WorldWideScience

Sample records for circulating erythrocyte-derived microparticles

  1. Erythrocyte-derived microparticles supporting activated protein C-mediated regulation of blood coagulation.

    Science.gov (United States)

    Koshiar, Ruzica Livaja; Somajo, Sofia; Norström, Eva; Dahlbäck, Björn

    2014-01-01

    Elevated levels of erythrocyte-derived microparticles are present in the circulation in medical conditions affecting the red blood cells. Erythrocyte-derived microparticles expose phosphatidylserine thus providing a suitable surface for procoagulant reactions leading to thrombin formation via the tenase and prothrombinase complexes. Patients with elevated levels of circulating erythrocyte-derived microparticles have increased thrombin generation in vivo. The aim of the present study was to investigate whether erythrocyte-derived microparticles are able to support the anticoagulant reactions of the protein C system. Erythrocyte-derived microparticles were isolated using ultracentrifugation after incubation of freshly prepared erythrocytes with the ionophore A23187 or from outdated erythrocyte concentrates, the different microparticles preparations yielding similar results. According to flow cytometry analysis, the microparticles exposed phoshatidylserine and bound lactadherin, annexin V, and protein S, which is a cofactor to activated protein C. The microparticles were able to assemble the tenase and prothrombinase complexes and to stimulate the formation of thrombin in plasma-based thrombin generation assay both in presence and absence of added tissue factor. The addition of activated protein C in the thrombin generation assay inhibited thrombin generation in a dose-dependent fashion. The anticoagulant effect of activated protein C in the thrombin generation assay was inhibited by a monoclonal antibody that prevents binding of protein S to microparticles and also attenuated by anti-TFPI antibodies. In the presence of erythrocyte-derived microparticles, activated protein C inhibited tenase and prothrombinase by degrading the cofactors FVIIIa and FVa, respectively. Protein S stimulated the Arg306-cleavage in FVa, whereas efficient inhibition of FVIIIa depended on the synergistic cofactor activity of protein S and FV. In summary, the erythrocyte-derived microparticle

  2. Circulating Endothelial Microparticles in Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    A. F. Tramontano

    2010-01-01

    Full Text Available Background. Endothelial Microparticles (EMPs are small vesicles shed from activated or apoptotic endothelial cells and involved in cellular cross-talk. Whether EMP immunophenotypes vary according to stimulus in Diabetes Mellitus (DM is not known. We studied the cellular adhesion molecule (CAM profile of circulating EMPs in patients with and without Diabetes Mellitus type 2, who were undergoing elective cardiac catheterization. Methods and Results. EMPs were analyzed by flow cytometry. The absolute median number of EMPs (EMPs/L specific for CD31, CD105, and CD106 was significantly increased in the DM population. The ratio of CD62E/CD31 EMP populations reflected an apoptotic process. Conclusion. Circulating CD31+, CD105+, and CD106+ EMPs were significantly elevated in patients with DM. EMPs were the only independent predictors of DM in our study cohort. In addition, the EMP immunophenotype reflected an apoptotic process. Circulating EMPs may provide new options for risk assessment.

  3. Circulating Endothelial Microparticles: A Key Hallmark of Atherosclerosis Progression

    Directory of Open Access Journals (Sweden)

    Keshav Raj Paudel

    2016-01-01

    Full Text Available The levels of circulating microparticles (MPs are raised in various cardiovascular diseases. Their increased level in plasma is regarded as a biomarker of alteration in vascular function. The prominent MPs present in blood are endothelial microparticles (EMPs described as complex submicron (0.1 to 1.0 μm vesicles like structure, released in response to endothelium cell activation or apoptosis. EMPs possess both physiological and pathological effects and may promote oxidative stress and vascular inflammation. EMPs release is triggered by inducer like angiotensin II, lipopolysaccharide, and hydrogen peroxide leading to the progression of atherosclerosis. However, there are multiple physiological pathways for EMPs generation like NADPH oxidase derived endothelial ROS formation, Rho kinase pathway, and mitogen-activated protein kinases. Endothelial dysfunction is a key initiating event in atherosclerotic plaque formation. Atheroemboli, resulting from ruptured carotid plaques, is a major cause of stroke. Increasing evidence suggests that EMPs play an important role in the pathogenesis of cardiovascular disease, acting as a marker of damage, either exacerbating disease progression or triggering a repair response. In this regard, it has been suggested that EMPs have the potential to act as biomarkers of disease status. This review aims to provide updated information of EMPs in relation to atherosclerosis pathogenesis.

  4. Clinical CVVH model removes endothelium-derived microparticles from circulation

    Directory of Open Access Journals (Sweden)

    Abdelhafeez H. Abdelhafeez

    2014-02-01

    Full Text Available Background: Endothelium-derived microparticles (EMPs are submicron vesicles released from the plasma membrane of endothelial cells in response to injury, apoptosis or activation. We have previously demonstrated EMP-induced acute lung injury (ALI in animal models and endothelial barrier dysfunction in vitro. Current treatment options for ALI are limited and consist of supportive therapies. We hypothesize that standard clinical continuous venovenous hemofiltration (CVVH reduces serum EMP levels and may be adapted as a potential therapeutic intervention. Materials and methods: EMPs were generated from plasminogen activation inhibitor-1 (PAI-1-stimulated human umbilical vein endothelial cells (HUVECs. Flow cytometric analysis was used to characterize EMPs as CD31- and annexin V-positive events in a submicron size gate. Enumeration was completed against a known concentration of latex beads. Ultimately, a concentration of ~650,000 EMP/mL perfusate fluid (total 470 mL was circulated through a standard CVVH filter (pore size 200 μm, flow rate 250 mL/hr for a period of 70 minutes. 0.5 mL aliquots were removed at 5- to 10-minute intervals for flow cytometric analysis. EMP concentration in the dialysate was measured at the end of 4 hours to better understand the fate of EMPs. Results: A progressive decrease in circulating EMP concentration was noted using standard CVVH at 250 mL/hr (a clinical standard rate from a 470 mL volume modelling a patient's circulation. A 50% reduction was noted within the first 30 minutes. EMPs entering the dialysate after 4 hours were 5.7% of the EMP original concentration. Conclusion: These data demonstrate that standard CVVH can remove EMPs from circulation in a circuit modelling a patient. An animal model of hemofiltration with induction of EMP release is required to test the therapeutic potential of this finding and potential of application in early treatment of ALI.

  5. Galectin-3 binding protein links circulating microparticles with electron dense glomerular deposits in lupus nephritis

    DEFF Research Database (Denmark)

    Nielsen, C T; Østergaard, O; Rekvig, O P

    2015-01-01

    OBJECTIVE: A high level of galectin-3-binding protein (G3BP) appears to distinguish circulating cell-derived microparticles in systemic lupus erythematosus (SLE). The aim of this study is to characterize the population of G3BP-positive microparticles from SLE patients compared to healthy controls......, explore putative clinical correlates, and examine if G3BP is present in immune complex deposits in kidney biopsies from patients with lupus nephritis. METHODS: Numbers of annexin V-binding and G3BP-exposing plasma microparticles from 56 SLE patients and 36 healthy controls were determined by flow...... in kidney biopsies from one non-SLE control and from patients with class IV (n = 2) and class V (n = 1) lupus nephritis using co-localization immune electron microscopy. RESULTS: Microparticle-G3BP, microparticle-C1q and microparticle-immunoglobulins were significantly (P 

  6. Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Nielsen, Christoffer T; Østergaard, Ole; Johnsen, Christina

    2011-01-01

    Characterization of the abundance, origin, and annexin V (AnxV)-binding capabilities of circulating microparticles (MPs) in SLE patients and healthy controls and to determine any associations with clinical parameters....

  7. Circulating platelet and erythrocyte microparticles in young children and adolescents with sickle cell disease: Relation to cardiovascular complications.

    Science.gov (United States)

    Tantawy, Azza Abdel Gawad; Adly, Amira Abdel Moneam; Ismail, Eman Abdel Rahman; Habeeb, Nevin Mamdouh; Farouk, Amal

    2013-01-01

    Sickle cell disease (SCD) is characterized by a complex vasculopathy, consisting of endothelial dysfunction and increased arterial stiffness, with a global effect on cardiovascular function. The hypercoagulable state may result from chronic hemolysis and circulating cell-derived microparticles (MPs) originating mainly from activated platelets and erythrocytes. We measured the levels of platelet and erythrocyte-derived MPs (PMPs and ErMPs) in 50 young SCD patients compared with 40 age- and sex-matched healthy controls and assessed their relation to clinicopathological characteristics and aortic elastic properties. Patients were studied stressing on the occurrence of sickling crisis, transfusion history, hydroxyurea therapy, hematological, and coagulation profile as well as flow cytometric expression of PMPs (CD41b(+)) and ErMPs (glycophorin A(+)). Echocardiography was performed to assess aortic stiffness and distensibility, left ventricular function and pulmonary artery pressure. Both PMPs and ErMPs were significantly elevated in SCD patients compared with control group (p count, HbS, markers of hemolysis, serum ferritin, D-dimer, and vWF Ag, whereas negatively correlated with hemoglobin and HbF levels (p < 0.05). Both PMPs and ErMPs levels were positively correlated with aortic stiffness, pulmonary artery pressure, and tricuspid regurgitant velocity (p < 0.05) while negatively correlated with aortic distensibility. We suggest that PMPs and ErMPs overproduction may be considered a potential biological marker for vascular dysfunction and disease severity in SCD and may be implicated in the pathogenesis of coagulation abnormalities encountered in those patients. Their levels are closely related to sickling crisis, pulmonary hypertension, markers of hemolysis, fibrinolysis, and iron overload. Therefore, quantification of MPs in SCD may provide utility for identifying patients who are at increased risk of thrombotic events or cardiovascular abnormalities and

  8. Circulating endothelial cells and procoagulant microparticles in patients with glioblastoma: prognostic value.

    Directory of Open Access Journals (Sweden)

    Gaspar Reynés

    Full Text Available AIM: Circulating endothelial cells and microparticles are prognostic factors in cancer. However, their prognostic and predictive value in patients with glioblastoma is unclear. The objective of this study was to investigate the potential prognostic value of circulating endothelial cells and microparticles in patients with newly diagnosed glioblastoma treated with standard radiotherapy and concomitant temozolomide. In addition, we have analyzed the methylation status of the MGMT promoter. METHODS: Peripheral blood samples were obtained before and at the end of the concomitant treatment. Blood samples from healthy volunteers were also obtained as controls. Endothelial cells were measured by an immunomagnetic technique and immunofluorescence microscopy. Microparticles were quantified by flow cytometry. Microparticle-mediated procoagulant activity was measured by endogen thrombin generation and by phospholipid-dependent clotting time. Methylation status of MGMT promoter was determined by multiplex ligation-dependent probe amplification. RESULTS: Pretreatment levels of circulating endothelial cells and microparticles were higher in patients than in controls (p<0.001. After treatment, levels of microparticles and thrombin generation decreased, and phospholipid-dependent clotting time increased significantly. A high pretreatment endothelial cell count, corresponding to the 99(th percentile in controls, was associated with poor overall survival. MGMT promoter methylation was present in 27% of tumor samples and was associated to a higher overall survival (66 weeks vs 30 weeks, p<0.004. CONCLUSION: Levels of circulating endothelial cells may have prognostic value in patients with glioblastoma.

  9. Circulating CD62E+ microparticles and cardiovascular outcomes.

    Directory of Open Access Journals (Sweden)

    Soon-Tae Lee

    Full Text Available BACKGROUND: Activated endothelial cells release plasma membrane submicron vesicles expressing CD62E (E-selectin into blood, known as endothelial microparticles (EMPs. We studied whether the levels of endothelial microparticles expressing CD62E(+, CD31(+/Annexin-V(+, or CD31(+/CD42(- predict cardiovascular outcomes in patients with stroke history. METHODS/PRINCIPAL FINDINGS: Patients with stroke history at least 3 months prior to enrolment were recruited. Peripheral blood EMP levels were measured by flow cytometry. Major cardiovascular events and death were monitored for 36 months. Three hundred patients were enrolled, of which 298 completed the study according to protocol. Major cardiovascular events occurred in 29 patients (9.7%. Nine patients died, five from cardiovascular causes. Cumulative event-free survival rates were lower in patients with high levels of CD62E(+ microparticles. Multivariate Cox regression analysis adjusted for cardiovascular risk factors, medications and stroke etiologic groups showed an association between a high CD62E(+ microparticle level and a risk of major cardiovascular events and hospitalization. Levels of other kinds of EMPs expressing CD31(+/Annexin-V(+ or CD31(+/CD42(- markers were not predictive of cardiovascular outcomes. CONCLUSION: A high level of CD62E(+ microparticles is associated with cardiovascular events in patients with stroke history, suggesting that the systemic endothelial activation increases the risk for cardiovascular morbidities.

  10. Leukocyte Activation and Circulating Leukocyte-Derived Microparticles in Preeclampsia

    NARCIS (Netherlands)

    Lok, Christianne A. R.; Jebbink, Jiska; Nieuwland, Rienk; Faas, Marijke M.; Boer, Kees; Sturk, Augueste; Van Der Post, Joris A. M.

    2009-01-01

    Preeclampsia shows characteristics of an inflammatory disease including leukocyte activation. Analyses of leukocyte-derived microparticles (MP) and mRNA expression of inflammation-related genes in leukocytes may establish which subgroups of leukocytes contribute to the development of preeclampsia. B

  11. Unique Protein Signature of Circulating Microparticles in Systemic Lupus Erythematosus

    DEFF Research Database (Denmark)

    Østergaard, Ole; Nielsen, Christoffer; Iversen, Line V

    2013-01-01

    To characterize the unique qualities of proteins associated with circulating subcellular material in systemic lupus erythematosus (SLE) patients compared with healthy controls and patients with other chronic autoimmune diseases.......To characterize the unique qualities of proteins associated with circulating subcellular material in systemic lupus erythematosus (SLE) patients compared with healthy controls and patients with other chronic autoimmune diseases....

  12. Circulating microparticles and plasma levels of soluble E- and P-selectins in patients with systemic sclerosis

    DEFF Research Database (Denmark)

    Iversen, Lars; Østergaard, O; Ullman, S;

    2013-01-01

    Microparticles (MPs) may be involved in the pathogenesis of systemic sclerosis (SSc), which includes vasculopathy, endothelial cell activation, and coagulation activation. Circulating MPs from SSc patients were characterized and their relationship with soluble markers of vascular activation inves...

  13. Levels of Circulating Microparticles in Lung Cancer Patients and Possible Prognostic Value

    Directory of Open Access Journals (Sweden)

    Chia-Cheng Tseng

    2013-01-01

    Full Text Available Background. Endothelial-derived microparticles (EDMPs and platelet-derived microparticles (PDMPs have been reported to be increasing in various diseases including malignant diseases. Here, we investigated whether these MPs may be useful biomarkers for predicting lung cancer (LC disease status, cell type, or metastasis. Methods and Results. One hundred and thirty LC patients were prospectively enrolled into the study between April 2011 and February 2012. Flow cytometric analysis demonstrated that the circulating levels of platelet-derived activated MPs (PDAc-MPs, platelet-derived apoptotic MPs (PDAp-MPs, endothelial-derived activated MPs (EDAc-MPs, and endothelial-derived apoptotic MPs (EDAp-MPs were significantly higher in LC patients than in 30 age- and gender-matched normal control subjects (all P0.1 in early stage versus late stage LC patients. Furthermore, the circulating levels of the four types of MPs did not differ among patients with different disease statuses (i.e., disease controlled, disease progression, and disease without treatment, i.e., fresh case (all P>0.2 or between patients with or without LC metastasis (all P>0.5. Moreover, only the circulating level of EDAp-MPs was significantly associated with the different cell types (i.e., squamous cell carcinoma, adenocarcinoma, and small cell carcinoma of LC (P=0.045. Conclusion. Circulating MP levels are significantly increased in LC patients as compared with normal subjects. Among the MPs, only an increased level of EDAp-MPs was significantly associated with different LC cell types.

  14. Phospholipid-dependent clotting time is able to identify cancer patients with high levels of circulating microparticles

    NARCIS (Netherlands)

    Van Doormaal, F.F.; Kleinjan, A.; Buller, H.R.; Kamphuisen, P.; Berckmans, R.J.; Nieuwland, R.

    2009-01-01

    Introduction: Circulating procoagulant microparticles (MP) have been associated with a prothrombotic state in many diseases, including cancer. MP can enhance thrombin formation by exposing tissue factor (TF), the initiator of coagulation in vivo. Whether procoagulant TF is really exposed on circulat

  15. A flow cytometric method for characterization of circulating cell-derived microparticles in plasma

    DEFF Research Database (Denmark)

    Nielsen, Morten Hjuler; Beck-Nielsen, Henning; Andersen, Morten Nørgaard;

    2014-01-01

    BACKGROUND AND AIM: Previous studies on circulating microparticles (MPs) indicate that the majority of MPs are of a size below the detection limit of most standard flow cytometers. The objective of the present study was to establish a method to analyze MP subpopulations above the threshold...... of detection of a new generation BD FACSAria™ III digital flow cytometer. METHODS: We analyzed MP subpopulations in plasma from 24 healthy individuals (9 males and 15 females). MPs were identified according to their size (.... The sensitivity of the flow cytometer was tested against that of a previous-generation instrument FC500. Reproducibility of the FACSAria and our set-up was investigated, and the percentage of phosphatidylserine (PS) exposing MPs binding Lactadherin was determined. RESULTS: By using a flow cytometric approach we...

  16. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies.

    Science.gov (United States)

    Tsiantoulas, Dimitrios; Perkmann, Thomas; Afonyushkin, Taras; Mangold, Andreas; Prohaska, Thomas A; Papac-Milicevic, Nikolina; Millischer, Vincent; Bartel, Caroline; Hörkkö, Sohvi; Boulanger, Chantal M; Tsimikas, Sotirios; Fischer, Michael B; Witztum, Joseph L; Lang, Irene M; Binder, Christoph J

    2015-02-01

    Oxidation-specific epitopes (OSEs) present on apoptotic cells and oxidized low density lipoprotein (OxLDL) represent danger-associated molecular patterns that are recognized by different arcs of innate immunity, including natural IgM antibodies. Here, we investigated whether circulating microparticles (MPs), which are small membrane vesicles released by apoptotic or activated cells, are physiological carriers of OSEs. OSEs on circulating MPs isolated from healthy donors and patients with ST-segment elevation myocardial infarction (STE-MI) were characterized by flow cytometry using a panel of OSE-specific monoclonal antibodies. We found that a subset of MPs carry OSEs on their surface, predominantly malondialdehyde (MDA) epitopes. Consistent with this, a majority of IgM antibodies bound on the surface of circulating MPs were found to have specificity for MDA-modified LDL. Moreover, we show that MPs can stimulate THP-1 (human acute monocytic leukemia cell line) and human primary monocytes to produce interleukin 8, which can be inhibited by a monoclonal IgM with specificity for MDA epitopes. Finally, we show that MDA(+) MPs are elevated at the culprit lesion site of patients with STE-MI. Our results identify a subset of OSE(+) MPs that are bound by OxLDL-specific IgM. These findings demonstrate a novel mechanism by which anti-OxLDL IgM antibodies could mediate protective functions in CVD.

  17. Hypoxia Mediated Release of Endothelial Microparticles and Increased Association of S100A12 with Circulating Neutrophils

    Directory of Open Access Journals (Sweden)

    Rebecca V. Vince

    2009-01-01

    Full Text Available Microparticles are released from the endothelium under normal homeostatic conditions and have been shown elevated in disease states, most notably those characterised by endothelial dysfunction. The endothelium is sensitive to oxidative stress/status and vascular cell adhesion molecule-1 (VCAM-1 expression is upregulated upon activated endothelium, furthermore the presence of VCAM-1 on microparticles is known. S100A12, a calcium binding protein part of the S100 family, is shown to be present on circulating leukocytes and is thought a sensitive marker to local inflammatory process, which may be driven by oxidative stress. Eight healthy males were subjected to breathing hypoxic air (15% O2, approximately equivalent to 3000 metres altitude for 80 minutes in a temperature controlled laboratory and venous blood samples were processed immediately for VCAM-1 microparticles (VCAM-1 MP and S100A12 association with leukocytes by flow cytometry. A pre-hypoxic blood sample was used for comparison. Both VCAM-1 MP and S100A12 association with neutrophils were significantly elevated post hypoxic breathing later declining to levels observed in the pre-test samples. A similar trend was observed in both cases and a correlation may exist between these two markers in response to hypoxia. These data offer evidence using novel markers of endothelial and circulating blood responses to hypoxia.

  18. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies1[S

    Science.gov (United States)

    Tsiantoulas, Dimitrios; Perkmann, Thomas; Afonyushkin, Taras; Mangold, Andreas; Prohaska, Thomas A.; Papac-Milicevic, Nikolina; Millischer, Vincent; Bartel, Caroline; Hörkkö, Sohvi; Boulanger, Chantal M.; Tsimikas, Sotirios; Fischer, Michael B.; Witztum, Joseph L.; Lang, Irene M.; Binder, Christoph J.

    2015-01-01

    Oxidation-specific epitopes (OSEs) present on apoptotic cells and oxidized low density lipoprotein (OxLDL) represent danger-associated molecular patterns that are recognized by different arcs of innate immunity, including natural IgM antibodies. Here, we investigated whether circulating microparticles (MPs), which are small membrane vesicles released by apoptotic or activated cells, are physiological carriers of OSEs. OSEs on circulating MPs isolated from healthy donors and patients with ST-segment elevation myocardial infarction (STE-MI) were characterized by flow cytometry using a panel of OSE-specific monoclonal antibodies. We found that a subset of MPs carry OSEs on their surface, predominantly malondialdehyde (MDA) epitopes. Consistent with this, a majority of IgM antibodies bound on the surface of circulating MPs were found to have specificity for MDA-modified LDL. Moreover, we show that MPs can stimulate THP-1 (human acute monocytic leukemia cell line) and human primary monocytes to produce interleukin 8, which can be inhibited by a monoclonal IgM with specificity for MDA epitopes. Finally, we show that MDA+ MPs are elevated at the culprit lesion site of patients with STE-MI. Our results identify a subset of OSE+ MPs that are bound by OxLDL-specific IgM. These findings demonstrate a novel mechanism by which anti-OxLDL IgM antibodies could mediate protective functions in CVD. PMID:25525116

  19. Data on the circulating levels of endothelial microparticles are elevated in patients with bicuspid aortic valve and are related to aortic dilation

    Directory of Open Access Journals (Sweden)

    Josep M. Alegret

    2016-09-01

    Full Text Available The data included here support the research article “Circulating endothelial microparticles are elevated in bicuspid aortic valve (BAV disease and related to aortic dilation” (Alegret et al., 2016 [1] where circulating levels of platelet endothelial cell adhesion molecule (PECAM+ endothelial microparticles (EMPs were identified as a biological variable related to aortic dilation in patients with BAV disease. The data presented in this article are composed by four tables and one figure containing the clinical and echocardiographic characteristics of the patients (Alegret et al., 2016 [1] included in this study, and summarize the results of multivariate linear analyses. Furthermore, is also included a figure showing a representative flow cytometry dot plots and histograms used in PECAM+ EMPs quantification is also included.

  20. Coagulant activity and cellular origin of circulating tissue factor exposing microparticles in cancer patients - two forms of TF-exposing microparticles

    NARCIS (Netherlands)

    Kleinjan, A.; Boing, A. N.; Di Nisio, M.; Twint, D.; Kamphuisen, P. W.; Nanayakkara, P.; Buller, H. R.; Nieuwland, R.

    2013-01-01

    Background: Because plasma of cancer patients presenting with venous thrombosis contains high numbers of tissue factor (TF)-exposing microparticles (TF-MP1), TF-MP have been causally linked to the occurrence of venous thrombosis in cancer patients. The relationship between numbers of TF-exposing MP

  1. Action mechanisms of a new erythrocyte-derived depressing factor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate the action mechanisms of a new erythrocyte-derived depressing factor (EDDF), the focus is placed on the effect of EDDF on both cytosolic and nuclear free calcium (Ca2+) transportation in vascular smooth muscle cell (VSMC), as well as the apoptosis and cell cycle of VSMC of rats. EDDF has been extracted from human erythrocytes. The changes of Ca2+ levels in cytoplasm ([Ca2+]i) and nucleus ([Ca2+]n) have been observed using a laser scanning confocal microscope together with fluo-3/AM as a calcium indicator. Flow cytometric technique was used to study the effect of EDDF on cell cycle and apoptosis of VSMC. [Ca2+]i and [Ca2+]n were significantly decreased through several different pathways: (ⅰ) it reduced the Ca2+ influx by blocking L-type voltage-dependent calcium channel (L-VDC) and R-type voltage-dependent calcium channel (R-VDC); (ⅱ) it inhibited the Ca2+ release from inositol 1, 4, 5-trisphosphate (IP3) sensitive calcium store; and (ⅲ) activated Ca2+-ATPase of sarcoplasmic reticulum (SR) and promoted the transportation of Ca2+ from cytoplasm to SR. However, EDDF seemed to have little inhibitory effect on the Ca2+ release from ryonodine sensitive calcium pool. It was also found that EDDF (104 g/mL) significantly decreased the proportion of S phase of human umbilical vein (HUV) and inhibited the proliferation of VSMC induced by angiotensin Ⅱ (AngⅡ, 105 mol/L). The apopotosis did not occur when VSMC was cultured under normal condition. While VSMC apoptosis was induced by AngII (10-5 mol/L) and EDDF (104 g/mL) seemed to have little effect on it. The inhibitory effect of EDDF on the elevation of [Ca2+]i and [Ca2+]n of VSMC might play an essential role in its action mechanisms and the ways it affects the Ca2+ handling of VSMC demonstrate that EDDF was different from other endogenous blood pressure regulators and some known antihypertensive drugs. EDDF could inhibit the proliferation of VSMC, which indicated that it might be beneficial to the

  2. Lipoprotein-apheresis reduces circulating microparticles in individuals with familial hypercholesterolemia.

    Science.gov (United States)

    Connolly, Katherine D; Willis, Gareth R; Datta, Dev B N; Ellins, Elizabeth A; Ladell, Kristin; Price, David A; Guschina, Irina A; Rees, D Aled; James, Philip E

    2014-10-01

    Lipoprotein-apheresis (apheresis) removes LDL-cholesterol in patients with severe dyslipidemia. However, reduction is transient, indicating that the long-term cardiovascular benefits of apheresis may not solely be due to LDL removal. Microparticles (MPs) are submicron vesicles released from the plasma membrane of cells. MPs, particularly platelet-derived MPs, are increasingly being linked to the pathogenesis of many diseases. We aimed to characterize the effect of apheresis on MP size, concentration, cellular origin, and fatty acid concentration in individuals with familial hypercholesterolemia (FH). Plasma and MP samples were collected from 12 individuals with FH undergoing routine apheresis. Tunable resistive pulse sensing (np200) and nanoparticle tracking analysis measured a fall in MP concentration (33 and 15%, respectively; P apheresis. Flow cytometry showed MPs were predominantly annexin V positive and of platelet (CD41) origin both pre- (88.9%) and post-apheresis (88.4%). Fatty acid composition of MPs differed from that of plasma, though apheresis affected a similar profile of fatty acids in both compartments, as measured by GC-flame ionization detection. MP concentration was also shown to positively correlate with thrombin generation potential. In conclusion, we show apheresis nonselectively removes annexin V-positive platelet-derived MPs in individuals with FH. These MPs are potent inducers of coagulation and are elevated in CVD; this reduction in pathological MPs could relate to the long-term benefits of apheresis.

  3. CIRCULATING MICROPARTICLES, BLOOD CELLS, AND ENDOTHELIUM INDUCE PROCOAGULANT ACTIVITY IN SEPSIS THROUGH PHOSPHATIDYLSERINE EXPOSURE.

    Science.gov (United States)

    Zhang, Yan; Meng, Huan; Ma, Ruishuang; He, Zhangxiu; Wu, Xiaoming; Cao, Muhua; Yao, Zhipeng; Zhao, Lu; Li, Tao; Deng, Ruijuan; Dong, Zengxiang; Tian, Ye; Bi, Yayan; Kou, Junjie; Thatte, Hemant S; Zhou, Jin; Shi, Jialan

    2016-03-01

    Sepsis is invariably accompanied by altered coagulation cascade; however, the precise role of phosphatidylserine (PS) in inflammation-associated coagulopathy in sepsis has not been well elucidated. We explored the possibility of exposed PS on microparticles (MPs), blood cells, as well as on endothelium, and defined its role in procoagulant activity (PCA) in sepsis. PS-positive MPs and cells were detected by flow cytometry, while PCA was assessed with clotting time, purified coagulation complex, and fibrin formation assays. Plasma levels of PS MPs derived from platelets, leukocytes (including neutrophils, monocytes, and lymphocytes), erythrocytes, and endothelial cells were elevated by 1.49-, 1.60-, 2.93-, and 1.53-fold, respectively, in septic patients. Meanwhile, PS exposure on blood cells was markedly higher in septic patients than in controls. Additionally, we found that the endothelial cells (ECs) treated with septic serum in vitro exposed more PS than with healthy serum. Isolated MPs/blood cells from septic patients and cultured ECs treated with septic serum in vitro demonstrated significantly shortened coagulation time, greatly enhanced intrinsic/extrinsic FXa generation, and increased thrombin formation. Importantly, confocal imaging of MPs or septic serum-treated ECs identified binding sites for FVa and FXa to form prothrombinase, and further supported fibrin formation in the area where PS exposure was abundant. Pretreatment with lactadherin blocked PS on MPs/blood cells/ECs, prolonged coagulation time by at least 25%, reduced FXa/thrombin generation, and inhibited fibrin formation by approximately 85%. Our findings suggest a key role for PS exposed on MPs, blood cells, and endothelium in augmenting coagulation in sepsis. Therefore, therapies targeting PS may be of particular importance.

  4. Circulating apoptotic endothelial cell-derived microparticles are predicted metabolically unhealthy obesity

    Directory of Open Access Journals (Sweden)

    Alexander E. Berezin

    2017-01-01

    Full Text Available Introduction: Circulating apoptotic endothelial cell-derived micro particles (EMPs are a marker of endothelial dysfunction and cardiovascular (CV risk in type 2 diabetes mellitus patients. There is evidence regarding association between apoptotic EMP number and CV disease in obese individuals. The aim of the study to investigate whether increased number of circulating apoptotic EMPs may predict transformation of Met-HO into Met-UHO. Methods: The study was retrospectively evolved 89 patients with established abdominal obesity (47 patients with Met-UHO determined as MetS and 42 subjects with Met-HO from the large cohort of abdominal obesity patients (n=268. Thirty five healthy volunteers matched for age and sex were involved in the study as a control cohort. Obesity-related biomarker (adiponectin, leptin, vistafin and EMPs were measured at baseline. Flow cytometry was used to determine EMPs with immune phenotype CD31+/annexin V+ and CD144+/annexin V+. Results: There was not found a significant difference between numbers of EMPs labeled CD31+/ Annexin V+ in Met-UHO and Met-HO patients, while Met-UHO patients had a significantly increased level of circulating CD144+/ Annexin V+ compared with Met-HO individuals. Multivariate logistic regression analysis has revealed the HOMA-IR, number of CV risk factors, serum leptin and hs-CRP independently predicted numbers of circulating CD31+/ Annexin V+ and CD144+/ Annexin V+ EMPs in Met-UHO. In Met-HO patients HOMA-IR remained an independent predictor of increased numbers of circulating CD31+/ Annexin V+ and CD144+/ Annexin V+ EMPs. Conclusion: in the investigation we found that the increased number of CD31+/Annexin V+ and CD144+/ Annexin V+ EMPs added to the based predictive model (HOMA-IR may predict transformation of Met-HO into Met-UHO.

  5. Circulating Endothelial Microparticles and Correlation of Serum 1,25-Dihydroxyvitamin D with Adiponectin, Nonesterified Fatty Acids, and Glycerol from Middle-Aged Men in China

    Directory of Open Access Journals (Sweden)

    Zhongxiao Wan

    2016-01-01

    Full Text Available The aim of the present study is (1 to determine the correlation between circulating 1,25-dihydroxyvitamin D [25(OHD] and adiponectin, nonesterified fatty acids (NEFAs, and glycerol and (2 to determine the alterations in circulating endothelial microparticles (EMPs in Chinese male subjects with increased body mass index (BMI. A total of 45 male adults were enrolled with varied BMI [i.e., lean, overweight (OW, and obese (OB, N=15 per group]. Blood samples were collected under overnight fasting condition, and plasma was isolated for the measurement of endothelial microparticles (EMPs, total and high-molecular weight (HMW adiponectin, 25(OHD, nonesterified fatty acids (NEFAs, and glycerol. Circulating 25(OHD levels were inversely associated with total adiponectin, NEFA, and glycerol levels. There is no difference for CD62E+ or CD31+/CD42b− EMPs among 3 groups. In Chinese male adults with varied BMI, an inverse correlation existed between 25(OHD levels and total adiponectin, NEFA, and glycerol levels; and there is no significant difference for CD62E+ or CD31+/CD42b− EMPs among lean, overweight, and obese subjects.

  6. Circulating Endothelial-Derived Activated Microparticle: A Useful Biomarker for Predicting One-Year Mortality in Patients with Advanced Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Chin-Chou Wang

    2014-01-01

    Full Text Available Background. This study tested the hypothesis that circulating microparticles (MPs are useful biomarkers for predicting one-year mortality in patients with end-stage non-small cell lung cancer (ES-NSCLC. Methods and Results. One hundred seven patients were prospectively enrolled into the study between April 2011 and February 2012, and each patient received regular follow-up after enrollment. Levels of four MPs in circulation, (1 platelet-derived activated MPs (PDAc-MPs, (2 platelet-derived apoptotic MPs (PDAp-MPs, (3 endothelial-derived activated MPs (EDAc-MPs, and (4 endothelial-derived apoptotic MPs (EDAp-MPs, were measured just after the patient was enrolled into the study using flow cytometry. Patients who survived for more than one year were categorized into group 1 (n=56 (one-year survivors and patients who survived less than one year were categorized into group 2 (n=51 (one-year nonsurvivors. Male gender, incidence of liver metastasis, progression of disease after first-line treatment, poor performance status, and the Charlson comorbidity index were significantly higher in group 2 than in group 1 (all P<0.05. Additionally, as measured by flow cytometry, only the circulating level of EDAc-MPs was found to be significantly higher in group 2 than in group 1 (P=0.006. Multivariate analysis demonstrated that circulating level of EDAc-MPs along with brain metastasis and male gender significantly and independently predictive of one-year mortality (all P<0.035. Conclusion. Circulating EDAc-MPs may be a useful biomarker predictive of one-year morality in ES-NSCLC patients.

  7. Circulating microparticles, protein C, free protein S and endothelial vascular markers in children with sickle cell anaemia

    Directory of Open Access Journals (Sweden)

    Andrea Piccin

    2015-11-01

    Full Text Available Introduction: Circulating microparticles (MP have been described in sickle cell anaemia (SCA; however, their interaction with endothelial markers remains unclear. We investigated the relationship between MP, protein C (PC, free protein S (PS, nitric oxide (NO, endothelin-1 (ET-1 and adrenomedullin (ADM in a large cohort of paediatric patients. Method: A total of 111 children of African ethnicity with SCA: 51 in steady state; 15 in crises; 30 on hydroxyurea (HU therapy; 15 on transfusion; 17 controls (HbAA of similar age/ethnicity. MP were analysed by flow cytometry using: Annexin V (AV, CD61, CD42a, CD62P, CD235a, CD14, CD142 (tissue factor, CD201 (endothelial PC receptor, CD62E, CD36 (TSP-1, CD47 (TSP-1 receptor, CD31 (PECAM, CD144 (VE-cadherin. Protein C, free PS, NO, pro-ADM and C-terminal ET-1 were also measured. Results: Total MP AV was lower in crisis (1.26×106 ml−1; 0.56–2.44×106 and steady state (1.35×106 ml−1; 0.71–3.0×106 compared to transfusion (4.33×106 ml−1; 1.6–9.2×106, p0.9, p<0.05 between total numbers of AV-positive MP (MP AV and platelet MP expressing non-activation platelet markers. There was a lower correlation between MP AV and MP CD62P (R=0.73, p<0.05 (platelet activation marker, and also a lower correlation between percentage of MP expressing CD201 (%MP CD201 and %MP CD14 (R=0.627, p<0.001. %MP CD201 was higher in crisis (11.6% compared with HbAA (3.2%, p<0.05; %MP CD144 was higher in crisis (7.6% compared with transfusion (2.1%, p<0.05; %CD14 (0.77% was higher in crisis compared with transfusion (0.0%, p<0.05 and steady state (0.0%, p<0.01; MP CD14 was detectable in a higher number of samples (92% in crisis compared with the rest (40%; %MP CD235a was higher in crisis (17.9% compared with transfusion (8.9%, HU (8.7% and steady state (9.9%, p<0.05; %CD62E did not differ significantly across the groups and CD142 was undetectable. Pro-ADM levels were raised in chest crisis: 0.38 nmol L−1 (0.31–0

  8. Circulating Endothelial-Derived Apoptotic Microparticles in the Patients with Ischemic Symptomatic Chronic Heart Failure: Relevance of Pro-Inflammatory Activation and Outcomes

    Directory of Open Access Journals (Sweden)

    Alexander E. Berezin

    2014-09-01

    Full Text Available Background: Endothelial-derived apoptotic microparticles (EMPs play a pivotal role in endothelial dysfunction in hronic Heart Failure (CHF. Objectives: The present study aimed to evaluate the association between EMPs and pro-inflammatory biomarkers, clinical status, and outcomes in the patients with ischemic CHF. Patients and Methods: This study was conducted on 154 patients with ischemic symptomatic moderate-to-severe CHF on discharge from hospital. The observation period was up to 3 years. Circulating NT-pro-BNP, TNF-alpha, sFas, and sFas ligand were determined at baseline. Flow cytometry analysis was used for quantifying the number of EMPs. All-cause mortality, CHF-related death, and CHD-re-hospitalization rate were examined. The data were analyzed using descriptive statistics, Receive Operation Characteristic Curve (ROC, and logistic regression analysis. Besides, P 0.514 n/mL and those with a low level of the biomarker (< 0.514 n/mL regarding their survival. The number of circulating EPMs independently predicted all-cause mortality (OR = 1.58; 95% CI = 1.20 – 1.88; P = 0.001, CHF-related death (OR = 1.22; 95% CI: 1.12 – 1.36; P < 0.001, and CHF-related re-hospitalization (OR = 1.20; 95% CI: 1.11 – 1.32; P < 0.001. Conclusions: Among the patients with symptoms of CHF, increased number of circulating EMPs was associated with increased 3-year CHF-related death, all-cause mortality, and risk of recurrent hospitalization due to CHF.

  9. Increased circulating cell-derived microparticle count is associated with recurrent implantation failure after IVF and embryo transfer.

    Science.gov (United States)

    Martínez-Zamora, M Angeles; Tàssies, Dolors; Reverter, Juan Carlos; Creus, Montserrat; Casals, Gemma; Cívico, Salvadora; Carmona, Francisco; Balasch, Juan

    2016-08-01

    Cell-derived microparticles (cMPs) are small membrane vesicles that are released from many different cell types in response to cellular activation or apoptosis. Elevated cMP counts have been found in almost all thrombotic diseases and pregnancy wastage, such as recurrent spontaneous abortion and in a number of conditions associated with inflammation, cellular activation and angiogenesis. cMP count was investigated in patients experiencing unexplained recurrent implantation failure (RIF). The study group was composed of 30 women diagnosed with RIF (RIF group). The first control group (IVF group) (n = 30) comprised patients undergoing a first successful IVF cycle. The second control group (FER group) included 30 healthy women who had at least one child born at term and no history of infertility or obstetric complications. cMP count was significantly higher in the RIF group compared with the IVF and FER groups (P < 0.05 and P < 0.01, respectively) (RIF group: 15.8 ± 6.2 nM phosphatidylserine equivalent [PS eq]; IVF group: 10.9 ± 5.3 nM PS eq; FER group: 9.6 ± 4.0 nM PS eq). No statistical difference was found in cMP count between the IVF and FER groups. Increased cMP count is, therefore, associated with RIF after IVF and embryo transfer.

  10. Differential impact of acute high-intensity exercise on circulating endothelial microparticles and insulin resistance between overweight/obese males and females.

    Directory of Open Access Journals (Sweden)

    Cody Durrer

    Full Text Available An acute bout of exercise can improve endothelial function and insulin sensitivity when measured on the day following exercise. Our aim was to compare acute high-intensity continuous exercise (HICE to high-intensity interval exercise (HIIE on circulating endothelial microparticles (EMPs and insulin sensitivity in overweight/obese men and women.Inactive males (BMI = 30 ± 3, 25 ± 6 yr, n = 6 and females (BMI = 28 ± 2, 21 ± 3 yr, n = 7 participated in three experimental trials in a randomized counterbalanced crossover design: 1 No exercise control (Control; 2 HICE (20 min cycling @ just above ventilatory threshold; 3 HIIE (10 X 1-min @ ∼ 90% peak aerobic power. Exercise conditions were matched for external work and diet was controlled post-exercise. Fasting blood samples were obtained ∼ 18 hr after each condition. CD62E(+ and CD31(+/CD42b- EMPs were assessed by flow cytometry and insulin resistance (IR was estimated by homeostasis model assessment (HOMA-IR.There was a significant sex X exercise interaction for CD62E(+ EMPs, CD31(+/CD42b- EMPs, and HOMA-IR (all P < 0.05. In males, both HICE and HIIE reduced EMPs compared to Control (P ≤ 0.05. In females, HICE increased CD62E(+ EMPs (P < 0.05 vs. Control whereas CD31(+/CD42b- EMPs were unaltered by either exercise type. There was a significant increase in HOMA-IR in males but a decrease in females following HIIE compared to Control (P<0.05.Overweight/obese males and females appear to respond differently to acute bouts of high-intensity exercise. A single session of HICE and HIIE reduced circulating EMPs measured on the morning following exercise in males but in females CD62E(+ EMPs were increased following HICE. Next day HOMA-IR paradoxically increased in males but was reduced in females following HIIE. Future research is needed to investigate mechanisms responsible for potential differential responses between males and females.

  11. Protective role of a novel human erythrocyte-derived depressing factor on blood vessels in rats

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The protective role of a human erythrocyte-derived depressing factor (EDDF) on blood vessels was evaluated. The experiments were carried out on 25male Wistar rats aged 6-8 weeks, which were divided into control (n = 8), calcium overload (n = 8) and NG-L-nitro-arginine hypertensive model groups (L-NNA,n = 9), respectively. The isolated vascular ring perfusion assay, two-photon laser scanning fluorescence microscopy (TPM) and transmitted electron microscope were used to examine the effect of EDDF on vascular function and ultrastructure. Results showed that the contractile response of calcium overload rats and L-NNA rats to phenylephrine (PE) was significantly enhanced compared with that of the control (P < 0.05), and EDDF (10-3 g @mL-1) remarkably decreased the vascular contractile response of control's and calcium overload rats (P < 0.05),while EDDF had no effect on that of L-NNA rats. EDDF also alleviated the ultrastructural lesion of aorta VSMC in calcium overload rats by easing the abnormal in the nucleus, mitochondrion and other organell. It is concluded that EDDF could efficiently protect blood vessels against injury by influencing Ca2+ transport and ameliorating the lesion of VSMC, and further supported the hypothesis that the NO-cGMP pathway might contribute to the vasodilation and partially antihypertensive mechanism of EDDF.``

  12. Role of microparticles in endothelial dysfunction and arterial hypertension

    Institute of Scientific and Technical Information of China (English)

    Thomas; Helbing; Christoph; Olivier; Christoph; Bode; Martin; Moser; Philipp; Diehl

    2014-01-01

    Microparticles are small cell vesicles that can be released by almost all eukaryotic cells during cellular stress and cell activation. Within the last 1-2 decades it has been shown that microparticles are useful blood surrogate markers for different pathological conditions, such as vascular inflammation, coagulation and tumour diseases. Several studies have investigated the abundance of microparticles of different cellular origins in multiple cardiovascular diseases. It thereby has been shown that microparticles released by platelets, leukocytes and endothelial cells can be found in conditions of endothelial dysfunction, acute and chronic vascular inflammation and hypercoagulation. In addition to their function as surrogate markers, several studies indicate that circulating microparticles can fuse with distinct target cells, such as endothelial cells or leukocyte, and thereby deliver cellular components of their parental cells to the target cells. Hence, microparticles are a novel entity of circulating, paracrine, biological vectors which can influence the phenotype, the function and presumably even the transcriptome of their target cells.This review article aims to give a brief overview about the microparticle biology with a focus on endothelial activation and arterial hypertension. More detailed information about the role of microparticles in pathophysiology and disease can be found in already published work.

  13. Flow cytometric assessment of circulating platelet and erythrocytes microparticles in young thalassemia major patients: relation to pulmonary hypertension and aortic wall stiffness.

    Science.gov (United States)

    Tantawy, Azza A G; Adly, Amira A M; Ismail, Eman A R; Habeeb, Nevin M

    2013-06-01

    Heart disease is the leading cause of mortality and morbidity in β-thalassemia major (β-TM). Aggregability of abnormal red cells and membrane-derived microparticles (MPs) stemming from activated platelets and erythrocytes are responsible for thrombotic risk. We measured platelet and erythrocyte MPs (PMPs and ErMPs) in 60 young β-TM patients compared with 40 age- and sex-matched healthy controls and assessed their relation to clinicopathological characteristics and aortic elastic properties. Patients were studied stressing on transfusion history, splenectomy, thrombotic events, chelation therapy, hematological and coagulation profiles, flow cytometric measurement of PMPs (CD41b(+) ) and ErMPs (glycophorin A(+) ) as well as echocardiographic assessment of aortic elastic properties. Aortic stiffness index and pulmonary artery pressure were significantly higher, whereas aortic strain and distensibility were lower in TM patients than controls (P 2500 μg/L (P < 0.001). Compliant patients on chelation therapy had lower MPs levels than non-compliant patients (P < 0.001). PMPs and ErMPs were positively correlated to markers of hemolysis, serum ferritin, D-dimer, vWF Ag, and aortic stiffness, whereas negatively correlated to hemoglobin level and aortic distensibility (P < 0.05). We suggest that increased MPs may be implicated in vascular dysfunction, pulmonary hypertension risk, and aortic wall stiffness observed in thalassemia patients. Their quantification could provide utility for early detection of cardiovascular abnormalities and monitoring the biological efficacy of chelation therapy.

  14. Microparticles and type 2 diabetes.

    Science.gov (United States)

    Leroyer, A S; Tedgui, A; Boulanger, C M

    2008-02-01

    Cell activation or apoptosis leads to plasma membrane blebbing and microparticles (MPs) release in the extracellular space. MPs are submicron membrane vesicles, which harbour a panel of oxidized phospholipids and proteins specific to the cells they derived from. MPs are found in the circulating blood of healthy volunteers. MPs levels are increased in many diseases, including cardiovascular diseases with high thrombotic risk. Exposure of negatively charged phospholipids and tissue factor confers a procoagulant potential to MPs. Elevation of plasma MPs levels, particularly those of endothelial origin, reflects cellular injury and appears now as a surrogate marker of vascular dysfunction. Recent studies demonstrate an elevation of circulating levels of MPs in diabetes. MPs could also be involved in the development of vascular complications in diabetes for they stimulate pro-inflammatory responses in target cells and promote thrombosis, endothelial dysfunction and angiogenesis. Thus, these studies provide new insight in the pathogenesis and treatment of vascular complications of diabetes.

  15. Elevated procoagulant endothelial and tissue factor expressing microparticles in women with recurrent pregnancy loss.

    Directory of Open Access Journals (Sweden)

    Rucha Patil

    Full Text Available BACKGROUND: 15% of reproducing couples suffer from pregnancy loss(PL and recurs in 2-3%. One of the most frequently hypothesized causes of unexplained PL refers to a defective maternal haemostatic response leading to uteroplacental thrombosis. Hereditary thrombophilia and antiphospholipid antibodies have been extensively described as risk factors for PL in women with unknown aetiology. Recently, a new marker has emerged: the cell-derived procoagulant circulating microparticles(MPs which have been reported to have a major role in many thrombosis complicated diseases. This study aims to analyze the significance of procoagulant MPs in women suffering from unexplained recurrent pregnancy loss(RPL, and characterize their cellular origin. METHOD AND FINDINGS: 115 women with RPL were analyzed for common thrombophilia markers and different cell derived MPs-total annexinV, platelet(CD41a, endothelial(CD146,CD62e, leukocyte(CD45, erythrocyte(CD235a and tissue factor(CD142(TF expressing MPs and were compared with 20 healthy non-pregnant women. Methodology for MP analysis was standardized by participating in the "Vascular Biology Scientific and Standardization Committee workshop". RESULTS: Total annexinV, TF and endothelial MPs were found significantly increased(p<0.05, 95% confidence interval in women with RPL. The procoagulant activity of MPs measured by STA-PPL clotting time assay was found in correspondence with annexinV MP levels, wherein the clot time was shortened in samples with increased MP levels. Differences in platelet, leukocyte and erythrocyte derived MPs were not significant. Thirty seven of 115 women were found to carry any of the acquired or hereditary thrombophilia markers. No significant differences were seen in the MP profile of women with and without thrombophilia marker. CONCLUSION: The presence of elevated endothelial, TF and phosphatidylserine expressing MPs at a distance (at least 3 months from the PL suggests a continued chronic

  16. On the origin of microparticles: From "platelet dust" to mediators of intercellular communication.

    Science.gov (United States)

    Hargett, Leslie A; Bauer, Natalie N

    2013-04-01

    Microparticles are submicron vesicles shed from a variety of cells. Peter Wolf first identified microparticles in the midst of ongoing blood coagulation research in 1967 as a product of platelets. He termed them platelet dust. Although initially thought to be useless cellular trash, decades of research focused on the tiny vesicles have defined their roles as participators in coagulation, cellular signaling, vascular injury, and homeostasis. The purpose of this review is to highlight the science leading up to the discovery of microparticles, feature discoveries made by key contributors to the field of microparticle research, and discuss their positive and negative impact on the pulmonary circulation.

  17. Cardiac protective role of a novel erythrocyte-derived depressing factor on rats and its Ca2+ mechanism

    Institute of Scientific and Technical Information of China (English)

    WANG Yutang; WEN Yunyi; MA Ning; SHI Lei

    2003-01-01

    The cardiac protective role of a novel erythrocyte-derived depressing factor (EDDF) on spontaneous hypertensive rats (SHR), calcium overload (CaO) rats and Wistar rats and its mechanism was evaluated. Mean artery pressure (MAP), heart rate (HR) and LVdp/dtmax were measured by physiological recorder. The effect of EDDF on the Ca2+-ATPase activity in myocardial sarcoplasmic reticulum (SR) of CaO rats was determined by inorganic phosphate assay. Calcium transport in myocytes was measured by 45Ca2+ radioactive isotope measurement. The phosphorylation levels of extracellular signal-regulated protein kinases (ERK1/2) in myocardial tissue of SHR and CaO rats were measured by Western blot method. And the ultrastructures of cardiac muscle cells were observed with the transmission electron microscope. The results indicated that EDDF could significantly decrease MAP, HR and LVdp/dtmax in a dose dependent manner (P < 0.05). It seems that the mechanism might relate with activating the Ca2+-APTase, enhancing the uptake and release of Ca2+ from SR (P < 0.05), decreasing the phosphorylation levels of ERK1/2 of myocytes (P < 0.01) and lightening the ultrastructural lesion of cardiac muscle cells. In CaO rats, the Ca2+-ATPase activity decreased clearly compared to control (64.99 ± 7.16 vs 94.48 ± 7.68 nmol·min-1·mg-1 protein, P < 0.01), while EDDF (100 μg/mL) could significantly increase the activity (87.93 ± 9.54 vs 64.99 ± 7.16, P < 0.05, n = 7). Both uptake and release rate of Ca2+ (μmol 45Ca2+/g protein/min) from myocardial SR of CaO rats remarkably decreased compared to control (32.40 ± 2.70 and 15.46 ± 1.49 vs 61.09 ± 10.89 and 25.47 ± 4.29, P < 0.05); EDDF (100 μg/mL) could significantly stimulate their activities (50.48 ± 6.76 and 21.76 ± 2.75 vs 32.40 ± 2.70 and 15.46 ± 1.49, P < 0.05). EDDF could evidently down-regulate the phosphorylation of ERK1/2 in myocardial tissue from SHR and CaO rats (P < 0.01), lighten the ultrastructural lesion of cardiac muscle

  18. Microparticles engineered to highly express peroxisome proliferator-activated receptor-γ decreased inflammatory mediator production and increased adhesion of recipient monocytes.

    Directory of Open Access Journals (Sweden)

    Julie Sahler

    Full Text Available Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ. In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles

  19. Physics of microparticle acoustophoresis

    DEFF Research Database (Denmark)

    Barnkob, Rune

    2012-01-01

    This thesis presents studies of microparticle acoustophoresis, a technique for manipulation of particles in microsystems by means of acoustic radiation and streaming forces induced by ultrasound standing waves. The motivation for the studies is to increase the theoretical understanding of micropa......This thesis presents studies of microparticle acoustophoresis, a technique for manipulation of particles in microsystems by means of acoustic radiation and streaming forces induced by ultrasound standing waves. The motivation for the studies is to increase the theoretical understanding...... of microparticle acoustophoresis and to develop methods for future advancement of its use. Throughout the work on this thesis the author and co-workers1 have studied the physics of microparticle acoustophoresis by comparing quantitative measurements to a theoretical framework consisting of existing hydrodynamic...... the transient acoustophoretic motion of the microparticles driven by the acoustic radiation force from sound scattered of the particles and the Stokes drag force from the induced acoustic streaming. The numerical scheme is used to predict the acoustophoretic particle motion in the experimental model system...

  20. Acceleration of microparticle

    CERN Document Server

    Shibata, H

    2002-01-01

    A microparticle (dust) ion source has been installed at the high voltage terminal of the 3.75 MV single ended Van de Graaff electrostatic accelerator and a beam line for microparticle experiments has been build at High Fluence Irradiation Facility (HIT) of Research Center for Nuclear Science and Technology, the University of Tokyo. Microparticle acceleration has been successful in obtaining expected velocities of 1-20 km/s or more for micron or submicron sized particles. Development of in situ dust detectors and analyzers on board satellites and spacecraft in the expected mass and velocity range of micrometeoroids and investigation of hypervelocity impact phenomena by using time of flight mass spectrometry, impact flash or luminescence measurement and scanning electron or laser microscope observation for metals, ceramics, polymers and semiconductors bombarded by micron-sized particles were started three years ago. (author)

  1. Inertial Focusing of Microparticles in Curvilinear Microchannels

    Science.gov (United States)

    Özbey, Arzu; Karimzadehkhouei, Mehrdad; Akgönül, Sarp; Gozuacik, Devrim; Koşar, Ali

    2016-12-01

    A passive, continuous and size-dependent focusing technique enabled by “inertial microfluidics”, which takes advantage of hydrodynamic forces, is implemented in this study to focus microparticles. The objective is to analyse the decoupling effects of inertial forces and Dean drag forces on microparticles of different sizes in curvilinear microchannels with inner radius of 800 μm and curvature angle of 280°, which have not been considered in the literature related to inertial microfluidics. This fundamental approach gives insight into the underlying physics of particle dynamics and offers continuous, high-throughput, label-free and parallelizable size-based particle separation. Our design allows the same footprint to be occupied as straight channels, which makes parallelization possible with optical detection integration. This feature is also useful for ultrahigh-throughput applications such as flow cytometers with the advantages of reduced cost and size. The focusing behaviour of 20, 15 and 10 μm fluorescent polystyrene microparticles was examined for different channel Reynolds numbers. Lateral and vertical particle migrations and the equilibrium positions of these particles were investigated in detail, which may lead to the design of novel microfluidic devices with high efficiency and high throughput for particle separation, rapid detection and diagnosis of circulating tumour cells with reduced cost.

  2. Physical Characterization of Mouse Deep Vein Thrombosis Derived Microparticles by Differential Filtration with Nanopore Filters

    Directory of Open Access Journals (Sweden)

    Antonio Peramo

    2011-12-01

    Full Text Available With the objective of making advancements in the area of pro-thrombotic microparticle characterization in cardiovascular biology, we present a novel method to separate blood circulating microparticles using a membrane-based, nanopore filtration system. In this qualitative study, electron microscopy observations of these pro-thrombotic mouse microparticles, as well as mouse platelets and leukocytes obtained using a mouse inferior vena cava ligation model of deep-vein thrombosis are presented. In particular, we present mouse microparticle morphology and microstructure using SEM and TEM indicating that they appear to be mostly spherical with diameters in the 100 to 350 nm range. The nanopore filtration technique presented is focused on the development of novel methodologies to isolate and characterize blood circulating microparticles that can be used in conjunction with other methodologies. We believe that determination of microparticle size and structure is a critical step for the development of reliable assays with clinical or research application in thrombosis and it will contribute to the field of nanomedicine in thrombosis.

  3. Fabrication of hydrophilic paclitaxel-loaded PLA-PEG-PLA microparticles via SEDS process

    Institute of Scientific and Technical Information of China (English)

    Ping OUYANG; Yun-qing KANG; Guang-fu YIN; Zhong-bing HUANG; Ya-dong YAO; Xiao-ming LIAO

    2009-01-01

    In this work, chemically bonded poly(D, L-lactide)-polyethylene glycol-poly(D, L-lactide) (PLA-PEG-PLA) triblock copolymers with various PEG contents and PLA homopolymer were synthesized via melt polymerization, and were confirmed by FTIR and 1 H-NMR results. The molecular weight and polydispersity of the synthesized PLA and PLA-PEG-PLA copolymers were investigated by gel permeation chromatography. Hydro-philicity of the copolymers was identified by contact angle measurement. PLA-PEG-PLA and PLA microparticles loaded with and without PTX were then produced via solution enhanced dispersion by supercritical CO2 (SEDS) process. The effect of the PEG content on the particle size distribution, morphology, drug load, and encapsulation efficiency of the fabricated microparticles was also studied. Results indicate that PLA and PLA-PEG-PLA micropar-ticles all exhibit sphere-like shape with smooth surface, when PEG content is relatively low. The produced microparticles have narrow particle size distributions and small particle sizes. The drug load and encapsulation efficiency of the produced microparticles decreases with higher PEG content in the copolymer matrix. Moreover, high hydrophilicity is found when PEG is chemically attached to originally hydrophobic PLA, providing the produced drug-loaded microparticles with high hydrophi-licity, biocompatibility, and prolonged circulation time, which are considered of vital importance for vessel-circulating drug delivery system.

  4. Activation of the inflammasome and enhanced migration of microparticle-stimulated dendritic cells to the draining lymph node.

    Science.gov (United States)

    Meraz, Ismail M; Melendez, Brenda; Gu, Jianhua; Wong, Stephen T C; Liu, Xuewu; Andersson, Helen A; Serda, Rita E

    2012-07-02

    Porous silicon microparticles presenting pathogen-associated molecular patterns mimic pathogens, enhancing internalization of the microparticles and activation of antigen presenting dendritic cells. We demonstrate abundant uptake of microparticles bound by the TLR-4 ligands LPS and MPL by murine bone marrow-derived dendritic cells (BMDC). Labeled microparticles induce concentration-dependent production of IL-1β, with inhibition by the caspase inhibitor Z-VAD-FMK supporting activation of the NLRP3-dependent inflammasome. Inoculation of BALB/c mice with ligand-bound microparticles induces a significant increase in circulating levels of IL-1β, TNF-α, and IL-6. Stimulation of BMDC with ligand-bound microparticles increases surface expression of costimulatory and MHC molecules, and enhances migration of BMDC to the draining lymph node. LPS-microparticles stimulate in vivo C57BL/6 BMDC and OT-1 transgenic T cell interactions in the presence of OVA SIINFEKL peptide in lymph nodes, with intact nodes imaged using two-photon microscopy. Formation of in vivo and in vitro immunological synapses between BMDC, loaded with OVA peptide and LPS-microparticles, and OT-1 T cells are presented, as well as elevated intracellular interferon gamma levels in CD8(+) T cells stimulated by BMDC carrying peptide-loaded microparticles. In short, ligand-bound microparticles enhance (1) phagocytosis of microparticles; (2) BMDC inflammasome activation and upregulation of costimulatory and MHC molecules; (3) cellular migration of BMDC to lymphatic tissue; and (4) cellular interactions leading to T cell activation in the presence of antigen.

  5. Increased IgG on cell-derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation

    DEFF Research Database (Denmark)

    Nielsen, Christoffer T; Østergaard, Ole; Stener, Line

    2012-01-01

    To quantify immunoglobulin and C1q on circulating cell-derived microparticles (MPs) in patients with systemic lupus erythematosus (SLE) and to determine whether immunoglobulin and C1q levels are correlated with clinical and serologic parameters.......To quantify immunoglobulin and C1q on circulating cell-derived microparticles (MPs) in patients with systemic lupus erythematosus (SLE) and to determine whether immunoglobulin and C1q levels are correlated with clinical and serologic parameters....

  6. Microparticles as Potential Biomarkers of Cardiovascular Disease

    Energy Technology Data Exchange (ETDEWEB)

    França, Carolina Nunes, E-mail: carolufscar24@gmail.com [Universidade Federal de São Paulo - UNIFESP - UNISA, SP, São Paulo (Brazil); Universidade de Santo Amaro - UNISA, SP, São Paulo (Brazil); Izar, Maria Cristina de Oliveira; Amaral, Jônatas Bussador do; Tegani, Daniela Melo; Fonseca, Francisco Antonio Helfenstein [Universidade Federal de São Paulo - UNIFESP - UNISA, SP, São Paulo (Brazil)

    2015-02-15

    Primary prevention of cardiovascular disease is a choice of great relevance because of its impact on health. Some biomarkers, such as microparticles derived from different cell populations, have been considered useful in the assessment of cardiovascular disease. Microparticles are released by the membrane structures of different cell types upon activation or apoptosis, and are present in the plasma of healthy individuals (in levels considered physiological) and in patients with different pathologies. Many studies have suggested an association between microparticles and different pathological conditions, mainly the relationship with the development of cardiovascular diseases. Moreover, the effects of different lipid-lowering therapies have been described in regard to measurement of microparticles. The studies are still controversial regarding the levels of microparticles that can be considered pathological. In addition, the methodologies used still vary, suggesting the need for standardization of the different protocols applied, aiming at using microparticles as biomarkers in clinical practice.

  7. Pharmaceutical microparticle engineering with electrospraying

    DEFF Research Database (Denmark)

    Bohr, Adam; Wan, Feng; Kristensen, Jakob

    2015-01-01

    , acetone, and an anti-solvent, methanol, for PLGA were studied in different ratios. Properties of the spraying solutions were examined and the resulting microparticles were characterized with regard to size, morphology, porosity, solid state form, surface chemistry and drug release. Particle formation...... demonstrated by the increasingly higher drug release rates. The results demonstrate the importance of solvent composition in particle preparation and indicate potential for exploiting this dependence to improve pharmaceutical particle design and performance....

  8. Microparticle formation after co-culture of human whole blood and umbilical artery in a novel in vitro model of flow.

    Science.gov (United States)

    Holtom, Emma; Usherwood, James R; Macey, Marion G; Lawson, Charlotte

    2012-05-01

    Cardiovascular disease (CVD) is now the largest killer in western society, and the importance of interactions between vascular endothelium and circulating blood components in disease pathogenesis is well established. Microparticles are a heterogeneous population of laminar flow conditions. Here we have investigated microparticle production after perfusion of human whole blood through intact inflamed human umbilical artery. When blood was perfused through umbilical arteries which had been pre-stimulated with tumour necrosis factor (TNFα) for 18 h under flow conditions, there was significantly increased production of microparticles from both platelet and non-platelet sources, in particular from erythrocytes. To determine whether microparticles generated during interactions with inflamed endothelium could induce a pro-inflammatory response in trans, we isolated microparticles by centrifugation after co-culture and incubated with isolated quiescent endothelial cells followed by measurement of reactive oxygen species formation. Microparticles derived from co-culture with inflamed endothelium induced significantly enhanced levels of reactive oxygen species (ROS). These data suggest that presence of an inflamed endothelium causes release of pro-inflammatory microparticles from circulating blood cells, which could contribute to prolonged endothelial activation and subsequent atherosclerotic changes in blood vessels subjected to inflammatory insult.

  9. Interaction Force Estimation During Manipulation of Microparticles

    NARCIS (Netherlands)

    Khalil, I.S.M.; Metz, R.M.P.; Abelmann, L.; Misra, S.

    2012-01-01

    This work investigates the utilization of microparticles for the wireless sensing of interaction forces in magneticbased manipulation systems. The proposed force estimation approach allows for using microparticles in sensing the interaction forces at hard-to-reach regions to avoid the mechanical and

  10. Cell-derived microparticles and the lung

    Directory of Open Access Journals (Sweden)

    Dario Nieri

    2016-09-01

    Full Text Available Cell-derived microparticles are small (0.1–1 μm vesicles shed by most eukaryotic cells upon activation or during apoptosis. Microparticles carry on their surface, and enclose within their cytoplasm, molecules derived from the parental cell, including proteins, DNA, RNA, microRNA and phospholipids. Microparticles are now considered functional units that represent a disseminated storage pool of bioactive effectors and participate both in the maintenance of homeostasis and in the pathogenesis of diseases. The mechanisms involved in microparticle generation include intracellular calcium mobilisation, cytoskeleton rearrangement, kinase phosphorylation and activation of the nuclear factor-κB. The role of microparticles in blood coagulation and inflammation, including airway inflammation, is well established in in vitro and animal models. The role of microparticles in human pulmonary diseases, both as pathogenic determinants and biomarkers, is being actively investigated. Microparticles of endothelial origin, suggestive of apoptosis, have been demonstrated in the peripheral blood of patients with emphysema, lending support to the hypothesis that endothelial dysfunction and apoptosis are involved in the pathogenesis of the disease and represent a link with cardiovascular comorbidities. Microparticles also have potential roles in patients with asthma, diffuse parenchymal lung disease, thromboembolism, lung cancer and pulmonary arterial hypertension.

  11. Microparticles generated during chronic cerebral ischemia deliver proapoptotic signals to cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Sarah C. [Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Edrissi, Hamidreza [University of Ottawa, Neuroscience Graduate Program, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Burger, Dylan [Ottawa Hospital Research Institute, Kidney Centre, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Cadonic, Robert; Hakim, Antoine [Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Thompson, Charlie, E-mail: charliet@uottawa.ca [Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada)

    2014-07-18

    Highlights: • Microparticles are elevated in the plasma in a rodent model of chronic cerebral ischemia. • These microparticles initiate apoptosis in cultured cells. • Microparticles contain caspase 3 and they activate receptors for TNF-α and TRAIL. - Abstract: Circulating microparticles (MPs) are involved in many physiological processes and numbers are increased in a variety of cardiovascular disorders. The present aims were to characterize levels of MPs in a rodent model of chronic cerebral hypoperfusion (CCH) and to determine their signaling properties. MPs were isolated from the plasma of rats exposed to CCH and quantified by flow cytometry. When MPs were added to cultured endothelial cells or normal rat kidney cells they induced cell death in a time and dose dependent manner. Analysis of pellets by electron microscopy indicates that cell death signals are carried by particles in the range of 400 nm in diameter or less. Cell death involved the activation of caspase 3 and was not a consequence of oxidative stress. Inhibition of the Fas/FasL signaling pathway also did not improve cell survival. MPs were found to contain caspase 3 and treating the MPs with a caspase 3 inhibitor significantly reduced cell death. A TNF-α receptor blocker and a TRAIL neutralizing antibody also significantly reduced cell death. Levels of circulating MPs are elevated in a rodent model of chronic cerebral ischemia. MPs with a diameter of 400 nm or less activate the TNF-α and TRAIL signaling pathways and may deliver caspase 3 to cultured cells.

  12. Quantitative proteome profiling of normal human circulating microparticles

    DEFF Research Database (Denmark)

    Østergaard, Ole; Nielsen, Christoffer T; Iversen, Line V;

    2012-01-01

    proteome using nano-LC-MS/MS on an LTQ-Orbitrap with optimized sample collection, preparation, and analysis of 12 different normal samples. Analytical and procedural variation were estimated in triply processed samples analyzed in triplicate from two different donors. Label-free quantitation was validated...... by the correlation of cytoskeletal protein intensities with MP numbers obtained by flow cytometry. Finally, the validity of using pooled samples was evaluated using overlap protein identification numbers and multivariate data analysis. Using conservative parameters, 536 different unique proteins were quantitated...

  13. Orodispersible films and tablets with prednisolone microparticles.

    Science.gov (United States)

    Brniak, Witold; Maślak, Ewelina; Jachowicz, Renata

    2015-07-30

    Orodispersible tablets (ODTs) and orodispersible films (ODFs) are solid oral dosage forms disintegrating or dissolving rapidly when placed in the mouth. One of the main issues related to their preparation is an efficient taste masking of a bitter drug substance. Therefore, the aim of this study was to prepare and evaluate the microparticles intended to mask a bitter taste of the prednisolone and use them in further preparation of two orodispersible dosage forms. Microparticles based on the Eudragit E PO or E 100 as a taste-masking agent were prepared with spray-drying technique. Tablets containing microparticles, co-processed ODT excipient Pharmaburst, and lubricant were directly compressed with single-punch tablet press. Orodispersible films were prepared by casting polymeric solutions of hydroxypropyl methylcellulose containing uniformly dispersed microparticles. Physicochemical properties of microparticles were evaluated, as well as mechanical properties analysis, disintegration time measurements and dissolution tests were performed for prepared dosage forms. Both formulations showed good mechanical resistance while maintaining excellent disintegration properties. The dissolution studies showed good masking properties of microparticles with Eudragit E 100. The amount of prednisolone released during the first minute in phosphate buffer 6.8 was around 0.1%. After incorporation into the orodispersible forms, the amount of released prednisolone increased significantly. It was probably the effect of faster microparticles wetting in orodispersible forms and their partial destruction by compression force during tableting process.

  14. Nitric oxide scavenging by red cell microparticles.

    Science.gov (United States)

    Liu, Chen; Zhao, Weixin; Christ, George J; Gladwin, Mark T; Kim-Shapiro, Daniel B

    2013-12-01

    Red cell microparticles form during the storage of red blood cells and in diseases associated with red cell breakdown and asplenia, including hemolytic anemias such as sickle cell disease. These small phospholipid vesicles that are derived from red blood cells have been implicated in the pathogenesis of transfusion of aged stored blood and hemolytic diseases, via activation of the hemostatic system and effects on nitric oxide (NO) bioavailability. Red cell microparticles react with the important signaling molecule NO almost as fast as cell-free hemoglobin, about 1000 times faster than red-cell-encapsulated hemoglobin. The degree to which this fast reaction with NO by red cell microparticles influences NO bioavailability depends on several factors that are explored here. In the context of stored blood preserved in ADSOL, we find that both cell-free hemoglobin and red cell microparticles increase as a function of duration of storage, and the proportion of extra erythrocytic hemoglobin in the red cell microparticle fraction is about 20% throughout storage. Normalized by hemoglobin concentration, the NO-scavenging ability of cell-free hemoglobin is slightly higher than that of red cell microparticles as determined by a chemiluminescence NO-scavenging assay. Computational simulations show that the degree to which red cell microparticles scavenge NO will depend substantially on whether they enter the cell-free zone next to the endothelial cells. Single-microvessel myography experiments performed under laminar flow conditions demonstrate that microparticles significantly enter the cell-free zone and inhibit acetylcholine, endothelial-dependent, and NO-dependent vasodilation. Taken together, these data suggest that as little as 5 μM hemoglobin in red cell microparticles, an amount formed after the infusion of one unit of aged stored packed red blood cells, has the potential to reduce NO bioavailability and impair endothelial-dependent vasodilation.

  15. Carbon monoxide inhalation increases microparticles causing vascular and CNS dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jiajun; Yang, Ming [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Kosterin, Paul [Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Salzberg, Brian M. [Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Milovanova, Tatyana N.; Bhopale, Veena M. [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Thom, Stephen R., E-mail: sthom@smail.umaryland.edu [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States)

    2013-12-01

    We hypothesized that circulating microparticles (MPs) play a role in pro-inflammatory effects associated with carbon monoxide (CO) inhalation. Mice exposed for 1 h to 100 ppm CO or more exhibit increases in circulating MPs derived from a variety of vascular cells as well as neutrophil activation. Tissue injury was quantified as 2000 kDa dextran leakage from vessels and as neutrophil sequestration in the brain and skeletal muscle; and central nervous system nerve dysfunction was documented as broadening of the neurohypophysial action potential (AP). Indices of injury occurred following exposures to 1000 ppm for 1 h or to 1000 ppm for 40 min followed by 3000 ppm for 20 min. MPs were implicated in causing injuries because infusing the surfactant MP lytic agent, polyethylene glycol telomere B (PEGtB) abrogated elevations in MPs, vascular leak, neutrophil sequestration and AP prolongation. These manifestations of tissue injury also did not occur in mice lacking myeloperoxidase. Vascular leakage and AP prolongation were produced in naïve mice infused with MPs that had been obtained from CO poisoned mice, but this did not occur with MPs obtained from control mice. We conclude that CO poisoning triggers elevations of MPs that activate neutrophils which subsequently cause tissue injuries. - Highlights: • Circulating microparticles (MPs) increase in mice exposed to 100 ppm CO or more. • MPs are lysed by infusing the surfactant polyethylene glycol telomere B. • CO-induced MPs cause neutrophil activation, vascular leak and CNS dysfunction. • Similar tissue injuries do not arise with MPs obtained from air-exposed, control mice.

  16. Involvement of microparticles in diabetic vascular complications.

    Science.gov (United States)

    Tsimerman, Gala; Roguin, Ariel; Bachar, Anat; Melamed, Eyal; Brenner, Benjamin; Aharon, Anat

    2011-08-01

    Type 2 diabetes mellitus (T2DM) is associated with increased coagulability and vascular complications. Circulating microparticles (MPs) are involved in thrombosis, inflammation, and angiogenesis. However, the role of MPs in T2DM vascular complications is unclear. We characterised the cell origin and pro-coagulant profiles of MPs obtained from 41 healthy controls and 123 T2DM patients with coronary artery disease, retinopathy and foot ulcers. The effects of MPs on endothelial cell coagulability and tube formation were evaluated. Patients with severe diabetic foot ulcers expressed the highest levels of MPs originated from platelet and endothelial cells and negatively-charged phospholipid-bearing MPs. MP coagulability, calculated from MP tissue factor (TF) and TF pathway inhibitor (TFPI) ratio, was low in healthy controls and in diabetic retinopathy patients (1.8, p≥0.002). MPs of all T2DM patients induced a more than two-fold increase in endothelial cell TF (antigen and gene expression) but did not affect TFPI levels. Tube networks were longest and most stable in endothelial cells that were incubated with MPs of healthy controls, whereas no tube formation occurred in MPs of diabetic patients with coronary artery disease. MPs of diabetic retinopathy and diabetic foot ulcer patients induced branched tube networks that were unstable and collapsed over time. This study demonstrates that MP characteristics are related to the specific type of vascular complications and may serve as a bio-marker for the pro- coagulant state and vascular pathology in patients with T2DM.

