WorldWideScience

Sample records for circulating cell-free dna

  1. Circulating Cell Free DNA in the Diagnosis of Trophoblastic Tumors

    Directory of Open Access Journals (Sweden)

    Mark R. Openshaw

    2016-02-01

    Full Text Available Gestational trophoblastic neoplasia (GTN represents a group of diseases characterized by production of human chorionic gonadotropin (hCG. Since non-gestational tumors may occasionally secrete hCG, histopathological diagnosis is important for appropriate clinical management. However, a histopathological diagnosis is not always available. We therefore investigated the feasibility of extracting cell free DNA (cfDNA from the plasma of women with GTN for use as a “liquid biopsy” in patients without histopathological diagnosis. cfDNA was prepared from the plasma of 20 women with a diagnosis of GTN and five with hCG-secreting tumors of unknown origin. Genotyping of cfDNA from the patient, genomic DNA from her and her partner and DNA from the tumor tissue identified circulating tumor DNA (ctDNA (from 9% to 53% of total cfDNA in 12 of 20 patients with GTN. In one case without a tissue diagnosis, ctDNA enabled a diagnosis of GTN originating in a non-molar conception and in another a diagnosis of non-gestational tumor, based on the high degree of allelic instability and loss of heterozygosity in the ctDNA. In summary ctDNA can be detected in the plasma of women with GTN and can facilitate the diagnosis of both gestational and non-gestational trophoblastic tumors in cases without histopathological diagnosis.

  2. Cell-free circulating tumor DNA in cancer.

    Science.gov (United States)

    Qin, Zhen; Ljubimov, Vladimir A; Zhou, Cuiqi; Tong, Yunguang; Liang, Jimin

    2016-01-01

    Cancer is a common cause of death worldwide. Despite significant advances in cancer treatments, the morbidity and mortality are still enormous. Tumor heterogeneity, especially intratumoral heterogeneity, is a significant reason underlying difficulties in tumor treatment and failure of a number of current therapeutic modalities, even of molecularly targeted therapies. The development of a virtually noninvasive "liquid biopsy" from the blood has been attempted to characterize tumor heterogeneity. This review focuses on cell-free circulating tumor DNA (ctDNA) in the bloodstream as a versatile biomarker. ctDNA analysis is an evolving field with many new methods being developed and optimized to be able to successfully extract and analyze ctDNA, which has vast clinical applications. ctDNA has the potential to accurately genotype the tumor and identify personalized genetic and epigenetic alterations of the entire tumor. In addition, ctDNA has the potential to accurately monitor tumor burden and treatment response, while also being able to monitor minimal residual disease, reducing the need for harmful adjuvant chemotherapy and allowing more rapid detection of relapse. There are still many challenges that need to be overcome prior to this biomarker getting wide adoption in the clinical world, including optimization, standardization, and large multicenter trials. PMID:27056366

  3. Circulating Cell Free DNA in the Diagnosis of Trophoblastic Tumors

    OpenAIRE

    Openshaw, Mark R.; Harvey, Richard A.; Sebire, Neil J; Baljeet Kaur; Naveed Sarwar; Michael J Seckl; Fisher, Rosemary A.

    2015-01-01

    Gestational trophoblastic neoplasia (GTN) represents a group of diseases characterized by production of human chorionic gonadotropin (hCG). Since non-gestational tumors may occasionally secrete hCG, histopathological diagnosis is important for appropriate clinical management. However, a histopathological diagnosis is not always available. We therefore investigated the feasibility of extracting cell free DNA (cfDNA) from the plasma of women with GTN for use as a “liquid biopsy” in patients wit...

  4. The Clinical Utilization of Circulating Cell Free DNA (CCFDNA in Blood of Cancer Patients

    Directory of Open Access Journals (Sweden)

    Yanyuan Wu

    2013-09-01

    Full Text Available Qualitative and quantitative testing of circulating cell free DNA (CCFDNA can be applied for the management of malignant and benign neoplasms. Detecting circulating DNA in cancer patients may help develop a DNA profile for early stage diagnosis in malignancies. The technical issues of obtaining, using, and analyzing CCFDNA from blood will be discussed.

  5. Tumor-Related Methylated Cell-Free DNA and Circulating Tumor Cells in Melanoma

    OpenAIRE

    Salvianti, Francesca; Orlando, Claudio; Massi, Daniela; DE GIORGI, VINCENZO; Grazzini, Marta; Pazzagli, Mario; Pinzani, Pamela

    2016-01-01

    Solid tumor release into the circulation cell-free DNA (cfDNA) and circulating tumor cells (CTCs) which represent promising biomarkers for cancer diagnosis. Circulating tumor DNA may be studied in plasma from cancer patients by detecting tumor specific alterations, such as genetic or epigenetic modifications. Ras association domain family 1 isoform A (RASSF1A) is a tumor suppressor gene silenced by promoter hypermethylation in a variety of human cancers including melanoma. The aim of the pres...

  6. Elevated levels of cell-free circulating DNA in patients with acute dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Tran Thi Ngoc Ha

    Full Text Available BACKGROUND: Apoptosis is thought to play a role in the pathogenesis of severe dengue and the release of cell-free DNA into the circulatory system in several medical conditions. Therefore, we investigated circulating DNA as a potential biomarker for severe dengue. METHODS AND FINDINGS: A direct fluorometric degradation assay using PicoGreen was performed to quantify cell-free DNA from patient plasma. Circulating DNA levels were significantly higher in patients with dengue virus infection than with other febrile illnesses and healthy controls. Remarkably, the increase of DNA levels correlated with the severity of dengue. Additionally, multivariate logistic regression analysis showed that circulating DNA levels independently correlated with dengue shock syndrome. CONCLUSIONS: Circulating DNA levels were increased in dengue patients and correlated with dengue severity. Additional studies are required to show the benefits of this biomarker in early dengue diagnosis and for the prognosis of shock complication.

  7. Relationship of circulating cell-free DNA levels to cell-free fetal DNA levels, clinical characteristics and laboratory parameters in preeclampsia

    Directory of Open Access Journals (Sweden)

    Mézes Miklós

    2009-01-01

    Full Text Available Abstract Background The aim of our study was to examine whether increased circulating total cell-free DNA levels are related to the clinical characteristics and standard laboratory parameters of preeclamptic patients, to markers of inflammation, endothelial activation or injury, oxidative stress and to cell-free fetal DNA levels. Methods Circulating total cell-free DNA was measured by real-time quantitative PCR in plasma samples obtained from 67 preeclamptic and 70 normotensive pregnant women. Standard laboratory parameters, C-reactive protein, plasma von Willebrand factor antigen, plasma fibronectin, plasma malondialdehyde and cell-free fetal DNA levels were also determined. Results and Conclusion Circulating total cell-free and fetal deoxyribonucleic acid levels were significantly elevated in pregnancies complicated by preeclampsia (median: 11.395 vs. 32.460 and 0.001 vs. 0.086 pg/μl; P < .001. The quantity of plasma total cell-free DNA did not correlate with most of the laboratory parameters, except for serum aspartate aminotransferase and alanine aminotransferase activities (correlation coefficient: 0.31; P = 0.012 and 0.46; P < .001. There was no correlation with clinical characteristics, including body mass index. The releases of both free fetal and total cell-free deoxyribonucleic acid were found to be affected in preeclampsia. Hepatocellular necrosis seems to be responsible - at least partly - for increased circulating total DNA levels in preeclampsia, as suggested by the significant correlation with liver enzyme activities.

  8. Construction of a Sequencing Library from Circulating Cell-Free DNA.

    Science.gov (United States)

    Fang, Nan; Löffert, Dirk; Akinci-Tolun, Rumeysa; Heitz, Katja; Wolf, Alexander

    2016-01-01

    Circulating DNA is cell-free DNA (cfDNA) in serum or plasma that can be used for non-invasive prenatal testing, as well as cancer diagnosis, prognosis, and stratification. High-throughput sequence analysis of the cfDNA with next-generation sequencing technologies has proven to be a highly sensitive and specific method in detecting and characterizing mutations in cancer and other diseases, as well as aneuploidy during pregnancy. This unit describes detailed procedures to extract circulating cfDNA from human serum and plasma and generate sequencing libraries from a wide concentration range of circulating DNA. © 2016 by John Wiley & Sons, Inc. PMID:27038390

  9. Non-random fragmentation patterns in circulating cell-free DNA reflect epigenetic regulation

    OpenAIRE

    Ivanov, Maxim; Baranova, Ancha; Butler, Timothy; Spellman, Paul; Mileyko, Vladislav

    2015-01-01

    Background The assessment of cell-free circulating DNA fragments, also known as a "liquid biopsy" of the patient's plasma, is an important source for the discovery and subsequent non-invasive monitoring of cancer and other pathological conditions. Although the nucleosome-guided fragmentation patterns of cell-free DNA (cfDNA) have not yet been studied in detail, non-random representation of cfDNA sequencies may reflect chromatin features in the tissue of origin at gene-regulation level. Result...

  10. Circulating cell free DNA as a predictor of systemic lupus erythematosus severity and monitoring of therapy

    OpenAIRE

    Olfat M. Hendy; Tawfik Abdel Motalib; Mona A. El Shafie; Fatma A. Khalaf; Sobhy E. Kotb; Aziza Khalil; Salwa R. Ali

    2016-01-01

    Background: Systemic lupus erythematosus (SLE) is the most heterogeneous chronic autoimmune disease; it is characterized by the presence of auto reactive B and T cells, responsible for the aberrant production of a broad and heterogeneous group of autoantibodies. Recent studies using various detection methods have demonstrated the elevations of circulating DNA in SLE patients. Aim of the study: The current study aimed to measure cell-free DNA (cf-DNA) in SLE patients as a potential tool to ...

  11. A modified Phenol-chloroform extraction method for isolating circulating cell free DNA of tumor patients

    Directory of Open Access Journals (Sweden)

    Clemens Hufnagl

    2013-03-01

    Full Text Available Searching for new cancer biomarkers, circulating cell-free DNA (cfDNA has become an appealing target of interest as an elevated level of cfDNA has been detected in the circulation of cancer patients in comparison with healthy controls. Since cfDNA can be isolated from the circulation and other body fluids of patients without harming their physical condition, cfDNA is becoming a promising candidate as a novel non-invasive biomarker for cancer. The challenge in the diagnostic analysis of cfDNA is its very low presence in human plasma/serum and its partially strong fragmentation. Here we evaluated a modified phenol/chloroform extraction method for the isolation of cfDNA and compared it with published standard methods for cfDNA isolation.

  12. Understanding the Limitations of Circulating Cell Free Fetal DNA: An Example of Two Unique Cases.

    Science.gov (United States)

    Clark-Ganheart, Cecily A; Iqbal, Sara N; Brown, Donna L; Black, Susan; Fries, Melissa H

    2014-05-01

    Circulating cell free fetal DNA (cffDNA) is an effective screening modality for fetal aneuploidy. We report two cases of false positive results. The first case involves a female, with self-reported Down syndrome. CffDNA returned positive for trisomy 18 leading to a maternal diagnosis of mosaicism chromosome 18 with normal fetal karyotype. The second case involves a patient with an anomalous fetal ultrasound and cffDNA positive for trisomy 13. Amniocentesis demonstrated a chromosome 8p duplication/deletion. False positive cffDNA may arise in clinical scenarios where diagnostic testing is clearly indicated. Practitioners should recognize the limitations of cffDNA. PMID:25298847

  13. Circulating Cell-Free DNA Enables Noninvasive Diagnosis of Heart Transplant Rejection

    OpenAIRE

    De Vlaminck, Iwijn; Valantine, Hannah A.; Snyder, Thomas M.; Strehl, Calvin; Cohen, Garrett; Luikart, Helen; Neff, Norma F.; Okamoto, Jennifer; Bernstein, Daniel; Weisshaar, Dana; Quake, Stephen R.; Khush, Kiran K.

    2014-01-01

    Monitoring allograft health is an important component of posttransplant therapy. Endomyocardial biopsy is the current gold standard for cardiac allograft monitoring but is an expensive and invasive procedure. Proof of principle of a universal, noninvasive diagnostic method based on high-throughput screening of circulating cell-free donor-derived DNA (cfdDNA) was recently demonstrated in a small retrospective cohort. We present the results of a prospective cohort study (65 patients, 565 sample...

  14. Circulating cell-free DNA and its integrity as a prognostic marker for breast cancer

    OpenAIRE

    Iqbal, Sobuhi; Vishnubhatla, Sreenivas; Raina, Vinod; Sharma, Surabhi; Gogia, Ajay; Suryanarayana S.V. Deo; Mathur, Sandeep; Shukla, Nutan Kumar

    2015-01-01

    The aim of our study was to look for alternative predictive biomarkers for breast cancer management in limited resource setup. A comprehensive analysis of circulating cell-free DNA (CCFD) in serum at baseline was performed to assess its prognostic potential. Quantitative polymerase chain reaction (qPCR) of ALU sequences using ALU115 and ALU247 primers was carried out in patients (N: baseline 148, postoperative 47) and 51 healthy controls. Mean serum DNA integrity, levels of ALU 247 and levels...

  15. Monitoring of organ transplants through genomic analyses of circulating cell-free DNA

    Science.gov (United States)

    de Vlaminck, Iwijn

    Solid-organ transplantation is the preferred treatment for patients with end-stage organ diseases, but complications due to infection and acute rejection undermine its long-term benefits. While clinicians strive to carefully monitor transplant patients, diagnostic options are currently limited. My colleagues and I in the lab of Stephen Quake have found that a combination of next-generation sequencing with a phenomenon called circulating cell-free DNA enables non-invasive diagnosis of both infection and rejection in transplantation. A substantial amount of small fragments of cell-free DNA circulate in blood that are the debris of dead cells. We discovered that donor specific DNA is released in circulation during injury to the transplant organ and we show that the proportion of donor DNA in plasma is predictive of acute rejection in heart and lung transplantation. We profiled viral and bacterial DNA sequences in plasma of transplant patients and discovered that the relative representation of different viruses and bacteria is informative of immunosuppression. This discovery suggested a novel biological measure of a person's immune strength, a finding that we have more recently confirmed via B-cell repertoire sequencing. Lastly, our studies highlight applications of shotgun sequencing of cell-free DNA in the broad, hypothesis free diagnosis of infection.

  16. Methylation of cell-free circulating DNA in the diagnosis of cancer

    OpenAIRE

    Warton, Kristina; Samimi, Goli

    2015-01-01

    A range of molecular alterations found in tumor cells, such as DNA mutations and DNA methylation, is reflected in cell-free circulating DNA (circDNA) released from the tumor into the blood, thereby making circDNA an ideal candidate for the basis of a blood-based cancer diagnosis test. In many cancer types, mutations driving tumor development and progression are present in a wide range of oncogenes and tumor suppressor genes. However, even when a gene is consistently mutated in a particular ca...

  17. Circulating Cell-Free Tumour DNA in the Management of Cancer

    OpenAIRE

    Glenn Francis; Sandra Stein

    2015-01-01

    With the development of new sensitive molecular techniques, circulating cell-free tumour DNA containing mutations can be identified in the plasma of cancer patients. The applications of this technology may result in significant changes to the care and management of cancer patients. Whilst, currently, these “liquid biopsies” are used to supplement the histological diagnosis of cancer and metastatic disease, in the future these assays may replace the need for invasive procedures. Applications ...

  18. Circulating Cell-Free DNA Enables Noninvasive Diagnosis of Heart Transplant Rejection

    Science.gov (United States)

    De Vlaminck, Iwijn; Valantine, Hannah A.; Snyder, Thomas M.; Strehl, Calvin; Cohen, Garrett; Luikart, Helen; Neff, Norma F.; Okamoto, Jennifer; Bernstein, Daniel; Weisshaar, Dana; Quake, Stephen R.; Khush, Kiran K.

    2014-01-01

    Monitoring allograft health is an important component of posttransplant therapy. Endomyocardial biopsy is the current gold standard for cardiac allograft monitoring but is an expensive and invasive procedure. Proof of principle of a universal, noninvasive diagnostic method based on high-throughput screening of circulating cell-free donor-derived DNA (cfdDNA) was recently demonstrated in a small retrospective cohort. We present the results of a prospective cohort study (65 patients, 565 samples) that tested the utility of cfdDNA in measuring acute rejection after heart transplantation. Circulating cell-free DNA was purified from plasma and sequenced (mean depth, 1.2 giga–base pairs) to quantify the fraction of cfdDNA. Through a comparison with endomyocardial biopsy results, we demonstrate that cfdDNA enables diagnosis of acute rejection after heart transplantation, with an area under the receiver operating characteristic curve of 0.83 and sensitivity and specificity that are comparable to the intrinsic performance of the biopsy itself. This noninvasive genome transplant dynamics approach is a powerful and informative method for routine monitoring of allograft health without incurring the risk, discomfort, and expense of an invasive biopsy. PMID:24944192

  19. Circulating Cell-Free Tumour DNA in the Management of Cancer

    Science.gov (United States)

    Francis, Glenn; Stein, Sandra

    2015-01-01

    With the development of new sensitive molecular techniques, circulating cell-free tumour DNA containing mutations can be identified in the plasma of cancer patients. The applications of this technology may result in significant changes to the care and management of cancer patients. Whilst, currently, these “liquid biopsies” are used to supplement the histological diagnosis of cancer and metastatic disease, in the future these assays may replace the need for invasive procedures. Applications include the monitoring of tumour burden, the monitoring of minimal residual disease, monitoring of tumour heterogeneity, monitoring of molecular resistance and early diagnosis of tumours and metastatic disease. PMID:26101870

  20. Circulating Cell-Free Tumour DNA in the Management of Cancer

    Directory of Open Access Journals (Sweden)

    Glenn Francis

    2015-06-01

    Full Text Available With the development of new sensitive molecular techniques, circulating cell-free tumour DNA containing mutations can be identified in the plasma of cancer patients. The applications of this technology may result in significant changes to the care and management of cancer patients. Whilst, currently, these “liquid biopsies” are used to supplement the histological diagnosis of cancer and metastatic disease, in the future these assays may replace the need for invasive procedures. Applications include the monitoring of tumour burden, the monitoring of minimal residual disease, monitoring of tumour heterogeneity, monitoring of molecular resistance and early diagnosis of tumours and metastatic disease.

  1. Non-random fragmentation patterns in circulating cell-free DNA reflect epigenetic regulation

    Science.gov (United States)

    2015-01-01

    Background The assessment of cell-free circulating DNA fragments, also known as a "liquid biopsy" of the patient's plasma, is an important source for the discovery and subsequent non-invasive monitoring of cancer and other pathological conditions. Although the nucleosome-guided fragmentation patterns of cell-free DNA (cfDNA) have not yet been studied in detail, non-random representation of cfDNA sequencies may reflect chromatin features in the tissue of origin at gene-regulation level. Results In this study, we investigated the association between epigenetic landscapes of human tissues evident in the patterns of cfDNA in plasma by deep sequencing of human cfDNA samples. We have demonstrated that baseline characteristics of cfDNA fragmentation pattern are in concordance with the ones corresponding to cell lines-derived. To identify the loci differentially represented in cfDNA fragment, we mapped the transcription start sites within the sequenced cfDNA fragments and tested for association of these genomic coordinates with the relative strength and the patterns of gene expressions. Preselected sets of house-keeping and tissue specific genes were used as models for actively expressed and silenced genes. Developed measure of gene regulation was able to differentiate these two sets based on sequencing coverage near gene transcription start site. Conclusion Experimental outcomes suggest that cfDNA retains characteristics previously noted in genome-wide analysis of chromatin structure, in particular, in MNase-seq assays. Thus far the analysis of the DNA fragmentation pattern may aid further developing of cfDNA based biomarkers for a variety of human conditions. PMID:26693644

  2. Feasibility of cell-free circulating tumor DNA testing for lung cancer.

    Science.gov (United States)

    Santarpia, Mariacarmela; Karachaliou, Niki; González-Cao, Maria; Altavilla, Giuseppe; Giovannetti, Elisa; Rosell, Rafael

    2016-04-01

    Tumor tissue genotyping is used routinely for lung cancer to identify specific targetable oncogenic alterations, including EGFR mutations and ALK rearrangements. However, tumor tissue from a single biopsy is often insufficient for molecular testing, may offer a limited evaluation because of tumor heterogeneity and can be difficult to obtain. Cell-free circulating tumor DNA has been widely investigated as a potential surrogate for tissue biopsy for noninvasive assessment of tumor-related genomic alterations. New techniques have improved EGFR mutations detection in ctDNA, thus supporting the use of this liquid biopsy for predicting response to EGFR tyrosine kinase inhibitors (TKIs) and monitoring the emergence of resistance. The serial evaluation of ctDNA during treatment is feasible and can be used to track tumor changes in real time and for a wide range of clinically useful applications. PMID:26974841

  3. Methylation of cell-free circulating DNA in the diagnosis of cancer

    Science.gov (United States)

    Warton, Kristina; Samimi, Goli

    2015-01-01

    A range of molecular alterations found in tumor cells, such as DNA mutations and DNA methylation, is reflected in cell-free circulating DNA (circDNA) released from the tumor into the blood, thereby making circDNA an ideal candidate for the basis of a blood-based cancer diagnosis test. In many cancer types, mutations driving tumor development and progression are present in a wide range of oncogenes and tumor suppressor genes. However, even when a gene is consistently mutated in a particular cancer, the mutations can be spread over very large regions of its sequence, making evaluation difficult. This diversity of sequence changes in tumor DNA presents a challenge for the development of blood tests based on DNA mutations for cancer diagnosis. Unlike mutations, DNA methylation that can be consistently measured, as it tends to occur in specific regions of the DNA called CpG islands. Since DNA methylation is reflected within circDNA, detection of tumor-specific DNA methylation in patient plasma is a feasible approach for the development of a blood-based test. Aberrant circDNA methylation has been described in most cancer types and is actively being investigated for clinical applications. A commercial blood test for colorectal cancer based on the methylation of the SEPT9 promoter region in circDNA is under review for approval by the Federal Drug Administration (FDA) for clinical use. In this paper, we review the state of research in circDNA methylation as an application for blood-based diagnostic tests in colorectal, breast, lung, pancreatic and ovarian cancers, and we consider some of the future directions and challenges in this field. There are a number of potential circDNA biomarkers currently under investigation, and experience with SEPT9 shows that the time to clinical translation can be relatively rapid, supporting the promise of circDNA as a biomarker. PMID:25988180

  4. TUMOR-RELATED METHYLATED CELL-FREE DNA AND CIRCULATING TUMOR CELLS IN MELANOMA

    Directory of Open Access Journals (Sweden)

    Francesca eSalvianti

    2016-01-01

    Full Text Available Solid tumor release into the circulation cell-free DNA (cfDNA and circulating tumor cells (CTCs which represent promising biomarkers for cancer diagnosis. Circulating tumor DNA may be studied in plasma from cancer patients by detecting tumor specific alterations, such as genetic or epigenetic modifications. Ras association domain family 1 isoform A (RASSF1A is a tumor suppressor gene silenced by promoter hypermethylation in a variety of human cancers including melanoma.The aim of the present study was to assess the diagnostic performance of a tumor-related methylated cfDNA marker in melanoma patients and to compare this parameter with the presence of CTCs.RASSF1A promoter methylation was quantified in cfDNA by qPCR in a consecutive series of 84 melanoma patients and 68 healthy controls. In a subset of 68 cases, the presence of CTCs was assessed by a filtration method (Isolation by Size of Epithelial Tumor Cells, ISET as well as by an indirect method based on the detection of tyrosinase mRNA by RT-qPCR. The distribution of RASSF1A methylated cfDNA was investigated in cases and controls and the predictive capability of this parameter was assessed by means of the area under the ROC curve (AUC.The percentage of cases with methylated RASSF1A promoter in cfDNA was significantly higher in each class of melanoma patients (in situ, invasive and metastatic than in healthy subjects (Pearson chi-squared test, p<0.001. The concentration of RASSF1A methylated cfDNA in the subjects with a detectable quantity of methylated alleles was significantly higher in melanoma patients than in controls. The biomarker showed a good predictive capability (in terms of AUC in discriminating between melanoma patients and healthy controls. This epigenetic marker associated to cfDNA did not show a significant correlation with the presence of CTCs, but, when the two parameters are jointly considered, we obtain a higher sensitivity of the detection of positive cases in invasive

  5. Tumor-Related Methylated Cell-Free DNA and Circulating Tumor Cells in Melanoma

    Science.gov (United States)

    Salvianti, Francesca; Orlando, Claudio; Massi, Daniela; De Giorgi, Vincenzo; Grazzini, Marta; Pazzagli, Mario; Pinzani, Pamela

    2016-01-01

    Solid tumor release into the circulation cell-free DNA (cfDNA) and circulating tumor cells (CTCs) which represent promising biomarkers for cancer diagnosis. Circulating tumor DNA may be studied in plasma from cancer patients by detecting tumor specific alterations, such as genetic or epigenetic modifications. Ras association domain family 1 isoform A (RASSF1A) is a tumor suppressor gene silenced by promoter hypermethylation in a variety of human cancers including melanoma. The aim of the present study was to assess the diagnostic performance of a tumor-related methylated cfDNA marker in melanoma patients and to compare this parameter with the presence of CTCs. RASSF1A promoter methylation was quantified in cfDNA by qPCR in a consecutive series of 84 melanoma patients and 68 healthy controls. In a subset of 68 cases, the presence of CTCs was assessed by a filtration method (Isolation by Size of Epithelial Tumor Cells, ISET) as well as by an indirect method based on the detection of tyrosinase mRNA by RT-qPCR. The distribution of RASSF1A methylated cfDNA was investigated in cases and controls and the predictive capability of this parameter was assessed by means of the area under the ROC curve (AUC). The percentage of cases with methylated RASSF1A promoter in cfDNA was significantly higher in each class of melanoma patients (in situ, invasive and metastatic) than in healthy subjects (Pearson chi-squared test, p < 0.001). The concentration of RASSF1A methylated cfDNA in the subjects with a detectable quantity of methylated alleles was significantly higher in melanoma patients than in controls. The biomarker showed a good predictive capability (in terms of AUC) in discriminating between melanoma patients and healthy controls. This epigenetic marker associated to cfDNA did not show a significant correlation with the presence of CTCs, but, when the two parameters are jointly considered, we obtain a higher sensitivity of the detection of positive cases in invasive and

  6. Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors

    Directory of Open Access Journals (Sweden)

    Diesch Claude

    2009-11-01

    Full Text Available Abstract Background With the aim to simplify cancer management, cancer research lately dedicated itself more and more to discover and develop non-invasive biomarkers. In this connection, circulating cell-free DNA (ccf DNA seems to be a promising candidate. Altered levels of ccf nuclear DNA (nDNA and mitochondrial DNA (mtDNA have been found in several cancer types and might have a diagnostic value. Methods Using multiplex real-time PCR we investigated the levels of ccf nDNA and mtDNA in plasma samples from patients with malignant and benign breast tumors, and from healthy controls. To evaluate the applicability of plasma ccf nDNA and mtDNA as a biomarker for distinguishing between the three study-groups we performed ROC (Receiver Operating Characteristic curve analysis. We also compared the levels of both species in the cancer group with clinicopathological parameters. Results While the levels of ccf nDNA in the cancer group were significantly higher in comparison with the benign tumor group (P P P P = 0.022. The level of ccf nDNA was also associated with tumor-size (2 cmP = 0.034. Using ROC curve analysis, we were able to distinguish between the breast cancer cases and the healthy controls using ccf nDNA as marker (cut-off: 1866 GE/ml; sensitivity: 81%; specificity: 69%; P P Conclusion Our data suggests that nuclear and mitochondrial ccf DNA have potential as biomarkers in breast tumor management. However, ccf nDNA shows greater promise regarding sensitivity and specificity.

