WorldWideScience

Sample records for circulating endothelial progenitor

  1. Circulating endothelial progenitor cells in kidney transplant patients.

    Directory of Open Access Journals (Sweden)

    Giovana S Di Marco

    Full Text Available BACKGROUND: Kidney transplantation (RTx leads to amelioration of endothelial function in patients with advanced renal failure. Endothelial progenitor cells (EPCs may play a key role in this repair process. The aim of this study was to determine the impact of RTx and immunosuppressive therapy on the number of circulating EPCs. METHODS: We analyzed 52 RTx patients (58±13 years; 33 males, mean ± SD and 16 age- and gender-matched subjects with normal kidney function (57±17; 10 males. RTx patients received a calcineurin inhibitor (CNI-based (65% or a CNI-free therapy (35% and steroids. EPC number was determined by double positive staining for CD133/VEGFR2 and CD34/VEGFR2 by flow cytometry. Stromal cell-derived factor 1 alpha (SDF-1 levels were assessed by ELISA. Experimentally, to dissociate the impact of RTx from the impact of immunosuppressants, we used the 5/6 nephrectomy model. The animals were treated with a CNI-based or a CNI-free therapy, and EPCs (Sca+cKit+ and CD26+ cells were determined by flow cytometry. RESULTS: Compared to controls, circulating number of CD34+/VEGFR2+ and CD133+/VEGFR2+ EPCs increased in RTx patients. There were no correlations between EPC levels and statin, erythropoietin or use of renin angiotensin system blockers in our study. Indeed, multivariate analysis showed that SDF-1--a cytokine responsible for EPC mobilization--is independently associated with the EPC number. 5/6 rats presented decreased EPC counts in comparison to control animals. Immunosuppressive therapy was able to restore normal EPC values in 5/6 rats. These effects on EPC number were associated with reduced number of CD26+ cells, which might be related to consequent accumulation of SDF-1. CONCLUSIONS: We conclude that kidney transplantation and its associated use of immunosuppressive drugs increases the number of circulating EPCs via the manipulation of the CD26/SDF-1 axis. Increased EPC count may be associated to endothelial repair and function in

  2. Circulating Endothelial Progenitor Cell and Platelet Microparticle Impact on Platelet Activation in Hypertension Associated with Hypercholesterolemia

    OpenAIRE

    Nicoleta Alexandru; Doina Popov; Emanuel Dragan; Eugen Andrei; Adriana Georgescu

    2013-01-01

    AIM: The purpose of this project was to evaluate the influence of circulating endothelial progenitor cells (EPCs) and platelet microparticles (PMPs) on blood platelet function in experimental hypertension associated with hypercholesterolemia. METHODS: Golden Syrian hamsters were divided in six groups: (i) control, C; (ii) hypertensive-hypercholesterolemic, HH; (iii) 'prevention', HHin-EPCs, HH animals fed a HH diet and treated with EPCs; (iv) 'regression', HHfin-EPCs, HH treated with EPCs aft...

  3. Pro-angiogenic Hematopoietic Progenitor Cells and Endothelial Colony Forming Cells in Pathological Angiogenesis of Bronchial and Pulmonary Circulation

    OpenAIRE

    Duong, Heng; Erzurum, Serpil; Asosingh, Kewal

    2011-01-01

    Dysregulation of angiogenesis is a common feature of many disease processes. Vascular remodeling is believed to depend on the participation of endothelial progenitor cells, but the identification of endothelial progenitors in postnatal neovascularization remains elusive. Current understanding posits a role for circulating pro-angiogenic hematopoietic cells, which interact with local endothelial cells to establish an environment that favors angiogenesis in physiologic and pathophysiologic resp...

  4. Type 2 diabetes mellitus is associated with an imbalance in circulating endothelial and smooth muscle progenitor cell numbers

    NARCIS (Netherlands)

    van Ark, J.; Moser, J.; Lexis, C. P. H.; Bekkema, F.; Pop, I.; van der Horst, I. C. C.; Zeebregts, C. J.; van Goor, H.; Wolffenbuttel, B. H. R.; Hillebrands, J. L.

    2012-01-01

    Individuals with type 2 diabetes mellitus have increased rates of macrovascular disease (MVD). Endothelial progenitor cells (EPCs), circulating angiogenic cells (CACs) and smooth muscle progenitor cells (SMPCs) are suggested to play a role in the pathogenesis of MVD. The relationship between vasoreg

  5. The level of circulating endothelial progenitor cells may be associated with the occurrence and recurrence of chronic subdural hematoma

    Directory of Open Access Journals (Sweden)

    Yan Song

    2013-01-01

    Full Text Available OBJECTIVES: The onset of chronic subdural hematoma may be associated with direct or indirect minor injuries to the head or a poorly repaired vascular injury. Endothelial progenitor cells happen to be one of the key factors involved in hemostasis and vascular repair. This study was designed to observe the levels of endothelial progenitor cells, white blood cells, platelets, and other indicators in the peripheral blood of patients diagnosed with chronic subdural hematoma to determine the possible relationship between the endothelial progenitor cells and the occurrence, development, and outcomes of chronic subdural hematoma. METHOD: We enrolled 30 patients with diagnosed chronic subdural hematoma by computer tomography scanning and operating procedure at Tianjin Medical University General Hospital from July 2009 to July 2011. Meanwhile, we collected 30 cases of peripheral blood samples from healthy volunteers over the age of 50. Approximately 2 ml of blood was taken from veins of the elbow to test the peripheral blood routine and coagulation function. The content of endothelial progenitor cells in peripheral blood mononuclear cells was determined by flow cytometry. RESULTS: The level of endothelial progenitor cells in peripheral blood was significantly lower in preoperational patients with chronic subdural hematomas than in controls. There were no significant differences between the two groups regarding the blood routine and coagulation function. However, the levels of circulating endothelial progenitor cells were significantly different between the recurrent group and the non-recurrent group. CONCLUSIONS: The level of circulating endothelial progenitor cells in chronic subdural hematoma patients was significantly lower than the level in healthy controls. Meanwhile, the level of endothelial progenitor cells in recurrent patients was significantly lower than the level in patients without recurrence. Endothelial progenitor cells may be related to the

  6. Circulating endothelial progenitor cells in traumatic brain injury: an emerging therapeutic target?

    Institute of Scientific and Technical Information of China (English)

    WEI Hui-jie; JIANG Rong-cai; LIU Li; ZHANG Jian-ning

    2010-01-01

    Traumatic brain injury (TBI) is a major cause ofmortality and morbidity in the world. Recent clinical investigations and basic researches suggest that strategies to improve angiogenesis following TBI may provide promising opportunities to improve clinical outcomes and brain functional recovery. More and more evidences show that circulating endothelial progenitor cells (EPCs), which have been identified in the peripheral blood, may play an important role in the pathologic and physiological angiogenesis in adults. Moreover, impressive data demonstrate that EPCs are mobilized from bone marrow to blood circulation in response to traumatic or inflammatory stimulations.In this review, we discussed the role of EPCs in the repair of brain injury and the possible therapeutic implication for functional recovery of TBl in the future.

  7. Homing of circulating blood endothelial progenitor cells after myocardial infarction is mediated by Akt-SDF-1-signal pathway

    Institute of Scientific and Technical Information of China (English)

    赵岚

    2013-01-01

    Objective To investigate the expressions of protein kinase B(Akt) and stromal cell-derived factor-1(SDF-1) and their relations with circulating blood endothelial progenitor cell homing after myocardial infarction(MI). Methods MI was induced in the

  8. Decreased Number of Circulating Endothelial Progenitor Cells (CD133+/KDR+) in Patients with Psoriatic Arthritis.

    Science.gov (United States)

    Batycka-Baran, Aleksandra; Paprocka, Maria; Baran, Wojciech; Szepietowski, Jacek C

    2016-08-23

    Cardiovascular diseases are a major cause of mortality in patients with psoriatic arthritis (PsA), but the precise mechanism of increased cardiovascular risk is unknown. Endothelial dysfunction plays a crucial role in the development of atherosclerosis. Circulating endothelial progenitor cells (CEPCs) contribute to endothelial regeneration and their level may be affected by chronic inflammation. The aim of this study was to evaluate the number of CEPCs in patients with PsA (n = 24) compared with controls (n = 26). CEPCs were identified as CD133+/ KDR+ cells in peripheral blood, using flow cytometry. A significantly decreased number of CEPCs was observed in patients with PsA (p number of these cells was significantly, inversely correlated with the severity of skin and joint involvement (Psoriasis Area and Severity Index (PASI), DAS28) and the level of C-reactive protein. We hypothesize that the reduced number of CEPCs may indicate and contribute to the increased cardiovascular risk in patients with PsA.

  9. Erythropoietin Receptor Positive Circulating Progenitor Cells and Endothelial Progenitor Cells in Patients with Different Stages of Diabetic Retinopathy

    Institute of Scientific and Technical Information of China (English)

    Liu-mei Hu; Guo-xu Xu; Guo-tong XU; Wei-ye Li; Xia Lei; Bo Ma; Yu Zhang; Yan Yan; Ya-lan Wu; Ge-zhi Xu; Wen Ye; Ling Wang

    2011-01-01

    Objective To investigate the possible involvement of erythropoietin (EPO)/erythropoietin receptor(EPOR) system in neovascularization and vascular regeneration in diabetic retinopathy (DR).Methods EPOR positive circulating progenitor cells (CPCs: CD34+) and endothelial progenitor cells (EPCs: CD34+KDR+) were assessed by flow cytometry in type 2 diabetic patients with different stages of DR. The cohort consisted of age- and sex-matched control patients without diabetes (n=7), non-prolif-erative DR (NPDR, n=7), proliferative DR (PDR, n=8), and PDR complicated with diabetic nephropathy (PDR-DN, n=7). Results The numbers of EPOR+ CPCs and EPOR+ EPCs were reduced remarkably in NPDR compared with the control group (both P<0.01), whereas rebounded in PDR and PDR-DN groups in varying degrees. Similar changes were observed in respect of the proportion of EPOR+ CPCs in CPCs (NPDR vs.control, P< 0.01) and that of EPOR+ EPCs in EPCs (NPDR vs. control, P< 0.05). Conclusion Exogenous EPO, mediated via the EPO/EPOR system of EPCs, may alleviate the im-paired vascular regeneration in NPDR, whereas it might aggravate retinal neovascularization in PDR due to a rebound of EPOR+ EPCs associated with ischemia.

  10. Late Release of Circulating Endothelial Cells and Endothelial Progenitor Cells after Chemotherapy Predicts Response and Survival in Cancer Patients

    Directory of Open Access Journals (Sweden)

    Jeanine M. Roodhart

    2010-01-01

    Full Text Available We and others have previously demonstrated that the acute release of progenitor cells in response to chemotherapy actually reduces the efficacy of the chemotherapy. Here, we take these data further and investigate the clinical relevance of circulating endothelial (progenitor cells (CE(PCs and modulatory cytokines in patients after chemotherapy with relation to progression-free and overall survival (PFS/OS. Patients treated with various chemotherapeutics were included. Blood sampling was performed at baseline, 4 hours, and 7 and 21 days after chemotherapy. The mononuclear cell fraction was analyzed for CE(PC by FACS analysis. Plasma was analyzed for cytokines by ELISA or Luminex technique. CE(PCs were correlated with response and PFS/OS using Cox proportional hazard regression analysis. We measured CE(PCs and cytokines in 71 patients. Only patients treated with paclitaxel showed an immediate increase in endothelial progenitor cell 4 hours after start of treatment. These immediate changes did not correlate with response or survival. After 7 and 21 days of chemotherapy, a large and consistent increase in CE(PC was found (P < .01, independent of the type of chemotherapy. Changes in CE(PC levels at day 7 correlated with an increase in tumor volume after three cycles of chemotherapy and predicted PFS/OS, regardless of the tumor type or chemotherapy. These findings indicate that the late release of CE(PC is a common phenomenon after chemotherapeutic treatment. The correlation with a clinical response and survival provides further support for the biologic relevance of these cells in patients' prognosis and stresses their possible use as a therapeutic target.

  11. Prognostic relevance of circulating endothelial progenitor cells in patients with chronic heart failure.

    Science.gov (United States)

    Koller, Lorenz; Hohensinner, Philipp; Sulzgruber, Patrick; Blum, Steffen; Maurer, Gerald; Wojta, Johann; Hülsmann, Martin; Niessner, Alexander

    2016-08-01

    Novel strategies for a tailored risk prediction in chronic heart failure (CHF) are crucial to identify patients at very high risk for an improved patient management and to specify treatment regimens. Endothelial progenitor cells (EPCs) are an important endogenous repair mechanism with the ability to counteract endothelial injury and the possibility of new vessel formation. We hypothesised that exhaustion of circulating EPCs may be a suitable prognostic biomarker in patients with CHF. EPCs, defined as CD34+CD45dimKDR+ cells, were analysed using fluorescence-activated cell sorting. EPCs were measured in 185 patients with CHF including 87 (47 %) patients with ischaemic aetiology and 98 (53 %) patients with non-ischaemic CHF and followed for a median time of 2.7 years. During this period, 34.7 % of patients experienced the primary study endpoint all-cause mortality. EPC count was a significant and independent inverse predictor of mortality with an hazard ratio hazard ratio (HR) per increase of one standard deviation (1-SD) of 0.47 (95 % confidence interval [CI]: 0.35-0.61; pHR per 1-SD of 0.54 (95 % CI: 0.4-0.73; p<0.001). EPCs further demonstrated additional prognostic information indicated by improvements in C-statistic, net reclassification index and integrated discrimination increment. In conclusion, in our study circulating EPCs turned out as strong and independent inverse predictors of mortality underlining the importance of an impaired endothelial repair mechanism in the pathophysiology and progression of CHF. PMID:27412580

  12. Obesity suppresses circulating level and function of endothelial progenitor cells and heart function

    Directory of Open Access Journals (Sweden)

    Tsai Tzu-Hsien

    2012-07-01

    Full Text Available Abstract Background and aim This study tested the hypothesis that obesity suppresses circulating number as well as the function of endothelial progenitor cells (EPCs and left ventricular ejection fraction (LVEF. Methods High fat diet (45 Kcal% fat was given to 8-week-old C57BL/6 J mice (n = 8 for 20 weeks to induce obesity (group 1. Another age-matched group (n = 8 were fed with control diet for 20 weeks as controls (group 2. The animals were sacrificed at the end of 20 weeks after obesity induction. Results By the end of study period, the heart weight, body weight, abdominal fat weight, serum levels of total cholesterol and fasting blood sugar were remarkably higher in group 1 than in group 2 (all p Conclusions Obesity diminished circulating EPC level, impaired the recovery of damaged endothelium, suppressed EPC angiogenesis ability and LVEF, and increased LV remodeling.

  13. Circulating endothelial progenitor cell and platelet microparticle impact on platelet activation in hypertension associated with hypercholesterolemia.

    Directory of Open Access Journals (Sweden)

    Nicoleta Alexandru

    Full Text Available AIM: The purpose of this project was to evaluate the influence of circulating endothelial progenitor cells (EPCs and platelet microparticles (PMPs on blood platelet function in experimental hypertension associated with hypercholesterolemia. METHODS: Golden Syrian hamsters were divided in six groups: (i control, C; (ii hypertensive-hypercholesterolemic, HH; (iii 'prevention', HHin-EPCs, HH animals fed a HH diet and treated with EPCs; (iv 'regression', HHfin-EPCs, HH treated with EPCs after HH feeding; (v HH treated with PMPs, HH-PMPs, and (vi HH treated with EPCs and PMPs, HH-EPCs-PMPs. RESULTS: Compared to HH group, the platelets from HHin-EPCs and HHfin-EPCs groups showed a reduction of: (i activation, reflected by decreased integrin 3β, FAK, PI3K, src protein expression; (ii secreted molecules as: SDF-1, MCP-1, RANTES, VEGF, PF4, PDGF and (iii expression of pro-inflammatory molecules as: SDF-1, MCP-1, RANTES, IL-6, IL-1β; TFPI secretion was increased. Compared to HH group, platelets of HH-PMPs group showed increased activation, molecules release and proteins expression. Compared to HH-PMPs group the combination EPCs with PMPs treatment induced a decrease of all investigated platelet molecules, however not comparable with that recorded when EPC individual treatment was applied. CONCLUSION: EPCs have the ability to reduce platelet activation and to modulate their pro-inflammatory and anti-thrombogenic properties in hypertension associated with hypercholesterolemia. Although, PMPs have several beneficial effects in combination with EPCs, these did not improve the EPC effects. These findings reveal a new biological role of circulating EPCs in platelet function regulation, and may contribute to understand their cross talk, and the mechanisms of atherosclerosis.

  14. Batroxobin mobilizes circulating endothelial progenitor cells in patients with deep vein thrombosis.

    Science.gov (United States)

    Lei Zhang; Shi Hong Lu; Li Li; Tao, Yu-Guo; Yong Ling Wan; Senga, Hirobumi; Renchi Yang; Zhong Chao Han

    2011-02-01

    Batroxobin, a thrombin-like enzyme from Bothrops atrox moojeni venom, is associated with the reduction of fibrinogen levels in plasma and the enhancement of anticoagulation and fibrinolysis. In this study, 15 patients with deep vein thrombosis (DVT) achieved successful limb salvage after the administration of batroxobin. We found that the levels of CD34+, CD31+, CD34+/CD31+, and vascular endothelial cadherin (VE-cadherin+) cells had increased in the peripheral blood of patients at 7 days and 14 days after treatment. At 0 day, 7 days, and 14 days, the percentages of CD34+ cells, which are assumed to be hematopoietic stem cells, are 0.39% ± 0.43%, 0.71% ± 0.50%, and 1.11% ± 0.66%, respectively. The levels of CD34+ cells at 14 days are significantly higher than the levels on the first day (P = .004). The levels of CD31+ cells and VE-cadherin+ cells, which represent mature endothelial cells, at 7 days (34.15% ± 11.32%, P = .013; 1.25% ± 1.39%, P = .014) and 14 days (35.21% ± 7.66%, P = .071; 1.85% ± 2.60%, P = .117) were slightly elevated compared with those at 0 day (27.55% ± 8.65%; 0.25 ± 0.39%). The double positive of CD34 and CD31 cells are assumed to be endothelial progenitor cells (EPCs). The levels of CD34+/CD31+ cells at 7 days (0.69% ± 0.50%, P = .001) and 14 days (1.07% ± 0.66%, P = .006) are significantly higher than that on the initial day (0.28% ± 0.30%). The number of CD34+/CD31+ cells significantly increased, indicating that in addition to its role in anticoagulation and fibrinolysis, treatment with batroxobin might simultaneously activate circulating EPCs that might promote the recanalization of the damaged vessel wall. PMID:19825915

  15. Quantification of circulating endothelial progenitor cells using the modified ISHAGE protocol.

    Directory of Open Access Journals (Sweden)

    Caroline Schmidt-Lucke

    Full Text Available AIMS: Circulating endothelial progenitor cells (EPC, involved in endothelial regeneration, neovascularisation, and determination of prognosis in cardiovascular disease can be characterised with functional assays or using immunofluorescence and flow cytometry. Combinations of markers, including CD34+KDR+ or CD133+KDR+, are used. This approach, however may not consider all characteristics of EPC. The lack of a standardised protocol with regards to reagents and gating strategies may account for the widespread inter-laboratory variations in quantification of EPC. We, therefore developed a novel protocol adapted from the standardised so-called ISHAGE protocol for enumeration of haematopoietic stem cells to enable comparison of clinical and laboratory data. METHODS AND RESULTS: In 25 control subjects, 65 patients with coronary artery disease (CAD; 40 stable CAD, 25 acute coronary syndrome/acute myocardial infarction (ACS, EPC were quantified using the following approach: Whole blood was incubated with CD45, KDR, and CD34. The ISHAGE sequential strategy was used, and finally, CD45(dimCD34(+ cells were quantified for KDR. A minimum of 100 CD34(+ events were collected. For comparison, CD45(+CD34(+ and CD45(-CD34(+ were analysed simultaneously. The number of CD45(dimCD34(+KDR(+ cells only were significantly higher in healthy controls compared to patients with CAD or ACS (p = 0.005 each, p<0.001 for trend. An inverse correlation of CD45(dimCD34(+KDR(+ with disease activity (r = -0.475, p<0.001 was confirmed. Only CD45(dimCD34(+KDR(+ correlated inversely with the number of diseased coronaries (r = -0.344; p<0.005. In a second study, a 4-week de-novo treatment of atorvastatin in stable CAD evoked an increase only of CD45(dimCD34(+KDR(+ EPC (p<0.05. CD45(+CD34(+KDR(+ and CD45(-CD34(+KDR(+ were indifferent between the three groups. CONCLUSION: Our newly established protocol adopted from the standardised ISHAGE protocol achieved higher accuracy in

  16. Advanced glycation end products, carotid atherosclerosis, and circulating endothelial progenitor cells in patients with end-stage renal disease.

    Science.gov (United States)

    Ueno, Hiroki; Koyama, Hidenori; Fukumoto, Shinya; Tanaka, Shinji; Shoji, Takuhito; Shoji, Tetsuo; Emoto, Masanori; Tahara, Hideki; Inaba, Masaaki; Kakiya, Ryusuke; Tabata, Tsutomu; Miyata, Toshio; Nishizawa, Yoshiki

    2011-04-01

    Numbers of endothelial progenitor cells (EPCs) have been shown to be decreased in subjects with end-stage renal disease (ESRD), the mechanism of which remained poorly understood. In this study, mutual association among circulating EPC levels, carotid atherosclerosis, serum pentosidine, and skin autofluorescence, a recently established noninvasive measure of advanced glycation end products accumulation, was examined in 212 ESRD subjects undergoing hemodialysis. Numbers of circulating EPCs were measured as CD34+ CD133+ CD45(low) VEGFR2+ cells and progenitor cells as CD34+ CD133+ CD45(low) fraction by flow cytometry. Skin autofluorescence was assessed by the autofluorescence reader; and serum pentosidine, by enzyme-linked immunosorbent assay. Carotid atherosclerosis was determined as intimal-medial thickness (IMT) measured by ultrasound. Circulating EPCs were significantly and inversely correlated with skin autofluorescence in ESRD subjects (R = -0.216, P = .002), but not with serum pentosidine (R = -0.079, P = .25). Circulating EPCs tended to be inversely associated with IMT (R = -0.125, P = .069). Intimal-medial thickness was also tended to be correlated positively with skin autofluorescence (R = 0.133, P = .054) and significantly with serum pentosidine (R = 0.159, P = .019). Stepwise multiple regression analyses reveal that skin autofluorescence, but not serum pentosidine and IMT, was independently associated with low circulating EPCs. Of note, skin autofluorescence was also inversely and independently associated with circulating progenitor cells. Thus, tissue accumulated, but not circulating, advanced glycation end products may be a determinant of a decrease in circulating EPCs in ESRD subjects.

  17. Advanced glycation end products, carotid atherosclerosis, and circulating endothelial progenitor cells in patients with end-stage renal disease.

    Science.gov (United States)

    Ueno, Hiroki; Koyama, Hidenori; Fukumoto, Shinya; Tanaka, Shinji; Shoji, Takuhito; Shoji, Tetsuo; Emoto, Masanori; Tahara, Hideki; Inaba, Masaaki; Kakiya, Ryusuke; Tabata, Tsutomu; Miyata, Toshio; Nishizawa, Yoshiki

    2011-04-01

    Numbers of endothelial progenitor cells (EPCs) have been shown to be decreased in subjects with end-stage renal disease (ESRD), the mechanism of which remained poorly understood. In this study, mutual association among circulating EPC levels, carotid atherosclerosis, serum pentosidine, and skin autofluorescence, a recently established noninvasive measure of advanced glycation end products accumulation, was examined in 212 ESRD subjects undergoing hemodialysis. Numbers of circulating EPCs were measured as CD34+ CD133+ CD45(low) VEGFR2+ cells and progenitor cells as CD34+ CD133+ CD45(low) fraction by flow cytometry. Skin autofluorescence was assessed by the autofluorescence reader; and serum pentosidine, by enzyme-linked immunosorbent assay. Carotid atherosclerosis was determined as intimal-medial thickness (IMT) measured by ultrasound. Circulating EPCs were significantly and inversely correlated with skin autofluorescence in ESRD subjects (R = -0.216, P = .002), but not with serum pentosidine (R = -0.079, P = .25). Circulating EPCs tended to be inversely associated with IMT (R = -0.125, P = .069). Intimal-medial thickness was also tended to be correlated positively with skin autofluorescence (R = 0.133, P = .054) and significantly with serum pentosidine (R = 0.159, P = .019). Stepwise multiple regression analyses reveal that skin autofluorescence, but not serum pentosidine and IMT, was independently associated with low circulating EPCs. Of note, skin autofluorescence was also inversely and independently associated with circulating progenitor cells. Thus, tissue accumulated, but not circulating, advanced glycation end products may be a determinant of a decrease in circulating EPCs in ESRD subjects. PMID:20494372

  18. Cord blood-circulating endothelial progenitors for treatment of vascular diseases.

    Science.gov (United States)

    Lavergne, M; Vanneaux, V; Delmau, C; Gluckman, E; Rodde-Astier, I; Larghero, J; Uzan, G

    2011-04-01

    Adult peripheral blood (PB) endothelial progenitor cells (EPC) are produced in the bone marrow and are able to integrate vascular structures in sites of neoangiogenesis. EPCs thus represent a potential therapeutic tool for ischaemic diseases. However, use of autologous EPCs in cell therapy is limited by their rarity in adult PB. Cord blood (CB) contains more EPCs than PB, and they are functional after expansion. They form primary colonies that give rise to secondary colonies, each yielding more than 10(7) cells after few passages. The number of endothelial cells obtained from one unit of CB is compatible with potential clinical application. EPC colonies can be securely produced, expanded and cryopreserved in close culture devices and endothelial cells produced in these conditions are functional as shown in different in vitro and in vivo assays. As CB EPC-derived endothelial cells would be allogeneic to patients, it would be of interest to prepare them from ready-existing CB banks. We show that not all frozen CB units from a CB bank are able to generate EPC colonies in culture, and when they do so, number of colonies is lower than that obtained with fresh CB units. However, endothelial cells derived from frozen CB have the same phenotypical and functional properties than those derived from fresh CB. This indicates that CB cryopreservation should be improved to preserve integrity of stem cells other than haematopoietic ones. Feasibility of using CB for clinical applications will be validated in porcine models of ischaemia.

  19. Circulating endothelial progenitor cells: a new approach to anti-aging medicine?

    Directory of Open Access Journals (Sweden)

    Patel Amit N

    2009-12-01

    Full Text Available Abstract Endothelial dysfunction is associated with major causes of morbidity and mortality, as well as numerous age-related conditions. The possibility of preserving or even rejuvenating endothelial function offers a potent means of preventing/treating some of the most fearful aspects of aging such as loss of mental, cardiovascular, and sexual function. Endothelial precursor cells (EPC provide a continual source of replenishment for damaged or senescent blood vessels. In this review we discuss the biological relevance of circulating EPC in a variety of pathologies in order to build the case that these cells act as an endogenous mechanism of regeneration. Factors controlling EPC mobilization, migration, and function, as well as therapeutic interventions based on mobilization of EPC will be reviewed. We conclude by discussing several clinically-relevant approaches to EPC mobilization and provide preliminary data on a food supplement, Stem-Kine, which enhanced EPC mobilization in human subjects.

  20. Circulating endothelial progenitor cells do not contribute to regeneration of endothelium after murine arterial injury

    DEFF Research Database (Denmark)

    Hagensen, Mette; Raarup, Merete Krog; Mortensen, Martin Bødtker;

    2012-01-01

    into endothelial cells (ECs). We tested this theory in a murine arterial injury model using carotid artery transplants and fluorescent reporter mice. METHODS AND RESULTS: Wire-injured carotid artery segments from wild-type mice were transplanted into TIE2-GFP transgenic mice expressing green fluorescent protein...... (GFP) in ECs. We found that the endothelium regenerated with GFP(+) ECs as a function of time, evolving from the anastomosis sites towards the centre of the transplant. A migration front of ECs at Day 7 was verified by scanning electron microscopy and by bright-field microscopy using recipient TIE2-lac......Z mice with endothelial β-galactosidase expression. These experiments indicated migration of flanking ECs rather than homing of circulating cells as the underlying mechanism. To confirm this, we interposed non-injured wild-type carotid artery segments between the denuded transplant and the TIE2-GFP...

  1. Adiponectin levels are associated with the number and activity of circulating endothelial progenitor cells in patients with coronary artery disease

    Institute of Scientific and Technical Information of China (English)

    Zhi-qiang YING; Dan-dan ZHONG; Geng XU; Miao-yan CHEN; Qing-yu CHEN

    2009-01-01

    Objective: To study the relationship between plasma adiponectin concentration and the functional activities of circulating endothelial progenitor cells (EPCs) in patients with coronary artery disease (CAD). Methods: Circulating EPCs were enumerated as AC133+/KDR+ cells via flow cytometry and identified by co-staining with Dii-acLDL and fluorescein isothiocy-anate (FITC)-conjugated lectin under a fluorescent microscope. The migratory capacity of EPCs was measured by modified Boyden chamber assay. Adhesion capacity was performed to count adherent cells after replating EPCs on six-well culture dishes coated with fibronectin. Results: The number of circulating EPCs (AC133+/KDR+ cells) decreased significantly in CAD patients, compared with control subjects [(74.2±12.3) vs (83.5±12.9) cells/ml blood, P<0.0\\]. In addition, the number of EPCs also decreased in CAD patients after ex vivo cultivation [(54.4±8.6) vs (71.9±11.6) EPCs/field, P<0.01]. Both circulating EPCs and differentiated EPCs were positively correlated with plasma adiponectin concentration. The functional activities of EPCs from CAD patients, such as migratory and adherent capacities, were also impaired, compared with control subjects, and positively correlated with plasma adiponectin concentration. Conclusion: The study demonstrates that the impairment of the number and functional activities of EPCs in CAD patients is correlated with their lower plasma adiponectin concentrations.

  2. Impact of obesity control on circulating level of endothelial progenitor cells and angiogenesis in response to ischemic stimulation

    Directory of Open Access Journals (Sweden)

    Chen Yung-Lung

    2012-07-01

    Full Text Available Abstract Background and aim We tested the hypothesis that obesity reduced circulating number of endothelial progenitor cells (EPCs, angiogenic ability, and blood flow in ischemic tissue that could be reversed after obesity control. Methods 8-week-old C57BL/6J mice (n = 27 were equally divided into group 1 (fed with 22-week control diet, group 2 (22-week high fat diet, and group 3 (14-week high fat diet, followed by 8-week control diet. Critical limb ischemia (CLI was induced at week 20 in groups 2 and 3. The animals were sacrificed at the end of 22 weeks. Results Heart weight, body weight, abdominal fat weight, serum total cholesterol level, and fasting blood sugar were highest in group 2 (all p  Conclusion Obesity suppressed abilities of angiogenesis and recovery from CLI that were reversed by obesity control.

  3. Endothelial progenitor cells in cardiovascular diseases

    Institute of Scientific and Technical Information of China (English)

    Poay; Sian; Sabrina; Lee; Kian; Keong; Poh

    2014-01-01

    Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells(EPCs) are derived from hematopoietic stem cells and are capable of forming new blood vessels through a process of vas-culogenesis. There are studies which report correlations between circulating EPCs and cardiovascular risk fac-tors. There are also studies on how pharmacotherapies may influence levels of circulating EPCs. In this review, we discuss the potential role of endothelial progenitor cells as both diagnostic and prognostic biomarkers. In addition, we look at the interaction between cardio-vascular pharmacotherapies and endothelial progenitor cells. We also discuss how EPCs can be used directly and indirectly as a therapeutic agent. Finally, we evalu-ate the challenges facing EPC research and how these may be overcome.

  4. Leptin promotes melanoma tumor growth in mice related to increasing circulating endothelial progenitor cells numbers and plasma NO production

    Directory of Open Access Journals (Sweden)

    Khazaei Majid

    2011-02-01

    Full Text Available Abstract Background Epidemiological studies propose that obesity increases the risk of several cancers, including melanoma. Obesity increases the expression of leptin, a multifunctional peptide produced predominantly by adipocytes which may promote tumor growth. Several recently experiments have suggested that the tumors growth is in need of endothelial progenitor cell (EPC dependent generation of new blood vessels. Our objectives in the present study were to examine the effects of leptin on melanoma growth, circulating EPCs number and plasma levels of nitric oxide metabolites (NOx. Methods 2 × 106 B16F10 melanoma cells were injected to thirty two C57BL6 mice subcutaneously. The mice were randomly divided into 4 groups (n = 8 in 8th day. Two groups were received twice daily intraperitoneal(i.p injections of either PBS or recombinant murine leptin (1 μg/g initial body weight. Two groups were received i.p. injections of either 9F8 an anti leptin receptor antibody or the control mouse IgG at 50 μg/mouse every 3 consecutive days. By the end of the second week the animals were euthanized and blood samples and tumors were analyzed. Results The tumor weight, EPC numbers and NOx level in leptin, PBS, 9F8, and IgG group were (3.2 ± 0.6, 1.7 ± 0.3, 1.61 ± 0.2,1.7 ± 0.3 g, (222.66 ± 36.5, 133.33 ± 171, 23.33 ± 18, 132.66 ± 27.26/ml of blood, and (22.47 ± 5.5, 12.30 ± 1.5, 6.26 ± 0.84, 15.75 ± 6.3 μmol/L respectively. Tumors weight and size, circulating EPC numbers and plasma levels of NOx were significantly more in the leptin than 9f8 and both control groups (p Conclusions In conclusion, our observations indicate that leptin causes melanoma growth likely through increased NO production and circulating EPC numbers and consequently vasculogenesis.

  5. Association Between Circulating Early Endothelial Progenitors and CD4+CD25+ Regulatory T Cells: A Possible Cross-talk between Immunity and Angiogenesis?

    Directory of Open Access Journals (Sweden)

    Shmuel Schwartzenberg

    2005-01-01

    Full Text Available Regulatory T-cells (Treg are a recently defined subset of CD4+ cells that can suppress inflammation and induce tolerance. Phenotypically, T-regs are characterized by a high level of expression of the IL-2 receptor alpha chain, CD25. Endothelial progenitor cells (EPCs can transform into mature endothelial cells and promote vessel formation by inducing postnatal angiogenesis and vasculogenesis. Herein, we tested the hypothesis that an association exists between circulating EPC and Tregs that could potentially allude to cross talk between immunity and angiogenesis. Peripheral blood mononuclear cells were isolated by Ficoll density-gradient centrifugation from 28 subjects. Circulating number of EPCs at various developmental stages (CD133+CD34+, CD133+VEGFR2+, CD34+VEGFR2+, total CD4+ and Treg CD4+CD25high numbers were determined by FACS analysis. We found a positive correlation between early progenitor cell (CD133+CD34+ number and Tregs, but no correlation between differentiated EPCs and Tregs, or between CD4+ and any of the EPCs sampled. Early EPCs (CD133+CD34+ did not correlate with CD34+/KDR or with CD133/KDR cells. Circulating numbers of early but not ‘mature’ EPC correlate with Tregs but not CD4 numbers. This finding may suggest a novel role for Tregs in promoting EPC recruitment or delaying EPC maturation.

  6. Data regarding association between serum osteoprotegerin level, numerous of circulating endothelial-derived and mononuclear-derived progenitor cells in patients with metabolic syndrome.

    Science.gov (United States)

    Berezin, Alexander E; Kremzer, Alexander A; Berezina, Tatyana A; Martovitskaya, Yulia V; Gronenko, Elena A

    2016-09-01

    Metabolic syndrome (MetS) is defined as cluster of multiple metabolic and cardiovascular (CV) abnormalities included abdominal obesity, high-normal blood pressure, dyslipidaemia, and impaired fasting glucose tolerance that exhibits has a growing prevalence worldwide. We investigated whether an elevated level of osteoprotegerin (OPG) predicts imbalance between different phenotypes of circulating endothelial (EPCs) and mononuclear (MPCs) progenitor cells in MetS patients. We have analyzed data regarding dysmetabolic disorder subjects without known CV disease), as well as with known type two diabetes mellitus. All patients have given their informed written consent for participation in the study. This article contains data on the independent predictors of depletion in numerous of circulating EPCs and MPCs in MetS patients. The data are supplemental to our original research article describing detailed associations of elevated OPG level in MetS patients with numerous of EPCs and MPCs beyond traditional CV risk factors. PMID:27508223

  7. Black Raspberry Extract Increased Circulating Endothelial Progenitor Cells and Improved Arterial Stiffness in Patients with Metabolic Syndrome: A Randomized Controlled Trial.

    Science.gov (United States)

    Jeong, Han Saem; Kim, Sohyeon; Hong, Soon Jun; Choi, Seung Cheol; Choi, Ji-Hyun; Kim, Jong-Ho; Park, Chi-Yeon; Cho, Jae Young; Lee, Tae-Bum; Kwon, Ji-Wung; Joo, Hyung Joon; Park, Jae Hyoung; Yu, Cheol Woong; Lim, Do-Sun

    2016-04-01

    Administration of black raspberry (Rubus occidentalis) is known to improve vascular endothelial function in patients at a high risk for cardiovascular (CV) disease. We investigated short-term effects of black raspberry on circulating endothelial progenitor cells (EPCs) and arterial stiffness in patients with metabolic syndrome. Patients with metabolic syndrome (n = 51) were prospectively randomized into the black raspberry group (n = 26, 750 mg/day) and placebo group (n = 25) during the 12-week follow-up. Central blood pressure, augmentation index, and EPCs, such as CD34/KDR(+), CD34/CD117(+), and CD34/CD133(+), were measured at baseline and at 12-week follow-up. Radial augmentation indexes were significantly decreased in the black raspberry group compared to the placebo group (-5% ± 10% vs. 3% ± 14%, P raspberry group compared to the placebo group (19 ± 109/μL vs. -28 ± 57/μL, P raspberry group compared to the placebo group (-0.5 ± 1.4 pg/mL vs. -0.1 ± 1.1 pg/mL, P raspberry group. The use of black raspberry significantly lowered the augmentation index and increased circulating EPCs, thereby improving CV risks in patients with metabolic syndrome during the 12-week follow-up.

  8. Enhancing endothelial progenitor cell for clinical use

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Circulating endothelial progenitor cells (EPCs) havebeen demonstrated to correlate negatively with vascularendothelial dysfunction and cardiovascular risk factors.However, translation of basic research into the clinicalpractice has been limited by the lack of unambiguousand consistent definitions of EPCs and reduced EPCcell number and function in subjects requiring them forclinical use. This article critically reviews the definitionof EPCs based on commonly used protocols, their valueas a biomarker of cardiovascular risk factor in subjectswith cardiovascular disease, and strategies to enhanceEPCs for treatment of ischemic diseases.

  9. Changes of circulating progenitor cells and circulating endothelial progenitor cells in patients With sepsis%脓毒症患者外周血祖细胞和内皮祖细胞数量的变化

    Institute of Scientific and Technical Information of China (English)

    童朝阳; 宋振举; 姚晨玲; 邵勉; 黄培志

    2009-01-01

    目的 检测脓毒症患者外周血单个核细胞(peripheral blood mononuelear cell,PBMC)中祖细胞和血管内皮祖细胞(endothelial progenitor cells,EPC)相对数量的变化,探讨感染性休克和非休克患者外周血EPC变化的特点.方法 收集2007年8月至2008年2月复大学附属中山医院急诊科收治的脓毒症患者27例进行前瞻性研究,其中感染性休克患者12例、非休克患者15例,另选10例健康成年人作为正常对照,ICU非脓毒症患者10例作为ICU对照.Ficoll梯度离心法分离外周血PBMC,通过流式细胞仪检测外周血PBMC标记的CDl33,CIY34和血管内皮牛长因子受体-2(vascular endothelialgrowth factor receptor-2.VEGFR-2)的表达情况,计算祖细胞以及内皮祖细胞的相对数量.组间比较采用单因素方差分析.结果 健康成年人外周血祖细胞、EPC数量较少,分别占PBMC的0.25%.4-0.14%和0.09%.4-0.02%;ICU非脓毒症患者祖细胞和EPC数量分别占PBMC的0.38%.4-0.29%和0.12%.4-O.02%,与正常对照组相比无明显的变化(P>0.05);脓毒症非休克组患者外周血祖细胞、EPC的数量明显增加,分别占PBMC的0.57%±0.12%和0.22%±0.10%,与正常对照组相比差异具有统计学意义(P<0.05);感染性休克患者外周血祖细胞和EPE的数量明显减少,分别占PBMC的0.20%.4-0.12%和0.04%±O.01%,与非休克组、ICU对照组和正常对照组相比差异均具有统计学意义(Pcirculaling progenitor cells and endothelial progenitor cells(EPCs)in non-septic and septic shock patients using flow cytometry.Method A total of 27 sepsis patients hospitalized in emergency

  10. Cilostazol Enhances Mobilization of Circulating Endothelial Progenitor Cells and Improves Endothelium-Dependent Function in Patients at High Risk of Cardiovascular Disease.

    Science.gov (United States)

    Chao, Ting-Hsing; Chen, I-Chih; Lee, Cheng-Han; Chen, Ju-Yi; Tsai, Wei-Chuan; Li, Yi-Heng; Tseng, Shih-Ya; Tsai, Liang-Miin; Tseng, Wei-Kung

    2016-08-01

    This is the first study to investigate the vasculoangiogenic effects of cilostazol on endothelial progenitor cells (EPCs) and flow-mediated dilatation (FMD) in patients at high risk of cardiovascular disease (CVD). This double-blind, placebo-controlled study included 71 patients (37 received 200 mg/d cilostazol and 34 received placebo for 12 weeks). Use of cilostazol, but not placebo, significantly increased circulating EPC (kinase insert domain receptor(+)CD34(+)) counts (percentage changes: 149.0% [67.9%-497.8%] vs 71.9% [-31.8% to 236.5%], P = .024) and improved triglyceride and high-density lipoprotein cholesterol levels (P = .002 and P = .003, respectively). Plasma levels of vascular endothelial growth factor (VEGF)-A165 and FMD significantly increased (72.5% [32.9%-120.4%] vs -5.8% [-46.0% to 57.6%], P = .001; 232.8% ± 83.1% vs -46.9% ± 21.5%, P = .003, respectively) in cilostazol-treated patients. Changes in the plasma triglyceride levels significantly inversely correlated with the changes in the VEGF-A165 levels and FMD. Cilostazol significantly enhanced the mobilization of EPCs and improved endothelium-dependent function by modifying some metabolic and angiogenic markers in patients at high risk of CVD. PMID:27401788

  11. Endothelial progenitor cells with Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    KONG Xiao-dong; ZHANG Yun; LIU Li; SUN Ning; ZHANG Ming-yi; ZHANG Jian-ning

    2011-01-01

    Background Endothelial dysfunction is thought to be critical events in the pathogenesis of Alzheimer's disease (AD).Endothelial progenitor cells (EPCs) have provided insight into maintaining and repairing endothelial function. To study the relation between EPCs and AD, we explored the number of circulating EPCs in patients with AD.Methods A total of 104 patients were recruited from both the outpatients and inpatients of the geriatric neurology department at General Hospital, rianjin Medical University. Consecutive patients with newly diagnosed AD (n=30),patients with vascular dementia (VaD, n=34), and healthy elderly control subjects with normal cognition (n=40) were enrolled after matching for age, gender, body mass index, medical history, current medication and Mini Mental State Examination. Middle cerebral artery flow velocity was examined with transcranial Doppler. Endothelial function was evaluated according to the level of EPCs, and peripheral blood EPCs was counted by flow cytometry.Results There were no significant statistical differences of clinical data in AD, VaD and control groups (P >0.05). The patients with AD showed decreased CD34-positive (CD34+) or CD133-positive (CD133+) levels compared to the control subjects, but there were no significant statistical differences in patients with AD. The patients with AD had significantly lower CD34+CD133+ EPCs(CD34 and CD133 double positive endothelial progenitor cells) than the control subjects (P <0.05). In the patients with AD, a lower CD34+CD133+ EPCs count was independently associated with a lower Mini-Mental State Examination score (r=0.514, P=0.004). Patients with VaD also showed a significant decrease in CD34+CD133+ EPCs levels, but this was not evidently associated with the Mini-Mental State Examination score. The changes of middle cerebral artery flow velocity were similar between AD and VaD. Middle cerebral artery flow velocity was decreased in the AD and VaD groups and significantly lower than

  12. Endothelial Progenitor Cells Enter the Aging Arena.

    Directory of Open Access Journals (Sweden)

    Kate eWilliamson

    2012-02-01

    Full Text Available Age is a significant risk factor for the development of vascular diseases, such as atherosclerosis. Although pharmacological treatments, including statins and anti-hypertensive drugs, have improved the prognosis for patients with cardiovascular disease, it remains a leading cause of mortality in those aged 65 years and over. Furthermore, given the increased life expectancy of the population in developed countries, there is a clear need for alternative treatment strategies. Consequently, the relationship between aging and progenitor cell-mediated repair is of great interest. Endothelial progenitor cells (EPCs play an integral role in the cellular repair mechanisms for endothelial regeneration and maintenance. However, EPCs are subject to age-associated changes that diminish their number in circulation and function, thereby enhancing vascular disease risk. A great deal of research is aimed at developing strategies to harness the regenerative capacity of these cells.In this review, we discuss the current understanding of the cells termed ‘EPCs’, examine the impact of age on EPC-mediated repair and identify therapeutic targets with potential for attenuating the age-related decline in vascular health via beneficial actions on EPCs.

  13. Variations of circulating endothelial progenitor cells and transforming growth factor-beta-1 (TGF-β1) during thoracic radiotherapy are predictive for radiation pneumonitis

    International Nuclear Information System (INIS)

    The vascular endothelial cells are important targets of radiotherapy, which may be involved in the pathogenesis of radiation pneumonitis (RP). This study investigated the variations of circulating endothelial progenitor cells (EPCs) and transforming growth factor-beta-1 (TGF-β1) during three-dimensional conformal radiation therapy (3D-CRT) in patients with non–small-cell lung cancer (NSCLC) and analyzed the correlation between these variations with the occurrence of RP. From November 2008 to November 2009, eighty-four consecutive patients receiving 3D-CRT for stage III disease were evaluated prospectively. Circulating EPCs and TGF-β1 levels were measured at baseline, every 2 weeks during, and at the end of treatment. RP was evaluated prospectively at 6 weeks after 3D-CRT. Thirty-eight patients (47.5%) experienced score 1 or more of RP. The baseline levels of EPCs and TGF-β1 were analyzed, no difference was found between patients with and without RP during and after 3D-CRT. By serial measurement of TGF-β1 and EPCs levels, we found that the mean levels of EPCs in the whole population remained stable during radiotherapy, but the mean levels of TGF-β1 increased slowly during radiotherapy. TGF-β1 and EPCs levels were all significantly higher at week 2, week 4 and week 6 in patients with RP than that in patients without RP, respectively. During the period of radiation treatment, TGF-β1 levels began to increase in the first 2 weeks and became significantly higher at week 6 (P < 0.01). EPCs levels also began to increase in the first 2 weeks and reached a peak at week 4. Using an ANOVA model for repeated-measures, we found significant associations between the levels of TGF-β1 and EPCs during the course of 3D-CRT and the risk of developing RP (P < 0.01). Most of the dosimetric factors showed a significant association with RP. Early variations of TGF-β1 and EPCs levels during 3D-CRT are significantly associated with the risk of RP. Variations of circulating TGF-β1

  14. Dual role of circulating endothelial progenitor cells in stent struts endothelialisation and neointimal regrowth: A substudy of the IN-PACT CORO trial

    Energy Technology Data Exchange (ETDEWEB)

    De Maria, Giovanni Luigi [Institute of Cardiology, Catholic University of the Sacred Heart, Rome (Italy); Porto, Italo, E-mail: italo.porto@gmail.com [Institute of Cardiology, Catholic University of the Sacred Heart, Rome (Italy); Interventional Cardiology Unit, San Donato Hospital, Arezzo (Italy); Burzotta, Francesco; Brancati, Marta Francesca; Trani, Carlo; Pirozzolo, Giancarlo; Leone, Antonio Maria; Niccoli, Giampaolo [Institute of Cardiology, Catholic University of the Sacred Heart, Rome (Italy); Prati, Francesco [Department of Interventional Cardiology, San Giovanni Hospital, Rome (Italy); Crea, Filippo [Institute of Cardiology, Catholic University of the Sacred Heart, Rome (Italy)

    2015-01-15

    Background: Endothelialisation is a crucial event after percutaneous coronary intervention (PCI). Endothelial progenitor cells (EPCs) are bone marrow derived elements with reparative properties. We aimed to assess the relationship between circulating EPC levels and stent neointimal hyperplasia (NIH) using frequency domain optical coherence tomography (FD-OCT). Methods: Patients undergoing elective PCI to native vessels and randomised to bare metal stent (BMS) alone versus BMS plus drug coated balloon (DCB) were included. At six months, angiographic follow-up and FD-OCT were performed to measure percentage neointimal hyperplasia volume obstruction (%NIHV), and percentage of uncovered stent struts (%US). Venous blood samples were obtained before the procedure and at six months to detect CD34+CD45dimKDR + EPC levels. Results: Twenty patients were enrolled. A significant relationship was observed between baseline EPC levels and %NIHV (R: 0.63, p: 0.03) and %US (R: − 0.56, p: 0.01) at follow-up. Both EPC levels and DCB use were independently related to %NIHV (β: 0.55; p < 0.001 and β: − 0.51; p: 0.001, respectively), while only EPC levels were independently associated to %US (β: − 0.52; p: 0.01). Higher %NIHV (p: 0.004) and lower %US (p: 0.005) were observed in patients with stable or increasing EPC level. Conclusion: Our study shows a relationship between EPC levels and stent strut coverage, supporting a dual role for these cells in favouring stent endothelialisation but also NIH growth. - Highlights: • Substudy of IN-PACT CORO trial comparing, by adoption of optical coherence tomography, the amount of neointimal growth and stent struts coverage at six months of follow up, in elective patients randomised to conventional PCI with bare metal stent implantation (BMS group) or to stent implantation with pre or postdilation with a drug coated balloon (BMS + DCB group) • Lower neointimal regrowth observed in BMS + DCB group • First in vivo demonstration that

  15. Dual role of circulating endothelial progenitor cells in stent struts endothelialisation and neointimal regrowth: A substudy of the IN-PACT CORO trial

    International Nuclear Information System (INIS)

    Background: Endothelialisation is a crucial event after percutaneous coronary intervention (PCI). Endothelial progenitor cells (EPCs) are bone marrow derived elements with reparative properties. We aimed to assess the relationship between circulating EPC levels and stent neointimal hyperplasia (NIH) using frequency domain optical coherence tomography (FD-OCT). Methods: Patients undergoing elective PCI to native vessels and randomised to bare metal stent (BMS) alone versus BMS plus drug coated balloon (DCB) were included. At six months, angiographic follow-up and FD-OCT were performed to measure percentage neointimal hyperplasia volume obstruction (%NIHV), and percentage of uncovered stent struts (%US). Venous blood samples were obtained before the procedure and at six months to detect CD34+CD45dimKDR + EPC levels. Results: Twenty patients were enrolled. A significant relationship was observed between baseline EPC levels and %NIHV (R: 0.63, p: 0.03) and %US (R: − 0.56, p: 0.01) at follow-up. Both EPC levels and DCB use were independently related to %NIHV (β: 0.55; p < 0.001 and β: − 0.51; p: 0.001, respectively), while only EPC levels were independently associated to %US (β: − 0.52; p: 0.01). Higher %NIHV (p: 0.004) and lower %US (p: 0.005) were observed in patients with stable or increasing EPC level. Conclusion: Our study shows a relationship between EPC levels and stent strut coverage, supporting a dual role for these cells in favouring stent endothelialisation but also NIH growth. - Highlights: • Substudy of IN-PACT CORO trial comparing, by adoption of optical coherence tomography, the amount of neointimal growth and stent struts coverage at six months of follow up, in elective patients randomised to conventional PCI with bare metal stent implantation (BMS group) or to stent implantation with pre or postdilation with a drug coated balloon (BMS + DCB group) • Lower neointimal regrowth observed in BMS + DCB group • First in vivo demonstration that

  16. Growth factor-and cytokine-stimulated endothelial progenitor cells in post-ischemic cerebral neovascularization

    Institute of Scientific and Technical Information of China (English)

    Philip V.Peplow

    2014-01-01

    Endothelial progenitor cells are resident in the bone marrow blood sinusoids and circulate in the peripheral circulation. They mobilize from the bone marrow after vascular injury and home to the site of injury where they differentiate into endothelial cells. Activation and mobilization of endothelial progenitor cells from the bone marrow is induced via the production and release of endothelial progenitor cell-activating factors and includes speciifc growth factors and cytokines in response to peripheral tissue hypoxia such as after acute ischemic stroke or trauma. Endotheli-al progenitor cells migrate and home to speciifc sites following ischemic stroke via growth factor/cytokine gradients. Some growth factors are less stable under acidic conditions of tissue isch-emia, and synthetic analogues that are stable at low pH may provide a more effective therapeutic approach for inducing endothelial progenitor cell mobilization and promoting cerebral neovas-cularization following ischemic stroke.

  17. Obstructive sleep apnea and endothelial progenitor cells

    Directory of Open Access Journals (Sweden)

    Wang Q

    2013-10-01

    Full Text Available Qing Wang,1,* Qi Wu,2,* Jing Feng,3,4 Xin Sun5 1The Second Respiratory Department of the First People's Hospital of Kunming, Yunnan, People's Republic of China; 2Tianjin Haihe Hospital, Tianjin, People's Republic of China; 3Respiratory Department of Tianjin Medical University General Hospital, Tianjin, People's Republic of China; 4Division of Pulmonary and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA; 5Respiratory Department of Tianjin Haihe Hospital, Tianjin, People's Republic of China *These authors contributed equally to this work Background: Obstructive sleep apnea (OSA occurs in 4% of middle-aged men and 2% of middle-aged women in the general population, and the prevalence is even higher in specific patient groups. OSA is an independent risk factor for a variety of cardiovascular diseases. Endothelial injury could be the pivotal determinant in the development of cardiovascular pathology in OSA. Endothelial damage ultimately represents a dynamic balance between the magnitude of injury and the capacity for repair. Bone marrow–derived endothelial progenitor cells (EPCs within adult peripheral blood present a possible means of vascular maintenance that could home to sites of injury and restore endothelial integrity and normal function. Methods: We summarized pathogenetic mechanisms of OSA and searched for available studies on numbers and functions of EPCs in patients with OSA to explore the potential links between the numbers and functions of EPCs and OSA. In particular, we tried to elucidate the molecular mechanisms of the effects of OSA on EPCs. Conclusion: Intermittent hypoxia cycles and sleep fragmentation are major pathophysiologic characters of OSA. Intermittent hypoxia acts as a trigger of oxidative stress, systemic inflammation, and sympathetic activation. Sleep fragmentation is associated with a burst of sympathetic activation and systemic inflammation. In most studies, a reduction in circulating EPCs has

  18. Endothelial progenitor cells in hematologic malignancies.

    Science.gov (United States)

    Testa, Ugo; Saulle, Ernestina; Castelli, Germana; Pelosi, Elvira

    2016-01-01

    Studies carried out in the last years have improved the understanding of the cellular and molecular mechanisms controlling angiogenesis during adult life in normal and pathological conditions. Some of these studies have led to the identification of some progenitor cells that sustain angiogenesis through indirect, paracrine mechanisms (hematopoietic angiogenic cells) and through direct mechanisms, i.e., through their capacity to generate a progeny of phenotypically and functionally competent endothelial cells [endothelial colony forming cells (ECFCs)]. The contribution of these progenitors to angiogenetic processes under physiological and pathological conditions is intensively investigated. Angiogenetic mechanisms are stimulated in various hematological malignancies, including chronic myeloid leukemia (CML), acute myeloid leukemia (AML), myelodysplastic syndromes and multiple myeloma, resulting in an increased angiogenesis that contributes to disease progression. In some of these conditions there is preliminary evidence that some endothelial cells could derive from the malignant clone, thus leading to the speculation that the leukemic cell derives from the malignant transformation of a hemangioblastic progenitor, i.e., of a cell capable of differentiation to the hematopoietic and to the endothelial cell lineages. Our understanding of the mechanisms underlying increased angiogenesis in these malignancies not only contributed to a better knowledge of the mechanisms responsible for tumor progression, but also offered the way for the discovery of new therapeutic targets. PMID:27583252

  19. Circulating endothelial cells in cardiovascular disease.

    Science.gov (United States)

    Boos, Christopher J; Lip, Gregory Y H; Blann, Andrew D

    2006-10-17

    Quantification of circulating endothelial cells (CECs) in peripheral blood is developing as a novel and reproducible method of assessing endothelial damage/dysfunction. The CECs are thought to be mature cells that have detached from the intimal monolayer in response to endothelial injury and are a different cell population to endothelial progenitor cells (EPCs). The EPCs are nonleukocytes derived from the bone marrow that are believed to have proliferative potential and may be important in vascular regeneration. Currently accepted methods of CEC quantification include the use of immunomagnetic bead separation (with cell counting under fluorescence microscopy) and flow cytometry. Several recent studies have shown increased numbers of CECs in cardiovascular disease and its risk factors, such as unstable angina, acute myocardial infarction, stroke, diabetes mellitus, and critical limb ischemia, but no change in stable intermittent claudication, essential hypertension, or atrial fibrillation. Furthermore, CEC quantification at 48 h after acute myocardial infarction has been shown to be an accurate predictor of major adverse coronary events and death at both 1 month and 1 year. This article presents an overview of the pathophysiology of CECs in the setting of cardiovascular disease and a brief comparison with EPCs. PMID:17045885

  20. Endothelial Progenitor Cells for Diagnosis and Prognosis in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Caterina Oriana Aragona

    2016-01-01

    Full Text Available Objective. To identify, evaluate, and synthesize evidence on the predictive power of circulating endothelial progenitor cells (EPCs in cardiovascular disease, through a systematic review of quantitative studies. Data Sources. MEDLINE was searched using keywords related to “endothelial progenitor cells” and “endothelium” and, for the different categories, respectively, “smoking”; “blood pressure”; “diabetes mellitus” or “insulin resistance”; “dyslipidemia”; “aging” or “elderly”; “angina pectoris” or “myocardial infarction”; “stroke” or “cerebrovascular disease”; “homocysteine”; “C-reactive protein”; “vitamin D”. Study Selection. Database hits were evaluated against explicit inclusion criteria. From 927 database hits, 43 quantitative studies were included. Data Syntheses. EPC count has been suggested for cardiovascular risk estimation in the clinical practice, since it is currently accepted that EPCs can work as proangiogenic support cells, maintaining their importance as regenerative/reparative potential, and also as prognostic markers. Conclusions. EPCs showed an important role in identifying cardiovascular risk conditions, and to suggest their evaluation as predictor of outcomes appears to be reasonable in different defined clinical settings. Due to their capability of proliferation, circulation, and the development of functional progeny, great interest has been directed to therapeutic use of progenitor cells in atherosclerotic diseases. This trial is registered with registration number: Prospero CRD42015023717.

  1. Nitrative Stress Participates in Endothelial Progenitor Cell Injury in Hyperhomocysteinemia

    Science.gov (United States)

    Dong, Yu; Sun, Qi; Liu, Teng; Wang, Huanyuan; Jiao, Kun; Xu, Jiahui; Liu, Xin; Liu, Huirong; Wang, Wen

    2016-01-01

    In order to investigate the role of nitrative stress in vascular endothelial injury in hyperhomocysteinemia (HHcy), thirty healthy adult female Wistar rats were randomly divided into three groups: control, hyperhomocysteinemia model, and hyperhomocysteinemia with FeTMPyP (peroxynitrite scavenger) treatment. The endothelium-dependent dilatation of thoracic aorta in vitro was determined by response to acetylcholine (ACh). The histological changes in endothelium were assessed by HE staining and scanning electron microscopy (SEM). The expression of 3-nitrotyrosine (NT) in thoracic aorta was demonstrated by immunohistochemistry and immunofluorescence, and the number of circulating endothelial progenitor cells (EPCs) was quantified by flow cytometry. Hyperhomocysteinemia caused significant endothelial injury and dysfunction including vasodilative and histologic changes, associated with higher expression of NT in thoracic aorta. FeTMPyP treatment reversed these injuries significantly. Further, the effect of nitrative stress on cultured EPCs in vitro was investigated by administering peroxynitrite donor (3-morpholino-sydnonimine, SIN-1) and peroxynitrite scavenger (FeTMPyP). The roles of nitrative stress on cell viability, necrosis and apoptosis were evaluated with 3-(4,5-dimethylthiazol)-2,5-diphenyl tetrazolium (MTT) assay, lactate dehydrogenase (LDH) release assay and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, respectively. Also, the phospho-eNOS expression and tube formation in Matrigel of cultured EPCs was detected. Our data showed that the survival of EPCs was much lower in SIN-1 group than in vehicle group, both the apoptosis and necrosis of EPCs were much more severe, and the p-eNOS expression and tube formation in Matrigel were obviously declined. Subsequent pretreatment with FeTMPyP reversed these changes. Further, pretreatment with FeTMPyP reversed homocysteine-induced EPC injury. In conclusion, this study indicates that

  2. Nitrative Stress Participates in Endothelial Progenitor Cell Injury in Hyperhomocysteinemia.

    Science.gov (United States)

    Dong, Yu; Sun, Qi; Liu, Teng; Wang, Huanyuan; Jiao, Kun; Xu, Jiahui; Liu, Xin; Liu, Huirong; Wang, Wen

    2016-01-01

    In order to investigate the role of nitrative stress in vascular endothelial injury in hyperhomocysteinemia (HHcy), thirty healthy adult female Wistar rats were randomly divided into three groups: control, hyperhomocysteinemia model, and hyperhomocysteinemia with FeTMPyP (peroxynitrite scavenger) treatment. The endothelium-dependent dilatation of thoracic aorta in vitro was determined by response to acetylcholine (ACh). The histological changes in endothelium were assessed by HE staining and scanning electron microscopy (SEM). The expression of 3-nitrotyrosine (NT) in thoracic aorta was demonstrated by immunohistochemistry and immunofluorescence, and the number of circulating endothelial progenitor cells (EPCs) was quantified by flow cytometry. Hyperhomocysteinemia caused significant endothelial injury and dysfunction including vasodilative and histologic changes, associated with higher expression of NT in thoracic aorta. FeTMPyP treatment reversed these injuries significantly. Further, the effect of nitrative stress on cultured EPCs in vitro was investigated by administering peroxynitrite donor (3-morpholino-sydnonimine, SIN-1) and peroxynitrite scavenger (FeTMPyP). The roles of nitrative stress on cell viability, necrosis and apoptosis were evaluated with 3-(4,5-dimethylthiazol)-2,5-diphenyl tetrazolium (MTT) assay, lactate dehydrogenase (LDH) release assay and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, respectively. Also, the phospho-eNOS expression and tube formation in Matrigel of cultured EPCs was detected. Our data showed that the survival of EPCs was much lower in SIN-1 group than in vehicle group, both the apoptosis and necrosis of EPCs were much more severe, and the p-eNOS expression and tube formation in Matrigel were obviously declined. Subsequent pretreatment with FeTMPyP reversed these changes. Further, pretreatment with FeTMPyP reversed homocysteine-induced EPC injury. In conclusion, this study indicates that

  3. Comparative analysis of circulating endothelial progenitor cells in age-related macular degeneration patients using automated rare cell analysis (ARCA and fluorescence activated cell sorting (FACS.

    Directory of Open Access Journals (Sweden)

    Emil Anthony T Say

    Full Text Available BACKGROUND: Patients with age-related macular degeneration (ARMD begin with non-neovascular (NNV phenotypes usually associated with good vision. Approximately 20% of NNV-ARMD patients will convert to vision debilitating neovascular (NV ARMD, but precise timing of this event is unknown. Developing a clinical test predicting impending conversion to NV-ARMD is necessary to prevent vision loss. Endothelial progenitor cells (EPCs, defined as CD34(+VEGR2(+ using traditional fluorescence activated cell sorting (FACS, are rare cell populations known to be elevated in patients with NV-ARMD compared to NNV-ARMD. FACS has high inter-observer variability and subjectivity when measuring rare cell populations precluding development into a diagnostic test. We hypothesized that automated rare cell analysis (ARCA, a validated and FDA-approved technology for reproducible rare cell identification, can enumerate EPCs in ARMD patients more reliably. This pilot study serves as the first step in developing methods for reproducibly predicting ARMD phenotype conversion. METHODS: We obtained peripheral venous blood samples in 23 subjects with NNV-ARMD or treatment naïve NV-ARMD. Strict criteria were used to exclude subjects with known angiogenic diseases to minimize confounding results. Blood samples were analyzed in masked fashion in two separate laboratories. EPCs were independently enumerated using ARCA and FACS within 24 hours of blood sample collection, and p<0.2 was considered indicative of a trend for this proof of concept study, while statistical significance was established at 0.05. RESULTS: We measured levels of CD34(+VEGFR2(+ EPCs suggestive of a trend with higher values in patients with NV compared to NNV-ARMD (p = 0.17 using ARCA. Interestingly, CD34(+VEGR2(+ EPC analysis using FACS did not produce similar results (p = 0.94. CONCLUSIONS: CD34(+VEGR2(+ may have predictive value for EPC enumeration in future ARCA studies. EPC measurements in a small sample

  4. Retinal Endothelial Cell Apoptosis Stimulates Recruitment of Endothelial Progenitor Cells

    Science.gov (United States)

    Bhatwadekar, Ashay D.; Glenn, Josephine V.; Curtis, Tim M.; Grant, Maria B.; Stitt, Alan W.; Gardiner, Tom A.

    2013-01-01

    Purpose Bone marrow–derived endothelial progenitor cells (EPCs) contribute to vascular repair although it is uncertain how local endothelial cell apoptosis influences their reparative function. This study was conducted to determine how the presence of apoptotic bodies at sites of endothelial damage may influence participation of EPCs in retinal microvascular repair. Methods Microlesions of apoptotic cell death were created in monolayers of retinal microvascular endothelial cells (RMECs) by using the photodynamic drug verteporfin. The adhesion of early-EPCs to these lesions was studied before detachment of the apoptotic cells or after their removal from the wound site. Apoptotic bodies were fed to normal RMECs and mRNA levels for adhesion molecules were analyzed. Results Endothelial lesions where apoptotic bodies were left attached at the wound site showed a fivefold enhancement in EPC recruitment (P < 0.05) compared with lesions where the apoptotic cells had been removed. In intact RMEC monolayers exposed to apoptotic bodies, expression of ICAM, VCAM, and E-selectin was upregulated by 5- to 15-fold (P < 0.05– 0.001). EPCs showed a characteristic chemotactic response (P < 0.05) to conditioned medium obtained from apoptotic bodies, whereas analysis of the medium showed significantly increased levels of VEGF, IL-8, IL-6, and TNF-α when compared to control medium; SDF-1 remained unchanged. Conclusions The data indicate that apoptotic bodies derived from retinal capillary endothelium mediate release of proangiogenic cytokines and chemokines and induce adhesion molecule expression in a manner that facilitates EPC recruitment. PMID:19474402

  5. Endothelial progenitors in sepsis: vox clamantis in deserto?

    OpenAIRE

    Goligorsky, Michael S

    2011-01-01

    In this issue of Critical Care, Patschan and colleagues present a study of endothelial progenitor cells (EPCs) in patients with sepsis. The importance of this study is in focusing attention on several frequently ignored aspects of sepsis. Among those are the phenomenon of microvascular dysfunction, which is potentially responsible for profound metabolic perturbations at the tissue level, and the role of endothelial progenitors in repair processes. Other important aspects of the study are the ...

  6. Mouse lung contains endothelial progenitors with high capacity to form blood and lymphatic vessels

    Directory of Open Access Journals (Sweden)

    Barleon Bernhard

    2010-07-01

    Full Text Available Abstract Background Postnatal endothelial progenitor cells (EPCs have been successfully isolated from whole bone marrow, blood and the walls of conduit vessels. They can, therefore, be classified into circulating and resident progenitor cells. The differentiation capacity of resident lung endothelial progenitor cells from mouse has not been evaluated. Results In an attempt to isolate differentiated mature endothelial cells from mouse lung we found that the lung contains EPCs with a high vasculogenic capacity and capability of de novo vasculogenesis for blood and lymph vessels. Mouse lung microvascular endothelial cells (MLMVECs were isolated by selection of CD31+ cells. Whereas the majority of the CD31+ cells did not divide, some scattered cells started to proliferate giving rise to large colonies (> 3000 cells/colony. These highly dividing cells possess the capacity to integrate into various types of vessels including blood and lymph vessels unveiling the existence of local microvascular endothelial progenitor cells (LMEPCs in adult mouse lung. EPCs could be amplified > passage 30 and still expressed panendothelial markers as well as the progenitor cell antigens, but not antigens for immune cells and hematopoietic stem cells. A high percentage of these cells are also positive for Lyve1, Prox1, podoplanin and VEGFR-3 indicating that a considerabe fraction of the cells are committed to develop lymphatic endothelium. Clonogenic highly proliferating cells from limiting dilution assays were also bipotent. Combined in vitro and in vivo spheroid and matrigel assays revealed that these EPCs exhibit vasculogenic capacity by forming functional blood and lymph vessels. Conclusion The lung contains large numbers of EPCs that display commitment for both types of vessels, suggesting that lung blood and lymphatic endothelial cells are derived from a single progenitor cell.

  7. Estrogen Stimulates Homing of Endothelial Progenitor Cells to Endometriotic Lesions.

    Science.gov (United States)

    Rudzitis-Auth, Jeannette; Nenicu, Anca; Nickels, Ruth M; Menger, Michael D; Laschke, Matthias W

    2016-08-01

    The incorporation of endothelial progenitor cells (EPCs) into microvessels contributes to the vascularization of endometriotic lesions. Herein, we analyzed whether this vasculogenic process is regulated by estrogen. Estrogen- and vehicle-treated human EPCs were analyzed for migration and tube formation. Endometriotic lesions were induced in irradiated FVB/N mice, which were reconstituted with bone marrow from FVB/N-TgN (Tie2/green fluorescent protein) 287 Sato mice. The animals were treated with 100 μg/kg β-estradiol 17-valerate or vehicle (control) over 7 and 28 days. Lesion growth, cyst formation, homing of green fluorescent protein(+)/Tie2(+) EPCs, vascularization, cell proliferation, and apoptosis were analyzed by high-resolution ultrasonography, caliper measurements, histology, and immunohistochemistry. Numbers of blood circulating EPCs were assessed by flow cytometry. In vitro, estrogen-treated EPCs exhibited a higher migratory and tube-forming capacity when compared with controls. In vivo, numbers of circulating EPCs were not affected by estrogen. However, estrogen significantly increased the number of EPCs incorporated into the lesions' microvasculature, resulting in an improved early vascularization. Estrogen further stimulated the growth of lesions, which exhibited massively dilated glands with a flattened layer of stroma. This was mainly because of an increased glandular secretory activity, whereas cell proliferation and apoptosis were not markedly affected. These findings indicate that vasculogenesis in endometriotic lesions is dependent on estrogen, which adds a novel hormonally regulated mechanism to the complex pathophysiology of endometriosis. PMID:27315780

  8. Fractalkine expression induces endothelial progenitor cell lysis by natural killer cells.

    Directory of Open Access Journals (Sweden)

    Dilyana Todorova

    Full Text Available BACKGROUND: Circulating CD34(+ cells, a population that includes endothelial progenitors, participate in the maintenance of endothelial integrity. Better understanding of the mechanisms that regulate their survival is crucial to improve their regenerative activity in cardiovascular and renal diseases. Chemokine-receptor cross talk is critical in regulating cell homeostasis. We hypothesized that cell surface expression of the chemokine fractalkine (FKN could target progenitor cell injury by Natural Killer (NK cells, thereby limiting their availability for vascular repair. METHODOLOGY/PRINCIPAL FINDINGS: We show that CD34(+-derived Endothelial Colony Forming Cells (ECFC can express FKN in response to TNF-α and IFN-γ inflammatory cytokines and that FKN expression by ECFC stimulates NK cell adhesion, NK cell-mediated ECFC lysis and microparticles release in vitro. The specific involvement of membrane FKN in these processes was demonstrated using FKN-transfected ECFC and anti-FKN blocking antibody. FKN expression was also evidenced on circulating CD34(+ progenitor cells and was detected at higher frequency in kidney transplant recipients, when compared to healthy controls. The proportion of CD34(+ cells expressing FKN was identified as an independent variable inversely correlated to CD34(+ progenitor cell count. We further showed that treatment of CD34(+ circulating cells isolated from adult blood donors with transplant serum or TNF-α/IFN-γ can induce FKN expression. CONCLUSIONS: Our data highlights a novel mechanism by which FKN expression on CD34(+ progenitor cells may target their NK cell mediated killing and participate to their immune depletion in transplant recipients. Considering the numerous diseased contexts shown to promote FKN expression, our data identify FKN as a hallmark of altered progenitor cell homeostasis with potential implications in better evaluation of vascular repair in patients.

  9. Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice

    OpenAIRE

    Marrotte, Eric J.; Chen, Dan-Dan; Hakim, Jeffrey S.; Chen, Alex F.

    2010-01-01

    Amputation as a result of impaired wound healing is a serious complication of diabetes. Inadequate angiogenesis contributes to poor wound healing in diabetic patients. Endothelial progenitor cells (EPCs) normally augment angiogenesis and wound repair but are functionally impaired in diabetics. Here we report that decreased expression of manganese superoxide dismutase (MnSOD) in EPCs contributes to impaired would healing in a mouse model of type 2 diabetes. A decreased frequency of circulating...

  10. Improved homing of endothelial progenitor cells by the bispecific protein GPVI-CD133

    OpenAIRE

    Schönberger, T.; H. Langer; Gauß, A; Hafner, R; von der Ruhr, J; Schumm, M.; Bühring, HJ; van Zandvoort, M; Jung, G; Skutella, T.; Gawaz, M

    2011-01-01

    We designed a bifunctional protein, capable of capturing circulating endothelial progenitor cells to collagen-rich vascular lesions. The protein consists of the soluble platelet collagen receptor glycoprotein VI and an antibody to CD133. This construct substantially mediates EPC homing to vascular lesions. Furthermore, it augments reendothelialization of vascular lesions and reduces the extent of myocardial infarction. Therefore, this bifunctional protein could be a potential new therapeutic ...

  11. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Peter E Westerweel

    Full Text Available BACKGROUND: Circulating Endothelial Progenitor Cell (EPC levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment. METHODS: Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+Flk-1(+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+ hematopoietic progenitor cells (HPC and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. RESULTS: In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. CONCLUSION: EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  12. Impaired Endothelial Progenitor Cell Mobilization and Dysfunctional Bone Marrow Stroma in Diabetes Mellitus

    Science.gov (United States)

    Rafii, Shahin; Jaspers, Janneke E.; White, Ian A.; Hooper, Andrea T.; Doevendans, Pieter A.; Verhaar, Marianne C.

    2013-01-01

    Background Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired –at least partly– due to dysfunction of the bone marrow stromal compartment. Methods Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1+Flk-1+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34+ hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell–endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. Results In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. Conclusion EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients. PMID:23555959

  13. Endothelial progenitors in sepsis: vox clamantis in deserto?

    Science.gov (United States)

    Goligorsky, Michael S

    2011-01-01

    In this issue of Critical Care, Patschan and colleagues present a study of endothelial progenitor cells (EPCs) in patients with sepsis. The importance of this study is in focusing attention on several frequently ignored aspects of sepsis. Among those are the phenomenon of microvascular dysfunction, which is potentially responsible for profound metabolic perturbations at the tissue level, and the role of endothelial progenitors in repair processes. Other important aspects of the study are the regenerative capacity of mobilized EPCs and the dissociation between the numerical value and clonogenic competence. Attempting to restore the competence to EPCs should be a priority in the future. PMID:21489327

  14. 循环血液中内皮祖细胞在充血性心力衰竭患者中的表达%Expression of endothelial progenitor cells with the blood circulation in congestive heart failure

    Institute of Scientific and Technical Information of China (English)

    余东彪; 吴继雄

    2012-01-01

    目的 研究内皮祖细胞在充血性心力衰竭患者中的表达情况,并进一步研究其与心衰严重程度的相关性.方法 选择心衰患者96例(纽约心功能分级:Ⅰ级22例,Ⅱ级25例,Ⅲ级26例,Ⅳ级23例)及健康正常人25例(对照组),以CD34、CD45为表面标记,用流式细胞仪测量外周血中的内皮祖细胞数,并同时测量脑钠肽(BNP).结果 心衰患者较对照组BNP水平升高(P<0.01),且心衰的严重程度与BNP呈正相关;在心功能Ⅰ级、Ⅱ级心衰患者中,内皮祖细胞较健康对照组明显升高(P<0.01);心功能Ⅲ级、Ⅳ级患者较健康对照组降低(P<0.05或<0.01).结论 内皮祖细胞在心衰患者中呈现一个双向性改变,即在心衰晚期阶段外周血内皮祖细胞表达较对照组明显下降,而在心衰早期阶段较对照组明显升高,提示受损的内皮祖细胞招募可能参与严重心衰患者的病理生理过程.%Objective To investigate the pattern of endothelial progenitor cells during congestive heart failure and their correlation with the severity. Methods 96 patients with heart failure (NYHA Class Ⅰ: 22 cases, Ⅱ: 25 cases, Ⅲ: 26 cases, Ⅳ: 23 cases) and 25 cases of normal control group were measured CD34, CD45, peripheral blood endothelial progenitor cells number with flow cytometric and simultaneously measured brain natriuretic peptide (BNP) level. Results The heart failure patients increased significantly BNP levels than the control group, and the severity of the heart failure with BNP was positively correlated. Endothelial progenitor cells were increased in NYHA Class I and NYHA Class Ⅱ compared with that in controls ( P < 0. 01 ). Endothelial progenitor cells were significantly decreased in NYHA Class Ⅳ and NYHA Class Ⅲ compared with that in controls (P < 0.05 or P < 0.01). Conclusions Endothelial progenitor cells in the heart failure patients show a biphasic response, with elevation and depression in the early and

  15. Circulating Endothelial Microparticles in Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    A. F. Tramontano

    2010-01-01

    Full Text Available Background. Endothelial Microparticles (EMPs are small vesicles shed from activated or apoptotic endothelial cells and involved in cellular cross-talk. Whether EMP immunophenotypes vary according to stimulus in Diabetes Mellitus (DM is not known. We studied the cellular adhesion molecule (CAM profile of circulating EMPs in patients with and without Diabetes Mellitus type 2, who were undergoing elective cardiac catheterization. Methods and Results. EMPs were analyzed by flow cytometry. The absolute median number of EMPs (EMPs/L specific for CD31, CD105, and CD106 was significantly increased in the DM population. The ratio of CD62E/CD31 EMP populations reflected an apoptotic process. Conclusion. Circulating CD31+, CD105+, and CD106+ EMPs were significantly elevated in patients with DM. EMPs were the only independent predictors of DM in our study cohort. In addition, the EMP immunophenotype reflected an apoptotic process. Circulating EMPs may provide new options for risk assessment.

  16. Reduced circulating endothelial progenitor cells is a risk factor of coronary slow flow%循环内皮祖细胞与冠状动脉慢血流的关系

    Institute of Scientific and Technical Information of China (English)

    李全忠; 韩金杰; 陈华; 莫新玲; 夏中华; 钱宗杰

    2013-01-01

    Objective To explore if reduced number of circulating endothelial progenitor cells (EPCs) is a risk factor for patients with coronary slow flow (CSF).Methods Thirty patients with CSF and 30 age and gender matched control subjects with normal coronary angiography were included in the study.Mononuclear cells were isolated from peripheral blood by Ficoll density gradient centrifugation and plated on fibronectin-coated culture dishes.EPCs were characterized as adherent cells double positive for DiI-AcLDLuptake and lectin-binding by converted fluorescence microscope (× 200).Results Smoking,diabetes mellitus,hypertension and the levels of plasma lipoprotein profile were similar between the two groups (all P > 0.05).The number of EPCs was significantly lower in patients with CSF compared with control subjects (35.7 ± 5.9 vs.53.2 ± 5.9,P < 0.01).TIMI frame counts was correlated with circulating EPCs number (OR =0.424,95% CI 0.358-0.621,P < 0.01) and not associated with gender,age,smoking,diabetes mellitus,hypertension and the levels of plasma lipoprotein profile.Conclusion Decreased circulating EPCs is an independent risk factor for CSF.%目的 观察冠状动脉慢血流(CSF)患者循环内皮祖细胞(EPC)数量与CSF之间的关系,探讨CSF发病的可能机制.方法 选择冠状动脉造影结果正常和CSF患者各30例,采用密度梯度离心法从外周血获取单个核细胞,通过FITC标记荆豆凝集素和DiI标记的乙酰化低密度脂蛋白双染色、倒置荧光显微镜(200倍视野)鉴定EPC并对EPC进行计数.应用t检验和卡方检验比较两组患者临床资料的差异,并采用logistic回归分析法对相关因素进行分析.结果 两组患者的年龄、性别、高血压、糖尿病、吸烟史所占比例及血脂水平差异均无统计学意义,CSF患者外周血EPC数量明显少于正常对照组(35.7±5.9比53,2±5.9,t=10.3,P<0.01).logistic回归分析显示,性别、年龄、吸烟史、高血压史、糖尿病

  17. Endothelial Progenitor Cells in Peripheral Blood of Cardiac Catheterization Personnel

    Directory of Open Access Journals (Sweden)

    Soheir Korraa1, Tawfik M.S.1, Mohamed Maher 2 and Amr Zaher

    2014-07-01

    Full Text Available Background: The aim of the present study was to evaluate the rejuvenation capacity among cardiac catheterization technicians occupationally exposed to ionizing radiation. Subjects and methods: The individual annual collective dose information was measured by thermoluminscent personal dosimeters (TLD for those technicians and found to be ranging between 2.16 and 8.44 mSv/y. Venous blood samples were obtained from 30 cardiac catheterization technicians exposed to X-ray during fluoroscopy procedures at the National Heart Institute in Embaba. The control group involved 25 persons not exposed to ionizing radiation and not working in hospitals in addition to 20 persons not exposed to ionizing radiation and working in hospitals. Blood samples were assayed for total and differential blood counts, micronucleus formation (FMN plasma stromal derived growth factor-1α (SDF-1 α and cell phenotype of circulating endothelial progenitor cells (EPCs, whose surface markers were identified as the CD34, CD133 and kinase domain receptors (KDR. Results: SDF-1α (2650± 270 vs. 2170 ± 430 pg/ml and FMN (19.9 ± 5.5 vs. 2.8 ± 1.4/1000 cells were significantly higher among cardiac catheterization staff compared to those of the controls respectively. Similarly, EPCs: CD34 (53 ± 3.9 vs. 48 ± 8.5/105 mononuclear cells, CD133 (62.4 ± 4.8 vs. 54.2 ± 10.6 /105 mononuclear cells KDR (52.7 ± 10.6 vs.43.5± 8.2 /105 mononuclear cells were also significantly higher among cardiac catheterization staff compared to the values of controls respectively. Smoking seemed to have a positive effect on the FMN and SDF-1 but had a negative effect on EPCs. It was found that among cardiac catheterization staff, the numbers of circulating progenitor cells had increased and accordingly there was an increased capacity for tissue repair. Conclusion: In conclusion, the present work shows that occupational exposure to radiation, well within permissible levels, leaves a genetic mark on the

  18. Smoking decreases the level of circulating CD34+ progenitor cells in young healthy women - a pilot study

    Directory of Open Access Journals (Sweden)

    Baumann Gert

    2010-05-01

    Full Text Available Abstract Background Decreased levels of circulating bone marrow-derived progenitor cells have been associated with risk factors and cardiovascular diseases. Smoking is the most important modifiable risk factor for atherosclerosis in young women. The aim of this pilot study was to assess in healthy premenopausal women without other risk factors for cardiovascular disease the influence of nicotine abuse on the number of circulating progenitor cells in relation to endothelial function. Methods The number of endothelial progenitor cells, measured as colony-forming units in a cell-culture assay (EPC-CFU and the number of circulating CD34 + and CD34 + /CD133 + cells, measured by flow cytometry, was estimated in 32 women at the menstrual phase of the menstrual cycle. In addition, flow-mediated dilation (FMD was assessed as a marker for vascular function. In a subgroup of these women (n = 20, progenitor cells were also investigated at the mid-follicular and luteal phases of the menstrual cycle. Results Compared to non-smokers, the abundance of circulating CD34 + cells was significantly lower in smoking women in the menstrual, mid-luteal, and mid-follicular phases of the menstrual cycle. The number of CD34 + progenitor cells was revealed to have significant positive correlation with FMD in young healthy women, whereas CD34 + /CD133 + progenitor cells and EPC-CFU showed no significant correlation. Conclusion The number of CD34 + progenitor cells positively correlates with FMD in young healthy women and is decreased by smoking.