  17. Trojan Microparticles for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Thierry F. Vandamme

    2012-01-01

    Full Text Available During the last decade, the US Food and Drug Administration (FDA have regulated a wide range of products, (foods, cosmetics, drugs, devices, veterinary, and tobacco which may utilize micro and nanotechnology or contain nanomaterials. Nanotechnology allows scientists to create, explore, and manipulate materials in nano-regime. Such materials have chemical, physical, and biological properties that are quite different from their bulk counterparts. For pharmaceutical applications and in order to improve their administration (oral, pulmonary and dermal, the nanocarriers can be spread into microparticles. These supramolecular associations can also modulate the kinetic releases of drugs entrapped in the nanoparticles. Different strategies to produce these hybrid particles and to optimize the release kinetics of encapsulated drugs are discussed in this review.

  18. Nitric Oxide Scavenging by Red Cell Microparticles

    OpenAIRE

    Liu, Chen; Zhao, Weixin; George J Christ; Gladwin, Mark T.; Kim-Shapiro, Daniel B.

    2013-01-01

    Red cell microparticles form during the storage of red blood cells and in diseases associated with red cell breakdown and asplenia, including hemolytic anemias such as sickle cell disease. These small phospholipid vesicles that are derived from red blood cells have been implicated in the pathogenesis of transfusion of aged stored blood and hemolytic diseases, via activation of the hemostatic system and effects on nitric oxide (NO) bioavailability. Red cell microparticles react with the import...

  19. Vascular complications in diabetes: Microparticles and microparticle associated microRNAs as active players.

    Science.gov (United States)

    Alexandru, Nicoleta; Badila, Elisabeta; Weiss, Emma; Cochior, Daniel; Stępień, Ewa; Georgescu, Adriana

    2016-03-25

    The recognition of the importance of diabetes in vascular disease has greatly increased lately. Common risk factors for diabetes-related vascular disease include hyperglycemia, insulin resistance, dyslipidemia, inflammation, hypercoagulability, hypertension, and atherosclerosis. All of these factors contribute to the endothelial dysfunction which generates the diabetic complications, both macro and microvascular. Knowledge of diabetes-related vascular complications and of associated mechanisms it is becoming increasingly important for therapists. The discovery of microparticles (MPs) and their associated microRNAs (miRNAs) have opened new perspectives capturing the attention of basic and clinical scientists for their potential to become new therapeutic targets and clinical biomarkers. MPs known as submicron vesicles generated from membranes of apoptotic or activated cells into circulation have the ability to act as autocrine and paracrine effectors in cell-to-cell communication. They operate as biological vectors modulating the endothelial dysfunction, inflammation, coagulation, angiogenesis, thrombosis, subsequently contributing to the progression of macro and microvascular complications in diabetes. More recently, miRNAs have started to be actively investigated, leading to first exciting reports, which suggest their significant role in vascular physiology and disease. The contribution of MPs and also of their associated miRNAs to the development of vascular complications in diabetes was largely unexplored and undiscussed. In essence, with this review we bring light upon the understanding of impact diabetes has on vascular biology, and the significant role of MPs and MPs associated miRNAs as novel mediators, potential biomarkers and therapeutic targets in vascular complications in diabetes.

  20. Endotoxin-induced monocytic microparticles have contrasting effects on endothelial inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Beryl Wen

    Full Text Available Septic shock is a severe disease state characterised by the body's life threatening response to infection. Complex interactions between endothelial cells and circulating monocytes are responsible for microvasculature dysfunction contributing to the pathogenesis of this syndrome. Here, we intended to determine whether microparticles derived from activated monocytes contribute towards inflammatory processes and notably vascular permeability. We found that endotoxin stimulation of human monocytes enhances the release of microparticles of varying phenotypes and mRNA contents. Elevated numbers of LPS-induced monocytic microparticles (mMP expressed CD54 and contained higher levels of transcripts for pro-inflammatory cytokines such as TNF, IL-6 and IL-8. Using a prothrombin time assay, a greater reduction in plasma coagulation time was observed with LPS-induced mMP than with non-stimulated mMP. Co-incubation of mMP with the human brain endothelial cell line hCMEC/D3 triggered their time-dependent uptake and significantly enhanced endothelial microparticle release. Unexpectedly, mMP also modified signalling pathways by diminishing pSrc (tyr416 expression and promoted endothelial monolayer tightness, as demonstrated by endothelial impedance and permeability assays. Altogether, these data strongly suggest that LPS-induced mMP have contrasting effects on the intercellular communication network and display a dual potential: enhanced pro-inflammatory and procoagulant properties, together with protective function of the endothelium.

  1. Cellular origin of platelet-derived microparticles in vivo

    NARCIS (Netherlands)

    A. Rank; R. Nieuwland; R. Delker; A. Köhler; B. Toth; V. Pihusch; R. Wilkowski; R. Pihusch

    2010-01-01

    Introduction: Microparticles (MP), presumably of platelet origin, are the most abundant microparticles in blood. To which extent such MP may also directly originate from megakaryocytes, however, is unknown. During hematopoietic stem cell transplantation, patients undergo total body irradiation which

  2. Influence of microparticle size on cavitation noise during ultrasonic vibration

    Directory of Open Access Journals (Sweden)

    H. Ge

    2015-09-01

    Full Text Available The cavitation noise in the ultrasonic vibration system was found to be influenced by the size of microparticles added in water. The SiO2 microparticles with the diameter smaller than 100 μm reduced the cavitation noise, and the reason was attributed to the constrained oscillation of the cavitation bubbles, which were stabilized by the microparticles.

  3. 细胞毒素相关基因A(+)幽门螺杆菌根除对原发性高血压患者外周血循环内皮微粒及动脉弹性的影响%Effect of Cytotoxin Associated Gene A (+) Helicobacter Pylori Eradication on Circulating Endothelial-Derived Microparticles and Arterial Elasticity in Patients with Essential Hypertension

    Institute of Scientific and Technical Information of China (English)

    李劲草; 黄冰生; 林桂雄; 吴钰燕

    2012-01-01

    Aim To investigate the effect of cytotoxin associated gene A( + ) Helicobacter pylori eradication on vascular endothelial function and arterial elasticity in patients with essential hypertension. Methods 62 essential hypertension patients infected with cytotoxin associated gene A ( + ) Helicobacter pylori ( eradication therapy group) and 62 essential hypertension patients without infecting with Helicobacter pylori (control group) were recruited into the study. The patients in eradication therapy group were adminstrated with eradication therapy for a week to Helicobacter pylori, however, the patients in control group were adminstrated with placebo for a week on the basis of general treatment. The levels of plasma lipids, circulating endothelial- derived microparticles and arterial elasticity were performed at the beginning and the end of study in all subjects. The follow-up period was 6 months. Results In comparison with the levels at beginning, the levels of plasma total cholesterol and circulating endothelial-derived microparticles were significantly decreased and C2 significantly increased in erdication therapy group at the end of study (P < 0. 05). Conclusion Helicobacter pylori eradication might improve the vascular endothelial function and arterial elasticity in essential hypertension patients infected with cytotoxin associated gene A( + ) Helicobacter pylori.%目的 探讨细胞毒素相关基因A(+)幽门螺杆菌根除对原发性高血压患者血管内皮功能及动脉弹性的影响.方法 选择细胞毒素相关基因A(+)幽门螺杆茵感染的原发性高血压患者62例为根除治疗组,同期就诊的62例无幽门螺杆菌感染的原发性高血压患者为对照组.在常规降压治疗基础上,根除治疗组给予根除幽门螺杆菌治疗1周,对照组给予安慰剂治疗1周,随访6个月.两组研究对象在研究前后均行血脂、外周血循环内皮微粒水平及动脉弹性检测.结果 与根除前比较,根除治疗组

  4. The thrombotic potential of circulating tumor microemboli: computational modeling of circulating tumor cell-induced coagulation

    OpenAIRE

    Phillips, Kevin G.; Lee, Angela M.; Tormoen, Garth W.; Rigg, Rachel A.; Kolatkar, Anand; Luttgen, Madelyn; Bethel, Kelly; Bazhenova, Lyudmila; Kuhn, Peter; Newton, Paul; McCarty, Owen J.T.

    2014-01-01

    Thrombotic events can herald the diagnosis of cancer, preceding any cancer-related clinical symptoms. Patients with cancer are at a 4- to 7-fold increased risk of suffering from venous thromboembolism (VTE), with ∼7,000 patients with lung cancer presenting from VTEs. However, the physical biology underlying cancer-associated VTE remains poorly understood. Several lines of evidence suggest that the shedding of tissue factor (TF)-positive circulating tumor cells (CTCs) and microparticles from p...

  5. Ordering of solid microparticles at liquid crystal-water interfaces.

    Science.gov (United States)

    Lin, I-Hsin; Koenig, Gary M; de Pablo, Juan J; Abbott, Nicholas L

    2008-12-25

    We report a study of the organization of solid microparticles at oil-water interfaces, where the oil is a thermotropic liquid crystal (LC). The study was motivated by the proposition that microparticle organization and LC ordering would be coupled at these interfaces. Surfactant-functionalized polystyrene microparticles were spread at air-water interfaces at prescribed densities and then raised into contact with supported films of nematic 4-pentyl-4'-cyanobiphenyl (5CB). Whereas this method of sample preparation led to quantitative transfer of microparticles from the air-water interface to an isotropic oil-water interface, forces mediated by the nematic order of 5CB were observed to rapidly displace microparticles laterally across the interface of the water upon contact with nematic 5CB, thus leading to a 65% decrease in the density of microparticles at the LC-water interface. These lateral forces were determined to be caused by microparticle-induced deformation of the LC, the energy of which was estimated to be approximately 10(4) kT. We also observed microparticles transferred to the LC-water interface to assemble into chainlike structures that were not seen when using isotropic oils, indicating the presence of LC-mediated interparticle interactions at this interface. Optical textures of the LC in the vicinity of the microparticles were consistent with formation of topological defects with dipolar symmetry capable of promoting the chaining of the microparticles. The presence of microparticles at the interface also impacted the ordering of the LCs, including a transition from parallel to perpendicular ordering of the LC with increasing microparticle density. These observations, when combined, demonstrate that LC-mediated interactions can direct the assembly of solid microparticles at LC-water interfaces and that the ordering of the LC is also strongly coupled to the presence of microparticles.

  6. Carbon monoxide inhalation increases microparticles causing vascular and CNS dysfunction.

    Science.gov (United States)

    Xu, Jiajun; Yang, Ming; Kosterin, Paul; Salzberg, Brian M; Milovanova, Tatyana N; Bhopale, Veena M; Thom, Stephen R

    2013-12-01

    We hypothesized that circulating microparticles (MPs) play a role in pro-inflammatory effects associated with carbon monoxide (CO) inhalation. Mice exposed for 1h to 100 ppm CO or more exhibit increases in circulating MPs derived from a variety of vascular cells as well as neutrophil activation. Tissue injury was quantified as 2000 kDa dextran leakage from vessels and as neutrophil sequestration in the brain and skeletal muscle; and central nervous system nerve dysfunction was documented as broadening of the neurohypophysial action potential (AP). Indices of injury occurred following exposures to 1000 ppm for 1h or to 1000 ppm for 40 min followed by 3000 ppm for 20 min. MPs were implicated in causing injuries because infusing the surfactant MP lytic agent, polyethylene glycol telomere B (PEGtB) abrogated elevations in MPs, vascular leak, neutrophil sequestration and AP prolongation. These manifestations of tissue injury also did not occur in mice lacking myeloperoxidase. Vascular leakage and AP prolongation were produced in naïve mice infused with MPs that had been obtained from CO poisoned mice, but this did not occur with MPs obtained from control mice. We conclude that CO poisoning triggers elevations of MPs that activate neutrophils which subsequently cause tissue injuries.

  7. Microparticles: A Pivotal Nexus in Vascular Homeostasis and Disease.

    Science.gov (United States)

    McGinn, Ciaran M; MacDonnell, Brian F; Shan, Chun Xu; Wallace, Robert; Cummins, Philip M; Murphy, Ronan P

    2016-01-01

    Microvesicles (MVs) are submicron intact particles released from the cellular membrane of eukaryotic cells. MVs can be sub-categorised into microparticles (MPs), which are between 100nm- 1micron in size, and exosomes, measuring less than 100nm. Once thought to be cellular debris, MPs are now known to play important biological effector functions. Their biogenesis and release are as a result highly regulated processes in response to cellular activation or stress, and apoptosis. MPs are now known to play a crucial role in maintaining physiological homeostasis and have been demonstrated to be involved in numerous biological processes, including inflammation, cardiovascular disease, immune response, cancer dissemination, coagulation and angiogenesis. Consequently, there is active interest in studying MPs, and their 'cause and effect' in the initiation and potentiation of various pathologies. Circulating levels, both quantitative and qualitative, of MPs is thought to be a reflective index of cardiovascular competence. Therefore, studies to understand the biological relevance of the various permutations and combinations of circulating MPs, their cellular origin and bioactive cargo may lead to increased understanding of the sequelae of CVD and associated diseases. This review synopsizes our current understanding of the role of MPs in cardiovascular disease, their biogenesis and effector function, and their future use as both diagnostic and prognostic indices of cardiovascular disease.

  8. Hydrophobicity of silver surfaces with microparticle geometry

    Science.gov (United States)

    Macko, Ján; Oriňaková, Renáta; Oriňak, Andrej; Kovaľ, Karol; Kupková, Miriam; Erdélyi, Branislav; Kostecká, Zuzana; Smith, Roger M.

    2016-11-01

    The effect of the duration of the current deposition cycle and the number of current pulses on the geometry of silver microstructured surfaces and on the free surface energy, polarizability, hydrophobicity and thus adhesion force of the silver surfaces has been investigated. The changes in surface hydrophobicity were entirely dependent on the size and density of the microparticles on the surface. The results showed that formation of the silver microparticles was related to number of current pulses, while the duration of one current pulse played only a minor effect on the final surface microparticle geometry and thus on the surface tension and hydrophobicity. The conventional geometry of the silver particles has been transformed to the fractal dimension D. The surface hydrophobicity depended predominantly on the length of the dendrites not on their width. The highest silver surface hydrophobicity was observed on a surface prepared by 30 current pulses with a pulse duration of 1 s, the lowest one when deposition was performed by 10 current pulses with a duration of 0.1 s. The partial surface tension coefficients γDS and polarizability kS of the silver surfaces were calculated. Both parameters can be applied in future applications in living cells adhesion prediction and spectral method selection. Silver films with microparticle geometry showed a lower variability in final surface hydrophobicity when compared to nanostructured surfaces. The comparisons could be used to modify surfaces and to modulate human cells and bacterial adhesion on body implants, surgery instruments and clean surfaces.

  9. Microparticles generated by decompression stress cause central nervous system injury manifested as neurohypophysial terminal action potential broadening

    OpenAIRE

    Yang, Ming; Kosterin, Paul; Salzberg, Brian M.; Milovanova, Tatyana N.; Bhopale, Veena M.; Thom, Stephen R.

    2013-01-01

    The study goal was to use membrane voltage changes during neurohypophysial action potential (AP) propagation as an index of nerve function to evaluate the role that circulating microparticles (MPs) play in causing central nervous system injury in response to decompression stress in a murine model. Mice studied 1 h following decompression from 790 kPa air pressure for 2 h exhibit a 45% broadening of the neurohypophysial AP. Broadening did not occur if mice were injected with the MP lytic agent...

  10. Fetal Circulation

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Fetal Circulation Updated:Oct 18,2016 click to enlarge The ... fetal heart. These two bypass pathways in the fetal circulation make it possible for most fetuses to survive ...

  11. Encapsulation of sorbitan ester-based organogels in alginate microparticles.

    Science.gov (United States)

    Sagiri, Sai S; Pal, Kunal; Basak, Piyali; Rana, Usman Ali; Shakir, Imran; Anis, Arfat

    2014-10-01

    Leaching of the internal apolar phase from the biopolymeric microparticles during storage is a great concern as it undoes the beneficial effects of encapsulation. In this paper, a novel formulation was prepared by encapsulating the sunflower oil-based organogels in alginate microparticles. Salicylic acid and metronidazole were used as the model drugs. The microparticles were prepared by double emulsion methodology. Physico-chemical characterization of the microparticles was done by microscopy, FTIR, XRD, and DSC studies. Oil leaching studies, biocompatibility, mucoadhesivity, in vitro drug release, and the antimicrobial efficiency of the microparticles were also performed. The microparticles were found to be spherical in shape. Gelation of the sunflower oil prevented leaching of the internal phase from the microparticles. Release of drugs from the microparticles followed Fickian kinetics and non-Fickian kinetics in gastric and intestinal environments, respectively. Microparticles showed good antimicrobial activity against both Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. The results suggested that the developed formulations hold promise to carry oils without leakage of the internal phase. Encapsulation of organogels within the microparticles has improved the drug entrapment efficiency and improved characteristics for controlled delivery applications.

  12. Fabrication of dielectrophoretic microfluidic chips using a facile screen-printing technique for microparticle trapping

    Science.gov (United States)

    Wee, Wei Hong; Li, Zedong; Hu, Jie; Adib Kadri, Nahrizul; Xu, Feng; Li, Fei; Pingguan-Murphy, Belinda

    2015-10-01

    Trapping of microparticles finds wide applications in numerous fields. Microfluidic chips based on a dielectrophoresis (DEP) technique hold several advantages for trapping microparticles, such as fast result processing, a small amount of sample required, high spatial resolution, and high accuracy of target selection. There is an unmet need to develop DEP microfluidic chips on different substrates for different applications in a low cost, facile, and rapid way. This study develops a new facile method based on a screen-printing technique for fabrication of electrodes of DEP chips on three types of substrates (i.e. polymethyl-methacrylate (PMMA), poly(ethylene terephthalate) and A4 paper). The fabricated PMMA-based DEP microfluidic chip was selected as an example and successfully used to trap and align polystyrene microparticles in a suspension and cardiac fibroblasts in a cell culture solution. The developed electrode fabrication method is compatible with different kinds of DEP substrates, which could expand the future application field of DEP microfluidic chips, including new forms of point-of care diagnostics and trapping circulating tumor cells.

  13. Aerogel Microparticles from Oil-in-Oil Emulsion Systems.

    Science.gov (United States)

    Gu, Senlong; Zhai, Chunhao; Jana, Sadhan C

    2016-06-01

    This paper reports preparation of polymer aerogel microparticles via sol-gel reactions inside micrometer size droplets created in an oil-in-oil emulsion system. The oil-in-oil emulsion system is obtained by dispersing in cyclohexane the droplets of the sols of polybenzoxazine (PBZ) or polyimide (PI) prepared in dimethylformamide. The sol droplets transform into harder gel microparticles due to sol-gel reactions. Finally, the aerogel microparticles are recovered using supercritical drying of the gel microparticles. The PBZ and PI aerogel microparticles prepared in this manner show mean diameter 32.7 and 40.0 μm, respectively, mesoporous internal structures, and surface area 55.4 and 512.0 m(2)/g, respectively. Carbonization of PBZ aerogel microparticles maintains the mesoporous internal structures but yields narrower pore size distribution.

  14. Encapsulation of Hydrocortisone and Mesalazine in Zein Microparticles

    Directory of Open Access Journals (Sweden)

    Peter J. Halley

    2013-05-01

    Full Text Available Zein was investigated for use as an oral-drug delivery system by loading prednisolone into zein microparticles using coacervation. To investigate the adaptability of this method to other drugs, zein microparticles were loaded with hydrocortisone, which is structurally related to prednisolone; or mesalazine, which is structurally different having a smaller LogP and ionizable functional groups. Investigations into the in vitro digestibility, and the electrophoretic profile of zein, and zein microparticles were conducted to shed further insight on using this protein as a drug delivery system. Hydrocortisone loading into zein microparticles was comparable with that reported for prednisolone, but mesalazine loading was highly variable. Depending on the starting quantities of hydrocortisone and zein, the average amount of microparticles equivalent to 4 mg hydrocortisone, (a clinically used dose, ranged from 60–115 mg, which is realistic and practical for oral dosing. Comparatively, an average of 2.5 g of microparticles was required to deliver 250 mg of mesalazine (a clinically used dose, so alternate encapsulation methods that can produce higher and more precise mesalazine loading are required. In vitro protein digestibility revealed that zein microparticles were more resistant to digestion compared to the zein raw material, and that individual zein peptides are not preferentially coacervated into the microparticles. In combination, these results suggest that there is potential to formulate a delivery system based on zein microparticles made using specific subunits of zein that is more resistant to digestion as starting material, to deliver drugs to the lower gastrointestinal tract.

  15. Adsorption of monoclonal antibodies to glass microparticles.

    Science.gov (United States)

    Hoehne, Matthew; Samuel, Fauna; Dong, Aichun; Wurth, Christine; Mahler, Hanns-Christian; Carpenter, John F; Randolph, Theodore W

    2011-01-01

    Microparticulate glass represents a potential contamination to protein formulations that may occur as a result of processing conditions or glass types. The effect of added microparticulate glass to formulations of three humanized antibodies was tested. Under the three formulation conditions tested, all three antibodies adsorbed irreversibly at near monolayer surface coverages to the glass microparticles. Analysis of the secondary structure of the adsorbed antibodies by infrared spectroscopy reveal only minor perturbations as a result of adsorption. Likewise, front-face fluorescence quenching measurements reflected minimal tertiary structural changes upon adsorption. In contrast to the minimal effects on protein structure, adsorption of protein to suspensions of glass microparticles induced significant colloidal destabilization and flocculation of the suspension.

  16. Therapeutic Strategies Based on Polymeric Microparticles

    Directory of Open Access Journals (Sweden)

    C. Vilos

    2012-01-01

    Full Text Available The development of the field of materials science, the ability to perform multidisciplinary scientific work, and the need for novel administration technologies that maximize therapeutic effects and minimize adverse reactions to readily available drugs have led to the development of delivery systems based on microencapsulation, which has taken one step closer to the target of personalized medicine. Drug delivery systems based on polymeric microparticles are generating a strong impact on preclinical and clinical drug development and have reached a broad development in different fields supporting a critical role in the near future of medical practice. This paper presents the foundations of polymeric microparticles based on their formulation, mechanisms of drug release and some of their innovative therapeutic strategies to board multiple diseases.

  17. Porphyrin Microparticles for Biological and Biomedical Applications

    Science.gov (United States)

    Huynh, Elizabeth

    Lipids are one of the critical building blocks of life, forming the plasma membrane of cells. In addition, porphyrins also play an equally important role in life, for example, through carrying oxygen in blood. The importance of both these components is evident through the biological and biomedical applications of supramolecular structures generated from lipids and porphyrins. This thesis investigates new porphyrin microparticles based on porphyrin-lipid architecture and their potential applications in biology and medicine. In Chapter 1, a background on lipid and porphyrin-based supramolecular structures is presented and design considerations for generating multifunctional agents. Chapter 2 describes the generation of a monolayer porphyrin microparticle as a dual-modal ultrasound and photoacoustic contrast agent and subsequently, a trimodal ultrasound, photoacoustic and fluorescence contrast agent. Chapter 3 examines the optical and morphological response of these multimodality ultrasound-based contrast agents to low frequency, high duty cycle ultrasound that causes the porphyrin microparticles to convertinto nanoparticles. Chapter 4 examines the generation of bilayer micrometer-sized porphyrin vesicles and their properties. Chapter 5 presents a brief summary and potential future directions. Although these microscale structures are similar in structure, the applications of these structures greatly differ with potential applications in biology and also imaging and therapy of disease. This thesis aims to explore and demonstrate the potential of new simplified, supramolecular structures based on one main building block, porphyrin-lipid.

  18. Inhibition of platelet activation prevents the P-selectin and integrin-dependent accumulation of cancer cell microparticles and reduces tumor growth and metastasis in vivo.

    Science.gov (United States)

    Mezouar, Soraya; Darbousset, Roxane; Dignat-George, Françoise; Panicot-Dubois, Laurence; Dubois, Christophe

    2015-01-15

    Venous thromboembolism constitutes one of the main causes of death during the progression of a cancer. We previously demonstrated that tissue factor (TF)-bearing cancer cell-derived microparticles accumulate at the site of injury in mice developing a pancreatic cancer. The presence of these microparticles at the site of thrombosis correlates with the size of the platelet-rich thrombus. The objective of this study was to determine the involvement of TF expressed by cancer cell-derived microparticles on thrombosis associated with cancer. We observed that pancreatic cancer cell derived microparticles expressed TF, its inhibitor tissue factor pathway inhibitor (TFPI) as well as the integrins αvβ1 and αvβ3. In mice bearing a tumor under-expressing TF, a significant decrease in circulating TF activity associated with an increase bleeding time and a 100-fold diminished fibrin generation and platelet accumulation at the site of injury were observed. This was mainly due to the interaction of circulating cancer cell-derived microparticles expressing TFPI with activated platelets and fibrinogen. In an ectopic model of cancer, treatment of mice with Clopidogrel, an anti-platelet drug, decreased the size of the tumors and restored hemostasis by preventing the accumulation of cancer cell-derived microparticles at the site of thrombosis. In a syngeneic orthotopic model of pancreatic cancer Clopidogrel also significantly inhibited the development of metastases. Together, these results indicate that an anti-platelet strategy may efficiently treat thrombosis associated with cancer and reduce the progression of pancreatic cancer in mice.

  19. Nearshore circulation

    NARCIS (Netherlands)

    Battjes, J.A.; Sobey, R.J.; Stive, M.J.F.

    1990-01-01

    Shelf circulation is driven primarily by wind- and tide-induced forces. It is laterally only weakly constrained so that the geostrophic (Coriolis) acceleration is manifest in the response. Nearshore circulation on the other hand is dominated by wave-induced forces associated with shallow-water. wave

  20. Microparticles: A New Perspective in Central Nervous System Disorders

    Directory of Open Access Journals (Sweden)

    Stephanie M. Schindler

    2014-01-01

    Full Text Available Microparticles (MPs are a heterogeneous population of small cell-derived vesicles, ranging in size from 0.1 to 1 μm. They contain a variety of bioactive molecules, including proteins, biolipids, and nucleic acids, which can be transferred between cells without direct cell-to-cell contact. Consequently, MPs represent a novel form of intercellular communication, which could play a role in both physiological and pathological processes. Growing evidence indicates that circulating MPs contribute to the development of cancer, inflammation, and autoimmune and cardiovascular diseases. Most cell types of the central nervous system (CNS have also been shown to release MPs, which could be important for neurodevelopment, CNS maintenance, and pathologies. In disease, levels of certain MPs appear elevated; therefore, they may serve as biomarkers allowing for the development of new diagnostic tools for detecting the early stages of CNS pathologies. Quantification and characterization of MPs could also provide useful information for making decisions on treatment options and for monitoring success of therapies, particularly for such difficult-to-treat diseases as cerebral malaria, multiple sclerosis, and Alzheimer’s disease. Overall, studies on MPs in the CNS represent a novel area of research, which promises to expand the knowledge on the mechanisms governing some of the physiological and pathophysiological processes of the CNS.

  1. Cryogenic transmission electron microscopy nanostructural study of shed microparticles.

    Directory of Open Access Journals (Sweden)

    Liron Issman

    Full Text Available Microparticles (MPs are sub-micron membrane vesicles (100-1000 nm shed from normal and pathologic cells due to stimulation or apoptosis. MPs can be found in the peripheral blood circulation of healthy individuals, whereas elevated concentrations are found in pregnancy and in a variety of diseases. Also, MPs participate in physiological processes, e.g., coagulation, inflammation, and angiogenesis. Since their clinical properties are important, we have developed a new methodology based on nano-imaging that provides significant new data on MPs nanostructure, their composition and function. We are among the first to characterize by direct-imaging cryogenic transmitting electron microscopy (cryo-TEM the near-to-native nanostructure of MP systems isolated from different cell types and stimulation procedures. We found that there are no major differences between the MP systems we have studied, as most particles were spherical, with diameters from 200 to 400 nm. However, each MP population is very heterogeneous, showing diverse morphologies. We investigated by cryo-TEM the effects of standard techniques used to isolate and store MPs, and found that either high-g centrifugation of MPs for isolation purposes, or slow freezing to -80 °C for storage introduce morphological artifacts, which can influence MP nanostructure, and thus affect the efficiency of these particles as future diagnostic tools.

  2. Characterization of microparticles after hepatic ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Christopher M Freeman

    Full Text Available BACKGROUND: Hepatic ischemia-reperfusion (I/R is a well-studied model of liver injury and has demonstrated a biphasic injury followed by recovery and regeneration. Microparticles (MPs are a developing field of study and these small membrane bound vesicles have been shown to have effector function in other physiologic and pathologic states. This study was designed to quantify the levels of MPs from various cell origins-platelets, neutrophils, and endolethial cells-following hepatic ischemia-reperfusion injury. METHODS: A murine model was used with mice undergoing 90 minutes of partial hepatic ischemia followed by various times of reperfusion. Following reperfusion, plasma samples were taken and MPs of various cell origins were labeled and levels were measured using flow cytometry. Additionally, cell specific MPs were further assessed by Annexin V, which stains for the presence of phosphatidylserine, a cell surface marker linked to apoptosis. Statistical analysis was performed using one-way analysis of variance with subsequent Student-Newman-Keuls test with data presented as the mean and standard error of the mean. RESULTS: MPs from varying sources show an increase in circulating levels following hepatic I/R injury. However, the timing of the appearance of different MP subtypes differs for each cell type. Platelet and neutrophil-derived MP levels demonstrated an acute elevation following injury whereas endothelial-derived MP levels demonstrated a delayed elevation. CONCLUSION: This is the first study to characterize circulating levels of cell-specific MPs after hepatic I/R injury and suggests that MPs derived from platelets and neutrophils serve as markers of inflammatory injury and may be active participants in this process. In contrast, MPs derived from endothelial cells increase after the injury response during the reparative phase and may be important in angiogenesis that occurs in the regenerating liver.

  3. PREPARATION AND CHARACTERIZATION OF SUPERPARAMAGNETIC FUNCTIONAL POLYMERIC MICROPARTICLES

    Institute of Scientific and Technical Information of China (English)

    Xianqiao Liu; Huizhou Liu; Jianmin Xing; Yueping Guan; Zhiya Ma; Guobin Shan; Chengli Yang

    2003-01-01

    Superparamagnetic poly(styrene-divinylbenzene-glycidyl methacrylate) (Pst-DVB-GMA) microparticles were prepared via a modified suspension polymerization process. A magnetic fluid was first prepared by a chemical co-precipitation method. Then magnetic microparticles were produced by mixing the monomers and the magnetic fluid with water in the presence of a stabilizer poly(vinyl pyrrolidone) (PVP) to form a suspension, and finally benzoyl peroxide was added to initiate the co-polymerization. The morphology and magnetic properties of the microparticles were examined by TEM and VSM. The spherically shaped microparticles, with a size range of 4 to 7 μm, showed distinct superparamagnetic characteristics. XRD was used to investigate the structure of the magnetite particles dispersed in the polymer matrix. The microparticles with epoxy groups on their surface can be applied directly to the separation of biomolecules.

  4. [Endothelial microparticles (EMP) in physiology and pathology].

    Science.gov (United States)

    Sierko, Ewa; Sokół, Monika; Wojtukiewicz, Marek Z

    2015-08-18

    Endothelial microparticles (EMP) are released from endothelial cells (ECs) in the process of activation and/or apoptosis. They harbor adhesive molecules, enzymes, receptors and cytoplasmic structures and express a wide range of various constitutive antigens, typical for ECs, at their surface. Under physiological conditions the concentration of EMP in the blood is clinically insignificant. However, it was reported that under pathological conditions EMP concentration in the blood might slightly increase and contribute to blood coagulation, angiogenesis and inflammation. It has been shown that EMP directly and indirectly contribute to the activation of blood coagulation. Endothelial microparticles directly participate in blood coagulation through their surface tissue factor (TF) - a major initiator of blood coagulation. Furthermore, EMP exhibit procoagulant potential via expression of negatively charged phospholipids at their surface, which may promote assembly of coagulation enzymes (TF/VII, tenases and prothrombinase complexes), leading to thrombus formation. In addition, they provide a binding surface for coagulation factors: IXa, VIII, Va and IIa. Moreover, it is possible that EMP transfer TF from TF-bearing EMP to activated platelets and monocytes by binding them through adhesion molecules. Also, EMP express von Willebrand factor, which may facilitate platelet aggregation. Apart from their procoagulant properties, it was demonstrated that EMP may express adhesive molecules and metalloproteinases (MMP-2, MMP-9) at their surface and release growth factors, which may contribute to angiogenesis. Additionally, surface presence of C3 and C4 - components of the classical pathway - suggests pro-inflammatory properties of these structures. This article contains a summary of available data on the biology and pathophysiology of endothelial microparticles and their potential role in blood coagulation, angiogenesis and inflammation.

  5. Detection of microparticles in dynamic processes

    Science.gov (United States)

    Ten, K. A.; Pruuel, E. R.; Kashkarov, A. O.; Rubtsov, I. A.; Shechtman, L. I.; Zhulanov, V. V.; Tolochko, B. P.; Rykovanov, G. N.; Muzyrya, A. K.; Smirnov, E. B.; Stolbikov, M. Yu; Prosvirnin, K. M.

    2016-11-01

    When a metal plate is subjected to a strong shock impact, its free surface emits a flow of particles of different sizes (shock-wave “dusting”). Traditionally, the process of dusting is investigated by the methods of pulsed x-ray or piezoelectric sensor or via an optical technique. The particle size ranges from a few microns to hundreds of microns. The flow is assumed to include also finer particles, which cannot be detected with the existing methods yet. On the accelerator complex VEPP-3-VEPP-4 at the BINP there are two experiment stations for research on fast processes, including explosion ones. The stations enable measurement of both passed radiation (absorption) and small-angle x-ray scattering on synchrotron radiation (SR). Radiation is detected with a precision high-speed detector DIMEX. The detector has an internal memory of 32 frames, which enables recording of the dynamics of the process (shooting of movies) with intervals of 250 ns to 2 μs. Flows of nano- and microparticles from free surfaces of various materials (copper and tin) have been examined. Microparticle flows were emitted from grooves of 50-200 μs in size and joints (gaps) between metal parts. With the soft x-ray spectrum of SR one can explore the dynamics of a single microjet of micron size. The dynamics of density distribution along micro jets were determined. Under a shock wave (∼ 60 GPa) acting on tin disks, flows of microparticles from a smooth surface were recorded.

  6. Measurement of refractive index of single microparticles

    CERN Document Server

    Knoener, G; Nieminen, T A; Heckenberg, N R; Rubinsztein-Dunlop, H; Knoener, Gregor; Parkin, Simon; Nieminen, Timo A.; Heckenberg, Norman R.; Rubinsztein-Dunlop, Halina

    2006-01-01

    The refractive index of single microparticles is derived from precise measurement and rigorous modeling of the stiffness of a laser trap. We demonstrate the method for particles of four different materials with diameters from 1.6 to 5.2 microns and achieve an accuracy of better than 1%. The method greatly contributes as a new characterization technique because it works best under conditions (small particle size, polydispersion) where other methods, such as absorption spectroscopy, start to fail. Particles need not be transferred to a particular fluid, which prevents particle degradation or alteration common in index matching techniques. Our results also show that advanced modeling of laser traps accurately reproduces experimental reality.

  7. Anti-neutrophil cytoplasmic antibodies stimulate release of neutrophil microparticles.

    LENUS (Irish Health Repository)

    Hong, Ying

    2012-01-01

    The mechanisms by which anti-neutrophil cytoplasmic antibodies (ANCAs) may contribute to the pathogenesis of ANCA-associated vasculitis are not well understood. In this study, both polyclonal ANCAs isolated from patients and chimeric proteinase 3-ANCA induced the release of neutrophil microparticles from primed neutrophils. These microparticles expressed a variety of markers, including the ANCA autoantigens proteinase 3 and myeloperoxidase. They bound endothelial cells via a CD18-mediated mechanism and induced an increase in endothelial intercellular adhesion molecule-1 expression, production of endothelial reactive oxygen species, and release of endothelial IL-6 and IL-8. Removal of the neutrophil microparticles by filtration or inhibition of reactive oxygen species production with antioxidants abolished microparticle-mediated endothelial activation. In addition, these microparticles promoted the generation of thrombin. In vivo, we detected more neutrophil microparticles in the plasma of children with ANCA-associated vasculitis compared with that in healthy controls or those with inactive vasculitis. Taken together, these results support a role for neutrophil microparticles in the pathogenesis of ANCA-associated vasculitis, potentially providing a target for future therapeutics.

  8. Shock wave driven microparticles for pharmaceutical applications

    Science.gov (United States)

    Menezes, V.; Takayama, K.; Gojani, A.; Hosseini, S. H. R.

    2008-10-01

    Ablation created by a Q-switched Nd:Yttrium Aluminum Garnet (Nd:YAG) laser beam focusing on a thin aluminum foil surface spontaneously generates a shock wave that propagates through the foil and deforms it at a high speed. This high-speed foil deformation can project dry micro- particles deposited on the anterior surface of the foil at high speeds such that the particles have sufficient momentum to penetrate soft targets. We used this method of particle acceleration to develop a drug delivery device to deliver DNA/drug coated microparticles into soft human-body targets for pharmaceutical applications. The device physics has been studied by observing the process of particle acceleration using a high-speed video camera in a shadowgraph system. Though the initial rate of foil deformation is over 5 km/s, the observed particle velocities are in the range of 900-400 m/s over a distance of 1.5-10 mm from the launch pad. The device has been tested by delivering microparticles into liver tissues of experimental rats and artificial soft human-body targets, modeled using gelatin. The penetration depths observed in the experimental targets are quite encouraging to develop a future clinical therapeutic device for treatments such as gene therapy, treatment of cancer and tumor cells, epidermal and mucosal immunizations etc.

  9. Microfluidics assisted generation of innovative polysaccharide hydrogel microparticles.

    Science.gov (United States)

    Marquis, M; Davy, J; Cathala, B; Fang, A; Renard, D

    2015-02-13

    Capillary flow-based approach such as microfluidic devices offer a number of advantages over conventional flow control technology because they ensure highly versatile geometry and can be used to produce monodisperse spherical and non-spherical polymeric microparticles. Based on the principle of a flow-focusing device to emulsify the coflow of aqueous solutions in an organic phase, we were able to produce the following innovative polysaccharide hydrogel microparticles: - Janus hydrogel microparticles made of pectin–pectin (homo Janus) and pectin–alginate (hetero Janus) were produced. The efficiency of separation of the two hemispheres was investigated by confocal scanning laser microscopy (CSLM) of previously labelled biopolymers. The Janus structure was confirmed by subjecting each microparticle hemisphere to specific enzymatic degradation. As a proof of concept, free BSA or BSA grafted with dextran, were encapsulated in each hemisphere of the hetero Janus hydrogel microparticles. While BSA, free or grafted with dextran, was always confined in the alginate hemisphere, a fraction of BSA diffused from the pectin to the alginate hemisphere. Methoxy groups along the pectin chain will be responsible of the decrease of the number of attractive electrostatic interactions occurring between amino groups of BSA and carboxylic groups of pectin. - Pectin hydrogel microparticles of complex shapes were successfully produced by combining on-chip the phenomenon of gelation and water diffusion induced self-assembly, using dimethyl carbonate as continuous phase, or by deformation of the pre-gelled droplets off-chip at a fluid–fluid interface. Sphere, oblate ellipsoid, torus or mushroom-type morphologies were thus obtained. Moreover, it was established that after crossing the interface during their collect, mushroom-type microparticles did not migrate in the calcium or DMC phase but stayed at the liquid–liquid interface. These new and original hydrogel microparticles will

  10. Hyperphosphatemia, Phosphoprotein Phosphatases, and Microparticle Release in Vascular Endothelial Cells.

    Science.gov (United States)

    Abbasian, Nima; Burton, James O; Herbert, Karl E; Tregunna, Barbara-Emily; Brown, Jeremy R; Ghaderi-Najafabadi, Maryam; Brunskill, Nigel J; Goodall, Alison H; Bevington, Alan

    2015-09-01

    Hyperphosphatemia in patients with advanced CKD is thought to be an important contributor to cardiovascular risk, in part because of endothelial cell (EC) dysfunction induced by inorganic phosphate (Pi). Such patients also have an elevated circulating concentration of procoagulant endothelial microparticles (MPs), leading to a prothrombotic state, which may contribute to acute occlusive events. We hypothesized that hyperphosphatemia leads to MP formation from ECs through an elevation of intracellular Pi concentration, which directly inhibits phosphoprotein phosphatases, triggering a global increase in phosphorylation and cytoskeletal changes. In cultured human ECs (EAhy926), incubation with elevated extracellular Pi (2.5 mM) led to a rise in intracellular Pi concentration within 90 minutes. This was mediated by PiT1/slc20a1 Pi transporters and led to global accumulation of tyrosine- and serine/threonine-phosphorylated proteins, a marked increase in cellular Tropomyosin-3, plasma membrane blebbing, and release of 0.1- to 1-μm-diameter MPs. The effect of Pi was independent of oxidative stress or apoptosis. Similarly, global inhibition of phosphoprotein phosphatases with orthovanadate or fluoride yielded a global protein phosphorylation response and rapid release of MPs. The Pi-induced MPs expressed VE-cadherin and superficial phosphatidylserine, and in a thrombin generation assay, they displayed significantly more procoagulant activity than particles derived from cells incubated in medium with a physiologic level of Pi (1 mM). These data show a mechanism of Pi-induced cellular stress and signaling, which may be widely applicable in mammalian cells, and in ECs, it provides a novel pathologic link between hyperphosphatemia, generation of MPs, and thrombotic risk.

  11. Enhancement of laminar convective heat transfer using microparticle suspensions

    Science.gov (United States)

    Zhu, Jiu Yang; Tang, Shiyang; Yi, Pyshar; Baum, Thomas; Khoshmanesh, Khashayar; Ghorbani, Kamran

    2016-04-01

    This paper investigates the enhancement of convective heat transfer within a sub-millimetre diameter copper tube using Al2O3, Co3O4 and CuO microparticle suspensions. Experiments are conducted at different particle concentrations of 1.0, 2.0 and 5.0 wt% and at various flow rates ranging from 250 to 1000 µl/min. Both experimental measurements and numerical analyses are employed to obtain the convective heat transfer coefficient. The results indicate a significant enhancement in convective heat transfer coefficient due to the implementation of microparticle suspensions. For the case of Al2O3 microparticle suspension with 5.0 wt% concentration, a 20.3 % enhancement in convective heat transfer coefficient is obtained over deionised water. This is comparable to the case of Al2O3 nanofluid at the same concentration. Hence, there is a potential for the microparticle suspensions to be used for cooling of compact integrated systems.

  12. Enhancement of laminar convective heat transfer using microparticle suspensions

    Science.gov (United States)

    Zhu, Jiu Yang; Tang, Shiyang; Yi, Pyshar; Baum, Thomas; Khoshmanesh, Khashayar; Ghorbani, Kamran

    2017-01-01

    This paper investigates the enhancement of convective heat transfer within a sub-millimetre diameter copper tube using Al2O3, Co3O4 and CuO microparticle suspensions. Experiments are conducted at different particle concentrations of 1.0, 2.0 and 5.0 wt% and at various flow rates ranging from 250 to 1000 µl/min. Both experimental measurements and numerical analyses are employed to obtain the convective heat transfer coefficient. The results indicate a significant enhancement in convective heat transfer coefficient due to the implementation of microparticle suspensions. For the case of Al2O3 microparticle suspension with 5.0 wt% concentration, a 20.3 % enhancement in convective heat transfer coefficient is obtained over deionised water. This is comparable to the case of Al2O3 nanofluid at the same concentration. Hence, there is a potential for the microparticle suspensions to be used for cooling of compact integrated systems.

  13. Photophysical characterization of cumarin-doped poly (lactic acid) microparticles and visualization of the biodistribution

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Shigeaki, E-mail: sabe@den.hokudai.ac.j [Department of Biomedical Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Sapporo 060-8586 (Japan); Kiba, Takayuki; Hosokawa, Kiyotada; Nitobe, Satoru; Hirota, Takashi; Kobayashi, Hirohisa [Division of Biotechnology and Macromolecular Chemistry, Graduate School of Hokkaido University, Sapporo 060-8628 (Japan); Akasaka, Tsukasa; Uo, Motohiro; Kuboki, Yoshinori [Department of Biomedical Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Sapporo 060-8586 (Japan); Sato, Shin-Ichiro [Division of Biotechnology and Macromolecular Chemistry, Graduate School of Hokkaido University, Sapporo 060-8628 (Japan); Watari, Fumio [Department of Biomedical Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Sapporo 060-8586 (Japan); Rosca, Iosif D. [Faculty of Engineering and Computer Science, Concordia University, 1455 de Maisonneuve Blvd. W, Montreal, QC H3G 1M8 (Canada)

    2010-08-15

    We prepared fluorescent coumarin dye-doped poly (acrylic acid) microparticles, which are well known as a biodegradable polyester, and the photophysical properties were characterized by scanning electron microscope, atomic force microscope and spectroscopic investigation. Spherical particles with diameters ranging from 0.5 to a few {mu}m were obtained. Based on spectroscopic investigation, the internal environment was close to that of a polar solvent such as methanol, and the dyes were dispersed without aggregation inside the particles. The obtained particles were administered to a mouse through the tail vein, and the biodistribution was then observed after some organs were excited at 1-day and 1-week post-injection. The particles were accumulated in the organs, especially in the lung and spleen. After injection, the particles were trapped temporally in the lung, and then seemed to be transported to other organs by blood circulation. This tendency is similar to the biodistribution of TiO{sub 2} microparticles that we have reported previously.

  14. From Single Microparticles to Microfluidic Emulsification

    DEFF Research Database (Denmark)

    Kinoshita, K.; Ortiz, Elisa Parra; Hussein, Abdirazak

    2016-01-01

    level, the micropipette technique was used to form and characterize the encapsulation of Ibuprofen (Ibp) into poly(lactic-co-glycolic acid) (PLGA) microspheres from dichloromethane (DCM) solutions, measuring the loading capacity and solubility limits of Ibp in typical PLGA microspheres. Formed...... time of pure Ibp microspheres in the buffer or in detergent micelle solutions, as a function of the microsphere size and compare that to calculated dissolution times using the Epstein-Plesset (EP) model. Single, pure Ibp microparticles precipitated as liquid phase microdroplets that then gradually......) micelles was directly visualized microscopically for the first time by the micropipette technique, showing that such micellization could increase the solubility of Ibp from 4 to 80 mM at 100 mM SDS. We also introduce a particular microfluidic device that has recently been used to make PLGA microspheres...

  15. Supercritical Antisolvent Precipitation of Microparticles of Quercetin

    Institute of Scientific and Technical Information of China (English)

    刘学武; 李志义; 韩冰; 苑塔亮

    2005-01-01

    Supercritical antisolvent (SAS) process is a recently developed technology to produce micro- and nanoparticles. This paper presents a continuous apparatus to conduct experiment of SAS process. With the apparatus,the effects of pressure, temperature and flow ratio of CO2 to the solution on the shape and size of particles are studied for the quercetin-ethanol-CO2 system. Spherical quercetin microparticles with diameters ranging form i μm to 6μm can be obtained while ethanol is used as organic solvent. The most effective fact on the shape and size of particles is pressure, the next is temperature and the last is the flow ratio of CO2 to solution.

  16. Method for producing nano-embedded microparticles

    DEFF Research Database (Denmark)

    2015-01-01

    (EN)The present invention relates to a rapid, high-throughput and continuous method for producing nano-embedded microparticles in powder form, thereby providing a cost- effective process which can be performed aseptically. The invention further relates to an apparatus for performing the method...... of the invention. (FR)La présente invention concerne un procédé rapide, à haut rendement et continu de production de nano-microparticules intégrées sous forme de poudre, ce qui permet d'obtenir un procédé économique qui peut être mis en oeuvre de manière aseptique. L'invention concerne, en outre, un appareil pour...

  17. The picobalance for single microparticle measurements

    Science.gov (United States)

    Davis, E. James

    The picobalance or quadrupole levitator is an outgrowth of the classical Millikan oil drop experiment and has been used for a wide variety of studies of micron and submicron size particles and droplets. A new version of the picobalance, which uses automatic feedback control for particle suspension and a linear photodiode array for light-scattering measurements, is described. The instrument has been used to measure the aerodynamic drag on microparticles suspended in a flow field and to measure evaporation rates and optical properties of liquid droplets. The instrument can also be used to examine spectroscopically the optical and chemical properties of atmospheric and interplanetary particles and any number of phoretic forces on such particles.

  18. Release of Intracoronary Microparticles during Stent Implantation into Stable Atherosclerotic Lesions under Protection with an Aspiration Device.

    Directory of Open Access Journals (Sweden)

    Patrick Horn

    Full Text Available Stent implantation into atherosclerotic coronary vessels impacts on downstream microvascular function and induces the release of particulate debris and soluble substances, which differs qualitatively and quantitatively between native right coronary arteries (RCAs and saphenous vein grafts on right coronary arteries (SVG-RCAs. We have now quantified the release of microparticles (MPs during stent implantation into stable atherosclerotic lesions and compared the release between RCAs and SVG-RCAs.In symptomatic, male patients with stable angina and a stenosis in their RCA or SVG-RCA, respectively (n = 14/14, plaque volume and composition were analyzed using intravascular ultrasound before stent implantation. Coronary aspirate was retrieved during stent implantation with a distal occlusion/aspiration device and divided into particulate debris and plasma. Particulate debris was weighed. Platelet-derived MPs (PMPs were distinguished by flow cytometry as CD41+, endothelium-derived MPs (EMPs as CD144+, CD62E+ and CD31+/CD41-, leukocyte-derived MPs as CD45+, and erythrocyte-derived MPs as CD235+.In patients with comparable plaque volume and composition in RCAs and SVG-RCAs, intracoronary PMPs and EMPs were increased after stent implantation into their RCAs and SVG-RCAs (CD41+: 2729.6 ± 645.6 vs. 4208.7 ± 679.4 and 2355.9 ± 503.9 vs. 3285.8 ± 733.2 nr/µL; CD144+: 451.5 ± 87.9 vs. 861.7 ± 147.0 and 444.6 ± 74.8 vs. 726.5 ± 136.4 nr/µL; CD62E+: 1404.1 ± 247.7 vs. 1844.3 ± 378.6 and 1084.6 ± 211.0 vs. 1783.8 ± 384.3 nr/µL, P < 0.05, but not different between RCAs and SVG-RCAs.Stenting in stable atherosclerotic lesions is associated with a substantial release not only of PMPs, but also of EMPs in RCAs and SVG-RCAs. Their release does not differ between RCAs and SVG-RCAs.ClinicalTrials.gov NCT01430884.

  19. Acid sphingomyelinase activity triggers microparticle release from glial cells.

    Science.gov (United States)

    Bianco, Fabio; Perrotta, Cristiana; Novellino, Luisa; Francolini, Maura; Riganti, Loredana; Menna, Elisabetta; Saglietti, Laura; Schuchman, Edward H; Furlan, Roberto; Clementi, Emilio; Matteoli, Michela; Verderio, Claudia

    2009-04-22

    We have earlier shown that microglia, the immune cells of the CNS, release microparticles from cell plasma membrane after ATP stimulation. These vesicles contain and release IL-1beta, a crucial cytokine in CNS inflammatory events. In this study, we show that microparticles are also released by astrocytes and we get insights into the mechanism of their shedding. We show that, on activation of the ATP receptor P2X7, microparticle shedding is associated with rapid activation of acid sphingomyelinase, which moves to plasma membrane outer leaflet. ATP-induced shedding and IL-1beta release are markedly reduced by the inhibition of acid sphingomyelinase, and completely blocked in glial cultures from acid sphingomyelinase knockout mice. We also show that p38 MAPK cascade is relevant for the whole process, as specific kinase inhibitors strongly reduce acid sphingomyelinase activation, microparticle shedding and IL-1beta release. Our results represent the first demonstration that activation of acid sphingomyelinase is necessary and sufficient for microparticle release from glial cells and define key molecular effectors of microparticle formation and IL-1beta release, thus, opening new strategies for the treatment of neuroinflammatory diseases.

  20. The role of microparticles in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Takahashi T

    2014-03-01

    Full Text Available Toru Takahashi,1–3 Hiroshi Kubo11Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan; 2Cellular and molecular lung biology research units, Institut de Recherches Cliniques de Montréal (IRCM, Montreal, Quebec, Canada; 3Department of Anesthesiology, Tohoku University Hospital, Sendai, JapanAbstract: Accumulating evidence suggests that cell injury in lung tissues is closely connected to disease progression in chronic obstructive pulmonary disease (COPD. Microparticles (MPs are shed membrane vesicles that are released from platelets, leukocytes, red blood cells, and endothelial cells when these cells are activated or undergo apoptosis under inflammatory conditions. Based on increasing evidence that endothelial injury in the pulmonary capillary vasculature leads to lung destruction, and because cardiovascular diseases are the main cause of death among individuals with COPD, endothelial MPs (EMPs are now receiving attention as potential biomarkers for COPD. There are eight types of EMPs which are defined by the presence of different endothelial markers on the cell membrane: vascular endothelial-cadherin; platelet endothelial cell adhesion molecule; melanoma cell adhesion molecule; E-selectin; CD51; CD105; von Willebrand factor; and CD143 EMPs. Vascular endothelial-cadherin, platelet endothelial cell adhesion molecule, and E-selectin EMPs are increased in patients with stable COPD and are further increased in patients with exacerbated COPD compared to non-COPD patients. In addition, the levels of these three EMPs in patients with stable COPD are significantly correlated with lung destruction and airflow limitation. These results indicate that endothelial injury is closely connected to the pathophysiology of COPD. Interestingly, the variations in the levels of the eight EMP subtypes were not identical with changes in patient condition. Although the clinical significance of

  1. Microparticles: Facile and High-Throughput Synthesis of Functional Microparticles with Quick Response Codes (Small 24/2016).

    Science.gov (United States)

    Ramirez, Lisa Marie S; He, Muhan; Mailloux, Shay; George, Justin; Wang, Jun

    2016-06-01

    Microparticles carrying quick response (QR) barcodes are fabricated by J. Wang and co-workers on page 3259, using a massive coding of dissociated elements (MiCODE) technology. Each microparticle can bear a special custom-designed QR code that enables encryption or tagging with unlimited multiplexity, and the QR code can be easily read by cellphone applications. The utility of MiCODE particles in multiplexed DNA detection and microtagging for anti-counterfeiting is explored.

  2. Impact of Endothelial Microparticles on Coagulation, Inflammation, and Angiogenesis in Age-Related Vascular Diseases

    Directory of Open Access Journals (Sweden)

    Margaret Markiewicz

    2013-01-01

    Full Text Available Endothelial microparticles (EMPs are complex vesicular structures that originate from plasma membranes of activated or apoptotic endothelial cells. EMPs play a significant role in vascular function by altering the processes of inflammation, coagulation, and angiogenesis, and they are key players in the pathogenesis of several vascular diseases. Circulating EMPs are increased in many age-related vascular diseases such as coronary artery disease, peripheral vascular disease, cerebral ischemia, and congestive heart failure. Their elevation in plasma has been considered as both a biomarker and bioactive effector of vascular damage and a target for vascular diseases. This review focuses on the pleiotropic roles of EMPs and the mechanisms that trigger their formation, particularly the involvement of decreased estrogen levels, thrombin, and PAI-1 as major factors that induce EMPs in age-related vascular diseases.

  3. Clinical Significance of Tissue Factor-Exposing Microparticles in Arterial and Venous Thrombosis.

    Science.gov (United States)

    van Es, Nick; Bleker, Suzanne; Sturk, Auguste; Nieuwland, Rienk

    2015-10-01

    Microparticles (MP) are small extracellular vesicles (30-1,000 nm) that are released from activated cells or platelets. Exposure of negatively charged phospholipids and tissue factor (TF) renders MP procoagulant. Normal plasma levels of intravascular TF-exposing MP (TFMP) are low, but their number may rise in pathological conditions, including cancer and infectious disease. Emerging evidence indicates an important role for these circulating TFMP in the pathogenesis of thrombotic complications such as venous thromboembolism and disseminated intravascular coagulation, whereas their contribution to arterial thrombosis is less studied. Despite serious limitations of the currently available assays for measuring TFMP levels or the procoagulant activity associated with TFMP with respect to sensitivity and specificity, the scientific interest in TFMP is rapidly growing because their application as prognostic biomarkers for thrombotic complications is promising. Future advances in detection methods will likely provide more insight into TFMP and eventually improve their clinical utility.

  4. Agglomerates containing pantoprazole microparticles: modulating the drug release.

    Science.gov (United States)

    Raffin, Renata P; Colombo, Paolo; Sonvico, Fabio; Rossi, Alessandra; Jornada, Denise S; Pohlmann, Adriana R; Guterres, Silvia S

    2009-01-01

    Pantoprazole-loaded microparticles were prepared using a blend of Eudragit S100 and Methocel F4M. The accelerated stability was carried out during 6 months at 40 degrees C and 75% relative humidity. In order to improve technological characteristics of the pantoprazole-loaded microparticles, soft agglomerates were prepared viewing an oral delayed release and gastro-resistant solid dosage form. The agglomeration was performed by mixing the pantoprazole microparticles with spray-dried mannitol/lecithin powders. The effects of factors such as the amount of lecithin in the spray-dried mannitol/lecithin powders and the ratio between pantoprazole microparticles and spray-dried mannitol/lecithin powders were evaluated. The pantoprazole-loaded microparticles present no significant degradation in 6 months. The agglomerates presented spherical shape, with smooth surface and very small quantity of non-agglomerated particles. The agglomerates presented different yields (35.5-79.0%), drug loading (58-101%), and mechanical properties (tensile strength varied from 44 to 69 mN mm(-2)), when the spray-dried mannitol/lecithin powders with different lecithin amounts were used. The biopharmaceutical characteristics of pantoprazole microparticles, i.e., their delayed-release properties, were not affected by the agglomeration process. The gastro-resistance of the agglomerates was affected by the amount of spray-dried mannitol/lecithin powders. The ratio of lecithin in the spray-dried mannitol/lecithin powders was the key factor in the agglomerate formation and in the drug release profiles. The agglomerates presenting better mechanical and biopharmaceutical characteristics were prepared with 1:2 (w/w) ratio of pantoprazole-loaded microparticles and mannitol/lecithin (80:20) powder.

  5. Increased Vitreous Shedding of Microparticles in Proliferative Diabetic Retinopathy Stimulates Endothelial Proliferation

    OpenAIRE

    Chahed, Sadri; Leroyer, Aurélie S.; Benzerroug, Mounir; Gaucher, David; Georgescu, Adriana; Picaud, Serge; Silvestre, Jean-Sébastien; Gaudric, Alain; Tedgui, Alain; Massin, Pascale; Boulanger, Chantal M.

    2009-01-01

    OBJECTIVE Diabetic retinopathy is associated with progressive retinal capillary activation and proliferation, leading to vision impairment and blindness. Microparticles are submicron membrane vesicles with biological activities, released following cell activation or apoptosis. We tested the hypothesis that proangiogenic microparticles accumulate in vitreous fluid in diabetic retinopathy. RESEARCH DESIGN AND METHODS Levels and cellular origin of vitreous and plasma microparticles from control ...

  6. Microparticles as biomarkers of osteonecrosis of the hip in sickle cell disease

    NARCIS (Netherlands)

    Marsh, Anne; Schiffelers, Raymond; Kuypers, Frans; Larkin, Sandra; Gildengorin, Ginny; van Solinge, Wouter; Hoppe, Carolyn

    2015-01-01

    Osteonecrosis of the femoral head (ONFH) is a common complication of sickle cell disease (SCD). To examine the association between microparticles and ONFH in SCD, we compared plasma microparticle levels in 20 patients with and without ONFH. Microparticles were quantified using nanoparticle tracking

  7. Formation of monodisperse mesoporous silica microparticles via spray-drying.

    Science.gov (United States)

    Waldron, Kathryn; Wu, Winston Duo; Wu, Zhangxiong; Liu, Wenjie; Selomulya, Cordelia; Zhao, Dongyuan; Chen, Xiao Dong

    2014-03-15

    In this work, a protocol to synthesize monodisperse mesoporous silica microparticles via a unique microfluidic jet spray-drying route is reported for the first time. The microparticles demonstrated highly ordered hexagonal mesostructures with surface areas ranging from ~900 up to 1500 m(2)/g and pore volumes from ~0.6 to 0.8 cm(3)/g. The particle size could be easily controlled from ~50 to 100 μm from the same diameter nozzle via changing the initial solute content, or changing the drying temperature. The ratio of the surfactant (CTAB) and silica (TEOS), and the amount of water in the precursor were found to affect the degree of ordering of mesopores by promoting either the self-assembly of the surfactant-silica micelles or the condensation of the silica as two competing processes in evaporation induced self-assembly. The drying rate and the curvature of particles also affected the self-assembly of the mesostructure. The particle mesostructure is not influenced by the inlet drying temperature in the range of 92-160 °C, with even a relatively low temperature of 92 °C producing highly ordered mesoporous microparticles. The spray-drying derived mesoporous silica microparticles, while of larger sizes and more rapidly synthesized, showed a comparable performance with the conventional mesoporous silica MCM-41 in controlled release of a dye, Rhodamine B, indicating that these spray dried microparticles could be used for the immobilisation and controlled release of small molecules.

  8. Novel injectable, self-gelling hydrogel-microparticle composites for bone regeneration consisting of gellan gum and calcium and magnesium carbonate microparticles.

    Science.gov (United States)

    Douglas, Timothy E L; Łapa, Agata; Reczyńska, Katarzyna; Krok-Borkowicz, Małgorzata; Pietryga, Krzysztof; Samal, Sangram Keshari; Declercq, Heidi A; Schaubroeck, David; Boone, Marijn; Van der Voort, Pascal; De Schamphelaere, Karel; Stevens, Christian V; Bliznuk, Vitaliy; Balcaen, Lieve; Parakhonskiy, Bogdan V; Vanhaecke, Frank; Cnudde, Veerle; Pamuła, Elżbieta; Skirtach, Andre G

    2016-11-21

    The suitability of hydrogel biomaterials for bone regeneration can be improved by incorporation of an inorganic phase in particle form, thus maintaining hydrogel injectability. In this study, carbonate microparticles containing different amounts of calcium (Ca) and magnesium (Mg) were added to solutions of the anionic polysaccharide gellan gum (GG) to crosslink GG by release of Ca(2+) and Mg(2+) from microparticles and thereby induce formation of hydrogel-microparticle composites. It was hypothesized that increasing Mg content of microparticles would promote GG hydrogel formation. The effect of Mg incorporation on cytocompatibility and cell growth was also studied. Microparticles were formed by mixing Ca(2+) and Mg(2+) and [Formula: see text] ions in varying concentrations. Microparticles were characterized physiochemically and subsequently mixed with GG solution to form hydrogel-microparticle composites. The elemental Ca:Mg ratio in the mineral formed was similar to the Ca:Mg ratio of the ions added. In the absence of Mg, vaterite was formed. At low Mg content, magnesian calcite was formed. Increasing the Mg content further caused formation of amorphous mineral. Microparticles of vaterite and magnesium calcite did not induce GG hydrogel formation, but addition of Mg-richer amorphous microparticles induced gelation within 20 min. Microparticles were dispersed homogeneously in hydrogels. MG-63 osteoblast-like cells were cultured in eluate from hydrogel-microparticle composites and on the composites themselves. All composites were cytocompatible. Cell growth was highest on composites containing particles with an equimolar Ca:Mg ratio. In summary, carbonate microparticles containing a sufficient amount of Mg induced GG hydrogel formation, resulting in injectable, cytocompatible hydrogel-microparticle composites.

  9. Shape-tunable core-shell microparticles.

    Science.gov (United States)

    Klein, Matthias K; Saenger, Nicolai R; Schuetter, Stefan; Pfleiderer, Patrick; Zumbusch, Andreas

    2014-10-28

    Colloidal polymer particles are an important class of materials finding use in both everyday and basic research applications. Tailoring their composition, shape, and functionality is of key importance. In this article, we describe a new class of shape-tunable core-shell microparticles. They are composed of a cross-linked polystyrene (PS) core and a poly(methyl methacrylate) (PMMA) shell of varying thickness. In the first step, we prepared highly cross-linked PS cores, which are subsequently transferred into a nonpolar dispersant. They serve as the seed dispersion for a nonaqueous dispersion polymerization to generate the PMMA shell. The shape of the particles can subsequently be manipulated. After the shell growth stage, the spherical PS/PMMA core-shell colloids exhibit an uneven and wrinkled surface. An additional tempering procedure allows for smoothing the surface of the core-shell colloids. This results in polymer core-shell particles with a perfectly spherical shape. In addition to this thermal smoothing of the PMMA shell, we generated a selection of shape-anisotropic core-shell particles using a thermomechanical stretching procedure. Because of the unique constitution, we can selectively interrogate molecular vibrations in the PS core or the PMMA shell of the colloids using nonlinear optical microscopy techniques. This is of great interest because no photobleaching occurs, such that the particles can be tracked in real space over long times.

  10. Diving with microparticles in acoustic fields

    CERN Document Server

    Marin, Alvaro; Barnkob, Rune; Augustsson, Per; Muller, Peter; Bruus, Henrik; Laurell, Thomas; Kaehler, Christian

    2012-01-01

    Sound can move particles. A good example of this phenomenon is the Chladni plate, in which an acoustic wave is induced in a metallic plate and particles migrate to the nodes of the acoustic wave. For several years, acoustophoresis has been used to manipulate microparticles in microscopic scales. In this fluid dynamics video, submitted to the 30th Annual Gallery of Fluid Motion, we show the basic mechanism of the technique and a simple way of visualize it. Since acoustophoretic phenomena is essentially a three-dimensional effect, we employ a simple technique to visualize the particles in 3D. The technique is called Astigmatism Particle Tracking Velocimetry and it consists in the use of cylindrical lenses to induce a deformation in the particle shape, which will be then correlated with its distance from the observer. With this method we are able to dive with the particles and observe in detail particle motion that would otherwise be missed. The technique not only permits visualization but also precise quantitat...

  11. Bead mediated separation of microparticles in droplets

    Science.gov (United States)

    Sung, Ki-Joo; Lin, Xiaoxia Nina; Burns, Mark A.

    2017-01-01

    Exchange of components such as particles and cells in droplets is important and highly desired in droplet microfluidic assays, and many current technologies use electrical or magnetic fields to accomplish this process. Bead-based microfluidic techniques offer an alternative approach that uses the bead’s solid surface to immobilize targets like particles or biological material. In this paper, we demonstrate a bead-based technique for exchanging droplet content by separating fluorescent microparticles in a microfluidic device. The device uses posts to filter surface-functionalized beads from a droplet and re-capture the filtered beads in a new droplet. With post spacing of 7 μm, beads above 10 μm had 100% capture efficiency. We demonstrate the efficacy of this system using targeted particles that bind onto the functionalized beads and are, therefore, transferred from one solution to another in the device. Binding capacity tests performed in the bulk phase showed an average binding capacity of 5 particles to each bead. The microfluidic device successfully separated the targeted particles from the non-targeted particles with up to 98% purity and 100% yield. PMID:28282412

  12. Circulation economics

    DEFF Research Database (Denmark)

    Ingebrigtsen, Stig; Jakobsen, Ove

    2006-01-01

    Purpose - This paper is an attempt to advance the critical discussion regarding environmental and societal responsibility in economics and business. Design/methodology/approach - The paper presents and discusses as a holistic, organic perspective enabling innovative solutions to challenges...... concerning the responsible and efficient use of natural resources and the constructive interplay with culture. To reach the goal of sustainable development, the paper argues that it is necessary to make changes in several dimensions in mainstream economics. This change of perspective is called a turn towards...... presupposes a perspective integrating economic, natural and cultural values. Third, to organize the interplay between all stakeholders we introduce an arena for communicative cooperation. Originality/value - The paper concludes that circulation economics presupposes a change in paradigm, from a mechanistic...

  13. Electrosprayed inulin microparticles for microbiota triggered targeting of colon.

    Science.gov (United States)

    Jain, Arvind K; Sood, Vishesh; Bora, Meghali; Vasita, Rajesh; Katti, Dhirendra S

    2014-11-04

    Inulin, a naturally occurring polysaccharide, was acetylated to make it processable by electrospraying, a facile and single step method for microparticle fabrication. Electrospraying process parameters were optimized for fabrication of spherical and monodisperse indomethacin (IDM) loaded inulin acetate (INA) microparticles. The apparent entrapment efficiency of IDM was determined to be 100%, whereas working encapsulation efficiency was estimated to be 35.39 ± 1.63%. Differential scanning calorimetry and X-ray diffraction analysis confirmed molecular dispersion of IDM in an amorphous state within the INA matrix. Finally, the results from in vitro release study performed in simulated gastro-intestinal fluids demonstrated that IDM was released only in simulated colonic fluid that contained inulinase. Therefore, this study demonstrates that acetylation of inulin does not alter its susceptibility to inulinase and that microparticles fabricated from INA can be developed as a colon targeting drug delivery system.

  14. RDX-based nanocomposite microparticles for significantly reduced shock sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Hongwei, E-mail: hqiu@stevens.edu [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Stepanov, Victor; Di Stasio, Anthony R. [U.S. Army - Armament Research, Development, and Engineering Center, Picatinny, NJ 07806 (United States); Chou, Tsengming; Lee, Woo Y. [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)

    2011-01-15

    Cyclotrimethylenetrinitramine (RDX)-based nanocomposite microparticles were produced by a simple, yet novel spray drying method. The microparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and high performance liquid chromatography (HPLC), which shows that they consist of small RDX crystals ({approx}0.1-1 {mu}m) uniformly and discretely dispersed in a binder. The microparticles were subsequently pressed to produce dense energetic materials which exhibited a markedly lower shock sensitivity. The low sensitivity was attributed to small crystal size as well as small void size ({approx}250 nm). The method developed in this work may be suitable for the preparation of a wide range of insensitive explosive compositions.

  15. Shape-based separation of microparticles with magnetic fields

    Science.gov (United States)

    Wang, Cheng; Zhou, Ran

    2016-11-01

    Precise manipulations, e.g., sorting and focusing, of nonspherical micro-particles in fluidic environment has important applications in the fields of biology sciences and biomedical engineering. However, non-spherical microparticles are hard to manipulate because they tumble in shear flows. Most of existing techniques, including traditional filtration and centrifugation, and recent microfluidic technology, have difficulty in separating microparticles by shape. We demonstrate a novel shape-based separation technique by combining external magnetic fields with pressure-driven flows in a microchannel. Due to the magnetic field, prolate ellipsoidal particles migrate laterally at different speeds than the spherical ones, leading to effective separation. Our experimental investigations reveal the underlying physical mechanism of the observed shape-dependent migration. We find that the magnetic field breaks the rotational symmetry of the nonspherical particles, and induces shape-dependent lift force and migration velocity.

  16. Characterization of spray dried bioadhesive metformin microparticles for oromucosal administration

    DEFF Research Database (Denmark)

    Sander, Camilla; Madsen, Katrine Dragsbæk; Hyrup, Birgitte

    2013-01-01

    delivery systems are considered a promising approach as they facilitate a close contact between the drug and the oral mucosa. In this study, bioadhesive chitosan-based microparticles of metformin hydrochloride were prepared by spray drying aqueous dispersions with different chitosan:metformin ratios...... and chitosan grades with increasing molecular weights. A recently developed ex vivo flow retention model with porcine buccal mucosa was used to evaluate the bioadhesive properties of spray dried microparticles. An important outcome of this study was that microparticles with the desired metformin content could...... be prepared and analyzed using the ex vivo retention model. We observed an increase in metformin retention on porcine mucosa with increasing chitosan:metformin ratios, while no effect of increasing the chitosan molecular weight was found. Rheological characterization of feeds for spray drying was performed...

  17. Multimodal delivery of irinotecan from microparticles with two distinct compartments.

    Science.gov (United States)

    Rahmani, Sahar; Park, Tae-Hong; Dishman, Acacia Frances; Lahann, Joerg

    2013-11-28

    In the last several decades, research in the field of drug delivery has been challenged with the fabrication of carrier systems engineered to deliver therapeutics to the target site with sustained and controlled release kinetics. Herein, we report the fabrication of microparticles composed of two distinct compartments: i) one compartment containing a pH responsive polymer, acetal-modified dextran, and PLGA (polylactide-co-glycolide), and ii) one compartment composed entirely of PLGA. We demonstrate the complete release of dextran from the microparticles during a 10-hour period in an acidic pH environment and the complete degradation of one compartment in less than 24h. This is in congruence with the stability of the same microparticles in neutral pH over the 24-hour period. Such microparticles can be used as pH responsive carrier systems for drug delivery applications where their cargo will only be released when the optimum pH window is reached. The feasibility of the microparticle system for such an application was confirmed by encapsulating a cancer therapeutic, irinotecan, in the compartment containing the acetal-modified dextran polymer and the pH dependent release over a 5-day period was studied. It was found that upon pH change to an acidic environment, over 50% of the drug was first released at a rapid rate for 10h, similar to that observed for the dextran release, before continuing at a more controlled rate for 4 days. As such, these microparticles can play an important role in the fabrication of novel drug delivery systems due to the selective, controlled, and pH responsive release of their encapsulated therapeutics.

  18. Dielectrophoretic Manipulation and Separation of Microparticles Using Microarray Dot Electrodes

    Directory of Open Access Journals (Sweden)

    Bashar Yafouz

    2014-04-01

    Full Text Available This paper introduces a dielectrophoretic system for the manipulation and separation of microparticles. The system is composed of five layers and utilizes microarray dot electrodes. We validated our system by conducting size-dependent manipulation and separation experiments on 1, 5 and 15 μm polystyrene particles. Our findings confirm the capability of the proposed device to rapidly and efficiently manipulate and separate microparticles of various dimensions, utilizing positive and negative dielectrophoresis (DEP effects. Larger size particles were repelled and concentrated in the center of the dot by negative DEP, while the smaller sizes were attracted and collected by the edge of the dot by positive DEP.

  19. The origin of circulating CD36 in type 2 diabetes

    OpenAIRE

    2013-01-01

    Objective: Elevated plasma levels of the fatty acid transporter, CD36, have been shown to constitute a novel biomarker for type 2 diabetes mellitus (T2DM). We recently reported such circulating CD36 to be entirely associated with cellular microparticles (MPs) and aim here to determine the absolute levels and cellular origin(s) of these CD36+MPs in persons with T2DM. Design: An ex vivo case-control study was conducted using plasma samples from 33 obese individuals with T2DM (body mass index (B...