  7. The Prognostic Value of Circulating Cell-Free DNA in Colorectal Cancer: A Meta-Analysis

    Science.gov (United States)

    Basnet, Shiva; Zhang, Zhen-yu; Liao, Wen-qiang; Li, Shu-heng; Li, Ping-shu; Ge, Hai-yan

    2016-01-01

    Background: Circulating cell-free DNA (cfDNA) is a promising candidate biomarker for detection, monitoring and survival prediction of colorectal cancer (CRC). However, its prognostic significance for patients with CRC remains controversial. To derive a precise estimation of the prognostic significance of cfDNA, a meta-analysis was performed. Methods: We made a systematic search in data base of the Science Citation Index Embase and Pubmed for studies reporting prognostic data of cfDNA in CRC patients. The data of cfDNA on recurrences-free survival (RFS) and overall survival (OS) were extracted and measured in hazard rates (HRs) and 95% confident intervals (CIs). Subgroup analyses were carried out as well. Finally, the meta-analysis is accompanied with nine studies including 19 subunits. Results: The pooled HRs with 95% CIs revealed strong associations between cfDNA and RFS (HR [95%CI]=2.78[2.08-3.72], I2=32.23%, n=7) along with OS (HR [95%CI]=3.03[2.51-3.66], I2=29.24%, n=12) in patients with CRC. Entire subgroup analyses indicated strong prognostic value of cfDNA irrespective tumor stage, study size, tumor markers, detection methods and marker origin. Conclusions: All the results exhibits that appearance of cfDNA in blood is an indicator for adverse RFS and OS in CRC patients. PMID:27326254

  8. Quantification of circulating cell-free DNA in the plasma of cancer patients during radiation therapy

    International Nuclear Information System (INIS)

    Cell-free plasma DNA is elevated in cancer patients and decreases in response to effective treatments. Consequently, these nucleic acids have potential as new tumor markers. In our current study, we investigated whether the plasma DNA concentrations in patients with cancer are altered during the course of radiation therapy. To first determine the origin of cell-free plasma DNA, plasma samples from mice bearing transplanted human tumors were analyzed for human-specific and mouse-specific cell-free DNA. Human-specific DNA was detectable only in plasma from tumor-bearing mice. However, mouse-specific plasma DNA was significantly higher in tumor-bearing mice than in normal mice, suggesting that cell-free plasma DNA originated from both tumor and normal cells. We measured the total cell-free plasma DNA levels by quantitative polymerase chain reaction in 15 cancer patients undergoing radiation therapy and compared these values with healthy control subjects. The cancer patients showed higher pretreatment plasma DNA concentrations than the healthy controls. Eleven of these patients showed a transient increase of up to eightfold in their cell-free plasma DNA concentrations during the first or second week of radiation therapy, followed by decreasing concentrations toward the end of treatment. In two other cancer patients, the cell-free plasma DNA concentrations only decreased over the course of the treatment. The total cell-free plasma DNA levels in cancer patients thus show dynamic changes associated with the progression of radiation therapy. Additional prospective studies will be required to elucidate the potential clinical utility and biological implications of dynamic changes in cell-free plasma DNA during radiation therapy. (author)

  9. Plasma circulating cell-free mitochondrial DNA in the assessment of Friedreich's ataxia.

    Science.gov (United States)

    Dantham, Subrahamanyam; Srivastava, Achal K; Gulati, Sheffali; Rajeswari, Moganty R

    2016-06-15

    Friedreich's ataxia (FRDA) is one of the most devastating childhood onset neurodegenerative disease affecting multiple organs in the course of progression. FRDA is associated with mitochondrial dysfunction due to deficit in a nuclear encoded mitochondrial protein, frataxin. Identification of disease-specific biomarker for monitoring the severity remains to be a challenging topic. This study was aimed to identify whether circulating cell-free nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) in blood plasma can be a potential biomarker for FRDA. Clinical information was assessed using International Cooperative Ataxia Rating Scale and the disease was confirmed using Long-range PCR for GAA repeat expansion within the gene encoding frataxin. The frataxin expression was measured using Western blot. Plasma nDNA and mtDNA levels were quantified by Multiplex real-time PCR. The major observation is that the levels of nDNA found to be increased, whereas mtDNA levels were reduced significantly in the plasma of FRDA patients (n=21) as compared to healthy controls (n=21). Further, plasma mtDNA levels showed high sensitivity (90%) and specificity (76%) in distinguishing from healthy controls with optimal cutoff indicated at 4.1×10(5)GE/mL. Interestingly, a small group of follow-up patients (n=9) on intervention with, a nutrient supplement, omega-3 fatty acid (a known enhancer of mitochondrial metabolism) displayed a significant improvement in the levels of plasma mtDNA, supporting our hypothesis that plasma mtDNA can be a potential monitoring or prognosis biomarker for FRDA. PMID:27206881

  10. Methylation of cell-free circulating DNA in the diagnosis of cancer

    Directory of Open Access Journals (Sweden)

    Goli eSamimi

    2015-04-01

    Full Text Available A range of molecular alterations found in tumor cells, such as DNA mutations and methylation changes, is also reflected in cell-free circulating DNA (circDNA released from the tumor into the blood, thereby making circDNA an ideal candidate for the basis of a blood-based cancer diagnosis test. In many cancer types, mutations driving tumor development and progression are present in a wide range of oncogenes and tumor suppressor genes. However, even when a gene is consistently mutated in a particular cancer, the mutations can be spread over very large regions of its sequence, making evaluation difficult. This diversity of sequence changes in tumor DNA presents a challenge for the development of blood tests based on DNA mutations for cancer diagnosis. DNA methylation is a common molecular alteration found in many cancer types. Unlike DNA mutations, DNA methylation that can be consistently measured, as it tends to occur in specific regions of the DNA called CpG islands. DNA methylation is reflected within circDNA and therefore detection of tumor-specific DNA methylation in patient plasma is a feasible approach for the development of a blood-based test. Aberrant circDNA methylation has been described in most cancer types and is actively being investigated for clinical applications. A commercial blood test for colorectal cancer based on the methylation of the SEPT9 promoter region in circDNA is under review for approval by the Federal Drug Administration (FDA for clinical use. In this paper, we review the state of research in circDNA methylation as an application for blood-based diagnostic tests in colorectal, breast, lung, pancreatic and ovarian cancers, and we consider some of the future directions and challenges in this field. There are a number of potential circDNA biomarkers currently under investigation, and experience with SEPT9 shows that the time to clinical translation can be relatively rapid, supporting the promise of circDNA as a biomarker.

  11. Cell-free circulating mitochondrial DNA content and risk of hepatocellular carcinoma in patients with chronic HBV infection

    OpenAIRE

    Ling Li; Hie-Won Hann; Shaogui Wan; Hann, Richard S.; Chun Wang; Yinzhi Lai; Xishan Ye; Alison Evans; Ronald E Myers; Zhong Ye; Bingshan Li; Jinliang Xing; Hushan Yang

    2016-01-01

    Recent studies have demonstrated a potential link between circulating cell-free mitochondrial DNA (mtDNA) content and cancers. However, there is no study evaluating the association between circulating mtDNA as a non-invasive marker of hepatocellular carcinoma (HCC) risk. We conducted a nested case-control study to determine circulating mtDNA content in serum samples from 116 HBV-related HCC cases and 232 frequency-matched cancer-free HBV controls, and evaluate the retrospective association be...

  12. Circulating cell-free DNA indicates M1/M2 responses during septic peritonitis.

    Science.gov (United States)

    Xin, Yi; Gao, Xingjuan; Wang, Wenxiao; Xu, Xiaojuan; Yu, Lijuan; Ju, Xiuli; Li, Aimin

    2016-09-01

    Circulating cell-free DNA (cfDNA) has been widely suggested as clinical indicator in diseases, including sepsis. It was thought that the cfDNA was coming from the cell lysis, necrosis and apoptosis caused by tissue damages during sepsis. M1 or M2 macrophage-type responses kill or repair in vivo, which is highly relevant with the tissue damages in sepsis. The correlation between cfDNA and M1/M2 responses during sepsis was never investigated. Here, we used bacteria injection induced septic peritonitis mouse model in both M1-dominant C57bl/6 and M2-dominant Balb/c mouse strains. We found that M2-dominant Balb/c mice showed better prognosis of septic peritonitis than C57bl/6 mice, which is corresponded with lower level of cfDNA in septic Balb/c mice compared to septic C57bl/6 mice. By assessing the M1 and M2 related cytokines in both septic Balb/c and C57bl/6 mice, we found out that Balb/c mice has lower tumor necrosis factor α (TNFα) and higher interleukin 10 (IL-10) productions than C57bl/6 mice during septic peritonitis. Especially, when monitoring the monocyte subtypes in peripheral blood of these septic mice, we found out that C57bl/6 showed higher inflammatory (Ly6C(high)) monocyte (corresponding to M1 macrophage) proportion than Balb/c mice. Interestingly, we find out that cfDNA is highly correlated with the ratio of Ly6C(high) monocytes versus Ly6C(low) monocytes, which represents M1/M2 (killing/healing) responses. Our study suggested that the cfDNA is a good indicator for evaluating M1/M2 responses in septic peritonitis. PMID:27335257

  13. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology.

    Science.gov (United States)

    Breitbach, Sarah; Tug, Suzan; Simon, Perikles

    2012-07-01

    The phenomenon of circulating cell-free DNA (cfDNA) concentrations is of importance for many biomedical disciplines including the field of exercise physiology. Increases of cfDNA due to exercise are described to be a potential hallmark for the overtraining syndrome and might be related to, or trigger adaptations of, immune function induced by strenuous exercise. At the same time, exercise provides a practicable model for studying the phenomenon of cfDNA that is described to be of pathophysiological relevance for different topics in clinical medicine like autoimmune diseases and cancer. In this review, we are summarizing the current knowledge of exercise-based acute and chronic alterations in cfDNA levels and their physiological significance. The effects of acute exercise on cfDNA concentrations have been investigated in resistance exercises and in continuous, stepwise and interval endurance exercises of different durations. cfDNA concentrations peaked immediately after acute exercise and showed a rapid return to baseline levels. Typical markers of skeletal muscle damage (creatine kinase, uric acid, C-reactive protein) show delayed kinetics compared with the cfDNA peak response. Exercise parameters such as intensity, duration or average energy expenditure do not explain the extent of increasing cfDNA concentrations after strenuous exercise. This could be due to complex processes inside the human organism during and after physical activity. Therefore, we hypothesize composite effects of different physiological stress parameters that come along with exercise to be responsible for increasing cfDNA concentrations. We suggest that due to acute stress, cfDNA levels increase rapidly by a spontaneous active or passive release mechanism that is not yet known. As a result of the rapid and parallel increase of cfDNA and lactate in an incremental treadmill test leading to exhaustion within 15-20 minutes, it is unlikely that cfDNA is released into the plasma by typical necrosis

  14. Genome-scale detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients

    OpenAIRE

    Wen, Lu; Li, Jingyi; Guo, Huahu; Liu, Xiaomeng; Zheng, Shengmin; Zhang, Dafang; Zhu, Weihua; Qu, Jianhui; Guo, Limin; Du, Dexiao; Jin, Xiao; Zhang, Yuhao; Gao, Yun; Jie SHEN; Ge, Hao

    2015-01-01

    Despite advances in DNA methylome analyses of cells and tissues, current techniques for genome-scale profiling of DNA methylation in circulating cell-free DNA (ccfDNA) remain limited. Here we describe a methylated CpG tandems amplification and sequencing (MCTA-Seq) method that can detect thousands of hypermethylated CpG islands simultaneously in ccfDNA. This highly sensitive technique can work with genomic DNA as little as 7.5 pg, which is equivalent to 2.5 copies of the haploid genome. We ha...

  15. The Long and Short of Circulating Cell-Free DNA and the Ins and Outs of Molecular Diagnostics.

    Science.gov (United States)

    Jiang, Peiyong; Lo, Y M Dennis

    2016-06-01

    The discovery of cell-free tumor and fetal DNA molecules in the plasma of cancer patients and pregnant women, respectively, has opened up exciting opportunities in molecular diagnosis. The understanding of the biological properties of circulating cell-free DNA (cfDNA) molecules would be essential for us to make the best use of such molecules in different clinical settings. In this review we start by exploring the technologies that have been used for analyzing the size profiles of cfDNA in plasma. We then review the size profiles of cfDNA in different clinical scenarios, including cancer, pregnancy, transplantation, and autoimmune diseases. Finally, we discuss the potential diagnostic applications of plasma DNA size profiling. PMID:27129983

  16. Kinetics of Circulating Plasma Cell-Free DNA in Paediatric Classical Hodgkin Lymphoma

    OpenAIRE

    Primerano, Simona; Burnelli, Roberta; Carraro, Elisa; Pillon, Marta; Elia, Caterina; Farruggia, Piero; Sala, Alessandra; Vinti, Luciana; Buffardi, Salvatore; Basso, Giuseppe; Mascarin, Maurizio; Mussolin, Lara

    2016-01-01

    Levels of plasma cell-free DNA (cfDNA) of a large series of children with classical Hodgkin lymphoma (cHL) were evaluated and analyzed at diagnosis and during chemotherapy treatment in relation with clinical characteristics. CfDNA levels in cHL patients were significantly higher compared with controls (p=0.002). CfDNA at diagnosis was correlated with presence of B symptoms (p=0.027) and high erythrocyte sedimentation rate (p=0.049). We found that the increasing of plasma cfDNA after first che...

  17. Kinetics of Circulating Plasma Cell-Free DNA in Paediatric Classical Hodgkin Lymphoma

    Science.gov (United States)

    Primerano, Simona; Burnelli, Roberta; Carraro, Elisa; Pillon, Marta; Elia, Caterina; Farruggia, Piero; Sala, Alessandra; Vinti, Luciana; Buffardi, Salvatore; Basso, Giuseppe; Mascarin, Maurizio; Mussolin, Lara

    2016-01-01

    Levels of plasma cell-free DNA (cfDNA) of a large series of children with classical Hodgkin lymphoma (cHL) were evaluated and analyzed at diagnosis and during chemotherapy treatment in relation with clinical characteristics. CfDNA levels in cHL patients were significantly higher compared with controls (p=0.002). CfDNA at diagnosis was correlated with presence of B symptoms (p=0.027) and high erythrocyte sedimentation rate (p=0.049). We found that the increasing of plasma cfDNA after first chemotherapy cycle seems to be associated with a worse prognosis (p=0.049). Levels of plasma cfDNA might constitute an interesting non-invasive tool in cHL patients' management. PMID:26918050

  18. Kinetics of Circulating Plasma Cell-Free DNA in Paediatric Classical Hodgkin Lymphoma.

    Science.gov (United States)

    Primerano, Simona; Burnelli, Roberta; Carraro, Elisa; Pillon, Marta; Elia, Caterina; Farruggia, Piero; Sala, Alessandra; Vinti, Luciana; Buffardi, Salvatore; Basso, Giuseppe; Mascarin, Maurizio; Mussolin, Lara

    2016-01-01

    Levels of plasma cell-free DNA (cfDNA) of a large series of children with classical Hodgkin lymphoma (cHL) were evaluated and analyzed at diagnosis and during chemotherapy treatment in relation with clinical characteristics. CfDNA levels in cHL patients were significantly higher compared with controls (p=0.002). CfDNA at diagnosis was correlated with presence of B symptoms (p=0.027) and high erythrocyte sedimentation rate (p=0.049). We found that the increasing of plasma cfDNA after first chemotherapy cycle seems to be associated with a worse prognosis (p=0.049). Levels of plasma cfDNA might constitute an interesting non-invasive tool in cHL patients' management. PMID:26918050

  19. Review: Cell-free fetal DNA in the maternal circulation as an indication of placental health and disease

    Science.gov (United States)

    Taglauer, E.S.; Wilkins-Haug, L.; Bianchi, D.W.

    2016-01-01

    In human pregnancy, the constant turnover of villous trophoblast results in extrusion of apoptotic material into the maternal circulation. This material includes cell-free (cf) DNA, which is commonly referred to as “fetal”, but is actually derived from the placenta. As the release of cf DNA is closely tied to placental morphogenesis, conditions associated with abnormal placentation, such as preeclampsia, are associated with high DNA levels in the blood of pregnant women. Over the past five years, the development and commercial availability of techniques of massively parallel DNA sequencing have facilitated noninvasive prenatal testing (NIPT) for fetal trisomies 13, 18, and 21. Clinical experience accrued over the past two years has highlighted the importance of the fetal fraction (ff) in cf DNA analysis. The ff is the amount of cell-free fetal DNA in a given sample divided by the total amount of cell-free DNA. At any gestational age, ff has a bell-shaped distribution that peaks between 10 and 20% at 10–21 weeks. ff is affected by maternal body mass index, gestational age, fetal aneuploidy, and whether the gestation is a singleton or multiple. In approximately 0.1% of clinical cases, the NIPT result and a subsequent diagnostic karyotype are discordant; confined placental mosaicism has been increasingly reported as an underlying biologic explanation. Cell-free fetal DNA is a new biomarker that can provide information about the placenta and potentially be used to predict clinical problems. Knowledge gaps still exist with regard to what affects production, metabolism, and clearance of feto-placental DNA. PMID:24388429

  20. Direct quantification of cell-free, circulating DNA from unpurified plasma.

    Directory of Open Access Journals (Sweden)

    Sarah Breitbach

    Full Text Available Cell-free DNA (cfDNA in body tissues or fluids is extensively investigated in clinical medicine and other research fields. In this article we provide a direct quantitative real-time PCR (qPCR as a sensitive tool for the measurement of cfDNA from plasma without previous DNA extraction, which is known to be accompanied by a reduction of DNA yield. The primer sets were designed to amplify a 90 and 222 bp multi-locus L1PA2 sequence. In the first module, cfDNA concentrations in unpurified plasma were compared to cfDNA concentrations in the eluate and the flow-through of the QIAamp DNA Blood Mini Kit and in the eluate of a phenol-chloroform isoamyl (PCI based DNA extraction, to elucidate the DNA losses during extraction. The analyses revealed 2.79-fold higher cfDNA concentrations in unpurified plasma compared to the eluate of the QIAamp DNA Blood Mini Kit, while 36.7% of the total cfDNA were found in the flow-through. The PCI procedure only performed well on samples with high cfDNA concentrations, showing 87.4% of the concentrations measured in plasma. The DNA integrity strongly depended on the sample treatment. Further qualitative analyses indicated differing fractions of cfDNA fragment lengths in the eluate of both extraction methods. In the second module, cfDNA concentrations in the plasma of 74 coronary heart disease patients were compared to cfDNA concentrations of 74 healthy controls, using the direct L1PA2 qPCR for cfDNA quantification. The patient collective showed significantly higher cfDNA levels (mean (SD 20.1 (23.8 ng/ml; range 5.1-183.0 ng/ml compared to the healthy controls (9.7 (4.2 ng/ml; range 1.6-23.7 ng/ml. With our direct qPCR, we recommend a simple, economic and sensitive procedure for the quantification of cfDNA concentrations from plasma that might find broad applicability, if cfDNA became an established marker in the assessment of pathophysiological conditions.

  1. KRAS G12V Mutation Detection by Droplet Digital PCR in Circulating Cell-Free DNA of Colorectal Cancer Patients

    OpenAIRE

    Olmedillas López, Susana; García-Olmo, Dolores C; García-Arranz, Mariano; Guadalajara, Héctor; Pastor, Carlos; García-Olmo, Damián

    2016-01-01

    KRAS mutations are responsible for resistance to anti-epidermal growth factor receptor (EGFR) therapy in colorectal cancer patients. These mutations sometimes appear once treatment has started. Detection of KRAS mutations in circulating cell-free DNA in plasma (“liquid biopsy”) by droplet digital PCR (ddPCR) has emerged as a very sensitive and promising alternative to serial biopsies for disease monitoring. In this study, KRAS G12V mutation was analyzed by ddPCR in plasma DNA from 10 colorect...

  2. Cell-free circulating mitochondrial DNA content and risk of hepatocellular carcinoma in patients with chronic HBV infection.

    Science.gov (United States)

    Li, Ling; Hann, Hie-Won; Wan, Shaogui; Hann, Richard S; Wang, Chun; Lai, Yinzhi; Ye, Xishan; Evans, Alison; Myers, Ronald E; Ye, Zhong; Li, Bingshan; Xing, Jinliang; Yang, Hushan

    2016-01-01

    Recent studies have demonstrated a potential link between circulating cell-free mitochondrial DNA (mtDNA) content and cancers. However, there is no study evaluating the association between circulating mtDNA as a non-invasive marker of hepatocellular carcinoma (HCC) risk. We conducted a nested case-control study to determine circulating mtDNA content in serum samples from 116 HBV-related HCC cases and 232 frequency-matched cancer-free HBV controls, and evaluate the retrospective association between mtDNA content and HCC risk using logistic regression and their temporal relationship using a mixed effects model. HCC cases had significantly lower circulating mtDNA content than controls (1.06 versus 2.47, P = 1.7 × 10(-5)). Compared to HBV patients with higher mtDNA content, those with lower mtDNA content had a significantly increased risk of HCC with an odds ratio (OR) of 2.19 (95% confidence interval [CI] 1.28-3.72, P = 0.004). Quartile analyses revealed a significant dose-dependent effect (Ptrend = 0.001) for this association. In a pilot longitudinal sub-cohort of 14 matched cases-control pairs, we observed a trend of dramatically decreased mtDNA content in cases and slightly decreased mtDNA content in controls, with a significant interaction of case-control status with time (Pinteraction = 0.049). Our findings suggest that circulating mtDNA is a potential novel non-invasive biomarker of HCC risk in HBV patients. PMID:27063412

  3. Diagnostic and prognostic value of cell free circulating Schistosoma mansoni DNA: an experimental study.

    Science.gov (United States)

    Eraky, Maysa Ahmad; Aly, Nagwa Shaban Mohamed

    2016-09-01

    Searching for a more sensitive and accurate marker for schistosomiasis diagnosis and treatment follow up is a potential necessity. Hereby, we evaluated usefulness of circulating free DNA as a marker for schistosomiasis diagnosis, assessing drug efficacy and monitoring the control interventions impact using SYBR green real-time PCR. A batch of mice were infected by 90 ± 10 Schistosoma mansoni cercariae. Starting from the 2nd day post infection (p.i.), groups of 2 or 3 mice were sacrificed every 3 days until 30 days p.i. The remaining animals were treated by a single dose of 400 mg/kg mefloquine and sacrificed in group at 5, 10, 21 days post treatment (35, 40, 51 days p.i.). Using SYBR green real time qPCR, pooled sera DNA were extracted and amplified. The results showed that, circulating free S. mansoni DNA was detected from the 2nd day post infection (p.i.) onwards with gradual decrease in the cycle threshold value Ct which indicates the gradual elevation of the DNA level (Log quantity was 2.6-3.1 IU/ml), As the infection progressed, DNA quantity was increased(Log quantity was 6.29 IU/ml). Initial increase of circulating free DNA was observed 10 days post treatment (40 days p.i.) (Log quantity was 7.38 IU/ml). That was followed by a progressive decrease in DNA level by the end of 21st day, post treatment (51 p.i.) (Log quantity 4.35 IU/ml). In conclusion, circulating free S. mansoni DNA is a reliable marker in the diagnosis of schistosomiasis and for assessing drug efficacy and monitoring the impact of control interventions. PMID:27605830

  4. Simultaneous quantitative assessment of circulating cell-free mitochondrial and nuclear DNA by multiplex real-time PCR

    Directory of Open Access Journals (Sweden)

    Peng Xia

    2009-01-01

    Full Text Available Quantification of circulating nucleic acids in plasma and serum could be used as a non-invasive diagnostic tool for monitoring a wide variety of diseases and conditions. We describe here a rapid, simple and accurate multiplex real-time PCR method for direct synchronized analysis of circulating cell-free (ccf mitochondrial (mtDNA and nuclear (nDNA DNA in plasma and serum samples. The method is based on one-step multiplex real-time PCR using a FAM-labeled MGB probe and primers to amplify the mtDNA sequence of the ATP 8 gene, and a VIC-labeled MGB probe and primers to amplify the nDNA sequence of the glycerinaldehyde-3-phosphate-dehydrogenase (GAPDH gene, in plasma and serum samples simultaneously. The efficiencies of the multiplex assays were measured in serial dilutions. Based on the simulation of the PCR reaction kinetics, the relative quantities of ccf mtDNA were calculated using a very simple equation. Using our optimised real-time PCR conditions, close to 100% efficiency was obtained from the two assays. The two assays performed in the dilution series showed very good and reproducible correlation to each other. This optimised multiplex real-time PCR protocol can be widely used for synchronized quantification of mtDNA and nDNA in different samples, with a very high rate of efficiency.

  5. Circulating Cell Free DNA as the Diagnostic Marker for Ovarian Cancer: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Quan Zhou

    Full Text Available Quantitative analyses of circulating cell-free DNA (cfDNA are potential methods for the detection of ovarian cancer. Many studies have evaluated these approaches, but the results were too inconsistent to be conclusive. This study is the first to systematically evaluate the accuracy of circulating cfDNA for the diagnosis of ovarian cancer by conducting meta-analysis.We searched PubMed, Embase, Cochrane Library and the Chinese National Knowledge Infrastructure (CNKI databases systematically for relevant literatures up to December 10, 2015. All analyses were conducted using Meta-DiSc1.4 and Stata 12.0 software. Sensitivity, specificity and other measures of accuracy of circulating cfDNA for the diagnosis of ovarian cancer were pooled. Meta-regression was performed to identify the sources of heterogeneity.This meta-analysis included a total of 9 studies, including 462 ovarian cancer patients and 407 controls. The summary estimates for quantitative analysis of circulating cfDNA in ovarian cancer screen were as follows: sensitivity, 0.70 (95% confidence interval (CI, 0.65-0.74; specificity, 0.90 (95% CI, 0.87-0.93; positive likelihood ratio, 6.60 (95% CI, 3.90-11.17; negative likelihood ratio, 0.34 (95% CI, 0.25-0.47; diagnostic odds ratio, 26.05 (95% CI, 14.67-46.26; and area under the curve, 0.89 (95% CI, 0.83-0.95, respectively. There was no statistical significance for the evaluation of publication bias.Current evidence suggests that quantitative analysis of cfDNA has unsatisfactory sensitivity but acceptable specificity for the diagnosis of ovarian cancer. Further large-scale prospective studies are required to validate the potential applicability of using circulating cfDNA alone or in combination with conventional markers as diagnostic biomarker for ovarian cancer and explore potential factors that may influence the accuracy of ovarian cancer diagnosis.

  6. Efficient Capture and Isolation of Tumor-Related Circulating Cell-Free DNA from Cancer Patients Using Electroactive Conducting Polymer Nanowire Platforms

    OpenAIRE

    Jeon, SeungHyun; Lee, HyungJae; Bae, Kieun; Yoon, Kyong-Ah; Lee, Eun Sook; Cho, Youngnam

    2016-01-01

    Circulating cell-free DNA (cfDNA) is currently recognized as a key non-invasive biomarker for cancer diagnosis and progression and therapeutic efficacy monitoring. Because cfDNA has been detected in patients with diverse types of cancers, the use of efficient strategies to isolate cfDNA not only provides valuable insights into tumour biology, but also offers the potential for developing new cancer-specific targets. However, the challenges associated with conventional cfDNA extraction methods ...

  7. Circulating Cell Free DNA as the Diagnostic Marker for Ovarian Cancer: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Leng, Bingjie; Zheng, Wenfei; He, Ze; Zuo, Manzhen; Chen, Aihua

    2016-01-01

    Background Quantitative analyses of circulating cell-free DNA (cfDNA) are potential methods for the detection of ovarian cancer. Many studies have evaluated these approaches, but the results were too inconsistent to be conclusive. This study is the first to systematically evaluate the accuracy of circulating cfDNA for the diagnosis of ovarian cancer by conducting meta-analysis. Methods We searched PubMed, Embase, Cochrane Library and the Chinese National Knowledge Infrastructure (CNKI) databases systematically for relevant literatures up to December 10, 2015. All analyses were conducted using Meta-DiSc1.4 and Stata 12.0 software. Sensitivity, specificity and other measures of accuracy of circulating cfDNA for the diagnosis of ovarian cancer were pooled. Meta-regression was performed to identify the sources of heterogeneity. Results This meta-analysis included a total of 9 studies, including 462 ovarian cancer patients and 407 controls. The summary estimates for quantitative analysis of circulating cfDNA in ovarian cancer screen were as follows: sensitivity, 0.70 (95% confidence interval (CI), 0.65–0.74); specificity, 0.90 (95% CI, 0.87–0.93); positive likelihood ratio, 6.60 (95% CI, 3.90–11.17); negative likelihood ratio, 0.34 (95% CI, 0.25–0.47); diagnostic odds ratio, 26.05 (95% CI, 14.67–46.26); and area under the curve, 0.89 (95% CI, 0.83–0.95), respectively. There was no statistical significance for the evaluation of publication bias. Conclusions Current evidence suggests that quantitative analysis of cfDNA has unsatisfactory sensitivity but acceptable specificity for the diagnosis of ovarian cancer. Further large-scale prospective studies are required to validate the potential applicability of using circulating cfDNA alone or in combination with conventional markers as diagnostic biomarker for ovarian cancer and explore potential factors that may influence the accuracy of ovarian cancer diagnosis. PMID:27253331

  8. Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA

    OpenAIRE

    Lanman, Richard B.; Mortimer, Stefanie A.; Zill, Oliver A.; Sebisanovic, Dragan; Lopez, Rene; Blau, Sibel; Collisson, Eric A.; Divers, Stephen G.; Hoon, Dave S.B.; Kopetz, E. Scott; Lee, Jeeyun; Nikolinakos, Petros G.; Baca, Arthur M.; Kermani, Bahram G.; Eltoukhy, Helmy

    2015-01-01

    Next-generation sequencing of cell-free circulating solid tumor DNA addresses two challenges in contemporary cancer care. First this method of massively parallel and deep sequencing enables assessment of a comprehensive panel of genomic targets from a single sample, and second, it obviates the need for repeat invasive tissue biopsies. Digital SequencingTM is a novel method for high-quality sequencing of circulating tumor DNA simultaneously across a comprehensive panel of over 50 cancer-relate...

  9. Cell-Free Fetal DNA and Cell-Free Total DNA Levels in Spontaneous Abortion with Fetal Chromosomal Aneuploidy

    OpenAIRE

    Ji Hyae Lim; Min Hyoung Kim; You Jung Han; Da Eun Lee; So Yeon Park; Jung Yeol Han; Moon Young Kim; Hyun Mee Ryu

    2013-01-01

    BACKGROUND: Cell-free fetal DNA and cell-free total DNA in maternal circulation have been proposed as potential markers for noninvasive monitoring of the placental condition during the pregnancy. However, the correlation of and change in cell-free fetal DNA and cell-free total DNA in spontaneous abortion (SA) with fetal chromosomal aneuploidy have not yet been reported. Therefore, we investigated cell-free fetal DNA and cell-free total DNA levels in SA women with fetal chromosomal aneuploidy....

  10. Circulating Cell-Free DNA in Plasma of Locally Advanced Rectal Cancer Patients Undergoing Preoperative Chemoradiation: A Potential Diagnostic Tool for Therapy Monitoring

    Directory of Open Access Journals (Sweden)

    Matthias Zitt

    2008-01-01

    Full Text Available Circulating cell-free DNA opens up an interesting field for therapy monitoring, in particular during multimodal therapy protocols. The objective of this proof of principle study was to evaluate whether the amount of circulating plasma DNA has the potential to serve as a marker for therapy monitoring during the treatment course of locally advanced rectal cancer patients. We especially focused on kinetics of circulating DNA to assess whether variances in kinetics have the potential to discriminate between therapy responders and nonresponders.