  19. Dysregulation of Vascular Endothelial Progenitor Cells Lung-Homing in Subjects with COPD

    Directory of Open Access Journals (Sweden)

    Brittany M. Salter

    2016-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is characterized by fixed airflow limitation and progressive decline of lung function and punctuated by occasional exacerbations. The disease pathogenesis may involve activation of the bone marrow stimulating mobilization and lung-homing of progenitor cells. We investigated the hypothesis that lower circulating numbers of vascular endothelial progenitor cells (VEPCs are a consequence of increased lung-sequestration in COPD. Nonatopic, current or ex-smokers with diagnosed COPD and nonatopic, nonsmoking normal controls were enrolled. Blood and induced sputum extracted primitive hemopoietic progenitors (HPCs and VEPC were enumerated by flow cytometry. Migration and adhesive responses to fibronectin were assessed. In sputum, VEPC numbers were significantly greater in COPD compared to normal controls. In blood, VEPCs were significantly lower in COPD versus normal controls. There were no differences in HPC levels between the two groups in either compartment. Functionally, there was a greater migrational responsiveness of progenitors from COPD subjects to stromal cell-derived factor-1alpha (SDF-1α compared to normal controls. This was associated with greater numbers of CXCR4+ progenitors in sputum from COPD. Increased migrational responsiveness of progenitor cells may promote lung-homing of VEPC in COPD which may disrupt maintenance and repair of the airways and contribute to COPD disease pathogenesis.

  20. It Is All in the Blood: The Multifaceted Contribution of Circulating Progenitor Cells in Diabetic Complications

    Directory of Open Access Journals (Sweden)

    Gian Paolo Fadini

    2012-01-01

    Full Text Available Diabetes mellitus (DM is a worldwide growing disease and represents a huge social and healthcare problem owing to the burden of its complications. Micro- and macrovascular diabetic complications arise from excess damage through well-known biochemical pathways. Interestingly, microangiopathy hits the bone marrow (BM microenvironment with features similar to retinopathy, nephropathy and neuropathy. The BM represents a reservoir of progenitor cells for multiple lineages, not limited to the hematopoietic system and including endothelial cells, smooth muscle cells, cardiomyocytes, and osteogenic cells. All these multiple progenitor cell lineages are profoundly altered in the setting of diabetes in humans and animal models. Reduction of endothelial progenitor cells (EPCs along with excess smooth muscle progenitor (SMP and osteoprogenitor cells creates an imbalance that promote the development of micro- and macroangiopathy. Finally, an excess generation of BM-derived fusogenic cells has been found to contribute to diabetic complications in animal models. Taken together, a growing amount of literature attributes to circulating progenitor cells a multi-faceted role in the pathophysiology of DM, setting a novel scenario that puts BM and the blood at the centre of the stage.

  1. Endothelial progenitor cells regenerate infracted myocardium with neovascularisation development ☆

    OpenAIRE

    M.T. Abd El Aziz; Abd El Nabi, E.A.; Abd El Hamid, M.; D. Sabry; Atta, H.M.; L.A. Rahed; A. Shamaa; Mahfouz, S.; Taha, F.M.; S. Elrefaay; Gharib, D.M.; Elsetohy, Khaled A

    2013-01-01

    We achieved possibility of isolation, characterization human umbilical cord blood endothelial progenitor cells (EPCs), examination potency of EPCs to form new blood vessels and differentiation into cardiomyoctes in canines with acute myocardial infarction (AMI). EPCs were separated and cultured from umbilical cord blood. Their phenotypes were confirmed by uptake of double stains dioctadecyl tetramethylindocarbocyanine-labeled acetylated LDL and FITC-labeled Ulex europaeus agglutinin 1 (DILDL-...

  2. Adiponectin promotes endothelial progenitor cell number and function

    OpenAIRE

    Shibata, Rei; Skurk, Carsten; Ouchi, Noriyuki; Galasso, Gennaro; Kondo, Kazuhisa; Ohashi, Taiki; Shimano, Masayuki; Kihara, Shinji; Murohara, Toyoaki; Walsh, Kenneth

    2008-01-01

    Obesity-linked diseases are associated with suppressed endothelial progenitor cell (EPC) function. Adiponectin is an adipose-derived protein that is downregulated in obese and diabetic subjects. Here, we investigated the effects of adiponectin on EPCs. EPC levels did not increase in adiponectin deficient (APN-KO) in response to hindlimb ischemia. Adenovirus-mediated delivery of adiponectin increased EPC levels in both WT and APN-KO mice. Incubation of human peripheral blood mononuclear cells ...

  3. The Novel Methods for Analysis of Exosomes Released from Endothelial Cells and Endothelial Progenitor Cells

    OpenAIRE

    Jinju Wang; Runmin Guo; Yi Yang; Bradley Jacobs; Suhong Chen; Ifeanyi Iwuchukwu; Gaines, Kenneth J.; Yanfang Chen; Richard Simman; Guiyuan Lv; Keng Wu; Bihl, Ji C.

    2016-01-01

    Exosomes (EXs) are cell-derived vesicles that mediate cell-cell communication and could serve as biomarkers. Here we described novel methods for purification and phenotyping of EXs released from endothelial cells (ECs) and endothelial progenitor cells (EPCs) by combining microbeads and fluorescence quantum dots (Q-dots®) techniques. EXs from the culture medium of ECs and EPCs were isolated and detected with cell-specific antibody conjugated microbeads and second antibody conjugated Q-dots by ...

  4. Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization

    NARCIS (Netherlands)

    Westenbrink, B. Daan; Lipsic, Erik; van der Meer, Peter; van der Harst, Pirn; Oeseburg, Hisko; Sarvaas, Gideon J. Du Marchie; Koster, Johan; Voors, Adriaan A.; van Veldhuisen, Dirk J.; van Gilst, Wiek H.; Schoemaker, Regien G.

    2007-01-01

    Aims Erythropoietin (EPO) improves cardiac function and induces neovascutarization in chronic heart failure (CHF), although the exact mechanism has not been elucidated. We studied the effects of EPO on homing and incorporation of endothelial progenitor cells (EPC) into the myocardial microvasculatur

  5. Characterization of vascular endothelial progenitor cells from chicken bone marrow

    Directory of Open Access Journals (Sweden)

    Bai Chunyu

    2012-05-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPC are a type of stem cell used in the treatment of atherosclerosis, vascular injury and regeneration. At present, most of the EPCs studied are from human and mouse, whereas the study of poultry-derived EPCs has rarely been reported. In the present study, chicken bone marrow-derived EPCs were isolated and studied at the cellular level using immunofluorescence and RT-PCR. Results We found that the majority of chicken EPCs were spindle shaped. The growth-curves of chicken EPCs at passages (P 1, -5 and -9 were typically “S”-shaped. The viability of chicken EPCs, before and after cryopreservation was 92.2% and 81.1%, respectively. Thus, cryopreservation had no obvious effects on the viability of chicken EPCs. Dil-ac-LDL and FITC-UAE-1 uptake assays and immunofluorescent detection of the cell surface markers CD34, CD133, VEGFR-2 confirmed that the cells obtained in vitro were EPCs. Observation of endothelial-specific Weibel-Palade bodies using transmission electron microscopy further confirmed that the cells were of endothelial lineage. In addition, chicken EPCs differentiated into endothelial cells and smooth muscle cells upon induction with VEGF and PDGF-BB, respectively, suggesting that the chicken EPCs retained multipotency in vitro. Conclusions These results suggest that chicken EPCs not only have strong self-renewal capacity, but also the potential to differentiate into endothelial and smooth muscle cells. This research provides theoretical basis and experimental evidence for potential therapeutic application of endothelial progenitor cells in the treatment of atherosclerosis, vascular injury and diabetic complications.

  6. Development of Endothelial-Specific Single Inducible Lentiviral Vectors for Genetic Engineering of Endothelial Progenitor Cells.

    Science.gov (United States)

    Yang, Guanghua; Kramer, M Gabriela; Fernandez-Ruiz, Veronica; Kawa, Milosz P; Huang, Xin; Liu, Zhongmin; Prieto, Jesus; Qian, Cheng

    2015-11-27

    Endothelial progenitor cells (EPC) are able to migrate to tumor vasculature. These cells, if genetically modified, can be used as vehicles to deliver toxic material to, or express anticancer proteins in tumor. To test this hypothesis, we developed several single, endothelial-specific, and doxycycline-inducible self-inactivating (SIN) lentiviral vectors. Two distinct expression cassettes were inserted into a SIN-vector: one controlled by an endothelial lineage-specific, murine vascular endothelial cadherin (mVEcad) promoter for the expression of a transactivator, rtTA2S-M2; and the other driven by an inducible promoter, TREalb, for a firefly luciferase reporter gene. We compared the expression levels of luciferase in different vector constructs, containing either the same or opposite orientation with respect to the vector sequence. The results showed that the vector with these two expression cassettes placed in opposite directions was optimal, characterized by a robust induction of the transgene expression (17.7- to 73-fold) in the presence of doxycycline in several endothelial cell lines, but without leakiness when uninduced. In conclusion, an endothelial lineage-specific single inducible SIN lentiviral vector has been developed. Such a lentiviral vector can be used to endow endothelial progenitor cells with anti-tumor properties.

  7. Effects of ACE inhibition on endothelial progenitor cell mobilization and prognosis after acute myocardial infarction in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Jia-Yin Sun

    2013-05-01

    Full Text Available OBJECTIVE: We aimed to assess the chemotactic response of endothelial progenitor cells to angiotensin-converting enzyme inhibitors in T2DM patients after acute myocardial infarction, as well as the associated prognosis. METHODS: Sixty-eight T2DM patients with acute myocardial infarction were randomized to either receive or not receive daily oral perindopril 4 mg, and 36 non-diabetic patients with acute myocardial infarction were enrolled as controls. The numbers of circulating CD45−/low+CD34+CD133+KDR+ endothelial progenitor cells, as well as the stromal cell-derived factor-α and high-sensitivity C reactive protein levels, were measured before acute percutaneous coronary intervention and on days 1, 3, 5, 7, 14, and 28 after percutaneous coronary intervention. Patients were followed up for 6 months. Chinese Clinical Trial Registry: ChiCTR-TRC-12002599. RESULTS: T2DM patients had lower circulating endothelial progenitor cell counts, decreased plasma vascular endothelial growth factor and α levels, and higher plasma high-sensitivity C reactive protein levels compared with non-diabetic controls. After receiving perindopril, the number of circulating endothelial progenitor cells increased from day 3 to 7, as did the plasma levels of vascular endothelial growth factor and stromal cell-derived factor-α, compared with the levels in T2DM controls. Plasma high-sensitivity C reactive protein levels in the treated group decreased to the same levels as those in non-diabetic controls. Furthermore, compared with T2DM controls, the perindopril-treated T2DM patients had lower cardiovascular mortality and occurrence of heart failure symptoms (p<0.05 and better left ventricle function (p<0.01. CONCLUSIONS: The use of angiotensin-converting enzyme inhibitors represents a novel approach for improving cardiovascular repair after acute myocardial infarction in T2DM patients.

  8. Effect of endothelial progenitor cells in neovascularization and their application in tumor therapy

    Institute of Scientific and Technical Information of China (English)

    DONG Fang; HA Xiao-qin

    2010-01-01

    Objective To review the effect of endothelial progenitor cells in neovascularization as well as their application to the therapy of tumors.Data sources The data used in this review were mainly from PubMed for relevant English language articles published from 1997 to 2009. The search term was "endothelial progenitor cells".Study selection Articles regarding the role of endothelial progenitor cells in neovascularization and their application to the therapy of tumors were selected.Results Endothelial progenitor cells isolated from bone marrow, umbilical cord blood and peripheral blood can proliferate, mobilize and differentiate into mature endothelial cells. Experiments suggest endothelial progenitor cells take part in forming the tumor vascular through a variety of mechanisms related to vascular endothelial growth factor, matrix metalloproteinases, chemokine stromal cell-derived factor 1 and its receptor C-X-C receptor-4, erythropoietin, Notchsignal pathway and so on. Evidence demonstrates that the number and function change of endothelial progenitor cells in peripheral blood can be used as a biomarker of the response of cancer patients to anti-tumor therapy and predict the prognosis and recurrence. In addition, irradiation temporarily increased endothelial cells number and decreased the endothelial progenitor cell counts in animal models. Meanwhile, in preclinical experiments, therapeutic gene-modified endothelial progenitor cells have been approved to attenuate tumor growth and offer a novel strategy for cell therapy and gene therapy of cancer.Conclusions Endothelial progenitor cells play a particular role in neovascularization and have attractively potential prognostic and therapeutic applications to malignant tumors. However, a series of problems, such as the definitive biomarkers of endothelial progenitor cells, their interrelationship with radiotherapy and their application in cell therapy and gene therapy of tumors, need further investigation.

  9. Innovative Flow Cytometry Allows Accurate Identification of Rare Circulating Cells Involved in Endothelial Dysfunction

    Science.gov (United States)

    Boraldi, Federica; Bartolomeo, Angelica; De Biasi, Sara; Orlando, Stefania; Costa, Sonia; Cossarizza, Andrea; Quaglino, Daniela

    2016-01-01

    Introduction Although rare, circulating endothelial and progenitor cells could be considered as markers of endothelial damage and repair potential, possibly predicting the severity of cardiovascular manifestations. A number of studies highlighted the role of these cells in age-related diseases, including those characterized by ectopic calcification. Nevertheless, their use in clinical practice is still controversial, mainly due to difficulties in finding reproducible and accurate methods for their determination. Methods Circulating mature cells (CMC, CD45-, CD34+, CD133-) and circulating progenitor cells (CPC, CD45dim, CD34bright, CD133+) were investigated by polychromatic high-speed flow cytometry to detect the expression of endothelial (CD309+) or osteogenic (BAP+) differentiation markers in healthy subjects and in patients affected by peripheral vascular manifestations associated with ectopic calcification. Results This study shows that: 1) polychromatic flow cytometry represents a valuable tool to accurately identify rare cells; 2) the balance of CD309+ on CMC/CD309+ on CPC is altered in patients affected by peripheral vascular manifestations, suggesting the occurrence of vascular damage and low repair potential; 3) the increase of circulating cells exhibiting a shift towards an osteoblast-like phenotype (BAP+) is observed in the presence of ectopic calcification. Conclusion Differences between healthy subjects and patients with ectopic calcification indicate that this approach may be useful to better evaluate endothelial dysfunction in a clinical context. PMID:27560136

  10. Biological behaviour and role of endothelial progenitor cells in vascular diseases

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qiu-hua; SHE Ming-peng

    2007-01-01

    Obiective To review the biological behaviour of endothelial progenitor cells and their role in vascular diseases.Data sources The data used in this review were mainly from Medline and PubMed for relevant English language articles published from 1985 to March 2007.The search term was "endothelial progenitor cells".Study selection Articles about the biological behaviour of endothelial progenitor cells and their roles in the pathogenesis of vascular diseases such as atherogenesis were used.Results Progenitor cells in bone marrow,peripheral blood and adventitia can differentiate into mature endothelial cells (ECs).The progenitor cells,which express certain surface markers including AC133,CD34 and KDR,enable restoration of the microcirculation and ECs when injury or ischaemia occurs.Endothelial progenitor cells used in experimental models and clinical trials for ischaemic syndromes could restore endothelial integrity and inhibit neointima development.Moreover,their number and functional properties are influenced by certain cytokines and atherosclerotic risk factors.Impairment of the progenitor cells might limit the regenerative capacity,even lead to the development of atherosclerosis or other vascular diseases.Conclusions Endothelial progenitor cells have a particular role in prevention and treatment of certain cardiovascular diseases.However,many challenges remain in understanding differentiation of endothelial progenitor cells,their mobilization and revascularization.

  11. Endothelial progenitor cells: what use for the cardiologist?

    Directory of Open Access Journals (Sweden)

    Siddique Aurangzeb

    2010-02-01

    Full Text Available Abstract Endothelial Progenitor Cells (EPC were first described in 1997 and have since been the subject of numerous investigative studies exploring the potential of these cells in the process of cardiovascular damage and repair. Whilst their exact definition and mechanism of action remains unclear, they are directly influenced by different cardiovascular risk factors and have a definite role to play in defining cardiovascular risk. Furthermore, EPCs may have important therapeutic implications and further understanding of their pathophysiology has enabled us to explore new possibilities in the management of cardiovascular disease. This review article aims to provide an overview of the vast literature on EPCs in relation to clinical cardiology.

  12. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    Science.gov (United States)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si; Wang, Jin; Huang, Nan

    2016-11-01

    Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  13. Endothelial Progenitor Cells Promote Directional Three-Dimensional Endothelial Network Formation by Secreting Vascular Endothelial Growth Factor

    OpenAIRE

    Yoshinori Abe; Yoshiyuki Ozaki; Junichi Kasuya; Kimiko Yamamoto; Joji Ando; Ryo Sudo; Mariko Ikeda; Kazuo Tanishita

    2013-01-01

    Endothelial progenitor cell (EPC) transplantation induces the formation of new blood-vessel networks to supply nutrients and oxygen, and is feasible for the treatment of ischemia and cardiovascular diseases. However, the role of EPCs as a source of proangiogenic cytokines and consequent generators of an extracellular growth factor microenvironment in three-dimensional (3D) microvessel formation is not fully understood. We focused on the contribution of EPCs as a source of proangiogenic cytoki...

  14. ECM-Dependence of Endothelial Progenitor Cell Features.

    Science.gov (United States)

    Siavashi, Vahid; Nassiri, Seyed Mahdi; Rahbarghazi, Reza; Vafaei, Rana; Sariri, Reyhaneh

    2016-08-01

    Preserving self-renewal, multipotent capacity, and large-scale expansion of highly functional progenitor cells, including endothelial progenitor cells (EPCs), is a controversial issue. These current limitations, therefore, raise the need of developing promising in vitro conditions for prolonged expansion of EPCs without loss of their stemness feature. In the current study, the possible role of three different natural extracellular substrates, including collagen, gelatin, and fibronectin, on multiple parameters of EPCs such as cell morphology, phenotype, clonogenic, and vasculogenic properties was scrutinized. Next, EPCs from GFP-positive mice were pre-expanded on each of these ECM substrates and then systemically transplanted into sublethaly irradiated mice to analyze the potency of these cells for marrow reconstitution. Our results revealed considerable promise for fibronectin for EPC expansion with maintenance of stemness characteristics, whereas gelatin and collagen matrices directed the cells toward a mature endothelial phenotype. Transplantation of EPCs pre-expanded on fibronectin resulted in widespread distribution and appropriate engraftment to various tissues with habitation in close association with the microvasculature. In addition, fibronectin pre-expanded cells were gradually enriched in the bone marrow after transplantation, resulting in marrow repopulation and hematologic recovery, leading to improved survival of recipient mice whereas gelatin- and collagen-expanded cells failed to reconstitute the bone marrow. This study demonstrated that, cell characteristics of in vitro expanded EPCs are determined by the subjacent matrix. Fibronectin-expanded EPCs are heralded as a source of great promise for bone marrow reconstitution and neo-angiogenesis in therapeutic bone marrow transplantation. J. Cell. Biochem. 117: 1934-1946, 2016. © 2016 Wiley Periodicals, Inc. PMID:26756870

  15. Endothelial Progenitor Cells in Sprouting Angiogenesis: Proteases Pave the Way.

    Science.gov (United States)

    Laurenzana, A; Fibbi, G; Margheri, F; Biagioni, A; Luciani, C; Del Rosso, M; Chillà, A

    2015-01-01

    Sprouting angiogenesis consists of the expansion and remodelling of existing vessels, where the vascular sprouts connect each other to form new vascular loops. Endothelial Progenitor Cells (EPCs) are a subtype of stem cells, with high proliferative potential, able to differentiate into mature Endothelial Cells (ECs) during the neovascularization process. In addition to this direct structural role EPCs improve neovascularization, also secreting numerous pro-angiogenic factors able to enhance the proliferation, survival and function of mature ECs, and other surrounding progenitor cells. While sprouting angiogenesis by mature ECs involves resident ECs, the vasculogenic contribution of EPCs is a high hurdle race. Bone marrowmobilized EPCs have to detach from the stem cell niche, intravasate into bone marrow vessels, reach the hypoxic area or tumour site, extravasate and incorporate into the new vessel lumen, thus complementing the resident mature ECs in sprouting angiogenesis. The goal of this review is to highlight the role of the main protease systems able to control each of these steps. The pivotal protease systems here described, involved in vascular patterning in sprouting angiogenesis, are the matrix-metalloproteinases (MMPs), the serineproteinases urokinase-type plasminogen activator (uPA) associated with its receptor (uPAR) and receptorassociated plasminogen/plasmin, the neutrophil elastase and the cathepsins. Since angiogenesis plays a critical role not only in physiological but also in pathological processes, such as in tumours, controlling the contribution of EPCs to the angiogenic process, through the regulation of the protease systems involved, could yield new opportunities for the therapeutic prospect of efficient control of pathological angiogenesis. PMID:26321757

  16. Cathepsin L is required for endothelial progenitor cell-induced neovascularization

    Energy Technology Data Exchange (ETDEWEB)

    Urbich, Carmen; Heeschen, Christopher; Aicher, Alexandra; Sasaki, Ken-ichiro; Bruhl, Thomas; Hofmann, Wolf K.; Peters, Christoph; Reinheckel, Thomas; Pennacchio, Len A.; Abolmaali, Nasreddin D.; Chavakis, Emmanouil; Zeiher, Andreas M.; Dimmeler, Stefanie

    2004-01-15

    Infusion of endothelial progenitor cells (EPCs), but not of mature endothelial cells (ECs), promotes neovascularization after ischemia. We performed a gene expression profiling of EPCs and ECs to identify genes, which might be important for the neovascularization capacity of EPCs. Intriguingly, the protease cathepsin L (CathL) was highly expressed in EPCs as opposed to ECs and is essential for matrix degradation and invasion by EPCs in vitro. CathL deficient mice showed impaired functional recovery after hind limb ischemia supporting the concept for an important role of CathL in postnatal neovascularization. Infused CathL deficient progenitor cells failed to home to sites of ischemia and to augment neovascularization. In contrast, over expression of CathL in mature ECs significantly enhanced their invasive activity and induced their neovascularization capacity in vivo. Taken together, CathL plays a crucial role for the integration of circulating EPCs into the ischemic tissue and is required for neovascularization mediated by EPCs.

  17. 紫绀型先天性心脏病病人循环内皮祖细胞的数量及功能变化%Changes of circulating endothelial progenitor cells in patients with cyanotic congenital heart diseases

    Institute of Scientific and Technical Information of China (English)

    刘哲亮; 吴忠仕; 胡建国; 陈勇; 胡野荣; 李伟

    2008-01-01

    Objective To investigate alterations of endothelial progenitor cells (EPCs) from peripheral blood in patients with cyanotic congenital heart diseases.Methods 20 ml venous blood was obtained from patients with tetralogy of Fallot (TOF) and ventricular septal defect (VSD).The mononuclear cells were isolated by Ficoll density gradient centrifugation and cultured in Medium 199 containing 20 % fetal bovine serum (FBS) and bovine pituitary exrtract (BPE) for expansion and differentiation.The expression of EPC-specific antigens on cell surface,such as CD133,KDR,CD34,CD31 and vWF were analyzed by immunocytochemistry after 10 days.Cultured cells were further characterized by uptake of Dil-AcLDL,lectin staining by UEA-1,and flow cytometry for quantification of CD133+/KDR+ cells. Transmission electron microscopy was used to identify distinctive organelles of EPCs,namely immature mitochondria and weibel-Palade bodies.Modified Boyden chamber assay and MTT assay was used to measure the migration and proliferation of EPCs.The adhesion assay was performed by replating on fibronectin-coated dishes and then quantifying the number of adherent cells.Results The number of EPCs was significantly increased in patients with TOF compared with that of control subjects [Colony numbers (14.7±3.1) vs.8.2±1.3]/×100 field,DiI-AcLDL+/UEA-I+ (72.2±9.7) vs.(51.2±3.8)/×200 field,CD133+/KDR+ cells (0.66±0.20)% vs.(0.18±0.08)%,P<0.01).The functional activity of EPCs such as proliferation [Optical Density (OD) value 0.34±0.02 vs. 0.27±0.01],migration[(140.6±9.2) vs.(91.8±8.6)/×200 field)] and adhesive capacity [(149.0±11.6)vs.(112.6±7.0)/×200 field)] was also significantly higher in patients with TOF.Conclusion EPC quantity and functional activity are significantly increased in patient with cyanotic congenital heart diseases.%目的 探讨紫绀型先天性心脏病病人外周血内皮祖细胞(endothelial progenitor cell,EPC)的数量及功能特点.方法 选取法洛四联症

  18. Endothelial Progenitor Cells in Diabetic Microvascular Complications: Friends or Foes?

    Directory of Open Access Journals (Sweden)

    Cai-Guo Yu

    2016-01-01

    Full Text Available Despite being featured as metabolic disorder, diabetic patients are largely affected by hyperglycemia-induced vascular abnormality. Accumulated evidence has confirmed the beneficial effect of endothelial progenitor cells (EPCs in coronary heart disease. However, antivascular endothelial growth factor (anti-VEGF treatment is the main therapy for diabetic retinopathy and nephropathy, indicating the uncertain role of EPCs in the pathogenesis of diabetic microvascular disease. In this review, we first illustrate how hyperglycemia induces metabolic and epigenetic changes in EPCs, which exerts deleterious impact on their number and function. We then discuss how abnormal angiogenesis develops in eyes and kidneys under diabetes condition, focusing on “VEGF uncoupling with nitric oxide” and “competitive angiopoietin 1/angiopoietin 2” mechanisms that are shared in both organs. Next, we dissect the nature of EPCs in diabetic microvascular complications. After we overview the current EPCs-related strategies, we point out new EPCs-associated options for future exploration. Ultimately, we hope that this review would uncover the mysterious nature of EPCs in diabetic microvascular disease for therapeutics.

  19. Disrupted Endothelial Cell Layer and Exposed Extracellular Matrix Proteins Promote Capture of Late Outgrowth Endothelial Progenitor Cells.

    Science.gov (United States)

    Zhao, Jing; Mitrofan, Claudia-Gabriela; Appleby, Sarah L; Morrell, Nicholas W; Lever, Andrew M L

    2016-01-01

    Late outgrowth endothelial progenitor cells (LO-EPC) possess a high proliferative potential, differentiate into vascular endothelial cells (EC), and form networks, suggesting they play a role in vascular repair. However, due to their scarcity in the circulation there is a requirement for ex vivo expansion before they could provide a practical cell therapy and it is currently unclear if they would home and engraft to an injury site. Using an in vitro flow system we studied LO-EPC under simulated injury conditions including EC activation, ischaemia, disrupted EC integrity, and exposed basement membrane. Perfused LO-EPC adhered to discontinuous EC paracellularly at junctional regions between adjacent cells under shear stress 0.7 dyn/cm(2). The interaction was not adhesion molecule-dependent and not enhanced by EC activation. LO-EPC expressed high levels of the VE-Cadherin which may explain these findings. Ischaemia reperfusion injury decreased the interaction with LO-EPC due to cell retraction. LO-EPC interacted with exposed extracellular matrix (ECM) proteins, fibronectin and vitronectin. The interaction was mediated by integrins α5β3, αvβ1, and αvβ3. This study has demonstrated that an injured local environment presents sufficient adhesive signals to capture flow perfused LO-EPC in vitro and that LO-EPC have properties consistent with their potential role in vascular repair. PMID:27413378

  20. Infection of hepatitis B virus in extrahepatic endothelial tissues mediated by endothelial progenitor cells

    Directory of Open Access Journals (Sweden)

    Zhang Lili

    2007-04-01

    Full Text Available Abstract Background Hepatitis B virus (HBV replication has been reported to be involved in many extrahepatic viral disorders; however, the mechanism by which HBV is trans-infected into extrahepatic tissues such as HBV associated myocarditis remains largely unknown. Results In this study, we showed that human cord blood endothelial progenitor cells (EPCs, but not human umbilical vein endothelial cells (HUVECs could be effectively infected by uptake of HBV in vitro. Exposure of EPCs with HBV resulted in HBV DNA and viral particles were detected in EPCs at day 3 after HBV challenge, which were peaked around day 7 and declined in 3 weeks. Consistently, HBV envelope surface and core antigens were first detected in EPCs at day 3 after virus challenge and were retained to be detectable for 3 weeks. In contrast, HBV covalently closed circular DNA was not detected in EPCs at any time after virus challenge. Intravenous transplantation of HBV-treated EPCs into myocardial infarction and acute renal ischemia mouse model resulted in incorporation of HBV into injured heart, lung, and renal capillary endothelial tissues. Conclusion These results strongly support that EPCs serve as virus carrier mediating HBV trans-infection into the injured endothelial tissues. The findings might provide a novel mechanism for HBV-associated myocarditis and other HBV-related extrahepatic diseases as well.

  1. Prognostic value of circulating VEGFR2+ bone marrow-derived progenitor cells in patients with advanced cancer.

    Science.gov (United States)

    Massard, Christophe; Borget, Isabelle; Le Deley, Marie Cécile; Taylor, Melissa; Gomez-Roca, Carlos; Soria, Jean Charles; Farace, Françoise

    2012-06-01

    We hypothesised that host-related markers, possibly reflecting tumour aggressiveness, such as circulating endothelial cells (CEC) and circulating VEGFR2(+) bone marrow-derived (BMD) progenitor cells, could have prognostic value in patients with advanced cancer enrolled in early anticancer drug development trials. Baseline CECs (CD45(-)CD31(+)CD146(+)7AAD(-) cells) and circulating VEGFR2(+)-BMD progenitor cells (defined as CD45(dim)CD34(+)VEGFR2(+)7AAD(-) cells) were measured by flow-cytometry in 71 and 58 patients included in phase 1 trials testing novel anti-vascular or anti-angiogenic agents. Correlations between levels of CECs, circulating VEGFR2(+)-BMD progenitor cells, clinical and biological prognostic factors (i.e. the Royal Marsden Hospital (RMH) score), and overall survival (OS) were studied. The median value of CECs was 12 CEC/ml (range 0-154/ml). The median level of VEGFR2(+)-BMD progenitor cells was 1.3% (range 0-32.5%) of circulating BMD-CD34(+) progenitors. While OS was not correlated with CEC levels, it was significantly worse in patients with high VEGFR2(+)-BMD progenitor levels (>1%) (median OS 9.0 versus 17.0 months), and with a RMH prognostic score >0 (median OS 9.0 versus 24.2 months). The prognostic value of VEGFR2(+)-BMD progenitor levels remained significant (hazard ratio (HR) = 2.3, 95% confidence interval (CI), 1.1-4.6, p = 0.02) after multivariate analysis. A composite VEGFR2(+)-BMD progenitor level/RHM score ≥ 2 was significantly associated with an increased risk of death compared to scores of 0 or 1 (median OS 9.0 versus 18.4 months, HR = 2.6 (95%CI, 1.2-5.8, p = 0.02)). High circulating VEGFR2(+)-BMD progenitor levels are associated with poor prognostics and when combined to classical clinical and biological parameters could provide a new tool for patient selection in early anticancer drug trials. PMID:22370181

  2. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor

    2016-06-29

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  3. Endothelial progenitor cells regenerate infracted myocardium with neovascularisation development.

    Science.gov (United States)

    Abd El Aziz, M T; Abd El Nabi, E A; Abd El Hamid, M; Sabry, D; Atta, H M; Rahed, L A; Shamaa, A; Mahfouz, S; Taha, F M; Elrefaay, S; Gharib, D M; Elsetohy, Khaled A

    2015-03-01

    We achieved possibility of isolation, characterization human umbilical cord blood endothelial progenitor cells (EPCs), examination potency of EPCs to form new blood vessels and differentiation into cardiomyoctes in canines with acute myocardial infarction (AMI). EPCs were separated and cultured from umbilical cord blood. Their phenotypes were confirmed by uptake of double stains dioctadecyl tetramethylindocarbocyanine-labeled acetylated LDL and FITC-labeled Ulex europaeus agglutinin 1 (DILDL-UEA-1). EPCs of cord blood were counted. Human VEGFR-2 and eNOS from the cultured EPCs were assessed by qPCR. Human EPCs was transplanted intramyocardially in canines with AMI. ECG and cardiac enzymes (CK-MB and Troponin I) were measured to assess severity of cellular damage. Histopathology was done to assess neovascularisation. Immunostaining was done to detect EPCs transdifferentiation into cardiomyocytes in peri-infarct cardiac tissue. qPCR for human genes (hVEGFR-2, and eNOS) was done to assess homing and angiogenic function of transplanted EPCs. Cultured human cord blood exhibited an increased number of EPCs and significant high expression of hVEGFR-2 and eNOS genes in the culture cells. Histopathology showed increased neovascularization and immunostaining showed presence of EPCs newly differentiated into cardiomyocyte-like cells. Our findings suggested that hEPCs can mediate angiogenesis and differentiate into cardiomyoctes in canines with AMI. PMID:25750747

  4. The role of endothelial progenitor cells in transient ischemic attack patients for future cerebrovascular events

    Directory of Open Access Journals (Sweden)

    Rokhsareh Meamar

    2016-01-01

    Full Text Available Background: The role of endothelial progenitor cells (EPCs in the maintenance of vascularization following ischemic brain after experimental stroke has been established. Accordingly, in this study, we evaluated the role of circulating EPCs in transient ischemic attack (TIA patients for future cerebrovascular (CV events. Materials and Methods: The level of circulating EPCs (staining markers: CD34, CD309 were determined using flow cytometry at 24 h after TIA in thirty consecutive patients. The EPCs level was also evaluated once in thirty healthy volunteers. Over a period of 12 months, all patients were evaluated by an experienced neurologist for recurrent TIA, stroke or death induced by CV disorders. Results: Circulating EPCs increased in patients group following the first attack of TIA when compared with controls. By analysis of covariance, cardiovascular event history, hyperlipidemia, and statin therapy remained significant independent predictors of EPCs. The mean (standard deviation duration of follow-up was 10.5 (3.1 months (range, 2–12 months. During follow-up, a total of three patients died due to CV accident and four patients experienced again recurrent TIA. By analyzing data with Cox regression, EPC did not predict the future CV events in TIA patients. Conclusion: Increased incidence of future CV events did not occur in those patients with elevated EPCs in the first attack of TIA. The significant predicting factors of EPCs were cardiovascular event history, hyperlipidemia, and statin therapy.

  5. The effects of smoking on levels of endothelial progenitor cells and microparticles in the blood of healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Fariborz Mobarrez

    Full Text Available BACKGROUND: Cigarette smoking, both active and passive, is one of the leading causes of morbidity and mortality in cardiovascular disease. To assess the impact of brief smoking on the vasculature, we determined levels of circulating endothelial progenitor cells (EPCs and circulating microparticles (MPs following the smoking of one cigarette by young, healthy intermittent smokers. MATERIALS AND METHODS: 12 healthy volunteers were randomized to either smoking or not smoking in a crossover fashion. Blood sampling was performed at baseline, 1, 4 and 24 hours following smoking/not smoking. The numbers of EPCs and MPs were determined by flow cytometry. MPs were measured from platelets, leukocytes and endothelial cells. Moreover, MPs were also labelled with anti-HMGB1 and SYTO 13 to assess the content of nuclear molecules. RESULTS: Active smoking of one cigarette caused an immediate and significant increase in the numbers of circulating EPCs and MPs of platelet-, endothelial- and leukocyte origin. Levels of MPs containing nuclear molecules were increased, of which the majority were positive for CD41 and CD45 (platelet- and leukocyte origin. CD144 (VE-cadherin or HMGB1 release did not significantly change during active smoking. CONCLUSION: Brief active smoking of one cigarette generated an acute release of EPC and MPs, of which the latter contained nuclear matter. Together, these results demonstrate acute effects of cigarette smoke on endothelial, platelet and leukocyte function as well as injury to the vascular wall.

  6. Hydrogel Surfaces to Promote Attachment and Spreading of Endothelial Progenitor Cells

    OpenAIRE

    Camci-Unal, Gulden; Nichol, Jason William; Bae, Hojae; Tekin, Halil; Bischoff, Joyce; Khademhosseini, Ali

    2012-01-01

    Endothelialization of artificial vascular grafts is a challenging process in cardiovascular tissue engineering. Functionalized biomaterials could be promising candidates to promote endothelialization in repair of cardiovascular injuries. The purpose of this study was to synthesize hyaluronic acid (HA) and heparin based hydrogels that could promote adhesion and spreading of endothelial progenitor cells (EPCs). We report that the addition of heparin into HA-based hydrogels provides an attractiv...

  7. Update on the pathogenesis of Scleroderma: focus on circulating progenitor cells [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Alexandra Maria Giovanna Brunasso

    2016-04-01

    Full Text Available In systemic sclerosis (SSc, the development of fibrosis seems to be a consequence of the initial ischemic process related to an endothelial injury. The initial trigger event in SSc is still unknown, but circulating progenitor cells (CPCs might play a key role. Such cells have the ability to traffic into injury sites, exhibiting inflammatory features of macrophages, tissue remodeling properties of fibroblasts, and vasculogenesis functions of endothelial cells. The different subsets of CPCs described thus far in SSc arise from a pool of circulating monocyte precursors (CD14+ cells and probably correspond to a different degree of differentiation of a single cell of origin. Several subsets of CPCs have been described in patients with SSc, all have a monocytic origin but may or may not express CD14, and all of these cells have the ability to give origin to endothelial cells, or collagen (Col-producing cells, or both. We were able to identify six subsets of CPCs: pluripotent stem cells (CD14+, CD45+, and CD34+, monocyte-derived multipotential cells (MOMCs or monocyte-derived mesenchymal progenitors (CD14+, CD45+, CD34+, Col I+, CD11b+, CD68+, CD105+, and VEGFR1+, early endothelial progenitor cells (EPCs or monocytic pro-angiogenic hematopoietic cells or circulating hematopoietic cells (CD14+, CD45+, CD34low/−, VEGFR2+/−, CXCR4+, c-kit+, and DC117+, late EPCs (CD14−, CD133+, VEGFR2+, CD144+ [VE-cadherin+], and CD146+, fibroblast-like cells (FLCs/circulating Col-producing monocytes (CD14+, CD45+, CD34+/−, and Col I+, and fibrocytes (CD14−, CD45+, CD34+, Col I+, and CXCR4+. It has been demonstrated that circulating CD14+ monocytes with an activated phenotype are increased in patients with SSc when compared with normal subjects. CD14+, CD34+, and Col I+ spindle-shaped cells have been found in increased numbers in lungs of SSc patients with interstitial lung disease. Elevated blood amounts of early EPCs have been found in patients with SSc by

  8. Endothelial progenitor cells display clonal restriction in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Dai Kezhi

    2006-06-01

    Full Text Available Abstract Background In multiple myeloma (MM, increased neoangiogenesis contributes to tumor growth and disease progression. Increased levels of endothelial progenitor cells (EPCs contribute to neoangiogenesis in MM, and, importantly, covary with disease activity and response to treatment. In order to understand the mechanisms responsible for increased EPC levels and neoangiogenic function in MM, we investigated whether these cells were clonal by determining X-chromosome inactivation (XCI patterns in female patients by a human androgen receptor assay (HUMARA. In addition, EPCs and bone marrow cells were studied for the presence of clonotypic immunoglobulin heavy-chain (IGH gene rearrangement, which indicates clonality in B cells; thus, its presence in EPCs would indicate a close genetic link between tumor cells in MM and endothelial cells that provide tumor neovascularization. Methods A total of twenty-three consecutive patients who had not received chemotherapy were studied. Screening in 18 patients found that 11 displayed allelic AR in peripheral blood mononuclear cells, and these patients were further studied for XCI patterns in EPCs and hair root cells by HUMARA. In 2 patients whose EPCs were clonal by HUMARA, and in an additional 5 new patients, EPCs were studied for IGH gene rearrangement using PCR with family-specific primers for IGH variable genes (VH. Results In 11 patients, analysis of EPCs by HUMARA revealed significant skewing (≥ 77% expression of a single allele in 64% (n = 7. In 4 of these patients, XCI skewing was extreme (≥ 90% expression of a single allele. In contrast, XCI in hair root cells was random. Furthermore, PCR amplification with VH primers resulted in amplification of the same product in EPCs and bone marrow cells in 71% (n = 5 of 7 patients, while no IGH rearrangement was found in EPCs from healthy controls. In addition, in patients with XCI skewing in EPCs, advanced age was associated with poorer clinical status

  9. Endothelial progenitor cell transplantation ameliorates elastin breakdown in a Kawasaki disease mouse model

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi; DU Zhong-dong; LIU Jun-feng; LU Dun-xiang; LI Li; GUAN Yun-qian; WAN Sui-gui

    2012-01-01

    Background Coronary artery damage from Kawasaki disease (KD) is closely linked to the dysfunction of endothelial progenitor cells (EPCs).The aim of the present study was to evaluate the therapeutic effect of EPCs transplantation in KD model.Methods Lactobacillus casei cell wall extract (LCWE)-induced KD model in C57BL/6 mice was established.The model mice were injected intravenously with bone marrow-derived in vitro expanded EPCs.Histological evaluation,number of circulating EPCs and the function of bone marrow EPCs were examined at day 56.Results Inflammation was found around the coronary artery of the model mice after 14 days,Elastin breakdown was observed after 56 days.CM-Dil labeled EPCs incorporated into vessel repairing foci was found.At day 56,the number of peripheral EPCs in the KD model group was lower than in EPCs transplanted and control group.The functional index of bone marrow EPCs from the KD model group decreased in proliferation,adhesion and migration.Increased number of circulating EPCs and improved function were observed on the EPCs transplanted group compared with model group.Conclusion Exogenously administered EPCs,which represent a novel strategy could prevent the dysfunction of EPCs,accelerate the repair of coronary artery endothelium lesion and decrease the occurrence of aneurysm.

  10. Amlodipine Ameliorates Ischemia-Induced Neovascularization in Diabetic Rats through Endothelial Progenitor Cell Mobilization.

    Science.gov (United States)

    Sun, Jiayin; Xie, Jun; Kang, Lina; Ferro, Albert; Dong, Li; Xu, Biao

    2016-01-01

    Objectives. We investigated whether amlodipine could improve angiogenic responses in a diabetic rat model of acute myocardial infarction (AMI) through improving bone marrow endothelial progenitor cell (EPC) mobilization, in the same way as angiotensin converting enzyme inhibitors. Methods. After induction of AMI by coronary artery ligation, diabetic rats were randomly assigned to receive perindopril (2 mgkg(-1) day(-1)), amlodipine (2.5 mgkg(-1) day(-1)), or vehicle by gavage (n = 20 per group). Circulating EPC counts before ligation and on days 1, 3, 5, 7, 14, and 28 after AMI were measured in each group. Microvessel density, cardiac function, and cardiac remodeling were assessed 4 weeks after treatment. The signaling pathway related to EPC mobilization was also measured. Results. Circulating EPC count in amlodipine- and perindopril-treated rats peaked at day 7, to an obvious higher level than the control group peak which was reached earlier (at day 5). Rats treated with amlodipine showed improved postischemia neovascularization and cardiac function, together with reduced cardiac remodeling, decreased interstitial fibrosis, and cardiomyocyte apoptosis. Amlodipine treatment also increased cardiac SDF-1/CXCR4 expression and gave rise to activation of VEGF/Akt/eNOS signaling in bone marrow. Conclusions. Amlodipine promotes neovascularization by improving EPC mobilization from bone marrow in diabetic rats after AMI, and activation of VEGF/Akt/eNOS signaling may in part contribute to this. PMID:27243031

  11. Amlodipine Ameliorates Ischemia-Induced Neovascularization in Diabetic Rats through Endothelial Progenitor Cell Mobilization

    Directory of Open Access Journals (Sweden)

    Jiayin Sun

    2016-01-01

    Full Text Available Objectives. We investigated whether amlodipine could improve angiogenic responses in a diabetic rat model of acute myocardial infarction (AMI through improving bone marrow endothelial progenitor cell (EPC mobilization, in the same way as angiotensin converting enzyme inhibitors. Methods. After induction of AMI by coronary artery ligation, diabetic rats were randomly assigned to receive perindopril (2 mgkg−1 day−1, amlodipine (2.5 mgkg−1 day−1, or vehicle by gavage (n=20 per group. Circulating EPC counts before ligation and on days 1, 3, 5, 7, 14, and 28 after AMI were measured in each group. Microvessel density, cardiac function, and cardiac remodeling were assessed 4 weeks after treatment. The signaling pathway related to EPC mobilization was also measured. Results. Circulating EPC count in amlodipine- and perindopril-treated rats peaked at day 7, to an obvious higher level than the control group peak which was reached earlier (at day 5. Rats treated with amlodipine showed improved postischemia neovascularization and cardiac function, together with reduced cardiac remodeling, decreased interstitial fibrosis, and cardiomyocyte apoptosis. Amlodipine treatment also increased cardiac SDF-1/CXCR4 expression and gave rise to activation of VEGF/Akt/eNOS signaling in bone marrow. Conclusions. Amlodipine promotes neovascularization by improving EPC mobilization from bone marrow in diabetic rats after AMI, and activation of VEGF/Akt/eNOS signaling may in part contribute to this.

  12. Deficit of circulating stem – progenitor cells in opiate addiction: a pilot study

    Directory of Open Access Journals (Sweden)

    Davidson Peter

    2007-07-01

    Full Text Available Abstract A substantial literature describes the capacity of all addictive drugs to slow cell growth and potentiate apoptosis. Flow cytometry was used as a means to compare two lineages of circulating progenitor cells in addicted patients. Buprenorphine treated opiate addicts were compared with medical patients. Peripheral venous blood CD34+ CD45+ double positive cells were counted as haemopoietic stem cells (HSC's, and CD34+ KDR+ (VEGFR2+ cells were taken as endothelial progenitor cells (EPC's. 10 opiate dependent patients with substance use disorder (SUD and 11 non-addicted (N-SUD were studied. The ages were (mean + S.D. 36.2 + 8.6 and 56.4 + 18.6 respectively (P 0.15, OR = 0.09, 95% C.I. 0.01–0.97, a finding of some interest given the substantially older age of the N-SUD group. These laboratory data are thus consistent with clinical data suggesting accelerated ageing in addicted humans and implicate the important stem cell pool in both addiction toxicology and ageing. They carry important policy implications for understanding the fundamental toxicology of addiction, and suggest that the toxicity both of addiction itself and of indefinite agonist maintenance therapies may have been seriously underestimated.

  13. Relaxin increases human endothelial progenitor cell NO and migration and vasculogenesis in mice

    OpenAIRE

    Segal, Mark S.; Sautina, Laura; Li, Shiyu; Diao, YanPeng; Agoulnik, Alexander I.; Kielczewski, Jennifer; McGuane, Jonathan T.; Grant, Maria B.; Conrad, Kirk P.

    2012-01-01

    The ovarian peptide hormone, relaxin, circulates during pregnancy, contributing to profound maternal vasodilation through endothelial and nitric oxide (NO)–dependent mechanisms. Circulating numbers of bone marrow–derived endothelial cells (BMDECs), which facilitate angiogenesis and contribute to repair of vascular endothelium, increase during pregnancy. Thus, we hypothesized that relaxin enhances BMDEC NO production, circulating numbers, and function. Recombinant human relaxin-2 (rhRLX) stimu...

  14. Human endothelial progenitor cells internalize high-density lipoprotein.

    Science.gov (United States)

    Srisen, Kaemisa; Röhrl, Clemens; Meisslitzer-Ruppitsch, Claudia; Ranftler, Carmen; Ellinger, Adolf; Pavelka, Margit; Neumüller, Josef

    2013-01-01

    Endothelial progenitor cells (EPCs) originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL), and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate), cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal intraellular

  15. Human endothelial progenitor cells internalize high-density lipoprotein.

    Directory of Open Access Journals (Sweden)

    Kaemisa Srisen

    Full Text Available Endothelial progenitor cells (EPCs originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL, and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate, cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal

  16. Surface modification of a polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) nanocomposite polymer as a stent coating for enhanced capture of endothelial progenitor cells.

    OpenAIRE

    Tan, Aaron; Farhatnia, Yasmin; Goh, Debbie; Natasha, G; de Mel, Achala; Lim, Jing; Teoh, Swee-Hin; Malkovskiy, Andrey V; Chawla, Reema; Rajadas, Jayakumar; Cousins, Brian G; Michael R Hamblin; Alavijeh, Mohammad S; Seifalian, Alexander M

    2013-01-01

    An unmet need exists for the development of next-generation multifunctional nanocomposite materials for biomedical applications, particularly in the field of cardiovascular regenerative biology. Herein, we describe the preparation and characterization of a novel polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) nanocomposite polymer with covalently attached anti-CD34 antibodies to enhance capture of circulating endothelial progenitor cells (EPC). This material may ...

  17. Association among circulating endothelial progenitor cells, insulin resistance and severity of coronary lesions in patients with coronary artery disease%冠心病患者胰岛素水平与内皮祖细胞及冠状动脉病变的相关性

    Institute of Scientific and Technical Information of China (English)

    钱德慧; 黄岚; 赵晓辉; 周音频; 崔斌; 宋耀明; 李爱民; 付晓岚

    2008-01-01

    目的 探讨冠心病患者不同胰岛素水平与循环内皮祖细胞(EPC)数量、功能及冠状动脉病变程度的关系并探讨相关临床意义.方法 69例经选择性冠状动脉造影证实的冠心病患者,按胰岛素水平高低分为胰岛素抵抗(IR)组和胰岛素敏感(IS)组,另设25例健康对照者.采集研究对象外周血以激酶插入区域受体(KDR)和CD133双阳性为循环EPC标记行流式细胞分析,同时采血进行EPC的分离培养,7 d后鉴定并检测增殖及迁移能力,将各组的一般临床资料,循环EPC数量、迁移、增殖能力指标、稳态模型胰岛素抵抗指数(HOMA-IR)及冠状动脉病变Gensini评分进行统计学分析.结果 IR组循环EPC数量明显少于IS组[(0.34±0.08)‰比(0.47±0.09)‰,P<0.01],HOMA-IR自然对数与循环EPC数量呈负相关(r=-0.291,P=0.01),循环EPC数量与Gensini评分呈负相关(r=-0.3984,P=0.006).IR组的增殖能力和迁移能力均低于IS组减弱(P<0.05).结论 冠心病患者血清胰岛素水平与循环EPC数量呈负相关.循环EPC数量及功能与冠状动脉病变程度呈负相关;IR或高胰岛素血症可能部分通过损害循环EPC的数量及功能,从而影响冠状动脉病变程度.%Objective To investigate the correlation between the number and activity of circulating endothelial progenitor cells (EPCs), insulin resistance and severity of coronary lesions in patients with coronary artery disease (CAD). Methods Patients with coronary angiography evidenced CAD were divided in insulin resistance group ( IR, n = 25 ) and insulin sensitive group ( IS, n = 44) according to insulin level, 25 health volunteers served as control. Circulating EPCs were marked as KDR/CD133<'+ cells via fluorescence- activated cell sorter analysis. EPCs were also isolated from peripheral blood and cultured in vitro for 7 days, identified by DiI-acLDL uptake and lectin staining methods. EPCs migration activities were determined by modified Boyden chamber assay

  18. Id1 restrains p21 expression to control endothelial progenitor cell formation.

    Directory of Open Access Journals (Sweden)

    Alessia Ciarrocchi

    Full Text Available Loss of Id1 in the bone marrow (BM severely impairs tumor angiogenesis resulting in significant inhibition of tumor growth. This phenotype has been associated with the absence of circulating endothelial progenitor cells (EPCs in the peripheral blood of Id1 mutant mice. However, the manner in which Id1 loss in the BM controls EPC generation or mobilization is largely unknown. Using genetically modified mouse models we demonstrate here that the generation of EPCs in the BM depends on the ability of Id1 to restrain the expression of its target gene p21. Through a series of cellular and functional studies we show that the increased myeloid commitment of BM stem cells and the absence of EPCs in Id1 knockout mice are associated with elevated p21 expression. Genetic ablation of p21 rescues the EPC population in the Id1 null animals, re-establishing functional BM-derived angiogenesis and restoring normal tumor growth. These results demonstrate that the restraint of p21 expression by Id1 is one key element of its activity in facilitating the generation of EPCs in the BM and highlight the critical role these cells play in tumor angiogenesis.

  19. Endothelial Progenitor Cells Predict Cardiovascular Events after Atherothrombotic Stroke and Acute Myocardial Infarction. A PROCELL Substudy.

    Directory of Open Access Journals (Sweden)

    Elisa Cuadrado-Godia

    Full Text Available The aim of this study was to determine prognostic factors for the risk of new vascular events during the first 6 months after acute myocardial infarction (AMI or atherothrombotic stroke (AS. We were interested in the prognostic role of endothelial progenitor cells (EPC and circulating endothelial cells (CEC.Between February 2009 and July 2012, 100 AMI and 50 AS patients were consecutively studied in three Spanish centres. Patients with previously documented coronary artery disease or ischemic strokes were excluded. Samples were collected within 24h of onset of symptoms. EPC and CEC were studied using flow cytometry and categorized by quartiles. Patients were followed for up to 6 months. NVE was defined as new acute coronary syndrome, transient ischemic attack (TIA, stroke, or any hospitalization or death from cardiovascular causes. The variables included in the analysis included: vascular risk factors, carotid intima-media thickness (IMT, atherosclerotic burden and basal EPC and CEC count. Multivariate survival analysis was performed using Cox regression analysis.During follow-up, 19 patients (12.66% had a new vascular event (5 strokes; 3 TIAs; 4 AMI; 6 hospitalizations; 1 death. Vascular events were associated with age (P = 0.039, carotid IMT≥0.9 (P = 0.044, and EPC count (P = 0.041 in the univariate analysis. Multivariate Cox regression analysis showed an independent association with EPC in the lowest quartile (HR: 10.33, 95%CI (1.22-87.34, P = 0.032] and IMT≥0.9 [HR: 4.12, 95%CI (1.21-13.95, P = 0.023].Basal EPC and IMT≥0.9 can predict future vascular events in patients with AMI and AS, but CEC count does not affect cardiovascular risk.

  20. Multifactorial treatment increases endothelial progenitor cells in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Reinhard, H; Jacobsen, P Karl; Lajer, Marianne;

    2010-01-01

    Endothelial progenitor cells (EPC) augment vascular repair and neovascularisation. Patients with type 2 diabetes have reduced EPC and increased risk of cardiovascular disease (CVD), which is reduced by multifactorial intervention. Our aim, therefore, was to evaluate in type 2 diabetic patients...

  1. Myocardial regeneration by transplantation of modified endothelial progenitor cells expressing SDF-1 in a rat model

    DEFF Research Database (Denmark)

    Schuh, A.; Kroh, A.; Konschalla, S.;

    2012-01-01

    into injured tissue. The aim of the present study was to investigate the role of exogenously applied and endogenously mobilized cells in a regenerative strategy for MI therapy. Lentivirally SDF-1a-infected endothelial progenitor cells (EPCs) were injected after 90 min. of ligation and reperfusion of the left...

  2. Effects of simvastatin/ezetimibe on microparticles, endothelial progenitor cells and platelet aggregation in subjects with coronary heart disease under antiplatelet therapy

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, L.M.; França, C.N.; Izar, M.C.; Bianco, H.T.; Lins, L.S.; Barbosa, S.P.; Pinheiro, L.F.; Fonseca, F.A.H. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, São Paulo, SP, Brasil, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-04-15

    It is not known whether the addition of ezetimibe to statins adds cardiovascular protection beyond the expected changes in lipid levels. Subjects with coronary heart disease were treated with four consecutive 1-week courses of therapy (T) and evaluations. The courses were: T1, 100 mg aspirin alone; T2, 100 mg aspirin and 40 mg simvastatin/10 mg ezetimibe; T3, 40 mg simvastatin/10 mg ezetimibe, and 75 mg clopidogrel (300 mg initial loading dose); T4, 75 mg clopidogrel alone. Platelet aggregation was examined in whole blood. Endothelial microparticles (CD51), platelet microparticles (CD42/CD31), and endothelial progenitor cells (CD34/CD133; CDKDR/CD133, or CD34/KDR) were quantified by flow cytometry. Endothelial function was examined by flow-mediated dilation. Comparisons between therapies revealed differences in lipids (T2 and T3endothelial function (T2>T1 and T4, P=0.001). Decreased platelet aggregation was observed after aspirin (arachidonic acid, T1circulating endothelial and platelet microparticles, or endothelial progenitor cells. Cardiovascular protection following therapy with simvastatin/ezetimibe seems restricted to lipid changes and improvement of endothelial function not affecting the release of microparticles, mobilization of endothelial progenitor cells or decreased platelet aggregation.

  3. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Joon; Seo, Ha-Rim [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Jeong, Hyo Eun [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Choi, Seung-Cheol; Park, Jae Hyung; Yu, Cheol Woong; Hong, Soon Jun [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Chung, Seok [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Lim, Do-Sun, E-mail: dslmd@kumc.or.kr [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Two distinct vascular progenitor cells are induced from adult peripheral blood. • ECFCs induce vascular structures in vitro and in vivo. • SMPCs augment the in vitro and in vivo angiogenic potential of ECFCs. • Both cell types have synergistic therapeutic potential in ischemic hindlimb model. - Abstract: Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.

  4. Endothelial progenitor cell down-regulation in a mouse model of Kawasaki disease

    Institute of Scientific and Technical Information of China (English)

    LIU Jun-feng; DU Zhong-dong; CHEN Zhi; LU Dun-xiang; LI Li; GUAN Yun-qian; WAN Sui-gui

    2012-01-01

    Background Cardiovascular complications of Kawasaki disease (KD) are a common cause of heart disease in pediatric populations.Previous studies have suggested a role for endothelial progenitor cells (EPCs) in coronary artery lesions associated with KD.However,long-term observations of EPCs during the natural progression of this disorder are lacking.Using an experimental model of KD,we aimed to determine whether the coronary artery lesions are associated with down-regulation of EPCs.Methods To induce KD,C57BL/6 mice were administered an intraperitoneal injection of Lactobacillus casei cell wall extract (LCWE; phosphate buffered saline used as control vehicle).Study groups included:group A (14 days following LCWE injection),group B (56 days following LCWE injection) and group C (controls).Numbers of circulating EPCs (positively staining for both CD34 and FIk-1 while staining negative for CD45) were evaluated using flow cytometry.Bone marrow mononuclear cells were cultured in vitro to expand EPCs for functional analysis.In vitro EPC proliferation,adhesion and migration were assessed.Results The model was shown to exhibit similar coronary artery lesions to KD patients with coronary aneurysms.Numbers of circulating EPCs decreased significantly in the KD models (groups A and B) compared to controls ((0.017±0.008)% VS.(0.028±0.007)%,P<0.05 and (0.016±0.007)% vs.(0.028±0.007)%,P <0.05).Proliferative,adhesive and migratory properties of EPCs were markedly impaired in groups A and B.Conclusion Coronary artery lesions in KD occur as a consequence of impaired vascular injury repair,resulting from excess consumption of EPCs together with a functional impairment of bone marrow EPCs and their precursors.

  5. Cilostazol activates function of bone marrow-derived endothelial progenitor cell for re-endothelialization in a carotid balloon injury model.

    Directory of Open Access Journals (Sweden)

    Rie Kawabe-Yako

    Full Text Available BACKGROUND: Cilostazol(CLZ has been used as a vasodilating anti-platelet drug clinically and demonstrated to inhibit proliferation of smooth muscle cells and effect on endothelial cells. However, the effect of CLZ on re-endothelialization including bone marrow (BM-derived endothelial progenitor cell (EPC contribution is unclear. We have investigated the hypothesis that CLZ might accelerate re-endothelialization with EPCs. METHODOLOGY/PRINCIPAL FINDINGS: Balloon carotid denudation was performed in male Sprague-Dawley rats. CLZ group was given CLZ mixed feed from 2 weeks before carotid injury. Control group was fed normal diet. CLZ accelerated re-endothelialization at 2 weeks after surgery and resulted in a significant reduction of neointima formation 4 weeks after surgery compared with that in control group. CLZ also increased the number of circulating EPCs throughout the time course. We examined the contribution of BM-derived EPCs to re-endothelialization by BM transplantation from Tie2/lacZ mice to nude rats. The number of Tie2-regulated X-gal positive cells on injured arterial luminal surface was increased at 2 weeks after surgery in CLZ group compared with that in control group. In vitro, CLZ enhanced proliferation, adhesion and migration activity, and differentiation with mRNA upregulation of adhesion molecule integrin αvβ3, chemokine receptor CXCR4 and growth factor VEGF assessed by real-time RT-PCR in rat BM-derived cultured EPCs. In addition, CLZ markedly increased the expression of SDF-1α that is a ligand of CXCR4 receptor in EPCs, in the media following vascular injury. CONCLUSIONS/SIGNIFICANCE: CLZ promotes EPC mobilization from BM and EPC recruitment to sites of arterial injury, and thereby inhibited neointima formation with acceleration of re-endothelialization with EPCs as well as pre-existing endothelial cells in a rat carotid balloon injury model. CLZ could be not only an anti-platelet agent but also a promising tool for

  6. Effect of Low Level Ionizing Radiation on Endothelial Progenitor Cells in Atherosclerotic Patients with Lower Limb Ischemia

    International Nuclear Information System (INIS)

    Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality throughout the developed world (Williamson et al., 2012). Coronary artery disease (CAD) or atherosclerotic heart disease is a chronic life-threatening disease, which characterized by reducing blood supply to the heart as a result of the accumulation of atheromatous plaques within the walls of the arteries supplying the myocardium. Progressive atherosclerosis in the coronary arteries may lead to intimal thickening and eventual artery occlusion. Coronary artery occlusion can cause acute myocardial ischemia as a result of reduced oxygen supply or increased oxygen demand (Luthje and Andreas, 2008). Convincing evidence indicates that atherosclerosis is associated with endothelial dysfunction at the early stage of the disease process (Chiang et al., 2012). The endothelium is a dynamic cell layer that represents a physiological barrier between circulating blood and the surrounding tissues. Impaired endothelial function is a critical event in the initiation of atherosclerotic plaque development and thus may lead to vasoconstriction, vascular smooth muscle proliferation, hypercoagulability, thrombosis, and eventually, adverse cardiovascular events (Berger and Lavie, 2011). Asahara et al., (1997) described endothelial progenitor cells (EPC) in human peripheral blood. EPC are immature endothelial circulating cells mobilized from the bone marrow. These cells are involved in Introduction and aim of the work repairing the damaged endothelium and in facilitating neovascularization after ischemia (Rouhl et al., 2008). The role of EPC in health and disease is not understood completely. Most studies of healthy subjects and patients with coronary artery disease (CAD) report that the number and function of circulating EPC decrease with age and with the presence of classical vascular risk factors (Fadini et al., 2007). Recent studies suggested that EPCs play an important role in the risk of vascular

  7. Endothelial progenitor cell differentiation using cryopreserved, umbilical cord blood-derived mononuclear cells

    Institute of Scientific and Technical Information of China (English)

    Jun-ho JANG; Hugh C KIM; Sun-kyung KIM; Jeong-eun CHOI; Young-jin KIM; Hyun-woo LEE; Seok-yun KANG; Joon-seong PARK; Jin-hyuk CHOI; Ho-yeong LIM

    2007-01-01

    Aim: To investigate the endothelial differentiation potentiality of umbilical cord blood (UCB), we induced the differentiation of endothelial progenitor cells (EPC)from cryopreserved UCB-derived mononuclear cells (MNC). Methods: MNC from cryopreserved UCB and peripheral blood (PB) were cultured in M199 medium with endothelial cell growth supplements for 14 d. EPC were characterized by RT-PCR,flow cytometry, and immunocytochemistry analysis. The proliferation of differen-tiated EPC was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTI') assay, and vascular endothelial growth factor (VEGF) concentra-tion was measured using an ELISA kit. Characteristics of UCB-derived EPC were compared with those of PB-derived EPC. Results: A number of round-shaped cells were loosely attached to the bottom after 24 h culture, and numerous spindle-shaped cells began to appear from the round-shaped ones on d 7. Those cells expressed endothelial markers such as, Fit-1/VEGFR-1, ecNOS, VE-cadherin, yon Willebrand factor, and secreted VEGF. The patterns of endothelial markers of EPC from PB and UCB did not show striking differences. The results of the prolifera-tion and secretion of VEGF were also similar. Conclusion: We successfully cul-tured UCB cells stored at -196 ℃ into cells with the quality of endothelial cells.Those EPC could be used for angiogenic therapeutics by activating adjacent endothelial cells and enhancing angiogenesis.

  8. Endothelial progenitor cells in mothers of low-birthweight infants: a link between defective placental vascularization and increased cardiovascular risk?

    LENUS (Irish Health Repository)

    King, Thomas F J

    2013-01-01

    Offspring birthweight is inversely associated with future maternal cardiovascular mortality, a relationship that has yet to be fully elucidated. Endothelial progenitor cells (EPCs) are thought to play a key role in vasculogenesis, and EPC numbers reflect cardiovascular risk.

  9. CXCL12/Stromal-Cell-Derived Factor-1 Effectively Replaces Endothelial Progenitor Cells to Induce Vascularized Ectopic Bone

    NARCIS (Netherlands)

    Eman, Rhandy M; Hoorntje, Edgar T; Oner, F Cumhur; Kruyt, Moyo C; Dhert, Wouter J A; Alblas, Jacqueline

    2014-01-01

    Bone defect healing is highly dependent on the simultaneous stimulation of osteogenesis and vascularization. In bone regenerative strategies, combined seeding of multipotent stromal cells (MSCs) and endothelial progenitor cells (EPCs) proves their mutual stimulatory effects. Here, we investigated wh

  10. Androgen Modulates Functions of Endothelial Progenitor Cells through Activated Egr1 Signaling

    Directory of Open Access Journals (Sweden)

    Yizhou Ye

    2016-01-01

    Full Text Available Researches show that androgens have important effects on migration of endothelial cells and endothelial protection in coronary heart disease. Endothelial progenitor cells (EPCs as a progenitor cell type that can differentiate into endothelial cells, have a critical role in angiogenesis and endothelial protection. The relationship between androgen and the functions of EPCs has animated much interest and controversy. In this study, we investigated the angiogenic and migratory functions of EPCs after treatment by dihydrotestosterone (DHT and the molecular mechanisms as well. We found that DHT treatment enhanced the incorporation of EPCs into tubular structures formed by HUVECs and the migratory activity of EPCs in the transwell assay dose dependently. Moreover, microarray analysis was performed to explore how DHT changes the gene expression profiles of EPCs. We found 346 differentially expressed genes in androgen-treated EPCs. Angiogenesis-related genes like Egr-1, Vcan, Efnb2, and Cdk2ap1 were identified to be regulated upon DHT treatment. Furthermore, the enhanced angiogenic and migratory abilities of EPCs after DHT treatment were inhibited by Egr1-siRNA transfection. In conclusion, our findings suggest that DHT markedly enhances the vessel forming ability and migration capacity of EPCs. Egr1 signaling may be a possible pathway in this process.

  11. Fibrin scaffolds seeded with endothelial progenitor cells for tissue engineering applications

    OpenAIRE

    Magera, Angela; Barsotti, Maria Chiara; Lemmi, Monica; Armani, Chiara; Arici, Roberta; Iorio, Maria Carla; Soldani, Giorgio; Balbarini, Alberto; Di Stefano, Rossella

    2008-01-01

    Purpose To evaluate the use of fibrin as alternative biological scaffold for the in vitro culture of endothelial progenitor cells (EPC) Methods Fibrinogen (F, 4.5-36 mg/ml) and thrombin (T, 12.5-50 U/ml) were mixed to obtain the fibrin matrix and analysed by scanning electron microscopy (SEM and CRYO-SEM). EPC were obtained from human peripheral blood mononuclear cells and cultured for 1 week on the fibrin scaffolds at the concentration of 1 106 cells/cm2 in endothelial growth medium. As a co...

  12. Capture of circulatory endothelial progenitor cells and accelerated re-endothelialization of a bio-engineered stent in human ex vivo shunt and rabbit denudation model

    NARCIS (Netherlands)

    K. Larsen (Katarína); K.L. Cheng (Caroline); D. Tempel (Dennie); S. Parker (Sherry); S. Yazdani (Saami); W.K. den Dekker (Wijnand); H.J. Houtgraaf (Jaco); R. de Jong (Renate); S. Swager-ten Hoor (Stijn); E. Ligtenberg (Erik); S.R. Hanson (Stephen); R. Rowland (Steve); F. Kolodgie (Frank); P.W.J.C. Serruys (Patrick); R. Virmani (Renu); H.J. Duckers (Henricus)

    2012-01-01

    textabstractThe Genous™ Bio-engineered R™ stent (GS) aims to promote vascular healing by capture of circulatory endothelial progenitor cells (EPCs) to the surface of the stent struts, resulting in accelerated re-endothelialization. Here, we assessed the function of the GS in comparison to bare-metal

  13. Nitric oxide and superoxide dismutase modulate endothelial progenitor cell function in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Brenner Benjamin

    2009-10-01

    Full Text Available Abstract Background The function of endothelial progenitor cells (EPCs, which are key cells in vascular repair, is impaired in diabetes mellitus. Nitric oxide (NO and reactive oxygen species can regulate EPC functions. EPCs tolerate oxidative stress by upregulating superoxide dismutase (SOD, the enzyme that neutralizes superoxide anion (O2-. Therefore, we investigated the roles of NO and SOD in glucose-stressed EPCs. Methods The functions of circulating EPCs from patients with type 2 diabetes were compared to those from healthy individuals. Healthy EPCs were glucose-stressed, and then treated with insulin and/or SOD. We assessed O2- generation, NO production, SOD activity, and their ability to form colonies. Results EPCs from diabetic patients generated more O2-, had higher NAD(PH oxidase and SOD activity, but lower NO bioavailability, and expressed higher mRNA and protein levels of p22-phox, and manganese SOD and copper/zinc SOD than those from the healthy individuals. Plasma glucose and HbA1c levels in the diabetic patients were correlated negatively with the NO production from their EPCs. SOD treatment of glucose-stressed EPCs attenuated O2- generation, restored NO production, and partially restored their ability to form colonies. Insulin treatment of glucose-stressed EPCs increased NO production, but did not change O2- generation and their ability to form colonies. However, their ability to produce NO and to form colonies was fully restored after combined SOD and insulin treatment. Conclusion Our data provide evidence that SOD may play an essential role in EPCs, and emphasize the important role of antioxidant therapy in type 2 diabetic patients.

  14. Hydrogel surfaces to promote attachment and spreading of endothelial progenitor cells.

    Science.gov (United States)

    Camci-Unal, Gulden; Nichol, Jason William; Bae, Hojae; Tekin, Halil; Bischoff, Joyce; Khademhosseini, Ali

    2013-05-01

    Endothelialization of artificial vascular grafts is a challenging process in cardiovascular tissue engineering. Functionalized biomaterials could be promising candidates to promote endothelialization in repair of cardiovascular injuries. The purpose of this study was to synthesize hyaluronic acid (HA) and heparin-based hydrogels that could promote adhesion and spreading of endothelial progenitor cells (EPCs). We report that the addition of heparin into HA-based hydrogels provides an attractive surface for EPCs promoting spreading and the formation of an endothelial monolayer on the hydrogel surface. To increase EPC adhesion and spreading, we covalently immobilized CD34 antibody (Ab) on HA-heparin hydrogels, using standard EDC/NHS amine-coupling strategies. We found that EPC adhesion and spreading on CD34 Ab-immobilized HA-heparin hydrogels was significantly higher than their non-modified analogues. Once adhered, EPCs spread and formed an endothelial layer on both non-modified and CD34 Ab-modified HA-heparin hydrogels after 3 days of culture. We did not observe significant adhesion and spreading when heparin was not included in the control hydrogels. In addition to EPCs, we also used human umbilical cord vein endothelial cells (HUVECs), which adhered and spread on HA-heparin hydrogels. Macrophages exhibited significantly less adhesion compared to EPCs on the same hydrogels. This composite material could possibly be used to develop surface coatings for artificial cardiovascular implants, due to its specificity for EPC and endothelial cells on an otherwise non-thrombogenic surface. PMID:22223475

  15. Fibronectin Binding Is Required for Acquisition of Mesenchymal/Endothelial Differentiation Potential in Human Circulating Monocytes

    Directory of Open Access Journals (Sweden)

    Noriyuki Seta

    2012-01-01

    Full Text Available We previously reported monocyte-derived multipotential cells (MOMCs, which include progenitors capable of differentiating into a variety of mesenchymal cells and endothelial cells. In vitro generation of MOMCs from circulating CD14+ monocytes requires their binding to extracellular matrix (ECM protein and exposure to soluble factor(s derived from circulating CD14- cells. Here, we investigated the molecular factors involved in MOMC generation by examining the binding of monocytes to ECM proteins. We found that MOMCs were obtained on the fibronectin, but not on type I collagen, laminin, or poly-L-lysine. MOMC generation was followed by changes in the expression profiles of transcription factors and was completely inhibited by either anti-α5 integrin antibody or a synthetic peptide that competed with the RGD domain for the β1-integrin binding site. These results indicate that acquisition of the multidifferentiation potential by circulating monocytes depends on their binding to the RGD domain of fibronectin via cell-surface α5β1 integrin.

  16. Circulating Endothelial Microparticles: A Key Hallmark of Atherosclerosis Progression

    Directory of Open Access Journals (Sweden)

    Keshav Raj Paudel

    2016-01-01

    Full Text Available The levels of circulating microparticles (MPs are raised in various cardiovascular diseases. Their increased level in plasma is regarded as a biomarker of alteration in vascular function. The prominent MPs present in blood are endothelial microparticles (EMPs described as complex submicron (0.1 to 1.0 μm vesicles like structure, released in response to endothelium cell activation or apoptosis. EMPs possess both physiological and pathological effects and may promote oxidative stress and vascular inflammation. EMPs release is triggered by inducer like angiotensin II, lipopolysaccharide, and hydrogen peroxide leading to the progression of atherosclerosis. However, there are multiple physiological pathways for EMPs generation like NADPH oxidase derived endothelial ROS formation, Rho kinase pathway, and mitogen-activated protein kinases. Endothelial dysfunction is a key initiating event in atherosclerotic plaque formation. Atheroemboli, resulting from ruptured carotid plaques, is a major cause of stroke. Increasing evidence suggests that EMPs play an important role in the pathogenesis of cardiovascular disease, acting as a marker of damage, either exacerbating disease progression or triggering a repair response. In this regard, it has been suggested that EMPs have the potential to act as biomarkers of disease status. This review aims to provide updated information of EMPs in relation to atherosclerosis pathogenesis.

  17. Oct-4+/Tenascin C+ neuroblastoma cells serve as progenitors of tumor-derived endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Annalisa Pezzolo; Silvia Deaglio; Fabio Malavasi; Vito Pistoia; Federica Parodi; Danilo Marimpietri; Lizzia Raffaghello; Claudia Cocco; Angela Pistorio; Manuela Mosconi; Claudio Gambini; Michele Cillj

    2011-01-01

    Neuroblastoma (NB)-associated endothelial microvessels (EMs) may be lined by tumor-derived endothelial cells (TECs),that are genetically unstable and chemoresistant.Here we have addressed the identification of TEC progenitors in NB by focusing on Octamer-binding transcription factor 4 (Oct-4) as a putative marker.Oct-4+ cells were detected in primary NB samples (n = 23),metastatic bone marrow aspirates (n = 10),NB cell lines (n = 4),and orthotopic tumors (n = 10) formed by the HTLA-230 NB cell line in immunodeficient mice.Most Oct-4+ cells showed a perivascular distribution,with 5% of them homing in perinecrotic areas.All Oct-4+ cells were tumor-derived since they shared amplification of MYCN oncogene with malignant cells.Perivascular Oct-4+ cells expressed stem cellrelated,neural progenitor-related and NB-related markers,including surface Tenascin C (TNC),that was absent from perinecrotic Oct-4+ cells and bulk tumor cells.TNC+ but not TNC- HTLA-230 cells differentiated in vitro into endothelial-like cells expressing vascular-endothellal-cadherin,prostate-specific membrane antigen and CD31 upon culture in medium containing vascular endothelial growth factor (VEGF).TNC+ but not TNC- HTLA-230 cells formed neurospheres when cultured in serum-free medium.Both cell fractions were tumorigenic,but only tumors formed by TNC+ cegs contained EMs fined by TECs.In conclusion,we have identified in NB tumors two putative niches containing Oct-4+ tumor cells.Oct-4+/TNC+ perivascular NB cells displayed a high degree of plasticity and served as progenitors of TECs.Therapeutic targeting of Oct4+/TNC+ progenitors may counteract the contribution of NB-derived ECs to tumor relapse and chemoresistance.

  18. 内皮祖细胞与动脉瘤的发生与发展%Endothelial progenitor cells and occurrence and development of aneurysm

    Institute of Scientific and Technical Information of China (English)

    梁超杰; 闵国文; 郭庚

    2013-01-01

    , precursor cell, aneurysm, stem cel”. Irrelevant and repetitive articles were excluded, and the result analysis was conducted. RESULTS AND CONCLUSION:Aneurysms patients display decreased endothelial progenitor cells in the peripheral circulating blood accompanied by functional impairment. After aneurysm-related treatment, the number of endothelial progenitor cells can increase. Application of endothelial progenitor cells can early predict occurrence, development, and rupture of aneurysms, which is also a therapeutic method to prevent aneurysms. How endothelial progenitor cells are used clinical y to prevent occurrence and development of aneurysms is a serious problem to be solved.

  19. Erythropoietin attenuates pulmonary vascular remodeling in experimental pulmonary arterial hypertension through interplay between endothelial progenitor cells and heme-oxygenase

    Directory of Open Access Journals (Sweden)

    Rosa L.E. Loon

    2015-08-01

    Full Text Available BackgroundPulmonary arterial hypertension (PAH is a pulmonary vascular disease with a high mortality, characterized by typical angio-proliferative lesions. Erythropoietin (EPO attenuates pulmonary vascular remodeling in PAH. We postulated that EPO acts through mobilization of endothelial progenitor cells (EPCs and activation of the cytoprotective enzyme heme oxygenase-1 (HO1.MethodsRats with flow-associated PAH, resembling pediatric PAH, were treated with HO-1 inducer EPO in the presence or absence of the selective HO-activity-inhibitor tin-mesoporphyrin (SnMP. HO-activity, circulating EPCs and pulmonary vascular lesions were assessed after 3 weeks.ResultsIn PAH-rats, circulating EPCs were decreased and HO-activity was increased compared to control. EPO-treatment restored circulating EPCs and improved pulmonary vascular remodeling, as shown by a reduced wall thickness and occlusion rate of the intra-acinar vessels. Inhibition of HO-activity with SnMP aggravated PAH. Moreover, SnMP treatment abrogated EPO-induced amelioration of pulmonary vascular remodeling, while surprisingly further increasing circulating EPCs as compared with EPO alone.ConclusionsIn experimental PAH, EPO treatment restored the number of circulating EPC’s to control level, improved pulmonary vascular remodeling, and showed important interplay with HO-activity. Inhibition of increased HO-activity in PAH-rats exacerbated progression of pulmonary vascular remodeling, despite the presence of restored numbers of circulating EPC’s. We suggest that both EPO-induced HO1 and EPCs are promising targets to ameliorate the pulmonary vasculature in PAH.

  20. Reverse-D-4F Increases the Number of Endothelial Progenitor Cells and Improves Endothelial Progenitor Cell Dysfunctions in High Fat Diet Mice.

    Science.gov (United States)

    Nana, Yang; Peng, Jiao; Jianlin, Zhang; Xiangjian, Zhang; Shutong, Yao; Enxin, Zhan; Bin, Li; Chuanlong, Zong; Hua, Tian; Yanhong, Si; Yunsai, Du; Shucun, Qin; Hui, Wang

    2015-01-01

    Although high density lipoprotein (HDL) improves the functions of endothelial progenitor cells (EPCs), the effect of HDL ApoAI mimetic peptide reverse-D-4F (Rev-D4F) on EPC mobilization and repair of EPC dysfunctions remains to be studied. In this study, we investigated the effects of Rev-D4F on peripheral blood cell subpopulations in C57 mice treated with a high fat diet and the mechanism of Rev-D4F in improving the function of EPCs impaired by tumor necrosis factor-α (TNF-α). The high fat diet significantly decreased the number of EPCs, EPC migratory functions, and the percentage of lymphocytes in the white blood cells. However, it significantly increased the number of white blood cells, the percentage of monocytes in the white blood cells, and the level of vascular endothelial growth factor (VEGF) and TNF-α in the plasma. Rev-D4F clearly inhibited the effect of the high fat diet on the quantification of peripheral blood cell subpopulations and cytokine levels, and increased stromal cell derived factor 1α (SDF-1α) in the plasma. We provided in vitro evidence that TNF-α impaired EPC proliferation, migration, and tube formation through inactive AKT and eNOS, which was restored by Rev-D4F treatment. In contrast, both the PI3-kinase (PI3K) inhibitor (LY294002) and AKT inhibitor (perifosine) obviously inhibited the restoration of Rev-4F on EPCs impaired by TNF-α. Our results suggested that Rev-D4F increases the quantity of endothelial progenitor cells through increasing the SDF-1α levels and decreasing the TNF-α level of peripheral blood in high fat diet-induced C57BL/6J mice, and restores TNF-α induced dysfunctions of EPCs partly through stimulating the PI3K/AKT signal pathway.

