrane has a significant role in the displacement of the thermodynamic equilibriums of the reversible reactions and production of ultraclean hydrogen, which can be used as a fuel for the fuel cells. Also the results of the sensitivity analysis show that the best performance of the CFFBMR can be obtained by a proper selection of combination of several parameters of high feed temperatures, high steam to carbon feed ratios, high reaction side pressures coupled with a large permeation area of a composite thin film membrane. These parameters are interacting in a very complex manner to give 100% conversion of heptane and 496.94% increase in hydrogen yield compared to the reformer without hydrogen membrane. It was found that under these selected operating conditions a low H2/CO ratio of 1.15 is achieved satisfying the practical recommended industrial range.

  13. Chemical looping reactor system design double loop circulating fluidized bed (DLCFB)

    Energy Technology Data Exchange (ETDEWEB)

    Bischi, Aldo


    Chemical looping combustion (CLC) is continuously gaining more importance among the carbon capture and storage (CCS) technologies. It is an unmixed combustion process which takes place in two steps. An effective way to realize CLC is to use two interconnected fluidized beds and a metallic powder circulating among them, acting as oxygen carrier. The metallic powder oxidizes at high temperature in one of the two reactors, the air reactor (AR). It reacts in a highly exothermic reaction with the oxygen of the injected fluidising air. Afterwards the particles are sent to the other reactor where the fuel is injected, the fuel reactor (FR). There, they transport heat and oxygen necessary for the reaction with the injected fuel to take place. At high temperatures, the particle's oxygen reacts with the fuel producing Co2 and steam, and the particles are ready to start the loop again. The overall reaction, the sum of the enthalpy changes of the oxygen carrier oxidation and reduction reactions, is the same as for the conventional combustion. Two are the key features, which make CLC promising both for costs and capture efficiency. First, the high inherent irreversibility of the conventional combustion is avoided because the energy is utilized stepwise. Second, the Co2 is intrinsically separated within the process; so there is in principle no need either of extra carbon capture devices or of expensive air separation units to produce oxygen for oxy-combustion. A lot of effort is taking place worldwide on the development of new chemical looping oxygen carrier particles, reactor systems and processes. The current work is focused on the reactor system: a new design is presented, for the construction of an atmospheric 150kWth prototype working with gaseous fuel and possibly with inexpensive oxygen carriers derived from industrial by-products or natural minerals. It consists of two circulating fluidized beds capable to operate in fast fluidization regime; this will increase the

  14. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis. (United States)

    Xu, Hui; Li, Qin; Shen, Lifeng; Zhang, Mengqun; Zhai, Jianping


    In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solution as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production.

  15. Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes. (United States)

    Xu, Hui; Li, Qin; Shen, Lifeng; Wang, Wei; Zhai, Jianping


    Circulating fluidized bed combustion (CFBC) bottom ashes (CBAs) are a class of calcined aluminosilicate wastes with a unique thermal history. While landfill disposal of hazardous element-containing CBAs poses serious challenge, these wastes have long been neglected as source materials for geopolymer production. In this paper, geopolymerization of ground CBAs was investigated. Reactivity of the CBAs was analyzed by respective dissolution of the ashes in 2, 5, and 10N NaOH and KOH solutions. Geopolymer pastes were prepared by activating the CBAs by a series of alkalis hydroxides and/or sodium silicate solutions. Samples were cured at 40 degrees C for 168 h, giving a highest compressive strength of 52.9 MPa. Of the optimal specimen, characterization was conducted by TG-DTA, SEM, XRD, as well as FTIR analyses, and thermal stability was determined in terms of compressive strength evolution via exposure to 800 or 1050 degrees C followed by three cooling regimes, i.e. cooling in air, cooling in the furnace, and immerging in water. The results show that CBAs could serve as favorable source materials for thermostable geopolymers, which hold a promise to replace ordinary Portland cement (OPC) and organic polymers in a variety of applications, especially where fire hazards are of great concern. (c) 2009 Elsevier B.V. All rights reserved.

  16. Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash. (United States)

    Chen, Chen; Li, Qin; Shen, Lifeng; Zhai, Jianping


    This paper presents a study on geopolymer bricks manufactured using bottom ash from circulating fluidized bed combustion (CFBC). The alkali activators used for synthesis were sodium silicate, sodium hydroxide, and potassium hydroxide and lithium hydroxide solutions. The study included the impact of alkali activator on compressive strength. The reaction products were analysed by XRD, FT-IR and SEM/EDS. The compressive strength of bricks was dependent on the modulus of the sodium silicate activator and the type and concentration of alkali activator. The highest compressive strength could be gained when the modulus was 1.5, and the value could reach 16.1 MPa (7 d after manufacture) and 21.9 MPa (28 d after manufacture). Under pure alkaline systems, the compressive strength was in the order of 10 M KOH > 10 M NaOH > 5 M LiOH > 5 M KOH > 5 M NaOH. Quartz was the only crystalline phase in the original bottom ash, and no new crystalline phase was found after the reaction. The main product of reaction was amorphous alkali aluminosilicate gel and a small amount of crystalline phase was also found by SEM.

  17. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report

    Energy Technology Data Exchange (ETDEWEB)



    The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

  18. Experimental investigation of ash deposits on convection heating surfaces of a circulating fluidized bed municipal solid waste incinerator. (United States)

    Tang, Zhi; Chen, Xiaoping; Liu, Daoyin; Zhuang, Yaming; Ye, Minghua; Sheng, Hongchan; Xu, Shaojuan


    Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction, as well as a source of renewable energy. During MSW combustion, increased formation of deposits on convection heating exchanger surfaces can pose severe operational problems, such as fouling, slagging and corrosion. These problems can cause lower heat transfer efficiency from the hot flue gas to the working fluid inside the tubes. A study was performed where experiments were carried out to examine the ash deposition characteristics in a full-scale MSW circulating fluidized bed (CFB) incinerator, using a newly designed deposit probe that was fitted with six thermocouples and four removable half rings. The influence of probe exposure time and probe surface temperature (500, 560, and 700°C) on ash deposit formation rate was investigated. The results indicate that the deposition mass and collection efficiency achieve a minimum at the probe surface temperature of 560°C. Ash particles are deposited on both the windward and leeward sides of the probe by impacting and thermophoretic/condensation behavior. The major inorganic elements present in the ash deposits are Ca, Al and Si. Compared to ash deposits formed on the leeward side of the probe, windward-side ash deposits contain relatively higher Ca and S concentrations, but lower levels of Al and Si. Among all cases at different surface temperatures, the differences in elemental composition of the ash deposits from the leeward side are insignificant. However, as the surface temperature increases, the concentrations of Al, Si, K and Na in the windward-side ash deposits increase, but the Ca concentration is reduced. Finally, governing mechanisms are proposed on the basis of the experimental data, such as deposit morphology, elemental composition and thermodynamic calculations. Copyright © 2016. Published by Elsevier B.V.

  19. Composition of fluid inclusions in Permian salt beds, Palo Duro Basin, Texas, U.S.A. (United States)

    Roedder, E.; d'Angelo, W. M.; Dorrzapf, A.F.; Aruscavage, P. J.


    Several methods have been developed and used to extract and chemically analyze the two major types of fluid inclusions in bedded salt from the Palo Duro Basin, Texas. Data on the ratio K: Ca: Mg were obtained on a few of the clouds of tiny inclusions in "chevron" salt, representing the brines from which the salt originally crystallized. Much more complete quantitative data (Na, K, Ca, Mg, Sr, Cl, SO4 and Br) were obtained on ??? 120 individual "large" (mostly ???500 ??m on an edge, i.e., ??? ??? 1.6 ?? 10-4 g) inclusions in recrystallized salt. These latter fluids have a wide range of compositions, even in a given piece of core, indicating that fluids of grossly different composition were present in these salt beds during the several (?) stages of recrystallization. The analytical results indicating very large inter-and intra-sample chemical variation verify the conclusion reached earlier, from petrography and microthermometry, that the inclusion fluids in salt and their solutes are generally polygenetic. The diversity in composition stems from the combination of a variety of sources for the fluids (Permian sea, meteoric, and groundwater, as well as later migrating ground-, formation, or meteoric waters of unknown age), and a variety of subsequent geochemical processes of dissolution, precipitation and rock-water interaction. The compositional data are frequently ambiguous but do provide constraints and may eventually yield a coherent history of the events that produced these beds. Such an understanding of the past history of the evaporite sequence of the Palo Duro Basin should help in predicting the future role of the fluids in the salt if a nuclear waste repository is sited there. ?? 1987.

  20. Batch top-spray fluid bed coating: Scale-up insight using dynamic heat- and mass-transfer modelling

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, P.; Jensen, Anker Degn


    A mathematical model was developed for batch top-spray fluid bed coating processes based on Ronsse et al. [2007a.b. Combined population balance and thermodynamic modelling of the batch top-spray fluidised bed coating process. Part I-model development and validation. journal of Food Engineering 78......, 296-307; Combined population balance and thermodynamic modelling of the batch top-spray fluidised bed coating process. Part II-model and process analysis. journal of Food Engineering 78, 308-322]. The model is based on one-dimensional discretisation of the fluid bed into a number of well-mixed control...

  1. Numerical Studies of the Gas-Solid Hydrodynamics at High Temperature in the Riser of a Bench-Scale Circulating Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Maximilian J. Hodapp


    Full Text Available The hydrodynamics of circulating fluidized beds (CFBs is a complex phenomenon that can drastically vary depending on operational setup and geometrical configuration. A research of the literature shows that studies for the prediction of key variables in CFB systems operating at high temperature still need to be implemented aiming at applications in energy conversion, such as combustion, gasification, or fast pyrolysis of solid fuels. In this work the computational fluid dynamics (CFD technique was used for modeling and simulation of the hydrodynamics of a preheating gas-solid flow in a cylindrical bed section. For the CFD simulations, the two-fluid approach was used to represent the gas-solid flow with the k-epsilon turbulence model being applied for the gas phase and the kinetic theory of granular flow (KTGF for the properties of the dispersed phase. The information obtained from a semiempirical model was used to implement the initial condition of the simulation. The CFD results were in accordance with experimental data obtained from a bench-scale CFB system and from predictions of the semiempirical model. The initial condition applied in this work was shown to be a viable alternative to a more common constant solid mass flux boundary condition.

  2. International evaluation of the programme on fluid bed combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, H. [Ruhr Univ., Bochum (Germany); Magnusson, B.F. [Norwegian Univ. of Science and Technology, Trondheim (Norway); Reed, T. [Colorado School of Mines (United States)


    This report on the Swedish National Program on Fluid Bed Combustion and Gasification is part of the on-going evaluation process adopted by the funding organization NUTEK. This agency has invited the undersigned to act as members of an international panel responsible for evaluating the progress made in 9 projects initiated between 1993-1996. The output of this evaluation procedure is given in this report. The main aim of the Fluid Bed Combustion and Gasification Program is to develop industrially relevant knowledge and competence in experimental and computational techniques capable of characterizing the flow, heat transfer, combustion, gasification, ash formation and deposition and emissions in fluid bed gasifiers and combustors. To achieve this aim NUTEK is sponsoring research in a number of universities and encourages close cooperation between universities and industry. In the evaluation of the various sponsored research programs, the evaluation committee has considered the following key points: relevance of research to industrial needs; originality of research; program management; adequacy of resources; degree of collaboration between industry and academia; international standing of research. In this report comments and recommendations are made on individual projects as well as on the programme in general and they express the unanimous view of the panel members

  3. Radiative heat transfer in strongly forward scattering media of circulating fluidized bed combustors (United States)

    Ates, Cihan; Ozen, Guzide; Selçuk, Nevin; Kulah, Gorkem


    Investigation of the effect of particle scattering on radiative incident heat fluxes and source terms is carried out in the dilute zone of the lignite-fired 150 kWt Middle East Technical University Circulating Fluidized Bed Combustor (METU CFBC) test rig. The dilute zone is treated as an axisymmetric cylindrical enclosure containing grey/non-grey, absorbing, emitting gas with absorbing, emitting non/isotropically/anisotropically scattering particles surrounded by grey diffuse walls. A two-dimensional axisymmetric radiation model based on Method of Lines (MOL) solution of Discrete Ordinates Method (DOM) coupled with Grey Gas (GG)/Spectral Line-Based Weighted Sum of Grey Gases Model (SLW) and Mie theory/geometric optics approximation (GOA) is extended for incorporation of anisotropic scattering by using normalized Henyey-Greenstein (HG)/transport approximation for the phase function. Input data for the radiation model is obtained from predictions of a comprehensive model previously developed and benchmarked against measurements on the same CFBC burning low calorific value indigenous lignite with high volatile matter/fixed carbon (VM/FC) ratio in its own ash. Predictive accuracy and computational efficiency of nonscattering, isotropic scattering and forward scattering with transport approximation are tested by comparing their predictions with those of forward scattering with HG. GG and GOA based on reflectivity with angular dependency are found to be accurate and CPU efficient. Comparisons reveal that isotropic assumption leads to under-prediction of both incident heat fluxes and source terms for which discrepancy is much larger. On the other hand, predictions obtained by neglecting scattering were found to be in favorable agreement with those of forward scattering at significantly less CPU time. Transport approximation is as accurate and CPU efficient as HG. These findings indicate that negligence of scattering is a more practical choice in solution of the radiative

  4. Numerical Modeling of Reactive Multiphase Flow for FCC and Hot Gas Desulfurization Circulating Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Aubrey L. [WSU Research Corporation, Morgantown, WV (USA)


    This work was carried out to understand the behavior of the solid and gas phases in a CFB riser. Only the riser is modeled as a straight pipe. A model with linear algebraic approximation to solids viscosity of the form, {musubs} = 5.34{epsisubs}, ({espisubs} is the solids volume fraction) with an appropriate boundary condition at the wall obtained by approximate momentum balance solution at the wall to acount for the solids recirculation is tested against experimental results. The work done was to predict the flow patterns in the CFB risers from available experimental data, including data from a 7.5-cm-ID CFB riser at the Illinois Institute of Technology and data from a 20.0-cm-ID CFB riser at the Particulate Solid Research, Inc., facility. This research aims at modeling the removal of hydrogen sulfide from hot coal gas using zinc oxide as the sorbent in a circulating fluidized bed and in the process indentifying the parameters that affect the performance of the sulfidation reactor. Two different gas-solid reaction models, the unreacted shrinking core (USC) and the grain model were applied to take into account chemical reaction resistances. Also two different approaches were used to affect the hydrodynamics of the process streams. The first model takes into account the effect of micro-scale particle clustering by adjusting the gas-particle drag law and the second one assumes a turbulent core with pseudo-steady state boundary condition at the wall. A comparison is made with experimental results.

  5. Properties of geopolymer from circulating fluidized bed combustion coal bottom ash

    Energy Technology Data Exchange (ETDEWEB)

    Topcu, Ilker Bekir, E-mail: [Eskisehir Osmangazi University, Civil Engineering Department, 26480 Eskisehir (Turkey); Toprak, Mehmet Ugur [Eskisehir Osmangazi University, Civil Engineering Department, 26480 Eskisehir (Turkey)


    Research highlights: {yields} Dry cured geopolymers exhibit a heterogeneous and porous gel matrix. {yields} The Si/Na atomic ratio of the main reaction product (N-A-S-H gel) is close to 1. {yields} Low Si/Na ratio (0.5) correspond to a more crystalline stage of the N-A-S-H gel. {yields} N-A-S-H gel has small pores which facilitate the escape of moisture when it is heated. {yields} N-A-S-H gel became more amorphous, attaining higher Si/Al ratio of 4.54 at 800 deg. C. - Abstract: Compressive strength, atomic ratios and microstructure of geopolymer mortars (GM) made from circulating fluidized bed combustion (CFBC) coal bottom ash (CBA) were investigated to observe the effect of air curing at ambient temperature (AC) at 20 deg. C and 90% RH, dry curing (DC) at 80 deg. C and 40% RH for 20 h. The 28-d compressive strength of GM exposed to AC (GM-AC) and DC (GM-DC) were 26.23 and 24.14 MPa, respectively. The Si/Na atomic ratio of the main reaction product (N-A-S-H gel) was close to 1. Geopolymer gel (apparently crystalline) having low Si/Na ratio (0.5) may correspond to a more advanced or developed stage of the aluminosilicate gel. It was observed that the geopolymerization was completed before the N-A-S-H gel formed when Si/Na ratio of GM is close to 2. The color of the GM changed from pink to grey and the structure became denser with almost no pores, when the temperature increased from 400 to 800 deg. C. The N-A-S-H gel became more amorphous due to the sintering reactions attaining Si/Al and Si/Na ratios of 4.54 and 0.98, respectively.

  6. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Yan Cao; John Smith


    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new

  7. Modelling of N2O Reduction in a Circulating Fluidized Bed Boiler

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Åmand, Lars Erik; Dam-Johansen, Kim


    The addition of limestone for sulphur retention in Fluidized Bed Combustion (FBC) has been observed to influence the emission of N2O, and in many cases a lower emission was observed. The catalytic activity of a Danish limestone (Stevns Chalk) for decomposition of N2O in a laboratory fixed bed qua...

  8. Flow structure formation and evolution in circulating gas-fluidised beds

    NARCIS (Netherlands)

    Li, J.; Kuipers, J.A.M.


    The occurrence of heterogeneous flow structures in gas-particle flows seriously affects the gas-solid contacting and transport processes in high-velocity gas-fluidized beds. Particles do not disperse uniformly in the flow but pass through the bed in a swarm of clusters. The so-called "core-annulus"

  9. Standard Guide for Dosimetry In Radiation Processing of Fluidized Beds and Fluid Streams

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This guide describes several dosimetry systems and methods suitable for the documentation of the irradiation of product transported as fluid or in a fluidized bed. 1.2 The sources of penetrating ionizing radiation included in this guide are electron beams, X-rays (bremsstrahlung) and gamma rays. 1.3 Absorbed doses from 10 to 100,000 gray are considered, including applications such as disinfestation, disinfection, bioburden reduction, sterilization, crosslinking and graft modification of products, particularly powders and aggregates. 1.4 This guide does not purport to address the safety concerns, if any, associated with the use of fluidized beds and streams incorporating sources of ionizing radiation. It is the responsibility of the user of this guide to establish appropriate safety and health practices and to determine compliance with regulatory limitations prior to use.

  10. Flow of power-law fluids in fixed beds of cylinders or spheres

    KAUST Repository

    Singh, John P.


    An ensemble average of the equations of motion for a Newtonian fluid over particle configurations in a dilute fixed bed of spheres or cylinders yields Brinkman\\'s equations of motion, where the disturbance velocity produced by a test particle is influenced by the Newtonian fluid stress and a body force representing the linear drag on the surrounding particles. We consider a similar analysis for a power-law fluid where the stress τ is related to the rate of strain e by τ = 2m en-1e, where m and n are constants. In this case, the ensemble-averaged momentum equation includes a body force resulting from the nonlinear drag exerted on the surrounding particles, a power-law stress associated with the disturbance velocity of the test particle, and a stress term that is linear with respect to the test particle\\'s disturbance velocity. The latter term results from the interaction of the test particle\\'s velocity disturbance with the random straining motions produced by the neighbouring particles and is important only in shear-thickening fluids where the velocity disturbances of the particles are long-ranged. The solutions to these equations using scaling analyses for dilute beds and numerical simulations using the finite element method are presented. We show that the drag force acting on a particle in a fixed bed can be written as a function of a particle-concentration-dependent length scale at which the fluid velocity disturbance produced by a particle is modified by hydrodynamic interactions with its neighbours. This is also true of the drag on a particle in a periodic array where the length scale is the lattice spacing. The effects of particle interactions on the drag in dilute arrays (periodic or random) of cylinders and spheres in shear-thickening fluids is dramatic, where it arrests the algebraic growth of the disturbance velocity with radial position when n≥ 1 for cylinders and n≥ 2 for spheres. For concentrated random arrays of particles, we adopt an

  11. Large-diameter boring of rock bed by a reveres circulation drill; Ribasu sakyureshon doriru ni yoru daikokei ganban sakko

    Energy Technology Data Exchange (ETDEWEB)

    Sakae, S.; Torii, K. [Kajima Corp., Tokyo (Japan); Hoshino, S.; Motoyama, M.


    The Itojima Large Bridge is a road bridge of 675 m in the total length connecting together the Nagashima Island and the Itojima Island in the northwest district of Kagoshima Prefecture, having a central span of 260 m and comprising a 5-span-continuous PC cable stayed bridges and PC box girder bridges. The foundation of this bridge employs a multi-pillar type pile structure. The piling work was started in July, 1991 by a hole inset method in a severe working environment where the depth of water is 20 m, the range of the tides is 4 m, the speed of tidal current is 2 kt, the rock bed structure is complicated and the steep seabed is steeply inclined. This report describes the results of the execution of the reverse circulation drilling, which has a high general versatility in rock bed boring, using self-lifting barges and large working boats during the rock bed boring for the foundation piling for the construction of the Itojima Large Bridge. The report, especially, also introduces the details of the work that casing pipes were driven into a stable rock bed by a vibrojet method for the measure against the collapse of a bore wall which occurred during the boring work. 24 figs., 14 tabs.

  12. The Importance of Splat Events to the Spatiotemporal Structure of Near-Bed Fluid Velocity and Bed Load Motion Over Bed Forms: Laboratory Experiments Downstream of a Backward Facing Step (United States)

    Leary, K. C. P.; Schmeeckle, M. W.


    Flow separation/reattachment on the lee side of alluvial bed forms is known to produce a complex turbulence field, but the spatiotemporal details of the associated patterns of bed load sediment transported remain largely unknown. Here we report turbulence-resolving, simultaneous measurements of bed load motion and near-bed fluid velocity downstream of a backward facing step in a laboratory flume. Two synchronized high-speed video cameras simultaneously observed bed load motion and the motion of neutrally buoyant particles in a laser light sheet 6 mm above the bed at 250 frames/s downstream of a 3.8 cm backward facing step. Particle Imaging Velocimetry (PIV) and Acoustic Doppler Velocimetry (ADV) were used to characterize fluid turbulent patterns, while manual particle tracking techniques were used to characterize bed load transport. Octant analysis, conducted using ADV data, coupled with Markovian sequence probability analysis highlights differences in the flow near reattachment versus farther downstream. Near reattachment, three distinct flow patterns are apparent. Farther downstream we see the development of a dominant flow sequence. Localized, intermittent, high-magnitude transport events are more apparent near flow reattachment. These events are composed of streamwise and cross-stream fluxes of comparable magnitudes. Transport pattern and fluid velocity data are consistent with the existence of permeable "splat events," wherein a volume of fluid moves toward and impinges on the bed (sweep) causing a radial movement of fluid in all directions around the point of impingement (outward interaction). This is congruent with flow patterns, identified with octant analysis, proximal to flow reattachment.

  13. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    Energy Technology Data Exchange (ETDEWEB)

    Soria, José, E-mail: [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina); Gauthier, Daniel; Flamant, Gilles [Processes, Materials and Solar Energy Laboratory (PROMES-CNRS, UPR 8521), 7 Four Solaire Street, Odeillo, 66120 Font-Romeu (France); Rodriguez, Rosa [Chemical Engineering Institute, National University of San Juan, 1109 Libertador (O) Avenue, 5400 San Juan (Argentina); Mazza, Germán [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina)


    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.

  14. Manufacturing Solid Dosage Forms from Bulk Liquids Using the Fluid-bed Drying Technology. (United States)

    Qi, Jianping; Lu, Y I; Wu, Wei


    Solid dosage forms are better than liquid dosage forms in many ways, such as improved physical and chemical stability, ease of storage and transportation, improved handling properties, and patient compliance. Therefore, it is required to transform dosage forms of liquid origins into solid dosage forms. The functional approaches are to absorb the liquids by solid excipients or through drying. The conventional drying technologies for this purpose include drying by heating, vacuum-, freeze- and spray-drying, etc. Among these drying technologies, fluidbed drying emerges as a new technology that possesses unique advantages. Fluid-bed drying or coating is highly efficient in solvent removal, can be performed at relatively low temperatures, and is a one-step process to manufacture formulations in pellet forms. In this article, the status of the art of manufacturing solid dosage forms from bulk liquids by fluid-bed drying technology was reviewed emphasizing on its application in solid dispersion, inclusion complexes, self-microemulsifying systems, and various nanoscale drug delivery systems.

  15. Numerical modelling 2 D and 3 D of circulating fluidized bed: application to the realization of regime diagrams; Modelisation numerique 2D et 3D de lit fluidise circulant: application a la realisation du diagramme des regimes

    Energy Technology Data Exchange (ETDEWEB)

    Begis, J.; Balzer, G.


    The numerical modelling of internal CFB boilers flows faced with complex phenomenons due to the flows un-stationariness, the heterogeneousness of the particle size distribution, and interactions between the two phases and the walls. Our study consisted in applying numerical models to the experimental configuration of cold circulating fluidized bed studied at the Cerchar. Special attention was given to the analysis of particles - wall interactions models, stemming from Jenkins (1992) and Louge`s (1994) theories, as well as the influence of the particles on fluid turbulence. In order to realize numerical simulations, we have used Eulerian two-phases flow codes developed at NHL medolif(2D), ESTET-ASTRID(3D). From different tests we have deducted that the most appropriate model for the realization of CFB`s prediction is the model taking in account the influence of particles on fluid turbulence. Then, to evaluate the validity limits of this model, we have built the regime diagram, and we have compared it with the experimental diagram. We have concluded that the simulation allows to describe the different CFB`s working regimes, and especially transitions. We have also noticed the importance of the choice of the mean diameter of the simulated particles. In this way, making a correction of the simulated particles` diameter in comparison with Sauter mean particle diameter, we obtained numerical results in good agreement with experimental data. (authors) 13 refs.

  16. Ash behavior and de-fluidization in low temperature circulating fluidized bed biomass gasifier

    DEFF Research Database (Denmark)

    Narayan, Vikas

    ensures that high-alkali biomass fuels can be used without risks of bed de-fluidization. This thesis aims to understand the behavior of alkali metals and ash in the LTCFB system. The thesis work involved measurements made on bed material and product gas dust samples on a 100kW LTCFB gasifier placed....... It was observed that of the total fuel ash entering the system, a large fraction (40-50%) of the ash was retained in the secondary cyclone bottoms and a lower amount (8-10%) was released as dust in the exit gas; the residual ash was accumulated within the fluidized bed system. A dominant fraction of alkali......Biomass is increasingly used as a fuel for power generation. Herbaceous fuels however, contain high amounts of alkali metals which get volatilized at high temperatures and forms salts with low melting points and thus condense on pipelines, reactor surfaces and may cause de-fluidization. A Low...

  17. Validation of a two-fluid model used for the simulation of dense fluidized beds; Validation d`un modele a deux fluides applique a la simulation des lits fluidises denses

    Energy Technology Data Exchange (ETDEWEB)

    Boelle, A.


    A two-fluid model applied to the simulation of gas-solid dense fluidized beds is validated on micro scale and on macro scale. Phase coupling is carried out in the momentum and energy transport equation of both phases. The modeling is built on the kinetic theory of granular media in which the gas action has been taken into account in order to get correct expressions of transport coefficients. A description of hydrodynamic interactions between particles in high Stokes number flow is also incorporated in the model. The micro scale validation uses Lagrangian numerical simulations viewed as numerical experiments. The first validation case refers to a gas particle simple shear flow. It allows to validate the competition between two dissipation mechanisms: drag and particle collisions. The second validation case is concerted with sedimenting particles in high Stokes number flow. It allows to validate our approach of hydrodynamic interactions. This last case had led us to develop an original Lagrangian simulation with a two-way coupling between the fluid and the particles. The macro scale validation uses the results of Eulerian simulations of dense fluidized bed. Bed height, particles circulation and spontaneous created bubbles characteristics are studied and compared to experimental measurement, both looking at physical and numerical parameters. (author) 159 refs.

  18. Fluid flow along venous adventitia in rabbits: is it a potential drainage system complementary to vascular circulations?

    Directory of Open Access Journals (Sweden)

    Hong-yi Li

    Full Text Available BACKGROUND: Our previous research and other studies with radiotracers showed evidence of a centripetal drainage pathway, separate from blood or lymphatic vessels, that can be visualized when a small amount of low molecular weight tracer is injected subcutaneously into a given region on skin of humans. In order to further characterize this interesting biological phenomenon, animal experiments are designed to elucidate histological and physiologic characteristics of these visualized pathways. METHODS: Multiple tracers are injected subcutaneously into an acupuncture point of KI3 to visualize centripetal pathways by magnetic resonance imaging or fluorescein photography in 85 healthy rabbits. The pathways are compared with venography and indirect lymphangiography. Fluid flow through the pathways is observed by methods of altering their hydrated state, hydrolyzing by different collagenases, and histology is elucidated by optical, fluorescein and electron microscopy. RESULTS: Histological and magnetic imaging examinations of these visualized pathways show they consist of perivenous loose connective tissues. As evidenced by examinations of tracers' uptake, they appear to function as a draining pathway for free interstitial fluid. Fluorescein sodium from KI3 is found in the pathways of hind limbs and segments of the small intestines, partial pulmonary veins and results in pericardial effusion, suggesting systematical involvement of this perivenous pathway. The hydraulic conductivity of these pathways can be compromised by the collapse of their fiber-rich beds hydrolyzed by either of collagenase type I, III, IV or V. CONCLUSIONS: The identification of pathways comprising perivenous loose connective tissues with a high hydraulic conductivity draining interstitial fluid in hind limbs of a mammal suggests a potential drainage system complementary to vascular circulations. These findings may provide new insights into a systematically distributed collagenous

  19. Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project

    Energy Technology Data Exchange (ETDEWEB)



    This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the Clean Coal Technology Program. The project would demonstrate circulating fluidized bed (CFB) combustion technology at JEA's existing Northside Generating Station in Jacksonville, Florida, about 9 miles northeast of the downtown area of Jacksonville. The new CFB combustor would use coal and petroleum coke to generate nearly 300 MW of electricity by repowering the existing Unit 2 steam turbine, a 297.5-MW unit that has been out of service since 1983. The proposed project is expected to demonstrate emission levels of sulfur dioxide (SO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter that would be lower than Clean Air Act limits while at the same time producing power more efficiently and at less cost than conventional coal utilization technologies. At their own risk, JEA has begun initial construction activities without DOE funding. Construction would take approximately two years and, consistent with the original JEA schedule, would be completed in December 2001. Demonstration of the proposed project would be conducted during a 2-year period from March 2002 until March 2004. In addition, JEA plans to repower the currently operating Unit 1 steam turbine about 6 to 12 months after the Unit 2 repowering without cost-shared funding from DOE. Although the proposed project consists of only the Unit 2 repowering, this EIS analyzes the Unit 1 repowering as a related action. The EIS also considers three reasonably foreseeable scenarios that could result from the no-action alternative in which DOE would not provide cost-shared funding for the proposed project. The proposed action, in which DOE would provide cost-shared finding for the proposed project, is DOE's preferred alternative. The EIS evaluates the principal environmental issues, including air quality

  20. Scale-up of an electrical capacitance tomography sensor for imaging pharmaceutical fluidized beds and validation by computational fluid dynamics (United States)

    Wang, Haigang; Yang, Wuqiang


    The aim of this research is to apply electrical capacitance tomography (ECT) in pharmaceutical fluidized beds and scale up the application of ECT from a lab-scale fluidized bed to a production-scale fluidized bed. The objective is to optimize the design of the production-scale fluidized bed and to improve the operation efficiency of the fluidization processes. This is the first time that ECT has been scaled up to a production-scale fluidized bed of 1.0 m diameter and batch process capacity of 100 kg in a real industrial environment. With a large-scale fluidized bed in a real industrial environment, some key issues on the ECT sensor design must be addressed. To validate ECT measurement results, a two-phase flow model has been used to simulate the process in a lab-scale and pilot-scale fluidized bed. The key process parameters include solid concentration, average concentration profiles, the frequency spectrum of signal fluctuation obtained by the fast Fourier transfer (FFT) and multi-level wavelet decomposition in the time domain. The results show different hydrodynamic behaviour of fluidized beds of different scales. The time-averaged parameters from ECT and computational fluid dynamics are compared. Future work on the ECT sensor design for large-scale fluidized beds are given in the end of the paper.

  1. Characterization of ashes from a 100 kWth pilot-scale circulating fluidized bed with oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.H.; Wang, C.B.; Tan, Y.W.; Jia, L.F.; Anthony, E.J. [Natural Resources Canada, Ottawa, ON (Canada)


    Oxy-fuel combustion experiments have been carried out on an oxygen-fired 100 kW(th) mini-circulating fluidized bed combustion (CFBC) facility. Coal and petroleum coke were used as fuel together with different limestones (and fixed Ca:S molar ratios) premixed with the fuel, for in situ SO{sub 2} capture. The bed ash (BA) and fly ash (FA) samples produced from this unit were collected and characterized to obtain physical and chemical properties of the ash samples. The characterization methods used included X-ray fluorescence (XRF), X-ray diffraction (XRD), char carbon and free lime analysis, thermogravimetric analysis (TGA), and surface analysis. The main purpose of this work is to characterize the CFBC ashes from oxy-fuel firing to obtain a better understanding of the combustion process, and to identify any significant differences from the ash generated by a conventional air-fired CFBC. The primary difference in the sulfur capture mechanism between atmospheric air-fired and oxy-fuel FBC, at typical FBC temperatures (similar to 850{sup o}C), is that, in the air-fired case the limestone sorbents calcine, whereas the partial pressure of CO{sub 2} in oxy-fuel FBC is high enough to prevent calcination, and hence the sulfation process should mimic that seen in pressurized FBC (PFBC). Here, the char carbon content in the fly ash was much higher than that in the bed ash, and was also high by comparison with ash obtained from conventional commercial air-firing CFBC units. In addition, measurements of the free lime content in the bed and fly ash showed that the unreacted Ca sorbent was present primarily as CaCO{sub 3}, indicating that sulfur capture in the oxy-fuel combustor occurred via direct sulfation.

  2. Numerical simulation of flow field and the study of the uniform distribution of fluid in uranium hydrometallurgy fixed bed based on CFD (United States)

    Deng, Jian; Lei, Zeyong; Zhong, Lin


    Uranium hydrometallurgy fixed bed is used to separate and extracting uranium compounds from the leaching of uranium ore. It is a very important equipment in the process of uranium purification. The distribution of the internal flow field of uranium hydrometallurgy fixed bed has great effect on the running efficiency of fixed bed. In this paper, on the basis of fluid mechanics, computational fluid dynamics software Fluent is used to numerical simulation for resin adsorption process in axial flow uranium hydrometallurgy, fixed bed that the diameter is 1600 mm and the height is 6800 mm and to research internal flow field distribution of the fixed bed. The results shows that the fluid distribution in the fixed bed is uneven in the process of adsorbent resin adsorption. The groove shunt filter plate at the exit is a powerful measure to realize the uniform distribution of fluid in the resin layer of fixed bed.

  3. Computational Fluid Dynamics Simulations of Gas-Phase Radial Dispersion in Fixed Beds with Wall Effects

    Directory of Open Access Journals (Sweden)

    Anthony G. Dixon


    Full Text Available The effective medium approach to radial fixed bed dispersion models, in which radial dispersion of mass is superimposed on axial plug flow, is based on a constant effective dispersion coefficient, DT. For packed beds of a small tube-to-particle diameter ratio (N, the experimentally-observed decrease in this parameter near the tube wall is accounted for by a lumped resistance located at the tube wall, the wall mass transfer coefficient km. This work presents validated computational fluid dynamics (CFD simulations to obtain detailed radial velocity and concentration profiles for eight different computer-generated packed tubes of spheres in the range 5.04 ≤ N ≤ 9.3 and over a range of flow rates 87 ≤ Re ≤ 870 where Re is based on superficial velocity and the particle diameter dp. Initial runs with pure air gave axial velocity profiles vz(r averaged over the length of the packing. Then, simulations with the tube wall coated with methane yielded radial concentration profiles. A model with only DT could not describe the radial concentration profiles. The two-parameter model with DT and km agreed better with the bed-center concentration profiles, but not with the sharp decreases in concentration close to the tube wall. A three-parameter model based on classical two-layer mixing length theory, with a wall-function for the decrease in transverse radial convective transport in the near-wall region, showed greatly improved ability to reproduce the near-wall concentration profiles.

  4. The circulation of the cerebrospinal fluid (CSF) in the spinal canal (United States)

    Sanchez, Antonio L.; Martinez-Bazan, Carlos; Lasheras, Juan C.


    Cerebrospinal Fluid (CSF) is secreted in the choroid plexus in the lateral sinuses of the brain and fills the subarachnoid space bathing the external surfaces of the brain and the spinal canal. Absence of CSF circulation has been shown to impede its physiological function that includes, among others, supplying nutrients to neuronal and glial cells and removing the waste products of cellular metabolism. Radionuclide scanning images published by Di Chiro in 1964 showed upward migration of particle tracers from the lumbar region of the spinal canal, thereby suggesting the presence of an active bulk circulation responsible for bringing fresh CSF into the spinal canal and returning a portion of it to the cranial vault. However, the existence of this slow moving bulk circulation in the spinal canal has been a subject of dispute for the last 50 years. To date, there has been no physical explanation for the mechanism responsible for the establishment of such a bulk motion. We present a perturbation analysis of the flow in an idealized model of the spinal canal and show how steady streaming could be responsible for the establishment of such a circulation. The results of this analysis are compared to flow measurements conducted on in-vitro models of the spinal canal of adult humans.

  5. Experimental Study of Stabilized Soil Utilizing Circulating Fluidized Bed Combustion Desulfurization Ash with Carbide Slag and Desulfurization Gypsum

    Directory of Open Access Journals (Sweden)

    Dezhi Shao


    Full Text Available This paper discusses the feasibility of preparing soil stabilizer which is circulating fluidized bed combustion ash-based, supplemented with carbide slag and desulfurization gypsum, composed entirely of complete industrial wastes. The results show that CFBC ash has better pozzolanic activity than fly ash. When stabilizer total content is 10% and the ratio of CFBC ash : carbide slag : desulfurization gypsum is 7.2 : 1.8 : 1, compressive strength of stabilized soil can reach the maximum of 2.12 MPa at the age of 28 d of curing. Stabilizer can meet the strength requirements of cement-soil mixing pile composite foundation and cement-soil mixing pile waterproof curtain.

  6. Numerical analysis of particle clustering effects on desulphurization and NO emission in a circulating fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shuyan; Yin Lijie; Lu Huilin; Jianmin Ding; Long Yu; Li Xiang [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering


    Desulphurization by a calcium oxide particle cluster and an isolated calcium oxide particle in a circulating fluidized bed (CFB) combustor was numerically analyzed. The gas flow field, the sulphur retention and the nitrogen oxide emission of the cluster were predicted. Computed results showed that the SO{sub 2} capture rate by a calcium oxide particle in the cluster is less than that of the isolated calcium oxide particle out of the cluster. The captured SO{sub 2} and NO emissions decrease with the decrease of the cluster porosity. The maximum SO{sub 2} capture rate by the cluster is at a temperature between 1025 and 1055 K, whereas more NO emissions were found with the increase of the gas temperature. The sulphur removal and the NO emission increase with the increase of the inlet gas velocity. 41 refs., 10 figs., 2 tabs.

  7. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD. (United States)

    Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán


    Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Film Coating of Nifedipine Extended Release Pellets in a Fluid Bed Coater with a Wurster Insert

    Directory of Open Access Journals (Sweden)

    Luciane Franquelin Gomes de Souza


    Full Text Available The objective of this work was to study the coating process of nifedipine extended release pellets using Opadry and Opadry II, in a fluid bed coater with a Wurster insert. The coating process was studied using a complete experimental design of two factors at two levels for each polymer. The variables studied were the inlet air temperature and the coating suspension flow rate. The agglomerate fraction and coating efficiency were the analyzed response variables. The air temperature was the variable that most influenced the coating efficiency for both polymers. In addition, a study of the dissolution profiles of coated and uncoated pellets using 0.5% sodium lauryl sulfate in simulated gastric fluid without enzymes (pH 1.2 was conducted. The results showed a prolonged release profile for the coated and uncoated pellets that was very similar to the standards established by the U.S. Pharmacopoeia. The drug content and the release profiles were not significantly affected by storage at 40°C and 75% relative humidity. However, when exposed to direct sunlight and fluorescent light (light from fluorescent bulbs, the coated pellets lost only 5% of the drug content, while the uncoated ones lost more than 35%; furthermore, the dissolution profile of the uncoated pellets was faster.

  9. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler. (United States)

    Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua


    Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Hydrodynamics in a circulating fluidized bed with annular furnace and six parallel cyclones (United States)

    Shuai, Daping; Wang, Xiaofang; Lyu, Qinggang


    Systematic measurements were conducted on a cold CFB with annular furnace and six parallel cyclones to study gas-solids flow in the annular furnace and flow non-uniformity among six cyclones. The results show that axial solids holdup in the annular furnace decreases exponentially with height, similar to the conventional rectangular furnace. The uniform transverse distribution of solids holdup suggests a good gas-solids mixing in the annular furnace. The annular furnace presents the core/double-annulus flow structure, and it results in enhanced gas-solids back-mixing than the conventional core/annulus flow structure. The gas-solids flow of the inner wall-layer and the outer wall-layer is very close at most part of the furnace height, and the wall-layer thickness decreases with height. Flow non-uniformity exists among six parallel cyclones in the annular furnace CFB. But non-uniform distribution of solids circulating rates and cyclone pressure drops show no regularity, and the flow non-uniformity is no larger than the CFBs with conventional furnace. Under typical operating conditions, the relative deviation of six solids circulating rates is 8.0%.

  11. Reduction of calcium sulfate in a coal-fired circulating fluidized bed furnace

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, J.; Basu, P.; Greenblatt, J.H. [Technical University of Nova Scotia, Halifax, NS (Canada). Mechanical Engineering Dept.


    The overall utilisation of limestone for sulphur capture in a CFB combustor depends on the reactivity of the various calcium species in the bed. To study the re-emission of SO{sub 2} the reactivity of partially sulfated CaO was studied. The material used was bottom ash drained from a 165 MWe commercial CFB boiler furnace. The tests were performed in an electrically heated furnace. Reactivity rate constants were determined from the experimental results. The release of SO{sub 2} from CaSO{sub 4} increases with temperature as well as with the concentration of the reducing agents CO, char and graphite. Of the reducing agents considered, CO is most reactive, followed by char and then graphite. 12 refs., 17 figs., 5 tabs.

  12. Experimental study on structural optimization of a supercritical circulating fluidized bed boiler with an annular furnace and six cyclones (United States)

    Wang, Xiaofang; Shuai, Daping; Lyu, Qinggang


    Annular furnace CFBs with six cyclones represent new designs for large capacity CFB boilers over 660 MW. To investigate the gas-solid flow non-uniformity and its main influencing factors, an experimental study was carried out in the cold-test rig of an annular furnace CFB with six cyclones. The influence of furnace structure and cyclone arrangement on the non-uniformity of gas-solid flow was obtained. On the basis of these findings, the structure of the annular furnace CFB with six cyclones was optimized, and an optimal structure was obtained. The results show that for newly designed annular furnace CFBs, the non-uniformity of gas-solid flow among loops is no greater than that of traditional CFBs. In terms of uniformity, side cyclones rotating inward are superior to those rotating outward. The position of the side cyclones determines the basic solid circulating rate distribution trend and can dramatically improve flow non-uniformity. The middle cyclone positions and the symmetric modes of the cyclones do not determine the solid circulating rate distribution trend and have less effect on DEV Gs. Forty-five degree chamfers of outer ring walls can reduce wall erosion and the non-uniformity of gas-solid flow in the circulating fluidized bed. Regarding the operating and structural conditions in this work, the optimal structure of annular furnace CFBs is Type 6: side cyclones rotating inward and b = a/2, d = 0.1 c; the center of the middle cyclone inlet located at the centerline of the furnace cross-section; cyclones on the two sides of the furnace in an axisymmetric arrangement; and a furnace corner shape of 45° chamfers. Under the given operating conditions, the DEV Gs for the optimal structure are approximately 4.0% 10.3%.

  13. Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Marashdeh, Qussai [Tech4imaging LLC, Columbus, OH (United States)


    A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi

  14. Circumventricular organs: targets for integration of circulating fluid and energy balance signals? (United States)

    Mimee, Andrea; Smith, Pauline M; Ferguson, Alastair V


    The subfornical organ (SFO), as one of the sensory circumventricular organs (CVOs), is among the only central nervous system structures which interfaces directly with circulating substances that do not cross the blood brain barrier. Here we describe a growing literature showing that circulating indicators of cardiovascular (angiotensin II, osmolarity, calcium, sodium) and metabolic (adiponectin, amylin, glucose, ghrelin, leptin) statuses influence the excitability of single SFO neurons. Single cell electrophysiological studies from our laboratory have demonstrated excitatory effects of angiotensin II on individual SFO neurons, and changes in angiotensin II receptor expression in this CVO in hypertensive states emphasize the dynamic contribution of SFO neurons to the regulation of fluid balance. Furthermore, we have shown both depolarizing and hyperpolarizing effects of the adipokines adiponectin and leptin in SFO cells, and highlight that conditions of fasting in the case of adiponectin, and obesity in the case of leptin, alter the sensitivity of SFO neurons to these circulating factors. The results examined in this review provide evidence for a role of the SFO as a mediator and integrative structure in the maintenance of cardiovascular and metabolic functions. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. A study of dilute to dense flow in a circulating fluidized bed

    DEFF Research Database (Denmark)

    Ibsen, Claus Hübbe; Solberg, Tron; Hjertager, Bjørn H.


    are based on a Multiphase Computational Fluid Dynamics code, where the conservation equations for the solid phases are based on the kinetic theory of granular flow. The experimental data is used to evaluate the multiphase CFD code with alternative gas-solid drag models, which showed an improved agreement......This work concerns a experimental and numerical study on how the amount of particles influences the flow in the CFB. Experiments are performed with a 1D Laser and Phase doppler anemometry, whereby data of axial velocity, RMS velocity and particle diameter is obtained. The numerical simulations...

  16. Gas-solid turbulent flow in a circulating fluidized bed riser: experimental and numerical study of mono-disperse particle systems

    NARCIS (Netherlands)

    He, Y.; Deen, N.G.; van Sint Annaland, M.; Kuipers, J.A.M.


    Numerical simulations were performed of a turbulent gas-particle multiphase flow in a circulating fluidized bed riser using a hard-sphere discrete particle model (DPM) for the particle phase and the Navier−Stokes equations for the gas phase, where the subgrid scale stresses (SGS) were modeled with

  17. Clay minerals related to the circulation of geothermal fluids in boreholes at Rittershoffen (Alsace, France) (United States)

    Vidal, Jeanne; Patrier, Patricia; Genter, Albert; Beaufort, Daniel; Dezayes, Chrystel; Glaas, Carole; Lerouge, Catherine; Sanjuan, Bernard


    Two geothermal wells, GRT-1 and GRT-2, were drilled into the granite at Rittershoffen (Alsace, France) in the Upper Rhine Graben to exploit geothermal resources at the sediment-basement interface. Brine circulation occurs in a permeable fracture network and leads to hydrothermal alteration of the host rocks. The goal of the study was to characterize the petrography and mineralogy of the altered rocks with respect to the permeable fracture zones in the granitic basement. As clay minerals are highly reactive to hydrothermal alteration, they can be used as indicators of present-day and paleo-circulation systems. Special attention has been paid to the textural, structural and chemical properties of these minerals. The fine-grained clay fraction (< 5 μm) was analyzed around the originally permeable fracture zones to observe the crystal structure of clay minerals using X-ray diffraction. Chemical microanalysis of the clay minerals was performed using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. The occurrences of mixed layers illite-smectite ( 10% smectite) provide a promising guide for identifying the fracture zones that control the present-day circulation of geothermal fluids in the Rittershoffen wells. However, multistage paleo-circulation systems could lead to an abundance of heterogeneous and fine-grained illitic minerals that could plug the fracture system. The permeability of fracture zones in the GRT-1 well was likely reduced because of an intense illitization, and the well was stimulated. The occurrence of chlorite in the permeable fracture zones of GRT-2 is indicative of less intense illitization, and the natural permeability is much higher in GRT-2 than in GRT-1.

  18. Development of a fluid bed granulation design space using critical quality attribute weighted tolerance intervals. (United States)

    Zacour, Brian M; Drennen, James K; Anderson, Carl A


    The fluid bed granulation and drying unit operation were used as a case study for control systems implementation. This single processor was used to blend, granulate, dry, and cool the materials. The current study demonstrated control of each of the phases using a fully automated, hybrid control system that incorporated first-principle modeling, empirical design of experiments (DOE), and process analytical technology to assure the production of constant product quality. The system allowed data to be collected efficiently for the development of a rigorous design space that combined formulation factors, process factors, and their interactions to define a tolerance surface where risk of future product failure was significantly reduced. The DOE incorporated microcrystalline cellulose and lactose monohydrate, excipients with substantially different wetting properties, to elucidate the relationship between the critical process parameters of the unit operation and the material properties of the formulation components. The extended analysis of covariance model enabled these factors and their interaction terms to be described in a single model. The results indicate that the development of a tolerance interval-based weighted design space can enhance product understanding and thereby help to assure future product quality. Copyright © 2012 Wiley Periodicals, Inc.