  11. KRAS G12V Mutation Detection by Droplet Digital PCR in Circulating Cell-Free DNA of Colorectal Cancer Patients.

    Science.gov (United States)

    Olmedillas López, Susana; García-Olmo, Dolores C; García-Arranz, Mariano; Guadalajara, Héctor; Pastor, Carlos; García-Olmo, Damián

    2016-01-01

    KRAS mutations are responsible for resistance to anti-epidermal growth factor receptor (EGFR) therapy in colorectal cancer patients. These mutations sometimes appear once treatment has started. Detection of KRAS mutations in circulating cell-free DNA in plasma ("liquid biopsy") by droplet digital PCR (ddPCR) has emerged as a very sensitive and promising alternative to serial biopsies for disease monitoring. In this study, KRAS G12V mutation was analyzed by ddPCR in plasma DNA from 10 colorectal cancer patients and compared to six healthy donors. The percentage of KRAS G12V mutation relative to wild-type sequences in tumor-derived DNA was also determined. KRAS G12V mutation circulating in plasma was detected in 9 of 10 colorectal cancer patients whose tumors were also mutated. Colorectal cancer patients had 35.62 copies of mutated KRAS/mL plasma, whereas in healthy controls only residual copies were found (0.62 copies/mL, p = 0.0066). Interestingly, patients with metastatic disease showed a significantly higher number of mutant copies than M0 patients (126.25 versus 9.37 copies/mL, p = 0.0286). Wild-type KRAS was also significantly elevated in colorectal cancer patients compared to healthy controls (7718.8 versus 481.25 copies/mL, p = 0.0002). In conclusion, KRAS G12V mutation is detectable in plasma of colorectal cancer patients by ddPCR and could be used as a non-invasive biomarker. PMID:27043547

  12. KRAS G12V Mutation Detection by Droplet Digital PCR in Circulating Cell-Free DNA of Colorectal Cancer Patients

    Directory of Open Access Journals (Sweden)

    Susana Olmedillas López

    2016-04-01

    Full Text Available KRAS mutations are responsible for resistance to anti-epidermal growth factor receptor (EGFR therapy in colorectal cancer patients. These mutations sometimes appear once treatment has started. Detection of KRAS mutations in circulating cell-free DNA in plasma (“liquid biopsy” by droplet digital PCR (ddPCR has emerged as a very sensitive and promising alternative to serial biopsies for disease monitoring. In this study, KRAS G12V mutation was analyzed by ddPCR in plasma DNA from 10 colorectal cancer patients and compared to six healthy donors. The percentage of KRAS G12V mutation relative to wild-type sequences in tumor-derived DNA was also determined. KRAS G12V mutation circulating in plasma was detected in 9 of 10 colorectal cancer patients whose tumors were also mutated. Colorectal cancer patients had 35.62 copies of mutated KRAS/mL plasma, whereas in healthy controls only residual copies were found (0.62 copies/mL, p = 0.0066. Interestingly, patients with metastatic disease showed a significantly higher number of mutant copies than M0 patients (126.25 versus 9.37 copies/mL, p = 0.0286. Wild-type KRAS was also significantly elevated in colorectal cancer patients compared to healthy controls (7718.8 versus 481.25 copies/mL, p = 0.0002. In conclusion, KRAS G12V mutation is detectable in plasma of colorectal cancer patients by ddPCR and could be used as a non-invasive biomarker.

  13. Pre-analytical variables of circulating cell-free nucleosomes containing 5-methylcytosine DNA or histone modification H3K9Me3

    DEFF Research Database (Denmark)

    Rasmussen, Louise; Herzog, Marielle; Aastrup rømer, Eva Christine;

    2016-01-01

    AIM: To evaluate pre-analytical variables of circulating cell-free nucleosomes containing 5-methylcytosine DNA (5mC) or histone modification H3K9Me3 (H3K9Me3). MATERIALS AND METHODS: Six studies were designed to assess the possible influence of pre-analytical variables. Study 1: influence of stasis...

  14. Silver Nanoscale Hexagonal Column Chips for Detecting Cell-free DNA and Circulating Nucleosomes in Cancer Patients

    Science.gov (United States)

    Ito, Hiroaki; Hasegawa, Katsuyuki; Hasegawa, Yuuki; Nishimaki, Tadashi; Hosomichi, Kazuyoshi; Kimura, Satoshi; Ohba, Motoi; Yao, Hiroshi; Onimaru, Manabu; Inoue, Ituro; Inoue, Haruhiro

    2015-01-01

    Blood tests, which are commonly used for cancer screening, generally have low sensitivity. Here, we developed a novel rapid and simple method to generate silver nanoscale hexagonal columns (NHCs) for use in surface-enhanced Raman scattering (SERS). We reported that the intensity of SERS spectra of clinical serum samples obtained from gastrointestinal cancer patients is was significantly higher than that of SERS spectra of clinical serum samples obtained from non-cancer patients. We estimated the combined constituents on silver NHCs by using a field emission-type scanning electron microscope, Raman microscopes, and a 3D laser scanning confocal microscope. We obtained the Raman scattering spectra of samples of physically fractured cells and clinical serum. No spectra were obtained for chemically lysed cultured cells and DNA, RNA, and protein extracted from cultured cells. We believe that our method, which uses SERS with silver NHCs to detect circulating nucleosomes bound by methylated cell-free DNA, may be successfully implemented in blood tests for cancer screening. PMID:25994878

  15. Circulating cell free DNA as a predictor of systemic lupus erythematosus severity and monitoring of therapy

    Directory of Open Access Journals (Sweden)

    Olfat M. Hendy

    2016-01-01

    Conclusion: Our findings support that the measurement of cf-DNA appears to be a useful marker in addition to laboratory tests used in SLE diagnosis. High correlation with markers of disease severity suggesting its role in disease pathogenesis and decreasing its level after therapy makes it to be a marker of treatment follow-up.

  16. Efficient Capture and Isolation of Tumor-Related Circulating Cell-Free DNA from Cancer Patients Using Electroactive Conducting Polymer Nanowire Platforms

    Science.gov (United States)

    Jeon, SeungHyun; Lee, HyungJae; Bae, Kieun; Yoon, Kyong-Ah; Lee, Eun Sook; Cho, Youngnam

    2016-01-01

    Circulating cell-free DNA (cfDNA) is currently recognized as a key non-invasive biomarker for cancer diagnosis and progression and therapeutic efficacy monitoring. Because cfDNA has been detected in patients with diverse types of cancers, the use of efficient strategies to isolate cfDNA not only provides valuable insights into tumour biology, but also offers the potential for developing new cancer-specific targets. However, the challenges associated with conventional cfDNA extraction methods prevent their further clinical applications. Here, we developed a nanostructured conductive polymer platform for the efficient capture and release of circulating cfDNA and demonstrated its potential clinical utility using unprocessed plasma samples from patients with breast and lung cancers. Our results confirmed that the platform's enhanced efficiency allows tumor-specific circulating cfDNA to be recovered at high yield and purity. PMID:27162553

  17. Evaluation of INK4A promoter methylation using pyrosequencing and circulating cell-free DNA from patients with hepatocellular carcinoma

    Science.gov (United States)

    Kirk, Jason L.; Merwat, Shehzad N.; Ju, Hyunsu; Soloway, Roger D.; Wieck, Lucas R.; Li, Albert; Okorodudu, Anthony O.; Petersen, John R.; Abdulla, Nihal E.; Duchini, Andrea; Cicalese, Luca; Rastellini, Cristiana; Hu, Peter C.; Dong, Jianli

    2015-01-01

    Background Hyper-methylation of CpG dinucleotides in the promoter region of inhibitor of cyclin-dependent kinase 4A (INK4A) has been reported in 60%–80% of hepatocellular carcinoma (HCC). As INK4A promoter hypermethylation event occurs early in HCC progression, the quantification of INK4A promoter methylation in blood sample may represent a useful biomarker for non-invasive diagnosis and prediction of response to therapy. Methods We examined INK4A promoter methylation using circulating cell-free DNA (ccfDNA) in a total of 109 serum specimens, including 66 HCC and 43 benign chronic liver diseases. Methylation of the individual seven CpG sites was examined using pyrosequencing. Results Our results showed that there were significantly higher levels of methylated INK4A in HCC specimens than controls and that the seven CpG sites had different levels of methylation and might exist in different PCR amplicons. The area under receiver operating characteristic (ROC) curve was 0.82, with 65.3% sensitivity and 87.2% specificity at 5% (LOD), 39.0% sensitivity and 96.5% specificity at 7% LOD, and 20.3% sensitivity and 98.8% specificity at 10% LOD, respectively. Conclusions Our results support additional studies incorporating INK4A methylation testing of ccfDNA to further validate the diagnostic, predictive, and prognostic characteristics of this biomarker in HCC patients. The knowledge of the existence of epi-alleles should help improve assay design to maximize detection. PMID:24406287

  18. Cell-free fetal DNA in the maternal circulation originates from the cytotrophoblast: proof from an unique case

    Science.gov (United States)

    Hochstenbach, Ron; Nikkels, Peter G J; Elferink, Martin G; Oudijk, Martijn A; van Oppen, Carla; van Zon, Patrick; van Harssel, Jeske; Schuring-Blom, Heleen; Page-Christiaens, Godelieve C M L

    2015-01-01

    Key Clinical Message Noninvasive prenatal testing (NIPT) and direct karyotyping of cytotrophoblast were normal for a male fetus, but cultured chorionic villus mesenchymal cells and umbilical cord fibroblasts showed nonmosaic trisomy 18. This observation provides direct evidence for the cytotrophoblastic origin of cell-free fetal DNA and yields a biological explanation for falsely reassuring NIPT results. PMID:26185654

  19. Cell-free fetal DNA in the maternal circulation originates from the cytotrophoblast: proof from an unique case

    OpenAIRE

    Hochstenbach, Ron; Nikkels, Peter G. J.; Martin G Elferink; Oudijk, Martijn A; Oppen, Carla; van Zon, Patrick; van Harssel, Jeske; Schuring-Blom, Heleen; Page-Christiaens, Godelieve C M L

    2015-01-01

    Key Clinical Message Noninvasive prenatal testing (NIPT) and direct karyotyping of cytotrophoblast were normal for a male fetus, but cultured chorionic villus mesenchymal cells and umbilical cord fibroblasts showed nonmosaic trisomy 18. This observation provides direct evidence for the cytotrophoblastic origin of cell-free fetal DNA and yields a biological explanation for falsely reassuring NIPT results.

  20. Cell-free fetal DNA in the maternal circulation originates from the cytotrophoblast : proof from an unique case

    OpenAIRE

    Hochstenbach, Ron; Nikkels, Peter G. J.; Martin G Elferink; Oudijk, Martijn A; Oppen, Carla; van Zon, Patrick; van Harssel, Jeske; Schuring-Blom, Heleen; Page-Christiaens, Godelieve C M L

    2015-01-01

    Noninvasive prenatal testing (NIPT) and direct karyotyping of cytotrophoblast were normal for a male fetus, but cultured chorionic villus mesenchymal cells and umbilical cord fibroblasts showed nonmosaic trisomy 18. This observation provides direct evidence for the cytotrophoblastic origin of cell-free fetal DNA and yields a biological explanation for falsely reassuring NIPT results.

  1. Circulating cell-free methylated DNA and lactate dehydrogenase release in colorectal cancer

    International Nuclear Information System (INIS)

    Hypermethylation of DNA is an epigenetic alteration commonly found in colorectal cancer (CRC) and can also be detected in blood samples of cancer patients. Methylation of the genes helicase-like transcription factor (HLTF) and hyperplastic polyposis 1 (HPP1) have been proposed as prognostic, and neurogenin 1 (NEUROG1) as diagnostic biomarker. However the underlying mechanisms leading to the release of these genes are unclear. This study aimed at examining the possible correlation of the presence of methylated genes NEUROG1, HLTF and HPP1 in serum with tissue breakdown as a possible mechanism using serum lactate dehydrogenase (LDH) as a surrogate marker. Additionally the prognostic impact of these markers was examined. Pretherapeutic serum samples from 259 patients from all cancer stages were analyzed. Presence of hypermethylation of the genes HLTF, HPP1, and NEUROG1 was examined using methylation-specific quantitative PCR (MethyLight). LDH was determined using an UV kinetic test. Hypermethylation of HLTF and HPP1 was detected significantly more often in patients with elevated LDH levels (32% vs. 12% [p = 0.0005], and 68% vs. 11% [p < 0.0001], respectively). Also, higher LDH values correlated with a higher percentage of a fully methylated reference in a linear fashion (Spearman correlation coefficient 0.18 for HLTF [p = 0.004]; 0.49 [p < .0001] for HPP1). No correlation between methylation of NEUROG1 and LDH was found in this study. Concerning the clinical characteristics, high levels of LDH as well as methylation of HLTF and HPP1 were significantly associated with larger and more advanced stages of CRC. Accordingly, these three markers were correlated with significantly shorter survival in the overall population. Moreover, all three identified patients with a worse prognosis in the subgroup of stage IV patients. We were able to provide evidence that methylation of HLTF and especially HPP1 detected in serum is strongly correlated with cell death in CRC using LDH as

  2. Value of Quantitative and Qualitative Analyses of Circulating Cell-Free DNA as Diagnostic Tools for Hepatocellular Carcinoma

    Science.gov (United States)

    Liao, Wenjun; Mao, Yilei; Ge, Penglei; Yang, Huayu; Xu, Haifeng; Lu, Xin; Sang, Xinting; Zhong, Shouxian

    2015-01-01

    Abstract Qualitative and quantitative analyses of circulating cell-free DNA (cfDNA) are potential methods for the detection of hepatocellular carcinoma (HCC). Many studies have evaluated these approaches, but the results have been variable. This meta-analysis is the first to synthesize these published results and evaluate the use of circulating cfDNA values for HCC diagnosis. All articles that met our inclusion criteria were assessed using QUADAS guidelines after the literature research. We also investigated 3 subgroups in this meta-analysis: qualitative analysis of abnormal concentrations of circulating cfDNA; qualitative analysis of single-gene methylation alterations; and multiple analyses combined with alpha-fetoprotein (AFP). Statistical analyses were performed using the software Stata 12.0. We synthesized these published results and calculated accuracy measures (pooled sensitivity and specificity, positive/negative likelihood ratios [PLRs/NLRs], diagnostic odds ratios [DORs], and corresponding 95% confidence intervals [95% CIs]). Data were pooled using bivariate generalized linear mixed model. Furthermore, summary receiver operating characteristic curves and area under the curve (AUC) were used to summarize overall test performance. Heterogeneity and publication bias were also examined. A total of 2424 subjects included 1280 HCC patients in 22 studies were recruited in this meta-analysis. Pooled sensitivity and specificity, PLR, NLR, DOR, AUC, and CIs of quantitative analysis were 0.741 (95% CI: 0.610–0.840), 0.851 (95% CI: 0.718–0.927), 4.970 (95% CI: 2.694–9.169), 0.304 (95% CI: 0.205–0.451), 16.347 (95% CI: 8.250–32.388), and 0.86 (95% CI: 0.83–0.89), respectively. For qualitative analysis, the values were 0.538 (95% CI: 0.401–0.669), 0.944 (95% CI: 0.889–0.972), 9.545 (95% CI: 5.298–17.196), 0.490 (95% CI: 0.372–0.646), 19.491 (95% CI: 10.458–36.329), and 0.87 (95% CI: 0.84–0.90), respectively. After combining with AFP assay, the

  3. Non-invasive detection of genomic imbalances in Hodgkin/Reed-Sternberg cells in early and advanced stage Hodgkin's lymphoma by sequencing of circulating cell-free DNA: a technical proof-of-principle study

    OpenAIRE

    Vandenberghe, Peter; Wlodarska, Iwona; Tousseyn, Thomas; Dehaspe, Luc; Dierickx, Daan; Verheecke, Magali; Uyttebroeck, Anne; Bechter, Oliver; Delforge, Michel; Vandecaveye, Vincent; Brison, Nathalie; Verhoef, Gregor; Legius, Eric; Amant, Frédéric; Vermeesch, Joris

    2015-01-01

    Hodgkin's lymphoma is one of the most common lymphoid neoplasms in young adults, but the low abundance of neoplastic Hodgkin/Reed-Sternberg cells in the tumour hampers the elucidation of its pathogenesis, biology, and diversity. After an incidental observation that genomic aberrations known to occur in Hodgkin's lymphoma were detectable in circulating cell-free DNA, this study was undertaken to investigate whether circulating cell-free DNA can be informative about genomic imbalances in Hodgki...

  4. A novel strategy for highly efficient isolation and analysis of circulating tumor-specific cell-free DNA from lung cancer patients using a reusable conducting polymer nanostructure.

    Science.gov (United States)

    Lee, HyungJae; Jeon, SeungHyun; Seo, Jin-Suck; Goh, Sung-Ho; Han, Ji-Youn; Cho, Youngnam

    2016-09-01

    We have developed a reusable nanostructured polypyrrole nanochip and demonstrated its use in the electric field-mediated recovery of circulating cell-free DNA (cfDNA) from the plasma of lung cancer patients. Although cfDNA has been recognized and widely studied as a versatile and promising biomarker for the diagnosis and prognosis of cancers, the lack of efficient strategies to directly isolate cfDNA from the plasma has become a great hindrance to its potential clinical use. As a proof-of-concept study, we demonstrated a technique for the rapid and efficient isolation of cfDNA with high yield and purity. In particular, the synergistic effects of the electro-activity and the nanostructured features of the polypyrrole polymer enabled repeated retrieval of cfDNA using a single platform. Moreover, polypyrrole nanochip facilitated the amplification of tumor-specific DNA fragments from the plasma samples of patients with lung cancer characterized by mutations in exons 21 of the epidermal growth factor receptor gene (EGFR). Overall, the proposed polypyrrole nanochip has enormous potential for industrial and clinical applications with significantly enhanced efficiency in the recovery of tumor-associated circulating cfDNA. This may ultimately contribute to more robust and reliable evaluation of gene mutations in peripheral blood. PMID:27294542

  5. Cell-free fetal DNA and cell-free total DNA levels in spontaneous abortion with fetal chromosomal aneuploidy.

    Directory of Open Access Journals (Sweden)

    Ji Hyae Lim

    Full Text Available BACKGROUND: Cell-free fetal DNA and cell-free total DNA in maternal circulation have been proposed as potential markers for noninvasive monitoring of the placental condition during the pregnancy. However, the correlation of and change in cell-free fetal DNA and cell-free total DNA in spontaneous abortion (SA with fetal chromosomal aneuploidy have not yet been reported. Therefore, we investigated cell-free fetal DNA and cell-free total DNA levels in SA women with fetal chromosomal aneuploidy. METHODOLOGY/PRINCIPAL FINDINGS: A nested case-control study was conducted with maternal plasma collected from 268 women in their first trimester of pregnancy. Subjects included 41 SA with normal fetal karyotype, 26 SA with fetal chromosomal aneuploidy, and 201 normal controls. The unmethylated PDE9A gene was used to measure the maternal plasma levels of cell-free fetal DNA. The GAPDH gene was used to measure the maternal plasma levels of cell-free total DNA. The diagnostic accuracy was measured using receiver-operating characteristic (ROC curves. Levels of cell-free fetal DNA and cell-free total DNA were significantly higher in both SA women with normal fetal karyotype and SA women with fetal chromosomal aneuploidy in comparison with the normal controls (P<0.001 in both. The correlation between cell-free fetal DNA and cell-free total DNA levels was stronger in the normal controls (r = 0.843, P<0.001 than in SA women with normal karyotype (r = 0.465, P = 0.002 and SA women with fetal chromosomal aneuploidy (r = 0.412, P = 0.037. The area under the ROC curve for cell-free fetal DNA and cell-free total DNA was 0.898 (95% CI, 0.852-0.945 and 0.939 (95% CI, 0.903-0.975, respectively. CONCLUSIONS: Significantly high levels of cell-free fetal DNA and cell-free total DNA were found in SA women with fetal chromosomal aneuploidy. Our findings suggest that cell-free fetal DNA and cell-free total DNA may be useful biomarkers for the prediction of SA

  6. Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA

    Science.gov (United States)

    Zill, Oliver A.; Sebisanovic, Dragan; Lopez, Rene; Blau, Sibel; Collisson, Eric A.; Divers, Stephen G.; Hoon, Dave S. B.; Kopetz, E. Scott; Lee, Jeeyun; Nikolinakos, Petros G.; Baca, Arthur M.; Kermani, Bahram G.; Eltoukhy, Helmy; Talasaz, AmirAli

    2015-01-01

    Next-generation sequencing of cell-free circulating solid tumor DNA addresses two challenges in contemporary cancer care. First this method of massively parallel and deep sequencing enables assessment of a comprehensive panel of genomic targets from a single sample, and second, it obviates the need for repeat invasive tissue biopsies. Digital SequencingTM is a novel method for high-quality sequencing of circulating tumor DNA simultaneously across a comprehensive panel of over 50 cancer-related genes with a simple blood test. Here we report the analytic and clinical validation of the gene panel. Analytic sensitivity down to 0.1% mutant allele fraction is demonstrated via serial dilution studies of known samples. Near-perfect analytic specificity (> 99.9999%) enables complete coverage of many genes without the false positives typically seen with traditional sequencing assays at mutant allele frequencies or fractions below 5%. We compared digital sequencing of plasma-derived cell-free DNA to tissue-based sequencing on 165 consecutive matched samples from five outside centers in patients with stage III-IV solid tumor cancers. Clinical sensitivity of plasma-derived NGS was 85.0%, comparable to 80.7% sensitivity for tissue. The assay success rate on 1,000 consecutive samples in clinical practice was 99.8%. Digital sequencing of plasma-derived DNA is indicated in advanced cancer patients to prevent repeated invasive biopsies when the initial biopsy is inadequate, unobtainable for genomic testing, or uninformative, or when the patient’s cancer has progressed despite treatment. Its clinical utility is derived from reduction in the costs, complications and delays associated with invasive tissue biopsies for genomic testing. PMID:26474073

  7. Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA.

    Directory of Open Access Journals (Sweden)

    Richard B Lanman

    Full Text Available Next-generation sequencing of cell-free circulating solid tumor DNA addresses two challenges in contemporary cancer care. First this method of massively parallel and deep sequencing enables assessment of a comprehensive panel of genomic targets from a single sample, and second, it obviates the need for repeat invasive tissue biopsies. Digital Sequencing™ is a novel method for high-quality sequencing of circulating tumor DNA simultaneously across a comprehensive panel of over 50 cancer-related genes with a simple blood test. Here we report the analytic and clinical validation of the gene panel. Analytic sensitivity down to 0.1% mutant allele fraction is demonstrated via serial dilution studies of known samples. Near-perfect analytic specificity (> 99.9999% enables complete coverage of many genes without the false positives typically seen with traditional sequencing assays at mutant allele frequencies or fractions below 5%. We compared digital sequencing of plasma-derived cell-free DNA to tissue-based sequencing on 165 consecutive matched samples from five outside centers in patients with stage III-IV solid tumor cancers. Clinical sensitivity of plasma-derived NGS was 85.0%, comparable to 80.7% sensitivity for tissue. The assay success rate on 1,000 consecutive samples in clinical practice was 99.8%. Digital sequencing of plasma-derived DNA is indicated in advanced cancer patients to prevent repeated invasive biopsies when the initial biopsy is inadequate, unobtainable for genomic testing, or uninformative, or when the patient's cancer has progressed despite treatment. Its clinical utility is derived from reduction in the costs, complications and delays associated with invasive tissue biopsies for genomic testing.

  8. Detection of methylated septin 9 in tissue and plasma of colorectal patients with neoplasia and the relationship to the amount of circulating cell-free DNA.

    Directory of Open Access Journals (Sweden)

    Kinga Tóth

    Full Text Available Determination of methylated Septin 9 (mSEPT9 in plasma has been shown to be a sensitive and specific biomarker for colorectal cancer (CRC. However, the relationship between methylated DNA in plasma and colon tissue of the same subjects has not been reported.Plasma and matching biopsy samples were collected from 24 patients with no evidence of disease (NED, 26 patients with adenoma and 34 patients with CRC. Following bisulfite conversion of DNA a commercial RT-PCR assay was used to determine the total amount of DNA in each sample and the fraction of mSEPT9 DNA. The Septin-9 protein was assessed using immunohistochemistry.The percent of methylated reference (PMR values for SEPT9 above a PMR threshold of 1% were detected in 4.2% (1/24 of NED, 100% (26/26 of adenoma and 97.1% (33/34 of CRC tissues. PMR differences between NED vs. adenoma and NED vs. CRC comparisons were significant (p<0.001. In matching plasma samples using a PMR cut-off level of 0.01%, SEPT9 methylation was 8.3% (2/24 of NED, 30.8% (8/26 of adenoma and 88.2% (30/34 of CRC. Significant PMR differences were observed between NED vs. CRC (p<0.01 and adenoma vs. CRC (p<0.01. Significant differences (p<0.01 were found in the amount of cfDNA (circulating cell-free DNA between NED and CRC, and a modest correlation was observed between mSEPT9 concentration and cfDNA of cancer (R2 = 0.48. The level of Septin-9 protein in tissues was inversely correlated to mSEPT9 levels with abundant expression in normals, and diminished expression in adenomas and tumors.Methylated SEPT9 was detected in all tissue samples. In plasma samples, elevated mSEPT9 values were detected in CRC, but not in adenomas. Tissue levels of mSEPT9 alone are not sufficient to predict mSEPT9 levels in plasma. Additional parameters including the amount of cfDNA in plasma appear to also play a role.

  9. Quantitative assessment of BRAF V600 mutant circulating cell-free tumor DNA as a tool for therapeutic monitoring in metastatic melanoma patients treated with BRAF/MEK inhibitors

    OpenAIRE

    SCHREUER, MAX; Meersseman, Geert; Van Den Herrewegen, Sari; Jansen, Yanina; Chevolet, Ines; Bott, Ambre; Wilgenhof, Sofie; Seremet, Teofila; Jacobs, Bart; Buyl, Ronald; Maertens, Geert; Neyns, Bart

    2016-01-01

    Background BRAF V600 mutant circulating cell-free tumor DNA (BRAF V600mut ctDNA) could serve as a specific biomarker in patients with BRAF V600 mutant melanoma. We analyzed the value of BRAF V600mut ctDNA from plasma as a monitoring tool for advanced melanoma patients treated with BRAF/MEK inhibitors. Methods Allele-specific quantitative PCR analysis for BRAF V600 E/E2/D/K/R/M mutations was performed on DNA extracted from plasma of patients with known BRAF V600 mutant melanoma who were treate...

  10. Analysis of 16S rRNA gene sequences and circulating cell-free DNA from plasma of chronic fatigue syndrome and non-fatigued subjects

    Directory of Open Access Journals (Sweden)

    Unger Elizabeth R

    2002-12-01

    Full Text Available Abstract Background The association of an infectious agent with chronic fatigue syndrome (CFS has been difficult and is further complicated by the lack of a known lesion or diseased tissue. Cell-free plasma DNA could serve as a sentinel of infection and disease occurring throughout the body. This type of systemic sample coupled with broad-range amplification of bacterial sequences was used to determine whether a bacterial pathogen was associated with CFS. Plasma DNA from 34 CFS and 55 non-fatigued subjects was assessed to determine plasma DNA concentration and the presence of bacterial 16S ribosomal DNA (rDNA sequences. Results DNA was isolated from 81 (91% of 89 plasma samples. The 55 non-fatigued subjects had higher plasma DNA concentrations than those with CFS (average 151 versus 91 ng and more CFS subjects (6/34, 18% had no detectable plasma DNA than non-fatigued subjects (2/55, 4%, but these differences were not significant. Bacterial sequences were detected in 23 (26% of 89. Only 4 (14% CFS subjects had 16S rDNA sequences amplified from plasma compared with 17 (32% of the non-fatigued (P = 0.03. All but 1 of the 23 16S rDNA amplicon-positive subjects had five or more unique sequences present. Conclusions CFS subjects had slightly lower concentrations or no detectable plasma DNA than non-fatigued subjects. There was a diverse array of 16S rDNA sequences in plasma DNA from both CFS and non-fatigued subjects. There were no unique, previously uncharacterized or predominant 16S rDNA sequences in either CFS or non-fatigued subjects.

  11. Non-invasive prenatal diagnosis of β-thalassemia by detection of the cell-free fetal DNA in maternal circulation: a systematic review and meta-analysis.

    Science.gov (United States)

    Zafari, Mandana; Kosaryan, Mehrnoush; Gill, Pooria; Alipour, Abbass; Shiran, Mohammadreza; Jalalli, Hossein; Banihashemi, Ali; Fatahi, Fatemeh

    2016-08-01

    The discovery of fetal DNA (f-DNA) opens the possibility of early non-invasive procedure for detection of paternally inherited mutation of beta-thalassemia. Since 2002, some studies have examined the sensitivity and specificity of this method for detection of paternally inherited mutation of thalassemia in pregnant women at risk of having affected babies. We conducted a systematic review of published articles that evaluated using this method for early detection of paternally inherited mutation in maternal plasma. A sensitive search of multiple databases was done in which nine studies met our inclusion criteria. The sensitivity and specificity was 99 and 99 %, respectively. The current study found that detection of paternally inherited mutation of thalassemia using analysis of cell-free fetal DNA is highly accurate. This method could replace conventional and invasive methods. PMID:26968552

  12. Cell-free DNA: Preanalytical variables.

    Science.gov (United States)

    Bronkhorst, Abel Jacobus; Aucamp, Janine; Pretorius, Piet J

    2015-10-23

    Since the discovery of cell-free DNA (cfDNA) in human blood, most studies have focused on diagnostic and prognostic uses of these markers for solid tumors. Except for some prenatal tests and BEAMing, cfDNA analysis has not yet been translated to clinical practice and routine application appears distant. This can be attributed to overlapping factors: (i) a lack of knowledge regarding the origin and function of cfDNA, (ii) insufficient molecular characterization, and (iii) the absence of an analytical consensus. In this review, we address the latter determinant and focus specifically on quantitative analysis of cfDNA. While the literature reports limited value for a single quantitative assessment, cfDNA kinetic assessment will be an essential component to qualitative characterization. In order to establish quantitative analysis for accurate kinetic assessments, process optimization and standardization are crucial. This report elucidates the most confounding variables of each preanalytic step that must be considered for optimal analysis. PMID:26341895

  13. Whole genome bisulfite sequencing of cell-free DNA and its cellular contributors uncovers placenta hypomethylated domains

    OpenAIRE

    Jensen, Taylor J.; Kim, Sung K; Zhu, Zhanyang; Chin, Christine; Gebhard, Claudia; Lu, Tim; Deciu, Cosmin; Van den Boom, Dirk; Ehrich, Mathias

    2015-01-01

    Background Circulating cell-free fetal DNA has enabled non-invasive prenatal fetal aneuploidy testing without direct discrimination of the maternal and fetal DNA. Testing may be improved by specifically enriching the sample material for fetal DNA. DNA methylation may allow for such a separation of DNA; however, this depends on knowledge of the methylomes of circulating cell-free DNA and its cellular contributors. Results We perform whole genome bisulfite sequencing on a set of unmatched sampl...

  14. Cell-free DNA: Comparison of Technologies.

    Science.gov (United States)

    Dar, Pe'er; Shani, Hagit; Evans, Mark I

    2016-06-01

    Cell-free fetal DNA screening for Down syndrome has gained rapid acceptance over the past few years with increasing market penetration. Three main laboratory methodologies are currently used: a massive parallel shotgun sequencing (MPSS), a targeted massive parallel sequencing (t-MPS) and a single nucleotide polymorphism (SNP) based approach. Although each of these technologies has its own advantages and disadvantages, the performance of all was shown to be comparable and superior to that of traditional first-trimester screening for the detection of trisomy 21 in a routine prenatal population. Differences in performance were predominantly shown for chromosomal anomalies other than trisomy 21. Understanding the limitations and benefits of each technology is essential for proper counseling to patients. These technologies, as well as few investigational technologies described in this review, carry a great potential beyond screening for the common aneuploidies. PMID:27235906

  15. False Negative Cell-Free DNA Screening Result in a Newborn with Trisomy 13

    OpenAIRE

    Yang Cao; Nicole L. Hoppman; Sarah E Kerr; Sattler, Christopher A.; Borowski, Kristi S.; Wick, Myra J.; Edward Highsmith, W.; Umut Aypar

    2016-01-01

    Background. Noninvasive prenatal screening (NIPS) is revolutionizing prenatal screening as a result of its increased sensitivity, specificity. NIPS analyzes cell-free fetal DNA (cffDNA) circulating in maternal plasma to detect fetal chromosome abnormalities. However, cffDNA originates from apoptotic placental trophoblast; therefore cffDNA is not always representative of the fetus. Although the published data for NIPS testing states that the current technique ensures high sensitivity and speci...