  1. Interactions of primary neuroepithelial progenitor and brain endothelial cells: distinct effect on neural progenitor maintenance and differentiation by soluble factors and direct contact

    Institute of Scientific and Technical Information of China (English)

    Miguel A Gama Sosa; Rita De Gasperi; Anne B Rocher; Gissel M Perez; Keila Simons; Daniel E Cruz; Patrick R Hof; Gregory A Elder

    2007-01-01

    Neurovascular interactions are crucial for the normal development of the central nervous system. To study such interactions in primary cultures, we developed a procedure to simultaneously isolate neural progenitor and endothelial cell fractions from embryonic mouse brains. Depending on the culture conditions endothelial cells were found to favor maintenance of the neuroprogenitor phenotype through the production of soluble factors, or to promote neuronal differentiation of neural progenitors through direct contact. These apparently opposing effects could reflect differential cellular interactions needed for the proper development of the brain.

  2. Endothelial damage in major depression patients is modulated by SSRI treatment, as demonstrated by circulating biomarkers and an in vitro cell model

    Science.gov (United States)

    Lopez-Vilchez, I; Diaz-Ricart, M; Navarro, V; Torramade, S; Zamorano-Leon, J; Lopez-Farre, A; Galan, A M; Gasto, C; Escolar, G

    2016-01-01

    There is a link between depression, cardiovascular events and inflammation. We have explored this connection through endothelial dysfunction, using in vivo and in vitro approaches. We evaluated circulating biomarkers of endothelial dysfunction in patients with major depression at their diagnosis (MD-0) and during antidepressant treatment with the selective serotonin reuptake inhibitor escitalopram, for 8 and 24 weeks (MD-8 and MD-24). Results were always compared with matched healthy controls (CON). We measured in vivo circulating endothelial cells (CECs) and endothelial progenitor cells (EPCs) in blood samples, and assessed plasma levels of soluble von Willebrand factor (VWF) and vascular cell adhesion molecule-1 (VCAM-1). CEC counts, soluble VWF and VCAM-1 were statistically elevated in MD-0 (Pcultured in the presence of sera from each study group. Elevated expression of the inflammation marker intercellular adhesion molecule-1 and oxidative stress, with lower presence of endothelial nitric oxide synthase and higher reactive oxygen species production, were found in cells exposed to MD-0 sera (Pcultured endothelial cells reproducing endothelial dysfunction in naive patients with major depression, demonstrating endothelial damage and inflammation at diagnosis, and recovering with selective serotonin reuptake inhibitor treatment for 24 weeks. PMID:27598970

  3. Prognostic value of CD109+ circulating endothelial cells in recurrent glioblastomas treated with bevacizumab and irinotecan.

    Directory of Open Access Journals (Sweden)

    Lucia Cuppini

    Full Text Available BACKGROUND: Recent data suggest that circulating endothelial and progenitor cells (CECs and CEPs, respectively may have predictive potential in cancer patients treated with bevacizumab, the antibody recognizing vascular endothelial growth factor (VEGF. Here we report on CECs and CEPs investigated in 68 patients affected by recurrent glioblastoma (rGBM treated with bevacizumab and irinotecan and two Independent Datasets of rGBM patients respectively treated with bevacizumab alone (n=32, independent dataset A: IDA and classical antiblastic chemotherapy (n=14, independent dataset B: IDB. METHODS: rGBM patients with KPS ≥50 were treated until progression, as defined by MRI with RANO criteria. CECs expressing CD109, a marker of tumor endothelial cells, as well as other CEC and CEP subtypes, were investigated by six-color flow cytometry. RESULTS: A baseline count of CD109+ CEC higher than 41.1/ml (1(st quartile was associated with increased progression free survival (PFS; 20 versus 9 weeks, P=0.008 and overall survival (OS; 32 versus 23 weeks, P=0.03. Longer PFS (25 versus 8 weeks, P=0.02 and OS (27 versus 17 weeks, P=0.03 were also confirmed in IDA with CD109+ CECs higher than 41.1/ml but not in IDB. Patients treated with bevacizumab with or without irinotecan that were free from MRI progression after two months of treatment had significant decrease of CD109+ CECs: median PFS was 19 weeks; median OS 29 weeks. The presence of two non-contiguous lesions (distant disease at baseline was an independent predictor of shorter PFS and OS (P<0.001. CONCLUSIONS: Data encourage further studies on the predictive potential of CD109+ CECs in GBM patients treated with bevacizumab.

  4. Lineage tracking of mesenchymal and endothelial progenitors in BMP-induced bone formation.

    Science.gov (United States)

    Kolind, Mille; Bobyn, Justin D; Matthews, Brya G; Mikulec, Kathy; Aiken, Alastair; Little, David G; Kalajzic, Ivo; Schindeler, Aaron

    2015-12-01

    To better understand the relative contributions of mesenchymal and endothelial progenitor cells to rhBMP-2 induced bone formation, we examined the distribution of lineage-labeled cells in Tie2-Cre:Ai9 and αSMA-creERT2:Col2.3-GFP:Ai9 reporter mice. Established orthopedic models of ectopic bone formation in the hind limb and spine fusion were employed. Tie2-lineage cells were found extensively in the ectopic bone and spine fusion masses, but co-staining was only seen with tartrate-resistant acid phosphatase (TRAP) activity (osteoclasts) and CD31 immunohistochemistry (vascular endothelial cells), and not alkaline phosphatase (AP) activity (osteoblasts). To further confirm the lack of a functional contribution of Tie2-lineage cells to BMP-induced bone, we developed conditional knockout mice where Tie2-lineage cells are rendered null for key bone transcription factor osterix (Tie2-cre:Osx(fx/fx) mice). Conditional knockout mice showed no difference in BMP-induced bone formation compared to littermate controls. Pulse labeling of mesenchymal cells with Tamoxifen in mice undergoing spine fusion revealed that αSMA-lineage cells contributed to the osteoblastic lineage (Col2.3-GFP), but not to endothelial cells or osteoclast populations. These data indicate that the αSMA+ and Tie2+ progenitor lineages make distinct cellular contributions to bone formation, angiogenesis, and resorption/remodeling. PMID:26141839

  5. Macrophage-Mediated Lymphangiogenesis: The Emerging Role of Macrophages as Lymphatic Endothelial Progenitors

    Energy Technology Data Exchange (ETDEWEB)

    Ran, Sophia, E-mail: sran@siumed.edu; Montgomery, Kyle E. [Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, 801 N. Rutledge, Springfield, IL 62794 (United States)

    2012-06-27

    It is widely accepted that macrophages and other inflammatory cells support tumor progression and metastasis. During early stages of neoplastic development, tumor-infiltrating macrophages (TAMs) mount an immune response against transformed cells. Frequently, however, cancer cells escape the immune surveillance, an event that is accompanied by macrophage transition from an anti-tumor to a pro-tumorigenic type. The latter is characterized by high expression of factors that activate endothelial cells, suppress immune response, degrade extracellular matrix, and promote tumor growth. Cumulatively, these products of TAMs promote tumor expansion and growth of both blood and lymphatic vessels that facilitate metastatic spread. Breast cancers and other epithelial malignancies induce the formation of new lymphatic vessels (i.e., lymphangiogenesis) that leads to lymphatic and subsequently, to distant metastasis. Both experimental and clinical studies have shown that TAMs significantly promote tumor lymphangiogenesis through paracrine and cell autonomous modes. The paracrine effect consists of the expression of a variety of pro-lymphangiogenic factors that activate the preexisting lymphatic vessels. The evidence for cell-autonomous contribution is based on the observed tumor mobilization of macrophage-derived lymphatic endothelial cell progenitors (M-LECP) that integrate into lymphatic vessels prior to sprouting. This review will summarize the current knowledge of macrophage-dependent growth of new lymphatic vessels with specific emphasis on an emerging role of macrophages as lymphatic endothelial cell progenitors (M-LECP)

  6. Maternal neoangiogenesis during pregnancy partly derives from fetal endothelial progenitor cells

    OpenAIRE

    Nguyen Huu, Sau; Oster, Michèle; Uzan, Serge; Chareyre, Fabrice; Aractingi, Sélim; Khosrotehrani, Kiarash

    2007-01-01

    Fetal progenitor cells enter the maternal circulation during pregnancy and can persist for decades. We aimed to determine the role of these cells in tissue inflammation during pregnancy. WT female mice were mated to males transgenic for the EGFP (ubiquitous) or the luciferase gene controlled by the VEGF receptor 2 (VEGFR2; V-Luc) promoter. A contact hypersensitivity reaction was triggered during such pregnancies. Fetal cells were tracked by using real-time quantitative amplification of the tr...

  7. Molecular analysis of endothelial progenitor cell (EPC subtypes reveals two distinct cell populations with different identities

    Directory of Open Access Journals (Sweden)

    Simpson David A

    2010-05-01

    Full Text Available Abstract Background The term endothelial progenitor cells (EPCs is currently used to refer to cell populations which are quite dissimilar in terms of biological properties. This study provides a detailed molecular fingerprint for two EPC subtypes: early EPCs (eEPCs and outgrowth endothelial cells (OECs. Methods Human blood-derived eEPCs and OECs were characterised by using genome-wide transcriptional profiling, 2D protein electrophoresis, and electron microscopy. Comparative analysis at the transcript and protein level included monocytes and mature endothelial cells as reference cell types. Results Our data show that eEPCs and OECs have strikingly different gene expression signatures. Many highly expressed transcripts in eEPCs are haematopoietic specific (RUNX1, WAS, LYN with links to immunity and inflammation (TLRs, CD14, HLAs, whereas many transcripts involved in vascular development and angiogenesis-related signalling pathways (Tie2, eNOS, Ephrins are highly expressed in OECs. Comparative analysis with monocytes and mature endothelial cells clusters eEPCs with monocytes, while OECs segment with endothelial cells. Similarly, proteomic analysis revealed that 90% of spots identified by 2-D gel analysis are common between OECs and endothelial cells while eEPCs share 77% with monocytes. In line with the expression pattern of caveolins and cadherins identified by microarray analysis, ultrastructural evaluation highlighted the presence of caveolae and adherens junctions only in OECs. Conclusions This study provides evidence that eEPCs are haematopoietic cells with a molecular phenotype linked to monocytes; whereas OECs exhibit commitment to the endothelial lineage. These findings indicate that OECs might be an attractive cell candidate for inducing therapeutic angiogenesis, while eEPC should be used with caution because of their monocytic nature.

  8. Soluble melanoma cell adhesion molecule (sMCAM/sCD146) promotes angiogenic effects on endothelial progenitor cells through angiomotin.

    Science.gov (United States)

    Stalin, Jimmy; Harhouri, Karim; Hubert, Lucas; Subrini, Caroline; Lafitte, Daniel; Lissitzky, Jean-Claude; Elganfoud, Nadia; Robert, Stéphane; Foucault-Bertaud, Alexandrine; Kaspi, Elise; Sabatier, Florence; Aurrand-Lions, Michel; Bardin, Nathalie; Holmgren, Lars; Dignat-George, Françoise; Blot-Chabaud, Marcel

    2013-03-29

    The melanoma cell adhesion molecule (CD146) contains a circulating proteolytic variant (sCD146), which is involved in inflammation and angiogenesis. Its circulating level is modulated in different pathologies, but its intracellular transduction pathways are still largely unknown. Using peptide pulldown and mass spectrometry, we identified angiomotin as a sCD146-associated protein in endothelial progenitor cells (EPC). Interaction between angiomotin and sCD146 was confirmed by enzyme-linked immunosorbent assay (ELISA), homogeneous time-resolved fluorescence, and binding of sCD146 on both immobilized recombinant angiomotin and angiomotin-transfected cells. Silencing angiomotin in EPC inhibited sCD146 angiogenic effects, i.e. EPC migration, proliferation, and capacity to form capillary-like structures in Matrigel. In addition, sCD146 effects were inhibited by the angiomotin inhibitor angiostatin and competition with recombinant angiomotin. Finally, binding of sCD146 on angiomotin triggered the activation of several transduction pathways that were identified by antibody array. These results delineate a novel signaling pathway where sCD146 binds to angiomotin to stimulate a proangiogenic response. This result is important to find novel target cells of sCD146 and for the development of therapeutic strategies based on EPC in the treatment of ischemic diseases. PMID:23389031

  9. 脱氢野百合碱诱发肺动脉高压犬的循环内皮祖细胞数量和功能变化%Quantitative and functional changes of circulating endothelial progenitor cells in dogs with dehydromonocrotaline-induced pulmonary artery hypertension

    Institute of Scientific and Technical Information of China (English)

    曾春来; 夏良; 马彩艳; 刘善宽; 胡晓晟; 王兴祥; 陈君柱

    2008-01-01

    目的 观察脱氢野百合碱(DHMC)诱发犬肺动脉高压形成前后循环内皮祖细胞数量和功能的变化.方法 10只Beagle犬经右心室注射DHMC诱导肺动脉高压(PAH).注射DHMC前、注射后6周采集静脉血,用流式细胞仪分析AC133和KDR检测双阳性的细胞数量.收集单个核细胞体外培养7 d后进行乙酰化低密度脂蛋白胆固醇(DiLDL)摄取和凝集素-Ⅰ(UEA-Ⅰ)结合反应,并进行体外血管生成试验.计量资料采用(-x)±s表示,采用配对t检验进行统计学分析.结果 10只Beagle犬注射DHMC后9只存活,1只于第2天死亡.注射DHMC后6周肺动脉平均压由(11.3±2.0)mm Hg(1 mm Hg=0.133 kPa)增高到(20.2±1.6)mm Hg(t=10.307,P<0.01).PAH形成前后经流式细胞仪分析的ACl33和KDR双阳性细胞数量分别为(632.8±42.8)个/nil和(206.1±26.8)个/m1(t=25.361,P<0.01);体外培养7 d的细胞中UEA-Ⅰ和DiLDL染色双阳性细胞数量分别为(41±6)个/200倍视野和(22±6)个/200倍视野(t=6.510,P<0.01).体外成血管试验中形成的血管数为(21.1±2.8)支/200倍视野和(11.2±2.8)y./200倍视野(t=7.583,P<0.01).结论 犬肺动脉高压形成后循环内皮祖细胞数最减少,成血管能力下降.%Objective To determine the quantitive and functional changes of circulating endothelial progenitor cells(EPCs)in dogs with dehydromonocrotaline-induced pulmonary artery hypertension(PAH).Metllods Dehydromonocrotaline was injected into the canine right ventricle to induce pulmonary hypertension.Circulating EPCs were enumerated as AC133+,KDR+ cells by fluorescence-activated celi sorter using counting beads,and the number and activity of EPCs after in vitro expansion were determined by acLDL uptake/lectin staining assay and in vitro tubale forming assay.Results Nine of the 10 beagles survived after dehydromonocmtaline iniectiom Six weeks later,mean pulmonary artery pressure increased from(11.3±2.0)mm Hg(1 mm Hg=0.133 kPa) to (20.2±1.6)mm Hg(t=10.307,P<0.01),and

  10. Levels of circulating CD45dimCD34+VEGFR2+ progenitor cells correlate with outcome in metastatic renal cell carcinoma patients treated with tyrosine kinase inhibitors

    OpenAIRE

    Farace, F.; Gross-Goupil, M; Tournay, E; Taylor, M; Vimond, N.; Jacques, N; Billiot, F.; Mauguen, A.; Hill, C.; Escudier, B

    2011-01-01

    Background: Predicting the efficacy of antiangiogenic therapy would be of clinical value in patients (pts) with metastatic renal cell carcinoma (mRCC). We tested the hypothesis that circulating endothelial cell (CEC), bone marrow-derived CD45dimCD34+VEGFR2+ progenitor cell or plasma angiogenic factor levels are associated with clinical outcome in mRCC pts undergoing treatment with tyrosine kinase inhibitors (TKI). Methods: Fifty-five mRCC pts were prospectively monitored at baseline (day 1) a...

  11. Proliferation, migration and apoptosis activities of endothelial progenitor cells in acute coronary syndrome

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-jie; LIU Wen-xian; CHEN Yun-dai; SONG Xian-tao; JIN Ze-ning; L(U) Shu-zheng

    2010-01-01

    Background There are numerous articles on the endothelial progenitor cells (EPCs) in different disease conditions.However, the functional properties of EPCs in acute coronary syndrome (ACS) are still uncertain. Here we aimed to study the number and functions of EPCs in ACS patients.Methods Patients were enrolled with admitted ACS (n=25) and another 25 gender-, age-, atherosclerotic risk factors-matched stable coronary artery disease (CAD) controls. EPCs were defined as CD34+/CD133+/VEGFR-2+ and quantified by flow cytometry. Moreover, functional properties of EPCs including colony-forming unit (CFU), proliferation,migration as well as apoptosis were evaluated and compared between the two groups. Plasma matrix metalloproteinase-9 (MMP-9) was detected in all patients as well.Results The two groups had similar medication and clinical characteristics on admission. The EPCs in ACS patients were more than 2.6 times that in stable CAD subjects (15.6±2.7 vs. 6.0±0.8/100 000 events, P <0.01). CFU was not statistically different between the two groups (10.8±2.9 vs. 8.2±1.8, number/well, P >0.05). Furthermore, EPCs isolated from ACS patients were significantly impaired in their proliferation (0.498±0.035 vs. 0.895±0.067, OD value, P <0.01) and migration capacity (20.5±3.4 vs. 30.7±4.3, number/well, P <0.01) compared with controls. Moreover, the apoptosis cell in cultured EPCs was drastically increased in ACS group ((18.3 ±2.1 )% vs. (7.8±0.4)%, P <0.01 ).Conclusions Patients with ACS exhibited apparently increased circulating EPCs as well as cultured apoptosis percentage together with a remarkable impairment of proliferation and migration activities compared with stable CAD subjects.

  12. The Secretome of Endothelial Progenitor Cells Promotes Brain Endothelial Cell Activity through PI3-Kinase and MAP-Kinase

    Science.gov (United States)

    Di Santo, Stefano; Seiler, Stefanie; Fuchs, Anna-Lena; Staudigl, Jennifer; Widmer, Hans Rudolf

    2014-01-01

    Background Angiogenesis and vascular remodelling are crucial events in tissue repair mechanisms promoted by cell transplantation. Current evidence underscores the importance of the soluble factors secreted by stem cells in tissue regeneration. In the present study we investigated the effects of paracrine factors derived from cultured endothelial progenitor cells (EPC) on rat brain endothelial cell properties and addressed the signaling pathways involved. Methods Endothelial cells derived from rat brain (rBCEC4) were incubated with EPC-derived conditioned medium (EPC-CM). The angiogenic response of rBCEC4 to EPC-CM was assessed as effect on cell number, migration and tubular network formation. In addition, we have compared the outcome of the in vitro experiments with the effects on capillary sprouting from rat aortic rings. The specific PI3K/AKT inhibitor LY294002 and the MEK/ERK inhibitor PD98059 were used to study the involvement of these two signaling pathways in the transduction of the angiogenic effects of EPC-CM. Results Viable cell number, migration and tubule network formation were significantly augmented upon incubation with EPC-CM. Similar findings were observed for aortic ring outgrowth with significantly longer sprouts. The EPC-CM-induced activities were significantly reduced by the blockage of the PI3K/AKT and MEK/ERK signaling pathways. Similarly to the outcome of the rBCEC4 experiments, inhibition of the PI3K/AKT and MEK/ERK pathways significantly interfered with capillary sprouting induced by EPC-CM. Conclusion The present study demonstrates that EPC-derived paracrine factors substantially promote the angiogenic response of brain microvascular endothelial cells. In addition, our findings identified the PI3K/AKT and MEK/ERK pathways to play a central role in mediating these effects. PMID:24755675

  13. GroEL1, a heat shock protein 60 of Chlamydia pneumoniae, impairs neovascularization by decreasing endothelial progenitor cell function.

    Directory of Open Access Journals (Sweden)

    Yi-Wen Lin

    Full Text Available The number and function of endothelial progenitor cells (EPCs are sensitive to hyperglycemia, hypertension, and smoking in humans, which are also associated with the development of atherosclerosis. GroEL1 from Chlamydia pneumoniae has been found in atherosclerotic lesions and is related to atherosclerotic pathogenesis. However, the actual effects of GroEL1 on EPC function are unclear. In this study, we investigate the EPC function in GroEL1-administered hind limb-ischemic C57BL/B6 and C57BL/10ScNJ (a toll-like receptor 4 (TLR4 mutation mice and human EPCs. In mice, laser Doppler imaging, flow cytometry, and immunohistochemistry were used to evaluate the degree of neo-vasculogenesis, circulating level of EPCs, and expression of CD34, vWF, and endothelial nitric oxide synthase (eNOS in vessels. Blood flow in the ischemic limb was significantly impaired in C57BL/B6 but not C57BL/10ScNJ mice treated with GroEL1. Circulating EPCs were also decreased after GroEL1 administration in C57BL/B6 mice. Additionally, GroEL1 inhibited the expression of CD34 and eNOS in C57BL/B6 ischemic muscle. In vitro, GroEL1 impaired the capacity of differentiation, mobilization, tube formation, and migration of EPCs. GroEL1 increased senescence, which was mediated by caspases, p38 MAPK, and ERK1/2 signaling in EPCs. Furthermore, GroEL1 decreased integrin and E-selectin expression and induced inflammatory responses in EPCs. In conclusion, these findings suggest that TLR4 and impaired NO-related mechanisms could contribute to the reduced number and functional activity of EPCs in the presence of GroEL1 from C. pneumoniae.

  14. Construction of tissue-engineered heart valves by using decellularized scaffolds and endothelial progenitor cells

    Institute of Scientific and Technical Information of China (English)

    FANG Ning-tao; XIE Shang-zhe; WANG Song-mei; GAO Hong-yang; WU Chun-gen; PAN Luan-feng

    2007-01-01

    Background Tissue-engineered heart valves have the potential to overcome the limitations of present heart valve replacements. This study was designed to develop a tissue engineering heart valve by using human umbilical cord blood-derived endothelial progenitor cells (EPCs) and decellularized valve scaffolds.Methods Decellularized valve scaffolds were prepared from fresh porcine heart valves. EPCs were isolated from fresh human umbilical cord blood by density gradient centrifugation, cultured for 3 weeks in EGM-2-MV medium, by which time the resultant cell population became endothelial in nature, as assessed by immunofluorescent staining. EPC-derived endothelial cells were seeded onto the decellularized scaffold at 3 × 106 cells/cm2 and cultured under static conditions for 7 days. Proliferation of the seeded cells on the scaffolds was detected using the MTT assay. Tissue-engineered heart valves were analyzed by HE staining, immunofluorescent staining and scanning electron microscopy. The anti-thrombogenic function of the endothelium on the engineered heart valves was evaluated by platelet adhesion experiments and reverse transcription-polymerase chain reaction (RT-PCR) analysis for the expression of endothelial nitric oxide synthase (eNOS) and tissue-type plasminogen activator (t-PA).Results EPC-derived endothelial cells showed a histolytic cobblestone morphology, expressed specific markers of the endothelial cell lineage including von Willebrand factor (vWF) and CD31, bound a human endothelial cell-specific lectin,Ulex Europaeus agglutinin-1 (UEA-1), and took up Dil-labeled low density lipoprotein (Dil-Ac-LDL). After seeding on the decellularized scaffold, the cells showed excellent metabolic activity and proliferation. The cells formed confluent endothelial monolayers atop the decellularized matrix, as assessed by HE staining and immunostaining for vWF and CD31. Scanning electron microscopy demonstrated the occurrence of tight junctions between cells forming the

  15. Levels of circulating CD45dimCD34+VEGFR2+ progenitor cells correlate with outcome in metastatic renal cell carcinoma patients treated with tyrosine kinase inhibitors

    Science.gov (United States)

    Farace, F; Gross-Goupil, M; Tournay, E; Taylor, M; Vimond, N; Jacques, N; Billiot, F; Mauguen, A; Hill, C; Escudier, B

    2011-01-01

    Background: Predicting the efficacy of antiangiogenic therapy would be of clinical value in patients (pts) with metastatic renal cell carcinoma (mRCC). We tested the hypothesis that circulating endothelial cell (CEC), bone marrow-derived CD45dimCD34+VEGFR2+ progenitor cell or plasma angiogenic factor levels are associated with clinical outcome in mRCC pts undergoing treatment with tyrosine kinase inhibitors (TKI). Methods: Fifty-five mRCC pts were prospectively monitored at baseline (day 1) and day 14 during treatment (46 pts received sunitinib and 9 pts received sorafenib). Circulating endothelial cells (CD45−CD31+CD146+7-amino-actinomycin (7AAD)− cells) were measured in 1 ml whole blood using four-color flow cytometry (FCM). Circulating CD45dimCD34+VEGFR2+7AAD− progenitor cells were measured in progenitor-enriched fractions by four-color FCM. Plasma VEGF, sVEGFR2, SDF-1α and sVCAM-1 levels were determined by ELISA. Correlations between baseline CEC, CD45dimCD34+VEGFR2+7AAD− progenitor cells, plasma factors, as well as day 1–day 14 changes in CEC, CD45dimCD34+VEGFR2+7AAD− progenitor, plasma factor levels, and response to TKI, progression-free survival (PFS) and overall survival (OS) were examined. Results: No significant correlation between markers and response to TKI was observed. No association between baseline CEC, plasma VEGF, sVEGFR-2, SDF-1α, sVCAM-1 levels with PFS and OS was observed. However, baseline CD45dimCD34+VEGFR2+7AAD− progenitor cell levels were associated with PFS (P=0.01) and OS (P=0.006). Changes in this population and in SDF-1α levels between day 1 and day 14 were associated with PFS (P=0.03, P=0.002). Changes in VEGF and SDF-1α levels were associated with OS (P=0.02, P=0.007). Conclusion: Monitoring CD45dimCD34+VEGFR2+ progenitor cells, plasma VEGF and SDF-1α levels could be of clinical interest in TKI-treated mRCC pts to predict outcome. PMID:21386843

  16. Improved culture-based isolation of differentiating endothelial progenitor cells from mouse bone marrow mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Haruki Sekiguchi

    Full Text Available Numerous endothelial progenitor cell (EPC-related investigations have been performed in mouse experiments. However, defined characteristics of mouse cultured EPC have not been examined. We focused on fast versus slow adherent cell population in bone marrow mononuclear cells (BMMNCs in culture and examined their characteristics. After 24 h-culture of BMMNCs, attached (AT cells and floating (FL cells were further cultured in endothelial differentiation medium separately. Immunological and molecular analyses exhibited more endothelial-like and less monocyte/macrophage-like characteristics in FL cells compared with AT cells. FL cells formed thick/stable tube and hypoxia or shear stress overload further enhanced these endothelial-like features with increased angiogenic cytokine/growth factor mRNA expressions. Finally, FL cells exhibited therapeutic potential in a mouse myocardial infarction model showing the specific local recruitment to ischemic border zone and tissue preservation. These findings suggest that slow adherent (FL but not fast attached (AT BMMNCs in culture are EPC-rich population in mouse.

  17. Folic acid supplementation normalizes the endothelial progenitor cell transcriptome of patients with type 1 diabetes: A case-control pilot study

    NARCIS (Netherlands)

    O. van Oostrom (Olivia); D.P.V. de Kleijn (Dominique); J.O. Fledderus (Joost); M. Pescatori (Mario); A. Stubbs (Andrew); A. Tuinenburg (Attie); S.K. Lim (Sai Kiang); M.C. Verhaar (Marianne)

    2009-01-01

    textabstractBackground: Endothelial progenitor cells play an important role in vascular wall repair. Patients with type 1 diabetes have reduced levels of endothelial progenitor cells of which their functional capacity is impaired. Reduced nitric oxide bioavailability and increased oxidative stress p

  18. Identification of Endothelial Progenitor Cells in the Corpus Cavernosum in Rats

    Directory of Open Access Journals (Sweden)

    Jun Sik Lee

    2014-01-01

    Full Text Available The vascular wall resident progenitor cells seem to serve as a local reservoir of cells for vascular repair. It was hypothesized that the corpus cavernosum may contain vascular wall endothelial progenitor cells (EPCs. In this study, we investigated the identification and localization of EPCs in the corpus cavernosum in a rat model. Adult male Sprague-Dawley rats were used to isolate EPCs from corpora cavernosum. To verify the existence and localization of EPCs, EPC-specific markers (CD34, Flk-1, and VE-cadherin were evaluated by flow cytometric analysis and confocal microscopy. The EPC markers were mainly expressed in the cavernosal sinusoidal endothelial space. EPC-marker-positive cells made up about 3.31% of the corpus cavernosum of normal rat by FACS analysis. As shown by confocal microscopy, CD34+/Flk-1+ and CD34+/VE-cadherin+ positive cells existed in the corpus cavernosum. Our findings imply that regulation of corpus cavernosal EPCs may be a new therapeutic strategy in the treatment of erectile dysfunction.

  19. Changes in the Number and Functional Activity of Circulating Endothelial Progenitor Cells in Patients with Ischemic Heart Disease%缺血性心脏病患者外周血中内皮祖细胞数量和功能的变化

    Institute of Scientific and Technical Information of China (English)

    陈海波; 张淑霞

    2007-01-01

    目的:观察缺血性心脏病(ischemic heart disease, IHD)患者外周血中内皮祖细胞(endothelial progenitor cells, EPCs)数量及功能的变化.方法:IHD患者和对照者各23例,用密度梯度离心法从外周血中分离单个核细胞,用流式细胞仪测量外周血中CD+细胞以鉴定EPCs.分别观察EPCs的粘附能力、迁移能力和体外生成血管能力.结果:IHD患者外周血中EPCs数量明显低于对照组,其粘附能力、迁移能力和体外生成血管能力也明显受损.结论:IHD患者外周血中EPCs数量降低且功能减退.

  20. Effect of matrix composition on differentiation of nestin-positive neural progenitors from circulation into neurons

    Science.gov (United States)

    Jose, Anumol; Krishnan, Lissy K.

    2010-06-01

    The human peripheral blood mononuclear cell has a mixture of progenitor cells with potential to differentiate into a wide range of lineages. The ability of hematopoietic tissue-derived adult stem cells to differentiate into neural progenitor cells offers an alternative to embryonic stem cells as a viable source for cell transplantation therapies to cure neurodegenerative diseases. This approach could lead to the use of autologous progenitors from blood circulation; however, due to the limited numbers available, in vitro cell expansion may be indispensable. In addition, for successful transplantation there is the requirement of a delivery matrix on which cells can survive and differentiate. In this context we carried out this study to identify a suitable biodegradable matrix on which progenitor cells can home, multiply and differentiate. We designed different compositions of the biomimetic matrix containing fibrin, fibronectin, gelatin, growth factors, laminin and hyaluronic acid. The attached cells expressed proliferation markers in initial periods of culture and between days 6 and 9 in culture they differentiated into neurons and/or astrocytes. The differentiation of progenitors into neurons and asterocyte on the composed matrix was established by morphological and immunochemical analysis. Flow cytometric analysis of cells in culture was employed to track development of neurons which expressed an early marker β-tubulin3 and a terminal marker microtubule-associated protein-2 at a later culture period. In vitro experiments indicate that a highly specific niche consisting of various components of the extracellular matrix, including hyaluronic acid, promote cell homing, survival and differentiation.

  1. Stepwise Optimization of the Procedure for Assessment of Circulating Progenitor Cells in Patients with Myocardial Infarction

    OpenAIRE

    Yu-Xin Cui; Tom Johnson; Andreas Baumbach; Reeves, Barnaby C.; Rogers, Chris A; Angelini, Gianni D; Debbie Marsden; Paolo Madeddu

    2012-01-01

    BACKGROUND: The number and functional activity of circulating progenitor cells (CPCs) is altered in diabetic patients. Furthermore, reduced CPC count has been shown to independently predict cardiovascular events. Validation of CPCs as a biomarker for cardiovascular risk stratification requires rigorous methodology. Before a standard operation protocol (SOP) can be designed for such a trial, a variety of technical issues have to be addressed fundamentally, which include the appropriate type of...

  2. The Effect of Heparin-VEGF Multilayer on the Biocompatibility of Decellularized Aortic Valve with Platelet and Endothelial Progenitor Cells

    OpenAIRE

    Xiaofeng Ye; Haozhe Wang; Jingxin Zhou; Haiqing Li; Jun Liu; Zhe Wang; Anqing Chen; Qiang Zhao

    2013-01-01

    The application of polyelectrolyte multilayer films is a new, versatile approach to surface modification of decellularized tissue, which has the potential to greatly enhance the functionality of engineered tissue constructs derived from decellularized organs. In the present study, we test the hypothesis that Heparin- vascular endothelial growth factor (VEGF) multilayer film can not only act as an antithrombotic coating reagent, but also induce proliferation of endothelial progenitor cells (EP...

  3. Endothelial damage in major depression patients is modulated by SSRI treatment, as demonstrated by circulating biomarkers and an in vitro cell model.

    Science.gov (United States)

    Lopez-Vilchez, I; Diaz-Ricart, M; Navarro, V; Torramade, S; Zamorano-Leon, J; Lopez-Farre, A; Galan, A M; Gasto, C; Escolar, G

    2016-01-01

    There is a link between depression, cardiovascular events and inflammation. We have explored this connection through endothelial dysfunction, using in vivo and in vitro approaches. We evaluated circulating biomarkers of endothelial dysfunction in patients with major depression at their diagnosis (MD-0) and during antidepressant treatment with the selective serotonin reuptake inhibitor escitalopram, for 8 and 24 weeks (MD-8 and MD-24). Results were always compared with matched healthy controls (CON). We measured in vivo circulating endothelial cells (CECs) and endothelial progenitor cells (EPCs) in blood samples, and assessed plasma levels of soluble von Willebrand factor (VWF) and vascular cell adhesion molecule-1 (VCAM-1). CEC counts, soluble VWF and VCAM-1 were statistically elevated in MD-0 (Ptreatment. Conversely, EPC levels were lower in MD-0, tending to increase throughout treatment. In vitro studies were performed in human endothelial cells cultured in the presence of sera from each study group. Elevated expression of the inflammation marker intercellular adhesion molecule-1 and oxidative stress, with lower presence of endothelial nitric oxide synthase and higher reactive oxygen species production, were found in cells exposed to MD-0 sera (Ptreatment for 24 weeks. PMID:27598970

  4. Endothelial progenitor cells and estrogen%内皮祖细胞与雌激素

    Institute of Scientific and Technical Information of China (English)

    刘腾; 赵倩; 王雯

    2011-01-01

    BACKGROUND: Estrogen has obviously protective effect on vascular endothelium. Endothelial progenitor cells (EPCs), asprecursors of endothelial cells, take an important role in endothelial recovery.OBJECTIVE: To summarize the characteristics of EPCs as well as the effect of estrogen on EPCs.METHODS: A computer search of PubMed database and CNKI database was performed using the keywords of "endothelialprogenitor cells, estrogen" in English and Chinese, respectively, in the titles and abstracts. All articles related to the characteristicsof endothelial progenitor cells and studies about the effect of estrogen on EPCs were selected.RESULTS AND CONCLUSION: EPCs are the precursors of endothelial cells which have the capacity of proliferation, migration,adhesion and differentiation into vascular endothelial cells. EPCs are existing in both bone marrow and peripheral blood, whichhas become a new therapy target of cardiovascular diseases. Studies have shown that estrogen has protective effect on EPCs:estrogen can improve the proliferation, migration, adhesion and other bioactivities of EPCs, and EPCs senescence are delayedand apoptosis of EPCs are reduced by estrogen treatment. Further research is needed to clarify the specific targets andmechanisms involved in the effect of estrogen on EPCs.%背景:研究发现雌激素对血管内皮具有明显的保护作用,而内皮祖细胞作为内皮细胞的前体细胞参与内皮的修复.目的:总结内皮祖细胞生物特点及雌激素对内皮祖细胞作用的研究进展.方法:应用计算机检索PubMed数据库及CNKI数据库,在标题和摘要中以"内皮祖细胞,雌激素"或"Endothelial progenitor cells,estrogen"为检索词进行检索.选择与内皮祖细胞生物学特点及雌激素对其作用研究相关的文献.结果与结论:内皮祖细胞存在于骨髓和外周血中,是具有增殖、迁移、黏附能力并分化为血管内皮细胞潜能的原始细胞,可作为未来治疗心血管疾病的

  5. Severe Type 2 Diabetes Induces Reversible Modifications of Endothelial Progenitor Cells Which are Ameliorate by Glycemic Control

    Science.gov (United States)

    De Pascale, Maria Rosaria; Bruzzese, Giuseppe; Crimi, Ettore; Grimaldi, Vincenzo; Liguori, Antonio; Brongo, Sergio; Barbieri, Michelangela; Picascia, Antonietta; Schiano, Concetta; Sommese, Linda; Ferrara, Nicola; Paolisso, Giuseppe; Napoli, Claudio

    2016-01-01

    Background Circulating endothelial progenitors cells (EPCs) play a critical role in neovascularization and endothelial repair. There is a growing evidence that hyperglycemia related to Diabetes Mellitus (DM) decreases EPC number and function so promoting vascular complications. Aim of the Study This study investigated whether an intensive glycemic control regimen in Type 2 DM can increase the number of EPCs and restores their function. Methods Sixty-two patients with Type 2 DM were studied. Patients were tested at baseline and after 3 months of an intensive regimen of glycemic control. The Type 2 DM group was compared to control group of subjects without diabetes. Patients with Type 2 DM (mean age 58.2±5.4 years, 25.6% women, disease duration of 15.4±6.3 years) had a baseline HgA1c of 8.7±0.5% and lower EPC levels (CD34+/KDR+) in comparison to healthy controls (p<0.01). Results The intensive glycemic control regimen (HgA1c decreased to 6.2±0.3%) was coupled with a significant increase of EPC levels (mean of 18%, p<0.04 vs. baseline) and number of EPCs CFUs (p<0.05 vs. baseline). Conclusion This study confirms that number and bioactivity of EPCs are reduced in patients with Type 2 DM and, most importantly, that the intensive glycemic control in Type 2 DM promotes EPC improvement both in their number and in bioactivity. PMID:27426095

  6. Comparison of Fibronectin and Collagen in Supporting the Isolation and Expansion of Endothelial Progenitor Cells from Human Adult Peripheral Blood.

    Directory of Open Access Journals (Sweden)

    Elena Colombo

    Full Text Available Endothelial colony-forming cells (ECFCs, are circulating endothelial progenitor cells increasingly studied in various diseases because of their potential for clinical translation. Experimental procedures for their ex vivo culture still lack standardization. In particular two different extracellular matrix proteins, either fibronectin or collagen, are commonly used by different Authors for coating plastic plates, both allowing to obtain cells that have all the features of ECFCs. However, possible differences in the impact of each substrate on ECFCs have not been analysed, so far. Therefore, in this study we investigated whether fibronectin and collagen may differentially affect ECFC cultures.ECFCs were isolated and cultured from peripheral blood mononuclear cells of healthy donors. The impact of fibronectin compared with collagen as the only variable of the experimental procedure was analysed separately in the phase of isolation of ECFC colonies and in the following phase of cell expansion. In the isolation phase, although similar frequencies of colonies were obtained on the two substrates, ECFC colonies appeared some days earlier when mononuclear cells were seeded on fibronectin rather than collagen. In the expansion phase, ECFCs cultured on collagen showed a longer lifespan and higher cell yields compared with ECFCs cultured on fibronectin, possibly related to the higher levels of IL-6 and IL-8 measured in their supernatants. ECFCs cultured on both substrates showed similar immunophenotype and ability for in vitro tube formation.Overall, the results of this study indicate that, although both fibronectin and collagen efficiently sustain ECFC cultures, each of them brings some advantages within individual steps of the entire process. We suggest that colony isolation performed on fibronectin followed by cell expansion performed on collagen may represent a novel and the most efficient strategy to obtain ECFCs from adult peripheral blood samples.

  7. Characterization of a distinct population of circulating human non-adherent endothelial forming cells and their recruitment via intercellular adhesion molecule-3.

    Directory of Open Access Journals (Sweden)

    Sarah L Appleby

    Full Text Available Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133(+ population of non-adherent endothelial forming cells (naEFCs which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38 together with mature endothelial cell markers (VEGFR2, CD144 and CD31. These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8 or myeloid markers (CD11b and CD14 which distinguishes them from 'early' endothelial progenitor cells (EPCs. Functional studies demonstrated that these naEFCs (i bound Ulex europaeus lectin, (ii demonstrated acetylated-low density lipoprotein uptake, (iii increased vascular cell adhesion molecule (VCAM-1 surface expression in response to tumor necrosis factor and (iv in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs. Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis.

  8. CD34+ cells represent highly functional endothelial progenitor cells in murine bone marrow.

    Directory of Open Access Journals (Sweden)

    Junjie Yang

    Full Text Available BACKGROUND: Endothelial progenitor cells (EPCs were shown to have angiogenic potential contributing to neovascularization. However, a clear definition of mouse EPCs by cell surface markers still remains elusive. We hypothesized that CD34 could be used for identification and isolation of functional EPCs from mouse bone marrow. METHODOLOGY/PRINCIPAL FINDINGS: CD34(+ cells, c-Kit(+/Sca-1(+/Lin(- (KSL cells, c-Kit(+/Lin(- (KL cells and Sca-1(+/Lin(- (SL cells were isolated from mouse bone marrow mononuclear cells (BMMNCs using fluorescent activated cell sorting. EPC colony forming capacity and differentiation capacity into endothelial lineage were examined in the cells. Although CD34(+ cells showed the lowest EPC colony forming activity, CD34(+ cells exhibited under endothelial culture conditions a more adherent phenotype compared with the others, demonstrating the highest mRNA expression levels of endothelial markers vWF, VE-cadherin, and Flk-1. Furthermore, a dramatic increase in immediate recruitment of cells to the myocardium following myocardial infarction and systemic cell injection was observed for CD34(+ cells comparing with others, which could be explained by the highest mRNA expression levels of key homing-related molecules Integrin β2 and CXCR4 in CD34(+ cells. Cell retention and incorporation into the vasculature of the ischemic myocardium was also markedly increased in the CD34(+ cell-injected group, giving a possible explanation for significant reduction in fibrosis area, significant increase in neovascularization and the best cardiac functional recovery in this group in comparison with the others. CONCLUSION: These findings suggest that mouse CD34(+ cells may represent a functional EPC population in bone marrow, which could benefit the investigation of therapeutic EPC biology.

  9. TNFα-DAMAGED-HUVECs MICROPARTICLES MODIFY ENDOTHELIAL PROGENITOR CELL FUNCTIONAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Carlos eLuna Ruiz

    2015-12-01

    Full Text Available Endothelial progenitor cells (EPCs have an important role in the maintenance of vascular integrity and homeostasis. While there are many studies that explain EPCs mechanisms action, there are few studies that demonstrate how they interact with other emerging physiological elements such as Endothelial Microparticles (EMPs. EMPs are membranous structures with a size between 100-1000nm that act as molecular information transporter in biological systems and are known as an important elements in develop of different pathologies; moreover a lot of works explains that are novel biomarkers. To elucidate these interactions, we proposed an in vitro model of endothelial damage mediated by TNF-alpha, in which damaged EMPs and EPCs are in contact to assess EPCs functional effects. We have observed that damaged EMPs can modulate several EPCs classic factors as colony forming units (CFUs, contribution to repair a physically damaged endothelium (wound healing, binding to mature endothelium, and co-adjuvants to the formation of new vessels in vitro (angiogenesis. All of these in a dose-dependent manner. Damaged EMPs at a concentration of 103 MPs/ml have an activating effect of these capabilities, while at concentrations of 105 MPs/ml these effects are attenuated or reduced. This in vitro model helps explain that in diseases where there is an imbalance between these two elements (EPCs and damaged EMPs, the key cellular elements in the regeneration and maintenance of vascular homeostasis (EPCs are not fully functional, and could explain, at least in part, endothelial dysfunction associated in various pathologies.

  10. Cell-based monitoring of cancer : Circulating tumor and endothelial cells

    NARCIS (Netherlands)

    J. Kraan (Jaco)

    2015-01-01

    markdownabstractThis thesis aimed to optimize the predictive and prognostic information that can be obtained from Circulating Tumor cells (CTC) and Circulating Endothelial Cells (CEC) in whole blood by improving and standardization of their detection and characterization methods in patients with sol

  11. Circulating endothelial cells in coronary artery disease and acute coronary syndrome

    NARCIS (Netherlands)

    Schmidt, David E; Manca, Marco; Höfer, Imo E

    2015-01-01

    Circulating endothelial cells (CECs) have been put forward as a promising biomarker for diagnosis and prognosis of coronary artery disease and acute coronary syndromes. This review entails current insights into the physiology and pathobiology of CECs, including their relationship with circulating en

  12. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    Science.gov (United States)

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. PMID:27016579

  13. Protective effects ofMallotus furetianus on functions of endothelial progenitor cells in atherosclerotic rats

    Institute of Scientific and Technical Information of China (English)

    Yue-Li Liu; Dan Zhou; Lian-Bo Lin; Chen Yang

    2015-01-01

    Objective:To investigate protective effects ofMallotus furetianus(M. furetianus)on functions of endothelial progenitor cells (EPCs) in atherosclerotic rats.Methods:Atherosclerosis was established by intraperitoneal injection of vitamin D3 combined with high fat diet for 9 weeks. Extracts ofM. furetianus were given to prevent damage of EPCs in dose of 0.081 g/kg and 0.026 g/kg. Rats were sacrificed, and then mononuclear cells were isolated from bone marrow to culture EPCs and test the functions of EPCs.Results:M. furetianus can improve the capacities of EPCs on proliferation, migration, adhesion, and tubule formation in doses of 0.081 g/kg; improve adhesion, and tubule formation in dose of 0.026 g/kg in atherosclerotic rats. Conclusion:M. furetianus can protect functions of EPCs in atherosclerotic rats.

  14. Decellularization and Recellularization of Rat Livers With Hepatocytes and Endothelial Progenitor Cells.

    Science.gov (United States)

    Zhou, Pengcheng; Huang, Yan; Guo, Yibing; Wang, Lei; Ling, Changchun; Guo, Qingsong; Wang, Yao; Zhu, Shajun; Fan, Xiangjun; Zhu, Mingyan; Huang, Hua; Lu, Yuhua; Wang, Zhiwei

    2016-03-01

    Whole-organ decellularization has been identified as a promising choice for tissue engineering. The aim of the present study was to engineer intact whole rat liver scaffolds and repopulate them with hepatocytes and endothelial progenitor cells (EPCs) in a bioreactor. Decellularized liver scaffolds were obtained by perfusing Triton X-100 with ammonium hydroxide. The architecture and composition of the original extracellular matrix were preserved, as confirmed by morphologic, histological, and immunolabeling methods. To determine biocompatibility, the scaffold was embedded in the subcutaneous adipose layer of the back of a heterologous animal to observe the infiltration of inflammatory cells. Hepatocytes were reseeded using a parenchymal injection method and cultured by continuous perfusion. EPCs were reseeded using a portal vein infusion method. Morphologic and functional examination showed that the hepatocytes and EPCs grew well in the scaffold. The present study describes an effective method of decellularization and recellularization of rat livers, providing the foundation for liver engineering and the development of bioartificial livers.

  15. Circulating endothelial cells and microparticles as prognostic markers in advanced non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Tania Fleitas

    Full Text Available BACKGROUND: Circulating endothelial cells and microparticles have prognostic value in cancer, and might be predictors of response to chemotherapy and antiangiogenic treatments. We have investigated the prognostic value of circulating endothelial cells and microparticles in patients treated for advanced non-small cell lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: Peripheral blood samples were obtained from 60 patients before first line, platinum-based chemotherapy +/- bevacizumab, and after the third cycle of treatment. Blood samples from 60 healthy volunteers were also obtained as controls. Circulating endothelial cells were measured by an immunomagnetic technique and immunofluorescence microscopy. Phosphatidylserine-positive microparticles were evaluated by flow cytometry. Microparticle-mediated procoagulant activity was measured by the endogen thrombin generation assay. RESULTS: pre- and posttreatment levels of markers were higher in patients than in controls (p<0.0001. Elevated levels of microparticles were associated with longer survival. Elevated pretreatment levels of circulating endothelial cells were associated with shorter survival. CONCLUSIONS/SIGNIFICANCE: Circulating levels of microparticles and circulating endothelial cells correlate with prognosis, and could be useful as prognostic markers in patients with advanced non-small cell lung cancer.

  16. Overexpression of LOXIN Protects Endothelial Progenitor Cells From Apoptosis Induced by Oxidized Low Density Lipoprotein.

    Science.gov (United States)

    Veas, Carlos; Jara, Casandra; Willis, Naomi D; Pérez-Contreras, Karen; Gutierrez, Nicolas; Toledo, Jorge; Fernandez, Paulina; Radojkovic, Claudia; Zuñiga, Felipe A; Escudero, Carlos; Aguayo, Claudio

    2016-04-01

    Human endothelial progenitor cells (hEPC) are adult stem cells located in the bone marrow and peripheral blood. Studies have indicated that hEPC play an important role in the recovery and repair of injured endothelium, however, their quantity and functional capacity is reduced in several diseases including hypercholesterolemia. Recently, it has been demonstrated that hEPC express lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and its activation by oxidized low-density lipoprotein (ox-LDL) induces cellular dysfunction and apoptosis. This study aimed to investigate whether overexpression of LOXIN, a truncated isoform of LOX-1 that acts as a dominant negative, plays a protective role against ox-LDL-induced apoptosis in hEPC. Human endothelial progenitor cells exposed to ox-LDL showed a significant increase in LOX-1 expression, and apoptosis began at ox-LDL concentrations above 50 μg/mL. All hEPC apoptosed at 200 μg/mL ox-LDL. High LOXIN expression was generated using adenoviral systems in hEPC and SiHa cells transduced with 100 colony-forming units per cell. Transduced LOXIN localized to the plasma membrane and blocked ox-LDL uptake mediated by LOX-1. Overexpression of LOXIN protected hEPC from ox-LDL-induced apoptosis, and therefore maybe a novel way of improving hEPC function and quantity. These results suggest that adenoviral vectors of LOXIN may provide a possible treatment for diseases related to ox-LDL and vascular endothelium dysfunction, including atherosclerosis.

  17. Folic acid supplementation normalizes the endothelial progenitor cell transcriptome of patients with type 1 diabetes: a case-control pilot study

    Directory of Open Access Journals (Sweden)

    Stubbs Andrew

    2009-08-01

    Full Text Available Abstract Background Endothelial progenitor cells play an important role in vascular wall repair. Patients with type 1 diabetes have reduced levels of endothelial progenitor cells of which their functional capacity is impaired. Reduced nitric oxide bioavailability and increased oxidative stress play a role in endothelial progenitor cell dysfunction in these patients. Folic acid, a B-vitamin with anti-oxidant properties, may be able to improve endothelial progenitor cell function. In this study, we investigated the gene expression profiles of endothelial progenitor cells from patients with type 1 diabetes compared to endothelial progenitor cells from healthy subjects. Furthermore, we studied the effect of folic acid on gene expression profiles of endothelial progenitor cells from patients with type 1 diabetes. Methods We used microarray analysis to investigate the gene expression profiles of endothelial progenitor cells from type 1 diabetes patients before (n = 11 and after a four week period of folic acid supplementation (n = 10 compared to the gene expression profiles of endothelial progenitor cells from healthy subjects (n = 11. The probability of genes being differentially expressed among the classes was computed using a random-variance t-test. A multivariate permutation test was used to identify genes that were differentially expressed among the two classes. Functional classification of differentially expressed genes was performed using the biological process ontology in the Gene Ontology database. Results Type 1 diabetes significantly modulated the expression of 1591 genes compared to healthy controls. These genes were found to be involved in processes regulating development, cell communication, cell adhesion and localization. After folic acid treatment, endothelial progenitor cell gene expression profiles from diabetic patients were similar to those from healthy controls. Genes that were normalized by folic acid played a prominent role in

  18. Irisin Increased the Number and Improved the Function of Endothelial Progenitor Cells in Diabetes Mellitus Mice

    Science.gov (United States)

    Wang, Jinxiang; Song, Mingbao; Zhou, Fang; Fu, Dagan; Ruan, Guangping; Zhu, Xiangqing; Bai, Yinyin; Huang, Lan; Pang, Rongqing; Kang, Huali

    2016-01-01

    Abstract: The dysfunction of endothelial progenitor cells (EPCs) was found to be associated with vascular complications in diabetes mellitus (DM) patients. Previous studies found that regular exercise could improve the function of EPCs in DM patients, but the underling mechanism was unclear. Irisin, a newly identified myokine, was induced by exercise and has been demonstrated to mediate some of the positive effects of exercise. In this study, we hypothesize that irisin may have direct effects on EPC function in DM mice. These data showed for the first time that irisin increased the number of EPCs in peripheral blood of DM mice and improved the function of EPCs derived from DM mice bone marrow. The mechanism for the effect of irisin is related to the PI3K/Akt/eNOS pathway. Furthermore, irisin was demonstrated to improve endothelial repair in DM mice that received EPC transplants after carotid artery injury. The results of this study indicate a novel effect of irisin in regulating the number and function of EPCs via the PI3K/Akt/eNOS pathway, suggesting a potential for the administration of exogenous irisin as a succedaneum to improve EPC function in diabetic patients who fail to achieve such improvements through regular exercise. PMID:27002278

  19. Butein Inhibits Angiogenesis of Human Endothelial Progenitor Cells via the Translation Dependent Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ching-Hu Chung

    2013-01-01

    Full Text Available Compelling evidence indicates that bone marrow-derived endothelial progenitor cells (EPCs can contribute to postnatal neovascularization and tumor angiogenesis. EPCs have been shown to play a “catalytic” role in metastatic progression by mediating the angiogenic switch. Understanding the pharmacological functions and molecular targets of natural products is critical for drug development. Butein, a natural chalcone derivative, has been reported to exert potent anticancer activity. However, the antiangiogenic activity of butein has not been addressed. In this study, we found that butein inhibited serum- and vascular endothelial growth factor- (VEGF- induced cell proliferation, migration, and tube formation of human EPCs in a concentration dependent manner without cytotoxic effect. Furthermore, butein markedly abrogated VEGF-induced vessels sprouting from aortic rings and suppressed microvessel formation in the Matrigel implant assay in vivo. In addition, butein concentration-dependently repressed the phosphorylation of Akt, mTOR, and the major downstream effectors, p70S6K, 4E-BP1, and eIF4E in EPCs. Taken together, our results demonstrate for the first time that butein exhibits the antiangiogenic effect both in vitro and in vivo by targeting the translational machinery. Butein is a promising angiogenesis inhibitor with the potential for treatment of cancer and other angiogenesis-related diseases.

  20. Circulating endothelial cells and procoagulant microparticles in patients with glioblastoma: prognostic value.

    Directory of Open Access Journals (Sweden)

    Gaspar Reynés

    Full Text Available AIM: Circulating endothelial cells and microparticles are prognostic factors in cancer. However, their prognostic and predictive value in patients with glioblastoma is unclear. The objective of this study was to investigate the potential prognostic value of circulating endothelial cells and microparticles in patients with newly diagnosed glioblastoma treated with standard radiotherapy and concomitant temozolomide. In addition, we have analyzed the methylation status of the MGMT promoter. METHODS: Peripheral blood samples were obtained before and at the end of the concomitant treatment. Blood samples from healthy volunteers were also obtained as controls. Endothelial cells were measured by an immunomagnetic technique and immunofluorescence microscopy. Microparticles were quantified by flow cytometry. Microparticle-mediated procoagulant activity was measured by endogen thrombin generation and by phospholipid-dependent clotting time. Methylation status of MGMT promoter was determined by multiplex ligation-dependent probe amplification. RESULTS: Pretreatment levels of circulating endothelial cells and microparticles were higher in patients than in controls (p<0.001. After treatment, levels of microparticles and thrombin generation decreased, and phospholipid-dependent clotting time increased significantly. A high pretreatment endothelial cell count, corresponding to the 99(th percentile in controls, was associated with poor overall survival. MGMT promoter methylation was present in 27% of tumor samples and was associated to a higher overall survival (66 weeks vs 30 weeks, p<0.004. CONCLUSION: Levels of circulating endothelial cells may have prognostic value in patients with glioblastoma.

  1. VEGF 165 Gene Therapy for Patients with Refractory Angina: Mobilization of Endothelial Progenitor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Clarissa G. [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Duke University Medical Center, Durham, North Carolina (United States); Plentz, Rodrigo D.M. [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Dipp, Thiago [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Salles, Felipe B. [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Giusti, Imarilde I.; Sant' Anna, Roberto T.; Eibel, Bruna; Nesralla, Ivo A.; Markoski, Melissa [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Beyer, Nance N. [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Kalil, Renato A. K., E-mail: kalil.pesquisa@gmail.com [Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil)

    2013-08-15

    Vascular endothelial growth factor (VEGF) induces mobilization of endothelial progenitor cells (EPCs) with the capacity for proliferation and differentiation into mature endothelial cells, thus contributing to the angiogenic process. We sought to assess the behavior of EPCs in patients with ischemic heart disease and refractory angina who received an intramyocardial injections of 2000 µg of VEGF 165 as the sole therapy. The study was a subanalysis of a clinical trial. Patients with advanced ischemic heart disease and refractory angina were assessed for eligibility. Inclusion criteria were as follows: signs and symptoms of angina and/or heart failure despite maximum medical treatment and a myocardial ischemic area of at least 5% as assessed by single-photon emission computed tomography (SPECT). Exclusion criteria were as follows: age > 65 years, left ventricular ejection fraction < 25%, and a diagnosis of cancer. Patients whose EPC levels were assessed were included. The intervention was 2000 µg of VEGF 165 plasmid injected into the ischemic myocardium. The frequency of CD34+/KDR+ cells was analyzed by flow cytometry before and 3, 9, and 27 days after the intervention. A total of 9 patients were included, 8 males, mean age 59.4 years, mean left ventricular ejection fraction of 59.3% and predominant class III angina. The number of EPCs on day 3 was significantly higher than that at baseline (p = 0.03); however, that on days 9{sup th} and 27{sup th} was comparable to that at baseline. We identified a transient mobilization of EPCs, which peaked on the 3th day after VEGF 165 gene therapy in patients with refractory angina and returned to near baseline levels on 9{sup th} and 27{sup th}days.

  2. VEGF 165 Gene Therapy for Patients with Refractory Angina: Mobilization of Endothelial Progenitor Cells

    International Nuclear Information System (INIS)

    Vascular endothelial growth factor (VEGF) induces mobilization of endothelial progenitor cells (EPCs) with the capacity for proliferation and differentiation into mature endothelial cells, thus contributing to the angiogenic process. We sought to assess the behavior of EPCs in patients with ischemic heart disease and refractory angina who received an intramyocardial injections of 2000 µg of VEGF 165 as the sole therapy. The study was a subanalysis of a clinical trial. Patients with advanced ischemic heart disease and refractory angina were assessed for eligibility. Inclusion criteria were as follows: signs and symptoms of angina and/or heart failure despite maximum medical treatment and a myocardial ischemic area of at least 5% as assessed by single-photon emission computed tomography (SPECT). Exclusion criteria were as follows: age > 65 years, left ventricular ejection fraction < 25%, and a diagnosis of cancer. Patients whose EPC levels were assessed were included. The intervention was 2000 µg of VEGF 165 plasmid injected into the ischemic myocardium. The frequency of CD34+/KDR+ cells was analyzed by flow cytometry before and 3, 9, and 27 days after the intervention. A total of 9 patients were included, 8 males, mean age 59.4 years, mean left ventricular ejection fraction of 59.3% and predominant class III angina. The number of EPCs on day 3 was significantly higher than that at baseline (p = 0.03); however, that on days 9th and 27th was comparable to that at baseline. We identified a transient mobilization of EPCs, which peaked on the 3th day after VEGF 165 gene therapy in patients with refractory angina and returned to near baseline levels on 9th and 27thdays

  3. Biophysical Properties of Scaffolds Modulate Human Blood Vessel Formation from Circulating Endothelial Colony-Forming Cells

    Science.gov (United States)

    Critser, Paul J.; Yoder, Mervin C.

    A functional vascular system forms early in development and is continually remodeled throughout the life of the organism. Impairment to the regeneration or repair of this system leads to tissue ischemia, dysfunction, and disease. The process of vascular formation and remodeling is complex, relying on local microenvironmental cues, cytokine signaling, and multiple cell types to function properly. Tissue engineering strategies have attempted to exploit these mechanisms to develop functional vascular networks for the generation of artificial tissues and therapeutic strategies to restore tissue homeostasis. The success of these strategies requires the isolation of appropriate progenitor cell sources which are straightforward to obtain, display high proliferative potential, and demonstrate an ability to form functional vessels. Several populations are of interest including endothelial colony-forming cells, a subpopulation of endothelial progenitor cells. Additionally, the development of scaffolds to deliver and support progenitor cell survival and function is crucial for the formation of functional vascular networks. The composition and biophysical properties of these scaffolds have been shown to modulate endothelial cell behavior and vessel formation. However, further investigation is needed to better understand how these mechanical properties and biophysical properties impact vessel formation. Additionally, several other cell populations are involved in neoangiogenesis and formation of tissue parenchyma and an understanding of the potential impact of these cell populations on the biophysical properties of scaffolds will also be needed to advance these strategies. This chapter examines how the biophysical properties of matrix scaffolds can influence vessel formation and remodeling and, in particular, the impact on in vivo human endothelial progenitor cell vessel formation.

  4. Circulating Endothelial Cells in Patients with Heart Failure and Left Ventricular Dysfunction

    Directory of Open Access Journals (Sweden)

    Vicenta Martínez-Sales

    2011-01-01

    Full Text Available Introduction and Aims: Acute and chronic heart failure may manifest different degrees of endothelial damage and angiogenesis. Circulating endothelial cells (CEC have been identified as marker of vascular damage. The aim of our study was to evaluate the evolution of the CEC at different stages of patients with heart failure. We also investigated a potential correlation between CEC and markers of vascular damage and angiogenesis.

  5. Exercise-induced norepinephrine decreases circulating hematopoietic stem and progenitor cell colony-forming capacity.

    Directory of Open Access Journals (Sweden)

    Julia M Kröpfl

    Full Text Available A recent study showed that ergometry increased circulating hematopoietic stem and progenitor cell (CPC numbers, but reduced hematopoietic colony forming capacity/functionality under normoxia and normobaric hypoxia. Herein we investigated whether an exercise-induced elevated plasma free/bound norepinephrine (NE concentration could be responsible for directly influencing CPC functionality. Venous blood was taken from ten healthy male subjects (25.3+/-4.4 yrs before and 4 times after ergometry under normoxia and normobaric hypoxia (FiO2<0.15. The circulating hematopoietic stem and progenitor cell numbers were correlated with free/bound NE, free/bound epinephrine (EPI, cortisol (Co and interleukin-6 (IL-6. Additionally, the influence of exercise-induced NE and blood lactate (La on CPC functionality was analyzed in a randomly selected group of subjects (n = 6 in vitro under normoxia by secondary colony-forming unit granulocyte macrophage assays. Concentrations of free NE, EPI, Co and IL-6 were significantly increased post-exercise under normoxia/hypoxia. Ergometry-induced free NE concentrations found in vivo showed a significant impairment of CPC functionality in vitro under normoxia. Thus, ergometry-induced free NE was thought to trigger CPC mobilization 10 minutes post-exercise, but as previously shown impairs CPC proliferative capacity/functionality at the same time. The obtained results suggest that an ergometry-induced free NE concentration has a direct negative effect on CPC functionality. Cortisol may further influence CPC dynamics and functionality.

  6. 规律运动增加内皮祖细胞数量和功能改善衰老血管弹性*****☆%Regular exercise improves age-related decline in arterial elasticity by enhancing number and activity of endothelial progenitor cells

    Institute of Scientific and Technical Information of China (English)

    杨震; 张媛媛; 夏文豪; 罗初凡; 陈龙; 靳亚飞; 欧志君; 廖新学; 陶军

    2013-01-01

    circulating endothelial progenitor cel s. OBJECTIVE: To investigate whether regular exercise-induced enhanced circulating endothelial progenitor cel s improves age-related decline in arterial elasticity in healthy men. METHODS:Effects of regular exercise on circulating endothelial progenitor cel s of 10 older and 10 young healthy men undergoing 3 months regular exercise were observed. Flow cytometry analysis was performed to evaluate the number of CD34 and KDR double-positive labeled circulating endothelial progenitor cel s before and after exercise, and acetylated low-density lipoprotein;and lectin fluorescent staining method was used to evaluate the number of cultured endothelial progenitor cel s. The migratory and proliferative activities of endothelial progenitor cel s were also evaluated. In addition, brachial-ankle pulse wave velocities of older and young sedentary healthy men were measured. RESULTS AND CONCLUSION:Compared with young healthy men, the older healthy men exhibited decreased number and activity of circulating endothelial progenitor cel s and increased brachial-ankle pulse wave velocities. Flow cytometry analysis showed that the circulating endothelial progenitor cel s positive for CD34 and KDR in the peripheral blood increased after regular exercise. The acetylated-low-density lipoprotein and lectin fluorescent staining method indicated that the cultured endothelial progenitor cel s also increased after exercise. The proliferative and migratory activities of cultured endothelial progenitor cel s were significantly higher after exercise. However, the increased number and activity of circulating endothelial progenitor cel s and decreased brachial-ankle pulse wave velocities of older sedentary healthy men were higher. There was a closely positive correlation between increased circulating endothelial progenitor cel s and decreased brachial-ankle pulse wave velocities. Multivariate analysis identified increased proliferative activity of circulating endothelial

  7. 肾移植患者外周血来源的血管内皮祖细胞的促血管新生作用研究%The angiogenic mechanisms of endothelial progenitor cells from the peripheral circulation in kidney transplantation patients

    Institute of Scientific and Technical Information of China (English)

    宋一萌; 李明真; 马潞林

    2016-01-01

    Objective To explore the angiogenic function of EPC from peripheral blood in kidney transplanted patient and to reveal its regulative mechanism.Methods 23 chronic renal failure patients without diabetes were recruited in department of Urology Peking University Third Hospital from January 2014 to February 2015.Fasting peripheral blood mixed with heparin (20 U/mL) was collected one day before and 24 hours after kidney transplantation.We set preoperative blood as control and the postoperative blood as the experimental group.EPC from peripheral blood were isolated by density-gradient centrifugation.FACS was used to identify the EPC.The AA metabolites PGE2 in EPC cultured medium was measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS).Q-PCR and WB were used to detect the expression of endothelial markers in HUVEC cultured under the EPC conditional medium.Tube formation assay was performed to assess the angiogenic ability of HUVEC.Results EPC from kidney transplantation expressed c-kit and CD31 by FACS analysis.Multiple types of AA metabolites was detected in the conditional medium by LC-MS/MS and level of PGE2 increased into two folds after kidney transplantation, compared with that before operation(P < 0.05).HUVEC highly expressed CD31 and VE-cadherin cultured under conditional medium, which were 1.5 folds compared with that before operation (P < 0.01).And those cells formed more tubes than that in control group, which showed better angiogenic capacity.HUVEC, treated by PGE2, had the similar biological characteristics like the conditional culture.Conclusions EPCs in the peripheral blood form kidney transplantation patient secret the PGE2, which can enhance the capacity of angiogenesis in HUVEC.%目的 探讨肾移植患者术后外周血中血管内皮祖细胞(endothelial progenitor cell,EPC)间接调控内皮细胞血管新生过程的作用和机制.方法 2014年1月至2015年2月收治的23例不合并糖尿病的慢性肾衰

  8. Autologous Endothelial Progenitor Cell-Seeding Technology and Biocompatibility Testing For Cardiovascular Devices in Large Animal Model

    OpenAIRE

    Jantzen, Alexandra E.; Lane, Whitney O.; Gage, Shawn M.; Haseltine, Justin M; Galinat, Lauren J; Jamiolkowski, Ryan M.; Lin, Fu-Hsiung; Truskey, George A.; Achneck, Hardean E.

    2011-01-01

    Implantable cardiovascular devices are manufactured from artificial materials (e.g. titanium (Ti), expanded polytetrafluoroethylene), which pose the risk of thromboemboli formation1,2,3. We have developed a method to line the inside surface of Ti tubes with autologous blood-derived human or porcine endothelial progenitor cells (EPCs)4. By implanting Ti tubes containing a confluent layer of porcine EPCs in the inferior vena cava (IVC) of pigs, we tested the improved biocompatibility of the cel...

  9. Negative-pressure wound therapy induces endothelial progenitor cell mobilization in diabetic patients with foot infection or skin defects

    OpenAIRE

    Seo, Sang Gyo; Yeo, Ji Hyun; Kim, Ji Hye; Kim, Ji-Beom; Cho, Tae-Joon; Lee, Dong Yeon

    2013-01-01

    Non healing chronic wounds are difficult to treat in patients with diabetes and can result in severe medical problems for these patients and for society. Negative-pressure wound therapy (NPWT) has been adopted to treat intractable chronic wounds and has been reported to be effective. However, the mechanisms underlying the effects of this treatment have not been elucidated. To assess the vasculogenic effect of NPWT, we evaluated the systemic mobilization of endothelial progenitor cells (EPCs) ...

  10. Endothelial Progenitor Cells in Long-Standing Asymptomatic Type 1 Diabetic Patients with or without Diabetic Nephropathy

    DEFF Research Database (Denmark)

    Reinhard, Henrik; Jacobsen, Peter Karl; Lajer, Maria;

    2011-01-01

    A decrease in the number and dysfunction of endothelial progenitor cells (EPC) may increase the risk for progression of cardiovascular disease (CVD) in type 1 diabetic patients with diabetic nephropathy (DN). Our aim was to evaluate EPC numbers in asymptomatic CVD type 1 diabetic patients with or...... patients with DN had EPC numbers similar to normoalbuminuric patients, which was related to aggressive CVD intervention therapy. This may have contributed to the low prevalence of CVD....

  11. Bradykinin preconditioning improves therapeutic potential of human endothelial progenitor cells in infarcted myocardium.

    Directory of Open Access Journals (Sweden)

    Zulong Sheng

    Full Text Available OBJECTIVES: Stem cell preconditioning (PC is a powerful approach in reducing cell death after transplantation. We hypothesized that PC human endothelial progenitor cells (hEPCs with bradykinin (BK enhance cell survival, inhibit apoptosis and repair the infarcted myocardium. METHODS: The hEPCs were preconditioned with or without BK. The hEPCs apoptosis induced by hypoxia along with serum deprivation was determined by annexin V-fluorescein isothiocyanate/ propidium iodide staining. Cleaved caspase-3, Akt and eNOS expressions were determined by Western blots. Caspase-3 activity and vascular endothelial growth factor (VEGF levels were assessed in hEPCs. For in vivo studies, the survival and cardiomyocytes apoptosis of transplanted hEPCs were assessed using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodi- carbocyanine,4-chlorobenzenesul-fonate salt labeled hEPCs and TUNEL staining. Infarct size and cardiac function were measured at 10 days after transplantation, and the survival of transplanted hEPCs were visualized using near-infrared optical imaging. RESULTS: In vitro data showed a marked suppression in cell apoptosis following BK PC. The PC reduced caspase-3 activation, increased the Akt, eNOS phosphorylation and VEGF levels. In vivo data in preconditioned group showed a robust cell anti-apoptosis, reduction in infarct size, and significant improvement in cardiac function. The effects of BK PC were abrogated by the B2 receptor antagonist HOE140, the Akt and eNOS antagonists LY294002 and L-NAME, respectively. CONCLUSIONS: The activation of B2 receptor-dependent PI3K/Akt/eNOS pathway by BK PC promotes VEGF secretion, hEPC survival and inhibits apoptosis, thereby improving cardiac function in vivo. The BK PC hEPC transplantation for stem cell-based therapies is a novel approach that has potential for clinical used.

  12. Changes of Number and Function of Late Endothelial Progenitor Cells in Peripheral Blood of COPD Patients Combined with Pulmonary Hypertension.

    Science.gov (United States)

    Liu, Pei; Zhang, Hongmei; Liu, Jianxin; Sheng, Chunfeng; Zhang, Linlin; Zeng, Yanjun

    2016-06-01

    Objective The objective of this study was to investigate the changes of number and function of late endothelial progenitor cells (EPCs) in peripheral blood of chronic obstructive pulmonary disease (COPD) patients combined with pulmonary hypertension. Subjects and Methods The study enrolled 120 cases including 40 non-COPD and pulmonary arterial hypertension (PAH) patients (non-COPD group), 40 COPD non-PAH patients (COPD group), and 40 COPD patients combined with PAH (COPD + PAH group). Peripheral blood mononuclear cells were separated by density gradient centrifugation, cultured for 21 days, and then identified as late endothelial progenitor cells. The cell colonies were counted. MTT assay, modified Boyden chamber assay, and human fibronectin plates were used to measure the proliferation, migration, and adhesion functions of the late endothelial progenitor cells, respectively. Results Compared with non-COPD and COPD groups, the number of peripheral blood late EPCs in COPD + PAH group was significantly reduced, and the proliferation, adhesion, and migration capacities were significantly lowered; the differences were statistically significant (p number and function of late EPCs decreased with the increase of pulmonary artery pressure (p number of late EPCs in COPD patients combined with pulmonary hypertension was reduced, which implies the impaired cell functions. The changes of number and function were negatively correlated with the severity of pulmonary hypertension.

  13. Trichostatin A enhances vascular repair by injected human endothelial progenitors through increasing the expression of TAL1-dependent genes.

    Science.gov (United States)

    Palii, Carmen G; Vulesevic, Branka; Fraineau, Sylvain; Pranckeviciene, Erinija; Griffith, Alexander J; Chu, Alphonse; Faralli, Hervé; Li, Yuhua; McNeill, Brian; Sun, Jie; Perkins, Theodore J; Dilworth, F Jeffrey; Perez-Iratxeta, Carol; Suuronen, Erik J; Allan, David S; Brand, Marjorie

    2014-05-01

    A major goal of cell therapy for vascular diseases is to promote revascularization through the injection of endothelial stem/progenitor cells. The gene regulatory mechanisms that underlie endothelial progenitor-mediated vascular repair, however, remain elusive. Here, we identify the transcription factor TAL1/SCL as a key mediator of the vascular repair function of primary human endothelial colony-forming cells (ECFCs). Genome-wide analyses in ECFCs demonstrate that TAL1 activates a transcriptional program that promotes cell adhesion and migration. At the mechanistic level, we show that TAL1 upregulates the expression of migratory and adhesion genes through recruitment of the histone acetyltransferase p300. Based on these findings, we establish a strategy that enhances the revascularization efficiency of ECFCs after ischemia through ex vivo priming with the histone deacetylase inhibitor TSA. Thus, small molecule epigenetics drugs are effective tools for modifying the epigenome of stem/progenitor cells prior to transplantation as a means to enhance their therapeutic potential. PMID:24792117

  14. Vascular endothelial growth factor in the circulation in cancer patients may not be a relevant biomarker

    OpenAIRE

    Tatjana M H Niers; Richel, Dick J.; Meijers, Joost C.M.; Schlingemann, Reinier O.

    2011-01-01

    BACKGROUND: Levels of circulating vascular endothelial growth factor (VEGF) have widely been used as biomarker for angiogenic activity in cancer. For this purpose, non-standardized measurements in plasma and serum were used, without correction for artificial VEGF release by platelets activated ex vivo. We hypothesize that "true" circulating (c)VEGF levels in most cancer patients are low and unrelated to cancer load or tumour angiogenesis. METHODOLOGY: We determined VEGF levels in PECT, a medi...

  15. TNFα Regulates Endothelial Progenitor Cell Migration via CADM1 and NF-kB

    Science.gov (United States)

    Prisco, Anthony R.; Hoffmann, Brian R.; Kaczorowski, Catherine C.; McDermott-Roe, Chris; Stodola, Timothy J.; Exner, Eric C.; Greene, Andrew S.

    2016-01-01

    Shortly after the discovery of endothelial progenitor cells (EPCs) in 1997, many clinical trials were conducted using EPCs as a cellular based therapy with the goal of restoring damaged organ function by inducing growth of new blood vessels (angiogenesis). Results were disappointing, largely because the cellular and molecular mechanisms of EPC-induced angiogenesis were not clearly understood. Following injection, EPCs must migrate to the target tissue and engraft prior to induction of angiogenesis. In this study EPC migration was investigated in response to tumor necrosis factor α (TNFα), a pro-inflammatory cytokine, to test the hypothesis that organ damage observed in ischemic diseases induces an inflammatory signal that is important for EPC homing. In this study, EPC migration and incorporation were modeled in vitro using a co-culture assay where TNFα treated EPCs were tracked while migrating towards vessel-like structures. It was found that TNFα treatment of EPCs increased migration and incorporation into vessel-like structures. Using a combination of genomic and proteomic approaches, NF-kB mediated upregulation of CADM1 was identified as a mechanism of TNFα induced migration. Inhibition of NF-kB or CADM1 significantly decreased migration of EPCs in vitro suggesting a role for TNFα signaling in EPC homing during tissue repair. PMID:26867147

  16. Circulating Hematopoietic Stem and Progenitor Cells in Aging Atomic Bomb Survivors.

    Science.gov (United States)

    Kyoizumi, Seishi; Kubo, Yoshiko; Misumi, Munechika; Kajimura, Junko; Yoshida, Kengo; Hayashi, Tomonori; Imai, Kazue; Ohishi, Waka; Nakachi, Kei; Young, Lauren F; Shieh, Jae-Hung; Moore, Malcolm A; van den Brink, Marcel R M; Kusunoki, Yoichiro

    2016-01-01

    It is not yet known whether hematopoietic stem and progenitor cells (HSPCs) are compromised in the aging population of atomic bomb (A-bomb) survivors after their exposure nearly 70 years ago. To address this, we evaluated age- and radiation-related changes in different subtypes of circulating HSPCs among the CD34-positive/lineage marker-negative (CD34(+)Lin(-)) cell population in 231 Hiroshima A-bomb survivors. We enumerated functional HSPC subtypes, including: cobblestone area-forming cells; long-term culture-initiating cells; erythroid burst-forming units; granulocyte and macrophage colony-forming units; and T-cell and natural killer cell progenitors using cell culture. We obtained the count of each HSPC subtype per unit volume of blood and the proportion of each HSPC subtype in CD34(+)Lin(-) cells to represent the lineage commitment trend. Multivariate analyses, using sex, age and radiation dose as variables, showed significantly decreased counts with age in the total CD34(+)Lin(-) cell population and all HSPC subtypes. As for the proportion, only T-cell progenitors decreased significantly with age, suggesting that the commitment to the T-cell lineage in HSPCs continuously declines with age throughout the lifetime. However, neither the CD34(+)Lin(-) cell population, nor HSPC subtypes showed significant radiation-induced dose-dependent changes in counts or proportions. Moreover, the correlations of the proportions among HSPC subtypes in the survivors properly revealed the hierarchy of lineage commitments. Taken together, our findings suggest that many years after exposure to radiation and with advancing age, the number and function of HSPCs in living survivors as a whole may have recovered to normal levels. PMID:26720799

  17. Recent Studies of Endothelial Progenitor Cells in the Treatment of Acuteand Chronic Lung Injury%内皮祖细胞在急慢性肺损伤治疗中的研究进展

    Institute of Scientific and Technical Information of China (English)

    任建立

    2011-01-01

    Endothelial progenitor cells ( EPCs ) are a specficc subtype of hematopoietic stem cells that have the propensity to differentiate into mature endothelial cells.Resent studies showed circulating endothelial progenitor cells played an important role in lung wound healing.Besides restoring pulmonary endothelialfunction, preserving integrity of the alveolocapillary barrier and suppressing the lung inflammatory response,EPCs can reverse endothelial dysfunction,inhibited puhnonary vessel remodeling, reduced puhnonary arterial pressure in healing of lung injury.Great progresses in acute lung injury and chronic pulmonary arterial hypertension with EPCs transplanting have been achieved.%内皮祖细胞(EPCs)是一种特殊表型的造血干细胞,它可以分化为成熟内皮细胞.近年来研究表明,EPCs肺组织损伤修复过程中有着重要作用.除了具有保护肺泡毛细血管屏障完整,减轻炎性反应,减轻肺组织损伤的作用外,EPCs还具有替代紊乱的肺血管内皮,防止肺血管重构,降低肺动脉压力的能力.目前EPCs移植在治疗急性肺损伤、慢性肺动脉高压方面的研究也取得了一定进展.

  18. Tracking of CFSE-labeled endothelial progenitor cells in laser-injured mouse retina

    Institute of Scientific and Technical Information of China (English)

    SHI Hui; YANG Wei; CUI Zhi-hua; LU Cheng-wei; LI Xiao-hong; LIANG Ling-ling; SONG E

    2011-01-01

    Background Endothelial progenitor cells (EPCs) transplantation is a promising therapeutic strategy for ischemic retinopathy. The current study aimed to establish a simple, reliable and fluorescent labeling method for tracking EPCs with 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester (CFSE) in laser-injured mouse retina.Methods EPCs were isolated from human umbilical cord blood mononuclear cells, cultivated, and labeled with various concentrations of CFSE. Based on fluorescence intensity and cell morphology, a 15 minutes incubation with 5 μmol/L CFSE at 37℃ was selected as the optimal labeling condition. The survival capability and the apoptosis rate of CFSE-labeled EPCs were measured by Trypan blue staining and Annexin V/PI staining assay respectively. Fluorescence microscopy was used to observe the label stability during the extended culture period. Labeled EPCs were transplanted into the vitreous cavity of pigmented mice injured by retinal laser photocoagulation. Evans Blue angiography and flat mounted retinas were examined to track the labeled cells.Results EPCs labeled with 5 μmol/L CFSE presented an intense green fluorescence and maintained normal morphology, with no significant changes in the survival capability or apoptosis rate after being labeled for 2 days, 1 and 4 weeks. The fluorescence intensity gradually decreased in the cells at the end of 4 weeks. Evans Blue angiography of the retina displayed the retinal capillarity network clearly and fluorescence leakage was observed around photocoagulated spots in the laser-injured mouse model. One week after transplantation of labeled EPCs, the fluorescent cells were identified around the photocoagulated lesions. Four weeks after transplantation, fluorescent tube-like structures were observed in the retinal vascular networks.Conclusion EPCs could be labeled by CFSE in vitro and monitored in vivo for at least 4 weeks, and participate in the repair of injured retinal vessels.

  19. Impaired function of bone marrow-derived endothelial progenitor cells in murine liver fibrosis.

    Science.gov (United States)

    Shirakura, Katsuya; Masuda, Haruchika; Kwon, Sang-Mo; Obi, Syotaro; Ito, Rie; Shizuno, Tomoko; Kurihara, Yusuke; Mine, Tetsuya; Asahara, Takayuki

    2011-01-01

    Liver fibrosis (LF) caused by chronic liver damage has been considered as an irreversible disease. As alternative therapy for liver transplantation, there are high expectations for regenerative medicine of the liver. Bone marrow (BM)- or peripheral blood-derived stem cells, including endothelial progenitor cells (EPCs), have recently been used to treat liver cirrhosis. We investigated the biology of BM-derived EPC in a mouse model of LF. C57BL/6J mice were subcutaneously injected with carbon tetrachloride (CCl(4)) every 3 days for 90 days. Sacrificed 2 days after final injection, whole blood (WB) was collected for isolation of mononuclear cells (MNCs) and biochemical examination. Assessments of EPC in the peripheral blood and BM were performed by flow cytometry and EPC colony-forming assay, respectively, using purified MNCs and BM c-KIT(+), Sca-1(+), and Lin(-) (KSL) cells. Liver tissues underwent histological analysis with hematoxylin/eosin/Azan staining, and spleens were excised and weighed. CCl(4)-treated mice exhibited histologically bridging fibrosis, pseudolobular formation, and splenomegaly, indicating successful induction of LF. The frequency of definitive EPC-colony-forming-units (CFU) as well as total EPC-CFU at the equivalent cell number of 500 BM-KSL cells decreased significantly (p changes in primitive EPC-CFU occurred in LF mice. The frequency of WB-MNCs of definitive EPC-CFU decreased significantly (p < 0.01) in LF mice compared with control mice. Together, these findings indicated the existence of impaired EPC function and differentiation in BM-derived EPCs in LF mice and might be related to clinical LF.