  20. Multitarget sensing of glucose and cholesterol based on Janus hydrogel microparticles.

    Science.gov (United States)

    Sun, Xiao-Ting; Zhang, Ying; Zheng, Dong-Hua; Yue, Shuai; Yang, Chun-Guang; Xu, Zhang-Run

    2017-06-15

    A visualized sensing method for glucose and cholesterol was developed based on the hemispheres of the same Janus hydrogel microparticles. Single-phase and Janus hydrogel microparticles were both generated using a centrifugal microfluidic chip. For glucose sensing, concanavalin A and fluorescein labeled dextran used for competitive binding assay were encapsulated in alginate microparticles, and the fluorescence of the microparticles was positively correlated with glucose concentration. For cholesterol sensing, the microparticles embedded with γ-Fe2O3 nanoparticles were used as catalyst for the oxidation of 3,3',5,5'-Tetramethylbenzidine by H2O2, an enzymatic hydrolysis product of cholesterol. And the color transition was more sensitive in the microparticles than in solutions, indicating the microparticles are more applicable for visualized determination. Furthermore, Janus microparticles were employed for multitarget sensing in the two hemespheres, and glucose and cholesterol were detected within the same microparticles without obvious interference. Besides, the particles could be manipulated by an external magnetic field. The glucose and cholesterol levels were measured in human serum utilizing the microparticles, which confirmed the potential application of the microparticles in real sample detection.

  1. Micro-particle in surface snow at Princess Elizabeth Land,East Antarctica

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    During the Austral summer of 1996/1997, the First Chinese Antarctic Inland Expedition reached the inland area about 330 km along the direction around 76°E from Zhongshan Station, and collected 84 surface snow samples at an interval of 4 kin. Micro-particle analysis of the samples indicates that the micro-particle concentration apparently decreases with the increasing of altitude, and the amplitudes of micro-particle concentration is much larger in the lower altitude than in the higher altitude. Further analysis of grain-size distributions of micro-particle, percentage of micro-particles from different sources and variations with altitude suggest that microparticles in this area are from a considerably dominant source. Although this area is controlled by polar easterly wind and katabatic wind, transportation and deposition of the micro-particles are mainly influenced by marine transportation in coastal area.

  2. Interfacial tension based on-chip extraction of microparticles confined in microfluidic Stokes flows

    Science.gov (United States)

    Huang, Haishui; He, Xiaoming

    2014-10-01

    Microfluidics involving two immiscible fluids (oil and water) has been increasingly used to produce hydrogel microparticles with wide applications. However, it is difficult to extract the microparticles out of the microfluidic Stokes flows of oil that have a Reynolds number (the ratio of inertia to viscous force) much less than one, where the dominant viscous force tends to drive the microparticles to move together with the surrounding oil. Here, we present a passive method for extracting hydrogel microparticles in microfluidic Stokes flow from oil into aqueous extracting solution on-chip by utilizing the intrinsic interfacial tension between oil and the microparticles. We further reveal that the thickness of an "extended confining layer" of oil next to the interface between oil and aqueous extracting solution must be smaller than the radius of microparticles for effective extraction. This method uses a simple planar merging microchannel design that can be readily fabricated and further integrated into a fluidic system to extract microparticles for wide applications.

  3. Nicotine–magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kanjanakawinkul, Watchara [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Rades, Thomas [School of Pharmacy, University of Otago, Dunedin 9054 (New Zealand); Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen (Denmark); Puttipipatkhachorn, Satit [Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400 (Thailand); Pongjanyakul, Thaned, E-mail: thaned@kku.ac.th [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2013-04-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle morphology. The microparticles were characterized in terms of their physicochemical properties, NCT content, mucoadhesive properties, and release and permeation across porcine esophageal mucosa. The results showed that the microparticles formed via electrostatic interaction between MAS and protonated NCT had an irregular shape and that their NCT content increased with increasing NCT ratios in the microparticle preparation solution. High molecular weight CS (800 kDa) adsorbed to the microparticle surface and induced a positive surface charge. CS molecules intercalated into the MAS silicate layers and decreased the crystallinity of the microparticles, leading to an increase in the release rate and diffusion coefficient of NCT from the microparticles. Moreover, the microparticle surface modified with CS was found to have higher NCT permeation fluxes and mucoadhesive properties, which indicated the significant role of CS for NCT mucosal delivery. However, the enhancement of NCT permeation and of mucoadhesive properties depended on the molecular weight and concentration of CS. These findings suggest that NCT-MAS microparticle surface modified with CS represents a promising mucosal delivery system for NCT. Highlights: ► Nicotine–magnesium aluminum silicate microparticles were prepared using electrostatic interaction. ► Lyophilization was used for drying and maintaining an original morphology of the microparticles. ► Chitosan (CS) was used for surface modification of the microparticles at acidic pH. ► Surface modification using CS caused an increase in release and permeation of nicotine. ► Microparticle surface-modified with CS presented better mucoadhesive properties.

  4. "Kill" the messenger: Targeting of cell-derived microparticles in lupus nephritis.

    Science.gov (United States)

    Nielsen, Christoffer T; Rasmussen, Niclas S; Heegaard, Niels H H; Jacobsen, Søren

    2016-07-01

    Immune complex (IC) deposition in the glomerular basement membrane (GBM) is a key early pathogenic event in lupus nephritis (LN). The clarification of the mechanisms behind IC deposition will enable targeted therapy in the future. Circulating cell-derived microparticles (MPs) have been proposed as major sources of extracellular autoantigens and ICs and triggers of autoimmunity in LN. The overabundance of galectin-3-binding protein (G3BP) along with immunoglobulins and a few other proteins specifically distinguish circulating MPs in patients with systemic lupus erythematosus (SLE), and this is most pronounced in patients with active LN. G3BP co-localizes with deposited ICs in renal biopsies from LN patients supporting a significant presence of MPs in the IC deposits. G3BP binds strongly to glomerular basement membrane proteins and integrins. Accordingly, MP surface proteins, especially G3BP, may be essential for the deposition of ICs in kidneys and thus for the ensuing formation of MP-derived electron dense structures in the GBM, and immune activation in LN. This review focuses on the notion of targeting surface molecules on MPs as an entirely novel treatment strategy in LN. By targeting MPs, a double hit may be achieved by attenuating both the autoantigenic fueling of immune complexes and the triggering of the adaptive immune system. Thereby, early pathogenic events may be blocked in contrast to current treatment strategies that primarily target and modulate later events in the cellular and humoral immune response.

  5. Microparticles in the blood of patients with systemic lupus erythematosus (SLE): phenotypic characterization and clinical associations

    Science.gov (United States)

    Mobarrez, Fariborz; Vikerfors, Anna; Gustafsson, Johanna T.; Gunnarsson, Iva; Zickert, Agneta; Larsson, Anders; Pisetsky, David S.; Wallén, Håkan; Svenungsson, Elisabet

    2016-01-01

    Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by circulating autoantibodies and the formation of immune complexes. In these responses, the selecting self-antigens likely derive from the remains of dead and dying cells, as well as from disturbances in clearance. During cell death/activation, microparticles (MPs) can be released to the circulation. Previous MP studies in SLE have been limited in size and differ regarding numbers and phenotypes. Therefore, to characterize MPs more completely, we investigated 280 SLE patients and 280 individually matched controls. MPs were measured with flow cytometry and phenotyped according to phosphatidylserine expression (PS+/PS−), cellular origin and inflammatory markers. MPs, regardless of phenotype, are 2–10 times more abundant in SLE blood compared to controls. PS− MPs predominated in SLE, but not in controls (66% vs. 42%). Selectively in SLE, PS− MPs were more numerous in females and smokers. MP numbers decreased with declining renal function, but no clear association with disease activity was observed. The striking abundance of MPs, especially PS− MPs, suggests a generalized disturbance in SLE. MPs may be regarded as “liquid biopsies” to assess the production and clearance of dead, dying and activated cells, i.e. pivotal events for SLE pathogenesis. PMID:27777414

  6. Influence of irradiation on release of endothelial microparticles (EMP) in vitro.

    Science.gov (United States)

    Neuber, Christin; Pufe, Johanna; Pietzsch, Jens

    2015-01-01

    Survivors of Hodgkin's disease as well as of breast and lung cancer are at risk of radiation-associated cardiovascular disease. Recent studies demonstrated a correlation between cardiovascular risk factors and circulating endothelial microparticles (EMP) and thereby suggest increased EMP levels in circulation to be an early biomarker of endothelial dysfunction and cardiovascular risk. This prompted us to analyze the amount of EMP released by human aortic endothelial cells (HAEC) after exposure to different doses of X-ray (0.4, 2, 4, 6, and 20 Gy) using antibodies against the endothelial cell markers CD31, CD144, and CD146 by flow cytometry. In this pilot experiment only CD146 proved appropriate for quantification of HAEC-derived EMP. Exposure of HAEC to different doses of X-ray did not significantly influence formation of CD146-positive EMP. However, low doses (0.4 Gy) tended to decrease EMP formation, whereas higher doses (2 or 4 Gy) slightly increased release of CD146-positive EMP. By contrast, inflammatory activation of HAEC by TPA significantly increased EMP release about 15-fold (P EMP did not prove a suitable biomarker for radiation-induced endothelial dysfunction in vitro.

  7. Microparticles Novel Mechanisms of Intracellular Communication: Implication in Health and Disease

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2011-04-01

    Full Text Available BACKGROUND: The prevailing view that eukaryotic cells are restrained from intercellular exchange of genetic information has been challenged by recent reports on nanotubes, exosomes, apoptotic bodies, and nucleic acid—binding peptides that provide novel pathways for cell—cell communication, with implications in health and disease. CONTENT: Microparticles (MPs are a heterogeneous population of small plasma membrane structures that serve as important signaling structures between cells. MPs are composed of a phospholipid bilayer that exposes transmembrane proteins and receptors and encloses cytosolic components such as enzymes, transcription factors, and mRNA derived from their parent cells. Growing evidence suggests that MPs regulate inflammation, stimulate coagulation, affect vascular functions and apoptosis, and can also play a role in cell proliferation or differentiation. MPs circulate in the bloodstream, can be detected in the peripheral blood, and may originate from different vascular cell types (eg, platelets, monocytes, endothelial cells, red blood cells, and granulocytes. SUMMARY: Cells of various types release small membrane vesicles called MP on their activation, as well as during the process of apoptosis. The properties and roles of MP generated in different contexts are diverse and are determined by their parent cell and the pathway of their generation, which affects their content. MP are involved in multiple cellular functions, including immunomodulation, inflammation, coagulation, and intercellular communication. MPs are able to deliver molecular signals in the form of lipids, proteins, nucleic acids, or functional trans-membrane proteins from the parent cell to distantly located targets. From a clinical point of view, MP may serve as biomarkers for disease status and may be found useful for developing novel therapeutic strategies. KEYWORDS: microparticles, microvesicle, membrane remodeling, intercellular communication.

  8. Non-paraxial beam to push and pull microparticles

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Qiu, C.-W.

    2011-01-01

    We discuss a feasibility of the pulling (backward) force acting on a spherical microparticle in a non-paraxial Bessel beam. The effect can be explained by the strong interaction of particle's multipoles or by the conservation of momentum in the system “photons-particle.” It is remarkable that the...

  9. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles.

    Science.gov (United States)

    Wischke, Christian; Schwendeman, Steven P

    2008-12-08

    Injectable biodegradable and biocompatible copolymers of lactic and glycolic acid (PLGA) are an important advanced delivery system for week-to-month controlled release of hydrophobic drugs (e.g., from biopharmaceutical classification system class IV), which often display poor oral bioavailability. The basic principles and considerations to develop such microparticle formulations is reviewed here based on a comprehensive study of papers and patents from the beginnings of hydrophobic drug encapsulation in polylactic acid and PLGA up through the very recent literature. Challenges with the diversity of drug properties, microencapsulation methods, and organic solvents are evaluated in light of the precedence of commercialized formulations and with a focus on decreasing the time to lab-scale encapsulation of water-insoluble drug candidates in the early stage of drug development. The influence of key formulation variables on final microparticle characteristics, and how best to avoid undesired microparticle properties, is analyzed mechanistically. Finally, concepts are developed to manage the common issues of maintaining sink conditions for in vitro drug release assays of hydrophobic compounds. Overall, against the backdrop of an increasing number of new, poorly orally available drug entities entering development, microparticle delivery systems may be a viable strategy to rescue an otherwise undeliverable substance.

  10. Biodegradable nanocomposite microparticles as drug delivering injectable cell scaffolds.

    Science.gov (United States)

    Wen, Yanhong; Gallego, Monica Ramos; Nielsen, Lene Feldskov; Jorgensen, Lene; Everland, Hanne; Møller, Eva Horn; Nielsen, Hanne Mørck

    2011-11-30

    Injectable cell scaffolds play a dual role in tissue engineering by supporting cellular functions and delivering bioactive molecules. The present study aimed at developing biodegradable nanocomposite microparticles with sustained drug delivery properties thus potentially being suitable for autologous stem cell therapy. Semi-crystalline poly(l-lactide/dl-lactide) (PLDL70) and poly(l-lactide-co-glycolide) (PLGA85) were used to prepare nanoparticles by the double emulsion method. Uniform and spherical nanoparticles were obtained at an average size of 270-300 nm. The thrombin receptor activator peptide-6 (TRAP-6) was successfully loaded in PLDL70 and PLGA85 nanoparticles. During the 30 days' release, PLDL70 nanoparticles showed sustainable release with only 30% TRAP-6 released within the first 15 days, while almost 80% TRAP-6 was released from PLGA85 nanoparticles during the same time interval. The release mechanism was found to depend on the crystallinity and composition of the nanoparticles. Subsequently, mPEG-PLGA nanocomposite microparticles containing PLDL70 nanoparticles were produced by the ultrasonic atomization method and evaluated to successfully preserve the intrinsic particulate properties and the sustainable release profile, which was identical to that of the nanoparticles. Good cell adhesion of the human fibroblasts onto the nanocomposite microparticles was observed, indicating the desired cell biocompatibility. The presented results thus demonstrate the development of nanocomposite microparticles tailored for sustainable drug release for application as injectable cell scaffolds.

  11. Alginate-based hybrid aerogel microparticles for mucosal drug delivery.

    Science.gov (United States)

    Gonçalves, V S S; Gurikov, P; Poejo, J; Matias, A A; Heinrich, S; Duarte, C M M; Smirnova, I

    2016-10-01

    The application of biopolymer aerogels as drug delivery systems (DDS) has gained increased interest during the last decade since these structures have large surface area and accessible pores allowing for high drug loadings. Being biocompatible, biodegradable and presenting low toxicity, polysaccharide-based aerogels are an attractive carrier to be applied in pharmaceutical industry. Moreover, some polysaccharides (e.g. alginate and chitosan) present mucoadhesive properties, an important feature for mucosal drug delivery. This feature allows to extend the contact of DDS with biological membranes, thereby increasing the absorption of drugs through the mucosa. Alginate-based hybrid aerogels in the form of microparticles (alginate and further dried with supercritical CO2 (sc-CO2). Spherical mesoporous aerogel microparticles were obtained for alginate, hybrid alginate/pectin and alginate/κ-carrageenan aerogels, presenting high specific surface area (370-548m(2)g(-1)) and mucoadhesive properties. The microparticles were loaded with ketoprofen via adsorption from its solution in sc-CO2, and with quercetin via supercritical anti-solvent precipitation. Loading of ketoprofen was in the range between 17 and 22wt% whereas quercetin demonstrated loadings of 3.1-5.4wt%. Both the drugs were present in amorphous state. Loading procedure allowed the preservation of antioxidant activity of quercetin. Release of both drugs from alginate/κ-carrageenan aerogel was slightly faster compared to alginate/pectin. The results indicate that alginate-based aerogel microparticles can be viewed as promising matrices for mucosal drug delivery applications.

  12. Mechanically robust microfluidics and bulk wave acoustics to sort microparticles

    Science.gov (United States)

    Dauson, Erin R.; Gregory, Kelvin B.; Greve, David W.; Healy, Gregory P.; Oppenheim, Irving J.

    2016-04-01

    Sorting microparticles (or cells, or bacteria) is significant for scientific, medical and industrial purposes. Research groups have used lithium niobate SAW devices to produce standing waves, and then to align microparticles at the node lines in polydimethylsiloxane (PDMS, silicone) microfluidic channels. The "tilted angle" (skewed) configuration is a recent breakthrough producing particle trajectories that cross multiple node lines, making it practical to sort particles. However, lithium niobate wafers and PDMS microfluidic channels are not mechanically robust. We demonstrate "tilted angle" microparticle sorting in novel devices that are robust, rapidly prototyped, and manufacturable. We form our microfluidic system in a rigid polymethyl methacrylate (PMMA, acrylic) prism, sandwiched by lead-zirconium-titanate (PZT) wafers, operating in through-thickness mode with inertial backing, that produce standing bulk waves. The overall configuration is compact and mechanically robust, and actuating PZT wafers in through-thickness mode is highly efficient. Moving to this novel configuration introduced new acoustics questions involving internal reflections, but we show experimental images confirming the intended nodal geometry. Microparticles in "tilted angle" devices display undulating trajectories, where deviation from the straight path increases with particle diameter and with excitation voltage to create the mechanism by which particles are sorted. We show a simplified analytical model by which a "phase space" is constructed to characterize effective particle sorting, and we compare our experimental data to the predictions from that simplified model; precise correlation is not expected and is not observed, but the important physical trends from the model are paralleled in the measured particle trajectories.

  13. Issues in long-term protein delivery using biodegradable microparticles.

    Science.gov (United States)

    Ye, Mingli; Kim, Sungwon; Park, Kinam

    2010-09-01

    Recently, a variety of bioactive protein drugs have been available in large quantities as a result of advances in biotechnology. Such availability has prompted development of long-term protein delivery systems. Biodegradable microparticulate systems have been used widely for controlled release of protein drugs for days and months. The most widely used biodegradable polymer has been poly(d,l-lactic-co-glycolic acid) (PLGA). Protein-containing microparticles are usually prepared by the water/oil/water (W/O/W) double emulsion method, and variations of this method, such as solid/oil/water (S/O/W) and water/oil/oil (W/O/O), have also been used. Other methods of preparation include spray drying, ultrasonic atomization, and electrospray methods. The important factors in developing biodegradable microparticles for protein drug delivery are protein release profile (including burst release, duration of release, and extent of release), microparticle size, protein loading, encapsulation efficiency, and bioactivity of the released protein. Many studies used albumin as a model protein, and thus, the bioactivity of the release protein has not been examined. Other studies which utilized enzymes, insulin, erythropoietin, and growth factors have suggested that the right formulation to preserve bioactivity of the loaded protein drug during the processing and storage steps is important. The protein release profiles from various microparticle formulations can be classified into four distinct categories (Types A, B, C, and D). The categories are based on the magnitude of burst release, the extent of protein release, and the protein release kinetics followed by the burst release. The protein loading (i.e., the total amount of protein loaded divided by the total weight of microparticles) in various microparticles is 6.7+/-4.6%, and it ranges from 0.5% to 20.0%. Development of clinically successful long-term protein delivery systems based on biodegradable microparticles requires

  14. Magnetic microparticles for harvesting Dunaliella tertiolecta microalgae

    Science.gov (United States)

    Manousakis, Emmanouil; Manariotis, Ioannis D.

    2016-04-01

    Microalgae based biofuels have been considered as a sustainable alternative to traditional fuels due to the higher biomass yield and lipid productivity, and the ability to be cultivated in non arable land making them not antagonistic with food supply chain. Due to the dilute nature of algal cultures and the small size of algae cells, the cost of microalgae harvesting is so far a bottleneck in microalgal based biofuel production. It is estimated that the algal recovery cost is at least 20-30% of the total biomass production cost. Various processes have been employed for the recovery of microalgal biomass, which include centrifugation, gravity separation, filtration, flocculation, and flotation. Recently, magnetophoric harvesting has received increased attention for algal separation, although it has been first applied for algal removal since the mid of 1970s. The magnetic separation process is based on bringing in contact the algal cells with the magnetic particles, and separating them from the liquid by an external magnetic force. The aim of this work was to investigate the harvesting of microalgae cells using Fe3O4 magnetic microparticles (MPs). Dunaliella tertiolecta was selected as a representative for marine microalgae. D. tertiolecta was cultivated under continuous artificial light, in 20 L flasks. Fe3O4 MPs were prepared by microwave irradiation of FeSO4 7H2O in an alkaline solution. Numerous batch and flow-through experiments were conducted in order to investigate the effect of the magnetic material addition on microalgae removal. Batch experiments were conducted examining different initial algal and MPs concentration, and algal culture volume. Flow-through experiments were conducted in a laboratory scale column made of Plexiglass. External magnetic field was applied by arranging at various points across the column length NdFeB magnets. Algal removal in flow-through experiments ranged from 70 to 85% depending on the initial MPs concentration and the hydraulic

  15. IGF-1 release kinetics from chitosan microparticles fabricated using environmentally benign conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mantripragada, Venkata P. [Biomedical Engineering Program, The University of Toledo, Toledo, OH 43614-5807 (United States); Jayasuriya, Ambalangodage C., E-mail: a.jayasuriya@utoledo.edu [Biomedical Engineering Program, The University of Toledo, Toledo, OH 43614-5807 (United States); Department of Orthopaedic Surgery, The University of Toledo, Toledo, OH 43614-5807 (United States)

    2014-09-01

    The main objective of this study is to maximize growth factor encapsulation efficiency into microparticles. The novelty of this study is to maximize the encapsulated growth factors into microparticles by minimizing the use of organic solvents and using relatively low temperatures. The microparticles were fabricated using chitosan biopolymer as a base polymer and cross-linked with tripolyphosphate (TPP). Insulin like-growth factor-1 (IGF-1) was encapsulated into microparticles to study release kinetics and bioactivity. In order to authenticate the harms of using organic solvents like hexane and acetone during microparticle preparation, IGF-1 encapsulated microparticles prepared by the emulsification and coacervation methods were compared. The microparticles fabricated by emulsification method have shown a significant decrease (p < 0.05) in IGF-1 encapsulation efficiency, and cumulative release during the two-week period. The biocompatibility of chitosan microparticles and the bioactivity of the released IGF-1 were determined in vitro by live/dead viability assay. The mineralization data observed with von Kossa assay, was supported by mRNA expression levels of osterix and runx2, which are transcription factors necessary for osteoblasts differentiation. Real time RT-PCR data showed an increased expression of runx2 and a decreased expression of osterix over time, indicating differentiating osteoblasts. Chitosan microparticles prepared in optimum environmental conditions are a promising controlled delivery system for cells to attach, proliferate, differentiate and mineralize, thereby acting as a suitable bone repairing material. - Highlights: • Coacervation chitosan microparticles were biocompatible and biodegradable. • IGF-1 encapsulation efficiency increased with coacervation chitosan microparticles. • Coacervation chitosan microparticles support osteoblast attachment and differentiation. • Coacervation chitosan microparticles support osteoblast mineralization.

  16. Differential procoagulant activity of microparticles derived from monocytes, granulocytes, platelets and endothelial cells: impact of active tissue factor.

    Science.gov (United States)

    Shustova, Olga N; Antonova, Olga A; Golubeva, Nina V; Khaspekova, Svetlana G; Yakushkin, Vladimir V; Aksuk, Svetlana A; Alchinova, Irina B; Karganov, Mikhail Y; Mazurov, Alexey V

    2016-12-06

    Microparticles released by activated/apoptotic cells exhibit coagulation activity as they express phosphatidylserine and some of them - tissue factor. We compared procoagulant properties of microparticles from monocytes, granulocytes, platelets and endothelial cells and assessed the impact of tissue factor in observed differences. Microparticles were sedimented (20 000g, 30 min) from the supernatants of activated monocytes, monocytic THP-1 cells, granulocytes, platelets and endothelial cells. Coagulation activity of microparticles was examined using plasma recalcification assay. The size of microparticles was evaluated by dynamic light scattering. Tissue factor activity was measured by its ability to activate factor X. All microparticles significantly accelerated plasma coagulation with the shortest lag times for microparticles derived from monocytes, intermediate - for microparticles from THP-1 cells and endothelial cells, and the longest - for microparticles from granulocytes and platelets. Average diameters of microparticles ranged within 400-600 nm. The largest microparticles were produced by endothelial cells and granulocytes, smaller - by monocytes, and the smallest - by THP-1 cells and platelets. The highest tissue factor activity was detected in microparticles from monocytes, lower activity - in microparticles from endothelial cells and THP-1 cells, and no activity - in microparticles from platelets and granulocytes. Anti-tissue factor antibodies extended coagulation lag times for microparticles from monocytes, endothelial cells and THP-1 cells and equalized them with those for microparticles from platelets and granulocytes. Higher coagulation activity of microparticles from monocytes, THP-1 cells and endothelial cells in comparison with microparticles from platelets and granulocytes is determined mainly by the presence of active tissue factor.

  17. Reduction in microparticle adsorption using a lateral interconnection method in a PDMS-based microfluidic device.

    Science.gov (United States)

    Lee, Do-Hyun; Park, Je-Kyun

    2013-12-01

    Microparticle adsorption on microchannel walls occurs frequently due to nonspecific interactions, decreasing operational performance in pressure-driven microfluidic systems. However, it is essential for delicate manipulation of microparticles or cells to maintain smooth fluid traffic. Here, we report a novel microparticle injection technique, which prevents particle loss, assisted by sample injection along the direction of fluid flow. Sample fluids, including microparticles, mammalian (U937), and green algae (Chlorella vulgaris) cells, were injected directly via a through hole drilled in the lateral direction, resulting in a significant reduction in microparticle attachment. For digital microfluidic application, the proposed regime achieved a twofold enhancement of single-cell encapsulation compared to the conventional encapsulation rate, based on a Poisson distribution, by reducing the number of empty droplets. This novel interconnection method can be straightforwardly integrated as a microparticle or cell injection component in integrated microfluidic systems.

  18. Cytotoxic and Immunochemical Properties of Viscumin Encapsulated 
in Polylactide Microparticles.

    Science.gov (United States)

    Kolotova, E S; Egorova, S G; Ramonova, A A; Bogorodski, S E; Popov, V K; Agapov, I I; Kirpichnikov, M P

    2012-01-01

    Biodegradable polylactide microparticles with encapsulated cytotoxic protein viscumin were obtained via the ultrasound-assisted supercritical fluid technique. The size of the microparticles was 10-50 µM, as shown by electron microscopy. The time course of viscumin release from microparticles was studied using an immunoenzyme test system with anti-viscumin monoclonal antibodies. It was found that 99.91% of the cytotoxic protein was incorporated into polymer microparticles. Only 0.08% of the initially encapsulated viscumin was released from the microparticles following incubation for 120 h in a phosphate-buffered saline at neutral pH. Importantly, the method of ultrasonic dry supercritical fluid encapsulation failed to alter both the cytotoxic potency and the immunochemical properties of the encapsulated viscumin. Thus, this procedure can be used to generate biodegradable polylactide microparticles with encapsulated bioactive substances.

  19. Effects of simvastatin/ezetimibe on microparticles, endothelial progenitor cells and platelet aggregation in subjects with coronary heart disease under antiplatelet therapy

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, L.M.; França, C.N.; Izar, M.C.; Bianco, H.T.; Lins, L.S.; Barbosa, S.P.; Pinheiro, L.F.; Fonseca, F.A.H. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, São Paulo, SP, Brasil, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-04-15

    It is not known whether the addition of ezetimibe to statins adds cardiovascular protection beyond the expected changes in lipid levels. Subjects with coronary heart disease were treated with four consecutive 1-week courses of therapy (T) and evaluations. The courses were: T1, 100 mg aspirin alone; T2, 100 mg aspirin and 40 mg simvastatin/10 mg ezetimibe; T3, 40 mg simvastatin/10 mg ezetimibe, and 75 mg clopidogrel (300 mg initial loading dose); T4, 75 mg clopidogrel alone. Platelet aggregation was examined in whole blood. Endothelial microparticles (CD51), platelet microparticles (CD42/CD31), and endothelial progenitor cells (CD34/CD133; CDKDR/CD133, or CD34/KDR) were quantified by flow cytometry. Endothelial function was examined by flow-mediated dilation. Comparisons between therapies revealed differences in lipids (T2 and T3T1 and T4, P=0.001). Decreased platelet aggregation was observed after aspirin (arachidonic acid, T1circulating endothelial and platelet microparticles, or endothelial progenitor cells. Cardiovascular protection following therapy with simvastatin/ezetimibe seems restricted to lipid changes and improvement of endothelial function not affecting the release of microparticles, mobilization of endothelial progenitor cells or decreased platelet aggregation.

  20. Synthesis and morphology of triangular pyramid-shaped puerarin microparticle with nanostructure

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A type of triangular pyramid-shaped microparticles of puerarin was synthesized by using oil-in-oil microemulsion approach which is simple and economical under the action of copper substrate.The pyramid-shaped microparticles would be made up of deposit of nanospheres or nanorods and have two significant characters.One is its complex surface morphology like coral reef.The other is a lot of nanopores in existence in the microparticle body.Two possible formation routes were speculated.

  1. Encapsulation of antigen-loaded silica nanoparticles into microparticles for intradermal powder injection.

    Science.gov (United States)

    Deng, Yibin; Mathaes, Roman; Winter, Gerhard; Engert, Julia

    2014-10-15

    Epidermal powder immunisation (EPI) is being investigated as a promising needle-free delivery methods for vaccination. The objective of this work was to prepare a nanoparticles-in-microparticles (nano-in-micro) system, integrating the advantages of nanoparticles and microparticles into one vaccine delivery system for epidermal powder immunisation. Cationic mesoporous silica nanoparticles (MSNP-NH2) were prepared and loaded with ovalbumin as a model antigen. Loading was driven by electrostatic interactions. Ovalbumin-loaded silica nanoparticles were subsequently formulated into sugar-based microparticles by spray-freeze-drying. The obtained microparticles meet the size requirement for EPI. Confocal microscopy was used to demonstrate that the nanoparticles are homogeneously distributed in the microparticles. Furthermore, the silica nanoparticles in the dry microparticles can be re-dispersed in aqueous solution showing no aggregation. The recovered ovalbumin shows integrity compared to native ovalbumin. The present nano-in-micro system allows (1) nanoparticles to be immobilized and finely distributed in microparticles, (2) microparticle formation and (3) re-dispersion of nanoparticles without subsequent aggregation. The nanoparticles inside microparticles can (1) adsorb proteins to cationic shell/surface voids in spray-dried products without detriment to ovalbumin stability, (2) deliver antigens in nano-sized modes to allow recognition by the immune system.

  2. Fabrication of pseudo-ceramide-based lipid microparticles for recovery of skin barrier function.

    Science.gov (United States)

    Kim, Do-Hoon; Park, Woo Ram; Kim, Jeong Hwan; Cho, Eun Chul; An, Eun Jung; Kim, Jin-Woong; Oh, Seong-Geun

    2012-06-01

    The recovery of skin barrier functions was investigated with pseudo-ceramide-based lipid microparticles. The microparticles were prepared by using a fluid bed technique where lipid components (a pseudo-ceramide, cholesterol and a fatty acid) were coated on a sugar seed, and a polymer was subsequently coated on the lipid microparticles. The microparticles contained large amount of pseudo-ceramide, and the pseudo-ceramide was in the form of lamellar structures mixed with other lipid components. In addition, the microparticles were stably dispersed in aqueous media or emulsion systems without any disruption of the microparticles' structures, thereby supplying sufficient amount of the pseudo-ceramide to skins for improving skin barrier functions such as preventing water loss. Such a role of the microparticles was proven by evaluating in vivo the efficacy of the lipid microparticles in reducing a trans-epidermal water loss (TEWL) of impaired murine skins. As a result, the novel pseudo-ceramide-based lipid microparticles for barrier recovery may potentially be applied in the field of dermatology, cosmetics and pharmaceuticals.

  3. pH-Sensitive Microparticles with Matrix-Dispersed Active Agent

    Science.gov (United States)

    Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor); Calle, Luz M. (Inventor)

    2014-01-01

    Methods to produce pH-sensitive microparticles that have an active agent dispersed in a polymer matrix have certain advantages over microcapsules with an active agent encapsulated in an interior compartment/core inside of a polymer wall. The current invention relates to pH-sensitive microparticles that have a corrosion-detecting or corrosion-inhibiting active agent or active agents dispersed within a polymer matrix of the microparticles. The pH-sensitive microparticles can be used in various coating compositions on metal objects for corrosion detecting and/or inhibiting.

  4. Using information theory to assess the communicative capacity of circulating microRNA.

    Science.gov (United States)

    Finn, Nnenna A; Searles, Charles D

    2013-10-11

    The discovery of extracellular microRNAs (miRNAs) and their transport modalities (i.e., microparticles, exosomes, proteins and lipoproteins) has sparked theories regarding their role in intercellular communication. Here, we assessed the information transfer capacity of different miRNA transport modalities in human serum by utilizing basic principles of information theory. Zipf Statistics were calculated for each of the miRNA transport modalities identified in human serum. Our analyses revealed that miRNA-mediated information transfer is redundant, as evidenced by negative Zipf's Statistics with magnitudes greater than one. In healthy subjects, the potential communicative capacity of miRNA in complex with circulating proteins was significantly lower than that of miRNA encapsulated in circulating microparticles and exosomes. Moreover, the presence of coronary heart disease significantly lowered the communicative capacity of all circulating miRNA transport modalities. To assess the internal organization of circulating miRNA signals, Shannon's zero- and first-order entropies were calculated. Microparticles (MPs) exhibited the lowest Shannon entropic slope, indicating a relatively high capacity for information transfer. Furthermore, compared to the other miRNA transport modalities, MPs appeared to be the most efficient at transferring miRNA to cultured endothelial cells. Taken together, these findings suggest that although all transport modalities have the capacity for miRNA-based information transfer, MPs may be the simplest and most robust way to achieve miRNA-based signal transduction in sera. This study presents a novel method for analyzing the quantitative capacity of miRNA-mediated information transfer while providing insight into the communicative characteristics of distinct circulating miRNA transport modalities.

  5. Using Information Theory to Assess the Communicative Capacity of Circulating MicroRNA

    Science.gov (United States)

    Finn, Nnenna A.; Searles, Charles D.

    2013-01-01

    The discovery of extracellular microRNAs (miRNAs) and their transport modalities (i.e. microparticles, exosomes, proteins and lipoproteins) has sparked theories regarding their role in intercellular communication. Here, we assessed the information transfer capacity of different miRNA transport modalities in human serum by utilizing basic principles of information theory. Zipf Statistics were calculated for each of the miRNA transport modalities identified in human serum. Our analyses revealed that miRNA-mediated information transfer is redundant, as evidenced by negative Zipf’s Statistics with magnitudes greater than one. In healthy subjects, the potential communicative capacity of miRNA in complex with circulating proteins was significantly lower than that of miRNA encapsulated in circulating microparticles and exosomes. Moreover, the presence of coronary heart disease significantly lowered the communicative capacity of all circulating miRNA transport modalities. To assess the internal organization of circulating miRNA signals, Shannon’s zero- and first-order entropies were calculated. Microparticles (MPs) exhibited the lowest Shannon entropic slope, indicating a relatively high capacity for information transfer. Furthermore, compared to the other miRNA transport modalities, MPs appeared to be the most efficient at transferring miRNA to cultured endothelial cells. Taken together, these findings suggest that although all transport modalities have the capacity for miRNA-based information transfer, MPs may be the simplest and most robust way to achieve miRNA-based signal transduction in sera. This study presents a novel method for analyzing the quantitative capacity of miRNA-mediated information transfer while providing insight into the communicative characteristics of distinct circulating miRNA transport modalities. PMID:23994137

  6. Optical coherence tomography-based micro-particle image velocimetry.

    Science.gov (United States)

    Mujat, Mircea; Ferguson, R Daniel; Iftimia, Nicusor; Hammer, Daniel X; Nedyalkov, Ivaylo; Wosnik, Martin; Legner, Hartmut

    2013-11-15

    We present a new application of optical coherence tomography (OCT), widely used in biomedical imaging, to flow analysis in near-wall hydrodynamics for marine research. This unique capability, called OCT micro-particle image velocimetry, provides a high-resolution view of microscopic flow phenomena and measurement of flow statistics within the first millimeter of a boundary layer. The technique is demonstrated in a small flow cuvette and in a water tunnel.

  7. Self-organized internal architectures of chiral micro-particles

    OpenAIRE

    2014-01-01

    The internal architecture of polymeric self-assembled chiral micro-particles is studied by exploring the effect of the chirality, of the particle sizes, and of the interface/surface properties in the ordering of the helicoidal planes. The experimental investigations, performed by means of different microscopy techniques, show that the polymeric beads, resulting from light induced polymerization of cholesteric liquid crystal droplets, preserve both the spherical shape and the internal self-org...

  8. Possible roles of platelet-derived microparticles in atherosclerosis.

    Science.gov (United States)

    Wang, Zhi-Ting; Wang, Zi; Hu, Yan-Wei

    2016-05-01

    Platelets and platelet-derived microparticles (PMPs) play important roles in cardiovascular diseases, especially atherosclerosis. Continued research has revealed that PMPs have numerous functions in atherosclerosis, not only in thrombosis formation, but also by induction of inflammation. PMPs also induce formation of foam cells. Recent evidence strongly indicates a significant role of PMPs in atherosclerosis. Here, current research on the function of PMPs in atherosclerosis is reviewed.

  9. Pneumatic capillary gun for ballistic delivery of microparticles

    CERN Document Server

    Rinberg, D; Groisman, A; Rinberg, Dmitry; Simonnet, Claire; Groisman, Alex

    2005-01-01

    A pneumatic gun for ballistic delivery of microparticles to soft targets is proposed and demonstrated. The particles are accelerated by a high speed flow of Helium in a capillary tube. Vacuum suction applied to a concentric, larger diameter tube is used to completely divert the flow of Helium from the gun nozzle and prevent it from hitting the target. Depths of penetration of micron-sized gold particles into agarose gels and their speeds of ejection from the gun nozzle are measured.

  10. Incorporation of iodine in polymeric microparticles and emulsions

    Science.gov (United States)

    Kolontaeva, Olga A.; Khokhlova, Anastasia R.; Markina, Natalia E.; Markin, Alexey V.; Burmistrova, Natalia A.

    2016-04-01

    Application of different methods for formation of microcontainers containing iodine is proposed in this paper. Two types of microcontainers: microemulsions and microparticles have been investigated, conditions and methods for obtaining microcontainers were optimized. Microparticles were formed by layer-by-layer method with cores of calcium carbonate (CaCO3) as templates. Incorporation of complexes of iodine with polymers (chitosan, starch, polyvinyl alcohol) into core, shell and hollow capsules was investigated and loadings of microparticles with iodine were estimated. It was found that the complex of iodine with chitosan adsorbed at CaCO3 core is the most stable under physiological conditions and its value of loading can be 450 μg of I2 per 1 g of CaCO3. Moreover, chitosan was chosen as a ligand because of its biocompatibility and biodegradability as well as very low toxicity while its complex with iodine is very stable. A small amount of microparticles containing a iodine-chitosan complex can be used for prolonged release of iodine in the human body since iodine daily intake for adults is around 100 μg. "Oil-in-water" emulsions were prepared by ultrasonication of iodinated oils (sunflower and linseed) with sodium laurilsulfate (SLS) as surfactant solution. At optimal conditions, the homogenous emulsions remained stable for weeks, with total content of iodine in such emulsion being up to 1% (w/w). The oil:SLS ratio was equal to 1:10 (w/w), optimal duration and power of ultrasound exposure were 1.5 min and 7 W, correspondingly. Favorable application of iodized linseed oil for emulsion preparation with suitable oil microdroplets size was proved.

  11. Promoting optofluidic actuation of microparticles with plasmonic nanoparticles

    Science.gov (United States)

    Burgin, Julien; Si, Satyabrata; Delville, Marie-Hélène; Delville, Jean-Pierre

    2014-09-01

    The amplitude of optical forces on flowing dielectric microparticles can be actuated by coating them partially with metallic nanospheres and exposing them to laser light within the surface plasmon resonance. Here, optical forces on both pure silica particles and silica-gold raspberries are characterized within an optical chromatography setup by measuring the Stokes drag versus laser beam power. Results are compared to Mie theory predictions for both core dielectric particles and core-shell ones where the shell is described by a continuous dielectricmetal composite of dielectric constant determined from the Maxwell Garnett approach. The nice observed quantitative agreement demonstrates that radiation pressure forces are directly related to the metal concentration present at the microparticle surface and that nano-metallic objects increase the magnitude of optical forces compared to pure dielectric particles of the same overall size, even at very low metal concentration. Behaving as "micro-sized nanoparticles", the benefit of microparticles coated with metallic nanospheres is thus twofold: (i) to enhance optofluidic manipulation and transport at the microscale and (ii) to increase sensing capabilities at the nanoscale, compared to separated pure dielectric particles and single metallic nanosystems.

  12. Floating microparticles based on low density foam powder.

    Science.gov (United States)

    Streubel, A; Siepmann, J; Bodmeier, R

    2002-07-25

    The aim of this study was to develop a novel multiparticulate gastroretentive drug delivery system and to demonstrate its performance in vitro. Floating microparticles consisting of (i) polypropylene foam powder; (ii) verapamil HCl as model drug; and (iii) Eudragit RS, ethylcellulose (EC) or polymethyl methacrylate (PMMA) as polymers were prepared with an O/W solvent evaporation method. The effect of various formulation and processing parameters on the internal and external particle morphology, drug loading, in vitro floating behavior, in vitro drug release kinetics, particle size distribution and physical state of the incorporated drug was studied. The microparticles were irregular in shape and highly porous. The drug encapsulation efficiency was high and almost independent of the theoretical loading. Encapsulation efficiencies close to 100% could be achieved by varying either the ratio 'amount of ingredients: volume of the organic phase' or the relative amount of polymer. In all cases, good in vitro floating behavior was observed. The release rate increased with increasing drug loading and with decreasing polymer amounts. The type of polymer significantly affected the drug release rate, which increased in the following rank order: PMMAmicroparticles was almost independent of the drug loading, but strongly depended on the amount of polymer. The drug was partly dissolved and partly in the amorphous form distributed throughout the system.

  13. Functionalized diatom silica microparticles for removal of mercury ions

    Directory of Open Access Journals (Sweden)

    Yang Yu, Jonas Addai-Mensah and Dusan Losic

    2012-01-01

    Full Text Available Diatom silica microparticles were chemically modified with self-assembled monolayers of 3-mercaptopropyl-trimethoxysilane (MPTMS, 3-aminopropyl-trimethoxysilane (APTES and n-(2-aminoethyl-3-aminopropyl-trimethoxysilane (AEAPTMS, and their application for the adsorption of mercury ions (Hg(II is demonstrated. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy analyses revealed that the functional groups (–SH or –NH2 were successfully grafted onto the diatom silica surface. The kinetics and efficiency of Hg(II adsorption were markedly improved by the chemical functionalization of diatom microparticles. The relationship among the type of functional groups, pH and adsorption efficiency of mercury ions was established. The Hg(II adsorption reached equilibrium within 60 min with maximum adsorption capacities of 185.2, 131.7 and 169.5 mg g-1 for particles functionalized with MPTMS, APTES and AEAPTMS, respectively. The adsorption behavior followed a pseudo-second-order reaction model and Langmuirian isotherm. These results show that mercapto- or amino-functionalized diatom microparticles are promising natural, cost-effective and environmentally benign adsorbents suitable for the removal of mercury ions from aqueous solutions.

  14. Hydroxyapatite microparticles as feedback-active reservoirs of corrosion inhibitors.

    Science.gov (United States)

    Snihirova, D; Lamaka, S V; Taryba, M; Salak, A N; Kallip, S; Zheludkevich, M L; Ferreira, M G S; Montemor, M F

    2010-11-01

    This work contributes to the development of new feedback-active anticorrosion systems. Inhibitor-doped hydroxyapatite microparticles (HAP) are used as reservoirs, storing corrosion inhibitor to be released on demand. Release of the entrapped inhibitor is triggered by redox reactions associated with the corrosion process. HAP were used as reservoirs for several inhibiting species: cerium(III), lanthanum(III), salicylaldoxime, and 8-hydroxyquinoline. These species are effective corrosion inhibitors for a 2024 aluminum alloy (AA2024), used here as a model metallic substrate. Dissolution of the microparticles and release of the inhibitor are triggered by local acidification resulting from the anodic half-reaction during corrosion of AA2024. Calculated values and experimentally measured local acidification over the aluminum anode (down to pH = 3.65) are presented. The anticorrosion properties of inhibitor-doped HAP were assessed using electrochemical impedance spectroscopy. The microparticles impregnated with the corrosion inhibitors were introduced into a hybrid silica-zirconia sol-gel film, acting as a thin protective coating for AA2024, an alloy used for aeronautical applications. The protective properties of the sol-gel films were improved by the addition of HAP, proving their applicability as submicrometer-sized reservoirs of corrosion inhibitors for active anticorrosion coatings.

  15. Moldless PEGDA-Based Optoelectrofluidic Platform for Microparticle Selection

    Directory of Open Access Journals (Sweden)

    Shih-Mo Yang

    2011-01-01

    Full Text Available This paper reports on an optoelectrofluidic platform which consists of the organic photoconductive material, titanium oxide phthalocyanine (TiOPc, and the photocrosslinkable polymer, poly (ethylene glycol diacrylate (PEGDA. TiOPc simplifies the fabrication process of the optoelectronic chip due to requiring only a single spin-coating step. PEGDA is applied to embed the moldless PEGDA-based microchannel between the top ITO glass and the bottom TiOPc substrate. A real-time control interface via a touch panel screen is utilized to select the target 15 μm polystyrene particles. When the microparticles flow to an illuminating light bar, which is oblique to the microfluidic flow path, the lateral driving force diverts the microparticles. Two light patterns, the switching oblique light bar and the optoelectronic ladder phenomenon, are designed to demonstrate the features. This work integrating the new material design, TiOPc and PEGDA, and the ability of mobile microparticle manipulation demonstrates the potential of optoelectronic approach.

  16. The Effects of Smoking on Levels of Endothelial Progenitor Cells and Microparticles in the Blood of Healthy Volunteers

    Science.gov (United States)

    Mobarrez, Fariborz; Antoniewicz, Lukasz; Bosson, Jenny A.; Kuhl, Jeanette; Pisetsky, David S.; Lundbäck, Magnus

    2014-01-01

    Background Cigarette smoking, both active and passive, is one of the leading causes of morbidity and mortality in cardiovascular disease. To assess the impact of brief smoking on the vasculature, we determined levels of circulating endothelial progenitor cells (EPCs) and circulating microparticles (MPs) following the smoking of one cigarette by young, healthy intermittent smokers. Materials and Methods 12 healthy volunteers were randomized to either smoking or not smoking in a crossover fashion. Blood sampling was performed at baseline, 1, 4 and 24 hours following smoking/not smoking. The numbers of EPCs and MPs were determined by flow cytometry. MPs were measured from platelets, leukocytes and endothelial cells. Moreover, MPs were also labelled with anti-HMGB1 and SYTO 13 to assess the content of nuclear molecules. Results Active smoking of one cigarette caused an immediate and significant increase in the numbers of circulating EPCs and MPs of platelet-, endothelial- and leukocyte origin. Levels of MPs containing nuclear molecules were increased, of which the majority were positive for CD41 and CD45 (platelet- and leukocyte origin). CD144 (VE-cadherin) or HMGB1 release did not significantly change during active smoking. Conclusion Brief active smoking of one cigarette generated an acute release of EPC and MPs, of which the latter contained nuclear matter. Together, these results demonstrate acute effects of cigarette smoke on endothelial, platelet and leukocyte function as well as injury to the vascular wall. PMID:24587320

  17. The effects of smoking on levels of endothelial progenitor cells and microparticles in the blood of healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Fariborz Mobarrez

    Full Text Available BACKGROUND: Cigarette smoking, both active and passive, is one of the leading causes of morbidity and mortality in cardiovascular disease. To assess the impact of brief smoking on the vasculature, we determined levels of circulating endothelial progenitor cells (EPCs and circulating microparticles (MPs following the smoking of one cigarette by young, healthy intermittent smokers. MATERIALS AND METHODS: 12 healthy volunteers were randomized to either smoking or not smoking in a crossover fashion. Blood sampling was performed at baseline, 1, 4 and 24 hours following smoking/not smoking. The numbers of EPCs and MPs were determined by flow cytometry. MPs were measured from platelets, leukocytes and endothelial cells. Moreover, MPs were also labelled with anti-HMGB1 and SYTO 13 to assess the content of nuclear molecules. RESULTS: Active smoking of one cigarette caused an immediate and significant increase in the numbers of circulating EPCs and MPs of platelet-, endothelial- and leukocyte origin. Levels of MPs containing nuclear molecules were increased, of which the majority were positive for CD41 and CD45 (platelet- and leukocyte origin. CD144 (VE-cadherin or HMGB1 release did not significantly change during active smoking. CONCLUSION: Brief active smoking of one cigarette generated an acute release of EPC and MPs, of which the latter contained nuclear matter. Together, these results demonstrate acute effects of cigarette smoke on endothelial, platelet and leukocyte function as well as injury to the vascular wall.

  18. Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Laurell, Thomas;

    2012-01-01

    We present microparticle image velocimetry measurements of suspended microparticles of diameters from 0.6 to 10μm undergoing acoustophoresis in an ultrasound symmetry plane in a microchannel. The motion of the smallest particles is dominated by the Stokes drag from the induced acoustic streaming...... flow, while the motion of the largest particles is dominated by the acoustic radiation force. For all particle sizes we predict theoretically how much of the particle velocity is due to radiation and streaming, respectively. These predictions include corrections for particle-wall interactions...... and ultrasonic thermoviscous effects and match our measurements within the experimental uncertainty. Finally, we predict theoretically and confirm experimentally that the ratio between the acoustic radiation- and streaming-induced particle velocities is proportional to the actuation frequency, the acoustic...

  19. Erythrocyte-derived optical nano-vesicles as theranostic agents

    Science.gov (United States)

    Mac, Jenny T.; Nunez, Vicente; Bahmani, Baharak; Guerrero, Yadir; Tang, Jack; Vullev, Valentine I.; Anvari, Bahman

    2015-07-01

    We have engineered nano-vesicles, derived from erythrocytes, which can be doped with various near infrared (NIR) organic chromophores, including the FDA-approved indocyanine green (ICG). We refer to these vesicles as NIR erythrocyte-mimicking transducers (NETS) since in response to NIR photo-excitation they can generate heat or emit fluorescent light. Using biochemical methods based on reduction amination, we have functionalized the surface of NET with antibodies to target specific biomolecules. We present results that demonstrate the effectiveness of NETs in targeted imaging of cancer cells that over-express the human epidermal growth factor receptor-2 (HER2).

  20. Nano/microparticles and ultrasound contrast agents

    Institute of Scientific and Technical Information of China (English)

    Shu-Guang; Zheng; Hui-Xiong; Xu; Hang-Rong; Chen

    2013-01-01

    Microbubbles have been used for many years now in clinical practice as contrast agents in ultrasound imaging.Recently,their therapeutic applications have also attracted more attention.However,the short circulation time(minutes)and relatively large size(two to ten micrometers)of currently used commercial microbubbles do not allow effective extravasation into tumor tissue,preventing efficient tumor targeting.Fortunately,more multifunctional and theranostic nanoparticles with some special advantages over the traditional microbubbles have been widely investigated and explored for biomedical applications.The way to synthesize an ideal ultrasound contrast agent based on nanoparticles in order to achieve an expected effect on contrast imaging is a key technique.Currently a number of nanomaterials,including liposomes,polymers,micelles,dendrimers,emulsions,quantum dots,solid nanoparticles etc.,have already been applied to pre or clinical trials.Multifunctional and theranostic nanoparticles with some special advantages,such as the tumor-targeted(passive or active),multi-mode contrast agents(magnetic resonance imaging,ultrasonography or fluorescence),carrier or enhancer of drug delivery,and combined chemo or thermal therapy etc.,are rapidly gaining popularity and have shown a promising application in the field of cancer treatment.In this mini review,the trends and the advances of multifunctional and theranostic nanoparticles are briefly discussed.

  1. RhoB/ROCK mediates oxygen-glucose deprivation-stimulated syncytiotrophoblast microparticle shedding in preeclampsia.

    Science.gov (United States)

    Han, Jian; Yang, Bo-Ping; Li, Yi-Lin; Li, Hong-Mei; Zheng, Xiu-Hui; Yu, Li-Li; Zhang, Qiong; Zheng, Ying-Ru; Yi, Ping; Li, Li; Guo, Jian-Xin; Zhou, Yuan-Guo

    2016-11-01

    Increased circulating syncytiotrophoblast microparticles (STBMs) are often associated with preeclampsia (PE) but the molecular mechanisms regulating STBM shedding remain elusive. Experimental evidence has shown that actin plays a key role in STBM shedding and that Rho/ROCK is important in regulating actin rearrangement. To investigate the role of RhoB/ROCK-regulated actin arrangement in STBM shedding in PE, chorionic villous explants were prepared from placenta of patients with normotensive or PE pregnancies and BeWo cells were fused to imitate syncytiotrophoblasts. The oxygen-glucose deprivation (OGD) conditions were applied to imitate the pathophysiology of PE in vitro. The results showed that RhoB and ROCK were activated in the preeclamptic placenta, accompanied by increased actin polymerization and decreased outgrowing microvilli. In villous tissue cultures or BeWo cells, OGD activated RhoB, ROCK1 and ROCK2 and promoted STBM shedding and actin stress fibers formation. In BeWo cells, RhoB overexpression activated ROCK1 and ROCK2, leading to F-actin redistribution and STBM shedding and the OGD-induced actin polymerization and STBM shedding could be reversed by RhoB or ROCK knockdown. These results reveal that RhoB and ROCK play a key role in PE by targeting STBM shedding through actin rearrangement and that RhoB/ROCK intervention may be a potential therapeutic strategy for PE.

  2. Could Microparticles Be the Universal Quality Indicator for Platelet Viability and Function?

    Science.gov (United States)

    Chipperfield, Kate

    2016-01-01

    High quality means good fitness for the intended use. Research activity regarding quality measures for platelet transfusions has focused on platelet storage and platelet storage lesion. Thus, platelet quality is judged from the manufacturer's point of view and regulated to ensure consistency and stability of the manufacturing process. Assuming that fresh product is always superior to aged product, maintaining in vitro characteristics should preserve high quality. However, despite the highest in vitro quality standards, platelets often fail in vivo. This suggests we may need different quality measures to predict platelet performance after transfusion. Adding to this complexity, platelets are used clinically for very different purposes: platelets need to circulate when given as prophylaxis to cancer patients and to stop bleeding when given to surgery or trauma patients. In addition, the emerging application of platelet-rich plasma injections exploits the immunological functions of platelets. Requirements for quality of platelets intended to prevent bleeding, stop bleeding, or promote wound healing are potentially very different. Can a single measurable characteristic describe platelet quality for all uses? Here we present microparticle measurement in platelet samples, and its potential to become the universal quality characteristic for platelet production, storage, viability, function, and compatibility. PMID:28053805

  3. Could Microparticles Be the Universal Quality Indicator for Platelet Viability and Function?

    Directory of Open Access Journals (Sweden)

    Elisabeth Maurer-Spurej

    2016-01-01

    Full Text Available High quality means good fitness for the intended use. Research activity regarding quality measures for platelet transfusions has focused on platelet storage and platelet storage lesion. Thus, platelet quality is judged from the manufacturer’s point of view and regulated to ensure consistency and stability of the manufacturing process. Assuming that fresh product is always superior to aged product, maintaining in vitro characteristics should preserve high quality. However, despite the highest in vitro quality standards, platelets often fail in vivo. This suggests we may need different quality measures to predict platelet performance after transfusion. Adding to this complexity, platelets are used clinically for very different purposes: platelets need to circulate when given as prophylaxis to cancer patients and to stop bleeding when given to surgery or trauma patients. In addition, the emerging application of platelet-rich plasma injections exploits the immunological functions of platelets. Requirements for quality of platelets intended to prevent bleeding, stop bleeding, or promote wound healing are potentially very different. Can a single measurable characteristic describe platelet quality for all uses? Here we present microparticle measurement in platelet samples, and its potential to become the universal quality characteristic for platelet production, storage, viability, function, and compatibility.

  4. Indolic Uremic Solutes Enhance Procoagulant Activity of Red Blood Cells through Phosphatidylserine Exposure and Microparticle Release

    Directory of Open Access Journals (Sweden)

    Chunyan Gao

    2015-10-01

    Full Text Available Increased accumulation of indolic uremic solutes in the blood of uremic patients contributes to the risk of thrombotic events. Red blood cells (RBCs, the most abundant blood cells in circulation, may be a privileged target of these solutes. However, the effect of uremic solutes indoxyl sulfate (IS and indole-3-acetic acid (IAA on procoagulant activity (PCA of erythrocyte is unclear. Here, RBCs from healthy adults were treated with IS and IAA (mean and maximal concentrations reported in uremic patients. Phosphatidylserine (PS exposure of RBCs and their microparticles (MPs release were labeled with Alexa Fluor 488-lactadherin and detected by flow cytometer. Cytosolic Ca2+ ([Ca2+] with Fluo 3/AM was analyzed by flow cytometer. PCA was assessed by clotting time and purified coagulation complex assays. We found that PS exposure, MPs generation, and consequent PCA of RBCs at mean concentrations of IS and IAA enhanced and peaked in maximal uremic concentrations. Moreover, 128 nM lactadherin, a PS inhibitor, inhibited over 90% PCA of RBCs and RMPs. Eryptosis or damage, by indolic uremic solutes was due to, at least partially, the increase of cytosolic [Ca2+]. Our results suggest that RBC eryptosis in uremic solutes IS and IAA plays an important role in thrombus formation through releasing RMPs and exposing PS. Lactadherin acts as an efficient anticoagulant in this process.

  5. Principle and Method of Preparation of Explosive Micro-particles Through the Supercritical Anti-solvent Process

    Institute of Scientific and Technical Information of China (English)

    JIN Liang-an; LIU Xue-wu; LI Zhi-yi; WANG Xiao-tong; YIN Xing-bo

    2005-01-01

    In explosive research area, one of important trends is to study on the preparation technology of explosive microparticles. A new principle and method based on supercritical anti-solvent (SAS) process is put forward and discussed for the preparation of explosive micro-particles. The satisfactory micro-particles of explosives can be obtained easily by its particular mechanism of creating micro-particles, and operating conditions at normal temperature. This method is good for further study and development.

  6. Activation of the Inflammasome and Enhanced Migration of Microparticle-Stimulated Dendritic Cells to the Draining Lymph Node

    OpenAIRE

    Meraz, Ismail M.; Melendez, Brenda; Gu, Jianhua; Wong, Stephen T. C.; Liu, Xuewu; Andersson, Helen A.; Serda, Rita E.

    2012-01-01

    Porous silicon microparticles presenting pathogen-associated molecular patterns mimic pathogens, enhancing internalization of the microparticles and activation of antigen presenting dendritic cells. We demonstrate abundant uptake of microparticles bound by the TLR-4 ligands LPS and MPL by murine bone marrow-derived dendritic cells (BMDC). Labeled microparticles induce concentration-dependent production of IL-1β, with inhibition by the caspase inhibitor Z-VAD-FMK supporting activation of the N...

  7. Microparticle-Induced Coagulation Relates to Coronary Artery Atherosclerosis in Severe Aortic Valve Stenosis.

    Directory of Open Access Journals (Sweden)

    Patrick Horn

    Full Text Available Circulating microparticles (MPs derived from endothelial cells and blood cells bear procoagulant activity and promote thrombin generation. Thrombin exerts proinflammatory effects mediating the progression of atherosclerosis. Aortic valve stenosis may represent an atherosclerosis-like process involving both the aortic valve and the vascular system. The aim of this study was to investigate whether MP-induced thrombin generation is related to coronary atherosclerosis and aortic valve calcification.In a cross-sectional study of 55 patients with severe aortic valve stenosis, we assessed the coronary calcification score (CAC as indicator of total coronary atherosclerosis burden, and aortic valve calcification (AVC by computed tomography. Thrombin-antithrombin complex (TATc levels were measured as a marker for thrombin formation. Circulating MPs were characterized by flow cytometry according to the expression of established surface antigens and by measuring MP-induced thrombin generation.Patients with CAC score below the median were classified as patients with low CAC, patients with CAC Score above the median as high CAC. In patients with high CAC compared to patients with low CAC we detected higher levels of TATc, platelet-derived MPs (PMPs, endothelial-derived MPs (EMPs and MP-induced thrombin generation. Increased level of PMPs and MP-induced thrombin generation were independent predictors for the severity of CAC. In contrast, AVC Score did not differ between patients with high and low CAC and did neither correlate with MPs levels nor with MP-induced thrombin generation.In patients with severe aortic valve stenosis MP-induced thrombin generation was independently associated with the severity of CAC but not AVC indicating different pathomechanisms involved in coronary artery and aortic valve calcification.

  8. Formulation of porous poly(lactic-co-glycolic acid) microparticles by electrospray deposition method for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Shilei; Wang, Yazhou; Wang, Bochu, E-mail: wangbc2000@126.com; Deng, Jia; Zhu, Liancai; Cao, Yang

    2014-06-01

    In the present study, the electrospray deposition was successfully applied to prepare the porous poly(lactic-co-glycolic acid) (PLGA) microparticles by one-step processing. Metronidazole was selected as the model drug. The porous PLGA microparticles had high drug loading and low density, and the porous structure can be observed by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The production time has been shortened considerably compared with that of the traditional multi-emulsion method. In addition, no chemical reaction occurred between the drug and polymer in the preparation of porous microparticles, and the crystal structure of drug did not change after entrapment into the porous microparticles. The porous microparticles showed a sustained release in the simulated gastric fluid, and the release followed non-Fickian or case II transport. Furthermore, porous microparticles showed a slight cytotoxicity in vitro. The results indicated that electrospray deposition is a good technique for preparation of porous microparticles, and the low-density porous PLGA microparticles has a potential for the development of gastroretentive systems or for pulmonary drug delivery. - Highlights: • The porous PLGA microparticles were successfully prepared by the electrospray deposition method at one step. • The porous microparticles had high loading capacity and low density. • The microparticle showed a sustained release in the simulated gastric liquid. • The microparticles showed a slight cytotoxicity in vitro.

  9. Facile and High-Throughput Synthesis of Functional Microparticles with Quick Response Codes.

    Science.gov (United States)

    Ramirez, Lisa Marie S; He, Muhan; Mailloux, Shay; George, Justin; Wang, Jun

    2016-06-01

    Encoded microparticles are high demand in multiplexed assays and labeling. However, the current methods for the synthesis and coding of microparticles either lack robustness and reliability, or possess limited coding capacity. Here, a massive coding of dissociated elements (MiCODE) technology based on innovation of a chemically reactive off-stoichimetry thiol-allyl photocurable polymer and standard lithography to produce a large number of quick response (QR) code microparticles is introduced. The coding process is performed by photobleaching the QR code patterns on microparticles when fluorophores are incorporated into the prepolymer formulation. The fabricated encoded microparticles can be released from a substrate without changing their features. Excess thiol functionality on the microparticle surface allows for grafting of amine groups and further DNA probes. A multiplexed assay is demonstrated using the DNA-grafted QR code microparticles. The MiCODE technology is further characterized by showing the incorporation of BODIPY-maleimide (BDP-M) and Nile Red fluorophores for coding and the use of microcontact printing for immobilizing DNA probes on microparticle surfaces. This versatile technology leverages mature lithography facilities for fabrication and thus is amenable to scale-up in the future, with potential applications in bioassays and in labeling consumer products.

  10. Bilayer mucoadhesive microparticles for the delivery of metoprolol succinate: Formulation and evaluation.

    Science.gov (United States)

    Kumar, Krishan; Dhawan, Neha; Sharma, Harshita; Patwal, Pramod S; Vaidya, Shubha; Vaidya, Bhuvaneshwar

    2015-01-01

    Metoprolol succinate is a very potent drug for the treatment of hypertension but suffers from poor bioavailability due to its erratic absorption in lower GI tract. Therefore, in the present study, it was hypothesized that by formulating mucoadhesive particles, the residence time in the GIT and release of drug may be prolonged that will enhance the bioavailability of metoprolol succinate. Metoprolol succinate loaded chitosan microparticles were prepared by ionic gelation method. The optimized microparticles were coated with sodium alginate to form a layer over chitosan microparticles to increase the mucoadhesive strength and to release the drug in controlled manner. Coated and uncoated microparticles were evaluated for particle size, zeta potential, morphology, entrapment efficiency, drug loading and in vitro drug release. The coated microparticles showed comparatively less drug release in the 0.1 N HCl while sustained release in PBS (pH 6.8) as compared to uncoated microparticles. The in vivo study on albino rats demonstrated an increase in bioavailability of the coated microparticles as compared to marketed formulation. From the study it can be concluded that alginate coated chitosan microparticles could be a useful carrier for the oral delivery of metoprolol succinate.

  11. Microparticles prepared from biodegradable polyhydroxyalkanoates as matrix for encapsulation of cytostatic drug.

    Science.gov (United States)

    Murueva, A V; Shishatskaya, E I; Kuzmina, A M; Volova, T G; Sinskey, A J

    2013-08-01

    Microparticles made from degradable polyhydroxyalkanoates of different chemical compositions a homopolymer of 3-hydroxybutyric acid, copolymers of 3-hydroxybutyric and 4-hydroxybutyric acids (P3HB/4HB), 3-hydroxybutyric and 3-hydroxyvaleric acids (P3HB/3HV), 3-hydroxybutyric and 3-hydroxyhexanoic acids (P3HB/3HHx) were prepared using the solvent evaporation technique, from double emulsions. The study addresses the influence of the chemical compositions on the size and ξ-potential of microparticles. P3HB microparticles loaded with doxorubicin have been prepared and investigated. Their average diameter and ξ-potential have been found to be dependent upon the level of loading (1, 5, and 10 % of the polymer mass). Investigation of the in vitro drug release behavior showed that the total drug released from the microparticle into the medium increased with mass concentration of the drug. In this study mouse fibroblast NIH 3T3 cells were cultivated on PHA microparticles, and results of using fluorescent DAPI DNA stain, and MTT assay showed that microparticles prepared from PHAs of different chemical compositions did not exhibit cytotoxicity to cells cultured on them and proved to be highly biocompatible. Cell attachment and proliferation on PHA microparticles were similar to those on polystyrene. The cytostatic drug encapsulated in P3HB/3HV microparticles has been proven to be effective against HeLa tumor cells.

  12. Nicotine-magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    DEFF Research Database (Denmark)

    Kanjanakawinkul, Watchara; Rades, Thomas; Puttipipatkhachorn, Satit

    2013-01-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle...

  13. Eudragit® microparticles for the release of budesonide: A comparative study

    Directory of Open Access Journals (Sweden)

    Rita Cortesi

    2012-01-01

    Full Text Available This study compares the behaviour of budesonide-containing microparticles made of Eudragit® RS or Eudragit® RS/Eudragit® RL 70:30 (w/w prepared either by solvent evaporation or spray-drying technique. The loading efficiency of budesonide within microparticles was about 72% for microparticles prepared by solvent evaporation and around 78% for spray-dried microparticles. Thermal analyses were assessed to collect information about the structural stability of budesonide within the polymeric microspheres. The in vitro release was performed using simulating gastric (fasted state simulated gastric fluid and intestinal (fasted state simulated intestinal fluid fluids as the receiving solutions. After 3 h the drug release from Eudragit® RS/Eudragit® RL microparticles was about 6-fold higher than that obtained in the case of monopolymer microparticles. Using fasted state simulated intestinal fluid the drug was released between 4 and 30% in both types of preparations. Eudragit® RS microparticles showed a better protection of the drug from gastric acidity than those of Eudragit® RS/Eudragit® RL allowing us to propose Eudragit® RS microparticles as a hypothetical system of colon specific controlled delivery.

  14. Assessing consumption of bioactive micro-particles by filter-feeding Asian carp

    Science.gov (United States)

    Jensen, Nathan R.; Amberg, Jon J.; Luoma, James A.; Walleser, Liza R.; Gaikowski, Mark P.

    2012-01-01

    Silver carp Hypophthalmichthys molitrix (SVC) and bighead carp H. nobilis (BHC) have impacted waters in the US since their escape. Current chemical controls for aquatic nuisance species are non-selective. Development of a bioactive micro-particle that exploits filter-feeding habits of SVC or BHC could result in a new control tool. It is not fully understood if SVC or BHC will consume bioactive micro-particles. Two discrete trials were performed to: 1) evaluate if SVC and BHC consume the candidate micro-particle formulation; 2) determine what size they consume; 3) establish methods to evaluate consumption of filter-feeders for future experiments. Both SVC and BHC were exposed to small (50-100 μm) and large (150-200 μm) micro-particles in two 24-h trials. Particles in water were counted electronically and manually (microscopy). Particles on gill rakers were counted manually and intestinal tracts inspected for the presence of micro-particles. In Trial 1, both manual and electronic count data confirmed reductions of both size particles; SVC appeared to remove more small particles than large; more BHC consumed particles; SVC had fewer overall particles in their gill rakers than BHC. In Trial 2, electronic counts confirmed reductions of both size particles; both SVC and BHC consumed particles, yet more SVC consumed micro-particles compared to BHC. Of the fish that ate micro-particles, SVC consumed more than BHC. It is recommended to use multiple metrics to assess consumption of candidate micro-particles by filter-feeders when attempting to distinguish differential particle consumption. This study has implications for developing micro-particles for species-specific delivery of bioactive controls to help fisheries, provides some methods for further experiments with bioactive micro-particles, and may also have applications in aquaculture.

  15. Influence of peripheral blood microparticles of pregnant women with preeclampsia on the phenotype of monocytes.

    Science.gov (United States)

    Sokolov, Dmitriy I; Ovchinnikova, Olga M; Korenkov, Daniil A; Viknyanschuk, Alice N; Benken, Konstantin A; Onokhin, Kirril V; Selkov, Sergey A

    2016-04-01

    Platelet- and endothelial-derived microparticles influence the phenotype of peripheral blood leukocytes and induce production of proinflammatory cytokines. The influence of blood plasma microparticles of pregnant women on the surface receptor expression on intact or activated monocytes is still unexplored. This study was carried out to test the hypothesis that peripheral blood microparticles of women with normal pregnancy and women with preeclampsia have different influence on the expression of surface molecules on monocytes. The objective of the study was to evaluate the influence of blood plasma microparticles of pregnant women on the phenotypic properties of intact and activated THP-1 monocytes. Microparticles were isolated from peripheral blood samples of nonpregnant women, healthy pregnant women, and women with preeclampsia. THP-1 cell line was used as a model of monocytes. Microparticles of nonpregnant women decreased CD18, CD49d, and CD54 expressions and increased CD11c, CD31, CD47, and vascular endothelial growth factor receptor 2 expressions. Microparticles of healthy pregnant women increased CD18, CD54, and integrin β7 expressions and decreased CD11a and CD29 expressions. Microparticles of women with preeclampsia decreased CD18 expression on tumor necrosis factor α (TNF-α)-activated ТНР-1 cells. Microparticles of nonpregnant women, women with normal pregnancy, and pregnant women with preeclampsia decreased CD181 expression on intact and TNF-α-activated THP-1 cells. Therefore, blood plasma microparticles of women with normal pregnancy and women with preeclampsia have different influences on the expression of surface molecules on THP-1 monocytes.

  16. Dynamics of rigid microparticles at the interface of co-flowing immiscible liquids in a microchannel.

    Science.gov (United States)

    Jayaprakash, K S; Banerjee, U; Sen, A K

    2017-05-01

    We report the dynamical migration behavior of rigid polystyrene microparticles at an interface of co-flowing streams of primary CP1 (aqueous) and secondary CP2 (oils) immiscible phases at low Reynolds numbers (Re) in a microchannel. The microparticles initially suspended in the CP1 either continue to flow in the bulk CP1 or migrate across the interface into CP2, when the stream width of the CP1 approaches the diameter of the microparticles. Experiments were performed with different secondary phases and it is found that the migration criterion depends on the sign of the spreading parameter S and the presence of surfactant at the interface. To substantiate the migration criterion, experiments were also carried out by suspending the microparticles in CP2 (oil phase). Our study reveals that in case of aqueous-silicone oil combination, the microparticles get attached to the interface since S90°. For complete detachment of microparticles from the interface into the secondary phase, additional energy ΔG is needed. We discuss the role of interfacial perturbation, which causes detachment of microparticles from the interface. In case of mineral and olive oils, the surfactants present at the interface prevents attachment of the microparticles to the interface due to the repulsive disjoining pressure. Finally, using a aqueous-silicone oil system, we demonstrate size based sorting of microparticles of size 25μm and 15μm respectively from that of 15μm and 10μm and study the variation of separation efficiency η with the ratio of the width of the aqueous stream to the diameter of the microparticles ρ.

  17. Duality of β-glucan microparticles: antigen carrier and immunostimulants

    Directory of Open Access Journals (Sweden)

    Baert K

    2016-05-01

    Full Text Available Kim Baert,1 Bruno G De Geest,2 Henri De Greve,3,4 Eric Cox,1,* Bert Devriendt1,* 1Department of Virology, Parasitology and Immunology, 2Department of Pharmaceutics, Ghent University, Merelbeke, Ghent, Belgium; 3Structural Biology Research Centre, VIB, Brussels, Belgium; 4Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium *These authors contributed equally to this work Abstract: Designing efficient recombinant mucosal vaccines against enteric diseases is still a major challenge. Mucosal delivery of recombinant vaccines requires encapsulation in potent immunostimulatory particles to induce an efficient immune response. This paper evaluates the capacity of β-glucan microparticles (GPs as antigen vehicles and characterizes their immune-stimulatory effects. The relevant infectious antigen FedF was chosen to be loaded inside the microparticles. The incorporation of FedF inside the particles was highly efficient (roughly 85% and occurred without antigen degradation. In addition, these GPs have immunostimulatory effects as well, demonstrated by the strong reactive oxygen species (ROS production by porcine neutrophils upon their recognition. Although antigen-loaded GPs still induce ROS production, antigen loading decreases this production by neutrophils for reasons yet unknown. However, these antigen-loaded GPs are still able to bind their specific β-glucan receptor, demonstrated by blocking complement receptor 3, which is the major β-glucan receptor on porcine neutrophils. The dual character of these particles is confirmed by a T-cell proliferation assay. FedF-loaded particles induce a significantly higher FedF-specific T-cell proliferation than soluble FedF. Taken together, these results show that GPs are efficient antigen carriers with immune-stimulatory properties. Keywords: β-glucan microparticles, FedF, antigen delivery vehicle, immunostimulants

  18. Accelerating protein release from microparticles for regenerative medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    White, Lisa J., E-mail: lisa.white@nottingham.ac.uk; Kirby, Giles T.S.; Cox, Helen C.; Qodratnama, Roozbeh; Qutachi, Omar; Rose, Felicity R.A.J.; Shakesheff, Kevin M.