  16. Nonhomologous DNA End Joining in Cell-Free Extracts

    Directory of Open Access Journals (Sweden)

    Sheetal Sharma

    2010-01-01

    Full Text Available Among various DNA damages, double-strand breaks (DSBs are considered as most deleterious, as they may lead to chromosomal rearrangements and cancer when unrepaired. Nonhomologous DNA end joining (NHEJ is one of the major DSB repair pathways in higher organisms. A large number of studies on NHEJ are based on in vitro systems using cell-free extracts. In this paper, we summarize the studies on NHEJ performed by various groups in different cell-free repair systems.

  17. Single-stranded DNA library preparation uncovers the origin and diversity of ultrashort cell-free DNA in plasma

    OpenAIRE

    Philip Burnham; Min Seong Kim; Sean Agbor-Enoh; Helen Luikart; Hannah A. Valantine; Kiran K Khush; Iwijn De Vlaminck

    2016-01-01

    Circulating cell-free DNA (cfDNA) is emerging as a powerful monitoring tool in cancer, pregnancy and organ transplantation. Nucleosomal DNA, the predominant form of plasma cfDNA, can be adapted for sequencing via ligation of double-stranded DNA (dsDNA) adapters. dsDNA library preparations, however, are insensitive to ultrashort, degraded cfDNA. Drawing inspiration from advances in paleogenomics, we have applied a single-stranded DNA (ssDNA) library preparation method to sequencing of cfDNA in...

  18. Integrating stakeholder perspectives into the translation of cell-free fetal DNA testing for aneuploidy

    OpenAIRE

    Sayres, Lauren C.; Allyse, Megan; Cho, Mildred K.

    2012-01-01

    Background The translation of novel genomic technologies from bench to bedside enjoins the comprehensive consideration of the perspectives of all stakeholders who stand to influence, or be influenced by, the translational course. Non-invasive prenatal aneuploidy testing that utilizes cell-free fetal DNA (cffDNA) circulating in maternal blood is one example of an innovative technology that promises significant benefits for its intended end users; however, it is currently uncertain whether it w...

  19. Cell free fetal DNA testing in maternal blood of Romanian pregnant women

    OpenAIRE

    Radoi, Viorica E; Camil L Bohiltea; Roxana E Bohiltea; Dragos N Albu

    2015-01-01

    Background: The discovery of circulating fetal DNA in maternal blood led to the discovery of new strategies to perform noninvasive testing for prenatal diagnosis. Objective: The purpose of the study was to detect fetal aneuploidy at chromosomes 13, 18, 21, X, and Y by analysis of fetal cell-free DNA from maternal blood, without endangering pregnancy. Materials and Methods: This retrospective study has been performed in Bucharest at Medlife Maternal and Fetal Medicine Department between ...

  20. Admission Cell Free DNA as a Prognostic Factor in Burns: Quantification by Use of a Direct Rapid Fluorometric Technique

    Directory of Open Access Journals (Sweden)

    Yaron Shoham

    2014-01-01

    Full Text Available Background. Despite great advances in the treatment of burn patients, useful prognostic markers are sparse. During the past years there has been increasing interest in circulating plasma cell free DNA as a potential marker for tissue injury. We have developed a rapid direct fluorescent assay for cell free DNA quantification that allows obtaining accurate, fast, and inexpensive measurements. Objective. To use this technique for measuring plasma cell free DNA levels in burn patients and to further explore the use of cell free DNA as a potential marker of patient outcome in burns. Methods. Cell free DNA levels obtained from 14 burn victims within 6 hours of injury and 14 healthy controls were quantified by a direct rapid fluorometric assay. Results. Patient admission cell free DNA levels were significantly elevated compared with that of controls (1797 ± 1523 ng/mL versus 374 ± 245 ng/mL, P=0.004. There are statistically significant correlations between cell free DNA admission levels and burn degree (Spearman’s correlation = 0.78, P=0.001, total body surface area (Spearman’s correlation = 0.61, P=0.02, and total burn volume (Spearman’s correlation = 0.64, P=0.014. Conclusions. Admission cell free DNA levels can serve as a prognostic factor in burns and future routine use can be made possible by use of our direct rapid fluorometric assay.

  1. Quantitative analysis of cell-free DNA in ovarian cancer

    OpenAIRE

    Shao, Xuefeng; He, Yan; Ji, Min; Chen, Xiaofang; Qi, Jing; SHI, Wei; HAO, TIANBO; JU, SHAOQING

    2015-01-01

    The aim of the present study was to investigate the association between cell-free DNA (cf-DNA) levels and clinicopathological characteristics of patients with ovarian cancer using a branched DNA (bDNA) technique, and to determine the value of quantitative cf-DNA detection in assisting with the diagnosis of ovarian cancer. Serum specimens were collected from 36 patients with ovarian cancer on days 1, 3 and 7 following surgery, and additional serum samples were also collected from 22 benign ova...

  2. Decreased serum cell-free DNA levels in rheumatoid arthritis

    OpenAIRE

    Dunaeva, Marina; Buddingh’, Bastiaan C.; René E M Toes; Luime, Jolanda J.; Lubberts, Erik; Pruijn, Ger J. M.

    2015-01-01

    Purpose Recent studies have demonstrated that serum/plasma DNA and RNA molecules in addition to proteins can serve as biomarkers. Elevated levels of these nucleic acids have been found not only in acute, but also in chronic conditions, including autoimmune diseases. The aim of this study was to assess cell-free DNA (cfDNA) levels in sera of rheumatoid arthritis (RA) patients compared to controls. Methods cfDNA was extracted from sera of patients with early and established RA, relapsing-remitt...

  3. Cell-free DNA for diagnosing myocardial infarction: not ready for prime time.

    Science.gov (United States)

    Lippi, Giuseppe; Sanchis-Gomar, Fabian; Cervellin, Gianfranco

    2015-11-01

    A modest amount of cell-free DNA is constantly present in human blood, originating from programmed cell death, apoptosis and rupture of blood cells or pathogens. Acute or chronic cell injury contributes to enhance the pool of circulating nucleic acids, so that their assessment may be regarded as an appealing perspective for diagnosing myocardial ischemia. We performed a search in Medline, Web of Science and Scopus to identify clinical studies that investigated the concentration of cell-free DNA in patients with myocardial ischemia. Overall, eight case-control studies could be detected and reviewed. Although the concentration of cell-free DNA was found to be higher in the diseased than in the healthy population, the scenario was inconclusive due to the fact that the overall number of subjects studied was modest, the populations were unclearly defined, cases and controls were not adequately matched, the methodology for measuring the reference cardiac biomarkers was inadequately described, and the diagnostic performance of cell-free DNA was not benchmarked against highly sensitive troponin immunoassays. Several biological and technical hurdles were also identified in cell-free DNA testing, including the lack of specificity and unsuitable kinetics for early diagnosis of myocardial ischemia, the long turnaround time and low throughput, the need for specialized instrumentation and dedicated personnel, the lack of standardization or harmonization of analytical techniques, the incremental costs and the high vulnerability to preanalytical variables. Hence it seems reasonable to conclude that the analysis of cell-free DNA is not ready for prime time in diagnostics of myocardial ischemia. PMID:25883207

  4. Controls to validate plasma samples for cell free DNA quantification

    DEFF Research Database (Denmark)

    Pallisgaard, Niels; Spindler, Karen-Lise Garm; Andersen, Rikke Fredslund;

    2015-01-01

    Recent research has focused on the utility of cell free DNA (cfDNA) in serum and plasma for clinical application, especially in oncology. The literature holds promise of cfDNA as a valuable tumour marker to be used for treatment selection, monitoring and follow-up. The results, however, are...... diverging due to methodological differences with lack of standardisation and definition of sensitivity. The new biological information has not yet come into routine use. The present study presents external standardisation by spiking with non-human DNA fragments to control for loss of DNA during sample...... preparation and measurement. It also suggests a method to control for admixture of DNA from normal lymphocytes by utilizing the unique immunoglobulin gene rearrangement in the B-cells. The results show that this approach improves the quality of the analysis and lowers the risk of falsely increased values. In...

  5. Cell-free DNA in the Cerebrospinal Fluid under Emotional Stress

    OpenAIRE

    Mariia Zharova; Pavel Umriukhin; Natalia Veiko

    2016-01-01

    Background: Cell free circulating DNA (cfDNA) in blood is known to be a tumor marker however there is no information about its concentration in cerebrospinal fluid (CSF) in control and in emotional stress (ES). The aim of the study was to determine level of cfDNA in CSF of rats with different resistance to stress before and after ES. Methods: A total of 19 male Wistar rats weighing 200-220 g were included in this study. All rats were divided into 2 groups depending on the motor activity: acti...

  6. SNPase-ARMS qPCR: Ultrasensitive Mutation-Based Detection of Cell-Free Tumor DNA in Melanoma Patients

    OpenAIRE

    Stadler, Julia; Eder, Johanna; Pratscher, Barbara; Brandt, Sabine; Schneller, Doris; Müllegger, Robert; Vogl, Claus; Trautinger, Franz; Brem, Gottfried; Burgstaller, Joerg P.

    2015-01-01

    Cell-free circulating tumor DNA in the plasma of cancer patients has become a common point of interest as indicator of therapy options and treatment response in clinical cancer research. Especially patient- and tumor-specific single nucleotide variants that accurately distinguish tumor DNA from wild type DNA are promising targets. The reliable detection and quantification of these single-base DNA variants is technically challenging. Currently, a variety of techniques is applied, with no appar...

  7. Strategies for Implementing Cell-Free DNA Testing.

    Science.gov (United States)

    Cuckle, Howard

    2016-06-01

    Maternal plasma cell-free (cf) DNA testing has higher discriminatory power for aneuploidy than any conventional multi-marker screening test. Several strategies have been suggested for introducing it into clinical practice. Secondary cfDNA, restricted only to women with positive conventional screening test, is generally cost saving and minimizes the need for invasive prenatal diagnosis but leads to a small loss in detection. Primary cfDNA, replacing conventional screening or retaining the nuchal translucency scan, is not currently cost-effective for third-party payers. Contingent cfDNA, testing about 20% of women with the highest risks based on a conventional test, is the preferred approach. PMID:27235907

  8. False Negative Cell-Free DNA Screening Result in a Newborn with Trisomy 13

    Directory of Open Access Journals (Sweden)

    Yang Cao

    2016-01-01

    Full Text Available Background. Noninvasive prenatal screening (NIPS is revolutionizing prenatal screening as a result of its increased sensitivity, specificity. NIPS analyzes cell-free fetal DNA (cffDNA circulating in maternal plasma to detect fetal chromosome abnormalities. However, cffDNA originates from apoptotic placental trophoblast; therefore cffDNA is not always representative of the fetus. Although the published data for NIPS testing states that the current technique ensures high sensitivity and specificity for aneuploidy detection, false positives are possible due to isolated placental mosaicism, vanishing twin or cotwin demise, and maternal chromosome abnormalities or malignancy. Results. We report a case of false negative cell-free DNA (cfDNA screening due to fetoplacental mosaicism. An infant male with negative cfDNA screening result was born with multiple congenital abnormalities. Postnatal chromosome and FISH studies on a blood specimen revealed trisomy 13 in 20/20 metaphases and 100% interphase nuclei, respectively. FISH analysis on tissues collected after delivery revealed extraembryonic mosaicism. Conclusions. Extraembryonic tissue mosaicism is likely responsible for the false negative cfDNA screening result. This case illustrates that a negative result does not rule out the possibility of a fetus affected with a trisomy, as cffDNA is derived from the placenta and therefore may not accurately represent the fetal genetic information.

  9. False Negative Cell-Free DNA Screening Result in a Newborn with Trisomy 13

    Science.gov (United States)

    Cao, Yang; Hoppman, Nicole L.; Kerr, Sarah E.; Sattler, Christopher A.; Borowski, Kristi S.; Wick, Myra J.; Highsmith, W. Edward; Aypar, Umut

    2016-01-01

    Background. Noninvasive prenatal screening (NIPS) is revolutionizing prenatal screening as a result of its increased sensitivity, specificity. NIPS analyzes cell-free fetal DNA (cffDNA) circulating in maternal plasma to detect fetal chromosome abnormalities. However, cffDNA originates from apoptotic placental trophoblast; therefore cffDNA is not always representative of the fetus. Although the published data for NIPS testing states that the current technique ensures high sensitivity and specificity for aneuploidy detection, false positives are possible due to isolated placental mosaicism, vanishing twin or cotwin demise, and maternal chromosome abnormalities or malignancy. Results. We report a case of false negative cell-free DNA (cfDNA) screening due to fetoplacental mosaicism. An infant male with negative cfDNA screening result was born with multiple congenital abnormalities. Postnatal chromosome and FISH studies on a blood specimen revealed trisomy 13 in 20/20 metaphases and 100% interphase nuclei, respectively. FISH analysis on tissues collected after delivery revealed extraembryonic mosaicism. Conclusions. Extraembryonic tissue mosaicism is likely responsible for the false negative cfDNA screening result. This case illustrates that a negative result does not rule out the possibility of a fetus affected with a trisomy, as cffDNA is derived from the placenta and therefore may not accurately represent the fetal genetic information. PMID:26998368

  10. Controls to validate plasma samples for cell free DNA quantification.

    Science.gov (United States)

    Pallisgaard, Niels; Spindler, Karen-Lise Garm; Andersen, Rikke Fredslund; Brandslund, Ivan; Jakobsen, Anders

    2015-06-15

    Recent research has focused on the utility of cell free DNA (cfDNA) in serum and plasma for clinical application, especially in oncology. The literature holds promise of cfDNA as a valuable tumour marker to be used for treatment selection, monitoring and follow-up. The results, however, are diverging due to methodological differences with lack of standardisation and definition of sensitivity. The new biological information has not yet come into routine use. The present study presents external standardisation by spiking with non-human DNA fragments to control for loss of DNA during sample preparation and measurement. It also suggests a method to control for admixture of DNA from normal lymphocytes by utilizing the unique immunoglobulin gene rearrangement in the B-cells. The results show that this approach improves the quality of the analysis and lowers the risk of falsely increased values. In conclusion we suggest a new method to improve the accuracy of cfDNA measurements easily incorporated in the current technology. PMID:25896958

  11. High-resolution characterization of sequence signatures due to non-random cleavage of cell-free DNA

    OpenAIRE

    Chandrananda, Dineika; Thorne, Natalie P.; Bahlo, Melanie

    2015-01-01

    Background High-throughput sequencing of cell-free DNA fragments found in human plasma has been used to non-invasively detect fetal aneuploidy, monitor organ transplants and investigate tumor DNA. However, many biological properties of this extracellular genetic material remain unknown. Research that further characterizes circulating DNA could substantially increase its diagnostic value by allowing the application of more sophisticated bioinformatics tools that lead to an improved signal to n...

  12. Aberrant reduction of telomere repetitive sequences in plasma cell-free DNA for early breast cancer detection

    OpenAIRE

    Wu, Xi; Tanaka, Hiromi

    2015-01-01

    Excessive telomere shortening is observed in breast cancer lesions when compared to adjacent non-cancerous tissues, suggesting that telomere length may represent a key biomarker for early cancer detection. Because tumor-derived, cell-free DNA (cfDNA) is often released from cancer cells and circulates in the bloodstream, we hypothesized that breast cancer development is associated with changes in the amount of telomeric cfDNA that can be detected in the plasma. To test this hypothesis, we devi...

  13. Quantitative analysis of cell-free DNA in ovarian cancer

    Science.gov (United States)

    SHAO, XUEFENG; He, YAN; JI, MIN; CHEN, XIAOFANG; QI, JING; SHI, WEI; HAO, TIANBO; JU, SHAOQING

    2015-01-01

    The aim of the present study was to investigate the association between cell-free DNA (cf-DNA) levels and clinicopathological characteristics of patients with ovarian cancer using a branched DNA (bDNA) technique, and to determine the value of quantitative cf-DNA detection in assisting with the diagnosis of ovarian cancer. Serum specimens were collected from 36 patients with ovarian cancer on days 1, 3 and 7 following surgery, and additional serum samples were also collected from 22 benign ovarian tumor cases, and 19 healthy, non-cancerous ovaries. bDNA techniques were used to detect serum cf-DNA concentrations. All data were analyzed using SPSS version 18.0. The cf-DNA levels were significantly increased in the ovarian cancer group compared with those of the benign ovarian tumor group and healthy ovarian group (P<0.01). Furthermore, cf-DNA levels were significantly increased in stage III and IV ovarian cancer compared with those of stages I and II (P<0.01). In addition, cf-DNA levels were significantly increased on the first day post-surgery (P<0.01), and subsequently demonstrated a gradual decrease. In the ovarian cancer group, the area under the receiver operating characteristic curve of cf-DNA and the sensitivity were 0.917 and 88.9%, respectively, which was higher than those of cancer antigen 125 (0.724, 75%) and human epididymis protein 4 (0.743, 80.6%). There was a correlation between the levels of serum cf-DNA and the occurrence and development of ovarian cancer in the patients evaluated. bDNA techniques possessed higher sensitivity and specificity than other methods for the detection of serum cf-DNA in patients exhibiting ovarian cancer, and bDNA techniques are more useful for detecting cf-DNA than other factors. Thus, the present study demonstrated the potential value for the use of bDNA as an adjuvant diagnostic method for ovarian cancer. PMID:26788153

  14. Multiparametric analysis of cell-free DNA in melanoma patients.

    Directory of Open Access Journals (Sweden)

    Francesca Salvianti

    Full Text Available Cell-free DNA in blood (cfDNA represents a promising biomarker for cancer diagnosis. Total cfDNA concentration showed a scarce discriminatory power between patients and controls. A higher specificity in cancer diagnosis can be achieved by detecting tumor specific alterations in cfDNA, such as DNA integrity, genetic and epigenetic modifications.The aim of the present study was to identify a sequential multi-marker panel in cfDNA able to increase the predictive capability in the diagnosis of cutaneous melanoma in comparison with each single marker alone. To this purpose, we tested total cfDNA concentration, cfDNA integrity, BRAF(V600E mutation and RASSF1A promoter methylation associated to cfDNA in a series of 76 melanoma patients and 63 healthy controls. The chosen biomarkers were assayed in cfDNA samples by qPCR. Comparison of biomarkers distribution in cases and controls was performed by a logistic regression model in both univariate and multivariate analysis. The predictive capability of each logistic model was investigated by means of the area under the ROC curve (AUC. To aid the reader to interpret the value of the AUC, values between 0.6 and 0.7, between 0.71 and 0.8 and greater than 0.8 were considered as indicating a weak predictive, satisfactory and good predictive capacity, respectively. The AUC value for each biomarker (univariate logistic model was weak/satisfactory ranging between 0.64 (BRAF(V600E to 0.85 (total cfDNA. A good overall predictive capability for the final logistic model was found with an AUC of 0.95. The highest predictive capability was given by total cfDNA (AUC:0.86 followed by integrity index 180/67 (AUC:0.90 and methylated RASSF1A (AUC:0.89.An approach based on the simultaneous determination of three biomarkers (total cfDNA, integrity index 180/67 and methylated RASSF1A could improve the diagnostic performance in melanoma.

  15. Single-stranded DNA library preparation uncovers the origin and diversity of ultrashort cell-free DNA in plasma.

    Science.gov (United States)

    Burnham, Philip; Kim, Min Seong; Agbor-Enoh, Sean; Luikart, Helen; Valantine, Hannah A; Khush, Kiran K; De Vlaminck, Iwijn

    2016-01-01

    Circulating cell-free DNA (cfDNA) is emerging as a powerful monitoring tool in cancer, pregnancy and organ transplantation. Nucleosomal DNA, the predominant form of plasma cfDNA, can be adapted for sequencing via ligation of double-stranded DNA (dsDNA) adapters. dsDNA library preparations, however, are insensitive to ultrashort, degraded cfDNA. Drawing inspiration from advances in paleogenomics, we have applied a single-stranded DNA (ssDNA) library preparation method to sequencing of cfDNA in the plasma of lung transplant recipients (40 samples, six patients). We found that ssDNA library preparation yields a greater portion of sub-100 bp nuclear genomic cfDNA (p 10(-5), Mann-Whitney U Test), and an increased relative abundance of mitochondrial (10.7x, p 10(-5)) and microbial cfDNA (71.3x, p 10(-5)). The higher yield of microbial sequences from this method increases the sensitivity of cfDNA-based monitoring for infections following transplantation. We detail the fragmentation pattern of mitochondrial, nuclear genomic and microbial cfDNA over a broad fragment length range. We report the observation of donor-specific mitochondrial cfDNA in the circulation of lung transplant recipients. A ssDNA library preparation method provides a more informative window into understudied forms of cfDNA, including mitochondrial and microbial derived cfDNA and short nuclear genomic cfDNA, while retaining information provided by standard dsDNA library preparation methods. PMID:27297799

  16. Plasma Cell-Free DNA in Paediatric Lymphomas

    Science.gov (United States)

    Mussolin, Lara; Burnelli, Roberta; Pillon, Marta; Carraro, Elisa; Farruggia, Piero; Todesco, Alessandra; Mascarin, Maurizio; Rosolen, Angelo

    2013-01-01

    Background: Extracellular circulating DNA (cfDNA) can be found in small amounts in plasma of healthy individuals. Increased levels of cfDNA have been reported in patients with cancer of breast, cervix, colon, liver and it was shown that cfDNA can originate from both tumour and non-tumour cells. Objectives: Levels of cfDNA of a large series of children with lymphoma were evaluated and analyzed in relation with clinical characteristics. Methods: plasma cfDNA levels obtained at diagnosis in 201 paediatric lymphoma patients [43 Hodgkin lymphomas (HL), 45 anaplastic large cell lymphomas (ALCL), 88 Burkitt lymphomas (BL), 17 lymphoblastic (LBL), 8 diffuse large B cell lymphoma (DLBCL)] and 15 healthy individuals were determined using a quantitative PCR assay for POLR2 gene and, in addition, for NPM-ALK fusion gene in ALCL patients. Wilcoxon rank sum test was used to compare plasma levels among different patient subgroups and controls and to analyze relationship between levels of cfDNA and clinical characteristics. Results: Levels of cfDNA in lymphoma patients were significantly higher compared with controls (p<0.0001). CfDNA was associated with median age (p=0.01) in HL, and with stage in ALCL (p=0.01). In HL patients high cfDNA levels were correlated with poor prognosis (p=0.03). In ALCL we found that most of the cfDNA (77%) was non-tumor DNA. Conclusion: level of plasma cfDNA might constitute an important non-invasive tool at diagnosis in lymphoma patients' management; in particular in patients with HL, cfDNA seems to be a promising prognostic biomarker. PMID:23678368

  17. Clinical relevance of circulating cell-free microRNAs in ovarian cancer.

    Science.gov (United States)

    Nakamura, Koji; Sawada, Kenjiro; Yoshimura, Akihiko; Kinose, Yasuto; Nakatsuka, Erika; Kimura, Tadashi

    2016-01-01

    Ovarian cancer is the leading cause of death among gynecologic malignancies. Since ovarian cancer develops asymptomatically, it is often diagnosed at an advanced and incurable stage. Despite many years of research, there is still a lack of reliable diagnostic markers and methods for early detection and screening. Recently, it was discovered that cell-free microRNAs (miRNAs) circulate in the body fluids of healthy and diseased patients, suggesting that they may serve as a novel diagnostic marker. This review summarizes the current knowledge regarding the potential clinical relevance of circulating cell-free miRNA for ovarian cancer diagnosis, prognosis, and therapeutics. Despite the high levels of ribonucleases in many types of body fluids, most of the circulating miRNAs are packaged in microvesicles, exosomes, or apoptotic bodies, are binding to RNA-binding protein such as argonaute 2 or lipoprotein complexes, and are thus highly stable. Cell-free miRNA signatures are known to be parallel to those from the originating tumor cells, indicating that circulating miRNA profiles accurately reflect the tumor profiles. Since it is well established that the dysregulation of miRNAs is involved in the tumorigenesis of ovarian cancer, cell-free miRNAs circulating in body fluids such as serum, plasma, whole blood, and urine may reflect not only the existence of ovarian cancer but also tumor histology, stage, and prognoses of the patients. Several groups have successfully demonstrated that serum or plasma miRNAs are able to discriminate patients with ovarian cancer patients from healthy controls, suggesting that the addition of these miRNAs to current testing regimens may improve diagnosis accuracies for ovarian cancer. Furthermore, recent studies have revealed that changes in levels of cell-free circulating miRNAs are associated with the condition of cancer patients. Discrepancies between the results across studies due to the lack of an established endogenous miRNA control to

  18. Noninvasive Fetal Sex Determination Using Cell-Free Fetal DNA

    Science.gov (United States)

    Devaney, Stephanie A.; Palomaki, Glenn E.; Scott, Joan A.; Bianchi, Diana W.

    2015-01-01

    Context Noninvasive prenatal determination of fetal sex using cell-free fetal DNA provides an alternative to invasive techniques for some heritable disorders. In some countries this testing has transitioned to clinical care, despite the absence of a formal assessment of performance. Objective To document overall test performance of noninvasive fetal sex determination using cell-free fetal DNA and to identify variables that affect performance. Data Sources Systematic review and meta-analysis with search of PubMed (January 1, 1997–April 17, 2011) to identify English-language human studies reporting primary data. References from review articles were also searched. Study Selection and Data Extraction Abstracts were read independently to identify studies reporting primary data suitable for analysis. Covariates included publication year, sample type, DNA amplification methodology, Y chromosome sequence, and gestational age. Data were independently extracted by 2 reviewers. Results From 57 selected studies, 80 data sets (representing 3524 male-bearing pregnancies and 3017 female-bearing pregnancies) were analyzed. Overall performance of the test to detect Y chromosome sequences had the following characteristics: sensitivity, 95.4% (95% confidence interval [CI], 94.7%–96.1%) and specificity, 98.6% (95% CI, 98.1%–99.0%); diagnostic odds ratio (OR), 885; positive predictive value, 98.8%; negative predictive value, 94.8%; area under curve (AUC), 0.993 (95% CI, 0.989–0.995), with significant interstudy heterogeneity. DNA methodology and gestational age had the largest effects on test performance. Methodology test characteristics were AUC, 0.988 (95% CI, 0.979–0.993) for polymerase chain reaction (PCR) and AUC, 0.996 (95% CI, 0.993–0.998) for real-time quantitative PCR (RTQ-PCR) (P=.02). Gestational age test characteristics were AUC, 0.989 (95% CI, 0.965–0.998) (20 weeks) (P=.02 for comparison of diagnostic ORs across age ranges). RTQ-PCR (sensitivity, 96

  19. Non-invasive prenatal diagnosis of fetal trisomy 21 using cell-free fetal DNA in maternal blood

    OpenAIRE

    Lim, Ji Hyae; Park, So Yeon; Ryu, Hyun Mee

    2013-01-01

    Since the existence of cell-free fetal DNA (cff-DNA) in maternal circulation was discovered, it has been identified as a promising source of fetal genetic material in the development of reliable methods for non-invasive prenatal diagnosis (NIPD) of fetal trisomy 21 (T21). Currently, a prenatal diagnosis of fetal T21 is achieved through invasive techniques, such as chorionic villus sampling or amniocentesis. However, such invasive diagnostic tests are expensive, require expert technicians, and...

  20. Liquid biopsy of gastric cancer patients: circulating tumor cells and cell-free nucleic acids.

    Science.gov (United States)

    Tsujiura, Masahiro; Ichikawa, Daisuke; Konishi, Hirotaka; Komatsu, Shuhei; Shiozaki, Atsushi; Otsuji, Eigo

    2014-03-28

    To improve the clinical outcomes of cancer patients, early detection and accurate monitoring of diseases are necessary. Numerous genetic and epigenetic alterations contribute to oncogenesis and cancer progression, and analyses of these changes have been increasingly utilized for diagnostic, prognostic and therapeutic purposes in malignant diseases including gastric cancer (GC). Surgical and/or biopsy specimens are generally used to understand the tumor-associated alterations; however, those approaches cannot always be performed because of their invasive characteristics and may fail to reflect current tumor dynamics and drug sensitivities, which may change during the therapeutic process. Therefore, the importance of developing a non-invasive biomarker with the ability to monitor real-time tumor dynamics should be emphasized. This concept, so called "liquid biopsy", would provide an ideal therapeutic strategy for an individual cancer patient and would facilitate the development of "tailor-made" cancer management programs. In the blood of cancer patients, the presence and potent utilities of circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs) such as DNA, mRNA and microRNA have been recognized, and their clinical relevance is attracting considerable attention. In this review, we discuss recent developments in this research field as well as the relevance and future perspectives of CTCs and cfNAs in cancer patients, especially focusing on GC. PMID:24696609

  1. Quantitative cell-free DNA, KRAS, and BRAF mutations in plasma from patients with metastatic colorectal cancer during treatment with cetuximab and irinotecan

    DEFF Research Database (Denmark)

    Spindler, Karen-Lise Garm; Pallisgaard, Niels; Vogelius, Ivan Storgaard; Jakobsen, Anders

    2012-01-01

    The present study investigated the levels of circulating cell-free DNA (cfDNA) in plasma from patients with metastatic colorectal cancer (mCRC) in relation to third-line treatment with cetuximab and irinotecan and the quantitative relationship of cfDNA with tumor-specific mutations in plasma....

  2. Cell-free DNA next-generation sequencing in pancreatobiliary carcinomas

    Science.gov (United States)

    Zill, Oliver A.; Greene, Claire; Sebisanovic, Dragan; Siew, LaiMun; Leng, Jim; Vu, Mary; Hendifar, Andrew E.; Wang, Zhen; Atreya, Chloe E.; Kelley, Robin K.; Van Loon, Katherine; Ko, Andrew H.; Tempero, Margaret A.; Bivona, Trever G.; Munster, Pamela N.; Talasaz, AmirAli; Collisson, Eric A.