  20. Role of endothelial progenitor cells and inflammatory cytokines in healing of diabetic foot ulcers.

    Directory of Open Access Journals (Sweden)

    Francesco Tecilazich

    Full Text Available BACKGROUND: To evaluate changes in endothelial progenitor cells (EPCs and cytokines in patients with diabetic foot ulceration (DFU in association with wound healing. METHODS: We studied healthy subjects, diabetic patients not at risk of DFU, at risk of DFU and with active DFU. We prospectively followed the DFU patients over a 12-week period. We also investigated similar changes in diabetic rabbit and mouse models of wound healing. RESULTS: All EPC phenotypes except the kinase insert domain receptor (KDR(+CD133(+ were reduced in the at risk and the DFU groups compared to the controls. There were no major EPC differences between the control and not at risk group, and between the at risk and DFU groups. Serum stromal-cell derived factor-1 (SDF-1 and stem cell factor (SCF were increased in DFU patients. DFU patients who healed their ulcers had lower CD34(+KDR(+ count at visits 3 and 4, serum c-reactive protein (CRP and granulocyte-macrophage colony-stimulating factor (GM-CSF at visit 1, interleukin-1 (IL-1 at visits 1 and 4. EPCs tended to be higher in both diabetic animal models when compared to their non-diabetic counterparts both before and ten days after wounding. CONCLUSIONS: Uncomplicated diabetes does not affect EPCs. EPCs are reduced in patients at risk or with DFU while complete wound healing is associated with CD34(+KDR(+ reduction, suggesting possible increased homing. Low baseline CRP, IL-1α and GM-CSF serum levels were associated with complete wound healing and may potentially serve as prognostic markers of DFU healing. No animal model alone is representative of the human condition, indicating the need for multiple experimental models.

  1. Resveratrol-induced augmentation of telomerase activity delays senescence of endothelial progenitor cells

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-bin; ZHU Li; HUANG Jun; YIN Yi-gang; KONG Xiang-qing; RONG Qi-fei; SHI Ai-wu; CAO Ke-jiang

    2011-01-01

    Background Previous studies have shown that resveratrol increases endothelial progenitor cell (EPC) numbers and functional activity.Increased EPC numbers and activity are associated with the inhibition of EPC senescence.In this study,we investigated the effect of resveratrol on the senescence of EPCs,leading to potentiation of cellular function.Methods EPCs were isolated from human peripheral blood and identified immunocytochemically.EPCs were incubated with resveratrol (1,10,and 50 μmol/L) or control for specified times.After in vitro cultivation,acidic β-galactosidase staining revealed the extent of senescence in the cells.To gain further insight into the underlying mechanism of the effect of resveratrol,we measured telomerase activity using a polymerase chain reaction (PCR)-enzyme-linked immunosorbent assay (ELISA) technique.Furthermore,we measured the expression of human telomerase reverse transcriptase (hTERT) and the phosphorylation of Akt by immunoblotting.Results Resveratrol dose-dependently inhibited the onset of EPC senescence in culture.Resveratrol also significantly increased telomerase activity.Interestingly,quantitative real-time PCR analysis demonstrated that resveratrol dose-dependently increased the expression of the catalytic subunit,hTERT,an effect that was significantly inhibited by pharmacological phosphatidylinositol 3-kinase (PI3-K) blockers (wortmannin).The expression of hTERT is regulated by the PI3-K/Akt pathway; therefore,we examined the effect of resveratrol on Akt activity in EPCs.Immunoblotting analysis revealed that resveratrol led to dose-dependent phosphorylation and activation of Akt in EPCs.Conclusion Resveratrol delayed EPCs senescence in vitro,which may be dependent on telomerase activation.

  2. Mobilization of endothelial progenitor cells after endovascular interventions in patients with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Marina Sergeevna Michurova

    2014-12-01

    Full Text Available AimTo investigate the mobilisation of endothelial progenitor cells (EPC in patients with type 2 diabetes mellitus (T2DM after endovascular interventions for coronary and peripheral arteries.Materials and MethodsThe levels of EPC in peripheral blood were determined by flow cytometry in 42 patients prior to endovascular intervention and 2–4 days after surgery. EPC were defined as CD34+ VEGFR2+ CD45- and CD34+ CD133+CD45- cells. Twenty-three patients with T2DM were included in group 1, and 19 patients without metabolic disorders were included in group 2.ResultsThe levels of EPC in the peripheral blood of patients with T2DM before and after endovascular interventions were not significantly different. In the subgroup of patients without TDM2, the levels of CD34+VEGFR2 +CD45- cells increased after surgery to 55,5% (p <0,01, and the levels of CD34 + CD133 + CD45- cells increased to 27,7% (p <0,05. After endovascular intervention for the subgroup of patients with T2DM and with the levels of HbA1c ≤7,5%, the levels of CD34+VEGFR2+CD45- cells increased to 46,6% (p=0,01, and the levels of CD34+CD133+CD45- cells increased to 40,3 % (p=0,006 compared with the subgroup of patients with T2DM and with HbA1c levels of ≥7,5%.ConclusionThe patients with T2DM displayed alterations in EPC mobilisation after endovascular interventions. In addition, the EPC level changes were dependent on glycaemic control. Thus, in the subgroup of patients with T2DM and with good glycaemic control (HbA1c ≤7,5%, the EPC levels were significantly higher after endovascular interventions.

  3. Experimental study of an endothelial progenitor cell coated stent in transjugular intrahepatic portosystemic shunt

    International Nuclear Information System (INIS)

    Objective: To evaluate the efficacy of a self-expandable metal stent coated with autologous endothelial progenitor cells (EPCs) for prevention of restenosis in transjugular intrahepatic portosystemic shunt (TIPS) in a swine model. Methods: EPCs were coated on the metal stents using fibrin gel before TIPS procedure. TIPS was performed in 15 young adult pigs, using an autologous EPC-seeded stent (treatment group, n=9) or a conventional bare metal stent (control group, n=6). All pigs were sacrificed at 2 weeks after TIPS procedure. Portography was performed immediately before the euthanasia. Gross and microscopic pathological exams and immunohistochemical exams of the TIPS track specimens were performed. Fisher test and t test were used to analyse the data. Results: TIPS was performed successfully in all the 15 swine. On day 14 of follow-up, direct portography and necropsy demonstrated that 5 shunts remained patent, 2 shunts stenosed, and the remaining 2 shunts occluded in the treatment group (n=9); while 5 shunts were occluded and one shunt was stenotic in the control group (n=6). The patency rate was 56% vs 0 (P=0.03) between the two groups. Histological analyses showed a greater pseudo-intimal hyperplasia in the TIPS track of the control group than that of the treatment group (pseudointimal thickness at hepatic vein, hepatic parenchyma and portal vein site was (1.2±0.4), (1.3±0.5), (1.5±0.4) mm vs (1.0±0.6), (0.9±0.5), (1.0±0.4) mm respectively (P<0.05). Conclusion: The EPC-coated metal stent is feasibly constructed in vitro and improves the patency in TIPS in a porcine model. (authors)

  4. Moderate Hypoxia Exhibits Increased Endothelial Progenitor Vessel-forming Ability However Gestational Diabetes Caused to Impede Compensatory Defense Reaction.

    Science.gov (United States)

    Dincer, U Deniz

    2016-05-30

    Endothelium represents a defense barrier and responds and integrates neuro humoral stimulus which describes as a compensatory mechanism. Endothelium formed with endothelial cells (ECs) and their progenitors. Endothelial progenitor cells (EPCs) represent minor subpopulation of mononuclear cells in the blood. During acute hypoxia, larger amount of EPCs mobilize into the peripheral blood and they directly contribute revascularization process. One of the subtypes of EPC is termed endothelial colony forming cells (ECFCs) which they possess de novo vessel-forming ability. The present study aims to investigate the role of hypoxia in EPCs functional and vessel-forming ability. Furthermore, it was investigated whether fetal exposure to a diabetic intrauterine environment influence EPCs adaptation ability. Human umbilical cord blood (HUCB) derived ECFCs were selected in all experimental procedures obtained from normal and gestational diabetes mellitus (GDM) subjects via in vitro cell culture methods. Early passage (assay conducted onto HUCB ECFCs to investigate their functional clonogenic ability. To quantify their vessel forming ability matrigel assay was applied. These data demonstrates that moderate hypoxia results increased vessel-forming ability and VEGFA expression in HUCB ECFCs obtained from control subjects. However, GDM caused to impede compensatory defense reaction against hypoxia which observed in control subjects. Thus, it illuminates beneficial information related future therapeutic modalities. PMID:27426097

  5. Moderate Hypoxia Exhibits Increased Endothelial Progenitor Vessel-forming Ability However Gestational Diabetes Caused to Impede Compensatory Defense Reaction

    Science.gov (United States)

    Dincer, U. Deniz

    2016-01-01

    Endothelium represents a defense barrier and responds and integrates neuro humoral stimulus which describes as a compensatory mechanism. Endothelium formed with endothelial cells (ECs) and their progenitors. Endothelial progenitor cells (EPCs) represent minor subpopulation of mononuclear cells in the blood. During acute hypoxia, larger amount of EPCs mobilize into the peripheral blood and they directly contribute revascularization process. One of the subtypes of EPC is termed endothelial colony forming cells (ECFCs) which they possess de novo vessel-forming ability. The present study aims to investigate the role of hypoxia in EPCs functional and vessel-forming ability. Furthermore, it was investigated whether fetal exposure to a diabetic intrauterine environment influence EPCs adaptation ability. Human umbilical cord blood (HUCB) derived ECFCs were selected in all experimental procedures obtained from normal and gestational diabetes mellitus (GDM) subjects via in vitro cell culture methods. Early passage (hypoxia associated gene specific primers designed to perform Real-time PCR. Senescenes assay conducted onto HUCB ECFCs to investigate their functional clonogenic ability. To quantify their vessel forming ability matrigel assay was applied. These data demonstrates that moderate hypoxia results increased vessel-forming ability and VEGFA expression in HUCB ECFCs obtained from control subjects. However, GDM caused to impede compensatory defense reaction against hypoxia which observed in control subjects. Thus, it illuminates beneficial information related future therapeutic modalities. PMID:27426097

  6. Vascular Endothelial Growth Factor (VEGF) Bioavailability Regulates Angiogenesis and Intestinal Stem and Progenitor Cell Proliferation during Postnatal Small Intestinal Development

    Science.gov (United States)

    Holoyda, Kathleen A.; Hou, Xiaogang; Fowler, Kathryn L.; Grikscheit, Tracy C.

    2016-01-01

    Background Vascular endothelial growth factor (VEGF) is a highly conserved, master regulatory molecule required for endothelial cell proliferation, organization, migration and branching morphogenesis. Podocoryne carnea and drosophila, which lack endothelial cells and a vascular system, express VEGF homologs, indicating potential roles beyond angiogenesis and vasculogenesis. The role of VEGF in the development and homeostasis of the postnatal small intestine is unknown. We hypothesized regulating VEGF bioavailability in the postnatal small intestine would exhibit effects beyond the vasculature and influence epithelial cell stem/progenitor populations. Methods VEGF mutant mice were created that overexpressed VEGF in the brush border of epithelium via the villin promotor following doxycycline treatment. To decrease VEGF bioavailability, sFlt-1 mutant mice were generated that overexpressed the soluble VEGF receptor sFlt-1 upon doxycycline administration in the intestinal epithelium. Mice were analyzed after 21 days of doxycycline administration. Results Increased VEGF expression was confirmed by RT-qPCR and ELISA in the intestine of the VEGF mutants compared to littermates. The VEGF mutant duodenum demonstrated increased angiogenesis and vascular leak as compared to littermate controls. The VEGF mutant duodenum revealed taller villi and increased Ki-67-positive cells in the transit-amplifying zone with reduced Lgr5 expression. The duodenum of sFlt-1 mutants revealed shorter villi and longer crypts with reduced proliferation in the transit-amplifying zone, reduced expression of Dll1, Bmp4 and VE-cadherin, and increased expression of Sox9 and EphB2. Conclusions Manipulating VEGF bioavailability leads to profound effects on not only the intestinal vasculature, but epithelial stem and progenitor cells in the intestinal crypt. Elucidation of the crosstalk between VEGF signaling in the vasculature, mesenchyme and epithelial stem/progenitor cell populations may direct future

  7. Lipid lowering and HDL raising gene transfer increase endothelial progenitor cells, enhance myocardial vascularity, and improve diastolic function.

    Directory of Open Access Journals (Sweden)

    Stephanie C Gordts

    Full Text Available BACKGROUND: Hypercholesterolemia and low high density lipoprotein (HDL cholesterol contribute to coronary heart disease but little is known about their direct effects on myocardial function. Low HDL and raised non-HDL cholesterol levels carried increased risk for heart failure development in the Framingham study, independent of any association with myocardial infarction. The objective of this study was to test the hypothesis that increased endothelial progenitor cell (EPC number and function after lipid lowering or HDL raising gene transfer in C57BL/6 low density lipoprotein receptor deficient (LDLr(-/- mice may be associated with an enhanced relative vascularity in the myocardium and an improved cardiac function. METHODOLOGY/PRINCIPAL FINDINGS: Lipid lowering and HDL raising gene transfer were performed using the E1E3E4-deleted LDLr expressing adenoviral vector AdLDLr and the human apolipoprotein A-I expressing vector AdA-I, respectively. AdLDLr transfer in C57BL/6 LDLr(-/- mice resulted in a 2.0-fold (p<0.05 increase of the circulating number of EPCs and in an improvement of EPC function as assessed by ex vivo EPC migration and EPC adhesion. Capillary density and relative vascularity in the myocardium were 28% (p<0.01 and 22% (p<0.05 higher, respectively, in AdLDLr mice compared to control mice. The peak rate of isovolumetric relaxation was increased by 12% (p<0.05 and the time constant of isovolumetric relaxation was decreased by 14% (p<0.05 after AdLDLr transfer. Similarly, HDL raising gene transfer increased EPC number and function and raised both capillary density and relative vascularity in the myocardium by 24% (p<0.05. The peak rate of isovolumetric relaxation was increased by 16% (p<0.05 in AdA-I mice compared to control mice. CONCLUSIONS/SIGNIFICANCE: Both lipid lowering and HDL raising gene transfer have beneficial effects on EPC biology, relative myocardial vascularity, and diastolic function. These findings raise concerns over the

  8. Endothelial progenitor cells give rise to pro-angiogenic smooth muscle-like progeny

    NARCIS (Netherlands)

    Moonen, Jan-Renier A. J.; Krenning, Guido; Brinker, Marja G. L.; Koerts, Jasper A.; van Luyn, Marja J. A.; Harmsen, Martin C.

    2010-01-01

    Reciprocal plasticity exists between endothelial and mesenchymal lineages. For instance, mature endothelial cells adopt a smooth muscle-like phenotype through transforming growth factor beta-1 (TGF beta 1)-driven endothelial-to-mesenchymal transdifferentiation (EndMT). Peripheral blood contains circ

  9. Mobilisation of endothelial progenitor cells: one of the possible mechanisms involved in the chronic administration of melatonin preventing erectile dysfunction in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Xue-Feng Qiu; Xiao-Xin Li; Yun Chen; Hao-Cheng Lin; Wen Yu; Run Wang; Yu-Tian Dai

    2012-01-01

    Diabetes-induced oxidative stress plays a critical role in the mobilisation of endothelial progenitor cells (EPCs) from the bone marrow to the circulation.This study was designed to explore the effects of chronic melatonin administration on the promotion of the mobilisation of EPCs and on the preservation of erectile function in type Ⅰ diabetic rats.Melatonin was administered to streptozotocin-induced type Ⅰdiabetic rats.EPCs levels were determined using flow cytometry,Oxidative stress in the bone marrow was indicated by the levels of superoxide dismutase and malondialdehyde.Erectile function was evaluated by measuring the intracavemous pressure during an electrostimulation of the cavernous nerve.The density of the endothelium and the proportions of smooth muscle and collagen in the corpus cavernosum were determined by immunohistochemistry.The administration of melatonin increased the superoxide dismutase level and decreased the malondiaidehyde level in the bone marrow,This effect was accompanied by an increased level of circulating EPCs in the diabetic rats.The intracavernous pressure to mean arterial pressure ratio of the rats in the treatment group was significantly greater,compared with diabetic control rats.The histological analysis demonstrated an increase in the endothelial density of the corpus cavernosum after the administration of melatonin.However,melatonin treatment did not change the proportions of smooth muscle and collagen in the corpus cavernosum of diabetic rats.Chronic administration of melatonin has a beneficial effect on preventing erectile dysfunction (ED) in type Ⅰ diabetic rats.Promoting the mobilisation of EPCs is one of the possible mechanisms involved in the improvement of ED.

  10. Thickness-controllable electrospun fibers promote tubular structure formation by endothelial progenitor cells

    Directory of Open Access Journals (Sweden)

    Hong JK

    2015-02-01

    Full Text Available Jong Kyu Hong,1,2 Ju Yup Bang,3 Guan Xu,4 Jun-Hee Lee,1 Yeon-Ju Kim,1 Ho-Jun Lee,5 Han Seong Kim,3 Sang-Mo Kwon1,2,6 1Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan, South Korea; 2Conversence Stem Cell Research Center, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, South Korea; 3Department of Organic Material Science, Pusan National University, Geumjeong-gu, Busan, South Korea; 4Department of Radiology, School of Medicine, University of Michigan, Ann Arbor, MI, USA; 5Department of Electrical Engineering, Pusan National University, Geumjeong-gu, Busan, South Korea; 6Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Department of Physiology, Pusan National University School of Medicine, Yangsan, South Korea Abstract: Controlling the thickness of an electrospun nanofibrous scaffold by altering its pore size has been shown to regulate cell behaviors such as cell infiltration into a three-dimensional (3D scaffold. This is of great importance when manufacturing tissue-engineering scaffolds using an electrospinning process. In this study, we report the development of a novel process whereby additional aluminum foil layers were applied to the accumulated electrospun fibers of an existing aluminum foil collector, effectively reducing the incidence of charge buildup. Using this process, we fabricated an electrospun scaffold with a large pore (pore size >40 µm while simultaneously controlling the thickness. We demonstrate that the large pore size triggered rapid infiltration (160 µm in 4 hours of cell culture of individual endothelial progenitor cells (EPCs and rapid cell colonization after seeding EPC spheroids. We confirmed that the 3D, but not two-dimensional, scaffold structures regulated tubular structure formation by the EPCs. Thus, incorporation of stem cells into a highly

  11. Annual FEV1 changes and numbers of circulating endothelial microparticles in patients with COPD: a prospective study

    OpenAIRE

    Takahashi, Toru; Kobayashi, Seiichi; Fujino, Naoya; Suzuki, Takaya; Ota, Chiharu; Tando, Yukiko; Yamada, Mitsuhiro; Yanai, Masaru; Yamaya, Mutsuo; Kurosawa, Shin; Yamauchi, Masanori; Kubo, Hiroshi

    2014-01-01

    Objective Growing evidence suggests that endothelial injury is involved in the pathophysiology of chronic obstructive pulmonary disease (COPD). Circulating endothelial microparticles (EMPs) increase in patients with COPD because of the presence of endothelial injury. We examined the relationship between EMP number and changes in forced expiratory volume in 1 s (FEV1) in patients with COPD. Design Prospective study. Setting One hospital in Japan. Participants A total 48 outpatients with stable...

  12. A Subpopulation of Circulating Endothelial Cells Express CD109 and is Enriched in the Blood of Cancer Patients

    OpenAIRE

    Patrizia Mancuso; Angelica Calleri; Giuliana Gregato; Valentina Labanca; Jessica Quarna; Pierluigi Antoniotti; Lucia Cuppini; Gaetano Finocchiaro; Marica Eoli; Vittorio Rosti; Francesco Bertolini

    2014-01-01

    Background The endothelium is not a homogeneous organ. Endothelial cell heterogeneity has been described at the level of cell morphology, function, gene expression, and antigen composition. As a consequence of the genetic, transcriptome and surrounding environment diversity, endothelial cells from different vascular beds have differentiated functions and phenotype. Detection of circulating endothelial cells (CECs) by flow cytometry is an approach widely used in cancer patients, and their numb...

  13. Exercise-induced norepinephrine decreases circulating hematopoietic stem and progenitor cell colony-forming capacity.

    Science.gov (United States)

    Kröpfl, Julia M; Stelzer, Ingeborg; Mangge, Harald; Pekovits, Karin; Fuchs, Robert; Allard, Nathalie; Schinagl, Lukas; Hofmann, Peter; Dohr, Gottfried; Wallner-Liebmann, Sandra; Domej, Wolfgang; Müller, Wolfram

    2014-01-01

    A recent study showed that ergometry increased circulating hematopoietic stem and progenitor cell (CPC) numbers, but reduced hematopoietic colony forming capacity/functionality under normoxia and normobaric hypoxia. Herein we investigated whether an exercise-induced elevated plasma free/bound norepinephrine (NE) concentration could be responsible for directly influencing CPC functionality. Venous blood was taken from ten healthy male subjects (25.3+/-4.4 yrs) before and 4 times after ergometry under normoxia and normobaric hypoxia (FiO2exercise-induced NE and blood lactate (La) on CPC functionality was analyzed in a randomly selected group of subjects (n = 6) in vitro under normoxia by secondary colony-forming unit granulocyte macrophage assays. Concentrations of free NE, EPI, Co and IL-6 were significantly increased post-exercise under normoxia/hypoxia. Ergometry-induced free NE concentrations found in vivo showed a significant impairment of CPC functionality in vitro under normoxia. Thus, ergometry-induced free NE was thought to trigger CPC mobilization 10 minutes post-exercise, but as previously shown impairs CPC proliferative capacity/functionality at the same time. The obtained results suggest that an ergometry-induced free NE concentration has a direct negative effect on CPC functionality. Cortisol may further influence CPC dynamics and functionality. PMID:25180783

  14. Number and function of peripheral blood endothelial progenitor cells in Henoch-Schönlein purpura nephritis children with different degrees of renal vascular lesions

    OpenAIRE

    DANG, XI-QIANG; HE, XIAO-JIE; CHEN, HAI-XIA; HE, QING-NAN; Yi, Zhu-Wen

    2012-01-01

    The aim of this study was to explore the correlation between different degrees of renal vascular lesions in children with Henoch-Schönlein purpura nephritis (HSPN) and changes in progenitor cell number and function in peripheral blood. Forty-eight HSPN patients were divided into three groups, mild, moderate and severe, according to the degree of renal vascular lesions. Peripheral blood mononuclear cells were isolated and cultured. Endothelial progenitor cells (EPCs) were identified by immunof...

  15. Circulating vascular endothelial growth factor six months after primary surgery as a prognostic marker in patients with colorectal cancer

    DEFF Research Database (Denmark)

    Werther, Kim; Sørensen, Steen; Christensen, Ib Jarle;

    2003-01-01

    High preoperative circulating vascular endothelial growth factor (VEGF) is predictive of poor prognosis in patients with colorectal cancer (CRC). However, postoperative circulating VEGF has not yet been evaluated as a prognostic marker in CRC patients. In 318 consecutive patients who had undergone...

  16. Inhibition of Store-Operated Calcium Entry Protects Endothelial Progenitor Cells from H2O2-Induced Apoptosis.

    Science.gov (United States)

    Wang, Yan-Wei; Zhang, Ji-Hang; Yu, Yang; Yu, Jie; Huang, Lan

    2016-07-01

    Store-operated calcium entry (SOCE), a major mode of extracellular calcium entry, plays roles in a variety of cell activities. Accumulating evidence indicates that the intracellular calcium ion concentration and calcium signaling are critical for the responses induced by oxidative stress. The present study was designed to investigate the potential effect of SOCE inhibition on H2O2-induced apoptosis in endothelial progenitor cells (EPCs), which are the predominant cells involved in endothelial repair. The results showed that H2O2-induced EPC apoptosis was reversed by SOCE inhibition induced either using the SOCE antagonist ML-9 or via silencing of stromal interaction molecule 1 (STIM1), a component of SOCE. Furthermore, SOCE inhibition repressed the increases in intracellular reactive oxygen species (ROS) levels and endoplasmic reticulum (ER) stress and ameliorated the mitochondrial dysfunction caused by H2O2. Our findings provide evidence that SOCE inhibition exerts a protective effect on EPCs in response to oxidative stress induced by H2O2 and may serve as a potential therapeutic strategy against vascular endothelial injury. PMID:27169819

  17. Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo.

    Science.gov (United States)

    Ferreira, Lino S; Gerecht, Sharon; Shieh, Hester F; Watson, Nicki; Rupnick, Maria A; Dallabrida, Susan M; Vunjak-Novakovic, Gordana; Langer, Robert

    2007-08-01

    We report that human embryonic stem cells contain a population of vascular progenitor cells that have the ability to differentiate into endothelial-like and smooth muscle (SM)-like cells. Vascular progenitor cells were isolated from EBs grown in suspension for 10 days and were characterized by expression of the endothelial/hematopoietic marker CD34 (CD34+ cells). When these cells are subsequently cultured in EGM-2 (endothelial growth medium) supplemented with vascular endothelial growth factor-165 (50 ng/mL), they give rise to endothelial-like cells characterized by a cobblestone cell morphology, expression of endothelial markers (platelet endothelial cell-adhesion molecule-1, CD34, KDR/Flk-1, vascular endothelial cadherin, von Willebrand factor), incorporation of acetylated low-density lipoprotein, and formation of capillary-like structures when placed in Matrigel. In contrast, when CD34+ cells are cultured in EGM-2 supplemented with platelet-derived growth factor-BB (50 ng/mL), they give rise to SM-like cells characterized by spindle-shape morphology, expression of SM cell markers (alpha-SM actin, SM myosin heavy chain, calponin, caldesmon, SM alpha-22), and the ability to contract and relax in response to common pharmacological agents such as carbachol and atropine but rarely form capillary-like structures when placed in Matrigel. Implantation studies in nude mice show that both cell types contribute to the formation of human microvasculature. Some microvessels contained mouse blood cells, which indicates functional integration with host vasculature. Therefore, the vascular progenitors isolated from human embryonic stem cells using methods established in the present study could provide a means to examine the mechanisms of endothelial and SM cell development, and they could also provide a potential source of cells for vascular tissue engineering.

  18. Fluid phase biopsy for detection and characterization of circulating endothelial cells in myocardial infarction

    International Nuclear Information System (INIS)

    Elevated levels of circulating endothelial cells (CECs) occur in response to various pathological conditions including myocardial infarction (MI). Here, we adapted a fluid phase biopsy technology platform that successfully detects circulating tumor cells in the blood of cancer patients (HD-CTC assay), to create a high-definition circulating endothelial cell (HD-CEC) assay for the detection and characterization of CECs. Peripheral blood samples were collected from 79 MI patients, 25 healthy controls and six patients undergoing vascular surgery (VS). CECs were defined by positive staining for DAPI, CD146 and von Willebrand Factor and negative staining for CD45. In addition, CECs exhibited distinct morphological features that enable differentiation from surrounding white blood cells. CECs were found both as individual cells and as aggregates. CEC numbers were higher in MI patients compared with healthy controls. VS patients had lower CEC counts when compared with MI patients but were not different from healthy controls. Both HD-CEC and CellSearch® assays could discriminate MI patients from healthy controls with comparable accuracy but the HD-CEC assay exhibited higher specificity while maintaining high sensitivity. Our HD-CEC assay may be used as a robust diagnostic biomarker in MI patients. (paper)

  19. Fluid phase biopsy for detection and characterization of circulating endothelial cells in myocardial infarction

    Science.gov (United States)

    Bethel, Kelly; Luttgen, Madelyn S.; Damani, Samir; Kolatkar, Anand; Lamy, Rachelle; Sabouri-Ghomi, Mohsen; Topol, Sarah; Topol, Eric J.; Kuhn, Peter

    2014-02-01

    Elevated levels of circulating endothelial cells (CECs) occur in response to various pathological conditions including myocardial infarction (MI). Here, we adapted a fluid phase biopsy technology platform that successfully detects circulating tumor cells in the blood of cancer patients (HD-CTC assay), to create a high-definition circulating endothelial cell (HD-CEC) assay for the detection and characterization of CECs. Peripheral blood samples were collected from 79 MI patients, 25 healthy controls and six patients undergoing vascular surgery (VS). CECs were defined by positive staining for DAPI, CD146 and von Willebrand Factor and negative staining for CD45. In addition, CECs exhibited distinct morphological features that enable differentiation from surrounding white blood cells. CECs were found both as individual cells and as aggregates. CEC numbers were higher in MI patients compared with healthy controls. VS patients had lower CEC counts when compared with MI patients but were not different from healthy controls. Both HD-CEC and CellSearch® assays could discriminate MI patients from healthy controls with comparable accuracy but the HD-CEC assay exhibited higher specificity while maintaining high sensitivity. Our HD-CEC assay may be used as a robust diagnostic biomarker in MI patients.

  20. Notch-RBP-J signaling regulates the mobilization and function of endothelial progenitor cells by dynamic modulation of CXCR4 expression in mice.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available Bone marrow (BM-derived endothelial progenitor cells (EPC have therapeutic potentials in promoting tissue regeneration, but how these cells are modulated in vivo has been elusive. Here, we report that RBP-J, the critical transcription factor mediating Notch signaling, modulates EPC through CXCR4. In a mouse partial hepatectomy (PHx model, RBP-J deficient EPC showed attenuated capacities of homing and facilitating liver regeneration. In resting mice, the conditional deletion of RBP-J led to a decrease of BM EPC, with a concomitant increase of EPC in the peripheral blood. This was accompanied by a down-regulation of CXCR4 on EPC in BM, although CXCR4 expression on EPC in the circulation was up-regulated in the absence of RBP-J. PHx in RBP-J deficient mice induced stronger EPC mobilization. In vitro, RBP-J deficient EPC showed lowered capacities of adhering, migrating, and forming vessel-like structures in three-dimensional cultures. Over-expression of CXCR4 could at least rescue the defects in vessel formation by the RBP-J deficient EPC. These data suggested that the RBP-J-mediated Notch signaling regulated EPC mobilization and function, at least partially through dynamic modulation of CXCR4 expression. Our findings not only provide new insights into the regulation of EPC, but also have implications for clinical therapies using EPC in diseases.

  1. A Case of Abnormal Lymphatic-Like Differentiation and Endothelial Progenitor Cell Activation in Neovascularization Associated with Hemi-Retinal Vein Occlusion

    Directory of Open Access Journals (Sweden)

    Sirpa Loukovaara

    2015-07-01

    Full Text Available Purpose: Pathological vascular differentiation in retinal vein occlusion (RVO-related neovessel formation remains poorly characterized. The role of intraocular lymphatic-like differentiation or endothelial progenitor cell activity has not been studied in this disease. Methods: Vitrectomy was performed in an eye with hemi-RVO; the neovessel membrane located at the optic nerve head was removed and subjected to immunohistochemistry. Characterization of the neovascular tissue was performed using hematoxylin and eosin, α-smooth muscle actin, and the pan-endothelial cell (EC adhesion molecule CD31. The expression of lymphatic EC markers was studied by lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1, podoplanin (PDPN, and prospero-related homeobox protein 1 (Prox-1. Potential vascular stem/progenitor cells were identified by active cellular proliferation (Ki67 and expression of the stem cell marker CD117. Results: The specimen contained blood vessels lined by ECs and surrounded by pericytes. Immunoreactivity for LYVE-1 and Prox-1 was detected, with Prox-1 being more widely expressed in the active Ki67-positive lumen-lining cells. PDPN expression was instead found in the cells residing in the extravascular tissue. Expression of the stem cell markers CD117 and Ki67 suggested vascular endothelial progenitor cell activity. Conclusions: Intraocular lymphatic-like differentiation coupled with progenitor cell activation may be involved in the pathology of neovessel formation in ischemia-induced human hemi-RVO.

  2. Occurring of In Vitro Functional Vasculogenic Pericytes from Human Circulating Early Endothelial Precursor Cell Culture

    Directory of Open Access Journals (Sweden)

    Silvia Cantoni

    2015-01-01

    Full Text Available Pericytes are periendothelial cells of the microcirculation which contribute to tissue homeostasis and hemostasis by regulating microvascular morphogenesis and stability. Because of their multipotential ex vivo differentiation capabilities, pericytes are becoming very interesting in regenerative medicine field. Several studies address this issue by attempting to isolate pericyte/mesenchymal-like cells from peripheral blood; however the origin of these cells and their culture conditions are still debated. Here we showed that early Endothelial Progenitor Cells (EPCs expressing CD45+/CD146+/CD31+ can be a source of cells with pericyte/mesenchymal phenotype and function, identified as human Progenitor Perivascular Cells (hPPCs. We provided evidence that hPPCs have an immunophenotype consistent with Mesenchymal Stem Cells (MSCs from human adipose tissue (hASCs and fetal membranes of term placenta (FM-hMSCs. In addition, hPPCs can be subcultured and exhibit expression of pluripotent genes (OCT-4, KLF-4, and NANOG as well as a remarkable vasculogenic potential. Our findings could be helpful to develop innovative cell-based therapies for future clinical applications with distinct therapeutic purposes.

  3. Analyses of Endothelial Cells and Endothelial Progenitor Cells Released Microvesicles by Using Microbead and Q-dot Based Nanoparticle Tracking Analysis

    Science.gov (United States)

    Wang, Jinju; Zhong, Yun; Ma, Xiaotang; Xiao, Xiang; Cheng, Chuanfang; Chen, Yusen; Iwuchukwu, Ifeanyi; Gaines, Kenneth J.; Bin Zhao; Liu, Shiming; Travers, Jeffrey B.; Bihl, Ji C.; Chen, Yanfang

    2016-01-01

    Accurate analysis of specific microvesicles (MVs) from biofluids is critical and challenging. Here we described novel methods to purify and detect MVs shed from endothelial cells (ECs) and endothelial progenitor cells (EPCs) by combining microbeads with fluorescence quantum dots (Q-dots) coupled nanoparticle tracking analysis (NTA). In the in vitro screening systems, we demonstrated that 1) anti-CD105 (EC marker) and anti-CD34 (EPC marker) conjugated-microbeads had the highest sensitivity and specificity for isolating respective MVs, which were confirmed with negative controls, CD41 and CD235a; 2) anti-CD144 (EC marker) and anti-KDR (EPC marker) conjugated-Q-dots exhibited the best sensitivity and specificity for their respective MV NTA detection, which were confirmed with positive control, anti-Annexin V (MV universal marker). The methods were further validated by their ability to efficiently recover the known amount of EC-MVs and EPC-MVs from particle-depleted plasma, and to detect the dynamical changes of plasma MVs in ischemic stroke patients, as compared with traditional flow cytometry. These novel methods provide ideal approaches for functional analysis and biomarker discovery of ECs- and EPCs- derived MVs. PMID:27094208

  4. Efficient nano iron particle-labeling and noninvasive MR imaging of mouse bone marrow-derived endothelial progenitor cells

    Directory of Open Access Journals (Sweden)

    Zhen-Yu Jia

    2011-03-01

    Full Text Available Rong Chen*, Hui Yu*, Zhen-Yu Jia, Qun-Li Yao, Gao-Jun TengJiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, People’s Republic of China *These authors have contributed equally to this workAbstract: In this study, we sought to label mouse bone marrow-derived endothelial progenitor cells (EPCs with Resovist® in vitro and to image them using 7.0 Tesla (T magnetic resonance imaging (MRI. Mouse bone marrow-derived EPCs were cultured in endothelial basal medium with endothelial growth supplement. They were then characterized by immunocytochemistry, flow cytometry, and fluorescence quantitative polymerase chain reaction. Their functions were evaluated by measuring their uptake of 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine-labeled acetylated low-density lipoprotein (Dil-Ac-LDL, binding of fluorine isothiocyanate (FITC-labeled Ulex europaeus agglutinin (UEA, and formation of capillary-like networks. EPCs were labeled with superparamagnetic iron oxide (SPIO and their proliferation was then assessed in a water-soluble tetrazolium (WST-8-based cell proliferation assay. Spin echo sequence (multislice, multiecho [MSME] and gradient echo sequence (2D-FLASH were used to detect differences in the numbers of labeled cells by 7.0 T MRI. The results showed that the cultured cells were of “cobblestone”-like shape and positive for CD133, CD34, CD31, von Willebrand factor, kinase domain receptor, and CD45, but negative for F4/80. They could take up Dil-Ac-LDL, bind FITC-UEA, and form capillary-like networks on Matrigel in vitro. Prussian-blue staining demonstrated that the cells were efficiently labeled with SPIO. The single-cell T2* effect was more obvious in the 2D-FLASH sequence than in the MSME sequence. Further, there were almost no adverse effects on cell vitality and proliferation. In conclusion, mouse bone marrow-derived EPCs can be

  5. Rosiglitazone promotes development of a novel adipocyte population from bone marrow–derived circulating progenitor cells

    OpenAIRE

    Crossno, Joseph T.; Majka, Susan M.; Grazia, Todd; Gill, Ronald G.; Klemm, Dwight J.

    2006-01-01

    Obesity and weight gain are characterized by increased adipose tissue mass due to an increase in the size of individual adipocytes and the generation of new adipocytes. New adipocytes are believed to arise from resident adipose tissue preadipocytes and mesenchymal progenitor cells. However, it is possible that progenitor cells from other tissues, in particular BM, could also contribute to development of new adipocytes in adipose tissue. We tested this hypothesis by transplanting whole BM cell...

  6. Effects of simulated altitude (normobaric hypoxia on cardiorespiratory parameters and circulating endothelial precursors in healthy subjects

    Directory of Open Access Journals (Sweden)

    Pierini Alberto

    2007-08-01

    Full Text Available Abstract Background Circulating Endothelial Precursors (PB-EPCs are involved in the maintenance of the endothelial compartment being promptly mobilized after injuries of the vascular endothelium, but the effects of a brief normobaric hypoxia on PB-EPCs in healthy subjects are scarcely studied. Methods Clinical and molecular parameters were investigated in healthy subjects (n = 8 in basal conditions (T0 and after 1 h of normobaric hypoxia (T1, with Inspiratory Fraction of Oxygen set at 11.2% simulating 4850 mt of altitude. Blood samples were obtained at T0 and T1, as well as 7 days after hypoxia (T2. Results In all studied subjects we observed a prompt and significant increase in PB-EPCs, with a return to basal value at T2. The induction of hypoxia was confirmed by Alveolar Oxygen Partial Pressure (PAO2 and Spot Oxygen Saturation decreases. Heart rate increased, but arterial pressure and respiratory response were unaffected. The change in PB-EPCs percent from T0 to T1 was inversely related to PAO2 at T1. Rapid (T1 increases in serum levels of hepatocyte growth factor and erythropoietin, as well as in cellular PB-EPCs-expression of Hypoxia Inducible Factor-1α were observed. Conclusion In conclusion, the endothelial compartment seems quite responsive to standardized brief hypoxia, possibly important for PB-EPCs activation and recruitment.

  7. Effects of bone marrow-derived endothelial progenitor cell transplantation on vein microenvironment in a rat model of chronic thrombosis

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-qiang; MENG Qing-you; WU Hao-rong

    2007-01-01

    Background Endothelial progenitor cells(EPCs) have been used in both experimental studies and clinical treatments of limb ischemia,as well as in the construction of engineered vascular tissue.The objective of this study was to investigate the effects of transplanted bone marrow-derived EPCs on the vein microenvironment in a rat model of chronic vein thrombosis.Methods Mononuclear cells were isolated from the bone marrow of immature rats by density gradient centrifugation,cultured,and then transplanted into experimentally induced thrombi into inferior vena cava through the femoral vein.Vascular endothelial growth factor(VEGF),angiopoietin-1(ANG-1) and monocyte chemotactic protein-1(MCP-1) mRNA and protein expression levels were measured by real-time quantitative polymerase chain reaction and Western blotting of thrombi and adjacent caval walls 28 days post-transplantation.Results Levels of VEGF,ANG-1,and MCP-1 mRNA in EPC-transplanted thrombi were 100%,230.7%,and 212.5% of levels detected in the sham-operated group(P<0.01),and 99.9%,215.4%,and 177.8% of levels detected in the experimental control group(P<0.01).VEGF,ANG-1 and MCP-1 protein levels exhibited a similar trend.Conclusions Transplanted bone marrow-derived EPCs appear to alter the vein microenvironment in experimentally induced chronic vein thrombosis by upregulating cytokines associated with thrombic organization and recanalization.

  8. Inhibitor of DNA binding 1 regulates cell cycle progression of endothelial progenitor cells through induction of Wnt2 expression.

    Science.gov (United States)

    Xia, Xi; Yu, Yang; Zhang, Li; Ma, Yang; Wang, Hong

    2016-09-01

    Endothelial injury is a risk factor for atherosclerosis. Endothelial progenitor cell (EPC) proliferation contributes to vascular injury repair. Overexpression of inhibitor of DNA binding 1 (Id1) significantly promotes EPC proliferation; however, the underlying molecular mechanism remains to be fully elucidated. The present study investigated the role of Id1 in cell cycle regulation of EPCs, which is closely associated with proliferation. Overexpression of Id1 increased the proportion of EPCs in the S/G2M phase and significantly increased cyclin D1 expression levels, while knockdown of Id1 arrested the cell cycle progression of EPCs in the G1 phase and inhibited cyclin D1 expression levels. In addition, it was demonstrated that Id1 upregulated wingless‑type mouse mammary tumor virus integration site family member 2 (Wnt2) expression levels and promoted β‑catenin accumulation and nuclear translocation. Furthermore, Wnt2 knockdown counteracted the effects of Id1 on cell cycle progression of EPCs. In conclusion, the results of the present study indicate that Id1 promoted Wnt2 expression, which accelerated cell cycle progression from G1 to S phase. This suggests that Id1 may promote cell cycle progression of EPCs, and that Wnt2 may be important in Id1 regulation of the cell cycle of EPCs. PMID:27432753

  9. The effect of Heparin-VEGF multilayer on the biocompatibility of decellularized aortic valve with platelet and endothelial progenitor cells.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Ye

    Full Text Available The application of polyelectrolyte multilayer films is a new, versatile approach to surface modification of decellularized tissue, which has the potential to greatly enhance the functionality of engineered tissue constructs derived from decellularized organs. In the present study, we test the hypothesis that Heparin- vascular endothelial growth factor (VEGF multilayer film can not only act as an antithrombotic coating reagent, but also induce proliferation of endothelial progenitor cells (EPCs on the decellularized aortic heart valve. SEM demonstrated the adhesion and geometric deformation of platelets. The quantitative assay of platelet activation was determined by measuring the production of soluble P-selectin. Binding and subsequent release of heparin and VEGF from valve leaflets were assessed qualitatively by laser confocal scanning microscopy and quantitatively by ELISA methods. Human blood derived EPCs were cultured and the adhesion and growth of EPCs on the surface modified valvular scaffolds were assessed. The results showed that Heparin-VEGF multilayer film improved decellularized valve haemocompatibility with respect to a substantial reduction of platelet adhesion. Release of VEGF from the decellularized heart valve leaflets at physiological conditions was sustained over 5 days. In vitro biological tests demonstrated that EPCs achieved better adhesion, proliferation and migration on the coatings with Heparin-VEGF multilayer film. Combined, these results indicate that Heparin-VEGF multilayer film could be used to cover the decellularized porcine aortic valve to decrease platelet adhesion while exhibiting excellent EPCs biocompatibility.

  10. Silencing stromal interaction molecule 1 by RNA interference inhibits the proliferation and migration of endothelial progenitor cells

    International Nuclear Information System (INIS)

    Research highlights: → STIM1 and TRPC1 are expressed in EPCs. → Knockdown of STIM1 inhibits the proliferation, migration and SOCE of EPCs. → TRPC1-SOC cooperates with STIM1 to mediate the SOCE of EPCs. -- Abstract: Knockdown of stromal interaction molecule 1 (STIM1) significantly suppresses neointima hyperplasia after vascular injury. Endothelial progenitor cells (EPCs) are the major source of cells that respond to endothelium repair and contribute to re-endothelialization by reducing neointima formation after vascular injury. We hypothesized that the effect of STIM1 on neointima hyperplasia inhibition is mediated through its effect on the biological properties of EPCs. In this study, we investigated the effects of STIM1 on the proliferation and migration of EPCs and examined the effect of STIM1 knockdown using cultured rat bone marrow-derived EPCs. STIM1 was expressed in EPCs, and knockdown of STIM1 by adenoviral delivery of small interfering RNA (siRNA) significantly suppressed the proliferation and migration of EPCs. Furthermore, STIM1 knockdown decreased store-operated channel entry 48 h after transfection. Replenishment with recombinant human STIM1 reversed the effects of STIM1 knockdown. Our data suggest that the store-operated transient receptor potential canonical 1 channel is involved in regulating the biological properties of EPCs through STIM1. STIM1 is a potent regulator of cell proliferation and migration in rat EPCs and may play an important role in the biological properties of EPCs.

  11. Intradialytic aerobic cycling exercise alleviates inflammation and improves endothelial progenitor cell count and bone density in hemodialysis patients.

    Science.gov (United States)

    Liao, Min-Tser; Liu, Wen-Chih; Lin, Fu-Huang; Huang, Ching-Feng; Chen, Shao-Yuan; Liu, Chuan-Chieh; Lin, Shih-Hua; Lu, Kuo-Cheng; Wu, Chia-Chao

    2016-07-01

    Inflammation, endothelial dysfunction, and mineral bone disease are critical factors contributing to morbidity and mortality in hemodialysis (HD) patients. Physical exercise alleviates inflammation and increases bone density. Here, we investigated the effects of intradialytic aerobic cycling exercise on HD patients. Forty end-stage renal disease patients undergoing HD were randomly assigned to either an exercise or control group. The patients in the exercise group performed a cycling program consisting of a 5-minute warm-up, 20 minutes of cycling at the desired workload, and a 5-minute cool down during 3 HD sessions per week for 3 months. Biochemical markers, inflammatory cytokines, nutritional status, the serum endothelial progenitor cell (EPC) count, bone mineral density, and functional capacity were analyzed. After 3 months of exercise, the patients in the exercise group showed significant improvements in serum albumin levels, the body mass index, inflammatory cytokine levels, and the number of cells positive for CD133, CD34, and kinase insert domain-conjugating receptor. Compared with the exercise group, the patients in the control group showed a loss of bone density at the femoral neck and no increases in EPCs. The patients in the exercise group also had a significantly greater 6-minute walk distance after completing the exercise program. Furthermore, the number of EPCs significantly correlated with the 6-minute walk distance both before and after the 3-month program. Intradialytic aerobic cycling exercise programs can effectively alleviate inflammation and improve nutrition, bone mineral density, and exercise tolerance in HD patients. PMID:27399127

  12. Progenitor cells in arteriosclerosis: good or bad guys?

    Science.gov (United States)

    Campagnolo, Paola; Wong, Mei Mei; Xu, Qingbo

    2011-08-15

    Accumulating evidence indicates that the mobilization and recruitment of circulating or tissue-resident progenitor cells that give rise to endothelial cells (ECs) and smooth muscle cells (SMCs) can participate in atherosclerosis, neointima hyperplasia after arterial injury, and transplant arteriosclerosis. It is believed that endothelial progenitor cells do exist and can repair and rejuvenate the arteries under physiologic conditions; however, they may also contribute to lesion formation by influencing plaque stability in advanced atherosclerotic plaque under specific pathologic conditions. At the same time, smooth muscle progenitors, despite their capacity to expedite lesion formation during restenosis, may serve to promote atherosclerotic plaque stabilization by producing extracellular matrix proteins. This profound evidence provides support to the hypothesis that both endothelial and smooth muscle progenitors may act as a double-edged sword in the pathogenesis of arteriosclerosis. Therefore, the understanding of the regulatory networks that control endothelial and smooth muscle progenitor differentiation is undoubtedly fundamental both for basic research and for improving current therapeutic avenues for atherosclerosis. We update the progress in progenitor cell study related to the development of arteriosclerosis, focusing specifically on the role of progenitor cells in lesion formation and discuss the controversial issues that regard the origins, frequency, and impact of the progenitors in the disease.

  13. C-reactive protein decreases interleukin-8 production in human endothelial progenitor cells by inhibition of p38 MAPK pathway

    Institute of Scientific and Technical Information of China (English)

    NAN Jing-long; LI Jian-jun; HE Jian-guo

    2009-01-01

    Background C-reactive protein (CRP) has been reported to damage the vascular wall by inducing endothelial dysfunction and inflammation,and it is also speculated to have a role in attenuating angiogenic functions of human endothelial progenitor cells (EPCs).Interleukin-8 (IL-8) is an important mediator of the paracrine mitogenic effect of EPCs,which has direct angiogenic effects on mature endothelial cells.We,herein,investigated the direct effect of CRP on IL-8 production and gene expression in cultured human EPCs.Methods EPCs were isolated from the peripheral venous blood of healthy male volunteers.Cells were cultured in EndoCultTM liquid medium in the absence and presence of CRP at clinically relevant concentrations (5 to 25 μg/ml) for different durations (3 to 48 hours).IL-8 protein and mRNA of cultured EPCs were evaluated using ELISA and real-time PCR.Results The results showed that CRP at a concentration of 10 pg/ml significantly reduced IL-8 secretion of cultured EPCs with a peak at 25 μg/ml,and also decreased mRNA expression in EPCs with a peak at 12 hours.In addition,preincubation of EPCs with SB203580,an inhibitor of p38 mitogen-activated protein kinase (MAPK) decreased CRP inhibition of IL-8 mRNA expression at 12 hours in EPCs.Conclusions Our study,for the first time,demonstrates that CRP directly inhibits EPCs IL-8 secretion,a key cytokine player of angiogenesis induced by EPCs.Inhibition occurred in part via an effect of CRP to active the p38 MAPK signal transduction pathway in EPC.The ability of CRP to inhibit EPCs IL-8 secretion may represent an important mechanism that further links inflammation to cardiovascular disease.

  14. IQ domain GTPase-activating protein 1 is involved in shear stress-induced progenitor-derived endothelial cell alignment.

    Directory of Open Access Journals (Sweden)

    Lila Rami

    Full Text Available Shear stress is one of mechanical constraints which are exerted by blood flow on endothelial cells (ECs. To adapt to shear stress, ECs align in the direction of flow through adherens junction (AJ remodeling. However, mechanisms regulating ECs alignment under shear stress are poorly understood. The scaffold protein IQ domain GTPase activating protein 1 (IQGAP1 is a scaffold protein which couples cell signaling to the actin and microtubule cytoskeletons and is involved in cell migration and adhesion. IQGAP1 also plays a role in AJ organization in epithelial cells. In this study, we investigated the potential IQGAP1 involvement in the endothelial cells alignment under shear stress. Progenitor-derived endothelial cells (PDECs, transfected (or not with IQGAP1 small interfering RNA, were exposed to a laminar shear stress (1.2 N/m(2 and AJ proteins (VE-cadherin and β-catenin and IQGAP1 were labeled by immunofluorescence. We show that IQGAP1 is essential for ECs alignment under shear stress. We studied the role of IQGAP1 in AJs remodeling of PDECs exposed to shear stress by studying cell localization and IQGAP1 interactions with VE-cadherin and β-catenin by immunofluorescence and Proximity Ligation Assays. In static conditions, IQGAP1 interacts with VE-cadherin but not with β-catenin at the cell membrane. Under shear stress, IQGAP1 lost its interaction from VE-cadherin to β-catenin. This "switch" was concomitant with the loss of β-catenin/VE-cadherin interaction at the cell membrane. This work shows that IQGAP1 is essential to ECs alignment under shear stress and that AJ remodeling represents one of the mechanisms involved. These results provide a new approach to understand ECs alignment under to shear stress.

  15. IQ Domain GTPase-Activating Protein 1 is Involved in Shear Stress-Induced Progenitor-Derived Endothelial Cell Alignment

    Science.gov (United States)

    Rami, Lila; Auguste, Patrick; Thebaud, Noélie B.; Bareille, Reine; Daculsi, Richard; Ripoche, Jean; Bordenave, Laurence

    2013-01-01

    Shear stress is one of mechanical constraints which are exerted by blood flow on endothelial cells (ECs). To adapt to shear stress, ECs align in the direction of flow through adherens junction (AJ) remodeling. However, mechanisms regulating ECs alignment under shear stress are poorly understood. The scaffold protein IQ domain GTPase activating protein 1 (IQGAP1) is a scaffold protein which couples cell signaling to the actin and microtubule cytoskeletons and is involved in cell migration and adhesion. IQGAP1 also plays a role in AJ organization in epithelial cells. In this study, we investigated the potential IQGAP1 involvement in the endothelial cells alignment under shear stress. Progenitor-derived endothelial cells (PDECs), transfected (or not) with IQGAP1 small interfering RNA, were exposed to a laminar shear stress (1.2 N/m2) and AJ proteins (VE-cadherin and β-catenin) and IQGAP1 were labeled by immunofluorescence. We show that IQGAP1 is essential for ECs alignment under shear stress. We studied the role of IQGAP1 in AJs remodeling of PDECs exposed to shear stress by studying cell localization and IQGAP1 interactions with VE-cadherin and β-catenin by immunofluorescence and Proximity Ligation Assays. In static conditions, IQGAP1 interacts with VE-cadherin but not with β-catenin at the cell membrane. Under shear stress, IQGAP1 lost its interaction from VE-cadherin to β-catenin. This “switch” was concomitant with the loss of β-catenin/VE-cadherin interaction at the cell membrane. This work shows that IQGAP1 is essential to ECs alignment under shear stress and that AJ remodeling represents one of the mechanisms involved. These results provide a new approach to understand ECs alignment under to shear stress. PMID:24278215

  16. Interruption of CD40 Pathway Improves Efficacy of Transplanted Endothelial Progenitor Cells in Monocrotaline Induced Pulmonary Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    YanYun Pan

    2015-05-01

    Full Text Available Background/Aims: Transplantation of endothelial progenitor cells (EPCs plays a therapeutic role in pulmonary arterial hypertension (PAH. Meanwhile, recruitment of progenitors has potential inflammatory effects and exaggerates vascular injury. CD40 pathway is identified as a major player in vascular inflammatory events. In this study, we investigated the role of CD40 pathway in regulating early outgrowth EPC functions, and searched for improvements in PAH cell therapy. Methods: EPCs were isolated from rat bone marrow and cultured for 7 days. After treatment with soluble CD40 ligand (sCD40L for 24 hours, EPC migration, adhesion, proliferation, paracrine and vasculogenesis functions were tested. Rat PAH model was founded by subcutaneous injection of monocrotaline (MCT. Control EPCs or lentivirus vectors (Lv-shRNA-CD40 EPCs were infused via tail vein at day 7, 14, and 21 after MCT injection. Therapeutic effects were evaluated at day 28. Results: sCD40L dose-dependently impaired EPC migration, adhesion, proliferation, and vasculogenesis functions. However, paracrine effects of soluble intercellular adhesion molecule-1, vascular endothelial growth factor and interleukin-6 were dose-dependently improved by sCD40L. Control EPC-derived conditioned medium protected endothelial cell in vitro vasculogenesis, while sCD40L-pretreated ones showed detrimental effects. After MCT injection, sCD40L levels in rat serum increased gradually. Other than in vitro results, benefits of both two EPC treatments were obvious, even taken at day 21. Benefits of control EPCs wore off over time, but those of Lv-shRNA-CD40 EPCs were more effective and enduring, as characterized by both ameliorated rat hemodynamic and reversed vascular remodeling. Furthermore, Lv-shRNA-CD40 EPCs integrated into endothelium better, rather than into adventitia and media. Conclusion: sCD40L impaired protective effects of EPCs. Traditional EPC treatments were limited in PAH, while interruption of CD

  17. Transplantation of human umbilical cord-derived endothelial progenitor cells promotes re-endothelialization of the injured carotid artery after balloon injury in New Zealand white rabbits

    Institute of Scientific and Technical Information of China (English)

    HU Cheng-heng; KE Xiao; CHEN Kui; YANG Da-ya; DU Zhi-min; WU Gui-fu

    2013-01-01

    Background Cell transplantation has great potential for promoting endothelial repair and reducing the complications of percutaneous coronary intervention (PCI).The aim of this study was to investigate the effect of transplantation of human umbilical cord blood endothelial progenitor cells (EPCs) on injured arteries.Methods Umbilical cord blood mononuclear cells were obtained from post-partum lying-in women,and EPCs were isolated,cultured,expanded and identified by immunofluorescence.The carotid arterial endothelium of New Zealand white rabbits was injured by dilatation with a 3F balloon,and the EPCs were injected into the lumen of the injured artery in the transplanted group (n=16),while an equal volume of phosphated buffered saline (PBS) was injected into the control group after balloon injury (n=16).The animals were sacrificed after either 2 or 4 weeks,and the grafted cells were identified by double immunofiuorescence staining with human nuclear antigen (HNA) and CD31 antibodies.Arterial cross sections were analyzed by pathology,immunohistochemisty and morphometry to evaluate the reparative effects of EPCs.Proliferating cell nuclear antigen (PCNA) and transforming growth factor (TGF)-β1 mRNA expression were detected by reverse transcription-polymerase chain reaction (RT-PCR).Results Fluorescence-labeled EPCs were found in the neointima.The neointimal area and the neointimal/medial area ratio were significantly lower in the transplanted group than in the control group (P <0.05).von Willebrand factor (vWF)immunohistostaining showed more VWF-positive cells in the transplanted animals than in the controls (8.75±2.92 vs.4.50±1.77,P <0.05).Compared with the control group,the transplanted group had lower expression of PCNA mRNA (0.67±0.11 vs.1.25±0.40,P <0.01) and higher expression of TGF-β1 mRNA (1.10±0.21 vs.0.82±0.07,P <0.05).Conclusions EPCs derived from human umbilical cord blood were successfully transplanted into injured vessels.The transplanted

  18. Absence of a relationship between immunophenotypic and colony enumeration analysis of endothelial progenitor cells in clinical haematopoietic cell sources

    Directory of Open Access Journals (Sweden)

    Turner Marc L

    2007-07-01

    Full Text Available Abstract Background The discovery of adult endothelial progenitor cells (EPC offers potential for vascular regenerative therapies. The expression of CD34 and VEGFR2 by EPC indicates a close relationship with haematopoietic progenitor cells (HPC, and HPC-rich sources have been used to treat cardiac and limb ischaemias with apparent clinical benefit. However, the laboratory characterisation of the vasculogenic capability of potential or actual therapeutic cell autograft sources is uncertain since the description of EPC remains elusive. Various definitions of EPC based on phenotype and more recently on colony formation (CFU-EPC have been proposed. Methods We determined EPC as defined by proposed phenotype definitions (flow cytometry and by CFU-EPC in HPC-rich sources: bone marrow (BM; cord blood (CB; and G-CSF-mobilised peripheral blood (mPB, and in HPC-poor normal peripheral blood (nPB. Results As expected, the highest numbers of cells expressing the HPC markers CD34 or CD133 were found in mPB and least in nPB. The proportions of CD34+ cells co-expressing CD133 is of the order mPB>CB>BM≈nPB. CD34+ cells co-expressing VEGFR2 were also most frequent in mPB. In contrast, CFU-EPC were virtually absent in mPB and were most readily detected in nPB, the source lowest in HPC. Conclusion HPC sources differ in their content of putative EPC. Normal peripheral blood, poor in HPC and in HPC-related phenotypically defined EPC, is the richest source of CFU-EPC, suggesting no direct relationship between the proposed EPC immunophenotypes and CFU-EPC potential. It is not apparent whether either of these EPC measurements, or any, is an appropriate indicator of the therapeutic vasculogenic potential of autologous HSC sources.

  19. N-3 polyunsaturated Fatty acids prevent diabetic retinopathy by inhibition of retinal vascular damage and enhanced endothelial progenitor cell reparative function.

    Directory of Open Access Journals (Sweden)

    Maria Tikhonenko

    Full Text Available OBJECTIVE: The vasodegenerative phase of diabetic retinopathy is characterized by not only retinal vascular degeneration but also inadequate vascular repair due to compromised bone marrow derived endothelial progenitor cells (EPCs. We propose that n-3 polyunsaturated fatty acid (PUFA deficiency in diabetes results in activation of the central enzyme of sphingolipid metabolism, acid sphingomyelinase (ASM and that ASM represents a molecular metabolic link connecting the initial damage in the retina and the dysfunction of EPCs. RESEARCH DESIGN AND METHODS: Type 2 diabetic rats on control or docosahexaenoic acid (DHA-rich diet were studied. The number of acellular capillaries in the retinas was assessed by trypsin digest. mRNA levels of interleukin (IL-1β, IL-6, intracellular adhesion molecule (ICAM-1 in the retinas from diabetic animals were compared to controls and ASM protein was assessed by western analysis. EPCs were isolated from blood and bone marrow and their numbers and ability to form colonies in vitro, ASM activity and lipid profiles were determined. RESULTS: DHA-rich diet prevented diabetes-induced increase in the number of retinal acellular capillaries and significantly enhanced the life span of type 2 diabetic animals. DHA-rich diet blocked upregulation of ASM and other inflammatory markers in diabetic retina and prevented the increase in ASM activity in EPCs, normalized the numbers of circulating EPCs and improved EPC colony formation. CONCLUSIONS: In a type 2 diabetes animal model, DHA-rich diet fully prevented retinal vascular pathology through inhibition of ASM in both retina and EPCs, leading to a concomitant suppression of retinal inflammation and correction of EPC number and function.

  20. Fetal exposure to a diabetic intrauterine environment resulted in a failure of cord blood endothelial progenitor cell adaptation against chronic hypoxia

    Science.gov (United States)

    Dincer, U Deniz

    2015-01-01

    Gestational diabetes mellitus (GDM) has long-term health consequences, and fetal exposure to a diabetic intrauterine environment increases cardiovascular risk for her adult offspring. Some part of this could be related to their endothelial progenitor cells (EPCs). Understanding the vessel-forming ability of human umbilical cord blood (HUCB)-derived endothelial colony-forming cells (ECFCs) against pathological stress such as GDM response to hypoxia could generate new therapeutic strategies. This study aims to investigate the role of chronic hypoxia in EPCs functional and vessel-forming ability in GDM subjects. Each ECFC was expressed in endothelial and pro-angiogenic specific markers, namely endothelial nitric oxide synthase (eNOS), platelet (PECAM-1) endothelial cell adhesion molecule 1, vascular endothelial-cadherin CdH5 (Ca-dependent cell adhesion molecule), vascular endothelial growth factor A, (VEGFA) and insulin-like growth factor 1 (IGF1). Chronic hypoxia did not affect CdH5, but PECAM1 MRNA expressions were increased in control and GDM subjects. Control hypoxic and GDM normoxic VEGFA MRNA expressions and hypoxia-inducible factor 1-alpha (HIF1α) protein expressions were significantly increased in HUCB ECFCs. GDM resulted in most failure of HUCB ECFC adaptation and eNOS protein expressions against chronic hypoxia. Chronic hypoxia resulted in an overall decline in HUCB ECFCs’ proliferative ability due to reduction of clonogenic capacity and diminished vessel formation. Furthermore, GDM also resulted in most failure of cord blood ECFC adaptation against chronic hypoxic environment. PMID:25565870

  1. Circulating vascular endothelial growth factor is unaffected by acute hyperglycemia and hyperinsulinemia in type 1 diabetes mellitus

    NARCIS (Netherlands)

    Dullaart, Robin P. F.; Oomen, Peter H. N.; Sluiter, Wim J.

    2007-01-01

    Background: Circulating levels of vascular endothelial growth factor (VEGF) may predict microvascular complications in type 1 diabetes mellitus and are elevated when metabolic control is poor. We tested whether serum VEGF is influenced by prevailing glucose and insulin levels. Methods: In 15 type 1

  2. Culture and identification of Human endothelial progenitor cells and rat endothelial progenitor cells culture%人和大鼠内皮祖细胞培养及其生长特性的比较

    Institute of Scientific and Technical Information of China (English)

    高永兴; 沈雳; 钱菊英; 葛均波

    2012-01-01

    Objective To establish a laboratory method of culturing human endothelial progenitor cells (hEPCs) to explore the culture conditions, cell growth state, and cellular form. To culture rat endothelial progenitor cells(rEPCs) at the same time. Cell culture conditions and growth state are compared with that of the rat EPCs. Methods The human umbilical cord blood of 80-120ml / bag, firstly wet assorted the mononuclear cells using magnetic bead assisted cell sorting assay, after sub-elect of CD 133 +/ VEGFR2+ cells for flow cytometry, we found that double positive cells accounted for 48.79%. These cells were differentially adherent cultured for 5-9 day and sent to take conventional photography, immunofluorescence staining photography. rEPCs were taken from rat bone marrow by flushing the marrow cavity, and then centrifuged. We adopted the cell differential attachment culture method to culture and observe the cells. Results (1) hEPCs resemble cable strip or oval shape in the light microscope. (2) The sorted cells have phagocytosis of the Dil-acLDL, UEA dye under fluorescence microscopy and specific color to prove that the cells have a phagocytic function, inferred to be hEPCs.(3) After the use of MACS screening, CD133+/ VEGFR2+ hEPCs cells accounted for 48.79% of all cells. (4) The growth activity of rEPCs isolated from the bone marrow was significantly superior to that of hEPCs. Conclusions (1) hEPCs and rEPCs cultured in this research are active in growth .resemble cable strip or oval shape in the light microscope; (2) Proliferation ability of rEPCs from the bone marrow is greater than that of hEPCs from cord blood.This study compared the culture methods and growth characteristics of the two different sources of endothelial progenitor cells. The culture method and cell culture characteristics can be used to the experimental study of endothelial progenitor cells for either cell therapy or cellular proliferation and polarization.%目的 建立人内皮祖细胞(hEPCs)离

  3. Analysis of cd45- [cd34+/kdr+] Endothelial Progenitor Cells as Juvenile Protective Factors in a Rat Model of Ischemic-Hemorrhagic Stroke

    OpenAIRE

    Decano, Julius L.; Moran, Ann Marie; Giordano, Nicholas; Ruiz-Opazo, Nelson; Victoria L M Herrera

    2013-01-01

    Background Identification of juvenile protective factors (JPFs) which are altered with age and contribute to adult-onset diseases could identify novel pathways for reversing the effects of age, an accepted non-modifiable risk factor to adult-onset diseases. Since endothelial progenitor cells (EPCs) have been observed to be altered in stroke, hypertension and hypercholesterolemia, said EPCs are candidate JPFs for adult-onset stroke. A priori, if EPC aging plays a ‘master-switch JPF-role’ in st...

  4. Influence of Rho Kinase Inhibitor Fasudil on Late Endothelial Progenitor Cells in Peripheral Blood of COPD Patients with Pulmonary Artery Hypertension

    OpenAIRE

    Liu, Pei; Zhang, Hongmei; Tang, Yijun; Sheng, Chunfeng; Liu, Jianxin; Zeng, Yanjun

    2014-01-01

    The objective of our work was to investigate the influence of Fasudil, a Rho inhibitor on the number and function of the late endothelial progenitor cells in peripheral blood of chronic obstructive pulmonary diseases (COPD) patients with pulmonary artery hypertension. Eighty COPD patients with pulmonary artery hypertension were selected and divided into two groups: the treatment group and the control group, which had 40 patients respectively. The control group received routine treatment, incl...

  5. Overexpression or silencing of FOXO3a affects proliferation of endothelial progenitor cells and expression of cell cycle regulatory proteins.

    Directory of Open Access Journals (Sweden)

    Tiantian Sang

    Full Text Available Endothelial dysfunction is involved in the pathogenesis of many cardiovascular diseases such as atherosclerosis. Endothelial progenitor cells (EPCs have been considered to be of great significance in therapeutic angiogenesis. Furthermore, the Forkhead box O (FOXO transcription factors are known to be important regulators of cell cycle. Therefore, we investigated the effects of changes in FOXO3a activity on cell proliferation and cell cycle regulatory proteins in EPCs. The constructed recombinant adenovirus vectors Ad-TM (triple mutant-FOXO3a, Ad-shRNA-FOXO3a and the control Ad-GFP were transfected into EPCs derived from human umbilical cord blood. Assessment of transfection efficiency using an inverted fluorescence microscope and flow cytometry indicated a successful transfection. Additionally, the expression of FOXO3a was markedly increased in the Ad-TM-FOXO3a group but was inhibited in the Ad-shRNA-FOXO3a group as seen by western blotting. Overexpression of FOXO3a suppressed EPC proliferation and modulated expression of the cell cycle regulatory proteins including upregulation of the cell cycle inhibitor p27(kip1 and downregulation of cyclin-dependent kinase 2 (CDK2, cyclin D1 and proliferating cell nuclear antigen (PCNA. In the Ad-shRNA-FOXO3a group, the results were counter-productive. Furthermore, flow cytometry for cell cycle analysis suggested that the active mutant of FOXO3a caused a noticeable increase in G1- and S-phase frequencies, while a decrease was observed after FOXO3a silencing. In conclusion, these data demonstrated that FOXO3a could possibly inhibit EPC proliferation via cell cycle arrest involving upregulation of p27(kip1 and downregulation of CDK2, cyclin D1 and PCNA.

  6. Assessment of Cord Blood Vascular Endothelial Growth Factor Levels and Circulating CD34+ Cells in Preterm Infants with Respiratory Distress Syndrome

    Directory of Open Access Journals (Sweden)

    Azza Tawfeek Moawed, Nihad Ahmed El Nashar

    2012-04-01

    Full Text Available Respiratory distress syndrome (RDS secondary to surfactant deficiency is a common cause of mobility and mortality in premature infants. Vascular endothelial growth factor (VEGF is a major angiogenic factor and prime regulator of endothelial cells proliferation. So, VEGF may contribute to surfactant secretion and pulmonary maturation. Additionally, circulating CD34+ stem – progenitor cells are elevated along with its mobilizing cytokines in neonatal RDS. Aim of work: This study aimed to elucidate the role of cord blood VEGF and the circulating CD34+ cells in preterm infants with and without RDS. Patients & method: This study was conducted on 55 preterm neonates divided into 25 preterm (15 males/ 10 females without RDS with mean age of 31.60 ± 1.56 weeks and 30 preterm neonates with RDS (18 males/ 12 females with mean age of 29.95 ± 1.09 weeks . Twenty healthy neonates (14 males/ 6 females served as controls with mean age of 38.20 ± 3.57 weeks. All neonates were subjected to full history taking; thorough clinical examination and laboratory investigations including determination of VEGF levels in cord blood samples using ELISA and circulating CD34+ cells in peripheral blood by flowcytometery. Results:The results of this study revealed that cord blood VEGF levels were significantly decreased in preterms with RDS versus preterms without RDS and controls with p values of both < 0.0001. Furthermore, the circulating CD34+ cells were significantly increased in preterm infants with RDS versus preterm infants without RDS and controls (p < 0.05 & < 0.0001 respectively. Premature rupture of the membrane, gender of the newborn, birth weight and antenatal steroid administration had neither significant effect on the cord blood VEGF nor on the number of CD34+ cells. There was inverse significant correlation between GA and the number of CD34+ cells. Conclusion:It was concluded that low cord blood VEGF is associated with RDS and its level negatively

  7. Human umbilical cord-derived endothelial progenitor cells promote growth cytokines-mediated neorevascularization in rat myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    HU Cheng-heng; LI Zhi-ming; DU Zhi-min; ZHANG Ai-xia; YANG Da-ya; WU Gui-fu

    2009-01-01

    Background Cell-based vascular therapies of endothelial progenitor cells (EPCs) mediated neovascularization is still a novel but promising approach for the treatment of ischemic disease. The present study was designed to investigate the therapeutic potentials of human umbilical cord blood-derived EPCs (hUCB-EPCs) in rat with acute myocardial infarction.Methods Human umbilical cord blood (hUCB) mononuclear cells were isolated using density gradient centrifugation from the fresh human umbilical cord in healthy delivery woman, and cultured in M199 medium for 7 days. The EPCs were identified by double-positive staining with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine percholorate-labeled acetylated low-density lipoprotein (Dil-Ac-LDL) and fluorescein isothiocyanate-conjugated Ulex europaeus lectin (FITC-UEA-I). The rat acute myocardial infarction model was established by the ligation of the left anterior descending artery. The hUCB-EPCs were intramyocardially injected into the peri-infarct area. Four weeks later, left ventricular function was assessed by a pressure-volume catheter. The average capillary density (CAD) was evaluated by anti-VⅢ immunohistochemistry staining to reflect the development of neovascularization at the peri-infarct area. The graft cells were identified by double immunofluorescence staining with human nuclear antigen (HNA) and CD31 antibody,representing human origin of EPCs and vascular endothelium, respectively. Expressions of cytokines, proliferating cell nuclear angigen (PCNA), platelet endothelial cell adhesion molecule (PECAM) and vascular endothelial growth factor (VEGF) were detected to investigate the underlying mechanisms of cell differentiation and revascularization.Results The donor EPCs were detectable and integrated into the host myocardium as confirmed by double-positive immunofluorescence staining with HNA and CD31. And the anti-VⅢ staining demonstrated a higher degree of microvessel formation in EPCs transplanted

  8. Wnt3a is critical for endothelial progenitor cell-mediated neural stem cell proliferation and differentiation

    Science.gov (United States)

    Du, Yibin; Zhang, Shuo; Yu, Tao; Du, Gongwen; Zhang, Hui; Yin, Zongsheng

    2016-01-01

    The present study aimed to determine whether co-culture with bone marrow-derived endothelial progenitor cells (EPCs) affects the proliferation and differentiation of spinal cord-derived neural stem cells (NSCs), and to investigate the underlying mechanism. The proliferation and differentiation of the NSCs were evaluated by an MTT cell proliferation and cytotoxicity assay, and immunofluorescence, respectively. The number of neurospheres and the number of β-tubulin III-positive cells were detected by microscopy. The wingless-type MMTV integration site family, member 3a (Wnt3a)/β-catenin signaling pathway was analyzed by western blot analysis and reverse transcription-quantitative polymerase chain reaction to elucidate the possible mechanisms of EPC-mediated NSC proliferation and differentiation. The results revealed that co-culture with EPCs significantly induced NSC proliferation and differentiation. In addition, co-culture with EPCs markedly induced the expression levels of Wnt3a and β-catenin and inhibited the phosphorylation of glycogen synthase kinase 3β (GSK-3β). By contrast, Wnt3a knockdown using a short hairpin RNA plasmid in the EPCs reduced EPC-mediated NSC proliferation and differentiation, accompanied by inhibition of the EPC-mediated expression of β-catenin, and its phosphorylation and activation of GSK-3β. Taken together, the findings of the present study demonstrated that Wnt3a was critical for EPC-mediated NSC proliferation and differentiation. PMID:27484039

  9. A critical role of CXCR2 PDZ-mediated interactions in endothelial progenitor cell homing and angiogenesis

    Directory of Open Access Journals (Sweden)

    Yuning Hou

    2015-03-01

    Full Text Available Bone marrow-derived endothelial progenitor cells (EPCs contribute to neovessel formation in response to growth factors, cytokines, and chemokines. Chemokine receptor CXCR2 and its cognate ligands are reported to mediate EPC recruitment and angiogenesis. CXCR2 possesses a consensus PSD-95/DlgA/ZO-1 (PDZ motif which has been reported to modulate cellular signaling and functions. Here we examined the potential role of the PDZ motif in CXCR2-mediated EPC motility and angiogenesis. We observed that exogenous CXCR2 C-tail significantly inhibited in vitro EPC migratory responses and angiogenic activities, as well as in vivo EPC angiogenesis. However, the CXCR2 C-tail that lacks the PDZ motif (ΔTTL did not cause any significant changes of these functions in EPCs. In addition, using biochemical assays, we demonstrated that the PDZ scaffold protein NHERF1 specifically interacted with CXCR2 and its downstream effector, PLC-β3, in EPCs. This suggests that NHERF1 might cluster CXCR2 and its relevant signaling molecules into a macromolecular signaling complex modulating EPC cellular functions. Taken together, our data revealed a critical role of a PDZ-based CXCR2 macromolecular complex in EPC homing and angiogenesis, suggesting that targeting this complex might be a novel and effective strategy to treat angiogenesis-dependent diseases.

  10. Melanoma cell therapy: Endothelial progenitor cells as shuttle of the MMP12 uPAR-degrading enzyme.

    Science.gov (United States)

    Laurenzana, Anna; Biagioni, Alessio; D'Alessio, Silvia; Bianchini, Francesca; Chillà, Anastasia; Margheri, Francesca; Luciani, Cristina; Mazzanti, Benedetta; Pimpinelli, Nicola; Torre, Eugenio; Danese, Silvio; Calorini, Lido; Del Rosso, Mario; Fibbi, Gabriella

    2014-06-15

    The receptor for the urokinase-type plasminogen activator (uPAR) accounts for many features of cancer progression, and is therefore considered a target for anti-tumoral therapy. Only full length uPAR mediates tumor progression. Matrix-metallo-proteinase-12 (MMP12)-dependent uPAR cleavage results into the loss of invasion properties and angiogenesis. MMP12 can be employed in the field of "targeted therapies" as a biological drug to be delivered directly in patient's tumor mass. Endothelial Progenitor Cells (EPCs) are selectively recruited within the tumor and could be used as cellular vehicles for delivering anti-cancer molecules. The aim of our study is to inhibit cancer progression by engeneering ECFCs, a subset of EPC, with a lentivirus encoding the anti-tumor uPAR-degrading enzyme MMP12. Ex vivo manipulated ECFCs lost the capacity to perform capillary morphogenesis and acquired the anti-tumor and anti-angiogenetic activity. In vivo MMP12-engineered ECFCs cleaved uPAR within the tumor mass and strongly inhibited tumor growth, tumor angiogenesis and development of lung metastasis. The possibility to exploit tumor homing and activity of autologous MMP12-engineered ECFCs represents a novel way to combat melanoma by a "personalized therapy", without rejection risk. The i.v. injection of radiolabelled MMP12-ECFCs can thus provide a new theranostic approach to control melanoma progression and metastasis. PMID:25003596

  11. Endothelial progenitor cells and cardiovascular events in patients with chronic kidney disease--a prospective follow-up study.

    Directory of Open Access Journals (Sweden)

    Johan Lorenzen

    Full Text Available BACKGROUND: Endothelial progenitor cells (EPCs mediate vascular repair and regeneration. Their number in peripheral blood is related to cardiovascular events in individuals with normal renal function. METHODS: We evaluated the association between functionally active EPCs (cell culture and traditional cardiovascular risk factors in 265 patients with chronic kidney disease stage V receiving hemodialysis therapy. Thereafter, we prospectively assessed cardiovascular events, e.g. myocardial infarction, percutaneous transluminal coronary angioplasty (including stenting, aorto-coronary bypass, stroke and angiographically verified stenosis of peripheral arteries, and cardiovascular death in this cohort. RESULTS: In our patients EPCs were related only to age (r=0.154; p=0.01. During a median follow-up period of 36 months 109 (41% patients experienced a cardiovascular event. In a multiple Cox regression analysis, we identified EPCs (p=0.03 and patient age (p=0.01 as the only independent variables associated with incident cardiovascular events. Moreover, a total of 70 patients died during follow-up, 45 of those due to cardiovascular causes. Log rank test confirmed statistical significance for EPCs concerning incident cardiovascular events (p=0.02. CONCLUSIONS: We found a significant association between the number of functionally active EPCs and cardiovascular events in patients with chronic kidney disease. Thus, defective vascular repair and regeneration may be responsible, at least in part, for the enormous cardiovascular morbidity in this population.

  12. Multilayer Membranes of Glycosaminoglycans and Collagen I Biomaterials Modulate the Function and Microvesicle Release of Endothelial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Bingyan Dai

    2016-01-01

    Full Text Available Multilayer composite membrane of biomaterials can increase the function of adipose stem cells or osteoprogenitor cells. Recent evidence indicates endothelial progenitor cells (EPCs and EPCs released microvesicles (MVs play important roles in angiogenesis and vascular repair. Here, we investigated the effects of biomaterial multilayer membranes of hyaluronic acid (HA or chondroitin sulfate (CS and Collagen I (Col I on the functions and MVs release of EPCs. Layer-by-layer (LBL technology was applied to construct the multilayer composite membranes. Four types of the membranes constructed by adsorbing either HA or CS and Col I alternatively with different top layers were studied. The results showed that all four types of multilayer composite membranes could promote EPCs proliferation and migration and inhibit cell senility, apoptosis, and the expression of activated caspase-3. Interestingly, these biomaterials increased the release and the miR-126 level of EPCs-MVs. Moreover, the CS-Col I membrane with CS on the top layer showed the most effects on promoting EPCs proliferation, EPCs-MV release, and miR-126 level in EPCs-MVs. In conclusion, HA/CS and Collagen I composed multilayer composite membranes can promote EPCs functions and release of miR-126 riched EPCs-MVs, which provides a novel strategy for tissue repair treatment.

  13. Therapeutic neovascularization by autologous transplantation with expanded endothelial progenitor cells from peripheral blood into ischemic hind limbs

    Institute of Scientific and Technical Information of China (English)

    Chun-ling FAN; Ping-jin GAO; Zai-qian CHE; Jian-jun LIU; Jian WEI; Ding-liang ZHU

    2005-01-01

    Aim: To investigate the hypothesis that transplantation with expanded autologous endothelial progenitor cells (EPC) could enhance neovascularization.Methods: Peripheral blood mononuclear cells (PB-MNC) isolated from New Zealand White rabbits were cultured in vitro. At d 7, the adherent cells were collected for autologous transplantation. Rabbits with severe unilateral hind limb ischemia were randomly assigned to receive phosphate-buffered saline or expanded EPC in phosphate-buffered saline, administered by intramuscular injection in 6 sites of the ischemic thigh at postoperative d 7. Neovascularization was monitored by using the calf blood pressure ratio to indicate tissue perfusion, digital subtraction angiography to identify collateral vessel development and histological analysis of capillary density in the ischemic limb at d 35 after surgery. Results: Autologous EPC transplantation produced significant amelioration in ischemic hind limbs,as indicated by a greater calf blood pressure ratio (0.52±0.04 vs 0.42±0.05, P<0.01),angiographic score (1.44±0.06 vs 0.98±0.08, P<0.01) and capillary density in muscle (195.2±5.4/mm2 vs 169.4±6.4/mm2, P<0.05), than controls. Conclusion: Transplantation of autologous expanded EPC can promote neovascularization in ischemic hindlimbs.

  14. Myocardial dysfunction in patients with type 2 diabetes mellitus: role of endothelial progenitor cells and oxidative stress

    Directory of Open Access Journals (Sweden)

    Zhao Chun

    2012-12-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPCs are responsible for angiogenesis and maintenance of microvascular integrity, the number of EPCs is correlated with oxidative stress. Their relation to myocardial dysfunction in patients with type 2 diabetes mellitus (T2DM is nonetheless unknown. Methods Eighty-seven patients with T2DM and no history of coronary artery disease were recruited. Transthoracic echocardiography and detailed evaluation of left ventricular (LV systolic function by 2-dimensional (2D speckle tracking derived strain analysis in 3 orthogonal directions was performed. Four subpopulations of EPCs, including CD34+, CD133+, CD34+/kinase insert domain-containing receptor (KDR + and CD133+/KDR + EPCs, were measured by flow cytometry. Oxidative stress was assessed by superoxide dismutase (SOD. Results The mean age of the patients was 62 ± 9 years and 39.6% were male. Those with an impaired longitudinal strain had a lower number of CD34+ EPCs (2.82 ± 1.87% vs. 3.74 ± 2.12%, P  Conclusions LV global circumferential strain was independently associated with number of CD34+ EPCs and SOD. These findings suggest that myocardial dysfunction in patients with T2DM is related to depletion of EPCs and increased oxidative stress.