  19. A quality by design study applied to an industrial pharmaceutical fluid bed granulation. (United States)

    Lourenço, Vera; Lochmann, Dirk; Reich, Gabriele; Menezes, José C; Herdling, Thorsten; Schewitz, Jens


    The pharmaceutical industry is encouraged within Quality by Design (QbD) to apply science-based manufacturing principles to assure quality not only of new but also of existing processes. This paper presents how QbD principles can be applied to an existing industrial pharmaceutical fluid bed granulation (FBG) process. A three-step approach is presented as follows: (1) implementation of Process Analytical Technology (PAT) monitoring tools at the industrial scale process, combined with multivariate data analysis (MVDA) of process and PAT data to increase the process knowledge; (2) execution of scaled-down designed experiments at a pilot scale, with adequate PAT monitoring tools, to investigate the process response to intended changes in Critical Process Parameters (CPPs); and finally (3) the definition of a process Design Space (DS) linking CPPs to Critical to Quality Attributes (CQAs), within which product quality is ensured by design, and after scale-up enabling its use at the industrial process scale. The proposed approach was developed for an existing industrial process. Through enhanced process knowledge established a significant reduction in product CQAs, variability already within quality specifications ranges was achieved by a better choice of CPPs values. The results of such step-wise development and implementation are described. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Design Space Approach in Optimization of Fluid Bed Granulation and Tablets Compression Process

    Directory of Open Access Journals (Sweden)

    Jelena Djuriš


    Full Text Available The aim of this study was to optimize fluid bed granulation and tablets compression processes using design space approach. Type of diluent, binder concentration, temperature during mixing, granulation and drying, spray rate, and atomization pressure were recognized as critical formulation and process parameters. They were varied in the first set of experiments in order to estimate their influences on critical quality attributes, that is, granules characteristics (size distribution, flowability, bulk density, tapped density, Carr's index, Hausner's ratio, and moisture content using Plackett-Burman experimental design. Type of diluent and atomization pressure were selected as the most important parameters. In the second set of experiments, design space for process parameters (atomization pressure and compression force and its influence on tablets characteristics was developed. Percent of paracetamol released and tablets hardness were determined as critical quality attributes. Artificial neural networks (ANNs were applied in order to determine design space. ANNs models showed that atomization pressure influences mostly on the dissolution profile, whereas compression force affects mainly the tablets hardness. Based on the obtained ANNs models, it is possible to predict tablet hardness and paracetamol release profile for any combination of analyzed factors.

  1. Design space approach in optimization of fluid bed granulation and tablets compression process. (United States)

    Djuriš, Jelena; Medarević, Djordje; Krstić, Marko; Vasiljević, Ivana; Mašić, Ivana; Ibrić, Svetlana


    The aim of this study was to optimize fluid bed granulation and tablets compression processes using design space approach. Type of diluent, binder concentration, temperature during mixing, granulation and drying, spray rate, and atomization pressure were recognized as critical formulation and process parameters. They were varied in the first set of experiments in order to estimate their influences on critical quality attributes, that is, granules characteristics (size distribution, flowability, bulk density, tapped density, Carr's index, Hausner's ratio, and moisture content) using Plackett-Burman experimental design. Type of diluent and atomization pressure were selected as the most important parameters. In the second set of experiments, design space for process parameters (atomization pressure and compression force) and its influence on tablets characteristics was developed. Percent of paracetamol released and tablets hardness were determined as critical quality attributes. Artificial neural networks (ANNs) were applied in order to determine design space. ANNs models showed that atomization pressure influences mostly on the dissolution profile, whereas compression force affects mainly the tablets hardness. Based on the obtained ANNs models, it is possible to predict tablet hardness and paracetamol release profile for any combination of analyzed factors.

  2. Cardiovascular and Body Fluid Adjustments During Bed Rest and Space Flight (United States)

    Greenleaf, John E.; Tomko, David L. (Technical Monitor)


    Although a few scientific bed rest (BR) studies were conducted soon after World War II, advent of the space program provided impetus for utilizing prolonged (days-months) BR, which employed the horizontal or 6 degree head-down tilt (HDT) body positions, to simulate responses of healthy people to microgravity. Shorter (hours) HDT protocols were used to study initial mechanisms of the acclimation-deconditioning (reduction of physical fitness) syndromes. Of the major physiological factors modified during BR, reduced force on bones, ligaments, and muscles, and greatly reduced hydrostatic pressure within the cardiovascular system, the latter: which involves shifts of blood from the lower extremities into the upper body, increase in central venous pressure, and diuresis, appears to be the initial stimulus for acclimation. Increase in central venous pressure occurs in subjects during weightless parabolic flight, but not in astronauts early during orbital flight. But significant reduction in total body water (hypohydration) and plasma volume (hypovolemia) occurs in subjects during both BR and microgravity. Response of interstitial fluid volume is not as clear, It has been reported to increase during BR, and it may have increased in Skylab II and IV astronauts. Reduction of total body water, and greater proportional reduction of extracellular volume, indicates increased cellular volume which may contribute to inflight cephalic edema. Cerebral pressure abates after a few days of HDT, but not during flight. accompanied by normal (eugravity) blood constituent concentrations suggesting some degree of acclimation had occurred. But during reentry, with moderately increased +Gz (head-to-foot) acceleration and gravitational force, the microgravity "euhydration" becomes functional progressive dehydration contributing to the general reentry syndrome (GRS) which, upon landing the Shuttle, can and often results in gastrointestinal distress, disorientation, vertigo, fatigue, and

  3. Simulations of a Circulating Fluidized Bed Chemical Looping Combustion System Utilizing Gaseous Fuel Simulation de la combustion en boucle chimique d’une charge gazeuse dans un lit fluidisé circulant

    Directory of Open Access Journals (Sweden)

    Mahalatkar K.


    Full Text Available Numerical studies using Computational Fluid Dynamics (CFD have been carried out for a complete circulating fluidized bed chemical looping combustor described in the literature (Abad et al., 2006 Fuel 85, 1174-1185. There have been extensive experimental studies in Chemical Looping Combustion (CLC, however CFD simulations of this concept are quite limited. The CLC experiments that were simulated used methane as fuel. A 2-D continuum model was used to describe both the gas and solid phases. Detailed sub-models to account for fluid-particle and particleparticle interaction forces were included. Global models of fuel and carrier chemistry were utilized. The results obtained from CFD were compared with experimental outlet species concentrations, solid circulation rates, solid mass distribution in the reactors, and leakage and dilution rates. The transient CFD simulations provided a reasonable match with the reported experimental data. Des études numériques de simulation des écoulements (CFD ont été réalisées sur un lit fluidisé circulant opérant en combustion par boucle chimique (CLC décrit dans la littérature (Abad et al., 2006 Fuel 85, 1174-1185. Si de nombreuses études expérimentales ont été conduites pour étudier le procédé CLC, les études concernant la simulation des écoulements par CFD de ce concept sont très limitées. Le système de combustion en boucle chimique simulé dans cette étude concerne la combustion d’une charge gazeuse (méthane. Un modèle 2-D à deux phases continues a été utilisé pour décrire les phases gaz et solide avec des sous-modèles détaillés pour décrire les forces d’interactions entre fluideparticule et particule-particule. Des modèles cinétiques globaux ont été intégrés pour décrire les réactions de combustion et de transformation du matériau transporteur d’oxygène. Les résultats obtenus par CFD ont été comparés aux concentrations expérimentales mesurées des diff

  4. A Study on Methane and Nitrous Oxide Emissions Characteristics from Anthracite Circulating Fluidized Bed Power Plant in Korea

    Directory of Open Access Journals (Sweden)

    Seehyung Lee


    Full Text Available In order to tackle climate change effectively, the greenhouse gas emissions produced in Korea should be assessed precisely. To do so, the nation needs to accumulate country-specific data reflecting the specific circumstances surrounding Korea’s emissions. This paper analyzed element contents of domestic anthracite, calorific value, and concentration of methane (CH4 and nitrous oxide (N2O in the exhaust gases from circulating fluidized bed plant. The findings showed the concentration of CH4 and N2O in the flue gas to be 1.85 and 3.25 ppm, respectively, and emission factors were 0.486 and 2.198 kg/TJ, respectively. The CH4 emission factor in this paper was 52% lower than default emission factor presented by the IPCC. The N2O emission factor was estimated to be 46% higher than default emission factor presented by the IPCC. This discrepancy can be attributable to the different methods and conditions of combustion because the default emission factors suggested by IPCC take only fuel characteristics into consideration without combustion technologies. Therefore, Korea needs to facilitate research on a legion of fuel and energy consumption facilities to develop country-specific emission factors so that the nation can have a competitive edge in the international climate change convention in the years to come.

  5. Development of Methane and Nitrous Oxide Emission Factors for the Biomass Fired Circulating Fluidized Bed Combustion Power Plant

    Directory of Open Access Journals (Sweden)

    Chang-Sang Cho


    Full Text Available This study makes use of this distinction to analyze the exhaust gas concentration and fuel of the circulating fluidized bed (CFB boiler that mainly uses wood biomass, and to develop the emission factors of Methane (CH4, Nitrous oxide (N2O. The fuels used as energy sources in the subject working sites are Wood Chip Fuel (WCF, RDF and Refused Plastic Fuel (RPF of which heating values are 11.9 TJ/Gg, 17.1 TJ/Gg, and 31.2 TJ/Gg, respectively. The average concentrations of CH4 and N2O were measured to be 2.78 ppm and 7.68 ppm, respectively. The analyzed values and data collected from the field survey were used to calculate the emission factor of CH4 and N2O exhausted from the CFB boiler. As a result, the emission factors of CH4 and N2O are 1.4 kg/TJ (0.9–1.9 kg/TJ and 4.0 kg/TJ (2.9–5.3 kg/TJ within a 95% confidence interval. Biomass combined with the combustion technology for the CFB boiler proved to be more effective in reducing the N2O emission, compared to the emission factor of the CFB boiler using fossil fuel.

  6. A Study on Methane and Nitrous Oxide Emissions Characteristics from Anthracite Circulating Fluidized Bed Power Plant in Korea (United States)

    Lee, Seehyung; Kim, Jinsu; Lee, Jeongwoo; Jeon, Eui-Chan


    In order to tackle climate change effectively, the greenhouse gas emissions produced in Korea should be assessed precisely. To do so, the nation needs to accumulate country-specific data reflecting the specific circumstances surrounding Korea's emissions. This paper analyzed element contents of domestic anthracite, calorific value, and concentration of methane (CH4) and nitrous oxide (N2O) in the exhaust gases from circulating fluidized bed plant. The findings showed the concentration of CH4 and N2O in the flue gas to be 1.85 and 3.25 ppm, respectively, and emission factors were 0.486 and 2.198 kg/TJ, respectively. The CH4 emission factor in this paper was 52% lower than default emission factor presented by the IPCC. The N2O emission factor was estimated to be 46% higher than default emission factor presented by the IPCC. This discrepancy can be attributable to the different methods and conditions of combustion because the default emission factors suggested by IPCC take only fuel characteristics into consideration without combustion technologies. Therefore, Korea needs to facilitate research on a legion of fuel and energy consumption facilities to develop country-specific emission factors so that the nation can have a competitive edge in the international climate change convention in the years to come. PMID:22666126

  7. Fluid bed gasification – Plasma converter process generating energy from solid waste: Experimental assessment of sulphur species

    Energy Technology Data Exchange (ETDEWEB)

    Morrin, Shane, E-mail: [Department of Chemical Engineering, University College London, London WC1E 7JE (United Kingdom); Advanced Plasma Power, Swindon, Wiltshire SN3 4DE (United Kingdom); Lettieri, Paola, E-mail: [Department of Chemical Engineering, University College London, London WC1E 7JE (United Kingdom); Chapman, Chris, E-mail: [Advanced Plasma Power, Swindon, Wiltshire SN3 4DE (United Kingdom); Taylor, Richard, E-mail: [Advanced Plasma Power, Swindon, Wiltshire SN3 4DE (United Kingdom)


    Highlights: • We investigate gaseous sulphur species whilst gasifying sulphur-enriched wood pellets. • Experiments performed using a two stage fluid bed gasifier – plasma converter process. • Notable SO{sub 2} and relatively low COS levels were identified. • Oxygen-rich regions of the bed are believed to facilitate SO{sub 2}, with a delayed release. • Gas phase reducing regions above the bed would facilitate more prompt COS generation. - Abstract: Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO{sub 2} and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO{sub 2}’s generation. The response of COS to sulphur in the feed was quite prompt, whereas SO{sub 2} was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO{sub 2} generation. The more reducing gas phase regions above the bed would have facilitated COS – hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.

  8. A Two‐Fluid model study of hydrogen production via water gas shift in fluidized bed membrane reactors


    J.W. Voncken, Ramon; Roghair, Ivo; Van Sint Annaland, Martin


    Fluidized bed membrane reactors have been proposed as a promising reactor concept for the production of ultra-pure hydrogen via Water Gas Shift (WGS). High-flux thin-film dense palladium-based membranes are used to selectively extract hydrogen from the reaction medium, which shifts the thermodynamic equilibrium towards the products’ side, increasing the conversion. A Two-Fluid Model (TFM) has been used to investigate the effect of hydrogen extraction via perm-selective membranes on the WGS re...

  9. Drug loaded and ethylcellulose coated mesoporous silica for controlled drug release prepared using a pilot scale fluid bed system. (United States)

    Hacene, Youcef Chakib; Singh, Abhishek; Van den Mooter, Guy


    The goal of this study was to test the feasibility to load non-ordered, non-spherical mesoporous silica with the model drug paracetamol, and subsequently coat the loaded particles using one single pilot scale fluid bed system equipped with a Wurster insert. Mesoporous silica particles (Davisil(®)) with a size ranging from 310 to 500μm and an average pore diameter of 15nm were loaded with paracetamol to 18.8% drug content. Subsequently, loaded cores were coated with ethylcellulose to obtain controlled drug release. Coating processing variables were varied following a full factorial design and their effect on drug release was assessed. Increasing coating solution feed rate and decreasing fluidizing air temperature were found to increase drug release rates. Increasing pore former level and decreasing coating level were found to increase drug release rates. The release medium's osmolality was varied using different sodium chloride concentrations, which was found to affect drug release rates. The results of this study clearly indicate the potential of non-ordered, non-spherical mesoporous silica as a reservoir carrier for the controlled release of drugs. Although non-spherical, we were able to reproducibly coat this carrier using a bottom spray fluid bed system. However, a major hurdle that needs to be tackled is the attrition the material suffers from during fluid bed processing. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Top-spray fluid bed coating: Scale-up in terms of relative droplet size and drying force

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, P.; Jensen, Anker Degn


    Top-spray fluid bed coating scale-up experiments have been performed in three scales in order to test the validity of two parameters as possible scaling parameters: The drying force and the relative droplet size. The aim was to be able to reproduce the degree of agglomeration as well as the mecha......Top-spray fluid bed coating scale-up experiments have been performed in three scales in order to test the validity of two parameters as possible scaling parameters: The drying force and the relative droplet size. The aim was to be able to reproduce the degree of agglomeration as well...... as binder. Coating experiments were repeated for various drying force and relative droplet size values in three top-spray fluid bed scales being a small-scale (Type: GEA Aeromatic-Fielder Strea-1), medium-scale (Type: Niro MP-1) and large-scale (Type: GEA MP-2/3). The tendency of agglomeration was assessed...... in terms of particle size fractions larger than 425 mu m determined by sieve analysis. Results indicated that the particle size distribution may be reproduced across scale with statistical valid precision by keeping the drying force and the relative droplet size constant across scale. It is also shown...

  11. Superhot fluids circulating close to magma intrusions: a contribution from analogue modelling (United States)

    Montanari, Domenico; Agostini, Andrea; Bonini, Marco; Corti, Giacomo


    Magma overpressure at the time of the emplacement at shallow crustal levels may lead to deformation (i.e. forced folding, fracturing and faulting) in the country rock, both at local and regional scale. To get insights into this process, we reproduced and analysed in the laboratory the fracture/fault network associated with the emplacement of magma at shallow crustal levels. We used a mixture of quartz sand and K-feldspar fine sand as an analogue for the brittle crust, and polyglycerols for the magma. The models were able to reproduce complex 3D architectures of deformation resulting from magma emplacement, with different deformation patterns -invariably dominated by forced folding and associated brittle faulting/fracturing- resulting from variable parameters. These results provide useful hints into geothermal researches. Fractures and faults associated with magma emplacement are indeed expected to significantly influence the distribution and migration of superhot geothermal fluids near the edge of the magma intrusion. These structures can therefore be considered as potential targets for geothermal or mineral deposits exploration. In this perspective, the results of analogue models may provide useful geometric and conceptual constraints for field work, numerical modeling, and particularly seismic interpretation for achieving a better understanding and tuning of the integrated conceptual model concerning the circulation of supercritical fluids. The research leading to these results has received funding from the European Community's Seventh Framework Programme under grant agreement No. 608553 (Project IMAGE).

  12. Circulating MicroRNAs as Promising Biomarkers in Forensic Body Fluids Identification. (United States)

    Dumache, Raluca; Ciocan, Veronica; Muresan, Camelia; Rogobete, Alexandru Florin; Enache, Alexandra


    In the last 20 years, DNA molecular analysis has become an important tool in forensic investigations. Currently, it is possible to genotype all types of biological traces or micro-traces containing nucleated cells if they are not entirely destroyed, chemically or bacterial. The DNA profiling is based on the short tandem repeats (STR) and aids in human identification from biological samples, but due to the recent advances in molecular genetics, other biomarkers have been proposed to be used in forensic identifications, such as: messenger RNA(mRNA), microRNA (miRNA), and DNA methylation. MicroRNAs are part of a class of small, non-coding RNAs that contain 19 - 23 nucleotides. MicroRNAs play an important role in the regulation of biochemical mechanisms, cell proliferation and other cellular mechanisms in the human body. The level of microRNAs in blood and other body fluids (urine, saliva, sweat) increases as a consequence of altered pathophysiological mechanisms and tissue insult. Moreover, the stability and specificity of microRNAs make them ideal candidates for circulating biomarkers in forensic bioanalytical procedures. In this review, we want to present a brief overview of biogenesis, functions, and applications of miRNAs in the identification of forensic body fluids.

  13. Microwave drying of granules containing a moisture-sensitive drug: a promising alternative to fluid bed and hot air oven drying. (United States)

    Chee, Sze Nam; Johansen, Anne Lene; Gu, Li; Karlsen, Jan; Heng, Paul Wan Sia


    The impact of microwave drying and binders (copolyvidone and povidone) on the degradation of acetylsalicylic acid (ASA) and physical properties of granules were compared with conventional drying methods. Moist granules containing ASA were prepared using a high shear granulator and dried with hot air oven, fluid bed or microwave (static or dynamic bed) dryers. Percent ASA degradation, size and size distribution, friability and flow properties of the granules were determined. Granules dried with the dynamic bed microwave dryer showed the least amount of ASA degradation, followed by fluid bed dryer, static bed microwave oven and hot air oven. The use of microwave drying with a static granular bed adversely affected ASA degradation and drying capability. Dynamic bed microwave dryer had the highest drying capability followed by fluid bed, static bed microwave dryer and conventional hot air oven. The intensity of microwave did not affect ASA degradation, size distribution, friability and flow properties of the granules. Mixing/agitating of granules during drying affected the granular physical properties studied. Copolyvidone resulted in lower amount of granular residual moisture content and ASA degradation on storage than povidone, especially for static bed microwave drying. In conclusion, microwave drying technology has been shown to be a promising alternative for drying granules containing a moisture-sensitive drug.

  14. Hydrodynamique, transfert de chaleur et combustion de gaz naturel en lit fluidisé circulant Hydrodynamics, Heat Transfer and Combustion of Natural Gas in a Circulating Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Feugier A.


    Full Text Available L'hydrodynamique, les transferts de chaleur et la combustion du gaz naturel ont été étudiés dans un réacteur à lit circulant de 15 cm de diamètre et de 7 m de haut. Ce réacteur peut opérer avec des vitesses de gaz allant jusqu'à 15 m/s, jusqu'à des températures de 880-900°C et avec des débits de solides compris entre 0 et 15t/h. Les charges utilisées sont des sables de granulométrie allant de 95 à 625 microns. Le profil de concentration en solides dans le réacteur est déterminé à partir du profil de pression. Une corrélation reliant la vitesse de glissement des particules aux principaux paramètres opératoires, rend compte de façon très satisfaisante de l'ensemble des résultats expérimentaux. La mise en place d'un échangeur en paroi dans la partie supérieure du réacteur a permis la détermination de coefficients d'échange thermique. Ces derniers sont essentiellement fonction de la, concentration en particules au droit de l'échangeur et de la granulométrie des particules. Des valeurs allant jusqu'à 200 W/m2 K peuvent, être obtenues. Enfin, la combustion du méthane s'avère très sensible à la présence de particules dans le réacteur. Ces particules ont un effet inhibiteur. Hydrodynamics, heat transfer and combustion of natural gas have been investigated in a circulating-bed reactor 15 cm in diameter and 7 m high. This reactor can operate with gas velocities up to 15 m/s, at temperature up to 880-900°C and with solids flow rates of between 0 and 15 t/h. The solids used are sands with a particle size ranging from 95 to 625 microns. The solids concentration profile in the reactor is determined from the pressure profile. A correlation linking the slippage velocity of particles to the principal operating parameters very satisfactorily takes into consideration the overall experimental results. The installation of a wall heat exchanger in the upper part of the reactor enabled the heat exchange coefficients to be

  15. Experimental findings on thermal use of residues and biofuels in circulating fluidized bed combustion systems; Experimentelle Ergebnisse zur thermischen Nutzung von Rest- und Biobrennstoffen in zirkulierenden Wirbelschichtfeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, W.; Brunne, T.; Girndt, H. [Technische Univ. Dresden (Germany); Albrecht, J. [Lurgi Lentjes Babcock, Frankfurt am Main (Germany); Youssef, M. [Minia Univ. (Egypt)


    The energy Engineering Institute of Dresden Technical University investigated the combustion and emission characteristics of a number of combustion systems, including a circulating fluidized bed system with a capacity of 0.3 MW{sub th}. Egypt`s sugar cane industry produces large volumes of bagasse. The conbustion and emission characteristics of this biofuel in a circulating fludized bed combustion systems were investigated in a joint research project of the University of Minia and Dresden Technical University. (orig.) [Deutsch] Am Institut fuer Energietechnik der TU Dresden wird das Verbrennungs- und Emissionsverhalten verschiedenster Brennstoffe in unterschiedlichen Feuerungssystemen untersucht. Neben anderen Pilotanlagen steht eine zirkulierende Wirbelschichtfeuerung (ZWFS) mit einer Leistung von 0.3 MW{sub th} zur Verfuegung. In der Zuckerrohrindustrie Aegyptens fallen grosse Mengen von Bagasse an. In einer gemeinsamen Forschungsarbeit zwischen der Universitaet Minia und der TU Dresden sollte das Verbrennungs- und Emissionsverhalten dieses Biobrennstoffes in einer ZWSF untersucht werden. (orig)

  16. Stearic acid coating on circulating fluidized bed combustion fly ashes and its effect on the mechanical performance of polymer composites (United States)

    Yao, Nina; Zhang, Ping; Song, Lixian; Kang, Ming; Lu, Zhongyuan; Zheng, Rong


    The aim of this work was to test circulating fluidized bed combustion fly ashes (CFAs) for its potential to be utilized in polymer composites manufacturing to improve its toughness. CFAs was coated by stearic acid and used in the composite of polypropylene/ethylene vinyl acetate/high density polyethylene (PP/EVA/HDPE) by molding process method. The resulting coated and uncoated CFAs were fully characterized by particle size analyzer, contact angles, powder X-ray diffraction (XRD), thermogravimetric analysis/differential thermal analysis (TGA/DTA), Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The stearic acid coated onto the surface of CFAs particles in the physical and chemical ways, and the total clad ratio reached 2.05% by measuring TGA/DTA curve. The percentage of CFAs particles focused to a narrow range 2-4 μm and the median mean size was 3.2 μm more than uncoated CFAs. The properties of hydrophobic and dispersive of CFAs particles improved and original activity was reserved after stearic acid coating. The stearic acid was verified as a coupling agent by how much effect it had on the mechanical properties. It showed the elongation at break of PP/EVA/HDPE reinforced with 15 wt% coated CFAs (c-CFAs) was 80.20% and higher than that of the uncoated. The stearic acid treatment of CFAs is a very promising approach to improve the mechanical strength due to the incorporation of stearic acid on the CFAs surface, and hence, further enhances the potential for recycling CFAs as a suitable filler material in polymer composites.

  17. Experimental study on fuel oil combustion in circulating fluidized bed; Estudio experimental sobre la combustion de combustoleo en lecho fluidizado circulante

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Rangel, Ricardo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)


    The Instituto de Investigaciones Electricas (IIE) developed a circulating fluidized bed combustor of 0.5 thermal MW unique in its type in Latin America. The Bachelor`s thesis entitled ``Experimental Study on Fuel Oil Combustion in Circulating Fluidized Bed`` was performed operating this combustor with the purpose of determining the feasibility of burning heavy fuel oil in a stable and sustained form, as well as the effect of the addition of calcium carbonate to the combustor. The results of the experimental trials showed heavy fuel oil can be burned in a circulating fluidized bed, with low sulfur dioxide emissions. During the conduction of the experiments a sulfur retention of 43% was achieved with a Ca/S relationship of 4.5. [Espanol] El Instituto de Investigaciones Electricas (IIE) desarrollo un combustor de lecho fluidizado circulante de 0.5 MW termicos de potencia, unico en su tipo en Latinoamerica. La tesis de licenciatura titulada Estudio Experimental sobre la Combustion de Combustoleo en Lecho Fluidizado Circulante se realizo operando dicho combustor, con el proposito de determinar la factibilidad de quemar combustoleo pesado en forma estable y autosostenida, asi como la influencia que tiene la adicion de carbonato de calcio al lecho. Los resultados de los ensayos experimentales mostraron que se puede quemar combustoleo pesado en un lecho fluidizado circulante, con bajas emisiones de bioxido de azufre. Durante la experimentacion se logro una retencion de azufre del 43%, con una relacion Ca/S de 4.5.

  18. Conceptual studies and preliminary design of a fluid bed fired boiler for service in an electric utility

    Energy Technology Data Exchange (ETDEWEB)


    As a part of this study, B and W was to develop fluid bed system design bases and parameters using any and all sources available. The design parameters used for the fluid bed boiler designs in this study were actually developed by B and W as part of their in-house AFB development program and also as a part of the subject design study. To properly carry out the assessment portion of the work it was essential to develop an understanding of the basic interrelationship of variables in order that the final comparisons would be of consistent and realistic as possible. Inputs to meet this goal were largely based on available literature, B and W experience, and engineering judgment. In some cases we also had to venture into some theoretical development work if published results appeared incomplete. The key subject areas to be covered in subsequent pages are listed: General, Fluidizing Velocity Requirements, FBC Feed Particle Size Requirements, Calculated Slip Velocities as a Function of Particle Size and Dispersed Density, Heat Transfer Equations, Heat Transfer to Horizontal Tubes in Shallow Fluidized Beds, Combustion Efficiencies, Sulfur Capture, Freeboard Performance, Distributor Plate Design, and Economic Considerations.

  19. On a criterion of incipient motion and entrainment into suspension of a particle from cuttings bed in shear flow of non-Newtonian fluid (United States)

    Ignatenko, Yaroslav; Bocharov, Oleg; May, Roland


    Solids transport is a major issue in high angle wells. Bed-load forms by sediment while transport and accompanied by intermittent contact with stream-bed by rolling, sliding and bouncing. The study presents the results of a numerical simulation of a laminar steady-state flow around a particle at rest and in free motion in a shear flow of Herschel–Bulkley fluid. The simulation was performed using the OpenFOAM open-source CFD package. A criterion for particle incipient motion and entrainment into suspension from cuttings bed (Shields criteria) based on forces and torques balance is discussed. Deflection of the fluid parameters from the ones of Newtonian fluid leads to decreasing of the drag and lift forces and the hydrodynamic moment. Thus, the critical shear stress (Shields parameter) for the considered non-Newtonian fluid must be greater than the one for a Newtonian fluid.

  20. Meandering instability of air flow in a granular bed: self-similarity and fluid-solid duality

    CERN Document Server

    Yoshimura, Yuki; Okumura, Ko


    Meandering instability is familiar to everyone through river meandering or small rivulets of rain flowing down a windshield. However, its physical understanding is still premature, although it could inspire researchers in various fields, such as nonlinear science, fluid mechanics and geophysics, to resolve their long-standing problems. Here, we perform a small-scale experiment in which air flow is created in a thin granular bed to successfully find a meandering regime, together with other remarkable fluidized regimes, such as a turbulent regime. We discover that phase diagrams of the flow regimes for different types of grains can be universally presented as functions of the flow rate and the granular-bed thickness when the two quantities are properly renormalized. We further reveal that the meandering shapes are self-similar as was shown for meandering rivers. The experimental findings are explained by theory, with elucidating the physics. The theory is based on force balance, a minimum-dissipation principle,...

  1. Modelling of Devolatilization in Fluidized Bed Combustion

    DEFF Research Database (Denmark)

    Stenseng, Mette; Lin, Weigang; Johnsson, Jan Erik


    A mathematical model is developed to describe the devolatilization process in a circulating fluidized bed combustor. The model is a combination of two submodels: single particle devolatilization and fluid dynamics. The single particle model includes the influence of both chemical kinetics and hea...

  2. Solid self-nanoemulsifying cyclosporin A pellets prepared by fluid-bed coating: preparation, characterization and in vitro redispersibility. (United States)

    Lei, Yang; Lu, Yi; Qi, Jianping; Nie, Sufang; Hu, Fuqiang; Pan, Weisan; Wu, Wei


    The objective of this study was to evaluate fluid-bed coating as a new technique to prepare a pellet-based solid self-nanoemulsifying drug delivery system (SNEDDS) using cyclosporin A as a model of a poorly water-soluble drug. The rationale of this technique was to entrap a Liquid SNEDDS in the matrix of the coating material, polyvinylpyrrolidone K30, by fluid-bed coating. Pseudoternary phase diagrams were used to screen the liquid SNEDDS formulations. The optimal formulation was composed of Labrafil M(®) 1944 CS, Transcutol P(®), and Cremophor(®) EL in a ratio of 9:14:7. To prepare solid SNEDDS pellets, liquid SNEDDS was first dispersed in an aqueous solution of polyvinylpyrrolidone and then sprayed onto the surface of non-pareil pellets. Upon evaporation of water, polyvinylpyrrolidone precipitated and formed tight films to entrap the liquid SNEDDS. Visual observation and scanning electron microscopic analysis confirmed good appearance of the solid SNEDDS pellets. Our results indicated that up to 40% of the liquid SNEDDS could be entrapped in the coating layer. Powder x-ray diffraction analysis confirmed nonexistence of crystalline cyclosporin A in the formulation. Solid SNEDDS pellets showed a slower redispersion rate than the liquid SNEDDS. An increase in the total liquid SNEDDS loading led to faster redispersion, whereas increased coating weight (up to 400%) significantly decreased the redispersion rate. Both cyclosporin A loading and protective coating with 5% polyvinylpyrrolidone K30 did not significantly affect the redispersion rate. It is concluded that fluid-bed coating is a new technique with considerable potential for preparation of pellet-based solid SNEDDS formulations.

  3. Solid self-nanoemulsifying cyclosporin A pellets prepared by fluid-bed coating: preparation, characterization and in vitro redispersibility


    Lei Y; Lu Y.; Qi J; Nie S; Hu F; Pan W; Wu W


    Yang Lei1,2, Yi Lu2, Jianping Qi2, Sufang Nie1, Fuqiang Hu3, Weisan Pan1, Wei Wu21School of Pharmacy, Shenyang Pharmaceutical University, Shenyang; 2School of Pharmacy, Fudan University, Shanghai; 3School of Pharmacy, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of ChinaBackground: The objective of this study was to evaluate fluid-bed coating as a new technique to prepare a pellet-based solid self-nanoemulsifying drug delivery system (SNEDDS) using cyclosporin A as a m...

  4. Dehydration studies using a novel multichamber microscale fluid bed dryer with in-line near-infrared measurement

    DEFF Research Database (Denmark)

    Räsänen, Eetu; Rantanen, Jukka; Mannermaa, Jukka-Pekka


    . The materials studied were disodium hydrogen phosphates with three different levels of hydrate water and wet theophylline granules. Measured process parameters of fluid bed drying were logged, including in-line NIR signals. Off-line analyses consisted of X-ray powder diffraction patterns, Fourier transform NIR...... of solid materials. The temperature and the moisture content of the process air were demonstrated to be significant factors for the solid-state stability of theophylline. The presented setup is a material and cost-saving approach for studying the influence of different process parameters on dehydration...

  5. Selective phenol methylation to 2,6-dimethylphenol in a fluidized bed of iron-chromium mixed oxide catalyst with o-cresol circulation. (United States)

    Zukowski, Witold; Berkowicz, Gabriela; Baron, Jerzy; Kandefer, Stanisław; Jamanek, Dariusz; Szarlik, Stefan; Wielgosz, Zbigniew; Zielecka, Maria


    2,6-dimethylphenol (2,6-DMP) is a product of phenol methylation, especially important for the plastics industry. The process of phenol methylation in the gas phase is strongly exothermic. In order to ensure good temperature equalization in the catalyst bed, the process was carried out using a catalyst in the form of a fluidized bed - in particular, the commercial iron-chromium catalyst TZC-3/1. Synthesis of 2,6-dimethylphenol from phenol and methanol in fluidized bed of iron-chromium catalyst was carried out and the fluidization of the catalyst was examined. Stable state of fluidized bed of iron-chromium catalyst was achieved. The measured velocities allowed to determine the minimum flow of reactants, ensuring introduction of the catalyst bed in the reactor into the state of fluidization. Due to a high content of o-cresol in products of 2,6-dimethylphenol synthesis, circulation in the technological node was proposed. A series of syntheses with variable amount of o-cresol in the feedstock allowed to determine the parameters of stationary states. A stable work of technological node with o-cresol circulation is possible in the temperature range of350-380°C, and o-cresolin/phenolin molar ratio of more than 0.48. Synthesis of 2,6-DMP over the iron-chromium catalyst is characterized by more than 90% degree of phenol conversion. Moreover, the O-alkylation did not occur (which was confirmed by GC-MS analysis). By applying o-cresol circulation in the 2,6-DMP process, selectivity of more than 85% degree of 2,6-DMP was achieved. The participation levels of by-products: 2,4-DMP and 2,4,6-TMP were low. In the optimal conditions based on the highest yield of 2,6-DMP achieved in the technological node applying o-cresol circulation, there are 2%mol. of 2,4-DMP and 6%mol. of 2,4,6-TMP in the final mixture, whereas 2,4,6-TMP can be useful as a chain stopper and polymer's molar mass regulator during the polymerization of 2,6-DMP.

  6. Influence of sea surface wind wave turbulence upon wind-induced circulation, tide-surge interaction and bed stress (United States)

    Xing, Jiuxing; Davies, Alan M.; Jones, John Eric


    A three-dimensional finite volume unstructured mesh model of the west coast of Britain, with high resolution in the coastal regions, is used to investigate the role of wind wave turbulence and wind and tide forced currents in producing maximum bed stress in the eastern Irish Sea. The spatial distribution of the maximum bed stress, which is important in sediment transport problems, is determined, together with how it is modified by the direction of wind forced currents, tide-surge interaction and a surface source of wind wave turbulence associated with wave breaking. Initial calculations show that to first order the distribution of maximum bed stress is determined by the tide. However, since maximum sediment transport occurs at times of episodic events, such as storm surges, their effects upon maximum bed stresses are examined for the case of strong northerly, southerly and westerly wind forcing. Calculations show that due to tide-surge interaction both the tidal distribution and the surge are modified by non-linear effects. Consequently, the magnitude and spatial distribution of maximum bed stress during major wind events depends upon wind direction. In addition calculations show that a surface source of turbulence due to wind wave breaking in shallow water can influence the maximum bed stress. In turn, this influences the wind forced flow and hence the movement of suspended sediment. Calculations of the spatial variability of maximum bed stress indicate the level of measurements required for model validation.

  7. Local CFD kinetic model of cadmium vaporization during fluid bed incineration of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Soria, J. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Gauthier, D., E-mail: [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Falcoz, Q.; Flamant, G. [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Mazza, G. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina)


    Highlights: ► A 2-D local CFD model for simulating the Cd vaporization process is presented. ► It includes a kinetic expression of Cd vaporization into the incineration process. ► Pyrolysis, volatiles’ combustion and residual carbon combustion are also taken into account. ► It fits very well the experimental results obtained on a lab-scale fluidized bed reported in literature. ► It also compares favorably with a model developed previously by the group. -- Abstract: The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles’ combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature.

  8. Two-compartmental population balance modeling of a pulsed spray fluidized bed granulation based on computational fluid dynamics (CFD) analysis. (United States)

    Liu, Huolong; Li, Mingzhong


    In this work a two-compartmental population balance model (TCPBM) was proposed to model a pulsed top-spray fluidized bed granulation. The proposed TCPBM considered the spatially heterogeneous granulation mechanisms of the granule growth by dividing the granulator into two perfectly mixed zones of the wetting compartment and drying compartment, in which the aggregation mechanism was assumed in the wetting compartment and the breakage mechanism was considered in the drying compartment. The sizes of the wetting and drying compartments were constant in the TCPBM, in which 30% of the bed was the wetting compartment and 70% of the bed was the drying compartment. The exchange rate of particles between the wetting and drying compartments was determined by the details of the flow properties and distribution of particles predicted by the computational fluid dynamics (CFD) simulation. The experimental validation has shown that the proposed TCPBM can predict evolution of the granule size and distribution within the granulator under different binder spray operating conditions accurately. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Experimental study of the mechanisms of CO{sub 2} capture by calcium cycle under circulating fluidized bed conditions; Etude experimentale des mecanismes de capture du CO{sub 2} par cycle calcium en lit fluidise circulant

    Energy Technology Data Exchange (ETDEWEB)

    Hoteit, A


    The work undertaken in this Thesis in partnership with department R and D of ALSTOM Power Boilers, CEMEX and the ADEME, relates to the experimental study of various phenomena associated to CO{sub 2} capture under circulating fluidized bed conditions. The size of particles, temperature and the CO{sub 2} concentration have an influence on the limestone calcination reaction. The reaction of carbonation of lime is not total. During successive cycles of calcination/carbonation, the rate of carbonation obtained with hydrated lime is increasingly higher than that obtained with the lime. Under continuously reducing conditions, the decomposition of sulphates present in the bed ashes is not total. This decomposition is total under reduction/oxidation cycles. A modeling of calcination allowed to determine the intrinsic kinetic constants of calcination and carbonation. (author)

  10. Import coal in the circulating fluidized bed plant of Stadtwerke Duisburg AG; Importkohleeinsatz in der zirkulierenden atmosphaerischen Wirbelschichtfeuerung des Heizkraftwerkes I der Stadtwerke Duisburg AG

    Energy Technology Data Exchange (ETDEWEB)

    Heidenhof, N.; Althoff, F.W. [Stadtwerke Duisburg AG (Germany)


    Since 1985 Stadtwerke Duisburg AG has operated a Circulating Fluidised Bed Plant (CFB). Because of the end of the so called 'Jahrhundertvertrag' (a special arrangement to promote national coal) more import coal is used than domestic coal. First tests indicated that besides the known parameters the handling of the ash particle erosion is of critical importance. A CFB plant requires sufficient circulating ash material. To properly examine new coals before the first burning a laboratory test called 'Ash Erosion Test' has been developed. This test allows to check the suitability of unknown coals in CFB plants. (orig.) [German] Neben den bekannten Parametern fuer die Beurteilung von Kohlen benoetigen Wirbelschichtfeuerungen zusaetzlich eine spezifische Information zur Beurteilung der Einsetzbarkeit. Der neue Parameter ist der Ascheabrieb. Die Stadtwerke Duisburg entwickelten ein Verfahren, mit dem man in der Lage ist, vor dem ersten Verbrennungsversuch in der ZAWSF festzustellen, ob die Kohlensorte umlauffaehiges Aschematerial erzeugt. (orig.)

  11. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Serrato, M. G.


    The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube

  12. A phenomenological investigation into the opposing effects of fluid flow on sonochemical activity at different frequency and power settings. 2. Fluid circulation at high frequencies. (United States)

    Bussemaker, Madeleine J; Zhang, Dongke


    Sonochemical activity is dependent on flow patterns within the reactor and either no affect or a decrease in activity was observed at 376, 995, and 1179 kHz from overhead stirring. The interaction of fluid flow with ultrasound was further investigated in this study with circulatory flow. The effect of fluid circulation on radical production was investigated at two circulation speeds, with and without surface stabilisation. The sonochemical activity was determined by the yield of hydrogen peroxide, measured by iodide dosimetry. The sonochemically active region was pictured using sonochemiluminescence imaging and the flow fields were visualised with dyed flow videos. At 376 and 995 kHz, an increase in sonochemical activity was observed with the slower flow rate; however at 1179 kHz, the sonochemical activity was either not affected or decreased. The observed changes in sonochemical activity were attributed to an increase in asymmetry of the bubble collapse brought about by fluid motion. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Fluid circulation and reservoir conditions of the Los Humeros Geothermal Field (LHGF), Mexico, as revealed by a noble gas survey (United States)

    Pinti, Daniele L.; Castro, M. Clara; Lopez-Hernandez, Aida; Han, Guolei; Shouakar-Stash, Orfan; Hall, Chris M.; Ramírez-Montes, Miguel


    Los Humeros Geothermal Field (LHGF) is one of four geothermal fields currently operating in Mexico, in exploitation since 1990. Located in a caldera complex filled with very low-permeability rhyolitic ignimbrites that are the reservoir cap-rock, recharge of the geothermal field is both limited and localized. Because of this, planning of any future geothermal exploitation must be based on a clear understanding of the fluid circulation. To this end, a first noble gas survey was carried out in which twenty-two production wells were sampled for He, Ne, Ar, Kr, and Xe isotope analysis. Air-corrected 3He/4He ratios (Rc) measured in the fluid, normalized to the helium atmospheric ratio (Ra; 1.384 × 10- 6), are consistently high across the field, with an average value of 7.03 ± 0.40 Ra. This value is close to that of the sub-continental upper mantle, indicating that LHGF mines heat from an active magmatic system. Freshwater recharge does not significantly affect He isotopic ratios, contributing 1-10% of the total fluid amount. The presence of radiogenic 40Ar* in the fluid suggests a fossil fluid component that might have circulated within the metacarbonate basement with radiogenic argon produced from detrital dispersed illite. Solubility-driven elemental fractionation of Ne/Ar, Kr/Ar, and Xe/Ar confirm extreme boiling in the reservoir. However, a combined analysis of these ratios with 40Ar/36Ar reveals mixing with an air component, possibly introduced by re-injected geothermal fluids.

  14. The characterization of fluidization behavior using a novel multichamber microscale fluid bed

    DEFF Research Database (Denmark)

    Räsänen, Eetu; Rantanen, Jukka; Mannermaa, Jukka-Pekka


    of fluidization behavior in variable conditions. The results were evaluated on the basis of two common computational methods, the minimum fluidization velocity, and the Geldart classification. The materials studied were different particle sizes of glass beads, microcrystalline cellulose, and silicified...... microcrystalline cellulose. During processing, the different characteristic fluidization phases (e.g., plugging, bubbling, slugging, and turbulent fluidization) of the materials were observed by the pressure difference over the bed. When the moisture content of the process air was increased, the amount of free...

  15. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: Insights from the Kamara geothermal area (western Anatolia, Turkey) (United States)

    Brogi, Andrea; Alçiçek, M. Cihat; Yalçıner, Cahit Çağlar; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco; Rimondi, Valentina; Ruggieri, Giovanni; Gandin, Anna; Boschi, Chiara; Büyüksaraç, Aydin; Alçiçek, Hülya; Bülbül, Ali; Baykara, Mehmet Oruç; Shen, Chuan-Chou


    Coexistence of thermal springs, travertine deposits and tectonic activity is a recurring feature for most geothermal areas. Although such a certainty, their relationships are debated mainly addressing on the role of the tectonic activity in triggering and controlling fluids flow and travertine deposition. In this paper, we present the results of an integrated study carried out in a geothermal area located in western Anatolia (Turkey), nearby the well-known Pamukkale area (Denizli Basin). Our study focused on the relationships among hydrothermal fluids circulation, travertine deposition and tectonic activity, with particular emphasis on the role of faults in controlling fluids upwelling, thermal springs location and deposition of travertine masses. New field mapping and structural/kinematics analyses allowed us to recognize two main faults systems (NW- and NE-trending), framed in the Neogene-Quaternary extensional tectonic evolution of western Anatolia. A geo-radar (GPR) prospection was also provided in a key-area, permitting us to reconstruct a buried fault zone and its relationships with the development of a fissure-ridge travertine deposit (Kamara fissure-ridge). The integration among structural and geophysical studies, fluids inclusion, geochemical, isotopic data and 230 Th/238 U radiometric age determination on travertine deposits, depict the characteristics of the geothermal fluids and their pathway, up to the surface. Hydrological and seismological data have been also taken in account to investigate the relation between local seismicity and fluid upwelling. As a main conclusion we found strict relationships among tectonic activity, earthquakes occurrence, and variation of the physical/chemical features of the hydrothermal fluids, presently exploited at depth, or flowing out in thermal springs. In the same way, we underline the tectonic role in controlling the travertine deposition, making travertine (mainly banded travertine) a useful proxy to reconstruct the

  16. Critical evaluation and comparison of fluid distribution systems for industrial scale expanded bed adsorption chromatography columns

    DEFF Research Database (Denmark)

    Arpanaei, Ayyoob; Heebøll-Nielsen, Anders; Hubbuch, Jürgen


    distributor at large scale were apparent: dead zones were present which could not be removed by increasing rotation rates or flow rates, and such changes led to a deterioration in hydrodynamic properties. In contrast, during fluid introduction through a rotating distributor no dead zones were observed...


    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; John Gaudlip; Matthew Lapinsky; Rhett McLaren; William Serencsits; Neil Raskin; Tom Steitz; Joseph J. Battista


    The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.

  18. Heat flow, morphology, pore fluids and hydrothermal circulation in a typical Mid-Atlantic Ridge flank near Oceanographer Fracture Zone (United States)

    Le Gal, V.; Lucazeau, F.; Cannat, M.; Poort, J.; Monnin, C.; Battani, A.; Fontaine, F.; Goutorbe, B.; Rolandone, F.; Poitou, C.; Blanc-Valleron, M.-M.; Piedade, A.; Hipólito, A.


    Hydrothermal circulation affects heat and mass transfers in the oceanic lithosphere, not only at the ridge axis but also on their flanks, where the magnitude of this process has been related to sediment blanket and seamounts density. This was documented in several areas of the Pacific Ocean by heat flow measurements and pore water analysis. However, as the morphology of Atlantic and Indian ridge flanks is generally rougher than in the Pacific, these regions of slow and ultra-slow accretion may be affected by hydrothermal processes of different regimes. We carried out a survey of two regions on the eastern and western flanks of the Mid-Atlantic Ridge between Oceanographer and Hayes fracture zones. Two hundred and eight new heat flow measurements were obtained along six seismic profiles, on 5 to 14 Ma old seafloor. Thirty sediment cores (from which porewaters have been extracted) have been collected with a Kullenberg corer equipped with thermistors thus allowing simultaneous heat flow measurement. Most heat flow values are lower than those predicted by purely conductive cooling models, with some local variations and exceptions: heat flow values on the eastern flank of the study area are more variable than on the western flank, where they tend to increase westward as the sedimentary cover in the basins becomes thicker and more continuous. Heat flow is also higher, on average, on the northern sides of both the western and eastern field regions and includes values close to conductive predictions near the Oceanographer Fracture Zone. All the sediment porewaters have a chemical composition similar to that of bottom seawater (no anomaly linked to fluid circulation has been detected). Heat flow values and pore fluid compositions are consistent with fluid circulation in volcanic rocks below the sediment. The short distances between seamounts and short fluid pathways explain that fluids flowing in the basaltic aquifer below the sediment have remained cool and unaltered

  19. Fluid dynamics model on fluidized bed gasifier using agro-industrial biomass as fuel. (United States)

    Ismail, Tamer M; Abd El-Salam, M; Monteiro, Eliseu; Rouboa, Abel


    The present study shows the experimental and numerical results of thermal gasification of biomass, on the energy potential of agro-industrial waste from the Portalegre region. Gasification tests were performed in a pilot-scale fluidized bed gasifier, in order to study the behavior of peach stones and miscanthus to investigate the effect of gasification temperatures at 750°C, 800°C and 850°C at a constant biomass flow rate of 45kg/h. In order to optimize the operating conditions of the biomass gasification process, a numerical model is developed namely COMMENT code. This model is a computer model of two dimensions describing the biomass gasification processes in a fluidized bed gasifier using peach stone and miscanthus as fuel. Both phases, solid and gaseous, were described using an Eulerian-Eulerian approach exchanging mass, energy, and momentum. The numerical model results are then compared with experimental results. The produced results show the impact of the increased temperature in the calorific value of the syngas. The tests carried out at 750°C shown an increase in CO2 and N2 and a decrease of CO in the range of 5% comparing to the tests carried out at 850°C. In addition, increased temperature favors a decrease in tar production in thermal gasification process. Numerical results shows to be in good agreement with the experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Real-time imaging as an emerging process analytical technology tool for monitoring of fluid bed coating process. (United States)

    Naidu, Venkata Ramana; Deshpande, Rucha S; Syed, Moinuddin R; Wakte, Pravin S


    A direct imaging system (EyeconTM) was used as a Process Analytical Technology (PAT) tool to monitor fluid bed coating process. EyeconTM generated real-time onscreen images, particle size and shape information of two identically manufactured laboratory-scale batches. EyeconTM has accuracy of measuring the particle size increase of ±1 μm on particles in the size range of 50-3000 μm. EyeconTM captured data every 2 s during the entire process. The moving average of D90 particle size values recorded by EyeconTM were calculated for every 30 min to calculate the radial coating thickness of coated particles. After the completion of coating process, the radial coating thickness was found to be 11.3 and 9.11 μm, with a standard deviation of ±0.68 and 1.8 μm for Batch 1 and Batch 2, respectively. The coating thickness was also correlated with percent weight build-up by gel permeation chromatography (GPC) and dissolution. GPC indicated weight build-up of 10.6% and 9.27% for Batch 1 and Batch 2, respectively. In conclusion, weight build-up of 10% can also be correlated with 10 ± 2 μm increase in the coating thickness of pellets, indicating the potential applicability of real-time imaging as an endpoint determination tool for fluid bed coating process.