    2015-01-01

    Patients with pancreatic and biliary carcinomas lack personalized treatment options, in part because biopsies are often inadequate for molecular characterization. Cell-free DNA (cfDNA) sequencing may enable a precision oncology approach in this setting. We attempted to prospectively analyze 54 genes in tumor and cfDNA for 26 patients. Tumor sequencing failed in nine patients (35%). In the remaining 17, 90.3% (95% CI: 73.1–97.5%) of mutations detected in tumor biopsies were also detected in cfDNA. The diagnostic accuracy of cfDNA sequencing was 97.7%, with 92.3% average sensitivity and 100% specificity across five informative genes. Changes in cfDNA correlated well with tumor marker dynamics in serial sampling (r=0.93). We demonstrate that cfDNA sequencing is feasible, accurate, and sensitive in identifying tumor-derived mutations without prior knowledge of tumor genotype or the abundance of circulating tumor DNA. cfDNA sequencing should be considered in pancreatobiliary cancer trials where tissue sampling is unsafe, infeasible, or otherwise unsuccessful. PMID:26109333

  3. Implementing Prenatal Diagnosis Based on Cell-Free Fetal DNA: Accurate Identification of Factors Affecting Fetal DNA Yield

    OpenAIRE

    Barrett, A. N.; Zimmermann, B. G.; Wang, D.; Holloway, A.; Chitty, L S

    2011-01-01

    Objective: Cell-free fetal DNA is a source of fetal genetic material that can be used for non-invasive prenatal diagnosis. Usually constituting less than 10% of the total cell free DNA in maternal plasma, the majority is maternal in origin. Optimizing conditions for maximizing yield of cell-free fetal DNA will be crucial for effective implementation of testing. We explore factors influencing yield of fetal DNA from maternal blood samples, including assessment of collection tubes containing ce...

  4. Modifying Risk of Aneuploidy with a Positive Cell-Free Fetal DNA Result.

    Science.gov (United States)

    Long, A Ashleigh; Abuhamad, Alfred Z; Warsof, Steven L

    2016-06-01

    Noninvasive genomic assessments of the fetus while in utero have been made possible by the analysis of cell-free fetal DNA fragments from the serum of pregnant women, as part of a noninvasive prenatal testing screening strategy. Between 7% and 10% of total cell-free DNA in the maternal blood comes from placental trophoblasts, allowing for identification of the DNA associated with the fetal component of the placenta. Using simple venipuncture in the outpatient setting, this cell-free, extracellular fetal DNA can be isolated in the maternal serum from a single blood draw as early as the seventh week of gestation. PMID:27235910

  5. The Impact of Chronic Kidney Disease and Short-Term Treatment with Rosiglitazone on Plasma Cell-Free DNA Levels

    Directory of Open Access Journals (Sweden)

    Amanda L. McGuire

    2014-01-01

    Full Text Available Patients with chronic kidney disease (CKD are at increased risk of cardiovascular disease. Circulating free nucleic acids, known as cell-free DNA (cfDNA, have been proposed as a novel biomarker of cardiovascular risk. The impact of renal impairment on cfDNA levels and whether cfDNA is associated with endothelial dysfunction and inflammation in CKD has not been systematically studied. We analysed cfDNA concentrations from patients with varying degrees of CKD. In addition, to determine whether there is a relationship between cfDNA, inflammation, and endothelial dysfunction in CKD, levels of proinflammatory cytokines and von Willebrand Factor (vWF were measured in patients treated with the peroxisome proliferator-activated receptor gamma agonist rosiglitazone or placebo for 8 weeks. cfDNA levels were not increased with renal impairment or associated with the degree of renal dysfunction (P=0.5. Treatment with rosiglitazone for 8 weeks, but not placebo, was more likely to lead to a reduction in cfDNA levels (P=0.046; however, the absolute changes in cfDNA concentrations during treatment were not statistically significant (P>0.05. cfDNA levels correlated with markers of endothelial dysfunction (hsCRP P=0.0497 and vWF (P=0.0005. In conclusion, cell-free DNA levels are not influenced by renal impairment but do reflect endothelial dysfunction in patients with CKD.

  6. Quantitation of cell-free DNA and RNA in plasma during tumor progression in rats

    Directory of Open Access Journals (Sweden)

    García-Olmo Dolores C

    2013-02-01

    Full Text Available Abstract Background To clarify the implications of cell-free nucleic acids (cfNA in the plasma in neoplastic disease, it is necessary to determine the kinetics of their release into the circulation. Methods To quantify non-tumor and tumor DNA and RNA in the plasma of tumor-bearing rats and to correlate such levels with tumor progression, we injected DHD/K12-PROb colon cancer cells subcutaneously into syngenic BD-IX rats. Rats were sacrificed and their plasma was analyzed from the first to the eleventh week after inoculation. Results The release of large amounts of non-tumor DNA into plasma was related to tumor development from its early stages. Tumor-specific DNA was detected in 33% of tumor-bearing rats, starting from the first week after inoculation and at an increasing frequency thereafter. Animals that were positive for tumor DNA in the plasma had larger tumors than those that were negative (p = 0.0006. However, the appearance of both mutated and non-mutated DNA fluctuated with time and levels of both were scattered among individuals in each group. The release of non-tumor mRNA was unaffected by tumor progression and we did not detect mutated RNA sequences in any animals. Conclusions The release of normal and tumor cfDNA into plasma appeared to be related to individual-specific factors. The contribution of tumor DNA to the elevated levels of plasma DNA was intermittent. The release of RNA into plasma during cancer progression appeared to be an even more selective and elusive phenomenon than that of DNA.

  7. Cell-free fetal DNA and pregnancy-related complications (Review)

    Science.gov (United States)

    SIFAKIS, STAVROS; KOUKOU, ZETA; SPANDIDOS, DEMETRIOS A.

    2015-01-01

    Cell-free fetal DNA (cff-DNA) is a novel promising biomarker that has been applied in various aspects of obstetrical research, notably in prenatal diagnosis and complicated pregnancies. It is easily detected by semi-quantitative PCR for the SRY target gene. It is well recognized that the levels of circulating cff-DNA play a role in various complications of pregnancy. In this review, we explore the implications of the detection of cff-DNA in a range of pregnancy-related complications, such as preeclampsia, intrauterine growth restriction (IUGR), preterm labor, placenta previa and hyperemesis gravidarum. cff-DNA is released due to apoptotic mechanisms occurring on trophoblastic cells, although recent in vivo studies support the existence of additional mechanisms. The increase in the levels of cff-DNA can be used to predict pregnancy-related complications and has great value in the field of prenatal diagnosis and in common pregnancy-related complications, as it precedes the clinical symptoms of the disease. Gestational age is a factor that determines the elevation in cff-DNA levels in response to pathological conditions. In conclusion, the detection of cff-DNA levels has a number of valuable applications in prenatal screening; however, the detection of cff-DNA levels has not yet been applied in clinical practice for the diagnosis of pregnancy-related disorders. Thus, studies are focusing on unraveling the etiology of alterations in its levels under pathological conditions during pregnancy, in order to determine the potenial predictive and diagnostic applications of this biomarker. PMID:25530428

  8. A Method to Quantify Cell-Free Fetal DNA Fraction in Maternal Plasma Using Next Generation Sequencing: Its Application in Non-Invasive Prenatal Chromosomal Aneuploidy Detection

    OpenAIRE

    Xu, Xu-Ping; Gan, Hai-Yan; Li, Fen-xia; Tian, Qi; Zhang, Jun; Liang, Rong-Liang; LI Ming; Yang, Xue-Xi; Wu, Ying-Song

    2016-01-01

    Objective The fraction of circulating cell-free fetal (cff) DNA in maternal plasma is a critical parameter for aneuploidy screening with non-invasive prenatal testing, especially for those samples located in equivocal zones. We developed an approach to quantify cff DNA fractions directly with sequencing data, and increased cff DNAs by optimizing library construction procedure. Methods Artificial DNA mixture samples (360), with known cff DNA fractions, were used to develop a method to determin...

  9. Prospective blinded study of somatic mutation detection in cell-free DNA utilizing a targeted 54-gene next generation sequencing panel in metastatic solid tumor patients

    OpenAIRE

    Kim, Seung Tae; Lee, Won Suk; Lanman, Richard B.; Mortimer, Stefanie; Zill, Oliver A.; Kim, Kyoung-Mee; Jang, Kee Taek; Kim, Seok-Hyung; Park, Se Hoon; Park, Joon Oh; Park, Young Suk; Lim, Ho Yeong; Eltoukhy, Helmy; Kang, Won Ki; Lee, Woo Yong

    2015-01-01

    Sequencing of the mutant allele fraction of circulating cell-free DNA (cfDNA) derived from tumors is increasingly utilized to detect actionable genomic alterations in cancer. We conducted a prospective blinded study of a comprehensive cfDNA sequencing panel with 54 cancer genes. To evaluate the concordance between cfDNA and tumor DNA (tDNA), sequencing results were compared between cfDNA from plasma and genomic tumor DNA (tDNA). Utilizing next generation digital sequencing technology (DST), w...

  10. Urine Cell-Free DNA Integrity as a Marker for Early Prostate Cancer Diagnosis: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Valentina Casadio

    2013-01-01

    Full Text Available Circulating cell-free DNA has been recognized as an accurate marker for the diagnosis of prostate cancer, whereas the role of urine cell-free DNA (UCF DNA has never been evaluated in this setting. It is known that normal apoptotic cells produce highly fragmented DNA while cancer cells release longer DNA. We thus verified the potential role of UCF DNA integrity for early prostate cancer diagnosis. UCF DNA was isolated from 29 prostate cancer patients and 25 healthy volunteers. Sequences longer than 250 bp (c-Myc, BCAS1, and HER2 were quantified by real-time PCR to verify UCF DNA integrity. Receiver operating characteristic (ROC curve analysis revealed an area under the curve of 0.7959 (95% CI 0.6729–0.9188. At the best cut-off value of 0.04 ng/μL, UCF DNA integrity analysis showed a sensitivity of 0.79 (95% CI 0.62–0.90 and a specificity of 0.84 (95% CI 0.65–0.94. These preliminary findings indicate that UCF DNA integrity could be a promising noninvasive marker for the early diagnosis of prostate cancer and pave the way for further research into this area.

  11. Cell free fetal DNA testing in maternal blood of Romanian pregnant women

    Directory of Open Access Journals (Sweden)

    Viorica E Radoi

    2015-10-01

    Full Text Available Background: The discovery of circulating fetal DNA in maternal blood led to the discovery of new strategies to perform noninvasive testing for prenatal diagnosis. Objective: The purpose of the study was to detect fetal aneuploidy at chromosomes 13, 18, 21, X, and Y by analysis of fetal cell-free DNA from maternal blood, without endangering pregnancy. Materials and Methods: This retrospective study has been performed in Bucharest at Medlife Maternal and Fetal Medicine Department between 2013-2014. In total 201 women were offered noninvasive prenatal test. Maternal plasma samples were collected from women at greater than 9 weeks of gestation after informed consent and genetics counseling. Results: From 201 patients; 28 (13.93% had screening test with high risk for trisomy 21, 116 (57.71% had advanced maternal age, 1 (0.49% had second trimester ultrasound markers and the remaining 56 patients (27.86% performed the test on request. Of those patients, 189 (94.02% had a “low risk” result (99% risk all for trisomy 21 (T21. T21 was confirmed by amniocentesis in 1 patient and the other 4 patients declined confirmation. The 7 remaining patients (3.48% had a low fetal fraction of DNA. Conclusion: It is probably that prenatal diagnosis using fetal DNA in maternal blood would play an increasingly role in the future practice of prenatal testing because of high accuracy.

  12. Improved recovery of bisulphite-treated cell-free DNA in plasma

    DEFF Research Database (Denmark)

    Pedersen, Inge Søkilde; Krarup, H.B.; Thorlacius-Ussing, O.;

    Detection of cell-free methylated DNA in plasma is a promising tool for tumour diagnosis and monitoring. Due to the very low amount of cell-free DNA in plasma, sensitivity of the detection methods are of utmost importance. The vast majority of currently available methods for analysing DNA...... of PCR amplifying methylated and umethylated MEST. This procedure allows low levels of DNA to be easily and reliably analysed, a prerequisite for the clinical usefulness of cell-free methylated DNA detection in plasma....... methylation are based on bisulphite-mediated deamination of cytosine. However, the recovery of bisulphite-converted DNA is very poor. Here we introduce an alternative method for the crucial steps of bisulphite removal and desulfonation, improving recovery, especially for specimens with low levels of DNA. The...

  13. Chimeric External Control to Quantify Cell Free DNA in Plasma Samples by Real Time PCR

    OpenAIRE

    Eini, Maryam; Behzad-Behbahani, Abbas; Takhshid, Mohammad Ali; Ramezani, Amin; Rafiei Dehbidi, Gholam Reza; Okhovat, Mohammad Ali; Farhadi, Ali; Alavi, Parniyan

    2016-01-01

    Background: DNA isolation procedure can significantly influence the quantification of DNA by real time PCR specially when cell free DNA (cfDNA) is the subject. To assess the extraction efficiency, linearity of the extraction yield, presence of co-purified inhibitors and to avoid problems with fragment size relevant to cfDNA, development of appropriate External DNA Control (EDC) is challenging. Using non-human chimeric nucleotide sequences, an EDC was developed for standardization of qPCR for ...

  14. Plasma HER2 amplification in cell-free DNA during neoadjuvant chemotherapy in breast cancer

    DEFF Research Database (Denmark)

    Bechmann, Troels; Andersen, Rikke Fredslund; Pallisgaard, Niels;

    2013-01-01

    Measurement of human epidermal growth factor receptor 2 (HER2) gene amplification in cell-free DNA (cfDNA) is an evolving technique in breast cancer, enabling liquid biopsies and treatment monitoring. The present study investigated the dynamics of plasma HER2 gene copy number and amplification in...... cfDNA during neoadjuvant chemotherapy....

  15. Adjustments to the preanalytical phase of quantitative cell-free DNA analysis

    OpenAIRE

    Abel Jacobus Bronkhorst; Janine Aucamp; Piet J. Pretorius

    2015-01-01

    Evaluating the kinetics of cell-free DNA (cfDNA) in the blood of cancer patients could be a strong auxiliary component to the molecular characterization of cfDNA, but its potential clinical significance is obscured by the absence of an analytical consensus. To utilize quantitative cfDNA assessment with confidence, it is crucial that the preanalytical phase is standardized. In a previous publication, several preanalytical variables that may affect quantitative measurements of cfDNA were identi...

  16. Branched DNA-based Alu quantitative assay for cell-free plasma DNA levels in patients with sepsis or systemic inflammatory response syndrome.

    Science.gov (United States)

    Hou, Yan-Qiang; Liang, Dong-Yu; Lou, Xiao-Li; Zhang, Mei; Zhang, Zhen-huan; Zhang, Lu-rong

    2016-02-01

    Cell-free circulating DNA (cf-DNA) can be detected by various of laboratory techniques. We described a branched DNA-based Alu assay for measuring cf-DNA in septic patients. Compared to healthy controls and systemic inflammatory response syndrome (SIRS) patients, serum cf-DNA levels were significantly higher in septic patients (1426.54 ± 863.79 vs 692.02 ± 703.06 and 69.66 ± 24.66 ng/mL). The areas under the receiver operating characteristic curve of cf-DNA for normal vs sepsis and SIRS vs sepsis were 0.955 (0.884-1.025), and 0.856 (0.749-0.929), respectively. There was a positive correlation between cf-DNA and interleukin 6 or procalcitonin or Acute Physiology and Chronic Health Evaluation II. The cf-DNA concentration was higher in intensive care unit nonsurviving patients compared to surviving patients (2183.33 ± 615.26 vs 972.46 ± 648.36 ng/mL; P format. Cell-free circulating DNA might be a new marker in discrimination of sepsis and SIRS. PMID:26589770

  17. Graft-Derived Cell-Free DNA as a Marker of Transplant Graft Injury.

    Science.gov (United States)

    Oellerich, Michael; Walson, Philip D; Beck, Julia; Schmitz, Jessica; Kollmar, Otto; Schütz, Ekkehard

    2016-04-01

    Although short-term success after solid organ transplantation is good, long-term graft and recipient survival are both not satisfactory. Despite therapeutic drug monitoring (TDM) of immunosuppressive drugs (ISDs), both excessive and insufficient immunosuppression still do occur. There is a need for new biomarkers that, when combined with TDM, can be used to provide more effective and less toxic, personalized immunosuppression to improve long-term survival. Currently used methods are insufficient to rapidly, cost-effectively, and directly interrogate graft integrity after solid organ transplantation. However, because organ transplants are also genome transplants, measurement of graft-derived circulating cell-free DNA (GcfDNA) has shown promise as a way to improve both graft and recipient outcomes after solid organ transplantation through the early detection of severe graft injury, enabling an early intervention. A newly developed droplet digital polymerase chain reaction (ddPCR) method has advantages over expensive high-throughput sequencing methods to rapidly quantify GcfDNA percentages and absolute amounts. This procedure does not require donor DNA and therefore can be applied to any organ donor/recipient pair. The droplet digital polymerase chain reaction method allows for the early, sensitive, specific, and cost-effective direct assessment of graft integrity and can be used to define individual responses to ISDs including the minimal ISD exposures necessary to prevent rejection. This is especially important in patients undergoing ISD switches due to ISD toxicity, infections, or malignancies. Although prospective, multicenter clinical trials in liver, heart, and kidney transplantation have not been completed, early results suggest that GcfDNA can be combined with TDM to guide changes in immunosuppression to provide more effective, and less toxic treatment. Personalized immunosuppression will shift emphasis in transplantation from reaction to prevention and could

  18. Microarray-Based Analysis of Methylation Status of CpGs in Placental DNA and Maternal Blood DNA – Potential New Epigenetic Biomarkers for Cell Free Fetal DNA-Based Diagnosis

    OpenAIRE

    Hatt, Lotte; Aagaard, Mads M.; Graakjaer, Jesper; Bach, Cathrine; Sommer, Steffen; Inge E Agerholm; Kølvraa, Steen; Bojesen, Anders

    2015-01-01

    Epigenetic markers for cell free fetal DNA in the maternal blood circulation are highly interesting in the field of non-invasive prenatal testing since such markers will offer a possibility to quantify the amount of fetal DNA derived from different chromosomes in a maternal blood sample. The aim of the present study was to define new fetal specific epigenetic markers present in placental DNA that can be utilized in non-invasive prenatal diagnosis. We have conducted a high-resolution methylati...

  19. Value of urinary topoisomerase-IIA cell-free DNA for diagnosis of bladder cancer

    Science.gov (United States)

    Kim, Ye-Hwan; Yan, Chunri; Lee, Il-Seok; Piao, Xuan-Mei; Byun, Young Joon; Jeong, Pildu; Kim, Won Tae; Yun, Seok-Joong

    2016-01-01

    Purpose Topoisomerase-II alpha (TopoIIA ), a DNA gyrase isoform that plays an important role in the cell cycle, is present in normal tissues and various human cancers, and can show altered expression in both. The aim of the current study was to examine the value of urinary TopoIIA cell-free DNA as a noninvasive diagnosis of bladder cancer (BC). Materials and Methods Two patient cohorts were examined. Cohort 1 (73 BC patients and seven controls) provided bladder tissue samples, whereas cohort 2 (83 BC patients, 54 nonmalignant hematuric patients, and 61 normal controls) provided urine samples. Real-time quantitative polymerase chain reaction was used to measure expression of TopoIIA mRNA in tissues and TopoIIA cell-free DNA in urine samples. Results The results showed that expression of TopoIIA mRNA in BC tissues was significantly higher than that in noncancer control tissues (p<0.001). The expression of urinary TopoIIA cell-free DNA in BC patients was also significantly higher than that in noncancer patient controls and hematuria patients (p < 0.001 and p < 0.001, respectively). High expression of urinary TopoIIA cell-free DNA was also detected in muscle invasive bladder cancer (MIBC) when compared with nonmuscle invasive bladder cancer (NMIBC) (p=0.002). Receiver operating characteristics (ROC) curve analysis was performed to examine the sensitivity/specificity of urinary TopoIIA cell-free DNA for diagnosing BC, NMIBC, and MIBC. The areas under the ROC curve for BC, NMIBC, and MIBC were 0.741, 0.701, and 0.838, respectively. Conclusions In summary, the results of this study provide evidence that cell-free TopoIIA DNA may be a potential biomarker for BC. PMID:26981592

  20. Adjustments to the preanalytical phase of quantitative cell-free DNA analysis

    Directory of Open Access Journals (Sweden)

    Abel Jacobus Bronkhorst

    2016-03-01

    Full Text Available Evaluating the kinetics of cell-free DNA (cfDNA in the blood of cancer patients could be a strong auxiliary component to the molecular characterization of cfDNA, but its potential clinical significance is obscured by the absence of an analytical consensus. To utilize quantitative cfDNA assessment with confidence, it is crucial that the preanalytical phase is standardized. In a previous publication, several preanalytical variables that may affect quantitative measurements of cfDNA were identified, and the most confounding variables were assessed further using the growth medium of cultured cancer cells as a source of cfDNA (“Cell-free DNA: Preanalytical variables” [1]. The data accompanying this report relates to these experiments, which includes numerous changes to the sample handling and isolation protocols, and can be used for the interpretation of these results and other similar experiments by different researchers.

  1. Adjustments to the preanalytical phase of quantitative cell-free DNA analysis

    Science.gov (United States)

    Bronkhorst, Abel Jacobus; Aucamp, Janine; Pretorius, Piet J.

    2015-01-01

    Evaluating the kinetics of cell-free DNA (cfDNA) in the blood of cancer patients could be a strong auxiliary component to the molecular characterization of cfDNA, but its potential clinical significance is obscured by the absence of an analytical consensus. To utilize quantitative cfDNA assessment with confidence, it is crucial that the preanalytical phase is standardized. In a previous publication, several preanalytical variables that may affect quantitative measurements of cfDNA were identified, and the most confounding variables were assessed further using the growth medium of cultured cancer cells as a source of cfDNA (“Cell-free DNA: Preanalytical variables” [1]). The data accompanying this report relates to these experiments, which includes numerous changes to the sample handling and isolation protocols, and can be used for the interpretation of these results and other similar experiments by different researchers. PMID:26862578

  2. Cell-free fetal DNA in amniotic fluid supernatant for prenatal diagnosis.

    Science.gov (United States)

    Soltani, M; Nemati, M; Maralani, M; Estiar, M A; Andalib, S; Fardiazar, Z; Sakhinia, E

    2016-01-01

    In widespread conviction, amniotic fluid is utilized for prenatal diagnosis. Amniotic fluid supernatant is usually discarded, notwithstanding being a good source of fetal DNA. The aim of the present study was to assess cell-free fetal DNA extracted from amniotic fluid supernatant for application in prenatal diagnosis such as gender determination and early diagnosis of β-thalassemia. Samples of amniotic fluid of 70 pregnant women were collected and went through routine tests along with tests for cell-free fetal DNA from amniotic fluid supernatant. The DNA in the amniotic fluid supernatant was extracted and analyzed for gender determination by PCR and Real-time PCR. ARMS-PCR was applied to test early diagnosis of IVS II-I mutation (common β-thalassemia mutation) and E7V mutation for sickle cell anemia using DNA extracted from the amniotic fluid supernatant. Using the cell-free fetal DNA extracted from the amniotic fluid supernatant, the sensitivity of PCR and Real-time PCR for gender detection was compared with the routine cytogenetic method. The fetus tested for sickle cell anemia and β-thalassemia was observed to be healthy but heterozygous for IVS II-I mutation. The findings indicated that cell-free fetal DNA from amniotic fluid supernatant can be a good source of fetal DNA and be used in early prenatal diagnosis since because of its fast and accurate application. Therefore, it would be suggested that the amniotic fluid supernatant's disposal is prevented because if the tests needs to be repeated, cell-free fetal DNA extracted from the amniotic fluid supernatant can be used as an alternative source for prenatal diagnosis. PMID:27188728

  3. Processing of DNA for nonhomologous end-joining by cell-free extract

    OpenAIRE

    Budman, Joe; Chu, Gilbert

    2005-01-01

    In mammalian cells, nonhomologous end-joining (NHEJ) repairs DNA double-strand breaks created by ionizing radiation and V(D)J recombination. We have developed a cell-free system capable of processing and joining noncompatible DNA ends. The system had key features of NHEJ in vivo, including dependence on Ku, DNA-PKcs, and XRCC4/Ligase4. The NHEJ reaction had striking properties. Processing of noncompatible ends involved polymerase and nuclease activities that often stabilized the alignment of ...

  4. Synthesis and cell-free cloning of DNA libraries using programmable microfluidics

    OpenAIRE

    Yehezkel, Tuval Ben; Rival, Arnaud; Raz, Ofir; Cohen, Rafael; Marx, Zipora; Camara, Miguel; Dubern, Jean-Frédéric; Koch, Birgit; Heeb, Stephan; Krasnogor, Natalio; Delattre, Cyril; Shapiro, Ehud

    2015-01-01

    Microfluidics may revolutionize our ability to write synthetic DNA by addressing several fundamental limitations associated with generating novel genetic constructs. Here we report the first de novo synthesis and cell-free cloning of custom DNA libraries in sub-microliter reaction droplets using programmable digital microfluidics. Specifically, we developed Programmable Order Polymerization (POP), Microfluidic Combinatorial Assembly of DNA (M-CAD) and Microfluidic In-vitro Cloning (MIC) and a...

  5. Implementing prenatal diagnosis based on cell-free fetal DNA: accurate identification of factors affecting fetal DNA yield.

    Directory of Open Access Journals (Sweden)

    Angela N Barrett

    Full Text Available OBJECTIVE: Cell-free fetal DNA is a source of fetal genetic material that can be used for non-invasive prenatal diagnosis. Usually constituting less than 10% of the total cell free DNA in maternal plasma, the majority is maternal in origin. Optimizing conditions for maximizing yield of cell-free fetal DNA will be crucial for effective implementation of testing. We explore factors influencing yield of fetal DNA from maternal blood samples, including assessment of collection tubes containing cell-stabilizing agents, storage temperature, interval to sample processing and DNA extraction method used. METHODS: Microfluidic digital PCR was performed to precisely quantify male (fetal DNA, total DNA and long DNA fragments (indicative of maternal cellular DNA. Real-time qPCR was used to assay for the presence of male SRY signal in samples. RESULTS: Total cell-free DNA quantity increased significantly with time in samples stored in K(3EDTA tubes, but only minimally in cell stabilizing tubes. This increase was solely due to the presence of additional long fragment DNA, with no change in quantity of fetal or short DNA, resulting in a significant decrease in proportion of cell-free fetal DNA over time. Storage at 4 °C did not prevent these changes. CONCLUSION: When samples can be processed within eight hours of blood draw, K(3EDTA tubes can be used. Prolonged transfer times in K(3EDTA tubes should be avoided as the proportion of fetal DNA present decreases significantly; in these situations the use of cell stabilising tubes is preferable. The DNA extraction kit used may influence success rate of diagnostic tests.

  6. Genome-wide DNA Methylation Profiling of Cell-Free Serum DNA in Esophageal Adenocarcinoma and Barrett Esophagus

    Directory of Open Access Journals (Sweden)

    Rihong Zhai

    2012-01-01

    Full Text Available Aberrant DNA methylation (DNAm is a feature of most types of cancers. Genome-wide DNAm profiling has been performed successfully on tumor tissue DNA samples. However, the invasive procedure limits the utility of tumor tissue for epidemiological studies. While recent data indicate that cell-free circulating DNAm (cfDNAm profiles reflect DNAm status in corresponding tumor tissues, no studies have examined the association of cfDNAm with cancer or precursors on a genome-wide scale. The objective of this pilot study was to evaluate the putative significance of genome-wide cfDNAm profiles in esophageal adenocarcinoma (EA and Barrett esophagus (BE, EA precursor. We performed genome-wide DNAm profiling in EA tissue DNA (n = 8 and matched serum DNA (n = 8, in serum DNA of BE (n = 10, and in healthy controls (n = 10 using the Infinium HumanMethylation27 BeadChip that covers 27,578 CpG loci in 14,495 genes. We found that cfDNAm profiles were highly correlated to DNAm profiles in matched tumor tissue DNA (r = 0.92 in patients with EA. We selected the most differentially methylated loci to perform hierarchical clustering analysis. We found that 911 loci can discriminate perfectly between EA and control samples, 554 loci can separate EA from BE samples, and 46 loci can distinguish BE from control samples. These results suggest that genome-wide cfDNAm profiles are highly consistent with DNAm profiles detected in corresponding tumor tissues. Differential cfDNAm profiling may be a useful approach for the noninvasive screening of EA and EA premalignant lesions.

  7. Replication independent formation of extrachromosomal circular DNA in mammalian cell-free system.

    Directory of Open Access Journals (Sweden)

    Zoya Cohen

    Full Text Available Extrachromosomal circular DNA (eccDNA is a pool of circular double stranded DNA molecules found in all eukaryotic cells and composed of repeated chromosomal sequences. It was proposed to be involved in genomic instability, aging and alternative telomere lengthening. Our study presents novel mammalian cell-free system for eccDNA generation. Using purified protein extract we show that eccDNA formation does not involve de-novo DNA synthesis suggesting that eccDNA is generated through excision of chromosomal sequences. This process is carried out by sequence-independent enzymes as human protein extract can produce mouse-specific eccDNA from high molecular weight mouse DNA, and vice versa. EccDNA production does not depend on ATP, requires residual amounts of Mg(2+ and is enhanced by double strand DNA breaks.

  8. Relationship of plasma cell-free DNA level with mortality and prognosis in patients with Crimean-Congo hemorrhagic fever.