  15. Multilayer Membranes of Glycosaminoglycans and Collagen I Biomaterials Modulate the Function and Microvesicle Release of Endothelial Progenitor Cells.

    Science.gov (United States)

    Dai, Bingyan; Pan, Qunwen; Li, Zhanghua; Zhao, Mingyan; Liao, Xiaorong; Wu, Keng; Ma, Xiaotang

    2016-01-01

    Multilayer composite membrane of biomaterials can increase the function of adipose stem cells or osteoprogenitor cells. Recent evidence indicates endothelial progenitor cells (EPCs) and EPCs released microvesicles (MVs) play important roles in angiogenesis and vascular repair. Here, we investigated the effects of biomaterial multilayer membranes of hyaluronic acid (HA) or chondroitin sulfate (CS) and Collagen I (Col I) on the functions and MVs release of EPCs. Layer-by-layer (LBL) technology was applied to construct the multilayer composite membranes. Four types of the membranes constructed by adsorbing either HA or CS and Col I alternatively with different top layers were studied. The results showed that all four types of multilayer composite membranes could promote EPCs proliferation and migration and inhibit cell senility, apoptosis, and the expression of activated caspase-3. Interestingly, these biomaterials increased the release and the miR-126 level of EPCs-MVs. Moreover, the CS-Col I membrane with CS on the top layer showed the most effects on promoting EPCs proliferation, EPCs-MV release, and miR-126 level in EPCs-MVs. In conclusion, HA/CS and Collagen I composed multilayer composite membranes can promote EPCs functions and release of miR-126 riched EPCs-MVs, which provides a novel strategy for tissue repair treatment. PMID:27190523

  16. Concurrent hypermulticolor monitoring of CD31, CD34, CD45 and CD146 endothelial progenitor cell markers for acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Yumi [College of Pharmacy, Seoul National University, 1 Gwanak-Ro, Gwanak Gu, Seoul 151-742 (Korea, Republic of); Nam, Myung Hyun [Department of Laboratory Medicine, Korea University Ansan Hospital, Korea University College of Medicine (Korea, Republic of); Hyuk, Song Woo [Cardiology College of Medicine, Korea University (Korea, Republic of); Yoon, Soo Young [College of Medicine, Korea University, Seoul (Korea, Republic of); Song, Joon Myong, E-mail: jmsong@snu.ac.kr [College of Pharmacy, Seoul National University, 1 Gwanak-Ro, Gwanak Gu, Seoul 151-742 (Korea, Republic of)

    2015-01-01

    Highlights: • We observe EPCs and HPCs in patient for AMI diagnosis. • We detect two EPC subtypes using quantum dot and AOTF. • Quantum dot has narrower emission wavelength range than fluorescence dye. • AOTF provide smaller spectral interference than bandpass filters. • Quantum dot and AOTF are suitable for detecting large number of molecular markers concurrently. - Abstract: The circulating endothelial progenitor cells (EPCs) in blood of acute myocardial infarction (AMI) patient have been monitored in many previous studies. The number of circulating EPC increases in the blood of patients at onset of the AMI. EPC is originated from bone marrow. It performs vessel regeneration. There are many markers used for detecting EPC. Four of these markers, CD31, CD34, CD45, and CD146, were concurrently detected at the single cell level for the identification of EPC in the present preliminary study. The CD45 negative cell sorting was performed to peripheral blood mononuclear cells (PBMCs) acquired from four AMI patients with a magnetic bead sorter, since, EPCs expressed CD45 negative or dim. The resultant PBMC eluents were treated with quantum-antibody conjugates for the probing four different markers of EPCs and then applied to a high-content single cell imaging cytometer using acousto-optical tunable filter (AOTF). The use of quantum dot, with narrow emission wavelength range and AOTF enabling cellular image at a particular single wavelength, is very advantageous for accurate high-content AMI diagnosis based on simultaneous monitoring of many markers. The number of EPC increased as compared with control in three of four AMI patients. In this approach, two EPC subtypes were found, CD31(+), CD34(+), CD45(−/dim), CD146(−) as early outgrowth EPCs and CD31(+), CD34(+), CD45(−/dim), CD146(+) as late outgrowth EPCs. Patient 1 had CD31(+), CD34(+), CD45(−/dim), CD146(+) cells whose percentage was 4.21% of cells. Patient 2 had 2.38% of CD31(+), CD34(+), CD45(

  17. Smooth muscle cells in atherosclerosis originate from the local vessel wall and not circulating progenitor cells in ApoE knockout mice

    DEFF Research Database (Denmark)

    Bentzon, Jacob Fog; Weile, Charlotte; Sondergaard, Claus S;

    2006-01-01

    Recent studies of bone marrow (BM)-transplanted apoE knockout (apoE-/-) mice have concluded that a substantial fraction of smooth muscle cells (SMCs) in atherosclerosis arise from circulating progenitor cells of hematopoietic origin. This pathway, however, remains controversial. In the present st...

  18. Histamine receptors expressed in circulating progenitor cells have reciprocal actions in ligation-induced arteriosclerosis.

    Science.gov (United States)

    Yamada, Sohsuke; Wang, Ke-Yong; Tanimoto, Akihide; Guo, Xin; Nabeshima, Atsunori; Watanabe, Takeshi; Sasaguri, Yasuyuki

    2013-09-01

    Histamine is synthesized as a low-molecular-weight amine from L-histidine by histidine decarboxylase (HDC). Recently, we demonstrated that carotid artery-ligated HDC gene-deficient mice (HDC(-/-)) showed less neointimal formation than wild-type (WT) mice, indicating that histamine participates in the process of arteriosclerosis. However, little is known about the roles of histamine-specific receptors (HHRs) in arteriosclerosis. To define the roles of HHRs in arteriosclerosis, we investigated intimal remodeling in ligated carotid arteries of HHR-deficient mice (H1R(-/-) or H2R(-/-)). Quantitative analysis showed that H1R(-/-) mice had significantly less arteriosclerogenesis, whereas H2R(-/-) mice had more, as compared with WT mice. Bone marrow transplantation from H1R(-/-) or H2R(-/-) to WT mice confirmed the above observation. Furthermore, the increased expression of monocyte chemoattractant protein (MCP-1), platelet-derived growth factor (PDGF), adhesion molecules and liver X receptor (LXR)-related inflammatory signaling factors, including Toll-like receptor (TLR3), interleukin-1 receptor (IL-1R) and tumor necrosis factor receptor (TNF-R), was consistent with the arteriosclerotic phenotype of H2R(-/-) mice. Peripheral progenitor cells in H2R(-/-) mice accelerate ligation-induced arteriosclerosis through their regulation of MCP-1, PDGF, adhesion molecules and LXR-related inflammatory signaling factors. In contrast, peripheral progenitor cells act to suppress arteriosclerosis in H1R(-/-) mice, indicating that HHRs reciprocally regulate inflammation in the ligation-induced arteriosclerosis.

  19. Endothelial Progenitor Cell Dysfunction in Myelodysplastic Syndromes: Possible Contribution of a Defective Vascular Niche to Myelodysplasia

    Directory of Open Access Journals (Sweden)

    Luciana Teofili

    2015-05-01

    Full Text Available We set a model to replicate the vascular bone marrow niche by using endothelial colony forming cells (ECFCs, and we used it to explore the vascular niche function in patients with low-risk myelodysplastic syndromes (MDS. Overall, we investigated 56 patients and we observed higher levels of ECFCs in MDS than in healthy controls; moreover, MDS ECFCs were found variably hypermethylated for p15INK4b DAPK1, CDH1, or SOCS1. MDS ECFCs exhibited a marked adhesive capacity to normal mononuclear cells. When normal CD34+ cells were co-cultured with MDS ECFCs, they generated significant lower amounts of CD11b+ and CD41+ cells than in co-culture with normal ECFCs. At gene expression profile, several genes involved in cell adhesion were upregulated in MDS ECFCs, while several members of the Wingless and int (Wnt pathways were underexpressed. Furthermore, at miRNA expression profile, MDS ECFCs hypo-expressed various miRNAs involved in Wnt pathway regulation. The addition of Wnt3A reduced the expression of intercellular cell adhesion molecule-1 on MDS ECFCs and restored the defective expression of markers of differentiation. Overall, our data demonstrate that in low-risk MDS, ECFCs exhibit various primary abnormalities, including putative MDS signatures, and suggest the possible contribution of the vascular niche dysfunction to myelodysplasia.

  20. Lung-homing of endothelial progenitor cells and airway vascularization is only partially dependant on eosinophils in a house dust mite-exposed mouse model of allergic asthma.

    Directory of Open Access Journals (Sweden)

    Nirooya Sivapalan

    Full Text Available Asthmatic responses involve a systemic component where activation of the bone marrow leads to mobilization and lung-homing of progenitor cells. This traffic may be driven by stromal cell derived factor-1 (SDF-1, a potent progenitor chemoattractant. We have previously shown that airway angiogenesis, an early remodeling event, can be inhibited by preventing the migration of endothelial progenitor cells (EPC to the lungs. Given intranasally, AMD3100, a CXCR4 antagonist that inhibits SDF-1 mediated effects, attenuated allergen-induced lung-homing of EPC, vascularization of pulmonary tissue, airway eosinophilia and development of airway hyperresponsiveness. Since SDF-1 is also an eosinophil chemoattractant, we investigated, using a transgenic eosinophil deficient mouse strain (PHIL whether EPC lung accumulation and lung vascularization in allergic airway responses is dependent on eosinophilic inflammation.Wild-type (WT BALB/c and eosinophil deficient (PHIL mice were sensitized to house dust mite (HDM using a chronic exposure protocol and treated with AMD3100 to modulate SDF-1 stimulated progenitor traffic. Following HDM challenge, lung-extracted EPCs were enumerated along with airway inflammation, microvessel density (MVD and airway methacholine responsiveness (AHR.Following Ag sensitization, both WT and PHIL mice exhibited HDM-induced increase in airway inflammation, EPC lung-accumulation, lung angiogenesis and AHR. Treatment with AMD3100 significantly attenuated outcome measures in both groups of mice. Significantly lower levels of EPC and a trend for lower vascularization were detected in PHIL versus WT mice.This study shows that while allergen-induced lung-homing of endothelial progenitor cells, increased tissue vascularization and development lung dysfunction can occur in the absence of eosinophils, the presence of these cells worsens the pathology of the allergic response.

  1. Relationship between spontaneous γH2AX foci formation and progenitor functions in circulating hematopoietic stem and progenitor cells among atomic-bomb survivors.

    Science.gov (United States)

    Kajimura, Junko; Kyoizumi, Seishi; Kubo, Yoshiko; Misumi, Munechika; Yoshida, Kengo; Hayashi, Tomonori; Imai, Kazue; Ohishi, Waka; Nakachi, Kei; Weng, Nan-Ping; Young, Lauren F; Shieh, Jae-Hung; Moore, Malcolm A; van den Brink, Marcel R M; Kusunoki, Yoichiro

    2016-05-01

    Accumulated DNA damage in hematopoietic stem cells is a primary mechanism of aging-associated dysfunction in human hematopoiesis. About 70 years ago, atomic-bomb (A-bomb) radiation induced DNA damage and functional decreases in the hematopoietic system of A-bomb survivors in a radiation dose-dependent manner. The peripheral blood cell populations then recovered to a normal range, but accompanying cells derived from hematopoietic stem cells still remain that bear molecular changes possibly caused by past radiation exposure and aging. In the present study, we evaluated radiation-related changes in the frequency of phosphorylated (Ser-139) H2AX (γH2AX) foci formation in circulating CD34-positive/lineage marker-negative (CD34+Lin-) hematopoietic stem and progenitor cells (HSPCs) among 226Hiroshima A-bomb survivors. An association between the frequency of γH2AX foci formation in HSPCs and the radiation dose was observed, but the γH2AX foci frequency was not significantly elevated by past radiation. We found a negative correlation between the frequency of γH2AX foci formation and the length of granulocyte telomeres. A negative interaction effect between the radiation dose and the frequency of γH2AX foci was suggested in a proportion of a subset of HSPCs as assessed by the cobblestone area-forming cell assay (CAFC), indicating that the self-renewability of HSPCs may decrease in survivors who were exposed to a higher radiation dose and who had more DNA damage in their HSPCs. Thus, although many years after radiation exposure and with advancing age, the effect of DNA damage on the self-renewability of HSPCs may be modified by A-bomb radiation exposure. PMID:27169377

  2. Endothelial progenitor cells (EPCs as gene carrier system for rat model of human glioma.

    Directory of Open Access Journals (Sweden)

    Nadimpalli Ravi S Varma

    Full Text Available BACKGROUND: Due to their unique property to migrate to pathological lesions, stem cells are used as a delivery vehicle for therapeutic genes to tumors, especially for glioma. It is critically important to track the movement, localization, engraftment efficiency and functional capability or expression of transgenes of selected cell populations following transplantation. The purposes of this study were to investigate whether 1 intravenously administered, genetically transformed cord blood derived EPCs can carry human sodium iodide symporter (hNIS to the sites of tumors in rat orthotopic model of human glioma and express transgene products, and 2 whether accumulation of these administered EPCs can be tracked by different in vivo imaging modalities. METHODS AND RESULTS: Collected EPCs were cultured and transduced to carry hNIS. Cellular viability, differential capacity and Tc-99m uptake were determined. Five to ten million EPCs were intravenously administered and Tc-99-SPECT images were acquired on day 8, to determine the accumulation of EPCs and expression of transgenes (increase activity of Tc-99m in the tumors. Immunohistochemistry was performed to determine endothelial cell markers and hNIS positive cells in the tumors. Transduced EPCs were also magnetically labeled and accumulation of cells was confirmed by MRI and histochemistry. SPECT analysis showed increased activity of Tc-99m in the tumors that received transduced EPCs, indicative of the expression of transgene (hNIS. Activity of Tc-99m in the tumors was also dependent on the number of administered transduced EPCs. MRI showed the accumulation of magnetically labeled EPCs. Immunohistochemical analysis showed iron and hNIS positive and, human CD31 and vWF positive cells in the tumors. CONCLUSION: EPC was able to carry and express hNIS in glioma following IV administration. SPECT detected migration of EPCs and expression of the hNIS gene. EPCs can be used as gene carrier/delivery system for

  3. Grain and bean lysates improve function of endothelial progenitor cells from human peripheral blood: involvement of the endogenous antioxidant defenses.

    Directory of Open Access Journals (Sweden)

    Daniela Lucchesi

    Full Text Available Increased oxidative stress contributes to the functional impairment of endothelial progenitor cells (EPCs, the pivotal players in the servicing of the endothelial cell lining. Several evidences suggest that decreasing oxidative stress by natural compounds with antioxidant properties may improve EPCs bioactivity. Here, we investigated the effects of Lisosan G (LG, a Triticum Sativum grain powder, and Lady Joy (LJ, a bean lysate, on function of EPCs exposed to oxidative stress. Peripheral blood mononuclear cells were isolated and plated on fibronectin-coated culture dishes; adherent cells, identified as early EPCs, were pre-treated with different concentrations of LG and LJ and incubated with hydrogen peroxide (H2O2. Viability, senescence, adhesion, ROS production and antioxidant enzymes gene expression were evaluated. Lysate-mediated Nrf-2 (nuclear factor (erythroid-derived 2-like 2/ARE (antioxidant response element activation, a modulator of oxidative stress, was assessed by immunocytochemistry. Lady Joy 0.35-0.7 mg/ml increases EPCs viability; pre-treatment with either LG 0.7 mg/ml and LJ 0.35-0.7 mg/ml protect EPCs viability against H2O2-induced injury. LG 0.7 and LJ 0.35-0.7 mg/ml improve EPCs adhesion; pre-treatment with either LG 0.35 and 0.7 mg/ml or LJ 0.35, 0.7 and 1.4 mg/ml preserve adhesiveness of EPCs exposed to H2O2. Senescence is attenuated in EPCs incubated with lysates 0.35 mg/ml. After exposure to H2O2, LG pre-treated cells show a lower senescence than untreated EPCs. Lysates significantly decrease H2O2-induced ROS generation. Both lysates increase glutathione peroxidase-1 and superoxide dismutase-2 (SOD-2 expression; upon H2O2 exposure, pre-treatment with LJ allows higher SOD-2 expression. Heme oxigenase-1 increases in EPCs pre-treated with LG even upon H2O2 exposure. Finally, incubation with LG 0.7 mg/ml results in Nrf-2 translocation into the nucleus both at baseline and after the oxidative challenge. Our data suggest a

  4. Angiogenesis effect of Astragalus polysaccharide combined with endothelial progenitor cells therapy in diabetic male rat following experimental hind limb ischemia

    Institute of Scientific and Technical Information of China (English)

    Tu Sheng; Shao Anwen; Ren Lihong; Chen Tin; Yao Dingguo

    2014-01-01

    Background Diabetes mellitus (DM) is a common disease accompanied with a high incidence of hind limb ischemia (HLI).In recent years,numerous studies demonstrated that endothelial progenitor cells (EPCs) are involved in angiogenesis and maintenance of vascular integrity following HLI.On the other side,it has been proved that Astragalus polysaccharide (APS) could promote angiogenesis.In the present study,we aimed to evaluate the effect of APS and EPCs on enhancing angiogenesis after experimental HLI caused by femoral artery ligation in rats with streptozotocin (STZ)-induced diabetes.Methods Rats (n=110) were randomly assigned to the following groups:sham group,ischemia group,APS group,EPCs group and APS+EPCs group.APS,EPCs or an equal volume of vehicle was administered intramuscularly after HLI induction,and 6 rats were assessed by angiography at 28 days after induction of HLI,6 rats were sacrificed at the same time point to take histological studies,biochemical tests were also performed at that point in the rest rats.Results APS or EPCs treatment induced an increase,respectively,in the protein expression of vascular endothelial growth factor (VEGF) (36.61%,61.59%),VEGF receptor-1 (VEGFR-1) (35.50%,57.33%),VEGFR-2 (31.75%,41.89%),Angiopoietin-1 (Ang-1) (37.57%,64.66%) and Tie-2 (42.55%,76.94%) (P <0.05),after HLI injury.And combined therapy of APS and EPCs enhanced the effort of angiogenesis after HLI induction in diabetic rats,through elevating protein expression of VEGF (99.67%),VEGFR-1 (105.33%),VEGFR2 (72.05%),Ang-1 (114.30%) and Tie-2 (111.87%) (P<0.05).Similarly,mRNA expression of VEGF,VEGFR-1,VEGFR2,Ang-1,Tie-2 also show similar trends as well as protein expression (P<0.05).Conclusion APS or EPCs could enhance angiogenesis,and the combined treatment leads to better effort,at least,partially via VEGFNEGFR and Ang-1/Tie-2 signaling pathway.

  5. Effects of aspirin on number,activity and inducible nitric oxide synthase of endothelial progenitor cells from peripheral blood

    Institute of Scientific and Technical Information of China (English)

    Tu-gang CHEN; Jun-zhu CHEN; Xu-dong XIE

    2006-01-01

    Aim:To investigate whether aspirin has an influence on endothelial progenitor cells (EPC).Methods:Total mononuclear cells (MNC) were isolated from peripheral blood by Ficoll density gradient centrifugation,then cells were plated on fibronectin-coated culture dishes.After 7 d of culture,attached cells were stimulated with aspirin (to achieve final concentrations of 1,2,5,and 10 mmol/L) for 3,6,12,and 24 h.EPC were characterized as adherent cells that were double positive for 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine low density lipoprotein (DiLDL) uptake and lectin binding by direct fluorescent staining.EPC proliferation and migration were assayed using a 3- (4,5-dimethyl-2 thiazoyl) -2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and a modified Boyden chamber assay.respectively.An EPC adhesion assay was performed by replating the EPC on fibronectin-coated dishes,and then adherent cells were counted.In vitro vasculogenesis activity was assayed by using an in vitro vasculogenesis kit. Inducible nitric oxide synthase (iNOS) was assayed by Westem blotting.Results:Incubation of isolated human MNC with aspirin decreased the number of EPC.Aspirin also decreased the proliferative,migratory,adhesive,and in vitro Vasculogenesis capacity of EPC,and also their iNOS levels in a concentration-and time-dependent manner.Conclusion:Aspirin decreases (1) the number of EPC; (2) the proliferative,migratory,adhesive and in vitro vasculogenesis capacities of EPC;and (3) iNOS levels in EPC.

  6. Construction of a multifunctional coating consisting of phospholipids and endothelial progenitor cell-specific peptides on titanium substrates

    International Nuclear Information System (INIS)

    Graphical abstract: The phospholipid groups of PMMDP can inhibit platele adhesion, and the EPCs-specific peptide of the PMMDP showed special recognition and capture for EPCs. The catechol groups of PMMDP play a critical role as molecular anchor for balancing the binding between the coating and the substrate. - Highlights: • The uniform coating of PMMDP can be constructed on titanium surface successfully through the catechol groups. • The phospholipid groups of PMMDP can inhibit platele adhesion, fibrinogen denaturation and improve the hydrophilicity of substrate. • The EPCs-specific peptide of the PMMDP showed special recognition and capture for EPCs. - Abstract: A phospholipid/peptide polymer (PMMDP) with phosphorylcholine groups, endothelial progenitor cell (EPC)-specific peptides and catechol groups was anchored onto a titanium (Ti) surface to fabricate a biomimetic multifunctional surface. The PMMDP coating was characterized by X-ray photoelectron spectroscopy (XPS), water contact angle measurements and atomic force microscopy (AFM), respectively. The amount of PMMDP coating on the Ti surface was quantified by using the quartz crystal microbalance with dissipation (QCM-D). Interactions between blood components and the coated and bare Ti substrates were evaluated by platelet adhesion and activation assays and fibrinogen denaturation test using platelet rich plasma (PRP). The results revealed that the PMMDP-modified surface inhibited fibrinogen denaturation and reduced platelet adhesion and activation. EPC cell culture on the PMMDP-modified surface showed increased adhesion and proliferation of EPCs when compared to the cells cultured on untreated Ti surface. The inhibition of fibrinogen denaturation and platelet adhesion and support of EPCs attachment and proliferation indicated that this coating might be beneficial for future applications in blood-contacting implants, such as vascular stents

  7. Effect of low-dose methylprednisolone on peripheral blood endothelial progenitor cells and its significance in rats after brain injury

    Directory of Open Access Journals (Sweden)

    Bin ZHANG

    2011-05-01

    Full Text Available Objective To explore the effects of low-dose methylprednisolone(MP treatment after traumatic brain injury(TBI in rats on the number of peripheral blood endothelial progenitor cells(EPCs and injury area of the brain.Methods One hundred and fifty-four adult male Wistar rats were involved in the present study,and they were randomly divided into normal control group(n=18,TBI control group(n=38,MP control group(n=30,MP+TBI group(n=30 and TBI+MP group(n=38.The TBI model was reproduced by fluid percussion injury(FPI.MP(5mg/kg was intraperitoneally administered once a day for 4 days.Peripheral venous blood samples were taken on day 1,3,7 and 14,and the counts of EPCs were determined by flow cytometry.The rats were sacrificed on day 1 and 3,brain edema was estimated by dry-wet weight method,and the blood-brain barrier(BBB permeability was determined by Evans-blue extravasation.Results The counts of peripheral blood EPCs were significantly higher in MP control group,MP+TBI group and TBI+MP group on day 1,3 and 7 than that in normal control and TBI control group,and it returned to the level of normal control group on day 14.The BBB permeability was improved and brain edema alleviated in MP+TBI and TBI+MP group on day 3.Conclusion The administration of low-dose MP may increase the count of peripheral blood EPCs in rats,decrease BBB damage,and alleviate brain edema.

  8. Development of a xeno-free autologous culture system for endothelial progenitor cells derived from human umbilical cord blood.

    Directory of Open Access Journals (Sweden)

    Sung-Hwan Moon

    Full Text Available Despite promising preclinical outcomes in animal models, a number of challenges remain for human clinical use. In particular, expanding a large number of endothelial progenitor cells (EPCs in vitro in the absence of animal-derived products is the most critical hurdle remaining to be overcome to ensure the safety and efficiency of human therapy. To develop in vitro culture conditions for EPCs derived from human cord blood (hCB-EPCs, we isolated extracts (UCE and collagen (UC-collagen from umbilical cord tissue to replace their animal-derived counterparts. UC-collagen and UCE efficiently supported the attachment and proliferation of hCB-EPCs in a manner comparable to that of animal-derived collagen in the conventional culture system. Our developed autologous culture system maintained the typical characteristics of hCB-EPCs, as represented by the expression of EPC-associated surface markers. In addition, the therapeutic potential of hCB-EPCs was confirmed when the transplantation of hCB-EPCs cultured in this autologous culture system promoted limb salvage in a mouse model of hindlimb ischemia and was shown to contribute to attenuating muscle degeneration and fibrosis. We suggest that the umbilical cord represents a source for autologous biomaterials for the in vitro culture of hCB-EPCs. The main characteristics and therapeutic potential of hCB-EPCs were not compromised in developed autologous culture system. The absence of animal-derived products in our newly developed in vitro culture removes concerns associated with secondary contamination. Thus, we hope that this culture system accelerates the realization of therapeutic applications of autologous hCB-EPCs for human vascular diseases.

  9. Construction of a multifunctional coating consisting of phospholipids and endothelial progenitor cell-specific peptides on titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huiqing; Li, Xiaojing [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhao, Yuancong, E-mail: zhaoyc7320@163.com [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Li, Jingan; Chen, Jiang [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Yang, Ping, E-mail: yangping8@263.net [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Maitz, Manfred F. [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Max Bergmann Center of Biomaterials Dresden, Leibniz of Polymer Research Dresden, 01069 Dresden (Germany); Huang, Nan [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2015-08-30

    Graphical abstract: The phospholipid groups of PMMDP can inhibit platele adhesion, and the EPCs-specific peptide of the PMMDP showed special recognition and capture for EPCs. The catechol groups of PMMDP play a critical role as molecular anchor for balancing the binding between the coating and the substrate. - Highlights: • The uniform coating of PMMDP can be constructed on titanium surface successfully through the catechol groups. • The phospholipid groups of PMMDP can inhibit platele adhesion, fibrinogen denaturation and improve the hydrophilicity of substrate. • The EPCs-specific peptide of the PMMDP showed special recognition and capture for EPCs. - Abstract: A phospholipid/peptide polymer (PMMDP) with phosphorylcholine groups, endothelial progenitor cell (EPC)-specific peptides and catechol groups was anchored onto a titanium (Ti) surface to fabricate a biomimetic multifunctional surface. The PMMDP coating was characterized by X-ray photoelectron spectroscopy (XPS), water contact angle measurements and atomic force microscopy (AFM), respectively. The amount of PMMDP coating on the Ti surface was quantified by using the quartz crystal microbalance with dissipation (QCM-D). Interactions between blood components and the coated and bare Ti substrates were evaluated by platelet adhesion and activation assays and fibrinogen denaturation test using platelet rich plasma (PRP). The results revealed that the PMMDP-modified surface inhibited fibrinogen denaturation and reduced platelet adhesion and activation. EPC cell culture on the PMMDP-modified surface showed increased adhesion and proliferation of EPCs when compared to the cells cultured on untreated Ti surface. The inhibition of fibrinogen denaturation and platelet adhesion and support of EPCs attachment and proliferation indicated that this coating might be beneficial for future applications in blood-contacting implants, such as vascular stents.

  10. The Ape-1/Ref-1 redox antagonist E3330 inhibits the growth of tumor endothelium and endothelial progenitor cells: therapeutic implications in tumor angiogenesis.

    Science.gov (United States)

    Zou, Gang-Ming; Karikari, Collins; Kabe, Yasuaki; Handa, Hiroshi; Anders, Robert A; Maitra, Anirban

    2009-04-01

    The apurinic/apyrimidinic endonuclease 1/redox factor-1 (Ape-1/Ref-1) is a multi-functional protein, involved in DNA repair and the activation of redox-sensitive transcription factors. The Ape-1/Ref-1 redox domain acts as a cytoprotective element in normal endothelial cells, mitigating the deleterious effects of apoptotic stimuli through induction of survival signals. We explored the role of the Ape-1/Ref-1 redox domain in the maintenance of tumor-associated endothelium, and of endothelial progenitor cells (EPCs), which contribute to tumor angiogenesis. We demonstrate that E3330, a small molecule inhibitor of the Ape-1/Ref-1 redox domain, blocks the in vitro growth of pancreatic cancer-associated endothelial cells (PCECs) and EPCs, which is recapitulated by stable expression of a dominant-negative redox domain mutant. Further, E3330 blocks the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into CD31(+) endothelial progeny. Exposure of PCECs to E3330 results in a reduction of H-ras expression and intracellular nitric oxide (NO) levels, as well as decreased DNA-binding activity of the hypoxia-inducible transcription factor, HIF-1alpha. E3330 also reduces secreted and intracellular vascular endothelial growth factor expression by pancreatic cancer cells, while concomitantly downregulating the cognate receptor Flk-1/KDR on PCECs. Inhibition of the Ape-1/Ref-1 redox domain with E3330 or comparable angiogenesis inhibitors might be a potent therapeutic strategy in solid tumors.

  11. Vascular endothelial growth factor in the circulation in cancer patients may not be a relevant biomarker.

    Directory of Open Access Journals (Sweden)

    Tatjana M H Niers

    Full Text Available BACKGROUND: Levels of circulating vascular endothelial growth factor (VEGF have widely been used as biomarker for angiogenic activity in cancer. For this purpose, non-standardized measurements in plasma and serum were used, without correction for artificial VEGF release by platelets activated ex vivo. We hypothesize that "true" circulating (cVEGF levels in most cancer patients are low and unrelated to cancer load or tumour angiogenesis. METHODOLOGY: We determined VEGF levels in PECT, a medium that contains platelet activation inhibitors, in citrate plasma, and in isolated platelets in 16 healthy subjects, 18 patients with metastatic non-renal cancer (non-RCC and 12 patients with renal cell carcinoma (RCC. In non-RCC patients, circulating plasma VEGF levels were low and similar to VEGF levels in controls if platelet activation was minimized during the harvest procedure by PECT medium. In citrate plasma, VEGF levels were elevated in non-RCC patients, but this could be explained by a combination of increased platelet activation during blood harvesting, and by a two-fold increase in VEGF content of individual platelets (controls: 3.4 IU/10(6, non-RCC: 6.2 IU/10(6 platelets, p = 0.001. In contrast, cVEGF levels in RCC patients were elevated (PECT plasma: 64 pg/ml vs. 21 pg/ml, RCC vs. non-RCC, p<0.0001, and not related to platelet VEGF concentration. CONCLUSIONS: Our findings suggest that "true" freely cVEGF levels are not elevated in the majority of cancer patients. Previously reported elevated plasma VEGF levels in cancer appear to be due to artificial release from activated platelets, which in cancer have an increased VEGF content, during the blood harvest procedure. Only in patients with RCC, which is characterized by excessive VEGF production due to a specific genetic defect, were cVEGF levels elevated. This observation may be related to limited and selective success of anti-VEGF agents, such as bevacizumab and sorafenib, as monotherapy in

  12. A subpopulation of circulating endothelial cells express CD109 and is enriched in the blood of cancer patients.

    Directory of Open Access Journals (Sweden)

    Patrizia Mancuso

    Full Text Available The endothelium is not a homogeneous organ. Endothelial cell heterogeneity has been described at the level of cell morphology, function, gene expression, and antigen composition. As a consequence of the genetic, transcriptome and surrounding environment diversity, endothelial cells from different vascular beds have differentiated functions and phenotype. Detection of circulating endothelial cells (CECs by flow cytometry is an approach widely used in cancer patients, and their number, viability and kinetic is a promising tool to stratify patient receiving anti-angiogenic treatment.Currently CECs are identified as positive for a nuclear binding antigen (DNA+, negative for the pan leukocyte marker CD45, and positive for CD31 and CD146. Following an approach recently validated in our laboratory, we investigated the expression of CD109 on CECs from the peripheral blood of healthy subject and cancer patients. The endothelial nature of these cells was validated by RT-PCR for the presence of m-RNA level of CDH5 (Ve-Cadherin and CLDN5 (Claudin5, two endothelial specific transcripts. Before treatment, significantly higher levels of CD109+ CECs and viable CD109+CECs were found in breast cancer patients and glioblastoma patients compared to healthy controls, and their number significantly decreased after treatment. Higher levels of endothelial specific transcripts expressed in developing endothelial cells CLEC14a, TMEM204, ARHGEF15, GPR116, were observed in sorted CD109+CECs when compared to sorted CD146+CECs, suggesting that these genes can play an important role not only during embryogenesis but also in adult angiogenesis. Interestingly, mRNA levels of TEM8 (identified as Antrax Toxin Receptor1, Antrax1 were expressed in CD109+CECs+ but not in CD146+CECs.Taken together our results suggest that CD109 represent a rare population of circulating tumor endothelial cells, that play a potentially useful prognostic role in patients with glioblastoma. The role of

  13. Serum from Diesel Exhaust-Exposed Rats with Cardiac Dysfunction Alters Aortic Endothelial Cell Function In Vitro: Circulating Mediators as Causative Factors?

    Science.gov (United States)

    Although circulating inflammatory mediators are strongly associated with adverse cardiovascular outcomes triggered by inhaled air pollution, direct cause-effect linkage has not been established. Given that endothelial toxicity often precedes and precipitates cardiac dysfunction, ...

  14. Off-pump or minimized on-pump coronary surgery - initial experience with Circulating Endothelial Cells (CEC) as a supersensitive marker of tissue damage

    OpenAIRE

    Wittwer Thorsten; Choi Yeong-Hoon; Neef Klaus; Schink Mareike; Sabashnikov Anton; Wahlers Thorsten

    2011-01-01

    Abstract Background Off-pump-coronary-artery-bypass-grafting (OPCAB) and minimized-extracorporeal-circulation (Mini-HLM) have been proposed to avoid harmful effects of cardiopulmonary-bypass (CPB). Controversies exist whether OPCAB is still superior in perioperative outcome. Circulating endothelial cells (CEC) are sensitive markers of endothelial damage and are significantly elevated in conventional-CPB-procedures as compared to Mini-HLM-revascularisation. Therefore, CEC might be of specific ...

  15. Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1α/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse model

    OpenAIRE

    Qin, Gang; Chen, Yongqiang; Li, Haidong; Xu, Suyang; Li, Yumei; Sun, Jian; RAO, WU; CHEN, CHAOWEI; DU, MINDONG; HE, KAIYI; Ye, Yong

    2016-01-01

    Endothelial progenitor cells (EPCs) are important in tumor angiogenesis. Stromal cell-derived factor-1α (SDF-1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) are key in stem cell homing. Melittin, a component of bee venom, exerts antitumor activity, however, the underlying mechanisms remain to be elucidated. The present study aimed to assess the effects of melittin on EPCs and angiogenesis in a mouse model of osteosarcoma. UMR-106 cells and EPCs were treated with various concentra...

  16. Bone marrow–derived circulating progenitor cells fail to transdifferentiate into adipocytes in adult adipose tissues in mice

    Science.gov (United States)

    Koh, Young Jun; Kang, Shinae; Lee, Hyuek Jong; Choi, Tae-Saeng; Lee, Ho Sub; Cho, Chung-Hyun; Koh, Gou Young

    2007-01-01

    Little is known about whether bone marrow–derived circulating progenitor cells (BMDCPCs) can transdifferentiate into adipocytes in adipose tissues or play a role in expanding adipocyte number during adipose tissue growth. Using a mouse bone marrow transplantation model, we addressed whether BMDCPCs can transdifferentiate into adipocytes under standard conditions as well as in the settings of diet-induced obesity, rosiglitazone treatment, and exposure to G-CSF. We also addressed the possibility of transdifferentiation to adipocytes in a murine parabiosis model. In each of these settings, our findings indicated that BMDCPCs did not transdifferentiate into either unilocular or multilocular adipocytes in adipose tissues. Most BMDCPCs became resident and phagocytic macrophages in adipose tissues — which resembled transdifferentiated multilocular adipocytes by appearance, but displayed cell surface markers characteristic for macrophages — in the absence of adipocyte marker expression. When exposed to adipogenic medium in vitro, bone marrow cells differentiated into multilocular, but not unilocular, adipocytes, but transdifferentiation was not observed in vivo, even in the contexts of adipose tissue regrowth or dermal wound healing. Our results suggest that BMDCPCs do not transdifferentiate into adipocytes in vivo and play little, if any, role in expanding the number of adipocytes during the growth of adipose tissues. PMID:18060029

  17. Differential biodistribution of intravenously administered endothelial progenitor and cytotoxic T-cells in rat bearing orthotopic human glioma

    International Nuclear Information System (INIS)

    A major challenge in the development of cell based therapies for glioma is to deliver optimal number of cells (therapeutic dose) to the tumor. Imaging tools such as magnetic resonance imaging (MRI), optical imaging, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) has been used in cell tracking and/or biodistribution studies. In this study, we evaluate the dynamic biodistribution of systemic injected labeled cells [human cord blood derived endothelial progenitor cells (EPCs) and cytotoxic T-cells (CTLs)] in rat glioma model with in vivo SPECT imaging. Human cord blood EPCs, T-cells and CD14+ cells (monocytes/dendritic cells) were isolated using the MidiMACS system. CD14+ cells were converted to dendritic cells (DC) and also primed with U251 tumor cell line lysate. T-cells were co-cultured with irradiated primed DCs at 10:1 ratio to make CTLs. Both EPCs and CTLs were labeled with In-111-oxine at 37°C in serum free DMEM media. Glioma bearing animals were randomly assigned into three groups. In-111 labeled cells or In-111 oxine alone were injected through tail vein and SPECT imaging was performed on day 0, 1, and 3. In-111 oxine activity in various organs and tumor area was determined. Histochemical analysis was performed to further confirm the migration and homing of injected cells at the tumor site. EPCs and CTLs showed an In-111 labeling efficiency of 87.06 ± 7.75% and 70.8 ± 12.9% respectively. Initially cell migration was observed in lung following inravenous administration of In-111 labeled cells and decreased on day 1 and 3, which indicate re-distribution of labeled cells from lung to other organs. Relatively higher In-111 oxine activity was observed in tumor areas at 24 hours in animals received In-111 labeled cells (EPCs or CTLs). Histiological analysis revealed iron positive cells in and around the tumor area in animals that received labeled cells (CTLs and EPCs). We observed differential biodistribution of In-111

  18. Circulating CD133+CD34+ progenitor cells inversely correlate with soluble ICAM-1 in early ischemic stroke patients

    Directory of Open Access Journals (Sweden)

    Frank Joseph

    2011-08-01

    Full Text Available Abstract Background and Purpose Both endothelial progenitor cells (EPC and markers of neuroinflammation are candidate biomarkers for stroke severity and outcome prediction. A relationship between EPC and neuroinflammatory markers in early stroke is not fully elucidated. The objectives were to investigate correlations between EPC and neuroinflammation markers (adhesion molecules ICAM-1, VCAM-1, E-selectin, tumor necrosis factor (TNF-α, interleukin (IL-6, endothelin (ET-1, markers of tissue injury (matrix metalloproteinases (MMP-9 and tissue inhibitor of matrix metalloproteinases (TIMP-1 in early stroke patients. Methods We prospectively recruited symptomatic patients with ischemic cerebrovascular disease. We assessed stroke severity by using of acute (diffusion-weighted imaging (DWI and final lesion volumes (fluid attenuated inversion recovery (FLAIR. We measured serum soluble ICAM-1, VCAM-1, E-selectin, MMP-9, TIMP-1 and plasma TNF-α, IL-6, ET-1 by ELISA, and quantified EPC in mononuclear fraction of peripheral blood on days 1 and 3 in 17 patients (mean(SD age 62(14, with admission National Institutes of Health Stroke Scale (NIHSS 10(8 selected from 175 patients with imaging confirmed ischemic stroke. Non-parametric statistics, univariate and multivariate analysis were used. Results Only ICAM-1 inversely correlated with EPC subset CD133+CD34+ on day 1 (Spearman r = -0.6, p Conclusion Our study showed that high ICAM-1 is associated with low CD133+CD34+subset of EPC. Biomarkers of neuroinflammation may predict tissue injury and stroke severity in early ischemia.

  19. Effect of Intracoronary Infusion of Bone Marrow Mononuclear Cells or Peripheral Endothelial Progenitor Cells on Myocardial Ischemia-reperfusion Injury in Mini-swine

    Institute of Scientific and Technical Information of China (English)

    Chong-jian Li; Ji-lin Chen; Jian-jun Li; Run-lin Gao; Yue-jin Yang; Feng-huan Hu; Wei-xian Yang; Shi-jie You; Lai-feng Song; Ying-mao Ruan; Shu-bin Qiao

    2010-01-01

    Objective To simulate and assess the clinical effect of intracoronary infusion of bone marrow mono-nuclear cells or peripheral endothelial progenitor cells on myocardial reperfusion injury in mini-swine model.Methods Twenty-three mini-swine with myocardial reperfusion injury were used as designed in the study protocol. About (3.54+0.90)x108 bone marrow mononudear cells (MNC group, n=9) or (1.16± 1.07)×10 endothelial progenitor cells (EPC group, n=7) was infused into the affected coronary segment of the swine. The other mini-swine were infused with phosphate buffered saline as control (n=7). Echocardio-graphy and hemodynamic studies were performed before and 4 weeks after cell infusion. Myocardium infarc-tion size was calculated. Stem cell differentiation was analyzed under a transmission electromicroscope.Results Left ventricular ejection fraction dropped by 0% in EPC group, 2% in MNC group, and 10% in the control group 4 weeks after cell infusion, respectively (P0.05). EPC decreased total infarction size more than MNC did (1.60±0.26 cm vs. 3.71±1.38 cm, P<0.05). Undermature endothelial cells and myocytes were found under transmission electromicroscope.Conclusions Transplantation of either MNC or EPC may be beneficial to cardiac systolic function, but might not has obvious effect on diastolic function, Intracoronary infusion of EPC might be better than MNC in controlling infarction size. Both MNC and EPC may stimulate angiogenesis, inhibit fibrogenesis, and differentiate into myocardial cells.

  20. Determination of vascular endothelial growth factor (VEGF) in circulating blood: significance of VEGF in various leucocytes and platelets

    DEFF Research Database (Denmark)

    Werther, K; Christensen, Ib Jarle; Nielsen, Hans Jørgen

    2002-01-01

    contained considerable amounts of VEGF. In isolated lymphocytes and monocytes, VEGF was not present in measurable amounts. The number of neutrophils was significantly (p<0.0001) correlated to VEGF concentrations in lysed whole blood, but not to VEGF concentrations in plasma or serum. The number of platelets...... clotting. CONCLUSION: Circulating neutrophils contain considerable amounts of VEGF that contribute to high VEGF levels in lysed whole blood. VEGF in circulating platelets contributes to high VEGF levels in serum and lysed whole blood. Allowing whole blood samples to clot for between 2 and 6 h before serum......AIM: The sources of increased vascular endothelial growth factor (VEGF) concentrations in peripheral blood from cancer patients are not known in detail. The aim of the present study was to evaluate correlations between the VEGF content in isolated leucocyte subpopulations and VEGF concentrations in...

  1. GenousTM endothelial progenitor cell capturing stent vs. the Taxus Liberte stent in patients with de novo coronary lesions with a high-risk of coronary restenosis: a randomized, single-centre, pilot study

    NARCIS (Netherlands)

    M.A.M. Beijk; M. Klomp; N.J.W. Verouden; N. van Geloven; K.T. Koch; J.P.S. Henriques; J. Baan; M.M. Vis; E. Scheunhage; J.J. Piek; J.G.P. Tijssen; R.J. de Winter

    2010-01-01

    Aims The purpose of this study was to evaluate the Genous(TM) endothelial progenitor cell capturing stent vs. the Taxus Liberté paclitaxel-eluting stent in patients with de novo coronary lesions with a high-risk of coronary restenosis. Methods and results We randomly assigned 193 patients with lesio

  2. Hypoxia Mediated Release of Endothelial Microparticles and Increased Association of S100A12 with Circulating Neutrophils

    Directory of Open Access Journals (Sweden)

    Rebecca V. Vince

    2009-01-01

    Full Text Available Microparticles are released from the endothelium under normal homeostatic conditions and have been shown elevated in disease states, most notably those characterised by endothelial dysfunction. The endothelium is sensitive to oxidative stress/status and vascular cell adhesion molecule-1 (VCAM-1 expression is upregulated upon activated endothelium, furthermore the presence of VCAM-1 on microparticles is known. S100A12, a calcium binding protein part of the S100 family, is shown to be present on circulating leukocytes and is thought a sensitive marker to local inflammatory process, which may be driven by oxidative stress. Eight healthy males were subjected to breathing hypoxic air (15% O2, approximately equivalent to 3000 metres altitude for 80 minutes in a temperature controlled laboratory and venous blood samples were processed immediately for VCAM-1 microparticles (VCAM-1 MP and S100A12 association with leukocytes by flow cytometry. A pre-hypoxic blood sample was used for comparison. Both VCAM-1 MP and S100A12 association with neutrophils were significantly elevated post hypoxic breathing later declining to levels observed in the pre-test samples. A similar trend was observed in both cases and a correlation may exist between these two markers in response to hypoxia. These data offer evidence using novel markers of endothelial and circulating blood responses to hypoxia.

  3. Erythropoietin Attenuates Pulmonary Vascular Remodeling in Experimental Pulmonary Arterial Hypertension through Interplay between Endothelial Progenitor Cells and Heme Oxygenase

    NARCIS (Netherlands)

    van Loon, Rosa Laura E; Bartelds, Beatrijs; Wagener, Frank A D T G; Affara, Nada; Mohaupt, Saffloer; Wijnberg, Hans; Pennings, Sebastiaan W C; Takens, Janny; Berger, Rolf M F

    2015-01-01

    BACKGROUND: Pulmonary arterial hypertension (PAH) is a pulmonary vascular disease with a high mortality, characterized by typical angio-proliferative lesions. Erythropoietin (EPO) attenuates pulmonary vascular remodeling in PAH. We postulated that EPO acts through mobilization of endothelial progeni

  4. Progress on diabetic endothelial progenitor cell%糖尿病患者血管内皮祖细胞研究进展

    Institute of Scientific and Technical Information of China (English)

    陈佳超; 李晓牧; 陆志强

    2012-01-01

    血管内皮祖细胞(EPC)来源于骨髓,是具有修复内皮和新生血管功能的干细胞.糖尿病患者外周血EPC数量和功能均出现下降,EPC已成为糖尿病及其并发症治疗的一个新靶点.本文综述EPC在糖尿病病理生理中的作用和药物干预机理的研究进展.%Endothelial progenitor cell (EPC) is bone marrow-derived stem cells with the capacity to restore endothelium and promote postnatal angiogenesis. The decreased number and function of EPCs in patients with diabetes mellitus may be a promising target for treatment. This review describes the role of EPC on diabetes pathology, as well as its related drug therapy.

  5. Endothelial RIG-I activation impairs endothelial function

    Energy Technology Data Exchange (ETDEWEB)

    Asdonk, Tobias, E-mail: tobias.asdonk@ukb.uni-bonn.de [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Motz, Inga; Werner, Nikos [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Coch, Christoph; Barchet, Winfried; Hartmann, Gunther [Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Nickenig, Georg; Zimmer, Sebastian [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  6. TGFβ inhibition enhances the generation of hematopoietic progenitors from human ES cell-derived hemogenic endothelial cells using a stepwise strategy

    Institute of Scientific and Technical Information of China (English)

    Chengyan Wang; Liying Du; Yang Gao; Ming Yin; Mingxiao Ding; Hongkui Deng; Xuming Tang; Xiaomeng Sun; Zhenchuan Miao; Yaxin Lv; Yanlei Yang; Huidan Zhang; Pengbo Zhang; Yang Liu

    2012-01-01

    Embryonic hematopoiesis is a complex process.Elucidating the mechanism regulating hematopoietic differentiation from pluripotent stem cells would allow us to establish a strategy to efficiently generate hematopoietic cells.However,the mechanism governing the generation of hematopoietic progenitors from human embryonic stem cells (hESCs)remains unknown.Here,on the basis of the emergence of CD43+ hematopoietic cells from hemogenic endothelial (HE) cells,we demonstrated that VEGF was essential and sufficient,and that bFGF was synergistic with VEGF to specify the HE cells and the subsequent transition into CD43+ hematopoietic cells.Significantly,we identified TGFβ as a novel signal to regulate hematopoietic development,as the TGFβ inhibitor SB 431542 significantly promoted the transition from HE cells into CD43+ hematopoietic progenitor cells (HPCs) during hESC differentiation.By defining these critical signaling factors during hematopoietic differentiation,we can efficiently generate HPCs from hESCs.Our strategy could offer an in vitro model to study early human hematopoietic development.

  7. Usefulness of circulating vascular endothelial growth factor and neutrophil elastase as diagnostic markers of disseminated intravascular coagulation in non-cancer patients

    OpenAIRE

    Joo, Shin Young; Kim, Ji-Eun; Kim, Ju Young; Han, Kyou-Sup; Kim, Hyun Kyung

    2010-01-01

    Background Disseminated intravascular coagulation (DIC) is characterized by platelet and neutrophil activation. Platelets are the major source of circulating vascular endothelial growth factor (VEGF). Endostatin, an anti-angiogenic factor, is a fragment of collagen that is released from the extracellular matrix via the active cleavage of neutrophil elastase, thereby increasing the circulating level of endostatin. Hypercoagulable conditions such as DIC may induce the release of VEGF and neutro...

  8. A novel and feasible way to cultivate and purify endothelial progenitor cells from bone marrow of children with congenital heart diseases

    Institute of Scientific and Technical Information of China (English)

    WU Yong-tao; LI Jing-xing; LIU Shuo; XIN Yi; WANG Zi-jian; GAO Jin; JI Bing-yang; FAN Xiang-ming; ZHOU Qi-wen

    2012-01-01

    Background Endothelial progenitor cells (EPCs) are used in vascular tissue engineering and clinic therapy.Some investigators get EPCs from the peripheral blood for clinic treatment,but the number of EPCs is seldom enough.We have developed the cultivation and purification of EPCs from the bone marrow of children with congenital heart disease,to provide enough seed cells for a small calibre vascular tissue engineering study.Methods The 0.5-ml of bone marrow was separated from the sternum bone,and 5-ml of peripheral blood was collected from children with congenital heart diseases who had undergone open thoracic surgery.CD34+ and CD34+/VEGFR+cells in the bone marrow and peripheral blood were quantified by flow cytometry.CD34+NEGFR+ cells were defined as EPCs.Mononuclear cells in the bone marrow were isolated by Ficoll(R) density gradient centrifugation and cultured by the EndoCult Liquid Medium KitTM.Colony forming endothelial cells was detected.Immunohistochemistry staining for Dil-ac-LDL and FITC-UEA-1 confirmed the endothelial lineage of these cells.Results CD34+ and CD34+NEGFR+ cells in peripheral blood were (0.07±0.05)% and (0.05±0.02)%,respectively.The number of CD34+ and CD34+NEGFR+ cells in bone marrow were significantly higher than in blood,(4.41±1.47)% and (0.98±0.65)%,respectively (P <0.0001).Many colony forming units formed in the culture.These cells also expressed high levels of Dil-ac-LDL and FITC-UEA-1.Conclusion This is a novel and feasible approach that can cultivate and purify EPCs from the bone marrow of children with congenital heart disease,and provide seed cells for small calibre vascular tissue engineering.

  9. The Cytoprotective Effects of Human Endothelial Progenitor Cell-Conditioned Medium Against an Ischemic Insult Are Not Dependent on VEGF and IL-8.

    Science.gov (United States)

    Di Santo, Stefano; Fuchs, Anna-Lena; Periasamy, Ramesh; Seiler, Stefanie; Widmer, Hans Rudolf

    2016-01-01

    Endothelial progenitor cells (EPCs) promote revascularization and tissue repair mainly by paracrine actions. In the present study, we investigated whether EPC-secreted factors in the form of conditioned medium (EPC-CM) can protect cultured brain microvascular endothelial cells against an ischemic insult. Furthermore, we addressed the type of factors that are involved in the EPC-CM-mediated functions. For that purpose, rat brain-derived endothelial cells (rBCEC4 cell line) were exposed to EPC-CM pretreated with proteolytic digestion, heat inactivation, and lipid extraction. Moreover, the involvement of VEGF and IL-8, as canonical angiogenic factors, was investigated by means of neutralizing antibodies. We demonstrated that EPC-CM significantly protected the rBCEC4 cells against an ischemic insult mimicked by induced oxygen-glucose deprivation followed by reoxygenation. The cytoprotective effect was displayed by higher viable cell numbers and reduced caspase 3/7 activity. Heat inactivation, proteolytic digestion, and lipid extraction resulted in a significantly reduced EPC-CM-dependent increase in rBCEC4 viability, tube formation, and survival following the ischemic challenge. Notably, VEGF and IL-8 neutralization did not affect the actions of EPC-CM on rBCEC4 under both standard and ischemic conditions. In summary, our findings show that paracrine factors released by EPCs activate an angiogenic and cytoprotective response on brain microvascular cells and that the activity of EPC-CM relies on the concerted action of nonproteinaceous and proteinaceous factors but do not directly involve VEGF and IL-8. PMID:26776768

  10. Data on the circulating levels of endothelial microparticles are elevated in patients with bicuspid aortic valve and are related to aortic dilation

    Directory of Open Access Journals (Sweden)

    Josep M. Alegret

    2016-09-01

    Full Text Available The data included here support the research article “Circulating endothelial microparticles are elevated in bicuspid aortic valve (BAV disease and related to aortic dilation” (Alegret et al., 2016 [1] where circulating levels of platelet endothelial cell adhesion molecule (PECAM+ endothelial microparticles (EMPs were identified as a biological variable related to aortic dilation in patients with BAV disease. The data presented in this article are composed by four tables and one figure containing the clinical and echocardiographic characteristics of the patients (Alegret et al., 2016 [1] included in this study, and summarize the results of multivariate linear analyses. Furthermore, is also included a figure showing a representative flow cytometry dot plots and histograms used in PECAM+ EMPs quantification is also included.

  11. A Nano-Inspired Multifunctional POSS-PCU Covered Stent: Endothelial Progenitor Cell Capture with Stealth Liposomal Drug Release

    OpenAIRE

    Tan, A. J. K.

    2014-01-01

    The 2 main unresolved issues inherent in coronary stents are in-stent restenosis (ISR) and late stent thrombosis (ST). ISR is largely due to vascular smooth muscle cell (VSMC) proliferation, and ST is attributed to a lack of re-endothelialization. This thesis describes the conceptualization and development of a biofunctionalized polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) platform, for the express purpose of circumventing ISR and ST. A bare-metal stent is emb...

  12. Prognostic significance of preoperative circulating vascular endothelial growth factor messenger RNA expression in resectable hepatocellular carcinoma:A prospective study

    Institute of Scientific and Technical Information of China (English)

    Kuo-Shyang Jeng; I-Shyan Sheen; Yi-Ching Wang; Shu-Ling Gu; Chien-Ming Chu; Shou-Chuan Shih; Po-Chuan Wang; Wen-Hsing Chang; Horng-Yuan Wang

    2004-01-01

    AIM: To investigate the prognostic value of vascular endothelial growth factor messenger RNA (VEGF mRNA) in the peripheral blood (PB) of patients with hepatocellular carcinoma (HCC) undergoing curative resection.METHODS: Using a reverse-transcription polymerase chain reaction (RT-PCR)-based assay, VEGF mRNA in the PB was determined prospectively in 50 controls and in 50 consecutive patients undergoing curative resection for HCC.RESULTS: Among the isoforms of VEGF mRNA, VEGF165 and VEGF121 were expressed. By multivariate analysis, a higher level of VEGF165 in preoperative PB correlated with a risk of HCC recurrence with borderline significance (P=0.050) and significantly with recurrence-related mortality (P=0.048);while VEGF121 did not. Other significant predictors of HCC recurrence included cellular dedifferentiation (P=0.033),an absent or incomplete capsule (P=0.020), vascular permeation (P=0.018), and daughter nodules (P=0.006).The other significant parameter of recurrence related mortality was cellular dedifferentiation (P=0.053). The level of circulating VEGF mRNA, however, did not significantly correlate with tumor size, cellular differentiation, capsule,daughter nodules, vascular permeation, necrosis and hemorrhage of tumors.CONCLUSION: The preoperative level of circulating VEGF mRNA, especially isoform VEGF165, plays a significant role in the prediction of postoperative recurrence of HCC.

  13. Circulating L-selectin levels and endothelial CD34 expression in inflammatory bowel disease

    DEFF Research Database (Denmark)

    Seidelin, J B; Vainer, B; Horn, T;

    1998-01-01

    Soluble L-selectin (sL-selectin) concentrations are positively correlated with disease activity in ulcerative colitis (UC) but not in Crohn's disease (CD). This difference in sL-selectin regulation could be due to a disease specific regulation of L-selectin ligands. The aim of this study was to c...... was to compare levels of circulating sL-selectin, expression of the L-selectin ligand CD34 in the affected colon, and inflammatory bowel disease activity....

  14. Characterization of a Distinct Population of Circulating Human Non-Adherent Endothelial Forming Cells and Their Recruitment via Intercellular Adhesion Molecule-3

    OpenAIRE

    Appleby, Sarah L.; Cockshell, Michaelia P.; Pippal, Jyotsna B.; Thompson, Emma J.; Barrett, Jeffrey M.; Katie Tooley; Shaundeep Sen; Wai Yan Sun; Randall Grose; Ian Nicholson; Vitalina Levina; Ira Cooke; Gert Talbo; Lopez, Angel F.; Bonder, Claudine S.

    2012-01-01

    Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133(+) popul...

  15. Sonic hedgehog protein promotes bone marrow-derived endothelial progenitor cell proliferation, migration and VEGF production via PI 3-kinase/ Akt signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Jin-rong FU; Wen-li LIU; Jian-feng ZHOU; Han-ying SUN; Hui-zhen XU; Li LUO; Heng ZHANG; Yu-feng ZHOU

    2006-01-01

    Aim: To investigate the effects of Sonic hedgehog (shh) protein on bone marrowderived endothelial progenitor cells (BM-EPC) proliferation, migration and vascular endothelial growth factor (VEGF) production, and the potential signaling pathways involved in these effects. Methods: Bone marrow-derived Flk-l+ cells were enriched using the MACS system from adult Kunming mice and then BM-EPC was cultured in gelatin-coated culture dishes. The effects of shh N-terminal peptide on BM-EPC proliferation were evaluated using the MTT colorimetric assay. Cell migration was assayed using a modified Boyden chamber technique. The production of VEGF was determined by ELIS A and immunofluorescence analysis. The potential involvement of PKC and PI3K signaling pathways was explored using selective inhibitor or Western blot. Results: The proliferation, migration and VEGF production in BM-EPC could be promoted by endogenous shh Nterminal peptide at concentrations of 0.1 μg/mL to 10 ug/mL, and could be inhibited by anti-shh antibodies. Shh-mediated proliferation and migration in BM-EPC could be partly attenuated by anti-VEGF. Phospho-PI3-kinase expression in newly separated BM-EPC was low, and it increased significantly when exogenous shh N-terminal peptide was added, but could be attenuated by anti-human/mouse shh N-terminal peptide antibody. Moreover, the inhibitor of the PI3-kinase, but not the inhibitor of the PKC, significantly inhibited the shh-mediated proliferation, migration and VEGF production. Conclusion: Shh protein can stimulate bone marrow-derived BM-EPC proliferation, migration and VEGF production, which may promote neovascularization to ischemic tissues. This results also suggests that the PI3-kinase/Akt signaling pathways are involved in the angiogenic effects of shh.

  16. Co-transplantation of endothelial progenitor cells and pancreatic islets to induce long-lasting normoglycemia in streptozotocin-treated diabetic rats.

    Science.gov (United States)

    Quaranta, Paola; Antonini, Sara; Spiga, Saturnino; Mazzanti, Benedetta; Curcio, Michele; Mulas, Giovanna; Diana, Marco; Marzola, Pasquina; Mosca, Franco; Longoni, Biancamaria

    2014-01-01

    Graft vascularization is a crucial step to obtain stable normoglycemia in pancreatic islet transplantation. Endothelial progenitor cells (EPCs) contribute to neoangiogenesis and to the revascularization process during ischaemic events and play a key role in the response to pancreatic islet injury. In this work we co-transplanted EPCs and islets in the portal vein of chemically-induced diabetic rats to restore islet vascularization and to improve graft survival. Syngenic islets were transplanted, either alone or with EPCs derived from green fluorescent protein (GFP) transgenic rats, into the portal vein of streptozotocin-induced diabetic rats. Blood glucose levels were monitored and intraperitoneal glucose tolerance tests were performed. Real time-PCR was carried out to evaluate the gene expression of angiogenic factors. Diabetic-induced rats showed long-lasting (6 months) normoglycemia upon co-transplantation of syngenic islets and EPCs. After 3-5 days from transplantation, hyperglycaemic levels dropped to normal values and lasted unmodified as long as they were checked. Further, glucose tolerance tests revealed the animals' ability to produce insulin on-demand as indexed by a prompt response in blood glucose clearance. Graft neovascularization was evaluated by immunohistochemistry: for the first time the measure of endothelial thickness revealed a donor-EPC-related neovascularization supporting viable islets up to six months after transplant. Our results highlight the importance of a newly formed viable vascular network together with pancreatic islets to provide de novo adequate supply in order to obtain enduring normoglycemia and prevent diabetes-related long-term health hazards. PMID:24733186

  17. Co-transplantation of endothelial progenitor cells and pancreatic islets to induce long-lasting normoglycemia in streptozotocin-treated diabetic rats.

    Directory of Open Access Journals (Sweden)

    Paola Quaranta

    Full Text Available Graft vascularization is a crucial step to obtain stable normoglycemia in pancreatic islet transplantation. Endothelial progenitor cells (EPCs contribute to neoangiogenesis and to the revascularization process during ischaemic events and play a key role in the response to pancreatic islet injury. In this work we co-transplanted EPCs and islets in the portal vein of chemically-induced diabetic rats to restore islet vascularization and to improve graft survival. Syngenic islets were transplanted, either alone or with EPCs derived from green fluorescent protein (GFP transgenic rats, into the portal vein of streptozotocin-induced diabetic rats. Blood glucose levels were monitored and intraperitoneal glucose tolerance tests were performed. Real time-PCR was carried out to evaluate the gene expression of angiogenic factors. Diabetic-induced rats showed long-lasting (6 months normoglycemia upon co-transplantation of syngenic islets and EPCs. After 3-5 days from transplantation, hyperglycaemic levels dropped to normal values and lasted unmodified as long as they were checked. Further, glucose tolerance tests revealed the animals' ability to produce insulin on-demand as indexed by a prompt response in blood glucose clearance. Graft neovascularization was evaluated by immunohistochemistry: for the first time the measure of endothelial thickness revealed a donor-EPC-related neovascularization supporting viable islets up to six months after transplant. Our results highlight the importance of a newly formed viable vascular network together with pancreatic islets to provide de novo adequate supply in order to obtain enduring normoglycemia and prevent diabetes-related long-term health hazards.

  18. Inhibition of p38 Mitogen-Activated Protein Kinase Enhances the Apoptosis Induced by Oxidized Low-Density Lipoprotein in Endothelial Progenitor Cells.

    Science.gov (United States)

    Tie, Guodong; Yan, Jinglian; Messina, Julia A; Raffai, Robert L; Messina, Louis M

    2015-01-01

    Oxidized low-density lipoprotein (oxLDL) is an important risk factor in the development of atherosclerosis. oxLDL has been shown to decrease endothelial progenitor cell (EPC) number by inducing apoptosis. p38 mitogen-activated protein kinase (MAPK) was shown to be activated by oxLDL and participated in the regulation of EPC number and function. However, the role of p38 remains unknown. Here, we show that oxLDL-induced p38 phosphorylation in EPCs is time and dose dependent. Treatment with antioxidant N-acetyl cysteine restored oxLDL-induced p38 phosphorylation to basal levels. LOX-1-blocking antibody also significantly decreased oxLDL-induced p38 phosphorylation. Interestingly, TUNEL staining showed that pretreatment with the p38 inhibitor SB203580 further increased oxLDL-induced apoptosis in EPCs. In accordance with these findings, pretreatment with SB203580 further attenuated Akt phosphorylation in EPCs challenged with oxLDL, indicating an interaction between Akt and p38 MAPK pathways. In agreement, inhibition of p38 MAPK further attenuated Akt phosphorylation and increased apoptosis in EPCs isolated from hypercholesterolemic ApoE-/- mice. In conclusion, p38 MAPK serves as an anti-apoptotic pathway by supporting Akt activity when EPCs are challenged with oxLDL. PMID:27031525

  19. Effect of Perindopril on Vascular Endothelial Function and Endothelial Progenitor Cells of Patients with Coronary Artery Disease%培哚普利对冠心病患者血管内皮功能及EPCs水平的影响

    Institute of Scientific and Technical Information of China (English)

    刘微

    2016-01-01

    目的:观察培哚普利对冠心病患者血管内皮功能及内皮祖细胞( EPCs)水平的影响。方法将90例冠心病患者随机分为对照组和研究组,每组45例,对照组患者给予常规对症支持治疗,研究组患者在对照组治疗的基础上加用培哚普利治疗,治疗12 w后,比较两组患者肱动脉內皮依赖性血管舒张功能( FMD)及外周血EPCs水平变化。结果与治疗前比较,两组患者治疗后肱动脉FMD和EPCs明显升高,差异具有统计学意义( P<0.05)。与对照组治疗后比较,研究组治疗后肱动脉FMD和EPCs显著升高,差异具有统计学意义( P<0.05)。结论培哚普利在冠心病患者临床治疗中能较好的促进内皮祖细胞动员和血管内皮功能改善,值得临床推广应用。%Objective To observe the effect of perindopril on the endothelial progenitor cells ( EPCs) and vascular endothelial function of patients with coronary artery disease. Methods 90 patients with coronary artery disease were randomly divided into control group and research group, with 45 cases in each group. The control group was given conventional therapy, while the other group re-ceived perindopril apart from the regular treatment. After 12 weeks’ treatment, the change of the flow-mediated-dilation ( FMD) func-tion of the brachial artery and EPCs from the peripheral blood of the two groups was compared. Results Compared with the indexes before treatment, the FMD and EPCs of the two groups after treatment increased obviously, with statistically significant difference ( P<0. 05). Compared with the control group, the FMD and EPCs of the research group after treatment increased significantly, and the difference was statistically significant (P<0. 05). Conclusion Perindopril can help mobilize EPCs and improve the endothelial func-tion in the treatment for patients with coronary artery disease, which makes it worthy of application.

  20. Effects of Replenishing Qi, Promoting Blood Circulation and Resolving Phlegm on Vascular Endothelial Function and Blood Coagulation System in Senile Patients with Hyperlipemia

    Institute of Scientific and Technical Information of China (English)

    Yang Huimin; Han Libei; Sheng Tong; He Qiong; Liang Jinpu

    2006-01-01

    Objective: To observe the curative effect of the method of replenishing qi, promoting blood circulation and resolving phlegm on senile hyperlipemia and its effects on vascular endothelial function and blood coagulation system. Method: 96 patients with senile hyperlipemia were randomly divided into a treatment group and a of blood lipid, vascular endothelial function, blood coagulation system and safety. Results: After treatment,the treatment group was obviously superior to the control group (P<0.05) in reducing plasma total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) as well as in the ratio of thromboxane B2 (TXB2) to 6-keto-prostaglandin F1α (6-keto-PGF1α), D-dimer (D-D) and fibrinogen (FIB). Conclusion: Danshen Jueming Granules have the effect of regulating metabolism of blood lipid, and improving vascular endothelial function and blood coagulation system in senile patients with hyperlipemia.

  1. Circulating hematopoietic progenitors and CD34+ cells predicted successful hematopoietic stem cell harvest in myeloma and lymphoma patients: experiences from a single institution

    Directory of Open Access Journals (Sweden)

    Yu JT

    2016-02-01

    Full Text Available Jui-Ting Yu,1,2,* Shao-Bin Cheng,3,* Youngsen Yang,1 Kuang-Hsi Chang,4 Wen-Li Hwang,1 Chieh-Lin Jerry Teng,1,5,6 1Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, 2Division of Hematology/Medical Oncology, Tungs' Taichung MetroHarbor Hospital, 3Division of General Surgery, Department of Surgery, 4Department of Medical Research and Education, Taichung Veterans General Hospital, 5Department of Life Science, Tunghai University, 6School of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China *These authors contributed equally to this work Background: Previous studies have shown that the numbers of both circulating hematopoietic progenitor cell (HPC and CD34+ cell are positively correlated with CD34+ cell harvest yield. However, the minimal numbers of both circulating HPCs and CD34+ cells required for performing an efficient hematopoietic stem cell (HSC harvest in lymphoma and myeloma patients have not been defined in our institution. Patients and methods: Medical records of 50 lymphoma and myeloma patients undergoing peripheral blood HSC harvest in our institution were retrospectively reviewed. The minimal and optimal HSC harvest yield required for the treatment was considered to be ≥2×106 CD34+ cells/kg and ≥5×106 CD34+ cells/kg, respectively. Results: The minimally required or optimal HSC yield obtained was not influenced by age (≥60 years, sex, underlying malignancies, disease status, multiple rounds of chemotherapy, or history of radiotherapy. The numbers of both circulating HPC and CD34+ cell were higher in patients with minimally required HSC yields (P=0.000 for HPC and P=0.000 for CD34+ cell and also in patients with optimal HSC yields (P=0.011 for HPC and P=0.006 for CD34+ cell. The cell count cutoff for obtaining minimally required HSC harvest was determined to be 20/mm3 for HPCs and 10/mm3 for CD34+ cells. Furthermore, the cell count cutoff for obtaining

  2. Analysis of CD45- [CD34+/KDR+] endothelial progenitor cells as juvenile protective factors in a rat model of ischemic-hemorrhagic stroke.

    Directory of Open Access Journals (Sweden)

    Julius L Decano

    Full Text Available BACKGROUND: Identification of juvenile protective factors (JPFs which are altered with age and contribute to adult-onset diseases could identify novel pathways for reversing the effects of age, an accepted non-modifiable risk factor to adult-onset diseases. Since endothelial progenitor cells (EPCs have been observed to be altered in stroke, hypertension and hypercholesterolemia, said EPCs are candidate JPFs for adult-onset stroke. A priori, if EPC aging plays a 'master-switch JPF-role' in stroke pathogenesis, juvenile EPC therapy alone should delay stroke-onset. Using a hypertensive, transgenic-hyperlipidemic rat model of spontaneous ischemic-hemorrhagic stroke, spTg25, we tested the hypothesis that freshly isolated juvenile EPCs are JPFs that can attenuate stroke progression and delay stroke onset. METHODOLOGY/PRINCIPAL FINDINGS: FACS analysis revealed that CD45- [CD34+/KDR+] EPCs decrease with progression to stroke in spTg25 rats, exhibit differential expression of the dual endodthelin-1/VEGFsp receptor (DEspR and undergo differential DEspR-subtype specific changes in number and in vitro angiogenic tube-incorporation. In vivo EPC infusion of male, juvenile non-expanded cd45-[CD34+/KDR+] EPCs into female stroke-prone rats prior to stroke attenuated progression and delayed stroke onset (P<0.003. Detection of Y-chromosome DNA in brain microvessels of EPC-treated female spTg25 rats indicates integration of male EPCs into female rat brain microvessels. Gradient-echo MRI showed delay of ischemic-hemorrhagic lesions in EPC-treated rats. Real-time RT-PCR pathway-specific array-analysis revealed age-associated gene expression changes in CD45-[CD34+/KDR]EPC subtypes, which were accelerated in stroke-prone rats. Pro-angiogenic genes implicated in intimal hyperplasia were increased in stroke-prone rat EPCs (P<0.0001, suggesting a maladaptive endothelial repair system which acts like a double-edged sword repairing while predisposing to age

  3. Far infra-red therapy promotes ischemia-induced angiogenesis in diabetic mice and restores high glucose-suppressed endothelial progenitor cell functions

    Directory of Open Access Journals (Sweden)

    Huang Po-Hsun

    2012-08-01

    Full Text Available Abstract Background Far infra-red (IFR therapy was shown to exert beneficial effects in cardiovascular system, but effects of IFR on endothelial progenitor cell (EPC and EPC-related vasculogenesis remain unclear. We hypothesized that IFR radiation can restore blood flow recovery in ischemic hindlimb in diabetic mice by enhancement of EPCs functions and homing process. Materials and methods Starting at 4 weeks after the onset of diabetes, unilateral hindlimb ischemia was induced in streptozotocine (STZ-induced diabetic mice, which were divided into control and IFR therapy groups (n = 6 per group. The latter mice were placed in an IFR dry sauna at 34°C for 30 min once per day for 5 weeks. Results Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio in the thermal therapy group was significantly increased beyond that in controls, and significantly greater capillary density was seen in the IFR therapy group. Flow cytometry analysis showed impaired EPCs (Sca-1+/Flk-1+ mobilization after ischemia surgery in diabetic mice with or without IFR therapy (n = 6 per group. However, as compared to those in the control group, bone marrow-derived EPCs differentiated into endothelial cells defined as GFP+/CD31+ double-positive cells were significantly increased in ischemic tissue around the vessels in diabetic mice that received IFR radiation. In in-vitro studies, cultured EPCs treated with IFR radiation markedly augmented high glucose-impaired EPC functions, inhibited high glucose-induced EPC senescence and reduced H2O2 production. Nude mice received human EPCs treated with IFR in high glucose medium showed a significant improvement in blood flow recovery in ischemic limb compared to those without IFR therapy. IFR therapy promoted blood flow recovery and new vessel formation in STZ-induced diabetic mice. Conclusions Administration of IFR therapy promoted collateral flow recovery and new vessel formation in STZ

  4. The interaction between circulating complement proteins and cutaneous microvascular endothelial cells in the development of childhood Henoch-Schonlein Purpura.

    Directory of Open Access Journals (Sweden)

    Yao-Hsu Yang

    Full Text Available In addition to IgA, the deposition of complement (C3 in dermal vessels is commonly found in Henoch-Schönlein purpura (HSP. The aim of this study is to elucidate the role of circulating complement proteins in the pathogenesis of childhood HSP.Plasma levels of C3a, C4a, C5a, and Bb in 30 HSP patients and 30 healthy controls were detected by enzyme-linked immunosorbent assay (ELISA. The expression of C3a receptor (C3aR, C5a receptor (CD88, E-selectin, intercellular adhesion molecule 1 (ICAM-1, C3, C5, interleukin (IL-8, monocyte chemotactic protein (MCP-1, and RANTES by human dermal microvascular endothelial cells (HMVEC-d was evaluated either by flow cytometry or by ELISA.At the acute stage, HSP patients had higher plasma levels of C3a (359.5 ± 115.3 vs. 183.3 ± 94.1 ng/ml, p < 0.0001, C5a (181.4 ± 86.1 vs. 33.7 ± 26.3 ng/ml, p < 0.0001, and Bb (3.7 ± 2.6 vs. 1.0 ± 0.6 μg/ml, p < 0.0001, but not C4a than healthy controls. Although HSP patient-derived acute phase plasma did not alter the presentation of C3aR and CD88 on HMVEC-d, it enhanced the production of endothelial C3 and C5. Moreover, C5a was shown in vitro to up-regulate the expression of IL-8, MCP-1, E-selectin, and ICAM-1 by HMVEC-d with a dose-dependent manner.In HSP, the activation of the complement system in part through the alternative pathway may have resulted in increased plasma levels of C3a and C5a, which, especially C5a, may play a role in the disease pathogenesis by activating endothelium of cutaneous small vessels.

  5. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis.

    Science.gov (United States)

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis.

  6. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis

    International Nuclear Information System (INIS)

    Research highlights: → BM-EPCs and MSCs establish complex, self-organizing structures in co-culture. → Co-culture decreases proliferation by cellular self-regulatory mechanisms. → Co-cultured cells present an activated proangiogenic phenotype. → qRT-PCR and cluster analysis identify new target genes playing important roles. -- Abstract: Tissue engineering aims to regenerate tissues and organs by using cell and biomaterial-based approaches. One of the current challenges in the field is to promote proper vascularization in the implant to prevent cell death and promote host integration. Bone marrow endothelial progenitor cells (BM-EPCs) and mesenchymal stem cells (MSCs) are bone marrow resident stem cells widely employed for proangiogenic applications. In vivo, they are likely to interact frequently both in the bone marrow and at sites of injury. In this study, the physical and biochemical interactions between BM-EPCs and MSCs in an in vitro co-culture system were investigated to further clarify their roles in vascularization. BM-EPC/MSC co-cultures established close cell-cell contacts soon after seeding and self-assembled to form elongated structures at 3 days. Besides direct contact, cells also exhibited vesicle transport phenomena. When co-cultured in Matrigel, tube formation was greatly enhanced even in serum-starved, growth factor free medium. Both MSCs and BM-EPCs contributed to these tubes. However, cell proliferation was greatly reduced in co-culture and morphological differences were observed. Gene expression and cluster analysis for wide panel of angiogenesis-related transcripts demonstrated up-regulation of angiogenic markers but down-regulation of many other cytokines. These data suggest that cross-talk occurs in between BM-EPCs and MSCs through paracrine and direct cell contact mechanisms leading to modulation of the angiogenic response.

  7. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis.

    Science.gov (United States)

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis. PMID:25313007

  8. 血管内皮祖细胞在人工血管移植后内皮化中的作用及其机制%Roles and mechanisms of endothelial progenitor cells in the post-transplant tacho-endothelialization of vascular prosthesis

    Institute of Scientific and Technical Information of China (English)

    李杰; 吕伟明; 李晓曦

    2007-01-01

    OBJECTIVE:To review the relationship between endothelial progenitor cells and the re-endothelialization of vascular prosthesis in order to find out some effective ways to solve the most frequent complications of asotransplantation,thrombogenesis and intima hyperplasia.DATA SOURCES:A computer-based online search was conducted to identify articles related to endothelial progenitor cells and the re-endothelialization of vascular prosthesis published in Pubmed,Ovid and MD Consult database from January 2000 to December 2006 using the key words of "endothelial progenitor cells,vascular prosthesis,endothelialization".Meanwhile,CNKI database was searched for related papers published between January 2000and December 2006,the keywords were "endothelial progenitor cells,vascular prosthesis,endothelialization" in Chinese.STUDY SELECTION:The literatures included all the related papers about the roles of endothelial progenitor cells in the re-endothelialization of vascular prosthesis.Inclusive criteria:the study types were randomized controlled trials,drug stress test and clinical drug effect test; the samples were both human and animals.Exclusive criteria:Reviews and literatures without controls were excluded.DATA EXTRACTION:Totally 115 related literatures were collected,and 24 were accorded with the inclusive criteria.The excluded were 91 papers of reviews and repeated trials or drug effect studies.DATA SYNTHESIS:These related literatures,including not only animal experiments but also clinical detections,analyzed the relationship between endothelial progenitor cells and the re-endothelialization of vascular prosthesis and correlative promoting mechanisms.CONCLUSION:It is concluded that endothelial progenitor cells play an important role in the endothelialization after vascular prosthesis is grafted in vivo.%目的:阐述近年来国内外关于血管内皮祖细胞促进人工血管移植后内皮化进程的机制,以期为l临床解决人工血管移植后血栓形成和内

  9. Visualisation of axolotl blastema cells and pig endothelial progenitor cells using very small super paramagnetic iron oxide particles in MRI: A technique with applications for non invasive visualisation of regenerative processes

    DEFF Research Database (Denmark)

    Lauridsen, Henrik; Kjær, N.B.; Bek, Maria;

    Objectives: Regenerative studies on model animals often require invasive techniques such as tissue sampling and histology for visualisation of regenerative processes. These interactions are avoided using non invasive imaging techniques. The internalisation of very small super paramagnetic iron...... oxide particles (VSOP) in animal cells enable non invasive cell tracking using magnetic resonance imaging (MRI) and can prove useful, when visualising regenerative processes. This study examines the possibility of labelling limited numbers of axolotl blastema cells (aBC) and pig endothelial progenitor...... labelling concentration and signal decrease (F-ratio = 36.52, p spin-echo sequence on samples of 10˄6 cells yielded a significant...

  10. Surface expression of CXCR4 on circulating CD133+ progenitor cells is associated with plaque instability in subjects with carotid artery stenosis

    Directory of Open Access Journals (Sweden)

    Sadikovic Suwad

    2009-12-01

    Full Text Available Abstract Background Circulating progenitor cells (PCs are considered to contribute to the remodeling of atherosclerotic plaques. Their surface receptor CXCR4 plays an important role in the recruitment of PCs to their target. This study compares the mobilization of PCs and their functional characteristics in asymptomatic subjects with stable and with unstable carotid plaques. This could provide insight into plaque remodeling and help to develop biomarkers for plaque stability. Methods In 31 subjects with asymptomatic carotid artery stenosis we analyzed the number of CD133+ PCs, VEGFR2+CD34+ PCs and the surface expression of CXCR4 on CD133+ PCs by flow cytometry. Subjects underwent bilateral carotid MRI in a 1.5-T scanner in order to allow the categorization of plaques, following the modified criteria of the American Heart Association. Results The number of CD133+ PCs and VEGFR2+CD34+ PCs showed no significant difference between subjects with stable and unstable carotid plaques. The expression of CXCR4 on CD133+ PCs was higher in subjects with unstable plaques than in subjects with stable plaques (p = 0.009. Conclusions This study demonstrates an association between functional characteristics of circulating CD133+ PCs and plaque stability in subjects with asymptomatic carotid artery stenosis. The higher expression of CXCR4 on CD133+ PCs suggests a difference in the recruitment of PCs to the injured tissue in subjects with unstable plaques and subjects with stable plaques. As surface expression of CXCR4 on CD133+ PCs differs in subjects with unstable and with stable plaques, CXCR4 is a promising candidate for a serological biomarker for plaque stability.

  11. Circulating Endothelial Microparticles and Correlation of Serum 1,25-Dihydroxyvitamin D with Adiponectin, Nonesterified Fatty Acids, and Glycerol from Middle-Aged Men in China

    Directory of Open Access Journals (Sweden)

    Zhongxiao Wan

    2016-01-01

    Full Text Available The aim of the present study is (1 to determine the correlation between circulating 1,25-dihydroxyvitamin D [25(OHD] and adiponectin, nonesterified fatty acids (NEFAs, and glycerol and (2 to determine the alterations in circulating endothelial microparticles (EMPs in Chinese male subjects with increased body mass index (BMI. A total of 45 male adults were enrolled with varied BMI [i.e., lean, overweight (OW, and obese (OB, N=15 per group]. Blood samples were collected under overnight fasting condition, and plasma was isolated for the measurement of endothelial microparticles (EMPs, total and high-molecular weight (HMW adiponectin, 25(OHD, nonesterified fatty acids (NEFAs, and glycerol. Circulating 25(OHD levels were inversely associated with total adiponectin, NEFA, and glycerol levels. There is no difference for CD62E+ or CD31+/CD42b− EMPs among 3 groups. In Chinese male adults with varied BMI, an inverse correlation existed between 25(OHD levels and total adiponectin, NEFA, and glycerol levels; and there is no significant difference for CD62E+ or CD31+/CD42b− EMPs among lean, overweight, and obese subjects.