  1. Fractures inside crystalline rocks. Effects of deformations on fluid circulations; Fractures dans les roches cristallines. Effets des deformations sur les circulations de fluides

    Energy Technology Data Exchange (ETDEWEB)

    Gentier, S


    The modeling of fluid flows inside granite massifs is an important task for the evaluation of the feasibility of radioactive waste storage inside such formations. This document makes a synthesis of the works carried out since about 15 years, in particular by the French bureau of geological and mining research (BRGM), about the hydro-mechanical behaviour of a fracture and about the hydrodynamical characterization of fracture networks inside crystalline rocks: 1 - introduction; 2 - hydro-mechanical behaviour under normal stress: experimental results (hydro-mechanical behaviour, flow regimes, mechanical behaviour, test protocol, complementary tests, influence of samples size), geometrical interpretation of experimental results (relation with walls geometry, relation with voids geometry, relation with contacts geometry), hydro-mechanical modeling (hydraulic modeling, mechanical modeling); 3 - from the hydro-mechanical behaviour under normal stress to the coupling with heat transfers and chemistry: experiment for the study of the chemo-thermo-hydro-mechanical coupling (experimental results, relation with walls morphology), thermo-hydro-mechanical experiments, thermo-hydro-chemical experiments with fractures, conclusions; 4 - hydro-mechanical behaviour during shear: experimental results, geometrical interpretation (relation with the geometry of damaged zones, relation with voids geometry, relation with walls geometry), hydro-mechanical modeling (mechanical modeling, hydro-mechanical modeling of the behaviour during shear). (J.S.)


    Directory of Open Access Journals (Sweden)

    Juan F. Saldarriaga


    Full Text Available Determination of the particle density is required to address the hydrodynamic study of a moving bed contactor. The measurement of this parameter is complicated when particles are irregularly shaped. In this study, two different techniques were use: compaction by mechanical compression and an alternative proposal, which contemplates the potential of mercury porosimetry for determining the surface and structural properties. It was observed that the results obtained by compacting in all cases are higher than expected. However, the values obtained by mercury porosimetry are more consistent with expected values. For example in the sawdust valued at 500kg/m3, very similar to the value of the original wood (502kg/m3. Values obtained by this procedure adequately represent the relationship between mass and volume of the particle and therefore are valid for hydrodynamic characterization of the biomass.

  3. A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste

    Energy Technology Data Exchange (ETDEWEB)

    McIlveen-Wright, D.R.; Huang, Y.; McMullan, J.T. [NICERT, University of Ulster at Jordanstown, Newtownabbey BT37 0QB, Northern Ireland (United Kingdom); Pinto, F.; Franco, C.; Gulyurtlu, I. [INETI-DEECA, Estrada do Paco do Lumiar, 22, 1649-038 Lisboa (Portugal); Armesto, L.; Cabanillas, A. [CIEMAT, Avda Complutense, 22, 28040 Madrid (Spain); Caballero, M.A.; Aznar, M.P. [Chemical and Environmental Engineering Department, Centro Politecnico Superior, Maria de Luna, University of Saragossa, 50018 Saragossa (Spain)


    Environmental regulations concerning emission limitations from the use of fossil fuels in large combustion plants have stimulated interest in biomass for electricity generation. The main objective of the present study was to examine the technical and economic viability of using combustion and gasification of coal mixed with biomass and plastic wastes, with the aim of developing an environmentally acceptable process to decrease their amounts in the waste stream through energy recovery. Mixtures of a high ash coal with biomass and/or plastic using fluidised bed technologies (combustion and gasification) were considered. Experiments were carried out in laboratory and pilot plant fluidised bed systems on the combustion and air/catalyst and air/steam gasification of these feedstocks and the data obtained were used in the techno-economic analyses. The experimental results were used in simulations of medium to large-scale circulating fluidised bed (CFB) power generation plants. Techno-economic analysis of the modelled CFB combustion systems showed efficiencies of around 40.5% (and around 46.5% for the modelled CFB gasification systems) when fuelled solely by coal, which were only minimally affected by co-firing with up to 20% biomass and/or wastes. Specific investments were found to be around $2150/kWe to $2400/kWe ($1350/kWe to $1450/kWe) and break-even electricity selling prices to be around $68/MWh to $78/MWh ($49/MWh to $54/MWh). Their emissions were found to be within the emission limit values of the large combustion plant directive. Fluidised bed technologies were found to be very suitable for co-firing coal and biomass and/or plastic waste and to offer good options for the replacement of obsolete or polluting power plants. (author)

  4. Granule characterization during fluid bed drying by development of a near infrared method to determine water content and median granule size

    NARCIS (Netherlands)

    Nieuwmeyer, Florentine J. S.; Damen, Michiel; Gerich, Ad; Rusmini, Federica; van der Voort, Kees Maarschalk; Vromans, Herman


    Purpose. Water content and granule size are recognized as critical process and product quality parameters during drying. The purpose of this study was to enlighten the granule behavior during fluid bed drying by monitoring the major events i.e. changes in water content and granule size. Methods. NIR

  5. Three-dimensional fluidized beds with rough spheres : Validation of a Two Fluid Model by Magnetic Particle Tracking and discrete particle simulations

    NARCIS (Netherlands)

    Yang, L.; Padding, J.T.; Buist, K. A.; Kuipers, J.


    Two fluid model simulations based on our recently introduced kinetic theory of granular flow (KTGF) for rough spheres and rough walls, are validated for the first time for full three-dimensional (3D) bubbling fluidized beds. The validation is performed by comparing with experimental data from

  6. Integration of concentrated solar power (CSP) and circulating fluidized bed (CFB) power plants - final results of the COMBO-CFB project (United States)

    Suojanen, Suvi; Hakkarainen, Elina; Kettunen, Ari; Kapela, Jukka; Paldanius, Juha; Tuononen, Minttu; Selek, Istvan; Kovács, Jenö; Tähtinen, Matti


    Hybridization of solar energy together with another energy source is an option to provide heat and power reliably on demand. Hybridization allows decreasing combustion related fuel consumption and emissions, assuring stable grid connection and cutting costs of concentrated solar power technology due to shared power production equipment. The research project "Integration of Concentrated Solar Power (CSP) and Circulating Fluidized Bed (CFB) Power Plants" (COMBO-CFB) has been carried out to investigate the technical possibilities and limitations of the concept. The main focus was on the effect of CSP integration on combustion dynamics and on the joint power cycle, and on the interactions of subsystems. The research provides new valuable experimental data and knowhow about dynamic behaviour of CFB combustion under boundary conditions of the hybrid system. Limiting factors for maximum solar share in different hybridization schemes and suggestions for enhancing the performance of the hybrid system are derived.

  7. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 2: Evaluation of ash materials as phosphorus fertilizer

    DEFF Research Database (Denmark)

    Thomsen, Tobias Pape; Hauggaard-Nielsen, Henrik; Gøbel, Benny


    . Ashes from five different low temperature circulating fluidized bed (LT-CFB) gasification campaigns including two mono-sludge campaigns, two sludge/straw mixed fuels campaigns and a straw reference campaign were compared. Experiments were conducted on two different LT-CFBs with thermal capacities of 100...... in a pot experiment with the most promising ash material. Co-gasification of straw and sludge in LT-CFB gasifiers produced ashes with a high content of recalcitrant C, phosphorus (P) and potassium (K), a low content of heavymetals (especially cadmium) and an improved plant P availability compared...... to the mono-sludge ashes, thereby showing the best fertilizer qualities among all assessed materials. It was also found that bottomashes from the char reactor contained even less heavy metals than cyclone ashes. It is concluded thatLT-CFB gasification and co-gasification is a highly effective way to purify...

  8. Co-firing of oil sludge with coal-water slurry in an industrial internal circulating fluidized bed boiler. (United States)

    Liu, Jianguo; Jiang, Xiumin; Zhou, Lingsheng; Wang, Hui; Han, Xiangxin


    Incineration has been proven to be an alternative for disposal of sludge with its unique characteristics to minimize the volume and recover energy. In this paper, a new fluidized bed (FB) incineration system for treating oil sludge is presented. Co-firing of oil sludge with coal-water slurry (CWS) was investigated in the new incineration system to study combustion characteristics, gaseous pollutant emissions and ash management. The study results show the co-firing of oil sludge with CWS in FB has good operating characteristic. CWS as an auxiliary fuel can flexibly control the dense bed temperatures by adjusting its feeding rate. All emissions met the local environmental requirements. The CO emission was less than 1 ppm or essentially zero; the emissions of SO(2) and NO(x) were 120-220 and 120-160 mg/Nm(3), respectively. The heavy metal analyses of the bottom ash and the fly ash by ICP/AES show that the combustion ashes could be recycled as soil for farming.


    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke; Joseph J. Battista


    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives.

  10. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 1: Process performance and gas product characterization. (United States)

    Thomsen, Tobias Pape; Sárossy, Zsuzsa; Gøbel, Benny; Stoholm, Peder; Ahrenfeldt, Jesper; Frandsen, Flemming Jappe; Henriksen, Ulrik Birk


    Results from five experimental campaigns with Low Temperature Circulating Fluidized Bed (LT-CFB) gasification of straw and/or municipal sewage sludge (MSS) from three different Danish municipal waste water treatment plants in pilot and demonstration scale are analyzed and compared. The gasification process is characterized with respect to process stability, process performance and gas product characteristics. All experimental campaigns were conducted at maximum temperatures below 750°C, with air equivalence ratios around 0.12 and with pure silica sand as start-up bed material. A total of 8600kg of MSS dry matter was gasified during 133h of operation. The average thermal loads during the five experiments were 62-100% of nominal capacity. The short term stability of all campaigns was excellent, but gasification of dry MSS lead to substantial accumulation of coarse and rigid, but un-sintered, ash particles in the system. Co-gasification of MSS with sufficient amounts of cereal straw was found to be an effective way to mitigate these issues as well as eliminate thermal MSS drying requirements. Characterization of gas products and process performance showed that even though gas composition varied substantially, hot gas efficiencies of around 90% could be achieved for all MSS fuel types. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Multivariate statistical process control of a continuous pharmaceutical twin-screw granulation and fluid bed drying process. (United States)

    Silva, A F; Sarraguça, M C; Fonteyne, M; Vercruysse, J; De Leersnyder, F; Vanhoorne, V; Bostijn, N; Verstraeten, M; Vervaet, C; Remon, J P; De Beer, T; Lopes, J A


    A multivariate statistical process control (MSPC) strategy was developed for the monitoring of the ConsiGma™-25 continuous tablet manufacturing line. Thirty-five logged variables encompassing three major units, being a twin screw high shear granulator, a fluid bed dryer and a product control unit, were used to monitor the process. The MSPC strategy was based on principal component analysis of data acquired under normal operating conditions using a series of four process runs. Runs with imposed disturbances in the dryer air flow and temperature, in the granulator barrel temperature, speed and liquid mass flow and in the powder dosing unit mass flow were utilized to evaluate the model's monitoring performance. The impact of the imposed deviations to the process continuity was also evaluated using Hotelling's T2 and Q residuals statistics control charts. The influence of the individual process variables was assessed by analyzing contribution plots at specific time points. Results show that the imposed disturbances were all detected in both control charts. Overall, the MSPC strategy was successfully developed and applied. Additionally, deviations not associated with the imposed changes were detected, mainly in the granulator barrel temperature control. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Formation of mannitol core microparticles for sustained release with lipid coating in a mini fluid bed system. (United States)

    Wang, Bifeng; Friess, Wolfgang


    The goal of this study was to prepare sustained release microparticles for methyl blue and aspartame as sparingly and freely water-soluble model drugs by lipid film coating in a Mini-Glatt fluid bed, and to assess the effect of coating load of two of lipids, hard fat and glyceryl stearate, on the release rates. 30g drug-loaded mannitol carrier microparticles with average diameter of 500 or 300μm were coated with 5g, 10g, 20g and 30g lipids, respectively. The model drugs were completely released in vitro through pores which mainly resulted from dissolution of the polyol core beads. The release of methyl blue from microparticles based on 500μm carrier beads extended up to 25days, while aspartame release from microparticles formed from 300μm carrier beads was extended to 7days. Although glyceryl stearate exhibits higher wettability, burst and release rates were similar for the two lipid materials. Polymorphic transformation of the hart fat was observed upon release. The lipid-coated microparticles produced with 500μm carrier beads showed slightly lower burst release compared to the microparticles produced with 300μm carrier beads as they carried relatively thicker lipid layer based on an equivalent lipid to mannitol ratio. Aspartame microparticles showed a much faster release than methyl blue due to the higher water-solubility of aspartame. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fiscal 1995 survey report on the environmentally friendly type coal utilization system introduction support project. Verification project on the circulating fluidized bed boiler; Kankyo chowagata sekitan riyo system donyu shien jigyo. Junkan ryudosho boiler ni kakawaru jissho jigyo

    Energy Technology Data Exchange (ETDEWEB)



    In relation to the circulating fluidized bed boiler which reduces the amount of sulfur oxides emitted in coal utilization, a verification project was carried out on installation of the equipment and spread activity in China and the Philippines contributing to the control of environmental pollutant associated with coal utilization and the effective use of energy. At the Fanshan area, installed was a 10t/h internal circulating fluidized bed boiler. At the performance test, coal includes around 7% of impurities such as stone, and the impurities should be excluded continuously at the time of actual run. Therefore, the boiler efficiency had to be changed from 89.5% to 85.8%. Further, power generation facilities have not yet been finished, and the overall operation of boiler turbine has not been executed. At the Zibo area, a 30t/h external circulating fluidized bed boiler was installed. The boiler efficiency reached 86.1%, over the targeted value. At the Batangas area in the Philippines, a 10t/h internal circulating fluidized bed boiler was installed. The boiler efficiency reached 85.8%, over the designed value. About the coal produced in the Philippines, slagging was feared, but the combustion state was favorable. 82 figs., 21 tabs.

  14. The fluid mechanics of nutrition: Herman Boerhaave's synthesis of seventeenth-century circulation physiology. (United States)

    Orland, Barbara


    This paper investigates the theory of nutrition of Herman Boerhaave, the famous professor of medicine and chemistry at the university of Leyden. Boerhaave's work, which systematized and synthesized the knowledge of the time, represents a shift from a humoral to a hydraulic model of the body in medicine and culture around 1700. This epistemological reconfiguration of early modern physiological thinking is exemplified with respect to the changing meanings of milk. While over centuries the analogy between blood and milk played an essential role in understanding the hidden workings of the nutritional faculties, following the discovery of the blood circulation the blood-milk analogy was transformed into a chyle-milk analogy. Yet Boerhaave's interpretations show that the use of new knowledge tools did not simply displace the old ways of reasoning. Instead, analogies continued to serve as epistemic instruments. Old theories and new insights overlapped, and contemporary knowledge assimilated past ideas. Copyright © 2011. Published by Elsevier Ltd.

  15. A Three-Dimensional Numerical Study of Gas-Particle Flow and Chemical Reactions in Circulating Fluidised Bed Reactors

    DEFF Research Database (Denmark)

    Hansen, Kim Granly

    of the particulate phase is modeled using the kinetic theory for granular flow, and the gas phase turbulence is modeled using a Sub-Grid-Scale model. A computational study of a cold flowing CFB riser has been performed. The results have been compared to experimental findings of particle volume fraction, particle...... with experimental findings of both mass flux and pressure profile, but further improvements are proposed and investigated. A parameter study shows that mesh refinement, choice of particle diameter and choice of drag model are crucial when simulating FCC riser flow. The isothermal decomposition of ozone has been...... using two-fluid modeling to predict riser flows there have been difficulties in predicting the solids hold up in risers represented by the correct pressure drop profile. Mesh refinement has shown to improve the axial segregation of particles in the riser, but when simulating a riser with a large L...

  16. Fluid Simulation in the Movies: Navier and Stokes Must Be Circulating in Their Graves (United States)

    Tessendorf, Jerry


    Fluid simulations based on the Incompressible Navier-Stokes equations are commonplace computer graphics tools in the visual effects industry. These simulations mostly come from custom C++ code written by the visual effects companies. Their significant impact in films was recognized in 2008 with Academy Awards to four visual effects companies for their technical achievement. However artists are not fluid dynamicists, and fluid dynamics simulations are expensive to use in a deadline-driven production environment. As a result, the simulation algorithms are modified to limit the computational resources, adapt them to production workflow, and to respect the client's vision of the film plot. Eulerian solvers on fixed rectangular grids use a mix of momentum solvers, including Semi-Lagrangian, FLIP, and QUICK. Incompressibility is enforced with FFT, Conjugate Gradient, and Multigrid methods. For liquids, a levelset field tracks the free surface. Smooth Particle Hydrodynamics is also used, and is part of a hybrid Eulerian-SPH liquid simulator. Artists use all of them in a mix and match fashion to control the appearance of the simulation. Specially designed forces and boundary conditions control the flow. The simulation can be an input to artistically driven procedural particle simulations that enhance the flow with more detail and drama. Post-simulation processing increases the visual detail beyond the grid resolution. Ultimately, iterative simulation methods that fit naturally in the production workflow are extremely desirable but not yet successful. Results from some efforts for iterative methods are shown, and other approaches motivated by the history of production are proposed.

  17. Evaluation of some natural water-insoluble cellulosic material as lost circulation control additives in water-based drilling fluid

    Directory of Open Access Journals (Sweden)

    Ahmed Mohamed Alsabagh


    In this work, three natural water-insoluble cellulosic materials; peanut hulls, bagasse and sawdust were investigated as lost circulation control materials. One hundred and eight different LCM samples made of various materials were tested with mud. The experiments were conducted in a permeability plugging apparatus (PPA at a differential pressure of 100 psi and 300 psi, using 10, 60 and 90 ceramic discs. The performance of each LCM sample was determined based on the amount of spurt loss and total fluid loss of the mud according to the American Petroleum Institute (API standard. The obtained results showed that, the amount of the fluid loss depends on the LCM material, concentration and size distribution, testing results show that, the peanut gives the best results among the bagasse and sawdust, especially fine size which exhibited better results in the filtration characteristics due to the better filling properties of this size. Peanut hulls, bagasse and sawdust show a slight effect on the rheological properties of the mud. The results were discussed on light of particle size distribution.

  18. Biodegradation of 2,4,6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-De Jesus, A.; Romano-Baez, F.J.; Leyva-Amezcua, L.; Juarez-Ramirez, C.; Ruiz-Ordaz, N. [Departamento de Ingenieria Bioquimica, Escuela Nacional de Ciencias Biologicas, IPN. Prol. Carpio y Plan de Ayala, Colonia Santo Tomas, s/n. CP 11340, Mexico, D.F. (Mexico); Galindez-Mayer, J. [Departamento de Ingenieria Bioquimica, Escuela Nacional de Ciencias Biologicas, IPN. Prol. Carpio y Plan de Ayala, Colonia Santo Tomas, s/n. CP 11340, Mexico, D.F. (Mexico)], E-mail:


    For the aerobic biodegradation of the fungicide and defoliant 2,4,6-trichlorophenol (2,4,6-TCP), a bench-scale packed-bed bioreactor equipped with a net draft tube riser for liquid circulation and oxygenation (PB-ALR) was constructed. To obtain a high packed-bed volume relative to the whole bioreactor volume, a high A{sub D}/A{sub R} ratio was used. Reactor's downcomer was packed with a porous support of volcanic stone fragments. PB-ALR hydrodynamics and oxygen mass transfer behavior was evaluated and compared to the observed behavior of the unpacked reactor operating as an internal airlift reactor (ALR). Overall gas holdup values {epsilon}{sub G}, and zonal oxygen mass transfer coefficients determined at various airflow rates in the PB-ALR, were higher than those obtained with the ALR. When comparing mixing time values obtained in both cases, a slight increment in mixing time was observed when reactor was operated as a PB-ALR. By using a mixed microbial community, the biofilm reactor was used to evaluate the aerobic biodegradation of 2,4,6-TCP. Three bacterial strains identified as Burkholderia sp., Burkholderia kururiensis and Stenotrophomonas sp. constituted the microbial consortium able to cometabolically degrade the 2,4,6-TCP, using phenol as primary substrate. This consortium removed 100% of phenol and near 99% of 2,4,6-TCP. Mineralization and dehalogenation of 2,4,6-TCP was evidenced by high COD removal efficiencies ({approx}95%), and by the stoichiometric release of chloride ions from the halogenated compound ({approx}80%). Finally, it was observed that the microbial consortium was also capable to metabolize 2,4,6-TCP without phenol as primary substrate, with high removal efficiencies (near 100% for 2,4,6-TCP, 92% for COD and 88% for chloride ions)

  19. The effect of resolution on viscous dissipation measured with 4D flow MRI in patients with Fontan circulation: Evaluation using computational fluid dynamics

    NARCIS (Netherlands)

    M. Cibiş (Merih); K. Jarvis (Kelly); M. Markl (Michael); M. Rose (Michael); C. Rigsby (Cynthia); A.J. Barker (Alex); J.J. Wentzel (Jolanda)


    textabstractViscous dissipation inside Fontan circulation, a parameter associated with the exercise intolerance of Fontan patients, can be derived from computational fluid dynamics (CFD) or 4D flow MRI velocities. However, the impact of spatial resolution and measurement noise on the estimation of

  20. Computer-simulated fluid dynamics of arterial perfusion in extracorporeal circulation: From reality to virtual simulation. (United States)

    Fukuda, Ikuo; Osanai, Satoshi; Shirota, Minori; Inamura, Takao; Yanaoka, Hideki; Minakawa, Masahito; Fukui, Kozo


    Atheroembolism due to aortic manipulation remains an unsolved problem in surgery for thoracic aortic aneurysm. The goal of the present study is to create a computer simulation (CS) model with which to analyze blood flow in the diseased aorta. A three-dimensional glass model of the aortic arch was constructed from CT images of a normal, healthy person and a patient with transverse aortic arch aneurysm. Separately, a CS model of the curved end-hole cannula was created, and flow from the aortic cannula was recreated using a numerical simulation. Comparison of the data obtained by the glass model analyses revealed that the flow velocity and the vector of the flow around the exit of the cannula were similar to that in the CS model. A high-velocity area was observed around the cannula exit in both the glass model and the CS model. The maximum flow velocity was as large as 1.0 m/s at 20 mm from the cannula exit and remained as large as 0.5 to 0.6 m/s within 50 mm of the exit. In the aortic arch aneurysm models, the rapid jet flow from the cannula moved straight toward the lesser curvature of the transverse aortic arch. The locations and intensities of the calculated vortices were slightly different from those obtained for the glass model. The proposed CS method for the analysis of blood flow from the aortic cannulae during extracorporeal circulation can reproduce the flow velocity and flow pattern in the proximal and transverse aortic arches.

  1. Finial Scientific/Technical Report: Application of a Circulating Fluidized Bed Process for the Chemical Looping Combustion of Solid Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Wei-Ping Pan; Dr. John T. Riley


    Chemical Looping Combustion is a novel combustion technology for the inherent separation of the greenhouse gas, CO{sub 2}. In 1983, Richter and Knoche proposed reversible combustion, which utilized both the oxidation and reduction of metal. Metal associated with its oxidized form as an oxygen carrier was circulated between two reactors--oxidizer and reducer. In the reducer, the solid oxygen carrier reacts with the fuel to produce CO{sub 2}, H{sub 2}O and elemental metal only. Pure CO{sub 2} will be obtained in the exit gas stream from the reducer after H{sub 2}O is condensed. The pure CO{sub 2} is ready for subsequent sequestration. In the oxidizer, the elemental metal reacts with air to form metal oxide and separate oxygen from nitrogen. Only nitrogen and some unused oxygen are emitted from the oxidizer. The advantage of CLC compared to normal combustion is that CO{sub 2} is not diluted with nitrogen but obtained in a relatively pure form without any energy needed for separation. In addition to the energy-free purification of CO{sub 2}, the CLC process also provides two other benefits. First, NO{sub x} formation can be largely eliminated. Secondly, the thermal efficiency of a CLC system is very high. Presently, the CLC process has only been used with natural gas. An oxygen carrier based on an energy balance analysis and thermodynamics analysis was selected. Copper (Cu) seems to be the best choice for the CLC system for solid fuels. From this project, the mechanisms of CuO reduction by solid fuels may be as follows: (1) If pyrolysis products of solid fuels are available, reduction of CuO could start at about 400 C or less. (2) If pyrolysis products of solid fuels are unavailable and the reduction temperature is lower, reduction of CuO could occur at an onset temperature of about 500 C, char gasification reactivity in CO{sub 2} was lower at lower temperatures. (3) If pyrolysis products of solid fuels are unavailable and the reduction temperature is higher than 750 C

  2. Multidisciplinary investigation (ERT, CO2, SP and T) reveals fluid circulation at Somma-Vesuvius (United States)

    Poret, Matthieu; Ricci, Tullio; Finizola, Anthony; Delcher, Eric; Peltier, Aline


    Somma-Vesuvius volcano, located near the city of Naples, threatens about 800,000 peoples producing one of the highest volcanic risk in the world. In the framework of the EC FP7 project "MEDiterranean SUpersite Volcanoes" a multidisciplinary investigation was performed in March 2014. This survey aimed (1) at locating the present-day hydrothermal system of Somma-Vesuvius and (2) at identifying the preferential paths and fluid flows inside the volcano.
 The prospecting methods used were Electrical Resistivity Tomography (ABEM SAS 4000) with 64 electrodes at 40 m spacing (in Wenner alpha configuration), self-potential (SP), temperature (30 cm depth) and CO2 concentration in the soil at 20 m spacing. All the measurements were performed along a 7 km long profile completed with roll-along (North- West to South-East). The depth of investigation for ERT reached about 500 m. This method revealed an electrical conductive body (20-100 ohm.m) centered beneath the summit of the Vesuvius cone. This conductive body was interpreted as the present-day hydrothermal system of the volcanic complex. Regarding the shape of this structure we noticed a deeply different shape respect to the one observed on both Stromboli and Vulcano volcanoes. Indeed, the Vesuvius hydrothermal system appears to act as a body which is constrained up to 200-250 m below the surface and, moreover, also emphasized by the W-like shape of the SP signal. From ERT and SP results a diameter of around 1.7 km at the maximum depth of investigation is estimated for the hydrothermal system of Somma-Vesuvius.
 In addition, four weak thermal anomalies (6-13°C) are identified on the summit area. They can be explained as preferential paths of up-flowing fluids. It follows that the largest structure seen on both temperature signal and ERT tomography is related to the crater rim of the 1906 eruption. Furthermore, on both lower sides of Vesuvius cone a conductive body (300-600 ohm.m) is identified within a resistive

  3. Study of the behaviour of gaseous pollutants during the incineration of municipal solid waste in a circulating fluidized bed; Etude du devenir des polluants gazeux lors de l`incineration d`ordures menageres en lit fluidise circulant

    Energy Technology Data Exchange (ETDEWEB)

    Desroches-Ducarne, E.


    The Circulating Fluidized Bed (CFB) combustor seems to be a promising tool, being able to burn a variety of fuels whilst maintaining low emissions levels. The present work describes an experimental and theoretical investigation into the formation and destruction of acid gases (HCl and SO{sub 2}) and nitrogen oxides (NO and N{sub 2}O) during Municipal Solid Waste incineration. Experiments were conducted on six different fuels (namely MSW, mixtures of wood, paper, plastics, polyethylene...). The effect of five parameters (temperature, excess air, air staging, calcium addition and moisture) on the emissions levels was investigated. A statistical study on the experimental data allowed us to quantify the impact of the operating conditions and the influence of the fuel characteristics. A mathematical model has been developed which includes the main physical and chemical steps of combustion in CFB and which predicts the pollutant emissions under various operating conditions. A parametric study of the influence of operating conditions on emissions showed that in most cases the trends predicted by the model are in agreement with the experimental observations. (author) 175 refs.

  4. Biological treatment of fracturing waste liquid in a membrane-coupled internal circulation aerobic biological fluidized bed with the assistance of coagulation. (United States)

    Tu, Yizhou; Liu, Xing-Peng; Li, Hui-Qiang; Yang, Ping


    Fracturing waste liquid (FWL) is generated during shale gas extraction and contains high concentrations of suspended solid, salinity and organic compounds, which needs proper management to prevent excessive environmental disruption. Biological treatment of the FWL was attempted in this study using a membrane-coupled internal circulation aerobic biological fluidized bed (MC-ICABFB) after being treated by coagulation. The results showed that poly aluminum chloride (PAC) of 30 g/L, polyacrylamide (PAM) of 20 mg/L and pH of 7.0 were suitable choices for coagulation. The pretreated FWL mixed with synthetic wastewater at different ratios were used as the influent wastewater for the reactor. The MC-ICABFB had relatively good performance on COD and NH4+-N removal and the main residual organic compound in the effluent was phthalates according to the analysis of GC-MC profiles. In addition, a suitable pretreatment process for the FWL to facilitate biological treatment of the wastewater needs further research.

  5. Gasification of algal biomass (Cladophora glomerata L.) with CO2/H2O/O2in a circulating fluidized bed. (United States)

    Ebadi, Abdol Ghaffar; Hisoriev, Hikmat


    Gasification is one of the most important thermochemical routes to produce both synthesis gas (syngas) and chars. The quality of produced syngas wieldy depends on the operating conditions (temperature, residence time, heating rate, and gasifying agent), hydrodynamic properties of gasifier (particle size, minimum fluidization velocity, and gasifier size), and type of feedstock (coal, biomass, oil, and municipal solid wastes). In the present study, simulation of syngas production via circulating fluidized bed (CFB) gasification of algal biomass (Cladophora glomerata L.) at different gasifying agents and particle sizes was carried out, using Aspen Plus simulator. The model which has been validated by using experimental data of the technical literature was used to evaluate the influence of operating conditions on gas composition and performance parameters. The results show that biomass gasification using pure oxygen as the gasification agent has great potential to improve the caloric value of produced gas and performance indicators. It was also found that the produced gas caloric value, syngas yield, and performance parameters (CCE and CGE) increase with reaction temperature but are inversely proportional to the biomass particle size.

  6. The NO and N{sub 2}O formation mechanism under circulating fluidized bed combustor conditions: from the single particle to the pilot-scale

    Energy Technology Data Exchange (ETDEWEB)

    Winter, F.; Loeffler, G.; Wartha, C.; Hofbauer, H. [Vienna University of Technology, Institute of Chemical Engineering, (Austria); Preto, F.; Anthony, E. J. [Natural Resources Canada, CANMET, Ottawa, ON (Canada)


    The mechanism of NO and N{sub 2}O formation is studied, starting with a single fuel particle burning under well-defined conditions up to a pilot-scale circulating fluidized bed combustor (CFBC). The single particle test was focused on the formation chemistry, and a single particle NO/N{sub 2}O formation model was developed and tested and incorporated into a CFBC NO/N{sub 2}O emission model. The fuel, petroleum coke, was the same in all tests and care has been taken to obtain chemical similarity between the different units, i.e. a formation rate unit, a laboratory-scale and a pilot-scale CFBC. To thoroughly test the modeled NO/N{sub 2}O mechanism and to confirm that chemical similarity exists between the different units, the iodine addition method has been used in the single particle tests, in the batch tests, in the laboratory-scale and the pilot-scale CFBC tests. 52 refs., 2 tabs., 5 figs.

  7. Effect of SiO2/Na2O mole ratio on the properties of foam geopolymers fabricated from circulating fluidized bed fly ash (United States)

    Liu, Ze; Shao, Ning-ning; Huang, Tian-yong; Qin, Jun-feng; Wang, Dong-min; Yang, Yu


    Geopolymers are three-dimensional aluminosilicates formed in a short time at low temperature by geopolymerization. In this paper, alkali-activated foam geopolymers were fabricated from circulating fluidized bed fly ash (CFA), and the effect of SiO2/Na2O mole ratio (0.91-1.68) on their properties was studied. Geopolymerization products were characterized by mechanical testing, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The results show that SiO2/Na2O mole ratio plays an important role in the mechanical and morphological characteristics of geopolymers. Foam samples prepared in 28 d with a SiO2/Na2O mole ratio of 1.42 exhibit the greatest compressive strength of 2.52 MPa. Morphological analysis reveals that these foam geopolymers appear the relatively optimized pore structure and distribution, which are beneficial to the structure stability. Moreover, a combination of the Si/Al atomic ratio ranging between 1.47 and 1.94 with the Na/Al atomic ratio of about 1 produces the samples with high strength.

  8. Ruedersdorf cement works substitutes raw material and fuel by means of a circulating fluidised bed; Roh- und Brennstoffsubstitution mit einer Zirkulierenden Wirbelschicht im Zementwerk Ruedersdorf

    Energy Technology Data Exchange (ETDEWEB)

    Scur, P. [Ruedersdorfer Zement GmbH, Ruedersdorf (Germany)


    The purpose of the present paper is to point out the great potential the cement industry holds for the utilisation of waste materials. There are meanwhile sufficient studies and measuring results to demonstrate the environmental acceptability of the processes and products involved. The solution found for Ruedersdorf cement kiln of using a circulating a fluidised bed for waste utilisation is a good example of the potential still available for conserving natural resources and landfill area. Efficient industrial applications of this kind should become a future mainstay of the waste industry. [Deutsch] In dem vorliegenden Beitrag sollte gezeigt werden, dass die Zementindustrie ueber ein hohes Potential zur thermischen und stofflichen Verwertung von Abfallstoffen verfuegt. Es liegen ausreichende Untersuchungen und konkrete Messergebnisse vor, mit denen die Umweltvertraeglichkeit von Prozess und Produkt nachgewiesen werden kann. Die Loesung zur Abfallverwertung an der Ruedersdorfer Zementofenanlage mit Hilfe einer Zirkulierenden Wirbelschicht ist ein Beispiel fuer die Reserven zur Schonung natuerlicher Ressourcen und zur Einsparung von Deponieraeumen. Derartige sinnvolle industrielle Einsatzmoeglichkeiten sollten ein wichtiges Standbein fuer die zukuenftige Abfallwirtschaft sein. (orig.)

  9. Comparison of PIV measurements and a discrete particle model in a rectangular 3D spout-fluid bed

    NARCIS (Netherlands)

    Link, J.M.; Deen, N.G.; Kuipers, J.A.M.


    Particle image velocimetry and a 3D hard sphere discrete particle model were applied to determine particle velocity profiles in the plane around a spout in a spoutfluid bed for various initial bed heights, spout and background fluidization velocities. Comparison between experimental and numerical

  10. Modern embalming, circulation of fluids, and the voyage through the human arterial system: Carl L. Barnes and the culture of immortality in America. (United States)

    Podgorny, Irina


    By considering the work of American embalmer, lawyer, and physician Carl Lewis Barnes (1872-1927), this paper analyzes the emergence of modern embalming in America. Barnes experimented with and exhibited the techniques by which embalming fluids travelled into the most remote cavities of the human body. In this sense, modem embalmers based their skills and methods on experimental medicine, turning the anatomy of blood vessels, physiology of circulation, and composition of blood into a circuit that allowed embalming fluids to move throughout the corpse. Embalmers in the late 19th century took ownership of the laws of hydrodynamics and the physiology of blood circulation to market their fluids and equipment, thus playing the role of physiologists of death, performing and demonstrating physiological experiments with dead bodies.

  11. Modeled temperatures and fluid source distributions for the Mexican subduction zone: Effects of hydrothermal circulation and implications for plate boundary seismic processes (United States)

    Perry, Matthew; Spinelli, Glenn A.; Wada, Ikuko; He, Jiangheng


    In subduction zones, spatial variations in pore fluid pressure are hypothesized to control the sliding behavior of the plate boundary fault. The pressure-temperature paths for subducting material control the distributions of dehydration reactions, a primary control on the pore fluid pressure distribution. Thus, constraining subduction zone temperatures are required to understand the seismic processes along the plate interface. We present thermal models for three margin-perpendicular transects in the Mexican subduction zone. We examine the potential thermal effects of vigorous fluid circulation in a high-permeability aquifer within the basaltic basement of the oceanic crust and compare the results with models that invoke extremely high pore fluid pressures to reduce frictional heating along the megathrust. We combine thermal model results with petrological models to determine the spatial distribution of fluid release from the subducting slab and compare dewatering locations with the locations of seismicity, nonvolcanic tremor, slow-slip events, and low-frequency earthquakes. Simulations including hydrothermal circulation are most consistent with surface heat flux measurements. Hydrothermal circulation has a maximum cooling effect of 180°C. Hydrothermally cooled crust carries water deeper into the subduction zone; fluid release distributions in these models are most consistent with existing geophysical data. Our models predict focused fluid release, which could generate overpressures, coincident with an observed ultraslow layer (USL) and a region of nonvolcanic tremor. Landward of USLs, a downdip decrease in fluid source magnitude could result in the dissipation in overpressure in the oceanic crust without requiring a downdip increase in fault zone permeability, as posited in previous studies.

  12. Seismicity and fluid geochemistry at Lassen Volcanic National Park, California: Evidence for two circulation cells in the hydrothermal system (United States)

    Janik, Cathy J.; McLaren, Marcia K.


    Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235–270°C) that boils to feed steam to the high-temperature fumarolic areas, and has a plume of degassed reservoir liquid that flows southward to emerge at Growler and Morgan Hot Springs. The second cell originates SSE to SE of Lassen Peak and flows southeastward along inferred faults of the Walker Lane belt (WLB) where it forms a reservoir of hot fluid (220–240°C) that boils beneath Devils Kitchen and Boiling Springs Lake, and has an outflow plume of degassed liquid that boils again beneath Terminal Geyser. Three distinct seismogenic zones (identified as the West, Middle, and East seismic clusters) occur at shallow depths (Hot Springs Valley, and Bumpass Hell) and an area of cold, weak gas emissions (Cold Boiling Lake). The three zones are located within the inferred Rockland caldera in response to interactions between deeply circulating meteoric water and hot brittle rock that overlies residual magma associated with the Lassen Volcanic Center. Earthquake focal mechanisms and stress inversions indicate primarily N–S oriented normal faulting and E–W extension, with some oblique faulting and right lateral shear in the East cluster. The different focal mechanisms as well as spatial and temporal earthquake patterns for the East cluster indicate a greater influence by regional tectonics and inferred faults within the WLB. A fourth, deeper (5–10 km) seismogenic zone (the Devils Kitchen seismic cluster) occurs SE of the East cluster and trends NNW from Sifford Mountain toward the Devils Kitchen thermal area where fumarolic temperatures are ≤123°C. Lassen fumaroles discharge geothermal gases that indicate mixing between a N2-rich, arc-type component and gases derived

  13. Analysis of Fluid Flow and Heat Transfer Model for the Pebble Bed High Temperature Gas Cooled Reactor


    S. Yamoah; E.H.K. Akaho; Nana G.A. Ayensu; M. Asamoah


    The pebble bed type high temperature gas cooled nuclear reactor is a promising option for next generation reactor technology and has the potential to provide high efficiency and cost effective electricity generation. The reactor unit heat transfer poses a challenge due to the complexity associated with the thermalflow design. Therefore to reliably simulate the flow and heat transport of the pebble bed modular reactor necessitates a heat transfer model that deals with radiation as well as ther...

  14. Development of an integrated waste management concept on the basis of gasification in a circulating fluidized bed. Entwicklung eines integrierten Muellentsorgungskonzeptes auf Basis ZWS-Vergasung (Zirkulierende WirbelSchicht); Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kreutzkamp, G.; Mielke, H.; Sturm, P.; Werdermann, C.


    Residual wastes were gasified in a circulating fluidized bed within the framework of the research program. The results of the experiments prove the basic feasibility of gas purification and gas cleaning. The waste must be reduced in size, and the scraps must be removed. Prior to the construction of a large-scale plant, the long-term behaviour must be investigated in terms of scaling, corrosion and accumulation of trace materials in the plant components. (EF)

  15. Formation and destruction mechanisms of nitrogen oxides during coal combustion in circulating fluidized beds; Mecanismes de formation et de destruction des oxydes d`azote lors de la combustion du charbon en lit fluidise circulant

    Energy Technology Data Exchange (ETDEWEB)

    Borrel, G.; Lecuyer, I. [Universite du Haut-Rhin, 68 - Mulhouse (France)


    Formation and reduction of nitrogen oxides (NO and N{sub 2}O) during coal combustion in a circulating fluidized bed (CFBC) are very complicated and yet badly known. The aim of the present study was to better characterize these phenomena on a small-sized experimental unit (reactor diameter: 5 cm), with the possibility to re-inject the solids in the bottom of the furnace, as in a real industrial unit. This should allow then to develop a numerical set of chemical reactions involving the nitrogen oxides. The experimental results showed that coal ash plays a great role in reducing nitrogen oxides, the determining parameter being the quantity of unburnt carbon remaining in the ash. The study then detailed the interaction between nitrogen oxides and de-volatilized (char) according to the temperature, NO{sub x} concentration and the mass of solid. In the absence of oxygen small quantities of char can very significantly reduce NO as well as N{sub 2}O. It was possible to establish destruction kinetics on these particles, and orders of reaction could be determined versus the NO{sub x} concentration and the char particle mass (heterogeneous phase chemical reactions). Then, the coal pyrolysis study enabled to identify the products released during coal devolatilization and thermogravimetric analyses displayed several successive weight losses due CO, CO{sub 2} and CH{sub 4} releases, during a linear temperature increase. Lastly coal combustion was studied in the small pilot with variable experimental conditions. Using the previous experimental was studied in the small pilot with variable experimental conditions. Using the previous experimental results, a model was developed to calculate NO{sub x} concentrations during the coal combustion and validated. The NO and N{sub 2}O contents calculated are thoroughly correlated with the experimental data whatever the injection carbon/oxygen ratio is. (author) 96 refs.

  16. Technical and economical optimization of wood gasification in a circulating fluidized bed. Final report; Technische und wirtschaftliche Optimierung der Vergasung von Holz in der zirkulierenden Wirbelschicht. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Ising, M.; Unger, C.; Heunemann, F.; Dinkelbach, L.


    The project's objective was the optimization of a novel process for high efficient combined heat and power production from solid biomass. The processed air blown wood gasification in a pilot scale circulating fluidized bed was added by a catalytic tar reformer which would yield a tar-free gas quality suitable for IC-engine operation. Major efforts were taken for technical improvement of the tar reformer, especially concerning temperature control and cleaning devices which is important for keeping constantly a high activity. Pure natural timber did not yield chemical deactivation at the catalyst whereas the gasification of waste wood yielded decreasing activity which could be partly reversed by special measures taken. Further optimization of the process considered a better automation and improvement of the engine's flue gas emissions. Also a detailed economic consideration and evaluation of the entire process has been carried out. As a result the novel process should have economic advantages compared with conventional technology. (orig.) [German] Gegenstand des Vorhabens war die Weiterentwicklung eines Verfahrens zur effizienteren Strom- und Waermegewinnung aus festen Biobrennstoffen. Durch luftgeblasene Vergasung von Holz im Pilotmassstab in einer zirkulierenden Wirbelschicht und anschliessender katalytischer Teerspaltung konnte ein niederkalorisches Brenngas erzeugt werden, welches zum Betrieb eines Motoren-Blockheizkraftwerks geeignet war. Im Rahmen der Verfahrensoptimierung wurde der katalytische Teer-Reformer, insbesondere in Bezug auf Temperaturfuehrung und die zum Aktivitaetserhalt wichtige Abreinigungsvorrichtung, verbessert. Bei der Vergasung von Naturholz wurde keine chemische Desaktivierung festgestellt. Beim Altholzeinsatz wurde ein ueberwiegend reversibler Aktivitaetsverlust verzeichnet und begruendet. Geeignete Gegenmassnahmen wurden untersucht und beschrieben. Weitere Optimierungen betrafen die Anlagensteuerungstechnik im Hinblick auf die

  17. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 2: Evaluation of ash materials as phosphorus fertilizer. (United States)

    Thomsen, Tobias Pape; Hauggaard-Nielsen, Henrik; Gøbel, Benny; Stoholm, Peder; Ahrenfeldt, Jesper; Henriksen, Ulrik B; Müller-Stöver, Dorette Sophie


    The study is part 2 of 2 in an investigation of gasification and co-gasification of municipal sewage sludge in low temperature gasifiers. In this work, solid residuals from thermal gasification and co-gasification of municipal sewage sludge were investigated for their potential use as fertilizer. Ashes from five different low temperature circulating fluidized bed (LT-CFB) gasification campaigns including two mono-sludge campaigns, two sludge/straw mixed fuels campaigns and a straw reference campaign were compared. Experiments were conducted on two different LT-CFBs with thermal capacities of 100kW and 6MW, respectively. The assessment included: (i) Elemental composition and recovery of key elements and heavy metals; (ii) content of total carbon (C) and total nitrogen (N); (iii) pH; (iv) water extractability of phosphorus after incubation in soil; and (v) plant phosphorus response measured in a pot experiment with the most promising ash material. Co-gasification of straw and sludge in LT-CFB gasifiers produced ashes with a high content of recalcitrant C, phosphorus (P) and potassium (K), a low content of heavy metals (especially cadmium) and an improved plant P availability compared to the mono-sludge ashes, thereby showing the best fertilizer qualities among all assessed materials. It was also found that bottom ashes from the char reactor contained even less heavy metals than cyclone ashes. It is concluded that LT-CFB gasification and co-gasification is a highly effective way to purify and sanitize sewage sludge for subsequent use in agricultural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Gasification of secondary fuels in a circulating fluidized bed for energetic use in cement production; Vergasung von Sekundaerbrennstoffen in der zirkulierenden Wirbelschicht zur energetischen Nutzung fuer die Zementherstellung

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, J.; Gafron, B. [Lurgi Umwelt GmbH, Frankfurt am Main (Germany); Scur, P.; Wirthwein, R. [Ruedersdorfer Zement GmbH (Germany)


    Ruedersforf cement factory was commissioned a century ago as one of the first in Germany. After the plant was taken over by Readymix AG, a comprehensive sanitation concept was carried through. The plant has a production capacity of 8000 t/d of cement clinkers which are produced in a new kiln with a capacity of 6000 t/d and two modernized kilns each with a capacity of 1000 t/d. Reduction of energy consumption was the main goal of modernisation, with fuel gas generation in a circulating fluidized bed as a key element. The unit provides 40 % of the energy consumed by the clinker production process and is also used for selective ash production up to 25 t/h. The ash is used as a raw material for cement production. (orig./SR) [Deutsch] Bereits vor 100 Jahren wurde eine der ersten Zementfabriken in Deutschland am Standort Ruedersdorf in Betrieb genommen. Zum Erhalt der Wettbewerbsfaehigkeit wurde nach der Uebernahme des Werkes Ruedersdorf durch die Readymix AG ein umfangreiches Sanierungskonzept in die Wege geleitet. Bei einer Produktionskapazitaet von ca. 8 000 t Klinker pro Tag werden eine neue Ofenanlage mit einer Kapazitaet von 6 000 t/Tag sowie 2 sanierte kleine Anlagen zu je 1000 t/Tag betrieben. In der neuen Ofenanlage werden alle Moeglichkeiten genutzt, den Energiebedarf fuer die Klinkerproduktion zu senken. Eine wesentliche neue innovative Komponente ist dabei eine Brenngaserzeugung in einer Zirkulierenden Wirbelschicht, ueber die im folgenden berichtet werden soll. Die Anlage kann bis zu 40% des Energiebedarfes des Zementprozesses liefern. Weiterhin wird mit der ZWS eine gezielte Ascheproduktion, bis zu 25 t/h, betrieben. Diese Aschen sind Teil der Rohstoffrezeptur an der Rohmuehle. (orig./SR)

  19. Integrated Low Emissions Cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twenty-fifth quarterly report, October--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.


    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been reconfigured to meet this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degree}F. This document reports the status of a program in the twenty-fifth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

  20. Evolution of the 1991-1992 Arctic vortex and comparison with the Geophysical Fluid Dynamics Laboratory SKYHI general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Strahan, S.E.; Rosenfield, J.E.; Loewenstein, M.; Podolske, J.R.; Weaver, A. [Applied Research Corp., Landover, MD (United States)]|[NASA, Goddard Space Flight Center, Greenbelt, MD (United States)]|[NASA, Ames Research Center, Moffett Field, CA (United States)


    Nitrous oxide (N2O) measured on board the ER-2 aircraft during the Airborne Arctic Stratospheric Expedition 2 (AASE 2) has been used to monitor descent of air inside the Arctic vortex between October 1991 and March 1992. Monthly mean N2O fields are calculated from the flight data and then compared with mean fields calculated from the high-resolution Geophysical Fluid Dynamics Laboratory general circulation model SKYHI in order to evaluate the model`s simulation of the polar vortex. From late fall through winter the model vortex evolves in much the same way as the 1991-1992 vortex, with N2O gradients at the edge becoming progressively steeper. The October to March trends in N2O profiles inside the vortex are used to verify daily net heating rates in the vortex that were computed from clear sky radiative heating rates and National Meteorological Center temperature observations. The computed heating rates successfully estimate the descent of vortex air from December through February but suggest that before December, air at high latitudes may not be isolated from the midlatitudes. SKYHI heating rates are in good agreement with the computed rates but tend to be slightly higher (i.e., less cooling) due to meteorological differences between SKYHI and the 1991-1992 winter. Three ER-2 flights measured N2O just north of the subtropical jet. These low-midlatitude profiles show only slight differences from the high-midlatitude profiles (45 deg - 60 deg N), indicating strong meridional mixing in the midlatitude `surf zone.` Mean midwinter N2O profiles inside and outside the vortex calculated from AASE 2 data are shown to be nearly identical to 1989 AASE profiles, pointing to the N2O/potential temperature relationship as an excellent marker for vortex air.