    Science.gov (United States)

    Bakir, Mehmet; Engin, Aynur; Kuskucu, Mert Ahmet; Bakir, Sevtap; Gündag, Omür; Midilli, Kenan

    2016-07-01

    Crimean-Congo hemorrhagic fever (CCHF) is a viral infection. Circulating plasma cell-free DNA (pcf-DNA) is a novel marker indicating cellular damage. So far, the role of pcf-DNA did not investigate in CCHF patients. In the current study, pcf-DNA levels were investigated in CCHF patients with different clinical severity grades to explore the relationship between circulating pcf-DNA level, virus load, and disease severity. Seventy-two patients were categorized as mild, intermediate, and severe based on severity grading scores. The pcf-DNA level was obtained from all participants on admission and from the survivors on the day of the discharge. The controls consisted of 31 healthy. Although the pcf-DNA level at admission was higher in patients than in the controls, the difference was not statistically significant (P = 0.291). However, at admission and in the convalescent period, the difference between pcf-DNA levels in mild, intermediate, and severe patient groups was significant. The pcf-DNA level in severe patients was higher than in the others. Furthermore, compared to survivors, non-survivors had higher pcf-DNA levels at admission (P = 0.001). A direct relationship was found between the pcf-DNA level and the viral load on the day of discharge in surviving patients. ROC curve analysis identified a pcf-DNA level of 0.42 as the optimal cut-off for prediction of mortality. The positive predictive value, negative predictive value, specificity, and sensitivity for predicting mortality was 100%, 72%, 100%, and 79%, respectively. In summary, our findings revealed that pcf-DNA levels may be used as a biomarker in predicting CHHF prognosis. J. Med. Virol. 88:1152-1158, 2016. © 2015 Wiley Periodicals, Inc. PMID:26680021

  9. Cell-free circulating tumor DNA in cancer

    OpenAIRE

    Qin, Zhen; Ljubimov, Vladimir A.; Zhou, Cuiqi; Tong, Yunguang; Liang, Jimin

    2016-01-01

    Cancer is a common cause of death worldwide. Despite significant advances in cancer treatments, the morbidity and mortality are still enormous. Tumor heterogeneity, especially intratumoral heterogeneity, is a significant reason underlying difficulties in tumor treatment and failure of a number of current therapeutic modalities, even of molecularly targeted therapies. The development of a virtually noninvasive “liquid biopsy” from the blood has been attempted to characterize tumor heterogeneit...

  10. High recovery of cell-free methylated DNA based on a rapid bisulfite-treatment protocol

    Directory of Open Access Journals (Sweden)

    Pedersen Inge

    2012-03-01

    Full Text Available Abstract Background Detection of cell-free methylated DNA in plasma is a promising tool for tumour diagnosis and monitoring. Due to the very low amounts of cell-free DNA in plasma, analytical sensitivity is of utmost importance. The vast majority of currently available methods for analysing DNA methylation are based on bisulfite-mediated deamination of cytosine. Cytosine is rapidly converted to uracil during bisulfite treatment, whereas 5-methylcytosine is only slowly converted. Hence, bisulfite treatment converts an epigenetic modification into a difference in sequence, amenable to analysis either by sequencing or PCR based methods. However, the recovery of bisulfite-converted DNA is very poor. Results Here we introduce an alternative method for the crucial steps of bisulfite treatment with high recovery. The method is based on an accelerated deamination step and alkaline desulfonation in combination with magnetic silica purification of DNA, allowing preparation of deaminated DNA from patient samples in less than 2 hours. Conclusions The method presented here allows low levels of DNA to be easily and reliably analysed, a prerequisite for the clinical usefulness of cell-free methylated DNA detection in plasma.

  11. Evaluation of prenatal RHD typing strategies on cell-free fetal DNA from maternal plasma

    NARCIS (Netherlands)

    M.G.H.M. Grootkerk-Tax; A.A. Soussan; M. de Haas; P.A. Maaskant-van Wijk; C.E. van der Schoot

    2006-01-01

    BACKGROUND: The discovery of cell-free fetal DNA in maternal plasma led to the development of assays to predict the fetal D status with RHD-specific sequences. Few assays are designed in such a way that the fetus can be typed in RHD psi mothers and that RHD psi fetuses are correctly typed. Owing to

  12. Synthesis and cell-free cloning of DNA libraries using programmable microfluidics.

    Science.gov (United States)

    Ben Yehezkel, Tuval; Rival, Arnaud; Raz, Ofir; Cohen, Rafael; Marx, Zipora; Camara, Miguel; Dubern, Jean-Frédéric; Koch, Birgit; Heeb, Stephan; Krasnogor, Natalio; Delattre, Cyril; Shapiro, Ehud

    2016-02-29

    Microfluidics may revolutionize our ability to write synthetic DNA by addressing several fundamental limitations associated with generating novel genetic constructs. Here we report the first de novo synthesis and cell-free cloning of custom DNA libraries in sub-microliter reaction droplets using programmable digital microfluidics. Specifically, we developed Programmable Order Polymerization (POP), Microfluidic Combinatorial Assembly of DNA (M-CAD) and Microfluidic In-vitro Cloning (MIC) and applied them to de novo synthesis, combinatorial assembly and cell-free cloning of genes, respectively. Proof-of-concept for these methods was demonstrated by programming an autonomous microfluidic system to construct and clone libraries of yeast ribosome binding sites and bacterial Azurine, which were then retrieved in individual droplets and validated. The ability to rapidly and robustly generate designer DNA molecules in an autonomous manner should have wide application in biological research and development. PMID:26481354

  13. Synthesis and cell-free cloning of DNA libraries using programmable microfluidics

    Science.gov (United States)

    Yehezkel, Tuval Ben; Rival, Arnaud; Raz, Ofir; Cohen, Rafael; Marx, Zipora; Camara, Miguel; Dubern, Jean-Frédéric; Koch, Birgit; Heeb, Stephan; Krasnogor, Natalio; Delattre, Cyril; Shapiro, Ehud

    2016-01-01

    Microfluidics may revolutionize our ability to write synthetic DNA by addressing several fundamental limitations associated with generating novel genetic constructs. Here we report the first de novo synthesis and cell-free cloning of custom DNA libraries in sub-microliter reaction droplets using programmable digital microfluidics. Specifically, we developed Programmable Order Polymerization (POP), Microfluidic Combinatorial Assembly of DNA (M-CAD) and Microfluidic In-vitro Cloning (MIC) and applied them to de novo synthesis, combinatorial assembly and cell-free cloning of genes, respectively. Proof-of-concept for these methods was demonstrated by programming an autonomous microfluidic system to construct and clone libraries of yeast ribosome binding sites and bacterial Azurine, which were then retrieved in individual droplets and validated. The ability to rapidly and robustly generate designer DNA molecules in an autonomous manner should have wide application in biological research and development. PMID:26481354

  14. Vanished Twins and Misdiagnosed Sex: A Case Report with Implications in Prenatal Counseling Using Noninvasive Cell-Free DNA Screening.

    Science.gov (United States)

    Kelley, James F; Henning, George; Ambrose, Anthony; Adelman, Alan

    2016-01-01

    Cell-free DNA testing is a recently introduced method for screening pregnant women for fetal trisomy, which is associated with some common significant genetic diseases, as well as the sex of the fetus. The case described here demonstrates the connection between the ultrasound "vanishing twin" phenomenon and the misdiagnosis of prenatal sex using cell-free DNA testing. PMID:27170800

  15. Fetal blood grouping using cell free DNA - an improved service for RhD negative pregnant women.

    Science.gov (United States)

    Bills, V L; Soothill, P W

    2014-04-01

    Red cell alloimmunisation involves the transplacental movement of maternally derived red cell antibodies into the fetal circulation, causing red cell haemolysis, fetal anaemia and ultimately fetal death. Current standard UK practice is to prevent sensitisation to the D antigen by administering anti-D at about 28 weeks' gestation to all RhD negative pregnancies. The determination of fetal blood group by non-invasive cell free fetal DNA testing offers an improved and more efficient service to RhD negative pregnant women and avoids the potential iatrogenic harm associated with standard practice. It also has significantly improved the management of women with red cell alloimunisation to D and other antigens. This review summarises the past and future management of red cell alloimmunisation during pregnancy and the impact of ffDNA tests. PMID:24679596

  16. Cell-free (RNA and cell-associated (DNA HIV-1 and postnatal transmission through breastfeeding.

    Directory of Open Access Journals (Sweden)

    James Ndirangu

    Full Text Available INTRODUCTION: Transmission through breastfeeding remains important for mother-to-child transmission (MTCT in resource-limited settings. We quantify the relationship between cell-free (RNA and cell-associated (DNA shedding of HIV-1 virus in breastmilk and the risk of postnatal HIV-1 transmission in the first 6 months postpartum. MATERIALS AND METHODS: Thirty-six HIV-positive mothers who transmitted HIV-1 by breastfeeding were matched to 36 non-transmitting HIV-1 infected mothers in a case-control study nested in a cohort of HIV-infected women. RNA and DNA were quantified in the same breastmilk sample taken at 6 weeks and 6 months. Cox regression analysis assessed the association between cell-free and cell-associated virus levels and risk of postnatal HIV-1 transmission. RESULTS: There were higher median levels of cell-free than cell-associated HIV-1 virus (per ml in breastmilk at 6 weeks and 6 months. Multivariably, adjusting for antenatal CD4 count and maternal plasma viral load, at 6 weeks, each 10-fold increase in cell-free or cell-associated levels (per ml was significantly associated with HIV-1 transmission but stronger for cell-associated than cell-free levels [2.47 (95% CI 1.33-4.59 vs. aHR 1.52 (95% CI, 1.17-1.96, respectively]. At 6 months, cell-free and cell-associated levels (per ml in breastmilk remained significantly associated with HIV-1 transmission but was stronger for cell-free than cell-associated levels [aHR 2.53 (95% CI 1.64-3.92 vs. 1.73 (95% CI 0.94-3.19, respectively]. CONCLUSIONS: The findings suggest that cell-associated virus level (per ml is more important for early postpartum HIV-1 transmission (at 6 weeks than cell-free virus. As cell-associated virus levels have been consistently detected in breastmilk despite antiretroviral therapy, this highlights a potential challenge for resource-limited settings to achieve the UNAIDS goal for 2015 of eliminating vertical transmission. More studies would further knowledge on

  17. Cell-free DNA Comprises an In Vivo Nucleosome Footprint that Informs Its Tissues-Of-Origin.

    Science.gov (United States)

    Snyder, Matthew W; Kircher, Martin; Hill, Andrew J; Daza, Riza M; Shendure, Jay

    2016-01-14

    Nucleosome positioning varies between cell types. By deep sequencing cell-free DNA (cfDNA), isolated from circulating blood plasma, we generated maps of genome-wide in vivo nucleosome occupancy and found that short cfDNA fragments harbor footprints of transcription factors. The cfDNA nucleosome occupancies correlate well with the nuclear architecture, gene structure, and expression observed in cells, suggesting that they could inform the cell type of origin. Nucleosome spacing inferred from cfDNA in healthy individuals correlates most strongly with epigenetic features of lymphoid and myeloid cells, consistent with hematopoietic cell death as the normal source of cfDNA. We build on this observation to show how nucleosome footprints can be used to infer cell types contributing to cfDNA in pathological states such as cancer. Since this strategy does not rely on genetic differences to distinguish between contributing tissues, it may enable the noninvasive monitoring of a much broader set of clinical conditions than currently possible. PMID:26771485

  18. Cell-free DNA next-generation sequencing in pancreatobiliary carcinomas

    OpenAIRE

    Zill, Oliver A.; Greene, Claire; Sebisanovic, Dragan; Siew, LaiMun; Leng, Jim; Vu, Mary; HENDIFAR, ANDREW E.; Zhen WANG; Atreya, Chloe E.; Kelley, Robin K.; Van Loon, Katherine; Ko, Andrew H.; Tempero, Margaret A.; Bivona, Trever G; Munster, Pamela N.

    2015-01-01

    Patients with pancreatic and biliary carcinomas lack personalized treatment options, in part because biopsies are often inadequate for molecular characterization. Cell-free DNA (cfDNA) sequencing may enable a precision oncology approach in this setting. We attempted to prospectively analyze 54 genes in tumor and cfDNA for 26 patients. Tumor sequencing failed in nine patients (35%). In the remaining 17, 90.3% (95% CI: 73.1–97.5%) of mutations detected in tumor biopsies were also detected in cf...

  19. Cell-Free DNA as a Diagnostic Tool for Human Parasitic Infections.

    Science.gov (United States)

    Weerakoon, Kosala G; McManus, Donald P

    2016-05-01

    Parasites often cause devastating diseases and represent a significant public health and economic burden. More accurate and convenient diagnostic tools are needed in support of parasite control programmes in endemic regions, and for rapid point-of-care diagnosis in nonendemic areas. The detection of cell-free DNA (cfDNA) is a relatively new concept that is being applied in the current armamentarium of diagnostics. Here, we review the application of cfDNA detection with nucleic acid amplification tests for the diagnosis and evaluation of different human parasitic infections and highlight the significant benefits of the approach using non-invasive clinical samples. PMID:26847654

  20. Aberrant reduction of telomere repetitive sequences in plasma cell-free DNA for early breast cancer detection

    Science.gov (United States)

    Wu, Xi; Tanaka, Hiromi

    2015-01-01

    Excessive telomere shortening is observed in breast cancer lesions when compared to adjacent non-cancerous tissues, suggesting that telomere length may represent a key biomarker for early cancer detection. Because tumor-derived, cell-free DNA (cfDNA) is often released from cancer cells and circulates in the bloodstream, we hypothesized that breast cancer development is associated with changes in the amount of telomeric cfDNA that can be detected in the plasma. To test this hypothesis, we devised a novel, highly sensitive and specific quantitative PCR (qPCR) assay, termed telomeric cfDNA qPCR, to quantify plasma telomeric cfDNA levels. Indeed, the internal reference primers of our design correctly reflected input cfDNA amount (R2 = 0.910, P = 7.82 × 10−52), implying accuracy of this assay. We found that plasma telomeric cfDNA levels decreased with age in healthy individuals (n = 42, R2 = 0.094, P = 0.048), suggesting that cfDNA is likely derived from somatic cells in which telomere length shortens with increasing age. Our results also showed a significant decrease in telomeric cfDNA level from breast cancer patients with no prior treatment (n = 47), compared to control individuals (n = 42) (P = 4.06 × 10−8). The sensitivity and specificity for the telomeric cfDNA qPCR assay was 91.49% and 76.19%, respectively. Furthermore, the telomeric cfDNA level distinguished even the Ductal Carcinoma In Situ (DCIS) group (n = 7) from the healthy group (n = 42) (P = 1.51 × 10−3). Taken together, decreasing plasma telomeric cfDNA levels could be an informative genetic biomarker for early breast cancer detection. PMID:26356673

  1. Cell-free DNA Fragmentation Patterns in Amniotic Fluid Identify Genetic Abnormalities and Changes due to Storage

    Science.gov (United States)

    Peter, Inga; Tighiouart, Hocine; Lapaire, Olav; Johnson, Kirby L.; Bianchi, Diana W.; Terrin, Norma

    2015-01-01

    Circulating cell-free DNA (cfDNA) has become a promising biomarker in prenatal diagnosis. However, despite extensive studies in different body fluids, cfDNA predictive value is uncertain owing to the confounding factors that can affect its levels, such as gestational age, maternal weight, smoking status, and medications. Residual fresh and archived amniotic fluid (AF) supernatants were obtained from gravid women (mean gestational age 17 wk) carrying euploid (N = 36) and aneuploid (N = 29) fetuses, to characterize cfDNA-fragmentation patterns with regard to aneuploidy and storage time (−80°C). AF cfDNA was characterized by the real-time quantitative polymerase chain reaction amplification of glyceraldehyde-3-phosphate dehydrogenase, gel electrophoresis, and pattern recognition of the DNA fragmentation. The distributions of cfDNA fragment lengths were compared using 6 measures that defined the locations and slopes for the first and last peaks, after elimination of the confounding variables. This method allowed for the unique classification of euploid and aneuploid cfDNA samples in AF, which had been matched for storage time. In addition, we showed that archived euploid AF samples gradually lose long cfDNA fragments: this loss accurately distinguishes them from the fresh samples. We present preliminary data using cfDNA-fragmentation patterns, to uniquely distinguish between AF samples of pregnant women with regard to aneuploidy and storage time, independent of gestational age and initial DNA amount. In addition to potential applications in prenatal diagnosis, these data suggest that archived AF samples consist of large amounts of short cfDNA fragments, which are undetectable using standard real-time polymerase chain reaction amplification. PMID:18382362

  2. SNPase-ARMS qPCR: Ultrasensitive Mutation-Based Detection of Cell-Free Tumor DNA in Melanoma Patients

    Science.gov (United States)

    Stadler, Julia; Eder, Johanna; Pratscher, Barbara; Brandt, Sabine; Schneller, Doris; Müllegger, Robert; Vogl, Claus; Trautinger, Franz; Brem, Gottfried; Burgstaller, Joerg P.

    2015-01-01

    Cell-free circulating tumor DNA in the plasma of cancer patients has become a common point of interest as indicator of therapy options and treatment response in clinical cancer research. Especially patient- and tumor-specific single nucleotide variants that accurately distinguish tumor DNA from wild type DNA are promising targets. The reliable detection and quantification of these single-base DNA variants is technically challenging. Currently, a variety of techniques is applied, with no apparent “gold standard”. Here we present a novel qPCR protocol that meets the conditions of extreme sensitivity and specificity that are required for detection and quantification of tumor DNA. By consecutive application of two polymerases, one of them designed for extreme base-specificity, the method reaches unprecedented sensitivity and specificity. Three qPCR assays were tested with spike-in experiments, specific for point mutations BRAF V600E, PTEN T167A and NRAS Q61L of melanoma cell lines. It was possible to detect down to one copy of tumor DNA per reaction (Poisson distribution), at a background of up to 200 000 wild type DNAs. To prove its clinical applicability, the method was successfully tested on a small cohort of BRAF V600E positive melanoma patients. PMID:26562020

  3. SNPase-ARMS qPCR: Ultrasensitive Mutation-Based Detection of Cell-Free Tumor DNA in Melanoma Patients.

    Directory of Open Access Journals (Sweden)

    Julia Stadler

    Full Text Available Cell-free circulating tumor DNA in the plasma of cancer patients has become a common point of interest as indicator of therapy options and treatment response in clinical cancer research. Especially patient- and tumor-specific single nucleotide variants that accurately distinguish tumor DNA from wild type DNA are promising targets. The reliable detection and quantification of these single-base DNA variants is technically challenging. Currently, a variety of techniques is applied, with no apparent "gold standard". Here we present a novel qPCR protocol that meets the conditions of extreme sensitivity and specificity that are required for detection and quantification of tumor DNA. By consecutive application of two polymerases, one of them designed for extreme base-specificity, the method reaches unprecedented sensitivity and specificity. Three qPCR assays were tested with spike-in experiments, specific for point mutations BRAF V600E, PTEN T167A and NRAS Q61L of melanoma cell lines. It was possible to detect down to one copy of tumor DNA per reaction (Poisson distribution, at a background of up to 200 000 wild type DNAs. To prove its clinical applicability, the method was successfully tested on a small cohort of BRAF V600E positive melanoma patients.

  4. Both maternal and fetal cell-free DNA in plasma fluctuate.

    Science.gov (United States)

    Hahn, S; Zhong, X Y; Bürk, M R; Troeger, C; Kang, A; Holzgreve, W

    2001-09-01

    Elevations in the concentration of cell-free fetal DNA in maternal plasma have recently been determined in various pregnancy-related disorders, including preeclampsia, preterm labor, and polyhydramnios. In addition, almost 2-fold increments in cell-free fetal DNA levels have been recorded in pregnancies with certain aneuploid fetuses, in particular trisomy 21. These findings have led to the speculation that quantitative assessment of circulatory fetal DNA may be useful in the noninvasive prenatal diagnosis of certain fetal genetic constellations or pregnancy-related disorders. A premise for any quantitative analysis is that the quantity of the analyte being assayed does not vary greatly over time. As this aspect has not been examined for circulatory DNA levels, we examined these in normal healthy individuals as well as in pregnant women. Our data indicate that severalfold alterations in circulatory DNA amounts do occur over short periods of time. Of particular note is that we observed almost 2-fold variations in free fetal DNA levels over a period of 3 days, which are in a similar range to the elevations noted in aneuploid pregnancies. Our results, therefore, imply that caution should be used when using small increments in circulatory fetal DNA concentrations for potential diagnostic applications. PMID:11708468

  5. Evaluation of a Modified DNA Extraction Method for Isolation of Cell-Free Fetal DNA from Maternal Serum

    OpenAIRE

    Keshavarz, Zeinab; Moezzi, Leili; Ranjbaran, Reza; Aboualizadeh, Farzaneh; Behzad-Behbahani, Abbas; Abdullahi, Masooma; Sharifzadeh, Sedigheh

    2015-01-01

    Background: Discovery of short cell free fetal DNA (cffDNA) fragments in maternal plasma has created major changes in the field of prenatal diagnosis. The use of cffDNA to set up noninvasive prenatal test is limited due to the low concentration of fetal DNA in maternal plasma therefore, employing a high efficiency extraction method leads to more accurate results. The aim of this study was to evaluate the efficiency of Triton/Heat/Phenol (THP) protocol in comparison with the QIAamp DNA Blood m...

  6. The cell-free fetal DNA fraction in maternal blood decreases after physical activity

    DEFF Research Database (Denmark)

    Schlütter, Jacob Mørup; Hatt, Lotte; Bach, Cathrine; Kirkegaard, Ida; Kølvraa, Steen; Uldbjerg, Niels

    2014-01-01

    cycling with a pulse-rate of 150 beats per minute. The concentrations of cffDNA (DYS14) and cfDNA (RASSF1A) were assessed using quantitative real-time polymerase chain reaction. RESULTS: The fetal fraction decreased significantly in all participants after physical activity (p < 0.01), a decrease varying......OBJECTIVE: If noninvasive prenatal testing using next generation sequencing is to be effective for pregnant women, a cell-free fetal DNA (cffDNA) fraction above 4% is essential unless the depth of sequencing is increased. This study's objective is to determine whether physical activity has an...... effect on the proportion of cell-free DNA (cfDNA) arising from the fetus (fetal fraction). METHODS: Nine pregnant women carrying male fetuses at gestational age 12(+0)  weeks to 14(+6)  weeks were included. Plasma from nine pregnant women was drawn prior to, immediately after, and 30 min after 30 min of...

  7. Levels of cell-free DNA and plasma KRAS during treatment of advanced NSCLC

    DEFF Research Database (Denmark)

    Dowler Nygaard, Anneli; Spindler, Karen-Lise Garm; Pallisgaard, Niels;

    2014-01-01

    Non-small cell lung cancer (NSCLC) is one of the most common malignant tumours in the western world and is associated with a poor prognosis. Biomarkers predicting prognosis and therapeutic effects are highly required, and cell-free DNA (cfDNA) may be a feasible option. Genetic mutations can be...... analysed in plasma and may increase the scientific use of such measurements. In the present study, we investigated: i) the dynamics of cfDNA and plasma mutated KRAS (pmKRAS) during the treatment of patients with advanced NSCLC; and ii) the prognostic value of baseline cfDNA and pmKRAS. Sixty‑nine patients...... were included in a prospective biomarker trial. Inclusion criteria included advanced NSCLC, candidate for first-line treatment, no previous cancer within the five years prior to this study. Blood samples were drawn at baseline, day 8 and at progression. Analyses of cfDNA and KRAS mutations in plasma...

  8. PIK3CA mutation detection in metastatic biliary cancer using cell-free DNA

    OpenAIRE

    Kim, Seung Tae; Lira, Maruja; Deng, Shibing; Lee, Sujin; Park, Young Suk; Lim, Ho Yeong; Kang, Won Ki; Mao, Mao; Heo, Jin Seok; Kwon, Wooil; Jang, Kee-Taek; Lee, Jeeyun; Park, Joon Oh

    2015-01-01

    PIK3CA mutation is considered a good candidate for targeted therapies in cancers, especially biliary tract cancer (BTC). We evaluated the utility of cell free DNA (cfDNA) from serum by using droplet digital PCR (ddPCR) as an alternative source for PIK3CA mutation analysis. To identify matching archival tumour specimens from serum samples of advanced BTC patients, mutation detection using ddPCR with Bio-Rad's PrimePCR mutation and wild type assays were performed for PIK3CA p.E542K, p.E545K, an...

  9. Value of urinary topoisomerase-IIA cell-free DNA for diagnosis of bladder cancer

    OpenAIRE

    Kim, Ye-Hwan; Yan, Chunri; Lee, Il-Seok; Piao, Xuan-Mei; Byun, Young Joon; Jeong, Pildu; Kim, Won Tae; Yun, Seok-Joong; Kim, Wun-Jae

    2016-01-01

    Purpose Topoisomerase-II alpha (TopoIIA ), a DNA gyrase isoform that plays an important role in the cell cycle, is present in normal tissues and various human cancers, and can show altered expression in both. The aim of the current study was to examine the value of urinary TopoIIA cell-free DNA as a noninvasive diagnosis of bladder cancer (BC). Materials and Methods Two patient cohorts were examined. Cohort 1 (73 BC patients and seven controls) provided bladder tissue samples, whereas cohort ...

  10. Chimeric External Control to Quantify Cell Free DNA in Plasma Samples by Real Time PCR

    Science.gov (United States)

    Eini, Maryam; Behzad-Behbahani, Abbas; Takhshid, Mohammad Ali; Ramezani, Amin; Rafiei Dehbidi, Gholam Reza; Okhovat, Mohammad Ali; Farhadi, Ali; Alavi, Parniyan

    2016-01-01

    Background: DNA isolation procedure can significantly influence the quantification of DNA by real time PCR specially when cell free DNA (cfDNA) is the subject. To assess the extraction efficiency, linearity of the extraction yield, presence of co-purified inhibitors and to avoid problems with fragment size relevant to cfDNA, development of appropriate External DNA Control (EDC) is challenging. Using non-human chimeric nucleotide sequences, an EDC was developed for standardization of qPCR for monitoring stability of cfDNA concentration in blood samples over time. Methods: A0 DNA fragment of 167 bp chimeric sequence of parvovirus B19 and pBHA designated as EDC fragment was designed. To determine the impact of different factors during DNA extraction processing on quantification of cfDNA, blood samples were collected from normal subjects and divided into aliquots with and without specific treatment. In time intervals, the plasma samples were isolated. The amplicon of 167 bp EDC fragment in final concentration of 1.1 pg/500 μl was added to each plasma sample and total DNA was extracted by an in house method. Relative and absolute quantification real time PCR was performed to quantify both EDC fragment and cfDNA in extracted samples. Results: Comparison of real time PCR threshold cycle (Ct) for cfDNA fragment in tubes with and without specific treatment indicated a decrease in untreated tubes. In contrast, the threshold cycle was constant for EDC fragment in treated and untreated tubes, indicating the difference in Ct values of the cfDNA is because of specific treatments that were made on them. Conclusions: Spiking of DNA fragment size relevant to cfDNA into the plasma sample can be useful to minimize the bias due to sample preparation and extraction processing. Therefore, it is highly recommended that standard external DNA control be employed for the extraction and quantification of cfDNA for accurate data analysis.

  11. A reliable method to concentrate circulating DNA.

    Science.gov (United States)

    Bryzgunova, Olga; Bondar, Anna; Morozkin, Evgeniy; Mileyko, Vladislav; Vlassov, Valentin; Laktionov, Pavel

    2011-01-15

    Concentration of circulating DNA probes is required to increase the amount of DNA involved in subsequent study (by polymerase chain reaction, sequencing, and microarray). This work was dedicated to the comparison of five different methods used for concentration of DNA circulating in blood. Precipitation of circulating DNA with acetone in the presence of triethylamine provides minimal DNA loss, high reproducibility, and at least three times higher DNA yield in comparison with the standard ethanol protocol. PMID:20828533

  12. Quantification of cell-free DNA in normal and complicated pregnancies: overcoming biological and technical issues.

    Directory of Open Access Journals (Sweden)

    Irina Manokhina

    Full Text Available The characterization of cell-free DNA (cfDNA originating from placental trophoblast in maternal plasma provides a powerful tool for non-invasive diagnosis of fetal and obstetrical complications. Due to its placental origin, the specific epigenetic features of this DNA (commonly known as cell-free fetal DNA can be utilized in creating universal 'fetal' markers in maternal plasma, thus overcoming the limitations of gender- or rhesus-specific ones. The goal of this study was to compare the performance of relevant approaches and assays evaluating the amount of cfDNA in maternal plasma throughout gestation (7.2-39.5 weeks. Two fetal- or placental-specific duplex assays (RPP30/SRY and RASSF1A/β-Actin were applied using two technologies, real-time quantitative PCR (qPCR and droplet digital PCR (ddPCR. Both methods revealed similar performance parameters within the studied dynamic range. Data obtained using qPCR and ddPCR for these assays were positively correlated (total cfDNA (RPP30: R = 0.57, p = 0.001/placental cfDNA (SRY: R = 0.85, p<0.0001; placental cfDNA (RASSF1A: R = 0.75, p<0.0001. There was a significant correlation in SRY and RASSF1A results measured with qPCR (R = 0.68, p = 0.013 and ddPCR (R = 0.56, p = 0.039. Different approaches also gave comparable results with regard to the correlation of the placental cfDNA concentration with gestational age and pathological outcome. We conclude that ddPCR is a practical approach, adaptable to existing qPCR assays and well suited for analysis of cell-free DNA in plasma. However, it may need further optimization to surpass the performance of qPCR.