  12. Circulating Endothelial-Derived Activated Microparticle: A Useful Biomarker for Predicting One-Year Mortality in Patients with Advanced Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Chin-Chou Wang

    2014-01-01

    Full Text Available Background. This study tested the hypothesis that circulating microparticles (MPs are useful biomarkers for predicting one-year mortality in patients with end-stage non-small cell lung cancer (ES-NSCLC. Methods and Results. One hundred seven patients were prospectively enrolled into the study between April 2011 and February 2012, and each patient received regular follow-up after enrollment. Levels of four MPs in circulation, (1 platelet-derived activated MPs (PDAc-MPs, (2 platelet-derived apoptotic MPs (PDAp-MPs, (3 endothelial-derived activated MPs (EDAc-MPs, and (4 endothelial-derived apoptotic MPs (EDAp-MPs, were measured just after the patient was enrolled into the study using flow cytometry. Patients who survived for more than one year were categorized into group 1 (n=56 (one-year survivors and patients who survived less than one year were categorized into group 2 (n=51 (one-year nonsurvivors. Male gender, incidence of liver metastasis, progression of disease after first-line treatment, poor performance status, and the Charlson comorbidity index were significantly higher in group 2 than in group 1 (all P<0.05. Additionally, as measured by flow cytometry, only the circulating level of EDAc-MPs was found to be significantly higher in group 2 than in group 1 (P=0.006. Multivariate analysis demonstrated that circulating level of EDAc-MPs along with brain metastasis and male gender significantly and independently predictive of one-year mortality (all P<0.035. Conclusion. Circulating EDAc-MPs may be a useful biomarker predictive of one-year morality in ES-NSCLC patients.

  13. Off-pump or minimized on-pump coronary surgery - initial experience with Circulating Endothelial Cells (CEC as a supersensitive marker of tissue damage

    Directory of Open Access Journals (Sweden)

    Wittwer Thorsten

    2011-10-01

    Full Text Available Abstract Background Off-pump-coronary-artery-bypass-grafting (OPCAB and minimized-extracorporeal-circulation (Mini-HLM have been proposed to avoid harmful effects of cardiopulmonary-bypass (CPB. Controversies exist whether OPCAB is still superior in perioperative outcome. Circulating endothelial cells (CEC are sensitive markers of endothelial damage and are significantly elevated in conventional-CPB-procedures as compared to Mini-HLM-revascularisation. Therefore, CEC might be of specific value in evaluating effectiveness of Mini-HLM and OPCAB as currently applied less-invasive coronary procedures. Methods 76 coronary patients were randomly assigned either to OPCAB (n = 34 or to Mini-HLM (ROCsafe™, Terumo Inc., n = 42 procedures. Perioperative data, clinical and serological outcome and measurements of CEC-release and parameters of endothelial function (v.Willebrand-Factor, soluble-thrombomodulin perioperatively (pre-operative-baseline, post-Mini-HLM/release of OPCAB-stabilizer, 6 h, 12 h, 24 h and 5 days postoperatively were obtained and compared by ANOVA models including repeated-measures-analysis. Results Mean graft-number was 3.06 ± 0.72 in Mini-HLM-patients and 1.89 ± 0.74 in OPCAB-patients (p 0.05. CEC-release did not differ between groups (p = 0.274 and was generally within normal limits, Troponin-T levels where not significanty different (p = 0.108. No myocardial infarctions, strokes or deaths occurred, neuron specific enolase (NSE did not show any differences between groups (p = 0.194. Conclusion Conceptional advantages of minimized CPB systems (ROCsafe™ result in morbidity and mortality comparable with OPCAB procedures. Mini-HLM therefore minimizes CPB-related systemic and organ injury as demonstrated by low CEC-values which indicates intact endothelial integrity. Furthermore, Mini-HLM combines OPCAB-benefits with low morbidity in high-risk patients while facilitating more complete revascularization in complex patients.

  14. Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1α/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse model.

    Science.gov (United States)

    Qin, Gang; Chen, Yongqiang; Li, Haidong; Xu, Suyang; Li, Yumei; Sun, Jian; Rao, Wu; Chen, Chaowei; Du, Mindong; He, Kaiyi; Ye, Yong

    2016-07-01

    Endothelial progenitor cells (EPCs) are important in tumor angiogenesis. Stromal cell-derived factor-1α (SDF-1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) are key in stem cell homing. Melittin, a component of bee venom, exerts antitumor activity, however, the underlying mechanisms remain to be elucidated. The present study aimed to assess the effects of melittin on EPCs and angiogenesis in a mouse model of osteosarcoma. UMR‑106 cells and EPCs were treated with various concentrations of melittin and cell viability was determined using the MTT assay. EPC adherence, migration and tube forming ability were assessed. Furthermore, SDF‑1α, AKT and extracellular signal‑regulated kinase (ERK)1/2 expression levels were detected by western blotting. Nude mice were inoculated with UMR‑106 cells to establish an osteosarcoma mouse model. The tumors were injected with melittin, and its effects were assessed by immunohistochemistry and immunofluorescence. Melittin decreased the viability of UMR‑106 cells and EPCs. In addition, it decreased EPC adhesion, migration and tube formation when compared with control and SDF‑1α‑treated cells. Melittin decreased the expression of phosphorylated (p)‑AKT, p‑ERK1/2, SDF‑1α and CXCR4 in UMR‑106 cells and EPCs when compared with the control. The proportions of cluster of differentiation (CD)34/CD133 double‑positive cells were 16.4±10.4% in the control, and 7.0±4.4, 2.9±1.2 and 1.3±0.3% in tumors treated with 160, 320 and 640 µg/kg melittin per day, respectively (P<0.05). At 11 days, melittin reduced the tumor size when compared with that of the control (control, 4.8±1.3 cm3; melittin, 3.2±0.6, 2.6±0.5, and 2.0±0.2 cm3 for 160, 320 and 640 µg/kg, respectively; all P<0.05). Melittin decreased the microvessel density, and SDF‑1α and CXCR4 protein expression levels in the tumors. Melittin may decrease the effect of osteosarcoma on EPC‑mediated angiogenesis, possibly via inhibition

  15. A comparison of umbilical cord blood-derived endothelial progenitor and mononuclear cell transplantation for the treatment of acute hindlimb ischemia

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2014-01-01

    Full Text Available Acute lower limb ischemia is a common peripheral artery disease whose treatment presents many difficulties. Stem cell transplantation is considered a novel and promising method of treating this disease. Umbilical cord blood (UCB is rich in stem cells, including hematopoietic stem cells (HSCs, mesenchymal stem cells (MSCs and endothelial progenitor cells (EPCs. However, historically, banked umbilical cord blood has been used mainly to treat blood-related diseases. Therefore, this study compared the efficacy of umbilical cord bloodderived mononuclear cells (UCB-MNCs with EPC transplantation for the treatment of acute hindlimb ischemia (ALI in mouse models. MNCs were isolated from UCB by Ficoll gradient centrifugation, after which the EPCs were sorted based on CD34+ and CD133+ markers and cultured according to a previously published protocol. To induce ALI, mice were immuno-suppressed using busulfan (BU and cyclophosphamide (CY, after which the femoral arteries were burned. Induction of ALI in the immune suppressed mice was confirmed by the grade of tissue damage, pedal frequency in water, tissue edema, changes in histology, total white blood cell count, and white blood cell composition. Model mice were injected with a dose of MNCs or EPCs and un-treated control mice were injected with phosphate buffered saline. The efficiency of treatment was evaluated by comparing the grade of tissue damage between the three groups of mice. Mice aged 6 and ndash;12 months were suitable for ALI, with 100% of mice exhibiting ischemia from grade I 10%, grade III 50%, grade IV 40%. For all ALI mice, a gradual increase in pedal frequency in water, increased tissue edema, necrosis of muscle tissue, and loss of hindlimb function were observed after 20 days. Transplanted MNCs and EPCs significantly improved hindlimb ischemia compared with control treatment. Moreover, EPC transplantation significantly improved hindlimb ischemia compared with MNC transplantation. Following

  16. Store-operated Ca2+ entry is remodelled and controls in vitro angiogenesis in endothelial progenitor cells isolated from tumoral patients.

    Directory of Open Access Journals (Sweden)

    Francesco Lodola

    Full Text Available BACKGROUND: Endothelial progenitor cells (EPCs may be recruited from bone marrow to sustain tumor vascularisation and promote the metastatic switch. Understanding the molecular mechanisms driving EPC proliferation and tubulogenesis could outline novel targets for alternative anti-angiogenic treatments. Store-operated Ca(2+ entry (SOCE, which is activated by a depletion of the intracellular Ca(2+ pool, regulates the growth of human EPCs, where is mediated by the interaction between the endoplasmic reticulum Ca(2+-sensor, Stim1, and the plasmalemmal Ca(2+ channel, Orai1. As oncogenesis may be associated to the capability of tumor cells to grow independently on Ca(2+ influx, it is important to assess whether SOCE regulates EPC-dependent angiogenesis also in tumor patients. METHODOLOGY/PRINCIPAL FINDINGS: The present study employed Ca(2+ imaging, recombinant sub-membranal and mitochondrial aequorin, real-time polymerase chain reaction, gene silencing techniques and western blot analysis to investigate the expression and the role of SOCE in EPCs isolated from peripheral blood of patients affected by renal cellular carcinoma (RCC; RCC-EPCs as compared to control EPCs (N-EPCs. SOCE, activated by either pharmacological (i.e. cyclopiazonic acid or physiological (i.e. ATP stimulation, was significantly higher in RCC-EPCs and was selectively sensitive to BTP-2, and to the trivalent cations, La(3+ and Gd(3+. Furthermore, 2-APB enhanced thapsigargin-evoked SOCE at low concentrations, whereas higher doses caused SOCE inhibition. Conversely, the anti-angiogenic drug, carboxyamidotriazole (CAI, blocked both SOCE and the intracellular Ca(2+ release. SOCE was associated to the over-expression of Orai1, Stim1, and transient receptor potential channel 1 (TRPC1 at both mRNA and protein level The intracellular Ca(2+ buffer, BAPTA, BTP-2, and CAI inhibited RCC-EPC proliferation and tubulogenesis. The genetic suppression of Stim1, Orai1, and TRPC1 blocked CPA

  17. Changes of activated circulating endothelial cells and survivin in patients with non-small cell lung cancer after antiangiogenesis therapy

    Institute of Scientific and Technical Information of China (English)

    WANG Jing; HUANG Chun; WEI Xi-yin; QI Da-liang; GONG Li-qun; MU Hai-yu; YAO Qiang; LI Kai

    2008-01-01

    Background Although antiangiogenesis therapy plays an important role in anti-neoplastic treatment with its recognized efficacy and slight adverse effect,there is no prospective clinical trial to define ideal markers for predicting efficacy of antiangiogenic therapy.This study was undertaken to investigate the changes of activated circulating endothelial cells (aCECs) and survMn after anti-angiogenesis therapy and their significance in predicting the efficacy of the therapy.Methods Patients of non-small cell lung cancer (NSCLC) treated with chemotherapy with or without Endostar were observed.The amount of activated CECs was detected by flow cytometry,and the expression of survivin mRNA was determined by real-time polymerase chain reaction (PCR).Results After treatment,the amount of activated CECs decreased significantly in clinical benefit cases (P=-0.021 in chemotherapy alone,P=0.001 in chemotherapy plus Endostar),increased in disease progressive cases (P=-0.015 in chemotherapy alone,but P=0.293 in chemotherapy with Endotatar).After therapy,the expression of survivin mRNA decreased in clinical benefit cases (P=0.001) and increased in disease progressive cases (P=0.018).A positive correlation was found between activated CECs and survivin in the chemotherapy group pre- and post-therapy (P=0.001 and 0.021,respectively),but only in the chemotherapy with Endostar group pre-therapy (P=0.030) rather than post-therapy.A positive correlation was found between the decreased activated CECs after therapy and time to progression (TTP) (r=0.322,P=0.012);a negative correlation was found between the amount of survivin mRNA in serum post-therapy and TTP(r= -0.291,P=0.048).Conclusions Activated CECs and survMn may be ideal markers forecasting efficacy and prognosis of NSCLC.The former can reflect more sensitively antiangiogenic efficacy and the latter is more sensitive to shrinkage or swelling of tumors.Their combination can evaluate more accurately the efficacy of antiangiogenic

  18. Diazoxide preconditioning of endothelial progenitor cells from streptozotocin-induced type 1 diabetic rats improves their ability to repair diabetic cardiomyopathy.

    Science.gov (United States)

    Ali, Muhammad; Mehmood, Azra; Anjum, Muhammad Sohail; Tarrar, Moazzam Nazir; Khan, Shaheen N; Riazuddin, Sheikh

    2015-12-01

    Type 1 diabetes mellitus (DM) is a strong risk factor for the development of diabetic cardiomyopathy (DCM) which is the leading cause of morbidity and mortality in the type 1 diabetic patients. Stem cells may act as a therapeutic agent for the repair of DCM. However, deteriorated functional abilities and survival of stem cells derived from type 1 diabetic subjects need to be overcome for obtaining potential outcome of the stem cell therapy. Diazoxide (DZ) a highly selective mitochondrial ATP-sensitive K(+) channel opener has been previously shown to improve the ability of mesenchymal stem cells for the repair of heart failure. In the present study, we evaluated the effects of DZ preconditioning in improving the ability of streptozotocin-induced type 1 diabetes affected bone marrow-derived endothelial progenitor cells (DM-EPCs) for the repair of DCM in the type 1 diabetic rats. DM-EPCs were characterized by immunocytochemistry, flow cytometry, and reverse transcriptase PCR for endothelial cell-specific markers like vWF, VE cadherin, VEGFR2, PECAM, CD34, and eNOS. In vitro studies included preconditioning of DM-EPCs with 200 μM DZ for 30 min followed by exposure to either 200 μM H2O2 for 2 h (for oxidative stress induction) or 30 mM glucose media (for induction of hyperglycemic stress) for 48 h. Non-preconditioned EPCs with and without exposure to H2O2 and 30 mM high glucose served as controls. These cells were then evaluated for survival (by MTT and XTT cell viability assays), senescence, paracrine potential (by ELISA for VEGF), and alteration in gene expression [VEGF, stromal derived factor-1α (SDF-1α), HGF, bFGF, Bcl2, and Caspase-3]. DZ preconditioned DM-EPCs demonstrated significantly increased survival and VEGF release while reduced cell injury and senescence. Furthermore, DZ preconditioned DM-EPCs exhibited up-regulated expression of prosurvival genes (VEGF, SDF-1α, HGF, bFGF, and Bcl2) on exposure to H2O2, and VEGF and Bcl2 on exposure to hyperglycemia

  19. Stem cells and progenitor cells in renal disease.

    Science.gov (United States)

    Haller, Hermann; de Groot, Kirsten; Bahlmann, Ferdinand; Elger, Marlies; Fliser, Danilo

    2005-11-01

    Stem cells and progenitor cells are necessary for repair and regeneration of injured renal tissue. Infiltrating or resident stem cells can contribute to the replacement of lost or damaged tissue. However, the regulation of circulating progenitor cells is not well understood. We have analyzed the effects of erythropoietin on circulating progenitor cells and found that low levels of erythropoietin induce mobilization and differentiation of endothelial progenitor cells. In an animal model of 5/6 nephrectomy we could demonstrate that erythropoietin ameliorates tissue injury. Full regeneration of renal tissue demands the existence of stem cells and an adequate local "milieu," a so-called stem cell niche. We have previously described a stem cell niche in the kidneys of the dogfish, Squalus acanthus. Further analysis revealed that in the regenerating zone of the shark kidney, stem cells exist that can be induced by loss of renal tissue to form new glomeruli. Such animal models improve our understanding of stem cell behavior in the kidney and may eventually contribute to novel therapies. PMID:16221168

  20. Circulating microparticles, protein C, free protein S and endothelial vascular markers in children with sickle cell anaemia

    Directory of Open Access Journals (Sweden)

    Andrea Piccin

    2015-11-01

    Full Text Available Introduction: Circulating microparticles (MP have been described in sickle cell anaemia (SCA; however, their interaction with endothelial markers remains unclear. We investigated the relationship between MP, protein C (PC, free protein S (PS, nitric oxide (NO, endothelin-1 (ET-1 and adrenomedullin (ADM in a large cohort of paediatric patients. Method: A total of 111 children of African ethnicity with SCA: 51 in steady state; 15 in crises; 30 on hydroxyurea (HU therapy; 15 on transfusion; 17 controls (HbAA of similar age/ethnicity. MP were analysed by flow cytometry using: Annexin V (AV, CD61, CD42a, CD62P, CD235a, CD14, CD142 (tissue factor, CD201 (endothelial PC receptor, CD62E, CD36 (TSP-1, CD47 (TSP-1 receptor, CD31 (PECAM, CD144 (VE-cadherin. Protein C, free PS, NO, pro-ADM and C-terminal ET-1 were also measured. Results: Total MP AV was lower in crisis (1.26×106 ml−1; 0.56–2.44×106 and steady state (1.35×106 ml−1; 0.71–3.0×106 compared to transfusion (4.33×106 ml−1; 1.6–9.2×106, p0.9, p<0.05 between total numbers of AV-positive MP (MP AV and platelet MP expressing non-activation platelet markers. There was a lower correlation between MP AV and MP CD62P (R=0.73, p<0.05 (platelet activation marker, and also a lower correlation between percentage of MP expressing CD201 (%MP CD201 and %MP CD14 (R=0.627, p<0.001. %MP CD201 was higher in crisis (11.6% compared with HbAA (3.2%, p<0.05; %MP CD144 was higher in crisis (7.6% compared with transfusion (2.1%, p<0.05; %CD14 (0.77% was higher in crisis compared with transfusion (0.0%, p<0.05 and steady state (0.0%, p<0.01; MP CD14 was detectable in a higher number of samples (92% in crisis compared with the rest (40%; %MP CD235a was higher in crisis (17.9% compared with transfusion (8.9%, HU (8.7% and steady state (9.9%, p<0.05; %CD62E did not differ significantly across the groups and CD142 was undetectable. Pro-ADM levels were raised in chest crisis: 0.38 nmol L−1 (0.31–0

  1. 自体血管内皮祖细胞治疗缺血缺氧性脑损伤**★%Autologous endothelial progenitor cells for treatment of ischemic/hypoxic brain injury

    Institute of Scientific and Technical Information of China (English)

    崔立玲; 黄国志; 陈镇洲; 郭阳

    2013-01-01

    BACKGROUND: Fol owing ischemic/hypoxic brain injury, neurogenesis and neurofunctional recovery are closely related to vascular formation and plasticity in ischemic region. Vascular endothelial progenitor cel s participate in vascular formation and repair in postnatal ischemic tissue, promote the recanalization of blood flow and the supply of nutritive substances such as oxygen, providing microenvironment for neurofunctional recovery. OBJECTIVE: To evaluate the feasibility, efficacy and safety of use of autologous vascular endothelial progenitor cel s in the treatment of ischemic/hypoxic brain injury and investigate a new method for improving the neurological function of patients with ischemic/hypoxic brain injury. METHODS: A computer-based online retrieval of PubMed, ScienceDirect, Springerlink and CNKI databases was performed for papers describing use of vascular endothelial progenitor cel s in the treatment of ischemic/hypoxic brain injury using the key words “EPCs, endothelial progenitor cel , stroke” in English and Chinese. In the same research filed, papers that published recently or in high impact factor journals were selected. A total of 43 papers were suitable for final analysis. RESULTS AND CONCLUSION: Fol owing ischemic/hypoxic brain injury, neurogenesis and neurofunctional recovery are closely related to vascular formation and plasticity in ischemic region. Vascular endothelial progenitor cel s participate in vascular formation and repair in postnatal ischemic tissue, promote the recanalization of blood flow and the supply of nutritive substances such as oxygen, providing microenvironment for neurofunctional recovery. The use of autologous vascular endothelial progenitor cel s in the treatment of ischemic/hypoxic brain injury is feasible, safe and effective. Nevertheless, a larger number of biological and animal experiments are needed for providing theoretical evidence for clinical application of autologous vascular endothelial progenitor cel s.% 

  2. Endothelial potential of human embryonic stem cells

    OpenAIRE

    Levenberg, Shulamit; Zoldan, Janet; Basevitch, Yaara; Langer, Robert

    2007-01-01

    Growing interest in using endothelial cells for therapeutic purposes has led to exploring human embryonic stem cells as a potential source for endothelial progenitor cells. Embryonic stem cells are advantageous when compared with other endothelial cell origins, due to their high proliferation capability, pluripotency, and low immunogenity. However, there are many challenges and obstacles to overcome before the vision of using embryonic endothelial progenitor cells in the clinic can be realize...

  3. Circulating levels of inflammation-associated miR-155 and endothelial-enriched miR-126 in patients with end-stage renal disease

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Honglei; Peng, Wujian; Shen, Xuemei; Huang, Yunhui; Ouyang, Xin; Dai, Yong [Clinical Medical Research Center, Second Clinical Medical College, Shenzhen People' s Hospital, Jinan University, Shenzhen, Guangdong (China)

    2012-10-19

    Circulating microRNAs (miRNAs) may represent a potential noninvasive molecular biomarker for various pathological conditions. Moreover, the detection of circulating miRNAs can provide important novel disease-related information. In particular, inflammation-associated miR-155 and endothelial-enriched miR-126 are reported to be associated with vascular homeostasis. Vascular damage is a common event described in end-stage renal disease (ESRD). We hypothesized that miR-155 and miR-126 may be detectable in the circulation and serve as potential biomarkers for risk stratification. In this study, we assessed miR-155 and miR-126 in the plasma of 30 ESRD patients and 20 healthy controls using real-time quantification RT-PCR. The circulating levels of miR-155 and miR-126 were significantly reduced in patients with ESRD compared to healthy controls. However, there was no significant difference of circulating miR-155 and miR-126 levels between prehemodialysis and posthemodialysis patients. Furthermore, both circulating miR-126 and miR-155 correlated positively with estimated glomerular filtration rate (miR-126: r = 0.383, P = 0.037; miR-155: r = 0.494, P = 0.006) and hemoglobin (miR-126: r = 0.515, P = 0.004; miR-155: r = 0.598, P < 0.001) and correlated inversely with phosphate level (miR-126: r = -0.675, P < 0.001; miR-155: r = -0.399, P = 0.029). Pearson's correlation was used to compare circulating levels of miRNAs with clinical parameters. These results suggested that circulating miR-155 and miR-126 might be involved in the development of ESRD. Further studies are needed to demonstrate the role of circulating miR-155 and miR-126 as candidate biomarkers for risk estimation.

  4. Circulating Endothelial-Derived Apoptotic Microparticles in the Patients with Ischemic Symptomatic Chronic Heart Failure: Relevance of Pro-Inflammatory Activation and Outcomes

    Directory of Open Access Journals (Sweden)

    Alexander E. Berezin

    2014-09-01

    Full Text Available Background: Endothelial-derived apoptotic microparticles (EMPs play a pivotal role in endothelial dysfunction in hronic Heart Failure (CHF. Objectives: The present study aimed to evaluate the association between EMPs and pro-inflammatory biomarkers, clinical status, and outcomes in the patients with ischemic CHF. Patients and Methods: This study was conducted on 154 patients with ischemic symptomatic moderate-to-severe CHF on discharge from hospital. The observation period was up to 3 years. Circulating NT-pro-BNP, TNF-alpha, sFas, and sFas ligand were determined at baseline. Flow cytometry analysis was used for quantifying the number of EMPs. All-cause mortality, CHF-related death, and CHD-re-hospitalization rate were examined. The data were analyzed using descriptive statistics, Receive Operation Characteristic Curve (ROC, and logistic regression analysis. Besides, P 0.514 n/mL and those with a low level of the biomarker (< 0.514 n/mL regarding their survival. The number of circulating EPMs independently predicted all-cause mortality (OR = 1.58; 95% CI = 1.20 – 1.88; P = 0.001, CHF-related death (OR = 1.22; 95% CI: 1.12 – 1.36; P < 0.001, and CHF-related re-hospitalization (OR = 1.20; 95% CI: 1.11 – 1.32; P < 0.001. Conclusions: Among the patients with symptoms of CHF, increased number of circulating EMPs was associated with increased 3-year CHF-related death, all-cause mortality, and risk of recurrent hospitalization due to CHF.

  5. Two-year follow-up of the Genous™ endothelial progenitor cell capturing stent versus the Taxus Liberté stent in patients with de novo coronary artery lesions with a high-risk of restenosis: a randomized, single-center, pilot study

    NARCIS (Netherlands)

    M.A.M. Beijk; M. Klomp; N. van Geloven; K.T. Koch; J.P.S. Henriques; J. Baan; M.M. Vis; J.G.P. Tijssen; J.J. Piek; R.J. de Winter

    2011-01-01

    In the prospective randomized TRIAS pilot study, the bio-engineered Genous™ endothelial progenitor cell capturing stent was compared with the Taxus Liberté™ SR paclitaxel-eluting stent. At 1 yr, a statistically nonsignificant difference in the rates of target vessel failure (cardiac death, myocardia

  6. An anti-CD34 antibody-functionalized clinical-grade POSS-PCU nanocomposite polymer for cardiovascular stent coating applications: a preliminary assessment of endothelial progenitor cell capture and hemocompatibility.

    Directory of Open Access Journals (Sweden)

    Aaron Tan

    Full Text Available In situ endothelialization of cardiovascular implants has emerged in recent years as an attractive means of targeting the persistent problems of thrombosis and intimal hyperplasia. This study aimed to investigate the efficacy of immobilizing anti-CD34 antibodies onto a POSS-PCU nanocomposite polymer surface to sequester endothelial progenitor cells (EPCs from human blood, and to characterize the surface properties and hemocompatibility of this surface. Amine-functionalized fumed silica was used to covalently conjugate anti-CD34 to the polymer surface. Water contact angle, fluorescence microscopy, and scanning electron microscopy were used for surface characterization. Peripheral blood mononuclear cells (PBMCs were seeded on modified and pristine POSS-PCU polymer films. After 7 days, adhered cells were immunostained for the expression of EPC and endothelial cell markers, and assessed for the formation of EPC colonies. Hemocompatibility was assessed by thromboelastography, and platelet activation and adhesion assays. The number of EPC colonies formed on anti-CD34-coated POSS-PCU surfaces was not significantly higher than that of POSS-PCU (5.0±1.0 vs. 1.7±0.6, p>0.05. However, antibody conjugation significantly improved hemocompatibility, as seen from the prolonged reaction and clotting times, decreased angle and maximum amplitude (p<0.05, as well as decreased platelet adhesion (76.8±7.8 vs. 8.4±0.7, p<0.05 and activation. Here, we demonstrate that POSS-PCU surface immobilized anti-CD34 antibodies selectively captured CD34+ cells from peripheral blood, although only a minority of these were EPCs. Nevertheless, antibody conjugation significantly improves the hemocompatibility of POSS-PCU, and should therefore continue to be explored in combination with other strategies to improve the specificity of EPC capture to promote in situ endothelialization.

  7. Mobilization of bone marrow-derived progenitor cells in acute coronary syndromes.

    Directory of Open Access Journals (Sweden)

    Wojciech Wojakowski

    2005-12-01

    Full Text Available Two hypotheses explain the role of adult progenitor cells in myocardial regeneration. Stem cell plasticity which involves mobilization of stem cells from the bone marrow and other niches, homing to the area of tissue injury and transdifferentiation into functional cardiomyocytes. Alternative hypothesis is based on the observations that bone marrow harbors a heterogenous population of cells positive for CXCR4 - receptor for chemokine SDF-1. This population of non-hematopoietic cells expresses genes specific for early muscle, myocardial and endothelial progenitor cells (EPC. These tissue-committed stem cells circulate in the peripheral blood at low numbers and can be mobilized by hematopoietic cytokines in the setting of myocardial ischemia. Endothelial precursors capable of transforming into mature, functional endothelial cells are present in the pool of peripheral mononuclear cells in circulation. Their number significantly increases in acute myocardial infarction (AMI with subsequent decrease after 1 month, as well as in patients with unstable angina in comparison to stable coronary heart disease (CHD. There are numerous physiological and pathological stimuli which influence the number of circulating EPC such as regular physical activity, medications (statins, PPAR-gamma agonists, estrogens, as well as numerous inflammatory and hematopoietic cytokines. Mobilization of stem cells in AMI involves not only the endothelial progenitors but also hematopoietic, non-hematopoietic stem cells and most probably the mesenchymal cells. In healthy subjects and patients with stable CHD, small number of circulating CD34+, CXCR4+, CD117+, c-met+ and CD34/CD117+ stem cells can be detected. In patients with AMI, a significant increase in CD34+/CXCR4+, CD117+, c-met+ and CD34/CD117+ stem cell number the in peripheral blood was demonstrated with parallel increase in mRNA expression for early cardiac, muscle and endothelial markers in peripheral blood mononuclear

  8. Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density and improve heart function in a rat cellular cardiomyoplasty model

    Institute of Scientific and Technical Information of China (English)

    SDAVANI; NMERSIN; BROYER; BKANTELIP; JPKANTELIP

    2004-01-01

    AIM: Cellular cardiomyoplasty is promising for improving postinfarcted cardiac function. Over the past decade, a variety of cell types have been proposed including mononuclear bone marrow cells. The latter contains different lineages including mesenchymal stem cells (MSCs). The aim of this study was to analyse the differentiation pathways of engrafted syngenic mesenchymal progenitor cells (MPCs) obtained in culture from bone marrow

  9. 内皮祖细胞在治疗下肢缺血性疾病中的研究进展%Endothelial progenitor cells in the treatment of lower extremity ischemic disease

    Institute of Scientific and Technical Information of China (English)

    葛新宝; 胡何节

    2010-01-01

    With the population aging, diet changing and incveasing risk factors on vascular disease, the lower extremity ischemic disease has become a frequently occurring disease of older person, and it is the main reason for amputation disability. In the 21st century the stem cells transplantation is one of the most advanced technologies and has been applied quickly to clinical therapy, regarded as a radical treatment of lower extremity ischemic disease. Endothelial progenitor cells have gradually become a new direction and a new research focus because of its unique biological characteristics in the treatment of this disease. This article focuses on endothelial progenitor cells in treating extremity ischemia lesions on the theoretical basis and research developments.%随着人口老龄化、饮食结构改变及引起血管疾病高危因素的增加,下肢缺血性疾病已成为老年人的多发病,是截肢致残的主要原因.作为21世纪最先进的技术,干细胞移植快速地应用于临床,并被认为可能是根治性治疗下肢缺血性疾病的方法之一,内皮祖细胞由于其独特的生物学特性逐渐成为治疗这一病变的新方向和新研究热点.本文着重介绍内皮祖细胞治疗肢体缺血性病变的理论基础和研究进展.

  10. Endothelium dependent vasomotion and in vitro markers of endothelial repair in patients with severe sepsis: an observational study.

    Directory of Open Access Journals (Sweden)

    Sabrina H van Ierssel

    Full Text Available BACKGROUND: Outcome in sepsis is mainly defined by the degree of organ failure, for which endothelial dysfunction at the macro- and microvascular level is an important determinant. In this study we evaluated endothelial function in patients with severe sepsis using cellular endothelial markers and in vivo assessment of reactive hyperaemia. MATERIALS AND METHODS: Patients with severe sepsis (n = 30 and 15 age- and gender- matched healthy volunteers were included in this study. Using flow cytometry, CD34+/KDR+ endothelial progenitor cells (EPC, CD31+ T-cells, and CD31+/CD42b- endothelial microparticles (EMP were enumerated. Migratory capacity of cultured circulating angiogenic cells (CAC was assessed in vitro. Endothelial function was determined using peripheral arterial tonometry at the fingertip. RESULTS: In patients with severe sepsis, a lower number of EPC, CD31+ T-cells and a decreased migratory capacity of CAC coincided with a blunted reactive hyperaemia response compared to healthy subjects. The number of EMP, on the other hand, did not differ. The presence of organ failure at admission (SOFA score was inversely related with the number of CD31+ T-cells. Furthermore, the number of EPC at admission was decreased in patients with progressive organ failure within the first week. CONCLUSION: In patients with severe sepsis, in vivo measured endothelial dysfunction coincides with lower numbers and reduced function of circulating cells implicated in endothelial repair. Our results suggest that cellular markers of endothelial repair might be valuable in the assessment and evolution of organ dysfunction.

  11. Transplanted endothelial progenitor cell improves lung structure in neonatal rats exposed to hyperoxia%内皮祖细胞移植改善高氧暴露新生大鼠肺结构

    Institute of Scientific and Technical Information of China (English)

    陆爱珍; 钱莉玲; 王传凯; 孙波

    2015-01-01

    目的 研究移植内皮祖细胞(endothelial progenitor cell,EPC)对新生大鼠高氧肺损伤的影响及其机制. 方法 从4周龄Sprague-Dawyley大鼠骨髓中培养获取EPC并鉴定.另取新生Sprague-Dawley仔鼠60只,生后室温下适应性饲养24 h后,随机分为空气组、高氧组、移植组和Nω-硝基-L-精氨酸甲酯(Nω-nitro-L-argininemethylester,L-NAME)干预组(简称干预组),每组15只.空气和高氧组分别在空气和85%高氧中饲养28d.移植组在85%高氧中暴露28d,其中在第21天尾静脉注射EPC 1×10 5个.干预组在移植组的基础上,自第21天开始连续腹腔注射L-NAME至第28天,每日剂量为20 mg/kg.第28天处死所有仔鼠,留取血标本,采用流式细胞技术检测CD34+细胞,酶联免疫吸附方法检测血清血管内皮细胞生长因子(vescular endothelial growth factor,VEGF).同时留取肺组织标本,观察辐射状肺泡计数和肺微血管计数、免疫荧光方法观察移植EPC在肺内的定植情况,实时荧光定量聚合酶链反应和蛋白质印迹技术检测肺组织中VEGF、VEGF受体(vescular endothelial growth factor receptor,VEGFR)2和内皮源性一氧化氮合酶(endothelial nitric oxide synthase,eNOS)的表达,并用硝酸还原酶法检测肺组织中一氧化氮的表达.采用单因素方差分析和Bonferroni方法进行统计学分析. 结果 (1)培养所得细胞具有典型的EPC形态改变;结合异硫氢基荧光素标记荆豆凝集素-1并摄取Dil荧光标记的乙酰化低密度脂蛋白的双阳性细胞约占总细胞数的85%;培养所得细胞中CD34+细胞含量为68.2%~72.4%.(2)空气组、高氧组、移植组和干预组仔鼠外周血CD34+细胞数量分别为(1.91±0.34)%、(1.06±0.10)%、(1.47±0.06)%和(0.77±0.11)%(F=32.710,P=0.000),高氧组低于空气组,移植组高于高氧组,干预组又低于移植组(P值均< 0.05).4组仔鼠血清VEGF水平分别为(7.90±2.72)、(6.38±0.72)、(14.00±1.66)和(11.70±1

  12. eNOS:糖尿病内皮祖细胞功能失调的一个关键因素%eNOS:a key factor behind the dysfunction of endothelial progenitor cells in diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    邓亚萍; 赵婷; 倪敏; 谢和辉; 沈甫明

    2012-01-01

    糖尿病是由多种病因引起的,以慢性高血糖为特征的代谢紊乱综合征.糖尿病患者内皮祖细胞(EPCs)数目减少,动员、迁移、归巢、分化能力明显降低,这可能是引起糖尿病大血管并发症的主要原因之一.内皮型NO合酶(eNOS)是调节内皮祖细胞功能的关键酶.该文就eNOS与糖尿病内皮祖细胞功能失调的相关性进行综述,为糖尿病治疗提供新的思路.%Diabetes mellitus is a disorder characterized by a chronically raised blood glucose level and caused by multiple pathogenic factors. Recent researches suggest that the numbers of endothelial progenitor cells (EPCs) decreased in diabetic patients. Moreover, diabetic EPCs display functional impairment , such as reduced proliferation , adhesion, migration, and incorporation into tubular structures, which is one of the main reasonscontributing to blood vessel damage. Endothelial nitric oxide synthase (eNOS) plays an important role in the process of EPCs mobilization and in the regulation of EPCs function. To provide new strategies for treatment of diabetes mellitus , the role of eNOS on EPCs dysfunction is reviewed in this paper .

  13. Nuclear DNA sensor IFI16 as circulating protein in autoimmune diseases is a signal of damage that impairs endothelial cells through high-affinity membrane binding.

    Directory of Open Access Journals (Sweden)

    Francesca Gugliesi

    Full Text Available IFI16, a nuclear pathogenic DNA sensor induced by several pro-inflammatory cytokines, is a multifaceted protein with various functions. It is also a target for autoantibodies as specific antibodies have been demonstrated in the sera of patients affected by systemic autoimmune diseases. Following transfection of virus-derived DNA, or treatment with UVB, IFI16 delocalizes from the nucleus to the cytoplasm and is then eventually released into the extracellular milieu. In this study, using an in-house capture enzyme-linked immunsorbent assay we demonstrate that significant levels of IFI16 protein can also exist as circulating form in the sera of autoimmune patients. We also show that the rIFI16 protein, when added in-vitro to endothelial cells, does not affect cell viability, but severely limits their tubulogenesis and transwell migration activities. These inhibitory effects are fully reversed in the presence of anti-IFI16 N-terminal antibodies, indicating that its extracellular activity resides within the N-terminus. It was further demonstrated that endogenous IFI16 released by apoptotic cells bind neighboring cells in a co-culture. Immunofluorescence assays revealed existence of high-affinity binding sites on the plasma membrane of endothelial cells. Free recombinant IFI16 binds these sites on HUVEC with dissociation constant of 2.7 nM, radioiodinated and unlabeled IFI16 compete for binding sites, with inhibition constant (Ki of 14.43 nM and half maximal inhibitory concentration (IC50 of 67.88 nM; these data allow us to estimate the presence of 250,000 to 450,000 specific binding sites per cell. Corroborating the results from functional assays, this binding could be completely inhibited using anti-IFI16 N-terminal antibody, but not with an antibody raised against the IFI16 C-terminal. Altogether, these data demonstrate that IFI16 may exist as circulating protein in the sera of autoimmune patients which binds endothelial cells causing damage

  14. Endothelial Dysfunction in Idiopathic Sudden Sensorineural Hearing Loss: A Review.

    Science.gov (United States)

    Quaranta, Nicola; De Ceglie, Vincenzo; D'Elia, Alessandra

    2016-04-20

    An endothelial dysfunction has been described in idiopathic sudden sensorineural hearing loss (ISSHL) patients. The purpose of our review was to: i) identify, evaluate and review recent research about cardiovascular risk factors involvement and signs of endothelial dysfunction in ISSHL; ii) implication of these discovering in clinical practice and future research. A Medline literature search was conducted to identify any study on the involvement of endothelial dysfunction in ISSHL, published in the English language in the last decade. The following MEDLINE search terms were used: sudden sensorineural hearing loss (SSHL) and endothelial dysfunction (text words). Additional studies were identified by hand searching the references of original articles and review articles. Studies were not excluded on the basis of the qualitative or quantitative definitions of SSHL, treatment regimens, or outcome measures. Data were extracted from included papers by a reviewer. Information on the patients, investigations, methods, interventions, and outcomes were systematically analyzed. Characteristics and results of all included studies were reviewed systematically. High levels of adhesion molecules, hyperhomocysteinemia and lower folate levels, unbalanced oxidative status, a lower value of flow-mediated dilatation of brachial artery and a reduced percentage of circulating endothelial progenitor cells in patients affected by ISSHL support the hypothesis that this syndrome should be considered as a microcirculation disorder based on endothelial dysfunction and drive clinicians to implement all the traditional strategies used for preventing cardiovascular events, to also reduce the likelihood of ISSHL occurrence. PMID:27588164

  15. Endothelial dysfunction in idiopathic sudden sensorineural hearing loss: a review

    Directory of Open Access Journals (Sweden)

    Nicola Quaranta

    2016-07-01

    Full Text Available An endothelial dysfunction has been described in idiopathic sudden sensorineural hearing loss (ISSHL patients. The purpose of our review was to: i identify, evaluate and review recent research about cardiovascular risk factors involvement and signs of endothelial dysfunction in ISSHL; ii implication of these discovering in clinical practice and future research. A Medline literature search was conducted to identify any study on the involvement of endothelial dysfunction in ISSHL, published in the English language in the last decade. The following MEDLINE search terms were used: sudden sensorineural hearing loss (SSHL and endothelial dysfunction (text words. Additional studies were identified by hand searching the references of original articles and review articles. Studies were not excluded on the basis of the qualitative or quantitative definitions of SSHL, treatment regimens, or outcome measures. Data were extracted from included papers by a reviewer. Information on the patients, investigations, methods, interventions, and outcomes were systematically analyzed. Characteristics and results of all included studies were reviewed systematically. High levels of adhesion molecules, hyperhomocysteinemia and lower folate levels, unbalanced oxidative status, a lower value of flow-mediated dilatation of brachial artery and a reduced percentage of circulating endothelial progenitor cells in patients affected by ISSHL support the hypothesis that this syndrome should be considered as a microcirculation disorder based on endothelial dysfunction and drive clinicians to implement all the traditional strategies used for preventing cardiovascular events, to also reduce the likelihood of ISSHL occurrence.

  16. Endothelial Dysfunction in Idiopathic Sudden Sensorineural Hearing Loss: A Review.

    Science.gov (United States)

    Quaranta, Nicola; De Ceglie, Vincenzo; D'Elia, Alessandra

    2016-04-20

    An endothelial dysfunction has been described in idiopathic sudden sensorineural hearing loss (ISSHL) patients. The purpose of our review was to: i) identify, evaluate and review recent research about cardiovascular risk factors involvement and signs of endothelial dysfunction in ISSHL; ii) implication of these discovering in clinical practice and future research. A Medline literature search was conducted to identify any study on the involvement of endothelial dysfunction in ISSHL, published in the English language in the last decade. The following MEDLINE search terms were used: sudden sensorineural hearing loss (SSHL) and endothelial dysfunction (text words). Additional studies were identified by hand searching the references of original articles and review articles. Studies were not excluded on the basis of the qualitative or quantitative definitions of SSHL, treatment regimens, or outcome measures. Data were extracted from included papers by a reviewer. Information on the patients, investigations, methods, interventions, and outcomes were systematically analyzed. Characteristics and results of all included studies were reviewed systematically. High levels of adhesion molecules, hyperhomocysteinemia and lower folate levels, unbalanced oxidative status, a lower value of flow-mediated dilatation of brachial artery and a reduced percentage of circulating endothelial progenitor cells in patients affected by ISSHL support the hypothesis that this syndrome should be considered as a microcirculation disorder based on endothelial dysfunction and drive clinicians to implement all the traditional strategies used for preventing cardiovascular events, to also reduce the likelihood of ISSHL occurrence.

  17. Acute myocardial infarction is associated with endothelial glycocalyx and cell damage and a parallel increase in circulating catecholamines

    DEFF Research Database (Denmark)

    Ostrowski, Sisse R; Pedersen, Sune H; Jensen, Jan S;

    2013-01-01

    -patients admitted to a single high-volume invasive heart centre for primary percutaneous coronary intervention (pPCI) from September 2006 to July 2008. Blood samples were drawn immediately before pPCI. Plasma adrenaline, noradrenaline, syndecan-1 and thrombomodulin were measured retrospectively with complete data...... in 571 patients (84%). Median follow-up time was 28 (IQR 23 to 34) months. Follow-up was 99.7% complete. Outcomes were all-cause and cardiovascular mortality, re-myocardial infarction and admission due to heart failure. RESULTS: Circulating noradrenaline and adrenaline correlated weakly but independently...

  18. 循环内皮细胞与肿瘤血管生成的关系%Relationship between circulating endothelial cells and tumor angiogenesis

    Institute of Scientific and Technical Information of China (English)

    韩晓; 王哲海

    2010-01-01

    循环内皮细胞(CEC)是指外周血中测得的血管内皮细胞.其在健康人外周血中数量极少,而在动脉粥样硬化、糖尿病、红斑狼疮等疾病中明显增加,被认为是判断血管内皮细胞损伤情况特异而直接的指标.目前临床科研上常用流式细胞术检测计数和免疫磁珠分离法对CEC进行检测和计数.已有多项研究结果证实,CEC与肿瘤关系密切,现就对CEC的来源、检测、与肿瘤血管生成的关系以及在肿瘤预后监测的意义等进行综述.%Circulating endothelial cells (CEC) are endothelial cells which are detected in the peripheral blood. There are very few CEC in healthy adults while the number is obviously increasing in patients with arthrosclerosis, diabetes mellitus, lupus erythematosus, et al. Nowadays, flow cytometry analysis and immunomagnetic isolation for CEC are employed successfully in clinic and scientific research. Several research findings have confirmed that there is intimate relation between CEC and tumorigenesis. Because of the important role in angiogenesis and tumor growth, CEC would be a perspective tumor marker in antiangiogenesis and would also predict the chemotherapy efficacy.

  19. Differential impact of acute high-intensity exercise on circulating endothelial microparticles and insulin resistance between overweight/obese males and females.

    Directory of Open Access Journals (Sweden)

    Cody Durrer

    Full Text Available An acute bout of exercise can improve endothelial function and insulin sensitivity when measured on the day following exercise. Our aim was to compare acute high-intensity continuous exercise (HICE to high-intensity interval exercise (HIIE on circulating endothelial microparticles (EMPs and insulin sensitivity in overweight/obese men and women.Inactive males (BMI = 30 ± 3, 25 ± 6 yr, n = 6 and females (BMI = 28 ± 2, 21 ± 3 yr, n = 7 participated in three experimental trials in a randomized counterbalanced crossover design: 1 No exercise control (Control; 2 HICE (20 min cycling @ just above ventilatory threshold; 3 HIIE (10 X 1-min @ ∼ 90% peak aerobic power. Exercise conditions were matched for external work and diet was controlled post-exercise. Fasting blood samples were obtained ∼ 18 hr after each condition. CD62E(+ and CD31(+/CD42b- EMPs were assessed by flow cytometry and insulin resistance (IR was estimated by homeostasis model assessment (HOMA-IR.There was a significant sex X exercise interaction for CD62E(+ EMPs, CD31(+/CD42b- EMPs, and HOMA-IR (all P < 0.05. In males, both HICE and HIIE reduced EMPs compared to Control (P ≤ 0.05. In females, HICE increased CD62E(+ EMPs (P < 0.05 vs. Control whereas CD31(+/CD42b- EMPs were unaltered by either exercise type. There was a significant increase in HOMA-IR in males but a decrease in females following HIIE compared to Control (P<0.05.Overweight/obese males and females appear to respond differently to acute bouts of high-intensity exercise. A single session of HICE and HIIE reduced circulating EMPs measured on the morning following exercise in males but in females CD62E(+ EMPs were increased following HICE. Next day HOMA-IR paradoxically increased in males but was reduced in females following HIIE. Future research is needed to investigate mechanisms responsible for potential differential responses between males and females.

  20. Endothelial nitric oxide synthase gene haplotypes and circulating nitric oxide levels significantly associate with risk of essential hypertension.

    Science.gov (United States)

    Nejatizadeh, Azim; Kumar, Rahul; Stobdan, Tsering; Goyal, A K; Sikdar, Sunandan; Gupta, Mohit; Javed, Saleem; Pasha, M A Qadar

    2008-06-01

    Nitric oxide (NO), a potent vasodilator, plays a pivotal role in blood pressure regulation. Endothelial NO synthase gene (NOS3) polymorphisms influence NO levels. Here, we investigated the role of the -922A/G, -786T/C, 4b/4a, and 894G/T polymorphisms of the NOS3 and NO(x) levels in 800 consecutive unrelated subjects comprising 455 patients of essential hypertension and 345 controls. The polymorphisms were investigated independently and as haplotypes. Plasma NO(x) levels (nitrate and nitrite) were estimated by the Griess method. Genotype frequencies for the -786T/C, 4b/4a, and 894G/T polymorphisms differed significantly (Phypertension (OR=2.0, OR=3.8, OR=1.6, respectively). The 4-locus haplotypes ATaG (H1), ATaT (H2), and GCaG (H3) were significantly associated with essential hypertension and served as susceptible haplotypes (Phypertension and served as protective haplotypes (Ppolymorphisms showed marginal association with NO(x) level; however, the susceptible haplotype H2 associated significantly with lower NO(x) levels in patients (Ppolymorphisms were identified as the determinants modifying the risk of hypertension. This study identifies the NOS3 variants and haplotypes as genetic risk factors and as useful markers of increased susceptibility to the risk of essential hypertension. PMID:18325347

  1. Effects of Angiotensin Ⅱ on Vascular Endothelial Growth Factor Expression in Early Endothelial Progenitor Cells from Human Peripheral Blood%血管紧张素Ⅱ对外周血早期内皮祖细胞血管内皮生长因子表达的影响

    Institute of Scientific and Technical Information of China (English)

    孙文文; 任国庆; 汪奕斌; 张浩

    2011-01-01

    Aim To investigate the effect of angiotensin Ⅱ on vascular endothelial growth factor expression of early endothelial progenitor cells. Methods Total mononuclear cells (MNCs) were isolated from peripheral blood by Ficoll density gradient centrifugation, and then the cells were plated on fibronectin-coated culture dishes. After 7 days of culture, several groups of attached cells were incubated with angiotensin Ⅱ (to make a series of concentrations: 10-3 mol/L, 10 -5 mol/L, 10-7 mol/L vehicle control for 24 h), angiotensin Ⅱ + valsartan, angiotensin Ⅱ + PD123319. The cells were observed under inverted microscope, and characterized as adherent cells double positive for DiL DL-uptake and lectin binding by direct fluorescent staining under a laser scanning confocal microscope. The early endothelial progenitor cells were further documented by demonstrating the expression of cell markers with flow cytometry. Enzyme-linked immunospecific assay (ELISA) were used to assess vascular endothelial growth factor expression. Results Our data indicated that angiotensin Ⅱ can significantly increase the vascular endothelial growth factor expression, with a maximum at 10-3 mol/L after 24 hours (P <0. 05); These effects can be attenuated by pre-treatment with valsartan but not PD123319.Conclusion It is suggested that angiotensin Ⅱ induces vascular endothelial growth factor protein secretion via the angiotensin Ⅱ receptor-1 but not angiotensin Ⅱ receptor-2.%目的 观察血管紧张素Ⅱ对外周血早期内皮祖细胞血管内皮生长因子表达的影响.方法 密度梯度离心法获取外周血单个核细胞,培养7天,收集贴壁细胞,随机分对照组、血管紧张素Ⅱ各浓度 (10-3 mol/L、10-5 mol/L、10-7 mol/L) 组、血管紧张素Ⅱ+缬沙坦组、血管紧张素Ⅱ+ PD123319组.多波长激光共聚焦显微镜鉴定FITC标记荆豆凝集素Ⅰ和 DiI标记的乙酰化低密度脂蛋白双染色阳性为早期内皮祖细胞,流式细胞仪

  2. 自体内皮前体细胞移植促缺血心肌血管新生的实验%Implantation of autologous murine endothelial progenitor cells promotes neovascularization in ischemic myocardium

    Institute of Scientific and Technical Information of China (English)

    邢泉生; 泮思林; 孙龙

    2007-01-01

    BACKGROUND: Under certain condition, circulating endothelial progenitor cells (EPCs) can differentiate into endothelial cells, and further participate in angiogenesis.OBJECTIVE: The goal of this study was to investigate the feasibility and efficacy of peripheral blood-derived EPCs in promoting angiogenesis in the ischemic myocardium, in order to provide a new cell implanting method for the treatment of coronary heart disease.DESIGN: A randomized controlled experiment.MATERIALS: Sixty male Sprague-Dawley (SD) rats, of clean grade, weighing (340±20) g, were provided by Qingdao Laboratory Animal Center. These animals were randomly divided into 2 groups with 30 rats in each: experimental group and control group. In each group, ten rats were separately observed 2, 4 and 8 weeks after EPCs being injected. The protocol was conducted in accordance with animal ethics guidelines for the use and care of animals.METHODS: This study was carried out in the Qingdao Key Laboratory of Medical Biological Technology between May 2003 and September 2004. After SD rats in the experimental group were anesthetized, peripheral blood was taken.Mononuclear cells were harvested by density gradient centrifugation. CD31, CD34, Flk-1 and von Willebrand disease factor immunofluorescence staining positive EPCs were harvested by adding the defined media of vascular endothelial growth factors and basic fibroblast growth factor. Myocardial ischemia was induced by ligation of murine left anterior descending coronary artery. Autologous EPCs isolated from the peripheral blood of each animal were infused to ischemic myocardium. In the control groups,cell culture media were infused, and the other procedures were the same as those in the experimental group. Two, four and eight weeks after ligation, all animals were sacrificed by overdose anesthesia, and heart tissue sections were made.MAIN OUTCOME MEASURES: ①After haematoxylin-eosin staining, myocardial structure changes were observed under an optical

  3. The effect of moderate-intensity acute aerobic exercise duration on the percentage of circulating CD31+ cells in lymphocyte population

    Directory of Open Access Journals (Sweden)

    Mariani Santosa

    2016-04-01

    Full Text Available Background: The increasing number of circulating CD31+ endothelial progenitor cells is one of the important factors for maintaining vascular homeostasis. Exercise will effectively increase the number of circulating CD31+ endothelial progenitor cells. This study aims to determine the effect of moderate-intensity acute aerobic exercise duration on the percentage of circulating CD31+ cells in untrained healthy young adult subjects.Methods: This study was an experimental study. Untrained healthy volunteers (n=20 performed ergocycle at moderate-intensity (64–74% maximum heart rate for 10 minutes or 30 minutes. Immediately before and 10 minutes after exercise, venous blood samples were drawn. The percentage of CD31+ cells in peripheral blood was analyzed using flow cytometry. Data was statistically analyzed using student t-test.Results: There were no significant differences in the mean percentage of circulating CD31+ cells before and after exercise for 10 minutes and 30 minutes (p>0.05. However, there was a different trend in the percentage of circulating CD31+ cells after exercise for 10 minutes and 30 minutes. In the 10 minutes duration, 50% of subjects showed increase. Whereas in the 30 minutes duration, 80% of subjects showed increase.Conclusion: The percentage of circulating CD31+ cells before and after exercise for 10 minutes was not different compared to 30 minutes. However, data analysis shows that majority of subjects (80% had increased in the percentage of circulating CD31+ cells after 30 minutes exercise.

  4. Bee Venom Accelerates Wound Healing in Diabetic Mice by Suppressing Activating Transcription Factor-3 (ATF-3) and Inducible Nitric Oxide Synthase (iNOS)-Mediated Oxidative Stress and Recruiting Bone Marrow-Derived Endothelial Progenitor Cells.

    Science.gov (United States)

    Badr, Gamal; Hozzein, Wael N; Badr, Badr M; Al Ghamdi, Ahmad; Saad Eldien, Heba M; Garraud, Olivier

    2016-10-01

    Multiple mechanisms contribute to impaired diabetic wound healing including impaired neovascularization and deficient endothelial progenitor cell (EPC) recruitment. Bee venom (BV) has been used as an anti-inflammatory agent for the treatment of several diseases. Nevertheless, the effect of BV on the healing of diabetic wounds has not been studied. Therefore, in this study, we investigated the impact of BV on diabetic wound closure in a type I diabetic mouse model. Three experimental groups were used: group 1, non-diabetic control mice; group 2, diabetic mice; and group 3, diabetic mice treated with BV. We found that the diabetic mice exhibited delayed wound closure characterized by a significant decrease in collagen production and prolonged elevation of inflammatory cytokines levels in wounded tissue compared to control non-diabetic mice. Additionally, wounded tissue in diabetic mice revealed aberrantly up-regulated expression of ATF-3 and iNOS followed by a marked elevation in free radical levels. Impaired diabetic wound healing was also characterized by a significant elevation in caspase-3, -8, and -9 activity and a marked reduction in the expression of TGF-β and VEGF, which led to decreased neovascularization and angiogenesis of the injured tissue by impairing EPC mobilization. Interestingly, BV treatment significantly enhanced wound closure in diabetic mice by increasing collagen production and restoring the levels of inflammatory cytokines, free radical, TGF-β, and VEGF. Most importantly, BV-treated diabetic mice exhibited mobilized long-lived EPCs by inhibiting caspase activity in the wounded tissue. Our findings reveal the molecular mechanisms underlying improved diabetic wound healing and closure following BV treatment. J. Cell. Physiol. 231: 2159-2171, 2016. © 2016 Wiley Periodicals, Inc. PMID:26825453

  5. 纤维蛋白胶介导内皮祖细胞再生心肌梗死血管的可行性%Myocardial revascularization after myocardial infarction using endothelial progenitor cells combined with fibrin gel

    Institute of Scientific and Technical Information of China (English)

    阿迪拉·阿扎提; 赵龙; 周欣荣; 刘芬; 陈邦党; 马依彤

    2014-01-01

    背景:有研究显示纤维蛋白胶可促进成肌细胞移植物的保持和生存,减少梗死范围并在梗死区诱导新生血管化。目的:了解内皮祖细胞经可降解材料纤维蛋白胶移植到大鼠梗死心肌后的血管再生情况。方法:将27只SD大鼠随机均分为3组,非心肌梗死组9只、心肌梗死即刻移植组9只与心肌梗死1周移植组9只。每个大组又再分为两个亚组,即移植人脐带源内皮祖细胞-纤维蛋白胶复合物的实验组与移植纤维蛋白胶的对照组。移植后3,8周处死,通过显微镜、免疫组织化学和心脏超声观察其在梗死心肌的血管再生和心功能改善情况。结果与结论:显微镜观察到,实验组大鼠心脏和胸部之间有一些疏松的结缔组织,而其与对照组之间无明显差异。组织和免疫学观察发现,各实验组和对照组的心脏结构不易区分且相对正常,未发现血管瘤、血管畸形和肿瘤等。血管测量结果显示实验组和对照组之间,以及各实验组之间均无差异,并且实验组和对照组之间心功能检查也没有统计学意义。此次研究内皮祖细胞结果没有阳性表现,将修改并提高细胞通过纤维蛋白基质传递的方法策略,确信细胞传递系统提供的有益性和有效性将会进一步得到证实。%BACKGROUND:Studies have shown that fibrin glue can promote the survival of myoblast grafts, reduce infarct size and induce neovascularization of infarct zone. OBJECTIVE:To understand the condition of revascularization of infarcted heart muscle using endothelial progenitor cells combined with degradable fibrin glue materials. METHODS:A total of 27 Sprague-Dawley rats were randomized into three groups, 9 rats in each group:non-myocardial infarction group, immediate transplantation group and 1-week post-infarction transplantation group. Then, these three groups were sub-grouped into two groups, respectively:endothelial

  6. Effect of Weight Reduction on Cardiovascular Risk Factors and CD34-positive Cells in Circulation

    Directory of Open Access Journals (Sweden)

    Nina A Mikirova, Joseph J Casciari, Ronald E Hunninghake, Margaret M Beezley

    2011-01-01

    Full Text Available Being overweight or obese is associated with an increased risk for the development of non-insulin-dependent diabetes mellitus, hypertension, and cardiovascular disease. Dyslipidemia of obesity is characterized by elevated fasting triglycerides and decreased high-density lipoprotein-cholesterol concentrations. Endothelial damage and dysfunction is considered to be a major underlying mechanism for the elevated cardiovascular risk associated with increased adiposity. Alterations in endothelial cells and stem/endothelial progenitor cell function associated with overweight and obesity predispose to atherosclerosis and thrombosis.In our study, we analyzed the effect of a low calorie diet in combination with oral supplementation by vitamins, minerals, probiotics and human chorionic gonadotropin (hCG, 125-180 IUs on the body composition, lipid profile and CD34-positive cells in circulation.During this dieting program, the following parameters were assessed weekly for all participants: fat free mass, body fat, BMI, extracellular/intracellular water, total body water and basal metabolic rate. For part of participants blood chemistry parameters and circulating CD34-positive cells were determined before and after dieting.The data indicated that the treatments not only reduced body fat mass and total mass but also improved the lipid profile. The changes in body composition correlated with the level of lipoproteins responsible for the increased cardiovascular risk factors. These changes in body composition and lipid profile parameters coincided with the improvement of circulatory progenitor cell numbers.As the result of our study, we concluded that the improvement of body composition affects the number of stem/progenitor cells in circulation.

  7. 磁共振成像R2*map示踪超顺磁性氧化铁标记的内皮祖细胞%MR R2*map for tracing superparamgnetic ironoxides labeled endothelial progenitor cells in vitro

    Institute of Scientific and Technical Information of China (English)

    王庆国; 严福华; 徐鹏举; 周梅玲; 李清海

    2009-01-01

    目的 探讨R2*map在超顺磁性氧化铁(SPIO)标记内皮祖细胞(EPCs)定量检测中的价值.方法 分离和培养Balb/c小鼠后肢骨髓来源的EPCs,培养7 d,用细胞膜红色荧光探针标记的乙酰低密度脂蛋白和异硫氰酸荧光素标记的荆豆凝集素-1双阳性染色法,以及异硫氰酸荧光素标记干细胞抗原1和藻红素标记的血管内皮细胞生长因子受体2的方法上流式细胞仪进行鉴定.用50 μg/ml SPIO及6 μl/ml lipofectamine 2000与EPCs共孵育进行标记后透射电子显微镜观察;制成不同细胞浓度(0~2.0×106/ml)标记及未标记SPIO的细胞琼脂糖模型,进行3.0T磁共振扫描,包括T2*map和T2map扫描,得到R2*map和R2map图像.结果 培养7d后细胞呈现内皮祖细胞特征.SPIO标记的EPCs细胞结构与未标记细胞相比较,无明显改变.R2*和R2值与标记SPIO的细胞浓度呈线性相关(r值分别为0.955,0.922,P值均<0.05);R2*效应明显高于R2效应(t=23.23,P<0.05).结论 磁共振成像R2*map扫描可准确定量示踪SPIO标记的EPCs.%Objective To investigate the value of R2*map for quantitatively tracing superparamgnetic ironoxides(SPIO)labeled endothelial progenitor cells(EPCs).Methods The EPCs were isolated from Balb/c mice bone marrow and cultured in vitro.After 7 days,expression of acetylated low-density lipoprotein (acLDL)and Ulex europaeus agglutinin-1(UEA-1),two markers of EPCs,was observed by double staining using fluoresence mieroseope,the expression of stem cell antigen-1 and vascular endothelial growth factor receptor-2(VEGFR-2)was confirmed by flow cytometry.EPCs were labeled by incubating with 50 μg/ml SPIO and 6 μl/ml lipofeetamine2000,SPIO labeled EPCs were observed under transmission electron micro-scope(TEM).Labeled and unlabeled EPCs were mixed with 10 g/L agrose and scanned using a 3.0T MR scanner,R2* map and R2 map images were obtained on workstation.Result After 7 days of in vitro culture,most of the cells showed characteristics

  8. Effect of dihydrotestosterone on proliferative ability of human endothelial progenitor cells%双氢睾酮对人外周血内皮祖细胞增殖能力的影响

    Institute of Scientific and Technical Information of China (English)

    刘睿; 余明华; 曹政; 张鹏; 柯青; 黄铁柱

    2013-01-01

    Objective The purpose of this study is to explore the influence of dihydrotestosterone (DHT) on human endothelial progenitor cells (EPCs) proliferation in vitro.Methods Peripheral blood mononuclear cells were isolated from adult healthy male blood donors.The cells were plated on fibronectin-coated plates and maintained in endothelial growth medium-2 (EGM-2).After 7 days,EPCs were identified by double-positive for DiI AcLDL and FITC-UEA-Ⅰ under laser scanning confocal microscope (LSCM).In order to study the effect of DHT on EPCs,the cells were incubated with a series of concentrations (0,1,10 and100 nMol/L) of DHT for 24 h.The EPCs proliferation was detected by cell counting and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2h-tetrazolium bromide (MTT) assay.Results DHT significantly enhanced the proliferative ability of EPCs with DHT concentration increased (P<0.01).However,as the amount of DHT attained 100 nMol/L,proliferative ability of EPCs decreased to a level which was still significantly higher than that of control group.Conclusion DHT can enhance proliferation ability of EPCs with a dose-dependent manner in certain limits in vitro.%目的 探讨双氢睾酮(DHT)对人外周血内皮祖细胞增殖能力的影响.方法 采用密度梯度离心法从健康成年男性外周血获得单个核细胞,接种于人纤维连接蛋白包被的培养板.培养7d后,经Dil标记的乙酰化低密度脂蛋白(Dil-acLDL)及FITC标记的荆豆凝集素-Ⅰ(FITC-UEA-Ⅰ)荧光双染法鉴定正在分化的内皮祖细胞.采用人工计数法和3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(MTT)法观察浓度为0 nmol/L(对照组),1nmol/L DHT组,10nmol/L DHT组,100 nmol/L DHT组DHT对内皮祖细胞增殖能力的影响.结果 与对照组相比,各浓度DHT组内皮祖细胞增殖能力明显增强,差异有统计学意义(P<0.01);随着DHT浓度的升高促进作用逐渐增强,但浓度达100 nmol/L时DHT对内皮祖细胞增殖能力促进作用有所减

  9. 钛表面固定特异性识别内皮祖细胞的多肽适配子%Immobilization of Peptide Aptamer of Specific Indentification of Endothelial Progenitor Cell on Titanium Surface

    Institute of Scientific and Technical Information of China (English)

    陈卓玥; 李全利; 赵元聪; 陈佳龙; 游天雪; 熊开琴; 黄楠

    2011-01-01

    在钛表面固定可与循环血液中的内皮祖细胞(EPC)特异性结合的多肽适配子,构建内皮祖细胞的特异性识别表面,用于心血管材料的表面改性.首先,采用固相合成法合成可与EPC特异性结合的多肽适配子,其序列为TPSLEQRTVYAK,并在羧基端进行生物素修饰;然后,采用磷酸处理钛表面,在钛表面获得化学键合的羟基,该羟基化表面与3-氨丙基三乙氧基硅烷反应,在钛表面获得游离的氨基,进一步通过碳二亚胺(EDC)介导,在钛表面接枝上生物素;最后,通过生物素-亲和素识别体系,实现EPC特异性多肽适配子在钛表面的固定.采用场发射扫描电子显微镜(SEM)、漫反射红外光谱(DR-FTIR)和免疫荧光分析等手段对样品进行了表征.本研究为多肽适配子在材料表面的固定提供了一种有效的方法,为进一步的生物医学应用研究提供了基础.%In vivo spontaneous endothelialization of cardiovascular materials is thought to be a promising approach to prevent the formation of thrombus and restenosis. Capturing endothelial progenitor cells (EPC)from blood and inducing EPC to grow on the surface of stents is a new strategy for this purpose. In this study,we developed a facile and effective approach to construct a surface that possessed a high affinity and specificity to EPCs by binding peptide aptamer. In order to introduce primary amine groups to covalently immobilize biotin, the titanium surface was treated by phosphoric acid solution to obtain the hydroxyl groups which were used to covalently immobilize aminopropyltriethoxysilane. Furthermore, the biotin was grafted onto the amine functionalized titanium surface by carbodiimide (EDC)-mediated. Finally, using layer-by-layer self-assembly method, biotinylated peptide aptamer was fixed on the titanium surface by the biofin-avidin recognition system.The results of fourier transform infrared spectroscopy ( FTIR), fluorescence labeling method and scanning

  10. MDA-5 activation by cytoplasmic double-stranded RNA impairs endothelial function and aggravates atherosclerosis.

    Science.gov (United States)

    Asdonk, Tobias; Steinmetz, Martin; Krogmann, Alexander; Ströcker, Christine; Lahrmann, Catharina; Motz, Inga; Paul-Krahe, Kathrin; Flender, Anna; Schmitz, Theresa; Barchet, Winfried; Hartmann, Gunther; Nickenig, Georg; Zimmer, Sebastian

    2016-09-01

    Recent studies have highlighted the relevance of viral nucleic acid immunorecognition by pattern recognition receptors in atherogenesis. Melanoma differentiation associated gene 5 (MDA-5) belongs to the intracellular retinoic acid inducible gene-I like receptors and its activation promotes pro-inflammatory mechanisms. Here, we studied the effect of MDA-5 stimulation in vascular biology. To gain insights into MDA-5 dependent effects on endothelial function, cultured human coronary artery endothelial cells (HCAEC) were transfected with the synthetic MDA-5 agonist polyIC (long double-stranded RNA). Human coronary endothelial cell expressed MDA-5 and reacted with receptor up-regulation upon stimulation. Reactive oxygen species formation, apoptosis and the release of pro-inflammatory cytokines was enhanced, whereas migration was significantly reduced in response to MDA-5 stimulation. To test these effects in vivo, wild-type mice were transfected with 32.5 μg polyIC/JetPEI or polyA/JetPEI as control every other day for 7 days. In polyIC-treated wild-type mice, endothelium-dependent vasodilation and re-endothelialization was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticles and circulating endothelial progenitor cells significantly elevated compared to controls. Importantly, these effects could be abrogated by MDA-5 deficiency in vivo. Finally, chronic MDA-5 stimulation in Apolipoprotein E/toll-like receptor 3 (TLR3) double(-) deficient (ApoE(-/-) /TLR3(-/-) ) mice-enhanced atherosclerotic plaque formation. This study demonstrates that MDA-5 stimulation leads to endothelial dysfunction, and has the potential to aggravate atherosclerotic plaque burden in murine atherosclerosis. Thus, the spectrum of relevant innate immune receptors in vascular diseases and atherogenesis might not be restricted to TLRs but also encompasses the group of RLRs including MDA-5. PMID:27130701

  11. 脂多糖对人脐血内皮祖细胞增殖及凋亡的影响%Effects of lipopolysaccharide on proliferation and apoptosis in human umbilical vein endothelial progeni-tor cells

    Institute of Scientific and Technical Information of China (English)

    李金海; 陈辉春; 戴华卫; 张海峰; 王烈

    2015-01-01

    目的:观察脂多糖(LPS)对体外培养的人脐血内皮祖细胞(EPCs)增殖及凋亡的影响。方法:以密度梯度离心法获取人脐血EPCs,体外诱导分化并鉴定。实验分对照组及不同浓度(2.5、5.0、10.0、20.0 mmol/L)LPS组。四氮唑蓝(MTT)法检测细胞增殖能力,流式细胞仪测凋亡率及细胞周期。结果:①10.0 mmol/L组促进EPCs增殖,20.0 mmol/L组抑制EPCs增殖,差异有统计学意义(P<0.05),其余2组对EPCs增殖能力无显著影响,与对照组比差异无统计学意义(P>0.05)。②20.0 mmol/L组促进EPCs凋亡,差异有统计学意义(P<0.05)。其余各组对EPCs凋亡率无明显影响,与对照组比较差异均无统计学意义(P>0.05)。③10.0、20.0 mmol/L组影响细胞周期,10.0 mmol/L组G0/G1期细胞减少,S和G2/M期增加;20.0 mmol/L组发生S期阻滞,G2/M期细胞减少,与对照组比差异有统计学意义(P<0.05)。结论:LPS对EPCs增殖能力及凋亡的影响与其浓度有关,当浓度为20.0 mmol/L时抑制增殖并促进凋亡。%Objective:To investigate the effect of proliferation, apoptosis and cell cycle of lipopolysac-charide (LPS) on human umbilical vein endothelial progenitor cells. Methods:mononuclear cells were isolated from human umbilical cord blood. Mononuclearcells (MNCs) were isolated from human umbilical cord blood in vitro by Ficoll density gradient centrifugation. EPCs were characterized as adherent cells with double positive to DiI-acLDL uptake and lectin binding by direct lfuorescent staining under a laser scanning confocal microscope. There were ifve groups. The control group and four LPS concentration groups:2.5, 5.0, 10.0, 20.0 mmol/L. MTT was used to detect cell apoptosis and cell cycle. Results:①10.0 mmol/L LPS promotes proliferation of EPCs, while 20.0 mmol/L LPS inhibits the proliferation of endothelial progenitor cells (P<0.05).②20.0 mmol/L LPS promotes apoptosis

  12. Autophagy regulation of rat bone marrow-derived endothelial progenitor cells and cell functions%调控内皮祖细胞自噬促进其功能的实验研究

    Institute of Scientific and Technical Information of China (English)

    胡楠; 钱爱民; 孔令尚; 李承龙; 于小滨; 陈弘; 杜晓龙; 李晓强

    2015-01-01

    Objective To investigate the effect of autophagy regulation of rat bone marrow-derived endothelial progenitor cells (EPCs) on cell functions.Methods EPCs isolated from rat bone marrow were treated with rapamycin (10 μg/L), 3-MA (5 mmol/L) or wortmannin (50 nmol/L) for 24 hours.Cell migration was assayed using a 24-well transwell cell culture chamber.Tube formation was assayed on GFR (growth factor-reduced)-Matrigel.Angiogenic cytokine was analyzed by using corresponding ELISA kits.Expression of the autophagy marker protein LC3-Ⅱ, LAMP2A and HSC70 were analyzed by Western blotting.Results 10 μg/L rapamycin treatment inhibited EPCs migration, tube formation and secretion of angiogenic cytokines.EPCs function significantly increased following 5 mmol/L 3-MA or 50 nmol/L wortmannin treatment.Western blotting showed that rapamycin increased LC3-Ⅱ protein expression, but reduced LAMP2A and HSC70 expression.3-MA or wortmannin treatment reduced LC3-Ⅱ protein expression (P < 0.05), while increased LAMP2A and HSC70 expression.Conclusions Moderate inhibition of autophagy promotes the function of EPCs probably by reducing LC3-Ⅱ protein levels.%目的 研究利用自噬促进剂雷帕霉素和抑制剂3-甲基腺嘌呤(3-methlyadenine,3-MA)或渥曼青霉素调控内皮祖细胞(endothelial progenitor cells,EPCs)自噬,观察对其迁移、成血管和分泌能力的影响以及微管相关蛋白1轻链3-Ⅱ(microtubule-associated protein 1 light chain3-Ⅱ,LC3-Ⅱ)、溶酶体相关膜蛋白2A(lysosome-associated membrane proteintype 2A,LAMP2A)和热休克蛋白70(heatshock protein 70,HSC70)的水平变化.方法 密度梯度离心法分离SD大鼠的骨髓单个核细胞,EGM-2MV培养基诱导、培养、扩增骨髓源性EPCs.分为四组,即雷帕霉素组,3-MA组,渥曼青霉素组和对照组,分别用10μg,/L雷帕霉素,5 mmol/L 3-MA,50 nmol/L渥曼青霉素处理EPCs 12 h,对照组加入等量培养基.分别用transwell实验及成血管实验检测EPCs迁

  13. Effect of Different Doses of Perindopril on Endothelial Progenitor Cells and Vascular Endothelial Function in Patients With Coronary Artery Disease%培哚普利对冠心病患者循环血内皮祖细胞及血管内皮功能的影响

    Institute of Scientific and Technical Information of China (English)

    谈红; 王雪; 李晓燕; 许琳; 苏莉; 胡瑛; 杨燕; 陈英剑; 张国明

    2015-01-01

    目的:探讨不同剂量培哚普利在冠心病治疗中对循环血内皮祖细胞(EPCs)水平及血管内皮功能的影响。  方法:选取我院经冠状动脉造影确诊为冠心病的患者84例,随机分为对照组(n=27,给予常规药物),小剂量组(n=29,给予常规药物+4 mg培哚普利)和大剂量组(n=28,给予常规药物+8 mg培哚普利)。随访12周,治疗前后各组分别采用流式细胞术检测EPCs水平,采用超声测定肱动脉血管舒张功能(FMD),同时检测高敏C反应蛋白(hs-CRP)、血管紧张素II(Ang II)水平。  结果:治疗12周后,对照组、小剂量组及大剂量组患者较治疗前循环血EPCs、肱动脉FMD均有不同程度的增高,hs-CRP水平均有不同程度的降低( P  结论:培哚普利对循环血EPCs有一定的动员作用,可显著改善血管内皮功能,且较大剂量效果更显著。%Objective: To investigate the effect of different doses of perindopril on peripheral endothelial progenitor cells (EPCs) and vascular endothelial function in patients with coronary artery disease (CAD) . Methods: A total of 84 CAD patients with coronary angiography confirmed diagnosis were divided into 3 groups: Control group, the patients received routine medication, n=27. Low-dose group, the patients received routine medication with perindopril for 4mg, n=29. High-dose group, the patients received routine medication with perindopril for 8mg, n=28. All patients were treated for 12 weeks. The EPCs level was detected by flow cytometry assay, flow-mediated-dilation (FMD) function in brachial artery was measured by ultrasound and plasma levels of high sensitivity C-reactive protein (hs-CRP), angiotensin II (AngII) were examined in all groups. Results: ① After12 weeks of treatment, the EPCs level and FMD function had certain improvement, hs-CRP level decreased in various degrees in all 3 groups, P group showed increased EPCs level and

  14. Protective effect of endothelial progenitor cells mediated by ischemic preconditioning on renal ischemic injury induced by nephron sparing surgery%缺血预适应介导的内皮祖细胞对保留肾单位手术后肾功能的保护作用

    Institute of Scientific and Technical Information of China (English)

    刘昊; 吴然; 贾瑞鹏; 朱佳庚; 吴剑平

    2013-01-01

    Objective To investigate the role of endothelial progenitor cells (EPCs) mediated by ischemic preconditioning (IPC) in renal ischemic injury in a nephron sparing surgery (NSS) rat model.Methods Ninety male Sprague-Dawley rats were randomly divided into three groups after right-side kidney nephrectomy.In sham-operated rats,lumbotomy without vascular clamping was performed; In NSS rats,renal blood vesses were clamped for 40 min and lower pole partial nephrectomy (PN) was performed; In NSS + IPC rats,besides pre-treatment with 15-min ischemia and 10-min reperfusion,the rest procedures were the same as those in NSS rats.At 1,3,6,12,24 h,and 3 days after reperfusion,the circulating pool and kidneys were harvested.The severity of renal injury,the home of EPCs,proliferation of endothelial cells as well as vascular growth factor expression was examined.Results Pretreated rats exhibited significant improvements in renal function and morphology.The histological score was significantly decreased in IPC group as compared with NSS group [(1.80 ± 0.45) vs.(3.00 ± 0.71),P < 0.05].The number of EPCs in the kidneys was increased at 12 h after reperfusion in IPC group as compared with NSS groups [(5.75 ± 0.71) % vs.(2.92 ± 0.71) %,P < 0.05].Proliferation of EPCs in peritubular capillaries was markedly increased in the kidneys treated with IPC.In addition,the expression of vascular endothelial growth factor,and stromal cell-derived factor-1α in the kidneys of pretreated rats was increased as compared with that in rats subjected to ischemic injury (P < 0.05).Conclusion IPC may attenuate renal ischemic injury induced by NSS; EPCs play an important role in renal protection,which involves promotion of endothelial cell proliferation through release of several angiogenic factors.%目的 探讨缺血预适应(IPC)介导的内皮祖细胞(EPCs)对保留肾单位手术(NSS)后肾功能的保护作用及其机制.方法 90只雄性SD大鼠随机分为对照组(Sham)、保留肾

  15. 转染VEGF165的内皮祖细胞移植恢复糖尿病ED大鼠的勃起功能%Transplantation of endothelial progenitor cells transfected with VEGF165 to restore erectile function in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Xin Gou; Yong Chen; Wei-Yang He; Ming-Zhao Xiao; Ming Qiu; Ming Wang; Yuan-Zhong Deng; Chao-Dong Liu; Zao-Sing Tang; Re Li

    2011-01-01

    The present study investigated the effect of transplanting endothelial progenitor cells (EPCs) transfected with the vascular endothelial growth factor gene (VEGF165) into the corpora cavernosa of rats with diabetic erectile dysfunction (ED). A rat model of diabetic ED was constructed via intraperitoneal injection of streptozotocin. After streptozotocin treatment, pre-treated EPCs from each of three groups of rats were transplanted into their corpora cavernosa. Our results, following intracavernosal pressure (ICP) monitoring, showed that ICP increased significantly among rats in the trial group when compared to the results from rats in the blank-plasmid and control groups during basal conditions and electrical stimulation (P<0.01 for both comparisons). Histological examination revealed extensive neovascularisation in the corpora cavernosa of rats in the trial group. Fluorescence microscopy indicated that many of the transplanted EPCs in the trial group survived, differentiated into endothelial cells and integrated into the sites of neovascularisation. Based on the results of this study, we conclude that transplantation of VEGF165-transfected EPCs into the corpora cavernosa of rats with diabetic ED restores erectile function.