  1. PlanHab: the combined and separate effects of 16 days of bed rest and normobaric hypoxic confinement on circulating lipids and indices of insulin sensitivity in healthy men. (United States)

    Simpson, Elizabeth J; Debevec, Tadej; Eiken, Ola; Mekjavic, Igor; Macdonald, Ian A


    PlanHab is a planetary habitat simulation study. The atmosphere within future space habitats is anticipated to have reduced Po2, but information is scarce as to how physiological systems may respond to combined exposure to moderate hypoxia and reduced gravity. This study investigated, using a randomized-crossover design, how insulin sensitivity, glucose tolerance, and circulating lipids were affected by 16 days of horizontal bed rest in normobaric normoxia [NBR: FiO2 = 0.209; PiO2 = 133.1 (0.3) mmHg], horizontal bed rest in normobaric hypoxia [HBR: FiO2 = 0.141 (0.004); PiO2 = 90.0 (0.4) mmHg], and confinement in normobaric hypoxia combined with daily moderate intensity exercise (HAMB). A mixed-meal tolerance test, with arterialized-venous blood sampling, was performed in 11 healthy, nonobese men (25-45 yr) before (V1) and on the morning ofday 17of each intervention (V2). Postprandial glucose and c-peptide response were increased at V2 of both bed rest interventions (Peffects of bed rest on insulin sensitivity and glucose tolerance but appeared to increase insulin clearance. The negative effect of bed rest on HDL was compounded in hypoxia, which may have implications for long-term health of those living in future space habitats. Copyright © 2016 the American Physiological Society.

  2. Data mining of fractured experimental data using neurofuzzy logic-discovering and integrating knowledge hidden in multiple formulation databases for a fluid-bed granulation process. (United States)

    Shao, Q; Rowe, R C; York, P


    In the pharmaceutical field, current practice in gaining process understanding by data analysis or knowledge discovery has generally focused on dealing with single experimental databases. This limits the level of knowledge extracted in the situation where data from a number of sources, so called fractured data, contain interrelated information. This situation is particularly relevant for complex processes involving a number of operating variables, such as a fluid-bed granulation. This study investigated three data mining strategies to discover and integrate knowledge "hidden" in a number of small experimental databases for a fluid-bed granulation process using neurofuzzy logic technology. Results showed that more comprehensive domain knowledge was discovered from multiple databases via an appropriate data mining strategy. This study also demonstrated that the textual information excluded in individual databases was a critical parameter and often acted as the precondition for integrating knowledge extracted from different databases. Consequently generic knowledge of the domain was discovered, leading to an improved understanding of the granulation process. 2007 Wiley-Liss, Inc

  3. Geophysical Fluid Dynamics Laboratory general circulation model investigation of the indirect radiative effects of anthropogenic sulfate aerosol (United States)

    Ming, Yi; Ramaswamy, V.; Ginoux, Paul A.; Horowitz, Larry W.; Russell, Lynn M.


    The Geophysical Fluid Dynamics Laboratory (GFDL) atmosphere general circulation model, with its new cloud scheme, is employed to study the indirect radiative effect of anthropogenic sulfate aerosol during the industrial period. The preindustrial and present-day monthly mean aerosol climatologies are generated from running the Model for Ozone And Related chemical Tracers (MOZART) chemistry-transport model. The respective global annual mean sulfate burdens are 0.22 and 0.81 Tg S. Cloud droplet number concentrations are related to sulfate mass concentrations using an empirical relationship (Boucher and Lohmann, 1995). A distinction is made between "forcing" and flux change at the top of the atmosphere in this study. The simulations, performed with prescribed sea surface temperature, show that the first indirect "forcing" ("Twomey" effect) amounts to an annual mean of -1.5 W m-2, concentrated largely over the oceans in the Northern Hemisphere (NH). The annual mean flux change owing to the response of the model to the first indirect effect is -1.4 W m-2, similar to the annual mean forcing. However, the model's response causes a rearrangement of cloud distribution as well as changes in longwave flux (smaller than solar flux changes). There is thus a differing geographical nature of the radiation field than for the forcing even though the global means are similar. The second indirect effect, which is necessarily an estimate made in terms of the model's response, amounts to -0.9 W m-2, but the statistical significance of the simulated geographical distribution of this effect is relatively low owing to the model's natural variability. Both the first and second effects are approximately linearly additive, giving rise to a combined annual mean flux change of -2.3 W m-2, with the NH responsible for 77% of the total flux change. Statistically significant model responses are obtained for the zonal mean total indirect effect in the entire NH and in the Southern Hemisphere low


    Energy Technology Data Exchange (ETDEWEB)

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek


    Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and

  5. Diagenesis and Fluid Flow Variability of Structural Heterogeneity Units in Tight Sandstone Carrier Beds of Dibei, Eastern Kuqa Depression

    Directory of Open Access Journals (Sweden)

    H. Shi


    Full Text Available Tight sand gas plays an important role in the supply of natural gas production. It has significance for predicting sweet spots to recognize the characteristics and forming of heterogeneity in tight sandstone carrier beds. Heterogeneity responsible for spatial structure, such as the combination and distribution of relatively homogeneous rock layers, is basically established by deposition and eodiagenesis that collectively affect the mesogenesis. We have investigated the structural heterogeneity units by petrofacies in tight sandstone carrier beds of Dibei, eastern Kuqa Depression, according to core, logging, and micropetrology. There are four types of main petrofacies, that is, tight compacted, tight carbonate-cemented, gas-bearing, and water-bearing sandstones. The brine-rock-hydrocarbon diagenesis changes of different heterogeneity structural units have been determined according to the pore bitumen, hydrocarbon inclusions, and quantitative grain fluorescence. Ductile grains or eogenetic calcite cements destroy the reservoir quality of tight compacted or tight carbonate-cemented sandstones. Rigid grains can resist mechanical compaction and oil emplacement before gas charging can inhibit diagenesis to preserve reservoir property of other sandstones. We propose that there is an inheritance relationship between the late gas and early oil migration pathways, which implies that the sweet spots develop in the reservoirs that experienced early oil emplacement.

  6. Effect of Heterogeneity in Coal Ash Chemical Composition on the Onset of Conditions Favorable for Agglomeration in Fluid Beds

    Directory of Open Access Journals (Sweden)

    Aditi B. Khadilkar


    Full Text Available Ash agglomeration issues that arise due to the sticking of slag-wetted, colliding particles have been creating operational difficulties and monetary losses for the fluidized bed combustion (FBC industry. Difficulties have been experienced in the detection of slag-liquid at the low operating temperatures in fluidized bed combustors (FBCs and predicting the agglomeration behavior of fuel. This study aims to study the effect of heterogeneity in ash composition on the detection of slag-liquid in FBCs. It quantifies the slag-liquid amounts at the particle-level, under oxidizing environments, by dividing the bulk fuel into density classes. FactSage™ thermodynamic simulations of each of the particle classes, along with experimental validation of the trends with thermo-mechanical analysis (TMA and high temperature X-ray diffraction (HT-XRD were performed. The results obtained can be used to estimate the stickiness of particles in the development of ash agglomeration models based on particle collisions. The study of these particle classes shows that particle classes with specific minerals can form low temperature eutectics and lead to onset of slag-liquid formation at temperatures below those predicted by bulk analysis alone. Comparison of the differences in slag-liquid formation tendencies under reducing and oxidizing environments is also presented.

  7. The development of an integrated multistaged fluid-bed retorting process. Final report, September 1990--August 1994

    Energy Technology Data Exchange (ETDEWEB)

    Carter, S.D.; Taulbee, D.N.; Stehn, J.L.; Vego, A.; Robl, T.L.


    This summarizes the development of the KENTORT II retorting process, which includes integral fluidized bed zones for pyrolysis, gasification, and combustion of oil shale. Purpose was to design and test the process at the 50-lb/hr scale. The program included bench- scale studies of coking and cracking reactions of shale oil vapors over processed shale particles to address issues of scaleup associated with solid-recycle retorting. The bench-scale studies showed that higher amounts of carbon coverage reduce the rate of subsequent carbon deposition by shale oil vapors onto processed shale particles; however carbon-covered materials were also active in terms of cracking and coking. Main focus was the 50-lb/hr KENTORT II PDU. Cold-flow modeling and shakedown were done before the PDU was made ready for operation. Seven mass-balanced, steady-state runs were completed within the window of design operating conditions. Goals were achieved: shale feedrate, run duration (10 hr), shale recirculation rates (4:1 to pyrolyzer and 10:1 to combustor), bed temperatures (pyrolyzer 530{degree}C, gasifier 750{degree}C, combustor 830{degree}C), and general operating stability. Highest oil yields (up to 109% of Fischer assay) were achieved for runs lasting {ge} 10 hours. High C content of the solids used for heat transfer to the pyrolysis zone contributed to the enhanced oil yield achieved.

  8. Controlling the Release of Indomethacin from Glass Solutions Layered with a Rate Controlling Membrane Using Fluid-Bed Processing. Part 1: Surface and Cross-Sectional Chemical Analysis. (United States)

    Dereymaker, Aswin; Scurr, David J; Steer, Elisabeth D; Roberts, Clive J; Van den Mooter, Guy


    Fluid bed coating has been shown to be a suitable manufacturing technique to formulate poorly soluble drugs in glass solutions. Layering inert carriers with a drug-polymer mixture enables these beads to be immediately filled into capsules, thus avoiding additional, potentially destabilizing, downstream processing. In this study, fluid bed coating is proposed for the production of controlled release dosage forms of glass solutions by applying a second, rate controlling membrane on top of the glass solution. Adding a second coating layer adds to the physical and chemical complexity of the drug delivery system, so a thorough understanding of the physical structure and phase behavior of the different coating layers is needed. This study aimed to investigate the surface and cross-sectional characteristics (employing scanning electron microscopy (SEM) and time of flight secondary ion mass spectrometry (ToF-SIMS)) of an indomethacin-polyvinylpyrrolidone (PVP) glass solution, top-coated with a release rate controlling membrane consisting of either ethyl cellulose or Eudragit RL. The implications of the addition of a pore former (PVP) and the coating medium (ethanol or water) were also considered. In addition, polymer miscibility and the phase analysis of the underlying glass solution were investigated. Significant differences in surface and cross-sectional topography of the different rate controlling membranes or the way they are applied (solution vs dispersion) were observed. These observations can be linked to the polymer miscibility differences. The presence of PVP was observed in all rate controlling membranes, even if it is not part of the coating solution. This could be attributed to residual powder presence in the coating chamber. The distribution of PVP among the sample surfaces depends on the concentration and the rate controlling polymer used. Differences can again be linked to polymer miscibility. Finally, it was shown that the underlying glass solution layer

  9. Comprehensive Secondary Pyrolysis in Fluidized-bed Fast Pyrolysis of Biomass, a Fluid Dynamics Based Modelling Effort


    Mellin, Pelle; Yang, Weihong; Yu, Xi


    Homogenous secondary pyrolysis is category of reactions following the primary pyrolysis and presumed important for fast pyrolysis. For the comprehensive chemistry and fluid dynamics, a probability density functional (PDF) approach is used; with a kinetic scheme comprising 134 species and 4169 reactions being implemented. With aid of acceleration techniques, most importantly Dimension Reduction, Chemistry Agglomeration and In-situ Tabulation (ISAT), a solution within reasonable time was obtain...

  10. Piston-like plugging of fuzzy-ball workover fluids for controlling and killing lost circulation of gas wells

    Directory of Open Access Journals (Sweden)

    Jinfeng Wang


    Full Text Available During well-killing operations for the workover of low-pressure gas wells, formation pressure should be balanced so as to guarantee well control safety by preventing natural gas overflow. In this paper, a laboratory evaluation was conducted with fuzzy-ball fluids as killing fluids. The results show that, the fuzzy-ball fluid, with a density of 0.5–1.5 g/cm3 and a viscosity up to 78,50,000 mPa·s at a low shear rate, realizes controllable performance and forms piston-like plugging slugs of solid-free high structural strength on natural gas wellbore after bonding. During well workover, multiple fluid column pressures were set up by injecting fuzzy-ball fluids with different densities at various rates. Owing to high structural strength of the fluids at a low shear rate, natural gas breaks through only inside the piston-like slug and cannot flow upwards to the ground, so the pathways of natural gas in the wellbore are isolated from the ground surface. Moreover, the fluid can wholly move up and down like a piston-like plug, with the change of formation pressures or the tripping of pipe strings. Like the conventional operations, the production can be restored after the workover, so long as the fluid in wellbore is cleaned by means of gas lift. In a natural gas field in NW China, where the formation pressure coefficient dropped to 0.60–0.82, three wells were fully filled with fuzzy-ball workover fluids for 7 days and another three wells were treated with the piston-like plugs of fuzzy-ball workover fluids for only 3 days. They all presented better technical results. The technology provides a new way for low-pressure gas well workover.

  11. Origin, age and physico-chemical processes of fluid circulations in fractures: example of under-cover basement (Vienne) and of clay-rich formations (Gard, East); Origine, age et processus physico-chimiques des circulations de fluides dans les fractures: exemple de socle sous couverture (Vienne) et de formations riches en argiles (Gard, Est)

    Energy Technology Data Exchange (ETDEWEB)

    Buschaert, St


    The study of minerals sealing the discontinuities and the cavities by past to recent fluid circulations is the only method to assess the paleo -hydrological and -hydrogeochemical behavior of both sedimentary or granitic systems. Petrographic, mineralogic, isotopic (C, O, H) and geochemical (K/Ar) tools provide the opportunity: i) to identify the source and the nature of sealing (carbonates and quartz) -forming waters and ii) to precise the physical and chemical mechanisms occurring during fluid circulations. This study is focused on 3 sites selected in the framework of a survey managed by Andra for the feasibility of an underground laboratory: in the covered plutonites of Charroux Civray (Vienne), 3 major fluid circulations (Hercynian fluids, Mesozoic brines, diagenetic waters) have been identified. The carbonates deposited in discontinuities or pervasively inside the granitic rocks have been formed from an unique C source ({delta}{sup 13}C ranging from -9 and -14 0/00). C stock has been early introduced during retrograde metamorphism, and afterwards, re-mobilized by successive fluid inputs. This confers on the Ca-rich plutonic rocks an efficient self-sealing capacity during later fracturing and fluid flow. In Cretaceous siltstones and surrounding limestones and sandstones of Marcoule (South-eastern Basin), calcites from fracture formed during Eocene compression and/or Oligocene extension have been deposited under low temperature conditions (T <50-55 deg C). C and O sources of fracture calcites differ as a function of stratigraphical levels. Fracture sealing occurs: i) either in close system, by redistribution of the nearby host-rock cements, or ii) in open system with introduction of C and O from external sources. These late events have contributed to reduce the global permeability of the rocks trough the sealing of the fractures. In the Eastern part of the Paris basin, circulations of meteoric fluids have occurred at a regional scale during Tertiary, both in the

  12. Raman spectroscopic and microthermometric studies of authigenic quartz (the Pepper Mts., Central Poland) as an indicator of fluids circulation (United States)

    Naglik, Beata; Toboła, Tomasz; Natkaniec-Nowak, Lucyna; Luptáková, Jarmila; Milovská, Stanislava


    Differently colored authigenic quartz crystals were found as the druses compound within mudstone heteroliths from the Pepper Mts. Shale Formation (Cambrian unit of the Holy Cross Mts., Central Poland). The genesis of this mineral was established on the basis of fluid inclusion study. Raman microspectroscopy was the key instrumental technique to identify the nature of the compounds trapped in the fluid inclusions. Methane (2917 cm- 1) or water vapor (broad band 2500-3000 cm- 1) occur within two-phased primary inclusion assemblages, while nitrogen (2329 cm- 1) associated with methane and trace amount of carbon dioxide (1285, 1388 cm- 1) occur within secondary fluid inclusion assemblage. Temperatures of homogenization of primary fluid inclusions was obtained on the basis of heating experiments and ranged from 171° to 266 °C. These values are much higher than expected for the diagenetic system without metamorphic changes what may imply hydrothermal origin of quartz crystals. The source of fluids is uncertain as in the Holy Cross Mts. there was no volcanic activity to the end of Late Devonian. However, fluids originated in metamorphic basin could use deep faults as the migration paths.

  13. Raman spectroscopic and microthermometric studies of authigenic quartz (the Pepper Mts., Central Poland) as an indicator of fluids circulation. (United States)

    Naglik, Beata; Toboła, Tomasz; Natkaniec-Nowak, Lucyna; Luptáková, Jarmila; Milovská, Stanislava


    Differently colored authigenic quartz crystals were found as the druses compound within mudstone heteroliths from the Pepper Mts. Shale Formation (Cambrian unit of the Holy Cross Mts., Central Poland). The genesis of this mineral was established on the basis of fluid inclusion study. Raman microspectroscopy was the key instrumental technique to identify the nature of the compounds trapped in the fluid inclusions. Methane (2917cm-1) or water vapor (broad band ~2500-3000cm-1) occur within two-phased primary inclusion assemblages, while nitrogen (2329cm-1) associated with methane and trace amount of carbon dioxide (1285, 1388cm-1) occur within secondary fluid inclusion assemblage. Temperatures of homogenization of primary fluid inclusions was obtained on the basis of heating experiments and ranged from 171° to 266°C. These values are much higher than expected for the diagenetic system without metamorphic changes what may imply hydrothermal origin of quartz crystals. The source of fluids is uncertain as in the Holy Cross Mts. there was no volcanic activity to the end of Late Devonian. However, fluids originated in metamorphic basin could use deep faults as the migration paths. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Influence of operational parameters on the fluid-side mass transfer resistance observed in a packed bed bioreactor. (United States)

    Hussain, Amir; Kangwa, Martin; Abo-Elwafa, Ahmed Gad; Fernandez-Lahore, Marcelo


    The influence of mass transfer on productivity as well as the performance of packed bed bioreactor was determined by varying a number of parameters; flow rate, glucose concentration and polymers (chitosan). Saccharomyces cerevisiae cells were immobilized in chitosan and non-chitosan coated alginate beads to demonstrate the effect on external mass transfer by substrate consumption time, lag phase and ethanol production. The results indicate that coating has a significant effect on the lag phase duration, being 30-40 min higher than non-coated beads. After lag phase, no significant change was observed in both types of beads on consumption of glucose with the same flow rate. It was observed that by increasing flow rates; lag phase and glucose consumption time decreased. The reason is due to the reduction of external mass transfer as a result of increase in flow rate as glucose is easily transported to and from the beads surface by diffusion. It is observed that chitosan acts as barrier for transfer of substrate and products, in and out of beads, at initial time of fermentation as it shows longer lag phase for chitosan coated beads than non-coated. Glucose consumption at low flow rate was lower as compared to higher flow rates. The optimum combination of parameters consisting of higher flow rates 30-90 ml/min and between 10 and 20 g/l of glucose was found for maximum production of ethanol.

  15. Application of detecting cerebrospinal fluid circulating tumor cells in the diagnosis of meningeal metastasis of non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Rong JIANG


    Full Text Available Objective To observe a new technology for the detection and enumeration of cerebrospinal fluid (CSF circulating tumor cells (CTCs in the diagnosis of non-small cell lung cancer (NSCLC with meningeal metastasis (MM.  Methods Five cases of NSCLC with MM that were diagnosed by CSF cytology were selected, and 20 ml CSF samples were obtained by lumbar puncture for every patient. The tumor marker immunostaining-fluorescence in situ hybridization (TM-iFISH technology was adapted to detect enrichment and enumeration of circulating tumor cells in 7.50 ml CSF samples; CSF cytology was checked in 10 ml CSF samples; CSF tumor markers were detected in 2.50 ml CSF samples. All of 5 cases were examined by MRI enhancement scan.  Results TM-iFISH detection found circulating tumor cells numbers ranging 18-1823/7.50 ml. Only 2 cases of patients with CSF cytology examination showed the tumor cells. The results of CSF tumor markers in all samples were higher than normal serum tumor markers detection results. The enhanced MRI scan of 5 cases revealed typical signs of MM.  Conclusions The TM-iFISH test showed certain advantages in the detection of malignant tumor cells in CSF. This technology may be a new method of detection and enumeration of tumor cells in CSF, but more studies are needed to prove its sensitivity and specificity. doi: 10.3969/j.issn.1672-6731.2014.08.011

  16. Evaluation of in-line spatial filter velocimetry as PAT monitoring tool for particle growth during fluid bed granulation. (United States)

    Burggraeve, A; Van Den Kerkhof, T; Hellings, M; Remon, J P; Vervaet, C; De Beer, T


    In this study, the feasibility of spatial filter velocimetry (SFV) as process analytical technology tool for the in-line monitoring of the particle size distribution during top spray fluidized bed granulation was examined. The influence of several process (inlet air temperature during spraying and drying) and formulation variables (HPMC and Tween 20 concentration) upon the particle size distribution during processing, and the end product particle size distribution, tapped density and Hausner ratio was examined using a design of experiments (DOE) (2-level full factorial design, 19 experiments). The trend in end granule particle size distributions of all DOE batches measured with in-line SFV was similar to the off-line laser diffraction (LD) data. Analysis of the DOE results showed that mainly the HPMC concentration and slightly the inlet air temperature during drying had a positive effect on the average end granule size. The in-line SFV particle size data, obtained every 10s during processing, further allowed to explain and better understand the (in)significance of the studied DOE variables, which was not possible based on the LD data as this technique only supplied end granule size information. The variation in tapped density and Hausner ratio among the end granules of the different DOE batches could be explained by their difference in average end granule size. Univariate, multivariate PLS and multiway N-PLS models were built to relate these end granule properties to the in-line-measured particle size distribution. The multivariate PLS tapped density model and the multiway N-PLS Hausner ratio model showed the highest R(2) values in combination with the lowest RMSEE values (R(2) of 82% with an RMSEE of 0.0279 for tapped density and an R(2) of 52% with an RMSEE of 0.0268 for Hausner ratio, respectively). 2010 Elsevier B.V. All rights reserved.

  17. Circulating filarial antigen in the hydrocele fluid from individuals living in a bancroftian filariasis area - Recife, Brazil: detected by the monoclonal antibody Og4C3-assay

    Directory of Open Access Journals (Sweden)

    Abraham Rocha


    Full Text Available The purpose of this study was to examine the circulating filarial antigen (CFA detected by the monoclonal antibody (mAb Og4C3-ELISA in paired samples of serum and hydrocele fluid from 104 men with hydrocele, living in an endemic area of Wuchereria bancrofti. Nocturnal blood specimens were filtered and examined for microfilariae (MF and ultrasound was used in order to identify the presence of adult worms (the filaria dance sign - FDS in the lymphatic vessels of the scrotal area. Four groups were selected according to their parasitological status: group I - 71 MF- and FDS-; group II - 21 MF+ and FDS+; group III - 10 MF- and FDS+ and group IV- 2 MF+ and FDS-. CFA was identified simultaneously (fluid and serum in 11 (15.5%, 21 (100%, 3 (30%, and 1 (50% in groups I, II, III, and IV, respectively. In despite of high CFA+ level (antigen Og4C3 units/ml, the Geometrical Mean (GM = 2696 in the sera of these 36/104 paired samples, when compared to the hydrocele fluid, (GM = 1079, showed a very good correlation between the CFA level in the serum and CFA level in the fluid (r = 0.731. CFA level in the serum of the 23 microfilaremics (groups II and IV was extremely high (GM = 4189 and was correlated with MF density (r = 0.442. These findings report for the first time the potential alternative use of the hydrocele fluid to investigate CFA using the mAb Og4C3-ELISA.

  18. Batch statistical process control of a fluid bed granulation process using in-line spatial filter velocimetry and product temperature measurements. (United States)

    Burggraeve, A; Van den Kerkhof, T; Hellings, M; Remon, J P; Vervaet, C; De Beer, T


    Fluid bed granulation is a batch process, which is characterized by the processing of raw materials for a predefined period of time, consisting of a fixed spraying phase and a subsequent drying period. The present study shows the multivariate statistical modeling and control of a fluid bed granulation process based on in-line particle size distribution (PSD) measurements (using spatial filter velocimetry) combined with continuous product temperature registration using a partial least squares (PLS) approach. Via the continuous in-line monitoring of the PSD and product temperature during granulation of various reference batches, a statistical batch model was developed allowing the real-time evaluation and acceptance or rejection of future batches. Continuously monitored PSD and product temperature process data of 10 reference batches (X-data) were used to develop a reference batch PLS model, regressing the X-data versus the batch process time (Y-data). Two PLS components captured 98.8% of the variation in the X-data block. Score control charts in which the average batch trajectory and upper and lower control limits are displayed were developed. Next, these control charts were used to monitor 4 new test batches in real-time and to immediately detect any deviations from the expected batch trajectory. By real-time evaluation of new batches using the developed control charts and by computation of contribution plots of deviating process behavior at a certain time point, batch losses or reprocessing can be prevented. Immediately after batch completion, all PSD and product temperature information (i.e., a batch progress fingerprint) was used to estimate some granule properties (density and flowability) at an early stage, which can improve batch release time. Individual PLS models relating the computed scores (X) of the reference PLS model (based on the 10 reference batches) and the density, respectively, flowabililty as Y-matrix, were developed. The scores of the 4 test

  19. Are the Element Budget and the Occurrence of Polymetallic Nodules influenced by Fluids Circulating through the Oceanic Crust or/and Sediments? (United States)

    Heller, C.; Kuhn, T.


    Mo, Ba, Zn, Li. Distribution of Rare Earth Elements (REY) are also different. Especially, the element distribution in the bulk samples and the single layers of the buried nodules could be used to find a possible influence of circulating fluids on nodule formation.

  20. Restart of circulation of gelled drilling fluids; Estudo do inicio da recirculacao de fluidos de perfuracao gelificados

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Gabriel M. de [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Rocha, Leandro L.V. da; Franco, Admilson T.; Negrao, Cezar O.R. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Programa de Pos Graduacao em Engenharia Mecanica e de Materiais; Martins, Andre L. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)


    This paper describes a mathematical model that simulates the start-up flow of gelled drilling fluids in annular spaces with the purpose to predict pressure peaks at the beginning of the flow. The model comprises the one-dimensional conservation equations of mass and momentum, which are discretized by Finite Volume Method. Fully implicit and up-wind discretization schemes are used and the resultant algebraic equations are solved iteratively by developing a FORTRAN algorithm. The model has the potentiality to be easily adapted to a flow inside a tube. Cases studies are conducted to evaluate the temporal variation of velocity and pressure fields inside both the annular space and a tube. One observed that increasing fluid compressibility or viscosity leads to a reduction of the pressure peaks. (author)

  1. Circulation on the Inner-Shelf of Long Bay, South Carolina: Vertical Current Variability and Evidence for Cross-Shelf Variation in Near-Bed Currents (United States)

    Gutierrez, B. T.; Voulgaris, G.; Work, P. A.; Seim, H.; Warner, J. C.


    Cross-shelf variations of near-bed currents and variations in vertical flow were investigated on the inner shelf of Long Bay, South Carolina during the spring and fall of 2001. Current meters sampled near-bed currents at six locations as well as vertical current profiles at three of the sites. The observations showed that the tides accounted for approximately 45-66% of the flow variability. The dominant tidal component, the semi-diurnal constituent M2, exhibited tidal ellipse orientations that are increasingly aligned with the coast closer to the shore. The largest M2 current magnitudes were identified closest to shore and over the top of a sand shoal located 5.5 km offshore of Myrtle Beach. The remaining flow variability was associated with sub-tidal flows which respond to the passage of low-pressure systems across the region. These weather systems were characterized by periods of southwesterly winds in advance of low-pressure centers followed by northeasterly winds as the systems passed over the study area. When strong southwesterly winds persisted, surface flow was oriented approximately in the direction of the wind. At the same time near-bottom flows were also directed to the northeast in the direction of the wind except during periods of stratification when vertical current profiles suggest near-bed onshore flow. The stratified flows were observed mainly during the spring deployment. For periods of strong northeasterly winds, currents were directed alongshore to the southwest and exhibited little variation throughout the water column. These observations are consistent with recent field and modeling studies for the inner-shelf. Comparison of the near-bed flow measurements during the fall deployment revealed a cross-shore gradient in alongshore flow during periods of strong northeasterly winds. During these episodes flows at the offshore measurement stations were oriented in the direction of the wind, while flows closest to shore occurred in the opposite

  2. Heat transfer between a fluid and a bed of solid particles aiming the storage and recovery of solar energy; Transferencia de calor entre um fluido e um leito de particulas solidas visando a armazenagem e recuperacao de energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Alencar, Soraya Lira


    The heat transfer between a fluid and a bed of particles has a great number of technological applications. This work presents experimental and analytical results of the dynamical response of the fix bed ceramic spheres parceled by air, when submitted to a step in the inlet gas temperature. The two-phase model approach was used. Based on the experimental profiles of the gas and solid temperature the characteristic time and local coefficient of heat transmission were calculated. 26 refs; 14 figs; 16 tabs

  3. Influence of the gap size and dielectric constant of the packing on the plasma discharge in a packed bed dielectric barrier discharge reactor: a fluid modeling study (United States)

    van Laer, Koen; Bogaerts, Annemie


    Packed bed dielectric barrier discharge (DBD) reactors have proven to be very useful sources of non-thermal plasma for a wide range of applications, of which the environmental applications have received most attention in recent years. Compared to an empty DBD reactor, a packing was introduced to either enhance the energy efficiency of the process, or, if the packing is catalytically active, steer the process towards a preferred end product. A wide range of geometries, bead sizes and bead materials have been tested experimentally in the past. However, since experimental diagnostics become more difficult with a packing present, a computational study is proposed to gain more insight. Using COMSOL's built in plasma module, a 2D axisymmetric fluid model is developed to study the influence of the gap size and the dielectric constant (ɛ) of the packing. Helium is used as discharge gas, at atmospheric pressure and room temperature. By decreasing the gas gap, the electric field strength is enhanced, resulting in a higher number of current peaks per half cycle of applied rf potential. Increasing ɛ also enhances the electric field strength. However, after a certain ɛ, its influence saturates. The electric field strength will no longer increase, leaving the discharge behavior unchanged.

  4. Peripheral circulation. (United States)

    Laughlin, M Harold; Davis, Michael J; Secher, Niels H; van Lieshout, Johannes J; Arce-Esquivel, Arturo A; Simmons, Grant H; Bender, Shawn B; Padilla, Jaume; Bache, Robert J; Merkus, Daphne; Duncker, Dirk J


    Blood flow (BF) increases with increasing exercise intensity in skeletal, respiratory, and cardiac muscle. In humans during maximal exercise intensities, 85% to 90% of total cardiac output is distributed to skeletal and cardiac muscle. During exercise BF increases modestly and heterogeneously to brain and decreases in gastrointestinal, reproductive, and renal tissues and shows little to no change in skin. If the duration of exercise is sufficient to increase body/core temperature, skin BF is also increased in humans. Because blood pressure changes little during exercise, changes in distribution of BF with incremental exercise result from changes in vascular conductance. These changes in distribution of BF throughout the body contribute to decreases in mixed venous oxygen content, serve to supply adequate oxygen to the active skeletal muscles, and support metabolism of other tissues while maintaining homeostasis. This review discusses the response of the peripheral circulation of humans to acute and chronic dynamic exercise and mechanisms responsible for these responses. This is accomplished in the context of leading the reader on a tour through the peripheral circulation during dynamic exercise. During this tour, we consider what is known about how each vascular bed controls BF during exercise and how these control mechanisms are modified by chronic physical activity/exercise training. The tour ends by comparing responses of the systemic circulation to those of the pulmonary circulation relative to the effects of exercise on the regional distribution of BF and mechanisms responsible for control of resistance/conductance in the systemic and pulmonary circulations. © 2012 American Physiological Society

  5. Horizontal coring using air as the circulating fluid: Some prototype studies conducted in G Tunnel at the Nevada Test Site for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Chornack, M.P. [Geological Survey, Las Vegas, NV (USA); French, C.A. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (USA)


    Horizontal coring using air as the circulating fluid has been conducted in the G Tunnel Underground Facility (GTUF) at the Nevada Test Site. This work is part of the prototype investigations of hydrogeology for the Yucca Mountain Project. The work is being conducted to develop methods and procedures that will be used at the Department of Energy`s Yucca Mountain Site, a candidate site for the nation`s first high-level nuclear waste repository, during the site characterization phase of the investigations. The United States Geological Survey (USGS) is conducting this prototype testing under the guidance of the Los Alamos National Laboratory (LANL) and in conjunction with Reynolds Electrical & Engineering Company (REECo), the drilling contractor. 7 refs., 8 figs., 5 tabs.

  6. Fast circulation of cerebrospinal fluid: an alternative perspective on the protective role of high intracranial pressure in ocular hypertension. (United States)

    Wostyn, Peter; De Groot, Veva; Van Dam, Debby; Audenaert, Kurt; Killer, Hanspeter Esriel; De Deyn, Peter Paul


    As ocular hypertension refers to a condition in which the intraocular pressure is consistently elevated but without development of glaucoma, study of it may provide important clues to factors that may play a protective role in glaucoma. β-amyloid, one of the key histopathological findings in Alzheimer's disease, has been reported to increase by chronic elevation of intraocular pressure in animals with experimentally induced ocular hypertension and to cause retinal ganglion cell death, pointing to similarities in molecular cell death mechanisms between glaucoma and Alzheimer's disease. On the other hand, recent studies have reported that intracranial pressure is higher in patients with ocular hypertension compared with controls, giving rise to the idea that elevated intracranial pressure may provide a protective effect for the optic nerve by decreasing the trans-lamina cribrosa pressure difference. The speculation that the higher intracranial pressure reported in ocular hypertension patients may protect against glaucoma mainly through a lower trans-lamina cribrosa pressure difference remains at least questionable. Here, we present an alternative viewpoint, according to which the protective effect of higher intracranial pressure could be due, at least in part, to a pressure-independent mechanism, namely faster cerebrospinal fluid production leading to increased cerebrospinal fluid turnover with enhanced removal of potentially neurotoxic waste products that accumulate in the optic nerve. This suggests a new hypothesis for glaucoma, which, just like Alzheimer's disease, may be considered then as an imbalance between production and clearance of neurotoxins, including β-amyloid. If confirmed, then strategies to improve cerebrospinal fluid flow are reasonable and could provide a new therapeutic approach for stopping the neurotoxic β-amyloid pathway in glaucoma. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.

  7. The 3D circulation and cyclone-anticyclone asymmetry in the shallow layers of viscous rotating fluid

    Energy Technology Data Exchange (ETDEWEB)

    Kostrykin, S V [Institute of Numerical Mathematics Russian Academy of Sciences, 119333, ul. Gubkina, 8, Moscow (Russian Federation); Khapaev, A A; Yakushkin, I G, E-mail: [A.M.Obukhov Institute of Atmospheric Physics Russian Academy of Sciences, 119017, Pyzhyovskiy per., 3, Moscow (Russian Federation)


    A modified von Karman problem that describes steady vortex flow in a rotating thin viscous fluid layer is solved. An analysis of the effect of bottom friction on the behavior of cyclonic and anticyclonic vortices at arbitrary values of the Rossby number is presented. Several anticyclonic flow patterns are examined. An approximate analytical solution obtained for steady flow is compared with numerical computations of a time-dependent problem. Experimental results on cyclonic and anticyclonic vortices in multiple-vortex quasi-turbulent flow are presented, and their interpretation based on the solution of the numerical model is given.

  8. Natural Killer Cell Assessment in Peripheral Circulation and Bronchoalveolar Lavage Fluid of Patients with Severe Sepsis: A Case Control Study. (United States)

    Souza-Fonseca-Guimaraes, Paulo; Guimaraes, Fernando; Natânia De Souza-Araujo, Caroline; Maria Boldrini Leite, Lidiane; Cristina Senegaglia, Alexandra; Nishiyama, Anita; Souza-Fonseca-Guimaraes, Fernando


    Sepsis is a complex systemic inflammatory syndrome, the most common cause of which is attributed to systemic underlying bacterial infection. The complete mechanisms of the dynamic pro- and anti-inflammatory processes underlying the pathophysiology of sepsis remain poorly understood. Natural killer (NK) cells play a crucial role in the pathophysiology of sepsis, leading to exaggerated inflammation due their rapid response and production of pro-inflammatory cytokines such as interferon gamma (IFN-γ). Several studies have already shown that NK cells undergo lymphopenia in the peripheral blood of patients with sepsis. However, our understanding of the mechanisms behind its cellular trafficking and its role in disease development is restricted to studies in animal models. In this study, we aimed to compare the human NK cell subset (CD56 bright or dim ) levels in the peripheral blood and bronchoalveolar lavage (BAL) fluid of sepsis patients. We conducted a case-control study with a sample size consisting of 10 control patients and 23 sepsis patients enrolled at the Hospital Cajuru (Curitiba/PR, Brazil) from 2013 to 2015. Although we were able to confirm previous observations of peripheral blood lymphopenia, no significant differences were detected in NK cell levels in the BAL fluid of these patients. Overall, these findings strengthened the evidence that peripheral blood lymphopenia is likely to be associated with cell death as a consequence of sepsis.

  9. Natural Killer Cell Assessment in Peripheral Circulation and Bronchoalveolar Lavage Fluid of Patients with Severe Sepsis: A Case Control Study

    Directory of Open Access Journals (Sweden)

    Paulo Souza-Fonseca-Guimaraes


    Full Text Available Sepsis is a complex systemic inflammatory syndrome, the most common cause of which is attributed to systemic underlying bacterial infection. The complete mechanisms of the dynamic pro- and anti-inflammatory processes underlying the pathophysiology of sepsis remain poorly understood. Natural killer (NK cells play a crucial role in the pathophysiology of sepsis, leading to exaggerated inflammation due their rapid response and production of pro-inflammatory cytokines such as interferon gamma (IFN-γ. Several studies have already shown that NK cells undergo lymphopenia in the peripheral blood of patients with sepsis. However, our understanding of the mechanisms behind its cellular trafficking and its role in disease development is restricted to studies in animal models. In this study, we aimed to compare the human NK cell subset (CD56bright or dim levels in the peripheral blood and bronchoalveolar lavage (BAL fluid of sepsis patients. We conducted a case-control study with a sample size consisting of 10 control patients and 23 sepsis patients enrolled at the Hospital Cajuru (Curitiba/PR, Brazil from 2013 to 2015. Although we were able to confirm previous observations of peripheral blood lymphopenia, no significant differences were detected in NK cell levels in the BAL fluid of these patients. Overall, these findings strengthened the evidence that peripheral blood lymphopenia is likely to be associated with cell death as a consequence of sepsis.

  10. Influence of the geothermal fluid rheology in the large scale hydro-thermal circulation in Soultz-sous-Forêts reservoir. (United States)

    Vallier, Bérénice; Magnenet, Vincent; Fond, Christophe; Schmittbuhl, Jean


    Many numerical models have been developed in deep geothermal reservoir engineering to interpret field measurements of the natural hydro-thermal circulations or to predict exploitation scenarios. They typically aim at analyzing the Thermo-Hydro-Mechanical and Chemical (THMC) coupling including complex rheologies of the rock matrix like thermo-poro-elasticity. Few approaches address in details the role of the fluid rheology and more specifically the non-linear sensitivity of the brine rheology with temperature and pressure. Here we use the finite element Code_Aster to solve the balance equations of a 2D THM model of the Soultz-sous-Forêts reservoir. The brine properties are assumed to depend on the fluid pressure and the temperature as in Magnenet et al. (2014). A sensitive parameter is the thermal dilatation of the brine that is assumed to depend quadratically with temperature as proposed by the experimental measurements of Rowe and Chou (1970). The rock matrix is homogenized at the scale of the equation resolution assuming to have a representative elementary volume of the fractured medium smaller than the mesh size. We still chose four main geological units to adjust the rock physic parameters at large scale: thermal conductivity, permeability, radioactive source production rate, elastic and Biot parameters. We obtain a three layer solution with a large hydro-thermal convection below the cover-basement transition. Interestingly, the geothermal gradient in the sedimentary layer is controlled by the radioactive production rate in the upper altered granite. The second part of the study deals with an inversion approach of the homogenized solid and fluid parameters at large scale using our direct THM model. The goal is to compare the large scale inverted estimates of the rock and brine properties with direct laboratory measurements on cores and discuss their upscaling in the context of a fractured network hydraulically active. Magnenet V., Fond C., Genter A. and

  11. A three-dimensional simulation of gas/particle flow and ozone decomposition in the riser of a circulating fluidized bed

    DEFF Research Database (Denmark)

    Hansen, Kim Granly; Solberg, Tron; Hjertager, Bjørn Helge


    concentration in the 10.85 m high riser by the use of a UV detector system. Furthermore a pressure drop profile was reported. Comparison between measured and simulated time averaged ozone concentration at different elevations in the riser shows good agreement. The 3D representation of the reactor geometry gives......The isothermal decomposition of ozone has been implemented in the CFD code FLOTRACS-MP-3D. The code is a 3D multiphase computational fluid dynamics code with an Eulerian description of both gas and particle phase. The turbulent motion of the particulate phase is modeled using the kinetic theory...... for granular flow, and the gas phase turbulence is modeled using a Sub-Grid-Scale model, cf. Ibsen et al. (2001). The decomposition reaction is studied in a 3D representation of a 0.254 m i.d. riser, which has been studied experimentally by Ouyang et al. (1993). The authors obtained profiles of ozone...

  12. Particle size distribution of ashes and the behaviour of metals when firing Salix in a circulating fluidized bed boiler (CFB); Askans partikelfraktionsfoerdelning och metallernas beteende vid eldning av Salix i en CFB-panna

    Energy Technology Data Exchange (ETDEWEB)

    Sfiris, G.; Johansson, A. [Vattenfall Utveckling AB, Stockholm (Sweden); Valmari, T.; Kauppinen, E.; Pyykoenen, J.; Lyyraenen, J. [VTT Technical Research Centre of Finland, Espoo (Finland)


    This project is part of the Ash Recovery Programme aimed at establishing the environmental, technical and financial preconditions for returning wood ash to the forest. The programme is funded jointly by NUTEK, Sydkraft and Vattenfall. This report summarises the results of the experimental and modelling work to study the behaviour of the metals (especially Cd and K), after burning Salix in a 3-12 MW Circulating Fluidized Bed (CFB) boiler. The purpose of the study was to determine, using the experimental data, where cadmium and potassium condense, on what size particles they condense, and the decisive parameters governing these processes. Measurements of the fly ash particle size distribution carried out with a Berner Low Pressure Impactor (BLPI), coupled to a pre-cyclone. Samples were collected from three points: in the convection path at 650 deg C, after the convection path but before the secondary cyclone (160 deg C), and after the bag house (150 deg C). Wet chemical sampling was made for Cd, K, Zn and Pb, with three types of sampling equipment: collection of both particles and gas, collection of particles only, and analysis of the gas phase only. Analysis was made of samples from two places in the convection path (650 deg C and 250 deg C). Samples of bed material, bottom ash and fly ash have been subjected to scanning electron microscopy (SEM), and in addition a few fly ash particles, sampled after the convection path, were subjected to energy dispersive X-ray analysis (EDX). Based on experimental results, modelling work was carried out with an equilibrium model and with a general aerosol computer model ABC (Aerosol Behaviour in Combustion)

  13. LT-CFB. Applications and follow-up. CP Kelco. Appendix 1. [Low Temperature Circulating Fluid Bed gasifier]; LT-CFB. Anvendelsesmuligheder og opfoelgning. CP Kelco. Bilag 1

    Energy Technology Data Exchange (ETDEWEB)



    This appendix describes how LT-CFB advantageously can gasify residual products at the company CP Kelco's factory. CP Kelco produces the gelation, thickeners and stabilizers carrageenan and pectin from seaweed and citrus peel. Residues from the production consist of a fiber-containing biological material, which has a calorific value of dry matter about 15 to 20 MJ / kg. In addition, there are waste products from the wastewater treatment plant, which are also proposed re-used in the project. The report describes the economic analyses, the overall data and system design for two scenarios, whereas the description of the plant capacities, sizes and detailed data etc. are described only for one scenario. In addition to savings in the purchase of natural gas the gas production also results in a significant reduction in CO{sub 2} emissions, the product gas being characterized as CO{sub 2} neutral. Since CP Kelco is subject to the CO{sub 2} quota system the saved amount of CO{sub 2} emissions represents a significant value. In the economic analyses, the value of 1 ton of CO{sub 2} is set at DKK 100. (LN)

  14. LT-CFB. Applications and follow-up. DAKA. Appendix 3. [Low Temperature Circulating Fluid Bed gasifier]; LT-CFB. Anvendelsesmuligheder og opfoelgning. DAKA. Bilag 3

    Energy Technology Data Exchange (ETDEWEB)



    This appendix describes how LT-CFB advantageously can gasify residues in the form of bone meal from the production at the company DAKA's factory. 37,000 tons of biomass is produced annually, which has a gross calorific value of 15.6 MJ / kg. Distributed on 6000 annual operating hours the biomass represent power of 25 MW (net calorific value). The residue is proposed converted to a gas (product gas) in a gasification process. The product gas is used as fuel in a newly combined heat and power unit, from which the steam produced is delivered to the existing process plants, and where the electricity is produced to the grid. The product gas is the main fuel, and natural gas is used as auxiliary firing. The project aims to assess the profitability of the project. In addition to savings in gas purchases, the product gas also leads means a significant reduction in CO{sub 2} emissions, the product gas being characterized as CO{sub 2} neutral. The feasibility study includes a comprehensive proposal for construction of the facility, forecasting of investment and the development of economy model to calculate the profitability of the project. The project proposal is based on the plant annually using 37,000 tons of bone meal for product gas in 6,000 production hours. The gasifier has the effect of 25 MW gross calorific value, and 2.7 MW of electricity is produced. The required investment is calculated to approx. 200 million DKK. The economic analysis shows a payback time of 5.6 years. (LN)

  15. LT-CFB. Further development and commercialization. Final report. [Low Temperature Circulating Fluid Bed gasifier]; LT-CFB. Videreudvikling og kommercialisering. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Stoholm, P. [DFBT, Roskilde (Denmark); Birk Henriksen, U.; Ahrentfeldt, J. [Technical Univ. of Denmark. DTU Chemical Engineering, CHEC Research Centre, Roskilde (Denmark); Cramer, J.; Dietrich, J.; Christiansen, Knud [FORCE Technology, Kgs. Lyngby (Denmark); Krogh, J. [Anhydro A/S, Soeborg (Denmark)


    The starting point for the project was the good results achieved in a previous project, in which a series of experiments were carried out with a 500 kW pilot plant at teh Technical University of Denmark. The main task was then to find a way forward towards further scale-up, demonstration and commercialization. The project's partners chose to study three possible sites for demonstration. However, during the project both framework conditions as well as DONG Energy's strategy changed, which resulted in the company taking over the LT-CFB technology in December 2009. As a first step a 6 MW demonstration plant will now be set up at the Asnaes power plant expected to start in spring 2011. The project has also been buit a new mobile 100 kW LT-CFB plant for the further optimization of the process and for short-term trials of new fuels. At the new plant a number of successful trials were performed with straw and residual fibers. Furthermore, it is experimentally demonstrated that it is possible to cool the tar-containing gas to approx. 300 degrees C and purify the gas in a bag filter, so it can be used in natural gas-fired power plant boilers. With the new mobile system, it will now be easier to perform experiments with a number of new fuels such as unsorted municipal waste, bone meal and dried sewage sludge. (LN)

  16. Intrapulpal Temperature Increases Caused by 445-nm Diode Laser-Assisted Debonding of Self-Ligating Ceramic Brackets During Simulated Pulpal Fluid Circulation. (United States)

    Stein, Steffen; Wenzler, Johannes; Hellak, Andreas; Schauseil, Michael; Korbmacher-Steiner, Heike; Braun, Andreas


    This study investigated temperature increases in dental pulp resulting from laser-assisted debonding of ceramic brackets using a 445-nm diode laser. Eighteen ceramic brackets were bonded in standardized manner to 18 caries-free human third molars. Pulpal fluid circulation was simulated by pumping distilled water at 37°C through the pulp chamber. The brackets were irradiated with a 445-nm diode laser. Temperatures were measured using a thermal camera at points P1 (center of the pulp) and P2 (in the hard dental tissue) at the baseline (T0), at the start and end of laser application (T1 and T2), and the maximum during the sequence (Tmax). Significant differences in the temperatures measured at P1 and P2 were observed among T0, T1, T2, and Tmax. Significant increases in temperature were noted at points P1 and P2, between T1 and T2, T1 and Tmax, and T2 and Tmax. The maximum P2 values were significantly higher than at P1. The maximum temperature increase measured in the pulp was 2.23°C, lower than the critical threshold of 5.5°C. On the basis of the laser settings used, there is no risk to the vitality of dental pulp during laser-assisted debonding of ceramic brackets with a 445-nm diode laser.

  17. Effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor. (United States)

    Varol, Murat; Atimtay, Aysel T


    This study aimed to investigate the effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor. The tests included co-combustion of 50-50% by wt. mixtures of Bursa-Orhaneli lignite+olive cake and Denizli-Kale lignite+olive cake, with and without limestone addition. Ash samples were subjected to XRF, XRD and SEM/EDS analyses. While MgO was high in the bottom ash for Bursa-Orhaneli lignite and olive cake mixture, Al2O3 was high for Denizli-Kale lignite and olive cake mixture. Due to high Al2O3 content, Muscovite was the dominant phase in the bottom ash of Denizli Kale. CaO in the bottom ash has increased for both fuel mixtures due to limestone addition. K was in Arcanite phase in the co-combustion test of Bursa/Orhaneli lignite and olive cake, however, it mostly appeared in Potassium Calcium Sulfate phase with limestone addition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Amniotic fluid water dynamics

    NARCIS (Netherlands)

    Beall, M. H.; van den Wijngaard, J. P. H. M.; van Gemert, M. J. C.; Ross, M. G.