  13. DNA Microgels as a Platform for Cell-Free Protein Expression and Display.

    Science.gov (United States)

    Kahn, Jason S; Ruiz, Roanna C H; Sureka, Swati; Peng, Songming; Derrien, Thomas L; An, Duo; Luo, Dan

    2016-06-13

    Protein expression and selection is an essential process in the modification of biological products. Expressed proteins are selected based on desired traits (phenotypes) from diverse gene libraries (genotypes), whose size may be limited due to the difficulties inherent in diverse cell preparation. In addition, not all genes can be expressed in cells, and linking genotype with phenotype further presents a great challenge in protein engineering. We present a DNA gel-based platform that demonstrates the versatility of two DNA microgel formats to address fundamental challenges of protein engineering, including high protein yield, isolation of gene sets, and protein display. We utilize microgels to show successful protein production and capture of a model protein, green fluorescent protein (GFP), which is further used to demonstrate a successful gene enrichment through fluorescence-activated cell sorting (FACS) of a mixed population of microgels containing the GFP gene. Through psoralen cross-linking of the hydrogels, we have synthesized DNA microgels capable of surviving denaturing conditions while still possessing the ability to produce protein. Lastly, we demonstrate a method of producing extremely high local gene concentrations of up to 32 000 gene repeats in hydrogels 1 to 2 μm in diameter. These DNA gels can serve as a novel cell-free platform for integrated protein expression and display, which can be applied toward more powerful, scalable protein engineering and cell-free synthetic biology with no physiological boundaries and limitations. PMID:27112709

  14. Characterization of the cell-free DNA released by cultured cancer cells.

    Science.gov (United States)

    Bronkhorst, Abel Jacobus; Wentzel, Johannes F; Aucamp, Janine; van Dyk, Etresia; du Plessis, Lissinda; Pretorius, Piet J

    2016-01-01

    The most prominent factor that delays the translation of cell-free DNA (cfDNA) analyses to clinical practice is the lack of knowledge regarding its origin and composition. The elucidation of the former is complicated by the seemingly random fluctuation of quantitative and qualitative characteristics of cfDNA in the blood of healthy and diseased individuals. Besides methodological discrepancies, this could be ascribed to a web of cellular responses to various environmental cues and stressors. Since all cells release cfDNA, it follows that the cfDNA in the blood of cancer patients is not only representative of tumor derived DNA, but also of DNA released by healthy cells under different conditions. Additionally, cfDNA released by malignant cells is not necessarily just aberrant, but likely includes non-mutated chromosomal DNA fragments. This may cause false positive/negative results. Although many have acknowledged that this is a major problem, few have addressed it. We propose that many of the current stumbling blocks encountered in in vivo cfDNA studies can be partially circumvented by in vitro models. Accordingly, the purpose of this work was to evaluate the release of cfDNA from cultured cells and to gauge its potential use for elucidating the nature of cfDNA. Results suggest that the occurrence of cfDNA is not a consequence of apoptosis or necrosis, but primarily a result of actively secreted DNA, perhaps in association with a protein complex. This study demonstrates the potential of in vitro cell culture models to obtain useful information about the phenomenon of cfDNA. PMID:26529550

  15. A cell-free system for DNA repair synthesis using purified enzymes from the Novikoff hepatoma

    International Nuclear Information System (INIS)

    Novikoff DNA polymerase-β and Novikoff DNase V have been used in a cell-free DNA excision repair system for UV-irradiated substrates to determine their DNA repair capabilities. The repair system was shown to depend upon UV-irradiated DNA, incision by phage T4 UV-endonuclease, excision by DNase V and synthesis by DNA polymerase-β; ligation was not included. Highly purified calf thymus DNA was UV-irradiated at 500-750 J/m2 and incised by T4 UV-endonuclease. The repair system was used to follow the purification of DNase V and DNA polymerase-β. For increased specificity, the parameters of UV-irradiation, incision, excision and synthesis were confirmed on highly supercoiled, covalently closed, phage PM2 DNA. Optimal DNA and Mg2+ concentrations were determined for the repair assay, which was shown to be linear with respect to time. Excision of the 3'-apyrimidinic site and the 5'-pyrimidine dimer by bidirectional DNase V, presumed to occur from the above experiments, was studied more thoroughly using lightly UV-irradiated [3H]poly(dT)poly (dA), labeled in both the base and the sugar, and incised with T4 UV-endonuclease

  16. Urine Cell-Free DNA Integrity Analysis for Early Detection of Prostate Cancer Patients

    Science.gov (United States)

    Salvi, Samanta; Gurioli, Giorgia; Martignano, Filippo; Foca, Flavia; Gunelli, Roberta; Cicchetti, Giacomo; De Giorgi, Ugo; Zoli, Wainer; Calistri, Daniele; Casadio, Valentina

    2015-01-01

    Introduction. The detection of tumor-specific markers in urine has paved the way for new early noninvasive diagnostic approaches for prostate cancer. We evaluated the DNA integrity in urine supernatant to verify its capacity to discriminate between prostate cancer and benign diseases of the urogenital tract. Patients and Methods. A total of 131 individuals were enrolled: 67 prostate cancer patients and 64 patients with benign diseases of the urogenital tract (control group). Prostate-specific antigen (PSA) levels were determined. Urine cell-free (UCF) DNA was isolated and sequences longer than 250 bp corresponding to 3 genes (c-MYC, HER2, and AR) were quantified by Real-Time PCR to assess UCF-DNA integrity. Results. UCF-DNA was quantifiable in all samples, while UCF-DNA integrity was evaluable in all but 16 samples. Receiver operating characteristic analysis showed an area under the curve of 0.5048 for UCF-DNA integrity and 0.8423 for PSA. Sensitivity was 0.58 and 0.95 for UCF-DNA integrity and PSA, respectively. Specificity was 0.44 and 0.69, respectively. Conclusions. UCF-DNA integrity showed lower accuracy than PSA and would not seem to be a reliable marker for early prostate cancer diagnosis. Despite this, we believe that UCF-DNA could represent a source of other biomarkers and could detect gene alterations. PMID:26412928

  17. Urine Cell-Free DNA Integrity Analysis for Early Detection of Prostate Cancer Patients

    Directory of Open Access Journals (Sweden)

    Samanta Salvi

    2015-01-01

    Full Text Available Introduction. The detection of tumor-specific markers in urine has paved the way for new early noninvasive diagnostic approaches for prostate cancer. We evaluated the DNA integrity in urine supernatant to verify its capacity to discriminate between prostate cancer and benign diseases of the urogenital tract. Patients and Methods. A total of 131 individuals were enrolled: 67 prostate cancer patients and 64 patients with benign diseases of the urogenital tract (control group. Prostate-specific antigen (PSA levels were determined. Urine cell-free (UCF DNA was isolated and sequences longer than 250 bp corresponding to 3 genes (c-MYC, HER2, and AR were quantified by Real-Time PCR to assess UCF-DNA integrity. Results. UCF-DNA was quantifiable in all samples, while UCF-DNA integrity was evaluable in all but 16 samples. Receiver operating characteristic analysis showed an area under the curve of 0.5048 for UCF-DNA integrity and 0.8423 for PSA. Sensitivity was 0.58 and 0.95 for UCF-DNA integrity and PSA, respectively. Specificity was 0.44 and 0.69, respectively. Conclusions. UCF-DNA integrity showed lower accuracy than PSA and would not seem to be a reliable marker for early prostate cancer diagnosis. Despite this, we believe that UCF-DNA could represent a source of other biomarkers and could detect gene alterations.

  18. Detection of Clonal and Subclonal Copy-Number Variants in Cell-Free DNA from Patients with Breast Cancer Using a Massively Multiplexed PCR Methodology

    OpenAIRE

    Eser Kirkizlar; Bernhard Zimmermann; Tudor Constantin; Ryan Swenerton; Bin Hoang; Nicholas Wayham; Babiarz, Joshua E.; Zachary Demko; Robert J Pelham; Stephanie Kareht; Alexander L. Simon; Kristine N. Jinnett; Matthew Rabinowitz; Styrmir Sigurjonsson; Matthew Hill

    2015-01-01

    We demonstrate proof-of-concept for the use of massively multiplexed PCR and next-generation sequencing (mmPCR-NGS) to identify both clonal and subclonal copy-number variants (CNVs) in circulating tumor DNA. This is the first report of a targeted methodology for detection of CNVs in plasma. Using an in vitro model of cell-free DNA, we show that mmPCR-NGS can accurately detect CNVs with average allelic imbalances as low as 0.5%, an improvement over previously reported whole-genome sequencing a...

  19. Plasma cell-free mitochondrial DNA declines in response to prolonged moderate aerobic exercise.

    Science.gov (United States)

    Shockett, Penny E; Khanal, Januka; Sitaula, Alina; Oglesby, Christopher; Meachum, William A; Castracane, V Daniel; Kraemer, Robert R

    2016-01-01

    Increased plasma cell-free mitochondrial DNA (cf-mDNA), a damage-associated molecular pattern (DAMP) produced by cellular injury, contributes to neutrophil activation/inflammation in trauma patients and arises in cancer and autoimmunity. To further understand relationships between cf-mDNA released by tissue injury, inflammation, and health benefits of exercise, we examined cf-mDNA response to prolonged moderate aerobic exercise. Seven healthy moderately trained young men (age = 22.4 ± 1.2) completed a treadmill exercise trial for 90 min at 60% VO2 max and a resting control trial. Blood was sampled immediately prior to exercise (0 min = baseline), during (+18, +54 min), immediately after (+90 min), and after recovery (R40). Plasma was analyzed for cf-mDNA, IL-6, and lactate. A significant difference in cf-mDNA response was observed between exercise and control trials, with cf-mDNA levels reduced during exercise at +54 and +90 (with or without plasma volume shift correction). Declines in cf-mDNA were accompanied by increased lactate and followed by an increase in IL-6, suggesting a temporal association with muscle stress and inflammatory processes. Our novel finding of cf-mDNA decline with prolonged moderate treadmill exercise provides evidence for increased clearance from or reduced release of cf-mDNA into the blood with prolonged exercise. These studies contrast with previous investigations involving exhaustive short-term treadmill exercise, in which no change in cf-mDNA levels were reported, and contribute to our understanding of differences between exercise- and trauma-induced inflammation. We propose that transient declines in cf-mDNA may induce health benefits, by reducing systemic inflammation. PMID:26755735

  20. Advances on circulating fetal DNA in maternal plasma

    Institute of Scientific and Technical Information of China (English)

    FU Xian-hu; CHEN Han-ping

    2007-01-01

    @@ The discovery of cell-free fetal DNA in maternal plasma in 1997 has opened up new possibilities for noninvasive diagnosis.1 By RT-PCR, circulating fetal DNA can be detected in the plasma of pregnant women,even in the first trimester of pregnancy,2,3 and thus can be used for noninvasive prenatal diagnosis of sex-linked disorders,4-6 the RhD status of fetuses,7 and single gene disorders such as beta-thalassaemia,8,9 congenital adrenal hyperplasia,10 and achondroplasia.11 In addition,quantitative aberrations of circulating fetal DNA may indicate various pregnancy-associated disorders,including1 Preeclampsia,12-14 preterm labor15,16 and fetal trisomy 21.17

  1. Plasma cell-free DNA levels are elevated in acute Puumala hantavirus infection.

    Directory of Open Access Journals (Sweden)

    Tuula K Outinen

    Full Text Available INTRODUCTION: Puumala hantavirus (PUUV causes a hemorrhagic fever with renal syndrome called nephropathia epidemica (NE. The aim of the present study was to evaluate plasma cell-free DNA (cf-DNA levels and urinary cf-DNA excretion in acute NE as well as their associations with the severity of the disease. METHODS: Total plasma cf-DNA was quantified directly in plasma of 61 patients and urine of 20 patients with acute NE. We also carried out a qualitative high-sensitivity lab-on-a-chip DNA assay in 20 patients to elucidate the appearance of cf-DNA in plasma and urine. RESULTS: The maximum plasma cf-DNA values taken during acute NE were significantly higher than the control values taken after the hospitalization period (median 1.33 µg/ml, range 0.94-3.29 µg/ml vs. median 0.77 µg/ml, range 0.55-0.99 µg/ml, P<0.001. The maximum plasma cf-DNA levels correlated positively with maximum blood leukocyte count (r = 0.388, P = 0.002 and the length of hospital stay (r = 0.376, P = 0.003, and inversely with minimum blood platelet count (r = -0.297, P = 0.020. Qualitative analysis of plasma cf-DNA revealed that in most of the patients cf-DNA displayed a low-molecular weight appearance, corresponding to the size of apoptotic DNA (150-200 bp. The visually graded maximum cf-DNA band intensity correlated positively with the maximum quantity of total plasma cf-DNA (r = 0.513, P = 0.021. Maximum urinary excretion of cf-DNA in turn was not markedly increased during the acute phase of NE and did not correlate with any of the variables reflecting severity of the disease or with the maximum plasma cf-DNA level. CONCLUSIONS: The plasma levels of cf-DNA are elevated during acute PUUV infection and correlate with the apoptotic cf-DNA-band intensity. The plasma cf-DNA concentration correlates with some variables reflecting the severity of the disease. The urinary excretion of cf-DNA does not reflect the degree of inflammation in the kidney.

  2. Nucleotide-excision repair of DNA in cell-free extracts of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    A wide spectrum of DNA lesions are repaired by the nucleotide-excision repair (NER) pathway in both eukaryotic and prokaryotic cells. We have developed a cell-free system in Saccharomyces cerevisiae that supports NER. NER was monitored by measuring repair synthesis in DNA treated with cisplatin or with UV radiation. Repair synthesis in vitro was defective in extracts of rad1, rad2, and rad10 mutant cells, all of which have mutations in genes whose products are known to be required for NER in vivo. Additionally, repair synthesis was complemented by mixing different mutant extracts, or by adding purified Rad1 or Rad10 protein to rad1 or rad10 mutant extracts, respectively. The latter observation demonstrates that the Rad1 and Rad10 proteins directly participate in the biochemical pathway of NER. NER supported by nuclear extracts requires ATP and Mg2+ and is stimulated by polyethylene glycol and by small amounts of whole cell extract containing overexpressed Rad2 protein. The nuclear extracts also contain base-excision repair activity that is present at wild-type levels in rad mutant extracts. This cell-free system is expected to facilitate studies on the biochemical pathway of NER in S. cerevisiae

  3. Quantification of Maternal Serum Cell-Free Fetal DNA in Early-Onset Preeclampsia

    Directory of Open Access Journals (Sweden)

    Mulan Ren

    2013-04-01

    Full Text Available The aim of this study was to determine whether the increased serum cell-free fetal DNA (cffDNA level of gravidas developed into early-onset preeclampsia (EOPE subsequently in the early second trimesters is related to prenatal screening markers. Serum was collected from 1011 gravidas. The level of cffDNA and prenatal screening markers were analyzed in 20 cases with EOPE and 20 controls. All fetuses were male. The maternal serum cffDNA level was assessed by amplification of the Y chromosome specific gene. Correlations between the variables were examined. (Logged cffDNA in EOPE (median, 3.08; interquartile range, 2.93–3.68 was higher than controls (median, 1.79; interquartile range, 1.46–2.53. The increased level of (logged cffDNA was correlated significantly with the increased human chorionic gonadotropin (HCG level (r = 0.628, p < 0.001. Significant reciprocal correlations between cffDNA and babies’ birth weight as well as gestation weeks at delivery were noted (r = −0.516, p = 0.001; r = −0.623, p < 0.001, respectively. The sensitivity and specificity of cffDNA to discriminate between the EOPE cases and the controls were 90% and 85%, respectively. CffDNA is a potential marker for EOPE, which had a significant reciprocal correlation with babies’ birth weight and gestation weeks at delivery. Moreover, it may help in indicating the underlying hypoxic condition in the placenta.

  4. Cell-free DNA in healthy individuals, noncancerous disease and strong prognostic value in colorectal cancer

    DEFF Research Database (Denmark)

    Spindler, Karen-Lise Garm; Appelt, Ane L; Pallisgaard, Niels;

    2014-01-01

    The purpose was to investigate total cell-free DNA (cfDNA) in colorectal cancer (CRC) patients during treatment with second-line chemotherapy and in healthy controls and patients with different comorbidities. Patient treated with second-line irinotecan for metastatic CRC (n = 100), a cohort of...... healthy controls with and without comorbidity (n = 70 and 100, respectively) were included. cfDNA was quantified by an in-house developed quantitative polymerase chain reaction from plasma samples drawn prior to the first cycle of chemotherapy and at time of progression. cfDNA levels were significantly.......8 months (95% CI 11.9-18.9; HR 2.52; 95% CI 1.54-4.13, p < 0.0000), respectively. Cox regression multivariate analysis showed a PFS HR of 1.4 (95% CI 1.1-1.7) for each increase in cfDNA quartile, p = 0.03 and 1.6 (1.3-2.0) for OS, p < 0.0001, respectively. A combined marker analysis with plasma KRAS...

  5. Cell Free DNA of Tumor Origin Induces a ‘Metastatic’ Expression Profile in HT-29 Cancer Cell Line

    OpenAIRE

    Fűri, István; Kalmár, Alexandra; Wichmann, Barnabás; Spisák, Sándor; Schöller, Andrea; Barták, Barbara; Tulassay, Zsolt; Molnár, Béla

    2015-01-01

    Background Epithelial cells in malignant conditions release DNA into the extracellular compartment. Cell free DNA of tumor origin may act as a ligand of DNA sensing mechanisms and mediate changes in epithelial-stromal interactions. Aims To evaluate and compare the potential autocrine and paracrine regulatory effect of normal and malignant epithelial cell-related DNA on TLR9 and STING mediated pathways in HT-29 human colorectal adenocarcinoma cells and normal fibroblasts. Materials and Methods...

  6. Evaluation of a Modified DNA Extraction Method for Isolation of Cell-Free Fetal DNA from Maternal Serum

    Science.gov (United States)

    Keshavarz, Zeinab; Moezzi, Leili; Ranjbaran, Reza; Aboualizadeh, Farzaneh; Behzad-Behbahani, Abbas; Abdullahi, Masooma; Sharifzadeh, Sedigheh

    2015-01-01

    Background: Discovery of short cell free fetal DNA (cffDNA) fragments in maternal plasma has created major changes in the field of prenatal diagnosis. The use of cffDNA to set up noninvasive prenatal test is limited due to the low concentration of fetal DNA in maternal plasma therefore, employing a high efficiency extraction method leads to more accurate results. The aim of this study was to evaluate the efficiency of Triton/Heat/Phenol (THP) protocol in comparison with the QIAamp DNA Blood mini Kit for cffDNA purification. Methods: In order to evaluate the efficiency of THP protocol, DNA of Rhesus D (RhD) negative pregnant women's plasma was collected, then real-time PCR for RHD exon 7 was performed. The Ct value data of real time PCR obtained by two different methods were compared and after delivery serology test on cord blood was done to validate the real time PCR results. Results: The results indicated significant differences between two extraction methods (p=0.001). The mean±SD of Ct-value using THP protocol was 33.8±1.6 and 36.1±2.47 using QIAamp DNA Blood mini Kit. Conclusion: Our finding demonstrated that THP protocol was more effective than the QIAamp DNA Blood mini Kits for cffDNA extraction and lead to decrease the false negative results. PMID:26140187

  7. Unfair discrimination in prenatal aneuploidy screening using cell-free DNA?

    Science.gov (United States)

    Rolfes, Vasilija; Schmitz, Dagmar

    2016-03-01

    Non-invasive prenatal testing on the basis of cell-free DNA of placental origin (NIPT) changed the landscape of prenatal care and is seen as superior to all other up to now implemented prenatal screening procedures - at least in the high-risk population. NIPT has spread almost worldwide commercially, but only in a few countries the costs of NIPT are covered by insurance companies. Such financial barriers in prenatal testing can lead to significant restrictions to the average range of opportunities of pregnant women and couples, which on an intersubjective level can be defined as unfair discrimination and on an individual level weakens reproductive autonomy. Given that enabling reproductive autonomy is the main ethical justification for offering prenatal (genetic) testing, these barriers are not only an issue of justice in health care, but are potentially counteracting the primary purpose of these testing procedures. PMID:26773245

  8. Cell-free DNA testing: an aid to prenatal sonographic diagnosis.

    Science.gov (United States)

    Chitty, Lyn S

    2014-04-01

    Sonographic diagnosis of fetal abnormalities is based on the recognition of sonographic patterns associated with structural abnormalities. Although diagnosis in some situations, such as neural tube defects, gastroschisis, and omphalocoele, can be straightforward, in many situations, the constellation of fetal abnormalities suggest an underlying chromosomal or genetic cause. In these situations, invasive testing is needed to provide the information required to make a definitive diagnosis, and thus accurately counsel parents. Since the identification of cell-free fetal DNA in maternal plasma, the potential for non-invasive prenatal diagnosis is increasingly becoming possible. In this chapter, the current role and future potential of non-invasive prenatal diagnosis, combined with new molecular techniques as an aid to sonographic diagnosis, will be discussed. PMID:24594366

  9. PIK3CA mutation detection in metastatic biliary cancer using cell-free DNA

    Science.gov (United States)

    Deng, Shibing; Lee, Sujin; Park, Young Suk; Lim, Ho Yeong; Kang, Won Ki; Mao, Mao; Heo, Jin Seok; Kwon, Wooil; Jang, Kee-Taek; Lee, Jeeyun; Park, Joon Oh

    2015-01-01

    PIK3CA mutation is considered a good candidate for targeted therapies in cancers, especially biliary tract cancer (BTC). We evaluated the utility of cell free DNA (cfDNA) from serum by using droplet digital PCR (ddPCR) as an alternative source for PIK3CA mutation analysis. To identify matching archival tumour specimens from serum samples of advanced BTC patients, mutation detection using ddPCR with Bio-Rad's PrimePCR mutation and wild type assays were performed for PIK3CA p.E542K, p.E545K, and p.H1047R. Thirty-eight patients with metastatic BTC were enrolled. Only one (BTC 29T) sample (n = 38) was positive for PIK3CA p.E542K and another (BTC 27T) for p.H1047R mutation; none was positive for PIK3CA p.E545K. Matched serum sample (BTC 29P) was positive for PIK3CA p.E542K with 28 mutant copies detected, corresponding to 48 copies/ml of serum and an allelic prevalence of 0.3%. Another matched serum sample (BTC 27P) was positive for PIK3CA p.H1047R with 10 mutant copies detected, i.e. 18 copies/ml and an allelic frequency of 0.2%. High correlation was noted in the PIK3CA mutation status between tumour gDNA and serum cfDNA. Low-level PIK3CA mutations were detectable in the serum indicating the utility of cfDNA as a DNA source to detect cancer-derived mutations in metastatic biliary cancers. PMID:26498688

  10. Cell-Free Fetal DNA, Telomeres, and the Spontaneous Onset of Parturition.

    Science.gov (United States)

    Phillippe, Mark

    2015-10-01

    Multiple previous reports have provided compelling support for the premise that spontaneous parturition is mediated by activation of inflammation-related signaling pathways leading to increased secretion of cytokines and chemokines, the influx of neutrophils and macrophages into the pregnant uterus, increased production of uterine activation proteins (eg, connexin-43, cyclo-oxygenase-2, oxytocin receptors, etc), activation of matrix metalloproteinases, and the release of uterotonins leading to cervical ripening, membrane rupture, and myometrial contractions. The missing link has been the fetal/placental signal that triggers these proinflammatory events in the absence of microbial invasion and intrauterine infection. This article reviews the biomedical literature regarding the increase in cell-free fetal DNA (cffDNA), which is released during apoptosis in the placenta and fetal membranes at term, the ability of apoptosis modified vertebrate DNA to stimulate toll-like receptor-9 (TLR9) leading to increased release of cytokines and chemokines, and the potential "fail-safe" role for the anti-inflammatory cytokine IL-10. This article also reviews the literature supporting the key role that telomere loss plays in regard to increasing the ability of vertebrate (including placental) DNA to stimulate TLR9, and in regard to signaling the onset of apoptosis in the placenta and fetal membranes, thereby providing a biologic clock that determines the length of gestation and the timing for the onset of parturition. In summary, this literature review provides a strong rationale for future research to test the hypothesis that telomere loss and increased cffDNA levels trigger the proinflammatory events leading to the spontaneous onset of parturition in mammals: the "cffDNA/telomere hypothesis." PMID:26134037

  11. Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method)

    OpenAIRE

    He, Mingyue; Michael J. Taussig

    2001-01-01

    We describe a format for production of protein arrays termed ‘protein in situ array’ (PISA). A PISA is rapidly generated in one step directly from PCR-generated DNA fragments by cell-free protein expression and in situ immobilisation at a surface. The template for expression is DNA encoding individual proteins or domains, which is produced by PCR using primers designed from information in DNA databases. Coupled transcription and translation is carried out on a surface ...

  12. Quantitation of Cell-Free and Cell-Associated Kaposi's Sarcoma-Associated Herpesvirus DNA by Real-Time PCR

    OpenAIRE

    White, Irene E.; Campbell, Thomas B.

    2000-01-01

    A real-time PCR assay for quantitation of Kaposi's sarcoma-associated herpes virus (KSHV or human herpesvirus 8) DNA was evaluated. The linear dynamic range was 10 to 105 copies of KSHV DNA (r2 > 0.99). The accuracy of DNA purification and quantitation was less than ±0.4 log10 copies for samples that contained from 10 to 105 copies of KSHV DNA. Cell-associated KSHV DNA was quantitated over a range of infected cell frequencies from 0.1 to 10−5, and cell-free KSHV DNA in plasma was quantitated ...

  13. Microarray-Based Analysis of Methylation Status of CpGs in Placental DNA and Maternal Blood DNA - Potential New Epigenetic Biomarkers for Cell Free Fetal DNA-Based Diagnosis

    DEFF Research Database (Denmark)

    Hatt, Lotte; Aagaard, Mads M; Graakjaer, Jesper;

    2015-01-01

    Epigenetic markers for cell free fetal DNA in the maternal blood circulation are highly interesting in the field of non-invasive prenatal testing since such markers will offer a possibility to quantify the amount of fetal DNA derived from different chromosomes in a maternal blood sample. The aim of...... the present study was to define new fetal specific epigenetic markers present in placental DNA that can be utilized in non-invasive prenatal diagnosis. We have conducted a high-resolution methylation specific beadchip microarray study assessing more than 450.000 CpG sites. We have analyzed the DNA...... with a potential for aneuploidy testing as well as a list of markers for regions harboring sub-microscopic deletion- or duplication syndromes....

  14. Admission cell free DNA levels predict 28-day mortality in patients with severe sepsis in intensive care.

    Directory of Open Access Journals (Sweden)

    Avital Avriel

    Full Text Available The aim of the current study is to assess the mortality prediction accuracy of circulating cell-free DNA (CFD level at admission measured by a new simplified method.CFD levels were measured by a direct fluorescence assay in severe sepsis patients on intensive care unit (ICU admission. In-hospital and/or twenty eight day all-cause mortality was the primary outcome.Out of 108 patients with median APACHE II of 20, 32.4% have died in hospital/or at 28-day. CFD levels were higher in decedents: median 3469.0 vs. 1659 ng/ml, p<0.001. In multivariable model APACHE II score and CFD (quartiles were significantly associated with the mortality: odds ratio of 1.05, p = 0.049 and 2.57, p<0.001 per quartile respectively. C-statistics for the models was 0.79 for CFD and 0.68 for APACHE II. Integrated discrimination improvement (IDI analyses showed that CFD and CFD+APACHE II score models had better discriminatory ability than APACHE II score alone.CFD level assessed by a new, simple fluorometric-assay is an accurate predictor of acute mortality among ICU patients with severe sepsis. Comparison of CFD to APACHE II score and Procalcitonin (PCT, suggests that CFD has the potential to improve clinical decision making.

  15. Prospective blinded study of somatic mutation detection in cell-free DNA utilizing a targeted 54-gene next generation sequencing panel in metastatic solid tumor patients

    Science.gov (United States)

    Lanman, Richard B.; Mortimer, Stefanie; Zill, Oliver A.; Kim, Kyoung-Mee; Jang, Kee Taek; Kim, Seok-Hyung; Park, Se Hoon; Park, Joon Oh; Park, Young Suk; Lim, Ho Yeong; Eltoukhy, Helmy; Kang, Won Ki; Lee, Woo Yong; Kim, Hee-Cheol; Park, Keunchil; Lee, Jeeyun; Talasaz, AmirAli

    2015-01-01

    Sequencing of the mutant allele fraction of circulating cell-free DNA (cfDNA) derived from tumors is increasingly utilized to detect actionable genomic alterations in cancer. We conducted a prospective blinded study of a comprehensive cfDNA sequencing panel with 54 cancer genes. To evaluate the concordance between cfDNA and tumor DNA (tDNA), sequencing results were compared between cfDNA from plasma and genomic tumor DNA (tDNA). Utilizing next generation digital sequencing technology (DST), we profiled approximately 78,000 bases encoding 512 complete exons in the targeted genes in cfDNA from plasma. Seventy-five patients were prospectively enrolled between February 2013 and March 2014, including 61 metastatic cancer patients and 14 clinical stage II CRC patients with matched plasma and tissue samples. Using the 54-gene panel, we detected at least one somatic mutation in 44 of 61 tDNA (72.1%) and 29 of 44 (65.9%) cfDNA. The overall concordance rate of cfDNA to tDNA was 85.9%, when all detected mutations were considered. We collected serial cfDNAs during cetuximab-based treatment in 2 metastatic KRAS wild-type CRC patients, one with acquired resistance and one with primary resistance. We demonstrate newly emerged KRAS mutation in cfDNA 1.5 months before radiologic progression. Another patient had a newly emerged PIK3CA H1047R mutation on cfDNA analysis at progression during cetuximab/irinotecan chemotherapy with gradual increase in allele frequency from 0.8 to 2.1%. This blinded, prospective study of a cfDNA sequencing showed high concordance to tDNA suggesting that the DST approach may be used as a non-invasive biopsy-free alternative to conventional sequencing using tumor biopsy. PMID:26452027

  16. Genome aberrations in canine mammary carcinomas and their detection in cell-free plasma DNA.

    Directory of Open Access Journals (Sweden)

    Julia Beck

    Full Text Available Mammary tumors are the most frequent cancers in female dogs exhibiting a variety of histopathological differences. There is lack of knowledge about the genomes of these common dog tumors. Five tumors of three different histological subtypes were evaluated. Massive parallel sequencing (MPS was performed in comparison to the respective somatic genome of each animal. Copy number and structural aberrations were validated using droplet digital PCR (ddPCR. Using mate-pair sequencing chromosomal aneuploidies were found in two tumors, frequent smaller deletions were found in one, inter-chromosomal fusions in one other, whereas one tumor was almost normal. These aberrations affect several known cancer associated genes such as cMYC, and KIT. One common deletion of the proximal end of CFA27, harboring the tumor suppressor gene PFDN5 was detected in four tumors. Using ddPCR, this deletion was validated and detected in 50% of tumors (N = 20. Breakpoint specific dPCRs were established for four tumors and tumor specific cell-free DNA (cfDNA was detected in the plasma. In one animal tumor-specific cfDNA was found >1 year after surgery, attributable to a lung metastasis. Paired-end sequencing proved that copy-number imbalances of the tumor are reflected by the cfDNA. This report on chromosomal instability of canine mammary cancers reveals similarities to human breast cancers as well as special canine alterations. This animal model provides a framework for using MPS for screening for individual cancer biomarkers with cost effective confirmation and monitoring using ddPCR. The possibility exists that ddPCR can be expanded to screening for common cancer related variants.

  17. Effect of blood pressure and glycemic control on the plasma cell-free DNA in hemodialysis patients

    OpenAIRE

    Jeong, Da Wun; Moon, Ju-Young; Choi, Young-Wook; Moon, Haena; Kim, Kipyo; Lee, Yu-Ho; Kim, Se-Yeun; Kim, Yang-Gyun; Jeong, Kyung-Hwan; Lee, Sang-Ho

    2015-01-01

    Background The plasma levels of cell-free DNA (cfDNA) are known to be elevated under inflammatory or apoptotic conditions. Increased cfDNA levels have been reported in hemodialysis (HD) patients. The aim of this study was to investigate the clinical significance of cfDNA in HD patients. Methods A total of 95 patients on HD were enrolled. We measured their predialysis cfDNA levels using real-time EIF2C1 gene sequence amplification and analyzed its association with certain clinical parameters. ...