    2013-07-01

    There is a need to control the spatio-temporal release kinetics of growth factors in order to mitigate current usage of high doses. A novel delivery system, capable of providing both structural support and controlled release kinetics, has been developed from PLGA microparticles. The inclusion of a hydrophilic PLGA–PEG–PLGA triblock copolymer altered release kinetics such that they were decoupled from polymer degradation. A quasi zero order release profile over four weeks was produced using 10% w/w PLGA–PEG–PLGA with 50:50 PLGA whereas complete and sustained release was achieved over ten days using 30% w/w PLGA–PEG–PLGA with 85:15 PLGA and over four days using 30% w/w PLGA–PEG–PLGA with 50:50 PLGA. These three formulations are promising candidates for delivery of growth factors such as BMP-2, PDGF and VEGF. Release profiles were also modified by mixing microparticles of two different formulations providing another route, not previously reported, for controlling release kinetics. This system provides customisable, localised and controlled delivery with adjustable release profiles, which will improve the efficacy and safety of recombinant growth factor delivery. Highlights: ► A new delivery system providing controlled release kinetics has been developed. ► Inclusion of hydrophilic PLGA–PEG–PLGA decoupled release kinetics from degradation. ► Using 10% triblock copolymer produced quasi zero order release over four weeks. ► Mixing microparticle formulations provided another route for controlling release. ► This system provides customisable, localised and controlled delivery of growth factors.

  19. Manipulation of microparticles and red blood cells using optoelectronic tweezers

    Indian Academy of Sciences (India)

    R S Verma; R Dasgupta; N Kumar; S Ahlawat; A Uppal; P K Gupta

    2014-02-01

    We report the development of an optoelectronic tweezers set-up which works by lightinduced dielectrophoresis mechanism to manipulate microparticles. We used thermal evaporation technique for coating the organic polymer, titanium oxide phthalocyanine (TiOPc), as a photoconductive layer on ITO-coated glass slide. Compare to the conventional optical tweezers, the technique requires optical power in W range and provides a manipulation area of a few mm2. The set-up was used to manipulate the polystyrene microspheres and red blood cells (RBCs). The RBCs could be attracted or repelled by varying the frequency of the applied AC bias.

  20. Interfacial synthesis and widely controllable conductivity of polythiophene microparticles.

    Science.gov (United States)

    Li, Xin-Gui; Li, Ji; Meng, Qing-Kai; Huang, Mei-Rong

    2009-07-23

    Fine polythiophene (PTh) microparticles were successfully synthesized by a novel interfacial polymerization at a dynamic interface between two immiscible solvents, i.e., n-hexane and acetonitrile or nitromethane containing thiophene and oxidant, respectively. The polymerization yield, size, and electrical conductivity of the microparticles are optimized by facilely regulating the medium species, oxidant species, oxidant/monomer ratio, monomer concentration, and polymerization temperature. The microparticles were thoroughly characterized by IR, UV-vis spectroscopy, wide-angle X-ray diffractometry, laser particle-size analyzer, and simultaneous TG-DSC technique. The yield rises with increasing oxidant/monomer ratio, monomer concentration, and polymerization temperature. However, low monomer concentration, low polymerization temperature, and modest oxidant/monomer ratio are all favorable for the formation of the PTh with good, large pi-conjugation and high conductivity. With decreasing the thiophene concentration from 200 to 50 mM at a fixed FeCl3/thiophene molar ratio of 3 at 0 degrees C in hexane/nitromethane biphase system, the PTh obtained exhibits a steadily enhanced conductivity from 10(-12) to 0.01 S cm(-1) and gradually darkening color from crimson to black. Under the same conditions, the PTh obtained in hexane/acetonitrile usually possesses lower yield but higher conductivity than that in hexane/nitromethane. The conductivity will be further enhanced to 1.1 and 4.4 S cm(-1) if the PTh powders are doped in iodine vapor and simply carbonized at 25 through 999 degrees C in nitrogen, respectively. The PTh is fine particles with the number-average diameter of 2.67-3.95 microm and low size polydispersity index between 1.12 and 1.23. The black particles carbonized at 25 to 999 degrees C are much smaller than original PTh particles, with the number-average diameter of 279 nm and size polydispersity index of 1.09. This interfacial approach provides an optimal

  1. Single microparticles mass measurement using an AFM cantilever resonator

    CERN Document Server

    Mauro, Marco; Ferrini, Gianluca; Puglisi, Roberto; Balduzzi, Donatella; Galli, Andrea

    2014-01-01

    In this work is presented a microbalance for single microparticle sensing based on resonating AFM cantilever. The variation of the resonator eigenfrequency is related to the particle mass positioned at the free apex of the cantilever. An all-digital phase locked loop (PLL) control system is developed to detect the variations in cantilever eigenfrequency. Two particle populations of different materials are used in the experimental test, demonstrating a mass sensitivity of 15 Hz/pg in ambient conditions. Thereby it is validated the possibility of developing an inexpensive, portable and sensitive microbalance for point-mass sensing.

  2. Live cell refractometry based on non-SPR microparticle sensor.

    Science.gov (United States)

    Liu, Chang; Chen, David D Y; Yu, Lirong; Luo, Yong

    2013-06-01

    Unlike the nanoparticles with surface plasmon resonance, the optical response of polystyrene microparticles (PSMPs) is insensitive to the chemical components of the surrounding medium under the wavelength-dependent differential interference contrast microscopy. This fact is exploited for the measurement of the refractive index of cytoplasm in this study. PSMPs of 400 nm in diameter were loaded into the cell to contact cytoplasm seamlessly, and the refractive index information of cytoplasm could be extracted by differential interference contrast microscopy operated at 420 nm illumination wavelength through the contrast analysis of PSMPs images.

  3. Equilibrium fluctuations in the theory of surface processes on microparticles

    Science.gov (United States)

    Tovbin, Yu. K.

    2010-11-01

    The question of the role of equilibrium fluctuations in the adsorption theory and kinetics of surface processes occurring on the particles of the nanometer size range is discussed. Differences are put forward that need to be introduced to the fluctuation theory of surface processes on microparticles and that generalize Hill's approach to describing the thermodynamic properties of small systems. We show the importance of allowing for the discrete character of adsorption centers on the surfaces and their heterogeneity when describing adsorption isotherms and the rates of adsorption processes.

  4. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  5. Novel hierarchical microparticles super-assembled from nanoparticles with the induction of casein micelles

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xiaopeng, E-mail: xpxiong@xmu.edu.cn; Duan, Jiangjiang; Wang, Yong; Yu, Zhaoju [Xiamen University, Department of Materials Science and Engineering, College of Materials (China)

    2013-08-15

    We have demonstrated a solution-based synthesis of novel waxberry-like hierarchical ZnO microparticles in the presence casein micelles under mild conditions. The microstructures of the sub-micrometer-sized hierarchical microparticles were characterized, and the synthesis conditions were optimized. The formation mechanism of the hierarchical microparticle was analyzed through control experiments. The hierarchical ZnO microparticles are found to be super-assemblies of 30-70 nm ZnO nanoparticles, which are thought to be based on casein micelle induction followed by Ostwald ripening. In the same manner, copper-based hierarchical microparticles with a similar morphology have also been successfully synthesized. By controlling the synthetic time or temperature, solid or hollow microparticles can be fabricated. The narrowly distributed ZnO microparticles have a high specific surface area, exhibiting great potential application in fields such as photocatalytic and energy conversion. Our findings may meanwhile open a new bottom-up strategy in order to construct structurally sophisticated nanomaterials.

  6. Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation process.

    Science.gov (United States)

    Hosseini, Seyede Marzieh; Hosseini, Hedayat; Mohammadifar, Mohammad Amin; Mortazavian, Amir Mohammad; Mohammadi, Abdorreza; Khosravi-Darani, Kianoosh; Shojaee-Aliabadi, Saeedeh; Dehghan, Solmaz; Khaksar, Ramin

    2013-11-01

    In this study, an o/w/o multiple emulsion/ionic gelation method was developed for production of alginate microparticles loaded with Satureja hortensis essential oil (SEO). It was found that the essential oil concentration has significant influence on encapsulation efficiency (EE), loading capacity (LC) and size of microparticles. The values of EE, LC and particle mean diameter were about 52-66%, 20-26%, and 47-117 μm, respectively, when the initial SEO content was 1-3% (v/v) .The essential oil-loaded microparticles were porous, as displayed by scanning electron micrograph. The presence of SEO in alginate microparticles was confirmed by Fourier transform-infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) analyses. SEO-loaded microparticles showed good antioxidant (with DPPH radical scavenging activity of 40.7-73.5%) and antibacterial properties; this effect was greatly improved when the concentration of SEO was 3% (v/v). S. aureus was found to be the most sensitive bacterium to SEO and showed a highest inhibition zone of 304.37 mm(2) in the microparticles incorporated with 3% (v/v) SEO. In vitro release studies showed an initial burst release and followed by a slow release. In addition, the release of SEO from the microparticles followed Fickian diffusion with acceptable release.

  7. Controlled release behaviour of protein-loaded microparticles prepared via coaxial or emulsion electrospray.

    Science.gov (United States)

    Wang, Ying; Yang, Xiaoping; Liu, Wentao; Zhang, Feng; Cai, Qing; Deng, Xuliang

    2013-01-01

    Biodegradable poly (lactic-co-glycolic acid) (PLGA) microparticles are an effective way to achieve sustained drug release. In this study, we investigated a sustained release model of PLGA microparticles with incorporated protein via either emulsion or coaxial electrospray techniques. PLGA (75:25) was used as the carrier, and bovine serum albumin as a model protein. Coaxial electrospray resulted in a type of core-shell structure with mean diameters of 2.41 ± 0.60 µm and a centralised protein distribution within the core. Emulsion electrospray formed bigger microparticles with mean diameters of 22.75 ± 8.05 µm and a heterogeneous protein distribution throughout the microparticles. The coaxial electrospray microparticles presented a much slighter burst release than the emulsion electrospray microparticles. Loading efficiency was significantly higher (p coaxial group than emulsion group. This indicated that both emulsion and coaxial electrospray could produce protein-loaded microparticles with sustained release behaviour, but the former revealed a superior approach for drug delivery.

  8. Galvanic zinc-copper microparticles inhibit melanogenesis via multiple pigmentary pathways.

    Science.gov (United States)

    Won, Yen-Kim; Lin, Connie B; Seiberg, Miri; Chen, Nannan; Hu, Yaping; Rossetti, Dianne; Saliou, Claude; Loy, Chong-Jin

    2014-01-01

    The endogenous electrical field of human skin plays an important role in many skin functions. However, the biological effects and mechanism of action of externally applied electrical stimulation on skin remain unclear. Recent study showed that galvanic zinc-copper microparticles produce electrical stimulation and reduce inflammatory and immune responses in intact skin, suggesting the important role of electrical stimulation in non-wounded skin. The objective of this study is to investigate the biological effect of galvanic zinc-copper microparticles on skin pigmentation. Our findings showed that galvanic zinc-copper microparticles inhibited melanogenesis in a human melanoma cell line (MNT-1), human keratinocytes and melanoma cells co-cultures, and in pigmented epidermal equivalents. Treatment of galvanic zinc-copper microparticles inhibited melanogenesis by reducing the promoter transactivation of tyrosinase and tyrosinase-related protein-1 in human melanoma cells. In a co-culture Transwell system of keratinocytes and melanoma cells, galvanic zinc-copper microparticles reduced melanin production via downregulation of endothelin-1 secretion from keratinocytes and reduced tyrosinase gene expression in melanoma cells. In addition, exposure of pigmented epidermal equivalents to galvanic zinc-copper microparticles resulted in reduced melanin deposition. In conclusion, our data demonstrated for the first time that galvanic zinc-copper microparticles reduced melanogenesis in melanoma cells and melanin deposition in pigmented epidermal equivalents by affecting multiple pigmentary pathways.

  9. Composite microparticles of halloysite clay nanotubes bound by calcium carbonate.

    Science.gov (United States)

    Jin, Yi; Yendluri, Raghuvara; Chen, Bin; Wang, Jingbo; Lvov, Yuri

    2016-03-15

    Natural halloysite clay nanotubes with 15 nm inner and 75 nm outer diameters have been used as vehicles for sustained release of drugs in composite hollow microparticles "glued" with CaCO3. We used a layer-by layer assembly accomplished alginate binding with Ca(2+) followed by CO2 bubbling to prepare the composite microspheres of CaCO3 and polyelectrolytes (PE) modified halloysite nanotubes (HNTs-PE2/CaCO3) with the diameter of about 5-10 μm. These microparticles have empty spherical structure and abundant pore distributions with maxima at 2.5, 3.9, 6.0 and 13.3 nm, and higher surface area of 82.3 m(2) g(-1) as characterized by SEM and BET test. We loaded drugs in these micro-nano carriers of tight piles of halloysite nanotube with end clogged with CaCO3. The sustained release of Nifedipine drug from HNTs-PE2/CaCO3 composite microspheres was slower than for pristine halloysite nanotubes.

  10. New alginic acid–atenolol microparticles for inhalatory drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    Ceschan, Nazareth Eliana; Bucalá, Verónica [Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET, Universidad Nacional del Sur (UNS), Camino La Carrindanga Km 7, 8000 Bahía Blanca (Argentina); Departamento de Ingeniería Química, UNS, Avenida Alem 1253, 8000 Bahía Blanca (Argentina); Ramírez-Rigo, María Verónica, E-mail: vrrigo@plapiqui.edu.ar [Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET, Universidad Nacional del Sur (UNS), Camino La Carrindanga Km 7, 8000 Bahía Blanca (Argentina); Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000 Bahía Blanca (Argentina)

    2014-08-01

    The inhalatory route allows drug delivery for local or systemic treatments in a noninvasively way. The current tendency of inhalable systems is oriented to dry powder inhalers due to their advantages in terms of stability and efficiency. In this work, microparticles of atenolol (AT, basic antihypertensive drug) and alginic acid (AA, acid biocompatible polyelectrolyte) were obtained by spray drying. Several formulations, varying the relative composition AT/AA and the total solid content of the atomized dispersions, were tested. The powders were characterized by: Fourier Transform Infrared Spectroscopy, Differential Scanning Calorimetry and Powder X-ray Diffraction, while also the following properties were measured: drug load efficiency, flow properties, particles size and density, moisture content, hygroscopicity and morphology. The ionic interaction between AA and AT was demonstrated, then the new chemical entity could improve the drug targeting to the respiratory membrane and increase its time residence due to the mucoadhesive properties of the AA polymeric chains. Powders exhibited high load efficiencies, low moisture contents, adequate mean aerodynamic diameters and high cumulative fraction of respirable particles (lower than 10 μm). - Highlights: • Novel particulate material to target atenolol to the respiratory membrane was developed. • Crumbled microparticles were obtained by spray drying of alginic–atenolol dispersions. • Ionic interaction between alginic acid and atenolol was demonstrated in the product. • Amorphous solids with low moisture content and high load efficiency were produced. • Relationships between the feed formulation and the product characteristics were found.

  11. Polymer encapsulation of amoxicillin microparticles by SAS process.

    Science.gov (United States)

    Montes, A; Baldauf, E; Gordillo, M D; Pereyra, C M; Martínez de la Ossa, E J

    2014-01-01

    Encapsulation of amoxicillin (AMC) with ethyl cellulose (EC) by a supercritical antisolvent process (SAS) was investigated. AMC microparticles obtained previously by an SAS process were used as host particles and EC, a biodegradable polymer used for the controlled release of drugs, was chosen as the coating material. In this work, a suspension of AMC microparticles in a solution of ethyl cellulose in dichloromethane (DCM) was sprayed through a nozzle into supercritical CO2. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and HPLC analyses were carried out. The effects of AMC:EC ratio, the initial polymer concentration of the solution, temperature and pressure on the encapsulation process were investigated. Although all the experiments led to powder precipitation, the AMC encapsulation was achieved in only half of the cases, particularly when the lower drug:polymer ratios were assayed. In general, it was observed that the percentages of AMC present in the precipitates were higher on increasing the AMC:EC ratio. In these cases composites rather than encapsulates were obtained. The in vitro release profiles of the resulting materials were evaluated in order to ascertain whether composites can be used as encapsulated systems for drug delivery systems.

  12. Cytotoxicity assessment of porous silicon microparticles for ocular drug delivery.

    Science.gov (United States)

    Korhonen, Eveliina; Rönkkö, Seppo; Hillebrand, Satu; Riikonen, Joakim; Xu, Wujun; Järvinen, Kristiina; Lehto, Vesa-Pekka; Kauppinen, Anu

    2016-03-01

    Porous silicon (PSi) is a promising material for the delivery and sustained release of therapeutic molecules in various tissues. Due to the constant rinsing of cornea by tear solution as well as the short half-life of intravitreal drugs, the eye is an attractive target for controlled drug delivery systems, such as PSi microparticles. Inherent barriers ensure that PSi particles are retained in the eye, releasing drugs at the desired speed until they slowly break down into harmless silicic acid. Here, we have examined the in vitro cytotoxicity of positively and negatively charged thermally oxidized (TOPSi) and thermally carbonized (TCPSi) porous silicon microparticles on human corneal epithelial (HCE) and retinal pigment epithelial (ARPE-19) cells. In addition to ocular assessment under an inverted microscope, cellular viability was evaluated using the CellTiter Blue™, CellTiter Fluor™, and lactate dehydrogenase (LDH) assays. CellTiter Fluor proved to be a suitable assay but due to non-specific and interfering responses, neither CellTiter Blue nor LDH assays should be used when evaluating PSi particles. Our results suggest that the toxicity of PSi particles is concentration-dependent, but at least at concentrations less than 200μg/ml, both positively and negatively charged PSi particles are well tolerated by human corneal and retinal epithelial cells and therefore applicable for delivering drug molecules into ocular tissues.

  13. Synthesis, characterization and catalytic application of polyhedron zinc oxide microparticles

    Science.gov (United States)

    Jamil, Saba; Ramzan Saeed Ashraf Janjua, Muhammad; Khan, Shanza Rauf; Jahan, Nazish

    2017-01-01

    Zinc oxide (ZnO) microparticles of unique morphology were synthesized by the microwave heating method. The composition and morphology of the synthesized microparticles were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). It is clear from the XRD pattern that the product is highly pure and crystalline. It is shown from the SEM images that the hexagonal unit cells are arranged in the form of a polyhedral lattice. The length of the sides is equal at the middle of the lattice, and unequal on the terminal sides of the lattice. This is due to the alignment of the hexagonal unit cells. The size distribution histogram of the product possesses a sharp band which shows that it is monodisperse. This means that a monodisperse product can be obtained by the microwave heating method. The synthesized particles were used as a catalyst for the thermal degradation of ammonium perchlorate (AP) and the catalytic reduction of 2-nitrophenol (2-NP) and 4-nitrophenol (4-NP). The effect of temperature on the value of the apparent rate constant was also studied, and the values of the kinetic and thermodynamic parameters were calculated. This shows that the catalyst possesses high efficiency for thermally degrading of substances at low temperatures and rapidly reducing the nitroarenes in an aqueous medium.

  14. Formation of Gold Microparticles by Ablation with Surface Plasmons

    Directory of Open Access Journals (Sweden)

    Pal Molian

    2013-10-01

    Full Text Available The formation of gold microparticles on a silicon substrate through the use of energetic surface plasmons is reported. A laser-assisted plasmonics system was assembled and tested to synthesize gold particles from gold thin film by electrical field enhancement mechanism. A mask containing an array of 200 nm diameter holes with a periodicity of 400 nm was prepared and placed on a silicon substrate. The mask was composed of 60 µm thick porous alumina membrane sputter-coated with 100 nm thin gold film. A Nd:YAG laser with 1064 nm wavelength and 230 µs pulse width (free-running mode was then passed through the mask at an energy fluence of 0.35 J/cm2. The extraordinary transmission of laser light through alumina/gold micro-hole optical antenna created both extended and localized surface plasmons that caused the gold film at the bottom of the mask to fragment into microparticles and deposit on the silicon substrate that is in direct contact with the mask. The surface plasmon method is simpler, quicker, more energy efficient, and environmentally safer than existing physical and chemical methods, as well as being contamination-free, and can be extended to all types of materials that will in turn allow for new possibilities in the formation of structured surfaces.

  15. Salbutamol sulphate-ethylcellulose microparticles: formulation and in-vitro evaluation with emphasis on mathematical approaches

    Directory of Open Access Journals (Sweden)

    G Murtaza

    2009-10-01

    Full Text Available "n "nBackground and the purpose of the study: This study reports the laboratory optimization for the preparation of salbutamol sulphate-ethylcellulose microparticles by a non-solvent addition coacervation technique through adjustment of the ratio of salbutamol sulphate to ethylcellulose. The variation of drug release between the microparticles and tabletted microparticles was also investigated. "nMethods: In vitro release profiles of developed microparticles and tabletted microparticles were studied using USP XXIV dissolution apparatus I and II, respectively, in 450 ml double distilled water at 50 rpm maintained at 37°C. "nResults: White microparticles with no definite shape having good entrapment efficiency (96.68 to 97.83% and production yield (97.48 ± 1.21 to 98.35 ± 1.08% were obtained. In this investigation, initial burst effect was observed in the drug release behavior. The rate of drug release from microparticles decreased as the concentration of polyisobutylene was increased from 6% to 12% during microencapsulation. The release pattern of tabletted microparticles was affected significantly (p < 0.05 by the addition of hydroxy propyl methyl cellulose (HPMC as excepient and insignificantly (p > 0.05 by the type of dissolution media and stirring speed. Tabletted microparticles showed good stability and reproducibility. Ethylcellulose was found to be compatible with salbutamol sulphate. The drug release from all formulations was best fit to Higuchi's equation and the mechanism of drug release was anomalous diffusion from all formulations. "nConclusion: The results of this study suggest that by using ethylcellulose it is possible to design a single-unit, sustained-release oral dosage form of salbutamol sulphate for indication of twice a day.

  16. In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications.

    Science.gov (United States)

    Mori, Michela; Almeida, Patrick V; Cola, Michela; Anselmi, Giulia; Mäkilä, Ermei; Correia, Alexandra; Salonen, Jarno; Hirvonen, Jouni; Caramella, Carla; Santos, Hélder A

    2014-11-01

    The wound healing stands as very complex and dynamic process, aiming the re-establishment of the damaged tissue's integrity and functionality. Thus, there is an emerging need for developing biopolymer-based composites capable of actively promoting cellular proliferation and reconstituting the extracellular matrix. The aims of the present work were to prepare and characterize biopolymer-functionalized porous silicon (PSi) microparticles, resulting in the development of drug delivery microsystems for future applications in wound healing. Thermally hydrocarbonized PSi (THCPSi) microparticles were coated with both chitosan and a mixture of chondroitin sulfate/hyaluronic acid, and subsequently loaded with two antibacterial model drugs, vancomycin and resveratrol. The biopolymer coating, drug loading degree and drug release behavior of the modified PSi microparticles were evaluated in vitro. The results showed that both the biopolymer coating and drug loading of the THCPSi microparticles were successfully achieved. In addition, a sustained release was observed for both the drugs tested. The viability and proliferation profiles of a fibroblast cell line exposed to the modified THCPSi microparticles and the subsequent reactive oxygen species (ROS) production were also evaluated. The cytotoxicity and proliferation results demonstrated less toxicity for the biopolymer-coated THCPSi microparticles at different concentrations and time points comparatively to the uncoated counterparts. The ROS production by the fibroblasts exposed to both uncoated and biopolymer-coated PSi microparticles showed that the modified PSi microparticles did not induce significant ROS production at the concentrations tested. Overall, the biopolymer-based PSi microparticles developed in this study are promising platforms for wound healing applications.

  17. Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection

    Science.gov (United States)

    Gillman, Eric D.; Amatucci, W. E.

    2014-06-01

    These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 μm in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.

  18. Four-dimensional (4D) tracking of high-temperature microparticles

    Science.gov (United States)

    Wang, Zhehui; Liu, Q.; Waganaar, W.; Fontanese, J.; James, D.; Munsat, T.

    2016-11-01

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  19. Platelet microparticles inhibit IL-17 production by regulatory T cells through P-selectin.

    Science.gov (United States)

    Dinkla, Sip; van Cranenbroek, Bram; van der Heijden, Wouter A; He, Xuehui; Wallbrecher, Rike; Dumitriu, Ingrid E; van der Ven, André J; Bosman, Giel J C G M; Koenen, Hans J P M; Joosten, Irma

    2016-04-21

    Self-tolerance and immune homeostasis are orchestrated by FOXP3(+)regulatory T cells (Tregs). Recent data have revealed that upon stimulation, Tregs may exhibit plasticity toward a proinflammatory phenotype, producing interleukin 17 (IL-17) and/or interferon γ (IFN-γ). Such deregulation of Tregs may contribute to the perpetuation of inflammatory processes, including graft-versus-host disease. Thus, it is important to identify immunomodulatory factors influencing Treg stability. Platelet-derived microparticles (PMPs) are involved in hemostasis and vascular health and have recently been shown to be intimately involved in (pathogenic) immune responses. Therefore, we investigated whether PMPs have the ability to affect Treg plasticity. PMPs were cocultured with healthy donor peripheral blood-derived Tregs that were stimulated with anti-CD3/CD28 monoclonal antibodies in the presence of IL-2, IL-15, and IL-1β. PMPs prevented the differentiation of peripheral blood-derived Tregs into IL-17- and IFN-γ-producing cells, even in the presence of the IL-17-driving proinflammatory cytokine IL-1β. The mechanism of action by which PMPs prevent Treg plasticity consisted of rapid and selective P-selectin-dependent binding of PMPs to a CCR6(+)HLA-DR(+)memory-like Treg subset and their ability to inhibit Treg proliferation, in part through CXCR3 engagement. The findings that ~8% of Tregs in the circulation of healthy individuals are CD41(+)P-selectin(+)and that distinct binding of patient plasma PMPs to Tregs was observed support in vivo relevance. These findings open the exciting possibility that PMPs actively regulate the immune response at sites of (vascular) inflammation, where they are known to accumulate and interact with leukocytes, consolidating the (vascular) healing process.

  20. Probiotic and prebiotic-probiotic PEC microparticles for sustaining and enhancing intestinal probiotic growth.

    Science.gov (United States)

    Harshitha, K; Kulkarni, P K; Vaghela, Rudra; Kumar Varma, V Naga Sravan; Deshpande, D Rohan; Hani, Umme

    2015-01-01

    The aim of the study was to develop and evaluate Polyelectrolyte complex (PEC) microparticles composing Lactobacillus Acidophilus (probiotic) and Fructo oligosaccharide-Lactobacillus Acidophilus (prebiotic-probiotic), for sustaining and enhancing intestinal growth of probiotic bacteria. Gum Karaya-Chitosan(GK-CH) was used to fabricate PEC microparticles by extrusion method. The prepared microparticles were characterized for FT-IR, DSC and particle size and evaluated for percentage yield, swelling, surface morphology, entrapment rate and further studied for influence of prebiotic over probiotic growth. The fabricated PEC microparticles composed of Probiotic and Prebiotic- Probiotic have exhibited sustainability of probiotic bacteria for 12 hrs in GIT conditions and presence of prebiotic in the preparation enhanced the probiotic cell growth. Hence, it can be concluded that PEC between GK-CH was found to be successful in sustaining cell release and presence of prebiotic was found to enhance the probiotic cell growth.

  1. Functionalised alginate flow seeding microparticles for use in Particle Image Velocimetry (PIV).

    Science.gov (United States)

    Varela, Sylvana; Balagué, Isaac; Sancho, Irene; Ertürk, Nihal; Ferrando, Montserrat; Vernet, Anton

    2016-01-01

    Alginate microparticles as flow seeding fulfil all the requirements that are recommended for the velocity measurements in Particle Image Velocimetry (PIV). These spherical microparticles offer the advantage of being environmentally friendly, having excellent seeding properties and they can be produced via a very simple process. In the present study, the performances of alginate microparticles functionalised with a fluorescent dye, Rhodamine B (RhB), for PIV have been studied. The efficacy of fluorescence is appreciated in a number of PIV applications since it can boost the signal-to-noise ratio. Alginate microparticles functionalised with RhB have high emission efficiency, desirable match with fluid density and controlled size. The study of the particles behaviour in strong acid and basic solutions and ammonia is also included. This type of particles can be used for measurements with PIV and Planar Laser Induced Fluorescence (PLIF) simultaneously, including acid-base reactions.

  2. Multipole Electrodynamic Ion Trap Geometries for Microparticle Confinement under Standard Ambient Temperature and Pressure Conditions

    CERN Document Server

    Mihalcea, Bogdan M; Stan, Cristina; Visan, Gina T; Ganciu, Mihai; Filinov, Vladimir E; Lapitsky, Dmitry S; Deputatova, Lidiya V; Syrovatka, Roman A

    2015-01-01

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in multipole linear Paul trap geometries, operating under Standard Ambient Temperature and Pressure (SATP) conditions. An 8-electrode and a 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of the microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap was mapped using the electrolytic tank method. Particle dynamics was simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.

  3. Lysozyme-magnesium aluminum silicate microparticles: Molecular interaction, bioactivity and release studies

    DEFF Research Database (Denmark)

    Kanjanakawinkul, Watchara; Medlicott, Natalie J.; Rades, Thomas;

    2015-01-01

    The objectives of this study were to investigate the adsorption behavior of lysozyme (LSZ) onto magnesium aluminum silicate (MAS) at various pHs and to characterize the LSZ–MAS microparticles obtained from the molecular interaction between LSZ and MAS. The results showed that LSZ could be bound...... onto the MAS layers at different pHs, leading to the formation of LSZ–MAS microparticles. The higher preparation pH permitted greater adsorption affinity but a lower adsorption capacity of LSZ onto MAS. LSZ could interact with MAS via hydrogen bonds and electrostatic forces, resulting in the formation......, the LSZ extracted from microparticles prepared at pH 4 showed an obvious change in the tertiary structure, leading to a decrease in the biological activity of the LSZ released. These findings suggested that LSZ can strongly interact with MAS to form microparticles that may potentially be used as delivery...

  4. Preparation of Antheraea pernyi Silk Fibroin Microparticles through a Facile Electrospinning Method

    Directory of Open Access Journals (Sweden)

    Xiufang Li

    2016-01-01

    Full Text Available The goal of this study was to fabricate Antheraea pernyi silk fibroin (ASF microparticles using electrospinning under mild processing conditions. To improve processability of the ASF solution, poly(ethylene oxide (PEO was used to regulate viscosity of ASF solution for electrospinning. It was found that the blend of ASF with PEO could form a bead-on-string structure with well spherical particles. Furthermore, aqueous ethanol and ultrasonic treatments could disrupt the nanofibrillar string structure between particles and ultimately produced water-insoluble ASF particles with submicron scale. Cell viability studies indicated that the ASF microparticles were nontoxic to EA926 cells. Moreover, fluorescent images based on FITC labeling showed that the ASF microparticles were easily uptaken by the cells. Aqueous-based electrospinning provides a potentially useful option for the fabrication of ASF microparticles based on this unique fibrous protein.

  5. Mountains and Tropical Circulation

    Science.gov (United States)

    Naiman, Z.; Goodman, P. J.; Krasting, J. P.; Malyshev, S.; Russell, J. L.; Stouffer, R. J.

    2015-12-01

    Observed tropical convection exhibits zonal asymmetries that strongly influence spatial precipitation patterns. The drivers of changes to this zonally-asymmetric Walker circulation on decadal and longer timescales have been the focus of significant recent research. Here we use two state-of-the-art earth system models to explore the impact of earth's mountains on the Walker circulation. When all land-surface topography is removed, the Walker circulation weakens by 33-59%. There is a ~30% decrease in global, large-scale upward vertical wind velocities in the middle of the troposphere, but only minor changes in global average convective mass flux, precipitation, surface and sea-surface temperatures. The zonally symmetric Hadley circulation is also largely unchanged. Following the spatial pattern of changes to large-scale vertical wind velocities, precipitation becomes less focused over the tropics. The weakening of the Walker circulation, but not the Hadley circulation, is similar to the behavior of climate models during radiative forcing experiments: in our simulations, the weakening is associated with changes in vertical wind velocities, rather than the hydrologic cycle. These results indicate suggest that mountain heights may significantly influence the Walker circulation on geologic time scales, and observed changes in tropical precipitation over millions of years may have been forced by changes in tropical orography.

  6. Grain size record of microparticles in the Muztagata ice core

    Institute of Scientific and Technical Information of China (English)

    WU; Guangjian; YAO; Tandong; XU; Baiqin; LI; Zheng; TIAN; Lide; DUAN; Keqin; WEN; Linke

    2006-01-01

    The dust transport and sediment characteristics are discussed based on analysis of microparticle size and size distribution in the Muztagata ice core at 6350 m a.s.l. The finer particles with diameter of 1―5μm are the dominant fraction in number, while middle and coarse particles mainly contribute to the total volume. The lognormal distribution characteristics can be seen for some high concentration samples, showing that model size and standard variation are greater than that in the Greenland ice cores. However, size-volume distribution of some low concentration samples is abnormal. Those distributions reflect the dust deposit process in high mountain glaciers at mid-low latitudes and show differences from those in polar ice sheet.

  7. Ultrasound-induced acoustophoretic motion of microparticles in three dimensions

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Rossi, M.; Marín, Á. G.;

    2013-01-01

    We derive analytical expressions for the three-dimensional (3D) acoustophoretic motion of spherical microparticles in rectangular microchannels. The motion is generated by the acoustic radiation force and the acoustic streaming-induced drag force. In contrast to the classical theory of Rayleigh...... streaming in shallow, infinite, parallel-plate channels, our theory does include the effect of the microchannel side walls. The resulting predictions agree well with numerics and experimental measurements of the acoustophoretic motion of polystyrene spheres with nominal diameters of 0.537 and 5.33 μm. The 3......D particle motion was recorded using astigmatism particle tracking velocimetry under controlled thermal and acoustic conditions in a long, straight, rectangular microchannel actuated in one of its transverse standing ultrasound-wave resonance modes with one or two half-wavelengths. The acoustic...

  8. Ultrasound-induced acoustophoretic motion of microparticles in three dimensions

    CERN Document Server

    Muller, Peter B; Marin, Alvaro G; Barnkob, Rune; Augustsson, Per; Laurell, Thomas; Kaehler, Christian J; Bruus, Henrik

    2013-01-01

    We derive analytical expressions for the three-dimensional (3D) acoustophoretic motion of spherical microparticles in rectangular microchannels. The motion is generated by the acoustic radiation force and the acoustic streaming-induced drag force. In contrast to the classical theory of Rayleigh streaming in shallow, infinite, parallel-plate channels, our theory does include the effect of the microchannel side walls. The resulting predictions agree well with numerics and experimental measurements of the acoustophoretic motion of polystyrene spheres with nominal diameters of 0.537 um and 5.33 um. The 3D particle motion was recorded using astigmatism particle tracking velocimetry under controlled thermal and acoustic conditions in a long, straight, rectangular microchannel actuated in one of its transverse standing ultrasound-wave resonance modes with one or two half-wavelengths. The acoustic energy density is calibrated in situ based on measurements of the radiation dominated motion of large 5-um-diam particles...

  9. Numerical Simulation of Single Microparticle Trajectory in an Electrodynamic Balance

    Institute of Scientific and Technical Information of China (English)

    冯昭华; 朱家骅; 杨雪峰; 夏素兰; 关国强; DavisE.J.

    2004-01-01

    By introducing Oseen's formula to describe the viscous drag force, a more complete motion equation for a charged microparticle levitated in an electrodynamic balance (EDB) has been put forward and solved numerically by the classic Runge-Kutta method in this paper. The theoretical results have firstly demonstrated the existence of the particle oscillations and their characteristics, especially of the springpoint oscillation at large amplitude .And through the comparisons of theoretical and experimental trajectories, the adopted motion equation has proved to be able to rigorously describe the particle motion in non-Stokes region--the shape of trajectory and frequencycharacteristics are fairlv consistent and the deviations of amnliturla c~n n~llzll~r ho lo~ th~n 1cIfr/~

  10. Magnetophoresis of diamagnetic microparticles in a weak magnetic field.

    Science.gov (United States)

    Zhu, Gui-Ping; Hejiazan, Majid; Huang, Xiaoyang; Nguyen, Nam-Trung

    2014-12-21

    Magnetic manipulation is a promising technique for lab-on-a-chip platforms. The magnetic approach can avoid problems associated with heat, surface charge, ionic concentration and pH level. The present paper investigates the migration of diamagnetic particles in a ferrofluid core stream that is sandwiched between two diamagnetic streams in a uniform magnetic field. The three-layer flow is expanded in a circular chamber for characterisation based on imaging of magnetic nanoparticles and fluorescent microparticles. A custom-made electromagnet generates a uniform magnetic field across the chamber. In a relatively weak uniform magnetic field, the diamagnetic particles in the ferrofluid move and spread across the chamber. Due to the magnetization gradient formed by the ferrofluid, diamagnetic particles undergo negative magnetophoresis and move towards the diamagnetic streams. The effects of magnetic field strength and the concentration of diamagnetic particles are studied in detail.

  11. Controllable precipitation of naproxen micro-particles with different morphologies

    Institute of Scientific and Technical Information of China (English)

    Peng Cheng; Kangkang Jin; Jing Cheng; Fang Yang; Zhigang Shen; Jianfeng Chen; Lixiong Wen

    2012-01-01

    A simple precipitation method was proposed to prepare naproxen micro-particles with different controllable morphologies,using capillary video microscopy to study the precipitation process.Different particle shapes were obtained including spherical,platelet-like,stick-like,needle-like,and butterfly-like,all in the micro-size range.It was found that the sizes and morphologies of the formed naproxen particles were sensitive to the nature and concentration of the added surfactant,and depended significantly on processing conditions such as temperature,stirring speed,and initial drug concentration.In addition,precipitation with different surfactant types and concentrations would not affect the crystal microstructure of the formed naproxen particles.

  12. Coaxial electrospray of microparticles and nanoparticles for biomedical applications.

    Science.gov (United States)

    Zhang, Leilei; Huang, Jiwei; Si, Ting; Xu, Ronald X

    2012-11-01

    Coaxial electrospray is an electrohydrodynamic process that produces multilayer microparticles and nanoparticles by introducing coaxial electrified jets. In comparison with other microencapsulation/nanoencapsulation processes, coaxial electrospray has several potential advantages such as high encapsulation efficiency, effective protection of bioactivity and uniform size distribution. However, process control in coaxial electrospray is challenged by the multiphysical nature of the process and the complex interplay of multiple design, process and material parameters. This paper reviews the previous works and the recent advances in design, modeling and control of a coaxial electrospray process. The review intends to provide general guidance for coaxial electrospray and stimulate further research and development interests in this promising microencapsulation/nanoencapsulation process.

  13. Double aperture focusing transducer for controlling microparticle motions in trapezoidal microchannels with surface acoustic waves

    Science.gov (United States)

    Tan, Ming K.; Tjeung, Ricky; Ervin, Hannah; Yeo, Leslie Y.; Friend, James

    2009-09-01

    We present a method for controlling the motion of microparticles suspended in an aqueous solution, which fills in a microchannel fabricated into a piezoelectric substrate, using propagating surface acoustic waves. The cross-sectional shape of this microchannel is trapezoidal, preventing the formation of acoustic standing waves across the channel width and therefore allowing the steering of microparticles. The induced acoustic streaming transports these particles to eliminate the use of external pumps for fluid actuation.

  14. Volumetric initiation of gaseous detonation by radiant heating of suspended microparticles

    Science.gov (United States)

    Efremov, V. P.; Ivanov, M. F.; Kiverin, A. D.; Yakovenko, I. S.

    2016-02-01

    The concept of detonation wave initiation in the local volume of a fuel-gas mixture containing suspended chemically neutral microparticles heated by radiant energy from an external source is proposed. Mechanisms of initiation of the combustion and detonation waves in a region of accumulation of the radiation- heated microparticles have been studied by numerical simulation methods. Criteria that determine geometric dimensions of a region of the two-phase medium, which are necessary for the initiation of detonation waves, are formulated.

  15. Experimental Validation of an Optical System for Interrogation of Dermally-Implanted Microparticle Sensors

    OpenAIRE

    2009-01-01

    Dermally-implanted microparticle sensors are being developed for on-demand monitoring of blood sugar levels. For these to be deployed in vivo, a matched opto-electronic system for delivery of excitation, collection and analysis of escaping fluorescent signal is needed. Previous studies predicted the characteristics of fluorescence from microparticle sensors to facilitate design of hardware system. Based on the results of simulations, we designed and constructed the optical part of this opto-e...

  16. Production of microparticles of molinate degrading biocatalysts using the spray drying technique.

    Science.gov (United States)

    Lopes, Ana R; Sousa, Vera M; Estevinho, Berta N; Leite, José P; Moreira, Nuno F F; Gales, Luís; Rocha, Fernando; Nunes, Olga C

    2016-10-01

    Previous studies demonstrated the capability of mixed culture DC1 to mineralize the thiocarbamate herbicide molinate through the activity of molinate hydrolase (MolA). Because liquid suspensions are not compatible with long-term storage and are not easy to handle when bioremediation strategies are envisaged, in this study spray drying was evaluated as a cost-effective method to store and transport these molinate biocatalysts. Microparticles of mixed culture DC1 (DC1) and of cell free crude extracts containing MolA (MA) were obtained without any carrier polymer, and with calcium alginate (CA) or modified chitosan (MCt) as immobilizing agents. All the DC1 microparticles showed high molinate degrading activity upon storage for 6 months, or after 9 additions of ∼0.4 mM molinate over 1 month. The DC1-MCt microparticles were those with the highest survival rate and lowest heterogeneity. For MA microparticles, only MA-MCt degraded molinate. However, its Vmax was only 1.4% of that of the fresh cell free extract (non spray dried). The feasibility of using the DC1-MCt and MA-MCt microparticles in bioaugmentation processes was assessed in river water microcosms, using mass (g):volume (L) ratios of 1:13 and 1:0.25, respectively. Both type of microparticles removed ∼65-75% of the initial 1.5 mg L(-1) molinate, after 7 days of incubation. However, only DC1-MCt microparticles were able to degrade this environmental concentration of molinate without disturbing the native bacterial community. These results suggest that spray drying can be successfully used to produce DC1-MCt microparticles to remediate molinate polluted sites through a bioaugmentation strategy.

  17. Chitosan-DNA microparticles as mucosal delivery system:synthesis, characterization and release in vitro

    Institute of Scientific and Technical Information of China (English)

    LI Yu-hong; FAN Min-wen; BIAN Zhuan; CHEN Zhi; ZHANG Qi; YANG Hai-rui

    2005-01-01

    Background Mucosal immunity is important to defense against dental caries. To enhance mucosal immunity, a DNA vaccine mucosal delivery system was prepared by encapsulating anticaries DNA vaccine (plasmid pGJA-P/VAX) in chitosan under optimal conditions and the characteristics of the microparticles was investigated. Furthermore, the release properties and protective action of microparticles for plasmid were studied in vitro.Methods Plasmid loaded chitosan microparticles were prepared by complex coacervation. Three factors, concentration of DNA, sodium sulfate, and the chitosan/DNA ratios in complexes [better expressed as N/P ratio: the number of poly nitrogen (N) per DNA phosphate (P)] influencing preparation were optimized by orthogonal test. The characteristics of microparticles were evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). DNA release rate of microparticles in similar gastro fluid (SGF) or similar intestinal fluid (SIF) at 37℃ was determined by ultraviolet spectrophotometry.Results High encapsulation efficiency (96.8%) was obtained with chitosan microparticles made under optimal conditions of 50 mmol/L Na2SO4, 200 μg/ml DNA and N/P ratio of 4. The size of particles was about 4 to 6 μm. The encapsulation process did not destroy the integrity of DNA. When incubated with SIL, after a release of about 10% in the first 60 minutes, no further DNA was released during the following 180 minutes. When incubated with SGL, the microparticles released a small burst (about 11%) in the first 60 minutes, and then slowly released at a constant, but different rate.Conclusions These chitosan microparticles showed suitable characteristics in vitro for mucosal vaccination and are therefore a promising carrier system for DNA vaccine mucosal delivery.

  18. Synthesis of Flexible Aerogel Composites Reinforced with Electrospun Nanofibers and Microparticles for Thermal Insulation

    OpenAIRE

    Huijun Wu; Yantao Chen; Qiliang Chen; Yunfei Ding; Xiaoqing Zhou; Haitao Gao

    2013-01-01

    Flexible silica aerogel composites in intact monolith of 12 cm were successfully fabricated by reinforcing SiO2 aerogel with electrospun polyvinylidene fluoride (PVDF) webs via electrospinning and sol-gel processing. Three electrospun PVDF webs with different microstructures (e.g., nanofibers, microparticles, and combined nanofibers and microparticles) were fabricated by regulating electrospinning parameters. The as-electrospun PVDF webs with various microstructures were impregnated into the ...

  19. Precipitation of fluticasone propionate microparticles using supercritical antisolvent

    Directory of Open Access Journals (Sweden)

    A Vatanara

    2009-03-01

    Full Text Available ABSTRACT Background: The ability of supercritical fluids (SCFs, such as carbon dioxide, to dissolve and expand or extract organic solvents and as result lower their solvation power, makes it possible the use of SCFs for the precipitation of solids from organic solutions. The process could be the injection of a solution of the substrate in an organic solvent into a vessel which is swept by a supercritical fluid. The aim of this study was to ascertain the feasibility of supercritical processing to prepare different particulate forms of fluticasone propionate (FP, and to evaluate the influence of different liquid solvents and precipitation temperatures on the morphology, size and crystal habit of particles. Method: The solution of FP in organic solvents, was precipitated by supercritical carbon dioxide (SCCO2 at two pressure and temperature levels. Effects of process parameters on the physicochemical characteristics of harvested microparticles were evaluated. Results: Particle formation was observed only at the lower selected pressure, whilst at the higher pressure, no precipitation of particles was occurred due to dissolution of FP in supercritical antisolvent. The micrographs of the produced particles showed different morphologies for FP obtained from different conditions. The results of thermal analysis of the resulted particles showed that changes in the processing conditions didn't influence thermal behavior of the precipitated particles. Evaluation of the effect of temperature on the size distribution of particles showed that increase in the temperature from 40 oC to 50 oC, resulted in reduction of the mean particle size from about 30 µm to about 12 μm. ‍Conclusion: From the results of this study it may be concluded that, processing of FP by supercritical antisolvent could be an approach for production of diverse forms of the drug and drastic changes in the physical characteristics of microparticles could be achieved by changing the

  20. Cefazolin-loaded mesoporous silicon microparticles show sustained bactericidal effect against Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Iman K Yazdi

    2014-05-01

    Full Text Available Cefazolin is an antibiotic frequently used in preoperative prophylaxis of orthopedic surgery and to fight secondary infections post-operatively. Although its systemic delivery in a bulk or bolus dose is usually effective, the local and controlled release can increase its effectiveness by lowering dosages, minimizing total drug exposure, abating the development of antibiotic resistance and avoiding the cytotoxic effect. A delivery system based on mesoporous silicon microparticles was developed that is capable of efficiently loading and continuously releasing cefazolin over several days. The in vitro release kinetics from mesoporous silicon microparticles with three different nanopore sizes was evaluated, and minimal inhibitory concentration of cefazolin necessary to eliminate a culture of Staphylococcus aureus was identified to be 250 µg/mL. A milder toxicity toward mesenchymal stem cells was observed from mesoporous silicon microparticles over a 7-day period. Medium pore size-loaded mesoporous silicon microparticles exhibited long-lasting bactericidal properties in a zone inhibition assay while they were able to kill all the bacteria growing in suspension cultures within 24 h. This study demonstrates that the sustained release of cefazolin from mesoporous silicon microparticles provides immediate and long-term control over bacterial growth both in suspension and adhesion while causing minimal toxicity to a population of mesenchymal stem cell. Mesoporous silicon microparticles offer significant advantageous properties for drug delivery applications in tissue engineering as it favorably extends drug bioavailability and stability, while reducing concomitant cytotoxicity to the surrounding tissues.

  1. Gastroresistant microparticles containing sodium alendronate prevent the bone loss in ovariectomized rats.

    Science.gov (United States)

    Cruz, Letícia; Assumpção, Evelise; Andrade, Sérgio F; Conrado, Daniela J; Kulkamp, Irene C; Guterres, Sílvia S; Pohlmann, Adriana R

    2010-08-11

    Sodium alendronate, an antiresorptive drug, primarily used in the treatment of osteoporosis was encapsulated in blended microparticles composed of Eudragit S100 and Methocel K15M. The micropowder obtained by spray-drying technique was characterized in terms of its morphology, particle size, encapsulation efficiency and in vitro drug release. In vivo studies were carried out in order to evaluate the pharmacodynamic effect and the ulcerogenic activity of sodium alendronate-loaded microparticles after oral administration in rats. Drug encapsulation efficiency was close to 80% and particle mean diameter of 13.8 microm. SEM analysis showed spherical collapsed shape particles with smooth surface. At pH 1.2, in vitro experiments showed that <10% of the drug was released from the microparticles. At pH 6.8, the microparticles were able to prolong the sodium alendronate release for 12h. In vivo experiments carried out in ovariectomized rats showed bone mineral density significantly higher for the sodium alendronate-loaded microparticles than for the negative control groups. Furthermore, the microencapsulation of the drug showed a significant reduction in the ulcerative lesion index. In conclusion, the blended microparticles are excellent oral carriers for sodium alendronate since they were able to maintain the drug antiresorptive effect and to reduce the gastrointestinal drug toxicity.

  2. Starch, inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles.

    Science.gov (United States)

    Lacerda, Ellen Cristina Quirino; Calado, Verônica Maria de Araújo; Monteiro, Mariana; Finotelli, Priscilla Vanessa; Torres, Alexandre Guedes; Perrone, Daniel

    2016-10-20

    The influence of encapsulating carbohydrates (EC) with varying properties on the technological and functional properties of jussara pulp microparticles produced by spray drying were evaluated using experimental design. Microparticles produced with sodium octenyl succinate (OSA) starch at 0.5 core to EC ratio and with mixtures of inulin and maltodextrin at 1.0 and 2.0 core to EC ratio showed darker color, and higher anthocyanins contents and antioxidant activity. Seven microparticles showing high water solubility and desirable surface morphology. Hygroscopicity (10.7% and 11.5%) and wettability (41s and 43s) were improved when OSA starch and mixtures of inulin and maltodextrin were used. The anthocyanins contents and color of the microparticles did not change when exposed to light at 50°C for 38days. Finally, microparticles produced at 1.0 core to EC ratio with 2/3 OSA starch, 1/6 inulin and 1/6 maltodextrin were selected. These microparticles may be applied as colorant in numerous foods, whilst adding prebiotic fiber and anthocyanins.

  3. Development of biodegradable methylprednisolone microparticles for treatment of articular pathology using a spray-drying technique.

    Science.gov (United States)

    Tobar-Grande, Blanca; Godoy, Ricardo; Bustos, Paulina; von Plessing, Carlos; Fattal, Elias; Tsapis, Nicolas; Olave, Claudia; Gómez-Gaete, Carolina

    2013-01-01

    In this work, microparticles were prepared by spray-drying using albumin, chondroitin sulfate, and hyaluronic acid as excipients to create a controlled-release methylprednisolone system for use in inflammatory disorders such as arthritis. Scanning electron microscopy demonstrated that these microparticles were almost spherical, with development of surface wrinkling as the methylprednisolone load in the formulation was increased. The methylprednisolone load also had a direct influence on the mean diameter and zeta potential of the microparticles. Interactions between formulation excipients and the active drug were evaluated by x-ray diffraction, differential scanning calorimetry, and thermal gravimetric analysis, showing limited amounts of methylprednisolone in a crystalline state in the loaded microparticles. The encapsulation efficiency of methylprednisolone was approximately 89% in all formulations. The rate of methylprednisolone release from the microparticles depended on the initial drug load in the formulation. In vitro cytotoxic evaluation using THP-1 cells showed that none of the formulations prepared triggered an inflammatory response on release of interleukin-1β, nor did they affect cellular viability, except for the 9.1% methylprednisolone formulation, which was the maximum test concentration used. The microparticles developed in this study have characteristics amenable to a therapeutic role in inflammatory pathology, such as arthritis.

  4. Development of HPMC and Eudragit S100 blended microparticles containing sodium pantoprazole.

    Science.gov (United States)

    Raffin, R P; Colomé, L M; Haas, S E; Jornada, D S; Pohlmann, A R; Guterres, S S

    2007-05-01

    Pantoprazole is used in the treatment of acid related disorders and Helicobacter pylori infections. It is activated inside gastric parietal cells binding irreversibly to the H+/K(+)-ATPase. In this way, pantoprazole must be absorbed intact in gastro-intestinal tract, indicating that enteric delivery systems are required. The purpose of this study was to prepare pantoprazole-loaded microparticles by spray-drying using a blend of Eudragit S100 and HPMC, which can provide gastro-resistance and controlled release. Microparticles presented acceptable drug loading (120.4 mgg(-1)), encapsulation efficiency (92.3%), surface area (49.0 m2g(-1)), and particle size (11.3 microm). DSC analyses showed that the drug is molecularly dispersed in the microparticles, and in vivo anti-ulcer evaluation demonstrated that microparticles were effective in protecting stomach against ulceration. Microparticles were successfully tabletted using magnesium stearate. In vitro gastro-resistance study showed that microparticles stabilized pantoprazole in 62.0% and tablets in 97.5% and provided a controlled release of the drug.

  5. Functionalized Raspberry-Like Microparticles obtained by Assembly of Nanoparticles during Electrospraying

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun Chul; Jeong, Unyong [Hanyang Univ., Seoul (Korea, Republic of); Hwang, Yoon Kyun [Yonsei Univ., Seoul (Korea, Republic of)

    2014-06-15

    The present study suggests a novel method to produce raspberry-like microparticles containing diverse functional materials inside. The raspberry-like microparticles were produced from a random assembly of uniformly-sized poly(methyl methacrylate) (PMMA) nanoparticles via electrospraying. The solution containing the PMMA nanoparticles were supplied through the inner nozzle and compressed air was emitted through the outer nozzle. The air supply helped fast evaporation of acetone, so it enabled copious amount of microparticles as dry powder. The microparticles were highly porous both on the surface and interiors, hence various materials with a function of UV-blocking (TiO{sub 2} nanoparticles and methoxyphenyl triazine) or anti-aging (ethyl(4-(2,3-dihydro-1H-indene-5-carboxyamido) benzoate)) were loaded in large amount (17 wt % versus PMMA). The surface and interior structures of the microparticles were dependent on the characteristics of functional materials. The results clearly suggest that the process to prepare the raspberry-like microparticles can be an excellent approach to generate functional microstructures.

  6. Enhancing microparticle internalization by nonphagocytic cells through the use of noncovalently conjugated polyethyleneimine.

    Science.gov (United States)

    Patiño, Tania; Nogués, Carme; Ibáñez, Elena; Barrios, Leonardo

    2012-01-01

    Development of micro- and nanotechnology for the study of living cells, especially in the field of drug delivery, has gained interest in recent years. Although several studies have reported successful results in the internalization of micro- and nanoparticles in phagocytic cells, when nonphagocytic cells are used, the low internalization efficiency represents a limitation that needs to be overcome. It has been reported that covalent surface modification of micro- and nanoparticles increases their internalization rate. However, this surface modification represents an obstacle for their use as drug-delivery carriers. For this reason, the aim of the present study was to increase the capability for microparticle internalization of HeLa cells through the use of noncovalently bound transfection reagents: polyethyleneimine (PEI) Lipofectamine™ 2000 and FuGENE 6(®). Both confocal microscopy and flow cytometry techniques allowed us to precisely quantify the efficiency of microparticle internalization by HeLa cells, yielding similar results. In addition, intracellular location of microparticles was analyzed through transmission electron microscopy and confocal microscopy procedures. Our results showed that free PEI at a concentration of 0.05 mM significantly increased microparticle uptake by cells, with a low cytotoxic effect. As determined by transmission electron and confocal microscopy analyses, microparticles were engulfed by plasma-membrane projections during internalization, and 24 hours later they were trapped in a lysosomal compartment. These results show the potential use of noncovalently conjugated PEI in microparticle internalization assays.

  7. Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast.

    Science.gov (United States)

    Hébrard, Géraldine; Hoffart, Valérie; Beyssac, Eric; Cardot, Jean-Michel; Alric, Monique; Subirade, Muriel

    2010-01-01

    Viable Saccharomyces boulardii, used as a biotherapeutic agent, was encapsulated in food-grade whey protein isolate (WP) and alginate (ALG) microparticles, in order to protect and vehicle them in gastrointestinal environment. Yeast-loaded microparticles with a WP/ALG ratio of 62/38 were produced with high encapsulation efficiency (95%) using an extrusion/cold gelation method and coated with ALG or WP by a simple immersion method. Swelling, yeast survival, WP loss and yeast release in simulated gastric and intestinal fluids (SGF and SIF, pH 1.2 and 7.5) with and without their respective digestive enzymes (pepsin and pancreatin) were investigated. In SGF, ALG network shrinkage limited enzyme diffusion into the WP/ALG matrix. Coated and uncoated WP/ALG microparticles were resistant in SGF even with pepsin. Survival of yeast cells in microparticles was 40% compared to 10% for free yeast cells and was improved to 60% by coating. In SIF, yeast cell release followed coated microparticle swelling with a desirable delay. Coated WP/ALG microparticles appear to have potential as oral delivery systems for Saccharomyces boulardii or as encapsulation means for probiotic cells in pharmaceutical or food processing applications.

  8. Control of Alginate Core Size in Alginate-Poly (Lactic-Co-Glycolic) Acid Microparticles

    Science.gov (United States)

    Lio, Daniel; Yeo, David; Xu, Chenjie

    2016-01-01

    Core-shell alginate-poly (lactic-co-glycolic) acid (PLGA) microparticles are potential candidates to improve hydrophilic drug loading while facilitating controlled release. This report studies the influence of the alginate core size on the drug release profile of alginate-PLGA microparticles and its size. Microparticles are synthesized through double-emulsion fabrication via a concurrent ionotropic gelation and solvent extraction. The size of alginate core ranges from approximately 10, 50, to 100 μm when the emulsification method at the first step is homogenization, vortexing, or magnetic stirring, respectively. The second step emulsification for all three conditions is performed with magnetic stirring. Interestingly, although the alginate core has different sizes, alginate-PLGA microparticle diameter does not change. However, drug release profiles are dramatically different for microparticles comprising different-sized alginate cores. Specifically, taking calcein as a model drug, microparticles containing the smallest alginate core (10 μm) show the slowest release over a period of 26 days with burst release less than 1 %.

  9. Surface morphology of spray-dried nanoparticle-coated microparticles designed as an oral drug delivery system

    Directory of Open Access Journals (Sweden)

    R. C. R. Beck

    2008-06-01

    Full Text Available This paper was devoted to studying the influence of coating material (nanocapsules or nanospheres, drug model (diclofenac, acid or salt and method of preparation on the morphological characteristics of nanoparticle-coated microparticles. The cores of microparticles were obtained by spray drying or evaporation and the coating was applied by spray drying. SEM analyses showed nanostructures coating the surface of nanocapsule-coated microparticles and a rugged surface for nanosphere-coated microparticles. The decrease in their surface areas was controlled by the nanoparticulated system, which was not dependent on microparticle size. Optical microscopy and X-ray analyses indicated that acid diclofenac crystals were present in formulations prepared with the acid as well as in the nanocapsule-coated microparticles prepared with the salt. The control of coating is dependent on the use of nanocapsules or nanospheres and independent of either the characteristics of the drug or the method of preparing the core.

  10. Polymer/bacteria composite nanofiber non-wovens by electrospinning of living bacteria protected by hydrogel microparticles.

    Science.gov (United States)

    Gensheimer, Marco; Brandis-Heep, Astrid; Agarwal, Seema; Thauer, Rudolf K; Greiner, Andreas

    2011-03-10

    Physically crosslinked PVA-hydrogel microparticles are utilized for encapsulation of E. coli and M. luteus. The bacteria survive dry storage or treatment with bacteria-hostile organic solvents significantly better than unprotected bacteria as proven by culture-test experiments. The bacteria-protecting PVA microparticles are available for standard polymer-solution-processing techniques, as exemplarily shown by co-electrospinning of living bacteria encapsulated in dry PVA-hydrogel microparticles together with PVB-, PLLA-, and PCL-form organic solvents.

  11. Preparation of Biocatalytic Microparticles by Interfacial Self-Assembly of Enzyme-Nanoparticle Conjugates Around a Cross-Linkable Core.

    Science.gov (United States)

    Andler, S M; Wang, L-S; Goddard, J M; Rotello, V M

    2016-01-01

    Rational design of hierarchical interfacial assembly of reusable biocatalytic microparticles is described in this chapter. Specifically, purified enzymes and functionalized nanoparticles are electrostatically assembled at the interface of cross-linked microparticles which are formed through ring opening metathesis polymerization. The diameters of microparticle assemblies average 10μm, and they show enhanced kinetic efficiency as well as improved stability against heat, pH, and solvent denaturation when compared to stabilities of the corresponding native enzymes.

  12. Learning Circulant Sensing Kernels

    Science.gov (United States)

    2014-03-01

    learned dictionaries. Examples of analytic dictionaries include the discrete cosine basis, various wavelets bases , as well as tight frames. Some of them...Compressive sensing based high resolution channel estimation for OFDM system. To appear in IEEE Journal of Selected Topics in Signal Processing, Special...theoretical and computational properties to a (partial) circulant matrix of the same size, our discussions below are based exclusively on the circulant

  13. Aerosol-Assisted Fast Formulating Uniform Pharmaceutical Polymer Microparticles with Variable Properties toward pH-Sensitive Controlled Drug Release

    Directory of Open Access Journals (Sweden)

    Hong Lei

    2016-05-01

    Full Text Available Microencapsulation is highly attractive for oral drug delivery. Microparticles are a common form of drug carrier for this purpose. There is still a high demand on efficient methods to fabricate microparticles with uniform sizes and well-controlled particle properties. In this paper, uniform hydroxypropyl methylcellulose phthalate (HPMCP-based pharmaceutical microparticles loaded with either hydrophobic or hydrophilic model drugs have been directly formulated by using a unique aerosol technique, i.e., the microfluidic spray drying technology. A series of microparticles of controllable particle sizes, shapes, and structures are fabricated by tuning the solvent composition and drying temperature. It is found that a more volatile solvent and a higher drying temperature can result in fast evaporation rates to form microparticles of larger lateral size, more irregular shape, and denser matrix. The nature of the model drugs also plays an important role in determining particle properties. The drug release behaviors of the pharmaceutical microparticles are dependent on their structural properties and the nature of a specific drug, as well as sensitive to the pH value of the release medium. Most importantly, drugs in the microparticles obtained by using a more volatile solvent or a higher drying temperature can be well protected from degradation in harsh simulated gastric fluids due to the dense structures of the microparticles, while they can be fast-released in simulated intestinal fluids through particle dissolution. These pharmaceutical microparticles are potentially useful for site-specific (enteric delivery of orally-administered drugs.

  14. Microparticles containing guaraná extract obtained by spray-drying technique: development and characterization

    Directory of Open Access Journals (Sweden)

    Traudi Klein

    2015-06-01

    Full Text Available AbstractGuaraná (Paullinia cupana Kunth, Sapindaceae is well known for its dietary and pharmaceutical potential, and the semipurified extract of guaraná shows antidepressant and panicolytic effects. However, the low solubility, bioavailability and stability of the semipurified extract limit its use as a component of pharmaceutical agents. Delivery of the semipurified extract in a microparticle form could help to optimize its stability. In this study, microparticles containing semipurified extract of guaraná were obtained by the spray-drying technique, using a combination of maltodextrin and gum arabic. The raw materials and microparticles produced were characterized by particle size analysis, differential scanning calorimetry, thermogravimetric analysis, and scanning electron microscopy. The drug content and antioxidant capacity were also evaluated. In vitrodissolution tests using flow cell dissolution apparatus, were carried out to investigate the influence of formulation parameters on the release of semipurified extract of guaraná from the microparticles. The spray-drying technique and the processing conditions selected gave satisfactory encapsulation efficiency (80–110% and product yield (55–60%. The mean diameter of microparticles was around 4.5 µm. The DPPH radical scavenging capacity demonstrated that microparticles can protect the semipurified extract of guaraná from the effect of high temperatures during the process maintained the antioxidant capacity. Differential scanning calorimetry results indicated an interaction between semipurified extract of guaraná and gum arabic: maltodextrin in the microparticles, and thermogravimetric analysis indicate that the profile curves of the microparticles are similar to the adjuvants used in drying, probably due to the higher proportion of adjuvants compared to semipurified extract of guaraná. In vitro dissolution tests demonstrate that all formulations complete dissolution within 60 min

  15. Gaussian Fibonacci Circulant Type Matrices

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    Full Text Available Circulant matrices have become important tools in solving integrable system, Hamiltonian structure, and integral equations. In this paper, we prove that Gaussian Fibonacci circulant type matrices are invertible matrices for n>2 and give the explicit determinants and the inverse matrices. Furthermore, the upper bounds for the spread on Gaussian Fibonacci circulant and left circulant matrices are presented, respectively.

  16. Drying Using Supercritical Fluid Technology as a Potential Method for Preparation of Chitosan Aerogel Microparticles.

    Science.gov (United States)

    Obaidat, Rana M; Tashtoush, Bassam M; Bayan, Mohammad F; Al Bustami, Rana T; Alnaief, Mohammad

    2015-12-01

    Supercritical fluid technology offers several advantages in preparation of microparticles. These include uniformity in particle size, morphology, and drug distribution without degradation of the product. One of the recent advantages is preparation of porous aerogel carrier with proper aerodynamic properties. In this study, we aimed to prepare chitosan aerogel microparticles using supercritical fluid (SCF) technology and compare that with microparticles produced by freeze drying (FD). Loading the prepared carriers with a model drug (salbutamol) was also performed. Comparisons of the particle properties and physicochemical characterizations were undertaken by evaluating particle size, density, specific surface area, and porosity. In vitro drug release studies were also investigated. The effect of many variables, such as molecular weight of chitosan oligomers, concentrations of chitosan, and concentrations of tripolyphosphate on the release, were also investigated. Chitosan aerogels were efficiently produced by SCF technology with an average particle size of 10 μm with a tapped density values around 0.12 g/mL, specific surface area (73-103) m(2)/g, and porosity (0.20-0.29) cc/g. Whereas, microparticles produced by FD method were characterized as cryogels with larger particle size (64 microns) with clear cracking at the surface. Sustained release profile was achieved for all prepared microparticles of salbutamol produced by the aforementioned methods as compared with pure drug. The results also demonstrates that chitosan molecular weight, polymer concentration, and tripolyphosphate concentration affected the release profile of salbutamol from the prepared microparticles. In conclusion, SCF technology was able to produce chitosan aerogel microparticles loaded with salbutamol that could be suitable for pulmonary drug delivery system.

  17. Emulsification/internal gelation as a method for preparation of diclofenac sodium-sodium alginate microparticles.

    Science.gov (United States)

    Ahmed, Mahmoud M; El-Rasoul, Saleh Abd; Auda, Sayed H; Ibrahim, Mohamed A

    2013-01-01

    Emulsification/internal gelation has been suggested as an alternative to extrusion/external gelation in the encapsulation of several compounds including non-steroidal anti-inflammatory drugs such as diclofenac sodium. The objective of the present study was a trial to formulate diclofenac sodium as controlled release microparticles that might be administered once or twice daily. This could be achieved via emulsification/internal gelation technique applying Box-Behnken design to choose these formulae. Box-Behnken design determined fifteen formulae containing specified amounts of the independent variables, which included stirring speed in rpm (X1), drug:polymer ratio (X2) and the surfactant span 80% (X3). The dependent variables studied were cumulative percent release after two hours (Y1), four hours (Y2) and eight hours (Y3). The prepared microparticles were characterized for their production yield, sizes, shapes and morphology, entrapment efficiency and Diclofenac sodium in vitro release as well. The results showed that the production yield of the prepared diclofenac sodium microparticles was found to be between 79.55% and 97.41%. The formulated microparticles exhibited acceptable drug content values that lie in the range 66.20-96.36%. Also, the data obtained revealed that increasing the mixing speed (X1) generally resulted in decreased microparticle size. In addition, scanning electron microscope images of the microparticles illustrated that the formula contains lower span concentration (1%) in combination with lower stirring speed (200 rpm) which showed wrinkled, but smooth surfaces. However, by increasing surfactant concentration, microspheres' surfaces become smoother and slightly porous. Kinetic treatment of the in vitro release from drug-loaded microparticles indicated that the zero order is the drug release mechanism for the most formulae.

  18. Roughness-controlled self-assembly of mannitol/LB agar microparticles by polymorphic transformation for pulmonary drug delivery.

    Science.gov (United States)

    Zhang, Fengying; Ngoc, Nguyen Thi Quynh; Tay, Bao Hui; Mendyk, Aleksander; Shao, Yu-Hsuan; Lau, Raymond

    2015-01-05

    Novel roughness-controlled mannitol/LB Agar microparticles were synthesized by polymorphic transformation and self-assembly method using hexane as the polymorphic transformation reagent and spray-dried mannitol/LB Agar microparticles as the starting material. As-prepared microparticles were characterized by Fourier transform infrared spectra (FTIR), X-ray diffraction spectra (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and Andersen Cascade Impactor (ACI). The XRD and DSC results indicate that after immersing spray-dried mannitol/LB Agar microparticles in hexane, β-mannitol was completely transformed to α-mannitol in 1 h, and all the δ-mannitol was transformed to α form after 14 days. SEM shows that during the transformation the nanobelts on the spray-dried mannitol/LB Agar microparticles become more dispersed and the contour of the individual nanobelts becomes more noticeable. Afterward, the nanobelts self-assemble to nanorods and result in rod-covered mannitol/LB Agar microparticles. FTIR indicates new hydrogen bonds were formed among mannitol, LB Agar, and hexane. SEM images coupled with image analysis software reveal that different surface morphology of the microparticles have different drug adhesion mechanisms. Comparison of ACI results and image analysis of SEM images shows that an increase in the particle surface roughness can increase the fine particle fractions (FPFs) using the rod-covered mannitol microparticles as drug carriers. Transformed microparticles show higher FPFs than commercially available lactose carriers. An FPF of 28.6 ± 2.4% was achieved by microparticles transformed from spray-dried microparticles using 2% mannitol(w/v)/LB Agar as feed solution. It is comparable to the highest FPF reported in the literature using lactose and spray-dried mannitol as carriers.

  19. Endothelial Microparticles Act as Novel Diagnostic and Therapeutic Biomarkers of Diabetes and Its Complications: A Literature Review

    Science.gov (United States)

    Deng, Fan

    2016-01-01

    Diabetes mellitus- (DM-) related vascular diseases attract increased attention due to their high morbidity and mortality. The incidence of obesity, atherosclerosis, coronary heart disease, hypertension, and dyslipidemia is significantly higher in DM patients, with an earlier onset and faster progression compared with non-DM patients. DM-related vascular diseases including macrovascular and microvascular complications are characterized by endothelial dysfunction. Therefore, a better understanding of the etiology and mechanisms of endothelial dysfunction is important for the diagnosis and treatment of DM. Endothelial microparticles (EMPs) are new diagnostic and therapeutic targets and biomarkers in DM-related vascular disease. Circulating EMPs containing biologically active substances act as intercellular signals under physiological and pathological conditions. They serve as biological markers of altered vascular endothelium and reflect the pathological progression and diminished endothelial function of blood vessels. Recent evidence suggests that the plasma level of EMPs is significantly higher in DM patients than in healthy population and is significantly correlated with DM-related complications. These observations have prompted speculation that EMPs play a crucial role in the pathophysiology of DM. This review summarizes the known and potential roles of EMPs in the diagnosis, staging, treatment, and clinical prognosis of DM and related vascular diseases. PMID:27803933

  20. Microparticles generated by decompression stress cause central nervous system injury manifested as neurohypophysial terminal action potential broadening.

    Science.gov (United States)

    Yang, Ming; Kosterin, Paul; Salzberg, Brian M; Milovanova, Tatyana N; Bhopale, Veena M; Thom, Stephen R

    2013-11-01

    The study goal was to use membrane voltage changes during neurohypophysial action potential (AP) propagation as an index of nerve function to evaluate the role that circulating microparticles (MPs) play in causing central nervous system injury in response to decompression stress in a murine model. Mice studied 1 h following decompression from 790 kPa air pressure for 2 h exhibit a 45% broadening of the neurohypophysial AP. Broadening did not occur if mice were injected with the MP lytic agent polyethylene glycol telomere B immediately after decompression, were rendered thrombocytopenic, or were treated with an inhibitor of nitric oxide synthase-2 (iNOS) prior to decompression, or in knockout (KO) mice lacking myeloperoxidase or iNOS. If MPs were harvested from control (no decompression) mice and injected into naive mice, no AP broadening occurred, but AP broadening was observed with injections of equal numbers of MPs from either wild-type or iNOS KO mice subjected to decompression stress. Although not required for AP broadening, MPs from decompressed mice, but not control mice, exhibit NADPH oxidase activation. We conclude that inherent differences in MPs from decompressed mice, rather than elevated MPs numbers, mediate neurological injury and that a component of the perivascular response to MPs involves iNOS. Additional study is needed to determine the mechanism of AP broadening and also mechanisms for MP generation associated with exposure to elevated gas pressure.

  1. Endothelial Microparticles Act as Novel Diagnostic and Therapeutic Biomarkers of Diabetes and Its Complications: A Literature Review

    Directory of Open Access Journals (Sweden)

    Fan Deng

    2016-01-01

    Full Text Available Diabetes mellitus- (DM- related vascular diseases attract increased attention due to their high morbidity and mortality. The incidence of obesity, atherosclerosis, coronary heart disease, hypertension, and dyslipidemia is significantly higher in DM patients, with an earlier onset and faster progression compared with non-DM patients. DM-related vascular diseases including macrovascular and microvascular complications are characterized by endothelial dysfunction. Therefore, a better understanding of the etiology and mechanisms of endothelial dysfunction is important for the diagnosis and treatment of DM. Endothelial microparticles (EMPs are new diagnostic and therapeutic targets and biomarkers in DM-related vascular disease. Circulating EMPs containing biologically active substances act as intercellular signals under physiological and pathological conditions. They serve as biological markers of altered vascular endothelium and reflect the pathological progression and diminished endothelial function of blood vessels. Recent evidence suggests that the plasma level of EMPs is significantly higher in DM patients than in healthy population and is significantly correlated with DM-related complications. These observations have prompted speculation that EMPs play a crucial role in the pathophysiology of DM. This review summarizes the known and potential roles of EMPs in the diagnosis, staging, treatment, and clinical prognosis of DM and related vascular diseases.

  2. Surveillance of megakaryocytic function by measurement of CD61-exposing microparticles in allogeneic hematopoietic stem cell recipients.