    Water arrives in the mammalian gestation from the maternal circulation across the placenta. It then circulates between the fetal water compartments, including the fetal body compartments, the placenta and the amniotic fluid. Amniotic fluid is created by the flow of fluid from the fetal lung and


    Pisapia, C.; Deschamps, P.; Hamelin, B.; Buschaert, S.


    The French agency for nuclear waste management (ANDRA) developed an Underground Research Laboratory in the Mesozoic formations of Eastern part of the Paris Basin (France) to assess the feasibility of a high-level radioactive wastes repository in sedimentary formations. The target host formation is a low-porosity detrital argillite (Callovo-Oxfordian) embedded between two shelf limestones formations (of Bajocian-Bathonian and Oxfordian-Kimmeridgian ages). These formations are affected by fracture networks, likely inherited mainly from the Eocene-Oligocene extension tectonics, also responsible of the Rhine graben formation in the same region. The limestones have very low permeability, the primary and secondary porosity being infilled by secondary carbonated minerals. The inter-particle porosity is filled with euhedral calcite spar cements. Similarly, macro-cavities and connected micro-fractures are almost sealed by euhedral calcite. Geochemical evidences (δ18O) suggest that the secondary carbonates likely derived from a common parent fluid (Buschaert et al., 2004, Appl. Geochem. (19) 1201-1215p). This late carbonated precipitation phase is responsible for the intense cementation of the limestone formations and bears witness of a major phase of fluids circulation that marked the late diagenetic evolution of the system. Knowledge of the chronology of the different precipitation phases of secondary minerals is thus of critical importance in order to determine the past hydrological conditions of the geological site. The aim of this study is to provide chronological constraints on the secondary carbonate mineral precipitation using U/Th and U/Pb methods. Analyses are performed on millimeter to centimeter scale secondary calcites collected within fractures outcropping in the regional fault zone of Gondrecourt and in cores from the ANDRA exploration-drilling program. Preliminary U-Th analyses obtained on secondary carbonates from surface fractures infillings yield secular

  20. Research report of FY 1997 on the environmentally acceptable coal utilization system introduction support project. Demonstration project of circulating fluidized bed boiler (Jinzhou Coal-Thermal Power Corporation); 1997 nendo seika hokokusho (kankyo chowagata sekitan riyo system donyu shien jigyo). Junkan ryudosho boiler ni kakawaru jissho jigyo (Jinzhou netsuden sokoji)

    Energy Technology Data Exchange (ETDEWEB)



    To verify the clean coal technology to be diffused in China and consolidate its diffusion basis, demonstration project of circulating fluidized bed boiler was conducted through the cooperation with China which is positive in its introduction. This report describes its characteristics. Coal and limestone are supplied in a lower part of combustion chamber, and are mixed with circulating ash by fluidized air for combustion. Densely fluidized bed the same as the bubbling fluidized bed is formed in the lower part of combustion chamber, which provides excellent stability in ignition and combustion. Particles including ash, char and limestone formed during the combustion are discharged into the cyclone through the convection heat transfer part at the outlet of combustion chamber with the combustion gas flow. Since the gas temperature is lowered to 400 to 500degC at the convection heat transfer part, troubles of the ash circulating system can be prevented. The combustion gas separated from ash at the cyclone is discharged through the heat exchanger and precipitator, and the collected ash is returned to the lower part of combustion chamber. In FY 1997, design, fabrication, procurement/inspection, field survey/meeting, survey of visitors/meeting, and education were carried out. 4 figs., 4 tabs.

  1. Amniotic fluid embolism

    National Research Council Canada - National Science Library

    Kaur, Kiranpreet; Bhardwaj, Mamta; Kumar, Prashant; Singhal, Suresh; Singh, Tarandeep; Hooda, Sarla


    Amniotic fluid embolism (AFE) is one of the catastrophic complications of pregnancy in which amniotic fluid, fetal cells, hair, or other debris enters into the maternal pulmonary circulation, causing cardiovascular collapse...

  2. 234U/238U Disequilibria along sedimentary discontinuities in a deep formation: late diagenetic U-relocation processes vs. large scale fluid circulation evidence ? (United States)

    Deschamps, P.; Hillaire-Marcel, C.; Michelot, J.-L.; Doucelance, R.; Ghaleb, B.


    away from the suture zone. Such disequilibria are commonly attributed to water/rock interaction phenomenon related to fluid circulation. In this case, mineralogical, trace and major element data rather indicate that the mechanism responsible for these disequilibria is epidiagenetic, directly associated with the presence of the stylolith, and likely due to micro-scale relocation of highly fractionated U. Therefore, the chemical system might be seen, at a larger scale, as a closed one. However, the phenomenon responsible for the recent reactivation of the stylolitization is not determined.

  3. Fluid biopsy for circulating tumor cell identification in patients with early-and late-stage non-small cell lung cancer: a glimpse into lung cancer biology (United States)

    Wendel, Marco; Bazhenova, Lyudmila; Boshuizen, Rogier; Kolatkar, Anand; Honnatti, Meghana; Cho, Edward H.; Marrinucci, Dena; Sandhu, Ajay; Perricone, Anthony; Thistlethwaite, Patricia; Bethel, Kelly; Nieva, Jorge; van den Heuvel, Michel; Kuhn, Peter


    Circulating tumor cell (CTC) counts are an established prognostic marker in metastatic prostate, breast and colorectal cancer, and recent data suggest a similar role in late stage non-small cell lung cancer (NSCLC). However, due to sensitivity constraints in current enrichment-based CTC detection technologies, there are few published data about CTC prevalence rates and morphologic heterogeneity in early-stage NSCLC, or the correlation of CTCs with disease progression and their usability for clinical staging. We investigated CTC counts, morphology and aggregation in early stage, locally advanced and metastatic NSCLC patients by using a fluid-phase biopsy approach that identifies CTCs without relying on surface-receptor-based enrichment and presents them in sufficiently high definition (HD) to satisfy diagnostic pathology image quality requirements. HD-CTCs were analyzed in blood samples from 78 chemotherapy-naïve NSCLC patients. 73% of the total population had a positive HD-CTC count (>0 CTC in 1 mL of blood) with a median of 4.4 HD-CTCs mL-1 (range 0-515.6) and a mean of 44.7 (±95.2) HD-CTCs mL-1. No significant difference in the medians of HD-CTC counts was detected between stage IV (n = 31, range 0-178.2), stage III (n = 34, range 0-515.6) and stages I/II (n = 13, range 0-442.3). Furthermore, HD-CTCs exhibited a uniformity in terms of molecular and physical characteristics such as fluorescent cytokeratin intensity, nuclear size, frequency of apoptosis and aggregate formation across the spectrum of staging. Our results demonstrate that despite stringent morphologic inclusion criteria for the definition of HD-CTCs, the HD-CTC assay shows high sensitivity in the detection and characterization of both early- and late-stage lung cancer CTCs. Extensive studies are warranted to investigate the prognostic value of CTC profiling in early-stage lung cancer. This finding has implications for the design of extensive studies examining screening, therapy and surveillance in

  4. Experimental investigation of the oxy-fuel combustion of hard coal in a circulating fluidized-bed combustion; Experimentelle Untersuchung der Oxy-Fuel-Verbrennung von Steinkohle in einer zirkulierenden Wirbelschichtfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, Gerrit Arne


    The United Nations Framework Convention on Climate Change (UNFCCC) in 1992 first illustrated the social, economic and politic focus being placed on combating climate change caused by anthropogenic greenhouse gases. From there onwards research and development efforts have particularly centred on the reduction of CO{sub 2} emissions in the production of electrical power through the use of carbonaceous fossil fuels. The long-term goal is a conversion to sustainable and CO{sub 2} free means of producing power, utilizing in the main part renewable forms of energy such as solar, wind and hydro power. Currently, such renewable ways of creating electricity only represent a small percentage of global energy production. The technological and economic hurdles that are associated with a substantial increase of renewable energy production have greatly slowed their increased implementation. However, the goal of keeping the atmospheric CO{sub 2} concentration below 450 ppm requires a significantly faster reduction in the amount of greenhouse gas emissions. Therefore, considerations are being given to bridge technologies which would be able to capture and store the CO{sub 2} emissions from fossil fired power plants. These technologies are referred to as CCS (carbon capture and storage). Oxy-fuel combustion, combustion with pure oxygen instead of air, is one of those technologies and forms the focus of investigation of this work. The Institute of Combustion and Power Plant Technology in Stuttgart, Germany, have researched this matter, carrying out combustion experiments in its 150 kW{sub th} circulating fluidized bed pilot facility. The experiments were aimed at investigating the influence of excess oxygen, combustion temperature and inlet oxygen concentration on the combustion process and comparing air to oxy-fuel combustion. These results were compared to the results of fundamental investigations and combustion experiments carried out by other research groups. The relationship

  5. A temperature control process for a solid circulating in a heat exchanger with tube cylindrical arrays. Procede de regulation du niveau thermique d'un solide dans un echangeur de chaleur presentant des nappes cylindriques de tubes

    Energy Technology Data Exchange (ETDEWEB)

    Bonifay, R.; Gauthier, T.; Hoffmann, F.; Pontier, R.


    The temperature control system is aimed at a powder solid fluidized bed process, with at least a part of the solid being extracted from the bed and sent to a temperature control zone which is considerably elongated and which has an axis of symmetry containing at least one assembly of the heat exchange tubes in which a vaporizable coolant circulates. The temperature of the fluidized bed is controlled by indirect heat exchange with the coolant; the solid is then returned to the treatment zone, or to another treatment zone. The solid is circulated through the heat exchanger tubes by the fluidizing fluid in such a way that the solid flow crosses the tubes and the coolant is circulated in only one direction. The system can be applied to catalyst regeneration systems. 1 fig.

  6. A Systematic Approach of Employing Quality by Design Principles: Risk Assessment and Design of Experiments to Demonstrate Process Understanding and Identify the Critical Process Parameters for Coating of the Ethylcellulose Pseudolatex Dispersion Using Non-Conventional Fluid Bed Process. (United States)

    Kothari, Bhaveshkumar H; Fahmy, Raafat; Claycamp, H Gregg; Moore, Christine M V; Chatterjee, Sharmista; Hoag, Stephen W


    The goal of this study was to utilize risk assessment techniques and statistical design of experiments (DoE) to gain process understanding and to identify critical process parameters for the manufacture of controlled release multiparticulate beads using a novel disk-jet fluid bed technology. The material attributes and process parameters were systematically assessed using the Ishikawa fish bone diagram and failure mode and effect analysis (FMEA) risk assessment methods. The high risk attributes identified by the FMEA analysis were further explored using resolution V fractional factorial design. To gain an understanding of the processing parameters, a resolution V fractional factorial study was conducted. Using knowledge gained from the resolution V study, a resolution IV fractional factorial study was conducted; the purpose of this IV study was to identify the critical process parameters (CPP) that impact the critical quality attributes and understand the influence of these parameters on film formation. For both studies, the microclimate, atomization pressure, inlet air volume, product temperature (during spraying and curing), curing time, and percent solids in the coating solutions were studied. The responses evaluated were percent agglomeration, percent fines, percent yield, bead aspect ratio, median particle size diameter (d50), assay, and drug release rate. Pyrobuttons® were used to record real-time temperature and humidity changes in the fluid bed. The risk assessment methods and process analytical tools helped to understand the novel disk-jet technology and to systematically develop models of the coating process parameters like process efficiency and the extent of curing during the coating process.

  7. Regulation of amniotic fluid volume

    NARCIS (Netherlands)

    Beall, M. H.; van den Wijngaard, J. P. H. M.; van Gemert, M. J. C.; Ross, M. G.


    Water arrives in the mammalian gestation from the maternal circulation across the placenta. It then circulates between the fetal water compartments, including the fetal body compartments, the placenta and the amniotic fluid. Amniotic fluid is created by the flow of fluid from the fetal lung and

  8. Physiology Of Prolonged Bed Rest (United States)

    Greenleaf, John E.


    Report describes physiological effects of prolonged bed rest. Rest for periods of 24 hours or longer deconditions body to some extent; healing proceeds simultaneously with deconditioning. Report provides details on shifts in fluid electrolytes and loss of lean body mass, which comprises everything in body besides fat - that is, water, muscle, and bone. Based on published research.

  9. Lost Circulation Technology Development Status

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, David A.; Schafer, Diane M.; Loeppke, Glen E.; Scott, Douglas D.; Wernig, Marcus D.; Wright, Elton K.


    Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the U.S. Department of Energy. The goal of the program is to reduce lost circulation costs by 30-50% through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April, 1991-March, 1992.

  10. Lost circulation technology development status

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, D.A.; Schafer, D.M.; Loeppke, G.E.; Scott, D.D.; Wernig, M.D.; Wright, E.K.


    Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the US Department of Energy. The goal of the program is to reduce lost circulation costs by 30--50% through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April 1991--March 1992. 8 refs.

  11. Lost circulation technology development status

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, D.A.; Schafer, D.M.; Loeppke, G.E.; Scott, D.D.; Wernig, M.D.; Wright, E.K.


    Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the US Department of Energy. The goal of the program is to reduce lost circulation costs by 30--50% through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April 1991--March 1992. 8 refs.

  12. Numerical analysis of the fluid dynamics in a natural circulation loop; Analise numerica da dinamica do escoamento em circuitos de circulacao natural

    Energy Technology Data Exchange (ETDEWEB)

    Angelo, Gabriel


    Natural circulation loops apply to many engineering applications such as: water heating solar energy system (thermo-siphons), thermal management of electrical components (voltage converter), geothermal energy, nuclear reactors, etc. In pressurized water nuclear reactors, known as PWR's, the natural circulation loops are employed to ensure passive safety. In critical situations, the heat transfer will occur only by natural convection, without any external control or mechanical devices. This feature is desired and has been considered in modern nuclear reactor projects. This work consists of a numerical study of the natural circulation loop, located at the Instituto de Pesquisas Energeticas e Nucleares / Comissao Nacional de Energia Nuclear in Sao Paulo, Brazil, in order to establish the flow pattern in single phase conditions. The comparison of numerical results to experiments in transient condition revealed significant deviations for the Zero Equation turbulence model. Intermediate deviations for the Eddy Viscosity Turbulence Equation (EVTE), k - {omega}, SST e SSG models. And the best results are obtained by the k - {epsilon} e DES models (with better results for the k - {epsilon} model). (author)

  13. Effects of anesthetics on the coronary circulation

    NARCIS (Netherlands)

    de Hert, S.; Vermeyen, K.; Adriaensen, H.


    The coronary circulation holds a unique position among the different vascular beds because it perfuses the organ that generates the perfusion pressure for the entire circulation. Therefore the maintenance of an adequate perioperative coronary flow is one of the primary goals of good anesthetic

  14. The effect of fluid resuscitation on the effective circulating volume in patients undergoing liver surgery : a post-hoc analysis of a randomized controlled trial

    NARCIS (Netherlands)

    Vos, Jaap Jan; Kalmar, A. F.; Hendriks, H. G. D.; Bakker, J.; Scheeren, T. W. L.

    To assess the significance of an analogue of the mean systemic filling pressure (Pmsa) and its derived variables, in providing a physiology based discrimination between responders and non-responders to fluid resuscitation during liver surgery. A post-hoc analysis of data from 30 patients undergoing

  15. The effect of fluid resuscitation on the effective circulating volume in patients undergoing liver surgery: a post-hoc analysis of a randomized controlled trial

    NARCIS (Netherlands)

    Vos, J.J. (Jaap Jan); Kalmar, A.F.; H.G.D. Hendriks (Herman); J. Bakker (Jan); Scheeren, T.W.L.


    textabstractTo assess the significance of an analogue of the mean systemic filling pressure (Pmsa) and its derived variables, in providing a physiology based discrimination between responders and non-responders to fluid resuscitation during liver surgery. A post-hoc analysis of data from 30 patients

  16. Rock-bed thermocline storage: A numerical analysis of granular bed behavior and interaction with storage tank (United States)

    Sassine, Nahia; Donzé, Frédéric-Victor; Bruch, Arnaud; Harthong, Barthélemy


    Thermal Energy Storage (TES) systems are central elements of various types of power plants operated using renewable energy sources. Packed bed TES can be considered as a cost-effective solution in concentrated solar power plants (CSP). Such a device is made up of a tank filled with a granular bed through which heat-transfer fluid circulates. However, in such devices, the tank might be subjected to catastrophic failure induced by a mechanical phenomenon known as thermal ratcheting. Thermal stresses are accumulated during cycles of loading and unloading until the failure happens. This paper aims at studying the evolution of tank wall stresses over granular bed thermal cycles, taking into account both thermal and mechanical loads, with a numerical model based on the discrete element method (DEM). Simulations were performed to study two different thermal configurations: (i) the tank is heated homogenously along its height or (ii) with a vertical gradient of temperature. Then, the resulting loading stresses applied on the tank are compared as well the response of the internal granular material.

  17. Inter-bed fluid triggered slope failures of the Kaoping Canyon upstream area: Results from memorial R/V Ocean Researcher 5 (United States)

    Yeh, Yi-Ching; Shen, Tsung-Fu; Liu, Shao-Yung; Yu, Pai-Sen


    As a major pathway of the sediment transportation, the submarine canyons sculpture the seafloor then deposit sediments at the deep ocean. The submarine canyons could be classified to two categories: erosive or deposition based on geological environment or fluid flow down to the canyon. The erosive canyons often 'attack' the levee which may result in submarine landslides or mass transportations due to slope failure. Once slope failure occurs at geological weakness area such as gas hydrate dissociation zone, giant mass slumping will be triggered. These kinds of mass transportations will further develop turbidity current or hyperpycnal flow, which could damage the submarine cables or pipes. The giant mass transportation even triggers devastated tsunami. In this study, a latest swath bathymetric map was compiled by comprising seven cruises between December, 2012 and March 2013. The result shows that regressive erosion may take a place north of 500 meters contour (gas hydrate dissociation region), southwest off Taiwan. Moreover, high resolution seismic image (acquired by Edgetech SB-424 sub-bottom profiler) show that gas rich sediments co-exist with submarine landslide deposits in the edge of the upstream of Kaoping submarine canyon. It implies that slope failures in the study area might be caused by weaken sediment collapse.

  18. Use of trace elements as indicators for underground fluid circulations in karstic environment; Utilisation des elements en trace comme traceurs des circulations souterraines en milieu karstique (site du Lamalou, Herault)

    Energy Technology Data Exchange (ETDEWEB)

    Pane-Escribe, M.B.


    The geochemical study of the trace element behaviour in karstic groundwaters has been carried out over the experimental site of Lamalou (Herault, France). Routine measurements of the physico-chemical parameters and of the dissolved elements concentrations have been achieved during two hydrological cycles. Radon has been monitored by passive detectors and by automatic electronic probes. Trace elements (Sc, Ti, V, Cr, Ni, Cu, Zn, As Rb, Sr, Mo, Cd, Sb, Cs, Ba, Th, U) were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The first part of this work presents the methodologies employed with in particular the improvement of the analytical performances of ICP-MS for water samples analysis. The detection limit for each considered element has been determined. The short and long term reproducibility for the samples analysis has also been tested. The second part of this study presents the treatment and interpretation of the results. This analysis has pointed our the influence of the aquifer structure on the chemical elements distribution. The trace and major elements concentrations are effectively related to the fracturing state of the reservoir and allow to individualize the high transmissivity zones from zones with a lower transmissivity in this mono-lithological context, trace elements appear to be particularly efficient tracers for determining the water origin and circulation their spatial and temporal behaviour leads to identify three different origins for the water mineralization over the studied area: limestones, clays and external sources (rainfalls and occasional pollutions). (author). 154 refs.

  19. Structural controls on fluid circulation at the Caviahue-Copahue Volcanic Complex (CCVC) geothermal area (Chile-Argentina), revealed by soil CO2 and temperature, self-potential, and helium isotopes (United States)

    Roulleau, Emilie; Bravo, Francisco; Pinti, Daniele L.; Barde-Cabusson, Stéphanie; Pizarro, Marcela; Tardani, Daniele; Muñoz, Carlos; Sanchez, Juan; Sano, Yuji; Takahata, Naoto; de la Cal, Federico; Esteban, Carlos; Morata, Diego


    Natural geothermal systems are limited areas characterized by anomalously high heat flow caused by recent tectonic or magmatic activity. The heat source at depth is the result of the emplacement of magma bodies, controlled by the regional volcano-tectonic setting. In contrast, at a local scale a well-developed fault-fracture network favors the development of hydrothermal cells, and promotes the vertical advection of fluids and heat. The Southern Volcanic Zone (SVZ), straddling Chile and Argentina, has an important, yet unexplored and undeveloped geothermal potential. Studies on the lithological and tectonic controls of the hydrothermal circulation are therefore important for a correct assessment of the geothermal potential of the region. Here, new and dense self-potential (SP), soil CO2 and temperature (T) measurements, and helium isotope data measured in fumaroles and thermal springs from the geothermal area located in the north-eastern flank of the Copahue volcanic edifice, within the Caviahue Caldera (the Caviahue-Copahue Volcanic Complex - CCVC) are presented. Our results allowed to the constraint of the structural origin of the active thermal areas and the understanding of the evolution of the geothermal system. NE-striking faults in the area, characterized by a combination of SP, CO2, and T maxima and high 3He/4He ratios (up to 8.16 ± 0.21Ra, whereas atmospheric Ra is 1.382 × 10- 6), promote the formation of vertical permeability preferential pathways for fluid circulation. WNW-striking faults represent low-permeability pathways for hydrothermal fluid ascent, but promote infiltration of meteoric water at shallow depths, which dilute the hydrothermal input. The region is scattered with SP, CO2, and T minima, representing self-sealed zones characterized by impermeable altered rocks at depth, which create local barriers for fluid ascent. The NE-striking faults seem to be associated with the upflowing zones of the geothermal system, where the boiling process

  20. Staged cascade fluidized bed combustor (United States)

    Cannon, Joseph N.; De Lucia, David E.; Jackson, William M.; Porter, James H.


    A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.

  1. Fluidized-bed reactors processes and operating conditions

    CERN Document Server

    Yates, John G


    The fluidized-bed reactor is the centerpiece of industrial fluidization processes. This book focuses on the design and operation of fluidized beds in many different industrial processes, emphasizing the rationale for choosing fluidized beds for each particular process. The book starts with a brief history of fluidization from its inception in the 1940’s. The authors present both the fluid dynamics of gas-solid fluidized beds and the extensive experimental studies of operating systems and they set them in the context of operating processes that use fluid-bed reactors. Chemical engineering students and postdocs as well as practicing engineers will find great interest in this book.

  2. Controlling the Release of Indomethacin from Glass Solutions Layered with a Rate Controlling Membrane Using Fluid-Bed Processing. Part 2: The Influence of Formulation Parameters on Drug Release. (United States)

    Dereymaker, Aswin; Pelgrims, Jirka; Engelen, Frederik; Adriaensens, Peter; Van den Mooter, Guy


    This study aimed to investigate the pharmaceutical performance of an indomethacin-polyvinylpyrrolidone (PVP) glass solution applied using fluid bed processing as a layer on inert sucrose spheres and subsequently top-coated with a release rate controlling membrane consisting of either ethyl cellulose or Eudragit RL. The implications of the addition of a pore former (PVP) and the coating medium (ethanol or water) on the diffusion and release behavior were also considered. In addition, the role of a charge interaction between drug and controlled release polymer on the release was investigated. Diffusion experiments pointed to the influence of pore former concentration, rate controlling polymer type, and coating solvent on the permeability of the controlled release membranes. This can be translated to drug release tests, which show the potential of diffusion tests as a preliminary screening test and that diffusion is the main factor influencing release. Drug release tests also showed the effect of coating layer thickness. A charge interaction between INDO and ERL was demonstrated, but this had no negative effect on drug release. The higher diffusion and release observed in ERL-based rate controlling membranes was explained by a higher hydrophilicity, compared to EC.

  3. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Michael; Henderson, Ann


    The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in

  4. Can faults become barriers for deep fluid circulation? Insights from high-resolution seismic VSP tomography at the Soultz-sous-Forêts geothermal site (United States)

    Calò, Marco; Dorbath, Catherine; Lubrano Lavadera, Paul


    Vertical Seismic Profile (VSP) surveys are generally used for modelling converted phases of the seismic body waves propagating in the medium allowing the detection of waves interpreted as reflections on steeply dipping reflecting structures such as faults, abrupt lateral changes of lithology, and fractures. At the Enhanced Geothermal System geothermal field of Soultz-sous-Forêts the analysis of data recorded during a VSP experiment allowed describing the presence of at least two structures near the wells. Here we show how seismic tomography method can be applied to the VSP data to reconstruct the 3-D shape of structures in the volume surrounding the geothermal wells. The three-dimensional P wave velocity model obtained shows positive velocity anomalies associated with the main faults observed by the VSP analysis and negative anomalies in the regions affected by massive hydraulic stimulations performed in the past. This pattern can be explained as a different response of the rock volume to the fluid injections where regions marked by relative pre-existing high permeability were less affected by the hydraulic stimulations. This difference in permeability produced regions that could work as barriers for fluid diffusion through the reservoir. Comparisons of our high resolved model with the location of the induced seismicity and with another model obtained using seismic noise correlation give evidence of the presence of these structures and may explain the poor connection between the wells GPK4 and GPK2-GPK3 system.

  5. Effect of various drying bed on thermodynamic characteristics

    Directory of Open Access Journals (Sweden)

    Ali Motevali


    Full Text Available In this study thermodynamic parameter and energy consumption in drying of two plant dill and mint in three bed drying including fix, semi fix and fluid with using a hot air drying was investigated. Experimental was conducted in three bed drying including fix, semi fix and fluid and four levels temperature (30, 40, 50 and 60 °C. Maximum energy consumption in dill drying at 40 °C and fluid bed to be 16.41 MJ and minimum energy consumption at 30 °C and fix bed to be 2.77 MJ. Also minimum energy consumption in mint drying at 60 °C and fix bed to be 3.64 MJ and maximum energy consumption at 40 °C and fluid bed to be 28.65 MJ. The highest energy, drying and thermal efficiency for both mint and dill was achieved at 60 °C on the fixed bed, whereas the lowest efficiency was at 40 °C and on the fluidized bed. Also the highest power and specific heat consumption for both mint and dill was achieved at 40 °C on the fluid bed, whereas the lowest efficiency was at 30 °C and on the fluidized bed.

  6. Fuel gas production from renewable biomass in a circulating fluidized bed as a bases for zero-CO{sub 2} power generation in a combined-cycle power plant; Brenngaserzeugung aus nachwachsenden Biomassen in der zirkulierenden Wirbelschicht als Grundlage fuer eine CO{sub 2}-neutrale Stromerzeugung in einem GUD Kraftwerk

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, J.; Loeffler, J.; Hirschfelder, H. [Lurgi Energie und Umwelt GmbH, Frankfurt am Main (Germany)


    A pilot circulating fluidized bed plant in the range of 1.7 MW{sub th} has been operated successfully with fossil fuels, residues, wood bark and wood chips, reet grass and sorghum pellets. Depending on the specifications for product gas and fuel quality, air, oxygen-enriched air or oxygen/steam mixtures are used as gasification agents in the gas generator. (orig) [Deutsch] In einer ZWS-Pilotanlage mit ca. 1.7 MW thermischer Leistung wurden bisher ausser fossilen und Abfallbrennstoffen auch Rindenabfaelle, Holzschnitzel, Schilfgras und Sorghumpellets erfolgreich zur Brenngaserzeugung eingesetzt. Entsprechend den Anforderungen an das Produktgas und der Brennstoffqualitaet wird Luft, sauerstoffangereicherte Luft oder Sauerstoff/Dampfgemische als Vergasungsmittel im ZWS-Gaserzeuger eingesetzt. (orig)

  7. 2D and 3D high resolution seismic imaging of shallow Solfatara crater in Campi Flegrei (Italy): new insights on deep hydrothermal fluid circulation processes (United States)

    De Landro, Grazia; Gammaldi, Sergio; Serlenga, Vincenzo; Amoroso, Ortensia; Russo, Guido; Festa, Gaetano; D'Auria, Luca; Bruno, Pier Paolo; Gresse, Marceau; Vandemeulebrouck, Jean; Zollo, Aldo


    Seismic tomography can be used to image the spatial variation of rock properties within complex geological media such as volcanoes. Solfatara is a volcano located within the Campi Flegrei still active caldera, characterized by periodic episodes of extended, low-rate ground subsidence and uplift called bradyseism accompanied by intense seismic and geochemical activities. In particular, Solfatara is characterized by an impressive magnitude diffuse degassing, which underlines the relevance of fluid and heat transport at the crater and prompted further research to improve the understanding of the hydrothermal system feeding the surface phenomenon. In this line, an active seismic experiment, Repeated Induced Earthquake and Noise (RICEN) (EU Project MEDSUV), was carried out between September 2013 and November 2014 to provide time-varying high-resolution images of the structure of Solfatara. In this study we used the datasets provided by two different acquisition geometries: a) A 2D array cover an area of 90 x 115 m ^ 2 sampled by a regular grid of 240 vertical sensors deployed at the crater surface; b) two 1D orthogonal seismic arrays deployed along NE-SW and NW-SE directions crossing the 400 m crater surface. The arrays are sampled with a regular line of 240 receiver and 116 shots. We present 2D and 3D tomographic high-resolution P-wave velocity images obtained using two different tomographic methods adopting a multiscale strategy. The 3D image of the shallow (30-35 m) central part of Solfatara crater is performed through the iterative, linearized, tomographic inversion of the P-wave first arrival times. 2D P-wave velocity sections (60-70 m) are obtained using a non-linear travel-time tomography method based on the evaluation of a posteriori probability density with a Bayesian approach. The 3D retrieved images integrated with resistivity section and temperature and CO2 flux measurements , define the following characteristics: 1. A depth dependent P-wave velocity layer

  8. Peering inside the granular bed: illuminating feedbacks between bed-load transport and bed-structure evolution (United States)

    Houssais, M.; Jerolmack, D. J.; Martin, R. L.


    The threshold of motion is perhaps the most important quantity to determine for understanding rates of bed load transport, however it is a moving target. Decades of research show that it changes in space and in time within a river, and is highly variable among different systems; however, these differences are not mechanistically understood. Recent researchers have proposed that the critical Shields stress is strongly dependent on the local configuration of the sediment bed [Frey and Church, 2011]. Critical Shields stress has been observed to change following sediment-transporting flood events in natural rivers [e.g., Turowski et al., 2011], while small-scale laboratory experiments have produced declining bed load transport rates associated with slow bed compaction [Charru et al., 2004]. However, no direct measurements have been made of the evolving bed structure under bed load transport, so the connection between granular controls and the threshold of motion remains uncertain. A perspective we adopt is that granular effects determine the critical Shields stress, while the fluid supplies a distribution of driving stresses. In order to isolate the granular effect, we undertake laminar bed load transport experiments using plastic beads sheared by a viscous oil in a small, annular flume. The fluid and beads are refractive index matched, and the fluid impregnated with a fluorescing powder. When illuminated with a planar laser sheet, we are able to image slices of the granular bed while also tracking the overlying sediment transport. We present the first results showing how bed load transport influences granular packing, and how changes in packing influence the threshold of motion to feed back on bed load transport rates. This effect may account for much of the variability observed in the threshold of motion in natural streams, and by extension offers a plausible explanation for hysteresis in bed load transport rates observed during floods. Charru, F., H. Mouilleron, and

  9. Advanced control system for temperature control in the pressurized fluid bed of Escatron Thermal Plant Power; Sistema de Control Avanzado para Control de la Temperatura del Lecho Fluido a Presion de la Central Termica de Escatron

    Energy Technology Data Exchange (ETDEWEB)



    In the P. F-B. C a small problem appears, particularly in Escatron the bed temperature gradient is very high. Such gradient very occasionally reaches 50 degree centigree in a same plane. With the reduction of bed difference of temperature, the average bed temperature could be increased with the result steam cycle benefit, at the same time combustion gases would go at a higher temperature to the gas turbine, increasing therefore its performance. The SCAP system will allow to face the resolution of the injection of combustible problem and in this manner achieve the homogenization of bed temperature in Escatron PFBC Thermal Power Station. (Author)

  10. Operation of fixed-bed chemical looping combustion

    NARCIS (Netherlands)

    Kimball, E.; Hamers, H.P.; Cobden, P.D.; Gallucci, F.; Sint Annaland, M. van


    Chemical Looping Combustion is an alternative technology for CO2 capture. While most systems utilize dual circulating fluidized-beds, this work shows that fixed-bed Chemical Looping Combustion is a feasible configuration for this technology. The inherent separation of the CO2 from the depleted air

  11. Firing in fluid beds and burners

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.; Lans, R. van der; Storm Pedersen, L.; Philbert Nielsen, H.; Aslaug Hansen, L.; Lin, W.; Johnsson, J.E.; Dam-Johansen, K.


    An investigation of the effect of co-firing straw and pulverized coal was performed. Based on experiments from pilot-scale and full-scale it was concluded that a higher fraction of straw in the fuel feedstock mixture results in lower NO and SO{sub 2} emissions. The lower NO emission was mainly due to the higher volatile content of the straw, which leads to lower stoichiometry in the gas phase and in subsequent suppression of NO{sub x} formation. This conclusion is consistent with experimental and modeling results for pure coal combustion. The effect of coal quality on NO emissions has been investigated with three coals of different characteristics in three furnaces: in the Funen power station, unit 7 (FVO7), the Midtkraft Studstrup power station, unit 4 (MKS4), and the Mitsui Babcock Energy Ltd (MBEL) test-rig. The MBEL test-rig was able to reproduce qualitatively the emissions from the MKS4 plant, and quantitatively the emissions from the FVO7 plant. The better agreement between the MBEL test-rig and FVO7 is presumed to be related to the existence of a large primary zone with a relatively low stoichiometry, diminishing the influence of near burner air and fuel mixing rate on the NO emissions. An engineering model has been developed for the prediction of NO emissions and burnout from pulverized fuel combustion in swirl burners. A simplified model for reduction of N{sub 2}O in CFBC has been developed, and simulation results are in good agreement with experimental data from a 12 MW{sub th} CFB-boiler. (EG) EFP-94. 108 refs.

  12. Multidecadal Thermohaline Circulation Variability Driven by Atmospheric Surface Flux Forcing

    National Research Council Canada - National Science Library

    Delworth, Thomas L; Greatbatch, Richard J


      Previous analyses of an extended integration of the Geophysical Fluid Dynamics Laboratory coupled climate model have revealed pronounced multidecadal variations of the thermohaline circulation (THC...

  13. Laboratory studies on corrosion of materials for fluidized bed combustion applications

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.


    An extensive corrosion test program was conducted at Argonne National Laboratory to evaluate the corrosion performance of metallic structural materials in environments that simulate both steady-state and off-normal exposure conditions anticipated in fluidized bed combustion (FBC) systems. This report discusses the possible roles of key parameters, such as sorbent and gas chemistries, metal temperature, gas cycling conditions, and alloy pretreatment, in the corrosion process. Data on scale thickness and intergranular penetration depth are presented for several alloys as a function of the chemistry of the exposure environment, deposit chemistry, and exposure time. Test results were obtained to compare the corrosion behavior of materials in the presence of reagent grade sorbent compounds and spent-bed materials from bubbling- and circulating-fluid-bed systems. Finally, the laboratory test results were compared with metal wastage information developed over the years in several fluidized bed test facilities. Metallic alloys chosen for the tests were carbon steel, Fe-2 1/4Cr-1Mo and Fe-9Cr-1Mo ferritic steels. Types 304 and 310 stainless steel, and Incoloy 800. 26 refs., 61 figs., 8 tabs.

  14. Liquid-liquid separation using steady-state bed coalescer

    Directory of Open Access Journals (Sweden)

    Šećerov-Sokolović Radmila M.


    Full Text Available This paper presents a literature review on the current understanding of liquid-liquid separation that is immensely widespread in practice, highlighting the steady-state bed coalescer being a good solution in various engineering application. Generally, the fibre bed coalescence has proven to be very effective separation method in the industry. Due to the complexity of bed coalescence phenomenon coalescer design and sizing procedure relies on experimental test. This review provides a research overview of the key phenomena essential for the efficient bed coalescence, such as mechanisms of droplet coalescence and emulsion flow through the fibre bed. In addition to this provides an overview of the current knowledge about coalescer´s design properties and variables such as: fluid velocity, fluid flow orientation/flow mode, fibre bed geometry, and bed length. [[Projekat Ministarstva nauke Republike Srbije, br. 172022

  15. Recent advances in fluidized bed drying (United States)

    Haron, N. S.; Zakaria, J. H.; Mohideen Batcha, M. F.


    Fluidized bed drying are very well known to yield high heat and mass transfer and hence adopted to many industrial drying processes particularly agricultural products. In this paper, recent advances in fluidized bed drying were reviewed and focus is given to the drying related to the usage of Computational Fluid Dynamics (CFD). It can be seen that usage of modern computational tools such as CFD helps to optimize the fluidized bed dryer design and operation for lower energy consumption and thus better thermal efficiency. Among agricultural products that were reviewed in this paper were oil palm frond, wheat grains, olive pomace, coconut, pepper corn and millet.

  16. Numerical Simulation of the Gas-Solid Flow by DEM-CFD Approach with Application to a Spouted Bed

    Directory of Open Access Journals (Sweden)

    Jinhe FAN


    Full Text Available The paper presents a computational study of the gas-solid flow in a three- dimensional spouted bed by a combined approach of discrete element method and computational fluid dynamics (DEM-CFD.The coupling between the discrete particle and continuum gas was achieved by applying the principle of Newton’s third law of motion. As a result, it is found that the motion of particles was forming a distinct circulation between center zone and boundary zone of the 3D spouted bed in macro, and there was a stagnant zone near the bottom of the bed in which the particle velocity is almost zero near the wall, they do not move anywhere. Pressure drop will be affected by wind speed and particle density. With enhancing of wind velocity, pressure drop appears an increasing trend until it is up to a certain value, and then the curve will have a certain degree of back and keep in an extension; Adding particle density, pressure drop and its swing is increased markedly. The results of this study provide important information in the spouted bed and may be helpful for better application and modification of this type of spouted bed to the industrial process.

  17. Nonlinear flow response of soft hair beds (United States)

    Alvarado, José; Comtet, Jean; de Langre, Emmanuel; Hosoi, A. E.


    We are `hairy' on the inside: beds of passive fibres anchored to a surface and immersed in fluids are prevalent in many biological systems, including intestines, tongues, and blood vessels. These hairs are soft enough to deform in response to stresses from fluid flows. Yet fluid stresses are in turn affected by hair deformation, leading to a coupled elastoviscous problem that is poorly understood. Here we investigate a biomimetic model system of elastomer hair beds subject to shear-driven Stokes flows. We characterize this system with a theoretical model that accounts for the large-deformation flow response of hair beds. Hair bending results in a drag-reducing nonlinearity because the hair tip lowers towards the base, widening the gap through which fluid flows. When hairs are cantilevered at an angle subnormal to the surface, flow against the grain bends hairs away from the base, narrowing the gap. The flow response of angled hair beds is axially asymmetric and amounts to a rectification nonlinearity. We identify an elastoviscous parameter that controls nonlinear behaviour. Our study raises the hypothesis that biological hairy surfaces function to reduce fluid drag. Furthermore, angled hairs may be incorporated in the design of integrated microfluidic components, such as diodes and pumps.

  18. Artificial neural network models for biomass gasification in fluidized bed gasifiers

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Hernández, J. Alfredo; Bruno, Joan Carles


    Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine...

  19. Circulating atmospheric fluidized bed combustion in the management concept for residual wastes of industrial plants: operating experience and projects; Die zirkulierende atmosphaerische Wirbelschichtfeuerung im Reststoffentsorgungskonzept von Industriebetrieben: Betriebserfahrungen und Planungen

    Energy Technology Data Exchange (ETDEWEB)

    Gungl, E. [Austrian Energy and Environment SGP/Waagner-Biro GmbH, Graz (Austria); Bobik, M. [Austrian Energy and Environment SGP/Waagner-Biro GmbH, Graz (Austria)


    In the future, the central range of application of fluidized bed combustion systems may be - to an ever increasing extent - their use as a component within a waste management concept. In Austria, it has been mainly the paper and pulp industry which has tried to overcome the problem of increasingly scarce and more and more expensive dumping sites by the early use of this technology. Like today, the following questions of a producing company had been of decisive importance then: - (production blackouts), - cost of the energy production (combustibles, ash dumping grounds, systems for the protection of the environment by law etc.) - connections within an overall energy concept (base-load boiler, controllability, load change speeds etc.). For the calculation of the economy of the systems more and more internal facts (elimination of residuals) and regional requirements (available volume of dumping sites, and the restrictions imposed by the public authorities) are to be considered in addition to the prices of the combustibles oil, natural gas and coal. By means of the experience made with the plants built up to now, we will illustrate the planning concept specific to the combustion of sewage sludge, concerning the following points: - Self-subsistance of the combustion process, - corrosion, - erosion (cyclone), - fouling (superheater, combustion chamber walls). - dust precipitation, - emissions, - utilization and depositing of ashes. Finally, the examples of - slag disposal of a bituminous coal-fired big power plant and - the combustion of residuals from the production of chip-boards are two further possibilites for the use of the fluidized bed technology. (orig./GL) [Deutsch] Als zentrales Einsatzgebiet von Wirbelschichtfeuerungen duerfte in Zukunft wieder staerker deren Eignung als Baustein in einem Entsorgungskonzept hervortreten. In Oesterreich war dies aus verschiedenen Gruenden bereits bisher der Fall: Vor allem die Papier- und Zellstoffindustrie versuchte

  20. Experimental investigation and mathematical modelling of the combustion of brown coal, refuse and mixed fuels in a circulating fluidized bed combustor; Experimentelle Untersuchung und mathematische Modellierung der Verbrennung von Braunkohle, Abfallstoffen und Mischbrennstoffen in einer zirkulierenden Wirbelschichtfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, W.; Brunne, T.; Hiller, A. [Technische Univ. Dresden (Germany). Inst. fuer Energietechnik; Albrecht, J. [Lurgi Umwelt GmbH, Frankfurt am Main (Germany); Quang, N. [Polytechnic Inst., Danang (Viet Nam)


    Extensive experiments on combustion of biological materials and residues in fluidized bed combustors and dust combustors have been carried out at the Department of Power Plant Engineering of Dresden University since the early nineties. Particular interest was taken in mixing brown coal with sewage sludge, sugar pulp and waste wood. The experiments were supplemented by modelling in a research project funded jointly by the BMBF and Messrs. Lurgi since early 1997. A combustion cell model designed by Siegen University is being modified for the new mixed fuels, and preliminary investigations were carried out on a batch reactor while the modelling work was continued. (orig.) [Deutsch] An dem Lehrstuhl fuer Kraftwerkstechnik der TU Dresden werden seit Anfang der 90-iger Jahre umfangreiche experimentelle Untersuchungen zur Verbrennung von Bio- und Reststoffen in Wirbelschicht- und Staubfeuerungen durchgefuehrt. Dabei war vor allem die Zufeuerung dieser Stoffe in Waermeerzeugeranlagen auf Braunkohlenbasis von besonderem Interesse. Experimentell konnte nachgewiesen werden, dass sowohl Biobrennstoffe als auch Abfaelle in zirkulierenden Wirbelschichtfeuerungen umweltschonend zur Waermeerzeugung eingesetzt werden koennen. Als Beispiel wird das an Hand von Braunkohle-Klaerschlammgemischen sowie Bagasse- und Holz-Braunkohlegemischen gezeigt. Neben den experimentellen Untersuchungen bietet die Modellierung der Verbrennungsvorgaenge ein geeignetes Mittel um Voraussagen zu anderen Mischungsanteilen sowie anderen geometrischen Abmessungen machen zu koennen. Seit Anfang 1997 wird dazu ein vom BMBF und der Firma Lurgi gefoerdertes Forschungsvorhaben bearbeitet. Ein von der Universitaet Gesamthochschule Siegen fuer die Braunkohleverbrennung konzipiertes Zellenmodell wird auf die neuen Brennstoffgemische erweitert. Da grundsaetzlich andere Stoffzusammensetzungen vorliegen, wurden an einem Batch-Reaktor Voruntersuchungen zum Pyrolyseverhalten der Brennstoffe durchgefuehrt. Erste

  1. Fluid to fluid contact heat exchanger (United States)

    Clark, W. E.


    Heat transfer and pressure drop test results for a fluid to fluid contact heat exchanger are reported. The heat exchanger, fabricated and tested to demonstrate one method of transferring heat between structures in space, had a total contact area of 0.18 sq m. It utilized contact surfaces which were flexible and conformed to the mating contact surfaces upon pressurization of the fluid circulating within the heat exchanger. During proof-of-concept performance tests, the heat exchanger was operated in a typical earth environment. It demonstrated a contact conductance of 3.8 kW/sq m C at contact pressures in the 15 to 70 kPa range.

  2. Atmospheric and pressurized fluidized bed technology

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, E.J.B. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre


    Fluidization states, bubbling and circulating fluidized beds, and the basics of pressurized fluidized bed combustion are outlined. PFBC demonstration plants, cogeneration, operational units and possible new plants, growth of PFBC capacity, sulphur capture, sulphation, phase composition of ashes, and actual performance in reduction of sulphur dioxide and nitrogen oxides are described. Problems occurring during operation show that turbines need to be protected and that hot gas filters degrade and are unreliable. It is concluded that the future of PFBC depends on Asian development and that the technology may be stimulated by stricter pollution controls. 5 figs., 4 tabs.

  3. Introduction to Bed Bugs (United States)

    ... Agency Search Search Bed Bugs Contact Us Share Introduction to Bed Bugs Photo credit: CDC/ CDC-DPDx; ... and Guidance Regulations About EPA EPA Administrator Current Leadership Organization Chart Staff Directory Planning, Budget and Results ...

  4. Practice Hospital Bed Safety (United States)

    ... Updates Practice Hospital Bed Safety Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Hospital Bed Entrapment Zones An ... the side edge of the head or foot board 7. between the head or foot board and ...

  5. Multiscale modeling of gas-fluidized beds

    NARCIS (Netherlands)

    van der Hoef, Martin Anton; van Sint Annaland, M.; Ye, M.; Andrews, A.T.; Sundaresan, S.; Kuipers, J.A.M.


    Numerical models of gas-fluidized beds have become an important tool in the design and scale up of gas-solid chemical reactors. However, a single numerical model which includes the solid-solid and solid-fluid interaction in full detail is not feasible for industrial-scale equipment, and for this

  6. Circulation economics

    DEFF Research Database (Denmark)

    Ingebrigtsen, Stig; Jakobsen, Ove


    Purpose - This paper is an attempt to advance the critical discussion regarding environmental and societal responsibility in economics and business. Design/methodology/approach - The paper presents and discusses as a holistic, organic perspective enabling innovative solutions to challenges...... concerning the responsible and efficient use of natural resources and the constructive interplay with culture. To reach the goal of sustainable development, the paper argues that it is necessary to make changes in several dimensions in mainstream economics. This change of perspective is called a turn towards...... presupposes a perspective integrating economic, natural and cultural values. Third, to organize the interplay between all stakeholders we introduce an arena for communicative cooperation. Originality/value - The paper concludes that circulation economics presupposes a change in paradigm, from a mechanistic...

  7. State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems (United States)

    Lyczkowski, R. W.; Bouillard, J. X.; Ding, J.; Chang, S. L.; Burge, S. W.


    As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBR's) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBR's and pneumatic and slurry components are computed by ANL's EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale, and biomass as energy sources; to retain energy security; and to remediate waste and ecological problems.

  8. Viscous damping of gravity waves over a permeable bed

    Directory of Open Access Journals (Sweden)

    K. K. Puri


    Full Text Available The damping of gravity waves over the surface of a layer of viscous fluid which overlies a porous bed saturated with the same fluid is studied. It is shown that viscosity may not be the dominant influence in the damping mechanism; the damping effects due to percolation in the fixed bed may be of the same or even higher order than those due to viscosity.

  9. Survey report for fiscal 2000 on project for assisting introduction of environment harmonizing type coal utilization system. Green Helmet Project related to circulating fluidized bed boilers in Thailand (Operation guidance); 2000 nendo chosa hokokusho. Kankyochowagata sekitan riyo system donyu shien jigyo - Junkan ryudosho boira (Tai) ni kakawaru green herumetto jigyo (Unten shido)

    Energy Technology Data Exchange (ETDEWEB)



    With an objective to proliferate the achievements in the 'project for assisting introduction of environment harmonizing type coal utilization system for the circulating fluidized bed boilers (Thailand)' which has been completed in fiscal 2001, technical guidance, advices and items of information have been provided. At IndoRama Chemicals (Thailand) Ltd., the state of operation of the model project facilities were surveyed, and guidance and advices were given on the operation and maintenance thereof. The education and guidance on the boiler operation included the burner operation method, the method for adjusting the operation of electric dust collectors, prevention of troubles caused by sand deposited with CCR ash, the method of treatment at abnormal in-furnace pressures, prevention of maloperation of furnace pressure detection pipes, the method for adjusting excess and insufficiency of oxygen concentration, and the method for setting the ratio of lignite/CCR mixed combustion. The education and guidance on the maintenance method were given on the items of checks internal to the burners and electric dust collectors, deposits in the combustion chamber, dust condition, furnace material condition and the methods for verification and check on nozzles. Furthermore, education was given to personnel dispatched from the Thai Industry Ministry on the operation, maintenance and checks. (NEDO)

  10. FY 1999 Feasibility study on the environmentally-friendly coal utilization systems. Green Helmet Project (Circulating fluidized bed boiler Zaozhuang, Shangdong Province, China); 1999 nendo kankyo chowagata sekitan riyo system kanosei chosa jigyo seika hokokusho. Green helmet jigyo (junkan ryudosho boiler Chugoku Shangdong sho Zaozhuang)

    Energy Technology Data Exchange (ETDEWEB)



    The demonstration project is carried out in at Chaili coal mine in Shangdong Province, China for installation of and dissemination activities for circulating fluidized bed boilers to abate sulfur oxide emissions associated with utilization of coal, and the FY 1999 results are reported. The operating conditions were reviewed, and some recommendations were made for improving the operation procedures. Limestone was not used for desulfurization, and furnace temperature tended to increase due to increased size of the fluidizing particles. Therefore, it was recommended to use limestone at the design rate. The boiler was operated at a load exceeding the design level, and it was recommended to limit the load viewed from extending serviceability. The boiler start-up procedure was concretely proposed to use a mixed fuel of wood and coal instead of distillate oil, in order to reduce the start-up cost. The recommendations and design support activities for improving facilities included early stage repair of the damaged refractories. For build up of the ashes in the horizontal heat transfer section, the investigated design charts for improvement by installation of ash-discharging hopper were drawn and proposed. Maintenance-related information was given, including Chinese agencies for obtaining auxiliary facilities. (NEDO)

  11. Collaborative Strategy on Bed Bugs (United States)

    The Collaborative Strategy on Bed Bugs was developed by the Federal Bed Bug Workgroup to clarify the federal role in bed bug control and highlight ways that government, community, academia and private industry can work together on bed bug issues.