  16. 骨髓源性EPCs对脊髓源性NSCs增殖分化的影响%The effects of bone marrow-derived endothelial progenitor cells on the proliferation and differentiation of spinal cord-derived neural stem cells

    Institute of Scientific and Technical Information of China (English)

    张硕; 杜怡斌; 杜公文; 张辉; 余涛; 方家刘; 高维陆; 尹宗生

    2015-01-01

    目的:观察骨髓源性内皮祖细胞( EPCs)对脊髓源性神经干细胞( NSCs)增殖分化的影响。方法通过密度梯度离心法获取骨髓血单个核细胞,以 EBM-2进行诱导培养EPCs并进行免疫细胞化学染色鉴定,成熟的方法获取及鉴定SD大鼠的脊髓NSCs,1×105/ml第3代NSCs置于Tran-swell小室下层与1×105/ml上层原代EPCs进行体外1∶1共培养,以单纯第3代的NSCs培养为对照,培养7 d,双盲法分别计数各组在相差显微镜下神经球形成的数目,并用目镜测微尺测量神经球的平均直径,通过5%血清诱导培养NSCs 7 d后,行β-微管蛋白-Ⅲ免疫荧光染色,Hoechst细胞核染色后在显微镜下计算神经元/细胞总数得出百分率。结果骨髓源性EPCs与脊髓源性NSCs共培养组神经球平均数目为(22.27±3.85)个,平均直径为(61.70±7.21)μm,诱导培养后分化为神经元的平均百分率为(46.10±3.70)%,与对照组比较差异均有统计学意义( P<0.01)。结论骨髓源性EPCs能促进脊髓源性NSCs增殖及其向神经元分化。%Objective To investigate the effects of bone marrow-derived endothelial progenitor cells( EPCs) on the proliferation and differentiation of spinal cord-derived neural stem cells( NSCs) . Methods Bone marrow mononu-clear cells were isolated by density gradient centrifugation methods and EPCs were cultured by EBM-2 basal medi-um, identified by fluorescent immunocytochemistry. Spinal cord-derived NSCs were isolated, cultured and identi-fied by the mature methods. 1 × 105/ml tertiary NSCs were plated on the base of culture wells, the upper transwell compartment was seeded with 1 × 105/ml primary EPCs, EPCs and NSCs (1 ∶ 1) were co-cultured in vitro, set the untreated tertiary NSCs as a control group. 7 days after co-culture, the number and diameter of neurospheres were calculated and measured with the double blind method. After that, NSCs were maintained for 7 days in DMEM/F12+ 5 % serum medium, and

  17. 肺动脉高压对内皮祖细胞与骨形成蛋白-2的影响%The effection of idiopathic pulmonary hypertension on endothelial progenitor cells and bone morphogenetic protein-2

    Institute of Scientific and Technical Information of China (English)

    张韩; 李彦明; 刘枫; 万琪琳; 程冠昌; 洪岩; 陈君柱

    2012-01-01

    Objective To investigate the effectiong of idiopathic pulmonary arterial hypertension (IPAH ) on hone morphogenetic protein-2 ( BMP-2 ) and counts of endothelial progenitor cells ( EPC ) , and the co relationg between and BMP-2 and pidmary arterial pressnre(PAP) and the counts of EPC. Methods The patients with IPAH (fi=28 ) diagnosed by the examination of right heart floating catheters for pulmonary arterial pressure were selected as experimental group, and healthy volunteers were selected as control group. The concentration of plasma BMP-2 was detected by using enzyme-linked immnnosorbent assay ( ELISA) and EPC in peripheral blood were counted under the microscope. Results The difference in plasma BMP-2 had statistical significance between IP AN group and contrlo group [ ( 0.1294 ± 0.0292 ) μg/mL vs. (0.0898 ± 0.0295 )μg/mL, P<0.01], and the difference in EPC counts also had statistical significance [ ( 26.75 ± 5.87 ) piece vs. (42.65 ± 8.37 ) picee, P<0.01]. The relation of BMP-2 and PAP was positive, while negative between BMP-2 and EPC. Conclusion IPAH caused the increase of BMP-2 while desease of EPC, the relation between BMP-2 and PAP or BMP-2 and EPC was existed in IPAH patients.%目的 分析特发性肺动脉高压(IPAH)对血浆骨形成蛋白2(BMP-2)的浓度和外周血内皮祖细胞(EPC)数量的影响以及BMP-2与肺动脉压(PAP)及EPC的关系.方法 选取经右心漂浮导管检测肺动脉压确诊的IPAH住院患者28例为试验组;同时选取健康志愿者20例为对照组.采用酶联免疫吸附法(enzyme linked immunosorbent assay,ELISA)法测定血浆BMP-2的浓度,同时显微镜下计数外周血EPC.统计分析两组差异并对BMP-2与PAP和EPC的相关性进行分析.结果 IPAH患者血浆BMP-2水平高于对照组,差异有统计学意义[(0.1294±0.0292)μg/ml vs.(0.0898±0.0295)μg/ml,P<0.01],外周血EPC数量低于正常对照组,EPC数量具差异有统计学意义[(26.75±5.87)个 vs.(42.65±8.37)个,P<0.01].BMP

  18. 电磁辐射对大鼠内皮祖细胞和肾脏组织学的影响%The Effects of Electromagnetic Radiation on Endothelial Progenitor Cells and Renal Histology

    Institute of Scientific and Technical Information of China (English)

    赵洪雯; 张广斌; 王源; 杨学森; 余争平

    2011-01-01

    Objective: To investigate the effects of electromagnetic radiation on proliferation, migration, adhesion of endothelial progenitor cells (EPCs) cultured in vitro derived from rats bow marrow, and to investigate the relationship between electromagnetic radiation and kidney disease. Methods: Mononuclear cells (MNCs) were obtained from rats' bone marrow by density gradient centrifugation,cultured with EGM-2 complete medium on plate coated by fibronectin. After 6 days, the cells were identified by immunocytochemistry and immunofluorescence. The effects of electromagnetic radiation with 65 mW/cma2 for 20minutes on EPCs proliferation, migration,adhesion were detected by MTT colorimetric method, Transwell assay and adherence ability tests, and rats' kidney histological and ultrastructural changes of irradiating rats was detected. Results: EPCs could be obtained successfully by culture the MNCs form rats bone marrow. Compared with the control group, EPCs proliferation, migration and adhesion ability decreased remarkably. There was no obvious histological change when the rats received the irradiation at any time point. But the ultrastructure showed that there were podocytes swelling after irradiation of 3 hours and fusion after 12 hours in glomeruli capillary loops. Conclusions: Electromagnetic radiation can remarkably depress EPCs biological function and change glomeruli ultrastructure. Electromagnetic radiation probably caused the occurrence of kidney diseases.%目的:研究电磁辐射对体外培养骨髓来源的内皮祖细胞(EPCs)增殖、迁移、黏附能力的影响,并探讨其与肾脏疾病的可能关系.方法:密度梯度离心法获取大鼠骨髓单个核细胞(MNCs),接种至纤维连接素包被的培养板上,培养6d后进行免疫细胞化学和免疫荧光鉴定EPCs.采用MTT比色法、Transwell小室和黏附能力测定实验,观察平均功率密度为65 mW/cm2,时间20min的电磁辐射对EPCs的增殖、迁移、黏附能力的影响;同

  19. Combination coating of chitosan and anti-CD34 antibody applied on sirolimus-eluting stents can promote endothelialization while reducing neointimal formation

    Directory of Open Access Journals (Sweden)

    Yang Feng

    2012-10-01

    Full Text Available Abstract Background Circulating endothelial progenitor cells (EPCs capture technology improves endothelialization rates of sirolimus-eluting stents (SES, but the problem of delayed re-endothelialization, as well as endothelial dysfunction, has still not been overcome. Therefore, we investigated whether the combination coating of hyaluronan-chitosan (HC and anti-CD34 antibody applied on an SES (HCASES can promote endothelialization, while reducing neointimal formation and inflammation. Methods Sirolimus-eluting stents(SES, anti-CD34 antibody stents (GS and HC-anti-CD34 antibody combined with sirolimus-eluting stents (HCASES were deployed in 54 normal porcine arteries and harvested for scanning electron microscopy (SEM and histological analysis. The ratio of endothelial coverage above the stents was evaluated by SEM analysis at 7, 14 and 28 days. The percentage of in-stent stenosis was histologically analyzed at 14 and 28 days. Results SEM analysis at 7 days showed that endothelial strut coverage was increased in the HCASES group (68±7% compared with that in the SES group (31±4%, p=0.02. At 14 days, stent surface endothelialization, evaluated by SEM, showed a significantly higher extent of endothelial coverage above struts in the GS (95 ± 2% and the HCASES groups (87±4% compared with that in the SES group (51±6%, p=0.02. Histological examination showed that the percentage of stenosis in the HCASES group was not significantly different to that of the SES and GS groups (both p> 0.05. At 28 days, there was no difference in the rates of endothelial coverage between the HCASES and GS groups. The HCASES group showed less stenosis than that in the GS group (P Conclusions SEM and histology demonstrated that HCASESs can promote re-endothelialization while enhancing antiproliferative effects.

  20. Endothelial progenitor cell transplantation combined with early exercise training for spinal cord injury:improvement in hindlimb function and angiogenesis in the injured region%内皮祖细胞移植联合早期运动改善脊髓损伤区血管再生及后肢功能

    Institute of Scientific and Technical Information of China (English)

    赵素香; 侯英诺; 张子檀; 刘中坡; 聂志红; 樊格林

    2016-01-01

    BACKGROUND:Endothelial progenitor cels are widely used in the treatment of various vascular diseases, and early exercise training contributes to restore motor function after spinal cord injury. However, the therapeutic effects of endothelial progenitor cel transplantation or early exercise training alone are unfavorable. OBJECTIVE:To observe the influence of transplantation of endothelial progenitor cels combined with early exercise training on blood vessel regeneration and hind limb function in rats after spinal cord injury. METHODS:Eighty adult Sprague-Dawley rats were enroled to establish spinal cord injury models using the modified Alen’s method, and then randomly divided into four groups. Rats were respectively given culture mediumvia the tail vein, injection of endothelial progenitor cels (3×106)via the tail vein, roler and treadmil trainings for 2 weeks, or injection of endothelial progenitor celsvia the tail vein folowed by 2 weeks of roler and treadmil trainings in the model, cel transplantation, exercise and combined groups. RESULTS AND CONCLUSION:At 2 weeks after transplantation, the hindlimb motor function of rats in the combined group was better than that in the cel transplantation group and exercise group, and moreover, the percentage of CM-Dil positive cels, the number of horseradish peroxidase-positive nerve fibers, capilary density and expression of vascular endothelial growth factor and brain-derived neurotrophic factor were also significantly higher in the combined group than the cel transplantation group and exercise group. These findings indicate that early exercise training has a neuroprotective role in spinal cord injury; endothelial progenitor cel transplantation combined with early exercise training can promote regeneration of synapses and blood vessels and improve hindlimb motor function of rats, probably by increasing expression levels of vascular endothelial growth factor and brain-derived neurotrophic factor.%背景:内皮祖细

  1. 血管内皮生长因子和雌二醇促进血管内皮祖细胞分化生成血管的对比研究%Comparative study of vascular endothelial growth factor and estradiol in promoting endothelial progenitor cells differentiation and generation blood vessels

    Institute of Scientific and Technical Information of China (English)

    董勇; 李文志; 辛毅; 孙智

    2013-01-01

    Objective To compare the ability of vascular endothelial growth factor (VEGF) and estradiol in promoting endothelial progenitor cells differentiation and generation blood vessels under common doses. Methods To isolate and culture human peripheral blood EPCs first, then to mixe with the matrigel and transplante to the lower abdomens of nine nude mice.to divide the nine nude mice into three groups according to a random grouping, to inject VEGF.estradiol and saline at a regular time,to observe and record the growing status of vascular tissue regularly.to draw the vascular tissue after six weeks, to observe the organizational structure by HE staining, then contrast with the groups. Results The vascular tissue volume groups injected of drugs have significant difference with the groups injected of saline.they have bigger volume to contrast the groups injected of saline, but he vascular tissue volume between the groups injected of drugs is no significant difference. By drawning HE staining, the vascular tissues have proliferational mussy blood vessels.The vascular density of the groups injected of drugs is significantly greater than the groups injected of saline, but he vascular density between the groups injected of drugs is small. Conclusion VEGF and estradiol can promote EPCs differentiation and generation blood vessels.their respective promoting EPCs differentiation and generation blood vessels potency is no significant difference under common doses.%目的:对比研究常规剂量下血管内皮生长因子(VEGF)和雌二醇对血管内皮祖细胞(EPCs)分化生成血管的促进作用.方法:分离培养人外周血EPCs,与基质胶混匀后注射到9只裸鼠双侧下腹部,另设2只注射等体积培养液与基质胶的混合液.将9只注射细胞的裸鼠随机分为3组,每组分别定期局部注射VEGF、雌二醇,生理盐水,定期观察记录血管组织块的生长状况.移植6周后取材,测量计算血管组织块的体积、HE染色观察血管

  2. Circulating endothelial cells participate in the in vivo endothelialization of vascular prosthesis: An animal experiment%循环内皮细胞参与人工血管体内内皮化过程的动物实验

    Institute of Scientific and Technical Information of China (English)

    王毅; 陈易人; 戴坤扬; 钮宏文; 伍波; 李里; 戚大川

    2007-01-01

    ,差异有显著性意义(P<0.05).结论:骨髓内皮细胞衬里的ePTFE人工血管在体内能较快完成内皮化过程,能抑制内膜增生;循环内皮细胞作为内皮细胞的潜在来源,具有一定临床应用价值.%BACKGROUND: Experiments have demonstrated that autologous vascular endothelial cells if transplanted onto artificial vascular cavosurface, can enhance the patency rate of vasotransplantation. Whether seeding of prostheses interposition grafts with bone marrow-derived endothelial cells is effective for in vivo endothelialization of artificial vessels remains unclear.OBJECTIVE: To observe the effect of endothelialization of vascular prosthesis by seeding prostheses interposition grafts with bone marrow-derived endothelial cells in animals.DESIGN: A controlled animal experimental study.SETTING: Shanghai Sixth People's Hospital.MATERIALS: This study was carried out in the Shanghai Sixth People's Hospital between September 2000 and October 2001. Twenty hybrid dogs from Shanghai, of either gender, aged 1.0 to 2.0 years old, weighing (18.7±2.3) kg, were involved in this study.METHODS: Bone marrow-derived mononuclear cells were isolated from the dogs. The endothelialization of ePTFE prostheses interposition grafts (4 mm×4 cm and 8 mm×5 cm)was carried out. Common carotid artery transplantation:Ten laboratory dogs were involved. Common carotid artery of 4 cm was resected from each dog. ePTFE prostheses interposition grafts of 4 mm×4 cm was transplanted into the bilateral common carotid artery, and prostheses interposition grafts were performed endothelialization, namely experimental group. Those prostheses interposition grafts, which were not performed endothelialization, were named as control group. Five dogs were used in each group. Patency rate and blood flow rate of transplanted vessels were detected with a color ultrasonograph 2 weeks and 2 months after operation.Inferior caval vein transplantation: Six of the rest 10 dogs were used for experiments. Under the

  3. Effects of aerobic interval training and continuous training on cellular markers of endothelial integrity in coronary artery disease: a SAINTEX-CAD substudy.

    Science.gov (United States)

    Van Craenenbroeck, Emeline M; Frederix, Geert; Pattyn, Nele; Beckers, Paul; Van Craenenbroeck, Amaryllis H; Gevaert, Andreas; Possemiers, Nadine; Cornelissen, Veronique; Goetschalckx, Kaatje; Vrints, Christiaan J; Vanhees, Luc; Hoymans, Vicky Y

    2015-12-01

    In this large multicenter trial, we aimed to assess the effect of aerobic exercise training in stable coronary artery disease (CAD) patients on cellular markers of endothelial integrity and to examine their relation with improvement of endothelial function. Two-hundred CAD patients (left ventricular ejection fraction > 40%, 90% male, mean age 58.4 ± 9.1 yr) were randomized on a 1:1 base to a supervised 12-wk rehabilitation program of either aerobic interval training or aerobic continuous training on a bicycle. At baseline and after 12 wk, numbers of circulating CD34(+)/KDR(+)/CD45dim endothelial progenitor cells (EPCs), CD31(+)/CD3(+)/CXCR4(+) angiogenic T cells, and CD31(+)/CD42b(-) endothelial microparticles (EMPs) were analyzed by flow cytometry. Endothelial function was assessed by flow-mediated dilation (FMD) of the brachial artery. After 12 wk of aerobic interval training or aerobic continuous training, numbers of circulating EPCs, angiogenic T cells, and EMPs were comparable with baseline levels. Whereas improvement in peak oxygen consumption was correlated to improvement in FMD (Pearson r = 0.17, P = 0.035), a direct correlation of baseline or posttraining EPCs, angiogenic T cells, and EMP levels with FMD was absent. Baseline EMPs related inversely to the magnitude of the increases in peak oxygen consumption (Spearman rho = -0.245, P = 0.027) and FMD (Spearman rho = -0.374, P = 0.001) following exercise training. In conclusion, endothelial function improvement in response to exercise training in patients with CAD did not relate to altered levels of EPCs and angiogenic T cells and/or a diminished shedding of EMPs into the circulation. EMP flow cytometry may be predictive of the increase in aerobic capacity and endothelial function. PMID:26453327

  4. 间歇低氧合并肺气肿大鼠系统与内皮炎症状态及外周血内皮祖细胞水平研究%Systematic and Endothelial Inflammation Status and Endothelial Progenitor Cell Levels in Peripheral Blood in Intermittent Hypoxia and Emphysema Rat Model

    Institute of Scientific and Technical Information of China (English)

    王彦; 曹洁; 杨庆婵; 冯靖; 陈宝元

    2014-01-01

    目的:建立间歇低氧(IH)合并肺气肿重叠综合征(OS)大鼠模型,探讨OS大鼠系统及血管内皮炎症状态,并观察外周血内皮祖细胞(EPC)水平的变化。方法自制熏箱对大鼠进行16周的熏烟暴露造成大鼠肺气肿,从13周开始,在熏烟暴露同时,通过程控产生预制的间歇低氧/再氧合(IH/ROX)环境对大鼠进行IH暴露4周。60只雄性Wistar大鼠随机分为正常组(A组)、IH组(B组)、肺气肿组(C组)和OS组(D组),暴露结束后分别以ELISA法测定血浆及右颈总动脉内皮细胞中肿瘤坏死因子(TNF)-α、白介素(IL)-6水平,Real-time PCR法检测血管内皮细胞中RhoA mRNA含量,病理标本中测定颈动脉内中膜厚度(IMT)占全层厚度比值(C-IMT%),流式细胞仪测定循环血中EPC数量。结果 D组血浆和血管内皮细胞中TNF-α、IL-6水平以及血管内皮细胞中RhoA mRNA水平、C-IMT%均高于A、B、C组,而EPC数量均低于其他3组(均P<0.05)。结论 OS大鼠较单纯IH或单纯肺气肿大鼠系统及内皮损伤更加严重,且内皮修复能力更差,增加了心血管疾病风险。%Objective To establish the rat overlap syndrome (OS) model of intermittent hypoxia (IH) and emphyse-ma, explore the systematic and endothelial inflammation status, and observe the changes of endothelial progenitor cell (EPC) level in peripheral blood. Methods Sixty male Wistar rats were randomly divided into four groups:normal oxygen control group (A), IH group (B), emphysema group (C) and OS group (D). The rat model of emphysema was established by smoke ex-posure for 16 weeks. From the 13-week, pre-programmed intermittent hypoxia/re-oxygenation (IH/ROX) exposure was giv-en in the meantime of smoke exposure. After exposure, ELISA method was used to detect values of tumor necrosis factor al-pha (TNF-α) and interleukin (IL)-6 in plasma and in the endothelium of right common carotid artery

  5. Circulating Vascular Endothelial Growth Factor (VEGF Levels in Advanced Stage Cancer Patients Compared to Normal Controls and Diabetes Mellitus Patients with Critical Ischemia

    Directory of Open Access Journals (Sweden)

    Yoka H. Kusumanto

    2007-01-01

    Full Text Available Anti-angiogenic therapy is emerging as a valuable tool in the treatment of patients with cancer. As VEGF is a central target in anti-angiogenic therapy, its levels in the circulation might be relevant in selecting tumor types or patients likely to respond to this treatment. Additional VEGF has been recognized as a key factor in the pathogenesis of diabetic retinopathy. Recently anti-angiogenic therapy has been advocated in this situation. We measured VEGF levels in whole blood in 42 patients with high grade (n = 26 and low grade (n = 16 end stage cancer, and in 28 healthy controls and 37 patients with diabetes related vascular disease. Only 2/26 patients in the group of high grade cancer had signifi cantly elevated VEGF levels, 1/16 in the low grade group and 1/28 in the healthy control group. In contrast, in 10/37 diabetic patients the mean VEGF levels were significantly elevated compared to the other groups. The mean level in these diabetic patients was significantly elevated compared to the other groups. These data indicate the limitation of the use of circulating VEGF levels as a potential selection criterion for anti-angiogenic therapy in cancer patients and suggest further studies into its application in the management of diabetic complications.

  6. Testosterone Enhances the Proliferation of Peripheral-Blood-Derived Endothelial Progenitor Cells by up-regulating Vascular Endothelial Growth Factor Expression%睾酮通过上调血管内皮生长因子表达促进外周血内皮祖细胞增殖

    Institute of Scientific and Technical Information of China (English)

    薛亚威; 任国庆; 王芝; 孙文文; 张浩

    2013-01-01

    目的 探讨雄激素对外周血内皮祖细胞(PB-EPC,)增殖能力的影响及其可能机制.方法 将健康志愿者外周血经密度梯度离心法分离的单个核细胞接种至人纤维连接蛋白包被的培养板中,EGM-2MV培养7天后,多波长激光共聚焦显微镜鉴定FITC标记的荆豆凝集素和Dil标记的乙酰化低密度脂蛋白双染色阳性为PB-EPC.将贴壁细胞分为5组,前4组分别加入0、1、10、100nmol/L睾酮,第5组加入10 nmol/L雄激素受体阻断剂氟他胺干预3h后,再加10 nmol/L睾酮干预.培养48 h后,MTT比色法检测各组PB-EPC的增殖能力.实时定量PCR检测血管内皮生长因子(VEGF) mRNA的表达变化,ELISA检测VEGF分泌量的变化.结果 睾酮呈浓度依赖性促进EPC增殖,雄激素受体阻断剂氟他胺完全阻断睾酮对EPC的促进作用.与空白对照组相比,睾酮在mRNA和蛋白水平上调PB-EPC的VEGF表达,氟他胺可阻断此作用.结论 睾酮通过雄激素受体途径上调VEGF的表达,促进PB-EPC增殖.%Aim To explore the effects and related mechanisms of testosterone on the proliferation of Peripheral-blood endothelial progenitor cells (PB-EPCs). Methods Total mononuclear cells(MNC) were isolated from peripheral blood of healthy volunteers by Ficoll density gradient centrifugation, culturing with EGM-2MV for 7 days in vitro. The adherent cells showed up taking of acetylated low-density ( ac-LDL-Dil) and binding of lectin ( FITC-UEA-I) , observing with confocal laser scanning microscopy. PB-EPC were dealt with four concentrations of testosterone, as 0 nmol/L, 1 nmol/L, 10 nmol/L,and 100 nmol/L respectively, and in another group PB-EPC were pretreated with 10 nmol/L flutamide (androgen receptor antagonist) for 3h and then stimulated with 10 nmol/L testosterone. After 48 h, the ability of cell proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diph-phenyltetrazolium bromide assay ( MTT). The VEGF expression was tested by quantitative real

  7. Effects of recombinant human granulocyte-colony stimulating factor therapy on rat pulmonary hypertension and its influence on endothelial progenitor cells%重组人粒细胞集落刺激因子治疗大鼠肺动脉高压的效果及其对内皮祖细胞的影响

    Institute of Scientific and Technical Information of China (English)

    黄军华; 刘俊峰; 牛志浩; 李宗辉; 樊青曼

    2013-01-01

    Objective To investigate the effects of recombinant human granulocyte colony stimulating factor (rhG-CSF) therapy on pulmonary hypertension,and its influence on number and functions of circulating endothelial progenitor cells (EPCs) in rats.Methods Eight week old Sprague-Dawlay rats were randomized into model group,treatment group and control group (8 rats in each group).The rats in model group and treatment group were treated with single subcutaneous injection of 1% monocrotaline (50 mg/kg) to induce pulmonary hypertension models,while the control group was treated with phosphate buffered saline.Five days later,the rats in treatment group were administrated with 50 μg/(kg· d) rhG-CSF for 3 days.On day 21,peripheral blood was collected from caudal vein in all groups,and the percentage of EPCs in 100 000 mononuclear cells was evaluated by flow cytometry.Right ventricular systolic pressure was assessed,and the pathological changes of lung tissue and pneumoangiogram were observed by HE staining.Meanwhile,peripheral mononuclear cells collected from caudal vein were separated and cultured in vitro for EPCs.The cell ffunctions as proliferation,adhesion and migration ability were assessed.ANOVA and LSD test were applied as statistical analysis methods.Results (1) The right ventricular systolic pressure of rats in model group was higher than that in the controls [(48.13 ± 2.85) mm Hg vs (27.88 ± 3.04) mm Hg,t=2.016,P<0.01],the lesion of endothelial cells in pulmonary arteriolar was evident,and the vessel wall was thickened.The pulmonary artery pressure of rats in the treatment group [(30.38 ± 2.83) mm Hg] was lower than that in the model group and close to the level of control group (t=0.376,P>0.05) with mild pulmonary pathological changes.(2) The percentage off peripheral blood EPCs in mononuclear cells in the model group was decreased as compared to the control group [(0.016±0.007) % vs (0.031±0.011) %,t=2.617,P<0.01].After administration ofrh

  8. 冠心病患者冠状动脉病变严重程度与内皮祖细胞及血管内皮功能的相关性分析%Correlation analysis between endothelial progenitor cells, flow-mediated-dilation and severity of coronary artery lesion in patients with coronary heart disease

    Institute of Scientific and Technical Information of China (English)

    王雪; 谈红; 李晓燕; 杨燕; 陈英剑; 张国明

    2014-01-01

    目的:探讨冠心病患者循环血内皮祖细胞(EPCs)数量、血流介导的内皮依赖性血管舒张功能(FMD)的变化及其与冠状动脉病变严重程度的相关性。方法对159例患者根据冠状动脉造影结果,分为冠心病组(101例)及对照组(58例),采用流式细胞术检测所有入选者EPCs水平,并采用高分辨率血管超声法检测其肱动脉FMD。冠心病组依据SYNTAX积分进一步分为低危、中危和高危3个亚组,比较高危、中危、低危三组之间EPCs数量及FMD的差异及与冠状动脉病变程度的相关性。结果与对照组比较,冠心病组患者EPCs数量显著减少,肱动脉FMD亦明显减低(P<0.05),循环血EPCs数量与肱动脉FMD呈显著正相关趋势(r=0.41,P<0.01)。各亚组之间,低危组与高危组比较,EPCs数量水平及FMD有统计学差异(P<0.05),中危组与低危组、中危组与高危组之间比较,EPCs数量水平及FMD均无显著性差异(P>0.05)。EPCs数量及FMD均与冠状动脉造影SYNTAX评分呈负相关(r=-0.381,P<0.01;r=-0.317,P<0.01)。结论冠心病患者循环血EPCs数量较健康人群显著减少,血管内皮功能显著低下,且与冠状动脉病变严重程度呈负相关。%Objective To explore the variance of endothelial progenitor cells(EPCs) and flow-mediated-dilation(FMD) in peripheral blood in patients with coronary heart disease(CHD) and their relationship with severity of coronary artery stenosis. Methods 159 patients who underwent coronary angiography were divided into CHD group(101 patients) and normal control group(58 patients).The levels of EPCs was detected for each patient by flow cytometry. FMD in brachial artery were measured by ultrasonography in both groups.According to SYNTAX score, CHD group were divided into three subgroups, low-risk group, middle-risk group and high-risk group. Comparing the number of circulating EPCs and FMD in

  9. 内皮祖细胞移植对脓毒症大鼠的治疗作用%Role of endothelial progenitor cell transplantation in rats with sepsis

    Institute of Scientific and Technical Information of China (English)

    徐喜媛; 杨敬平; 那仁格日勒; 乌日娜; 田红军; 宋慧芳; 王慧

    2015-01-01

    大鼠的肺、肝及肾组织,下调促炎因子,使机体恢复促炎/抗炎平衡,显著缓解肺、肝及肾组织损伤。%Objective To investigate the role of endothelial progenitor cells ( EPCs ) transplantation in rats with sepsis induced by endotoxin ( lipopolysaccharides, LPS ). Methods Sixty clean grade Sprague-Dawley ( SD ) rats with genetic background were divided into three groups according to random number table method:control group, model group, and EPCs transplantation group, with 20 rats in each group. The sepsis model was reproduced by intravenous delivery of LPS 5 mg/kg. Rats in control group were injected with the same amount of normal saline. EPCs were isolated, and cultured and identified were fluorescently labeled with the green fluorescent protein ( GFP ) adenoviral transfection method. The EPC transplantation group was injected with LPS, then a fluorescently labeled EPCs suspension was injected via the tail vein 1 hour later. The expression of fluorescent markers of EPCs was detected with both small animal in vivo imaging instrument and frozen section. Seven days after transplantation, abdominal aorta blood was collected to determine interleukins ( IL-6 and IL-10 ) in peripheral blood with enzyme linked immunosorbent assay ( ELISA ), and the lung, liver, and kidney tissues were harvested, the wet/dry ratio of the lung ( W/D ) was calculated, and hematoxylin and eosin ( HE ) staining was performed to observe, the change in histopathology. Toll-like receptor 4 ( TLR4 ) mRNA expression in lung, liver, and kidney tissues was determined with real-time reverse transcription-polymerase chain reaction ( RT-PCR ). Results The positive rate of EPCs cells with double marking of CD133 and CD34 was 99.0% at the 5th generation of subculture by using flow cytometry. After the transplantation of EPCs labeled with the green fluorescent protein, the appearance of fluorescence indicated that EPCs were mainly localized in the chest, and a stronger

  10. Early endothelial damage detected by circulating particles in baboons fed a diet high in simple carbohydrates in conjunction with saturated or unsaturated fat.

    Science.gov (United States)

    Shi, Qiang; Hodara, Vida; Meng, Qinghe; Voruganti, V Saroja; Rice, Karen; Michalek, Joel E; Comuzzie, Anthony G; VandeBerg, John L

    2014-01-01

    Studies have shown that high-fat diets cause blood vessel damage, however, assessing pathological effects accurately and efficiently is difficult. In this study, we measured particle levels of static endothelium (CD31+ and CD105+) and activated endothelium (CD62E+, CD54+ and CD106+) in plasma. We determined individual responses to two dietary regimens in two groups of baboons. One group (n = 10), was fed a diet high in simple carbohydrates and saturated fats (the HSF diet) and the other (n = 8) received a diet high in simple carbohydrates and unsaturated fats (the HUF diet). Plasma samples were collected at 0, 3, and 7 weeks. The percentages of CD31+ and CD62E+ particles were elevated at 3 weeks in animals fed either diet, but these elevations were statistically significant only in animals fed the HUF diet. Surprisingly, both percentages and counts of CD31+ particles were significantly lower at week 7 compared to week 0 and 3 in the HSF group. The median absolute counts of CD105+ particles were progressively elevated over time in the HSF group with a significant increase from week 0 to 7; the pattern was somewhat different for the HUF group with significant increase from week 3 to 7. The counts of CD54+ particles exhibited wide variation in both groups during the dietary challenge, while the median counts of CD106+ particles were significantly lower at week 3 than at week 0 and week 7. Endothelial particles exhibited time-dependent changes, suggesting they were behaving as quantifiable surrogates for the early detection of vascular damage caused by dietary factors.

  11. Endothelialized ePTFE Graft by Nanobiotechnology

    Science.gov (United States)

    2013-11-29

    The Apparatus for Processing the Tubular Graft Modification Will be Designed and Evaluated.; The On-site Capturing of the Endothelial (Progenitor) Cells by Peptide-mediated Selective Adhesion in Vitro and in Vivo Will Also be Elucidated.; The Patency Rate of ITRI-made Artificial Blood Vessels Will be Evaluated by the Porcine Animal Model.

  12. 循环内皮细胞与放射性脑损伤相关性实验研究%Correlation between circulating endothelial cells and radiation-induced brain injury

    Institute of Scientific and Technical Information of China (English)

    马代远; 谭榜宪; 李祥攀; 阮林; 甘浪舸; 韦力

    2008-01-01

    Objective To investigate the correlation between circulating endothelial cells (CECs) and radiation-induced brain injury. Methods One hundred and eight SD rats were randomly divided into control group, single-dose 10 Gy 60Co irradiation group and single-dose 30 Gy group. The neurobehavioral changes were observed by Morris water labyrinth at 1 week, 1 month and 3 months after irradiation. The CECs in right ventricular blood were counted after Morrie water test. Hippocamp ultramicrostructure and GFAP positive cell were detected after perfusion of encephalon. Results Neuobehavior change: at 1 month and 3 months after irradiation the swim latency was significantly prolonged (30 Gy group>10 Gy group>control group, P 10 Gy group> 30 Gy group, P 10 Gy group>control group, P10 Gy group>control group, P<0.05). Good correlations between the numbers of CECs and the swim lantency (r10 Gy=0.97, P=0.034; r30 Gy=0.95, P=0.013),and the numbers of GFAP positive cells(r10 Gy=0.94, P=0.037; r30 Gy=0.96, P=0.027) were demonstrated.Conclusion The changes of the CECs numbers are definitely correlated to radiation-induced brain injury, which is more with irradiation dose and duration.%目的 探讨循环内皮细胞(circulating endothelial cegs,CECs)与放射性脑损伤相关性.方法 108只SD大鼠信封法随机分成对照组、实验组(10 Gy组、30 Gy组),分别于照射后1周、1月和3月每组随机抽取9只进行Morris水迷宫行为测试,心脏取血计数CECs,取脑观察海马形态和结构.结果 神经行为改变:照射1和3个月后平台潜伏期延长、穿越平台象限时间及次数明显减少.海马齿状回形态改变:照射1和3个月后实验组神经胶质酸性蛋白(glial fibfillary acidic protein,GFAP)阳性细胞数量明显高于对照组,30 Gy组高于10 Gy组;照射1和3个月后超微结构变化为毛细血管内皮细胞变薄、内皮细胞吞饮小泡明显增多、内皮细胞间紧密连接破坏,毛细血管基膜外星形胶质细胞

  13. Effect of Chinese Drugs for Promoting Blood Circulation and Eliminating Blood Stasis on Vascular Endothelial Growth Factor Expression in Rabbits with Glucocorticoid-induced Ischemic Necrosis of Femoral Head

    Institute of Scientific and Technical Information of China (English)

    QI Zhen-xi; CHEN Lei

    2009-01-01

    Objective:To probe into the mechanism of Chinese drugs for promoting blood circulation and eliminating blood stasis in the prevention and treatment of glueocorticoid-induced ischemic necrosis of femoral head.Methods: Thirty New Zealand adult white rabbits were randomly divided into a normal control group (n=5)and a model group (n=25). Hydroxyprednisone acetate was intramuscularly administered to the rabbits in the model group in a dosage of 7.5 mg/kg, twice per week for 6 weeks, to induce ischemic necrosis of femoral head and normal saline of the equal volume was intramuscularly administered to the rabbits in the normal control group, twice per week for 6 weeks. Then, the 5 rabbits from the normal control group and 5 rabbits selected randomly from the model group were sacrificed and the changes in histopathology and the expression of Vascular Endothelial Growth Factor (VEGF) were observed. The other 20 rabbits in the model group were randomly divided into the treatment group 1 and the treatment group 2, and the control group 1 and the control group 2, 5 rabbits in every group. Taohong Siwu Tang (桃红四物汤 Decoction of Four Drugs with Addition of Peach Kernel and Safflower) was orally administered to the rabbits in the treatment group 1 and the treatment group 2 in a dosage of 7 ml/kg, once daily and normal saline of the equal volume was orally administered to the rabbits in the control groupl and the control group, 2 once daily. After 10 weeks the rabbits in the treatment group 1 and the control group 1 were sacrificed and after 13 weeks the rabbits in the treatment group 2 and the control group 2 were sacrificed, and the expression of VEGF was detected in these rabbits. Results: The expression of VEGF was significantly enhanced in rabbits of the model group as compared with the normal control group (P<0.01), and gradually reduced with the lapse of time. The expression of VEGF in the control groups was significantly reduced as compared with the treatment

  14. Endurance Capacity Is Not Correlated with Endothelial Function in Male University Students

    OpenAIRE

    Yan Wang; Xian-bo Zeng; Feng-juan Yao; Fang Wu; Chen Su; Zhen-guo Fan; Zhu Zhu; Jun Tao; Yi-jun Huang

    2014-01-01

    BACKGROUND: Endurance capacity, assessed by 1000-meter (1000 m) run of male university students, is an indicator of cardiovascular fitness in Chinese students physical fitness surveillance. Although cardiovascular fitness is related to endothelial function closely in patients with cardiovascular diseases, it remains unclear whether endurance capacity correlates with endothelial function, especially with circulating endothelial microparticles (EMPs), a new sensitive marker of endothelial dysfu...

  15. 冠心病患者血浆循环miR-126的表达及其对血管内皮细胞的影响%Plasma circulating miR-126 in patients with coronary artery heart disease and its effect on vascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    郑志伟; 劳海燕; 余细勇; 陈纪言; 林秋雄; 麦丽萍; 钟诗龙

    2011-01-01

    AIM: To investigate the role of plasma circulating miR - 126 and miR - 16 in the patients with coronary artery heart disease and to explore the influence of miR - 126 on vascular endothelial cells. METHODS: Plasma total RNA was isolated from 52 patients with stable coronary artery disease and 52 healthy volunteers. The circulating miR -126 and miR -16 in those people were detected using specific primers. Endothelial cell line EA. Hy926 was transfected with a miR - 126 inhibitor, and total RNA of the cells was isolated 30 h after transfection to detect the expression level of vascular endothelial growth factor ( VEGF ). RESULTS: The expression of plasma circulating miR - 126 was significantly decreased in the patients with coronary artery heart disease compared with healthy controls ( P 0. 05 ). The expression of VEGF in the endothelial cell line EA. Hy926 transfected with miR - 126 inhibitor was 2.08 times higher than that in negative control cells 30 h after transfection ( P 0.05);(2)内皮细胞株EA.hy926中miR-126被抑制后,血管内皮生长因子的表达为对照组的2.08倍(P<0.05).结论:血浆循环miR-126在冠心病患者表达下降,血浆循环miR-16在人群中的表达较稳定;miR-126通过负性调节血管内皮生长因子的表达,对血管内皮细胞产生调节作用.

  16. Effects of hyperbaric oxygen therapy in the management of chronic wounds and its correlation with CD34 ± endothelial progenitor cells%高压氧治疗下肢慢性创面愈合与外周血内皮祖细胞的相关性

    Institute of Scientific and Technical Information of China (English)

    马辕华; 雷永红; 周敏; 李雪; 赵宏宇

    2011-01-01

    Objective To evaluate the effects of hyperbaric oxygen(HBO)therapy in the management of chronic wound and observe the correlation between wound healing and CD34 + endothelial progenitor cells(EPCs).Methods A total of 119 patients with chronic wound in lower extremities lasting >3 months were recruited for this randomized,single-center,placebo-controlled clinical trial.The changes of CD34 + average count before and after HBO therapy were detected by flow cytometry(FACS).There were 97 patients on long-term HBO therapy and in 22 patients on hyperbaric air therapy as control group.The CD34/Scal-1 + and CD34/CXCR4 dual-positive populations of gated cell were determined respectively by FACs.The outcomes of two groups were compared.Treatment was administered within a single-place hyperbaric chamber for 90-main daily(session duration 120 main)for 5 days a week for 4 weeks (20 treatment sessions).Results The wound size decreased at the4-week end point(62.7% +22.3% in the HBO group vs 34.4% +20.6% in the control group,P <0.05).Mter 10 episodes of HBO therapies for chronic non-healing wound,the peripheral CD34 + EPCs average count rose from 0.24% + 0.03% at pretreatment to 1.32% ±0.05% while the number was 1.75% + 0.17% after 20 episodes of HBO(P < 0.05)Both were significantly different from that of the patients at pre-treatment.However the overall circulating white cell count was not significantly elevated.The CD34/Scal-1 + and CD34/CXCR4 dual-positive populations of gated cell in HBO group were 5.8 and 5.2 folds than those at pre-treatment respectively.The number of EPCs was positively correlated with wound healing in lower extremities(correlation coefficient 0.84 ; P < 0.01).Conclusion Adjunctive treatment of HBO facilitates the healing of chronic non-healing wound in selected patients through the mobilization of EPCs.%目的 探讨高压氧(HBO)对中国人下肢创伤后小腿部慢性创面愈合的影响,以及创

  17. Prostaglandin E2 promotes endothelial differentiation from bone marrow-derived cells through AMPK activation.

    Directory of Open Access Journals (Sweden)

    Zhenjiu Zhu

    Full Text Available Prostaglandin E2 (PGE2 has been reported to modulate angiogenesis, the process of new blood vessel formation, by promoting proliferation, migration and tube formation of endothelial cells. Endothelial progenitor cells are known as a subset of circulating bone marrow mononuclear cells that have the capacity to differentiate into endothelial cells. However, the mechanism underlying the stimulatory effects of PGE2 and its specific receptors on bone marrow-derived cells (BMCs in angiogenesis has not been fully characterized. Treatment with PGE2 significantly increased the differentiation and migration of BMCs. Also, the markers of differentiation to endothelial cells, CD31 and von Willebrand factor, and the genes associated with migration, matrix metalloproteinases 2 and 9, were significantly upregulated. This upregulation was abolished by dominant-negative AMP-activated protein kinase (AMPK and AMPK inhibitor but not protein kinase, a inhibitor. As a functional consequence of differentiation and migration, the tube formation of BMCs was reinforced. Along with altered BMCs functions, phosphorylation and activation of AMPK and endothelial nitric oxide synthase, the target of activated AMPK, were both increased which could be blocked by EP4 blocking peptide and simulated by the agonist of EP4 but not EP1, EP2 or EP3. The pro-angiogenic role of PGE2 could be repressed by EP4 blocking peptide and retarded in EP4(+/- mice. Therefore, by promoting the differentiation and migration of BMCs, PGE2 reinforced their neovascularization by binding to the receptor of EP4 in an AMPK-dependent manner. PGE2 may have clinical value in ischemic heart disease.

  18. Simulated Microgravity Exerts an Age-Dependent Effect on the Differentiation of Cardiovascular Progenitors Isolated from the Human Heart.

    Directory of Open Access Journals (Sweden)

    Tania I Fuentes

    Full Text Available Microgravity has a profound effect on cardiovascular function, however, little is known about the impact of microgravity on progenitors that reside within the heart. We investigated the effect of simulated microgravity exposure on progenitors isolated from the neonatal and adult human heart by quantifying changes in functional parameters, gene expression and protein levels after 6-7 days of 2D clinorotation. Utilization of neonatal and adult cardiovascular progenitors in ground-based studies has provided novel insight into how microgravity may affect cells differently depending on age. Simulated microgravity exposure did not impact AKT or ERK phosphorylation levels and did not influence cell migration, but elevated transcripts for paracrine factors were identified in neonatal and adult cardiovascular progenitors. Age-dependent responses surfaced when comparing the impact of microgravity on differentiation. Endothelial cell tube formation was unchanged or increased in progenitors from adults whereas neonatal cardiovascular progenitors showed a decline in tube formation (p<0.05. Von Willebrand Factor, an endothelial differentiation marker, and MLC2v and Troponin T, markers for cardiomyogenic differentiation, were elevated in expression in adult progenitors after simulated microgravity. DNA repair genes and telomerase reverse transcriptase which are highly expressed in early stem cells were increased in expression in neonatal but not adult cardiac progenitors after growth under simulated microgravity conditions. Neonatal cardiac progenitors demonstrated higher levels of MESP1, OCT4, and brachyury, markers for early stem cells. MicroRNA profiling was used to further investigate the impact of simulated microgravity on cardiovascular progenitors. Fifteen microRNAs were significantly altered in expression, including microRNAs-99a and 100 (which play a critical role in cell dedifferentiation. These microRNAs were unchanged in adult cardiac progenitors

  19. Vascular smooth muscle cells for use in vascular tissue engineering obtained by endothelial-to-mesenchymal transdifferentiation (EnMT) on collagen matrices

    NARCIS (Netherlands)

    Krenning, Guido; Moonen, Jan-Renier A. J.; van Luyn, Marja J. A.; Harmsen, Martin C.

    2008-01-01

    The discovery of the endothelial progenitor cell (EPC) has led to an intensive research effort into progenitor cell-based tissue engineering of (small-diameter) blood vessels. Herein, EPC are differentiated to vascular endothelial cells and serve as the inner lining of bioartificial vessels. As yet,

  20. Biocompatibility of poly-L-lactic acid/chitosan electrospun nanofiber scaffold and rabbit endothelial progenitor cells%聚左旋乳酸/壳聚糖电纺丝纳米纤维支架与兔内皮祖细胞的生物相容性

    Institute of Scientific and Technical Information of China (English)

    王炜; 李坤

    2012-01-01

    背景 电纺丝技术能够使许多高分子材料制备出与细胞外基质相似的三维纳米纤维支架.聚乳酸/壳聚糖纳米纤维复合支架材料能够克服材料的不足,提高组织工程支架生物相容性.目的 评价聚左旋乳酸/壳聚糖电纺丝纳米纤维支架与兔内皮祖细胞的生物相容性.方法 电纺丝技术制备聚左旋乳酸,壳聚糖,聚左旋乳酸/壳聚糖的纳米纤维支架,扫描电镜观察其形貌结构.纳米纤维支架与内皮祖细胞进行复合培养后,观察细胞在不同材料上的黏附率、一氧化氮分泌,生长特征和在聚左旋乳酸/壳聚糖纳米纤维支架上的细胞表型特征.结果 与结论 聚左旋乳酸/壳聚糖纳米纤维支架比聚左旋乳酸、壳聚糖具有更合适的纤维直径,具有与细胞外基质相似的纳米纤维三维多孔结构.聚左旋乳酸/壳聚糖纳米纤维支架能够促进内皮祖细胞黏附率和细胞的一氧化氮分泌(P < 0.05,P <0.01).内皮祖细胞能够在聚左旋乳酸/壳聚糖复合材料膜上融合成片,保持了细胞的完整形态和分化功能,显示了内皮细胞特异性的vWF 表型.提示聚左旋乳酸/壳聚糖电纺丝纳米纤维支架与兔内皮祖细胞具有良好的生物相容性.%BACKGROUND: Three-dimensional nanofiber scaffold, similar to extracellular matrix, can be synthesized from many polymermaterials by electrospinning technique. Poly-L-lactic acid (PLLA)/chitosan (CS) nanofiber composite scaffold can overcome thedeficiency of each other to improve the biocompatibility of tissue engineering scaffold.OBJECTIVE: To evaluate biocompatibility of PLLA/CS electrospun nanofiber scaffold and rabbit endothelial progenitor cells(EPCs).METHODS: Nanofibrou scaffold of PLLA, CS and PLLA/CS were synthesized by electrospinning technology and morphologystructure was analysed by scanning electron microscope. After EPCs co-cultured with the nanofibers scaffold, adhere rates, NOproduction, morphological

  1. [Pulmonary arterial hypertension, bone marrow, endothelial cell precursors and serotonin].

    Science.gov (United States)

    Ayme-Dietrich, Estelle; Banas, Sophie M; Monassier, Laurent; Maroteaux, Luc

    2016-01-01

    Serotonin and bone-marrow-derived stem cells participate together in triggering pulmonary hypertension. Our work has shown that the absence of 5-HT2B receptors generates permanent changes in the composition of the blood and bone-marrow in the myeloid lineages, particularly in endothelial cell progenitors. The initial functions of 5-HT2B receptors in pulmonary arterial hypertension (PAH) are restricted to bone-marrow cells. They contribute to the differentiation/proliferation/mobilization of endothelial progenitor cells from the bone-marrow. Those bone-marrow-derived cells have a critical role in the development of pulmonary hypertension and pulmonary vascular remodeling. These data indicate that bone-marrow derived endothelial progenitors play a key role in the pathogenesis of PAH and suggest that interactions involving serotonin and bone morphogenic protein type 2 receptor (BMPR2) could take place at the level of the bone-marrow. PMID:27687599

  2. 肾毒性物质对甲酚抑制内皮祖细胞增殖和eNOS磷酸化%Uremic solute p-cresol inhibits proliferation of endothelial progenitor cells and phosphorylation of eNOS

    Institute of Scientific and Technical Information of China (English)

    应远; 杨克; 刘艳; 陈秋静; 陆林; 沈卫峰; 张瑞岩

    2011-01-01

    Objective: To investigate the effects of p-cresol on the proliferation of late endothelial protenitor cells (EPCs) and activation of endothelial nitric oxide synthase (eNOS). Methods: Mononuclear cells were isolated by density gradient centrifugation. Isolated cells were cultured in the medium supplemented with vascular endothelial growth factor (VEGF) and other growth factors. Features of the EPCs were identified by morphology, immunoflurescence staining and flow cytometry. Attached cells were incubated with different concentrations of p-cresol (10, 20, 40 and 80μg/ml). Cell counting assay and colony forming assay were used to assess the proliferation of EPCs. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to analyse transcription of eNOS. Phosphorylation of eNOS was investigated by western blot. Results: Late EPCs formed a typical cobblestone-like cells. Flurescence microscopy showed that late EPCs were positive for both Dil-ac-LDL uptake and FITC-UEA-1 binding. FACS showed this group of cells was CD34 and VEGFR2 positive but CD133 negative. Cell counting and colony forming assay showed p-cresol inhibited proliferation of EPCs in a dose dependent manner. Western blot revealed that p-cresol decreased the phosphorylative level of eNOS. Conclusion: Uremic solute p-cresol may inhibit proliferation of human late EPCs in vitro and depress phosphorylation of eNOS.%目的:观察对甲酚对人外周血晚期内皮祖细胞(EPCs)的体外增殖和内皮一氧化氮合酶(eNOS)活性的影响.方法:用密度梯度离心法分离健康成人外周血中的单个核细胞,在含有血管内皮生长因子等的培养基中培养.通过形态学、免疫荧光、流式细胞分析鉴定细胞,在贴壁细胞中加入不同浓度对甲酚,用细胞计数和集落生成实验法评价对甲酚对EPCs增殖的影响.定量PCR分析eNOS转录水平的变化,Western blot分析磷酸化eNOS的变化.结果:晚期EPCs为典型的铺路石样,CD34

  3. 川芎素对系统性硬皮病患者循环内皮细胞的影响%Effect of Sodium Feralate on the Circulating Endothelial Cells From Patients With Progressive Systemic Sclerosis

    Institute of Scientific and Technical Information of China (English)

    李尚珠; 刘春华; 黄平平; 付仁敏; 吴立华; 王书桂; 钱冠清

    2001-01-01

    目的观察系统性硬皮病(PSS)患者循环内皮细胞(CEC)数量的变化,了解PSS患者的血管内皮细胞受损伤情况及川芎素对PSS患者血管内皮细胞的影响,探讨川芎素治疗PSS的疗效机理。方法使用川芎素治疗PSS患者38例,观察治疗前后CEC的数量变化,以53例健康人的CEC数量作为对照比较。结果经川芎素治疗后,38例PSS患者的皮肤硬化、末梢疼痛、冷感、溃疡指数均有明显的改善(P<0.01)。治疗前PSS患者的CEC数量(3.40±1.27个/0.9μL)明显高于健康对照组(1.13±0.48个/0.9μL),治疗后随着临床症状、体征的好转,CEC数量也显著下降(1.80±0.58个/0.9μL)。结论川芎素治疗PSS不仅能显著改善临床症状和体征,而且对PSS患者的血管内皮细胞损伤也有较好的治疗和保护作用。%Objective To observe the quantity of circulating endothelial cells (CECs) in patients with progressive systemic sclerosis (PSS), and to investigate the effect of sodium ferulate (SF) on the vascular endothelial cell (VEC) of PSS patients. Methods 38 PSS patients were treated with SF, CEC of all patients were detected quantitatively before and after the treatment, and compared with that of 53 healthy controls. Results After the treatment with SF, the skin sclerosis, distal pain, cold sensation, and ulcer index in 38 PSS patients were improved ( P < 0.01); the number of CEC also decreased, from 3.40±0.27/0.9μL before treatment which was markedly higher than that of normal controls (1.13±0.48/0.9μL) to 1.80±0. 58/0.9μL after treatment. Conclusion SF can not only improve the clinical manifestations of the PSS patients, but protects the VECs from injury and has a good therapeutic effect on PSS patient.

  4. Mobilization of stem and progenitor cells in cardiovascular diseases

    OpenAIRE

    Wojakowski, W; Landmesser, U.; Bachowski, R; Jadczyk, T; M. Tendera

    2012-01-01

    Circulating bone marrow (BM)-derived stem and progenitor cells (SPCs) participate in turnover of vascular endothelium and myocardial repair after acute coronary syndromes. Acute myocardial infarction (MI) produces a generalized inflammatory reaction, including mobilization of SPCs, increased local production of chemoattractants in the ischemic myocardium, as well as neural and humoral signals activating the SPC egress from the BM. Several types of circulating BM cells were identified in the p...

  5. Effect of lycopene on the apoptosis of human peripheral endothelial progenitor cells cultivated in high concentration of glucose%番茄红素对高糖环境下人外周血内皮祖细胞增殖、凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    曾瑶池; 穆桂萍; 黄淑芬; 曾学辉; 李顺民

    2012-01-01

    目的 探讨不同浓度番茄红素对体外高糖培养环境下健康人外周血内皮祖细胞(EPCs)增殖、凋亡的影响.方法 密度梯度离心法分离健康成年人外周血单个核细胞,在体外诱导分化后,用FITC标记的荆豆凝集素Ⅰ(FITC-UEA-Ⅰ)和Dil标记的乙酰化低密度脂蛋白(Dil-ac-LDL)双染色鉴定为内皮祖细胞.观察不同浓度番茄红素对高糖环境下的内皮祖细胞增殖、凋亡的影响.结果 33mmol/L葡萄糖明显抑制EPCs增殖,并促进其凋亡(P<0.05);番茄红素10μg/ml、30μg/ml、50μg/ml组EPCs增殖能力均明显高于0μg/ml组,凋亡率明显低于番茄红素0μg/ml组(P<0.05).结论 高浓度葡萄糖能抑制体外培养条件下人外周血EPCs的增殖、促进其凋亡;番茄红素可以保护高糖环境下EPCs的增殖能力并抑制其凋亡.%Objective To investigate the effect of lycopene treatment on the proliferation and apoptosis of endothelial progenitor cells ( EPCs) incubated in a culture medium with high concentration of glucose. Methods Mononuclear cells ( MNCs) were isolated from human peripheral blood by Ficoll density gradient centrifugation. After being induced to differentiation, the endothelial progenitor cells (EPC) were identified by FITC-labeled Ulex europaeus agglutinin I and Dil labeled acetylated low density lipoprotein dual stain method. Then MTT assay and flow cytometry were used to assess the proliferation and apoptosis of EPCs. Results The glucose in a concentration of 33mmol/L significantly inhibited the proliferation and promoted the apoptosis of EPCs ( P < 0.05 ). The proliferation of EPCs in 10, 30 and 50μg/ml lycopene groups were significantly higher than the 0μg/ml group. The rate of apoptosis were significantly lower than the lycopene 0 μg/ml group ( P < 0. 05 ) . Conclusion High concentration of glucose attenuates the proliferative activity and increases the apoptotic rate of EPCs. Lycopene promotes the proliferation and reduces the

  6. 小窝蛋白-1在膜雌激素受体介导的内皮祖细胞增殖中的作用%Role of caveolin-I on membrane estrogen receptor mediated proliferation of endothelial progenitor cells

    Institute of Scientific and Technical Information of China (English)

    胡飞雪; 王庭槐; 谈智

    2011-01-01

    Objective To investigate the potential role of caveolin-1 ( CAV-1 ) on membrane estrogen receptor (mER) mediated proliferation of endothelial progenitor cells (EPCs).Methods Bone marrow (BM) -derived EPCs were cultured.The proliferation of EPCs induced by estradiol ( E2 ) -BSA in the absence or presence of ICI 182,780 (a pure ER inhibitor),MβCD and CAV-1 siRNA was determined by [3H]-thymidine incorporation.The expression of CAV-1 was detected by Western blot.Results Proliferation of EPC peaked after 10-8 mol/L E2-BSA culture for 24 h (87.5% increase vs.control),and this effect could be inhibited by estrogen receptor blocker ICI 182,780,indicating that mER-initiated membrane signaling pathways was involved in the proliferation effect of estrogen on EPC.Both cholesterol depletion and CAV-1 siRNA significantly attenuated E2-BSA induced [3H ]-thymidine incorporation.Western blot result confirmed that cholesterol depletion or CAV-1 siRNA significantly decreased CAV-1 protein expression ( - 18.6% or -41.2% vs.10-8 mol/L E2-BSA alone).Conclusion Our results suggested that estradiol promoted EPC proliferation through activating CAV-1 pathway.%目的 探讨微囊结构关键蛋白——小窝蛋白-1( caveolin-1,CAV-1)在膜雌激素受体介导的内皮祖细胞(endothelial progenitor cells,EPC)增殖中的作用.方法 培养的EPC分别用不同浓度( 10-9~10-6 mol/L)雌二醇-牛血清白蛋白复合物(E2-BSA)作用24h或10-8 mol/L E2-BSA作用不同时间,或加雌激素受体阻断剂ICI 182,780、环糊精(MβCD)以及CAV-1 siRNA处理,在DMDM培养基中培养的EPC(不加任何试剂)作为对照,使用3H-脱氧胸苷掺入法检测其对EPC增殖的影响.CAV-1 siRNA干扰的效果利用免疫印迹法检测CAV-1蛋白表达来验证.结果 10-8 mol/L E2-BSA作用24h促进EPC增殖作用最大(比对照组高了约87.5%),ICI 182,780可以抑制其增殖作用,表明膜雌激素受体介导的信号通路参与了雌激素对EPC的增殖作用.用环

  7. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets

    OpenAIRE

    Möhle, Robert; Green, David; Moore, Malcolm A. S.; Nachman, Ralph L.; Rafii, Shahin

    1997-01-01

    We have shown that coculture of bone marrow microvascular endothelial cells with hematopoietic progenitor cells results in proliferation and differentiation of megakaryocytes. In these long-term cultures, bone marrow microvascular endothelial cell monolayers maintain their cellular integrity in the absence of exogenous endothelial growth factors. Because this interaction may involve paracrine secretion of cytokines, we evaluated megakaryocytic cells for secretion of vascular endothelial growt...

  8. 自体骨髓内皮祖细胞移植治疗动脉粥样硬化大鼠急性脑缺血的实验研究%Treatment of acute cerebral ischemia in atherosclerotic rats with autologous transplantation with bone marrow-derived endothelial progenitor cells

    Institute of Scientific and Technical Information of China (English)

    朱江; 刘煜敏; 孔朝红; 道文欣

    2010-01-01

    Objective To explore the effeteness of autologous transplantation of bone marrow-derived endothelial progenitor cells in promoting the neovascularization and improving the neurological functional recovery in atherosclerotic rats with acute cerebral infarction. Methods Male Sprague-Dawley rat models of atherosclerosis were established by fat-rich diet feeding. Endothelial progenitor cells (EPCs) were obtained from bone marrow of all rats; the cells were cultured in vitro in Ml99 with VEGF, bFGF and EGF in it Assays were used to detect the expression of FLK-1 and CD34. on the 7th d, middle cerebral artery occlusion (MCAO) rat models were established by the method of thread thrombus. Three h after MCAO, all of the animals were randomized into experimental group (the autologous endothelial progenitor cells labeled with BrdU were injected into the carotid vein) and control group (same volume of PBS were injected into the carotid vein). Behavioral tests (modified neurological severity scale, mNSS) were performed 6 h and 1, 3, 7, 10 and 14 d after MCAO. Besides, immunohistochemical examinations were employed to observe the distribution of EPCs (labeled by BrdU) in the brain tissue and to measure the microvessel density. Results EPCs from bone marrow were isolated, induced and cultured successfully in vitro, which positively stained for FLK-1 by immunocytochemistry and partly positively expressed CD34 by immunofluorescence. The cells of FITC labeled UEA adsorption and DiL-acLDL internalization were positive under fluorescence confocal microscopy. These cells possessed robust proliferative potential and their number reached 5×106. On the 14th d, the neurological function recovery in the experimental group (mNSS scores: 6.13±0.30) was significantly improved as compared with that in the control group (mNSS scores: 8.50±0.46, P<0.05). On the 28th, some positive EPCs stained by BrdU were found in the experimental group and the numbers of blood vessels in the experimental

  9. Association of CD14+ monocyte-derived progenitor cells with cardiac allograft vasculopathy

    OpenAIRE

    Salama, Mohamed; Andrukhova, Olena; Roedler, Susanne; Zuckermann, Andreas; Laufer, Guenther; Aharinejad, Seyedhossein

    2011-01-01

    Objective The pathogenesis of cardiac allograft vasculopathy after heart transplant remains controversial. Histologically, cardiac allograft vasculopathy is characterized by intimal hyperplasia of the coronary arteries induced by infiltrating cells. The origin of these infiltrating cells in cardiac allograft vasculopathy is unclear. Endothelial progenitor cells are reportedly involved in cardiac allograft vasculopathy; however, the role of CD14+ monocyte-derived progenitor cells in cardiac al...

  10. Neural progenitor cells regulate microglia functions and activity.

    Science.gov (United States)

    Mosher, Kira I; Andres, Robert H; Fukuhara, Takeshi; Bieri, Gregor; Hasegawa-Moriyama, Maiko; He, Yingbo; Guzman, Raphael; Wyss-Coray, Tony

    2012-11-01

    We found mouse neural progenitor cells (NPCs) to have a secretory protein profile distinct from other brain cells and to modulate microglial activation, proliferation and phagocytosis. NPC-derived vascular endothelial growth factor was necessary and sufficient to exert at least some of these effects in mice. Thus, neural precursor cells may not only be shaped by microglia, but also regulate microglia functions and activity.

  11. Differential time attachment: optimization of the adherent time to obtain mouse bone marrow-derived endothelial progenitor cells%差速贴壁分离法:获得小鼠骨髓内皮祖细胞诱导分化培养的最佳贴壁时间

    Institute of Scientific and Technical Information of China (English)

    杨娜娜; 焦鹏; 李大伟; 王孟赞; 姚树桐; 宗传龙; 秦树存

    2011-01-01

    本文旨在比较差速贴壁方法分离的不同时间点贴壁的小鼠骨髓单个核细胞诱导分化为内皮祖细胞的生物学特性,探讨最适宜贴壁时间.Ficoll密度梯度离心分离小鼠骨髓单个核细胞,接种于预先铺有纤维连接蛋白的培养板上,定义为1d贴壁细胞组,取1d非贴壁细胞再接种为3d贴壁细胞组,继续培养2d取非贴壁细胞再接种为3d非贴壁细胞组,继续培养20 d后,分别检测3组诱导分化内皮祖细胞亚群表面标志、粘附能力和成血管能力.结果显示,1d贴壁细胞中CD34+、FLK-1+、CD34+/FLK-1+细胞数明显多于3d贴壁细胞和3d非贴壁细胞(P< 0.01);1 d贴壁细胞粘附能力、成血管能力均显著高于3d贴壁细胞和3d非贴壁细胞;1 d贴壁细胞和3d贴壁细胞内皮型一氧化氮合酶(endothelial NO synthase,eNOS)表达最无显著差异,但均显著高于3d非贴壁细胞(P< 0.01);3 d贴壁细胞血管内皮生长因子(vascular endothelial growth factor,VEGF)表达水平显著高于1d贴壁细胞和3 d菲贴壁细胞(P<0.01).以上结果提示,小鼠骨髓单个核细胞1d贴壁诱导分化的内皮祖细胞生物学功能显著高于3d贴壁细胞和3d非贴壁细胞;3d贴壁细胞较1d贴壁细胞和3d非贴壁细胞表达较多的VEGF,1d贴壁细胞和3d贴壁细胞eNOS表达高于3d非贴壁细胞.小鼠骨髓内皮祖细胞诱导分化培养最适宜贴壁时间为1~3 d.%The different biological functions were studied in mouse bone marrow-derived endothelial progenitor cells isolated by differential time attachment to obtain the optimal adherent time in this study. Density gradient centrifugation-isolated bone marrow mononuclear cells were seeded on the fibronectin-coated dish. The 1-day cultured unattached cells were seeded on the second dish for 2 more days. Then unattached cells in the second dish were seeded on the third dish. The cells on 3 dishes were defined as 1-day adherent cells, 3-day adherent cells and 3-day

  12. Effect of pravastatin on endothelial dysfunction in children with medium to giant coronary aneurysms due to Kawasaki disease

    Institute of Scientific and Technical Information of China (English)

    Chao Duan; Zhong-Dong Du; Yu Wang; Li-Qun Jia

    2014-01-01

    Background: Ongoing low-grade inflammation and endothelial dysfunction persist in children with coronary lesions diagnosed with Kawasaki disease (KD). Statins, frequently used in the management of high cholesterol, have also shown to improve surrogate markers of infl ammation and endothelial dysfunction. This study was undertaken to investigate the effi cacy and safety of pravastatin in children with coronary artery aneurysms due to KD. Methods: The study enrolled 14 healthy children and 13 male children, aged 2-10 years, with medium-to-giant coronary aneurysms for at least 12 months after the onset of KD. Pravastatin was given orally to the KD group at a dose of 5 mg/day for children under 5 and 10 mg/day for children older than 5 years. To determine the effects of pravastatin on endothelial function, high-frequency ultrasound was performed before the start of the study and 6 months after pravastatin therapy. The parameters measured were brachial artery flow-mediated dilation (FMD), non-flow mediated dilation (NMD), and carotid artery stiffness index (SI). High sensitive C-reactive protein (hs-CRP) levels, the circulating endothelial progenitor cells (EPCs) number, and serum lipid profiles were also determined at baseline and after 6 months of pravastatin treatment. Results: Before treatment, the KD group had significantly decreased FMD (P0.05). No signifi cant complications were noted with paravastatin therapy. Conclusions: Pravastatin improves endothelial function and reduces low-grade chronic infl ammation in patients with coronary aneurysms due to KD. Children with coronary aneurysms due to KD may benefit from statin therapy.

  13. Fetal Circulation

    Science.gov (United States)

    ... Pressure High Blood Pressure Tools & Resources Stroke More Fetal Circulation Updated:Jul 8,2016 click to enlarge The ... fetal heart. These two bypass pathways in the fetal circulation make it possible for most fetuses to survive ...

  14. GRB Progenitors and Environment

    OpenAIRE

    Lazzati, Davide

    2005-01-01

    The study and knowledge of the environment of Gamma-Ray Bursts is of great interest from many points of view. For high redshift (z>0.5) events, the structure of the ambient medium is one of the best indicators of the nature and properties of the progenitor. It also tells us about the last stages of the pre-explosion evolution of the progenitor. In addition, it is interesting in its own as a sample of the interstellar medium in a high redshift galaxy. Measures of the density and structure of t...

  15. Endothelial injury and repair in vasculitis of the young

    OpenAIRE

    Clarke, L

    2009-01-01

    The vasculitides are a wide spectrum of disorders which are characterised by vascular inflammation. Endothelial injury can occur as a consequence of inappropriate inflammation and is central to the pathogenesis of these varied diseases. This thesis documents the development of assays for detection of novel biomarkers of endothelial injury and/or activation and subsequent reparative responses in children with primary systemic vasculitis. It focuses in particular on circulating endothelial cell...

  16. Placental Growth Factor Expression Is Required for Bone Marrow Endothelial Cell Support of Primitive Murine Hematopoietic Cells

    OpenAIRE

    Xiaoying Zhou; Barsky, Lora W.; Adams, Gregor B

    2013-01-01

    Two distinct microenvironmental niches that regulate hematopoietic stem/progenitor cell physiology in the adult bone marrow have been proposed; the endosteal and the vascular niche. While extensive studies have been performed relating to molecular interactions in the endosteal niche, the mechanisms that regulate hematopoietic stem/progenitor cell interaction with bone marrow endothelial cells are less well defined. Here we demonstrate that endothelial cells derived from the bone marrow suppor...

  17. Novel heart valve prosthesis with self-endothelialization potential made of modified polyhedral oligomeric silsesquioxane-nanocomposite material.

    Science.gov (United States)

    Ghanbari, Hossein; Radenkovic, Dina; Marashi, Sayed Mahdi; Parsno, Shirin; Roohpour, Nima; Burriesci, Gaetano; Seifalian, Alexander M

    2016-06-01

    In the cardiovascular system, the endothelial layer provides a natural antithrombogenic surface on the inner portion of the heart and associated vessels. For a synthetic material therefore, the ability to attract and retain endothelial or endothelial progenitor cells (EPCs), ultimately creating a single endothelial layer on its surface, is of prime importance. The authors have developed a nanocomposite polymer, based on a combination of polyhedral oligomeric silsesquioxane nanoparticles and polycarbonate urea urethane (POSS-PCU), which is biocompatible and has been used in human for the world's first synthetic trachea, tear duct, and bypass graft. In this study, the authors modified the surface of this casted nanocomposite by grafting fibronectin derived bioactive peptides [glycine-arginine-glycine-aspartic acid-glycine (GRGDG) and lauric acid conjugated GRGDG (GRGDG-LA)] to enhance the endothelialization for using heart valves leaflets from circulating EPCs. Human peripheral blood mononuclear cells were separated using Ficoll-Paque centrifugation, with harvested EPCs purified using CD34 microbead labeling and magnetic-activated cell sorting. Cells were seeded onto 96 well plates coated with POSS-PCU, GRGDG/GRGDG-LA modified POSS-PCU and PCU polymers, for a period of 21 days. Cells were studied under light, confocal, and scanning electron microscope (SEM). Fluorescence-activated cell sorting was used to analyze cell surface markers. Cell attachment and proliferation was observed in all POSS-PCU samples, significantly higher than the activity seen within the control PCU polymers (p < 0.05). Microscopic examination revealed clonal expansion and morphological changes in cells seeded on POSS-PCU. The cells expressed increasing levels of mature endothelial cell markers over time with a concurrent reduction in hematopoietic stem cell marker expression. SEM showed a mixed population of morphologically differentiated endothelial cells and EPCs. These results support

  18. Transplantation of progenitor cells after reperfused acute myocardial infarction: evaluation of perfusion and myocardial viability with FDG-PET and thallium SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Doebert, Natascha; Berner, Uwe; Menzel, Christian; Hamscho, Nadja; Gruenwald, Frank [Department of Nuclear Medicine, University of Frankfurt (Germany); Britten, Martina; Assmus, Birgit; Lehmann, Ralf; Schaechinger, Volker; Zeiher, Andreas M. [Department of Cardiology, University of Frankfurt (Germany); Dimmeler, Stefanie [Department of Molecular Cardiology, University of Frankfurt (Germany)

    2004-08-01

    Clinical outcome after myocardial infarction depends on the extent of irreversibly damaged myocardium. Implantation of bone marrow-/circulating blood-derived progenitor cells has been shown to improve contractile cardiac function after myocardial infarction in both experimental and initial clinical studies. In the present study, first observations of the effect of local intracoronary progenitor cell infusion on the regeneration of infarcted cardiac tissue after acute myocardial infarction was evaluated by means of {sup 18}F-fluorodeoxyglucose positron emission tomography (PET) and {sup 201}Tl single-photon emission computed tomography (SPECT). Twenty-six patients underwent intracoronary infusion of bone marrow-derived (BMCs) (15 patients) or circulating blood-derived endothelial progenitor cells (EPCs) (11 patients) 4{+-}2 days after acute myocardial infarction. Based on a left ventricular segmentation model (17 segments), mean signal intensities as a parameter of viability and perfusion in the infarct zone and non-infarct areas were calculated quantitatively by PET and SPECT at baseline and at 4 months of follow-up. Transplantation of progenitor cells was associated with a significant increase in the mean signal intensity (MSI) in the infarct zone from 54.5% (25th and 75th percentiles: 47.7%, 60.0%) to 58.0% (52.7%, 66.7%) on PET (P=0.013) and from 58.0% (49.5%, 63.0%) to 61.5% (52.5%, 70.2%) on SPECT (P=0.005). Global left ventricular ejection fraction (LVEF) increased from 53.5% (42.6%, 60.0%) to 58.0% (53.0%, 65.8%) (P<0.001). In the five patients without an increase in MSI on PET, LVEF changed from 60.0% (50.0%, 64.0%) to 72.0% (64.0%, 75.5%) at follow-up. PET and SPECT did not show any significant changes in MSI in the non-infarct areas [from 73% (68.5%, 76.2%) to 73% (69.7%, 78.0%) for PET and from 72.0% (66.5%, 77.6%) to 73.0% (67.5%, 78.2%) for SPECT]. There were no significant differences in myocardial viability and perfusion between BMC and EPC infusion

  19. Definitive Hematopoiesis in the Yolk Sac Emerges from Wnt-Responsive Hemogenic Endothelium Independently of Circulation and Arterial Identity.

    Science.gov (United States)

    Frame, Jenna M; Fegan, Katherine H; Conway, Simon J; McGrath, Kathleen E; Palis, James

    2016-02-01

    Adult-repopulating hematopoietic stem cells (HSCs) emerge in low numbers in the midgestation mouse embryo from a subset of arterial endothelium, through an endothelial-to-hematopoietic transition. HSC-producing arterial hemogenic endothelium relies on the establishment of embryonic blood flow and arterial identity, and requires β-catenin signaling. Specified prior to and during the formation of these initial HSCs are thousands of yolk sac-derived erythro-myeloid progenitors (EMPs). EMPs ensure embryonic survival prior to the establishment of a permanent hematopoietic system, and provide subsets of long-lived tissue macrophages. While an endothelial origin for these HSC-independent definitive progenitors is also accepted, the spatial location and temporal output of yolk sac hemogenic endothelium over developmental time remain undefined. We performed a spatiotemporal analysis of EMP emergence, and document the morphological steps of the endothelial-to-hematopoietic transition. Emergence of rounded EMPs from polygonal clusters of Kit(+) cells initiates prior to the establishment of arborized arterial and venous vasculature in the yolk sac. Interestingly, Kit(+) polygonal clusters are detected in both arterial and venous vessels after remodeling. To determine whether there are similar mechanisms regulating the specification of EMPs with other angiogenic signals regulating adult-repopulating HSCs, we investigated the role of embryonic blood flow and Wnt/β-catenin signaling during EMP emergence. In embryos lacking a functional circulation, rounded Kit(+) EMPs still fully emerge from unremodeled yolk sac vasculature. In contrast, canonical Wnt signaling appears to be a common mechanism regulating hematopoietic emergence from hemogenic endothelium. These data illustrate the heterogeneity in hematopoietic output and spatiotemporal regulation of primary embryonic hemogenic endothelium. PMID:26418893

  20. Definitive Hematopoiesis in the Yolk Sac Emerges from Wnt-Responsive Hemogenic Endothelium Independently of Circulation and Arterial Identity.

    Science.gov (United States)

    Frame, Jenna M; Fegan, Katherine H; Conway, Simon J; McGrath, Kathleen E; Palis, James

    2016-02-01

    Adult-repopulating hematopoietic stem cells (HSCs) emerge in low numbers in the midgestation mouse embryo from a subset of arterial endothelium, through an endothelial-to-hematopoietic transition. HSC-producing arterial hemogenic endothelium relies on the establishment of embryonic blood flow and arterial identity, and requires β-catenin signaling. Specified prior to and during the formation of these initial HSCs are thousands of yolk sac-derived erythro-myeloid progenitors (EMPs). EMPs ensure embryonic survival prior to the establishment of a permanent hematopoietic system, and provide subsets of long-lived tissue macrophages. While an endothelial origin for these HSC-independent definitive progenitors is also accepted, the spatial location and temporal output of yolk sac hemogenic endothelium over developmental time remain undefined. We performed a spatiotemporal analysis of EMP emergence, and document the morphological steps of the endothelial-to-hematopoietic transition. Emergence of rounded EMPs from polygonal clusters of Kit(+) cells initiates prior to the establishment of arborized arterial and venous vasculature in the yolk sac. Interestingly, Kit(+) polygonal clusters are detected in both arterial and venous vessels after remodeling. To determine whether there are similar mechanisms regulating the specification of EMPs with other angiogenic signals regulating adult-repopulating HSCs, we investigated the role of embryonic blood flow and Wnt/β-catenin signaling during EMP emergence. In embryos lacking a functional circulation, rounded Kit(+) EMPs still fully emerge from unremodeled yolk sac vasculature. In contrast, canonical Wnt signaling appears to be a common mechanism regulating hematopoietic emergence from hemogenic endothelium. These data illustrate the heterogeneity in hematopoietic output and spatiotemporal regulation of primary embryonic hemogenic endothelium.

  1. Effects of high glucose on proliferation, migration, adhesion and secretion of rat late endothelial progenitor cells%高糖对大鼠晚期内皮祖细胞增殖、迁移、黏附及分泌功能的影响

    Institute of Scientific and Technical Information of China (English)

    李岩; 唐可欣; 李宏; 张杰; 成敏

    2011-01-01

    目的:探讨不同浓度葡萄糖对骨髓来源的晚期内皮祖细胞(EPCs)增殖、迁移、黏附及分泌功能的影响.方法:密度梯度法获取大鼠骨髓单个核细胞,体外培养EPCs并进行鉴定.以传至第3代的EPCs,即晚期EPCs为靶细胞,分别给予不同浓度的葡萄糖(5、10、20、40 mmol/L)干预,采用MTT比色法、改良的Boyden小室、黏附能力测定实验及ELISA检测高糖对EPCs增殖、迁移、黏附及分泌单核细胞趋化蛋白-1(MCP-1)和白细胞介素-8(IL-8)的影响.结果:与5 mmol/L葡萄糖组(正常浓度组)相比,10 mmol/L﹑20 mmol/L和40 mmol/L葡萄糖处理可浓度依赖性地降低晚期EPCs的增殖、迁移能力.40 mmol/L葡萄糖处理有效地抑制了晚期EPCs的黏附,促进MCP-1和IL-8的释放.结论:高糖抑制晚期EPCs的增殖、迁移和黏附能力,促进EPCs释放炎症细胞因子.%AIM: To investigate the effects of high glucose on the proliferation, adhesion, migration and secretion potentials of late endothelial progenitor cells ( EPCs ) from bone marrow. METHODS: Mononuclear cells were collected from rat bone marrow by density gradient centrifugation and cultured with M199 medium. The early EPCs were identified by Dil - ac - LDL and FITC - UEA - 1 double staining. The late EPCs were identified by RT - PCR to detect the expression of von Willebrand factor( vWF ) and VE - cadherin. Moreover, the cells were identified by FACS to detect the expression of CD133 and vascular endothelial growth factor receptor - 2( VEGFR - 2 ). The 3rd generation of EPCs was harvested and incubated with glucose in a series of concentrations ( 5, 10, 20 or 40 mmol/L ). The cell proliferation, adhesion, migration and the secretion of chemokines such as monocyte chemoattractant protein - l( MCP - 1 ) and interleukin - 8 ( IL - 8 ) were assayed with MTT, adhesion test, modified Boyden chamber assay and ELISA, respectively. RESULTS: Compared with normal glucose ( 5 mmol/L )treatment, high glucose (10

  2. 黄芪对动脉粥样硬化兔骨髓内皮祖细胞生长的影响响%Effect of astragalus mongholicus on the growth of endothelial progenitor cells from bone marrow of atherosclerotic rabbits

    Institute of Scientific and Technical Information of China (English)

    李蕾; 张怀勤; 尹娟; 范旰; 陈骁

    2011-01-01

    Objective To investigate the effect of astragalus mongholicus on the growth of endothelial progenitor cells from bone marrow of atherosclerotic rabbits, and to investigate the potential of astragalus for treatment of coronary heart disease. Methods New Zealand white rabbits were randomly divided into the control group (n= 6) and the atherosclerosis group (n = 6) to establish animal models of atherosclerosis. EPCs were cultured and identified by Dil-Ac-LDL uptake and FITC-UEA-I-lectin binding using fluorescence microscopy (FM). The ability of tube structure formation of EPCs were assessed using matrigel reagent kit in vitro. The adhesion, migration and proliferation ability of EPCs were also measured in these two groups. Results Plaques and fatty streak leisions, which were positive for DiI-ac-LDL-uptaking and FITC-UEA-I-lectin staining, could be observed in coronary arteries from rabbit models of atherosclerosis. Capillary formation could be observed 6 days post EPCs culturing. Compared with those in the control group, the cell number, the adhesion, migration and proliferation abilities of EPCs decreased significantly in the atherosclerosis group (P < 0.05); Astragalus could significantly increase the EPCs number and the adhesion, migration and proliferation abilities of EPCs at 20 g/L (P < 0.05) than other dosage. Conclusion The potential mechanism for Astragalus as a treatment of coronary artery disease is its contribution to EPCs growth.%目的:研究黄芪对冠状动脉粥样硬化模型兔骨髓内皮祖细胞(endothelial lprogenitor rcells,,EPCs) )生长的影响,并探讨黄芪对冠心病临床治疗的可能机制.方法:建立动脉粥样硬化模型,分为正常对照组和动脉粥样硬化组,体外分离培养EPCs,通过荧光显微镜观察细胞经乙酰化低密度脂蛋白(DiI-ac-LDL) )摄取试验和荆豆凝集素(FITC-UEA-I)和体外成血管试剂matrigel l观察细胞成血管功能来鉴定EPCs,检测细胞黏附能力、迁移能力

  3. 金黄色葡萄球菌超抗原样蛋白-5抑制人脐血源性内皮祖细胞黏附功能及其机制研究%Staphylococcal superantigen-like protein-5 inhibits adhesion of human umbilical cord blood-derived endothelial progenitor cells to P-selectin-coated surface

    Institute of Scientific and Technical Information of China (English)

    梁华; 曲小龙; 胡厚源; 宋治远; 程彦; 张静

    2011-01-01

    目的 研究金黄色葡萄球菌超抗原样蛋白-5 (staphylococcal superantigen-like protein-5,SSL5)与人脐血源性内皮祖细胞(endothelial progenitor cells,EPCs)表面P-选择素糖蛋白配体-1 (P-selectin glycoprotein ligand-1,PSGL-1) 的结合情况,及其对内皮祖细胞黏附功能的影响.方法 从金黄色葡萄球菌 NCTC 8325菌株的基因组中,扩增ssl5基因,并进行重组SSL5蛋白表达载体的构建.采用密度梯度离心法分离得到脐血中的单个核细胞并进行体外培养,对贴壁细胞在激光共聚焦显微镜下观察其摄取乙酰化低密度脂蛋白(DiI-acLDL)和结合荆豆凝集素(FITC-UEA-1)的情况.以流式细胞仪分析SSL5与EPCs表面PSGL-1的结合情况;以calcein-AM负载EPCs后,定量分析SSL5对EPCs在P-选择素包被表面黏附的抑制作用.结果 DiI-acLDL/ FITC-UEA-1双染阳性的细胞为EPCs.PSGL-1在EPCs表面有较丰富的表达,阳性细胞率为76.6%.SSL5与EPCs的结合随着SSL5浓度的增加而显著升高;并且,SSL5可竞争性抑制抗PSGL-1单克隆抗体(KPL-1)与EPCs的结合.SSL5可显著抑制EPCs在P-选择素表面的黏附,终浓度为30 mg/L的SSL5对EPCs在P-选择素表面黏附的抑制率已接近10 mg/L的KPL-1的效应,两者与空白对照组比较,差异有统计学意义(P<0.01).结论 SSL5可与EPCs表面的PSGL-1结合,而抑制EPCs在P-选择素表面的黏附,提示SSL5可能通过抑制EPCs与损伤内皮或激活的血小板之间的黏附,进而抑制EPCs对损伤内皮的修复作用.%Objective To investigate the binding of staphylococcal superantigen-like protein-5 (SSL5) to P-selectin glycoprotein ligand-1 (PSGL-1) on human umbilical cord blood-derived endothelial progenitor cells (EPCs) and the inhibitive effect of SSL5 on the adhesion of EPCs to P-selectin-coated surface.Methods SSL5 gene was amplified from the genome of Staphylococcus aureus NCTC 8325 and cloned into a vector for expressing recombinant SSL5 protein. Mononuclear cells were

  4. 当归补血汤对兔动脉粥样硬化模型骨髓内皮祖细胞的影响%Influence of Dang Gui Bu Xue Tang on spinal endothelial progenitor cells inrabbit model of atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    秦臻; 黄水清

    2011-01-01

    Objective To observe the influence of Dang Cui Bu Xue Tang on spinal endothelial progenitor cells (EPCs) in rabbit model of atherosclerosis, and discuss the possible mechanism of Dang Gui Bu Xue Tang in treating atherosclerosis. Methods The model of atherosclerosis was established by using immune injury and fatty diet for 4 weeks in New Zealand rabbits (n = 25). All modeled rabbits were divided into 5 groups ( each n = 5 ) according to the body weight. The blank group was intragastrically given distilled water, simvastatin group, aqueous suspension of simvastatin (1.7 mg/kg), and high-dose group (6 g/kg) , mid-dose group (3 g/kg) and low-dose group (1. 5 g/kg), Dang Gui Bu Xue Tang once a day for two weeks. The mononuclear cells were isolated from rabbit bone marrow by . Using density gradient centrifugation, which were cultured for 7 days and then adherent cells were cultured with Dil-ac-LDL and FITC-UEA-1 together for identifying EPCs and calculating the number of EPCs colony forming. The proliferation and adhesion were detected by using MTT method, adhension, by using adhension determination, migration, by using transwell chambers, and angiogenesis, by using in vitro angiogenesis kit. Results Compared with the blank group, the number of EPCs colony, proliferation , adhesion, migration and angiogenesis were all improved in the high-dose group, mid-dose group and simvastatin group (P < 0. 05 ) , but had no significant changes in the low-dose group. Conclusion The anti-atherosclerosis effect of Dang Cui Bu Xue Tang is closely related to the promotion of EPCs number and activity.%目的 观察当归补血汤对兔动脉粥样硬化( atherosclerosis,As)模型骨髓内皮祖细胞(endothelial progenitor cells,EPCs)的影响,探讨当归补血汤防治As的可能作用机制.方法 新西兰大白兔25只,免疫损伤联合高脂饮食法4周后形成As模型,模型动物按体重随机分为5组,每组5只.空白组灌胃等量蒸馏水,辛伐他汀

  5. Effects of intermittent hypoxia and light aerobic exercise on circulating stem cells and side population, after strenuous eccentric exercise in trained rats.