    Science.gov (United States)

    Rank, Andreas; Nieuwland, Rienk; Delker, Ruth; Pihusch, Verena; Wilkowski, Ralf; Toth, Bettina; Kolb, Hans-Jochem; Pihusch, Rudolf

    2011-01-01

    Increasing evidence suggests that circulating microparticles (MP) exposing CD61 originate predominantly from megakaryocytes. Dramatic changes in megakaryocytic homeostasis are regularly observed following allogeneic hematopoietic stem cell transplantation (HSCT) and associated with transplantation-associated complications. We studied MP plasma levels prospectively in healthy subjects (n = 10) and allogeneic HSCT recipients (n = 19) twice weekly from the start of conditioning therapy up to day 30. A total of 224 measurement points were evaluated. MP were isolated, double-stained with annexin V and anti-CD61, and analyzed by flow cytometry. In uncomplicated HSCT, we found a correlation between platelet and CD61-exposing MP count, which resulted in a constant ratio of MP per platelet. The ratio was increased in patients with active hematological malignancies before transplantation and normalized during conditioning therapy. After take, the MP ratio increased, whereas infections and microangiopathic hemolytic anemia did not affect the ratio. In patients with GvHD, a decreased MP ratio was observed depending on the grade of GvHD, possibly indicating megakaryocytic damage. The MP ratio was able to discriminate between toxic, septic, and GvHD-induced hyperbilirubinemia. We first describe CD61+ MP levels during allogeneic HSCT and postulate that the MP ratio might be a useful biomarker for the surveillance of megakaryocytes during HSCT.

  3. Circulant Double Coverings of a Circulant Graph of Valency Five

    Institute of Scientific and Technical Information of China (English)

    Rong Quan FENG; Jin Ho KWAK

    2007-01-01

    Enumerating the isomorphism classes of several types of graph covering projections is one of the central research topics in enumerative topological graph theory. A covering of G is called circulant if its covering graph is circulant. Recently, the authors [Discrete Math., 277, 73-85 (2004)]enumerated the isomorphism classes of circulant double coverings of a certain type, called a typicalcovering, and showed that no double covering of a circulant graph of valency three is circulant. Also, in [Graphs and Combinatorics, 21, 386-400 (2005)], the isomorphism classes of circulant double coverings of a circulant graph of valency four are enumerated. In this paper, the isomorphism classes of circulant double coverings of a circulant graph of valency five are enumerated.

  4. Kernels in circulant digraphs

    Directory of Open Access Journals (Sweden)

    R. Lakshmi

    2014-06-01

    Full Text Available A kernel $J$ of a digraph $D$ is an independent set of vertices of $D$ such that for every vertex $w,in,V(D,setminus,J$ there exists an arc from $w$ to a vertex in $J.$ In this paper, among other results, a characterization of $2$-regular circulant digraph having a kernel is obtained. This characterization is a partial solution to the following problem: Characterize circulant digraphs which have kernels; it appeared in the book {it Digraphs - theory, algorithms and applications}, Second Edition, Springer-Verlag, 2009, by J. Bang-Jensen and G. Gutin.

  5. A Biodegradation Study of SBA-15 Microparticles in Simulated Body Fluid and in Vivo.

    Science.gov (United States)

    Choi, Youngjin; Lee, Jung Eun; Lee, Jung Heon; Jeong, Ji Hoon; Kim, Jaeyun

    2015-06-16

    Mesoporous silica has received considerable attention as a drug delivery vehicle because of its large surface area and large pore volume for loading drugs and large biomolecules. Recently, mesoporous silica microparticles have shown potential as a three-dimensional vaccine platform for modulating dendritic cells via spontaneous assembly of microparticles in a specific region after subcutaneous injection. For further in vivo applications, the biodegradation behavior of mesoporous silica microparticles must be studied and known. Until now, most biodegradation studies have focused on mesoporous silica nanoparticles (MSNs); here, we report the biodegradation of hexagonally ordered mesoporous silica, SBA-15, with micrometer-sized lengths (∼32 μm with a high aspect ratio). The degradation of SBA-15 microparticles was investigated in simulated body fluid (SBF) and in mice by analyzing the structural change over time. SBA-15 microparticles were found to degrade in SBF and in vivo. The erosion of SBA-15 under biological conditions led to a loss of the hysteresis loop in the nitrogen adsorption/desorption isotherm and fingerprint peaks in small-angle X-ray scattering, specifically indicating a degradation of ordered mesoporous structure. Via comparison to previous results of degradation of MSNs in SBF, SBA-15 microparticles degraded faster than MCM-41 nanoparticles presumably because SBA-15 microparticles have a pore size (∼8 nm) and a pore volume larger than those of MCM-41 mesoporous silica. The surface functional groups, the residual amounts of organic templates, and the hydrothermal treatment during the synthesis could affect the rate of degradation of SBA-15. In in vivo testing, previous studies focused on the evaluation of toxicity of mesoporous silica particles in various organs. In contrast, we studied the change in the physical properties of SBA-15 microparticles depending on the duration after subcutaneous injection. The pristine SBA-15 microparticles injected

  6. Lab-on-chip platform for circulating tumor cells isolation

    Science.gov (United States)

    Maurya, D. K.; Fooladvand, M.; Gray, E.; Ziman, M.; Alameh, K.

    2015-12-01

    We design, develop and demonstrate the principle of a continuous, non-intrusive, low power microfluidics-based lab-ona- chip (LOC) structure for Circulating Tumor Cell (CTC) separation. Cell separation is achieved through 80 cascaded contraction and expansion microchannels of widths 60 μm and 300 μm, respectively, and depth 60 μm, which enable momentum-change-induced inertial forces to be exerted on the cells, thus routing them to desired destinations. The total length of the developed LOC is 72 mm. The LOC structure is simulated using the COMSOL multiphysics software, which enables the optimization of the dimensions of the various components of the LOC structure, namely the three inlets, three filters, three contraction and expansion microchannel segments and five outlets. Simulation results show that the LOC can isolate CTCs of sizes ranging from 15 to 30 μm with a recovery rate in excess of 90%. Fluorescent microparticles of two different sizes (5 μm and 15 μm), emulating blood and CTC cells, respectively, are used to demonstrate the principle of the developed LOC. A mixture of these microparticles is injected into the primary LOC inlet via an electronically-controlled syringe pump, and the large-size particles are routed to the primary LOC outlet through the contraction and expansion microchannels. Experimental results demonstrate the ability of the developed LOC to isolate particles by size exclusion with an accuracy of 80%. Ongoing research is focusing on the LOC design improvement for better separation efficiency and testing of biological samples for isolation of CTCs.

  7. Controlled release of verapamil hydrochloride from waxy microparticles prepared by spray congealing.

    Science.gov (United States)

    Passerini, Nadia; Perissutti, Beatrice; Albertini, Beatrice; Voinovich, Dario; Moneghini, Mariarosa; Rodriguez, Lorenzo

    2003-03-01

    In this work, the potential of waxes for preparing with the ultrasonic spray congealing technique microparticles for controlling the in vitro release of verapamil HCl was investigated. The first part of the study encompassed the optimisation of the formulation to achieve an efficient drug incorporation together with a satisfactory in vitro drug release rate. In particular, microcrystalline wax, stearyl alcohol and mixtures of the two were used. Also a surfactant (soya lecithin) was added to the formulations. After the particle size analysis, the characterisation of the microparticles involved the study of the solid state of drug and carriers in the systems (DSC, HSM and XRD) and the morphological and chemical analyses of the microparticle surface (SEM and XPS). Finally, the drug release mechanism from these devices was evaluated using the statistical moment analysis. The results of this study show that by selecting the type and the amount of the carriers, microparticles with a spherical shape and a good encapsulation efficiency were observed. These particles showed a zero-order release for 8 h, without modifying the solid state properties of the drug. Therefore, waxy microparticles prepared by the ultrasonic spray congealing technique are promising solvent-free devices for controlling the release of verapamil HCl.

  8. Chitosan-Based Nano-Embedded Microparticles: Impact of Nanogel Composition on Physicochemical Properties.

    Science.gov (United States)

    Islam, Paromita; Water, Jorrit J; Bohr, Adam; Rantanen, Jukka

    2016-12-22

    Chitosan-based nanogels have been widely applied as drug delivery vehicles. Spray-drying of said nanogels allows for the preparation of dry powder nano-embedded microparticles. In this work, chitosan-based nanogels composed of chitosan, alginate, and/or sodium tri-penta phosphate were investigated, particularly with respect to the impact of composition on the resulting physicochemical properties. Different compositions were obtained as nanogels with sizes ranging from 203 to 561 nm. The addition of alginate and exclusion of sodium tri-penta phosphate led to an increase in nanogel size. The nanogels were subsequently spray-dried to form nano-embedded microparticles with trehalose or mannitol as matrix excipient. The microparticles of different composition were mostly spherical with a smooth surface and a mass median aerodynamic diameter of 6-10 µm. Superior redispersibility was observed for microparticles containing amorphous trehalose. This study demonstrates the potential of nano-embedded microparticles for stabilization and delivery of nanogel-based delivery systems.

  9. Biosensing utilizing the motion of magnetic microparticles in a microfluidic system

    KAUST Repository

    Giouroudi, Ioanna

    2010-10-23

    The study for the design of a compact and inexpensive biosensing device, which can be operated either by primary care personnel or by patients as opposed to skilled operators, is presented. The main parts of the proposed device are a microfluidic channel, permanent magnets and functionalized magnetic microparticles. The innovative aspect of the proposed biosensing method is that it utilizes the volumetric increase of magnetic microparticles when analyte binds to their surface. Their velocity decreases drastically when they are accelerated by an externally applied magnetic force within a microfluidic channel. This effect is utilized to detect the presence of analyte e.g. microbes. Analytical calculations showed that a decrease in velocity of approximately 23% can be achieved due to the volumetric change of a magnetic microparticle of View the MathML source1μm diameter when HIV virions of approximately View the MathML source0,135μm are bound to its surface and by keeping its magnetic properties the same. Preliminary experiments were carried out utilizing superparamagnetic microparticles coated with streptavidin and polystyrene microparticles coated with biotin.

  10. Influence of glucan structure on the swelling and leaching properties of starch microparticles.

    Science.gov (United States)

    Bordenave, Nicolas; Janaswamy, Srinivas; Yao, Yuan

    2014-03-15

    Microparticles were made by a water-in-oil emulsion technique from acid-hydrolyzed and debranched normal, waxy and high-amylose corn starches. The starches prepared had a weight-average molecular weight (Mw) ranging 3.6 × 10(7)-2.5 × 10(4), a polydispersity ranging 1.16-9.16, an apparent amylose content ranging 2.84-100%. These microparticles exhibited crystallinity ranging 4.41-22.84%, swelling power ranging 2.45-7.84 and percentage of leaching ranging 1.72-74.91%. Swelling power in water (R(2)=0.86) and percentage of leaching in water (R(2)=0.89) were modeled by a response surface method, using the following parameters: Mw, polydispersity, apparent amylose content and crystallinity of starch in microparticles. Overall, this study showed the key parameters for controlling the behavior of starch microparticles were related to the cohesiveness of the three-dimensional network, particularly through the retrogradation of starch polymers, the formation of crystallites and junctions zones. Such microparticles could be used for designing economical and biocompatible delivery systems of compounds for food, drug, or other applications.

  11. Aceclofenac-loaded chitosan-tamarind seed polysaccharide interpenetrating polymeric network microparticles.

    Science.gov (United States)

    Jana, Sougata; Saha, Abhimunya; Nayak, Amit Kumar; Sen, Kalyan Kumar; Basu, Sanat Kumar

    2013-05-01

    The present work deals with the preparation, characterization and evaluation of glutaraldehyde cross-linked chitosan-tamarind seed polysaccharide (TSP) interpenetrating polymeric network (IPN) microparticles for prolonged aceclofenac release. The drug entrapment efficiency of these microparticles was found 85.84±1.75 to 91.97±1.30% and their average particle sizes were ranged from 490.55±23.24 to 621.60±53.57 μm. These chitosan-TSP IPN microparticles were characterized by FTIR, DSC, and SEM analyses. The in vitro drug release from these aceclofenac-loaded chitosan-TSP IPN microparticles showed sustained release of aceclofenac over 8h and followed the Korsmeyer-Peppas model (R(2)=0.9809-0.9828) with anomalous (non-Fickian) diffusion drug release mechanism. The in vivo studies exhibited sustained anti-inflammatory activity in carrageenan-induced rats over prolonged period after oral administration of these newly developed aceclofenac-loaded IPN microparticles.

  12. Multiple unit gastroretentive drug delivery systems: a new preparation method for low density microparticles.

    Science.gov (United States)

    Streubel, A; Siepmann, J; Bodmeier, R

    2003-01-01

    The aim of this study was to develop a new preparation method for low density foam-based, floating microparticles and to demonstrate the systems' performance in vitro. Major advantages of the novel preparation technique include: (i) short processing times, (ii) no exposure of the ingredients to high temperatures, (iii) the possibility to avoid toxic organic solvents, and (iv) high encapsulation efficiencies close to 100%. Floating microparticles consisting of polypropylene foam powder, model drug [chlorpheniramine maleate (CPM), diltiazem HCl, theophylline or verapamil HCl] and polymer [Eudragit RS or polymethyl methacrylate (PMMA)] were prepared by soaking the microporous foam carrier with an organic solution of drug and polymer and subsequent drying. The effects of various formulation and processing parameters on the resulting in vitro floating behaviour, internal and external particle morphology, drug loading, in vitro drug release and physical state of the incorporated drug were studied. Good in vitro floating behaviour was observed in most cases and a broad variety of drug release patterns could be achieved by varying the drug loading and type of polymer. Interestingly, PMMA-based microparticles showed incomplete drug release with verapamil HCl. This restriction could be overcome by forming the free base of the drug prior to microparticle preparation. In contrast to the salt, the free base acted as a plasticizer for PMMA, resulting in sufficiently high diffusion coefficients and, consequently, complete drug release. The low density microparticles were compressed into rapidly disintegrating tablets in order to provide an administrable oral dosage form.

  13. Use of the spray chilling method to deliver hydrophobic components: physical characterization of microparticles

    Directory of Open Access Journals (Sweden)

    Izabela Dutra Alvim

    2013-02-01

    Full Text Available Food industry has been developing products to meet the demands of increasing number of consumers who are concerned with their health and who seek food products that satisfy their needs. Therefore, the development of processed foods that contain functional components has become important for this industry. Microencapsulation can be used to reduce the effects of processing on functional components and preserve their bioactivity. The present study investigated the production of lipid microparticles containing phytosterols by spray chilling. The matrices comprised mixtures of stearic acid and hydrogenated vegetable fat, and the ratio of the matrix components to phytosterols was defined by an experimental design using the mean diameters of the microparticles as the response variable. The melting point of the matrices ranged from 44.5 and 53.4 ºC. The process yield was melting point dependent; the particles that exhibited lower melting point had greater losses than those with higher melting point. The microparticles' mean diameters ranged from 13.8 and 32.2 µm and were influenced by the amount of phytosterols and stearic acid. The microparticles exhibited spherical shape and typical polydispersity of atomized products. From a technological and practical (handling, yield, and agglomeration points of view, lipid microparticles with higher melting point proved promising as phytosterol carriers.

  14. Evaluation of ultrasonic atomization as a new approach to prepare ionically cross-linked chitosan microparticles.

    Science.gov (United States)

    Albertini, Beatrice; Passerini, Nadia; Rodriguez, Lorenzo

    2005-07-01

    Ultrasonic atomization was evaluated as a new approach for the preparation of ionically cross-linked controlled-release chitosan microparticles loaded with theophylline as the model drug, using tripolyphosphate (TPP) as counter-ion. It was possible to nebulize both 2% and 3% (w/v) chitosan solutions as a function of their viscosity, usually not processed by employing the conventional nebulizer. The results of the chitosan molecular characterization using the SEC-MALS analysis revealed that ultrasonic atomization caused a certain depolymerization, probably due to the main chain scission of the 1,4-glycosidic bond; however, Fourier transform-infrared spectroscopy revealed the absence of other chemical modifications. The ultrasonic atomization allowed preparation of TPP cross-linked chitosan microparticles mostly ranging between 50 and 200 mum. As regards manufacturing parameters, the linking time and washing medium were found to affect the properties of the microparticles, while the stirring rate of the TPP solution did not show any influence. The evaluation of the formulation variables revealed that chitosan concentration strongly affected both the feasibility of the ultrasonic atomization and the drug release. All the microparticles showed an encapsulation efficiency of > 50 % and, after an initial burst effect, a controlled release of drug for 48 h. In conclusion, the ultrasonic atomization could be proposed as a robust and innovative single-step procedure with scale-up potential to successfully prepare ionically cross-linked chitosan microparticles.

  15. Development and characterization of lipid microparticles as a drug carrier for somatostatin.

    Science.gov (United States)

    Reithmeier, H; Herrmann, J; Göpferich, A

    2001-05-07

    Somatostatin, a therapeutic peptide with a high therapeutical potential but a very short biological half-live was encapsulated within microparticles by a modified solvent evaporation method and a melt dispersion method without the use of organic solvent. As the use of synthetic polymer matrix materials often goes along with detrimental effects on incorporated peptides, we investigated the potential of physiological lipids such as glyceryl tripalmitate (Dynasan 116) as an alternative matrix material. The two preparation methods were evaluated with respect to surface topography, particle size distribution, encapsulation efficiency, in-vitro release behavior and modification of the resulting microparticles. Microparticles with a suitable particle size distribution for i.m. or s.c. injection could be prepared with both methods. The encapsulation efficiency of the peptide into glyceryl tripalmitate microparticles was substantially influenced by the preparation method and the physical state of the peptide to be incorporated. The melt dispersion technique and the incorporation of the drug as an aqueous solution gave the best results with actual drug loadings up to 9% and an encapsulation efficiency of approximately 90%. Microparticles prepared by the melt dispersion technique crystallized in the unstable alpha-modification. The peptide was released almost continuously over 10 days with no burst effect, 20-30% of the incorporated somatostatin was not released in the monitored time period.

  16. Chitosan Microparticles Intended for Anti-caries DNA Vaccine Mucosal Delivery: Synthesis, Characterization and Transfection

    Institute of Scientific and Technical Information of China (English)

    LI Yuhong; FAN Mingwen; BIAN Zhuan; CHEN Zhi; Zhang Qi

    2005-01-01

    In order to enhance the mucosal immunity of anti-caries DNA vaccine, chitosan-DNA microparticles for musocal vaccination were prepared by a coacervation method. The physicochemical structure of microparticles was investigated by a scanning electron microscope (SEM) and a cofocal laser scanning microscope (CLSM). For in-vitro studies, Hela cell was transfected by chitosan-DNA microparticles.The expression of proteins was measured by the immunohistochemical methods, and the cytotocity of chitosan in Hela cell line was determined by the MTT assay. The experimental results show that the microparticles are about 2-6 μm in size and spherical in shape. The encapsulation efficiency is 99%, and the DNA is almost captured in the micropraticles. Plasmid loaded into chitosan microparticles is distributed throughout these particles. The number of positive staining cells of chitosan-pGJA-P transfected cell is more than that of naked plasmid transfect cells, but less than that of Lipofect-DNA complex group. Chitosan was found to be less cytotoxic compared with lipofectin (p<0.01).

  17. First-principle simulation of the acoustic radiation force on microparticles in ultrasonic standing waves

    DEFF Research Database (Denmark)

    Jensen, Mads Jakob Herring; Bruus, Henrik

    2013-01-01

    The recent development in the field of microparticle acoutophoresis in microsystems has led to an increased need for more accurate theoretical predections for the acoustic radiation force on a single microparticle in an ultrasonic standing wave. Increasingly detailed analytical solutions of this ......The recent development in the field of microparticle acoutophoresis in microsystems has led to an increased need for more accurate theoretical predections for the acoustic radiation force on a single microparticle in an ultrasonic standing wave. Increasingly detailed analytical solutions...... of this specific problem can be found in the literature [Settnes ans Bruus, Phys. Rev. E 85, 016327 (2012), and references therein], but none have included the complete contribution from thermoviscous effects. Here, we solve this problem numerically by applying a finite-element method to solve directly the mass...... (continuity), momentum (Navier-Stokes), and energy conservation equations using perturbation theory to second order in the imposed time-harmonic ultrasound field. In a two-stage calculation, we first solve the first-order equations resolving the thermoviscous boundary layer surrounding the microparticle...

  18. Polyamide Microparticles Containing Vitamin C by Interfacial Polymerization: An Approach by Design of Experimentation

    Directory of Open Access Journals (Sweden)

    Lionel Ripoll

    2016-11-01

    Full Text Available Vitamin C is widely use in cosmetics and pharmaceutics products for its active properties. However ascorbic acid shows unfavourable chemical instability such as oxidation leading to formulation problems. Therefore, carriers, such as micro- and nanoparticles, have been widely investigated as delivery systems for vitamin C to improve its beneficial effects in skin treatment. However, none of the previous studies have been able to produce microparticles with a high encapsulation entrapment of vitamin C. The aim of the present study is to use an experimental design to optimize the synthesis of polyamide microparticles for the delivery of ascorbic acid. The effect of four formulation parameters on microparticles properties (size and morphology, encapsulation efficiency and yield, release kinetics were investigated using a surface response design. Finally, we were able to obtain stable microparticles containing more than 65% of vitamin C. This result confirms the effectiveness of using design of experiments for the optimisation of microparticle formulation and supports the proposal of using them as candidate for the delivery of vitamin C in skin treatment.

  19. Preparation of thiomer microparticles and in vitro evaluation of parameters influencing their mucoadhesive properties.

    Science.gov (United States)

    Albrecht, K; Zirm, E J; Palmberger, T F; Schlocker, W; Bernkop-Schnürch, A

    2006-01-01

    It was the aim of this study to develop mucoadhesive microparticulate delivery systems based on thiomers and to investigate parameters influencing their mucoadhesive properties. Microparticles were prepared via coazervation of thiolated or unmodified polycarbophil with fluorescein-diacetate as marker. The protective effect of the polymers toward enzymatic hydrolysis by intestinal enzymes was investigated. Mucoadhesion studies with microparticles, applied in dry and prehydrated form, were performed by ascertaining their residence time on intestinal mucosa. Furthermore, the influence of the amount of thiol groups on mucoadhesion was studied in vitro. Results showed that in comparison to unmodified polycarbophil, thiolated polycarbophil provided a more than 3-fold higher protective effect for the incorporated marker fluorescein-diacetate toward hydrolysis. When being applied in dry form 23.4 +/- 4.8% of the fluorescence marker being embedded in thiomer microparticles remained adhering to the intestinal mucosa within 3 h. In contrast, only 11.6 +/- 2.0% of the marker remained on the mucosa, when the thiomer microparticles were applied in prehydrated form. In addition, tests performed to assess the impact of the amount of thiol groups pointed out that a high amount of thiol groups is advantageous in order to further improve mucoadhesive properties. This knowledge should contribute to the design of highly efficient drug delivery systems being based on thiomer microparticles.

  20. Development of thiolated poly(acrylic acid) microparticles for the nasal administration of exenatide.

    Science.gov (United States)

    Millotti, Gioconda; Vetter, Anja; Leithner, Katharina; Sarti, Federica; Shahnaz Bano, Gul; Augustijns, Patrick; Bernkop-Schnürch, Andreas

    2014-12-01

    The purpose of this study was to develop a microparticulate formulation for nasal delivery of exenatide utilizing a thiolated polymer. Poly(acrylic acid)-cysteine (PAA-cys) and unmodified PAA microparticles loaded with exenatide were prepared via coprecipitation of the drug and the polymer followed by micronization. Particle size, drug load and release of incorporated exenatide were evaluated. Permeation enhancing properties of the formulations were investigated on excised porcine respiratory mucosa. The viability of the mucosa was investigated by histological studies. Furthermore, ciliary beat frequency (CBF) studies were performed. Microparticles displayed a mean size of 70-80 µm. Drug encapsulation was ∼80% for both thiolated and non-thiolated microparticles. Exenatide was released from both thiolated and non-thiolated particles in comparison to exenatide in buffer only within 40 min. As compared to exenatide dissolved in buffer only, non-thiolated and thiolated microparticles resulted in a 2.6- and 4.7-fold uptake, respectively. Histological studies performed before and after permeation studies showed that the mucosa is not damaged during permeation studies. CBF studies showed that the formulations were cilio-friendly. Based on these results, poly(acrylic acid)-cysteine-based microparticles seem to be a promising approach starting point for the nasal delivery of exenatide.

  1. An Optical Biosensing Platform using Reprecipitated Polyaniline Microparticles

    Science.gov (United States)

    Nemzer, Louis; Epstein, Arthur

    2009-03-01

    A great deal of effort remains focused on the goal of developing a continuous in vivo glucose monitoring system for patients with diabetes mellitus. We report a proof-of-concept study on a reagentless optical biosensing platform that circumvents the problems usually associated with direct glucose detection by utilizing the UV-VIS absorption properties of polyaniline, a biocompatible polymer. When the enzyme glucose oxidase is entrapped within reprecipitated polyaniline microparticles, a glucose molecule readily donates two protons and two electrons to the polyaniline, reversibly altering the polymer's oxidation state. The resultant change can be monitored by measuring the absorption at wavelengths that fall within the ``optical window'' for skin. The micro-structured morphology also insures a high surface-area to volume ratio. Data from in vitro prototype devices indicate that in the low enzyme-loading regime, the response can be fit to the Michaelis-Menten model for enzyme kinetics, but at higher enzyme loading, diffusion effects dominate. As a biosensing platform, the system also has the potential to be adapted to detect other biologically relevant analytes, including cholesterol and ethanol.

  2. Magnetic microparticle-polydimethylsiloxane composite for reversible microchannel bonding.

    Science.gov (United States)

    Tsao, Chia-Wen; Lee, Yueh-Pu

    2016-01-01

    In this study, an iron oxide magnetic microparticles and poly(dimethylsiloxane) (MMPs-PDMS) composite material was employed to demonstrate a simple high-strength reversible magnetic bonding method. This paper presents the casting of opaque-view (where optical inspection through the microchannels was impossible) and clear-view (where optical inspection through the microchannel was possible) MMPs-PDMS. The influence of the microchannel geometries on the casting of the opaque-view casting was limited, which is similar to standard PDMS casting. Clear-view casting performance was highly associated with the microchannel geometries. The effects of the microchannel layout and the gap between the PDMS cover layer and the micromold substrate were thoroughly investigated. Compared with the native PDMS bonding strength of 31 kPa, the MMPs-PDMS magnetic bonding experiments showed that the thin PDMS film with an MMPs-PDMS layer effectively reduced the surface roughness and enhanced MMPs-PDMS reversible magnetic bonding strength. A thin PDMS film-coated opaque-view MMPs-PDMS device exhibited the greatest bonding strength of 110 kPa, and a clear-view MMPs-PDMS device with a thin PDMS film attained a magnetic bonding strength of 81 kPa.

  3. Governing Principles of Alginate Microparticle Synthesis with Centrifugal Forces.

    Science.gov (United States)

    Eral, Huseyin Burak; Safai, Eric R; Keshavarz, Bavand; Kim, Jae Jung; Lee, Jisoek; Doyle, P S

    2016-07-19

    A controlled synthesis of polymeric particles is becoming increasingly important because of emerging applications ranging from medical diagnostics to self-assembly. Centrifugal synthesis of hydrogel microparticles is a promising method, combining rapid particle synthesis and the ease of manufacturing with readily available laboratory equipment. This method utilizes centrifugal forces to extrude an aqueous polymer solution, sodium alginate (NaALG) through a nozzle. The extruded solution forms droplets that quickly cross-link upon contact with aqueous calcium chloride (CaCl2) solution to form hydrogel particles. The size distribution of hydrogel particles is dictated by the pinch-off behavior of the extruded solution through a balance of inertial, viscous, and surface tension stresses. We identify the parameters dictating the particle size and provide a numerical correlation predicting the average particle size. Furthermore, we create a phase map identifying different pinch-off regimes (dripping without satellites, dripping with satellites, and jetting), explaining the corresponding particle size distributions, and present scaling arguments predicting the transition between regimes. By shedding light on the underlying physics, this study enables the rational design and operation of particle synthesis by centrifugal forces.

  4. Porous silicon microparticles for delivery of siRNA therapeutics.

    Science.gov (United States)

    Shen, Jianliang; Wu, Xiaoyan; Lee, Yeonju; Wolfram, Joy; Yang, Zhizhou; Mao, Zong-Wan; Ferrari, Mauro; Shen, Haifa

    2015-01-15

    Small interfering RNA (siRNA) can be used to suppress gene expression, thereby providing a new avenue for the treatment of various diseases. However, the successful implementation of siRNA therapy requires the use of delivery platforms that can overcome the major challenges of siRNA delivery, such as enzymatic degradation, low intracellular uptake and lysosomal entrapment. Here, a protocol for the preparation and use of a biocompatible and effective siRNA delivery system is presented. This platform consists of polyethylenimine (PEI) and arginine (Arg)-grafted porous silicon microparticles, which can be loaded with siRNA by performing a simple mixing step. The silicon particles are gradually degraded over time, thereby triggering the formation of Arg-PEI/siRNA nanoparticles. This delivery vehicle provides a means for protecting and internalizing siRNA, without causing cytotoxicity. The major steps of polycation functionalization, particle characterization, and siRNA loading are outlined in detail. In addition, the procedures for determining particle uptake, cytotoxicity, and transfection efficacy are also described.

  5. Antiplatelet Agents Inhibit the Generation of Platelet-Derived Microparticles

    Science.gov (United States)

    Giacomazzi, Alice; Degan, Maurizio; Calabria, Stefano; Meneguzzi, Alessandra; Minuz, Pietro

    2016-01-01

    Platelet microparticles (PMPs) contribute to thrombogenesis but the effects of antiplatelet drugs on PMPs generation is undefined. The present study investigated the cellular events regulating PMPs shedding, testing in vitro platelet agonists and inhibitors. Platelet-rich plasma from healthy subjects was stimulated with arachidonic acid (AA), U46619, collagen type-I (10 and 1.5 μg/mL), epinephrine, ADP or TRAP-6 and pre-incubated with acetylsalicylic acid (ASA, 100 and 10 μmol/L), SQ-29,548, apyrase, PSB-0739, or eptifibatide. PMPs were detected by flow-cytometry using CD61 and annexin-V as fluorescent markers. Platelet agonists induced annexin V-positive PMPs shedding. The strongest response was to high concentration collagen. ADP-triggered PMPs shedding was dose-independent. ASA reduced PMPs induced by AA- (645, 347–2946 vs. 3061, 446–4901 PMPs/μL; median ad range, n = 9, P PMP shedding. The crucial role of the fibrinogen receptor and the collagen receptor in PMPs generation, independently of platelet aggregation, was identified. PMID:27695417

  6. Procoagulant behavior and platelet microparticle generation on nanoporous alumina.

    Science.gov (United States)

    Ferraz, Natalia; Hong, Jaan; Karlsson Ott, Marjam

    2010-05-01

    In the present work, we have investigated platelet microparticle (PMP) generation in whole blood after contact with nanoporous alumina. Alumina membranes with pore sizes of 20 and 200 nm in diameter were incubated with whole blood and the number of PMP in the fluid phase was determined by flow cytometry. The role of the complement system in PMP generation was investigated using an analog of the potent complement inhibitor compstatin. Moreover, the procoagulant activity of the two pore size membranes were compared by measuring thrombin formation. Results indicated that PMP were not present in the fluid phase after whole blood contact with either of the alumina membranes. However, scanning electron microscope micrographs clearly showed the presence of PMP clusters on the 200 nm pore size alumina, while PMP were practically absent on the 20 nm membrane. We probed no influence of complement activation in PMP generation and adhesion and we hypothesize that other specific material-related protein-platelet interactions are taking place. A clear difference in procoagulant activity between the membranes could also be seen, 20 nm alumina showed 100% higher procoagulant activity than 200 nm membrane. By combining surface evaluation and flow cytometry analyses of the fluid phase, we are able to conclude that 200 nm pore size alumina promotes PMP generation and adhesion while the 20 nm membrane does not appreciably cause any release or adhesion of PMP, thus indicating a direct connection between PMP generation and nanoporosity.

  7. Microparticles as players in the pathogenesis of cardiovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Alexandru, N.; Georgescu, A.

    2015-07-01

    Cardiovascular diseases (CVD) are the largest cause of morbidity and mortality in the world and include all diseases and conditions of the heart and blood vessels. The main cause of most CVD is atherosclerosis, which is an abnormal build-up of fat and other substances which form plaque inside the arteries. Atherosclerosis is most serious when it leads to reduced or blocked blood supply to the heart (causing angina or heart attack) or to the brain (causing a stroke). The majority of CVD is caused by risk factors that can be controlled, treated or modified. Microparticles (MPs) are now recognized as potential biomarkers and key elements in the development of CVD. Although MP generation is a physiological phenomenon, their shedding from a variety of cell types into body fluid is intensified in response to cellular activation, high shear stress, as well as cellular apoptosis. In this review we outline distinct aspect of MP generation and their side as players n the CVD development.

  8. Analysis of the Particle Formation Process of Structured Microparticles.

    Science.gov (United States)

    Baldelli, Alberto; Boraey, Mohammed A; Nobes, David S; Vehring, Reinhard

    2015-08-03

    The particle formation process for microparticles of cellulose acetate butyrate dried from an acetone solution was investigated experimentally and theoretically. A monodisperse droplet chain was used to produce solution microdroplets in a size range of 55-70 μm with solution concentrations of 0.37 and 10 mg/mL. As the droplets dried in a laminar air flow with a temperature of 30, 40, or 55 °C, the particle formation process was recorded by two independent optical methods. Dried particles in a size range of 10-30 μm were collected for morphology analysis, showing hollow, elongated particles whose structure was dependent on the drying gas temperature and initial solution concentration. The setup allowed comprehensive measurements of the particle formation process to be made, including the period after initial shell formation. The early particle formation process for this system was controlled by the diffusion of cellulose acetate butyrate in the liquid phase, whereas later stages of the process were dominated by shell buckling and folding.

  9. One-Step Production of Protein-Loaded PLGA Microparticles via Spray Drying Using 3-Fluid Nozzle

    DEFF Research Database (Denmark)

    Wan, Feng; Maltesen, Morten Jonas; Andersen, Sune Klint;

    2014-01-01

    The aim of this study was to investigate the potential of using a spray-dryer equipped with a 3-fluid nozzle to microencapsulate protein drugs into polymeric microparticles.......The aim of this study was to investigate the potential of using a spray-dryer equipped with a 3-fluid nozzle to microencapsulate protein drugs into polymeric microparticles....

  10. Formulation of olfactory-targeted microparticles with tamarind seed polysaccharide to improve nose-to-brain transport of drugs.

    Science.gov (United States)

    Yarragudi, Sasi B; Richter, Robert; Lee, Helen; Walker, Greg F; Clarkson, Andrew N; Kumar, Haribalan; Rizwan, Shakila B

    2017-05-01

    Targeted delivery and retention of drug formulations in the olfactory mucosa, the target site for nose-to-brain drug absorption is a major challenge due to the geometrical complexity of the nose and nasal clearance. Recent modelling data indicates that 10μm-sized microparticles show maximum deposition in the olfactory mucosa. In the present study we tested the hypothesis that 10μm-sized mucoadhesive microparticles would preferentially deposit on, and increase retention of drug on, the olfactory mucosa in a novel 3D-printed human nasal-replica cast under simulated breathing. The naturally occurring mucoadhesive polymer, tamarind seed polysaccharide (TSP) was used to formulate the microparticles using a spray drying technique. Physicochemical properties of microparticles such as size, morphology and mucoadhesiveness was investigated using a combination of laser diffraction, electron microscopy and texture-analysis. Furthermore, FITC-dextrans (5-40kDa) were incorporated in TSP-microparticles as model drugs. Size-dependent permeability of the FITC-dextrans was observed ex vivo using porcine nasal mucosa. Using the human nasal-replica cast, greater deposition of 10μm TSP-microparticles in the olfactory region was observed compared to TSP-microparticles 2μm in size. Collectively, these findings support our hypothesis that 10μm-sized mucoadhesive microparticles can achieve selective deposition and retention of drug in the olfactory mucosa.

  11. Neurokinin 1 receptor mediates membrane blebbing and sheer stress-induced microparticle formation in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Panpan Chen

    Full Text Available Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP. We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2-10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing.

  12. Microparticle record in the Guliya ice core and its comparison with polar records since the last interglacial

    Institute of Scientific and Technical Information of China (English)

    WU Guangjian; YAO Tandong; L.G. Thompson; LI Zhongqin

    2004-01-01

    Based on the study of oxygen isotope and microparticle in the Guliya ice core, atmospheric dust and environmental changes in the northwest Tibetan Plateau since the last interglacial were revealed. The microparticle record indicates that Iow dust load on the Plateau in the interglacial.Particle concentration increased rapidly when the climate turned into the last glacial and reached the maximum during the MIS 4. In the Last Glacial Maximum, however, the enhancement of microparticle concentration was slight, differing to those in the Antarctic and Greenland. On the orbital timescale, both the temperature on the Tibetan Plateau and summer solar insolation in the Northern Hemisphere had their impact on the microparticle record, but the difference in phase and amplitude also existed. Though having the same dust source, microparticle records in the ice cores on the Tibetan Plateau and the Greenland seem to have different significance.

  13. Production and characterization of engineered alginate-based microparticles containing ECM powder for cell/tissue engineering applications.

    Science.gov (United States)

    Mazzitelli, Stefania; Luca, Giovanni; Mancuso, Francesca; Calvitti, Mario; Calafiore, Riccardo; Nastruzzi, Claudio; Johnson, Scott; Badylak, Stephen F

    2011-03-01

    A method for the production of engineered alginate-based microparticles, containing extracellular matrix and neonatal porcine Sertoli cells (SCs), is described. As a source for extracellular matrix, a powder form of isolated and purified urinary bladder matrix (UBM) was employed. We demonstrated that the incorporation of UBM does not significantly alter the morphological and dimensional characteristics of the microparticles. The alginate microparticles were used for SC encapsulation as an immunoprotective barrier for transplant purposes, while the co-entrapped UBM promoted retention of cell viability and function. These engineered microparticles could represent a novel approach to enhancing immunological acceptance and increasing the functional life-span of the entrapped cells for cell/tissue engineering applications. In this respect, it is noteworthy that isolated neonatal porcine SCs, administered alone in highly biocompatible microparticles, led to diabetes prevention and reversion in nonobese diabetic (NOD) mice.

  14. Preparation and In Vitro Release of Drug-Loaded Microparticles for Oral Delivery Using Wholegrain Sorghum Kafirin Protein

    Directory of Open Access Journals (Sweden)

    Esther T. L. Lau

    2015-01-01

    Full Text Available Kafirin microparticles have been proposed as an oral nutraceutical and drug delivery system. This study investigates microparticles formed with kafirin extracted from white and raw versus cooked red sorghum grains as an oral delivery system. Targeted delivery to the colon would be beneficial for medication such as prednisolone, which is used in the management of inflammatory bowel disease. Therefore, prednisolone was loaded into microparticles of kafirin from the different sources using phase separation. Differences were observed in the protein content, in vitro protein digestibility, and protein electrophoretic profile of the various sources of sorghum grains, kafirin extracts, and kafirin microparticles. For all of the formulations, the majority of the loaded prednisolone was not released in in vitro conditions simulating the upper gastrointestinal tract, indicating that most of the encapsulated drug could reach the target area of the lower gastrointestinal tract. This suggests that these kafirin microparticles may have potential as a colon-targeted nutraceutical and drug delivery system.

  15. Cause or effect of arteriogenesis: compositional alterations of microparticles from CAD patients undergoing external counterpulsation therapy.

    Directory of Open Access Journals (Sweden)

    Ali Al Kaabi

    Full Text Available UNLABELLED: Recently, a clinical study on patients with stable coronary artery disease (CAD showed that external counterpulsation therapy (ECP at high (300 mmHg but not at low inflation pressure (80 mmHg promoted coronary collateral growth, most likely due to shear stress-induced arteriogenesis. The exact molecular mechanisms behind shear stress-induced arteriogenesis are still obscure. We therefore characterized plasma levels of circulating microparticles (MPs from these CAD patients because of their ambivalent nature as a known cardiovascular risk factor and as a promoter of neovascularization in the case of platelet-derived MPs. MPs positive for Annexin V and CD31CD41 were increased, albeit statistically significant (P<0.05, vs. baseline only in patients receiving high inflation pressure ECP as determined by flow cytometry. MPs positive for CD62E, CD146, and CD14 were unaffected. In high, but not in low, inflation pressure treatment, change of CD31CD41 was inversely correlated to the change in collateral flow index (CFI, a measure for collateral growth. MPs from the high inflation pressure group had a more sustained pro-angiogenic effect than the ones from the low inflation pressure group, with the exception of one patient showing also an increased CFI after treatment. A total of 1005 proteins were identified by a label-free proteomics approach from MPs of three patients of each group applying stringent acceptance criteria. Based on semi-quantitative protein abundance measurements, MPs after ECP therapy contained more cellular proteins and increased CD31, corroborating the increase in MPs. Furthermore, we show that MP-associated factors of the innate immune system were decreased, many membrane-associated signaling proteins, and the known arteriogenesis stimulating protein transforming growth factor beta-1 were increased after ECP therapy. In conclusion, our data show that ECP therapy increases platelet-derived MPs in patients with CAD and

  16. Erosion processes and micro-particle production in gas discharge lasers

    Energy Technology Data Exchange (ETDEWEB)

    Letardi, T.; Giordano, G. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Dipt. Innovazione

    1999-07-01

    The erosion processes of the cathode for pulsed excimer gas lasers are explained by comparing the initiation conditions of the pulsed excimer gas laser discharge to that of the vacuum discharge breakdown. The number of the micro-particles, generated due to the above cathode-processes, are estimated. Several possible influences of the micro-particles on performances of the gas discharge lasers are analyzed. Two methods for eliminating the micro-particles or reducing their influences are discussed. [Italian] Viene descritto, comparandolo con la scarica in vuoto, il processo di erosione del catodo di un laser ad eccimeri a scarica. Viene stimato il numero delle micro-particelle generate dal processo di scarica. Vengono analizzate le possibili influenze di tali micro-particelle sulle prestazioni dei laser a scarica. Sono presentati e discussi due possibili metodi per la eliminazione delle micro-particelle generate dalla scarica.

  17. Porous microwells for geometry-selective, large-scale microparticle arrays

    Science.gov (United States)

    Kim, Jae Jung; Bong, Ki Wan; Reátegui, Eduardo; Irimia, Daniel; Doyle, Patrick S.

    2017-01-01

    Large-scale microparticle arrays (LSMAs) are key for material science and bioengineering applications. However, previous approaches suffer from trade-offs between scalability, precision, specificity and versatility. Here, we present a porous microwell-based approach to create large-scale microparticle arrays with complex motifs. Microparticles are guided to and pushed into microwells by fluid flow through small open pores at the bottom of the porous well arrays. A scaling theory allows for the rational design of LSMAs to sort and array particles on the basis of their size, shape, or modulus. Sequential particle assembly allows for proximal and nested particle arrangements, as well as particle recollection and pattern transfer. We demonstrate the capabilities of the approach by means of three applications: high-throughput single-cell arrays; microenvironment fabrication for neutrophil chemotaxis; and complex, covert tags by the transfer of an upconversion nanocrystal-laden LSMA.

  18. Dynamic transformation of self-assembled structures using anisotropic magnetized hydrogel microparticles

    Science.gov (United States)

    Yoshida, Satoru; Takinoue, Masahiro; Iwase, Eiji; Onoe, Hiroaki

    2016-08-01

    This paper describes a system through which the self-assembly of anisotropic hydrogel microparticles is achieved, which also enables dynamic transformation of the assembled structures. Using a centrifuge-based microfluidic device, anisotropic hydrogel microparticles encapsulating superparamagnetic materials on one side are fabricated, which respond to a magnetic field. We successfully achieve dynamic assembly using these hydrogel microparticles and realize three different self-assembled structures (single and double pearl chain structures, and close-packed structures), which can be transformed to other structures dynamically via tuning of the precessional magnetic field. We believe that the developed system has potential application as an effective platform for a dynamic cell manipulation and cultivation system, in biomimetic autonomous microrobot organization, and that it can facilitate further understanding of the self-organization and complex systems observed in nature.

  19. High encapsulation efficiency of sodium alendronate in eudragit S100/HPMC blend microparticles

    Directory of Open Access Journals (Sweden)

    Letícia Cruz

    2009-01-01

    Full Text Available The hydrophilic drug sodium alendronate was encapsulated in blended microparticles of Eudragit® S100 and Methocel® F4M or Methocel® K100LV. Both formulations prepared by spray-drying showed spherical collapsed shape and smooth surface, encapsulation efficiencies of 85 and 82% and mean diameters of 11.7 and 8.4 µm, respectively. At pH 1.2, in vitro dissolution studies showed good gastro-resistance for both formulations. At pH 6.8, the sodium alendronate release from the microparticles was delayed and was controlled by Fickian diffusion. In conclusion, the prepared microparticles showed high encapsulation efficiency of sodium alendronate presenting gastro-resistance and sustained release suitable for its oral administration.

  20. Alginate/chitosan microparticles for tamoxifen delivery to the lymphatic system.

    Science.gov (United States)

    Coppi, G; Iannuccelli, V

    2009-02-09

    Oral administration of the nonsteroidal anti-estrogen tamoxifen (TMX) is the treatment of choice for metastatic estrogen receptor-positive breast cancer. With the aim to improve TMX oral bioavailability and decrease its side effects, crosslinked alginate microparticles for the targeting to the lymphatic system by Peyer's patch (PP) uptake were developed and in vitro characterized. TMX was molecularly dispersed inside the microparticles and an electrostatic interaction involving the TMX tertiary amine was detected by rheological and FT-IR assays. Microparticles showed a size less than 3mum, then suitability to be taken up by M cells in PP and a positive surface charge. Moreover, TMX loading level as well as in vitro release behaviour was affected by the polymer network connected with the mannuronic/guluronic ratio of the alginate chains.

  1. Analysis for the axial force exerted on a micro-particle in the optical vortex

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The axial force exerting to a micro-particle in the TEM01* doughnut mode is calculated by using the ray-optic model. The calculated results show that the optical vortex possesses two advantages in trapping the high-index micro-particles compared with that of the conventional optical tweezers,of which one is the axial force induced by the optical vortex and is three times as great as that of the optical tweezers under the same power level, and the other is of two equilibrium positions in the optical vortex, which indicates that optical vortex is more suitable in trapping particles. Furthermore, the optical vortex can trap the low-index micro-particles, which can not by the conventional optical tweezers.

  2. Biodegradable microparticles with surface dimples as a bi-modal imaging contrast agent.

    Science.gov (United States)

    Kim, Mi Ri; Lim, Yong Taik; Cho, Kuk Young

    2013-03-12

    Fabrication of physically engineered colloids and their application to the biological fields is emerging importance because of their potential to provide an enhanced performance without altering the chemical properties of biomaterials used. A facile approach is reported to fabricate sub-10-μm-sized PLGA microparticle with small dimples covering the surface by droplet imprinting. Optical and magnetic resonance bioimaging agents are easily co-encapsulated inside the microparticles to obtain a bi-modal imaging agent. Cell internalization efficacy of dimpled particles in DC 2.4 cell is enhanced compared with conventional smooth round-shaped colloids. Our result indicates that morphology-controlled microparticles show promise as a cell labeling with improved cell interaction.

  3. Internal structure of cesium-bearing radioactive microparticles released from Fukushima nuclear power plant

    Science.gov (United States)

    Yamaguchi, Noriko; Mitome, Masanori; Kotone, Akiyama-Hasegawa; Asano, Maki; Adachi, Kouji; Kogure, Toshihiro

    2016-02-01

    Microparticles containing substantial amounts of radiocesium collected from the ground in Fukushima were investigated mainly by transmission electron microscopy (TEM) and X-ray microanalysis with scanning TEM (STEM). Particles of around 2 μm in diameter are basically silicate glass containing Fe and Zn as transition metals, Cs, Rb and K as alkali ions, and Sn as substantial elements. These elements are homogeneously distributed in the glass except Cs which has a concentration gradient, increasing from center to surface. Nano-sized crystallites such as copper- zinc- and molybdenum sulfide, and silver telluride were found inside the microparticles, which probably resulted from the segregation of the silicate and sulfide (telluride) during molten-stage. An alkali-depleted layer of ca. 0.2 μm thick exists at the outer side of the particle collected from cedar leaves 8 months after the nuclear accident, suggesting gradual leaching of radiocesium from the microparticles in the natural environment.

  4. A Microfluidic Chip Using Phenol Formaldehyde Resin for Uniform-Sized Polycaprolactone and Chitosan Microparticle Generation

    Directory of Open Access Journals (Sweden)

    Wan-Chen Hsieh

    2013-06-01

    Full Text Available This study develops a new solvent-compatible microfluidic chip based on phenol formaldehyde resin (PFR. In addition to its solvent-resistant characteristics, this microfluidic platform also features easy fabrication, organization, decomposition for cleaning, and reusability compared with conventional chips. Both solvent-dependent (e.g., polycaprolactone and nonsolvent-dependent (e.g., chitosan microparticles were successfully prepared. The size of emulsion droplets could be easily adjusted by tuning the flow rates of the dispersed/continuous phases. After evaporation, polycaprolactone microparticles ranging from 29.3 to 62.7 μm and chitosan microparticles ranging from 215.5 to 566.3 μm were obtained with a 10% relative standard deviation in size. The proposed PFR microfluidic platform has the advantages of active control of the particle size with a narrow size distribution as well as a simple and low cost process with a high throughput.

  5. Enzyme encapsulation in magnetic chitosan-Fe3O4 microparticles.

    Science.gov (United States)

    Costa-Silva, Tales Alexandre; Marques, Polyana Samorano; Souza, Cláudia Regina Fernandes; Said, Suraia; Oliveira, Wanderley Pereira

    2015-01-01

    Two simple procedures for the preparation of magnetic chitosan enzyme microparticles have been investigated and used for the immobilisation of endophytic fungus Cercospora kikuchii lipase as model enzyme. In the first case, lipase was entrapped in Fe3O4-chitosan microparticles by cross-linking method, while in the second case magnetic immobilised derivatives were produced using spray drying. Immobilised enzymes showed high enzyme activity retention and stability during storage without significant loss of activity. Glutaraldehyde Fe3O4-chitosan powders presented a higher lipase activity retention and storage stability than the others preparations. However, the immobilised derivatives produced by cross-linking showed higher enzyme activity after reuse cycles. The results proved that the magnetic Fe3O4-chitosan microparticles are an effective support for the enzyme immobilisation since the immobilised lipase showed best properties than the free form.

  6. Fabrication and application of porous silicon multilayered microparticles in sustained drug delivery

    Science.gov (United States)

    Maniya, Nalin H.; Patel, Sanjaykumar R.; Murthy, Z. V. P.

    2015-09-01

    In the present study, the ability of porous silicon (PSi) based distributed Bragg reflector (DBR) microparticles for sustained and observable delivery of the antiviral agent acyclovir (ACV) is demonstrated. DBR was fabricated by electrochemical etching of single crystal silicon wafers and ultrasonic fractured to prepare microparticles. The hydrogen-terminated native surface of DBR microparticles was modified by thermal oxidation and thermal hydrosilylation. Particles were loaded with ACV and drug release experiments were conducted in phosphate buffered saline. Drug loading and surface chemistry of particles were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Drug release profiles from PSi DBR particles show sustained release behavior from all three studied surface chemistries. Drug release from particles was also monitored from change in color of particles.

  7. Microparticle Formation and Crystallization Rate of HMX with Supercritical CO2 Antisolvent Recrystallization

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Microparticle formation and crystallization rate of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX) in acetone solution using supercritical carbon dioxide antisolvent (GAS) recrystallization were studied. Scanning electronic microscopy, X-ray diffraction and infrared radiation were used to examine particle size, crystallinity and chemical structure. The results show that β-HMX microparticle in different average size (2-9.5μm) and with narrow size distribution were obtained by controlling the expansibility, expansion speed, initial concentration and temperature during recrystallization of HMX. The formation of nuclei may be a main cause of consumption of solute when the solution is expanded rapidly enough and the equilibrium concentration is lower, in which almost monodisperse microparticle can be obtained.

  8. Microparticle Formation and Crystallization Rate of HMX with Supercritical CO2 Antisolvent Recrystallization

    Institute of Scientific and Technical Information of China (English)

    蔡建国; 周展云; 邓修

    2001-01-01

    Microparticle formation and crystallization rate of 1,3,5,7-tetranitro-l,3,5,7-tetraazacyclooctane (HMX) in acetone solution using supercritical carbon dioxide antisolvent (GAS) recrystallization were studied. Scanning electronic microscopy, X-ray diffraction and infrared radiation were used to examine particle size, crystallinity and chemical structure. The results show that β-HMX microparticle in different average size (2--9.5μm) and with narrow size distribution were obtained by controlling the expansibility, expansion speed, initial concentration and temperature during recrystallization of HMX. The formation of nuclei may be a main cause of consumption of solute when the solution is expanded rapidly enough and the equilibrium concentration is lower, in which almost monodisperse microparticle can be obtained.

  9. Periodontitis as a risk factor for systemic disease: Are microparticles the missing link?

    Science.gov (United States)

    Badran, Zahi; Struillou, Xavier; Verner, Christian; Clee, Thibaud; Rakic, Mia; Martinez, Maria C; Soueidan, Assem

    2015-06-01

    Periodontitis is an oral inflammatory disease affecting the teeth supportive tissue. Its bacterial infectious etiology is well established. Periodontitis has been associated with increased prevalence of systemic diseases such as cardiovascular diseases, diabetes, rheumatoid arthritis, preeclampsia, preterm birth and inflammatory bowel disease. The rational of considering periodontitis as risk factor for systemic disease is the passage of inflammatory cytokines and/or bacteria in the bloodstream, thus affecting distant organs. Membrane microparticles are released by multiple cells in inflammatory environment. Recent data suggested the role of these microparticles in the pathogenic process of many systemic diseases, that can be also associated to periodontitis. We hypothesized that periodontitis could be a chronic reservoir of microparticles, hence elucidating partially the interaction with systemic diseases initiation or progression.

  10. Single-, few-, and multilayer graphene not exhibiting significant advantages over graphite microparticles in electroanalysis.

    Science.gov (United States)

    Goh, Madeline Shuhua; Pumera, Martin

    2010-10-01

    This report compares the electroanalytical performances of single- (G-SL), few- (G-FL), and multilayer graphene (G-ML), graphite microparticles, and edge-plane pyrolytic graphite electrodes in terms of sensitivity, linearity, and repeatability. We show that in the case of differential pulse voltammetric (DPV) detection of ascorbic acid, the sensitivity of a G-SL electrode is about 30% greater than that of G-ML and about 40% greater than graphite microparticles. However, in the case of DPV determination of uric acid, sensitivity is practically the same for all (G-SL, G-FL, and G-ML) and, importantly, the graphite microparticles do provide higher sensitivity than graphenes do for this analyte. Graphenes also do not provide a significant advantage in terms of repeatability. We pose the question of whether the efforts leading to the bulk method of producing single-layer graphene are justified for electroanalytical applications.

  11. A Technique for Measuring Microparticles in Polar Ice Using Micro-Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Toshimitsu Sakurai

    2010-01-01

    Full Text Available We describe in detail our method of measuring the chemical forms of microparticles in polar ice samples through micro-Raman spectroscopy. The method is intended for solid ice samples, an important point because melting the ice can result in dissociation, contamination, and chemical reactions prior to or during a measurement. We demonstrate the technique of measuring the chemical forms of these microparticles and show that the reference spectra of those salts expected to be common in polar ice are unambiguously detected. From our measurements, Raman intensity of sulfate salts is relatively higher than insoluble dust due to the specific Raman scattering cross-section of chemical forms of microparticles in ice.

  12. Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles.

    Science.gov (United States)

    Keohane, Kieran; Brennan, Des; Galvin, Paul; Griffin, Brendan T

    2014-06-05

    The increasing realisation of the impact of size and surface properties on the bio-distribution of drug loaded colloidal particles has driven the application of micro fabrication technologies for the precise engineering of drug loaded microparticles. This paper demonstrates an alternative approach for producing size controlled drug loaded PLGA based microparticles using silicon Microfluidic Flow Focusing Devices (MFFDs). Based on the precise geometry and dimensions of the flow focusing channel, microparticle size was successfully optimised by modifying the polymer type, disperse phase (Qd) flow rate, and continuous phase (Qc) flow rate. The microparticles produced ranged in sizes from 5 to 50 μm and were highly monodisperse (coefficient of variation <5%). A comparison of Ciclosporin (CsA) loaded PLGA microparticles produced by MFFDs vs conventional production techniques was also performed. MFFDs produced microparticles with a narrower size distribution profile, relative to the conventional approaches. In-vitro release kinetics of CsA was found to be influenced by the production technique, with the MFFD approach demonstrating the slowest rate of release over 7 days (4.99 ± 0.26%). Finally, MFFDs were utilised to produce pegylated microparticles using the block co-polymer, PEG-PLGA. In contrast to the smooth microparticles produced using PLGA, PEG-PLGA microparticles displayed a highly porous surface morphology and rapid CsA release, with 85 ± 6.68% CsA released after 24h. The findings from this study demonstrate the utility of silicon MFFDs for the precise control of size and surface morphology of PLGA based microparticles with potential drug delivery applications.

  13. Preparation and In Vitro Evaluation of Ethylcellulose and Polymethacrylate Resins Loaded Microparticles Containing Hydrophilic Drug

    Directory of Open Access Journals (Sweden)

    Satish Pandav

    2014-01-01

    Full Text Available Objective. The purpose of the recent study was to prepare and estimate sustained release of Ethylcellulose (300 cps and Eudragit (RS 100 and RL 100 microparticles containing Propranolol hydrochloride used as a treatment of cardiovascular system, especially hypertension. Method. Propranolol hydrochloride was microencapsulated with different polymers (Ethylcellulose, Eudragit RS, and Eudragit RL using modified hydrophobic (O/O solvent evaporation method using 1 : 1 combination of acetone and isopropanol as the internal phase. Obtained microparticles were showing higher batch yield with higher encapsulation efficiency. Microparticles were prepared with different ratios of 1 : 1, 1 : 3, 1 : 5, and 1 : 7 (%, wt/wt using span 80 (%, v/v as a surfactant. Results. The influence of formulation factors like drug: polymer ratio, internal phase, and type of polymers on obtained microparticles was characterized with respect to particle size distribution, encapsulation efficiency, percentage yield, FTIR, and FE-SEM. Higher encapsulation efficiencies were obtained with various polymers like Ethylcellulose (96.63 ± 0.5 compared to Eudragit RS 100 (83.70 ± 0.6 and RL 100 (89.62 ± 0.6. The in vitro release study was characterized by initial burst. Conclusion. The result of study displays that Ethylcellulose and Eudragit loaded microparticles of Propranolol hydrochloride can be effectively prepared using modified hydrophobic emulsification solvent evaporation technique. Therefore, the modified hydrophobic emulsion technique can also be applied to the preparation of microparticles for low molecular weight and highly water soluble drugs.

  14. Nanoparticle-coated organic-inorganic microparticles: experimental design and gastrointestinal tolerance evaluation

    Directory of Open Access Journals (Sweden)

    Ruy Carlos R. Beck

    2006-10-01

    Full Text Available The influences of the spray-drying parameters and the type of nanoparticles (nanocapsules or nanospheres on the characteristics of nanoparticle-coated diclofenac-loaded microparticles were investigated by using a factorial design 3². Gastrointestinal tolerance following oral administration in rats was evaluated. Formulations were selected considering the best yields, the best encapsulation efficiencies and the lowest water contents, presenting surfaces completely coated by nanostructures and a decrease in the surface areas in relation to the uncoated core. In vitro drug release demonstrated the influence of the nanoparticle-coating on the dissolution profiles of diclofenac. Nanocapsule-coated microparticles presented a protective effect on the gastrointestinal mucosa.

  15. Nanoparticle-coated organic-inorganic microparticles: experimental design and gastrointestinal tolerance evaluation

    Directory of Open Access Journals (Sweden)

    Beck Ruy Carlos R.

    2006-01-01

    Full Text Available The influences of the spray-drying parameters and the type of nanoparticles (nanocapsules or nanospheres on the characteristics of nanoparticle-coated diclofenac-loaded microparticles were investigated by using a factorial design 3². Gastrointestinal tolerance following oral administration in rats was evaluated. Formulations were selected considering the best yields, the best encapsulation efficiencies and the lowest water contents, presenting surfaces completely coated by nanostructures and a decrease in the surface areas in relation to the uncoated core. In vitro drug release demonstrated the influence of the nanoparticle-coating on the dissolution profiles of diclofenac. Nanocapsule-coated microparticles presented a protective effect on the gastrointestinal mucosa.

  16. Electrochemical Oxidation of Paracetamol Mediated by MgB2 Microparticles Modified Glassy Carbon Electrode

    OpenAIRE

    Mohammed Zidan; Tan Wee Tee; A. Halim Abdullah; Zulkarnain Zainal; Goh Joo Kheng

    2011-01-01

    A MgB2 microparticles modified glassy carbon electrode (MgB2/GCE) was fabricated by adhering microparticles of MgB2 onto the electrode surface of GCE. It was used as a working electrode for the detection of paracetamol in 0.1 M KH2PO4 aqueous solution during cyclic voltammetry. Use of the MgB2/GCE the oxidation process of paracetamol with a current enhancement significantly by about 2.1 times. The detection limit of this modified electrode was found to be 30 μM. The sensitivity under conditio...

  17. Disintegration of nano-embedded microparticles after deposition on mucus: A mechanistic study

    DEFF Research Database (Denmark)

    Ruge, Christian A; Bohr, Adam; Beck-Broichsitter, Moritz;

    2016-01-01

    The conversion of colloidal drug carriers/polymeric nanoparticles into dry microparticulate powders (e.g., by spray-drying) is a prominent approach to overcome the aerodynamic limitations of these formulations for delivery via inhalation. However, to what extent such nano-embedded microparticles...... disintegrate into individual/intact nanoparticles after contacting relevant physiological media has so far not been addressed. Polymeric nanoparticles were spray-dried into nano-embedded microparticles (NEMs) using different amounts of trehalose as embedding matrix excipient. Formulations were characterized...

  18. Measurement of small light absorption in microparticles by means of optically induced rotation

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya; Maksimyak, P. P.;

    2015-01-01

    The absorption parameters of micro-particles have been associated with the induced spin exerted upon the particle, when embedded in a circularly polarized coherent field. The induced rotational speed is theoretically analyzed, showing the influence of the beam parameters, the parameters of the pa......The absorption parameters of micro-particles have been associated with the induced spin exerted upon the particle, when embedded in a circularly polarized coherent field. The induced rotational speed is theoretically analyzed, showing the influence of the beam parameters, the parameters...

  19. Micro-particle filter made in SU-8 for biomedical applications

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Urs; Fetz, Stefanie

    2009-01-01

    We have integrated a micro-particle filter in a polymer cantilever to filter micro-particles from a fluid while simultaneously measuring the amount of filtered particles. In a 3,8 mum thick SU-8 cantilever a filter was integrated with pore sizes between 3 and 30 mum. The chip was inserted...... in a microfluidic system and water with differently sized polystyrene beads was pumped through the filter. Particles which are larger than the pore sizes, cannot pass the filter and will increase the flow resistance of the cantilever. With more and more captured particles the cantilever starts to deflect, which can...

  20. Evaluation of cross-linked chitosan microparticles containing acyclovir obtained by spray-drying

    Energy Technology Data Exchange (ETDEWEB)

    Stulzer, Hellen Karine [Laboratorio Quitech, Departamento de Quimica, Universidade Federal de Santa Catarina (Brazil); Laboratorio de Controle de Qualidade, Departamento de Ciencias Farmaceuticas, Universidade Federal de Santa Catarina (Brazil); Laboratorio de Controle de Qualidade, Departamento de Ciencias Farmaceuticas, Universidade Estadual de Ponta Grossa (Brazil)], E-mail: hellen.stulzer@gmail.com; Tagliari, Monika Piazzon [Laboratorio de Controle de Qualidade, Departamento de Ciencias Farmaceuticas, Universidade Federal de Santa Catarina (Brazil); Parize, Alexandre Luis [Laboratorio Quitech, Departamento de Quimica, Universidade Federal de Santa Catarina (Brazil); Silva, Marcos Antonio Segatto [Laboratorio de Controle de Qualidade, Departamento de Ciencias Farmaceuticas, Universidade Federal de Santa Catarina (Brazil); Laranjeira, Mauro Cesar Marghetti [Laboratorio Quitech, Departamento de Quimica, Universidade Federal de Santa Catarina (Brazil)

    2009-03-01

    The aim of this study was to obtain microparticles containing acyclovir (ACV) and chitosan cross-linked with tripolyphosphate using the spray-drying technique. The resultant system was evaluated through loading efficiency, differential scanning calorimetry (DSC), thermogravimetric analysis (TG), X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), in vitro release and stability studies. The results obtained indicated that the polymer/ACV ratio influenced the final properties of the microparticles, with higher ratios giving the best encapsulation efficiency, dissolution profiles and stability. The DSC and XRPD analyses indicated that the ACV was transformed into amorphous form during the spray-drying process.

  1. Carbon Microparticles from Organosolv Lignin as Filler for Conducting Poly(Lactic Acid

    Directory of Open Access Journals (Sweden)

    Janea Köhnke

    2016-05-01

    Full Text Available Carbon microparticles were produced from organosolv lignin at 2000 °C under argon atmosphere following oxidative thermostabilisation at 250 °C. Scanning electron microscopy, X-ray diffraction, small-angle X-ray scattering, and electro-conductivity measurements revealed that the obtained particles were electrically conductive and were composed of large graphitic domains. Poly(lactic acid filled with various amounts of lignin-derived microparticles showed higher tensile stiffness increasing with particle load, whereas strength and extensibility decreased. Electric conductivity was measured at filler loads equal to and greater than 25% w/w.

  2. Physical and electrochemical study of cobalt oxide nano- and microparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alburquenque, D. [Dpto. de Química de los Materiales, USACh, Av. L.B.O.‘Higgins 3363, 9170022 Santiago (Chile); Dpto. de Metalurgia, USACh, Av. Ecuador 3469, 9170124, Santiago (Chile); Vargas, E. [Dpto. de Física, USACh and CEDENNA, Av. Ecuador 3493, 9170124 Santiago (Chile); Dpto. de Metalurgia, USACh, Av. Ecuador 3469, 9170124, Santiago (Chile); Denardin, J.C.; Escrig, J. [Dpto. de Física, USACh and CEDENNA, Av. Ecuador 3493, 9170124 Santiago (Chile); Marco, J.F. [Instituto de Química Física “Rocasolano”, CSIC, c/Serrano 119, 28006 Madrid (Spain); Ortiz, J. [Dpto. de Química de los Materiales, USACh, Av. L.B.O.‘Higgins 3363, 9170022 Santiago (Chile); Gautier, J.L., E-mail: juan.gautier@usach.cl [Dpto. de Química de los Materiales, USACh, Av. L.B.O.‘Higgins 3363, 9170022 Santiago (Chile)

    2014-07-01

    Cobalt oxide nanocrystals of size 17–21 nm were synthesized by a simple reaction between cobalt acetate (II) and dodecylamine. On the other hand, micrometric Co{sub 3}O{sub 4} was prepared using the ceramic method. The structural examination of these materials was performed using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM and HRTEM). XRD studies showed that the oxides were pure, well-crystallized, spinel cubic phases with a-cell parameter of 0.8049 nm and 0.8069 nm for the nano and micro-oxide, respectively. The average particle size was 19 nm (nano-oxide) and 1250 μm (micro-oxide). Morphological studies carried out by SEM and TEM analyses have shown the presence of octahedral particles in both cases. Bulk and surface properties investigated by X-ray photoelectron spectroscopy (XPS), point zero charge (pzc), FTIR and cyclic voltammetry indicated that there were no significant differences in the composition on both materials. The magnetic behavior of the samples was determined using a vibrating sample magnetometer. The compounds showed paramagnetic character and no coercivity and remanence in all cases. Galvanostatic measurements of electrodes formed with nanocrystals showed better performance than those built with micrometric particles. - Highlights: • Spinel Co{sub 3}O{sub 4} nanoparticles and microparticles with same structure but with different cell parameters, particle size and surface area were synthesized. • Oxide nanoparticles showed better electrochemical behavior than micrometric ones due to area effect.

  3. Inhalable DNase I microparticles engineered with biologically active excipients.

    Science.gov (United States)

    Osman, Rihab; Al Jamal, Khuloud T; Kan, Pei-Lee; Awad, Gehanne; Mortada, Nahed; El-Shamy, Abd-Elhameed; Alpar, Oya

    2013-12-01

    Highly viscous mucus poses a big challenge for the delivery of particulates carrying therapeutics to patients with cystic fibrosis. In this study, surface modifying DNase I loaded particles using different excipients to achieve better lung deposition, higher enzyme stability or better biological activity had been exploited. For the purpose, controlled release microparticles (MP) were prepared by co-spray drying DNase I with the polymer poly-lactic-co-glycolic acid (PLGA) and the biocompatible lipid surfactant 1,2-dipalmitoyl-Sn-phosphatidyl choline (DPPC) using various hydrophilic excipients. The effect of the included modifiers on the particle morphology, size, zeta potential as well as enzyme encapsulation efficiency, biological activity and release had been evaluated. Powder aerosolisation performance and particle phagocytosis by murine macrophages were also investigated. The results showed that more than 80% of enzyme activity was recovered after MP preparation and that selected surface modifiers greatly increased the enzyme encapsulation efficiency. The particle morphology was greatly modified altering in turn the powders inhalation indices where dextran, ovalbumin and chitosan hydrochloride increased considerably the respirable fraction compared to the normal hydrophilic carriers lactose and PVP. Despite of the improved aerosolisation caused by chitosan hydrochloride, yet retardation of chitosan coated particles in artificial mucus samples discouraged its application. On the other hand, dextran and polyanions enhanced DNase I effect in reducing cystic fibrosis mucus viscosity. DPPC proved good ability to reduce particles phagocytic uptake even in the presence of the selected adjuvants. The prepared MP systems were biocompatible with lung epithelial cells. To conclude, controlled release DNase I loaded PLGA-MP with high inhalation indices and enhanced mucolytic activity on CF sputum could be obtained by surface modifying the particles with PGA or dextran.

  4. Evaluation of ceftiofur–PHBV microparticles in rats

    Directory of Open Access Journals (Sweden)

    Vilos C

    2014-05-01

    the veterinary industry. Keywords: microparticles, drug delivery, Salmonella Typhimurium, rat infection model, blood parameters

  5. The fetal circulation.

    Science.gov (United States)

    Kiserud, Torvid; Acharya, Ganesh

    2004-12-30

    Accumulating data on the human fetal circulation shows the similarity to the experimental animal physiology, but with important differences. The human fetus seems to circulate less blood through the placenta, shunt less through the ductus venosus and foramen ovale, but direct more blood through the lungs than the fetal sheep. However, there are substantial individual variations and the pattern changes with gestational age. The normalised umbilical blood flow decreases with gestational age, and, at 28 to 32 weeks, a new level of development seems to be reached. At this stage, the shunting through the ductus venosus and the foramen ovale reaches a minimum, and the flow through the lungs a maximum. The ductus venosus and foramen ovale are functionally closely related and represent an important distributional unit for the venous return. The left portal branch represents a venous watershed, and, similarly, the isthmus aorta an arterial watershed. Thus, the fetal central circulation is a very flexible and adaptive circulatory system. The responses to increased afterload, hypoxaemia and acidaemia in the human fetus are equivalent to those found in animal studies: increased ductus venosus and foramen ovale shunting, increased impedance in the lungs, reduced impedance in the brain, increasingly reversed flow in the aortic isthmus and a more prominent coronary blood flow.

  6. Chitosan microparticles: influence of the gelation process on the release profile and oral bioavailability of albendazole, a class II compound.

    Science.gov (United States)

    Piccirilli, Gisela N; García, Agustina; Leonardi, Darío; Mamprin, María E; Bolmaro, Raúl E; Salomón, Claudio J; Lamas, María C

    2014-11-01

    Encapsulation of albendazole, a class II compound, into polymeric microparticles based on chitosan-sodium lauryl sulfate was investigated as a strategy to improve drug dissolution and oral bioavailability. The microparticles were prepared by spray drying technique and further characterized by means of X-ray powder diffractometry, infrared spectroscopy and scanning electron microscopy. The formation of a novel polymeric structure between chitosan and sodium lauryl sulfate, after the internal or external gelation process, was observed by infrared spectroscopy. The efficiency of encapsulation was found to be between 60 and 85% depending on the internal or external gelation process. Almost spherically spray dried microparticles were observed using scanning electron microscopy. In vitro dissolution results indicated that the microparticles prepared by internal gelation released 8% of the drug within 30 min, while the microparticles prepared by external gelation released 67% within 30 min. It was observed that the AUC and Cmax values of ABZ from microparticles were greatly improved, in comparison with the non-encapsulated drug. In conclusion, the release properties and oral bioavailability of albendazole were greatly improved by using spraydried chitosan-sodium lauryl sulphate microparticles.

  7. Diffusion loading and drug delivery characteristics of alginate gel microparticles produced by a novel impinging aerosols method.

    Science.gov (United States)

    Hariyadi, Dewi M; Lin, Sharon Chien-Yu; Wang, Yiwei; Bostrom, Thor; Turner, Mark S; Bhandari, Bhesh; Coombes, Allan G A

    2010-12-01

    Microencapsulation of a hydrophilic active (gentamicin sulphate (GS)) and a hydrophobic non-steroidal anti-inflammatory drug (ibuprofen) in alginate gel microparticles was accomplished by molecular diffusion of the drug species into microparticles produced by impinging aerosols of alginate solution and CaCl(2) cross-linking solution. A mean particle size in the range of 30-50 µm was measured using laser light scattering and high drug loadings of around 35 and 29% weight/dry microparticle weight were obtained for GS and ibuprofen respectively. GS release was similar in simulated intestinal fluid (phosphate buffer saline (PBS), pH 7.4, 37°C) and simulated gastric fluid (SGF) (HCl, pH 1.2, 37°C) but was accelerated in PBS following incubation of microparticles in HCl. Ibuprofen release was restricted in SGF but occurred freely on transfer of microparticles into PBS with almost 100% efficiency. GS released in PBS over 7 h, following incubation of microparticles in HCl for 2 h was found to retain at least 80% activity against Staphylococcus epidermidis while Ibuprofen retained around 50% activity against Candida albicans. The impinging aerosols technique shows potential for producing alginate gel microparticles of utility for protection and controlled delivery of a range of therapeutic molecules.

  8. PHBV/PCL Microparticles for Controlled Release of Resveratrol: Physicochemical Characterization, Antioxidant Potential, and Effect on Hemolysis of Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Jessica Bitencourt Emilio Mendes

    2012-01-01

    Full Text Available Microparticles of poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV and poly(ε-caprolactone (PCL containing resveratrol were successfully prepared by simple emulsion/solvent evaporation. All formulations showed suitable encapsulation efficiency values higher than 80%. PHBV microparticles revealed spherical shape with rough surface and presence of pores. PCL microparticles were spherically shaped with smooth surface. Fourier-transformed infrared spectra demonstrated no chemical bond between resveratrol and polymers. X-ray powder diffraction patterns and differential scanning calorimetry analyses indicated that microencapsulation led to drug amorphization. These PHBV/PCL microparticles delayed the dissolution profile of resveratrol. Release profiles were better fitted to biexponential equation. The hypochlorous-acid-scavenging activity and 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid radical cation discoloration assay confirmed that the antioxidant activity of PHBV/PCL microparticles was kept, but was dependent on the microparticle morphology and dissolution profile. Resveratrol-loaded PHBV/PCL microparticles showed no cytotoxic effect on red blood cells.