  12. [Circulating nucleic acids and infertility]. (United States)

    Scalici, E; Mullet, T; Ferrières Hoa, A; Gala, A; Loup, V; Anahory, T; Belloc, S; Hamamah, S


    Circulating nucleic acids (cell-free DNA and microRNAs) have for particularity to be easily detectable in the biological fluids of the body. Therefore, they constitute biomarkers of interest in female and male infertility care. Indeed, in female, they can be used to detect ovarian reserve disorders (polycystic ovary syndrome and low functional ovarian reserve) as well as to assess follicular microenvironment quality. Moreover, in men, their expression levels can vary in case of spermatogenesis abnormalities. Finally, circulating nucleic acids have also the ability to predict successfully the quality of in vitro embryo development. Their multiple contributions during assisted reproductive technology (ART) make of them biomarkers of interest, for the development of new diagnostic and/or prognostic tests, applied to our specialty. Circulating nucleic acids would so offer the possibility of personalized medical care for infertile couples in ART. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. A Simple Analytical Method for Determining Basic Hydrodynamic Characteristics of Hybrid Fluidized-Bed Air-Lift Apparatae

    Directory of Open Access Journals (Sweden)

    Tabiś Bolesław


    Full Text Available A simple analytical method for determination of basic hydrodynamic characteristics of hybrid fluidized-bed air-lift devices was presented. These devices consist of two parts: a two-phase air-lift part and a two-phase liquid-solid fluidized-bed part. Forced circulation of fluid in the air-lift part is used for fluidization of solid particles in the fluidized-bed part. According to the opinion given in the literature, if such apparatus is used for aerobic microbiological processes, its advantage is lower shear forces acting on the biofilm immobilized on fine-grained material compared with shear forces in three-phase fluidized-bed bioreactors. Another advantage is higher biomass concentration due to its immobilization on fine particles, compared with two-phase airlift bioreactors. A method of calculating gas hold-up in the air-lift part, and gas and liquid velocities in all zones of the analyzed apparatus is presented.

  14. Apparatus and method for determining solids circulation rate (United States)

    Ludlow, J Christopher [Morgantown, WV; Spenik, James L [Morgantown, WV


    The invention relates to a method of determining bed velocity and solids circulation rate in a standpipe experiencing a moving packed bed flow, such as the in the standpipe section of a circulating bed fluidized reactor The method utilizes in-situ measurement of differential pressure over known axial lengths of the standpipe in conjunction with in-situ gas velocity measurement for a novel application of Ergun equations allowing determination of standpipe void fraction and moving packed bed velocity. The method takes advantage of the moving packed bed property of constant void fraction in order to integrate measured parameters into simultaneous solution of Ergun-based equations and conservation of mass equations across multiple sections of the standpipe.

  15. Biodynamics circulation

    CERN Document Server

    Fung, Y C


    This book is a continuation of my Biomechanics.The first volume deals with the mechanical properties of living tissues. The present volume deals with the mechanics ofcirculation. A third volume willdeal with respiration, fluid balance, locomotion, growth, and strength. This volume is called Bio­ dynamics in order to distinguish it from the first volume. The same style is followed. My objective is to present the mechanical aspects ofphysiology in precise terms ofmechanics so that the subject can become as lucid as physics. The motivation of writing this series of books is, as I have said in the preface to the first volume, to bring biomechanics to students ofbioengineer­ ing, physiology, medicine, and mechanics. I have long felt a need for a set of books that willinform the students ofthe physiological and medical applica­ tions ofbiomechanics,and at the same time develop their training in mechan­ ics. In writing these books I have assumed that the reader already has some basic training in mechanics, to a ...

  16. Bed Bugs FAQs (United States)

    ... . Bed Bugs Frequently Asked Questions (FAQs) Biology Resources for Health Professionals Publications Additional Resources Get Email Updates To receive email updates about this page, enter ...

  17. Amniotic fluid embolism

    Directory of Open Access Journals (Sweden)

    Kiranpreet Kaur


    Full Text Available Amniotic fluid embolism (AFE is one of the catastrophic complications of pregnancy in which amniotic fluid, fetal cells, hair, or other debris enters into the maternal pulmonary circulation, causing cardiovascular collapse. Etiology largely remains unknown, but may occur in healthy women during labour, during cesarean section, after abnormal vaginal delivery, or during the second trimester of pregnancy. It may also occur up to 48 hours post-delivery. It can also occur during abortion, after abdominal trauma, and during amnio-infusion. The pathophysiology of AFE is not completely understood. Possible historical cause is that any breach of the barrier between maternal blood and amniotic fluid forces the entry of amniotic fluid into the systemic circulation and results in a physical obstruction of the pulmonary circulation. The presenting signs and symptoms of AFE involve many organ systems. Clinical signs and symptoms are acute dyspnea, cough, hypotension, cyanosis, fetal bradycardia, encephalopathy, acute pulmonary hypertension, coagulopathy etc. Besides basic investigations lung scan, serum tryptase levels, serum levels of C3 and C4 complements, zinc coproporphyrin, serum sialyl Tn etc are helpful in establishing the diagnosis. Treatment is mainly supportive, but exchange transfusion, extracorporeal membrane oxygenation, and uterine artery embolization have been tried from time to time. The maternal prognosis after amniotic fluid embolism is very poor though infant survival rate is around 70%.

  18. Influência da imobilização de biomassa e do tamanho da partícula na fluidodinâmica de um reator anaeróbio de leito fluidizado = The influence of immobilized biomass and particle size on the fluid dynamics of an anaerobic fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    Flavio Bentes Freire


    Full Text Available O estudo da fluidodinâmica é muito comum em diversas áreas relacionadas com a engenharia química, tais como nos processos de secagem e nos reatores químicos. Entretanto, em reatores biológicos empregados no tratamento de águas residuárias, esses aspectos ainda necessitam de investigações mais aprofundadas. Deste modo, é fundamental avaliar a influência da presença do biofilme no comportamento fluidodinâmico do reator, por meio de importantes parâmetros como, por exemplo, a velocidade de mínima fluidização, a expansão, a porosidade do leito e a velocidade terminal da partícula. O objetivo deste trabalho foi realizar uma investigação da fluidodinâmica de um reator anaeróbio de leito fluidizado, tratando uma água residuária sintética preparada a partir da solução utilizada para determinação de DBO, tendo o carvão ativado como meio suportepara a imobilização de biomassa. Especificamente, no trabalho, verificou-se que a biomassa imobilizada aumentou a densidade das partículas e alterou os principais parâmetros fluidodinâmicos avaliados.Fluid dynamic analysis is an important branch of several chemical engineering related areas, such as drying processes and chemical reactors. However, aspects concerning fluid dynamics in wastewater treatment bioreactors still require further investigation, as they highly influence process efficiency. Therefore, it is essential to evaluate the influence of biofilm on the reactor fluid dynamicbehavior, through the analysis of a few important parameters, such as minimum fluidization velocity, bed expansion and porosity, and particle terminal velocity. The main objective of the present work was to investigate the fluid dynamics of an anaerobic fluidized bed reactor, having activated carbon particles as support media for biomass immobilization. Reactor performance was tested using synthetic residual water, which was prepared using the solution employed in BOD determination. The results

  19. Electrochemical Genosensing of Circulating Biomarkers (United States)

    Campuzano, Susana; Yáñez-Sedeño, Paloma; Pingarrón, José Manuel


    Management and prognosis of diseases requires the measurement in non- or minimally invasively collected samples of specific circulating biomarkers, consisting of any measurable or observable factors in patients that indicate normal or disease-related biological processes or responses to therapy. Therefore, on-site, fast and accurate determination of these low abundance circulating biomarkers in scarcely treated body fluids is of great interest for health monitoring and biological applications. In this field, electrochemical DNA sensors (or genosensors) have demonstrated to be interesting alternatives to more complex conventional strategies. Currently, electrochemical genosensors are considered very promising analytical tools for this purpose due to their fast response, low cost, high sensitivity, compatibility with microfabrication technology and simple operation mode which makes them compatible with point-of-care (POC) testing. In this review, the relevance and current challenges of the determination of circulating biomarkers related to relevant diseases (cancer, bacterial and viral infections and neurodegenerative diseases) are briefly discussed. An overview of the electrochemical nucleic acid–based strategies developed in the last five years for this purpose is given to show to both familiar and non-expert readers the great potential of these methodologies for circulating biomarker determination. After highlighting the main features of the reported electrochemical genosensing strategies through the critical discussion of selected examples, a conclusions section points out the still existing challenges and future directions in this field. PMID:28420103

  20. Numerical modelling of cuttings transport in horizontal wells using conventional drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Bjorndalen, E.; Kuru, E. [Alberta Univ., Edmonton, AB (Canada)


    Some of the problems associated with poor wellbore cleaning include high drag or torque, slower rate of penetration, formation fractures and difficulty in wellbore steering. Some of the factors that affect cuttings transport include drilling fluid velocity, inclination angle, drilling fluid viscosity and drilling rate. The general practice is to stop drilling when necessary to clean boreholes with viscous pills, pipe rotation or drilling fluid circulation. It is important to predict when drilling should be stopped for remedial wellbore cleaning. This can be accomplished with a transient cuttings transport model which can improve drilling hydraulics, particularly in long horizontal well sections and extended reach (ERD) wells. This paper presents a newly developed 1-dimensional transient mechanistic model of cuttings transport with conventional (incompressible) drilling fluids in horizontal wells. The numerically solved model predicts the height of cutting beds as a function of different drilling operational parameters such as fluid flow rate and rheological characteristics, drilling rates, wellbore geometry and drillpipe eccentricity. Sensitivity analysis has demonstrated the effects of these parameters on the efficiency of solids transport. The proposed model can be used in the creation of computer programs designed to optimize drilling fluid rheology and flow rates for horizontal well drilling. 29 refs., 3 tabs., 12 figs.

  1. Tapered bed bioreactor (United States)

    Scott, Charles D.; Hancher, Charles W.


    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  2. Bed Bugs - Multiple Languages (United States)

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Bed Bugs URL of this page: Other topics A-Z Expand Section ...

  3. Circulating osteogenic cells: implications for injury, repair, and regeneration

    DEFF Research Database (Denmark)

    Pignolo, Robert J; Kassem, Moustapha


    The aim of this review is to provide a critical reading of recent literature pertaining to the presence of circulating, fluid-phase osteoblastic cells and their possible contribution to bone formation. We have termed this group of cells collectively as circulating osteogenic precursor (COP) cells...

  4. Pulsed atmospheric fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)


    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  5. System for producing a uniform rubble bed for in situ processes (United States)

    Galloway, T.R.


    A method and a cutter are disclosed for producing a large cavity filled with a uniform bed of rubblized oil shale or other material, for in situ processing. A raise drill head has a hollow body with a generally circular base and sloping upper surface. A hollow shaft extends from the hollow body. Cutter teeth are mounted on the upper surface of the body and relatively small holes are formed in the body between the cutter teeth. Relatively large peripheral flutes around the body allow material to drop below the drill head. A pilot hole is drilled into the oil shale deposit. The pilot hole is reamed into a large diameter hole by means of a large diameter raise drill head or cutter to produce a cavity filled with rubble. A flushing fluid, such as air, is circulated through the pilot hole during the reaming operation to remove fines through the raise drill, thereby removing sufficient material to create sufficient void space, and allowing the larger particles to fill the cavity and provide a uniform bed of rubblized oil shale. 4 figs.

  6. Squeeze-film flow between a curved impermeable bearing and a flat porous bed (United States)

    Knox, D. J.; Duffy, B. R.; McKee, S.; Wilson, S. K.


    Axisymmetric squeeze-film flow in the thin gap between a stationary flat thin porous bed and a curved impermeable bearing moving under a prescribed constant load is analysed. The unsteady Reynolds equation is formulated and solved for the fluid pressure. This solution is used to obtain the time for the minimum fluid layer thickness to reduce to a given value, and, in particular, the finite time for the bearing and the bed to come into contact. The effect of varying the shape of the bearing and the permeability of the layer is investigated, and, in particular, it is found that both the contact time and the fluid pressure behave qualitatively differently for beds with small and large permeabilities. In addition, the paths of fluid particles initially situated in both the fluid layer and the porous bed are calculated. In particular, it is shown that, unlike in the case of a flat bearing, for a curved bearing there are fluid particles, initially situated in the fluid layer, that flow from the fluid layer into the porous bed and then re-emerge into the fluid layer, and the region in which these fluid particles are initially situated is determined.

  7. Tide-driven fluid mud transport in the Ems estuary (United States)

    Becker, Marius; Maushake, Christian; Winter, Christian


    The Ems estuary, located at the border between The Netherlands and Germany, experienced a significant change of the hydrodynamic regime during the past decades, as a result of extensive river engineering. With the net sediment transport now being flood-oriented, suspended sediment concentrations have increased dramatically, inducing siltation and formation of fluid mud layers, which, in turn, influence hydraulic flow properties, such as turbulence and the apparent bed roughness. Here, the process-based understanding of fluid mud is essential to model and predict mud accumulation, not only regarding the anthropogenic impact, but also in view of the expected changes of environmental boundary conditions, i.e., sea level rise. In the recent past, substantial progress has been made concerning the understanding of estuarine circulation and influence of tidal asymmetry on upstream sediment accumulation. While associated sediment transport formulations have been implemented in the framework of numerical modelling systems, in-situ data of fluid mud are scarce. This study presents results on tide-driven fluid mud dynamics, measured during four tidal cycles aside the navigation channel in the Ems estuary. Lutoclines, i.e., strong vertical density gradients, were detected by sediment echo sounder (SES). Acoustic Doppler current profiles (ADCP) of different acoustic frequencies were used to determine hydrodynamic parameters and the vertical distribution of suspended sediment concentrations in the upper part of the water column. These continuous profiling measurements were complemented by CTD, ADV, and OBS casts. SES and ADCP profiles show cycles of fluid mud entrainment during accelerating flow, and subsequent settling, and the reformation of a lutocline during decelerating flow and slack water. Significant differences are revealed between flood and ebb phase. Highest entrainment rates are measured at the beginning of the flood phase, associated with strong current shear and

  8. Hydrodynamics of a dual fluidized-bed gasifier. Part 1: Simulation of a riser with gas injection and diffuser

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, G.; Kaiser, S.; Bosch, K.; Hofbauer, H. [Vienna Univ. of Technology, Inst. of Chemical Engineering, Fuel Technology and Environmental Technology, Vienna (Austria)


    Circulating fluidized beds often apply secondary gas injections and diffusers in the riser. These strongly affect the fluid dynamics of the gas-solid flow in the system. This work is performed to study these effects in a cold flow model of an 8 MW{sub th} biomass gasifier. It is shown that in the diffuser there is a bulb of the suspension flow, which enhances the internal solids recirculation by a factor of 3.5. Thus, the solids hold-up and the pressure drop in the diffuser are significantly increased. The study on the effect of gas injection confirms that the solids circulation rate is more enhanced by gas injections in the lower part of the riser than in the upper part. From the investigated operating parameters, the gas flow rates and the particle diameter have the strongest effects on solids circulation and mass distribution in the riser. The effect of riser geometry properties, besides the cross-section areas and the total height, was found to be small. (Author)

  9. Fluid dynamics theoretical and computational approaches

    CERN Document Server

    Warsi, ZUA


    Important Nomenclature Kinematics of Fluid Motion Introduction to Continuum Motion Fluid Particles Inertial Coordinate Frames Motion of a Continuum The Time Derivatives Velocity and Acceleration Steady and Nonsteady Flow Trajectories of Fluid Particles and Streamlines Material Volume and Surface Relation between Elemental Volumes Kinematic Formulas of Euler and Reynolds Control Volume and Surface Kinematics of Deformation Kinematics of Vorticity and Circulation References Problems The Conservation Laws and the Kinetics of Flow Fluid Density and the Conservation of Mass Prin

  10. Amniotic fluid (United States)

    ... or movements Too much amniotic fluid is called polyhydramnios . This condition can occur with multiple pregnancies (twins ... development of the fetus. Images Amniocentesis Amniotic fluid Polyhydramnios Amniotic fluid References Burton GJ, Sibley CP, Jauniaux ...

  11. Developments in fluidized bed conversion of solid fuels

    Directory of Open Access Journals (Sweden)

    Leckner Bo


    Full Text Available A summary is given on the development of fluidized bed conversion (combustion and gasification of solid fuels. First, gasification is mentioned, following the line of development from the Winkler gasifier to recent designs. The combustors were initially bubbling beds, which were found unsuitable for combustion of coal because of various drawbacks, but they proved more useful for biomass where these drawbacks were absent. Instead, circulating fluidized bed boilers became the most important coal converters, whose design now is quite mature, and presently the increments in size and efficiency are the most important development tasks. The new modifications of these conversion devices are related to CO2 capture. Proposed methods with this purpose, involving fluidized bed, are single-reactor systems like oxy-fuel combustion, and dual-reactor systems, including also indirect biomass gasifiers.

  12. Exercise countermeasures for bed-rest deconditioning (United States)

    Greenleaf, John (Editor)


    The purpose for this 30-day bed rest study was to investigate the effects of short-term, high intensity isotonic and isokinetic exercise training on maintenance of working capacity (peak oxygen uptake), muscular strength and endurance, and on orthostatic tolerance, posture and gait. Other data were collected on muscle atrophy, bone mineralization and density, endocrine analyses concerning vasoactivity and fluid-electrolyte balance, muscle intermediary metabolism, and on performance and mood of the subjects. It was concluded that: The subjects maintained a relatively stable mood, high morale, and high esprit de corps throughout the study. Performance improved in nearly all tests in almost all the subjects. Isotonic training, as opposed to isokinetic exercise training, was associated more with decreasing levels of psychological tension, concentration, and motivation; and improvement in the quality of sleep. Working capacity (peak oxygen uptake) was maintained during bed rest with isotonic exercise training; it was not maintained with isokinetic or no exercise training. In general, there was no significant decrease in strength or endurance of arm or leg muscles during bed rest, in spite of some reduction in muscle size (atrophy) of some leg muscles. There was no effect of isotonic exercise training on orthostasis, since tilt-table tolerance was reduced similarly in all three groups following bed rest. Bed rest resulted in significant decreases of postural stability and self-selected step length, stride length, and walking velocity, which were not influenced by either exercise training regimen. Most pre-bed rest responses were restored by the fourth day of recovery.

  13. Fluidized bed coal desulfurization (United States)

    Ravindram, M.


    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  14. Bed bug deterrence

    Directory of Open Access Journals (Sweden)

    Haynes Kenneth F


    Full Text Available Abstract A recent study in BMC Biology has determined that the immature stage of the bed bug (the nymph signals its reproductive status to adult males using pheromones and thus avoids the trauma associated with copulation in this species. The success of this nymphal strategy of deterrence is instructive. Against the background of increasing problems with bed bugs, this research raises the question whether pheromones might be used to control them. See research article

  15. Roadmap for cardiovascular circulation model (United States)

    Bradley, Christopher P.; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R.; Omholt, Stig W.; Chase, J. Geoffrey; Müller, Lucas O.; Watanabe, Sansuke M.; Blanco, Pablo J.; de Bono, Bernard; Hunter, Peter J.


    Abstract Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well‐established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo‐skeletal system. The computational infrastructure for the cardiovascular model should provide for near real‐time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. PMID:27506597

  16. Modeling of reaction kinetics in bubbling fluidized bed biomass gasification reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thapa, R.K.; Halvorsen, B.M. [Telemark University College, Kjolnes ring 56, P.O. Box 203, 3901 Porsgrunn (Norway); Pfeifer, C. [University of Natural Resources and Life Sciences, Vienna (Austria)


    Bubbling fluidized beds are widely used as biomass gasification reactors as at the biomass gasification plant in Gussing, Austria. The reactor in the plant is a dual circulating bubbling fluidized bed gasification reactor. The plant produces 2MW electricity and 4.5MW heat from the gasification of biomass. Wood chips as biomass and olivine particles as hot bed materials are fluidized with high temperature steam in the reactor. As a result, biomass undergoes endothermic chemical reaction to produce a mixture of combustible gases in addition to some carbon-dioxide (CO2). The combustible gases are mainly hydrogen (H2), carbon monoxide (CO) and methane (CH4). The gas is used to produce electricity and heat via utilization in a gas engine. Alternatively, the gas is further processed for gaseous or liquid fuels, but still on the process of development level. Composition and quality of the gas determine the efficiency of the reactor. A computational model has been developed for the study of reaction kinetics in the gasification rector. The simulation is performed using commercial software Barracuda virtual reactor, VR15. Eulerian-Lagrangian approach in coupling of gas-solid flow has been implemented. Fluid phase is treated with an Eulerian formulation. Discrete phase is treated with a Lagrangian formulation. Particle-particle and particle-wall interactions and inter-phase heat and mass transfer have been taken into account. Series of simulations have been performed to study model prediction of the gas composition. The composition is compared with data from the gasifier at the CHP plant in Güssing, Austria. The model prediction of the composition of gases has good agreements with the result of the operating plant.

  17. Bed Bug Myths (United States)

    Learn the truth about bed bugs, such as how easy they are to see with the naked eye, their preferred habitat, whether they transmit diseases, their public health effects, and whether pesticides are the best way to deal with an infestation.

  18. SpaceX Dragon Air Circulation System (United States)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro


    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  19. Natural circulation in fusion reactor blankets (United States)

    Gierszewski, P. J.; Mikic, B.; Todreas, N. E.


    The relative importance of natural circulation and heat conduction as heat transfer mechanisms in lithium, sodium and flibe is investigated for a range of magnetic field strengths of interest in fusion reactor blankets. The calculations are based on an order-of-magnitude simplification of the fluid equations, and a modified version of the fission reactor thermal-hydraulic code THERMIT. The results show that conduction is dominant for lithium (and sodium) for typical magnetic field strengths, but that natural circulation is most important in flibe. In fact, preliminary calculations suggest the possibility of a simple flibe blanket module with cooling only along the module boundaries.

  20. Internal Combustion Engines as Fluidized Bed Reactors (United States)

    Lavich, Zoe; Taie, Zachary; Menon, Shyam; Beckwith, Walter; Daly, Shane; Halliday, Devin; Hagen, Christopher


    Using an internal combustion engine as a chemical reactor could provide high throughput, high chemical conversion efficiency, and reactant/product handling benefits. For processes requiring a solid catalyst, the ability to develop a fluidized bed within the engine cylinder would allow efficient processing of large volumes of fluid. This work examines the fluidization behavior of particles in a cylinder of an internal combustion engine at various engine speeds. For 40 micron silica gel particles in a modified Megatech Mark III transparent combustion engine, calculations indicate that a maximum engine speed of about 60.8 RPM would result in fluidization. At higher speeds, the fluidization behavior is expected to deteriorate. Experiments gave qualitative confirmation of the analytical predictions, as a speed of 48 RPM resulted in fluidized behavior, while a speed of 171 RPM did not. The investigation shows that under certain conditions a fluidized bed can be obtained within an engine cylinder. Corresponding Author.

  1. Modelling of dynamics of combustion of biomass in fluidized beds

    Directory of Open Access Journals (Sweden)

    Saastamoinen Jaakko J.


    Full Text Available New process concepts in energy production and biofuel, which are much more reactive than coal, call for better controllability of the combustion in circulating fluidized bed boilers. Simplified analysis describing the dynamics of combustion in fluidized bed and circulating fluidized bed boilers is presented. Simple formulas for the estimation of the responses of the burning rate and fuel inventory to changes in fuel feeding are presented. Different changes in the fuel feed, such as an impulse, step change, linear increase and cyclic variation are considered. The dynamics of the burning with a change in the feed rate depends on the fuel reactivity and particle size. The response of a fuel mixture with a wide particle size distribution can be found by summing up the effect of different fuel components and size fractions. Methods to extract reaction parameters form dynamic tests in laboratory scale reactors are discussed. The residence time of fuel particles in the bed and the resulting char inventory in the bed decrease with increasing fuel reactivity and differences between coal and biomass is studied. The char inventory affects the stability of combustion. The effect of char inventory and oscillations in the fuel feed on the oscillation of the flue gas oxygen concentration is studied by model calculation. A trend found by earlier measurements is explained by the model.

  2. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K


    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  3. VA National Bed Control System (United States)

    Department of Veterans Affairs — The VA National Bed Control System records the levels of operating, unavailable and authorized beds at each VAMC, and it tracks requests for changes in these levels....

  4. Representing kelp forests in a tidal circulation model (United States)

    Wu, Yongsheng; Hannah, Charles G.; O'Flaherty-Sproul, Mitchell; Thupaki, Pramod


    The presence of kelp beds in the water column generates drag to flows and modifies hydrodynamic processes. In this paper we examine the modifications of tidal flows in the Hecate Strait by including an explicit representation of the kelp-induced drag in a three-dimensional numerical model. The model is evaluated against a theoretical solution and it agrees well with the theory. Model results show that kelp beds significantly change tidal circulation structures by damping tidal velocity by 40-80% in interiors of the beds, but enhancing tidal velocity by 15% along the edges. Comparing terms in momentum equations shows that the momentum flux caused by the kelp drag is able to become a dominant term with a magnitude comparable to that of the horizontal pressure gradient. Simulating the effects of kelp beds on particle trajectories shows that the drag due to kelp-beds decreases the dispersion rate of particles in the interiors of kelp forests, but increases the dispersion rate along the edges. Kelp beds form barriers along the edges and prevent particles from outside entering the interiors of kelp beds. The dispersion rate is in an inverse relationship to the kelp density in kelp-bed interiors, while in a positive relationship to the kelp density along edges.

  5. Application of sedimentation model to uniform and segregated fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Shippy, J.L. III; Watson, J.S.


    This paper incorporates concepts of unimodal and bimodal sedimentation to develop a model that accurately predicts bed expansion during particulate fluidization. During bed expansion a particle is considered to be fluidized not by the pure fluid, but by a slurry consisting of the pure fluid and other surrounding particles. The contributions of the other surrounding particles to the additional buoyant and drag forces are accounted for with the use of effective fluid or slurry properties, density and viscosity. As bed expansion proceeds, influences of the surrounding particles decrease; therefore, these effective properties are functions of the changing void fraction of the suspension. Furthermore, the expansion index, which empirically represents the degree to which viscous and inertial forces are present, is traditionally a function of a constant terminal Reynold's number. Because the effective fluid properties are considered to be changing as fluidization proceeds, the degree to which viscous and inertial forces also changes; therefore, the expansion index is written as a function of a local or intermediate Reynold's number. These concepts are further extended to bimodal fluidization in which small or light particles aid in the fluidization of the large or heavy particles. The results indicate that the proposed model more accurately predicts particulate bed expansion for a wider range of systems (gas -- liquid, low Reynold's number -- high Reynold's number) than other analytical or empirical models.

  6. Modeling and Simulation of a lab-scale Fluidised Bed

    Directory of Open Access Journals (Sweden)

    Britt Halvorsen


    Full Text Available The flow behaviour of a lab-scale fluidised bed with a central jet has been simulated. The study has been performed with an in-house computational fluid dynamics (CFD model named FLOTRACS-MP-3D. The CFD model is based on a multi-fluid Eulerian description of the phases, where the kinetic theory for granular flow forms the basis for turbulence modelling of the solid phases. A two-dimensional Cartesian co-ordinate system is used to describe the geometry. This paper discusses whether bubble formation and bed height are influenced by coefficient of restitution, drag model and number of solid phases. Measurements of the same fluidised bed with a digital video camera are performed. Computational results are compared with the experimental results, and the discrepancies are discussed.

  7. Fluidisation and dispersion behaviour of small high density pellicular expanded bed adsorbents

    DEFF Research Database (Denmark)

    Theodossiou, Irini; Elsner, H.D.; Thomas, Owen R. T.


    The fluidisation and dispersion properties of various agarose-based expanded bed matrices-small high density stainless steel cored prototypes and standard commercial types-were studied in I-cm diameter expanded bed contactors in which fluid entering the column base is locally stirred. In all cases...

  8. A recommended workflow methodology in the creation of an educational and training application incorporating a digital reconstruction of the cerebral ventricular system and cerebrospinal fluid circulation to aid anatomical understanding. (United States)

    Manson, Amy; Poyade, Matthieu; Rea, Paul


    The use of computer-aided learning in education can be advantageous, especially when interactive three-dimensional (3D) models are used to aid learning of complex 3D structures. The anatomy of the ventricular system of the brain is difficult to fully understand as it is seldom seen in 3D, as is the flow of cerebrospinal fluid (CSF). This article outlines a workflow for the creation of an interactive training tool for the cerebral ventricular system, an educationally challenging area of anatomy. This outline is based on the use of widely available computer software packages. Using MR images of the cerebral ventricular system and several widely available commercial and free software packages, the techniques of 3D modelling, texturing, sculpting, image editing and animations were combined to create a workflow in the creation of an interactive educational and training tool. This was focussed on cerebral ventricular system anatomy, and the flow of cerebrospinal fluid. We have successfully created a robust methodology by using key software packages in the creation of an interactive education and training tool. This has resulted in an application being developed which details the anatomy of the ventricular system, and flow of cerebrospinal fluid using an anatomically accurate 3D model. In addition to this, our established workflow pattern presented here also shows how tutorials, animations and self-assessment tools can also be embedded into the training application. Through our creation of an established workflow in the generation of educational and training material for demonstrating cerebral ventricular anatomy and flow of cerebrospinal fluid, it has enormous potential to be adopted into student training in this field. With the digital age advancing rapidly, this has the potential to be used as an innovative tool alongside other methodologies for the training of future healthcare practitioners and scientists. This workflow could be used in the creation of other tools

  9. Bed Prism Spectacles (United States)

    Ribeiro, Jair Lúcio Prados


    We only became aware of the existence of bed prism spectacles when a student brought them to the classroom and asked us about how they work. The device proved to be a fertile source of curiosity among the students, and, to be properly understood, it required us to develop a comparison between reflection in a typical mirror and total internal reflection in a prism. In this article we explain the physics behind this unfamiliar device, supported by geometrical optics principles.

  10. Mathematical modelling of MSW incineration in a packed bed

    DEFF Research Database (Denmark)

    Chen, Guanyi; Gu, Tianbao; He, Xiao


    and the entrained fine particles are further burned in the freeboard. Nevertheless, grate-firing generally needs to be improved in terms of efficiency and overall environmental impacts, in which computational fluid dynamics (CFD) modelling plays the vital role. In this paper, a comprehensive mathematical model...... is developed to simulate MSW incineration in a packed bed which is subject to the heating source on the bed top and the primary air flow at the bed bottom. The entire fuel bed is discretized into a number of control volumes. In each of the control volumes, the transport equations for mass, momentum, energy...... and individual species, which fully address the MSW thermochemical conversion (including trace elements), as well as heat and mass transfer are numerically solved by using the finite volume method(FVM). The model is verified by comparing the predictions against the experimental results of MSW incineration...

  11. Temperature control of electronic components using fluidised beds (United States)

    Bean, R.


    This paper introduces the concept of fluidized bed cooling applied to electronic systems. It is shown that, when fluidized with air, the cooling efficiency and the pumping power are principally dependent on particle characteristics; in particular the mean diameter should not be less than 100 microns. Design rules are developed and applied to two types of fluid-bed systems: (1) a small bed of alumina particles cooling single devices of 40 W power dissipation where the fluidizing air is the main heat transporting medium, and (2) a large bed of cenospheres with a simple integrated heat exchanger to extract more than 1 KW of heat from complete sub-rack assemblies of up to 40 printed circuit boards, for a fluidizing power of about 3 W. The effect of board spacing on the overall thermal performance is considered, and a minimum spacing of 10-20 mm is shown to be required to maintain cooling efficiency.

  12. Experimental circulation loss study


    Lund, Sigurd


    Circulation losses could occur during any operation that involves pumping into a well. As of today, it is recognized as one of the most costly drilling problems. In some situation it might be hard to stop, and usually takes precious rig time to deal with the problem. In order to mitigate the risk of circulation loss solid pa...

  13. Pebble Bed Reactor Dust Production Model

    Energy Technology Data Exchange (ETDEWEB)

    Abderrafi M. Ougouag; Joshua J. Cogliati


    The operation of pebble bed reactors, including fuel circulation, can generate graphite dust, which in turn could be a concern for internal components; and to the near field in the remote event of a break in the coolant circuits. The design of the reactor system must, therefore, take the dust into account and the operation must include contingencies for dust removal and for mitigation of potential releases. Such planning requires a proper assessment of the dust inventory. This paper presents a predictive model of dust generation in an operating pebble bed with recirculating fuel. In this preliminary work the production model is based on the use of the assumption of proportionality between the dust production and the normal force and distance traveled. The model developed in this work uses the slip distances and the inter-pebble forces computed by the authors’ PEBBLES. The code, based on the discrete element method, simulates the relevant static and kinetic friction interactions between the pebbles as well as the recirculation of the pebbles through the reactor vessel. The interaction between pebbles and walls of the reactor vat is treated using the same approach. The amount of dust produced is proportional to the wear coefficient for adhesive wear (taken from literature) and to the slip volume, the product of the contact area and the slip distance. The paper will compare the predicted volume with the measured production rates. The simulation tallies the dust production based on the location of creation. Two peak production zones from intra pebble forces are predicted within the bed. The first zone is located near the pebble inlet chute due to the speed of the dropping pebbles. The second peak zone occurs lower in the reactor with increased pebble contact force due to the weight of supported pebbles. This paper presents the first use of a Discrete Element Method simulation of pebble bed dust production.

  14. Boiler circulation calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. [ABCO Industries, Abilene, TX (United States)


    Natural circulation water tube and fire tube boilers are widely used in the chemical process industry. These are preferred to forced-circulation boilers where a circulation pump ensures flow of a steam/water mixture through the tubes. In addition to being an operating expense, a pump failure can have serious consequences in such systems. The motive force driving the steam/water mixture through the tubes (water tube boilers) or over tubes (fire tube boilers) in natural-circulation systems is the difference in density between cooler water in the downcomer circuits and the steam/water mixture in the riser tubes. This flow must be adequate to cool the tubes and prevent overheating. This article explains how circulation ratio or the ratio of steam/water mixture to steam flow may be evaluated.

  15. Updated physiology and pathophysiology of CSF circulation--the pulsatile vector theory. (United States)

    Preuss, M; Hoffmann, K-T; Reiss-Zimmermann, M; Hirsch, W; Merkenschlager, A; Meixensberger, J; Dengl, M


    Hydrocephalus is still a not well-understood diagnostic and a therapeutic dilemma because of the lack of sufficient and comprehensive model of cerebrospinal fluid circulation and pathological alterations. Based on current studies, reviews, and knowledge of cerebrospinal fluid dynamics, brain water dynamics, intracranial pressure, and cerebral perfusion physiology, a new concept is deducted that can describe normal and pathological changes of cerebrospinal fluid circulation and pathophysiology of idiopathic intracranial hypertension.

  16. Simultaneous heat and mass transfer in packed bed brying of seeds having a mucilage coating

    Directory of Open Access Journals (Sweden)

    M. M. Prado


    Full Text Available The simultaneous heat and mass transfer between fluid phase and seeds having a mucilaginous coating was studied during packed bed drying. To describe the process, a two-phase model approach was employed, in which the effects of bed shrinkage and nonconstant physical properties were considered. The model took into account bed contraction by employing moving coordinates. Equations relating shrinkage and structural parameters of the packed bed with moisture content, required in the drying model, were developed from experimental results in thick-layer bed drying. The model verification was based on a comparison between experimental and predicted data on moisture content and temperature along the bed. Parametric studies showed that the application of correlations capable of incorporating changes in bed properties gives better data simulation. By experimental-theoretical analysis, the importance of shrinkage for a more accurate interpretation of heat and mass transfer phenomena in the drying of porous media composed of mucilaginous seeds is corroborated.

  17. Production of MHD fluid (United States)

    Lacey, James J.; Kurtzrock, Roy C.; Bienstock, Daniel


    A hot gaseous fluid of low ash content, suitable for use in open-cycle MHD (magnetohydrodynamic) power generation, is produced by means of a three-stage process comprising (1) partial combustion of a fossil fuel to produce a hot gaseous product comprising CO.sub.2 CO, and H.sub.2 O, (2) reformation of the gaseous product from stage (1) by means of a fluidized char bed, whereby CO.sub.2 and H.sub.2 O are converted to CO and H.sub.2, and (3) combustion of CO and H.sub.2 from stage (2) to produce a low ash-content fluid (flue gas) comprising CO.sub.2 and H.sub.2 O and having a temperature of about to

  18. Roadmap for cardiovascular circulation model. (United States)

    Safaei, Soroush; Bradley, Christopher P; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R; Omholt, Stig W; Chase, J Geoffrey; Müller, Lucas O; Watanabe, Sansuke M; Blanco, Pablo J; de Bono, Bernard; Hunter, Peter J


    Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well-established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo-skeletal system. The computational infrastructure for the cardiovascular model should provide for near real-time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  19. Fluid Mechanics. (United States)

    Drazin, Philip


    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  20. Fluid Interfaces

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius


    Fluid interaction, interaction by the user with the system that causes few breakdowns, is essential to many user interfaces. We present two concrete software systems that try to support fluid interaction for different work practices. Furthermore, we present specificity, generality, and minimality...... as design goals for fluid interfaces....

  1. Coal Bed Methane Primer

    Energy Technology Data Exchange (ETDEWEB)

    Dan Arthur; Bruce Langhus; Jon Seekins


    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  2. Modeling of fuel mixing in fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    David Pallares; Filip Johnsson [Chalmers University of Technology, Goeteborg (Sweden). Department of Energy and Environment


    This paper presents a three-dimensional model for fuel mixing in fluidized bed combustors. The model accounts for mixing patterns which were experimentally shown to govern mixing in risers with geometry and operational conditions representative for furnaces in fluidized bed combustors. The mixing process is modeled for three different solid phases in the furnace and the model, which includes the return leg, can be applied both under bubbling and circulating regimes. The semi-empirical basis of the model was previously validated in different large-scale fluidized bed combustors and is combined with a model for fuel particle conversion to obtain the fuel concentration field. Model results are compared with experimental data from the Chalmers 12 MW{sub th} CFB combustor, yielding a reasonable agreement.

  3. A two-stage combined trickle bed reactor/biofilter for treatment of styrene/acetone vapor mixtures. (United States)

    Vanek, Tomas; Halecky, Martin; Paca, Jan; Zapotocky, Lubos; Gelbicova, Tereza; Vadkertiova, Renata; Kozliak, Evguenii; Jones, Kim


    Performance of a two-stage biofiltration system was investigated for removal of styrene-acetone mixtures. High steady-state acetone loadings (above C(in)(Ac) = 0.5 g.m(-3) corresponding to the loadings > 34.5 g.m(-3).h(-1)) resulted in a significant inhibition of the system's performance in both acetone and styrene removal. This inhibition was shown to result from the acetone accumulation within the upstream trickle-bed bioreactor (TBR) circulating mineral medium, which was observed by direct chromatographic measurements. Placing a biofilter (BF) downstream to this TBR overcomes the inhibition as long as the biofilter has a sufficient bed height. A different kind of inhibition of styrene biodegradation was observed within the biofilter at very high acetone loadings (above C(in)(Ac) = 1.1 g.m(-3) or 76 g.m(-3).h(-1) loading). In addition to steady-state measurements, dynamic tests confirmed that the reactor overloading can be readily overcome, once the accumulated acetone in the TBR fluids is degraded. No sizable metabolite accumulation in the medium was observed for either TBR or BF. Analyses of the biodegradation activities of microbial isolates from the biofilm corroborated the trends observed for the two-stage biofiltration system, particularly the occurrence of an inhibition threshold by excess acetone.

  4. WISE 2005: chronic bed rest impairs microcirculatory endothelium in women. (United States)

    Demiot, Claire; Dignat-George, Françoise; Fortrat, Jacques-Olivier; Sabatier, Florence; Gharib, Claude; Larina, Irina; Gauquelin-Koch, Guillemette; Hughson, Richard; Custaud, Marc-Antoine


    Sedentary behavior has deleterious effects on the cardiovascular system, including reduced endothelial functions. A 2-mo bed rest study in healthy women [women international space simulation for exploration (WISE) 2005 program] presented a unique opportunity to analyze the specific effects of prolonged inactivity without other vascular risk factors on the endothelium. We investigated endothelial properties before and after 56 days of bed rest in 8 subjects who performed no exercise (control group: No-EX) and in 8 subjects who regularly performed treadmill exercise in a lower body negative pressure chamber as well as resistance exercise (countermeasure group, EX). A functional evaluation of the microcirculation in the skin was assessed with laser Doppler. We studied endothelium-dependent and -independent vasodilation using iontophoresis of acetylcholine and sodium nitroprusside, respectively. We also measured circulating endothelial cells (CECs), an index of endothelial damage. In the No-EX group, endothelium-dependent vasodilation was significantly reduced (35.4 +/- 4.8% vs. 24.1 +/- 3.8%, P endothelium-dependent vasodilation and number of CECs were preserved. Our study shows that in humans prolonged bed rest causes impairment of endothelium-dependent function at the microcirculatory level, along with an increase in circulating endothelial cells. Microcirculatory endothelial dysfunction might participate in cardiovascular deconditioning, as well as in several bed rest-induced pathologies. We therefore conclude that the endothelium should be a target for countermeasures during periods of prolonged deconditioning.

  5. Operation of fixed-bed chemical looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, E. [TNO, Gas Treatment, Leeghwaterstraat 46, 2628 CA Delft (Netherlands); Hamers, H.P.; Gallucci, F.; Van Sint Annaland, M. [Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (Netherlands); Cobden, P. [Energy research Center of the Netherlands, Westerduinweg 3, 1755 ZG Petten (Netherlands)


    Chemical Looping Combustion is an alternative technology for CO2 capture. While most systems utilize dual circulating fluidized-beds, this work shows that fixed-bed Chemical Looping Combustion is a feasible configuration for this technology. The inherent separation of the CO2 from the depleted air stream gives a very low efficiency penalty, which is further improved by the possibility of using a pressurized fixed-bed system, a factor much more difficult to realize with circulating fluidized beds. A laboratory scale experimental system has been constructed for the purpose of validating a numerical model. The results from the numerical model have agreed well with experimental data over full oxidation-reduction cycles and will be presented in subsequent publications. The work briefly described here, and to be presented in detail in coming publications, forms a basis which proves feasibility, but also opens up several possibilities for further investigations needed to scale-up and eventually commercialize CLC for power generation with inherent CO2 capture.

  6. Bed mixing dryer for high moisture content fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hulkkonen, S.; Heinonen, O. [Imatran Voima Oy, Vantaa (Finland)


    Bed mixing dryer is a new type of fuel drying technology for fluidized bed combustion. The idea is to extract hot bed material from the fluidized bed and use it as a heat source for drying the fuel. Drying occurs at steam atmosphere which makes it possible to recover the latent heat of evaporation to process. This improves the thermal efficiency of the power plant process considerably, especially in combined heat and power applications. Imatran Voima Oy (IVO) has developed the Bed Mixing Dryer technology since early 1990s. The first pilot plant was built in 1994 to IVO`s Kuusamo peat and wood fired power plant. The capacity of the plant is 6 MW{sub e} and 20 MW of district heat. In Kuusamo the dryer is connected to a bubbling fluidized bed. Since it`s commissioning the dryer has been used successfully for about 3000 hours during the heating season in wintertime. The second application of the technology will be a demonstration project in Oerebro (S). IVO Power Engineering Ltd will supply in 1997 a dryer to Oerebro Energi`s peat, wood and coal fired CHP plant equipped with circulating fluidized bed boiler. The fuel to be dried is sawdust with fuel input of about 60 MW. In Kuusamo the dryer produces 3 MW of additional district heat and in Oerebro 6 MW. The fuels in Kuusamo are peat, saw dust and bark. In addition to the municipal heat production this type of drying technology has its benefits in pulp and paper industry processes. Disposal of paper mill sludges is becoming more difficult and costly which has resulted in need of alternative treatment. Drying of the sludge before combustion in a boiler for power production is an attractive option. At the moment IVO is carrying out several studies to apply the Bed Mixing Dryer in pulp and paper industry processes. Economy of drying the sludge looks promising

  7. Cryogenic Fluid Management Facility (United States)

    Eberhardt, R. N.; Bailey, W. J.


    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  8. Particle-based methods for multiscale modeling of blood flow in the circulation and in devices: challenges and future directions. Sixth International Bio-Fluid Mechanics Symposium and Workshop March 28-30, 2008 Pasadena, California. (United States)

    Yamaguchi, Takami; Ishikawa, Takuji; Imai, Y; Matsuki, N; Xenos, Mikhail; Deng, Yuefan; Bluestein, Danny


    A major computational challenge for a multiscale modeling is the coupling of disparate length and timescales between molecular mechanics and macroscopic transport, spanning the spatial and temporal scales characterizing the complex processes taking place in flow-induced blood clotting. Flow and pressure effects on a cell-like platelet can be well represented by a continuum mechanics model down to the order of the micrometer level. However, the molecular effects of adhesion/aggregation bonds are on the order of nanometer. A successful multiscale model of platelet response to flow stresses in devices and the ensuing clotting responses should be able to characterize the clotting reactions and their interactions with the flow. This paper attempts to describe a few of the computational methods that were developed in recent years and became available to researchers in the field. They differ from traditional approaches that dominate the field by expanding on prevailing continuum-based approaches, or by completely departing from them, yielding an expanding toolkit that may facilitate further elucidation of the underlying mechanisms of blood flow and the cellular response to it. We offer a paradigm shift by adopting a multidisciplinary approach with fluid dynamics simulations coupled to biophysical and biochemical transport.


    Directory of Open Access Journals (Sweden)

    L.A.P. Freitas


    Full Text Available A draft tube spouted bed was constructed with a screw conveyor attached at its base to feed particles into the column. Results on fluid dynamic characteristics and particle movement in this system are presented and discussed. Two methods of measuring the superficial air velocity in the annular region are compared. The particle velocity and recirculation rates have been determined in a half column with transparent walls. The effects of the particle feed rate, air flow rate and bed height on the spouted bed dynamics have been analysed and compared with those in the literature. Keywords: Spouted bed, continuous feed, dynamics

  10. Cardiovascular Adaptations to Long Duration Head-Down Tilt Bed Rest (United States)

    Platts, Steven H.; Martin, David S.; Perez, Sondar A.; Ribeiro, Christine; Stenger, Michael B.; Summers, Richard; Meck, Janice V.


    INTRODUCTION: Orthostatic hypotension is a serious risk for crewmembers returning from spaceflight. Numerous cardiovascular mechanisms have been proposed to account for this problem, including vascular and cardiac dysfunction, which we studied during bed rest. METHODS: Thirteen subjects were studied before and during bed rest. Statistical analysis was limited to the first 49-60 days of bed rest, and compared to pre-bed rest data. Ultrasound data were collected on vascular and cardiac structure and function. Tilt testing was conducted for 30 minutes or until presyncopal symptoms intervened. RESULTS: Plasma volume was significantly reduced by day 7 of bed rest. Flow-mediated dilation in the leg was significantly increased at bed rest day 49. Arterial responses to nitroglycerin differed in the arm and leg, but did not change as a result of bed rest. Intimal-medial thickness markedly decreased at bed rest days 21, 35 and 49. Several cardiac functional parameters including isovolumic relaxation time, ejection time and myocardial performance index were significantly increased (indicating a decrease in cardiac function) during bed rest. There was a trend for decreased orthostatic tolerance following 60 days of bed rest. DISCUSSION: These data suggest that 6 head-down tilt bed rest alters cardiovascular structure and function in a pattern similar to short duration spaceflight. Additionally, the vascular alterations are primarily seen in the lower body, while vessels of the upper body are unaffected. KEY WORDS: spaceflight, orthostatic intolerance, hypotension, fluid-shift, plasma volume

  11. Computational fluid dynamics for multistage adsorption dryer design

    NARCIS (Netherlands)

    Djaeni, M.; Bartels, P.V.; Sanders, J.P.M.; Straten, van G.; Boxtel, van A.J.B.