    Science.gov (United States)

    Núñez-Espinosa, Cristian; Ferreira, Inês; Ríos-Kristjánsson, Juan Gabriel; Rizo-Roca, David; García Godoy, Maria Dolors; Rico, Laura G; Rubi-Sans, Gerard; Torrella, Joan Ramon; Pagès, Teresa; Petriz, Jordi; Viscor, Ginés

    2015-01-01

    Our goal was to address if intermittent hypobaric hypoxia (IHH) exposure can help to increase the number of peripheral blood circulating progenitor cells and side population (SP) stem cells, in order to establish the usefulness of this intervention for skeletal muscle repair, because these cells play a role in tissue regeneration. Male Sprague-Dawley rats were studied in two basal states: untrained and trained and compared with 1, 3, 7 and 14 days stages of damage recovery of trained rats that had suffered skeletal muscle injury. Three experimental groups were studied: rats with passive recovery (CTRL); rats exposed to IHH after muscle damage (HYP); and, trained rats that, in addition to IHH, performed light aerobic exercise sessions (EHYP). We observed an increase in hematopoietic stem cells (HSCs) (mean = 0.153% of cells) and endothelial progenitor cells (EPCs) (mean = 0.0020% of cells) in EHYP on day 7. Also these cells showed characteristics of more primitive progenitors in comparison to the other experimental groups (mean = 0.107% of cells), as deduced by retention of the promising fluorescent probe Vybrant Dye Cycle Violet. We concluded that intermittent exposure to hypobaric hypoxia in combination with light aerobic exercise increased the number of HSCs and EPCs on the 7th day in EHYP group, although the exercise-induced stimulus showed a reverse effect on SP kinetics. PMID:25266982

  6. Nearshore circulation

    NARCIS (Netherlands)

    Battjes, J.A.; Sobey, R.J.; Stive, M.J.F.

    1990-01-01

    Shelf circulation is driven primarily by wind- and tide-induced forces. It is laterally only weakly constrained so that the geostrophic (Coriolis) acceleration is manifest in the response. Nearshore circulation on the other hand is dominated by wave-induced forces associated with shallow-water. wave

  7. Vascular endothelial growth factor and remedial angiogenesis%血管内皮生长因子与治疗性血管生成研究进展

    Institute of Scientific and Technical Information of China (English)

    郭敬; 王烈

    2008-01-01

    血管内皮生长因子(vascular endothelial growtll factor,VEGF)是内皮细胞特异的有丝分裂原,有促进内皮细胞增生、增强血管通透性、加速新血管形成的作用.血管生成是一个具有重要生理、病理意义的过程.在人体的创伤愈合、炎症反应、器官再生过程以及肿瘤生长转移、血管增生性疾病中,血管生成有重要作用.治疗性血管生成是指利用成血管诱导因子或内皮祖细胞,模拟体内血管生成机制,促进新生血管形成,改善侧支循环.本文就VEGF和治疗性血管生成研究进展做一综述.%Vascular endothelial growth factor (VEGF) is the endothelial cell-specific mitogen, facili-tates endothelial cell proliferation, increases vascular permeability and accelerates the formation of new blood vessels role. Angiogenesis is an important physiological and pathological significance of the process. In the human wound healing, inflammation, organ regeneration and tumor growth and metastasis, vascular prolifer-ative diseases, angiogenesis is an important role. Therapeutic angiogenesis is the use of inducible factor or vascular endothelial progenitor ceils, simulates in vivo angiogenesis mechanism, promotes angiogenesis and improves the collateral circulation. In this paper, VEGF and therapeutic ansiogenesis research progress were reviewed.

  8. Endoderm Generates Endothelial Cells during Liver Development

    Directory of Open Access Journals (Sweden)

    Orit Goldman

    2014-10-01

    Full Text Available Organogenesis requires expansion of the embryonic vascular plexus that migrates into developing organs through a process called angiogenesis. Mesodermal progenitors are thought to derive endothelial cells (ECs that contribute to both embryonic vasculogenesis and the subsequent organ angiogenesis. Here, we demonstrate that during development of the liver, which is an endoderm derivative, a subset of ECs is generated from FOXA2+ endoderm-derived fetal hepatoblast progenitor cells expressing KDR (VEGFR2/FLK-1. Using human and mouse embryonic stem cell models, we demonstrate that KDR+FOXA2+ endoderm cells developing in hepatic differentiation cultures generate functional ECs. This introduces the concept that ECs originate not exclusively from mesoderm but also from endoderm, supported in Foxa2 lineage-tracing mouse embryos by the identification of FOXA2+ cell-derived CD31+ ECs that integrate the vascular network of developing fetal livers.

  9. 鼠ho-1真核表达载体的构建、鉴定及其在骨髓来源的内皮祖细胞中的表达%Construction and identification of the rat recombinant plasmid PCMV/ho-1 and its expression in the endothelial progenitor cells derived from the bone marrow

    Institute of Scientific and Technical Information of China (English)

    王三明; 王花; 张辉; 刘祥厦; 刘勇; 王冕; 李雯; 王深明

    2009-01-01

    Objective To construct a kind of bone marrow-derived endothelial progenitor cells (EPCs) in which heine oxygenase-1(ho-1)gene is highly expressed. Methods ho-1 gene was amplified by RT-PCR,and ligated into the PCMV vector. Then the recombinant plasmid was transferred into EPCs. The expression of ho-1 was detected by immunohistochemistry staining. Results(1)Restrictive diges-tion,RT-PCR, plasmid colony gel electrophoresis, and sequencing revealed the successful construction of expression plasmid pCMV/ho-1 ,which was mediated via lipofectamine2000 ; (2) It was confirmed that the isolated ceils derived from bone marrow were EPCs which were characterized by morphology,immunohisto- chemistry stain of CD133, CD34 and Vwf antibody, and double staining of LDL-UEA after VEGF induc- tian;(3) The enhanced green fluorescence could be seen by fluorescence microscopy in pCMV/ho-1-transfected EPCs. lmmunostaining with ho-1 in engineered cells was strong positive after three generations. Conclusion The recombinant eukaryotic expression vector pCMV/ho-1 has been constructed and stably expressed efficiently in EPCs. The method was practical.%目的 制备高效表达的血红素氧合酶(HO)-1基因修饰的骨髓来源的内皮祖细胞(EPCs).方法 应用基因重组的方法构建ho-1真核表达质粒pCMV-Tag 2B/ho-1,用脂质体将其转入骨髓来源的EPCs,用荧光显微镜和Western blot等方法检测HO-1蛋白的表达.结果 (1)逆转录.聚合酶链反应(RT-PCR)产物电泳结果,质粒菌落PCR鉴定、酶切鉴定和测序鉴定结果证实ho-1真核表达质粒构建成功;(2)根据体外培养的骨髓来源的EPCs形态学变化,细胞的CDI33、CD34和VwF免疫组织化学染色鉴定,VEGF诱导后LDL、UEA双染鉴定等证实所分离的细胞为EPCs;(3)vegfa转染P3代EPCs后细胞内荧光明显增强,Western blot检测显示转染细胞HO-1蛋白抗体结合蛋白出现明显印迹条带.结论 成功制备表达外源性基因ho-1的骨髓来源的EPCs,制备方法可行.

  10. 内皮祖细胞和碱性成纤维生长因子对扩张型心肌病大鼠心功能和血管新生的影响%The different effects of endothelial progenitor cells and bFGF on cardiac function and angiogenesis in dilated cardiomyopathy rats

    Institute of Scientific and Technical Information of China (English)

    张昕; 王德强; 郑玉云; 郭晓华

    2011-01-01

    Objective To compare the different effects of endothelial progenitor cells(EPCs) transplantation and basic fibroblast growth factor(bFGF) intramyocardial infusion on cardiac function of dilated cardiomyopathy(DCM) rats. Methods Fifty adult female rats received subcutaneous injection of isoprenaline for induction of DCM. Four weeks later,the model rats were randomly divided into EPCs group, bFGF group and control group of 12 rats each. Three months later , echocardiographic examination and regional myocardial blood flow(RMFM) measurement were performed. EPCs were traced by fluorescence in situ hybridization. The protein and mRNA expression of bFGF in each group was measured by ELISA assay and reverse transcription-polymerase chain reaction respectively. Results Three months after intramyocardial transplantation of EPCs,Sry gene positive cells were detected only in EPCs group,these cells were present in walls of new and original vessels. The cardiac function as well as RMFM were significantly improved in EPCs group and bFGF group,the improvement was more significant in EPCs group. There was higher capillary density,expression of protein and mRNA of bFGF in EPCs group compared with bFGF group and control group (P < 0.05). Conclusions Transplantation of EPCs in myocardium can improve cardiac function,induce neovascularization and increase RMFM in DCM rats. The treatment with EPCs has better efficacy than administration of bFGF alone.%目的 比较心肌内移植内皮祖细胞(EPCs)和注射碱性成纤维生长因子(bFGF)对扩张型心肌病大鼠心功能改善的影响.方法 50只雌性SD大鼠皮下注射异丙肾上腺素,制作扩张型心肌病模型.4周后,36只模型鼠随机分为EPCs组,bFGF组和对照组,每组12只.3个月后,心脏彩色超声评估心功能情况;彩色微球技术评估局部心肌血流量(RMFM);Y染色体原位杂交示踪移植的EPCs;采用逆转录PCR分析bFGF mRNA的表达,ELISA分析心肌组织

  11. 纤维蛋白凝胶承载内皮祖细胞在移植梗死心肌后的细胞自噬变化%Autophagic changes of the endothelial progenitor cells carried with fibrin glue after transplantation into the infracted myocardium

    Institute of Scientific and Technical Information of China (English)

    张丹; 王海杰; 谭玉珍; 王强利; 伍金红; 李志华; 权哲

    2013-01-01

    Objective To investigate autophagic changes endothelial progenitor cells (EPCs) carried with fibrin glue after transplantation into the infarcted myocardial and to explore effects of autophagy on maintaining the implanted cells to survive and fibrin on protecting the cells. Methods The model of myocardial infarction was established with ligating the anterior descending branch of the left coronary artery of rats. The EPCs sorted from human umbilical cord blood were injected into the myocardium at the normal region, periphery of the infarcted region and infarcted region. After transplantation for two hours, the tissues at injection sites were removed, the semithin sections were prepared. Distribution of the EPCs carried with fibrin glue were examined. After positioning the implanted cells, the ultrathin sections were prepared. The changes of the autophagic structures in EPCs and compatibility of fibrin with EPCs and myocardium were evaluated. Results Compared with the normal region, the autophagic EPCs in the periphery of the infarcted region increased, and the autophagic structures in the cells increased. In the infarcted region, EPC autophagy enhanced significantly, and necrosis or apoptosis occurred in some cells. Compatibility of fibrin with EPCs and myocardium was good. The implanted cells in fibrin glue extended well, some EPCs adhered to cardiaomyocytes. Conclusion When EPCs are transplanted into the periphery of the infarcted region, mild ischemia induces autophagy of the cells, which is beneficial for maintaining survival of the transplanted cells. Carrying EPCs with fibrin glue may avoid of cell lose and promote cell survival.%目的 观察心肌梗死后移植内皮祖细胞(EPCs)时的细胞自噬变化,探讨自噬维持移植细胞存活和纤维蛋白凝胶保护细胞的作用.方法 通过结扎左冠状动脉的前降支建立大鼠心肌梗死模型后,在正常区、梗死边缘区和梗死区分别注射从人脐带血中分选的EPCs.2h后取

  12. Effect of Acid Fibroblast Growth Factor on Apoptosis in HUCB-derived Endothelial Progenitor Cells%酸性成纤维细胞生长因子对人脐带血内皮祖细胞凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    张海峰; 戴华卫; 周瑞耀; 李金海

    2013-01-01

    Aim To explore the effect of acid fibroblast growth factor (aFGF) on the apoptosis in endothelial progenitor cells (EPCs) from human umbilical cord blood (HUCB). Methods Mononuclearcells (MNCs) were isolated from HUCB in vitro by Ficoll density gradient centrifugation, then the cells were plated on fibronectin-coated culture dishes. Aftert 7 days, the attached cells were treated by aFGF with different concentrations (2, 5, 10 μg/L) for 24 hours. EPCs were characterized as adherent cells with double positive to Dil-acetylated low density lipoprotein ( Dil-acLDL) uptake and lectin binding by direct fluorescent staining under a laser scanning confocal microscope. Flow cytom-etry was used to detect cell apoptpsis. The expressions of Bcl-2 mRNA and protein were detected respectively by reverse transcription polymerase chain reaction (RT-PCR) and Western Blot. Meanwhile, the attached cells in the group (5 μg/ L aFGF group) of the most obvious effects on EPCs were cultured for 6, 12, 24, 48 h respectively, accordingly, to explore the relationship between time and effect of 5 μg/L aFGF group. Results Compared with control group, aFGF can argument the number of EPCs and inhibit apoptosis of EPCs ( P < 0. 05 ). The increase and inhibition ratio of apoptosis reached the maximum at 24 h after administration of 5 μg/L aFGF ( P < 0. 05 ) . Expression of Bcl-2 mRNA and protein of EPCs in aFGF group was higher than that in control group ( P < 0. 05 ) . Conclusions The results of the present study define a novel mechanism of the action of aFGF; aFGF can augment the number and inhibit apoptosis of EPCs from HUCB via up -regulating Bcl-2 expression.%目的 探讨酸性成纤维细胞生长因子(aFGF)对人脐带血中内皮祖细胞凋亡的影响及机制.方法 选择健康产妇脐带血,密度梯度离心法获取脐带血单个核细胞,培养7天后,收集贴壁细胞并加入不同浓度(2、5、10μg/L)aFGF干预24 h,流式细胞仪检测aFGF对细胞凋亡的影

  13. 阻塞性睡眠呼吸暂停患者外周血内皮祖细胞及促血管生成因子水平研究%T Endothelial progenitor cells (EPCs) and promote angiogenesis factor levels in peripheral blood in patients with obstructive sleep apnea

    Institute of Scientific and Technical Information of China (English)

    薛艳超; 孙蓓; 王新; 冯靖; 曹洁

    2016-01-01

    Objective To explore the repair possibilities of endothelial progenitor cells (EPCs)in peripheral blood in patients with different extents of obstructive sleep apnea (OSA) through measuring the levels of pro-angiogenic factors and different subgroups EPCs in peripheral blood in patients with OSA. Methods Ninety adult patients with OSA, 30 healthy controls with matched age and gender were enrolled for this study. The subjects performed Polysomnography, were divided in-to four group based on Apnea Hypopnea Index (AHI). The serum levels of HIF-1α, SDF-1αand VEGF were assessed by ELISA. Mononuclear cells were isolated from peripheral blood with density gradient centrifugation, and flow cytometry was used to detect levels of CD133+KDR+EPC, CD133+CD34+EPC, CD34+KDR+EPC and ALDHloCD34+KDR+EPC based on AL-DH activity, and CD133, CD34, PE-KDR related cell surface markers. Results The levels of CD133+KDR+EPC, CD133+CD34+EPC, CD34+KDR+EPC were higher in OSA groups than those of control group, both of which were higher in severe OSA group than those of in mild and moderate OSA groups. The levels of ALDHloCD34+KDR+EPC were higher in mild and moderate OSA groups than that of the control groups, and the levels of ALDHloCD34+KDR+EPC were significantly lower in se-vere OSA group than those of control, mild and moderate OSA groups. Serum levels of HIF-1α. VEGF were significantly high-er in OSA groups compared to those in control groups, both of which were higher in severe OSA group than those of mild and moderate OSA groups. Serum levels of SDF-1αwere significantly lower in severe OSA groups than those of mild, moderate OSA and control groups (P中度OSA组>轻度OSA组>对照组(均P中度OSA组>轻度OSA组>对照组,SDF-1α水平为重度OSA组<中度OSA组<轻度OSA组<对照组(均P<0.05).结论 OSA患者可能都会诱导动员并招募大量无效EPC,其数量庞大,但直接参与修复内皮的ALDHloCD34+KDR+EPC并未增加,尤其对于重度OSA患者甚至有可能减

  14. 恒磁场对雷帕霉素作用下大鼠内皮祖细胞增殖和迁移的影响%Effects of constant magnetic fields on proliferation and migration of endothelial progenitor cells under rapamycin intervention: experiment with rats

    Institute of Scientific and Technical Information of China (English)

    程何祥; 许旭东; 张荣庆; 栾荣华; 郭文怡; 王海昌; 于振涛; 周廉

    2008-01-01

    目的 观察恒磁场对雷帕霉素作用下大鼠骨髓来源的内皮祖细胞(EPC)增殖和迁移能力的影响.方法 密度梯度离心法获得SD雄性大鼠的骨髓EPC,无菌条件下培养6 d.实验分为5组:空白对照组、雷帕霉素(1 ng/ml)组及雷帕霉素+不同强度的恒磁场(0.1、0.5、1.0 mT)组.各组皆于24 h后收集标本,四甲基偶氮唑蓝法检测细胞增殖能力,改良的Boyden小室法测定EPC的迁移能力.结果 雷帕霉素组EPC增殖显著低于空白对照组(0.252±0.006 vs 0.328±0.025,P<0.05),EPC迁移能力显著降低(31±3 vs 48±5,P<0.05);0.5 mT和1.0 mT恒磁场组EPC增殖显著强于雷帕霉素组(0.278±0.008、0.280±0.010,P<0.05),EPC迁移能力显著高于雷帕雷素组(37±3、38±4,P<0.05).结论 0.5 mT和1.0 mT恒磁场有拮抗雷帕霉素的作用,可促进EPC的增殖和迁移.%Objective To investigate the effects of constant magnetic field (CMF) on proliferation and migration of bone marrow-derived endothelial progenitor cells (EPCs) under rapamycin intervention. Methods EPCs were isolated from rat bone marrow by density gradient centrifugation and cultured on fibronectin-coated dishes. Six days later the attached cells were divided into 5 groups: control group, rapamycin (1 ng/ml) group, and 3 rayamycin + CMF groups (treated with CMF of the doses 0.1 mT, 0.5 mT, and 1.0 mT respectively). Samples were collected 24 hours after incubation. Cell proliferation was measured by MTT chromatometry. EPC migration was detected with modified Boyden chamber assay. Results The EPC proliferation ability of the rapamycin group, expressed by absorbance, was (0.252 ± 0.006),significantly lower than that of the control group [(0.328 ± 0.025) ,P <0.05]. The number of migrating EPC was (31±3) cells, significantly lower than that of the control group [(48±5) ,P <0.05]. The EPC proliferation ability of the rapamycin + CMF 0.5 mT and 1.0 mT groups, expressed by absorbance, were (0.278±0.008) and (0.280±0

  15. 流体切应力与内皮祖细胞铜锌超氧化物歧化酶基因表达及活性%Effect of shear stress on the copper-zinc superoxide dismutase gene expression and activity in human endothelial progenitor cells

    Institute of Scientific and Technical Information of China (English)

    杨震; 陶军; 赖光华; 夏文豪; 罗初凡; 王洁梅; 陈龙; 廖新学; 靳亚飞

    2012-01-01

    背景:流体切应力是调控内皮祖细胞的重要非药理学手段,但目前其对内皮祖细胞抗氧化功能的作用尚不清楚.目的:观察不同切应力对内皮祖细胞铜锌超氧化物歧化酶(Cu/Zn-superoxide dismutase,Cu/Zn-SOD) 基因表达和活性的影响,以探讨流体切应力对内皮祖细胞抗氧化功能的调节作用.方法:健康成人外周血的单个核细胞诱导分化为内皮祖细胞,分为静态组、低切应力组、中切应力组和高切应力组4 组进行观察.结果与结论:外周血单个核细胞分化成为内皮祖细胞,倒置荧光显微镜下呈典形的"纺锤样"梭形细胞,ac-LDL 吞噬及lectin 抗体荧光标记双阳性,FLK-1 和VWF 免疫荧光抗体染色均为阳性.各切应力组内皮祖细胞CuZn-SOD 活性均高于静态组,并且切应力越大,内皮祖细胞Cu/Zn-SOD 分泌水平越高.荧光定量RT-PCR 表明,切应力处理能上调内皮祖细胞CuZn-SOD mRNA 表达,并且切应力水平越高,CuZn-SOD mRNA 表达越强.说明切应力能上调内皮祖细胞Cu/Zn-SOD 基因表达,增强内皮祖细胞Cu/Zn-SOD 活性,提高内皮祖细胞的抗氧化活性.因此,在生理范围内增加体外切应力,能上调内皮祖细胞的功能活性.%BACKGROUND: Shear stress is an important non-pharmacological method to regulated endothelial progenitor cells (EPCs). However, the effect of shear stress on the anti-oxidative activity of EPCs is not clear. OBJECTIVE: To observe the effect of shear stress on the copper-zinc superoxide dismutase (Cu/Zn-SOD) gene expression and a ct I vi ty in EPCs, in order to investigate the regulatory effects of shear stress on the EPCs function. METHODS: The peripheral blood mononuclear cells of healthy adult were inducted into EPCs. Then, they were divided into four different experimental groups which included stationary group, low-flow shear stress group (0.05 mN /cm2), medium-fl ow shear stress group (0.15 mN/cm2) and high-flow shear stress group (0

  16. Telmisartan Promotes Functional Activities of Endothelial Progenitor Cells via Activation of Phosphatei-Dylinositol-3-Kinase/Serine-Threonine Kinase%替米沙坦通过磷脂酰肌醇-3-激酶/丝苏氨酸蛋白激酶途径改善内皮祖细胞的功能活性

    Institute of Scientific and Technical Information of China (English)

    曹政; 杨勇; 吴瑞霞; 陈彬; 华先平; 陈平英; 周选民

    2012-01-01

    Aim To investigate the functional effects of telmisartant on endothelial progenitor cells (EPC) functional activities. Methods Peripheral blood derived mononuclear cells containing EPC were isolated from healthy volunteers and then cultured on fibronectin-coated dishes with endothelial cell growth medium-2 ( EBM-2 ). The cells were cultured alone (control groups) ,with telmisartan (0.1 μmol/L, 1μmol/L, 10 μmol/L) , or telmisartan plus peroxisome proliferator-activated receptor gamma (PPARγ) inhibitor( GW9662) or telmisartan plus PI3K-inhibitor(Ly294002). The proliferation, migration and adhesion activities of EPC were determined with MTT assay, transwell assay and adhesive assay, respectively. The expression of Akt and p-Akt were measured by Western Blot analysis. Results In the presence of telmisartan, numbers of colonies increased in a dose-dependent manner. Dil-ac-LDL uptake and lectin staining revealed that these proliferation colonies were EPC. The proliferative, migratory and adhesive activities of EPC were significantly enhanced after treated with telmisartan in a dose-dependent manner. The inhibition of PPARγ and Akt activa tion attenuated the effect of telmisartan on EPC functions. Meanwhile, the expression of p-Akt were significantly upregu-lated by the treatment of telmisartan. Conclusions Telmisartan could improve the proliferative, migratory and adhesive activities of EPC via the PDK/Akt pathway.of%目的 研究替米沙坦对内皮祖细胞增殖、迁移、黏附等生物学活性的影响并探讨其可能机制.方法 利用密度梯度离心法分离、培养人外周血单个核细胞,经FITC-UEA-I和Dil-acLDL双染色鉴定为正在分化的内皮祖细胞.将分离、培养的内皮祖细胞分为对照组、替米沙坦组(0.1 μmol/L、1μmol/L、10μmol/L)、过氧化体增殖物激活型受体γ抑制剂(GW9662)干预组和磷脂酰肌醇-3-羟基激酶抑制剂(Ly294002)干预组.采用MTT比色法、Transwell小室、细胞计数法

  17. Treatment of transfection hypoxia inducible factor gene into endothelial progenitor cells for vascular regeneration in rat ischemic hind-limb%缺氧诱导因子转染内皮祖细胞治疗大鼠缺血后肢

    Institute of Scientific and Technical Information of China (English)

    王三明; 王花; 彭林; 王深明

    2010-01-01

    Objective To explore whether the overexpression of hypoxia inducible factor (HIF)transfection into endothelial progenitor cells (EPCs) is beneficial on eovascularization of rat ischemic hindlimb and limb survival.Methods SD rat ischemic hind-limb models were established,and randomly divided into three groups,six rats each group.Lipofectamine 2000 mediated Eukaryotic expression vector of HIF was transfected into EPCs from marrow,which then was injected into rats via vena caudalis.Observe how EPCs transfected with HIF gene gathered at the ischemic part and facilitated angiogenesis.Results ( 1 ) General limb disability: limb restoration rate of Group EPC,EPC + HIF were obviously higher than that of Group PBS (P <0.05).(2) Micro vessel density (MVD): compared with Group PBS,there was a marked increase of MVD in Group EPC,HIF at each time point (P < 0.05 ).14 and 21 days after operation,MVD in Group HIF was higher than that in Group EPC (P <0.05).(3) HIF and Vascular endothelial growth factor (VEGF) Expression in ischemic limbs:compared with Group PBS,EPC,Expression of HIF and VEGF protein in Group HIF was significantly increased (P < 0.05).There was obvious increase in expression of HIF and VEGF protein in Group EPC compared with Group PBS ( P < 0.05 ).(4) Blood perfusion:seven days after operation,rat limb perfusion in all groups was reduced; 14,21 days after operation,compared with PBS controlled group,there was notable blood perfusion recovery in Group EPC and HIF ( P < 0.01 ).Blood perfusion of Group EPC was less than that of Group HIF ( P < 0.05 ).Conclusion EPCs transfected with HIF gene had a significant impact on angiogenesis in ischemic.Combined application of HIF gene enhanced the effect of EPCs treatment of augment naturally impaired neovascularization in animal model of experimentally induced limb ischemia.%目的 使用缺氧诱导因子-1α(HIF-1α)转染内皮祖细胞(EPC)治疗大鼠后肢缺血,观察EPC、HIF-1α转染EPC对大鼠缺

  18. Circulating levels of interleukin-6, vascular endothelial growth factor, YKL-40, matrix metalloproteinase-3, and total aggrecan in spondyloarthritis patients during 3 years of treatment with TNF alpha inhibitors

    DEFF Research Database (Denmark)

    Pedersen, S.J.; Hetland, M.L.; Sørensen, Inge Juul;

    2010-01-01

    with tumor necrosis factor-alpha (TNF alpha) inhibitors and to compare with levels in healthy subjects. Biomarkers were measured in an observational cohort of 49 SpA patients (ankylosing spondylitis, n = 32, and psoriatic arthritis, n = 17) initiating TNF alpha inhibitor therapy (infliximab, n = 38......The objectives of the study were to investigate short and long-term changes and relations to treatment response of plasma interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), YKL-40, matrix metalloproteinase-3 (MMP-3), and total aggrecan in patients with spondyloarthritis (SpA) treated......Euro parts per thousand 0.001), whereas total aggrecan was lower (662 mu g/l (223-2,219) vs. 816 (399-2,190),p a parts per thousand currency signaEuro parts per thousand 0.001). Two weeks after first treatment, all biomarker levels changed towards normal levels (p a parts per thousand currency signa...

  19. Circulating levels of interleukin-6, vascular endothelial growth factor, YKL-40, matrix metalloproteinase-3, and total aggrecan in spondyloarthritis patients during 3 years of treatment with TNFα inhibitors

    DEFF Research Database (Denmark)

    Pedersen, Susanne Juhl; Hetland, Merete Lund; Sørensen, Inge Juul;

    2010-01-01

    with tumor necrosis factor-alpha (TNFα) inhibitors and to compare with levels in healthy subjects. Biomarkers were measured in an observational cohort of 49 SpA patients (ankylosing spondylitis, n=32, and psoriatic arthritis, n=17) initiating TNFα inhibitor therapy (infliximab, n=38; etanercept, n=8......The objectives of the study were to investigate short and long-term changes and relations to treatment response of plasma interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), YKL-40, matrix metalloproteinase-3 (MMP-3), and total aggrecan in patients with spondyloarthritis (SpA) treated......-2,190), p≤0.001). Two weeks after first treatment, all biomarker levels changed towards normal levels (p≤0.03) in clinical responders (n=24), and persistent reductions over 3 years were found in IL-6, VEGF, YKL-40, and MMP-3. Only MMP-3 decreased (p≤0.02) in non-responders (n=13). The study demonstrated...

  20. Circulating levels of interleukin-6, vascular endothelial growth factor, YKL-40, matrix metalloproteinase-3, and total aggrecan in spondyloarthritis patients during 3 years of treatment with TNFα inhibitors

    DEFF Research Database (Denmark)

    Sørensen, Inge Juul; Ostergaard, Mikkel; Nielsen, Hans Jørgen;

    2010-01-01

    with tumor necrosis factor-alpha (TNFa) inhibitors and to compare with levels in healthy subjects. Biomarkers were measured in an observational cohort of 49 SpA patients (ankylosing spondylitis, n=32, and psoriatic arthritis, n=17) initiating TNFa inhibitor therapy (infliximab, n=38; etanercept, n=8......The objectives of the study were to investigate short and long-term changes and relations to treatment response of plasma interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), YKL-40, matrix metalloproteinase-3 (MMP-3), and total aggrecan in patients with spondyloarthritis (SpA) treated......-2,190), p=0.001). Two weeks after first treatment, all biomarker levels changed towards normal levels (p=0.03) in clinical responders (n=24), and persistent reductions over 3 years were found in IL-6, VEGF, YKL-40, and MMP-3. Only MMP-3 decreased (p=0.02) in non-responders (n=13). The study demonstrated...

  1. Endothelial Dysfunction in Chronic Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Curtis M. Steyers

    2014-06-01

    Full Text Available Chronic inflammatory diseases are associated with accelerated atherosclerosis and increased risk of cardiovascular diseases (CVD. As the pathogenesis of atherosclerosis is increasingly recognized as an inflammatory process, similarities between atherosclerosis and systemic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel diseases, lupus, psoriasis, spondyloarthritis and others have become a topic of interest. Endothelial dysfunction represents a key step in the initiation and maintenance of atherosclerosis and may serve as a marker for future risk of cardiovascular events. Patients with chronic inflammatory diseases manifest endothelial dysfunction, often early in the course of the disease. Therefore, mechanisms linking systemic inflammatory diseases and atherosclerosis may be best understood at the level of the endothelium. Multiple factors, including circulating inflammatory cytokines, TNF-α (tumor necrosis factor-α, reactive oxygen species, oxidized LDL (low density lipoprotein, autoantibodies and traditional risk factors directly and indirectly activate endothelial cells, leading to impaired vascular relaxation, increased leukocyte adhesion, increased endothelial permeability and generation of a pro-thrombotic state. Pharmacologic agents directed against TNF-α-mediated inflammation may decrease the risk of endothelial dysfunction and cardiovascular disease in these patients. Understanding the precise mechanisms driving endothelial dysfunction in patients with systemic inflammatory diseases may help elucidate the pathogenesis of atherosclerosis in the general population.

  2. Endothelial cells regulate neural crest and second heart field morphogenesis

    Directory of Open Access Journals (Sweden)

    Michal Milgrom-Hoffman

    2014-07-01

    Full Text Available Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio–craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1 in the mesoderm results in early embryonic lethality, severe deformation of the cardio–craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1 along with changes in the extracellular matrix (ECM composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio–craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1.

  3. From progenitor to afterlife

    CERN Document Server

    Chevalier, R A

    2006-01-01

    The sequence of massive star supernova types IIP (plateau light curve), IIL (linear light curve), IIb, IIn (narrow line), Ib, and Ic roughly represents a sequence of increasing mass loss during the stellar evolution. The mass loss affects the velocity distribution of the ejecta composition; in particular, only the IIP's typically end up with H moving at low velocity. Radio and X-ray observations of extragalactic supernovae show varying mass loss properties that are in line with expectations for the progenitor stars. For young supernova remnants, pulsar wind nebulae and circumstellar interaction provide probes of the inner ejecta and higher velocity ejecta, respectively. Among the young remnants, there is evidence for supernovae over a range of types, including those that exploded with much of the H envelope present (Crab Nebula, 3C 58, 0540--69) and those that exploded after having lost most of their H envelope (Cas A, G292.0+1.8).

  4. Eotaxin-Rich Proangiogenic Hematopoietic Progenitor Cells and CCR3+ Endothelium in the Atopic Asthmatic Response.

    Science.gov (United States)

    Asosingh, Kewal; Vasanji, Amit; Tipton, Aaron; Queisser, Kimberly; Wanner, Nicholas; Janocha, Allison; Grandon, Deepa; Anand-Apte, Bela; Rothenberg, Marc E; Dweik, Raed; Erzurum, Serpil C

    2016-03-01

    Angiogenesis is closely linked to and precedes eosinophilic infiltration in asthma. Eosinophils are recruited into the airway by chemoattractant eotaxins, which are expressed by endothelial cells, smooth muscles cells, epithelial cells, and hematopoietic cells. We hypothesized that bone marrow-derived proangiogenic progenitor cells that contain eotaxins contribute to the initiation of angiogenesis and inflammation in asthma. Whole-lung allergen challenge of atopic asthma patients revealed vascular activation occurs within hours of challenge and before airway inflammation. The eotaxin receptor CCR3 was expressed at high levels on submucosal endothelial cells in patients and a murine model of asthma. Ex vivo exposure of murine endothelial cells to eotaxins induced migration and angiogenesis. In mechanistic studies, wild-type mice transplanted with eotaxin-1/2-deficient bone marrow had markedly less angiogenesis and inflammation in an atopic asthma model, whereas adoptive transfer of proangiogenic progenitor cells from wild-type mice in an atopic asthma model into the eotaxin-1/2-deficient mice led to angiogenesis and airway inflammation. The findings indicate that Th2-promoting hematopoietic progenitor cells are rapidly recruited to the lung upon allergen exposure and release eotaxins that coordinately activate endothelial cells, angiogenesis, and airway inflammation. PMID:26810221

  5. Endothelin-1 supports clonal derivation and expansion of cardiovascular progenitors derived from human embryonic stem cells.

    Science.gov (United States)

    Soh, Boon-Seng; Ng, Shi-Yan; Wu, Hao; Buac, Kristina; Park, Joo-Hye C; Lian, Xiaojun; Xu, Jiejia; Foo, Kylie S; Felldin, Ulrika; He, Xiaobing; Nichane, Massimo; Yang, Henry; Bu, Lei; Li, Ronald A; Lim, Bing; Chien, Kenneth R

    2016-03-08

    Coronary arteriogenesis is a central step in cardiogenesis, requiring coordinated generation and integration of endothelial cell and vascular smooth muscle cells. At present, it is unclear whether the cell fate programme of cardiac progenitors to generate complex muscular or vascular structures is entirely cell autonomous. Here we demonstrate the intrinsic ability of vascular progenitors to develop and self-organize into cardiac tissues by clonally isolating and expanding second heart field cardiovascular progenitors using WNT3A and endothelin-1 (EDN1) human recombinant proteins. Progenitor clones undergo long-term expansion and differentiate primarily into endothelial and smooth muscle cell lineages in vitro, and contribute extensively to coronary-like vessels in vivo, forming a functional human-mouse chimeric circulatory system. Our study identifies EDN1 as a key factor towards the generation and clonal derivation of ISL1(+) vascular intermediates, and demonstrates the intrinsic cell-autonomous nature of these progenitors to differentiate and self-organize into functional vasculatures in vivo.

  6. Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells.

    OpenAIRE

    Anagnostou, A; Lee, E. S.; Kessimian, N; Levinson, R.; Steiner, M.

    1990-01-01

    Erythropoietin is known to be a hematopoietic growth factor with a singularly specific action on the proliferation and differentiation of erythroid progenitor cells. We have observed a dose-dependent proliferative action of human recombinant erythropoietin on human umbilical vein endothelial cells and bovine adrenal capillary endothelial cells. Binding studies with radioiodinated recombinant human erythropoietin revealed a large number (approximately 27,000) of an apparent single class of rec...

  7. Circulation economics

    DEFF Research Database (Denmark)

    Ingebrigtsen, Stig; Jakobsen, Ove

    2006-01-01

    presupposes a perspective integrating economic, natural and cultural values. Third, to organize the interplay between all stakeholders we introduce an arena for communicative cooperation. Originality/value - The paper concludes that circulation economics presupposes a change in paradigm, from a mechanistic...

  8. Assessment of Endothelial Dysfunction in Childhood Obesity and Clinical Use

    Directory of Open Access Journals (Sweden)

    Luc Bruyndonckx

    2013-01-01

    Full Text Available The association of obesity with noncommunicable diseases, such as cardiovascular complications and diabetes, is considered a major threat to the management of health care worldwide. Epidemiological findings show that childhood obesity is rapidly rising in Western society, as well as in developing countries. This pandemic is not without consequences and can affect the risk of future cardiovascular disease in these children. Childhood obesity is associated with endothelial dysfunction, the first yet still reversible step towards atherosclerosis. Advanced research techniques have added further insight on how childhood obesity and associated comorbidities lead to endothelial dysfunction. Techniques used to measure endothelial function were further brought to perfection, and novel biomarkers, including endothelial progenitor cells, were discovered. The aim of this paper is to provide a critical overview on both in vivo as well as in vitro markers for endothelial integrity. Additionally, an in-depth description of the mechanisms that disrupt the delicate balance between endothelial damage and repair will be given. Finally, the effects of lifestyle interventions and pharmacotherapy on endothelial dysfunction will be reviewed.

  9. Functional Blood Progenitor Markers in Developing Human Liver Progenitors.

    Science.gov (United States)

    Goldman, Orit; Cohen, Idan; Gouon-Evans, Valerie

    2016-08-01

    In the early fetal liver, hematopoietic progenitors expand and mature together with hepatoblasts, the liver progenitors of hepatocytes and cholangiocytes. Previous analyses of human fetal livers indicated that both progenitors support each other's lineage maturation and curiously share some cell surface markers including CD34 and CD133. Using the human embryonic stem cell (hESC) system, we demonstrate that virtually all hESC-derived hepatoblast-like cells (Hep cells) transition through a progenitor stage expressing CD34 and CD133 as well as GATA2, an additional hematopoietic marker that has not previously been associated with human hepatoblast development. Dynamic expression patterns for CD34, CD133, and GATA2 in hepatoblasts were validated in human fetal livers collected from the first and second trimesters of gestation. Knockdown experiments demonstrate that each gene also functions to regulate hepatic fate mostly in a cell-autonomous fashion, revealing unprecedented roles of fetal hematopoietic progenitor markers in human liver progenitors. PMID:27509132

  10. Endothelial nitric oxide: protector of a healthy mind.

    Science.gov (United States)

    Katusic, Zvonimir S; Austin, Susan A

    2014-04-01

    Endothelial nitric oxide (NO) is generated by constitutively active endothelial nitric oxide synthase (eNOS), an essential enzyme responsible for cardiovascular homeostasis. Historically, endothelial NO was first recognized as a major vasodilator involved in control of vasomotor function and local blood flow. In this review, our attention is focused on the emerging role of endothelial NO in linking cerebrovascular function with cognition. We will discuss the recognized ability of endothelial NO to modulate processing of amyloid precursor protein (APP), influence functional status of microglia, and affect cognitive function. Existing evidence suggests that the loss of NO in cultured human cerebrovascular endothelium causes increased expression of APP and β-site APP-cleaving enzyme 1 (BACE1) thereby resulting in increased secretion of amyloid β peptides (Aβ1-40 and Aβ1-42). Furthermore, increased expression of APP and BACE1 as well as increased production of Aβ peptides was detected in the cerebral microvasculature and brain tissue of eNOS-deficient mice. Since Aβ peptides are considered major cytotoxic molecules responsible for the pathogenesis of Alzheimer's disease, these observations support the concept that a loss of endothelial NO might significantly contribute to the initiation and progression of cognitive decline. In addition, genetic inactivation of eNOS causes activation of microglia and promotes a pro-inflammatory phenotype in the brain. Behavioural analysis revealed that eNOS-deficient mice exhibit impaired cognitive performance thereby indicating that selective loss of endothelial NO has a detrimental effect on the function of neuronal cells. Together with findings from prior studies demonstrating the ability of endothelial NO to affect synaptic plasticity, mitochondrial biogenesis, and function of neuronal progenitor cells, it is becoming apparent that the role of endothelial NO in the control of central nervous system function is very complex. We

  11. Tissue factor expression by endothelial cells in sickle cell anemia.

    OpenAIRE

    Solovey, A; Gui, L; Key, N. S.; Hebbel, R.P.

    1998-01-01

    The role of the vascular endothelium in activation of the coagulation system, a fundamental homeostatic mechanism of mammalian biology, is uncertain because there is little evidence indicating that endothelial cells in vivo express tissue factor (TF), the system's triggering mechanism. As a surrogate for vessel wall endothelium, we examined circulating endothelial cells (CEC) from normals and patients with sickle cell anemia, a disease associated with activation of coagulation. We find that s...

  12. Progenitors of type Ia supernovae

    CERN Document Server

    Maeda, Keiichi

    2016-01-01

    Natures of progenitors of type Ia Supernovae (SNe Ia) have not yet been clarified. There has been long and intensive discussion on whether the so-called single degenerate (SD) scenario or the double degenerate (DD) scenario, or anything else, could explain a major population of SNe Ia, but the conclusion has not yet been reached. With rapidly increasing observational data and new theoretical ideas, the field of studying the SN Ia progenitors has been quickly developing, and various new insights have been obtained in recent years. This article aims at providing a summary of the current situation regarding the SN Ia progenitors, both in theory and observations. It seems difficult to explain the emerging diversity seen in observations of SNe Ia by a single population, and we emphasize that it is important to clarify links between different progenitor scenarios and different sub-classes of SNe Ia.

  13. [Vascular endothelial Barrier Function].

    Science.gov (United States)

    Ivanov, A N; Puchinyan, D M; Norkin, I A

    2015-01-01

    Endothelium is an important regulator of selective permeability of the vascular wall for different molecules and cells. This review summarizes current data on endothelial barrier function. Endothelial glycocalyx structure, its function and role in the molecular transport and leukocytes migration across the endothelial barrier are discussed. The mechanisms of transcellular transport of macromolecules and cell migration through endothelial cells are reviewed. Special section of this article addresses the structure and function of tight and adherens endothelial junction, as well as their importance for the regulation of paracellular transport across the endothelial barrier. Particular attention is paid to the signaling mechanism of endothelial barrier function regulation and the factors that influence on the vascular permeability.

  14. Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts

    Science.gov (United States)

    Liu, Yu; Chen, Li; Diaz, Andrea Diaz; Benham, Ashley; Xu, Xueping; Wijaya, Cori S.; Fa’ak, Faisal; Luo, Weijia; Soibam, Benjamin; Azares, Alon; Yu, Wei; Lyu, Qiongying; Stewart, M. David; Gunaratne, Preethi; Cooney, Austin; McConnell, Bradley K.; Schwartz, Robert J.

    2016-01-01

    Mesp1 directs multipotential cardiovascular cell fates, even though it’s transiently induced prior to the appearance of the cardiac progenitor program. Tracing Mesp1-expressing cells and their progeny allows isolation and characterization of the earliest cardiovascular progenitor cells. Studying the biology of Mesp1-CPCs in cell culture and ischemic disease models is an important initial step toward using them for heart disease treatment. Because of Mesp1’s transitory nature, Mesp1-CPC lineages were traced by following EYFP expression in murine Mesp1Cre/+; Rosa26EYFP/+ ES cells. We captured EYFP+ cells that strongly expressed cardiac mesoderm markers and cardiac transcription factors, but not pluripotent or nascent mesoderm markers. BMP2/4 treatment led to the expansion of EYFP+ cells, while Wnt3a and Activin were marginally effective. BMP2/4 exposure readily led EYFP+ cells to endothelial and smooth muscle cells, but inhibition of the canonical Wnt signaling was required to enter the cardiomyocyte fate. Injected mouse pre-contractile Mesp1-EYFP+ CPCs improved the survivability of injured mice and restored the functional performance of infarcted hearts for at least 3 months. Mesp1-EYFP+ cells are bona fide CPCs and they integrated well in infarcted hearts and emerged de novo into terminally differentiated cardiac myocytes, smooth muscle and vascular endothelial cells. PMID:27538477

  15. Nitric oxide modulates lipopolysaccharide-induced endothelial platelet endothelial cell adhesion molecule expression via interleukin-10.

    Science.gov (United States)

    Hebeda, C B; Teixeira, S A; Tamura, E K; Muscará, M N; de Mello, S B V; Markus, R P; Farsky, S H P

    2011-08-01

    We have shown previously that nitric oxide (NO) controls platelet endothelial cell adhesion molecule (PECAM-1) expression on both neutrophils and endothelial cells under physiological conditions. Here, the molecular mechanism by which NO regulates lipopolysaccharide (LPS)-induced endothelial PECAM-1 expression and the role of interleukin (IL)-10 on this control was investigated. For this purpose, N-(G)-nitro-L-arginine methyl ester (L-NAME; 20 mg/kg/day for 14 days dissolved in drinking water) was used to inhibit both constitutive (cNOS) and inducible nitric oxide (iNOS) synthase activities in LPS-stimulated Wistar rats (5 mg/kg, intraperitoneally). This treatment resulted in reduced levels of serum NO. Under this condition, circulating levels of IL-10 was enhanced, secreted mainly by circulating lymphocytes, dependent on transcriptional activation, and endothelial PECAM-1 expression was reduced independently on reduced gene synthesis. The connection between NO, IL-10 and PECAM-1 expression was examined by incubating LPS-stimulated (1 µg/ml) cultured endothelial cells obtained from naive rats with supernatant of LPS-stimulated lymphocytes, which were obtained from blood of control or L-NAME-treated rats. Supernatant of LPS-stimulated lymphocytes obtained from L-NAME-treated rats, which contained higher levels of IL-10, reduced LPS-induced PECAM-1 expression by endothelial cells, and this reduction was reversed by adding the anti-IL-10 monoclonal antibody. Therefore, an association between NO, IL-10 and PECAM-1 was found and may represent a novel mechanism by which NO controls endothelial cell functions. PMID:21564091

  16. 氯吡格雷对人早期内皮祖细胞黏附、迁移及增殖功能的影响%Effects of clopidogrel on the adherence, migration and proliferation of early endothelial progenitor cells from human peripheral blood

    Institute of Scientific and Technical Information of China (English)

    李鹏; 刘文娴; 张丽洁; 辛毅

    2012-01-01

    目的 探讨氯吡格雷对人早期内皮祖细胞(EPCs)黏附、迁移及增殖功能的影响.方法 体外培养人外周血早期EPCs并进行鉴定;将含不同浓度(1×10-3~200×10-3 mmol·L-1)氯吡格雷的培养液与EPCs共培养24h,检测黏附、迁移及增殖功能;应用含浓度为20×10-3 mmol·L-1氯吡格雷的培养液与EPCs共培养0.5~72.0 h,检测EPCs上述功能.结果 培养EPCs第4天,早期EPCs呈典型长梭形;培养EPCs第7天数目增多,可摄取Dil标记的乙酰化低密度脂蛋白以及FITC标记的荆豆凝集素.氯吡格雷可使细胞明显增多;不同浓度的氯吡格雷可改善其黏附(F=56.54,P=0.00)、迁移(F =60.23,P=0.00)和增殖(F=1.45,P=0.16)功能;氯吡格雷浓度为20×10-3 mmol·L-1时,保护作用最强;当共培养不同时间后,其仍可改善EPCs黏附(F=127.03,P =0.00)、迁移(F=96.03,P=0.00)和增殖(F=10.46,P=0.00)功能;保护作用呈时间依赖性,但于24h后达到平台期.结论 氯吡格雷可改善人外周血早期EPCs的黏附、迁移及增殖功能,且具有浓度依赖性和时间依赖性.%Objective To evaluate the effect of clopidogrel on the adherence,migration and proliferation of early endothelial progenitor cells(EPCs) from human peripheral blood. Methods Early EPCs were cultured and characterized. Then, EPCs were cultured for 24 hours with medium containing clopidogrel of different concentrations (1 ×10-3-200×10-3 mmol · L-1),and the adherence, migration and proliferation were tested; furthermore, the EPCs were cultured with medium containing 20 × 10-3 mmol · L-1 clopidogrel for different time(0.5 -72.0 h) ,and analysed the adherence,migration and proliferation again. Results The EPCs became long spindle on the 4th day,and these cells increased on the 7th day. Moreover,EPCs could take in Dil-acetylated low density lipoprotein( Dil-acLDL) and FTTC-ulex europaeus agglutinin ( FITC-UEA-I). Clopidogrel could significantly increase the number of cell; the

  17. Change of endothelial progenitor cells in the bone marrow and peripheral blood of patients with acute leukemia and its clinical significance%急性白血病患者骨髓及外周血内皮祖细胞的变化及其临床意义

    Institute of Scientific and Technical Information of China (English)

    耿丛丛; 申政磊; 朱萍; 沈秀芬; 尹列芬; 杨玲

    2015-01-01

    Objectives To evaluate the count of endothelial progenitor cells (EPCs) in peripheral blood (PB) and bone marrow (BM) of acute leukemia (AL) patients and explore its clinical significance.Methods EPCs were detected by flow cytometry procedures in 43 AL patients and in 10 benign hematologic patients as control group.Results The absolute counts of EPCs in AL patients before the treatment [(119.46± 72.23)/μl in BM and (13.69±8.26)/pl in PB] were significantly higher than those in control group [(23.21 ± 12.59)/pl in BM and (1.86±1.18)/μl in PB] (P < 0.01).The absolute counts of EPCs were significandy higher in BM than those in BP in AL patients before the treatment (P < 0.001).After the treatment, the absolute counts of EPCs in no remission (NR) group [(110.02±67.28)/μl in BM and (10.04±9.51)/μ1 in PB] were significantly higher than those in control group (P < 0.05), while the counts of EPCs in complete remission (CR) group were no significant difference compared with those in control group (P > 0.05).After the treatment ,the absolute counts of EPCs both in BM and in BP of CR group [(26.32±17.44)/μl and (2.54±2.12)/μl, respectively] were significantly lower than those before treatment [(113.18±69.22)/μl and (14.45±10.76)/μl, respectively] (P < 0.05), however those of NR group were no significant difference than before (P > 0.05).The absolute counts of EPCs whether in PB or in BM were no significant difference between acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL) (P > 0.05).The absolute counts of EPCs in PB of AL had a positive correlation with β2-MG and LDH (P < 0.05).Conclusions EPC levels are significantly increased in BM and BP of AL patients and may correlate with disease status, response to treatment and prognosis.%目的 探讨内皮祖细胞(EPC)在急性白血病(AL)患者骨髓及外周血中数量变化及其临床意义.方法 采用流式细胞术(FCM)对43例初治AL患者骨髓及外周血中的EPC进

  18. 携人血栓调节蛋白基因慢病毒载体的构建及其在内皮祖细胞中的表达%Construction of lentiviral vector containing human thrombomodulin gene and its expression in endothelial progenitor cells of rabbits

    Institute of Scientific and Technical Information of China (English)

    赵国峰; 邓钢; 侯居攀; 吴志平; 许荣睿; 秦永林; 金晖

    2014-01-01

    Objective To construct the lentiviral vector containing human thrombomodulin (hTM) gene,and examine the expression of hTM in rabbit peripheral endothelial progenitor cells (EPCs)after transduction and its effect on the biological functions of EPCs.Methods The lentivirus plenti6.3-hTM-IRES-EGFP was reconstructed by polymerase chain reaction (PCR).EPCs were isolated from fresh blood obtained from the heart of a rabbit by density-gradient centrifugation and then were transduced with above lentiviral vector.To evaluate the transduction efficiency of plenti6.3-hTM-IRES-EGFP,quantitativepolymerase chain reaction (Q-PCR),Western blotting and facial action coding system(FACS) were performed.Acetylated low density lipoprotein (DiI-ac-LDL) and fluorescein isothiocyanate (FITC)-UEA-1 double fluorescent labeling was used for the identification of EPCs.Methyl thiazol tetrazolium (MTT) and transwell assays were carried out to examine the proliferation and migration of EPCs in the presence or absence of hTM.Results The recombinant plenti6.3-hTM-IRES-EGFP was confirmed by the evidence of DNA sequence analysis and Western blotting.The transduced EPCs were found overexpressing hTM by Q-PCR,Western blotting and FACS,suggesting the recombinant lentivirus system was successfully constructed.There were no changes in the biological functions of EPCs overexpressing hTM.Conclusion The plenti6.3-hTM-IRES-EGFP has been successfully constructed and hTM can be efficiently and highly expressed in EPCs.All of these provide us experimental evidence for gene-cell combined therapy and further study of TM on inhibiting thrombotic restenosis of arterial occlusive diseases after percutaneous transluminal angioplasty (PTA) treatment.%目的 构建携带人血栓调节蛋白(hTM)基因的慢病毒表达载体(plenti6.3-hTM-IRES-EGFP),体外转染兔外周血内皮祖细胞(EPCs),并观察其在EPCs中的表达及对其功能的影响.方法 采用DNA重组技术构建plenti6.3-hTM-IRES-EGFP慢病毒表

  19. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, increases the number of circulating CD34⁺CXCR4⁺ cells in patients with type 2 diabetes.

    Science.gov (United States)

    Aso, Yoshimasa; Jojima, T; Iijima, T; Suzuki, K; Terasawa, T; Fukushima, M; Momobayashi, A; Hara, K; Takebayashi, K; Kasai, K; Inukai, T

    2015-12-01

    We investigated the effects of sitagliptin, a dipeptidyl peptidase (DPP)-4 inhibitor, on the number of circulating CD34(+)CXCR4(+)cells, a candidate for endothelial progenitor cells (EPCs), plasma levels of stromal cell-derived factor (SDF)-1α, a ligand for CXCR4 receptor and a substrate for DPP-4, and plasma levels of interferon-inducible protein (IP)-10, for a substrate for DPP-4, in patients with type 2 diabetes. We studied 30 consecutive patients with type 2 diabetes who had poor glycemic control despite treatment with metformin and/or sulfonylurea. Thirty diabetic patients were randomized in a 2:1 ratio into a sitagliptin (50 mg/day) treatment group or an active placebo group (glimepiride 1 mg/day) for 12 weeks. Both groups showed similar improvements in glycemic control. The number of circulating CD34(+)CXCR4(+) cells was increased from 30.5 (20.0, 47.0)/10(6) cells at baseline to 55.5 (31.5, 80.5)/10(6) cells at 12 weeks of treatment with 50 mg/day sitagliptin (P = 0.0014), while showing no significant changes in patients treated with glimepiride. Plasma levels of SDF-1α and IP-10, both physiological substrates of endogenous DPP-4 and chemokines, were significantly decreased at 12 weeks of sitagliptin treatment. In conclusion, treatment with sitagliptin increased the number of circulating CD34(+)CXCR4(+) cells by approximately 2-fold in patients with type 2 diabetes.

  20. Stem and progenitor cells: advancing bone tissue engineering.

    Science.gov (United States)

    Tevlin, R; Walmsley, G G; Marecic, O; Hu, Michael S; Wan, D C; Longaker, M T

    2016-04-01

    Unlike many other postnatal tissues, bone can regenerate and repair itself; nevertheless, this capacity can be overcome. Traditionally, surgical reconstructive strategies have implemented autologous, allogeneic, and prosthetic materials. Autologous bone--the best option--is limited in supply and also mandates an additional surgical procedure. In regenerative tissue engineering, there are myriad issues to consider in the creation of a functional, implantable replacement tissue. Importantly, there must exist an easily accessible, abundant cell source with the capacity to express the phenotype of the desired tissue, and a biocompatible scaffold to deliver the cells to the damaged region. A literature review was performed using PubMed; peer-reviewed publications were screened for relevance in order to identify key advances in stem and progenitor cell contribution to the field of bone tissue engineering. In this review, we briefly introduce various adult stem cells implemented in bone tissue engineering such as mesenchymal stem cells (including bone marrow- and adipose-derived stem cells), endothelial progenitor cells, and induced pluripotent stem cells. We then discuss numerous advances associated with their application and subsequently focus on technological advances in the field, before addressing key regenerative strategies currently used in clinical practice. Stem and progenitor cell implementation in bone tissue engineering strategies have the ability to make a major impact on regenerative medicine and reduce patient morbidity. As the field of regenerative medicine endeavors to harness the body's own cells for treatment, scientific innovation has led to great advances in stem cell-based therapies in the past decade.

  1. From Here to There, Progenitor Cells and Stem Cells Are Everywhere in Lung Vascular Remodeling.

    Science.gov (United States)

    Heise, Rebecca L; Link, Patrick A; Farkas, Laszlo

    2016-01-01

    The field of stem cell biology, cell therapy, and regenerative medicine has expanded almost exponentially, in the last decade. Clinical trials are evaluating the potential therapeutic use of stem cells in many adult and pediatric lung diseases with vascular component, such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), or pulmonary arterial hypertension (PAH). Extensive research activity is exploring the lung resident and circulating progenitor cells and their contribution to vascular complications of chronic lung diseases, and researchers hope to use resident or circulating stem/progenitor cells to treat chronic lung diseases and their vascular complications. It is becoming more and more clear that progress in mechanobiology will help to understand the various influences of physical forces and extracellular matrix composition on the phenotype and features of the progenitor cells and stem cells. The current review provides an overview of current concepts in the field. PMID:27583245

  2. From here to there, progenitor cells and stem cells are everywhere in lung vascular remodeling

    Directory of Open Access Journals (Sweden)

    Rebecca L. Heise

    2016-08-01

    Full Text Available The field of stem cell biology, cell therapy and regenerative medicine has expanded almost exponentially in the last decade. Clinical trials are evaluating the potential therapeutic use of stem cells in many adult and pediatric lung diseases with vascular component, such as bronchopulmonary dysplasia (BPD, chronic obstructive pulmonary disease (COPD, idiopathic pulmonary fibrosis (IPF or pulmonary arterial hypertension (PAH. Extensive research activity is exploring lung resident and circulating progenitor cells and their contribution to vascular complications of chronic lung diseases, and researchers hope to use resident or circulating stem/progenitor cells to treat chronic lung diseases and their vascular complications. It is becoming more and more clear that progress in mechanobiology will help to understand the various influences of physical forces and extracellular matrix composition on the phenotype and features of the progenitor cells and stem cells. The current review provides an overview of current concepts in the field.

  3. 循环内皮细胞损伤标记物与抗中性粒细胞胞质抗体相关血管炎活动性的联系%Significance of circulating endothelial biomarkers in patients with ANCA associated vasculitis

    Institute of Scientific and Technical Information of China (English)

    陈樱花; 位红兰; 隽晨霞; 刘正钊; 章海涛; 刘志红; 胡伟新

    2011-01-01

    Objective; To detect various endothelial markers of circulating endothelial cells ( CECs ), soluble thrombomodulin( Stm) , von Willebrand factor ( Vwf), E-selectin and Vascular cell adhesion molecule 1 ( VCAM-1) in patients with active and remission stage of ANCA associated vasculitis, and to explore the relationship between endothelial markers and the activity of ANCA associated vasulitis (AAV). Methodology:Fifty six patients with AAV in active phase [M:23,F:33,mean age (48.1 ± 16. 8)y,BVAS score (13. 6 ±2. 4) ] ,28 patients in remission phase [ M:9,F:19,mean age (50.2 ± 16. 4)y,BVAS score 0] ,and 20 healthy controls were enrolled in this study. The CECs were isolated from peripheral blood by use of Dynabeads coated with antibodies against CD146,and the plasma Stm, Vwf, E-selectin and ignificance of VCAM-1 were detected with ELISA. Results;CECs,Vwf,E-selectin and Stm levels,but not VCAM-1, were higher in the active phase of AAV than that in controls (P <0. 01) ,no significant differences of endothelial markers were found between AAV patients in remission and controls. The CECs [ (30 ± 1) cells/ml vs (17 ±5.0) cells/ml, P < 0. 01 ] and levels of plasma Stm [ (9. 5 ± 6. 8) ng/ml vs (6. 1 ±3.4) ng/ml, P < 0. 01 ] were significant increased in active AAV patients than that in remission, whereas corrected for renal function, Stm did not significant, and plasma Vwf and E-selectin levels showed no significant differences between patients in active phase and in remission patients. The Stm level in the active phase was positive related with serum creatinine and urine protein, while elevated Stm levels were associated with higher serum creatinine levels. The endothelial markers had no relation with crescents and fibrinoid necrotic lesion.Conclusion: Circulating endothelial cells is potential biomarker in evaluating the activity of ANCA associated vasulitis.%目的:探讨外周血液中内皮细胞损伤标记物循环内皮细胞( CECs)数量

  4. Subretinal transplantation of mouse retinal progenitor cells

    Institute of Scientific and Technical Information of China (English)

    Caihui Jiang; Maonian Zhang; Henry Klassen; Michael Young

    2011-01-01

    The development of cell replacement techniques is promising as a potential treatment for photoreceptor loss. However, the limited integration ability of donor and recipient cells presents a challenge following transplantation. In the present study, retinal progenitor cells (RPCs) were harvested from the neural retinas of enhanced green fluorescent protein mice on postnatal day 1, and expanded in a neurobasal medium supplemented with fetal bovine serum without endothelial growth factor. Using a confocal microscope, immunohistochemistry demonstrated that expanded RPCs in vitro maintain retinal stem cell properties and can be differentiated into photoreceptor cells. Three weeks after transplantation, subretinal transplanted RPCs were found to have migrated and integrated into the outer nuclear layer of recipient retinas with laser injury, some of the integrated cells had differentiated into photoreceptors, and a subpopulation of these cells expressed photoreceptor specific synaptic protein, appearing to form synaptic connections with bipolar cells. These results suggest that subretinal transplantation of RPCs may provide a feasible therapeutic strategy for the loss of retinal photoreceptor cells.

  5. Modulation of circulating angiogenic factors and tumor biology by aerobic training in breast cancer patients receiving neoadjuvant chemotherapy.

    Science.gov (United States)

    Jones, Lee W; Fels, Diane R; West, Miranda; Allen, Jason D; Broadwater, Gloria; Barry, William T; Wilke, Lee G; Masko, Elisabeth; Douglas, Pamela S; Dash, Rajesh C; Povsic, Thomas J; Peppercorn, Jeffrey; Marcom, P Kelly; Blackwell, Kimberly L; Kimmick, Gretchen; Turkington, Timothy G; Dewhirst, Mark W

    2013-09-01

    Aerobic exercise training (AET) is an effective adjunct therapy to attenuate the adverse side-effects of adjuvant chemotherapy in women with early breast cancer. Whether AET interacts with the antitumor efficacy of chemotherapy has received scant attention. We carried out a pilot study to explore the effects of AET in combination with neoadjuvant doxorubicin-cyclophosphamide (AC+AET), relative to AC alone, on: (i) host physiology [exercise capacity (VO2 peak), brachial artery flow-mediated dilation (BA-FMD)], (ii) host-related circulating factors [circulating endothelial progenitor cells (CEP) cytokines and angiogenic factors (CAF)], and (iii) tumor phenotype [tumor blood flow ((15)O-water PET), tissue markers (hypoxia and proliferation), and gene expression] in 20 women with operable breast cancer. AET consisted of three supervised cycle ergometry sessions/week at 60% to 100% of VO2 peak, 30 to 45 min/session, for 12 weeks. There was significant time × group interactions for VO2 peak and BA-FMD, favoring the AC+AET group (P blood flow in the AC+AET group. There were no differences in any tumor tissue markers (P > 0.05). Whole-genome microarray tumor analysis revealed significant differential modulation of 57 pathways (P < 0.01), including many that converge on NF-κB. Data from this exploratory study provide initial evidence that AET can modulate several host- and tumor-related pathways during standard chemotherapy. The biologic and clinical implications remain to be determined. PMID:23842792

  6. The isolation and in vitro expansion of hepatic Sca-1 progenitor cells

    International Nuclear Information System (INIS)

    The intra-hepatic population of liver progenitor cells expands during liver injury when hepatocyte proliferation is inhibited. These cells can be purified by density gradient centrifugation and cultured. Separated by size only this population contains small cells of hematopoietic, epithelial and endothelial lineages and is thought to contain liver stem cells. The identity of liver stem cells remains unknown although there is some evidence that tissue Sca1+ CD45- cells display progenitor cell characteristics. We identified both intra-hepatic and gall bladder Sca1+ cells following liver injury and expanded ex vivo Sca1 cells as part of heterogenous cell culture or as a purified population. We found significant difference between the proliferation of Sca-1 cells when plated on laminin or collagen I while proliferation of heterogenous population was not affected by the extracellular matrix indicating the necessity for culture of Sca1+ cells with laminin matrix or laminin producing cells in long term liver progenitor cell cultures.

  7. [Endothelial cell adhesion molecules].

    Science.gov (United States)

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  8. Embryonic Heart Progenitors and Cardiogenesis

    Science.gov (United States)

    Brade, Thomas; Pane, Luna S.; Moretti, Alessandra; Chien, Kenneth R.; Laugwitz, Karl-Ludwig

    2013-01-01

    The mammalian heart is a highly specialized organ, comprised of many different cell types arising from distinct embryonic progenitor populations during cardiogenesis. Three precursor populations have been identified to contribute to different myocytic and nonmyocytic cell lineages of the heart: cardiogenic mesoderm cells (CMC), the proepicardium (PE), and cardiac neural crest cells (CNCCs). This review will focus on molecular cues necessary for proper induction, expansion, and lineage-specific differentiation of these progenitor populations during cardiac development in vivo. Moreover, we will briefly discuss how the knowledge gained on embryonic heart progenitor biology can be used to develop novel therapeutic strategies for the management of congenital heart disease as well as for improvement of cardiac function in ischemic heart disease. PMID:24086063

  9. Magnetic resonance tracking of endothelial progenitor cells labeled with superparamagnetic iron ox-ide homing to the site of hepatoma%超顺磁性氧化铁纳米粒子标记内皮祖细胞靶向肝癌的MR实验研究

    Institute of Scientific and Technical Information of China (English)

    麦筱莉; 范海健; 牡丹; 余德才; 杨军; 朱斌

    2016-01-01

    Objective To track the migration and incorporation of intravenously injected, magneti⁃cally labeled endothelial progenitor cells ( EPCs) from mouse bone marrow into the blood vessels in a rapid⁃ly growing HCC model by microMR (7.0 T). Methods This study was approved by the Institutional Com⁃mittee on Animal Research. H22 hepatic ascitic cancer cells was directly injected into the left liver lobe of BALB/c nude mice ( n=15) . EPCs derived from bone marrow of C57BL/6 mice were isolated and cultured. The third passage EPCs were collected and labeled with 25 μg/ml superparamagnetic iron oxide ( SPIO) and poly⁃l⁃lysine (PLL) complex (SPIO⁃PLL). MTT assay and flow cytometry were used to evaluate the difference of growth curve and apoptosis between labeled and unlabeled EPCs. EPCs labeled with SPIO⁃PLL were injected into mice via tail vein in experiment group (on the 3rd day after establishing HCC model) (n=15) and control group (n=6). The signal changes of tumor (the 1st, 3rd and 7th day after transplantation) were observed by microMR. Prussian blue staining and immunohistochemistry staining of CD31 were per⁃formed. MRI findings were confirmed by histomorphology. Two⁃sample t test was used to analyze the data. Results Single tumor was showed in the liver of all mice 3 d after establishing models. Labeling with SPIO⁃PLL at a concentration of 25μg/ml did not alter cell growth curve ( measured by MTT assay;t=0.281, P>0.05) and cell apoptosis (analyzed by flow cytometry). The apoptosis rates of SPIO⁃PLL labeled and un⁃labled EPCs were (12.31±1.43)% and (11.57±1.24)% in early stage, and (0.55±0.07)% and (0.49± 0�05)% in late stage. No significant differences were observed between them (t=0.967, 1.060; both P>0�05) . Migration and incorporation of transplanted and labeled cells into tumor were documented with in vivo microMR as low signal intensity at the tumor periphery as early as the 3rd day after EPCs administration in preformed tumors (4

  10. Progenitor Cells and Podocyte Regeneration

    Science.gov (United States)

    Shankland, Stuart J.; Pippin, Jeffrey W.; Duffield, Jeremy S.

    2014-01-01

    The very limited ability of adult podocytes to proliferate in vivo is clinically significant because: podocytes form a vascular barrier which is functionally critical to the nephron; podocyte hypoplasia is a characteristic of disease; and inadequate regeneration of podocytes is a major cause of persistent podocyte hypoplasia. Excessive podocyte loss or inadequate replacement leads to glomerulosclerosis in many progressive kidney diseases. Thus, restoration of podocyte cell density is almost certainly reliant on regeneration by podocyte progenitors. However such putative progenitors have remained elusive until recently. In this review we describe the developmental processes leading to podocyte and parietal epithelial cell (PEC) formation during glomerulogenesis. We compare evidence that in normal human kidneys PECs expressing ‘progenitor’ markers CD133 and CD24 can differentiate into podocytes in vitro and in vivo with evidence from animal models suggesting a more limited role of PEC-capacity to serve as podocyte progenitors in adults. We will highlight tantalizing new evidence that specialized vascular wall cells of afferent arterioles including those which produce renin in healthy kidney, provide a novel local progenitor source of new PECs and podocytes in response to podocyte hypoplasia in the adult, and draw comparisons with glomerulogenesis. PMID:25217270

  11. Endothelial Colony-Forming Cells Derived From Pregnancies Complicated by Intrauterine Growth Restriction Are Fewer and Have Reduced Vasculogenic Capacity

    OpenAIRE

    Sipos, Peter I.; Bourque, Stephane L.; Hubel, Carl A.; Baker, Philip N.; Sibley, Colin P.; Davidge, Sandra T.; Crocker, Ian P.

    2013-01-01

    Context: Endothelial colony-forming cells (ECFCs) are the only putative endothelial progenitor cells capable of vasculogenesis, and their dysfunction may represent a risk factor for cardiovascular disease. Intrauterine growth restriction (IUGR) is a pregnancy-related disorder associated with long-term cardiovascular risk. Objective: Our objective was to determine whether ECFCs derived from pregnancies complicated by IUGR exhibit altered vasculogenic potential. Design and Setting: This was a p...

  12. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells.

    Science.gov (United States)

    Tran, Jason; Magenau, Astrid; Rodriguez, Macarena; Rentero, Carles; Royo, Teresa; Enrich, Carlos; Thomas, Shane R; Grewal, Thomas; Gaus, Katharina

    2016-01-01

    Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS) and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC) with cholesterol and the oxysterol 7-ketocholesterol (7KC). Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1) colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL)-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF)-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells. PMID:26977592

  13. Activation of Endothelial Nitric Oxide (eNOS Occurs through Different Membrane Domains in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Jason Tran

    Full Text Available Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC with cholesterol and the oxysterol 7-ketocholesterol (7KC. Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1 colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells.

  14. Ablation of the renal stroma defines its critical role in nephron progenitor and vasculature patterning.

    Directory of Open Access Journals (Sweden)

    Stephanie Hum

    Full Text Available The renal stroma is an embryonic cell population located in the cortex that provides a structural framework as well as a source of endothelial progenitors for the developing kidney. The exact role of the renal stroma in normal kidney development hasn't been clearly defined. However, previous studies have shown that the genetic deletion of Foxd1, a renal stroma specific gene, leads to severe kidney malformations confirming the importance of stroma in normal kidney development. This study further investigates the role of renal stroma by ablating Foxd1-derived stroma cells themselves and observing the response of the remaining cell populations. A Foxd1cre (renal stroma specific mouse was crossed with a diphtheria toxin mouse (DTA to specifically induce apoptosis in stromal cells. Histological examination of kidneys at embryonic day 13.5-18.5 showed a lack of stromal tissue, mispatterning of renal structures, and dysplastic and/or fused horseshoe kidneys. Immunofluorescence staining of nephron progenitors, vasculature, ureteric epithelium, differentiated nephron progenitors, and vascular supportive cells revealed that mutants had thickened nephron progenitor caps, cortical regions devoid of nephron progenitors, aberrant vessel patterning and thickening, ureteric branching defects and migration of differentiated nephron structures into the medulla. The similarities between the renal deformities caused by Foxd1 genetic knockout and Foxd1DTA mouse models reveal the importance of Foxd1 in mediating and maintaining the functional integrity of the renal stroma.

  15. Using cultured endothelial cells to study endothelial barrier dysfunction: Challenges and opportunities.

    Science.gov (United States)

    Aman, Jurjan; Weijers, Ester M; van Nieuw Amerongen, Geerten P; Malik, Asrar B; van Hinsbergh, Victor W M

    2016-08-01

    Despite considerable progress in the understanding of endothelial barrier regulation and the identification of approaches that have the potential to improve endothelial barrier function, no drug- or stem cell-based therapy is presently available to reverse the widespread vascular leak that is observed in acute respiratory distress syndrome (ARDS) and sepsis. The translational gap suggests a need to develop experimental approaches and tools that better mimic the complex environment of the microcirculation in which the vascular leak develops. Recent studies have identified several elements of this microenvironment. Among these are composition and stiffness of the extracellular matrix, fluid shear stress, interaction of endothelial cells (ECs) with pericytes, oxygen tension, and the combination of toxic and mechanic injurious stimuli. Development of novel cell culture techniques that integrate these elements would allow in-depth analysis of EC biology that closely approaches the (patho)physiological conditions in situ. In parallel, techniques to isolate organ-specific ECs, to define EC heterogeneity in its full complexity, and to culture patient-derived ECs from inducible pluripotent stem cells or endothelial progenitor cells are likely to advance the understanding of ARDS and lead to development of therapeutics. This review 1) summarizes the advantages and pitfalls of EC cultures to study vascular leak in ARDS, 2) provides an overview of elements of the microvascular environment that can directly affect endothelial barrier function, and 3) discusses alternative methods to bridge the gap between basic research and clinical application with the intent of improving the translational value of present EC culture approaches. PMID:27343194

  16. 不同胎龄早产儿脐带血中内皮祖细胞水平及迁移能力研究%Research of number and migration ability of endothelial progenitor cells isolated from umbilical cord blood in preterm infants with different gestational ages

    Institute of Scientific and Technical Information of China (English)

    倪美艳; 白小红; 陈娟; 陈大鹏

    2016-01-01

    Objective To investigate the differences of the number and migration ability of endothelial progenitor cell (EPC ) isolated from umbilical cord blood among preterm infants with different gestational ages .Methods From October 2014 to July 2015 ,a total of 47 cases of umbilical cord blood of neonates in West China Second University Hospital , Sichuan University , Sichuan Academy of Medical Sciences & Sichuan Provincial People′s Hospital ,and Chengdu First People′s Hospital were chosen into this study .According to the gestational age of newborns whose umbilical cord blood was collected ,they were divided into very preterm group ( the gestational ages were 28 to 32 weeks ,n=12) ,preterm group (the gestational ages were 32 to 36 weeks ,n=20) ,and full‐term group (the gestational ages were > 37 weeks ,n=15) .Before the induced differentiation of umbilical cord blood in the three groups ,flow cytometry was used to detect the level of EPC .After the induced differentiation of umbilical cord blood in the three groups ,the mononuclear cells were incubated and stained by fluorescent probes labeled Dil‐acetylated low‐density lipoprotein (Dil‐Ac‐LDL ) and fluorescein isothiocyanate‐labeled ulex europaeus agglutinin‐1 (FITC‐UEA‐1 ) . The stainings of mononuclear cells in the three groups were observed under fluorescence microscope to detect whether the EPC was successfully induced or not .Transwell migration assay was used to detect the migration ability of EPC in the three groups .The levels of EPC before the induced differentiation of umbilical cord blood in three groups and the migration numbers of EPC after the induced differentiation of umbilical cord blood in three groups were compared by statistical methods .The study protocol was approved by the Ethical Review Boards of three hospitals from which the umbilical cord blood was collected .Informed consent was obtained from each pregnant woman before obtaining umbilical cord blood .There were no

  17. Predictors of endothelial function in employees with sedentary occupations in a worksite exercise program.

    Science.gov (United States)

    Lippincott, Margaret F; Desai, Aditi; Zalos, Gloria; Carlow, Andrea; De Jesus, Janet; Blum, Arnon; Smith, Kevin; Rodrigo, Maria; Patibandla, Sushmitha; Chaudhry, Hira; Glaser, Alexander P; Schenke, William H; Csako, Gyorgy; Waclawiw, Myron A; Cannon, Richard O

    2008-10-01

    A sedentary workforce may be at increased risk for future cardiovascular disease. Exercise at the work site has been advocated, but effects on endothelium as a biomarker of risk and relation to weight loss, lipid changes, or circulating endothelial progenitor cells (EPCs) have not been reported. Seventy-two office and laboratory employees (58 women; average age 45 years, range 22 to 62; 26 with body mass index values >30 kg/m(2)) completed 3 months of participation in the National Heart, Lung, and Blood Institute's Keep the Beat program, with the determination of vital signs, laboratory data, and peak oxygen consumption (VO(2)) during treadmill exercise. Brachial artery endothelium was tested by flow-mediated dilation (FMD), which at baseline was inversely associated with Framingham risk score (r = -0.3689, p <0.0001). EPCs were quantified by colony assay. With exercise averaging 98 +/- 47 minutes each workweek, there was improvement in FMD (from 7.8 +/- 3.4% to 8.5 +/- 3.0%, p = 0.0096) and peak VO(2) (+1.2 +/- 3.1 ml O(2)/kg/min, p = 0.0028), with reductions in diastolic blood pressure (-2 +/- 8 mm Hg, p = 0.0478), total cholesterol (-8 +/- 25 mg/dl, p = 0.0131), and low-density lipoprotein cholesterol (-7 +/- 19 mg/dl, p = 0.0044) but with a marginal reduction in weight (-0.5 +/- 2.1 kg, p = 0.0565). By multiple regression modeling, lower baseline FMD, greater age, reductions in total and low-density lipoprotein cholesterol and diastolic blood pressure, and increases in EPC colonies and peak VO(2) were jointly statistically significant predictors of change in FMD and accounted for 47% of the variability in FMD improvement with program participation. Results were similar when modeling was performed for women only. In contrast, neither adiposity at baseline nor change in weight was a predictor of improved endothelial function. In conclusion, daily exercise achievable at their work sites by employees with sedentary occupations improves endothelial function, even

  18. Endothelial and platelet markers in diabetes mellitus type 2

    Institute of Scientific and Technical Information of China (English)

    Peter Kubisz; Lucia Stanciaková; Ján Stasko; Peter Galajda; Marián Mokáň

    2015-01-01

    Diabetes mellitus (DM) is an extremely common disorder which carries a risk of vascular impairment. DM type2 (DM2) can be characterized by the dysfunction ofhaemostasis manifesting by stimulated coagulation process,disorder of platelet function and decreased fibrinolyticactivity. These all are the reasons why DM2 is the mostcommon acquired thrombophilia. Endothelial dysfunctionalong with platelet hyperactivity are unquestionablyinvolved in the hyperactivation of platelets and clottingfactors in DM. As a natural consequence of continuousinvestigation, many markers of endothelial dysfunctionand diabetic thrombocytopathy have been identifiedand considered for implementation in clinical practice.Endothelial function can be assessed by the evaluationof endothelial markers, circulating molecules synthesisedin various amounts by the endothelium. These markersprecede the signs of evident microangiopathy. Plateletshave an ethiopathogenic relation to the microangiopathy inDM. Their increased activity was confirmed in both typesof DM. Predictors of endothelial and platelet disorder couldimprove the screening of individuals at increased risk, thusleading to the early diagnosis, appropriate treatment, aswell as to the effective prevention of the complications ofDM2. In the article we deal with the mechanisms involvedin the pathogenesis of endothelial and platelet functionalabnormalities, endothelial and platelet markers of DM2considered for implementation in clinical practice andpossibilities of their detection.

  19. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues.

    Directory of Open Access Journals (Sweden)

    Eduardo K Moioli

    Full Text Available Poor angiogenesis is a major road block for tissue repair. The regeneration of virtually all tissues is limited by angiogenesis, given the diffusion of nutrients, oxygen, and waste products is limited to a few hundred micrometers. We postulated that co-transplantation of hematopoietic and mesenchymal stem/progenitor cells improves angiogenesis of tissue repair and hence the outcome of regeneration. In this study, we tested this hypothesis by using bone as a model whose regeneration is impaired unless it is vascularized. Hematopoietic stem/progenitor cells (HSCs and mesenchymal stem/progenitor cells (MSCs were isolated from each of three healthy human bone marrow samples and reconstituted in a porous scaffold. MSCs were seeded in micropores of 3D calcium phosphate (CP scaffolds, followed by infusion of gel-suspended CD34(+ hematopoietic cells. Co-transplantation of CD34(+ HSCs and CD34(- MSCs in microporous CP scaffolds subcutaneously in the dorsum of immunocompromised mice yielded vascularized tissue. The average vascular number of co-transplanted CD34(+ and MSC scaffolds was substantially greater than MSC transplantation alone. Human osteocalcin was expressed in the micropores of CP scaffolds and was significantly increased upon co-transplantation of MSCs and CD34(+ cells. Human nuclear staining revealed the engraftment of transplanted human cells in vascular endothelium upon co-transplantation of MSCs and CD34(+ cells. Based on additional in vitro results of endothelial differentiation of CD34(+ cells by vascular endothelial growth factor (VEGF, we adsorbed VEGF with co-transplanted CD34(+ and MSCs in the microporous CP scaffolds in vivo, and discovered that vascular number and diameter further increased, likely owing to the promotion of endothelial differentiation of CD34(+ cells by VEGF. Together, co-transplantation of hematopoietic and mesenchymal stem/progenitor cells may improve the regeneration of vascular dependent tissues such as bone

  20. High frequency of endothelial colony forming cells marks a non-active myeloproliferative neoplasm with high risk of splanchnic vein thrombosis.

    Directory of Open Access Journals (Sweden)

    Vittorio Rosti

    Full Text Available Increased mobilization of circulating endothelial progenitor cells may represent a new biological hallmark of myeloproliferative neoplasms. We measured circulating endothelial colony forming cells (ECFCs in 106 patients with primary myelofibrosis, fibrotic stage, 49 with prefibrotic myelofibrosis, 59 with essential thrombocythemia or polycythemia vera, and 43 normal controls. Levels of ECFC frequency for patient's characteristics were estimated by using logistic regression in univariate and multivariate setting. The sensitivity, specificity, likelihood ratios, and positive predictive value of increased ECFC frequency were calculated for the significantly associated characteristics. Increased frequency of ECFCs resulted independently as