  9. Enhanced encapsulation and bioavailability of breviscapine in PLGA microparticles by nanocrystal and water-soluble polymer template techniques.

    Science.gov (United States)

    Wang, Hong; Zhang, Guangxing; Ma, Xueqin; Liu, Yanhua; Feng, Jun; Park, Kinam; Wang, Wenping

    2017-03-02

    Poly (lactide-co-glycolide) (PLGA) microparticles are widely used for controlled drug delivery. Emulsion methods have been commonly used for preparation of PLGA microparticles, but they usually result in low loading capacity, especially for drugs with poor solubility in organic solvents. In the present study, the nanocrystal technology and a water-soluble polymer template method were used to fabricate nanocrystal-loaded microparticles with improved drug loading and encapsulation efficiency for prolonged delivery of breviscapine. Breviscapine nanocrystals were prepared using a precipitation-ultrasonication method and further loaded into PLGA microparticles by casting in a mold from a water-soluble polymer. The obtained disc-like particles were then characterized and compared with the spherical particles prepared by an emulsion-solvent evaporation method. X-ray powder diffraction (XRPD) and confocal laser scanning microscopy (CLSM) analysis confirmed a highly-dispersed state of breviscapine inside the microparticles. The drug form, loading percentage and fabrication techniques significantly affected the loading capacity and efficiency of breviscapine in PLGA microparticles, and their release performance as well. Drug loading was increased from 2.4 % up to 15.3 % when both nanocrystal and template methods were applied, and encapsulation efficiency increased from 48.5 % to 91.9 %. But loading efficiency was reduced as the drug loading was increased. All microparticles showed an initial burst release, and then a slow release period of 28 days followed by an erosion-accelerated release phase, which provides a sustained delivery of breviscapine over a month. A relatively stable serum drug level for more than 30 days was observed after intramuscular injection of microparticles in rats. Therefore, PLGA microparticles loaded with nanocrystals of poorly soluble drugs provided a promising approach for long-term therapeutic products characterized with preferable in vitro and in

  10. Biodegradable microparticles and fiber fabrics for sustained delivery of cisplatin to treat C6 glioma in vitro.

    Science.gov (United States)

    Xie, Jingwei; Tan, Ruo Shan; Wang, Chi-Hwa

    2008-06-15

    The duration of cisplatin release from most of the drug delivery devices seemed to be shorter than 14 days except large microparticles. The objective of this study was to fabricate and characterize cisplatin-loaded PLA microparticles, PLA/PLGA (30/70) composite microparticles, and fibers as formulations for long-term sustained delivery of cisplatin to treat C6 glioma in vitro by electrospray and electrospinning techniques. Cisplatin-loaded biodegradable microparticles with particle size of around 5 microm and fiber fabrics with diameter of 0.5-1.7 microm were obtained using electrospray and electrospinning techniques. Encapsulation efficiency and in vitro release of formulations were measured by ICP-OES. The encapsulation efficiency for different samples of microparticles was approximately from 33% to 72% and the fiber fabrics had encapsulation efficiency greater than 90%. Cisplatin-loaded microparticles showed typical characteristics of cisplatin release profile: a large initial burst followed by a sustained slow release of 35 days. The composite PLA/PLGA (30/70) microparticles could reduce the initial burst release of cisplatin because of their core-shell structures. In contrast, more than 75 days sustained release could be achieved by fiber fabric formulations without large initial burst. MTT assay was used to quantify the cytotoxicity of different formulations against C6 glioma cells. Microparticle formulations had slightly higher cytotoxicity than free drug. In contrast, the cytotoxicity of fiber fabrics formulation was around 4 times higher than of the free drug based on the actual amount of drug released. The microparticle and fiber fabric formulations presented may be promising for the sustained delivery of cisplatin to eliminate the undesired side effects caused by direct injection of cisplatin solution in systemic administration.

  11. Design and characterization of core-shell mPEG-PLGA composite microparticles for development of cell-scaffold constructs.

    Science.gov (United States)

    Wen, Yanhong; Gallego, Monica Ramos; Nielsen, Lene Feldskov; Jorgensen, Lene; Møller, Eva Horn; Nielsen, Hanne Mørck

    2013-09-01

    Appropriate scaffolds capable of providing suitable biological and structural guidance are of great importance to generate cell-scaffold constructs for cell-based tissue engineering. The aim of the present study was to develop composite microparticles with a structure to provide functionality as a combined drug delivery/scaffold system. Composite microparticles were produced by incorporating either alginate/dermatan sulfate (Alg/DS) or alginate/chitosan/dermatan sulfate (Alg/CS/DS) particles in mPEG-PLGA microparticles using coaxial ultrasonic atomization. The encapsulation and distribution of Alg/DS or Alg/CS/DS particles in the mPEG-PLGA microparticles were significantly dependent on the operating conditions, including the flow rate ratio (Qout/Qin) and the viscosity of the polymer solutions (Vout, Vin) between the outer and the inner feeding channels. The core-shell composite microparticles containing the Alg/DS particles or the Alg/CS/DS particles displayed 40% and 65% DS release in 10 days, respectively, as compared to the DS directly loaded microparticles showing 90% DS release during the same time interval. The release profiles of DS correlate with the cell proliferation of fibroblasts, i.e. more sustainable cell growth was induced by the DS released from the core-shell composite microparticles comprising Alg/CS/DS particles. After seeding fibroblasts onto the composite microparticles, excellent cell adhesion was observed, and a successful assembly of the cell-scaffold constructs was induced within 7 days. Therefore, the present study demonstrates a novel strategy for fabrication of core-shell composite microparticles comprising additional particulate drug carriers in the core, which provides controlled delivery of DS and favorable cell biocompatibility; an approach to potentially achieve cell-based tissue regeneration.

  12. Light-scattering flow cytometry for identification and characterization of blood microparticles.

    Science.gov (United States)

    Konokhova, Anastasiya I; Yurkin, Maxim A; Moskalensky, Alexander E; Chernyshev, Andrei V; Tsvetovskaya, Galina A; Chikova, Elena D; Maltsev, Valeri P

    2012-05-01

    We describe a novel approach to study blood microparticles using the scanning flow cytometer, which measures light scattering patterns (LSPs) of individual particles. Starting from platelet-rich plasma, we separated spherical microparticles from non-spherical plasma constituents, such as platelets and cell debris, based on similarity of their LSP to that of sphere. This provides a label-free method for identification (detection) of microparticles, including those larger than 1 μm. Next, we rigorously characterized each measured particle, determining its size and refractive index including errors of these estimates. Finally, we employed a deconvolution algorithm to determine size and refractive index distributions of the whole population of microparticles, accounting for largely different reliability of individual measurements. Developed methods were tested on a blood sample of a healthy donor, resulting in good agreement with literature data. The only limitation of this approach is size detection limit, which is currently about 0.5 μm due to used laser wavelength of 0.66 μm.

  13. On-chip bio-analyte detection utilizing the velocity of magnetic microparticles in a fluid

    KAUST Repository

    Giouroudi, Ioanna

    2011-03-22

    A biosensing principle utilizing the motion of suspended magnetic microparticles in a microfluidic system is presented. The system utilizes the innovative concept of the velocity dependence of magnetic microparticles (MPs) due to their volumetric change when analyte is attached to their surface via antibody–antigen binding. When the magnetic microparticles are attracted by a magnetic field within a microfluidic channel their velocity depends on the presence of analyte. Specifically, their velocity decreases drastically when the magnetic microparticles are covered by (nonmagnetic) analyte (LMPs) due to the increased drag force in the opposite direction to that of the magnetic force. Experiments were carried out as a proof of concept. A promising 52% decrease in the velocity of the LMPs in comparison to that of the MPs was measured when both of them were accelerated inside a microfluidic channel using an external permanent magnet. The presented biosensing methodology offers a compact and integrated solution for a new kind of on-chip analysis with potentially high sensitivity and shorter acquisition time than conventional laboratory based systems.

  14. Toxin-coregulated pilus-loaded microparticles as a vaccine against Vibrio cholerae O139

    Institute of Scientific and Technical Information of China (English)

    杜艳; 贾文祥; 刘莉

    2004-01-01

    @@ The cholera epidemics is an important public health problem in many developing countries. Highly effective and preventive vaccines against cholera are under investigation as alternatives to the one available presently. Much of the vaccine research focuses on colonization factors. Colonization of a human by the Vibrio cholerae (V. cholerae Ol strain is mediated by toxin-coregulated pilus (TCP), 1 which was shown to play a role in the infant mouse cholera model and subsequently in human volunteers. 2 TCP-loaded vaccines could potentially provide cross-protection among experimental strains. Data have indicated that poly (D,L-lactide)-polyethylene glycol copolymer (PELA)microparticles loaded antigens were strongly immunogenic, 3 and that these microparticles served as an effective delivery system for a single dose of vaccine. 4Microparticle formulation could represent the next generation of vaccines, as they are highly effective at delivery of vaccines, thus requiring fewer doses. 5 We prepared PELA microparticles loaded with TCP for testing as a vaccine; their targeting distributions were identified and related immune responses were analyzed.

  15. Dating archaeological copper/bronze artifacts by using the voltammetry of microparticles.

    Science.gov (United States)

    Doménech-Carbó, Antonio; Doménech-Carbó, María Teresa; Capelo, Sofia; Pasíes, Trinidad; Martínez-Lázaro, Isabel

    2014-08-25

    A method for dating copper/bronze archaeological objects aged in atmospheric environments is proposed based on the specific signals for cuprite and tenorite corrosion products measured through the voltammtry of microparticles method. The tenorite/cuprite ratio increased with the corrosion time and fitted to a potential law that yielded a calibration curve usable for dating purposes.

  16. Light-scattering flow cytometry for identification and characterization of blood microparticles

    Science.gov (United States)

    Konokhova, Anastasiya I.; Yurkin, Maxim A.; Moskalensky, Alexander E.; Chernyshev, Andrei V.; Tsvetovskaya, Galina A.; Chikova, Elena D.; Maltsev, Valeri P.

    2012-05-01

    We describe a novel approach to study blood microparticles using the scanning flow cytometer, which measures light scattering patterns (LSPs) of individual particles. Starting from platelet-rich plasma, we separated spherical microparticles from non-spherical plasma constituents, such as platelets and cell debris, based on similarity of their LSP to that of sphere. This provides a label-free method for identification (detection) of microparticles, including those larger than 1 μm. Next, we rigorously characterized each measured particle, determining its size and refractive index including errors of these estimates. Finally, we employed a deconvolution algorithm to determine size and refractive index distributions of the whole population of microparticles, accounting for largely different reliability of individual measurements. Developed methods were tested on a blood sample of a healthy donor, resulting in good agreement with literature data. The only limitation of this approach is size detection limit, which is currently about 0.5 μm due to used laser wavelength of 0.66 μm.

  17. Dynamic dissolution-/permeation-testing of nano- and microparticle formulations of fenofibrate

    DEFF Research Database (Denmark)

    Sironi, Daniel; Rosenberg, Jörg; Bauer-Brandl, Annette;

    2017-01-01

    -/ or nanoparticle-formulation was tested. Nondissolved nano-/microparticles served as a reservoir helping to maintain high levels of molecularly dissolved drug, which in turn caused high and constant permeation rates. The micelle-bound drug may also serve as a drug-reservoir, yet of subordinate importance as long...

  18. Release Kinetic in Yogurt from Gallic Acid Microparticles with Chemically Modified Inulin.

    Science.gov (United States)

    García, Paula; Vergara, Cristina; Robert, Paz

    2015-10-01

    Gallic acid (GA) was encapsulated with native (NIn), cross-linked (CIn) and acetylated (AIn) inulin by spray-drying. Inulin microparticles were characterized by encapsulation efficiency (EE) and their release profile in yogurt. The EE was significantly higher for GA-CIn (98%) compared with GA-NIn (81%) and GA-AIn (77%) microparticles, showing the effect of the modification of inulin on interaction of GA-polymer. GA release profile data in yogurt for GA-CIn, GA-NIn and GA-AIn were fitted to Peppas and Higuchi models in order to obtain the GA release rate constant. Although the GA release rate constants were significantly different among systems, these differences were slight and the GA release was fast (80% inulin-systems did not control GA release in yogurt. The mechanism of GA release followed a Fickian diffusion and relaxation of chains for all microparticles. According to the release profile, these microparticles would be best suited for use in instant foods.

  19. Gateway to understanding microparticles: standardized isolation and identification of plasma membrane-derived vesicles

    NARCIS (Netherlands)

    Dinkla, S.; Brock, R.; Joosten, I.; Bosman, G.J.C.G.M.

    2013-01-01

    Microparticles (MPs) are small plasma membrane-derived vesicles that can expose molecules originating from their parental cells. As vectors of biological information they are likely to play an active role in both homeostasis and pathogenesis, making them promising biomarkers and nanomedicine tools.

  20. A novel bio-safe phase separation process for preparing open-pore biodegradable polycaprolactone microparticles.

    Science.gov (United States)

    Salerno, Aurelio; Domingo, Concepción

    2014-09-01

    Open-pore biodegradable microparticles are object of considerable interest for biomedical applications, particularly as cell and drug delivery carriers in tissue engineering and health care treatments. Furthermore, the engineering of microparticles with well definite size distribution and pore architecture by bio-safe fabrication routes is crucial to avoid the use of toxic compounds potentially harmful to cells and biological tissues. To achieve this important issue, in the present study a straightforward and bio-safe approach for fabricating porous biodegradable microparticles with controlled morphological and structural features down to the nanometer scale is developed. In particular, ethyl lactate is used as a non-toxic solvent for polycaprolactone particles fabrication via a thermal induced phase separation technique. The used approach allows achieving open-pore particles with mean particle size in the 150-250 μm range and a 3.5-7.9 m(2)/g specific surface area. Finally, the combination of thermal induced phase separation and porogen leaching techniques is employed for the first time to obtain multi-scaled porous microparticles with large external and internal pore sizes and potential improved characteristics for cell culture and tissue engineering. Samples were characterized to assess their thermal properties, morphology and crystalline structure features and textural properties.

  1. Rapid Software-Based Design and Optical Transient Liquid Molding of Microparticles.

    Science.gov (United States)

    Wu, Chueh-Yu; Owsley, Keegan; Di Carlo, Dino

    2015-12-22

    Microparticles with complex 3D shape and composition are produced using a novel fabrication method, optical transient liquid molding, in which a 2D light pattern exposes a photopolymer precursor stream shaped along the flow axis by software-aided inertial flow engineering.

  2. Dating Archaeological Copper/Bronze Artifacts by Using the Voltammetry of Microparticles

    OpenAIRE

    Doménech-Carbó, Antonio; Doménech-Carbó, Maria Teresa; Capelo, Sofia; Pasíes, Trinidad; Martínez-Lázaro, Isabel

    2014-01-01

    A method for dating copper/bronze archaeological objects aged in atmospheric environments is proposed based on the specific signals for cuprite and tenorite corrosion products measured through the voltammtry of microparticles method. The tenorite/cuprite ratio increased with the corrosion time and fitted to a potential law that yielded a calibration curve usable for dating purposes.

  3. Adsorption of methylene blue on biochar microparticles derived from different waste materials.

    Science.gov (United States)

    Lonappan, Linson; Rouissi, Tarek; Das, Ratul Kumar; Brar, Satinder K; Ramirez, Antonio Avalos; Verma, Mausam; Surampalli, Rao Y; Valero, José R

    2016-03-01

    Biochar microparticles were prepared from three different types of biochar, derived from waste materials, such as pine wood (BC-PW), pig manure (BC-PM) and cardboard (BC-PD) under various pyrolysis conditions. The microparticles were prepared by dry grinding and sequential sieving through various ASTM sieves. Particle size and specific surface area were analyzed using laser particle size analyzer. The particles were further characterized using scanning electron microscope (SEM). The adsorption capacity of each class of adsorbent was determined by methylene blue adsorption tests in comparison with commercially available activated carbon. Experimental results showed that dye adsorption increased with initial concentration of the adsorbate and biochar dosage. Biochar microparticles prepared from different sources exhibited improvement in adsorption capacity (7.8±0.5 mg g(-1) to 25±1.3 mg g(-1)) in comparison with raw biochar and commercially available activated carbon. The adsorption capacity varied with source material and method of production of biochar. The maximum adsorption capacity was 25 mg g(-1) for BC-PM microparticles at 25°C for an adsorbate concentration of 500 mg L(-1) in comparison with 48.30±3.6 mg g(-1) for activated carbon. The equilibrium adsorption data were best described by Langmuir model for BC-PM and BC-PD and Freundlich model for BC-PW.

  4. Immobilization of Lipases Produced by the Endophytic Fungus Cercospora kikuchii on Chitosan Microparticles

    Directory of Open Access Journals (Sweden)

    Lara Aparecida Buffoni Campos Carneiro

    2014-08-01

    Full Text Available This work studied the immobilization of Cercospora kikuchii lipases on chitosan microparticles by chemical attachment on chitosan acetate microparticles activated by glutaraldehyde (CAM added before or after the enzyme and physical adsorption on highly deacetylated chitosan hydrochloride microparticles (CHM. Lipases covalently immobilized on pre-activated CAM showed better performance retaining 88.4% of the enzymatic activity, with 68.2% of immobilization efficiency (IE. The immobilized enzyme retained an activity of about 53.5 % after five reuses, using p-NPP as substrate. Physical adsorption of lipase onto highly deacetylated CHM showed 46.2 % of enzymatic activity and 28.6% of IE. This immobilized derivative did not lose activity up to 80 days of storage at 4°C, while lipases immobilized on pre-activated CAM maintained its activity up to 180 days at same conditions. Taken together the results indicate that chitosan microparticles provide an optimal microenvironment for the immobilized enzyme to maintain good activity and stability.

  5. Cellular origin and procoagulant activity of tissue factor-exposing microparticles in cancer patients

    NARCIS (Netherlands)

    Kleinjan, A.; Berckmans, R.J.; Böing, A.N.; Sturk, A.; Büller, H.R.; Kamphuisen, P.W.; Nieuwland, R.

    2012-01-01

    Background: In patients with cancer, tissue factor-exposing microparticles (TF-exposing MP) have been associated with disease progression and thrombosis. The cellular origin and coagulant activity of TF-exposing MP, however, remain disputed. Therefore, we investigated the cellular origin of the TF-e

  6. Hypervelocity Microparticle Impact Studies: Simulating Cosmic Dust Impacts on the Dustbuster

    Science.gov (United States)

    Austin, D. E.; Manning, H. L. K.; Bailey, C. L.; Farnsworth, J. T.; Ahrens, T. J.; Beauchamp, J. L.

    2002-01-01

    Iron and copper microparticles accelerated to 2-20 km/s in a 2 MV Van de Graaff accelerator were used to test a recently-developed cosmic dust mass spectrometer, known as the Dustbuster. Additional information is contained in the original extended abstract.

  7. Modelled Circulation In Storfjorden

    Science.gov (United States)

    Skogseth, R.; Asplin, L.

    The model area Storfjorden is situated between the islands Spitsbergen, Barentsöya and Edgeöya at the Svalbard Archipelago. The entrance of Storfjorden is defined by a shallow bank Storfjordbanken and some small islands Tusenöyane in southeast, and by an 115m deep sill at about 76 45' N in the south. Maximum depth in Storfjorden is 190m, which is surrounded by gradually shallower shelves in the north, the east and southeast. A steep bottom slope is present on the western side of Storfjorden. He- leysundet and Freemansundet, two sounds between respectively Spitsbergen and Bar- entsöya, and Barentsöya and Edgeöya, define two narrow and shallow entrances in the north and northeast connecting Storfjorden with the northwestern Barents Sea. Strong tidal currents exist in Heleysundet (4-5ms-1) and Freemansundet (2-3ms-1), but the general circulation in Storfjorden is not well known. The coastal current in Storfjor- den is cyclonic directed into Storfjorden south of Edgeöya from the East Spitsbergen Current and out of Storfjorden south of Spitsbergen where it is called Sørkappstrøm- men. A three-dimensional sigma layered numerical ocean model called Bergen Ocean Model (BOM) was used to simulate the circulation in Storfjorden with Freemansundet opened. Two simulations were carried out, one with heat flux (100 Wm-2) and one without heat flux from the ocean to the atmosphere. The heat flux was applied only in the proper fjord area north of the sill and not outside as a crude approximation of the effects of a polynya in the sea ice cover during winter. Both simulations had a 4km horizontal resolution and 21 sigma layers. The model is forced by winds (from the NCEP reanalyzed fields) and tides. Initial fields are from the DNMI/IMR climatol- ogy. The model simulation without heat flux gave a circulation heavily dependent on tidal forcing, showing strong tidal currents up to 2ms-1 in Freemansundet, between Tusenöyane and on Storfjordbanken southwest of Edgeöya. Earlier

  8. Cereral Circulation in Preeclampsia

    Directory of Open Access Journals (Sweden)

    A. A. Ivshin

    2008-01-01

    Full Text Available Objective: to evaluate the possibilities of using transcranial Doppler study in pregnant women and pueperas with preeclamp-sia. Subjects and methods. Two hundred and thirty-two pregnant women diagnosed as having varying preeclampsia were prospectively studied. A comparison group comprised 90 apparently healthy women in the third trimester of pregnancy. All the respondents underwent transcranial duplex scanning of the medial cerebral artery with the linear velocity values being determined. A number of the values reflecting the level of perfusion and intracranial pressures, hydrodynamic resistance in the system, cerebrovascular responsiveness and the state of the vascular wall were calculated. Correlation analysis was made between the parameters of cerebral circulation and the severity of preeclampsia, proteinuria, the severity of hydrops, and the parameters of central and peripheral hemodynamics. Results. The findings suggest that there is impaired cerebral perfusion in pregnant women and puerperas with varying preeclampsia, the severity of cerebral circulatory disorders being in proportion with that of preeclampsia. There is a close correlation between cerebral circulation and the individual criteria determining the severity of preeclampsia. The linear values of the Doppler spectrum, namely linear flow characteristics, are prognos-tically most significant. Conclusion. The introduction of transcranial Doppler study into obstetric care has permitted the authors not only to study cerebral circulatory disorders in healthy and pregnant women and puerperas with preeclampia in detail, but also to establish a number of highly significant prognostic criteria for the severity of this life-threatening complication of gestation. The results of transcranial Doppler study assist practitioners in timely and accurately solving the problems in the diagnosis of preeclampsia and in evaluating its severity. Cerebral circulatory values may be successfully used to

  9. Activity of daptomycin- and vancomycin-loaded poly-epsilon-caprolactone microparticles against mature staphylococcal biofilms

    Directory of Open Access Journals (Sweden)

    Santos Ferreira I

    2015-07-01

    Full Text Available Inês Santos Ferreira,1 Ana F Bettencourt,1 Lídia MD Gonçalves,1 Stefanie Kasper,2 Bertrand Bétrisey,3 Judith Kikhney,2 Annette Moter,2 Andrej Trampuz,4 António J Almeida1 1Research Institute for Medicines (iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal; 2Biofilmcenter, German Heart Institute Berlin, Berlin, Germany; 3Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; 4Center for Musculoskeletal Surgery, Charité – University Medicine Berlin, Berlin, Germany Abstract: The aim of the present study was to develop novel daptomycin-loaded poly-epsilon-caprolactone (PCL microparticles with enhanced antibiofilm activity against mature biofilms of clinically relevant bacteria, methicillin-resistant Staphylococcus aureus (MRSA and polysaccharide intercellular adhesin-positive Staphylococcus epidermidis. Daptomycin was encapsulated into PCL microparticles by a double emulsion-solvent evaporation method. For comparison purposes, formulations containing vancomycin were also prepared. Particle morphology, size distribution, encapsulation efficiency, surface charge, thermal behavior, and in vitro release were assessed. All formulations exhibited a spherical morphology, micro­meter size, and negative surface charge. From a very early time stage, the released concentrations of daptomycin and vancomycin were higher than the minimal inhibitory concentration and continued so up to 72 hours. Daptomycin presented a sustained release profile with increasing concentrations of the drug being released up to 72 hours, whereas the release of vancomycin stabilized at 24 hours. The antibacterial activity of the microparticles was assessed by isothermal microcalorimetry against planktonic and sessile MRSA and S. epidermidis. Regarding planktonic bacteria, daptomycin-loaded PCL microparticles presented the highest antibacterial activity against both strains. Isothermal

  10. Development of biodegradable methylprednisolone microparticles for treatment of articular pathology using a spray-drying technique

    Directory of Open Access Journals (Sweden)

    Tobar-Grande B

    2013-05-01

    Full Text Available Blanca Tobar-Grande,1 Ricardo Godoy,1 Paulina Bustos,2 Carlos von Plessing,1 Elias Fattal,3,4 Nicolas Tsapis,3,4 Claudia Olave,1 Carolina Gómez-Gaete11Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; 2Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; 3Univ Paris-Sud, Institut Galien Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry, France; 4CNRS, UMR 8612, Faculté de Pharmacie, Châtenay-Malabry, FranceAbstract: In this work, microparticles were prepared by spray-drying using albumin, chondroitin sulfate, and hyaluronic acid as excipients to create a controlled-release methylprednisolone system for use in inflammatory disorders such as arthritis. Scanning electron microscopy demonstrated that these microparticles were almost spherical, with development of surface wrinkling as the methylprednisolone load in the formulation was increased. The methylprednisolone load also had a direct influence on the mean diameter and zeta potential of the microparticles. Interactions between formulation excipients and the active drug were evaluated by x-ray diffraction, differential scanning calorimetry, and thermal gravimetric analysis, showing limited amounts of methylprednisolone in a crystalline state in the loaded microparticles. The encapsulation efficiency of methylprednisolone was approximately 89% in all formulations. The rate of methylprednisolone release from the microparticles depended on the initial drug load in the formulation. In vitro cytotoxic evaluation using THP-1 cells showed that none of the formulations prepared triggered an inflammatory response on release of interleukin-1ß, nor did they affect cellular viability, except for the 9.1% methylprednisolone formulation, which was the maximum test concentration used. The microparticles developed in this study have characteristics amenable to a therapeutic role in

  11. Resolvability in Circulant Graphs

    Institute of Scientific and Technical Information of China (English)

    Muhammad SALMAN; Imran JAVAID; Muhammad Anwar CHAUDHRY

    2012-01-01

    A set W of the vertices of a connected graph G is called a resolving set for G if for every two distinct vertices u,v ∈ V(G) there is a vertex w ∈ W such that d(u,w) ≠ d(v,w).A resolving set of minimum cardinality is called a metric basis for G and the number of vertices in a metric basis is called the metric dimension of G,denoted by dim(G).For a vertex u of G and a subset S of V(G),the distance between u and S is the number mins∈s d(u,s).A k-partition H ={S1,S2,...,Sk} of V(G) is called a resolving partition if for every two distinct vertices u,v ∈ V(G) there is a set Si in Π such that d(u,Si) ≠ d(v,Si).The minimum k for which there is a resolving k-partition of V(G) is called the partition dimension of G,denoted by pd(G).The circulant graph is a graph with vertex set Zn,an additive group ofintegers modulo n,and two vertices labeled i and j adjacent if and only if i - j (mod n) ∈ C,where C C Zn has the property that C =-C and 0(∈) C.The circulant graph is denoted by Xn,△ where A =|C|.In this paper,we study the metric dimension of a family of circulant graphs Xn,3 with connection set C ={1,-n/2,n - 1} and prove that dim(Xn,3) is independent of choice of n by showing that 3 for all n =0 (mod 4),dim(X,n,3) ={ 4 for all n =2 (mod 4).We also study the partition dimension of a family of circulant graphs Xn,4 with connection set C ={±1,±2} and prove that pd(Xn,4) is independent of choice of n and show that pd(X5,4) =5 and 3 forall odd n≥9,pd(Xn,4) ={ 4 for all even n ≥ 6 and n =7.

  12. Antiplatelet Agents Inhibit The Generation Of Platelet-Derived Microparticles

    Directory of Open Access Journals (Sweden)

    Alice Giacomazzi

    2016-09-01

    Full Text Available Platelet microparticles (PMPs contribute to thrombogenesis but the effects of antiplatelet drugs on PMPs generation is undefined. The present study investigated the cellular events regulating PMP shedding, testing in vitro platelet agonists and inhibitors. Platelet-rich plasma from healthy subjects was stimulated with arachidonic acid, U46619, collagen type-I (10 and 1.5 µg/mL, epinephrine, ADP or TRAP-6 and pre-incubated with acetylsalicylic acid (ASA, 100 and 10 µmol/L, SQ-29,548, apyrase, PSB-0739, or eptifibatide. PMPs were detected by flow-cytometry using CD61 and annexin-V as fluorescent markers. Platelet agonists induced annexin V-positive PMP shedding. The strongest response was to high concentration collagen. ADP-triggered PMP shedding was dose-independent. ASA reduced PMPs induced by arachidonic acid- (645, 347-2946 vs 3061, 446-4901 PMPs/µL; median ad range, n=9, P<0.001, collagen 10 µg/mL (5317, 2027-15935 vs 10252, 4187-46316 PMPs/µL; n=13, P<0.001, collagen 1.5 µg/mL (1078, 528-2820 vs 1465, 582-5948 PMPs/µL; n=21, P<0.001 and TRAP-6 (2008, 1621-2495 vs 2840, 2404-3031 PMPs/µL; n=3, P<0.01 but did not affect the response to epinephrine or ADP. The ADP scavenger apyrase reduced PMPs induced by U46619 (1256, 395-2908 vs 3045, 1119-5494 PMPs/µL, n=6, P<0.05, collagen 1.5 µg/mL (1006, 780-1309 vs 2422, 1839-3494 PMPs/µL, n=3, P<0.01 and TRAP-6 (904, 761-1224 vs 2840, 2404-3031 PMPs/µL, n=3, P<0.01. The TP receptor antagonist SQ-29,548 and the P2Y12 receptor antagonist PSB-0739 markedly inhibited PMPs induced by low doses of collagen. Except for high-dose collagen, eptifibatide abolished agonist-induced PMP release. Both TXA2 generation and ADP secretion are required as amplifiers of PMP shedding. The crucial role of the fibrinogen receptor and the collagen receptor in PMPs generation, independently of platelet aggregation, was identified.

  13. Magnetic vinylphenyl boronic acid microparticles for Cr(VI) adsorption: kinetic, isotherm and thermodynamic studies.

    Science.gov (United States)

    Kara, Ali; Demirbel, Emel; Tekin, Nalan; Osman, Bilgen; Beşirli, Necati

    2015-04-09

    Magnetic vinylphenyl boronic acid microparticles, poly(ethylene glycol dimethacrylate(EG)-vinylphenyl boronic acid(VPBA)) [m-poly(EG-VPBA)], produced by suspension polymerization and characterized, was found to be an efficient solid polymer for Cr(VI) adsorption. The m-poly(EG-VPBA) microparticles were prepared by copolymerizing of ethylene glycol dimethylacrylate (EG) with 4-vinyl phenyl boronic acid (VPBA). The m-poly(EG-VPBA) microparticles were characterized by N2 adsorption/desorption isotherms, electron spin resonance (ESR), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), elemental analysis, scanning electron microscope (SEM) and swelling studies. The m-poly(EG-VPBA) microparticles were used at adsorbent/Cr(VI) ion ratios. The influence of pH, Cr(VI) initial concentration, temperature of the removal process was investigated. The maximum removal of Cr(VI) was observed at pH 2. Langmuir isotherm and Dubinin-Radushkvich isotherm were found to better fit the experiment data rather than Fruendlich isotherm. The kinetics of the adsorption process of Cr(VI) on the m-poly(EG-VPBA) microparticles were investigated using the pseudo first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models, results showed that the pseudo-second order equation model provided the best correlation with the experimental results. The thermodynamic parameters (free energy change, ΔG(0) enthalpy change, ΔH(0); and entropy change, ΔS(0)) for the adsorption have been evaluated.

  14. UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides

    Directory of Open Access Journals (Sweden)

    Kuang-Hung Tseng

    2014-06-01

    Full Text Available The purpose of this study was to investigate the difference between tungsten inert gas (TIG welding of austenitic stainless steel assisted by microparticle oxides and that assisted by nanoparticle oxides. SiO2 and Al2O3 were used to investigate the effects of the thermal stability and the particle size of the activated compounds on the surface appearance, geometric shape, angular distortion, delta ferrite content and Vickers hardness of the UNS S31603 stainless steel TIG weld. The results show that the use of SiO2 leads to a satisfactory surface appearance compared to that of the TIG weld made with Al2O3. The surface appearance of the TIG weld made with nanoparticle oxide has less flux slag compared with the one made with microparticle oxide of the same type. Compared with microparticle SiO2, the TIG welding with nanoparticle SiO2 has the potential benefits of high joint penetration and less angular distortion in the resulting weldment. The TIG welding with nanoparticle Al2O3 does not result in a significant increase in the penetration or reduction of distortion. The TIG welding with microparticle or nanoparticle SiO2 uses a heat source with higher power density, resulting in a higher ferrite content and hardness of the stainless steel weld metal. In contrast, microparticle or nanoparticle Al2O3 results in no significant difference in metallurgical properties compared to that of the C-TIG weld metal. Compared with oxide particle size, the thermal stability of the oxide plays a significant role in enhancing the joint penetration capability of the weld, for the UNS S31603 stainless steel TIG welds made with activated oxides.

  15. Tracking immune-related cell responses to drug delivery microparticles in 3D dense collagen matrix.

    Science.gov (United States)

    Obarzanek-Fojt, Magdalena; Curdy, Catherine; Loggia, Nicoletta; Di Lena, Fabio; Grieder, Kathrin; Bitar, Malak; Wick, Peter

    2016-10-01

    Beyond the therapeutic purpose, the impact of drug delivery microparticles on the local tissue and inflammatory responses remains to be further elucidated specifically for reactions mediated by the host immune cells. Such immediate and prolonged reactions may adversely influence the release efficacy and intended therapeutic pathway. The lack of suitable in vitro platforms limits our ability to gain insight into the nature of immune responses at a single cell level. In order to establish an in vitro 3D system mimicking the connective host tissue counterpart, we utilized reproducible, compressed, rat-tail collagen polymerized matrices. THP1 cells (human acute monocytic leukaemia cells) differentiated into macrophage-like cells were chosen as cell model and their functionality was retained in the dense rat-tail collagen matrix. Placebo microparticles were later combined in the immune cell seeded system during collagen polymerization and secreted pro-inflammatory factors: TNFα and IL-8 were used as immune response readout (ELISA). Our data showed an elevated TNFα and IL-8 secretion by macrophage THP1 cells indicating that Placebo microparticles trigger certain immune cell responses under 3D in vivo like conditions. Furthermore, we have shown that the system is sensitive to measure the differences in THP1 macrophage pro-inflammatory responses to Active Pharmaceutical Ingredient (API) microparticles with different API release kinetics. We have successfully developed a tissue-like, advanced, in vitro system enabling selective "readouts" of specific responses of immune-related cells. Such system may provide the basis of an advanced toolbox enabling systemic evaluation and prediction of in vivo microparticle reactions on human immune-related cells.

  16. North Atlantic Circulation

    Science.gov (United States)

    Molinari, R.; Bryan, K.; Schott, F.

    The intensity of the North Atlantic winddriven and thermohaline circulation and the close proximity of many oceanographic installations make the North Atlantic a particularly favored region of the world ocean from the standpoint of research in ocean circulation. Recent increases in available data and advances in numerical modeling techniques served as the impetus to convene a joint workshop of modelers and observers working on the North Atlantic with the Scientific Committee on Oceanic Research (SCOR) Working Group (WG) 68 (“North Atlantic Circulation”). Goals of the workshop were to provide an update on data sets and models and to discuss the poleward heat flux problem and possible monitoring strategies. The joint Workshop/SCOR WG-68 meeting was convened by F. Schott (chairman of the working group; Rosenstiel School of Marine and Atmospheric Science, Miami, Fla.), K. Bryan (National Oceanic and Atmospheric Administration/ Geophysical Fluid Dynamics Laboratory (NOAA/GFDL)), and R. Molinari (NOAA/Atlantic Oceanographic and Meteorological Laboratory (NOAA/AOML)).

  17. Circulation of Stars

    Science.gov (United States)

    Boitani, P.

    2016-01-01

    Since the dawn of man, contemplation of the stars has been a primary impulse in human beings, who proliferated their knowledge of the stars all over the world. Aristotle sees this as the product of primeval and perennial “wonder” which gives rise to what we call science, philosophy, and poetry. Astronomy, astrology, and star art (painting, architecture, literature, and music) go hand in hand through millennia in all cultures of the planet (and all use catasterisms to explain certain phenomena). Some of these developments are independent of each other, i.e., they take place in one culture independently of others. Some, on the other hand, are the product of the “circulation of stars.” There are two ways of looking at this. One seeks out forms, the other concentrates on the passing of specific lore from one area to another through time. The former relies on archetypes (for instance, with catasterism), the latter constitutes a historical process. In this paper I present some of the surprising ways in which the circulation of stars has occurred—from East to West, from East to the Far East, and from West to East, at times simultaneously.

  18. Toxicodynamics of Rigid Polystyrene Microparticles on Pulmonary Gas Exchange in Mice: Implications for Microemboli-based Drug Delivery Systems

    Science.gov (United States)

    Kutscher, HL.; Gao, D.; Li, S.; Massa, CB.; Cervelli, J.; Deshmukh, M.; Joseph, LB.; Laskin, DL.; Sinko, PJ.

    2013-01-01

    The toxicodynamic relationship between the number and size of pulmonary microemboli resulting from uniformly sized, rigid polystyrene microparticles (MPs) administered intravenously and their potential effects on pulmonary gas exchange was investigated. CD-1 male mice (6–8 wk) were intravenously administered 10, 25 and 45 μm diameter MPs. Oxygen hemoglobin saturation in the blood (SpO2) was measured non-invasively using a pulse oximeter while varying inhaled oxygen concentration (FIO2). Resulting data were fit to a physiologically based non-linear mathematical model that estimates 2 parameters: ventilation-perfusion ratio (VA/Q) and shunt (percentage of deoxygenated blood returning to systemic circulation). The number of MPs administered prior to a statistically significant reduction in normalized VA/Q was dependent on particle size. MP doses that resulted in a significant reduction in normalized VA/Q one day post-treatment were 4,000, 40,000 and 550,000 MPs/g for 45, 25 and 10 μm MPs, respectively. The model estimated VA/Q and shunt returned to baseline levels 7 days post-treatment. Measuring SpO2 alone was not sufficient to observe changes in gas exchange; however, when combined with model-derived VA/Q and shunt early reversible toxicity from pulmonary microemboli was detected suggesting that the model and physical measurements are both required for assessing toxicity. Moreover, it appears that the MP load required to alter gas exchange in a mouse prior to lethality is significantly higher than the anticipated required MP dose for effective drug delivery. Overall, the current results indicate that the microemboli-based approach for targeted pulmonary drug delivery is potentially safe and should be further explored. PMID:23142466

  19. A computational model for heterogeneous heating during pulsed laser irradiation of polymers doped with light-absorbing microparticles

    DEFF Research Database (Denmark)

    Marla, Deepak; Zhang, Yang; Jabbaribehnam, Mirmasoud

    2016-01-01

    Doping of polymers with light-absorbing microparticles to increase their optical properties is a commonly used pre-treatment technique in laser processing of polymers. The presence of these particles plays an important role during laser heating of the polymer that influences its surface...... characteristics. This work presents a study based on a computational model of laser heating of polymer doped with light-absorbing microparticles accounting for the heterogeneous nature of heating. The work aims at gaining a fundamental insight into the nature of the heating process and to understand the role...... of microparticles. The results suggest that apart from the laser intensity and pulse duration, the properties of the microparticles including their size and distribution also play an important role during the laser heating of polymers....

  20. Critical solvent properties affecting the particle formation process and characteristics of celecoxib-loaded PLGA microparticles via spray-drying

    DEFF Research Database (Denmark)

    Wan, Feng; Bohr, Adam; Maltesen, Morten Jonas;

    2013-01-01

    ) microparticles prepared by spray-drying. METHODS: Binary mixtures of acetone and methanol at different molar ratios were applied to dissolve celecoxib and PLGA prior to spray-drying. The resulting microparticles were characterized with respect to morphology, texture, surface chemistry, solid state properties...... by the PLGA precipitation rate, which is solvent-dependent, and the migration rate of celecoxib molecules during drying. The texture and surface chemistry of the spray-dried PLGA microparticles can therefore be tailored by adjusting the solvent composition....... power of the feed solution. An obvious burst release was observed for the microparticles prepared by the feed solutions with the highest amount of poor solvent for PLGA. TGA analysis revealed distinct drying kinetics for the binary mixtures. CONCLUSIONS: The particle formation process is mainly governed...

  1. A facile method of fabricating mechanical durable anti-icing coatings based on CeO2 microparticles

    Science.gov (United States)

    Wang, Pengren; Peng, Chaoyi; Wu, Binrui; Yuan, Zhiqing; Yang, Fubiao; Zeng, Jingcheng

    2015-07-01

    Compromising between hydrophobicity and mechanical durability may be a feasible approach to fabricating usable anti-icing coatings. This work improves the contact angle of current commercial anti-icing coatings applied to wind turbine blades dramatically and keeps relatively high mechanical durability. CeO2 microparticles and diluent were mixed with fluorocarbon resin to fabricate high hydrophobic coatings on the glass fiber reinforced epoxy composite substrates. The proportion of CeO2 microparticles and diluent influences the contact angles significantly. The optimum mass ratio of fluorocarbon resin to CeO2 microparticles to diluent is 1:1.5:1, which leads to the highest contact angle close to 140°. The microscopy analysis shows that the CeO2 microparticles form nano/microscale hierarchical structure on the surface of the coatings.

  2. Separating the roles of nitrogen and oxygen in high pressure-induced blood-borne microparticle elevations, neutrophil activation, and vascular injury in mice.

    Science.gov (United States)

    Yang, Ming; Bhopale, Veena M; Thom, Stephen R

    2015-08-01

    An elevation in levels of circulating microparticles (MPs) due to high air pressure exposure and the associated inflammatory changes and vascular injury that occur with it may be due to oxidative stress. We hypothesized that these responses arise due to elevated partial pressures of N2 and not because of high-pressure O2. A comparison was made among high-pressure air, normoxic high-pressure N2, and high-pressure O2 in causing an elevation in circulating annexin V-positive MPs, neutrophil activation, and vascular injury by assessing the leakage of high-molecular-weight dextran in a murine model. After mice were exposed for 2 h to 790 kPa air, there were over 3-fold elevations in total circulating MPs as well as subgroups bearing Ly6G, CD41, Ter119, CD31, and CD142 surface proteins-evidence of neutrophil activation; platelet-neutrophil interaction; and vascular injury to brain, omentum, psoas, and skeletal muscles. Similar changes were found in mice exposed to high-pressure N2 using a gas mixture so that O2 partial pressure was the same as that of ambient air, whereas none of these changes occurred after exposures to 166 kPa O2, the same partial pressure that occurs during high-pressure air exposures. We conclude that N2 plays a central role in intra- and perivascular changes associated with exposure to high air pressure and that these responses appear to be a novel form of oxidative stress.

  3. Lost circulation technology development status

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, D.A.; Schafer, D.M.; Loeppke, G.E.; Scott, D.D.; Wernig, M.D.; Wright, E.K.

    1992-07-01

    Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the US Department of Energy. The goal of the program is to reduce lost circulation costs by 30--50% through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April 1991--March 1992. 8 refs.

  4. Percutaneous interventions in Fontan circulation

    Directory of Open Access Journals (Sweden)

    Eduardo Franco

    2015-09-01

    Conclusions: Interventional catheterization procedures are often necessary to reach and maintain the fragile Fontan circulation, mainly in patients with right morphology systemic ventricles and fenestrated Fontan conduits.

  5. Gentamicin-loaded poly(lactic-co-glycolic acid) microparticles for the prevention of maxillofacial and orthopedic implant infections

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Claudia [Univ. Lille, 59000 Lille (France); INSERM U1008, Controlled Drug Delivery Systems and Biomaterials, 59000 Lille (France); Degoutin, Stephanie [Univ. Lille, 59000 Lille (France); UMET, Ingénierie des Systèmes Polymères, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Chai, Feng [Univ. Lille, 59000 Lille (France); INSERM U1008, Controlled Drug Delivery Systems and Biomaterials, 59000 Lille (France); Raoul, Gwenael [Univ. Lille, 59000 Lille (France); INSERM U1008, Controlled Drug Delivery Systems and Biomaterials, 59000 Lille (France); Service Chirurgie Maxillo-Faciale, CHRU de Lille, 59000 Lille (France); Hornez, Jean-Chritophe [Laboratoire des Matériaux Céramiques et Procédés Associés (LMCPA), Université de Valenciennes, 59300 Valenciennes (France); Martel, Bernard [Univ. Lille, 59000 Lille (France); UMET, Ingénierie des Systèmes Polymères, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Siepmann, Juergen [Univ. Lille, 59000 Lille (France); INSERM U1008, Controlled Drug Delivery Systems and Biomaterials, 59000 Lille (France); Ferri, Joel [Univ. Lille, 59000 Lille (France); INSERM U1008, Controlled Drug Delivery Systems and Biomaterials, 59000 Lille (France); Service Chirurgie Maxillo-Faciale, CHRU de Lille, 59000 Lille (France); Blanchemain, Nicolas, E-mail: nicolas.blanchemain@univ-lille2.fr [Univ. Lille, 59000 Lille (France); INSERM U1008, Controlled Drug Delivery Systems and Biomaterials, 59000 Lille (France)

    2016-07-01

    Trauma and orthopedic surgery can cause infections as any open surgical procedures. Such complications occur in only1 to 5% of the cases, but the treatment is rather complicated due to bacterial biofilm formation and limited drug access to the site of infection upon systemic administration. An interesting strategy to overcome this type of complications is to prevent bacterial proliferation and biofilm formation via the local and controlled release of antibiotic drugs from the implant itself. Obviously, the incorporation of the drug into the implant should not affect the latter's biological and mechanical properties. In this context, we optimized the preparation process for gentamicin-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles, which can be incorporated in the macropores of calcium phosphate-based bone substitutes. Microparticles were prepared using a double emulsion solvent extraction/evaporation technique. The processing parameters were optimized in order to provide an average microparticle size of about 60 μm, allowing for incorporation inside the macropores (100 μm) of the hydroxyapatite scaffold. Gentamicin-loaded PLGA microparticles showed a sustained release for 25–30 days and a rapid antibacterial activity due to a burst effect, the extent of which was controlled by the initial loading of the microparticles. SEM pictures revealed a highly porous microparticle structure, which can help to reduce the micro environmental pH drop and autocatalytic effects. The biological evaluation showed the cytocompatibility and non-hemolytic property of the microparticles, and the antibacterial activity against Staphylococcus aureus under the given conditions. - Highlights: • The optimization of microparticle preparation parameters allows to obtain a size compatible with the bone substitute porosity • PDL% has a direct impact on the burst effect, a control release of gentamicin was obtained • The incorporation of microparticles into the

  6. Continuum modeling of micro-particle electrorotation in Couette and Poiseuille flows—The zero spin viscosity limit

    OpenAIRE

    Huang, Hsin-Fu; Zahn, Markus; LEMAIRE, Elisabeth

    2010-01-01

    International audience; A continuum mechanical model is presented to analyze the negative electrorheological responses of a particle-liquid mixture with the suspended micro-particles undergoing Quincke rotation for both Couette and Poiseuille flow geometries by combining particle electromechanics and continuum antisymmetric/couple stress analyses in the zero spin viscosity limit. We propose a phenomenological polarization relaxation model to incorporate both the micro-particle rotation speed ...

  7. Magnetic vinylphenyl boronic acid microparticles for Cr(VI) adsorption: Kinetic, isotherm and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Kara, Ali, E-mail: akara@uludag.edu.tr [Uludag University, Faculty of Arts and Science, Department of Chemistry, 16059 Bursa (Turkey); Demirbel, Emel [Uludag University, Faculty of Arts and Science, Department of Chemistry, 16059 Bursa (Turkey); Tekin, Nalan [Kocaeli University, Faculty of Arts and Science, Department of Chemistry, 41380 Kocaeli (Turkey); Osman, Bilgen; Beşirli, Necati [Uludag University, Faculty of Arts and Science, Department of Chemistry, 16059 Bursa (Turkey)

    2015-04-09

    Highlights: • Cr(VI) can oxidize biological molecules and be one of the most harmful substance. • Magnetic seperation techniques are used on different applications in many fields. • Magnetic systems can be used for rapid and selective removal as a magnetic processor. • We investigate properties of both new material and other magnetic adsorbents reported in the literatures on the adsorption of Cr(VI) ions. • No researchments were reported on adsorption of Cr(VI) with magnetic vinylphenyl boronic acid microparticles. - Abstract: Magnetic vinylphenyl boronic acid microparticles, poly(ethylene glycol dimethacrylate(EG)–vinylphenyl boronic acid(VPBA)) [m-poly(EG–VPBA)], produced by suspension polymerization and characterized, was found to be an efficient solid polymer for Cr(VI) adsorption. The m-poly(EG–VPBA) microparticles were prepared by copolymerizing of ethylene glycol dimethylacrylate (EG) with 4-vinyl phenyl boronic acid (VPBA). The m-poly(EG–VPBA) microparticles were characterized by N{sub 2} adsorption/desorption isotherms, electron spin resonance (ESR), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), elemental analysis, scanning electron microscope (SEM) and swelling studies. The m-poly(EG–VPBA) microparticles were used at adsorbent/Cr(VI) ion ratios. The influence of pH, Cr(VI) initial concentration, temperature of the removal process was investigated. The maximum removal of Cr(VI) was observed at pH 2. Langmuir isotherm and Dubinin–Radushkvich isotherm were found to better fit the experiment data rather than Fruendlich isotherm. The kinetics of the adsorption process of Cr(VI) on the m-poly(EG–VPBA) microparticles were investigated using the pseudo first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models, results showed that the pseudo-second order equation model provided the best correlation with the experimental results. The thermodynamic

  8. Focusing and continuous separation of microparticles by insulator-based dielectrophoresis (iDEP) in stair-shaped microchannel.

    Science.gov (United States)

    Cheri, Mohammad Sadegh; Latifi, Hamid; Khashei, Hesamodin; Seresht, Mohsen Jamshidi

    2014-12-01

    Focusing and separation of microparticles in a complex mixture have had wide applications in chemistry, biology, medicine, etc. This work presents a numerical and experimental investigation on focusing and continuous separation of microparticles in a geometrically optimized arrangement of steps in the form of a staircase using insulator-based dielectrophoresis (iDEP) mechanism. First, a detailed finite element analysis was performed on important parameters in the focusing and separation of microparticles, such as geometry of stair-shaped microchannel, total voltage, and voltage difference applied to reservoirs. The optimum parameters obtained from numerical analysis were used for experimental work. Theoretically, predicted microparticle trajectories are in good agreement with experimentally observed ones. Experimental and numerical results show that the performance of focusing of microparticles enhances with growth of the total voltage (in a constant voltage difference) and decreases with voltage difference. The fabricated iDEP microchip enhances the performance of focusing and separation of microparticles due to its stair-shaped microchannel and therefore operates at low DC total applied voltages of 90-110 V.

  9. Cetirizine dihydrochloride loaded microparticles design using ionotropic cross-linked chitosan nanoparticles by spray-drying method.

    Science.gov (United States)

    Li, Feng-Qian; Ji, Rui-Rui; Chen, Xu; You, Ben-Ming; Pan, Yong-Hua; Su, Jia-Can

    2010-12-01

    To control the release rate and mask the bitter taste, cetirizine dihydrochloride (CedH) was entrapped within chitosan nanoparticles (CS-NPs) using an ionotropic gelation process, followed by microencapsulation to produce CS matrix microparticles using a spray-drying method. The aqueous colloidal CS-NPs dispersions with a drug encapsulation efficiency (EE) of 70%. The resultant spherical CS microparticles had a smooth surface, were free of organic solvent residue and showed a diameter range of 0.5~5 μm. The in vitro drug release properties of CedH encapsulated microparticles showed an initial burst effect during the first 2 h. Drug release from the matrix CS microparticles could be retarded by the crosslinking agent pentasodium tripolyphosphate or the wall material. The technique of 'ionotropic gelation' combined with 'spray-drying' could be applicable for preparation of CS nanoparticlesin-microparticles drug delivery systems. CS-NPs based microparticles might provide a potential micro-carrier for oral administration of the freely water-soluble drug--CedH.

  10. Fabrication and characterization of a novel microparticle with gyrus-patterned surface and growth factor delivery for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Huang Sha [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Wang Yijuan [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Liang Tang [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Jin Fang [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Liu Shouxin [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Jin Yan, E-mail: yanjin@fmmu.edu.cn [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China)

    2009-05-05

    Microparticles can serve as substrates for cell amplification and deliver the expanded cells to the site of the defect. It was hypothesized that a novel microparticle combined of sustained and localized delivery of proliferative growth factors and gyrus-patterned surface would influence the cell behaviours of adherence and expansion on the microparticle in the present study. To test the hypothesis, gelatin particles with diameter ranging from 280 to 350 {mu}m were fabricated and were modified by cryogenic freeze-drying treatment and basic fibroblast growth factor (bFGF) incorporation. The results of in vitro chondrocyte culture illustrated that cells could proliferate more obviously on the microparticles with bFGF addition, but no correlation between attachment rate and bFGF was observed. On the other hand, microparticles with gyrus-patterned surface demonstrated the highest cell attachment rate and higher rate of cell growth, in particular on bFGF combined ones. It seems to be a promising candidate as a chondrocyte microparticle and could be the potential application in cartilage tissue engineering.

  11. A novel spray-dried nanoparticles-in-microparticles system for formulating scopolamine hydrobromide into orally disintegrating tablets.

    Science.gov (United States)

    Li, Feng-Qian; Yan, Cheng; Bi, Juan; Lv, Wei-Lin; Ji, Rui-Rui; Chen, Xu; Su, Jia-Can; Hu, Jin-Hong

    2011-01-01

    Scopolamine hydrobromide (SH)-loaded microparticles were prepared from a colloidal fluid containing ionotropic-gelated chitosan nanoparticles using a spray-drying method. The spray-dried microparticles were then formulated into orally disintegrating tablets (ODTs) using a wet granulation tablet formation process. A drug entrapment efficiency of about 90% (w/w) and loading capacity of 20% (w/w) were achieved for the microparticles, which ranged from 2 μm to 8 μm in diameter. Results of disintegration tests showed that the formulated ODTs could be completely dissolved within 45 seconds. Drug dissolution profiles suggested that SH is released more slowly from tablets made using the microencapsulation process compared with tablets containing SH that is free or in the form of nanoparticles. The time it took for 90% of the drug to be released increased significantly from 3 minutes for conventional ODTs to 90 minutes for ODTs with crosslinked microparticles. Compared with ODTs made with noncrosslinked microparticles, it was thus possible to achieve an even lower drug release rate using tablets with appropriate chitosan crosslinking. Results obtained indicate that the development of new ODTs designed with crosslinked microparticles might be a rational way to overcome the unwanted taste of conventional ODTs and the side effects related to SH's intrinsic characteristics.

  12. An overview of the role of microparticles/microvesicles in blood components: Are they clinically beneficial or harmful?

    Science.gov (United States)

    Burnouf, Thierry; Chou, Ming-Li; Goubran, Hadi; Cognasse, Fabrice; Garraud, Olivier; Seghatchian, Jerard

    2015-10-01

    Blood cells and tissues generate heterogeneous populations of cell-derived vesicles, ranging from approximately 50 nm to 1 µm in diameter. Under normal physiological conditions and as an essential part of an energy-dependent natural process, microparticles (MPs) are continuously shed into the circulation from membranes of all viable cells such as megakaryocytes, platelets, red blood cells, white blood cells and endothelial cells. MP shedding can also be triggered by pathological activation of inflammatory processes and activation of coagulation or complement systems, or even by shear stress in the circulation. Structurally, MPs have a bilayered phospholipid structure exposing coagulant-active phosphatidylserine and expressing various membrane receptors, and they serve as cell-to-cell shuttles for bioactive molecules such as lipids, growth factors, microRNAs, and mitochondria. It was established that ex vivo processing of blood into its components, involving centrifugation, processing by various apheresis procedures, leucoreduction, pathogen reduction, and finally storage in different media and different types of blood bags, can impact MP generation and content. This is mostly due to exposure of the collected blood to anticoagulant/storage media and due to shear stresses or activation, contact with artificial surfaces, or exposure to various leucocyte-removal filters and pathogen-reduction treatments. Such artificially generated MPs, which are added to the original pool of MPs collected from the donor, may exhibit specific functional characteristics, as MPs are not an inert element of blood components. Not surprisingly, MPs' roles and functionality are therefore increasingly seen to be fully relevant to the field of transfusion medicine, and as a parameter of blood safety that must be considered in haemovigilance programmes. Continual advancements in assessment methods of MPs and storage lesions are gradually leading to a better understanding of the impacts of

  13. TROPICAL METEOROLOGY & Climate: Hadley Circulation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jian; Vecchi, Gabriel A.

    2015-01-30

    The Hadley circulation, a prominent circulation feature characterized by rising air near the Equator and sinking air in the subtropics, defines the position of dry subtropical areas and is a fundamental regulator of the earth’s energy and momentum budgets. The character of the Hadley circulation, and its related precipitation regimes, exhibits variation and change in response to both climate variability and radiative forcing changes. The strength and position of the Hadley circulation change from year to year paced by El Niño and La Niña events. Over the last few decades of the twentieth century, the Hadley cell has expanded poleward in both hemispheres, with changes in atmospheric composition (including stratospheric ozone depletion and greenhouse gas increases) thought to have contributed to its expansion. This article introduces the basic phenomenology and driving mechanism of the Hadley circulation and discusses its variations under both natural and anthropogenic climate forcings.

  14. Sino-Danish Brain Circulation

    DEFF Research Database (Denmark)

    Bertelsen, Rasmus Gjedssø; Du, Xiangyun; Søndergaard, Morten Karnøe

    2014-01-01

    China is faced with urgent needs to develop an economically and environmentally sustainable economy based on innovation and knowledge. Brain circulation and research and business investments from the outside are central for this development. Sino-American brain circulation and research...... and investment by overseas researchers and entrepreneurs are well described. In that case, the US is the center of global R&D and S&T. However, the brain circulation and research and investments between a small open Scandinavian economy, such as Denmark, and the huge developing economy of China are not well...... understood. In this case, Denmark is very highly developed, but a satellite in the global R&D and S&T system. With time and the growth of China as a R&D and S&T power house, both Denmark and China will benefit from brain circulation between them. Such brain circulation is likely to play a key role in flows...

  15. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models

    Science.gov (United States)

    Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai

    2017-03-01

    Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work.

  16. Novel Starch-PVA Polymer for Microparticle Preparation and Optimization Using Factorial Design Study.

    Science.gov (United States)

    Chattopadhyay, Helen; De, Amit Kumar; Datta, Sriparna

    2015-01-01

    The aim of our present work was to optimize the ratio of a very novel polymer, starch-polyvinyl alcohol (PVA), for controlled delivery of Ornidazole. Polymer-coated drug microparticles were prepared by emulsion method. Microscopic study, scanning electron microscopic study, and atomic force microscopic study revealed that the microparticles were within 10 micrometers of size with smooth spherical shape. The Fourier transform infrared spectroscopy showed absence of drug polymer interaction. A statistical 3(2) full factorial design was used to study the effect of different concentration of starch and PVA on the drug release profile. The three-dimensional plots gave us an idea about the contribution of each factor on the release kinetics. Hence this novel polymer of starch and polyvinyl alcohol can be utilized for control release of the drug from a targeted delivery device.

  17. Synthesis of Iron-containing Carbon Microparticles from Deoiled Asphalt and Ferrocene

    Institute of Scientific and Technical Information of China (English)

    YANG Yong-zhen; ZHANG Chun-yi; JI Wei-yun; LIU Xu-guang; XU Bing-she

    2006-01-01

    The deoiled asphalt as the carbon source and the ferrocene as the metal source and the catalyst precursor were chosen to synthesize iron-containing carbon microparticles through co-carbonization at the temperature of about 450 ℃ for 3 h. The resulting products were treated at 2 000 ℃ for 2 h. All samples were examined by high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The results show that the iron particles in the heat-treated material are completely coated by carbon. In addition to the fully filled carbon microparticles as well as hollow carbon ones, also form carbon fibers with hollow centers. The formation mechanism of the as-prepared products was discussed briefly.

  18. Molecular detection of bacterial pathogens using microparticle enhanced double-stranded DNA probes.

    Science.gov (United States)

    Riahi, Reza; Mach, Kathleen E; Mohan, Ruchika; Liao, Joseph C; Wong, Pak Kin

    2011-08-15

    Rapid, specific, and sensitive detection of bacterial pathogens is essential toward clinical management of infectious diseases. Traditional approaches for pathogen detection, however, often require time-intensive bacterial culture and amplification procedures. Herein, a microparticle enhanced double-stranded DNA probe is demonstrated for rapid species-specific detection of bacterial 16S rRNA. In this molecular assay, the binding of the target sequence to the fluorophore conjugated probe thermodynamically displaces the quencher probe and allows the fluorophore to fluoresce. By incorporation of streptavidin-coated microparticles to localize the biotinylated probes, the sensitivity of the assay can be improved by 3 orders of magnitude. The limit of detection of the assay is as few as eight bacteria without target amplification and is highly specific against other common pathogens. Its applicability toward clinical diagnostics is demonstrated by directly identifying bacterial pathogens in urine samples from patients with urinary tract infections.

  19. Poly(N-vinylcaprolactam-co-methacrylic acid) hydrogel microparticles for oral insulin delivery.

    Science.gov (United States)

    Mundargi, Raghavendra C; Rangaswamy, Vidhya; Aminabhavi, Tejraj M

    2011-01-01

    pH-sensitive copolymeric hydrogels prepared from N-vinylcaprolactam and methacrylic acid monomers by free radical polymerization offered 52% encapsulation efficiency and evaluated for oral delivery of human insulin. The in vitro experiments performed on insulin-loaded microparticles in pH 1.2 media (stomach condition) demonstrated no release of insulin in the first 2 h, but almost 100% insulin was released in pH 7.4 media (intestinal condition) in 6 h. The carrier was characterized by Fourier transform infrared, differential scanning calorimeter, thermogravimetry and nuclear magnetic resonance techniques to confirm the formation of copolymer, while scanning electron microscopy was used to assess the morphology of hydrogel microparticles. The in vivo experiments on alloxan-induced diabetic rats showed the biological inhibition up to 50% and glucose tolerance tests exhibited 44% inhibition. The formulations of this study are the promising carriers for oral delivery of insulin.

  20. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film

    Directory of Open Access Journals (Sweden)

    Benpeng Zhu

    2016-03-01

    Full Text Available Single-beam acoustic tweezers (SBAT, used in laboratory-on-a-chip (LOC device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d33 = 270pC/N and kt = 0.51 was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50MHz, a low f-number (∼0.9, demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications.

  1. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film

    Science.gov (United States)

    Zhu, Benpeng; Xu, Jiong; Li, Ying; Wang, Tian; Xiong, Ke; Lee, Changyang; Yang, Xiaofei; Shiiba, Michihisa; Takeuchi, Shinichi; Zhou, Qifa; Shung, K. Kirk

    2016-01-01

    Single-beam acoustic tweezers (SBAT), used in laboratory-on-a-chip (LOC) device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d33 = 270pC/N and kt = 0.51) was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50MHz, a low f-number (∼0.9), demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications. PMID:27014504

  2. An on-line remote supervisory system for microparticles based on image analysis

    Institute of Scientific and Technical Information of China (English)

    LIU Wei-hua; JIANG Ming-shun; SUI Qing-mei

    2011-01-01

    A new on-line remote particle analysis system based on image processing has been developed to measure microparticles.The system is composed of particle collector sensor (PCS),particle image sensor (PIS),image remote wansmit module and image processing system.Then some details of image processing are discussed.The main advantage of this system is more convenient in particle sample collection and particle image acquisition.The particle size can be obtained using the system with a deviation abot less than 1 μm,and the particle number can be obtained without deviation,The developed system is also convenient and versatile for other analyses of microparticle for academic and industrial application.

  3. Slowdown of microparticles by an electromagnetic potential well deepening over time

    CERN Document Server

    Izmailov, Azad Ch

    2016-01-01

    We analyze possible motion control of microparticles by means of external electromagnetic fields which induce potential wells having fixed spatial distribution but deepening over time up to some limit. It is assumed that given particles are under conditions of the high vacuum and forces acting on these particles are not dissipative. We have established slowdown of comparatively fast particles as a result of their transit through considered potential wells. This process is demonstrated on example of the nonresonance laser beam with the intensity amplifying over time. More detailed research of particle slowdown in such electromagnetic fields is carried out on the basis of simple analytical relationships obtained from basic equations of classical mechanics for the model of the one-dimensional rectangular potential well deepening over time. Method for cooling of particles, demonstrated in the present work, may be applied for essential increase of spectroscopy resolution of various microparticles, including in def...

  4. Iontophoresis of minoxidil sulphate loaded microparticles, a strategy for follicular drug targeting?

    Science.gov (United States)

    Gelfuso, Guilherme M; Barros, M Angélica de Oliveira; Delgado-Charro, M Begoña; Guy, Richard H; Lopez, Renata F V

    2015-10-01

    The feasibility of targeting drugs to hair follicles by a combination of microencapsulation and iontophoresis has been evaluated. Minoxidil sulphate (MXS), which is used in the treatment of alopecia, was selected as a relevant drug with respect to follicular penetration. The skin permeation and disposition of MXS encapsulated in chitosan microparticles (MXS-MP) was evaluated in vitro after passive and iontophoretic delivery. Uptake of MXS was quantified at different exposure times in the stratum corneum (SC) and hair follicles. Microencapsulation resulted in increased (6-fold) drug accumulation in the hair follicles relative to delivery from a simple MXS solution. Application of iontophoresis enhanced follicular delivery for both the solution and the microparticle formulations. It appears, therefore, that microencapsulation and iontophoresis can act synergistically to enhance topical drug targeting to hair follicles.

  5. TGF-beta1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function

    Science.gov (United States)

    Lu, L.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    BACKGROUND: Controlled release of transforming growth factor-beta1 (TGF-beta1) to a bone defect may be beneficial for the induction of a bone regeneration cascade. The objectives of this work were to assess the feasibility of using biodegradable polymer microparticles as carriers for controlled TGF-beta1 delivery and the effects of released TGF-beta1 on the proliferation and differentiation of marrow stromal cells in vitro. METHODS: Recombinant human TGF-beta1 was incorporated into microparticles of blends of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG). Fluorescein isothiocynate-labeled bovine serum albumin (FITC-BSA) was co-encapsulated as a porogen. The effects of PEG content (0, 1, or 5% by weight [wt%]) and buffer pH (3, 5, or 7.4) on the protein release kinetics and the degradation of PLGA were determined in vitro for as long as 28 days. Rat marrow stromal cells were seeded on a biodegradable poly(propylene fumarate) (PPF) substrate. The dose response and biological activity of released TGF-beta1 was determined after 3 days in culture. The effects of TGF-beta1 released from PLGA/PEG microparticles on marrow stromal cell proliferation and osteoblastic differentiation were assessed during a 21-day period. RESULTS: TGF-beta1 was encapsulated along with FITC-BSA into PLGA/PEG blend microparticles and released in a multiphasic fashion including an initial burst for as long as 28 days in vitro. Increasing the initial PEG content resulted in a decreased cumulative mass of released proteins. Aggregation of FITC-BSA occurred at lower buffer pH, which led to decreased release rates of both proteins. The degradation of PLGA was increased at higher PEG content and significantly accelerated at acidic pH conditions. Rat marrow stromal cells cultured on PPF substrates showed a dose response to TGF-beta1 released from the microparticles similar to that of added TGF-beta1, indicating that the activity of TGF-beta1 was retained during microparticle

  6. Procoagulant, tissue factor-bearing microparticles in bronchoalveolar lavage of interstitial lung disease patients: an observational study.

    Directory of Open Access Journals (Sweden)

    Federica Novelli

    Full Text Available Coagulation factor Xa appears involved in the pathogenesis of pulmonary fibrosis. Through its interaction with protease activated receptor-1, this protease signals myofibroblast differentiation in lung fibroblasts. Although fibrogenic stimuli induce factor X synthesis by alveolar cells, the mechanisms of local posttranslational factor X activation are not fully understood. Cell-derived microparticles are submicron vesicles involved in different physiological processes, including blood coagulation; they potentially activate factor X due to the exposure on their outer membrane of both phosphatidylserine and tissue factor. We postulated a role for procoagulant microparticles in the pathogenesis of interstitial lung diseases. Nineteen patients with interstitial lung diseases and 11 controls were studied. All subjects underwent bronchoalveolar lavage; interstitial lung disease patients also underwent pulmonary function tests and high resolution CT scan. Microparticles were enumerated in the bronchoalveolar lavage fluid with a solid-phase assay based on thrombin generation. Microparticles were also tested for tissue factor activity. In vitro shedding of microparticles upon incubation with H₂O₂ was assessed in the human alveolar cell line, A549 and in normal bronchial epithelial cells. Tissue factor synthesis was quantitated by real-time PCR. Total microparticle number and microparticle-associated tissue factor activity were increased in interstitial lung disease patients compared to controls (84±8 vs. 39±3 nM phosphatidylserine; 293±37 vs. 105±21 arbitrary units of tissue factor activity; mean±SEM; p<.05 for both comparisons. Microparticle-bound tissue factor activity was inversely correlated with lung function as assessed by both diffusion capacity and forced vital capacity (r² = .27 and .31, respectively; p<.05 for both correlations. Exposure of lung epithelial cells to H₂O₂ caused an increase in microparticle-bound tissue factor

  7. Magnetic microparticles post-synthetically coated by hyaluronic acid as an enhanced carrier for microfluidic bioanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Holubova, Lucie [Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Knotek, Petr [Joint Laboratory of Solid State Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Palarcik, Jiri [Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Cadkova, Michaela [Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Belina, Petr [Department of Inorganic Technology, Faculty of Chemical Technology, University of Pardubice, Doubravice 41, 53210 Pardubice (Czech Republic); Vlcek, Milan [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho sq. 2, 16206 Prague (Czech Republic); Korecka, Lucie [Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Bilkova, Zuzana, E-mail: Zuzana.Bilkova@upce.cz [Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic)

    2014-11-01

    Iron oxide based particles functionalized by bioactive molecules have been utilized extensively in biotechnology and biomedicine. Despite their already proven advantages, instability under changing reaction conditions, non-specific sorption of biomolecules on the particles' surfaces, and iron oxide leakage from the naked particles can greatly limit their application. As confirmed many times, surface treatment with an appropriate stabilizer helps to minimize these disadvantages. In this work, we describe enhanced post-synthetic surface modification of superparamagnetic microparticles varying in materials and size using hyaluronic acid (HA) in various chain lengths. Scanning electron microscopy, atomic force microscopy, phase analysis light scattering and laser diffraction are the methods used for characterization of HA-coated particles. The zeta potential and thickness of HA-layer of HA-coated Dynabeads M270 Amine were − 50 mV and 85 nm, respectively, and of HA-coated p(GMA-MOEAA)-NH{sub 2} were − 38 mV and 140 nm, respectively. The electrochemical analysis confirmed the zero leakage of magnetic material and no reactivity of particles with hydrogen peroxide. The rate of non-specific sorption of bovine serum albumin was reduced up to 50% of the naked ones. The coating efficiency and suitability of biopolymer-based microparticles for magnetically active microfluidic devices were confirmed. - Highlights: • Post-synthetic surface modification of magnetic microparticles by hyaluronic acid • Hyaluronic acid — polymer of unique physicochemical and biological characteristics • Panel of particle characterization methods was introduced. • HA-coated microparticles gain characteristics suited for microfluidic bioanalysis.

  8. Chelators influenced synthesis of chitosan-carboxymethyl cellulose microparticles for controlled drug delivery

    Science.gov (United States)

    Samrot, Antony V.; Akanksha; Jahnavi, Tatipamula; Padmanaban, S.; Philip, Sheryl-Ann; Burman, Ujjala; Rabel, Arul Maximus

    2016-11-01

    In this study, polyphenolic curcumin is entrapped within microcomposites made of biopolymers chitosan (CS) and carboxymethyl cellulose (CMC) formulated by ionic gelation method. Here, different concentrations of two chelating agents, barium chloride and sodium tripolyphosphate, are used to make microcomposites. Thus, the synthesized microparticles were characterized by FTIR, and their surface morphology was studied by SEM. Drug encapsulation efficiency and the drug release kinetics of CS-CMC composites are also studied. The produced microcomposites were used to study antibacterial activity in vitro.

  9. Effect of formulation variables on physicochemical characteristics of synbiotic microparticles with Lactobacillus casei

    OpenAIRE

    Petreska Ivanovska, Tanja; Petrusevska Tozi, Lidija; Smilkov, Katarina; Popovski, Emil; Grozdanov, Anita; Geskovski, Nikola; PETKOVSKA, RUMENKA; GLAVAS DODOV, MARIJA; Mladenovska, Kristina

    2011-01-01

    Synbiotic microparticles were prepared by spray-drying of aqueous dispersion of alginate, fructooligosaccharide and L.casei, followed by subsequent cross-linking and coating in solution of CaCl2 and chitosan in 1% w/w acetic acid. The aim of the study was to evaluate the influence of the formulation variables in particle size, zeta potential, calcium content and cell entrapment using polynomial regression model at 2nd level. Experimental responese demonstrated dominant influence of the int...

  10. Development of Probiotic Tablets Using Microparticles: Viability Studies and Stability Studies

    OpenAIRE

    e Silva, J. P. Sousa; Sousa, Sérgio C.; Costa, Paulo; Cerdeira, Emília; Amaral, Maria H.; Lobo, José Sousa; Gomes, Ana M.; Pintado, Maria M.; Rodrigues, Dina; Rocha-Santos, Teresa; Freitas, Ana C.

    2012-01-01

    Alternative vectors to deliver viable cells of probiotics, to those conferring limited resistance to gastrointestinal conditions, still need to be sought. Therefore the main goal of the study was to develop tablets able to protect entrapped probiotic bacteria from gastric acidity, thus providing an easily manufacturing scale-up dosage form to deliver probiotics to the vicinity of the human colon. Whey protein concentrate microparticles with Lactobacillus paracasei L26 were produced by spray-d...

  11. [Effect of microparticle on fermentation process of filamentous microorganisms--a review].

    Science.gov (United States)

    Niu, Kun; Mao, Jian; Zheng, Yuguo

    2015-03-04

    Filamentous microorganisms are important biocatalysts for the fermentation industry. They usually present three types of mycelial morphology in submerged cultivation: dispersed mycelium, clumps and pellet, which have an important relationship with the product quality and yield. This paper summarizes the effect of mycelial morphology on the fermentation results as well as the effect of adding microparticles on mycelial morphology, mycelial structure and fermentation yield during the fermentation process of filamentous microorganisms.