    Two-dimensional computational fluid dynamics calculations for multistage zeolite drying are performed for two dryer configurations (1) a continuous moving bed zeolite dryer and (2) a discrete bed zeolite dryer. The calculations concern drying of tarragon (Artemisia dracunculus L.) as an herbal

  12. On the dynamics of shallow gravel bed flow (United States)

    Mohajeri, Seyed Hossein; Righetti, Maurizio; Wharton, Geraldene; Gurnell, Angela


    crest and above and through the gravel, and ejection is dominant and reaches a maximum in the middle of the water column. The calculated integral length scale profile tends to a constant value far from the gravel bed, similar to past research. However, it shows a linear behavior in a region near the gravel crest. Interestingly, the integral length scale at the bed tends to assume values close to the value of the bed elevation standard deviation, which was suggested as representative of bed roughness (Nikora and, 1998). This work has been carried out within the SMART Joint Doctorate (Science for the MAnagement of Rivers and their Tidal systems) funded with the support of the Erasmus Mundus programme of the European Union. Lu S., Willmarth W., (1973), "Measurements of the structure of the Reynolds stress in a turbulent boundary layer", Journal of Fluid Mechanics, Volume60, Issue03, pp 481-511. Nezu I., Nakagawa H., (1993), "Turbulence in open-channel flows", Monograph series A.A. Balkema, Rotterdam. Nikora V., Goring D., Biggs B., (1998),"On gravel-bed roughness characterization", Journal of Water Resources Research, Vol. 34, No. 3, pp. 517-527.

  13. Fluidized bed combustion: mixing and pollutant limitation

    Energy Technology Data Exchange (ETDEWEB)

    Leckner, B. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion


    Fluidized bed combustion (FBC) has been applied commercially during a few decades, and sufficient knowledge is gained to design boilers with sizes of up to several hundreds of megawatt thermal power (MW{sub th}). The knowledge of what goes on inside a large combustion chamber is still limited, however, and this impedes further optimization and efficient solution of problems that might occur. Despite this lack of knowledge the present survey deals with combustion chamber processes and discusses mixing and distribution of fuel and air in the combustion chamber and its importance for sulphur capture and reduction of emissions of nitrogen oxides. It is desirable to present the material in a general way and to cover the entire field of FBC. However, the scarce openly published information deals mostly with coal combustion in atmospheric circulating fluidized bed (CFB) combustors, and therefore this application will receive most attention, but reference is also made to pressurized combustion and to other fuels than coal. In this context the important work made in the LIEKKI project on the analysis of different fuels and on the influence of pressure should be especially pointed out. (orig.)

  14. Catalytic gasification studies in a pressurized fluid-bed unit

    Energy Technology Data Exchange (ETDEWEB)

    Mudge, L.K.; Baker, E.G.; Mitchell, D.H.; Robertus, R.J.; Brown, M.D.


    The purpose of the project is to evaluate the technical and economic feasibility of producing specific gas products via the catalytic gasification of biomass. This report presents the results of research conducted from October 1980 to November 1982. In the laboratory scale studis, active catalysts were developed for generation of synthesis gases from wood by steam gasification. A trimetallic catalyst, Ni-Co-Mo on silica-alumina doped with 2 wt % Na, was found to retain activity indefinitely for generation of a methanol synthesis gas from wood at 1380/sup 0/F (750/sup 0/C) and 1 atm (100 kPa) absolute pressure. Catalysts for generation of a methane-rich gas were deactivated rapidly and could not be regenerated as required for economic application. Sodium carbonate and potassium carbonate were effective as catalysts for conversion of wood to synthesis gases and methane-rich gas and should be economically viable. Catalytic gasification conditions were found to be suitable for processing of alternative feedstocks: bagasse, alfalfa, rice hulls, and almond hulls. The PDU was operated successfully at absolute pressures of up to 10 atm (1000 kPa) and temperatures of up to 1380/sup 0/F (750/sup 0/C). Yields of synthesis gases at elevated pressure were greater than those used for previous economic evaluations. A trimetallic catalyst, Ni-Cu-Mo on silica-alumina, did not display a long life as did the doped trimetallic catalyst used in laboratory studies. A computer program for a Radio Shack TRS-80 Model I microcomputer was developed to evaluate rapidly the economics of producing either methane or methanol from wood. The program is based on economic evaluations reported in previous studies. Improved yields from the PDU studies were found to result in a reduction of about 9 cents/gal in methanol cost.

  15. Introduction to the physics of fluids and solids

    CERN Document Server

    Trefil, J S


    Introduction to the Physics of Fluids and Solids presents a way to learn continuum mechanics without mastering any other systems. It discusses an introduction to the principles of fluid mechanics. Another focus of study is the fluids in astrophysics. Some of the topics covered in the book are the rotation of the galaxy, the concept of stability, the fluids in motion, and the waves in fluids, the theory of the tides, the vibrations of the earth, and nuclear fission. The viscosity in fluids is covered. The flow of viscous fluids is discussed. The text identifies the general circulation of the a

  16. The heat transfer mechanisms in fluidized beds; Laemmoensiirtomekanismit leijukerroksessa

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Blomster, A.M.; Kojola, H. [Helsinki Univ. of Technology, Espoo (Finland)


    The goal of the research project is to improve the accuracy of the heat transfer correlation in circulating fluidized beds and to define how the heat transfer is distributed in radiation and convection in the different parts of the fluidized bed. This will be carried out by studying the behaviour and heat transfer of the fluidized bed in the boundary layer near the wall. The total and radiative heat transfer as well as the particle concentration will be measured. Based on the data a correlation will be created. Two different measurement systems are used. The particle concentration is measured by a image-analysis system. A video camera and a Super VHS recorder are used to capture live images from the bed. The images are digitized and stored on a PC. The system has been used in previous research projects at our laboratory. In earlier projects all measurements have been carried out in cold environments. In this project the system will be modified for hot environments. The radiative heat transfer is measured by a radiative heat transfer probe connected to a PC via an A/D converter. The probe consists of a heat flow detector which is isolated from the bed by a sapphire window so that only the radiative part of the heat transfer is detected. The probe will be calibrated in a black body oven so that the effect of the conduction and the sapphire window can be separated. (author)

  17. Effectiveness of Bed Bug Pesticides (United States)

    Before EPA allows a bed bug claim on a label, the product must be supported by data showing it will kill bed bugs when applied according to the label. Also consider factors such as extent of infestation, site preparation, and insect life stages.

  18. Experimental study of natural circulation circuit

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley F.; Su, Jian, E-mail:, E-mail: [Coordenacao dos Programas de Pos-Graduacao de Engenharia (LASME/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Simulacao e Metodos Numericos; Faccini, Jose L.H., E-mail: [Instituto de Engenharia Nuclear (LTE/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental


    This work presents an experimental study about fluid flows behavior in natural circulation, under conditions of single-phase flow. The experiment was performed through experimental thermal-hydraulic circuit built at IEN. This test equipment has performance similar to passive system of residual heat removal present in Advanced Pressurized Water Reactors (APWR). This experimental study aims to observing and analyzing the natural circulation phenomenon, using this experimental circuit that was dimensioned and built based on concepts of similarity and scale. This philosophy allows the analysis of natural circulation behavior in single-phase flow conditions proportionally to the functioning real conditions of a nuclear reactor. The experiment was performed through procedures to initialization of hydraulic feeding of primary and secondary circuits and electrical energizing of resistors installed inside heater. Power controller has availability to adjust values of electrical power to feeding resistors, in order to portray several conditions of energy decay of nuclear reactor in a steady state. Data acquisition system allows the measurement and monitoring of the evolution of the temperature in various points through thermocouples installed in strategic points along hydraulic circuit. The behavior of the natural circulation phenomenon was monitored by graphical interface on computer screen, showing the temperature evolutions of measuring points and results stored in digital spreadsheets. The results stored in digital spreadsheets allowed the getting of data to graphic construction and discussion about natural circulation phenomenon. Finally, the calculus of Reynolds number allowed the establishment for a correlation of friction in function of geometric scales of length, heights and cross section of tubing, considering a natural circulation flow throughout in the region of hot leg. (author)

  19. The dynamics of the coronary collateral circulation. (United States)

    Zimarino, Marco; D'Andreamatteo, Mariangela; Waksman, Ron; Epstein, Stephen E; De Caterina, Raffaele


    Coronary collaterals are present at birth, with wide interindividual variation in their functional capacity. These vessels protect jeopardized myocardium, and the number of collaterals and the extent of their coverage are associated with improved survival in patients with coronary heart disease. The collateral circulation is not a permanent set of structures, but undergoes dynamic changes with important consequences for cardioprotection. If a severe atherosclerotic lesion develops in an artery supplying tissue downstream of a total occlusion through collateral blood flow, pressure gradients across the collateral bed change. The result is that some of the collateral flow previously supplying the perfusion territory of the totally occluded artery is redirected to the perfusion territory of the donor artery, thus producing a 'collateral steal'. The collateral circulation can regress once antegrade flow in the main dependent artery is re-established, as occurs following the recanalization of a chronic total occlusion. The clinical benefits of coronary revascularization must be cautiously weighed against the risk of reducing the protective support derived from coronary collaterals. Consequently, pharmacological, gene-based, and cell-based therapeutic attempts have been made to enhance collateral function. Although such approaches have so far yielded no, or modest, beneficial results, the rapidly accruing data on coronary collateral circulation will hopefully lead to new effective therapeutic strategies.

  20. A novel technique for particle tracking in cold 2-dimensional fluidized beds - simulating fuel dispersion

    Energy Technology Data Exchange (ETDEWEB)

    David Pallares; Filip Johnsson [Chalmers University of Technology, Goeteborg (Sweden). Department of Energy and Environment, Energy Conversion


    This paper presents a novel technique for particle tracking in 2-dimensional fluidized beds operated under ambient conditions. The method is applied to study the mixing mechanisms of fuel particles in fluidized beds and is based on tracking a phosphorescent tracer particle by means of video recording with subsequent digital image analysis. From this, concentration, velocity and dispersion fields of the tracer particle can be obtained with high accuracy. Although the method is restricted to 2-dimensional, it can be applied under flow conditions qualitatively resembling a fluidized-bed combustor. Thus, the experiments cover ranges of bed heights, gas velocities and fuel-to-bed material density and size ratios typical for fluidized-bed combustors. Also, several fluidization regimes (bubbling, turbulent, circulating and pneumatic) are included in the runs. A pattern found in all runs is that the mixing pattern of the tracer (fuel) solids is structured in horizontally aligned vortexes induced by the bubble flow. The main bubble paths always give a low concentration of tracer solids and with the tracer moving upwards, while the downflow of tracer particles in the dense bottom bed is found to take place in zones with low bubble density and at the sidewalls. The amount of bed material (bed height) has a strong influence on the bottom bed dynamics (development and coalescence of bubbles) and, consequently, on the solids mixing process. Local dispersion coefficients reach maximum values around the locations of bubble eruptions, while, in the presence of a dense bottom bed, an increase in fluidization velocity or amount of bed material enhances dispersion. Dispersion is found to be larger in the vertical than in the horizontal direction, confirming the critical character of lateral fuel dispersion in fluidized-bed combustors of large cross section.

  1. Fluid Dynamics

    DEFF Research Database (Denmark)

    Brorsen, Michael

    These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University.......These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University....

  2. Pressurized fluidized bed - A technology for combined cycle power generation (United States)

    Moskowitz, S.; Geffken, J.


    The production of electric power using high sulfur coal in an environmentally clean and efficient manner is a major element in this country's goal for energy independence. One coal combustion technique which has had demonstrable progress toward accomplishing this goal is the pressurized fluidized bed process. A pilot plant program sponsored by the Department of Energy to design a power generation system of 13 MWe size has been instrumental in developing the PFB technology. The paper describes the technology test programs that have been conducted to establish the design criteria and to select the design configurations and materials for the pilot plant. Over 10,000 hours of tests have demonstrated adequate fluid bed combustion characteristics, gaseous emissions levels at one-third the level permitted by EPA for NO(x) and SO2, and durability for the in-bed heat exchanger and the turbine blade materials.

  3. Numerical simulation of a natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Verissimo, Gabriel L.; Moreira, Maria de Lourdes; Faccini, Jose Luiz H., E-mail: gabrielverissimo@poli.ufrj.b, E-mail:, E-mail: [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)


    This work presents a numerical simulation of a natural circulation loop using computational fluid dynamics. The simulated loop is an experimental model in a reduced scale of 1:10 of a passive heat removal system typical of advanced PWR reactors. The loop is composed of a heating vessel containing 52 electric heaters, a vertical shell-tube heat exchanger and a column of expansion. The working fluid is distilled water. Initially it was created a tridimensional geometric model of the loop components. After that, it was generated a tridimensional mesh of finite elements in order to calculate the variables of the problem. The boundaries of the numerical simulation were the power of the electric resistances and the cooling flow in the secondary side of the heat exchanger. The initial conditions were the temperature, the pressure and the fluid velocity at the time just before the power has been switched on. The results of this simulation were compared with the experimental data, in terms of the evolution of the temperatures in different locations of the loop, and of the average natural circulation flow as a function of time for a given power. (author)

  4. Bed burners for grate boilers; Baeddbraennare foer rosterpannor

    Energy Technology Data Exchange (ETDEWEB)

    Sendelius, Mikael; Schuster, Robert [AaF-Energikonsult AB, Stockholm (Sweden)


    The objective of this work is to increase the knowledge of bed burners and their optimal positions in furnaces. The results from several computational fluid mechanics calculations are presented. An investigation concerning bed burners among plant owners is included as well. A bed burner is defined as a burner used for enhancing the combustion process on the bed i.e. it is used to dry incoming wet fuel. A load burner is used to quickly increase the boiler load and primarily not for creating better combustion conditions on the grate. Fluid mechanics calculations have been performed for five different cases, including the reference case. The following four bed burner arrangements have been examined: flat flame burner, six burners placed in the combustion chamber, two symmetric placed burners and two asymmetric placed burners. The same furnace model has been used through all the simulations. The incident radiation has been calculated in order to determine which one of the bed burners having the best possibility to improve the combustion process on the grate. The results showed that the flat flame burner and the six burners placed in the combustion chamber gave the most incident radiation on the first two grate zones. Bed burners placed further back in the furnace gave less good results. A comparison between the reference case (the case without burners) and the case with two burners showed that there was almost no difference in incident radiation between the two cases. The case with six burners placed in the combustion chamber gave most incident radiation, however this arrangement gave an irregular distribution of the radiation on the bed. Too high or irregular distributed radiation increases the risk for getting regions, on the grate, where the fuel is completely burnt. Primary air will pass through these regions. This phenomenon will lead to high temperatures that cause increased levels of emissions, in particular NO{sub x}. Reorganizing the burner positions and

  5. Optimal composition of fluid-replacement beverages. (United States)

    Baker, Lindsay B; Jeukendrup, Asker E


    The objective of this article is to provide a review of the fundamental aspects of body fluid balance and the physiological consequences of water imbalances, as well as discuss considerations for the optimal composition of a fluid replacement beverage across a broad range of applications. Early pioneering research involving fluid replacement in persons suffering from diarrheal disease and in military, occupational, and athlete populations incurring exercise- and/or heat-induced sweat losses has provided much of the insight regarding basic principles on beverage palatability, voluntary fluid intake, fluid absorption, and fluid retention. We review this work and also discuss more recent advances in the understanding of fluid replacement as it applies to various populations (military, athletes, occupational, men, women, children, and older adults) and situations (pathophysiological factors, spaceflight, bed rest, long plane flights, heat stress, altitude/cold exposure, and recreational exercise). We discuss how beverage carbohydrate and electrolytes impact fluid replacement. We also discuss nutrients and compounds that are often included in fluid-replacement beverages to augment physiological functions unrelated to hydration, such as the provision of energy. The optimal composition of a fluid-replacement beverage depends upon the source of the fluid loss, whether from sweat, urine, respiration, or diarrhea/vomiting. It is also apparent that the optimal fluid-replacement beverage is one that is customized according to specific physiological needs, environmental conditions, desired benefits, and individual characteristics and taste preferences.

  6. Scaling of permeabilities and friction factors of homogeneously expanding gas-solids fluidized beds: Geldart’s A powders and magnetically stabilized beds

    Directory of Open Access Journals (Sweden)

    Hristov Jordan Y.


    Full Text Available The concept of a variable friction factor of fluid-driven de form able powder beds undergoing fluidization is discussed. The special problem discussed addresses the friction factor and bed permeability relationships of Geldart’s A powders and magnetically stabilized beds in axial fields. Governing equations and scaling relation ships are developed through three approaches (1 Minimization of the pressure drop with respect to the fluid velocity employing the Darcy-Forchheimer equation together with the Richardson-Zaki scaling law, (2 Minimization of the pres sure drop across an equivalent-channel replacing the actual packed beds by a straight pipe with bed-equivalent obstacle of a simple geometry, and (3 Entropy minimization method applied in cases of the Darcy-Forchheimer equation and the equivalent-channel model. Bed-to-surface heat transfer coefficients are commented in the context of the porosity/length scale relationships developed. Both the pressure drop curves developments and phase diagram de signs are illustrated by applications of the intersection of asymptotes technique to beds exhibiting certain degree of cohesion.

  7. Experimental circulation loss study


    Lund, Sigurd


    Master's thesis in Petroleum engineering Circulation losses could occur during any operation that involves pumping into a well. As of today, it is recognized as one of the most costly drilling problems. In some situation it might be hard to stop, and usually takes precious rig time to deal with the problem. In order to mitigate the risk...

  8. Arctic circulation regimes. (United States)

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L


    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. © 2015 The Authors.

  9. Fontan Circulation over Time

    NARCIS (Netherlands)

    Wolff, Djoeke; van Melle, Joost P.; Bartelds, Beatrijs; Ridderbos, Floris-Jan S.; Eshuis, Graziella; van Stratum, Elisabeth B. H. J.; Recinos, Salvador J.; Willemse, Brigitte W. M.; Hillege, Hans; Willems, Tineke P.; Ebels, Tjark; Berger, Rolf M. F.


    The unique, unphysiological Fontan circulation is associated with an impaired functional status of the patients that is suggested to deteriorate over time. Unfortunately, previous studies did not integrate both pulmonary and cardiac determinants of functional status. In addition, a comparison with

  10. Fluid mechanics, cell distribution, and environment in CellCube bioreactors. (United States)

    Auniņs, John G; Bader, Brett; Caola, Anthony; Griffiths, Janet; Katz, Maayan; Licari, Peter; Ram, Kripa; Ranucci, Colette S; Zhou, Weichang


    Cultivation of MRC-5 cells and attenuated hepatitis A virus (HAV) for the production of VAQTA, an inactivated HAV vaccine (1), is performed in the CellCube reactor, a laminar flow fixed-bed bioreactor with an unusual diamond-shaped, diverging-converging flow geometry. These disposable bioreactors have found some popularity for the production of cells and gene therapy vectors at intermediate scales of operation (2, 3). Early testing of the CellCube revealed that the fluid mechanical environment played a significant role in nonuniform cell distribution patterns generated during the cell growth phase. Specifically, the reactor geometry and manufacturing artifacts, in combination with certain inoculum practices and circulation flow rates, can create cell growth behavior that is not simply explained. Via experimentation and computational fluid dynamics simulations we can account for practically all of the observed cell growth behavior, which appears to be due to a complex mixture of flow distribution, particle deposition under gravity, fluid shear, and possibly nutritional microenvironment.

  11. Validation of mathematical models to describe fluid dynamics of a cold riser by gamma ray attenuation; Validacao de modelos matematicos para descrever a fluidodinamica de um riser utilizando atenuacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Ana Cristina Bezerra Azedo de


    The fluid dynamic behavior of a riser in a cold type FCC model was investigated by means of catalyst concentration distribution measured with gamma attenuation and simulated with a mathematical model. In the riser of the cold model, MEF, 0,032 m in diameter, 2,30 m in length the fluidized bed, whose components are air and FCC catalyst, circulates. The MEF is operated by automatic control and instruments for measuring fluid dynamic variables. An axial catalyst concentration distribution was measured using an Am-241 gamma source and a NaI detector coupled to a multichannel provided with a software for data acquisition and evaluation. The MEF was adapted for a fluid dynamic model validation which describes the flow in the riser, for example, by introducing an injector for controlling the solid flow in circulation. Mathematical models were selected from literature, analyzed and tested to simulate the fluid dynamic of the riser. A methodology for validating fluid dynamic models was studied and implemented. The stages of the work were developed according to the validation methodology, such as data planning experiments, study of the equations which describe the fluidodynamic, computational solvers application and comparison with experimental data. Operational sequences were carried out keeping the MEF conditions for measuring catalyst concentration and simultaneously measuring the fluid dynamic variables, velocity of the components and pressure drop in the riser. Following this, simulated and experimental values were compared and statistical data treatment done, aiming at the required precision to validate the fluid dynamic model. The comparison tests between experimental and simulated data were carried out under validation criteria. The fluid dynamic behavior of the riser was analyzed and the results and the agreement with literature were discussed. The adopt model was validated under the MEF operational conditions, for a 3 to 6 m/s gas velocity in the riser and a slip

  12. Fluid dynamics of dilatant fluid

    DEFF Research Database (Denmark)

    Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko


    A dense mixture of granules and liquid often shows a severe shear thickening and is called a dilatant fluid. We construct a fluid dynamics model for the dilatant fluid by introducing a phenomenological state variable for a local state of dispersed particles. With simple assumptions for an equation...... of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the model...... reveals that the shear thickening fluid shows an instability in a shear flow for some regime and exhibits the shear thickening oscillation (i.e., the oscillatory shear flow alternating between the thickened and the relaxed states). The results of numerical simulations are presented for one- and two...

  13. Hydrodynamic modelling of dense gas-fluidised beds: comparison and validation of 3D discrete particle and continuum models

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Beetstra, R.; Kuipers, J.A.M.


    A critical comparison of a hard-sphere discrete particle model, a two-fluid model with kinetic theory closure equations and experiments performed in a pseudo-two-dimensional gas-fluidised bed is made. Bubble patterns, time-averaged particle distributions and bed expansion dynamics measured with a

  14. Use of cement as lost-circulation material : best practices

    Energy Technology Data Exchange (ETDEWEB)

    Fidan, E. [Halliburton, Calgary, AB (Canada); Babadagli, T.; Kuru, E. [Alberta Univ., Edmonton, AB (Canada)


    One of the challenges facing oil well drilling operations is lost circulation, which refers to the partial or complete loss of drilling fluid or cement during drilling, circulation, running casing, or cementing operations. This problem can result in increased cost, loss of time, plugging of productive zones, blowouts, excessive water influx, and excessive formation caving. Lost circulation occurs in high-permeability zones such as highly fractured, vuggy or cavernous reservoirs when the hydrostatic pressure of drilling fluids is greater than the breaking strength of the formation. Cement is one of the common lost-circulation materials (LCMs). The use of proper cement composition and cementing techniques is important for successful cementing jobs. This paper presents solutions for 3 field cases from the Canada Western Sedimentary Basin where cement or drilling fluid loss has been a problem. Cement loss was minimized in two cases by using proper cement type and using optimum design during casing cementing. In another case, cement was used to cure drilling fluid loss. The various LCM applications described in this paper were: thixotropic and ultrathixotropic cement slurries; slurries containing cello flakes, mica and calcium carbonate for mechanical bridging; unique spacers and surfactant packages; and, foamed cement for controlling loss. 28 refs., 2 tabs., 2 figs.

  15. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O' Hern; Paul Tortora


    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  16. Water immersion and changes in the foetoplacental and uteroplacental circulation

    DEFF Research Database (Denmark)

    Thisted, Dorthe Louise Ahrenkiel; Nørgaard, Lone Nikoline; Meyer, Helle Mølgaard


    Abstract Objective: To evaluate the effect of immersion into water on maternal blood pressure, amount of amniotic fluid and on the foetoplacental- and uteroplacental circulation in healthy women with an uncomplicated singleton pregnancy. Methods: Twenty-five healthy women were included. Recordings...... of blood pressure, deepest vertical pocket of amniotic fluid and pulsatility index (PI) measured by Doppler in the umbilical and uterine arteries were obtained. The participants were immersed into water and the measurements were repeated after 5 and 25 min in water and again 15 and 30 min post immersion....... Results: The amount of amniotic fluid increased significantly (p 

  17. Fluid dynamics

    CERN Document Server

    Bernard, Peter S


    This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.

  18. Sea bed mapping and inspection

    Energy Technology Data Exchange (ETDEWEB)



    The conference has 24 presentations on the topics: Sea bed mapping, inspection, positioning, hydrography, marine archaeology, remote operation vehicles and computerized simulation technologies, oil field activities and plans, technological experiences and problems. (tk)

  19. Top Ten Bed Bug Tips (United States)

    ... full year without tearing. 5. Regularly wash and heat-dry your bed sheets, blankets, bedspreads and any clothing ... and very high temperatures are necessary for successful heat treatment. Black plastic bags in the sun might work ...

  20. Torsion testing of bed joints

    DEFF Research Database (Denmark)

    Hansen, Klavs Feilberg; Pedersen, Carsten Mørk


    This paper describes a simple test method for determining the torsion strength of a single bed joint between two bricks and presents results from testing using this test method. The setup for the torsion test is well defined, require minimal preparation of the test specimen and the test can...... be carried out directly in a normal testing machine. The torsion strength is believed to be the most important parameter in out-of-plane resistance of masonry walls subjected to bending about an axis perpendicular to the bed joints. The paper also contains a few test results from bending of small walls about...... an axis perpendicular to the bed joints, which indicate the close connection between these results and results from torsion tests. These characteristics make the torsion strength well suited to act as substitute parameter for the bending strength of masonry about an axis perpendicular to the bed joints....

  1. Print a Bed Bug Card (United States)

    Two sets of business card-sized lists of tips for prevention of bed bug infestations, one for general use around home, the other for travelers. Print a single card or a page of cards for distribution.

  2. Sustainable generation of bioenergy in fluidized bed boilers

    Energy Technology Data Exchange (ETDEWEB)

    Offenbacher, Elmar


    Full text: These days, reflecting a growing demand of heat and power, increasing cost for fossil fuels and more environmental issues (limitation of greenhouse gases, regulations for landfill etc.), the sustainable conversion of renewable fuels to bioenergy is becoming increasingly important. Renewable fuels cover a wide range, from traditional wood, bark, harvesting residues to all kind of sludges, and contain a remarkable calorific value that can easily compete with fossil fuels such as brown coal and lignite. The combustion of these renewable fuels does not create any greenhouse gases. The favourable technology for combusting renewable fuels is the fluidized bed technology, bubbling fluidized bed and circulating fluidized bed, as this system provides maximum fuel flexibility combined with high combustion efficiency and low emissions. Neither a variation of the water content and the heating value nor different sources of the material streams have a negative impact on the combustion. Fluidized bed boilers can switch from one fuel to the other quiet easily and can also be fired with conventional fuels that ensure a smooth and reliable generation of process heat and/or power in any case. The reasons that make fluidized bed boilers the most sustainable combustion technology for renewable fuels are various: The main feature of this technology is the principle of staged combustion of the fuel: The oxygen level in the fluidized bed is limited and hence only a part of the fuel is combusted, whereas the rest of the fuel is gasified. The staged combustion concept results in a homogenous temperature profile of less than 850 deg. C in the furnace and low NO{sub x} emission as a consequence. The turbulences in the furnace result and an efficient combustion that is combined with very low CO and TOC emissions in the flue gas. This paper will describe design features of the latest fluidized bed technology especially suitable for firing renewable fuels, and the research results of


    CERN Multimedia

    Mail Office


    Internal mail envelopes often finish up in large piles in certain offices, thus creating a shortage for other users of the mail service, who would be grateful if everyone with an unused stock could deposit them in their mail box, after attaching them together with an elastic band or a piece of string. The messengers will then collect them so that the Mail Office can put them back in circulation. Thank you for your understanding and collaboration.

  4. The heat transfer mechanisms in fluidized beds; Laemmoensiirtomekanismit leijukerroksessa

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Blomster, A.M.; Kojola, H. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Energy Technology and Environmental Protection


    The goal of the research project is to improve the accuracy of the heat transfer correlation in circulating fluidized beds and to define how the heat transfer is distributed in radiation and convection in the different parts of the fluidized bed. This will be carried out by studying the behaviour and the heat transfer of the fluidized bed in the boundary layer near the wall. During the project the concentration and the velocity of the sand particles are measured. The particle concentration and the particle velocity are measured by an image analysis system. A video camera and a Super VHS recorder are used to capture live images from the bed. The images are digitized and stored on a PC. The measured particle concentration was at highest slightly over 20 % on the straight wall. As expected, the velocity of the fluidizing gas had the most important role on the particle concentration. The experimental studies of the particle velocity were started last autumn 1996. The velocities of the particles were measured by using a multiple exposure technique. Afterwards the images captured were analyzed by performing a Fourier transform analysis. So far the results have been encouraging and the analyzing work will be ended this spring. (orig.)

  5. A Look at Circulation Statistics (United States)

    Luzius, Jeff


    Nearly all academic libraries keep circulation statistics which are often shared with their parent university, library consortia, and national organizations. This study attempted to discover what goes into circulation statistics by surveying Southeastern research libraries. Libraries were asked what they count in their circulation statistics and…

  6. Effects of prolonged head-down bed rest on working memory. (United States)

    Liu, Qing; Zhou, Renlai; Zhao, Xin; Oei, Tian Po S


    The weightlessness caused by prolonged bed rest results in changes in cerebral circulation and thus, brain functions, which is of interest. We investigated the effects of 45-day, -6° head-down bed rest, which stimulated microgravity, on working memory in 16 healthy male participants. The 2-back task was used to test the working memory variations on the 2nd day before bed rest (R-2); on the 11th (R11), 20th (R20), 32nd (R32), and 40th (R40) days of bed rest; and on the eighth day after bed rest (R+8). The cognitive response and the physiological reactivity (such as galvanic skin response, heart rate, and heart rate variability) under the 2-back task were recorded simultaneously. The results showed that compared with R-2, on the R+8, the participants' galvanic skin response increased significantly, and the high frequency of heart rate variability (HF), low frequency of heart rate variability (LF), and reaction time in the 2-back task decreased significantly. There were positive correlations between the participants' reaction time of working memory and the LF/HF under head-down bed rest (at R11, R20, and R32). The results suggested that the prolonged head-down bed rest may have a detrimental effect on individual physiology and working memory. Physiology indices, such as galvanic skin response and heart rate variability, were sensitive to the prolonged bed rest.

  7. Simulation of biomass-steam gasification in fluidized bed reactors: Model setup, comparisons and preliminary predictions. (United States)

    Yan, Linbo; Lim, C Jim; Yue, Guangxi; He, Boshu; Grace, John R


    A user-defined solver integrating the solid-gas surface reactions and the multi-phase particle-in-cell (MP-PIC) approach is built based on the OpenFOAM software. The solver is tested against experiments. Then, biomass-steam gasification in a dual fluidized bed (DFB) gasifier is preliminarily predicted. It is found that the predictions agree well with the experimental results. The bed material circulation loop in the DFB can form automatically and the bed height is about 1m. The voidage gradually increases along the height of the bed zone in the bubbling fluidized bed (BFB) of the DFB. The U-bend and cyclone can separate the syngas in the BFB and the flue gas in the circulating fluidized bed. The concentration of the gasification products is relatively higher in the conical transition section, and the dry and nitrogen-free syngas at the BFB outlet is predicted to be composed of 55% H 2 , 20% CO, 20% CO 2 and 5% CH 4 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Ash and heavy metals in fluidized bed-combustion; Tuhka ja raskasmetallit puuperaeisen jaetteen kerrosleijupoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Kaessi, T.; Aittoniemi, P. [IVO International, Vantaa (Finland)


    Combustion ashes and submicron fly ash particles were characterized in two industrial boilers (bubbling vs. circulating fluidized bed) burning paper mill deinking sludge and bark or wood as support fuel. Bulk samples from fly ash, circulating ash and bottom ash were analyzed. Fine particles in fly ash were monitored and sampled for microscopic studies. The mass size distribution of fly ash was measured and the chemical composition according to particle size was analyzed. The results showed that ash consists of large and friable clusters formed by sintering of small mineral particles originating from paper fillers. Very few ash particles were fused and they were found only among the smallest particles. No agglomerates of fused particles were found. If the residence time in furnace is long enough sintering may proceed further and ash structure grows more dense. No indication of ash vaporization was detected. These results were similar for bubbling and circulating fluidized bed boilers. (author)

  9. Pulsed atmospheric fluidized bed combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)


    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  10. A Comparison of Tandem Walk Performance Between Bed Rest Subjects and Astronauts (United States)

    Miller, Chris; Peters, Brian; Kofman, Igor; Philips, Tiffany; Batson, Crystal; Cerisano, Jody; Fisher, Elizabeth; Mulavara, Ajitkumar; Feiveson, Alan; Reschke, Millard; hide


    Astronauts experience a microgravity environment during spaceflight, which results in a central reinterpretation of both vestibular and body axial-loading information by the sensorimotor system. Subjects in bed rest studies lie at 6deg head-down in strict bed rest to simulate the fluid shift and gravity-unloading of the microgravity environment. However, bed rest subjects still sense gravity in the vestibular organs. Therefore, bed rest isolates the axial-unloading component, thus allowing for the direct study of its effects. The Tandem Walk is a standard sensorimotor test of dynamic postural stability. In a previous abstract, we compared performance on a Tandem Walk test between bed rest control subjects, and short- and long-duration astronauts both before and after flight/bed rest using a composite index of performance, called the Tandem Walk Parameter (TWP), that takes into account speed, accuracy, and balance control. This new study extends the previous data set to include bed rest subjects who performed exercise countermeasures. The purpose of this study was to compare performance during the Tandem Walk test between bed rest subjects (with and without exercise), short-duration (Space Shuttle) crewmembers, and long-duration International Space Station (ISS) crewmembers at various time points during their recovery from bed rest or spaceflight.

  11. Long Duration Head-Down Tilt Bed Rest Studies: Safety Considerations Regarding Vision Health (United States)

    Cromwell, Ronita L.; Zanello, S. B.; Yarbough, P. O.; Ploutz-Snyder, Robert; Taibbi, G.; Vizzeri, G.


    Visual symptoms reported in astronauts returning from long duration missions in low Earth orbit, including hyperopic shift, choroidal folds, globe flattening and papilledema, are thought to be related to fluid shifts within the body due to microgravity exposure. Because of this possible relation to fluid shifts, safety considerations have been raised regarding the ocular health of head-down tilt (HDT) bed rest subjects. HDT is a widely used ground ]based analog that simulates physiological changes of spaceflight, including fluid shifts. Thus, vision monitoring has been performed in bed rest subjects in order to evaluate the safety of HDT with respect to vision health. Here we report ocular outcomes in 9 healthy subjects (age range: 27-48 years; Male/Female ratio: 8/1) completing bed rest Campaign 11, an integrated, multidisciplinary 70-day 6 degrees HDT bed rest study. Vision examinations were performed on a weekly basis, and consisted of office-based (2 pre- and 2 post-bed rest) and in-bed testing. The experimental design was a repeated measures design, with measurements for both eyes taken for each subject at each planned time point. Findings for the following tests were all reported as normal in each testing session for every subject: modified Amsler grid, red dot test, confrontational visual fields, color vision and fundus photography. Overall, no statistically significant differences were observed for any of the measures, except for both near and far visual acuity, which increased during the course of the study. This difference is not considered clinically relevant as may result from the effect of learning. Intraocular pressure results suggest a small increase at the beginning of the bed rest phase (p=0.059) and lesser increase at post-bed rest with respect to baseline (p=0.046). These preliminary results provide the basis for further analyses that will include correlations between intraocular pressure change pre- and post-bed rest, and optical coherence

  12. Early Management and Fluid Resuscitation

    Directory of Open Access Journals (Sweden)

    Kaya Yorgancı


    Full Text Available Initial management of severely burned patient is similar with a trauma victim. Determination of airway patency, evaluation of respiration and circulation, early recognition of concomitant trauma has vital importance in burn patients. In the early phase, mortality mainly depends on missed or un-treated severe injuries or pathologies, but not burn injury itself.In patients that have TBSA greater than 15 %, fluid resuscitation should be started. In the first 24 hours, crystalloid solutions should be preferred. .Several formulas can guide fluid resuscitation; however the amount of fluid that is given to the patient should be individualized according to the patient’s need. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl: 7-10



    Condorhuamán C., Cesario; Departamento Académico de Operaciones Unitarias, Facultad de Química e Ingeniería Química - Universidad Nacional Mayor de San Marcos, Lima, Perú.


    It has been obtained a experimental drop in pressure as a result of making flow air through a column of spouted bed loaded with wheat grains. A built column of stainless steel is used whose traversa section in a semicircular way has 152.4 mm of diameter, it finishes in a base truncated cone whose entrance hale is other 1 semi-circulate of 12 .5 mm of diameter and it has a height of 1.30 meters. The results are obtained to standard conditions of pressure and temperature, The flows of air vary ...

  14. 49 CFR 236.336 - Locking bed. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locking bed. 236.336 Section 236.336 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Instructions § 236.336 Locking bed. The various parts of the locking bed, locking bed supports, and tappet stop...

  15. A simplified approach to the drying of solids in a batch fluidised bed

    Directory of Open Access Journals (Sweden)

    C. Srinivasakannan


    Full Text Available A simplified model for drying solids in the constant rate period in a batch fluidised bed was developed.It assumes the bed to be divided into dense and bubble phases with heat and mass transfer between the phases.The model predicts the constant-rate drying period, provided the fluid bed shape and material characteristics are known.The model is compared with experimental data reported in the literature covering a wide range of materials, gas flow rates, column diameters, material hold-ups, air temperatures and humidities.Model predictions compare satisfactorily with the experimental data.

  16. The protein corona of circulating PEGylated liposomes. (United States)

    Palchetti, Sara; Colapicchioni, Valentina; Digiacomo, Luca; Caracciolo, Giulio; Pozzi, Daniela; Capriotti, Anna Laura; La Barbera, Giorgia; Laganà, Aldo


    Following systemic administration, liposomes are covered by a 'corona' of proteins, and preserving the surface functionality is challenging. Coating the liposome surface with polyethylene glycol (PEG) is the most widely used anti-opsonization strategy, but it cannot fully preclude protein adsorption. To date, protein binding has been studied following in vitro incubation to predict the fate of liposomes in vivo, while dynamic incubation mimicking in vivo conditions remains largely unexplored. The main aim of this investigation was to determine whether shear stress, produced by physiologically relevant dynamic flow, could influence the liposome-protein corona. The corona of circulating PEGylated liposome was thoroughly compared with that formed by incubation in vitro. Systematic comparison in terms of size, surface charge and quantitative composition was made by dynamic light scattering, microelectrophoresis and nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). Size of coronas formed under static vs. dynamic incubation did not appreciably differ from each other. On the other side, the corona of circulating liposomes was more negatively charged than its static counterpart. Of note, the variety of protein species in the corona formed in a dynamic flow was significantly wider. Collectively, these results demonstrated that the corona of circulating PEGylated liposomes can be considerably different from that formed in a static fluid. This seems to be a key factor to predict the biological activity of a liposomal formulation in a physiological environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Fluid Shifts (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide


    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  18. Flow instability in particle-bed nuclear reactors (United States)

    Kerrebrock, Jack L.


    The particle-bed core offers mitigation of some of the problems of solid-core nuclear rocket reactors. Dividing the fuel elements into small spherical particles contained in a cylindrical bed through which the propellant flows radially, may reduce the thermal stress in the fuel elements, allowing higher propellant temperatures to be reached. The high temperature regions of the reactor are confined to the interior of cylindrical fuel assemblies, so most of the reactor can be relatively cool. This enables the use of structural and moderating materials which reduce the minimum critical size and mass of the reactor. One of the unresolved questions about this concept is whether the flow through the particle-bed will be well behaved, or will be subject to destructive flow instabilities. Most of the recent analyses of the stability of the particle-bed reactor have been extensions of the approach of Bussard and Delauer, where the bed is essentially treated as an array of parallel passages, so that the mass flow is continuous from inlet to outlet through any one passage. A more general three dimensional model of the bed is adopted, in which the fluid has mobility in three dimensions. Comparison of results of the earlier approach to the present one shows that the former does not accurately represent the stability at low Re. The more complete model presented should be capable of meeting this deficiency while accurately representing the effects of the cold and hot frits, and of heat conduction and radiation in the particle-bed. It can be extended to apply to the cylindrical geometry of particle-bed reactors without difficulty. From the exemplary calculations which were carried out, it can be concluded that a particle-bed without a cold frit would be subject to instability if operated at the high temperatures desired for nuclear rockets, and at power densities below about 4 megawatts per liter. Since the desired power density is about 40 megawatts per liter, it can be concluded

  19. Does liver-intestine significantly degrade circulating endogenous substance P in man?

    DEFF Research Database (Denmark)

    Henriksen, J H; Schaffalitzky de Muckadell, Ove B.; Bülow, J B


    Elevated concentrations of circulating substance P in patients with liver insufficiency have been ascribed to decreased hepatic degradation. To establish a possible biodegradation of the peptide in liver-intestine and kidneys, the concentration of endogenous immunoreactive substance P...... was determined in various vascular beds during a right-sided catheterization in 13 subjects without liver insufficiency. All subjects had normal values of circulating substance P, and no significant difference was found between systemic plasma and hepatic venous or renal venous concentrations of substance P....... The results indicate that degradation of circulating endogenous substance P in man is not confined to liver-intestine or kidney but may take place in many tissues....

  20. Fluid Fascinations

    NARCIS (Netherlands)

    Bokhove, Onno; Zwart, Valerie; Haveman, Martha J.

    De Art & Science show “Fluid Fascinations��? omvat een presentatie over de wetenschappelijke context, inclusief een live experiment (ontworpen samen met kunstenaar/designer Wout Zweers); en, gemengde media en olieverfschilderijen, en digitale fotowerken van kunstenares Valerie Zwart. De show is

  1. Performances of continuous dryer with inert medium fluidized bed

    Directory of Open Access Journals (Sweden)

    Arsenijević Zorana Lj.


    Full Text Available A fluid bed dryer with inert particles represents a very attractive alternative to other drying technologies according to the main efficiency criteria, i.e. specific water evaporation rate, specific heat consumption and speci­fic air consumption. A high drying efficiency results from the large con­tact area and from the large temperature difference between the inlet and outlet air. A rapid mixing of the particles leads to nearly isothermal conditions throughout the bed. A fluid bed dryer with inert particles was used for drying of slurries. Experiments were performed in a cylindrical column 215 mm in diameter with glass spheres as inert particles. In this paper, results of drying experi­ments with slurries of Zineb fungicide, copper hydroxide, calcium carbo­nate and pure water used as the feed material are presented. In our fluidized bed we successfully dried a number of other materials such as: fungicides and pesticides (Ziram, Propineb, Mangozeb, copper oxy-chloride, copper oxy-sulphate, Bordeaux mixture, other inorganic compounds (calcium sulphate, cobalt carbonate, electrolytic copper, sodium chloride, and a complex compound (organo-bentonite. The effects of operating conditions on dryer throughput and product quality were investigated. Main performance criteria, i.e. specific water evaporation rate, specific heat consumption and specific air consumption, were quantified. Temperature profile along the bed was mapped, and nearly isothermal conditions were found due to thorough mixing of the particles. Analysis of drying and energy efficiencies as a function of inlet and outlet air temperature difference was performed for deeper insight in dryer behavior and for optimizing dryer design and operation from an energy point of view. A simple mathematical model based on an overall heat balance predicts the dryer performance quite well. The industrial prototype with fluid bed of 0.8 m in diameter and capacity 650 kg of evaporated moisture per

  2. Circulation of Stars (United States)

    Boitani, P.


    Since the dawn of man, contemplation of the stars has been a primary impulse in human beings, who proliferated their knowledge of the stars all over the world. Aristotle sees this as the product of primeval and perennial “wonder” which gives rise to what we call science, philosophy, and poetry. Astronomy, astrology, and star art (painting, architecture, literature, and music) go hand in hand through millennia in all cultures of the planet (and all use catasterisms to explain certain phenomena). Some of these developments are independent of each other, i.e., they take place in one culture independently of others. Some, on the other hand, are the product of the “circulation of stars.” There are two ways of looking at this. One seeks out forms, the other concentrates on the passing of specific lore from one area to another through time. The former relies on archetypes (for instance, with catasterism), the latter constitutes a historical process. In this paper I present some of the surprising ways in which the circulation of stars has occurred—from East to West, from East to the Far East, and from West to East, at times simultaneously.

  3. Better backs by better beds?

    DEFF Research Database (Denmark)

    Bergholdt, Kim; Fabricius, Rasmus N; Bendix, Tom


    STUDY DESIGN: A "randomized"/stratified, single-blinded, parallel-group study. OBJECTIVE.: To evaluate 3 structurally different mattresses relative influence on patients with chronic low back pain (CLBP). SUMMARY OF BACKGROUND DATA: In several advertisements, it is proclaimed that certain...... using the probably most relevant "worst case" data. There were no relevant difference between the effects of the water bed and the foam bed. CONCLUSION: The Waterbed and foam mattress' did influence back symptoms, function and sleep more positively as apposed to the hard mattress, but the differences...

  4. Hydrodynamic studies of the flow of fine particles through a fluidized dense bed of coarse solids

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, J.


    This study explains the hydrodynamics of a circulating fluidized bed (CFB) system, the Battelle Multi-Solids Fluidized Bed System (MSFB). It consists of a circulating fluidized bed of fine particles superimposed on a bubbling bed of coarse solids. One way to characterize such a system is to describe the mechanism of gas-solid flow through the bed. The gas flow in systems like these is through bubbles or slugs (regions of voids containing little or no solids). Bubbles are typically characterized by their size (length or diameter), their rise velocity, and their frequency. Another task of the initial phase of this study is to characterize an L-valve, a solids-recirculating device commonly used in an MSFB. Next, the mechanism of fine particle movement through a bubbling region of coarse fluidized solids is studied in considerable detail. Bubble characteristics are studied in a variety of systems of coarse particles with fines passing through at high velocity. Amongst numerous optical, electrical and other techniques available for the study of the passage of bubbles, the pressure fluctuation technique is the most robust. In this investigation, pressure probes are connected to pressure transducers which are in turn linked to an on-line data acquisition system supported on a microcomputer. A commercially available software package (Notebook) is used to sample pressure at specified points in the fluidized bed at extremely fast rates, of up to 200 Hz. This resulted in pressure-time traces which are analysed to give bubble length, bubble rise velocity, and bubble frequency. Another important objective of this study is to estimate the fine particle residence time in the dense bed section. A defluidization technique is utilized in experimentally measuring the solids holdup in the dense bed. A mathematical model is developed from first principles, based on a momentum balance on the fine particles.

  5. Stability research on a natural circulation driven SCWR

    Energy Technology Data Exchange (ETDEWEB)

    T' Joen, C.; Kam, F.; Rohde, M. [Delft Univ. of Tech., Delft (Netherlands)


    To improve the thermal efficiency of nuclear reactors, a concept design using supercritical water has been proposed. As an inherent safety feature, natural circulation could be applied, driving the flow with the strong density changes. Such natural circulation flows can however experience instabilities (density wave oscillations). To study the stability, an experimental facility representing the HPLWR was designed using a scaling fluid (R23). In parallel a computational tool was developed which uses a transient analysis technique. This paper will present a comparison of the experimental measurements and numerical predictions for the stability of a supercritical loop, showing good agreement. (author)

  6. Efficient quantum circuits for dense circulant and circulant like operators. (United States)

    Zhou, S S; Wang, J B


    Circulant matrices are an important family of operators, which have a wide range of applications in science and engineering-related fields. They are, in general, non-sparse and non-unitary. In this paper, we present efficient quantum circuits to implement circulant operators using fewer resources and with lower complexity than existing methods. Moreover, our quantum circuits can be readily extended to the implementation of Toeplitz, Hankel and block circulant matrices. Efficient quantum algorithms to implement the inverses and products of circulant operators are also provided, and an example application in solving the equation of motion for cyclic systems is discussed.

  7. Gender differences in endocrine responses to posture and 7 days of 6 deg head down bed rest (United States)

    Vernikos, J.; Dallman, M. F.; Keil, L. C.; Ohara, D.; Convertino, V. A.


    Endocrine regulation of fluids and electrolytes during seven days of 6 deg head down bed rest (HDBR) was compared in male (n = 8) and, for the first time, female (n = 8) volunteers. The subjects' responses to quiet standing for 2 hr before and after HDBR were also tested. In both sexes, diuresis and natriuresis were evident during the first 2-3 days of HDBR, resulting in a marked increase in the urinary Na/K ratio and significant Na retention on reambulation. After the first day of HDBR, plasma renin activity (PRA) was increased relative to aldosterone, plasma volume was decreased, and the renal response to aldosterone appeared to be appropriate. Circulating levels of arginine vasopressin (AVP), cortisol, and ACTH were unchanged during HDBR. Plasma testosterone decreased slightly on day 2 of HDBR in males. The ratio of AM ACTH to cortisol was lower in females than in males because ACTH was lower in females. Urinary cortisol increased and remained elevated throughout the HDBR in males only. There were no gender differences in the responses to 7 day HDBR, except those in the pituitary-adrenal system; those differences appeared unrelated to the postural change. The provocative cardiovascular test of quiet standing before and after bed rest revealed both sex differences and effects of HDBR. There were significant sex differences in cardiovascular responses to standing, before and after HDBR. Females had greater PRA and aldosterone responses to standing before bedrest and larger aldosterone responses to standing after HDBR than males. Cardiovascular responses to standing before and after bedrest differed markedly: arterial pressure and heart rates increased with standing before HDBR, by contrast, arterial pressure decreased, with greater increases in heart rates after HDBR. In both sexes, all hormonal responses to standing were greater after HDBR. The results show clearly that similar responses to standing as well as to HDBR occur in both sexes, but that females exhibit

  8. Exercise Effects on the Course of Gray Matter Changes Over 70 Days of Bed Rest (United States)

    Koppelmans, V.; Ploutz-Snyder, L.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.