  12. Synthesis and characterization of modified carrageenan microparticles for the removal of pharmaceuticals from aqueous solutions.

    Science.gov (United States)

    Nanaki, Stavroula G; Kyzas, George Z; Tzereme, Areti; Papageorgiou, M; Kostoglou, Margaritis; Bikiaris, Dimitrios N; Lambropoulou, Dimitra A

    2015-03-01

    In the present study, carrageenan microparticles were synthesized using spray-drying method and used as biosorbents for the removal of pharmaceutical compounds. The cross-linking reaction of iota-carrageenan (iCAR) and kappa-carrageenan (kCAR) with glutaraldehyde (GLA) at different concentrations (2.5% or 5% (w/w), mass of GLA per mass of CAR) was studied (iCAR/GLA2.5, iCAR/GLA5, kCAR/GLA2.5, kCAR/GLA5). The physicochemical properties of the novel cross-linked polymers were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Swelling studies were in accordance with the polymer properties, showing the lowest swelling degree (19%) by using the iCAR/GLA5 microparticles. The optimal kCAR/GLA5 microparticles were successfully employed for the removal of Metoprolol (MTPL) from aqueous samples. The adsorption capacity of the adsorbents was investigated using a batch adsorption procedure and the kinetics and thermodynamics of the adsorption process were further investigated. It was found that the adsorption isotherms agree well with the Langmuir-Freundlich model. The maximum adsorption capacity (Qm) was achieved in pH 6, whereas an increase of Qm was observed increasing the temperature (from 109 at 20°C to 178 mg/g at 40°C). Kinetic studies showed that the adsorption process on iCAR/GLA5 microparticles followed pseudo-second-order rate mechanism. Finally, a new phenomenological model of the adsorption process was proposed in order to extract information on the relevant sub-processes.

  13. Chelators influenced synthesis of chitosan-carboxymethyl cellulose microparticles for controlled drug delivery

    Science.gov (United States)

    Samrot, Antony V.; Akanksha; Jahnavi, Tatipamula; Padmanaban, S.; Philip, Sheryl-Ann; Burman, Ujjala; Rabel, Arul Maximus

    2016-07-01

    In this study, polyphenolic curcumin is entrapped within microcomposites made of biopolymers chitosan (CS) and carboxymethyl cellulose (CMC) formulated by ionic gelation method. Here, different concentrations of two chelating agents, barium chloride and sodium tripolyphosphate, are used to make microcomposites. Thus, the synthesized microparticles were characterized by FTIR, and their surface morphology was studied by SEM. Drug encapsulation efficiency and the drug release kinetics of CS-CMC composites are also studied. The produced microcomposites were used to study antibacterial activity in vitro.

  14. Mathematical modeling of drug release from bioerodible microparticles: effect of gamma-irradiation.

    Science.gov (United States)

    Faisant, N; Siepmann, J; Richard, J; Benoit, J P

    2003-09-01

    Bioerodible polymers used in controlled drug delivery systems, such as poly(lactic-co-glycolic acid) (PLGA) undergo radiolytic degradation during gamma-irradiation. In spite of the considerable practical importance, yet only little knowledge is available on the consequences of this sterilization method on the resulting drug release patterns in a quantitative way. The major objectives of the present study were: (i) to monitor the effects of different gamma-irradiation doses on the physicochemical properties of drug-free and drug-loaded, PLGA-based microparticles; (ii) to analyze the obtained experimental results using adequate mathematical models; (iii) to get further insight into the occurring physical and chemical phenomena; and (iv) to relate the applied gamma-irradiation dose in a quantitative way to the resulting drug release rate. 5-Fluorouracil-loaded, PLGA-based microparticles were prepared with an oil-in-water solvent extraction method and exposed to gamma-irradiation doses ranging from 0 to 33 kGy. Size exclusion chromatography, differential scanning calorimetry, scanning electron microscopy, particle size analysis, determination of the actual drug loading and in vitro drug release kinetics were used to study the effects of the gamma-irradiation dose on the physicochemical properties of the microparticles. Two mathematical models-a simplified and a more comprehensive one-were used to analyze the experimental results. The simplified model considers drug diffusion based on Fick's second law for spherical geometry and a Higuchi-like pseudo-steady-state approach. The complex model combines Monte Carlo simulations (describing polymer erosion) with partial differential equations quantifying drug diffusion with time-, position- and direction-dependent diffusivities. Interestingly, exponential relationships between the gamma-irradiation dose and the initial drug diffusivity within the microparticles could be established. Based on this knowledge both models were

  15. Dating copper-based archaeological materials using the voltammetry of microparticles

    OpenAIRE

    Doménech-Carbó, Antonio; Capelo, Sofia; Doménech-Carbó, María Teresa

    2014-01-01

    The voltammetry of microparticles, an electrochemical technique providing information on the composition of archaeological materials using an essentially non invasive analysis [1,2] was previously applied for dating lead-based materials [3,4]. It is described the application of this methodology for dating copper-based archaeological materials based on a theoretical model for long term metal corrosion [5]. Dating is based on the measurement of the voltammetric signals of cuprite and tenorite f...

  16. Persistence, distribution, and impact of distinctly segmented microparticles on cochlear health following in vivo infusion.

    Science.gov (United States)

    Ross, Astin M; Rahmani, Sahar; Prieskorn, Diane M; Dishman, Acacia F; Miller, Josef M; Lahann, Joerg; Altschuler, Richard A

    2016-06-01

    Delivery of pharmaceuticals to the cochleae of patients with auditory dysfunction could potentially have many benefits from enhancing auditory nerve survival to protecting remaining sensory cells and their neuronal connections. Treatment would require platforms to enable drug delivery directly to the cochlea and increase the potential efficacy of intervention. Cochlear implant recipients are a specific patient subset that could benefit from local drug delivery as more candidates have residual hearing; and since residual hearing directly contributes to post-implantation hearing outcomes, it requires protection from implant insertion-induced trauma. This study assessed the feasibility of utilizing microparticles for drug delivery into cochlear fluids, testing persistence, distribution, biocompatibility, and drug release characteristics. To allow for delivery of multiple therapeutics, particles were composed of two distinct compartments; one containing polylactide-co-glycolide (PLGA), and one composed of acetal-modified dextran and PLGA. Following in vivo infusion, image analysis revealed microparticle persistence in the cochlea for at least 7 days post-infusion, primarily in the first and second turns. The majority of subjects maintained or had only slight elevation in auditory brainstem response thresholds at 7 days post-infusion compared to pre-infusion baselines. There was only minor to limited loss of cochlear hair cells and negligible immune response based on CD45+ immunolabling. When Piribedil-loaded microparticles were infused, Piribedil was detectable within the cochlear fluids at 7 days post-infusion. These results indicate that segmented microparticles are relatively inert, can persist, release their contents, and be functionally and biologically compatible with cochlear function and therefore are promising vehicles for cochlear drug delivery. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1510-1522, 2016.

  17. Hybrid calcium carbonate/polymer microparticles containing silver nanoparticles as antibacterial agents

    Energy Technology Data Exchange (ETDEWEB)

    Dlugosz, Maciej; Bulwan, Maria; Kania, Gabriela; Nowakowska, Maria; Zapotoczny, Szczepan, E-mail: zapotocz@chemia.uj.edu.pl [Jagiellonian University, Faculty of Chemistry (Poland)

    2012-12-15

    We report here on synthesis and characterization of novel hybrid material consisting of silver nanoparticles (nAgs) embedded in calcium carbonate microparticles ({mu}-CaCO{sub 3}) serving as carriers for sustained release. nAgs are commonly used as antimicrobial agents in many commercial products (textiles, cosmetics, and drugs). Although they are considered to be safe, their interactions with human organisms are still not fully understood; therefore it is important to apply them with caution and limit their presence in the environment. The synthesis of the new material was based on the co-precipitation of CaCO{sub 3} and nAg in the presence of poly(sodium 4-styrenesulfonate). Such designed system enables sustained release of nAg to the environment. This hybrid colloidal material (nAg/{mu}-CaCO{sub 3}) was characterized by microscopic and spectroscopic methods. The release of nAg from {mu}-CaCO{sub 3} microparticles was followed in water at various pH values. Microbiological tests confirmed the effectiveness of these microparticles as an antibacterial agent. Importantly, the material can be stored as a dry powder and subsequently re-suspended in water without the risk of losing its antimicrobial activity. nAg/{mu}-CaCO{sub 3} was applied here to insure bacteriostatic properties of down feathers that may significantly prolong their lifetime in typical applications. Such microparticles may be also used as, e.g., components of coatings and paints protecting various surfaces against microorganism colonization.

  18. Simultaneous identification of lead pigments and binding media in paint samples using voltammetry of microparticles

    OpenAIRE

    DOMENECH CARBO, ANTONIO; Domenech Carbo, Mª Teresa; Mas Barberà, Xavier; Ciarrocci, Julia

    2007-01-01

    Voltammetry of microparticles is applied to the simultaneous determination of lead pigments and binding media in paint samples. The mechanical attachment of a few nanograms of sample to a paraffin-impregnated graphite electrode produced well-defined square wave voltammetric responses for model paint specimens containing lead white, minium and Naples yellow associated with linseed, sunflower and poppy oils and casein, egg, and bovine gelatin. The use of a multiparametric fitting of the electro...

  19. Fast-dissolving core-shell composite microparticles of quercetin fabricated using a coaxial electrospray process.

    Directory of Open Access Journals (Sweden)

    Chen Li

    Full Text Available This study reports on novel fast-dissolving core-shell composite microparticles of quercetin fabricated using coaxial electrospraying. A PVC-coated concentric spinneret was developed to conduct the electrospray process. A series of analyses were undertaken to characterize the resultant particles in terms of their morphology, the physical form of their components, and their functional performance. Scanning and transmission electron microscopies revealed that the microparticles had spherical morphologies with clear core-shell structure visible. Differential scanning calorimetry and X-ray diffraction verified that the quercetin active ingredient in the core and sucralose and sodium dodecyl sulfate (SDS excipients in the shell existed in the amorphous state. This is believed to be a result of second-order interactions between the components; these could be observed by Fourier transform infrared spectroscopy. In vitro dissolution and permeation studies showed that the microparticles rapidly released the incorporated quercetin within one minute, and had permeation rates across the sublingual mucosa around 10 times faster than raw quercetin.

  20. Formulation and optimization of rifampicin microparticles by Box-Behnken statistical design.

    Science.gov (United States)

    Maurya, D P; Sultana, Yasmin; Aqil, Mohd; Ali, A

    2012-01-01

    The objective of the present study was to optimize and evaluate in vitro gastroretentive performance of rifampicin microparticles. Formulations were optimized using design of experiments by employing a 4-factor, 3-level Box-Behnken statistical design. Independent variables studied were the ratio of polymers (Eudragit RSPO: ethyl cellulose), inert drug dispersing agent (talc), surfactant (sodium dodecyl sulfate) and stirring speed. The dependent variables were particle size and entrapment efficiency. Response surface plots were drawn, statistical validity of the polynomials was validated and the optimized formulation was characterized by Fourier Transform-InfraRed spectroscopy (FT-IR) and differential scanning calorimetry (DSC). Entrapment efficiency and particle size were determined. The designed microparticles have average particle size from 14.10 μm to 45.63 μm and entrapment efficiency from 38.14% to 94.81%. Optimized microparticles showed particle size and drug entrapment, 51.53 μm and 83.43%, respectively with sustained drug release behavior up to 12 h. In the present study, rifampicin microspheres were successfully prepared by a quasi-emulsion solvent diffusion technique for prolonged drug release. FT-IR and DSC studies did not reveal any significant drug interactions. The drug release was found to be controlled for more than 12 h by following zero order release pattern.

  1. Laminar flow assisted anisotropic bacteria absorption for chemotaxis delivery of bacteria-attached microparticle

    Science.gov (United States)

    Huh, Keon; Oh, Darong; Son, Seok Young; Yoo, Hyung Jung; Song, Byeonghwa; Cho, Dong-il Dan; Seo, Jong-Mo; Kim, Sung Jae

    2016-12-01

    The concepts of microrobots has been drawn significant attentions recently since its unprecedented applicability in nanotechnology and biomedical field. Bacteria attached microparticles presented in this work are one of pioneering microrobot technology for self-propulsion or producing kinetic energy from ambient for their motions. Microfluidic device, especially utilizing laminar flow characteristics, were employed for anisotropic attachment of Salmonella typhimurium flagellated chemotactic bacteria to 30 um × 30 um and 50 um × 50 um microparticles that made of biodegradable polymer. Any toxic chemicals or harmful treatments were excluded during the attachment process and it finished within 100 s for the anisotropic attachment. The attachments were directly confirmed by fluorescent intensity changes and SEM visualization. Chemotaxis motions were tracked using aspartate and the maximum velocity of the bacteria-attached microrobot was measured to be 5 um/s which is comparable to prior state of art technologies. This reusable and scalable method could play a key role in chemotaxis delivery of functional microparticles such as drug delivery system.

  2. Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation.

    Science.gov (United States)

    Coban, Hasan B; Demirci, Ali; Turhan, Irfan

    2015-06-01

    Phytase can be used in animal's diets to increase the absorption of several divalent ions, amino acids and proteins and to decrease the excessive phosphorus release in manure to prevent negative effects on the environment. This study aimed to enhance the current submerged fungal phytase productions with a novel fermentation technique by evaluating the effect of the various microparticles on Aspergillus ficuum phytase production. It was observed that microparticles prevented bulk fungal pellet growth, decreased average fungal pellet size and significantly increased phytase activity in the submerged fermentation. Microbial structure imaging results showed that the average fungal pellet radius decreased from 800 to 500 and 200 µm by addition of 15 g/L aluminum oxide and talcum, respectively, in shake-flask fermentation. Also, addition of 15 g/L of talcum and aluminum oxide increased phytase activity to 2.01 and 2.93 U/ml, respectively, compared to control (1.02 U/ml) in shake-flask fermentation. Additionally, phytase activity reached 6.49 U/ml within 96 h of fermentation with the addition of 15 g/L of talcum, whereas the maximum phytase activity was only 3.45 U/ml at 120 h of fermentation for the control in the 1-L working volume bioreactors. In conclusion, microparticles significantly increased fungal phytase activity and production yield compared to control fermentation.

  3. In vitro characterization of insulin containing thiomeric microparticles as nasal drug delivery system.

    Science.gov (United States)

    Deutel, Britta; Laffleur, Flavia; Palmberger, Thomas; Saxer, Andreas; Thaler, Marlene; Bernkop-Schnürch, Andreas

    2016-01-01

    This study focused on a novel two step preparation method for the generation of insulin containing thiomer microparticles. The first step utilized the interpolymer complexation between poly(vinyl pyrrolidone) (PVP) and poly(acrylic acid) (PAA) or poly(acrylic acid)-cysteine (PAA-Cys), respectively, in the presence of insulin. Thereafter lyophilized coprecipitates were micronized via air jet mill. Particles were evaluated regarding size, morphology, insulin release and the effect on ciliary beat frequency of human nasal epithelial cells in vitro. Results displayed mean particle sizes of 2.6±1.6μm and 2.8±1.7μm for PAA/PVP/insulin and PAA-Cys/PVP/insulin microparticles, respectively, in a range where volitional impaction of particles on nasal epithelium takes place. Multi unit dosage forms showed in addition release for the incorporated insulin and nasal safety as to results of ciliary beat frequency studies (CBF). The introduced jet milled microparticles might in conclusion display a safe nasal insulin drug delivery system leading to improved absorption.

  4. Formulation optimization and characterization of spray dried microparticles for inhalation delivery of doxycycline hyclate.

    Science.gov (United States)

    Mishra, Madhusmita; Mishra, Brahmeshwar

    2011-01-01

    The local delivery of antibiotics in the treatment of infectious respiratory diseases is an attractive alternative to deliver high concentration of antimicrobials directly to the lungs and minimize systemic side effects. In this study, inhalable microparticles containing doxycycline hyclate, sodium carboxymethylcellulose, leucine and lactose were prepared by spray drying of aqueous ethanol formulations. Box-Behnken design was used to study the influence of various independent variables such as polymer concentration, leucine concentration, ethanol concentration and inlet temperature of the spray dryer on microparticle characteristics. The microparticles were characterized in terms of particle morphology, drug excipient interaction, yield, entrapment efficiency, Carr's index, moisture content, thermal properties, X-ray powder diffraction, aerosolization performance and in vitro drug release. The effect of independent variables on spray dryer outlet temperature was also studied. The overall shape of the particles was found to be spherical like doughnuts in the size range of 1.16-5.2 µm. The optimized formulation (sodium carboxymethylcellulose concentration 14% w/v, leucine concentration 33% w/v, ethanol concentration 36% v/v, inlet temperature of 140°C) exhibited the following properties: yield 56.69%, moisture content 3.86%, encapsulation efficiency 61.74%, theoretical aerodynamic diameter 3.11 µm and Carr's index 23.5% at an outlet temperature 77°C. The powders generated were of a suitable mass median aerodynamic diameter (4.89 µm) with 49.3% fine particle fraction and exhibited a sustained drug release profile in vitro.

  5. Bioactive insulin microparticles produced by supercritical fluid assisted atomization with an enhanced mixer.

    Science.gov (United States)

    Du, Zhe; Tang, Chuan; Guan, Yi-Xin; Yao, Shan-Jing; Zhu, Zi-Qiang

    2013-09-15

    Supercritical fluid assisted atomization introduced by a hydrodynamic cavitation mixer (SAA-HCM) was used to micronize insulin from aqueous solution without use of any organic solvents. Insulin microparticles produced under different operating conditions including solution type, solution concentration and precipitator temperature presented distinct morphologies such as highly folded, partly deflated, corrugated or smooth hollow spherical shape. Solution concentration had a striking influence on particle size, and insulin microparticles produced from acidic solution had mean diameters increasing from 1.4 μm to 2.7 μm when protein concentration increased from 3g/L to 50 g/L. HPLC chromatograms showed no degradation of insulin after SAA-HCM processing and FTIR, CD and fluorescence data further confirmed the structural stability. TGA analysis revealed that insulin microparticles remained moderate moisture content compared with raw material. In vivo study showed that insulin processed by SAA-HCM from acidic solution retained identical bioactivity. SAA-HCM is demonstrated to be a very promising process for insulin inhaled formulation development.

  6. Gentamicin-loaded poly(lactic-co-glycolic acid) microparticles for the prevention of maxillofacial and orthopedic implant infections.

    Science.gov (United States)

    Flores, Claudia; Degoutin, Stephanie; Chai, Feng; Raoul, Gwenael; Hornez, Jean-Chritophe; Martel, Bernard; Siepmann, Juergen; Ferri, Joel; Blanchemain, Nicolas

    2016-07-01

    Trauma and orthopedic surgery can cause infections as any open surgical procedures. Such complications occur in only1 to 5% of the cases, but the treatment is rather complicated due to bacterial biofilm formation and limited drug access to the site of infection upon systemic administration. An interesting strategy to overcome this type of complications is to prevent bacterial proliferation and biofilm formation via the local and controlled release of antibiotic drugs from the implant itself. Obviously, the incorporation of the drug into the implant should not affect the latter's biological and mechanical properties. In this context, we optimized the preparation process for gentamicin-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles, which can be incorporated in the macropores of calcium phosphate-based bone substitutes. Microparticles were prepared using a double emulsion solvent extraction/evaporation technique. The processing parameters were optimized in order to provide an average microparticle size of about 60μm, allowing for incorporation inside the macropores (100μm) of the hydroxyapatite scaffold. Gentamicin-loaded PLGA microparticles showed a sustained release for 25-30days and a rapid antibacterial activity due to a burst effect, the extent of which was controlled by the initial loading of the microparticles. SEM pictures revealed a highly porous microparticle structure, which can help to reduce the micro environmental pH drop and autocatalytic effects. The biological evaluation showed the cytocompatibility and non-hemolytic property of the microparticles, and the antibacterial activity against Staphylococcus aureus under the given conditions.

  7. A novel spray-dried nanoparticles-in-microparticles system for formulating scopolamine hydrobromide into orally disintegrating tablets

    Directory of Open Access Journals (Sweden)

    Li FQ

    2011-04-01

    Full Text Available Feng-Qian Li1, Cheng Yan2, Juan Bi1, Wei-Lin Lv3, Rui-Rui Ji3, Xu Chen1, Jia-Can Su3, Jin-Hong Hu31Department of Pharmaceutics, Shanghai Eighth People’s Hospital, Shanghai, People’s Republic of China; 2Department of Pharmacy, Bethune International Peace Hospital, Shijiazhuang, People’s Republic of China; 3Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of ChinaAbstract: Scopolamine hydrobromide (SH-loaded microparticles were prepared from a colloidal fluid containing ionotropic-gelated chitosan nanoparticles using a spray-drying method. The spray-dried microparticles were then formulated into orally disintegrating tablets (ODTs using a wet granulation tablet formation process. A drug entrapment efficiency of about 90% (w/w and loading capacity of 20% (w/w were achieved for the microparticles, which ranged from 2 µm to 8 µm in diameter. Results of disintegration tests showed that the formulated ODTs could be completely dissolved within 45 seconds. Drug dissolution profiles suggested that SH is released more slowly from tablets made using the microencapsulation process compared with tablets containing SH that is free or in the form of nanoparticles. The time it took for 90% of the drug to be released increased significantly from 3 minutes for conventional ODTs to 90 minutes for ODTs with crosslinked microparticles. Compared with ODTs made with noncrosslinked microparticles, it was thus possible to achieve an even lower drug release rate using tablets with appropriate chitosan crosslinking. Results obtained indicate that the development of new ODTs designed with crosslinked microparticles might be a rational way to overcome the unwanted taste of conventional ODTs and the side effects related to SH’s intrinsic characteristics.Keywords: scopolamine hydrobromide, chitosan, nanoparticles-in-microparticles system, spray-drying, orally disintegrating tablets

  8. Robust and Optimal Control of Magnetic Microparticles Inside Fluidic Channels with Time-varying Flow Rates

    Directory of Open Access Journals (Sweden)

    Islam S.M. Khalil

    2016-06-01

    Full Text Available Targeted therapy using magnetic microparticles and nanoparticles has the potential to mitigate the negative side-effects associated with conventional medical treatment. Major technological challenges still need to be addressed in order to translate these particles into in vivo applications. For example, magnetic particles need to be navigated controllably in vessels against flowing streams of body fluid. This paper describes the motion control of paramagnetic microparticles in the flowing streams of fluidic channels with time-varying flow rates (maximum flow is 35 ml.hr-1. This control is designed using a magnetic-based proportional-derivative (PD control system to compensate for the time-varying flow inside the channels (with width and depth of 2 mm and 1.5 mm, respectively. First, we achieve point-to-point motion control against and along flow rates of 4 ml.hr-1, 6 ml.hr-1, 17 ml.hr-1, and 35 ml.hr-1. The average speeds of single microparticle (with average diameter of 100 μm against flow rates of 6 ml.hr-1 and 30 ml.hr-1 are calculated to be 45 μm.s-1 and 15 μm.s-1, respectively. Second, we implement PD control with disturbance estimation and compensation. This control decreases the steady-state error by 50%, 70%, 73%, and 78% at flow rates of 4 ml.hr-1, 6 ml.hr-1, 17 ml.hr-1, and 35 ml.hr-1, respectively. Finally, we consider the problem of finding the optimal path (minimal kinetic energy between two points using calculus of variation, against the mentioned flow rates. Not only do we find that an optimal path between two collinear points with the direction of maximum flow (middle of the fluidic channel decreases the rise time of the microparticles, but we also decrease the input current that is supplied to the electromagnetic coils by minimizing the kinetic energy of the microparticles, compared to a PD control with disturbance compensation.

  9. Spray-dried Eudragit® L100 microparticles containing ferulic acid: Formulation, in vitro cytoprotection and in vivo anti-platelet effect

    Energy Technology Data Exchange (ETDEWEB)

    Nadal, Jessica Mendes; Gomes, Mona Lisa Simionatto [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná (Brazil); Borsato, Débora Maria [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa (Brazil); Almeida, Martinha Antunes [Postgraduate Program in Chemistry, Department of Chemistry, Federal University of Paraná (Brazil); Barboza, Fernanda Malaquias [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa (Brazil); Zawadzki, Sônia Faria [Postgraduate Program in Chemistry, Department of Chemistry, Federal University of Paraná (Brazil); Kanunfre, Carla Cristine [Postgraduate Program in Biomedical Science, Department of General Biology, State University of Ponta Grossa (Brazil); Farago, Paulo Vitor, E-mail: pvfarago@gmail.com [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa (Brazil); Zanin, Sandra Maria Warumby [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná (Brazil)

    2016-07-01

    This paper aimed to obtain new spray-dried microparticles containing ferulic acid (FA) prepared by using a methacrylic polymer (Eudragit® L100). Microparticles were intended for oral use in order to provide a controlled release, and improved in vitro and in vivo biological effects. FA-loaded Eudragit® L100 microparticles were obtained by spray-drying. Physicochemical properties, in vitro cell-based effects, and in vivo platelet aggregation were investigated. FA-loaded Eudragit® L100 microparticles were successfully prepared by spray-drying. Formulations showed suitable encapsulation efficiency, i.e. close to 100%. Microparticles were of spherical and almost-spherical shape with a smooth surface and a mean diameter between 2 and 3 μm. Fourier-transformed infrared spectra demonstrated no chemical bond between FA and polymer. X-ray diffraction and differential scanning calorimetry analyses indicated that microencapsulation led to drug amorphization. FA-loaded microparticles showed a slower dissolution rate than pure drug. The chosen formulation demonstrated higher in vitro cytoprotection, anti-inflammatory and immunomodulatory potential and also improved in vivo anti-platelet effect. These results support an experimental basis for the use of FA spray-dried microparticles as a feasible oral drug delivery carrier for the controlled release of FA and improved cytoprotective and anti-platelet effects. - Highlights: • Ferulic acid-loaded Eudragit® L100 microparticles with high drug-loading were obtained. • Spray-dried Eudragit® L100 microparticles containing ferulic acid showed improved in vitro cytoprotective effect. • Ferulic acid spray-dried microparticles had potential as in vitro anti-inflammatory and immunomodulatory. • In vivo studies demonstrated an enhanced antiplatelet effect for ferulic acid-loaded Eudragit® L100 microparticles.

  10. The circulation physiology of agroecosystems

    Institute of Scientific and Technical Information of China (English)

    Cao Zhiping; Richard Dawson

    2007-01-01

    This paper represents an effort to enlarge the understanding of the biophysical foundation of agroecosystems by using an analogy with the circulation of the blood in the human body. The circulation function in the human body can be represented as arterial pressure. The factors affecting arterial pressure in the human body have direct counterparts in the cultivation-husbandry system. The relationship between circulation pressure and the factors affecting that pressure in the cultivation-husbandry system are similar to the relationship between the arterial pressure and factors affecting arterial pressure in the human body. Furthermore, circulation resistance in the cultivation-husbandry system can be shown to be analogous to the calculation of peripheral resistance in the human body by Poiseuille's formula.

  11. Flow Cytometric Quantification of Peripheral Blood Cell β-Adrenergic Receptor Density and Urinary Endothelial Cell-Derived Microparticles in Pulmonary Arterial Hypertension.

    Directory of Open Access Journals (Sweden)

    Jonathan A Rose

    Full Text Available Pulmonary arterial hypertension (PAH is a heterogeneous disease characterized by severe angiogenic remodeling of the pulmonary artery wall and right ventricular hypertrophy. Thus, there is an increasing need for novel biomarkers to dissect disease heterogeneity, and predict treatment response. Although β-adrenergic receptor (βAR dysfunction is well documented in left heart disease while endothelial cell-derived microparticles (Ec-MPs are established biomarkers of angiogenic remodeling, methods for easy large clinical cohort analysis of these biomarkers are currently absent. Here we describe flow cytometric methods for quantification of βAR density on circulating white blood cells (WBC and Ec-MPs in urine samples that can be used as potential biomarkers of right heart failure in PAH. Biotinylated β-blocker alprenolol was synthesized and validated as a βAR specific probe that was combined with immunophenotyping to quantify βAR density in circulating WBC subsets. Ec-MPs obtained from urine samples were stained for annexin-V and CD144, and analyzed by a micro flow cytometer. Flow cytometric detection of alprenolol showed that βAR density was decreased in most WBC subsets in PAH samples compared to healthy controls. Ec-MPs in urine was increased in PAH compared to controls. Furthermore, there was a direct correlation between Ec-MPs and Tricuspid annular plane systolic excursion (TAPSE in PAH patients. Therefore, flow cytometric quantification of peripheral blood cell βAR density and urinary Ec-MPs may be useful as potential biomarkers of right ventricular function in PAH.

  12. Membrane Properties Involved in Calcium-Stimulated Microparticle Release from the Plasma Membranes of S49 Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Lauryl E. Campbell

    2014-01-01

    Full Text Available This study answered the question of whether biophysical mechanisms for microparticle shedding discovered in platelets and erythrocytes also apply to nucleated cells: cytoskeletal disruption, potassium efflux, transbilayer phospholipid migration, and membrane disordering. The calcium ionophore, ionomycin, disrupted the actin cytoskeleton of S49 lymphoma cells and produced rapid release of microparticles. This release was significantly inhibited by interventions that impaired calcium-activated potassium current. Microparticle release was also greatly reduced in a lymphocyte cell line deficient in the expression of scramblase, the enzyme responsible for calcium-stimulated dismantling of the normal phospholipid transbilayer asymmetry. Rescue of the scrambling function at high ionophore concentration also resulted in enhanced particle shedding. The effect of membrane physical properties was addressed by varying the experimental temperature (32–42°C. A significant positive trend in the rate of microparticle release as a function of temperature was observed. Fluorescence experiments with trimethylammonium diphenylhexatriene and Patman revealed significant decrease in the level of apparent membrane order along that temperature range. These results demonstrated that biophysical mechanisms involved in microparticle release from platelets and erythrocytes apply also to lymphocytes.

  13. Solvothermal synthesis of magnetic Fe3O4 microparticles via self-assembly of Fe3O4 nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Fenglei Shen; Ruoyu Hong

    2011-01-01

    Ferromagnetic Fe3O4 nanoparticles were synthesized and then self-assembled into microparticles via a solvothermal method, using FeCI3.6H2O as the iron source, sodium oleate as the surfactant, and ethylene glycol as the reducing agent and solvent. The obtained Fe3O4 microparticles were characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and vibrating sample magnetometer (VSM). The size and morphology of the particles were examined using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The Fe3O4 microparticles of nearly monodisperse diameters, controllable in the range of 120-400 nm, consist of assemblies of Fe3O4nanoparticles with a diameter of 22 nm. The effects of reaction time, amount of surfactant and NaAc on the products were discussed. Interestingly, by using the pre-synthesized Fe3O4 microparticles as the growth substrates, spherical and smooth-looking Fe3O4 microparticles with average diameter of lμmwere obtained. A plausible formation process was discussed.

  14. 内皮微粒与中枢神经系统疾病%Endothelial microparticles and the diseases of central nervous system

    Institute of Scientific and Technical Information of China (English)

    杨凤华

    2012-01-01

    Endothelial microparticles(EMPs) are microvesicles released from the membrane of activated,injured or apoptotic endothelial cells.It is important to discriminate EMPs from apoptotic bodies and exosomes.Endothelial microparticles contain protein,lipid,mRNA,microRNA and adhesion molecule.By now,the mechanisms that lead to the formation of EMPs are not completely elucidated,probably including loss of membrane phospholipid asymmetry and cytoskeleton reorganization.The connection between EMPs and central nervous system disease are getting more attracted.At different stages of diseases,such as ischemic stroke,hemorrhage stroke,macrovascular complications in type 2 diabetes mellitus,cerebral malaria,multiple sclerosis and traumatic brain injury,the level of EMPs in circulation or cerebral spinal fluid would change differently.It might be a biomarker to understand the mechanism,determine the severity and prognosis,and also the focus to diagnose and treat the central nervous system diseases.%内皮细胞在受到活化、损伤或凋亡时脱落的微粒即为内皮微粒.微粒与外染色体及凋亡小体在亚细胞起源、大小、内容及产生机制方面是不同的.内皮微粒具有蛋白质、脂质、核酸、黏附分子等成分,可通过细胞骨架破坏、膜磷脂不对称分布消失等机制形成.在缺血性脑卒中、出血性脑卒中、糖尿病脑血管病变、脑型疟疾、多发性硬化、脑外伤等,不同疾病时期的循环血和(或)脑脊液中内皮微粒的水平有不同程度的变化.内皮微粒成为理解中枢神经系统疾病发病机制、判断病情及预后指标,并可能成为中枢神经系统疾病诊治的靶点.

  15. Toxicodynamics of rigid polystyrene microparticles on pulmonary gas exchange in mice: Implications for microemboli-based drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, H.L. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Gao, D.; Li, S. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); UMDNJ-Rutgers CounterACT Research Center of Excellence, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Massa, C.B.; Cervelli, J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Deshmukh, M. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); UMDNJ-Rutgers CounterACT Research Center of Excellence, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Joseph, L.B.; Laskin, D.L. [UMDNJ-Rutgers CounterACT Research Center of Excellence, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Sinko, P.J., E-mail: sinko@rci.rutgers.edu [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); UMDNJ-Rutgers CounterACT Research Center of Excellence, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States)

    2013-01-15

    The toxicodynamic relationship between the number and size of pulmonary microemboli resulting from uniformly sized, rigid polystyrene microparticles (MPs) administered intravenously and their potential effects on pulmonary gas exchange were investigated. CD-1 male mice (6–8 weeks) were intravenously administered 10, 25 and 45 μm diameter MPs. Oxygen hemoglobin saturation in the blood (SpO{sub 2}) was measured non-invasively using a pulse oximeter while varying inhaled oxygen concentration (F{sub I}O{sub 2}). The resulting data were fit to a physiologically based non-linear mathematical model that estimates 2 parameters: ventilation–perfusion ratio (V{sub A}/Q) and shunt (percentage of deoxygenated blood returning to systemic circulation). The number of MPs administered prior to a statistically significant reduction in normalized V{sub A}/Q was dependent on particle size. MP doses that resulted in a significant reduction in normalized V{sub A}/Q one day post-treatment were 4000, 40,000 and 550,000 MPs/g for 45, 25 and 10 μm MPs, respectively. The model estimated V{sub A}/Q and shunt returned to baseline levels 7 days post-treatment. Measuring SpO{sub 2} alone was not sufficient to observe changes in gas exchange; however, when combined with model-derived V{sub A}/Q and shunt early reversible toxicity from pulmonary microemboli was detected suggesting that the model and physical measurements are both required for assessing toxicity. Moreover, it appears that the MP load required to alter gas exchange in a mouse prior to lethality is significantly higher than the anticipated required MP dose for effective drug delivery. Overall, the current results indicate that the microemboli-based approach for targeted pulmonary drug delivery is potentially safe and should be further explored. -- Highlights: ► Murine pulmonary gas exchange after microembolization was non-invasively studied. ► A physiologically based model quantified impairment of pulmonary gas exchange.

  16. Van der Waals interaction between microparticle and uniaxial crystal with application to hydrogen atoms and multiwall carbon nanotubes

    CERN Document Server

    Blagov, E V; Mostepanenko, V M

    2005-01-01

    The Lifshitz theory of the van der Waals force is extended for the case of an atom (molecule) interacting with a plane surface of an uniaxial crystal or with a long solid cylinder or cylindrical shell made of isotropic material or uniaxial crystal. For a microparticle near a semispace or flat plate made of an uniaxial crystal the exact expressions for the free energy of the van der Waals and Casimir-Polder interaction are presented. An approximate expression for the free energy of microparticle- cylinder interaction is obtained which becomes precise for microparticle-cylinder separations much smaller than cylinder radius. The obtained expressions are used to investigate the van der Waals interaction between hydrogen atoms (molecules) and graphite plates or multiwall carbon nanotubes. To accomplish this the behavior of graphite dielectric permittivities along the imaginary frequency axis is found using the optical data for the complex refractive index of graphite for the ordinary and extraordinary rays. It is ...

  17. Activity of Spray-dried Microparticles Containing Pomegranate Peel Extract against Candida albicans

    Directory of Open Access Journals (Sweden)

    Benedito Prado Dias Filho

    2012-08-01

    Full Text Available Pomegranate has attracted interest from researchers because of its chemical composition and biological properties. It possesses strong antioxidant activity, with potential health benefits, and also antimicrobial properties. The aim of this study was to produce microparticles containing pomegranate extract by the spray-drying technique, utilizing alginate or chitosan as encapsulating agents. Characterization and antifungal assays were carried out. Production yields were about 40% for alginate microparticles and 41% for chitosan. Mean diameters were 2.45 µm and 2.80 µm, and encapsulation efficiencies were 81.9% and 74.7% for alginate and chitosan microparticles, respectively. The spray-drying process preserved the antifungal activity against Candida albicans. These results could be useful for developing dosage forms for treating candidiasis, and should be further investigated in in vivo models.

  18. Catalytic properties of maltogenic α-amylase from Bacillus stearothermophilus immobilized onto poly(urethane urea) microparticles.

    Science.gov (United States)

    Straksys, Antanas; Kochane, Tatjana; Budriene, Saulute

    2016-11-15

    The immobilization of maltogenic α-amylase from Bacillus stearothermophilus (BsMa) onto novel porous poly(urethane urea) (PUU) microparticles synthesized from poly(vinyl alcohol) and isophorone diisocyanate was performed by covalent attachment to free isocyanate groups from PUU microparticles, or by physical adsorption of enzyme onto the surface of the carrier. The influence of structure, surface area and porosity of microparticles on the catalytic properties of immobilized BsMa was evaluated. The highest efficiency of immobilization of BsMa was found to be 72%. Optimal activity of immobilized BsMa was found to have increased by 10°C compared with the native enzyme. Influence of concentration of sodium chloride on activity of immobilized BsMa was evaluated. High storage and thermal stability and reusability for starch hydrolysis of immobilized enzyme were obtained. Immobilized BsMa has a great potential for biotechnology.

  19. In situ generation of biodegradable poly(ρ-dioxanone) micro-particles by polymerization in supercritical carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    Tian Qiang Wang; Xiu Li Zhao; Jian Yuan Hao

    2011-01-01

    Ring-opening suspension polymerization of p-dioxanone (PDO) in supercritical carbon dioxide (scCO2) was investigated in the presence of poly(caprolactone)-perfluropolyether-poly(caprolactone) (PCL-PFPE-PCL). The molecular weight, yield and particle morphology of poly(p-dioxanone) (PPDO) were studied. The stabilizer was effective to stabilize the ring-opening polymerization (ROP) of PDO in SCCO2, leading to the formation of resorbable microparticles in a "one pot" procedure. The mean size of PPDO microparticles obtained from suspension polymerizations was sensitive to the rate of agitation and the stabilizer concentration. The method to generate PPDO microparticles has overcome its unprocessable drawback with common organic solvents and provided new product form for biomedical applications.

  20. Production and characterization of alginate-starch-chitosan microparticles containing stigmasterol through the external ionic gelation technique

    Directory of Open Access Journals (Sweden)

    Gislene Mari Fujiwara

    2013-09-01

    Full Text Available Stigmasterol - a plant sterol with several pharmacological activities - is susceptible to oxidation when exposed to air, a process enhanced by heat and humidity. In this context, microencapsulation is a way of preventing oxidation, allowing stigmasterol to be incorporated into various pharmaceutical forms while increasing its absorption. Microparticles were obtained using a blend of polymers of sodium alginate, starch and chitosan as the coating material through a one-stage process using the external gelation technique. Resultant microparticles were spherical, averaging 1.4 mm in size. Encapsulation efficiency was 90.42% and method yield 94.87%. The amount of stigmasterol in the oil recovered from microparticles was 9.97 mg/g. This technique proved feasible for the microencapsulation of stigmasterol.

  1. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    KAUST Repository

    Yao, Fengchao

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow. Key Points Sinking occurs in a narrow boundary layer along the eastern boundary Surface western boundary current switches into an eastern boundary current Water exchange in the Strait of Bab el Mandeb is not hydraulically controlled © 2014. American Geophysical Union. All Rights Reserved.

  2. The Invertibility, Explicit Determinants, and Inverses of Circulant and Left Circulant and g-Circulant Matrices Involving Any Continuous Fibonacci and Lucas Numbers

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    Full Text Available Circulant matrices play an important role in solving delay differential equations. In this paper, circulant type matrices including the circulant and left circulant and g-circulant matrices with any continuous Fibonacci and Lucas numbers are considered. Firstly, the invertibility of the circulant matrix is discussed and the explicit determinant and the inverse matrices by constructing the transformation matrices are presented. Furthermore, the invertibility of the left circulant and g-circulant matrices is also studied. We obtain the explicit determinants and the inverse matrices of the left circulant and g-circulant matrices by utilizing the relationship between left circulant, g-circulant matrices and circulant matrix, respectively.

  3. Preparation of drug nanoparticle-containing microparticles using a 4-fluid nozzle spray drier for oral, pulmonary, and injection dosage forms.

    Science.gov (United States)

    Mizoe, Takuto; Ozeki, Tetsuya; Okada, Hiroaki

    2007-09-11

    We prepared microparticles containing nanoparticles of water-insoluble pranlukast hemihydrate (PLH) using a 4-fluid nozzle spray drier. These particles were designed to improve the absorption of PLH and to allow delivery by oral, pulmonary, and injection routes. Mannitol (MAN) was used as a water-soluble carrier for the microparticles. We orally administered suspensions of PLH powder and PLH-MAN microparticles to rats. We also compared the in vitro aerosol performance of the PLH powder and PLH-MAN microparticles using a cascade impactor, and we compared the delivery of PLH by oral administration of PLH powder and pulmonary delivery of PLH-MAN microparticles at PLH/MAN ratios of 1:4 and 1:10. The absorption of PLH was markedly enhanced by pulmonary deliver of PLH-MAN composite microparticles. The area under the plasma concentration-time curve per dose for pulmonary administration of the 1:4 and 1:10 PLH-MAN microparticles was approximately 85- and 100-fold higher, respectively, than for oral administration of PLH powder. Also, we found that PLH rapidly disappeared from the plasma following injection of PLH aqueous solution or PLH-MAN microparticles dissolved in water. The PLH particles remaining after dissolution of MAN from the 1:10 PLH-MAN microparticles were 200 nm in diameter. Therefore, PLH particles may be captured immediately after injection by reticuloendothelial tissues such as the liver and spleen. This study demonstrated that it is possible to use the 4-fluid spray drier to prepare microparticles containing PLH nanoparticles that that improve drug absorption and can be administered by oral, pulmonary, and injection routes.

  4. Circulating Fibronectin Controls Tumor Growth

    Directory of Open Access Journals (Sweden)

    Anja von Au

    2013-08-01

    Full Text Available Fibronectin is ubiquitously expressed in the extracellular matrix, and experimental evidence has shown that it modulates blood vessel formation. The relative contribution of local and circulating fibronectin to blood vessel formation in vivo remains unknown despite evidence for unexpected roles of circulating fibronectin in various diseases. Using transgenic mouse models, we established that circulating fibronectin facilitates the growth of bone metastases by enhancing blood vessel formation and maturation. This effect is more relevant than that of fibronectin produced by endothelial cells and pericytes, which only exert a small additive effect on vessel maturation. Circulating fibronectin enhances its local production in tumors through a positive feedback loop and increases the amount of vascular endothelial growth factor (VEGF retained in the matrix. Both fibronectin and VEGF then cooperate to stimulate blood vessel formation. Fibronectin content in the tumor correlates with the number of blood vessels and tumor growth in the mouse models. Consistent with these results, examination of three separate arrays from patients with breast and prostate cancers revealed that a high staining intensity for fibronectin in tumors is associated with increased mortality. These results establish that circulating fibronectin modulates blood vessel formation and tumor growth by modifying the amount of and the response to VEGF. Furthermore, determination of the fibronectin content can serve as a prognostic biomarker for breast and prostate cancers and possibly other cancers.

  5. Multilayer PVA adsorption onto hydrophobic drug substrates to engineer drug-rich microparticles.

    Science.gov (United States)

    Buttini, F; Soltani, A; Colombo, P; Marriott, C; Jones, S A

    2008-01-01

    Despite the availability of numerous crystal engineering techniques, generating drug-rich microparticles with a predetermined size, morphology and crystallinity still represents a significant challenge. A microparticle manufacturing method has recently been developed that attempts to 'shield' the physicochemical properties of micronised drugs by the application of a microfine polymer coating. The aims of this study were to investigate the nature of the drug-polymer interactions and determine the effects of this manufacturing strategy upon release of the drug from the microparticles. The adsorption of poly(vinyl alcohol) (PVA) on the micronised hydrophobic drug surface was found to reach equilibrium between 23 and 27 h. The Freundlich isotherm model was shown to give the most accurate fit to the experimental data and thus multilayer adsorption was assumed. The adsorptive capacity (1/n) was specific to the substrate and PVA grade. An increase in the PVA (%) hydrolysis value caused 1/n to increase from 0.76 to 1.05 using budesonide and from 0.31 to 0.79 when betamethasone valerate (BMV) was used. Increasing the molecular weight of the adsorbing polymer caused a reduction in the strength of PVA-adsorbate interaction when budesonide was used as the substrate (from 0.76 to 0.59), whereas a three-fold increase (from 0.31 to 0.86) was achieved when the BMV substrate was employed. A proportion of the adsorbed polymer was shown to remain associated with the substrate during the spray-drying process and the polymer coating resulted in a significantly higher (p<0.05, ANOVA) amount of drug release in 60 min (ca. 100%) compared to budesonide alone.

  6. Evaluation of HPβCD-PEG microparticles for salmon calcitonin administration via pulmonary delivery.

    Science.gov (United States)

    Tewes, Frederic; Gobbo, Oliviero L; Amaro, Maria I; Tajber, Lidia; Corrigan, Owen I; Ehrhardt, Carsten; Healy, Anne Marie

    2011-10-03

    For therapeutic peptides, the lung represents an attractive, noninvasive route into the bloodstream. To achieve optimal bioavailability and control their fast rate of absorption, peptides can be protected by coprocessing with polymers such as polyethylene glycol (PEG). Here, we formulated and characterized salmon calcitonin (sCT)-loaded microparticles using linear or branched PEG (L-PEG or B-PEG) and hydroxypropyl-beta-cyclodextrin (HPβCD) for pulmonary administration. Mixtures of sCT, L-PEG or B-PEG and HPβCD were co-spray dried. Based on the particle properties, the best PEG:HPβCD ratio was 1:1 w:w for both PEGs. In the sCT-loaded particles, the L-PEG was more crystalline than B-PEG. Thus, L-PEG-based particles had lower surface free energy and better aerodynamic behavior than B-PEG-based particles. However, B-PEG-based particles provided better protection against chemical degradation of sCT. A decrease in sCT permeability, measured across Calu-3 bronchial epithelial monolayers, occurred when the PEG and HPβCD concentrations were both 1.6 wt %. This was attributed to an increase in buffer viscosity, caused by the two excipients. sCT pharmacokinetic profiles in Wistar rats were evaluated using a 2-compartment model after iv injection or lung insufflation. The maximal sCT plasma concentration was reached within 3 min following nebulization of sCT solution. L-PEG and B-PEG-based microparticles were able to increase T(max) to 20 ± 1 min and 18 ± 8 min, respectively. Furthermore, sCT absolute bioavailability after L-PEG-based microparticle aerosolization at 100 μg/kg was 2.3 times greater than for the nebulized sCT solution.

  7. Genotoxicity of nano/microparticles in in vitro micronuclei, in vivo comet and mutation assay systems

    Directory of Open Access Journals (Sweden)

    Fukumori Nobutaka

    2009-09-01

    Full Text Available Abstract Background Recently, manufactured nano/microparticles such as fullerenes (C60, carbon black (CB and ceramic fiber are being widely used because of their desirable properties in industrial, medical and cosmetic fields. However, there are few data on these particles in mammalian mutagenesis and carcinogenesis. To examine genotoxic effects by C60, CB and kaolin, an in vitro micronuclei (MN test was conducted with human lung cancer cell line, A549 cells. In addition, DNA damage and mutations were analyzed by in vivo assay systems using male C57BL/6J or gpt delta transgenic mice which were intratracheally instilled with single or multiple doses of 0.2 mg per animal of particles. Results In in vitro genotoxic analysis, increased MN frequencies were observed in A549 cells treated with C60, CB and kaolin in a dose-dependent manner. These three nano/microparticles also induced DNA damage in the lungs of C57BL/6J mice measured by comet assay. Moreover, single or multiple instillations of C60 and kaolin, increased either or both of gpt and Spi- mutant frequencies in the lungs of gpt delta transgenic mice. Mutation spectra analysis showed transversions were predominant, and more than 60% of the base substitutions occurred at G:C base pairs in the gpt genes. The G:C to C:G transversion was commonly increased by these particle instillations. Conclusion Manufactured nano/microparticles, CB, C60 and kaolin, were shown to be genotoxic in in vitro and in vivo assay systems.

  8. Preparation and Characterization of Ionotropic Cross-Linked Chitosan Microparticles for Controlled Release of Aceclofenac

    Directory of Open Access Journals (Sweden)

    N. G. Raghavendra Rao

    2010-04-01

    Full Text Available Aceclofenac, (2-[2-[2-(2, 6-dichlorophenyl aminophenyl] acety] oxyacetic acid a non-steroidal anti-inflammatory drug (NSAID, has been indicated for various conditions like post-traumatic pain, rheumatoid arthritis, ankylosing spondylitis. Multiple-unit systems have been reported to avoid the variations in gastric emptying and different transit rates through gastro-intestinal and spread over a large area preventing exposure of the absorbing site to high drug concentration on chronic dosing. The purpose of this study was therefore to develop aceclofenac loaded chitosan microparticles by ionotropic gelation method. Drug loading efficiency (DLE of microparticles was found between 62.20 to 92.93 % and depended on the formulation variables. Increase in the Tripolyphosphate (TPP concentration, pH of the TPP solution and cross-linking time decreased the drug release. The particle size decreased with increase in cross-linking time and found between the ranges of 1194.1 to 1568.9 µm. Drug release showed slight burst effect in phosphate buffer pH 7.4 in first hour followed by prolonged release for 8 hrs. FTIR and DSC revealed that there was no interaction between drug and polymer. The release data was fitted into first order, zero order and Higuchi model to find release kinetics. The values of regression coefficient r2 were found to be greater (£ 0.9541 for first order than for zero order (£ 0.8740 and the r2 value for Higuchi was £ 0.9805 suggesting diffusion controlled process. The result concluded that TPP-chitosan microparticles developed by ionotropic gelation method might become potential delivery system to prolonging the release of aceclofenac.

  9. Production of monodisperse epigallocatechin gallate (EGCG) microparticles by spray drying for high antioxidant activity retention.

    Science.gov (United States)

    Fu, Nan; Zhou, Zihao; Jones, Tyson Byrne; Tan, Timothy T Y; Wu, Winston Duo; Lin, Sean Xuqi; Chen, Xiao Dong; Chan, Peggy P Y

    2011-07-15

    Epigallocatechin gallate (EGCG) originated from green tea is well-known for its pharmaceutical potential and antiproliferating effect on carcinoma cells. For drug delivery, EGCG in a micro-/nanoparticle form is desirable for their optimized chemopreventive effect. In this study, first time reports that EGCG microparticles produced by low temperature spray drying can maintain high antioxidant activity. A monodisperse droplet generation system was used to realize the production of EGCG microparticles. EGCG microparticles were obtained with narrow size distribution and diameter of 30.24 ± 1.88 μM and 43.39 ± 0.69 μM for pure EGCG and lactose-added EGCG, respectively. The EC50 value (the amount of EGCG necessary to scavenge 50% of free radical in the medium) of spray dried pure EGCG particles obtained from different temperature is in the range of 3.029-3.075 μM compared to untreated EGCG with EC50 value of 3.028 μM. Varying the drying temperatures from 70°C and 130°C showed little detrimental effect on EGCG antioxidant activity. NMR spectrum demonstrated the EGCG did not undergo chemical structural change after spray drying. The major protective mechanism was considered to be: (1) the use of low temperature and (2) the heat loss from water evaporation that kept the particle temperature at low level. With further drier optimization, this monodisperse spray drying technique can be used as an efficient and economic approach to produce EGCG micro-/nanoparticles.

  10. Evaluation of different buffers on plasmid DNA encapsulation into PLGA microparticles.

    Science.gov (United States)

    Tse, Man Tsuey; Blatchford, Chris; Oya Alpar, H

    2009-03-31

    Double emulsion solvent evaporation is a widely used method to prepare poly(dl-lactide-co-glycolide) (PLGA) microparticles encapsulating plasmid DNA. There are inherent problems associated with preparing plasmid DNA in this form, in particular the DNA is liable to degrade during manufacture and the resulting powder has low encapsulation efficiencies. This study compares the use of two buffers, 0.1M NaHCO(3) and 0.07M Na(2)HPO(4) and the effect these have on the encapsulation efficiency and other critical parameters associated with these encapsulated DNA materials. Both buffers preserved the conformation of the original plasmid DNA during the homogenization process, but those made with 0.07M Na(2)HPO(4) had higher encapsulation efficiencies, as well as smaller diameters, compared with those made with 0.1M NaHCO(3) (encapsulation efficiencies of 40.72-45.65%, and mean volume diameters of 2.96-4.45microm). Buffers with a range of pH from 5 to 12 were investigated, and it was demonstrated that pH 9 was the point at which the highest amount of supercoiled DNA was balanced with the highest encapsulation efficiency. To simulate in vitro release, it was shown that microparticles made with 0.07M Na(2)HPO(4) had lower DNA release rates than those made with 0.1M NaHCO(3). These results demonstrate that the use of different buffers can aid in retaining the conformation of plasmid DNA, and can also modulate the amount of DNA encapsulated and the release profiles of microparticles.

  11. Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells.

    Science.gov (United States)

    Faille, Dorothée; El-Assaad, Fatima; Mitchell, Andrew J; Alessi, Marie-Christine; Chimini, Giovanna; Fusai, Thierry; Grau, Georges E; Combes, Valéry

    2012-08-01

    Platelet-derived microparticles (PMP) bind and modify the phenotype of many cell types including endothelial cells. Recently, we showed that PMP were internalized by human brain endothelial cells (HBEC). Here we intend to better characterize the internalization mechanisms of PMP and their intracellular fate. Confocal microscopy analysis of PKH67-labelled PMP distribution in HBEC showed PMP in early endosome antigen 1 positive endosomes and in LysoTracker-labelled lysosomes, confirming a role for endocytosis in PMP internalization. No fusion of calcein-loaded PMP with HBEC membranes was observed. Quantification of PMP endocytosis using flow cytometry revealed that it was partially inhibited by trypsin digestion of PMP surface proteins and by extracellular Ca(2+) chelation by EDTA, suggesting a partial role for receptor-mediated endocytosis in PMP uptake. This endocytosis was independent of endothelial receptors such as intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 and was not increased by tumour necrosis factor stimulation of HBEC. Platelet-derived microparticle internalization was dramatically increased in the presence of decomplemented serum, suggesting a role for PMP opsonin-dependent phagocytosis. Platelet-derived microparticle uptake was greatly diminished by treatment of HBEC with cytochalasin D, an inhibitor of microfilament formation required for both phagocytosis and macropinocytosis, with methyl-β-cyclodextrin that depletes membrane cholesterol needed for macropinocytosis and with amiloride that inhibits the Na(+)/H(+) exchanger involved in macropinocytosis. In conclusion, PMP are taken up by active endocytosis in HBEC, involving mechanisms consistent with both phagocytosis and macropinocytosis. These findings identify new processes by which PMP could modify endothelial cell phenotype and functions.

  12. Origins, structures, and functions of circulating DNA in oncology.

    Science.gov (United States)

    Thierry, A R; El Messaoudi, S; Gahan, P B; Anker, P; Stroun, M

    2016-09-01

    While various clinical applications especially in oncology are now in progress such as diagnosis, prognosis, therapy monitoring, or patient follow-up, the determination of structural characteristics of cell-free circulating DNA (cirDNA) are still being researched. Nevertheless, some specific structures have been identified and cirDNA has been shown to be composed of many "kinds." This structural description goes hand-in-hand with the mechanisms of its origins such as apoptosis, necrosis, active release, phagocytosis, and exocytose. There are multiple structural forms of cirDNA depending upon the mechanism of release: particulate structures (exosomes, microparticles, apoptotic bodies) or macromolecular structures (nucleosomes, virtosomes/proteolipidonucleic acid complexes, DNA traps, links with serum proteins or to the cell-free membrane parts). In addition, cirDNA concerns both nuclear and/or mitochondrial DNA with both species exhibiting different structural characteristics that potentially reveal different forms of biological stability or diagnostic significance. This review focuses on the origins, structures and functional aspects that are paradoxically less well described in the literature while numerous reviews are directed to the clinical application of cirDNA. Differentiation of the various structures and better knowledge of the fate of cirDNA would considerably expand the diagnostic power of cirDNA analysis especially with regard to the patient follow-up enlarging the scope of personalized medicine. A better understanding of the subsequent fate of cirDNA would also help in deciphering its functional aspects such as their capacity for either genometastasis or their pro-inflammatory and immunological effects.

  13. Mucosal vaccination against diphtheria using starch microparticles as adjuvant for cross-reacting material (CRM197) of diphtheria toxin.

    Science.gov (United States)

    Rydell, Niclas; Sjöholm, Ingvar

    2005-04-15

    Mucosal vaccination has the advantage of eliciting a local mucosal immune response as well as a systemic response. In this investigation, polyacryl starch microparticles were conjugated to diphtheria toxin cross-reacting material (CRM197) as a mucosal adjuvant for oral or intranasal immunisation of mice. Various methods of stabilising CRM197 with formaldehyde were investigated. A good systemic and local mucosal immune response was attained with oral immunisation when CRM197 was treated with a relatively low formaldehyde concentration prior to conjugation to the microparticles. No immune response was seen after intranasal immunisation.

  14. Magnetically responsive microparticles for targeted drug and radionuclide delivery.

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, M. D.; Ghebremeskel, A. N.; Nunez, L.; Kasza, K. E.; Chang, F.; Chien, T.-H.; Fisher, P. F.; Eastman, J. A.; Rosengart, A. J.; McDonald, L.; Xie, Y.; Johns, L.; Pytel, P.; Hafeli, U. O.

    2004-02-16

    We are currently investigating the use of magnetic particles--polymeric-based spheres containing dispersed magnetic nanocrystalline phases--for the precise delivery of drugs via the human vasculature. According to this review, meticulously prepared magnetic drug targeting holds promise as a safe and effective method of delivering drugs to specific organ, tissue or cellular targets. We have critically examined the wide range of approaches in the design and implementation of magnetic-particle-based drug delivery systems to date, including magnetic particle preparation, drug encapsulation, biostability, biocompatibility, toxicity, magnetic field designs, and clinical trials. However, we strongly believe that there are several limitations with past developments that need to be addressed to enable significant strides in the field. First, particle size has to be carefully chosen. Micrometer-sized magnetic particles are better attracted over a distance than nanometer sized magnetic particles by a constant magnetic field gradient, and particle sizes up to 1 {micro}m show a much better accumulation with no apparent side effects in small animal models, since the smallest blood vessels have an inner diameter of 5-7 {micro}m. Nanometer-sized particles <70 nm will accumulate in organ fenestrations despite an effective surface stabilizer. To be suitable for future human applications, our experimental approach synthesizes the magnetic drug carrier according to specific predefined outcome metrics: monodisperse population in a size range of 100 nm to 1.0 {micro}m, non-toxic, with appropriate magnetic properties, and demonstrating successful in vitro and in vivo tests. Another important variable offering possible improvement is surface polarity, which is expected to prolong particle half-life in circulation and modify biodistribution and stability of drugs in the body. The molecules in the blood that are responsible for enhancing the uptake of particles by the reticuloendothelial

  15. Atmospheric Circulation of Terrestrial Exoplanets

    CERN Document Server

    Showman, Adam P; Merlis, Timothy M; Kaspi, Yohai

    2013-01-01

    The investigation of planets around other stars began with the study of gas giants, but is now extending to the discovery and characterization of super-Earths and terrestrial planets. Motivated by this observational tide, we survey the basic dynamical principles governing the atmospheric circulation of terrestrial exoplanets, and discuss the interaction of their circulation with the hydrological cycle and global-scale climate feedbacks. Terrestrial exoplanets occupy a wide range of physical and dynamical conditions, only a small fraction of which have yet been explored in detail. Our approach is to lay out the fundamental dynamical principles governing the atmospheric circulation on terrestrial planets--broadly defined--and show how they can provide a foundation for understanding the atmospheric behavior of these worlds. We first survey basic atmospheric dynamics, including the role of geostrophy, baroclinic instabilities, and jets in the strongly rotating regime (the "extratropics") and the role of the Hadle...

  16. Circulation in blast driven instabilities

    Science.gov (United States)

    Henry de Frahan, Marc; Johnsen, Eric

    2016-11-01

    Mixing in many natural phenomena (e.g. supernova collapse) and engineering applications (e.g. inertial confinement fusion) is often initiated through hydrodynamic instabilities. Explosions in these systems give rise to blast waves which can interact with perturbations at interfaces between different fluids. Blast waves are formed by a shock followed by a rarefaction. This wave profile leads to complex time histories of interface acceleration. In addition to the instabilities induced by the acceleration field, the rarefaction from the blast wave decompresses the material at the interface, further increasing the perturbation growth. After the passage of the wave, circulation circulation generated by the blast wave through baroclinic vorticity continues to act upon the interface. In this talk, we provide scaling laws for the circulation and amplitude growth induced by the blast wave. Numerical simulations of the multifluid Euler equations solved using a high-order accurate Discontinuous Galerkin method are used to validate the theoretical results.

  17. Observing Electrokinetic Janus Particle-Channel Wall Interaction Using Microparticle Image Velocimetry.

    Science.gov (United States)

    Boymelgreen, Alicia; Yossifon, Gilad

    2015-08-01

    Three-dimensional/two-component microparticle image velocimetry is used to examine the hydrodynamic flow patterns around metallodielectric Janus particles 15 μm in diameter adjacent to insulating and conducting walls. Far from the walls, the observed flow patterns are in good qualitative agreement with previous experimental and analytical models. However, close to the conducting wall, strong electrohydrodynamic flows are observed at low frequencies, which result in fluid being injected toward the particle. The proximity of the metallic hemisphere to the conducting wall is also shown to produce a localized field gradient, which results in dielectrophoretic trapping of 300 nm polystyrene particles across a broad range of frequencies.

  18. Increased plasma levels of microparticles expressing CD39 and CD133 in acute liver injury

    DEFF Research Database (Denmark)

    Schmelzle, Moritz; Splith, Katrin; Wiuff Andersen, Lars;

    2013-01-01

    BACKGROUND: We have previously demonstrated that CD133 and CD39 are expressed by hematopoietic stem cells (HSC), which are mobilized after liver injury and target sites of injury, limit vascular inflammation, and boost hepatic regeneration. Plasma microparticles (MP) expressing CD39 can block...... endothelial activation. Here, we tested whether CD133 MP might be shed in a CD39-dependent manner in a model of liver injury and could potentially serve as biomarkers of liver failure in the clinic. METHODS: Wild-type and Cd39-null mice were subjected to acetaminophen-induced liver injury. Mice were...

  19. XPS and Raman study of zinc containing silica microparticles loaded with insulin

    Energy Technology Data Exchange (ETDEWEB)

    Vanea, E.; Simon, V., E-mail: viorica.simon@phys.ubbcluj.ro

    2013-09-01

    Zinc–silica microparticles obtained by sol–gel method solely or by combining sol–gel chemistry with freeze-drying and spray-drying procedures were explored as potential insulin drug delivery carriers for their improved loading efficiency. Zinc containing silica hosts of different specific surface area and mean pore volume loaded with insulin under similar conditions were investigated by X-ray photoelectron spectroscopy (XPS) and confocal micro-Raman spectroscopy in order to assess the insulin adherence to these matrices and the biologically active state of the insulin after embedding.

  20. Levodopa microparticles for pulmonary delivery: photodegradation kinetics and LC stability-indicating method.

    Science.gov (United States)

    Pereira, R L; Paim, C S; Barth, A B; Raffin, R P; Guterres, S S; Schapoval, E E S

    2012-07-01

    Levodopa, (S)-2-amino-3-(3,4-dihydroxyphenyl) propanoic acid, is still considered the gold standard treatment for Parkinson's disease. However, oral levodopa shows poor pharmacokinetics and its efficacy becomes problematic with the progression of the disease. Pulmonary delivery using the association of the polymers: chitosan, hyaluronic acid and HPMC, represents a novel approach to overcome this problem. A stability-indicating liquid chromatography method for the quantitative determination of levodopa microparticles for pulmonary delivery was developed as well as its photodegradation kinetics in solution. The developed and validated method was applied for the analyses of the novel formulation as well as for protocols of stability studies.

  1. Transient ischemic attack induced by melted solid lipid microparticles protects rat brains from permanent focal ischemia.

    Science.gov (United States)

    Tsai, M-J; Kuo, Y-M; Tsai, Y-H

    2014-09-01

    This study aims to develop a transient ischemic attack (TIA) model in conscious animals and uses this model to investigate the effect of TIA on subsequent permanent ischemia. TIA was induced by injecting designed temperature-sensitive melted solid lipid microparticles with a melting point around body temperature into male Wistar rats via arterial cannulation. Neurologic deficit was monitored immediately after the injection without anesthesia. According to the clinical definition of TIA, rats were divided into neurologic symptom durations ischemic stroke was induced 3d after the induction of TIA by injecting a different kind of embolic particle manufactured by blending chitin and PLGA. The ischemic stroke.

  2. Generation of intense plasma jets and microparticle beams by an arc in a supersonic vortex

    Science.gov (United States)

    Winterberg, F.

    1990-04-01

    Temperatures up to 50000 have been reached in water vortex stabilized Gerdien arcs. In arcs confined within the cores of supersonic hydrogen vortices much higher temperatures should be possible. Furthermore if these arcs are thermally insulated by a strong magnetic field temperatures up to a 106 K may be attainable. At these temperatures and in passing through a Laval nozzle the arc plasma can reach jet velocities of 100km/sec. If small quantities of heavy elements are entrained by this high velocity plasma jet these heavy elements are carried along reaching the same speed and upon condensation can form beams of clusters and microparticles.

  3. A low-cost ultrasonic spray dryer to produce spherical microparticles from polymeric matrices

    Directory of Open Access Journals (Sweden)

    Priscilla Paiva Luz

    2007-01-01

    Full Text Available The spray-drying technique has been widely used for drying heat-sensitive foods, pharmaceuticals, and other substances, because it leads to rapid solvent evaporation from droplets. This method involves the transformation of a feed from a fluid state into a dried particulate, by spraying the feed into a hot medium. Despite being most often considered a dehydration process, spray drying can also be used as an encapsulation method. Therefore, this work proposes the use of a simple and low-cost ultrasonic spray dryer system to produce spherical microparticles. This equipment was successfully applied to the preparation of dextrin microspheres on a laboratory scale and for academic purposes.

  4. VanderLaan Circulant Type Matrices

    Directory of Open Access Journals (Sweden)

    Hongyan Pan

    2015-01-01

    Full Text Available Circulant matrices have become a satisfactory tools in control methods for modern complex systems. In the paper, VanderLaan circulant type matrices are presented, which include VanderLaan circulant, left circulant, and g-circulant matrices. The nonsingularity of these special matrices is discussed by the surprising properties of VanderLaan numbers. The exact determinants of VanderLaan circulant type matrices are given by structuring transformation matrices, determinants of well-known tridiagonal matrices, and tridiagonal-like matrices. The explicit inverse matrices of these special matrices are obtained by structuring transformation matrices, inverses of known tridiagonal matrices, and quasi-tridiagonal matrices. Three kinds of norms and lower bound for the spread of VanderLaan circulant and left circulant matrix are given separately. And we gain the spectral norm of VanderLaan g-circulant matrix.

  5. Conservation of Circulation in Magnetohydrodynamics

    CERN Document Server

    Bekenstein, J D; Bekenstein, Jacob D.; Oron, Asaf

    2000-01-01

    We demonstrate, both at the Newtonian and (general) relativistic levels, theexistence of a generalization of Kelvin's circulation theorem (for pure fluids)which is applicable to perfect magnetohydrodynamics. The argument is based onthe least action principle for magnetohydrodynamic flow. Examples of the newconservation law are furnished. The new theorem should be helpful inidentifying new kinds of vortex phenomena distinct from magnetic ropes or fluidvortices.

  6. Monolayers of Poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) Microparticles Formed by Controlled Self-Assembly with Potential Application as Protein-Repelling Substrates.

    Science.gov (United States)

    Wasilewska, Monika; Adamczyk, Zbigniew; Basinska, Teresa; Gosecka, Monika; Lupa, Dawid

    2016-09-20

    The kinetics of the self-assembly of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microparticles on poly(allylamine hydrochloride)-derivatized silicon/silica substrate was determined by direct AFM imaging and streaming potential (SP) measurements. The kinetic runs acquired under diffusion-controlled transport were quantitatively interpreted in terms of the extended random sequential adsorption (RSA) model. This allowed confirmation of a core/shell morphology of the microparticles. The polyglycidol-rich shell of thickness equal to 25 nm exhibited a fuzzy structure that enabled penetration of particles into each other resulting in high coverage inaccessible for ordinary microparticles. The SP measurements interpreted by using the 3D electrokinetic model confirmed this microparticle structure. Additionally, the acid-base characteristics of the microparticle monolayers were determined for a broad pH range. By using the streaming potential measurements, human serum albumin (HSA) adsorption on the microparticle monolayers was investigated under in situ conditions. It was confirmed that the protein adsorption was considerably lower than for the reference case of bare silicon/silica substrate under the same physicochemical conditions. This effect was attributed to the presence of the shell diminishing the protein/microparticle physical interactions.

  7. Effect of surface chemistry of porous silicon microparticles on glucagon-like peptide-1 (GLP-1) loading, release and biological activity.

    Science.gov (United States)

    Huotari, Anne; Xu, Wujun; Mönkäre, Juha; Kovalainen, Miia; Herzig, Karl-Heinz; Lehto, Vesa-Pekka; Järvinen, Kristiina

    2013-09-15

    Recently, mesoporous silicon (PSi) microparticles have been shown to extend the duration of action of peptides, reducing the need for frequent injections. Glucagon-like peptide 1 (GLP-1) is a potential novel treatment for type 2 diabetes. The aim of this study was to evaluate whether GLP-1 loading into PSi microparticles reduce blood glucose levels over an extended period. GLP-1 (pI 5.4) was loaded and released from the negatively charged thermally oxidized (TOPSi, pI 1.8) and thermally carbonized (TCPSi, pI 2.6) PSi microparticles and from the novel positively charged amine modified microparticles, designated as TOPSi-NH2-D (pI 8.8) and TCPSi-NH2-D (pI 8.8), respectively. The adsorption of GLP-1 onto the PSi microparticles could be increased 3-4-fold by changing the PSi surface charge from negative to positive, indicating that the positive surface charge of PSi promoted an electrostatic interaction between the negatively charged peptide. All the GLP-1 loaded PSi microparticles lowered the blood glucose levels after a single s.c. injection but surprisingly, TOPSi-NH2-D and TCPSi-NH2-D were not able to prolong the effect when compared to TOPSi, TCPSi or GLP-1 solution. However, TOPSi-NH2-D and TCPSi-NH2-D microparticles were able to carry improved payloads of active GLP-1 encouraging continuing further attempts to achieve sustained release.

  8. Biodegradable Poly(D,L-Lactide/Lipid Blend Microparticles Prepared by Oil-in-Water Emulsion Method for Controlled Release Drug Delivery

    Directory of Open Access Journals (Sweden)

    Yaowalak Srisuwan

    2014-03-01

    Full Text Available The effects of blend ratio and drug loading content of poly(D,L-lactide (PDLL/stearic acid blends on microparticle characteristics and drug release behaviors were evaluated. The blend microparticles were prepared by an oil-in-water emulsion solvent evaporation method for drug delivery of a poorly water-soluble model drug, indomethacin. The microparticles were characterized using a combination of scanning electron microscopy (SEM, light scattering particle size analysis, differential scanning calorimetry (DSC and UV-vis spectrophotometry. The blend microparticles with a PDLL/stearic acid blend ratio in the range 100/0-95/5 (w/w exhibited a spherical shape with a smooth surface. Blend microparticles with a similar size (167-177 µm and drug loading efficiency (60-67% were obtained. The drug loading content did not affect the characteristics of the blend microparticles. An in vitro drug release test demonstrated that the level of drug release decreased as the stearic acid blend ratio increased and the drug loading content decreased. The overall results indicated that it was possible to use PDLL/stearic acid blend microparticles as a controlled release drug delivery system.

  9. Nanosericite as an Innovative Microparticle in Dual-Chemical Paper Retention Systems

    Directory of Open Access Journals (Sweden)

    Yuan-Shing Perng

    2013-01-01

    Full Text Available Dual-chemical retention systems based on 2 cationic polyacrylamides, a colloidal silica, and a globular anionic polymer microparticles were investigated and an exfoliated nanoparticle indigenous mica mineral, sericite, was examined for its efficacy in substituting commercial microparticle preparations. The results indicated that nanosericite generated FPR between 76.9 and 80.9% for fines and chemicals. Its ash retention values, however, were higher and tended to increase with doses of polymer, nanosericite, or Sc to between 16 and 24%. As for paper physical properties, nanosericite was not amenable to substitute the c-PAMb/polymer with only handsheet stiffness superior to the combination. Nanosericite, however, showed good substitution capacity than the c-PAMa-colloidal silica combination. Regardless of the c-PAMa doses, all examined handsheet physical properties incorporating nanosericite were superior to colloidal silica. The optimal performance was observed with c-PAMa dose of 200 ppm. Optical properties of the handsheets indicated that with nanosericite substitution, brightness values were comparable to the polymer group, while its substitution capacity for colloidal silica decreased with increasing c-PAMb dose. Only at c-PAMa dose of 300 ppm, it appeared to have good substitution for colloidal silica. Substituting nanosericite for colloidal silica appeared to reduce the c-PAMa charge and increased the overall cost effectiveness.

  10. Controlled Inhibition of the Mesenchymal Stromal Cell Pro-inflammatory Secretome via Microparticle Engineering

    Directory of Open Access Journals (Sweden)

    Sudhir H. Ranganath

    2016-06-01

    Full Text Available Mesenchymal stromal cells (MSCs are promising therapeutic candidates given their potent immunomodulatory and anti-inflammatory secretome. However, controlling the MSC secretome post-transplantation is considered a major challenge that hinders their clinical efficacy. To address this, we used a microparticle-based engineering approach to non-genetically modulate pro-inflammatory pathways in human MSCs (hMSCs under simulated inflammatory conditions. Here we show that microparticles loaded with TPCA-1, a small-molecule NF-κB inhibitor, when delivered to hMSCs can attenuate secretion of pro-inflammatory factors for at least 6 days in vitro. Conditioned medium (CM derived from TPCA-1-loaded hMSCs also showed reduced ability to attract human monocytes and prevented differentiation of human cardiac fibroblasts to myofibroblasts, compared with CM from untreated or TPCA-1-preconditioned hMSCs. Thus, we provide a broadly applicable bioengineering solution to facilitate intracellular sustained release of agents that modulate signaling. We propose that this approach could be harnessed to improve control over MSC secretome post-transplantation, especially to prevent adverse remodeling post-myocardial infarction.

  11. Stable Rotation of Microparticles using a Combination of Dielectrophoresis and Electroosmosis

    Science.gov (United States)

    Dutta, Prashanta; Rezanoor, Walid

    2016-11-01

    Electric field induced microparticle rotation has become a powerful technique to evaluate cell membrane dielectric properties and cell morphology. In this study, stable rotations of microparticles are demonstrated in a stationary AC electric field created from a set of coplanar interdigitated microelectrodes. The medium, particle size, and material are carefully chosen so that particle can be controlled by dielectrophoretic force, while a sufficiently high AC electroosmotic flow is produced for continuous particle rotation. Stable rotation up to 218 rpm is observed at 30 Vp-p applied sinusoidal potential in the frequency range of 80 - 1000 Hz. The particle spin rate observed from the experimental study is then validated with a numerical model. The model is formulated around complex charge conservation equation to determine the electric potential distribution in the domain. Stokes equation is employed to solve for AC electroosmotic fluid flow in the domain. Complexity arising from nonlinear potential drop across the electric double layer due to the application of a very large electric potential is also addressed by introducing modified capacitance equation which considers steric effect. This work was supported in part by the U.S. National Science Foundation under Grant No. DMS 1317671.

  12. Antimicrobial Properties of Microparticles Based on Carmellose Cross-Linked by Cu2+ Ions

    Directory of Open Access Journals (Sweden)

    Martina Kejdušová

    2015-01-01

    Full Text Available Carmellose (CMC is frequently used due to its high biocompatibility, biodegradability, and low immunogenicity for development of site-specific or controlled release drug delivery systems. In this experimental work, CMC dispersions in two different concentrations (1% and 2% cross-linked by copper (II ions (0.5, 1, 1.5, or 2.0 M CuCl2 were used to prepare microspheres with antimicrobial activity against Escherichia coli and Candida albicans, both frequently occurring pathogens which cause vaginal infections. The microparticles were prepared by an ionotropic gelation technique which offers the unique possibility to entrap divalent copper ions in a CMC structure and thus ensure their antibacterial activity. Prepared CMC microspheres exhibited sufficient sphericity. Both equivalent diameter and copper content were influenced by CMC concentration, and the molarity of copper (II solution affected only the copper content results. Selected samples exhibited stable but pH-responsive behaviour in environments which corresponded with natural (pH 4.5 and inflamed (pH 6.0 vaginal conditions. All the tested samples exhibited proven substantial antimicrobial activity against both Gram-negative bacteria Escherichia coli and yeast Candida albicans. Unexpectedly, a crucial parameter for microsphere antimicrobial activity was not found in the copper content but in the swelling capacity of the microparticles and in the degree of CMC surface shrinking.

  13. Electrochemical Oxidation of Paracetamol Mediated by MgB2 Microparticles Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Mohammed Zidan

    2011-01-01

    Full Text Available A MgB2 microparticles modified glassy carbon electrode (MgB2/GCE was fabricated by adhering microparticles of MgB2 onto the electrode surface of GCE. It was used as a working electrode for the detection of paracetamol in 0.1 M KH2PO4 aqueous solution during cyclic voltammetry. Use of the MgB2/GCE the oxidation process of paracetamol with a current enhancement significantly by about 2.1 times. The detection limit of this modified electrode was found to be 30 μM. The sensitivity under conditions of cyclic voltammetry is significantly dependent on pH, supporting electrolyte, temperature and scan rate. The current enhancement observed in different electrolytic media varied in the following order: KH2PO4 > KCl > K2SO4 > KBr. Interestingly, the oxidation of paracetamol using modified GC electrode remain constant even after 15 cycling. It is therefore evident that the MgB2 modified GC electrode possesses some degree of stability. A slope of 0.52 dependent of scan rate on current indicates that the system undergoes diffusion-controlled process.

  14. Effect of Experimental Parameters on Alginate/Chitosan Microparticles for BCG Encapsulation

    Science.gov (United States)

    Caetano, Liliana A.; Almeida, António J.; Gonçalves, Lídia M.D.

    2016-01-01

    The aim of the present study was to develop novel Mycobacterium bovis bacille Calmette-Guérin (BCG)-loaded polymeric microparticles with optimized particle surface characteristics and biocompatibility, so that whole live attenuated bacteria could be further used for pre-exposure vaccination against Mycobacterium tuberculosis by the intranasal route. BCG was encapsulated in chitosan and alginate microparticles through three different polyionic complexation methods by high speed stirring. For comparison purposes, similar formulations were prepared with high shear homogenization and sonication. Additional optimization studies were conducted with polymers of different quality specifications in a wide range of pH values, and with three different cryoprotectors. Particle morphology, size distribution, encapsulation efficiency, surface charge, physicochemical properties and biocompatibility were assessed. Particles exhibited a micrometer size and a spherical morphology. Chitosan addition to BCG shifted the bacilli surface charge from negative zeta potential values to strongly positive ones. Chitosan of low molecular weight produced particle suspensions of lower size distribution and higher stability, allowing efficient BCG encapsulation and biocompatibility. Particle formulation consistency was improved when the availability of functional groups from alginate and chitosan was close to stoichiometric proportion. Thus, the herein described microparticulate system constitutes a promising strategy to deliver BCG vaccine by the intranasal route. PMID:27187418

  15. An asymmetric Zn//Ag doped polyaniline microparticle suspension flow battery with high discharge capacity

    Science.gov (United States)

    Wu, Sen; Zhao, Yongfu; Li, Degeng; Xia, Yang; Si, Shihui

    2015-02-01

    In this study, the effect of oxygen on the potential of reduced polyaniline (PANI) was investigated. In order to enhance the air oxidation of reduced PANI, several composites of PANI doped with co-catalysts were prepared, and a reasonable flow Zn//PANI suspension cell system was designed to investigate the discharge capacity of obtained PANI composite microparticle suspension cathodes. Compared with PANI doped with Cu2+, La+, Mn2+ and zinc protoporphyrin, Ag doped PANI composite at 0.90 weight percent doping of Ag gave the highest value of discharge capacity for the half-cell potential from the initial value to -0.20 V (vs. SCE). A comparison study on the electrochemical properties of both PANI and Ag doped PANI microparticle suspension was done by using cyclic voltammetry, AC Impedance. Due to partial utilization of Zn//air fuel cell, the discharge capacity for Ag doped PANI reached 470 mA h g-1 at the current density of 20 mA cm-2. At 15 mA cm-2, the discharge capacity even reached up to 1650 mA h g-1 after 220 h constant current discharge at the final discharge voltage of 0.65 V. This work demonstrates an effective and feasible approach toward obtaining high energy and power densities by a Zn//Ag-doped PANI suspension flow battery system combined with Zn//air fuel cell.

  16. Glycolthermal synthesis and characterization of hexagonal CdS round microparticles in flower-like clusters

    Energy Technology Data Exchange (ETDEWEB)

    Phuruangrat, Anukorn, E-mail: phuruangrat@hotmail.com [Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Ekthammathat, Nuengruethai [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun, E-mail: ttpthongtem@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2011-10-13

    Highlights: > CdS as one of II-VI semiconducting materials. > Lab-made Teflon-lined stainless steel autoclaves enable us to form hexagonal CdS. > By 100-200 deg. C processing, round microparticles in flower clusters were synthesized. > A promising material for multiple potential applications. - Abstract: Hexagonal CdS round microparticles in flower-like clusters were synthesized by glycolthermal reactions of CdCl{sub 2} and thiourea as cadmium and sulphur sources in 1,2-propylene glycol (PG) at 100-200 deg. C for 10-30 h. Phase and morphology were detected using X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM, TEM). The products were pure phase of hexagonal wurtzite CdS. The quantitative elemental analysis of Cd:S ratio was detected using energy dispersive X-ray (EDX) analyzer. Raman spectrometer revealed the presence of fundamental and overtone modes at 296 and 595 cm{sup -1}, corresponding to the strong 1LO and weak 2LO modes, respectively. Photonic properties were investigated using UV-visible and photoluminescence (PL) spectroscopy. They showed the same absorption at 493-498 nm, and emission at 431 nm due to the excitonic recombination process. A possible formation mechanism was also proposed, according to experimental results.

  17. Centrifugo-pneumatic sedimentation, re-suspension and transport of microparticles.

    Science.gov (United States)

    Zhao, Y; Schwemmer, F; Zehnle, S; von Stetten, F; Zengerle, R; Paust, N

    2015-11-07

    Microparticles are widely used as solid phase for affinity-based separation. Here, we introduce a new method for automated handling of microparticles in centrifugal microfluidics that is not restricted by the particle size and requires neither auxiliary means such as magnets nor coating of microfluidic structures. All steps are initiated and controlled by the speed of rotation only. It is based on storage and "on demand" release of pneumatic energy within tunable time frames: a slow release of the pneumatic energy triggers a first fluidic path through which the supernatant above the sedimented particles is removed. An abrupt release triggers a second path which allows for liquid routing and transport of the re-suspended particles. Re-suspension of particles is thereby achieved by quickly changing the speed of rotation. We demonstrate the exchange of the particle carrier medium with a supernatant removal efficiency of more than 99.5% and a particle loss below 4%. Re-suspension and subsequent transport of suspended particles show a particle loss below 7%. The method targets the automation of particle-based assays e.g. DNA extractions and immunoassays. It is compatible with monolithic integration and suitable for mass production technologies e.g. thermoforming or injection moulding.

  18. High-efficiency stable transformation of the model fern species Ceratopteris richardii via microparticle bombardment.

    Science.gov (United States)

    Plackett, Andrew R G; Huang, Liandong; Sanders, Heather L; Langdale, Jane A

    2014-05-01

    Ferns represent the most closely related extant lineage to seed plants. The aquatic fern Ceratopteris richardii has been subject to research for a considerable period of time, but analyses of the genetic programs underpinning developmental processes have been hampered by a large genome size, a lack of available mutants, and an inability to create stable transgenic lines. In this paper, we report a protocol for efficient stable genetic transformation of C. richardii and a closely related species Ceratopteris thalictroides using microparticle bombardment. Indeterminate callus was generated and maintained from the sporophytes of both species using cytokinin treatment. In proof-of-principle experiments, a 35S::β-glucuronidase (GUS) expression cassette was introduced into callus cells via tungsten microparticles, and stable transformants were selected via a linked hygromycin B resistance marker. The presence of the transgene in regenerated plants and in subsequent generations was validated using DNA-blot analysis, reverse transcription-polymerase chain reaction, and GUS staining. GUS staining patterns in most vegetative tissues corresponded with constitutive gene expression. The protocol described in this paper yields transformation efficiencies far greater than those previously published and represents a significant step toward the establishment of a tractable fern genetic model.

  19. In vitro-in vivo correlation study on nimesulide loaded hydroxypropylmethylcellulose microparticles.

    Science.gov (United States)

    Khan, Shujaat Ali; Ahmad, Mahmood; Murtaza, Ghulam; Aamir, Muhammad Naeem; Kousar, Rozina; Rasool, Fatima; Shahiq-u-Zaman

    2010-06-01

    This study involves mathematical simulation model such as in vitro-in vivo correlation (IVIVC) development for various extended release formulations of nimesulide loaded hydroxypropylmethylcellulose (HPMC) microparticles (M1, M2 and M3 containing 1, 2, and 3 g HPMC, respectively and 1 g drug in each) having variable release characteristics. In vitro dissolution data of these formulations were correlated to their relevant in vivo absorption profiles followed by predictability worth analysis of these Level A IVIVC. Nimaran was used as control formulation to validate developed formulations and their respective models. The regression coefficients of IVIVC plots for M1, M2, M3 and Nimaran were 0.834 9, 0.831 2, 0.927 2 and 0.898 1, respectively. The internal prediction error for all formulations was within limits, i.e., < 10%. A good IVIVC was found for controlled release nimesulide loaded HPMC floating M3 microparticles. In other words, this mathematical simulation model is best fit for biowaiver studies which involves study parameters as those adopted for M3 because the value of its IVIVC regression coefficient is the closest to 1 as compared to M1 and M2.

  20. Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process.

    Science.gov (United States)

    Schafroth, Nina; Arpagaus, Cordin; Jadhav, Umesh Y; Makne, Sushil; Douroumis, Dennis

    2012-02-01

    In the current study nano and microparticle engineering of water insoluble drugs was conducted using a novel piezoelectric spray-drying approach. Cyclosporin A (CyA) and dexamethasone (DEX) were encapsulated in biodegradable poly(D,L-lactide-co-glycolide) (PLGA) grades of different molecular weights. Spray-drying studies carried out with the Nano Spray Dryer B-90 employed with piezoelectric driven actuator. The processing parameters including inlet temperature, spray mesh diameter, sample flow rate, spray rate, applied pressure and sample concentration were examined in order to optimize the particle size and the obtained yield. The process parameters and the solute concentration showed a profound effect on the particle engineering and the obtained product yield. The produced powder presented consistent and reproducible spherical particles with narrow particle size distribution. Cyclosporin was found to be molecularly dispersed while dexamethasone was in crystalline state within the PLGA nanoparticles. Further evaluation revealed excellent drug loading, encapsulation efficiency and production yield. In vitro studies demonstrated sustained release patterns for the active substances. This novel spray-drying process proved to be efficient for nano and microparticle engineering of water insoluble active substances.

  1. Preclinical Development and In Vivo Efficacy of Ceftiofur-PLGA Microparticles.

    Directory of Open Access Journals (Sweden)

    Cristian Vilos

    Full Text Available Drug delivery systems based on polymeric microparticles represent an interesting field of development for the treatment of several infectious diseases for humans and animals. In this work, we developed PLGA microparticles loaded with ceftiofur (PLGA-cef, a third- generation cephalosporin that is used exclusively used in animals. PLGA-cef was prepared by the double emulsion w/o/w method, and exhibited a diameter in the range of 1.5-2.2 μm, and a negative ζ potential in the range of -35 to -55 mV. The loading yield of PLGA-cef was ~7% and encapsulation efficiency was approximately 40%. The pharmacokinetic study demonstrated a sustained release profile of ceftiofur for 20 days. PLGA-cef administrated in a single dose was more effective than ceftiofur non-encapsulated in rats challenged with S. Typhimurium. The in vivo toxicological evaluation showed that PLGA-cef did not affect the blood biochemical, hematological and hemostasis parameters. Overall, the PLGA-cef showed slow in vivo release profile, high antibacterial efficacy, and low toxicity. The results obtained supports the safe application of PLGA-cef as sustained release platform in the veterinary industry.

  2. On-line digital holographic measurement of size and shape of microparticles for crystallization processes

    Science.gov (United States)

    Khanam, Taslima; Darakis, Emmanouil; Rajendran, Arvind; Kariwala, Vinay; Asundi, Anand K.; Naughton, Thomas J.

    2008-09-01

    Crystallization is a widely used chemical process that finds applications in pharmaceutical industries. In an industrial crystallization process, it is not only important to produce pure crystals but also to control the shape and size of the crystals, as they affect the efficiency of downstream processes and the dissolution property of the drug. The effectiveness of control algorithms depend on the availability of on-line, real-time information about these critical properties. In this paper, we investigate the use of lens-less in-line digital holographic microscopy for size and shape measurements for crystallization processes. For this purpose, we use non-crystalline spherical microparticles and carbon fibers with known sizes present in a liquid suspension as test systems. We propose an algorithm to extract size and shape information for a population of microparticles from the experimentally recorded digital holograms. The measurements obtained from the proposed method show good agreement with the corresponding known size and shape of the particles.

  3. Controlled release from drug microparticles via solventless dry-polymer coating.

    Science.gov (United States)

    Capece, Maxx; Barrows, Jason; Davé, Rajesh N

    2015-04-01

    A novel solvent-less dry-polymer coating process employing high-intensity vibrations avoiding the use of liquid plasticizers, solvents, binders, and heat treatments is utilized for the purpose of controlled release. The main hypothesis is that such process having highly controllable processing intensity and time may be effective for coating particularly fine particles, 100 μm and smaller via exploiting particle interactions between polymers and substrates in the dry state, while avoiding breakage yet achieving conformal coating. The method utilizes vibratory mixing to first layer micronized polymer onto active pharmaceutical ingredient (API) particles by virtue of van der Waals forces and to subsequently mechanically deform the polymer into a continuous film. As a practical example, ascorbic acid and ibuprofen microparticles, 50-500 μm, are coated with the polymers polyethylene wax or carnauba wax, a generally recognized as safe material, resulting in controlled release on the order of seconds to hours. As a novelty, models are utilized to describe the coating layer thickness and the controlled-release behavior of the API, which occurs because of a diffusion-based mechanism. Such modeling would allow the design and control of the coating process with application for the controlled release of microparticles, particularly those less than 100 μm, which are difficult to coat by conventional solvent coating methods.

  4. Extent of thermal ablation suffered by model organic microparticles during aerogel capture at hypervelocities

    Science.gov (United States)

    Burchell, M. J.; Foster, N. J.; Ormond-Prout, J.; Dupin, D.; Armes, S. P.

    2009-11-01

    New model organic microparticles are used to assess the thermal ablation that occurs during aerogel capture at speeds from 1 to 6 km s-1. Commercial polystyrene particles (20 µm diameter) were coated with an ultrathin 20 nm overlayer of an organic conducting polymer, polypyrrole. This overlayer comprises only 0.8% by mass of the projectile but has a very strong Raman signature, hence its survival or destruction is a sensitive measure of the extent of chemical degradation suffered. After aerogel capture, microparticles were located via optical microscopy and their composition was analyzed in situ using Raman microscopy. The ultrathin polypyrrole overlayer survived essentially intact for impacts at ~1 km s-1, but significant surface carbonization was found at 2 km s-1, and major particle mass loss at ≥3 km s-1. Particles impacting at ~6.1 km s-1 (the speed at which cometary dust was collected in the NASA Stardust mission) were reduced to approximately half their original diameter during aerogel capture (i.e., a mass loss of 84%). Thus significant thermal ablation occurs at speeds above a few km s-1. This suggests that during the Stardust mission the thermal history of the terminal dust grains during capture in aerogel may be sufficient to cause significant processing or loss of organic materials. Further, while Raman D and G bands of carbon can be obtained from captured grains, they may well reflect the thermal processing during capture rather than the pre-impact particle’s thermal history.

  5. Adsorption capacity of poly(ether imide) microparticles to uremic toxins.

    Science.gov (United States)

    Tetali, Sarada D; Jankowski, Vera; Luetzow, Karola; Kratz, Karl; Lendlein, Andreas; Jankowski, Joachim

    2016-01-01

    Uremia is a phenomenon caused by retention of uremic toxins in the plasma due to functional impairment of kidneys in the elimination of urinary waste products. Uremia is presently treated by dialysis techniques like hemofiltration, dialysis or hemodiafiltration. However, these techniques in use are more favorable towards removing hydrophilic than hydrophobic uremic toxins. Hydrophobic uremic toxins, such as hydroxy hipuric acid (OH-HPA), phenylacetic acid (PAA), indoxyl sulfate (IDS) and p-cresylsulfate (pCRS), contribute substantially to the progression of chronic kidney disease (CKD) and cardiovascular disease. Therefore, objective of the present study is to test adsorption capacity of highly porous microparticles prepared from poly(ether imide) (PEI) as an alternative technique for the removal of uremic toxins. Two types of nanoporous, spherically shaped microparticles were prepared from PEI by a spraying/coagulation process.PEI particles were packed into a preparative HPLC column to which a mixture of the four types of uremic toxins was injected and eluted with ethanol. Eluted toxins were quantified by analytical HPLC. PEI particles were able to adsorb all four toxins, with the highest affinity for PAA and pCR. IDS and OH-HPA showed a partially non-reversible binding. In summary, PEI particles are interesting candidates to be explored for future application in CKD.

  6. PLA nano- and microparticles for drug delivery: an overview of the methods of preparation.

    Science.gov (United States)

    Lassalle, Verónica; Ferreira, María Luján

    2007-06-07

    The controlled release of medicaments remains the most convenient way of drug delivery. Therefore, a wide variety of reports can be found in the open literature dealing with drug delivery systems. In particular, the use of nano- and microparticles devices has received special attention during the past two decades. PLA and its copolymers with GA and/or PEG appear as the preferred substrates to fabricate these devices. The methods of fabrication of these particles will be reviewed in this article, describing in detail the experimental variables associated with each one with regard to the influence of them on the performance of the particles as drug carriers. An analysis of the relationship between the method of preparation and the kind of drug to encapsulate is also included. Furthermore, certain issues involved in the addition of other monomeric substrates than lactic acid to the particles formulation as well as novel devices, other than nano- and microparticles, will be discussed in the present work considering the published literature available.

  7. Evaluation of biodegradable polyester-co-lactone microparticles for protein delivery.

    Science.gov (United States)

    Tawfeek, Hesham M; Khidr, Sayed H; Samy, Eman M; Ahmed, Sayed M; Gaskell, Elsie E; Hutcheon, Gillian A

    2014-09-01

    Abstract Poly(glycerol adipate-co-ω-pentadecalactone) (PGA-co-PDL) was previously evaluated for the colloidal delivery of α-chymotrypsin. In this article, the effect of varying polymer molecular weight (MW) and chemistry on particle size and morphology; encapsulation efficiency; in vitro release; and the biological activity of α-chymotrypsin (α-CH) and lysozyme (LS) were investigated. Microparticles were prepared using emulsion solvent evaporation and evaluated by various methods. Altering the MW or monomer ratio of PGA-co-PDL did not significantly affect the encapsulation efficiency and overall poly(1,3-propanediol adipate-co-ω-pentadecalactone) (PPA-co-PDL) demonstrated the highest encapsulation efficiency. In vitro release varied between polymers, and the burst release for α-CH-loaded microparticles was lower when a higher MW PGA-co-PDL or more hydrophobic PPA-co-PDL was used. The results suggest that, although these co-polyesters could be useful for protein delivery, little difference was observed between the different PGA-co-PDL polymers and PPA-co-PDL generally provided a higher encapsulation and slower release of enzyme than the other polymers tested.

  8. A magnetometer for estimating the magnetic moment of magnetic micro-particles

    Science.gov (United States)

    Punyabrahma, P.; Jayanth, G. R.

    2017-01-01

    Magnetic micro-particles find a variety of applications as actuators at the micrometer and nanometer length scales. While the actuation gain is directly proportional to their magnetic moment, there are relatively few technologies available to estimate the magnetic moment of individual magnetic particles. This paper proposes a magnetometer for direct measurement of the magnetic moment of ferromagnetic micro-particles. The magnetometer comprises a novel micro-scale force sensor capable of interacting with magnetic particles and deflecting in response to the force of interaction. It also comprises a high-resolution measurement system, a source of magnetizing field, and a nanopositioner. The principle of operation of the magnetometer is discussed and is shown to enable the determination of the magnetic moment even of the buried magnetic particles, and those of irregular geometry. Subsequently, the force sensor, the measurement system, and the magnetic field sources are designed, fabricated, and calibrated. Finally, the magnetometer is employed to measure the magnetic moments of both fixed and untethered permanent magnetic particles and also of a fixed soft ferromagnetic particle. In all cases, the estimated magnetic moment is shown to agree with the theoretical estimate with an average error of about 16%.

  9. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models

    Science.gov (United States)

    Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai

    2017-01-01

    Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work. PMID:28262671

  10. Transfer of Microparticles across Laminar Streams from Non-Newtonian to Newtonian Fluid.

    Science.gov (United States)

    Ha, Byunghang; Park, Jinsoo; Destgeer, Ghulam; Jung, Jin Ho; Sung, Hyung Jin

    2016-04-19

    Engineering inertial lift forces and elastic lift forces is explored to transfer microparticles across laminar streams from non-Newtonian to Newtonian fluid. A co-stream of non-Newtonian flow loaded with microparticles (9.9 and 2.0 μm in diameter) and a Newtonian carrier medium flow in a straight rectangular conduit is devised. The elastic lift forces present in the non-Newtonian fluid, undeterred by particle-particle interaction, successfully pass most of the larger (9.9 μm) particles over to the Newtonian fluid. The Newtonian fluid takes over the larger particles and focus them on the equilibrium position, separating the larger particles from the smaller particles. This mechanism enabled processing of densely suspended particle samples. The method offers dilution-free (for number densities up to 10,000 μL(-1)), high throughput (6700 beads/s), and highly efficient (>99% recovery rate, >97% purity) particle separation operated over a wide range of flow rate (2 orders of magnitude).

  11. Preparation and in vivo toxicity study of solid lipid microparticles as carrier for pulmonary administration.

    Science.gov (United States)

    Sanna, Vanna; Kirschvink, Nathalie; Gustin, Pascal; Gavini, Elisabetta; Roland, Isabelle; Delattre, Luc; Evrard, Brigitte

    2004-03-10

    The purpose of this research was to investigate the effects of processing conditions on the characteristics of solid lipid microparticles (SLM) with a potential application as carriers for pulmonary administration. Compritol (5.0% wt/wt) SLM dispersions were prepared by rotor-stator homogenization, at different surfactant concentrations and emulsification times. The SLM were characterized, in terms of morphology and size, after lyophilization and sterilization by autoclaving process. In vivo assessment was carried out in rats by intratracheal instillation of either placebo or SLM dispersion, and by bronchoalveolar lavage for cytological analysis. Mean particle size of 4 to 5 microm was achieved using 0.3% and 0.4% (wt/wt) of emulsifier (Poloxamer 188) and emulsification times of 2 and 5 minutes. The particles showed spherical shape and smooth surface. The morphology of microparticles, the size, and the size distribution were not substantially modified after lyophilization and sterilization. Total cell counts showed no significant differences between placebo and SLM 0.5% or 2.5% groups. Regarding cytology, percentage of polymorphonuclear neutrophils and macrophages did not significantly differ between groups. These results suggest that a single intratracheal administration of the SLMs does not induce a significant inflammatory airway response in rats and that the SLMs might be a potential carrier for encapsulated drug via the pulmonary route.

  12. Preparation and Characterization of Potentially Antimicrobial Polymer Films Containing Starch Nano- and Microparticles

    Directory of Open Access Journals (Sweden)

    Paulius Pavelas DANILOVAS

    2014-09-01

    Full Text Available The forming conditions of biodegradable polymer films containing iodine-modified starch particles as well as the properties of the obtained films were investigated. Cationic cross-linked starch microparticles and cationic starch nanoparticles were dispersed in cellulose acetate and hydroxyethyl cellulose solution, respectively, and composite films were spin-casted. The obtained films were characterized and their mechanical properties were assessed. The cellulose acetate solution has been found to be an appropriate matrix for the dispersion of dry modified starch microparticles, but not in the case of nanoparticles. Starch nanoparticles were obtained in an aqueous medium, and the mechanical properties of the formed cellulose acetate films are significantly reduced by water present in the casting solution. It has been estimated that a fairly high amount of nanoparticles (18 wt% can be immobilized into films of water-soluble hydroxyethyl cellulose without markedly affecting the mechanical properties of the films. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.5426

  13. Elaboration and characterization of luminescent porous SiC microparticles/poly vinyl alcohol thin films

    Science.gov (United States)

    Kaci, S.; Mansouri, H.; Bozetine, I.; Keffous, A.; Guerbous, L.; Siahmed, Y.; Aissiou, S.

    2017-02-01

    In this study, Morphological, optical and photoluminescence characterizations of nanostructured SiC micropowder embedded in PVA matrix and deposited as thin films on glass substrates are reported. we prepared the porous SiC microparticles/PVA thin films by spin coating method. The average size of SiC microparticles were 7 μm. An electroless method was used for producing porous silicon carbide powder under UV irradiation. Silver nanoparticles coated SiC powder was formed by polyol process. The etchant was composed of aqueous HF and different oxidants. Various porous morphologies were obtained and studied as a function of oxidant type, etching time, and wavelength of irradiation. We concluded that the chemical etching conditions of SiC powder seems to have a large impact on the resulting properties. We noticed that the best photoluminescence property was achieved when SiC powder was etched in HF/K2S2O8 at reaction temperature of 80 °C for t = 40min and under UV light of 254 nm.

  14. Antifungal Activity of Brazilian Propolis Microparticles against Yeasts Isolated from Vulvovaginal Candidiasis

    Directory of Open Access Journals (Sweden)

    Kelen Fátima Dalben Dota

    2011-01-01

    Full Text Available Propolis, a resinous compound produced by Apis mellifera L. bees, is known to possess a variety of biological activities and is applied in the therapy of various infectious diseases. The aim of this study was to evaluate the in vitro antifungal activity of propolis ethanol extract (PE and propolis microparticles (PMs obtained from a sample of Brazilian propolis against clinical yeast isolates of importance in the vulvovaginal candidiasis (VVC. PE was used to prepare the microparticles. Yeast isolates (n=89, obtained from vaginal exudates of patients with VVC, were exposed to the PE and the PMs. Moreover, the main antifungal drugs used in the treatment of VVC (Fluconazole, Voriconazole, Itraconazole, Ketoconazole, Miconazole and Amphotericin B were also tested. Minimum inhibitory concentration (MIC was determined according to the standard broth microdilution method. Some Candida albicans isolates showed resistance or dose-dependent susceptibility for the azolic drugs and Amphotericin B. Non-C. albicans isolates showed more resistance and dose-dependent susceptibility for the azolic drugs than C. albicans. However, all of them were sensitive or dose-dependent susceptible for Amphotericin B. All yeasts were inhibited by PE and PMs, with small variation, independent of the species of yeast. The overall results provided important information for the potential application of PMs in the therapy of VVC and the possible prevention of the occurrence of new symptomatic episodes.

  15. Synthesis of Flexible Aerogel Composites Reinforced with Electrospun Nanofibers and Microparticles for Thermal Insulation

    Directory of Open Access Journals (Sweden)

    Huijun Wu

    2013-01-01

    Full Text Available Flexible silica aerogel composites in intact monolith of 12 cm were successfully fabricated by reinforcing SiO2 aerogel with electrospun polyvinylidene fluoride (PVDF webs via electrospinning and sol-gel processing. Three electrospun PVDF webs with different microstructures (e.g., nanofibers, microparticles, and combined nanofibers and microparticles were fabricated by regulating electrospinning parameters. The as-electrospun PVDF webs with various microstructures were impregnated into the silica sol to synthesize the PVDF/SiO2 composites followed by solvent exchange, surface modification, and drying at ambient atmosphere. The morphologies of the PVDF/SiO2 aerogel composites were characterized and the thermal and mechanical properties were measured. The effects of electrospun PVDF on the thermal and mechanical properties of the aerogel composites were evaluated. The aerogel composites reinforced with electrospun PVDF nanofibers showed intact monolith, improved strength, and perfect flexibility and hydrophobicity. Moreover, the aerogel composites reinforced with the electrospun PVDF nanofibers had the lowest thermal conductivity (0.028 W·m−1·K−1. It indicates that the electrospun PVDF nanofibers could greatly improve the mechanical strength and flexibility of the SiO2 aerogels while maintaining a lower thermal conductivity, which provides increasing potential for thermal insulation applications.

  16. DRAINAGE AND RETENTION ENHANCEMENT OF A WHEAT STRAW PULP CONTAINING FURNISH USING MICROPARTICLE RETENTION AIDS

    Directory of Open Access Journals (Sweden)

    Tom Hultholm

    2011-02-01

    Full Text Available The usage of non-wood pulps in furnishes for the production of various paper grades is a real alternative for the substitution of wood pulp in papermaking. In terms of the papermaking process, the main limiting factor for non-wood pulp utilization is poor dewatering. This problem can be partially solved by means of retention aids, and the modern microparticle-based retention aids are very promising for this application. In this study the main aim was to characterize how the microparticle retention systems affect the retention, dewatering, and formation of a non-wood pulp furnish and how these effects and mechanisms differ when compared to normal wood pulp. The performance of several commercially available retention aids was studied by making dynamic sheet forming tests for reference and an organosolv wheat straw furnish. The emphasis in the experiments was on drainage enhancement. The maximum drainage gain obtained with the bentonite-CPAM retention aid system was about 5%. Despite the improved drainage, dewatering of the reference furnish was better than for the non-wood containing furnish.

  17. Optimal Backward Perturbation Analysis for the Block Skew Circulant Linear Systems with Skew Circulant Blocks

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    Full Text Available We first give the block style spectral decomposition of arbitrary block skew circulant matrix with skew circulant blocks. Secondly, we obtain the singular value of block skew circulant matrix with skew circulant blocks as well. Finally, based on the block style spectral decomposition, we deal with the optimal backward perturbation analysis for the block skew circulant linear system with skew circulant blocks.

  18. Formulation of two-drug controlled release non-biodegradable microparticles for potential treatment of muscles pain and spasm and their simultaneous spectrophotometeric estimation.

    Science.gov (United States)

    Khan, Shujaat A; Ahmad, Mahmood; Murtaza, Ghulam; Aamir, Muhammad N; Akhtar, Naveed; Kousar, Rozina

    2010-01-01

    The objective of this study was to formulate stable and controlled release microparticles for simultaneous delivery and UV spectrophotometric detection in combined dosage of an non-steroidal anti-inflammatory drug (NSAID) (nimesulide, NMS) and a spasmolytic agent (tizanidine, TZN) to maintain plasma concentration that may increase patients compliance, improved therapeutic efficacy, The aim was also to reduce severity of upper GI side effects of NMS because of alteration in delivery pattern via slow release of drug from microparticles and to increase the benefits of spasticity and disability for spastic patients by administering TZN in a modified release formulation as these two drugs are often prescribed in combination for the management of pain associated with muscles spasm. Ethyl cellulose was used as a retardant polymer. Drug-polymer and drug-drug compatibility study were conducted by different analytical tests. Microparticles were prepared by coacervation thermal change method. The prepared microparticles were characterized for their micromeritics and drug loading. The prepared microparticles were light yellow, free flowing and spherical in shape. The drug-loaded microparticles showed 87% and 91% entrapment efficiency of NMS and TZN, respectively, and release was extended up to 10 h. The infrared spectra, differential scanning calorimetry thermograms and XRD spectra showed the stable character of both the drugs in the drug-loaded microparticles. The in vitro release study of microparticles was performed in phosphate buffer pH 6.8. Linearity was observed in the concentration range of 5.0-30.0 microg/mL of NMS and 0.5-3.0 microg/mL of TZN. The microparticles have a potential for the prolongation and simultaneous delivery of the NIM and TIZ. The proposed UV method for simultaneous detection can be used for routine analysis of combined dosage form.

  19. PLGA/DPPC/trimethylchitosan spray-dried microparticles for the nasal delivery of ropinirole hydrochloride: in vitro, ex vivo and cytocompatibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Karavasili, Christina [Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 (Greece); Bouropoulos, Nikolaos [Department of Materials Science, University of Patras, 26504 Rio, Patras (Greece); Foundation for Research and Technology, Hellas-Institute of Chemical Engineering and High Temperature, P.O. Box 1414, 26504 Patras (Greece); Sygellou, Lamprini [Foundation for Research and Technology, Hellas-Institute of Chemical Engineering and High Temperature, P.O. Box 1414, 26504 Patras (Greece); Amanatiadou, Elsa P.; Vizirianakis, Ioannis S. [Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Fatouros, Dimitrios G., E-mail: dfatouro@pharm.auth.gr [Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 (Greece)

    2016-02-01

    In the present study we investigated polymer-lipid microparticles loaded with ropinirole hydrochloride (RH) for nasal delivery. RH microparticles were further evaluated by means of scanning electron microscopy (SEM), ζ-potential measurements, Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and x-ray diffraction (XRD). In vitro release studies were performed in simulated nasal electrolyte solution (SNES) pH 5.5 at 35 °C. Ex vivo permeation studies were conducted across sheep nasal mucosa. Cytocompatibility was tested in cultured human airway epithelial cells (Calu-3). SEM studies revealed spheroid microparticles in the range of 2.09 μm to 2.41 μm. The presence of trimethylchitosan (TMC) induced a slight shift towards less negative ζ-potential values. Surface chemistry (XPS) revealed the presence of dipalmitoylphospatidylcholine (DPPC) and poly(lactic-co-glycolic acid) (PLGA) onto microparticles' surface, further corroborating the FT-IR and XRD findings. In vitro release studies showed that the microparticle composition can partly modulate the release of RH. Ex vivo studies demonstrated a 2.35-folded enhancement of RH permeation when RH was co-formulated with TMC of low molecular weight, compared to the control. All formulations tested were found to be non-toxic to cells. The results suggest that polymer-lipid microparticles may be a promising carrier for the nasal delivery of RH. - Highlights: • Development of microparticles comprising PLGA/DPPC/TMC for nasal drug delivery. • Physicochemical characterization showed that DPPC dominated microparticles' surface. • Microparticles enhanced permeation of ropinirole across sheep nasal epithelium. • The cytotoxicity assay with Calu-3 cells demonstrated satisfactory cell viability.

  20. Design and characterization of core-shell mPEG-PLGA composite microparticles for development of cell-scaffold constructs

    DEFF Research Database (Denmark)

    Wen, Yanhong; Gallego, Monica Ramos; Nielsen, Lene Feldskov

    2013-01-01

    Appropriate scaffolds capable of providing suitable biological and structural guidance are of great importance to generate cell-scaffold constructs for cell-based tissue engineering. The aim of the present study was to develop composite microparticles with a structure to provide functionality as ...

  1. Influence of oligofructose-enriched inulin on survival of microencapsulated Lactobacillus casei 01 and adhesive properties of synbiotic microparticles

    Directory of Open Access Journals (Sweden)

    Tanja Petreska Ivanovska

    2015-04-01

    Full Text Available Lactobacillus casei 01 was co-encapsulated with the prebiotic oligofructose-enriched inulin at different concentrations to investigate the efficiency of the prebiotic for improving the probiotic viability. Prebiotic effect on the probiotic survival under microencapsulation conditions by spray- and freeze-drying and storage stability of encapsulated living cells at 4 °C during period of 8 weeks was evaluated. Adhesiveness of L. casei 01 loaded microparticles to pig mucin was investigated in vitro to estimate the role of microencapsulation for improving the cell adhesion ability. The microparticles produced with 3% w/w oligofructose-enriched inulin showed higher initial count, while oligofructose-enriched inulin applied at 1.5% w/w resulted in better protection of L. casei 01 under storage conditions. Further, it has been observed significantly increased pig mucin binding to microparticles compared to free probiotic cells in buffer solutions simulating GI conditions, during 24 h incubation. Hence, cell microencapsulation beside enhanced viability may allow prolonged residence time of the probiotic cells in the lower intestine through excellent muco-adhesive properties of the encapsulating materials. The results suggest synbiotic chitosan-Ca-alginate microparticles as convenient delivery system capable to ensure effective cell concentration in the lower intestine where probiotic colonization is dominant.

  2. Facile fabrication of uniform size-controlled microparticles and potentiality for tandem drug delivery system of micro/nanoparticles.

    Science.gov (United States)

    Iwanaga, Shintaroh; Saito, Noriaki; Sanae, Hidetoshi; Nakamura, Makoto

    2013-09-01

    This article describes a rapid and facile method for manufacturing various size-controlled gel particles with utilizing inkjet printing technology. Generally, the size of droplets could be controlled by changing nozzle heads of inkjet printer, from which ink solution is ejected. However, this method uses drying process before gelling microparticles, and with that, the size of microparticles was easily controlled by only altering the concentration of ejected solution. When sodium alginate solution with various concentrations was ejected from inkjet printer, we found that the concentration of alginate solution vs. the volume of dried alginate particle showed an almost linear relationship in the concentration range from 0.1 to 3.0%. After dried alginate particles were soaked into calcium chloride solution, the size of microgel beads were obtained almost without increasing their size. The microparticles including various sizes of nanoparticles were easily manufactured by ejecting nanoparticle-dispersed alginate solution. The release of 25-nm sized nanoparticles from alginate microgel beads was finished in a relatively-rapid manner, whereas 100-nm sized nanoparticles were partially released from those ones. Moreover, most of 250-nm sized nanoparticles were not released from alginate microgel beads even after 24-h soaking. This particle fabricating method would enable the tandem drug delivery system with a combination of the release from nano and microparticles, and be expected for the biological and tissue engineering application.

  3. The role of antigen specificity in the binding of murine monoclonal anti-DNA antibodies to microparticles from apoptotic cells.

    Science.gov (United States)

    Ullal, Anirudh J; Marion, Tony N; Pisetsky, David S

    2014-10-01

    Antibodies to DNA (anti-DNA) are the serological hallmark of systemic lupus erythematosus and markers of underlying immune system disturbances. These antibodies bind to both single-stranded and double-stranded DNA, mediating pathogenesis by forming immune complexes. As shown recently, DNA in blood exists in both free and particulate forms, with DNA representing an important component of microparticles. Microparticles are membrane-bound vesicles containing nuclear molecules, released by membrane blebbing during cell death and activation. A panel of monoclonal NZB/NZW F1 anti-DNA antibodies was tested for binding to microparticles generated from apoptotic THP-1 and Jurkat cells. These studies showed that only certain anti-DNA antibodies in the panel, specific for double-stranded DNA, bound to microparticles. Binding to particles was reduced by soluble DNA or DNase treatment. Together, these results indicate that particle binding is a feature of only certain anti-DNA antibodies, reflecting immunochemical properties of the antibodies and the nature of the exposed DNA antigens.

  4. Lyophilised Vegetal BM 297 ATO-Inulin lipid-based synbiotic microparticles containing Bifidobacterium longum LMG 13197: design and characterisation.

    Science.gov (United States)

    Amakiri, A C; Kalombo, L; Thantsha, M S

    2015-01-01

    This study aimed at the manufacturing and characterisation of Vegetal BM 297 ATO-inulin-Bifidobacterium longum LMG 13197 microparticles prepared by freeze drying. Emulsions containing 1%, 1.5%, 2%, 3.5% or 5% w/v inulin were prepared, with or without centrifugation before freeze drying. Morphological properties, particle size distribution, encapsulation efficiency of the microparticles and their ability to preserve viability of the enclosed B. longum LMG 13197 cells were evaluated. The microparticles produced from both formulations without a centrifugation step were irregular, porous with concavities and contained high number of bacterial cells. Formulations with or without inulin had average particle sizes of 33.4-81.0 μm with encapsulation efficiencies of 82% and 88%, respectively. Vegetal-inulin microparticles have the morphology and size that will enable their even distribution in final food products, and hence, they have the potential for use as a functional food additive because they are likely to deliver sufficient numbers of viable bacteria.

  5. Enhanced gene delivery in porcine vasculature tissue following incorporation of adeno-associated virus nanoparticles into porous silicon microparticles.

    Science.gov (United States)

    McConnell, Kellie I; Rhudy, Jessica; Yokoi, Kenji; Gu, Jianhua; Mack, Aaron; Suh, Junghae; La Francesca, Saverio; Sakamoto, Jason; Serda, Rita E

    2014-11-28

    There is an unmet clinical need to increase lung transplant successes, patient satisfaction and to improve mortality rates. We offer the development of a nanovector-based solution that will reduce the incidence of lung ischemic reperfusion injury (IRI) leading to graft organ failure through the successful ex vivo treatment of the lung prior to transplantation. The innovation is in the integrated application of our novel porous silicon (pSi) microparticles carrying adeno-associated virus (AAV) nanoparticles, and the use of our ex vivo lung perfusion/ventilation system for the modulation of pro-inflammatory cytokines initiated by ischemic pulmonary conditions prior to organ transplant that often lead to complications. Gene delivery of anti-inflammatory agents to combat the inflammatory cascade may be a promising approach to prevent IRI following lung transplantation. The rationale for the device is that the microparticle will deliver a large payload of virus to cells and serve to protect the AAV from immune recognition. The microparticle-nanoparticle hybrid device was tested both in vitro on cell monolayers and ex vivo using either porcine venous tissue or a pig lung transplantation model, which recapitulates pulmonary IRI that occurs clinically post-transplantation. Remarkably, loading AAV vectors into pSi microparticles increases gene delivery to otherwise non-permissive endothelial cells.

  6. Magnetic self-assembly of microparticle clusters in an aqueous two-phase microfluidic cross-flow

    Science.gov (United States)

    Abbasi, Niki; Jones, Steven G.; Moon, Byeong-Ui; Tsai, Scott S. H.

    2015-11-01

    We present a technique that self-assembles paramagnetic microparticles on the interface of aqueous two-phase system (ATPS) fluids in a microfluidic cross-flow. A co-flow of the ATPS is formed in the microfluidic cross channel as the flows of a dilute dextran (DEX) phase, along with a flow-focused particle suspension, converges with a dilute polyethylene glycol (PEG) phase. The microparticles arrive at the liquid-liquid interface and self-assemble into particle clusters due to forces on the particles from an applied external magnetic field gradient, and the interfacial tension of the ATPS. The microparticles form clusters at the interface, and once the cluster size grows to a critical value, the cluster passes through the interface. We control the size of the self-assembled clusters, as they pass through the interface, by varying the strength of the applied magnetic field gradient and the ATPS interfacial tension. We observe rich assembly dynamics, from the formation of Pickering emulsions to clusters that are completely encapsulated inside DEX phase droplets. We anticipate that this microparticle self-assembly method may have important biotechnological applications that require the controlled assembly of cells into clusters.

  7. A new method for the production of gelatin microparticles for controlled protein release from porous polymeric scaffolds.

    Science.gov (United States)

    Ozkizilcik, Asya; Tuzlakoglu, Kadriye

    2014-03-01

    Tissue engineering using scaffolds and growth factors is a crucial approach in bone regeneration and repair. The combination of bioactive agents carrying microparticles with porous scaffolds can be an efficient solution when controlled release of bio-signalling molecules is required. The present study was based on a recent approach using a biodegradable scaffold and protein-loaded microparticles produced in an innovative manner in which protein loss is minimized during the loading process. Bovine serum albumin (BSA)-loaded gelatin microparticles were obtained by grinding freeze-dried membranes of gelatin and BSA. Porous scaffolds (250-355 µm pore size) produced from a polyactide (PLLA) and polycaprolactone (PCL) blend by salt leaching/supercritical CO₂ methods were used for the experiments. Gelatin microparticles containing three different BSA amounts were incorporated into the porous scaffolds by using a surfactant. In vitro release profiles showed up to 90% protein loading efficiency. This novel method appears to be an effective approach for producing particles that can minimize protein loss during the loading process.

  8. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid.

    Science.gov (United States)

    Nam, Jeonghun; Lim, Hyunjung; Kim, Dookon; Jung, Hyunwook; Shin, Sehyun

    2012-04-07

    Pure separation and sorting of microparticles from complex fluids are essential for biochemical analyses and clinical diagnostics. However, conventional techniques require highly complex and expensive labeling processes for high purity separation. In this study, we present a simple and label-free method for separating microparticles with high purity using the elasto-inertial characteristic of a non-Newtonian fluid in microchannel flow. At the inlet, particle-containing sample flow was pushed toward the side walls by introducing sheath fluid from the center inlet. Particles of 1 μm and 5 μm in diameter, which were suspended in viscoelastic fluid, were successfully separated in the outlet channels: larger particles were notably focused on the centerline of the channel at the outlet, while smaller particles continued flowing along the side walls with minimal lateral migration towards the centerline. The same technique was further applied to separate platelets from diluted whole blood. Through cytometric analysis, we obtained a purity of collected platelets of close to 99.9%. Conclusively, our microparticle separation technique using elasto-inertial forces in non-Newtonian fluid is an effective method for separating and collecting microparticles on the basis of size differences with high purity.

  9. From optimization of synbiotic microparticles prepared by spray-drying to development of new functional carrot juice

    Directory of Open Access Journals (Sweden)

    Petreska-Ivanovska Tanja

    2014-01-01

    Full Text Available Lactobacillus casei loaded chitosan-Ca-alginate microparticles enriched with the prebiotic fructooligosaccharide were prepared using spray-drying method associated with the polymers complexation and cross-linking with calcium. The concentrations of the formulation factors of alginate, chitosan and CaCl2 were optimized using 23 full factorial design. Experiments showed that microparticles with favorable physicochemical properties and high probiotic viability during preparation and storage could be obtained when 40 mg/g sodium alginate, 5 mg/g chitosan and 50 mg/g CaCl2 is used. Stability of L. casei during microencapsulation was identified by FTIR spectroscopy. The viability of the probiotic in the optimal formulation of synbiotic microparticles remained above the therapeutic minimum during incubation of 24 hours in simulated gastrointestinal conditions (7.67±0.4 log cfu/g as well as after 3 months of cold storage (8.1±0.6 log cfu/g. High viability of L. casei was maintained during 6 weeks of cold storage when carrot juice was enriched with encapsulated cells. The effective preservation of L. casei into synbiotic microparticles provided production of new non-dairy functional food as an alternative of the population who is at risk of lactose intolerance.

  10. Impact of Atmospheric Microparticles on the Development of Oxidative Stress in Healthy City/Industrial Seaport Residents

    Directory of Open Access Journals (Sweden)

    Kirill Golokhvast

    2015-01-01

    Full Text Available Atmospheric microsized particles producing reactive oxygen species can pose a serious health risk for city residents. We studied the responses of organisms to microparticles in 255 healthy volunteers living in areas with different levels of microparticle air pollution. We analyzed the distribution of microparticles in snow samples by size and content. ELISA and flow cytometry methods were employed to determine the parameters of the thiol-disulfide metabolism, peroxidation and antioxidant, genotoxicity, and energy state of the leukocytes. We found that, in the park areas, microparticles with a size of 800 μm or more were predominant (96%, while in the industrial areas, they tended to be less than 50 μm (93%, including size 200–300 nm (7%. In the industrial areas, we determined the oxidative modification of proteins (21% compared to the park areas, p≤0.05 and DNA (12%, p≤0.05, as well as changes in leukocytes’ energy potential (53%, p≤0.05. An increase in total antioxidant activity (82%, p≤0.01 and thiol-disulfide system response (thioredoxin increasing by 33%, p≤0.01; glutathione, 30%, p≤0.01 with stable reductases levels maintains a balance of peroxidation-antioxidant processes, protecting cellular and subcellular structures from significant oxidative damage.

  11. Production and characterization of hyaluronic acid microparticles for the controlled delivery of growth factors using a spray/dehydration method.

    Science.gov (United States)

    Babo, Pedro S; Reis, Rui L; Gomes, Manuela E

    2016-11-01

    Hyaluronic acid is the main polysaccharide present in the connective tissue. Besides its structural function as backbone of the extracellular matrix, hyaluronic acid plays staple roles in several biological processes including the modulation of inflammation and wound healing processes. The application of hyaluronic acid in regenerative medicine, either as cells and/or drug/growth factors delivery vehicles, relies on its ability to be cross-linked using a plethora of reactions, producing stable hydrogels. In this work, we propose a novel method for the production of hyaluronic acid microparticles that presents several advantages over others that have been used. Basically, droplets of hyaluronic acid solution produced with a nozzle are collected in an isopropanol dehydration bath, and stabilized after crosslinking with adipic acid dihydrazide, using a cabodiimide-based chemistry. The size and morphology of the hyaluronic acid microparticles produced by this method varied with the molecular weight and concentration of the hyaluronic acid solution, the nozzle chamber pressure, the distance between the nozzle and the crosslinking solution, and the number of crosslinking steps. The degree of crosslinking of the hyaluronic acid microparticles produced was tunable and allowed to control the rate of the degradation promoted by hyaluronidase. Moreover, the particles were loaded with platelet lysate, a hemoderivative rich in cytokines with interest for regenerative medicine applications. The hyaluronic acid microparticles showed potential to bind selectively to positively charged molecules, as the factors present in the platelet lysate. It is envisioned that these can be further released in a sustained manner by ion exchange or by the degradation of the hyaluronic acid microparticles matrix promoted by extracellular matrix remodeling.

  12. Viability of the microencapsulation of a casein hydrolysate in lipid microparticles of cupuacu butter and stearic acid

    Directory of Open Access Journals (Sweden)

    Samantha Cristina Pinho

    2013-04-01

    Full Text Available Normal 0 21 false false false PT-BR X-NONE X-NONE Solid lipid microparticles produced with a mixture of cupuacu butter and stearic acid were used to microencapsulate a commercial casein hydrolysate (Hyprol 8052. The composition of the lipid matrix used for the production of the lipid microparticles was chosen according to data on the wide angle X-ray diffraction (WAXD and differential scanning calorimetry (DSC of bulk lipid mixtures, which indicated that the presence of 10 % cupuacu butter was sufficient to significantly change the crystalline arrangement of pure stearic acid. Preliminary tests indicated that a minimum proportion of 4 % of surfactant (polysorbate 80 was necessary to produce empty spherical lipid particles with average diameters below 10 mm. The lipid microparticles were produced using 20 % cupuacu butter and 80 % stearic acid and then stabilized with 4 % of polysorbate 80, exhibiting an encapsulation efficiency of approximately 74 % of the casein hydrolysate. The melting temperature of the casein hydrolysate-loaded lipid microparticles was detected at 65.2 °C, demonstrating that the particles were solid at room temperature as expected and indicating that the incorporation of peptides had not affected their thermal behavior. After 25 days of storage, however, there was a release of approximately 30 % of the initial amount of encapsulated casein hydrolysate. This release was not thought to have been caused by the liberation of encapsulated casein hydrolysate. Instead, it was attributed to the possible desorption of the adsorbed peptides present on the surface of the lipid microparticles.

  13. Local delivery of cannabinoid-loaded microparticles inhibits tumor growth in a murine xenograft model of glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Dolores Hernán Pérez de la Ossa

    Full Text Available Cannabinoids, the active components of marijuana and their derivatives, are currently investigated due to their potential therapeutic application for the management of many different diseases, including cancer. Specifically, Δ(9-Tetrahydrocannabinol (THC and Cannabidiol (CBD - the two major ingredients of marijuana - have been shown to inhibit tumor growth in a number of animal models of cancer, including glioma. Although there are several pharmaceutical preparations that permit the oral administration of THC or its analogue nabilone or the oromucosal delivery of a THC- and CBD-enriched cannabis extract, the systemic administration of cannabinoids has several limitations in part derived from the high lipophilicity exhibited by these compounds. In this work we analyzed CBD- and THC-loaded poly-ε-caprolactone microparticles as an alternative delivery system for long-term cannabinoid administration in a murine xenograft model of glioma. In vitro characterization of THC- and CBD-loaded microparticles showed that this method of microencapsulation facilitates a sustained release of the two cannabinoids for several days. Local administration of THC-, CBD- or a mixture (1:1 w:w of THC- and CBD-loaded microparticles every 5 days to mice bearing glioma xenografts reduced tumour growth with the same efficacy than a daily local administration of the equivalent amount of those cannabinoids in solution. Moreover, treatment with cannabinoid-loaded microparticles enhanced apoptosis and decreased cell proliferation and angiogenesis in these tumours. Our findings support that THC- and CBD-loaded microparticles could be used as an alternative method of cannabinoid delivery in anticancer therapies.

  14. Portal Vein Embolization before Right Hepatectomy: Improved Results Using n-Butyl-Cyanoacrylate Compared to Microparticles Plus Coils

    Energy Technology Data Exchange (ETDEWEB)

    Guiu, Boris, E-mail: boris.guiu@chu-dijon.fr; Bize, Pierre; Gunthern, Daniel [Centre Hospitalo-Univeristaire Vaudois, Digestive and Oncologic Imaging and Interventional Radiology Unit, Department of Radiology and Interventional Radiology (Switzerland); Demartines, Nicolas; Halkic, Nermin [Centre Hospitalo-Univeristaire Vaudois, Department of Visceral Surgery (Switzerland); Denys, Alban [Centre Hospitalo-Univeristaire Vaudois, Digestive and Oncologic Imaging and Interventional Radiology Unit, Department of Radiology and Interventional Radiology (Switzerland)

    2013-10-15

    Background: There is currently no consensus in the literature on which embolic agent induces the greatest degree of liver hypertrophy after portal vein embolization (PVE). Only experimental results in a pig model have demonstrated an advantage of n-butyl-cyanoacrylate (NBCA) over 3 other embolic materials (hydrophilic gel, small and large polyvinyl alcohol particles) for PVE. Therefore, the aim of this human study was to retrospectively compare the results of PVE using NBCA with those using spherical microparticles plus coils. Methods: A total of 34 patients underwent PVE using either NBCA (n = 20), or spherical microparticles plus coils (n = 14). PVE was decided according to preoperative volumetry on the basis of contrast-enhanced CT. Groups were compared for age, sex, volume of the left lobe before PVE and future remnant liver ratio (FRL) (volume of the left lobe/total liver volume - tumor volume). The primary end point was the increase in left lobe volume 1 month after PVE. Secondary end points were procedure complications and biological tolerance. Results: Both groups were similar in terms of age, sex ratio, left lobe volume, and FRL before PVE. NBCA induced a greater increase in volume after PVE than did microparticles plus coils (respectively, +74 {+-} 69 % and +23 {+-} 14 %, p < 0.05). The amount of contrast medium used for the procedure was significantly larger when microparticles and coils rather than NBCA were used (respectively, 264 {+-} 43 ml and 162 {+-} 34 ml, p < 0.01). The rate of PVE complications as well as the biological tolerance was similar in both groups. Conclusion: NBCA seems more effective than spherical microparticles plus coils to induce left-lobe hypertrophy.

  15. Improvement of the antibacterial activity of daptomycin-loaded polymeric microparticles by Eudragit RL 100: an assessment by isothermal microcalorimetry.

    Science.gov (United States)

    Ferreira, Inês Santos; Bettencourt, Ana; Bétrisey, Bertrand; Gonçalves, Lídia M D; Trampuz, Andrej; Almeida, António J

    2015-05-15

    The aim of the present study was to develop novel daptomycin-loaded acrylic microparticles with improved release profiles and antibacterial activity against two clinically relevant methicillin-susceptible and methicillin-resistant Staphylococcus aureus strains (MSSA and MRSA, respectively). Daptomycin was encapsulated into poly(methyl methacrylate) (PMMA) and PMMA-Eudragit RL 100 (EUD) microparticles by a double emulsion-solvent evaporation method. For comparison purposes similar formulations were prepared with vancomycin. Particle morphology, size distribution, encapsulation efficiency, surface charge, physicochemical properties, in vitro release and biocompatibility were assessed. Particles exhibited a micrometer size and a spherical morphology. The addition of EUD to the formulation caused a shift in the surface charge of the particles from negative zeta potential values (100% PMMA formulations) to strongly positive. It also improved daptomycin encapsulation efficiency and release, whereas vancomycin encapsulation and release were strongly hindered. Plain and antibiotic-loaded particles presented comparable biocompatibility profiles. The antibacterial activity of the particles was assessed by isothermal microcalorimetry against both MSSA and MRSA. Daptomycin-loaded PMMA-EUD particles presented the highest antibacterial activity against both strains. The addition of 30% EUD to the daptomycin-loaded PMMA particles caused a 40- and 20-fold decrease in the minimum inhibitory (MIC) and bactericidal concentration (MBC) values, respectively, when compared to the 100% PMMA formulations. On the other hand, vancomycin-loaded microparticles presented the highest antibacterial activity in PMMA particles. Unlike conventional methods, isothermal microcalorimetry proved to be a real-time, sensitive and accurate method for assessment of antibacterial activity of antibiotic-loaded polymeric microparticles. Finally, the addition of EUD to formulations proved to be a powerful

  16. Formation of core-shell structured complex microparticles during fabrication of magnetorheological elastomers and their magnetorheological behavior

    Science.gov (United States)

    Wang, Yonghong; Zhang, Xinru; Chung, Kyungho; Liu, Chengcen; Choi, Seung-Bok; Choi, Hyoung Jin

    2016-11-01

    To improve mechanical and magnetorheological properties of magnetorheological elastomers (MREs), a facile method was used to fabricate high-performance MREs which consisted of the core-shell complex microparticles with an organic-inorganic network structure dispersed in an ethylene propylene diene rubber. In this work, the proposed magnetic complex microparticles were in situ formed during MREs fabrication as a result of strong interaction between matrix and CIPs using carbon black as a connecting point. The morphology of both isotropic (i-MREs) and anisotropic MREs (a-MREs) was observed by scanning electron microscope (SEM). The effects of carbonyl iron particle (CIP) volume content on mechanical properties and hysteresis loss of MREs were investigated. The effects of CIP volume content on the shear storage modulus, MR effect and loss tangent were studied using a modified dynamic mechanical analyzer under applied magnetic field strengths. The results showed that the orientation effect became more pronounced with increasing CIPs in the a-MREs, whereas CIPs distributed uniformly in the i-MREs. The tensile strength, tear strength and elongation at break decreased with increasing CIP content up to 40 vol.%, while the hardness increased. It is worth noting that the tensile strength of i-MREs and a-MREs containing 40 vol.% CIPs still had high mechanical properties as a result of good compatibility between complex microparticles and rubber matrix. The MR performance of shear storage modulus and damping properties of MREs increased remarkably with CIP content due to strong dipole-dipole interaction of complex microparticles. Besides, the hysteresis loss increased with increasing CIP content as a result of magnetic field induced interfacial sliding between complex microparticles.

  17. Physiology of the fetal circulation.

    Science.gov (United States)

    Kiserud, Torvid

    2005-12-01

    Our understanding of fetal circulatory physiology is based on experimental animal data, and this continues to be an important source of new insight into developmental mechanisms. A growing number of human studies have investigated the human physiology, with results that are similar but not identical to those from animal studies. It is time to appreciate these differences and base more of our clinical approach on human physiology. Accordingly, the present review focuses on distributional patterns and adaptational mechanisms that were mainly discovered by human studies. These include cardiac output, pulmonary and placental circulation, fetal brain and liver, venous return to the heart, and the fetal shunts (ductus venosus, foramen ovale and ductus arteriosus). Placental compromise induces a set of adaptational and compensational mechanisms reflecting the plasticity of the developing circulation, with both short- and long-term implications. Some of these aspects have become part of the clinical physiology of today with consequences for surveillance and treatment.

  18. Proper Sizing of Circulation Pumps

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Nørgaard, Jørgen

    2007-01-01

    , but the results can be applied to Europe in general. Despite the small sample of houses involved in the test, 15 houses, some rather safe conclusions can be drawn from the results, which showed that newly developed pumps with power consumption around 5-8 W, can perform the task of circulating the water......The paper describes the preliminary results from field tests of replacing various types of old pumps used for circulating water in heating systems in single- and double-family houses with new types of pumps. The tests were carried out in Denmark for the Danish Electricity Savings Trust...... sufficiently to keep the houses satisfactorily warm during the heating season of the test. The old replaced pumps used 5-10 times more power. In Europe alone, a gradual replacement of the present vastly oversized pumps with such small but sufficient pumps can save the construction of 17 large power plants...

  19. Journalism as Cultures of Circulation

    DEFF Research Database (Denmark)

    Bødker, Henrik

    2013-01-01

    The universe of journalism has always consisted of interspersed texts, meanings and practices. Yet, much journalism research has often isolated either texts and/or contexts and as such assumed relations between professional practices, informed (rational) readers and (conceived) core texts...... of journalism. It is, however, more important than ever to shift attention away from texts to the processes through which they are circulated. This is partly because the many cultural forms of journalism (textual, institutional, technological, material, behavioural and imagined) are undergoing significant......, likes, comments, searches, journalist roles, writing and reading positions and identities etc. Such forms will be traced within the mediation of a specific event with the overall aim of beginning a theorization of the landscape of journalism as highly interrelated cultures of circulation....

  20. Ocean circulation generated magnetic signals

    DEFF Research Database (Denmark)

    Manoj, C.; Kuvshinov, A.; Maus, S.

    2006-01-01

    Conducting ocean water, as it flows through the Earth's magnetic field, generates secondary electric and magnetic fields. An assessment of the ocean-generated magnetic fields and their detectability may be of importance for geomagnetism and oceanography. Motivated by the clear identification...... of ocean tidal signatures in the CHAMP magnetic field data we estimate the ocean magnetic signals of steady flow using a global 3-D EM numerical solution. The required velocity data are from the ECCO ocean circulation experiment and alternatively from the OCCAM model for higher resolution. We assume...... of the magnetic field, as compared to the ECCO simulation. Besides the expected signatures of the global circulation patterns, we find significant seasonal variability of ocean magnetic signals in the Indian and Western Pacific Oceans. Compared to seasonal variation, interannual variations produce weaker signals....

  1. Conservation of circulation in magnetohydrodynamics

    Science.gov (United States)

    Bekenstein; Oron

    2000-10-01

    We demonstrate at both the Newtonian and (general) relativistic levels the existence of a generalization of Kelvin's circulation theorem (for pure fluids) that is applicable to perfect magnetohydrodynamics. The argument is based on the least action principle for magnetohydrodynamic flow. Examples of the new conservation law are furnished. The new theorem should be helpful in identifying new kinds of vortex phenomena distinct from magnetic ropes or fluid vortices.

  2. Conservation of Circulation in Magnetohydrodynamics

    OpenAIRE

    Bekenstein, Jacob D.; Oron, Asaf

    2000-01-01

    We demonstrate, both at the Newtonian and (general) relativistic levels, the existence of a generalization of Kelvin's circulation theorem (for pure fluids) which is applicable to perfect magnetohydrodynamics. The argument is based on the least action principle for magnetohydrodynamic flow. Examples of the new conservation law are furnished. The new theorem should be helpful in identifying new kinds of vortex phenomena distinct from magnetic ropes or fluid vortices.

  3. Hall Effect Gyrators and Circulators

    Science.gov (United States)

    Viola, Giovanni; DiVincenzo, David P.

    2014-04-01

    The electronic circulator and its close relative the gyrator are invaluable tools for noise management and signal routing in the current generation of low-temperature microwave systems for the implementation of new quantum technologies. The current implementation of these devices using the Faraday effect is satisfactory but requires a bulky structure whose physical dimension is close to the microwave wavelength employed. The Hall effect is an alternative nonreciprocal effect that can also be used to produce desired device functionality. We review earlier efforts to use an Ohmically contacted four-terminal Hall bar, explaining why this approach leads to unacceptably high device loss. We find that capacitive coupling to such a Hall conductor has much greater promise for achieving good circulator and gyrator functionality. We formulate a classical Ohm-Hall analysis for calculating the properties of such a device, and show how this classical theory simplifies remarkably in the limiting case of the Hall angle approaching 90°. In this limit, we find that either a four-terminal or a three-terminal capacitive device can give excellent circulator behavior, with device dimensions far smaller than the ac wavelength. An experiment is proposed to achieve GHz-band gyration in millimeter (and smaller) scale structures employing either semiconductor heterostructure or graphene Hall conductors. An inductively coupled scheme for realizing a Hall gyrator is also analyzed.

  4. In vitro human skin permeation and cutaneous metabolism of catechins from green tea extract and green tea extract-loaded chitosan microparticles.

    Science.gov (United States)

    Wisuitiprot, W; Somsiri, A; Ingkaninan, K; Waranuch, N

    2011-12-01

    Catechins are major antioxidants in green tea (Camellia sinensis or Camellia assamica), but because they do not permeate the skin well, the application of green tea in cosmetic products has so far been limited. This study aims to evaluate the cutaneous absorption of catechins from an extract of green tea and from a green tea extract-loaded chitosan microparticle. The catechin skin metabolism was also examined. The results suggest that chitosan microparticles significantly improve the ability of catechins to permeate skin. The cutaneous metabolism of the catechins significantly affected their permeation profiles. Epicatechin (EC) and epigallocatechin (EGC) penetrated the skin more than epigallocatechin gallate (EGCG) and epicatechin gallate (ECG). The galloyl groups in EGCG and ECG were enzymatically hydrolysed to EGC and EC, respectively. Dehydroxylation of catechins was also observed. Chitosan microparticles effectively prevented enzymatic changes of the catechins; therefore, chitosan microparticles are here found to be the promising carriers for enhancing the skin permeation.

  5. Circulating follistatin in relation to energy metabolism

    DEFF Research Database (Denmark)

    Hansen, Jakob Schiøler; Plomgaard, Peter

    2016-01-01

    Recently, substantial evidence has emerged that the liver contributes significantly to the circulating levels of follistatin and that circulating follistatin is tightly regulated by the glucagon-to-insulin ratio. Both observations are based on investigations of healthy subjects. These novel...... a relation to energy metabolism. In this narrative review, we attempt to reconcile the existing findings on circulating follistatin with the novel concept that circulating follistatin is a liver-derived molecule regulated by the glucagon-to-insulin ratio. The picture emerging is that conditions associated...... with elevated levels of circulating follistatin have a metabolic denominator with decreased insulin sensitivity and/or hyperglucagoneimia....

  6. Self assembly of microparticles in stable ring structures in an optical trap

    CERN Document Server

    Haldar, Arijit; Roy, Basudev; Gupta, S Dutta; Banerjee, Ayan

    2011-01-01

    Micro-particle self assembly under the influence of optical forces produced by higher order optical beams or by projection of a hologram into the trapping volume is well known. In this paper, we report the spontaneous formation of a ring of identical microspheres (each with diameter 1.1 um in conventional single beam optical tweezers having standing wave geometry with the sample chamber consisting of a cover slip and glass slide, and a usual TEM00 Gaussian beam. The effects of different experimental parameters on the ring formation are studied extensively. The experimental observations are backed by theoretical simulations based on a plane wave decomposition of the forward and backward propagating Gaussian beams. The ring patterns are shown to be caused due to geomterical aberrations produced by focusing the Gaussian beam using a high numerical aperture microscope objective into stratified media. It is found that the thickness of the stratified media and the standing wave geometry itself play a critical role ...

  7. Removal of nano and microparticles by granular filter media coated with nanoporous aluminium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lau, B.L.T.; Harrington, G.W.; Anderson, M.A.; Tejedor, I. [University of Wisconsin, Madison, WI (US). Dept. of Civil & Environmental Engineering

    2004-07-01

    Conventional filtration was designed to achieve high levels of particle and pathogen removal. Previous studies have examined the possibility of modifying filtration media to improve their ability to remove microorganisms and viruses. Although these studies have evaluated filter media coatings for this purpose, none have evaluated nanoscale particle suspensions as coating materials. The overall goal of this paper is to describe the preliminary test results of nanoporous aluminium oxide coated media that can be used to enhance filtration of nano and microparticles. Filtration tests were carried out using columns packed with uncoated and coated forms of granular anthracite or granular activated carbon. A positive correlation between isoelectric pH of filter media and particle removal was observed. The modified filter media with a higher isoelectric pH facilitated better removal of bacteriophage MS2 and 3 {mu}m latex microspheres, possibly due to increased favorable electrostatic interactions.

  8. Micro-particle image velocimetry for velocity profile measurements of micro blood flows.

    Science.gov (United States)

    Pitts, Katie L; Fenech, Marianne

    2013-04-25

    Micro-particle image velocimetry (μPIV) is used to visualize paired images of micro particles seeded in blood flows. The images are cross-correlated to give an accurate velocity profile. A protocol is presented for μPIV measurements of blood flows in microchannels. At the scale of the microcirculation, blood cannot be considered a homogeneous fluid, as it is a suspension of flexible particles suspended in plasma, a Newtonian fluid. Shear rate, maximum velocity, velocity profile shape, and flow rate can be derived from these measurements. Several key parameters such as focal depth, particle concentration, and system compliance, are presented in order to ensure accurate, useful data along with examples and representative results for various hematocrits and flow conditions.

  9. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels.

    Science.gov (United States)

    Park, Jae-Sung; Song, Suk-Heung; Jung, Hyo-Il

    2009-04-07

    We developed a new microfluidic method for focusing microparticles through the combined use of inertial lift forces and turbulent secondary flows generated in a topographically patterned microchannel. The mechanism of particle focusing is based on the hydrodynamic inertial forces exerted on particles migrating along a non-circular microchannel, i.e.tubular pinch effect and wall effect, which induce particle movement away from walls and along a specific lateral position in the microchannel. With the extraordinary geometry of multi-orifice microchannel, an ordered and focused particle distribution was achieved at central or side regions according to a particle Reynolds number (Re(p)) range. The focusing of particles was controlled by the particle Reynolds number, microchannel length, and volume fraction of particles in suspension. This method will be beneficial in particle focusing processes in a microfluidic device since it offers continuous, high-throughput performance and simple operation.

  10. Spontaneous pairing and cooperative movements of micro-particles in a two dimensional plasma crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, S. K. [Max Planck Institute for extraterrestrial Physics, D-85741 Garching (Germany); Couëdel, L., E-mail: lenaic.couedel@univ-amu.fr [CNRS, Université d' Aix-Marseille, PIIM UMR 7345, 13397 Marseille Cedex 20 (France); Nosenko, V.; Thomas, H. M. [Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum fur Luft-und-Raumfahrt, Oberpfaffenhofen (Germany); Morfill, G. E. [Max Planck Institute for extraterrestrial Physics, D-85741 Garching (Germany); BMSTU Centre for Plasma Science and Technology, Moscow (Russian Federation)

    2015-05-15

    In an argon plasma of 20 W rf discharge at a pressure of 1.38 Pa, a stable highly ordered monolayer of microparticles is suspended. We observe spontaneous particle pairing when suddenly reducing the gas pressure. Special types of dynamical activity, in particular, entanglement and cooperative movements of coupled particles have been registered. In the course of the experiment first appeared single vertical pairs of particles, in further they gradually accumulated causing melting of the entire crystal. To record pairing events, the particle suspension is side-view imaged using a vertically extended laser sheet. The long-lasting pre-melting phase assured the credible recording and identification of isolated particle pairs. The high monolayer charge density is crucial to explain the spontaneous pairing events observed in our experiments as the mutual repulsion between the particles comprising the monolayer make its vertical extend thicker.

  11. Dynamics of supersonic microparticle impact on elastomers revealed by real-time multi-frame imaging.

    Science.gov (United States)

    Veysset, David; Hsieh, Alex J; Kooi, Steven; Maznev, Alexei A; Masser, Kevin A; Nelson, Keith A

    2016-05-09

    Understanding high-velocity microparticle impact is essential for many fields, from space exploration to medicine and biology. Investigations of microscale impact have hitherto been limited to post-mortem analysis of impacted specimens, which does not provide direct information on the impact dynamics. Here we report real-time multi-frame imaging studies of the impact of 7 μm diameter glass spheres traveling at 700-900 m/s on elastomer polymers. With a poly(urethane urea) (PUU) sample, we observe a hyperelastic impact phenomenon not seen on the macroscale: a microsphere undergoes a full conformal penetration into the specimen followed by a rebound which leaves the specimen unscathed. The results challenge the established interpretation of the behaviour of elastomers under high-velocity impact.

  12. Rod-Shaped Magnetite Nano/Microparticles Synthesis at Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Balaprasad Ankamwar

    2013-01-01

    Full Text Available Here, we reported room temperature synthesis of Fe3O4 rod-shaped nano/microparticles by chemical reduction method from FeCl3 precursor and NaBH4 as the reducing agent in the presence of the pyrrole as a capping agent. The magnetic Fe3O4 particles were characterized by several methods, such as SEM, XRD, FTIR, and TGA. The average aspect ratio of Fe3O4 rod-shaped particles was ~2.8. These particles