    Long duration spaceflight affects posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes through direct effects on peripheral changes that result from reduced vestibular stimulation and body unloading. Effects of microgravity on sensorimotor function have been investigated on earth using bed rest studies. Long duration bed rest serves as a space-flight analogue because it mimics microgravity in body unloading and bodily fluid shifts. It has been hypothesized that the cephalad fluid shift that has been observed in microgravity could potentially affect central nervous system function and structure, and thereby indirectly affect sensorimotor or cognitive functioning. Preliminary results of one of our ongoing studies indeed showed that 70 days of long duration head down-tilt bed rest results in focal changes in gray matter volume from pre-bed rest to various time points during bed rest. These gray matter changes that could reflect fluid shifts as well as neuroplasticity were related to decrements in motor skills such as maintenance of equilibrium. In consideration of the health and performance of crewmembers both inand post-flight we are currently conducting a study that investigates the potential preventive effects of exercise on gray matter and motor performance changes that we observed over the course of bed rest. Numerous studies have shown beneficial effects of aerobic exercise on brain structure and cognitive performance in healthy and demented subjects over a large age range. We therefore hypothesized that an exercise intervention in bed rest could potentially mitigate or prevent the effects of bed rest on the central nervous system. Here we present preliminary outcomes of our study.

  9. Multiscale Analysis of Pebble Bed Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hans Gougar; Woo Yoon; Abderrafi Ougouag


    – The PEBBED code was developed at the Idaho National Laboratory for design and analysis of pebble-bed high temperature reactors. The diffusion-depletion-pebble-mixing algorithm of the original PEBBED code was enhanced through coupling with the THERMIX-KONVEK code for thermal fluid analysis and by the COMBINE code for online cross section generation. The COMBINE code solves the B-1 or B-3 approximations to the transport equation for neutron slowing down and resonance interactions in a homogeneous medium with simple corrections for shadowing and thermal self-shielding. The number densities of materials within specified regions of the core are averaged and transferred to COMBINE from PEBBED for updating during the burnup iteration. The simple treatment of self-shielding in previous versions of COMBINE led to inaccurate results for cross sections and unsatisfactory core performance calculations. A new version of COMBINE has been developed that treats all levels of heterogeneity using the 1D transport code ANISN. In a 3-stage calculation, slowing down is performed in 167 groups for each homogeneous subregion (kernel, particle layers, graphite shell, control rod absorber annulus, etc.) Particles in a local average pebble are homogenized using ANISN then passed to the next (pebble) stage. A 1D transport solution is again performed over the pebble geometry and the homogenized pebble cross sections are passed to a 1-d radial model of a wedge of the pebble bed core. This wedge may also include homogeneous reflector regions and a control rod region composed of annuli of different absorbing regions. Radial leakage effects are therefore captured with discrete ordinates transport while axial and azimuthal effects are captured with a transverse buckling term. In this paper, results of various PBR models will be compared with comparable models from literature. Performance of the code will be assessed.

  10. Development of environmental friendly lost circulation material from banana peel (United States)

    Sauki, Arina; Hasan, Nur â.€˜Izzati; Naimi, Fardelen Binti Md; Othman, Nur Hidayati


    Loss of expensive mud could lead to major financial problem in executing a drilling project and is one of the biggest problems that need to be tackled during drilling. Synthetic Based Mud (SBM) is the most stable state of the art drilling mud used in current drilling technologies. However, the problem with lost circulation is still inevitable. The focus of this project is to develop a new potential waste material from banana peel in order to combat lost circulation in SBM. Standard industrial Lost Circulation Material (LCM) is used to compare the performance of banana peel as LCM in SBM. The effects of different sizing of banana peels (600 micron, 300 micron and 100 micron) were studied on the rheological and filtration properties of SBM and the bridging performance of banana peel as LCM additive. The tests were conducted using viscometer, HTHP filter press and sand bed tester. Thermal analysis of banana peel was also studied using TGA. According to the results obtained, 300 and 100 micron size of banana peel LCM exhibited an improved bridging performance by 65% as compared to industrial LCM. However, banana peel LCM with the size of 600 micron failed to act as LCM due to the total invasion of mud into the sand bed.

  11. Fluid Mechanics (United States)

    Pnueli, David; Gutfinger, Chaim


    This text is intended for the study of fluid mechanics at an intermediate level. The presentation starts with basic concepts, in order to form a sound conceptual structure that can support engineering applications and encourage further learning. The presentation is exact, incorporating both the mathematics involved and the physics needed to understand the various phenomena in fluid mechanics. Where a didactical choice must be made between the two, the physics prevails. Throughout the book the authors have tried to reach a balance between exact presentation, intuitive grasp of new ideas, and creative applications of concepts. This approach is reflected in the examples presented in the text and in the exercises given at the end of each chapter. Subjects treated are hydrostatics, viscous flow, similitude and order of magnitude, creeping flow, potential flow, boundary layer flow, turbulent flow, compressible flow, and non-Newtonian flows. This book is ideal for advanced undergraduate students in mechanical, chemical, aerospace, and civil engineering. Solutions manual available.

  12. Lignite air-steam gasification in the fluidized bed of iron-containing slag catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Yu. [Inst. of Chemistry of Natural Organic Materials, Academgorodok, Krasnoyarsk (Russian Federation)


    The influence of fluidized bed of iron-containing slag particles on air-steam gasification of powdered Kansk-Achinsk lignite in entrained flow was studied in pilot installation with productivity about 60 kg per hour. Slag of Martin process and boiler slag were used as catalytic active materials until their complete mechanical attrition. Two following methods of catalytic gasification of lignite were compared: the partial gasification in stationary fluidized bed of slag particles with degree of fuel conversion 40-70% and complete gasification in circulating bed of slag particles. In the first case only the most reactive part of fuel is gasified with the simultaneously formation of porous carbon residue with good sorption ability. It was found the catalytic fluidized bed improves heat transfer from combustion to reduction zone of gas-generator and increases the rate of fuel conversion at the temperature range 900-1000{degrees}C. At these temperatures the degree of conversion is depended considerably on the duration time of fuel particles in the catalytic fluidized bed. The influence of catalytic fluidized bed height and velocity of reaction mixture on the temperature profiles in the gas-generator was studied. The optimal relationship was found between the fluidized bed height and velocity of flow which makes possible to produce the gas with higher calorific value at maximum degree of fuel conversion.

  13. How to Find Bed Bugs (United States)

    Find and correctly identify an infestation early before it becomes widespread. Look for rusty or reddish stains and pinpoint dark spots on bed sheets or mattresses, and search for bugs near the piping, seams and tags of the mattress and box spring.

  14. Char binder for fluidized beds (United States)

    Borio, Richard W.; Accortt, Joseph I.


    An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.

  15. Focal Gray Matter Plasticity as a Function of Long Duration Head-down Tilt Bed Rest (United States)

    Koppelmans, V.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Koppelmans, V.


    Long duration spaceflight (i.e., > or = 22 days) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether these sensorimotor changes may be related to structural and functional brain changes is yet unknown. However, experimental studies revealed changes in the gray matter (GM) of the brain after simulated microgravity. Thus, it is possible that spaceflight may affect brain structure and thereby cognitive functioning and motor behavior. Long duration head-down tilt bed rest has been suggested as an exclusionary analog to study microgravity effects on the sensorimotor system. Bed rest mimics microgravity in body unloading and bodily fluid shifts. In consideration of the health and performance of crewmembers both in- and post-flight, we are conducting a prospective longitudinal 70-day bed rest study as an analog to investigate the effects of microgravity on the brain. VBM analysis revealed a progressive decrease from pre- to in- bed rest in GM volume in bilateral areas including the frontal medial cortex, the insular cortex and the caudate. Over the same time period, there was a progressive increase in GM volume in the cerebellum, occipital-, and parietal cortex, including the precuneus. The majority of these changes did not fully recover during the post-bed rest period. Analysis of lobular GM volumes obtained with BRAINS showed significantly increased volume from pre-bed rest to in-bed rest in GM of the parietal lobe and the third ventricle. Temporal GM volume at 70 days in bed rest was smaller than that at the first pre-bed rest measurement. Trend analysis showed significant positive linear and negative quadratic relationships between parietal GM and time, a positive linear relationship between third ventricle volume and time, and a negative linear

  16. Fluid dynamics

    CERN Document Server

    Ruban, Anatoly I

    This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...

  17. Ocean General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin-Ho; Ma, Po-Lun


    1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earth’s climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

  18. Percutaneous interventions in Fontan circulation

    Directory of Open Access Journals (Sweden)

    Eduardo Franco


    Conclusions: Interventional catheterization procedures are often necessary to reach and maintain the fragile Fontan circulation, mainly in patients with right morphology systemic ventricles and fenestrated Fontan conduits.

  19. Atmospheric Circulation of Exoplanets (United States)

    Showman, A. P.; Cho, J. Y.-K.; Menou, K.


    We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from solar system studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-water, and two-dimensional nondivergent models. We then survey key concepts in atmospheric dynamics, including the importance of planetary rotation, the concept of balance, and simple scaling arguments to show how turbulent interactions generally produce large-scale east-west banding on rotating planets. We next turn to issues specific to giant planets, including their expected interior and atmospheric thermal structures, the implications for their wind patterns, and mechanisms to pump their east-west jets. Hot Jupiter atmospheric dynamics are given particular attention, as these close-in planets have been the subject of most of the concrete developments in the study of exoplanetary atmospheres. We then turn to the basic elements of circulation on terrestrial planets as inferred from solar system studies, including Hadley cells, jet streams, processes that govern the large-scale horizontal temperature contrasts, and climate, and we discuss how these insights may apply to terrestrial exoplanets. Although exoplanets surely possess a greater diversity of circulation regimes than seen on the planets in our solar system, our guiding philosophy is that the multidecade study of solar system planets reviewed here provides a foundation upon which our understanding of more exotic exoplanetary meteorology must build.

  20. Circulating tumor cells (United States)

    Raimondi, Cristina; Nicolazzo, Chiara; Gradilone, Angela; Giannini, Giuseppe; De Falco, Elena; Chimenti, Isotta; Varriale, Elisa; Hauch, Siegfried; Plappert, Linda; Cortesi, Enrico; Gazzaniga, Paola


    The hypothesis of the “liquid biopsy” using circulating tumor cells (CTCs) emerged as a minimally invasive alternative to traditional tissue biopsy to determine cancer therapy. Discordance for biomarkers expression between primary tumor tissue and circulating tumor cells (CTCs) has been widely reported, thus rendering the biological characterization of CTCs an attractive tool for biomarkers assessment and treatment selection. Studies performed in metastatic colorectal cancer (mCRC) patients using CellSearch, the only FDA-cleared test for CTCs assessment, demonstrated a much lower yield of CTCs in this tumor type compared with breast and prostate cancer, both at baseline and during the course of treatment. Thus, although attractive, the possibility to use CTCs as therapy-related biomarker for colorectal cancer patients is still limited by a number of technical issues mainly due to the low sensitivity of the CellSearch method. In the present study we found a significant discordance between CellSearch and AdnaTest in the detection of CTCs from mCRC patients. We then investigated KRAS pathway activating mutations in CTCs and determined the degree of heterogeneity for KRAS oncogenic mutations between CTCs and tumor tissues. Whether KRAS gene amplification may represent an alternative pathway responsible for KRAS activation was further explored. KRAS gene amplification emerged as a functionally equivalent and mutually exclusive mechanism of KRAS pathway activation in CTCs, possibly related to transcriptional activation. The serial assessment of CTCs may represent an early biomarker of treatment response, able to overcome the intrinsic limit of current molecular biomarkers represented by intratumor heterogeneity. PMID:24521660

  1. The NASA Bed Rest Project (United States)

    Rhodes, Bradley; Meck, Janice


    NASA s National Vision for Space Exploration includes human travel beyond low earth orbit and the ultimate safe return of the crews. Crucial to fulfilling the vision is the successful and timely development of countermeasures for the adverse physiological effects on human systems caused by long term exposure to the microgravity environment. Limited access to in-flight resources for the foreseeable future increases NASA s reliance on ground-based analogs to simulate these effects of microgravity. The primary analog for human based research will be head-down bed rest. By this approach NASA will be able to evaluate countermeasures in large sample sizes, perform preliminary evaluations of proposed in-flight protocols and assess the utility of individual or combined strategies before flight resources are requested. In response to this critical need, NASA has created the Bed Rest Project at the Johnson Space Center. The Project establishes the infrastructure and processes to provide a long term capability for standardized domestic bed rest studies and countermeasure development. The Bed Rest Project design takes a comprehensive, interdisciplinary, integrated approach that reduces the resource overhead of one investigator for one campaign. In addition to integrating studies operationally relevant for exploration, the Project addresses other new Vision objectives, namely: 1) interagency cooperation with the NIH allows for Clinical Research Center (CRC) facility sharing to the benefit of both agencies, 2) collaboration with our International Partners expands countermeasure development opportunities for foreign and domestic investigators as well as promotes consistency in approach and results, 3) to the greatest degree possible, the Project also advances research by clinicians and academia alike to encourage return to earth benefits. This paper will describe the Project s top level goals, organization and relationship to other Exploration Vision Projects, implementation

  2. Experimental Visualization of Flows in Packed Beds of Spheres (United States)

    Hendricks, R. C.; Lattime, S.; Braun, M. J.; Athavale, M. M.


    The flow experiment consisted of an oil tunnel, 76 x 76 mm in cross-section, packed with lucite spheres. The index of refraction of the working fluid and the spheres were matched such that the physical spheres invisible to the eye and camera. By seeding the oil and illuminating the packed bed with planar laser light sheet, aligned in the direction of the bulk flow, the system fluid dynamics becomes visible and the 2-D projection was recorded at right angles to the bulk flow. The planar light sheet was traversed from one side of the tunnel to the other providing a simulated 3-D image of the entire flow field. The boundary interface between the working fluid and the sphere rendered the sphere black permitting visualization of the exact locations of the circular interfaces in both the axial and transverse directions with direct visualization of the complex interstitial spaces between the spheres within the bed. Flows were observed near the surfaces of a plane and set of spheres as well as minor circles that appear with great circles and not always uniformly ordered. In addition to visualizing a very complex flow field, it was observed that flow channeling in the direction of the bulk flow occurs between sets of adjacent spheres. Still photographs and video recordings illustrating the flow phenomena will be presented.

  3. Bed erosion control at 60 degree river confluence using vanes (United States)

    Wuppukondur, Ananth; Chandra, Venu


    Confluences are common occurrences along natural rivers. Hydrodynamics at the confluence is complex due to merging of main and lateral flows with different characteristics. Bed erosion occurs at the confluence due to turbulence and also secondary circulation induced by centrifugal action of the lateral flow. The eroded sediment poses various problems in the river ecosystem including river bank failure. Reservoirs are majorly affected due to sediment deposition which reduces storage capacity. The bed erosion also endangers stability of pipeline crossings and bridge piers. The aim of this experimental study is to check the performance of vanes in controlling bed erosion at the confluence. Experiments are performed in a 600 confluence mobile bed model with a non-uniform sediment of mean particle size d50 = 0.28mm. Discharge ratio (q=ratio of lateral flow discharge to main flow discharge) is maintained as 0.5 and 0.75 with a constant average main flow depth (h) of 5cm. Vanes of width 0.3h (1.5cm) and thickness of 1 mm are placed along the mixing layer at an angle of 150, 300 and 600(with respect to main flow) to perform the experiments. Also, two different spacing of 2h and 3h (10cm and 15cm) between the vanes are used for conducting the experiments. A digital point gauge with an accuracy of ±0.1mm is used to measure bed levels and flow depths at the confluence. An Acoustic Doppler Velocitimeter (ADV) with a frequency of 25Hz and accuracy of ±1mm/s is used to measure flow velocities. Maximum scour depth ratio Rmax, which is ratio between maximum scour depth (Ds) and flow depth (h), is used to present the experimental results.From the experiments without vanes, it is observed that the velocities are increasing along the mixing layer and Rmax=0.82 and 1.06, for q=0.5 and 0.75, respectively. The velocities reduce with vanes since roughness increases along the mixing layer. For q=0.5 and 0.75, Rmax reduces to 0.62 and 0.7 with vanes at 2h spacing, respectively. Similarly


    Energy Technology Data Exchange (ETDEWEB)

    R.E Ayala; V.S. Venkataramani; Javad Abbasian; Rachid B. Slimane; Brett E. Williams; Minoo K. Zarnegar; James R. Wangerow; Andy H. Hill


    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost


    Energy Technology Data Exchange (ETDEWEB)



    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 °C (900-1000 °F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 °C (650 °F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 °C (650-1000 °F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a

  6. Cross-bedding Related Anisotropy and its Role in the Orientation of Joints in an Aeolian Sandstone (United States)

    Deng, S.; Cilona, A.; Mapeli, C.; Panfilau, A.; Aydin, A.; Prasad, M.


    Previous research revealed that the cross-bedding related anisotropy in aeolian sandstones affects the orientation of compaction bands, also known as anticracks. We hypothesize that cross-bedding should a have similar influence on the orientation of the joints within the same rock at the same location. To test this hypothesis, we investigated the relationship between the cross-beds and the cross-bed package confined joints in the Jurassic aeolian Aztec Sandstone cropping out in the Valley of Fire State Park, Nevada. The field data demonstrates that the cross-bed package confined joints occur at high-angle to bedding and trend roughly parallel to the dip direction of the cross-beds. This shows that the cross-bed orientation and the associated anisotropy also exert a strong control on the formation and orientation of the joints. In order to characterize the anisotropy due to cross-bedding in the Aztec Sandstone, we measured the P-wave velocities parallel and perpendicular to bedding from 11 samples in the laboratory using a bench-top ultrasonic assembly. The measured P-wave anisotropy is about 13% on average. Based on these results, a numerical model based on the generalized Hooke's law for anisotropic materials is analyzed assuming the cross-bedded sandstone to be transversely isotropic. Using this model, we tested various cross-bed orientations as well as different strain boundary conditions (uniaxial, axisymmetric and triaxial). It is possible to define a boundary condition under which the modeled results roughly match with the observed relationship between cross-bed package confined joints and cross-beds. These results have important implications for fluid flow through aeolian sandstones in reservoirs and aquifers.

  7. Experimental study of natural circulation flow instability in rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tao; Qi, Shi; Song, Mingqiang [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Passive Nuclear Safety Technology, Beijing (China). Beijing Key Lab.; Xiao, Zejun [Nuclear, Reactor Thermal Hydraulics Technology, Chengdu (China). CNNC Key Lab.


    Experiments of natural circulation flow instability were conducted in rectangular channels with 5 mm and 10 mm wide gaps. Results for different heating powers were obtained. The results showed that the flow will tend to be instable with the growing of heating power. The oscillation period of pressure D-value and volume flow are the same, but their phase positions are opposite. They both can be described by trigonometric functions. The existence of edge position and secondary flow will strengthen the disturbance of fluid flow in rectangle channels, which contributes to heat transfer. The disturbance of bubble and fluid will be strengthened, especially in the saturated boiling section, which make it possible for the mixing flow. The results also showed that the resistance in 5 mm channel is bigger than that in 10 mm channel, it is less likely to form stable natural circulation in the subcooled region.

  8. Pulling a patient up in bed (United States)

    Moving a patient in bed ... takes at least 2 people to safely move a patient up in bed. Friction from rubbing can ... A slide sheet is the best way to prevent friction. If you do not have one, you ...

  9. Protecting Your Home from Bed Bugs (United States)

    ... your home: Inspect the luggage rack in your hotel room for bed bugs. Check secondhand furniture, beds, ... Administrator Current Leadership Organization Chart Staff Directory Planning, Budget and Results Jobs and Internships Headquarters Offices Regional ...

  10. Videos, Webinars, Blogs Related to Bed Bugs (United States)

    These tools provide practical insight on issues such as integrated pest management (IPM) for schools, bed bug bites, how carpet beetles can help, bed bugs as hitchhikers, and preventing and controlling infestations.

  11. Mixed convection in fluid superposed porous layers

    CERN Document Server

    Dixon, John M


    This Brief describes and analyzes flow and heat transport over a liquid-saturated porous bed. The porous bed is saturated by a liquid layer and heating takes place from a section of the bottom. The effect on flow patterns of heating from the bottom is shown by calculation, and when the heating is sufficiently strong, the flow is affected through the porous and upper liquid layers. Measurements of the heat transfer rate from the heated section confirm calculations. General heat transfer laws are developed for varying porous bed depths for applications to process industry needs, environmental sciences, and materials processing. Addressing a topic of considerable interest to the research community, the brief features an up-to-date literature review of mixed convection energy transport in fluid superposed porous layers.

  12. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 2: Accident and Thermal Fluids Analysis PIRTs

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Sydney J [ORNL; Corradini, M. [University of Wisconsin; Fisher, Stephen Eugene [ORNL; Gauntt, R. [Sandia National Laboratories (SNL); Geffraye, G. [CEA, France; Gehin, Jess C [ORNL; Hassan, Y. [Texas A& M University; Moses, David Lewis [ORNL; Renier, John-Paul [ORNL; Schultz, R. [Idaho National Laboratory (INL); Wei, T. [Argonne National Laboratory (ANL)


    An accident, thermal fluids, and reactor physics phenomena identification and ranking process was conducted by a panel of experts on the next generation nuclear plant (NGNP) design (consideration given to both pebble-bed and prismatic gas-cooled reactor configurations). Safety-relevant phenomena, importance, and knowledge base were assessed for the following event classes: (1) normal operation (including some reactor physics aspects), (2) general loss of forced circulation (G-LOFC), (3) pressurized loss-of-forced circulation (P-LOFC), (4) depressurized loss-of-forced circulation (D-LOFC), (5) air ingress (following D-LOFC), (6) reactivity transients - including anticipated transients without scram (ATWS), (7) processes coupled via intermediate heat exchanger (IHX) (IHX failure with molten salt), and (8) steam/water ingress. The panel's judgment of the importance ranking of a given phenomenon (or process) was based on the effect it had on one or more figures of merit or evaluation criteria. These included public and worker dose, fuel failure, and primary (and other safety) system integrity. The major phenomena of concern that were identified and categorized as high importance combined with medium to low knowledge follow: (1) core coolant bypass flows (normal operation), (2) power/flux profiles (normal operation), (3) outlet plenum flows (normal operation), (4) reactivity-temperature feedback coefficients for high-plutonium-content cores (normal operation and accidents), (5) fission product release related to the transport of silver (normal operation), (6)emissivity aspects for the vessel and reactor cavity cooling system (G-LOFC), (7) reactor vessel cavity air circulation and heat transfer (G-LOFC), and (8)convection/radiation heating of upper vessel area (P-LOFC).

  13. Flow, turbulence, and drag associated with engineered log jams in a fixed-bed experimental channel (United States)

    Engineered log jams (ELJs) have become attractive alternatives for river restoration and bank stabilization programs. Yet the effects of ELJs on turbulent flow and the fluid forces acting on the ELJs are not well known, and such information could inform design criteria. In this study, a fixed-bed ph...

  14. Dynamic transition between fixed- and mobile-bed: mathematical and numerical aspects (United States)

    Zugliani, Daniel; Pasqualini, Matteo; Rosatti, Giorgio


    Free-surface flows with high sediment transport (as debris flow or hyper-concentrated flow) are composed by a mixture of fluid and solid phase, usually water and sediment. When these flows propagate over loose beds, particles constituting the mixture of water and sediments strongly interact with the ones forming the bed, leading to erosion or deposition. However, there are lots of other situations when the mixture flows over rigid bedrocks or over artificially paved transects, so there is no mass exchange between bed and mixture. The two situations are usually referred to as, respectively, mobile- and fixed-bed conditions. From a mathematical point of view, the systems of Partial Differential Equations (PDEs) that describe these flows derive from mass and momentum balance of both phases, but, the two resulting PDEs systems are different. The main difference concerns the concentration: in the mobile-bed condition, the concentration is linked to the local flow conditions by means of a suitable rheological relation, while in the fixed-bed case, the concentration is an unknown of the problem. It is quite common that a free surface flow with high sediment transport, in its path, encounters both conditions. In the recent work of Rosatti & Zugliani 2015, the mathematical and numerical description of the transition between fixed- and mobile-bed was successfully resolved, for the case of low sediment transport phenomena, by the introduction of a suitable erodibility variable and satisfactory results were obtained. The main disadvantage of the approach is related to the erodibility variable, that changes in space, based on bed characteristics, but remains constant in time. However, the nature of the bed can change dynamically as result of deposition over fixed bed or high erosion over mobile bed. With this work, we extend the applicability of the mentioned approach to the more complex PDEs describing the hyper-concentrated flow. Moreover, we introduce a strategy that allows

  15. Particle pressures in fluidized beds. Second year annual report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, C.S.; Rahman, K.; Hu, X.; Jin, C.


    Campbell and Wang (1991) showed that the particle pressures in gas-fluidized beds were largely generated by the passage of bubbles. In particular, they showed that the average particle pressure exerted on the side walls scaled with the average size of the bubble. This immediately brings to mind two questions: (1) what is it about bubbles that leads to particle pressure generation and (2) would there be measurable particle pressures in liquid-fluidized beds which, while unstable, do not bubble? This project is largely aimed at answering these two questions. To attack the first problem, the authors have built a two-dimensional gas-fluidized bed into which bubbles may be injected and the distribution of particle-pressure measured. For the latter, other experiments are being performed in liquid fluidized beds. However, it soon became apparent that the particle pressures generated in the liquid beds are extremely small. This has pointed that phase of the research in two directions. The first is the design and construction of a third, and more sensitive, from of the particle pressure transducer. The second approach arose from reflection on what ultimately was the utility of the current research. This led to the development of a generic stability model, in which all modeled terms are left unspecified. From analyzing this model, they have developed an experimental plan that, by measuring the characteristics of voidage disturbances and comparing with the theory, will allow them to back out appropriate values for the modeled terms. The results will not only yield insight into the particle pressure, but also of the fluid drag. The latter results may be used to evaluate common models for these terms.

  16. Sino-Danish Brain Circulation

    DEFF Research Database (Denmark)

    Bertelsen, Rasmus Gjedssø; Du, Xiangyun; Søndergaard, Morten Karnøe


    China is faced with urgent needs to develop an economically and environmentally sustainable economy based on innovation and knowledge. Brain circulation and research and business investments from the outside are central for this development. Sino-American brain circulation and research...... and investment by overseas researchers and entrepreneurs are well described. In that case, the US is the center of global R&D and S&T. However, the brain circulation and research and investments between a small open Scandinavian economy, such as Denmark, and the huge developing economy of China are not well...... understood. In this case, Denmark is very highly developed, but a satellite in the global R&D and S&T system. With time and the growth of China as a R&D and S&T power house, both Denmark and China will benefit from brain circulation between them. Such brain circulation is likely to play a key role in flows...

  17. Comparison of Ocular Outcomes in Two 14-Day Bed Rest Studies (United States)

    Cromwell, R. L.; Zanello, S. B.; Yarbough, P. O.; Taibbi, G.; Vizzeri, G.


    Reports of astronauts visual changes raised concern about ocular health during long-duration spaceflight. Some of these findings included hyperopic shifts, choroidal folds, optic disc edema, retinal nerve fiber layer (RNFL) thickening, and cotton wool spots. While the etiology remains unknown, hypotheses speculate that hypertension in the brain caused by cephalad fluid shifts during spaceflight is a possible mechanism for these ocular changes. Head-down tilt (HDT) bed rest is a spaceflight analog that induces cephalad fluid shifts. In addition, previous studies of the HDT position demonstrated body fluid shifts associated with changes in intraocular pressure (IOP). For these reasons, vision monitoring of HDT bed rest subjects was implemented for NASA bed rest studies. Subjects selected for these studies were healthy adults (14 males and 5 females). Average age was 37.5 plus or minus 9.1 years, weight was 77.4 plus or minus 11.3 Kg, and height was 173.4 plus or minus 7.2 14 cm. Controlled conditions followed for all NASA bed rest studies were implemented. These conditions included factors such as eating a standardized diet, maintaining a strict sleep wake cycle, and remaining in bed for 24 hours each day. In one study, subjects maintained a horizontal (0 degree) position while in bed and were exercised six days per week with an integrated resistance and aerobic training (iRAT) program. In the other study, subjects were placed at 6 degrees HDT while in bed and did not engage in exercise. All subjects underwent pre- and post bed rest vision testing. While the battery of vision tests for each study was not identical, measures common to both studies will be presented. These measures included IOP and measures that provided an indication of optic disc swelling as derived from optical coherence tomography (OCT) testing: average retinal nerve fiber layer (RNFL) thickness (millimeters), disc area (square millimeters), rim area (square millimters), and average cup to disc (C

  18. Review of acute cancer beds.

    LENUS (Irish Health Repository)

    Evans, D S


    A review of admissions to cancer services at University Hospital Galway (UHG) was undertaken to assess the appropriateness of hospital usage. All cancer specialty patients admitted from 26-28 May 2009 were reviewed (n = 82). Chi square tests, Exact tests, and One-way ANOVA were utilised to analyse key issues emerging from the data. Fifty (61%) were classified as emergencies. Twenty three (67%) occupied a designated cancer bed with 24 (30%) in outlying non-oncology wards. The mean length of stay was 29.3 days. Possible alternatives to admission were identified for 15 (19%) patients. There was no evidence of discharge planning for 50 (60%) admissions. There is considerable potential to make more appropriate utilisation of UHG for cancer patients, particularly in terms of reducing bed days and length of stay and the proportion of emergency cancer admissions, and further developing integrated systems of discharge planning.

  19. Incipient motion of gravel and coal beds

    Indian Academy of Sciences (India)

    ... Shields parameter, particle Froude number, non-dimensional particle diameter and non-dimensional flow depth. Equations of critical bed shear stress for the initial movement of gravel and coal beds were obtained using experimental data. The method of application of critical bed shear stress equations is also mentioned.

  20. Biochemical and hormonal changes in endurance trained volunteers during and after exposure to bed rest and chronic hyperhydration (United States)

    Zorbas, Y. G.; Naexu, K. A.; Yaroshenko, Y. N.


    The objective of this investigation was to assess the effect of a daily intake of fluid and salt supplementation on biochemical and hormonal changes in endurance trained volunteers aged 19-24 yrs during 30-day bed rest and during 15 days of post bed rest period. The studies were performed on 30 long distance runners aged 19-24 yrs who had a peak oxygen uptake of 66 ml/kg/min and had taken 14.5 km/day on average prior to their participation in the study. The volunteers were divided into three groups: the volunteers in the first group were under normal ambulatory conditions (control subjects); the second group subjected to bed rest alone unsupplemented (bed rested volunteers); the third group was submitted to bed rest and consumed daily 30 ml water/kg bodyweight and 0.1 g of sodium chloride (NaCl)/kg body weight (supplemented bed rested volunteers). The second and third groups of volunteers were kept under a rigorous bed rest regime for 30 days. During the pre bed rest period of 15 days, during the bed rest period of 30 days and during the post bed rest period of 15 days cyclic adenosine monophosphate, cyclic guanosine monophosphate, prostaglandins of pressor, prostaglandins depressor groups, renin activity in plasma and aldosterone in plasma and in urine were determined. We found that in bed rested volunteers without fluid and salt supplementation intake plasma renin activity and aldosterone in plasma and urine continued to increase during the bed rest period as plasma volume decreased. Moreover, in this group, cyclic nucleotides measured as an indicator of adrenosympathetic system activity increased and prostaglandins as local vasoactive substances decreased during the bed rest period. These variables returned toward the baselines in the post bed rest period as plasma volume deficit was restituted. On the other hand, the hormonal levels in the other two groups remained rather constant during the experimental period. We concluded that daily intake of fluid and salt

  1. [Harvey and his theory of circulation]. (United States)

    Wolters, Frank J


    In 1628 the English physician William Harvey (1578-1657) published his revolutionary theory that blood circulates through the body driven by the heart. This challenged the long-standing teachings of Hippocrates and Galen concerning 4 different bodily fluids or 'humours' that flowed through separate arterial and venous vascular systems. Harvey gained considerable influence in society as a member of the prestigious Royal College of Physicians in London and as personal physician to King James I and King Charles I. He strove for a more empirical foundation of medicine by means of anatomic demonstrations and vivisections. Despite enduring considerable criticism he managed to disseminate his ideas around the influential universities of Europe in the course of his lifetime. However, consequent changes in practice would not be brought about until decades after Harvey's death, when Galenist treatments such as blood-letting were gradually abandoned.

  2. Circulating Biomarkers for Duchenne Muscular Dystrophy. (United States)

    Aartsma-Rus, Annemieke; Spitali, Pietro


    Duchenne muscular dystrophy is the most common form of muscular dystrophy. Genetic and biochemical research over the years has characterized the cause, pathophysiology and development of the disease providing several potential therapeutic targets and/or biomarkers. High throughput - omic technologies have provided a comprehensive understanding of the changes occurring in dystrophic muscles. Murine and canine animal models have been a valuable source to profile muscles and body fluids, thus providing candidate biomarkers that can be evaluated in patients. This review will illustrate known circulating biomarkers that could track disease progression and response to therapy in patients affected by Duchenne muscular dystrophy. We present an overview of the transcriptomic, proteomic, metabolomics and lipidomic biomarkers described in literature. We show how studies in muscle tissue have led to the identification of serum and urine biomarkers and we highlight the importance of evaluating biomarkers as possible surrogate endpoints to facilitate regulatory processes for new medicinal products.

  3. Scaling of pressurized fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Guralnik, S.; Glicksman, L.R.


    The project has two primary objectives. The first is to verify a set of hydrodynamic scaling relationships for commercial pressurized fluidized bed combustors (PFBC). The second objective is to investigate solids mixing in pressurized bubbling fluidized beds. American Electric Power`s (AEP) Tidd combined-cycle demonstration plant will provide time-varying pressure drop data to serve as the basis for the scaling verification. The verification will involve demonstrating that a properly scaled cold model and the Tidd PFBC exhibit hydrodynamically similar behavior. An important issue in PFBC design is the spacing of fuel feed ports. The feed spacing is dictated by the fuel distribution and the mixing characteristics within the bed. After completing the scaling verification, the cold model will be used to study the characteristics of PFBCs. A thermal tracer technique will be utilized to study mixing both near the fuel feed region and in the far field. The results allow the coal feed and distributor to be designed for optimal heating.

  4. Natural gas in coal beds

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, A.I.; Voytov, G.I.


    The special importance is noted of the problem of computing and careful use of the energy raw material, coal, oil and natural gases. An examination is made of the mechanism for the formation of carboniferous gases in the beds with the use of the model of coal macromolecule. A schematic section is presented for the coal field and plan for vertical gas zonality. The change in chemical composition of the natural gases with depth is governed by the countermovement of the natural gases: from top to bottom the gases of the earth's atmosphere move, mainly oxygenand nitrogen, from bottom to top, the gases of metamorphic and deep origin. Constant isotope composition of the carbon in the fossil coals is noted. The distribution of the quanitity deltaC/sup 13/ of carbon in the fossil coals of the Donets basin is illustrated. The gas content of the coal beds and gas reserves are discussed. The flowsheet is shown for the unit for degasification of the coal bed before the cleaning face.

  5. Multiple vertebral fluid-fluid levels

    Energy Technology Data Exchange (ETDEWEB)

    Bladt, O.; Demaerel, P.; Catry, F.; Breuseghem, I. Van [University Hospitals Gasthuisberg, Department of Radiology, Leuven (Belgium); Ballaux, F. [University Hospitals Gasthuisberg, Department of Pathology, Leuven (Belgium); Samson, I. [University Hospitals Gasthuisberg, Department of Orthopedic Surgery, Leuven (Belgium)


    We present a case of multiple vertebral metastases, with multiple fluid-fluid levels, from a moderately to poorly differentiated carcinoma of unknown origin. We suggest that fluid-fluid levels in multiple vertebral lesions are highly suggestive of bone metastases. (orig.)

  6. Thermal-hydraulic analysis techniques for axisymmetric pebble bed nuclear reactor cores. [PEBBLE code

    Energy Technology Data Exchange (ETDEWEB)

    Stroh, K.R.


    The pebble bed reactor's cylindrical core volume contains a random bed of small, spherical fuel-moderator elements. These graphite spheres, containing a central region of dispersed coated-particle fissile and fertile material, are cooled by high pressure helium flowing through the connected interstitial voids. A mathematical model and numerical solution technique have been developed which allow calculation of macroscopic values of thermal-hydraulic variables in an axisymmetric pebble bed nuclear reactor core. The computer program PEBBLE is based on a mathematical model which treats the bed macroscopically as a generating, conducting porous medium. The steady-state model uses a nonlinear Forchheimer-type relation between the coolant pressure gradient and mass flux, with newly derived coefficients for the linear and quadratic resistance terms. The remaining equations in the model make use of mass continuity, and thermal energy balances for the solid and fluid phases.

  7. Seventeen-lump model for the simulation of an industrial fluid ...

    Indian Academy of Sciences (India)



    Oct 6, 2017 ... Fluidized bed catalytic cracking (FCC); genetic algorithm; modelling; simulation. 1. Introduction. The fluid catalytic cracking .... evolutionary optimization technique, genetic algorithm. (GA) [20, 21], to obtain the rate ...... [2] Weekman V W 1969 Kinetics and dynamics of catalytic cracking selectivity in fixed bed ...

  8. Waves, circulation and vertical dependence (United States)

    Mellor, George


    Longuet-Higgins and Stewart (J Fluid Mech 13:481-504, 1962; Deep-Sea Res 11:529-562, 1964) and later Phillips (1977) introduced the problem of waves incident on a beach, from deep to shallow water. From the wave energy equation and the vertically integrated continuity equation, they inferred velocities to be Stokes drift plus a return current so that the vertical integral of the combined velocities was nil. As a consequence, it can be shown that velocities of the order of Stokes drift rendered the advective term in the momentum equation negligible resulting in a simple balance between the horizontal gradients of the vertically integrated elevation and wave radiation stress terms; the latter was first derived by Longuet-Higgins and Stewart. Mellor (J Phys Oceanogr 33:1978-1989, 2003a), noting that vertically integrated continuity and momentum equations were not able to deal with three-dimensional numerical or analytical ocean models, derived a vertically dependent theory of wave-circulation interaction. It has since been partially revised and the revisions are reviewed here. The theory is comprised of the conventional, three-dimensional, continuity and momentum equations plus a vertically distributed, wave radiation stress term. When applied to the problem of waves incident on a beach with essentially zero turbulence momentum mixing, velocities are very large and the simple balance between elevation and radiation stress gradients no longer prevails. However, when turbulence mixing is reinstated, the vertically dependent radiation stresses produce vertical velocity gradients which then produce turbulent mixing; as a consequence, velocities are reduced, but are still larger by an order of magnitude compared to Stokes drift. Nevertheless, the velocity reduction is sufficient so that elevation set-down obtained from a balance between elevation gradient and radiation stress gradients is nearly coincident with that obtained by the aforementioned papers. This paper

  9. Laminar heat transfer in a moving bed channel using a two energy equation model

    Energy Technology Data Exchange (ETDEWEB)

    Pivem, Ana Cristina; Lemos, Marcelo J.S. de [Departamento de Energia, IEME, Instituto Tecnologico de Aeronautica - ITA, Sao Jose dos Campos, SP (Brazil)], E-mails:,


    The objective of this work is to present simulations for laminar heat transfer in a porous reactor, in which both the permeable bed and the working fluid moves with respect to the fixed bounding walls. For simulating the flow and heat transfer, a two-energy equation model is applied in addition to a mechanical model. Transport equations are discretized using the control-volume method and the system of algebraic equations are relaxed via the SIMPLE algorithm. The effects of solid-to-fluid thermal conductivity and solid-to-fluid ratio of thermal capacity are analyzed. (author)

  10. Fundamentals of Geophysical Fluid Dynamics (United States)

    McWilliams, James C.


    Earth's atmosphere and oceans exhibit complex patterns of fluid motion over a vast range of space and time scales. These patterns combine to establish the climate in response to solar radiation that is inhomogeneously absorbed by the materials comprising air, water, and land. Spontaneous, energetic variability arises from instabilities in the planetary-scale circulations, appearing in many different forms such as waves, jets, vortices, boundary layers, and turbulence. Geophysical fluid dynamics (GFD) is the science of all these types of fluid motion. This textbook is a concise and accessible introduction to GFD for intermediate to advanced students of the physics, chemistry, and/or biology of Earth's fluid environment. The book was developed from the author's many years of teaching a first-year graduate course at the University of California, Los Angeles. Readers are expected to be familiar with physics and mathematics at the level of general dynamics (mechanics) and partial differential equations. Covers the essential GFD required for atmospheric science and oceanography courses Mathematically rigorous, concise coverage of basic theory and applications to both oceans and atmospheres Author is a world expert; this book is based on the course he has taught for many years Exercises are included, with solutions available to instructors from

  11. Agglomeration-Free Distributor for Fluidized Beds (United States)

    Ouyang, F.; Sinica, A.; Levenspiel, O.


    New gas distributor for fluidized beds prevents hot particles from reacting on it and forming hard crust. In reduction of iron ore in fluidized bed, ore particles do not sinter on distributor and perhaps clog it or otherwise interfere with gas flow. Distributor also relatively cool. In fluidized-bed production of silicon, inflowing silane does not decompose until within bed of hot silicon particles and deposits on them. Plates of spiral distributor arranged to direct incoming gas into spiral flow. Turbulence in flow reduces frequency of contact between fluidized-bed particles and distributor.

  12. The Effects of Long Duration Bed Rest on Functional Mobility and Balance: Relationship to Resting State Motor Cortex Connectivity (United States)

    Erdeniz, B.; Koppelmans, V.; Bloomberg, J. J.; Kofman, I. S.; DeDios, Y. E.; Riascos-Castaneda, R. F.; Wood, S. J.; Mulavara, A. P.; Seidler, R. D.


    NASA offers researchers from a variety of backgrounds the opportunity to study bed rest as an experimental analog for space flight. Extended exposure to a head-down tilt position during long duration bed rest can resemble many of the effects of a low-gravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The aim of our study is to a) identify changes in brain function that occur with prolonged bed rest and characterize their recovery time course; b) assess whether and how these changes impact behavioral and neurocognitive performance. Thus far, we completed data collection from six participants that include task based and resting state fMRI. The data have been acquired through the bed rest facility located at the University of Texas Medical Branch (Galveston, TX). Subjects remained in bed with their heads tilted down 6 degrees below their feet for 70 consecutive days. Behavioral measures and neuroimaging assessments were obtained at seven time points: a) 7 and 12 days before bed rest; b) 7, 30, and 65 days during bed rest; and c) 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (FcMRI) analysis was performed to assess the connectivity of motor cortex in and out of bed rest. We found a decrease in motor cortex connectivity with vestibular cortex and the cerebellum from pre bed rest to in bed rest. We also used a battery of behavioral measures including the functional mobility test and computerized dynamic posturography collected before and after bed rest. We will report the preliminary results of analyses relating brain and behavior changes. Furthermore, we will also report the preliminary results of a spatial working memory task and vestibular stimulation during in and out of bed rest.

  13. Gyroelastic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kerbel, G.D.


    A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch.

  14. Using Acoustics to Determine Eelgrass Bed Distribution and to Assess the Seasonal Variation of Ecosystem Service. (United States)

    Sonoki, Shiori; Shao, Huamei; Morita, Yuka; Minami, Kenji; Shoji, Jun; Hori, Masakazu; Miyashita, Kazushi


    Eelgrass beds are an important source of primary production in coastal ecosystems. Understanding seasonal variation in the abundance and distribution of eelgrass is important for conservation, and the objectives of this study were to 1) monitor seasonal variation in eelgrass beds using an acoustic monitoring method (Quantitative echo sounder) and 2) broadly quantify the carbon circulation function. We obtained acoustic data of eelgrass beds in coastal areas north and east of Ikunojima Island. Surveys were conducted nine times over the 3-year period from 2011 to 2013 in order to monitor seasonal variation. Acoustic data were obtained and used to estimate the spatial distribution of eelgrass by geostatistical methods. To determine supporting services, we determined carbon sink and carbon fixation by eelgrass beds using data from the National Research Institute of Fisheries and Environment of Inland Sea (2011). The height and distribution of eelgrass beds were at a maximum in May and at a minimum in November of each year. Distribution trends were different between the north and east areas. Supporting services showed the same patterns throughout the year. The area of distribution was considered to be coincident with the life history of eelgrass. Distribution differed by area and changed yearly due to the effects of bottom characteristics and wind direction. Quantifying the supporting services of eelgrass beds was shown to be useful for managing the conservation of coastal ecosystems.

  15. Fluid circulating pump operated by same incident solar energy which heats energy collection fluid (United States)

    Collins, E. R.


    The application of using a spacecraft solar powered pump terrestrially to reduce or eliminate the need for fossil fuel generated electricity for domestic solar hot water systems was investigated. A breadboard prototype model was constructed utilizing bimetals to convert thermal energy into mechanical motion by means of a toggle operated shutter mechanism. Although it did not meet expected thermal efficiency, the prototype model was sufficient to demonstrate the mechanical concept.

  16. Coal. Fluidized bed, a world record; Charbon. Lit fluidise: record mondial

    Energy Technology Data Exchange (ETDEWEB)



    In April 1996, the `Societe Provencale du Lit Fluidise`, a subsidiary of Electricite de France (EDF) has put into service in Gardanne, the most powerful circulating fluidized bed boiler in the world, producing 600 MWt; it was constructed by GEC Alsthom Stein Industrie, and will strongly reduce the SO{sub 2} emissions from the coal power plant of Gardanne, which use a highly sulfurous coal. New regulations concerning the French coal industry are also introduced

  17. Removal of hydrogen sulfide from drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Gilligan Jr., T. J.


    The present invention relates to a process for scavenging hydrogen sulfide which frequently becomes entrained in drilling fluid during the course of drilling operations through subterranean formations. The process consists of introducing a solid oxidant in powdered form into the circulating drilling fluid when hydrogen sulfide is encountered. The solid oxidants are selected from the group consisting of calcium hypochlorite (Ca-(OCl)/sub 2/), sodium perborate (NaBO/sub 3/), potassium permanganate (KMnO/sub 4/), and potassium peroxydisulfate (K/sub 2/S/sub 2/O/sub 8/). The solid oxidants are soluble in the drilling fluid, promoting fast and complete scavenging reactions without adversely altering the drilling fluid rheology.

  18. Fluid Mechanics of Blood Clot Formation. (United States)

    Fogelson, Aaron L; Neeves, Keith B


    Intravascular blood clots form in an environment in which hydrodynamic forces dominate and in which fluid-mediated transport is the primary means of moving material. The clotting system has evolved to exploit fluid dynamic mechanisms and to overcome fluid dynamic challenges to ensure that clots that preserve vascular integrity can form over the wide range of flow conditions found in the circulation. Fluid-mediated interactions between the many large deformable red blood cells and the few small rigid platelets lead to high platelet concentrations near vessel walls where platelets contribute to clotting. Receptor-ligand pairs with diverse kinetic and mechanical characteristics work synergistically to arrest rapidly flowing cells on an injured vessel. Variations in hydrodynamic stresses switch on and off the function of key clotting polymers. Protein transport to, from, and within a developing clot determines whether and how fast it grows. We review ongoing experimental and modeling research to understand these and related phenomena.

  19. Sources of error when tracking irrigation fluids during hysteroscopic procedures. (United States)

    Boyd, H R; Stanley, C


    To evaluate the ability of circulating nurses to estimate input and outgo of irrigating fluids used during hysteroscopic procedures in a hospital operating room. Simulation of intraoperative measurements (Canadian Task Force classification II-1). Operating room. Intervention. Circulating nurses estimated fluid volumes under circumstances simulating actual conditions of hysteroscopic ablative or resection procedures. Three-liter glycine irrigation bags were overfilled by an average of 2.8% (62-125 ml). Estimates of fluid remaining in partially emptied bags were in error by an average ranging from 4% to 50%/bag (largest error 10-55%, 157-401 ml). Estimates of fluid in kick buckets were in error by an average of 10% to 39% (largest error 22-66%, 232-903 ml). Visual estimates of fluid on the operating room floor were in error by an average of 56% to 67% (largest error 65-81%, 182-840 ml). Estimates of fluid in suction canisters were consistent among nurses. The accuracy of measurements for partially filled suction canisters primarily depended on the accuracy of canister calibration. Volume contained in cascaded suction canisters from an actual surgical procedure was grossly different from rated capacity. Accurate tracking of irrigation fluid during hysteroscopic procedures is difficult. Even with a mechanical measuring system, fluid lost on the floor can introduce sizable errors. Estimation errors can easily and quickly accumulate to clinically significant volumes. Use of an automated mechanical fluid-tracking system with devices to capture fluid lost from the surgical field is recommended.

  20. Experimental study of two-phase natural circulation circuit

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley Freitas; Su, Jian, E-mail:, E-mail: [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose Luiz Horacio, E-mail: [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), RIo de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental


    This paper reports an experimental study on the behavior of fluid flow in natural circulation under single-and two-phase flow conditions. The natural circulation circuit was designed based on concepts of similarity and scale in proportion to the actual operating conditions of a nuclear reactor. This test equipment has similar performance to the passive system for removal of residual heat presents in Advanced Pressurized Water Reactors (A PWR). The experiment was carried out by supplying water to primary and secondary circuits, as well as electrical power resistors installed inside the heater. Power controller has available to adjust the values for supply of electrical power resistors, in order to simulate conditions of decay of power from the nuclear reactor in steady state. Data acquisition system allows the measurement and control of the temperature at different points by means of thermocouples installed at several points along the circuit. The behavior of the phenomenon of natural circulation was monitored by a software with graphical interface, showing the evolution of temperature measurement points and the results stored in digital format spreadsheets. Besides, the natural circulation flow rate was measured by a flowmeter installed on the hot leg. A flow visualization technique was used the for identifying vertical flow regimes of two-phase natural circulation. Finally, the Reynolds Number was calculated for the establishment of a friction factor correlation dependent on the scale geometrical length, height and diameter of the pipe. (author)