  18. Exome Sequencing of Cell-Free DNA from Metastatic Cancer Patients Identifies Clinically Actionable Mutations Distinct from Primary Disease.

    Directory of Open Access Journals (Sweden)

    Timothy M Butler

    Full Text Available The identification of the molecular drivers of cancer by sequencing is the backbone of precision medicine and the basis of personalized therapy; however, biopsies of primary tumors provide only a snapshot of the evolution of the disease and may miss potential therapeutic targets, especially in the metastatic setting. A liquid biopsy, in the form of cell-free DNA (cfDNA sequencing, has the potential to capture the inter- and intra-tumoral heterogeneity present in metastatic disease, and, through serial blood draws, track the evolution of the tumor genome. In order to determine the clinical utility of cfDNA sequencing we performed whole-exome sequencing on cfDNA and tumor DNA from two patients with metastatic disease; only minor modifications to our sequencing and analysis pipelines were required for sequencing and mutation calling of cfDNA. The first patient had metastatic sarcoma and 47 of 48 mutations present in the primary tumor were also found in the cell-free DNA. The second patient had metastatic breast cancer and sequencing identified an ESR1 mutation in the cfDNA and metastatic site, but not in the primary tumor. This likely explains tumor progression on Anastrozole. Significant heterogeneity between the primary and metastatic tumors, with cfDNA reflecting the metastases, suggested separation from the primary lesion early in tumor evolution. This is best illustrated by an activating PIK3CA mutation (H1047R which was clonal in the primary tumor, but completely absent from either the metastasis or cfDNA. Here we show that cfDNA sequencing supplies clinically actionable information with minimal risks compared to metastatic biopsies. This study demonstrates the utility of whole-exome sequencing of cell-free DNA from patients with metastatic disease. cfDNA sequencing identified an ESR1 mutation, potentially explaining a patient's resistance to aromatase inhibition, and gave insight into how metastatic lesions differ from the primary tumor.

  19. Exome Sequencing of Cell-Free DNA from Metastatic Cancer Patients Identifies Clinically Actionable Mutations Distinct from Primary Disease

    Science.gov (United States)

    Butler, Timothy M.; Johnson-Camacho, Katherine; Peto, Myron; Wang, Nicholas J.; Macey, Tara A.; Korkola, James E.; Koppie, Theresa M.; Corless, Christopher L.; Gray, Joe W.; Spellman, Paul T.

    2015-01-01

    The identification of the molecular drivers of cancer by sequencing is the backbone of precision medicine and the basis of personalized therapy; however, biopsies of primary tumors provide only a snapshot of the evolution of the disease and may miss potential therapeutic targets, especially in the metastatic setting. A liquid biopsy, in the form of cell-free DNA (cfDNA) sequencing, has the potential to capture the inter- and intra-tumoral heterogeneity present in metastatic disease, and, through serial blood draws, track the evolution of the tumor genome. In order to determine the clinical utility of cfDNA sequencing we performed whole-exome sequencing on cfDNA and tumor DNA from two patients with metastatic disease; only minor modifications to our sequencing and analysis pipelines were required for sequencing and mutation calling of cfDNA. The first patient had metastatic sarcoma and 47 of 48 mutations present in the primary tumor were also found in the cell-free DNA. The second patient had metastatic breast cancer and sequencing identified an ESR1 mutation in the cfDNA and metastatic site, but not in the primary tumor. This likely explains tumor progression on Anastrozole. Significant heterogeneity between the primary and metastatic tumors, with cfDNA reflecting the metastases, suggested separation from the primary lesion early in tumor evolution. This is best illustrated by an activating PIK3CA mutation (H1047R) which was clonal in the primary tumor, but completely absent from either the metastasis or cfDNA. Here we show that cfDNA sequencing supplies clinically actionable information with minimal risks compared to metastatic biopsies. This study demonstrates the utility of whole-exome sequencing of cell-free DNA from patients with metastatic disease. cfDNA sequencing identified an ESR1 mutation, potentially explaining a patient’s resistance to aromatase inhibition, and gave insight into how metastatic lesions differ from the primary tumor. PMID:26317216

  20. Exome Sequencing of Cell-Free DNA from Metastatic Cancer Patients Identifies Clinically Actionable Mutations Distinct from Primary Disease

    OpenAIRE

    Butler, Timothy M.; Johnson-Camacho, Katherine; Peto, Myron; Wang, Nicholas J.; Macey, Tara A.; Korkola, James E.; Koppie, Theresa M.; Corless, Christopher L.; Joe W. Gray; Spellman, Paul T

    2015-01-01

    The identification of the molecular drivers of cancer by sequencing is the backbone of precision medicine and the basis of personalized therapy; however, biopsies of primary tumors provide only a snapshot of the evolution of the disease and may miss potential therapeutic targets, especially in the metastatic setting. A liquid biopsy, in the form of cell-free DNA (cfDNA) sequencing, has the potential to capture the inter- and intra-tumoral heterogeneity present in metastatic disease, and, thro...

  1. Maternal Cell free DNA based screening for fetal microdeletion and the importance of careful diagnostic follow up

    OpenAIRE

    Yatsenko, Svetlana A.; Peters, David; Saller, Devereux; Chu, Tianjiao; Clemens, Michelle; Rajkovic, Aleksandar

    2015-01-01

    Background Noninvasive prenatal screening (NIPS) by next-generation sequencing of cell free DNA (cfDNA) in maternal plasma is used to screen for common aneuploidies such as trisomy 21, in high risk pregnancies. NIPS can identify fetal genomic microdeletions, however sensitivity and specificity have not been systematically evaluated. Commercial companies have begun to offer expanded panels including screening for common microdeletion syndromes such as 22q11.2 deletion (DiGeorge syndrome) witho...

  2. An Economic Analysis of Cell-Free DNA Non-Invasive Prenatal Testing in the US General Pregnancy Population

    OpenAIRE

    Benn, Peter; Curnow, Kirsten J.; Chapman, Steven; Michalopoulos, Steven N.; Hornberger, John; Rabinowitz, Matthew

    2015-01-01

    Objective Analyze the economic value of replacing conventional fetal aneuploidy screening approaches with non-invasive prenatal testing (NIPT) in the general pregnancy population. Methods Using decision-analysis modeling, we compared conventional screening to NIPT with cell-free DNA (cfDNA) analysis in the annual US pregnancy population. Sensitivity and specificity for fetal aneuploidies, trisomy 21, trisomy 18, trisomy 13, and monosomy X, were estimated using published data and modeling of b...

  3. Detection of Y STR markers of male fetal dna in maternal circulation

    OpenAIRE

    Nair Seema; Peter Sam; Pillay V; Remya U; Krishnaprasad R; Rajammal B

    2007-01-01

    Background: Circulating fetal cells and cell free DNA in the maternal blood has been shown to help in prenatal diagnosis of genetic disorders without relying on invasive procedures leading to significant risk of pregnancy loss. Aim: The current study was undertaken to detect the male fetal population using Y STR markers DYS 19, DYS 385 and DYS 392 and also to study the extent of persistence of fetal DNA in the mother following delivery. Materials and Methods: Blinded study was conducted ...

  4. A Method to Quantify Cell-Free Fetal DNA Fraction in Maternal Plasma Using Next Generation Sequencing: Its Application in Non-Invasive Prenatal Chromosomal Aneuploidy Detection.

    Directory of Open Access Journals (Sweden)

    Xu-Ping Xu

    Full Text Available The fraction of circulating cell-free fetal (cff DNA in maternal plasma is a critical parameter for aneuploidy screening with non-invasive prenatal testing, especially for those samples located in equivocal zones. We developed an approach to quantify cff DNA fractions directly with sequencing data, and increased cff DNAs by optimizing library construction procedure.Artificial DNA mixture samples (360, with known cff DNA fractions, were used to develop a method to determine cff DNA fraction through calculating the proportion of Y chromosomal unique reads, with sequencing data generated by Ion Proton. To validate our method, we investigated cff DNA fractions of 2,063 pregnant women with fetuses who were diagnosed as high risk of fetal defects. The z-score was calculated to determine aneuploidies for chromosomes 21, 18 and 13. The relationships between z-score and parameters of pregnancies were also analyzed. To improve cff DNA fractions in our samples, two groups were established as follows: in group A, the large-size DNA fragments were removed, and in group B these were retained, during library construction.A method to determine cff DNA fractions was successfully developed using 360 artificial mixture samples in which cff DNA fractions were known. A strong positive correlation was found between z-score and fetal DNA fraction in the artificial mixture samples of trisomy 21, 18 and 13, as well as in clinical maternal plasma samples. There was a positive correlation between gestational age and the cff DNA fraction in the clinical samples, but no correlation for maternal age. Moreover, increased fetal DNA fractions were found in group A compared to group B.A relatively accurate method was developed to determine the cff DNA fraction in maternal plasma. By optimizing, we can improve cff DNA fractions in sequencing samples, which may contribute to improvements in detection rate and reliability.

  5. A Method to Quantify Cell-Free Fetal DNA Fraction in Maternal Plasma Using Next Generation Sequencing: Its Application in Non-Invasive Prenatal Chromosomal Aneuploidy Detection

    Science.gov (United States)

    Xu, Xu-Ping; Gan, Hai-Yan; Li, Fen-Xia; Tian, Qi; Zhang, Jun; Liang, Rong-Liang; Li, Ming

    2016-01-01

    Objective The fraction of circulating cell-free fetal (cff) DNA in maternal plasma is a critical parameter for aneuploidy screening with non-invasive prenatal testing, especially for those samples located in equivocal zones. We developed an approach to quantify cff DNA fractions directly with sequencing data, and increased cff DNAs by optimizing library construction procedure. Methods Artificial DNA mixture samples (360), with known cff DNA fractions, were used to develop a method to determine cff DNA fraction through calculating the proportion of Y chromosomal unique reads, with sequencing data generated by Ion Proton. To validate our method, we investigated cff DNA fractions of 2,063 pregnant women with fetuses who were diagnosed as high risk of fetal defects. The z-score was calculated to determine aneuploidies for chromosomes 21, 18 and 13. The relationships between z-score and parameters of pregnancies were also analyzed. To improve cff DNA fractions in our samples, two groups were established as follows: in group A, the large-size DNA fragments were removed, and in group B these were retained, during library construction. Results A method to determine cff DNA fractions was successfully developed using 360 artificial mixture samples in which cff DNA fractions were known. A strong positive correlation was found between z-score and fetal DNA fraction in the artificial mixture samples of trisomy 21, 18 and 13, as well as in clinical maternal plasma samples. There was a positive correlation between gestational age and the cff DNA fraction in the clinical samples, but no correlation for maternal age. Moreover, increased fetal DNA fractions were found in group A compared to group B. Conclusion A relatively accurate method was developed to determine the cff DNA fraction in maternal plasma. By optimizing, we can improve cff DNA fractions in sequencing samples, which may contribute to improvements in detection rate and reliability. PMID:26765738

  6. Cell-free DNA in Human Follicular Microenvironment: New Prognostic Biomarker to Predict in vitro Fertilization Outcomes

    OpenAIRE

    Traver, Sabine; Scalici, Elodie; Mullet, Tiffany; Molinari, Nicolas; Vincens, Claire; Anahory, Tal; Hamamah, Samir

    2015-01-01

    Cell-free DNA (cfDNA) fragments, detected in blood and in other biological fluids, are released from apoptotic and/or necrotic cells. CfDNA is currently used as biomarker for the detection of many diseases such as some cancers and gynecological and obstetrics disorders. In this study, we investigated if cfDNA levels in follicular fluid (FF) samples from in vitro fertilization (IVF) patients, could be related to their ovarian reserve status, controlled ovarian stimulation (COS) protocols and I...

  7. Diagnosing schistosomiasis by detection of cell-free parasite DNA in human plasma.

    Directory of Open Access Journals (Sweden)

    Dominic Wichmann

    Full Text Available INTRODUCTION: Schistosomiasis (bilharzia, one of the most relevant parasitoses of humans, is confirmed by microscopic detection of eggs in stool, urine, or organ biopsies. The sensitivity of these procedures is variable due to fluctuation of egg shedding. Serological tests on the other hand do not distinguish between active and past disease. In patients with acute disease (Katayama syndrome, both serology and direct detection may produce false negative results. To overcome these obstacles, we developed a novel diagnostic strategy, following the rationale that Schistosoma DNA may be liberated as a result of parasite turnover and reach the blood. Cell-free parasite DNA (CFPD was detected in plasma by PCR. METHODOLOGY/PRINCIPAL FINDINGS: Real-time PCR with internal control was developed and optimized for detection of CFPD in human plasma. Distribution was studied in a mouse model for Schistosoma replication and elimination, as well as in human patients seen before and after treatment. CFPD was detectable in mouse plasma, and its concentration correlated with the course of anti-Schistosoma treatment. Humans with chronic disease and eggs in stool or urine (n = 14 showed a 100% rate of CFPD detection. CFPD was also detected in all (n = 8 patients with Katayama syndrome. Patients in whom no viable eggs could be detected and who had been treated for schistomiasis in the past (n = 30 showed lower detection rates (33.3% and significantly lower CFPD concentrations. The duration from treatment to total elimination of CFPD from plasma was projected to exceed one year. CONCLUSIONS/SIGNIFICANCE: PCR for detection of CFPD in human plasma may provide a new laboratory tool for diagnosing schistosomiasis in all phases of clinical disease, including the capacity to rule out Katayama syndrome and active disease. Further studies are needed to confirm the clinical usefulness of CFPD quantification in therapy monitoring.

  8. Cell-free mitochondrial DNA in CSF is associated with early viral rebound, inflammation, and severity of neurocognitive deficits in HIV infection

    OpenAIRE

    Pérez-Santiago, J; Schrier, RD; de Oliveira, MF; Gianella, S; Var, SR; Day, TRC; Ramirez-Gaona, M; Suben, JD; Murrell, B.; Massanella, M; Cherner, M.; Smith, DM; Ellis, RJ; Letendre, SL; Mehta, SR

    2016-01-01

    © 2015 Journal of NeuroVirology, Inc. Cell-free mitochondiral DNA (mtDNA) is an immunogenic molecule associated with many inflammatory conditions. We evaluated the relationship between cell-free mtDNA in cerebrospinal fluid (CSF) and neurocognitive performance and inflammation during HIV infection. In a cross-sectional analysis, we evaluated the association of mtDNA levels with clinical assessments, inflammatory markers, and neurocognitive performance in 28 HIV-infected individuals. In CSF, w...

  9. A cell-free system for studying a priming factor involved in repair of bleomycin-damaged DNA.

    Directory of Open Access Journals (Sweden)

    Seki,Shuji

    1989-04-01

    Full Text Available A simple cell-free system for studying a priming factor involved in the repair of bleomycin-damaged DNA was established. The template-primer used for the repair DNA synthesis was prepared by treating the closed circular, superhelical form of pUC19 plasmid DNA with 2.2 microM bleomycin and 20 microM ferrous ions. Single-strand breaks were introduced into pUC19 DNA by the bleomycin treatment, and the DNA was consequently converted largely into the open circular form. A system for repair of this bleomycin-damaged DNA was constructed with a priming factor, DNA polymerase (DNA polymerase beta or Klenow fragment of DNA polymerase I, ATP, T4 DNA ligase and four deoxynucleoside triphosphates. After incubation, the conformation of the DNA was analyzed by agarose gel electrophoresis and electron microscopy. The open circular DNA was largely converted to the closed circular DNA, indicating that the single-strand breaks of DNA were repaired. When the priming factor was omitted, DNA repair did not occur. The present system seemed to be applicable to the study of priming factors involved in the repair of DNA with single-strand breaks caused not only by bleomycin but also by ionizing radiation or active oxygen.

  10. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients.

    Science.gov (United States)

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-08-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. PMID:26126624

  11. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients

    Science.gov (United States)

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-01-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. PMID:26126624

  12. Cell-free DNA concentration and integrity as a screening tool for cancer

    Directory of Open Access Journals (Sweden)

    Ebtsam R Zaher

    2013-01-01

    Full Text Available Aim of the Study: This study aims to evaluate cell-free DNA (CFDNA concentration and integrity in patients with malignant and nonmalignant diseases and in controls to investigate their value as a screening test for cancer, and to correlate them with clinicopathological parameters of cancer patients. Materials and Methods: The study included three groups; group I: 120 cancer patients, group II: 120 patients with benign diseases and group III: 120 normal healthy volunteers as control. One plasma sample was collected from each subject. CFDNA was purified from the plasma then its concentration was measured and integrity was assessed by PCR amplification of 100, 200, 400, and 800 bp bands. Results: There was a highly significant difference in CFDNA levels between cancer group and each of benign and control groups. AUC of ROC curve for cancer group versus normal and benign groups were 0.962 and 0.895, which indicated the efficiency of CFDNA as a marker of cancer. As for integrity, normal and benign subjects showed only two bands at 100 and 200 bp, while all cancer patients demonstrated the 400 bp band and 78% of them had the 800 bp whose presence correlated with vascular invasion. Conclusion: The combined use of CFDNA concentration and integrity is a candidate for a universal screening test of cancer. Upon setting suitable boundaries for the test it might be applied to identify cancer patients, particularly among subjects with predisposing factors. Being less expensive, CFDNA concentration could be applied for mass screening and for patients with values overlapping those of normal and benign subjects, the use of the more expensive, yet more specific, integrity test is suggested.

  13. Detection of Y STR markers of male fetal dna in maternal circulation

    Directory of Open Access Journals (Sweden)

    Nair Seema

    2007-01-01

    Full Text Available Background: Circulating fetal cells and cell free DNA in the maternal blood has been shown to help in prenatal diagnosis of genetic disorders without relying on invasive procedures leading to significant risk of pregnancy loss. Aim: The current study was undertaken to detect the male fetal population using Y STR markers DYS 19, DYS 385 and DYS 392 and also to study the extent of persistence of fetal DNA in the mother following delivery. Materials and Methods: Blinded study was conducted on 50 mothers delivering male and female babies. Cellular and cell free DNA was extracted from maternal and fetal cord blood and amplified for Y STR markers by PCR. Results: The amplification sensitivity of Y specific STR, DYS19 was 100% (22/22 in the male fetal DNA samples. The incidence of other STRs, i.e., DYS385 and DYS392 were 91% (20/22 each. Analysis of results revealed that thirteen of the twenty six women had detectable male fetal DNA at the time of delivery. However fetal DNA was not detectable twenty four hours after delivery. Conclusion: Preliminary results show that the separation of fetal cell-free DNA in the maternal circulation is a good low-cost approach for the future development of novel strategies to provide non-invasive techniques for early prenatal diagnosis.

  14. Actionable mutations in plasma cell-free DNA in patients with advanced cancers referred for experimental targeted therapies

    OpenAIRE

    Janku, Filip; Angenendt, Philipp; Tsimberidou, Apostolia M.; Fu, Siqing; Naing, Aung; Falchook, Gerald S.; David S Hong; Holley, Veronica R.; Cabrilo, Goran; Jennifer J Wheler; Piha-Paul, Sarina A.; Zinner, Ralph G.; Bedikian, Agop Y.; Overman, Michael J.; Kee, Bryan K.

    2015-01-01

    Cell-free (cf) DNA in the plasma of cancer patients offers an easily obtainable source of biologic material for mutation analysis. Plasma samples from 157 patients with advanced cancers who progressed on systemic therapy were tested for 21 mutations in BRAF, EGFR, KRAS, and PIK3CA using the BEAMing method and results were compared to mutation analysis of archival tumor tissue from a CLIA-certified laboratory obtained as standard of care from diagnostic or therapeutic procedures. Results were ...

  15. Increased Plasma Cell-Free DNA Level during HTNV Infection: Correlation with Disease Severity and Virus Load

    Directory of Open Access Journals (Sweden)

    Jing Yi

    2014-07-01

    Full Text Available Cell-free DNA (cf-DNA in blood represents a promising DNA damage response triggered by virus infection or trauma, tumor, etc. Hantavirus primarily causes two diseases: haemorrhagic fever with renal syndrome (HFRS and Hantavirus cardiopulmonary syndrome (HCPS, depending on different Hantavirus species. The aim of this study was to evaluate plasma cf-DNA levels in acute phase of HFRS, and to correlate plasma cf-DNA with disease severity and plasma Hanttan virus (HTNV load. We observed the appearance of cf-DNA in 166 plasma samples from 76 HFRS patients: the plasma cf-DNA levels peaked at the hypotensive stage of HFRS, and then decreased gradually. Until the diuretic stage, there was no significant difference in plasma cf-DNA level between patients and the healthy control. Exclusively in the febrile/hypotensive stage, the plasma cf-DNA levels of severe/critical patients were higher than those of the mild/moderate group. Moreover, the plasma cf-DNA value in the early stage of HFRS was correlated with HTNV load and disease severity. In most of the patients, plasma cf-DNA displayed a low-molecular weight appearance, corresponding to the size of apoptotic DNA. In conclusion, the plasma cf-DNA levels were dynamically elevated during HFRS, and correlated with disease severity, which suggests that plasma cf-DNA may be a potential biomarker for the pathogenesis and prognosis of HFRS.

  16. Real-time PCR evaluation of cell-free DNA subjected to various storage and shipping conditions.

    Science.gov (United States)

    Wang, Q; Cai, Y; Brady, P; Vermeesch, J R

    2015-01-01

    In this study, we attempted to explore the factors affecting the yield of cell-free fetal DNA (cffDNA) obtained from maternal blood samples, including the use of different types of collection tubes, the interval between sample processing, and sample shipping under extreme weather conditions. Blood samples were drawn into K3EDTA tubes and cell-stabilizing tubes (Streck blood collection tube, BCT) from women pregnant with male fetuses. Real time PCR was used to amplify a β-actin gene fragment to measure the total plasma cell-free DNA concentration, while an SRY gene fragment was used to quantify the cffDNA. The samples in the K3EDTA tubes revealed a decreased quantity of SRY after 5 days of transportation, with a median of 25.9 copies/mL (P tubes. We observed a statistically significant increase in stability of the amount of total DNA in the blood samples stored in K3EDTA tubes (P tubes. PMID:26505430

  17. Effect of blood pressure and glycemic control on the plasma cell-free DNA in hemodialysis patients

    Science.gov (United States)

    Jeong, Da Wun; Moon, Ju-Young; Choi, Young-Wook; Moon, Haena; Kim, Kipyo; Lee, Yu-Ho; Kim, Se-Yeun; Kim, Yang-Gyun; Jeong, Kyung-Hwan; Lee, Sang-Ho

    2015-01-01

    Background The plasma levels of cell-free DNA (cfDNA) are known to be elevated under inflammatory or apoptotic conditions. Increased cfDNA levels have been reported in hemodialysis (HD) patients. The aim of this study was to investigate the clinical significance of cfDNA in HD patients. Methods A total of 95 patients on HD were enrolled. We measured their predialysis cfDNA levels using real-time EIF2C1 gene sequence amplification and analyzed its association with certain clinical parameters. Results The mean plasma cfDNA level in the HD patients was 3,884 ± 407 GE/mL, and the mean plasma cfDNA level in the control group was 1,420 ± 121 GE/mL (P < 0.05). Diabetic patients showed higher plasma cfDNA levels compared with nondiabetic patients (P < 0.01). Patients with cardiovascular complications also showed higher plasma cfDNA levels compared with those without cardiovascular complication (P < 0.05). In univariable analysis, the cfDNA level was associated with 3-month mean systolic blood pressure (SBP), white blood cell, serum albumin, creatinine (Cr), normalized protein catabolic rate in HD patients. In diabetic patients, it was significantly correlated with SBP, hemoglobin A1c, and serum albumin. In multivariate analysis, SBP was the independent determinant for the cfDNA level. In diabetic patients, cfDNA level was independently associated with hemoglobin A1c and SBP. Conclusions In patients with HD, cfDNA is elevated in diabetic patients and patients with cardiovascular diseases. Uncontrolled hypertension and poor glycemic control are independent determinants for the elevated cfDNA. Our data suggest that cfDNA might be a marker of vascular injury rather than proinflammatory condition in HD patients. PMID:26779422

  18. DASAF: An R Package for Deep Sequencing-Based Detection of Fetal Autosomal Abnormalities from Maternal Cell-Free DNA

    Directory of Open Access Journals (Sweden)

    Baohong Liu

    2016-01-01

    Full Text Available Background. With the development of massively parallel sequencing (MPS, noninvasive prenatal diagnosis using maternal cell-free DNA is fast becoming the preferred method of fetal chromosomal abnormality detection, due to its inherent high accuracy and low risk. Typically, MPS data is parsed to calculate a risk score, which is used to predict whether a fetal chromosome is normal or not. Although there are several highly sensitive and specific MPS data-parsing algorithms, there are currently no tools that implement these methods. Results. We developed an R package, detection of autosomal abnormalities for fetus (DASAF, that implements the three most popular trisomy detection methods—the standard Z-score (STDZ method, the GC correction Z-score (GCCZ method, and the internal reference Z-score (IRZ method—together with one subchromosome abnormality identification method (SCAZ. Conclusions. With the cost of DNA sequencing declining and with advances in personalized medicine, the demand for noninvasive prenatal testing will undoubtedly increase, which will in turn trigger an increase in the tools available for subsequent analysis. DASAF is a user-friendly tool, implemented in R, that supports identification of whole-chromosome as well as subchromosome abnormalities, based on maternal cell-free DNA sequencing data after genome mapping.

  19. Microarray-Based Analysis of Methylation Status of CpGs in Placental DNA and Maternal Blood DNA--Potential New Epigenetic Biomarkers for Cell Free Fetal DNA-Based Diagnosis.

    Directory of Open Access Journals (Sweden)

    Lotte Hatt

    Full Text Available Epigenetic markers for cell free fetal DNA in the maternal blood circulation are highly interesting in the field of non-invasive prenatal testing since such markers will offer a possibility to quantify the amount of fetal DNA derived from different chromosomes in a maternal blood sample. The aim of the present study was to define new fetal specific epigenetic markers present in placental DNA that can be utilized in non-invasive prenatal diagnosis. We have conducted a high-resolution methylation specific beadchip microarray study assessing more than 450.000 CpG sites. We have analyzed the DNA methylation profiles of 10 maternal blood samples and compared them to 12 1st trimesters chorionic samples from normal placentas, identifying a number of CpG sites that are differentially methylated in maternal blood cells compared to chorionic tissue. To strengthen the utility of these differentially methylated CpG sites to be used with methyl-sensitive restriction enzymes (MSRE in PCR-based NIPD, we furthermore refined the list of selected sites, containing a restriction sites for one of 16 different methylation-sensitive restriction enzymes. We present a list of markers on chromosomes 13, 18 and 21 with a potential for aneuploidy testing as well as a list of markers for regions harboring sub-microscopic deletion- or duplication syndromes.

  20. A New Model for Providing Cell-Free DNA and Risk Assessment for Chromosome Abnormalities in a Public Hospital Setting

    Directory of Open Access Journals (Sweden)

    Robert Wallerstein

    2014-01-01

    Full Text Available Objective. Cell-free DNA (cfDNA offers highly accurate noninvasive screening for Down syndrome. Incorporating it into routine care is complicated. We present our experience implementing a novel program for cfDNA screening, emphasizing patient education, genetic counseling, and resource management. Study Design. Beginning in January 2013, we initiated a new patient care model in which high-risk patients for aneuploidy received genetic counseling at 12 weeks of gestation. Patients were presented with four pathways for aneuploidy risk assessment and diagnosis: (1 cfDNA; (2 integrated screening; (3 direct-to-invasive testing (chorionic villus sampling or amniocentesis; or (4 no first trimester diagnostic testing/screening. Patients underwent follow-up genetic counseling and detailed ultrasound at 18–20 weeks to review first trimester testing and finalize decision for amniocentesis. Results. Counseling and second trimester detailed ultrasound were provided to 163 women. Most selected cfDNA screening (69% over integrated screening (0.6%, direct-to-invasive testing (14.1%, or no screening (16.6%. Amniocentesis rates decreased following implementation of cfDNA screening (19.0% versus 13.0%, P<0.05. Conclusion. When counseled about screening options, women often chose cfDNA over integrated screening. This program is a model for patient-directed, efficient delivery of a newly available high-level technology in a public health setting. Genetic counseling is an integral part of patient education and determination of plan of care.

  1. Plasma cell-free DNA levels and integrity in patients with chest radiological findings: NSCLC versus benign lung nodules.

    Science.gov (United States)

    Szpechcinski, Adam; Rudzinski, Piotr; Kupis, Wlodzimierz; Langfort, Renata; Orlowski, Tadeusz; Chorostowska-Wynimko, Joanna

    2016-05-01

    Effective discrimination between lung cancer and benign tumours is a common clinical problem in the differential diagnosis of solitary pulmonary nodules. The analysis of cell-free DNA (cfDNA) in blood may greatly aid the early detection of lung cancer by evaluating cancer-related alterations. The plasma cfDNA levels and integrity were analysed in 65 non-small cell lung cancer (NSCLC) patients, 28 subjects with benign lung tumours, and 16 healthy controls using real-time PCR. The NSCLC patients demonstrated significantly higher mean plasma cfDNA levels compared with those with benign tumours (P = 0.0009) and healthy controls (P 2.8 ng/ml provided 86.4% sensitivity and 61.4% specificity in discriminating NSCLC from benign lung pathologies and healthy controls. cfDNA integrity showed better discriminatory power (91% sensitivity, 68.2% specificity). These data demonstrate that plasma cfDNA concentration and integrity analyses can significantly differentiate between NSCLC and benign lung tumours. The diagnostic capacity of the quantitative cfDNA assay is comparable to the values presented by conventional imaging modalities used in clinical practice. PMID:26854716

  2. Chimerism Analysis of Cell-Free DNA in Patients Treated with Hematopoietic Stem Cell Transplantation May Predict Early Relapse in Patients with Hematologic Malignancies

    OpenAIRE

    Mahmoud Aljurf; Hala Abalkhail; Amal Alseraihy; Said Y. Mohamed; Mouhab Ayas; Fahad Alsharif; Hazza Alzahrani; Abdullah Al-Jefri; Ghuzayel Aldawsari; Ali Al-Ahmari; Belgaumi, Asim F.; Claudia Ulrike Walter; Hassan El-Solh; Walid Rasheed; Maher Albitar

    2016-01-01

    Background. We studied DNA chimerism in cell-free DNA (cfDNA) in patients treated with HSCT. Methods. Chimerism analysis was performed on CD3+ cells, polymorphonuclear (PMN) cells, and cfDNA using 16 small tandem repeat loci. The resulting labeled PCR-products were size-fractionated and quantified. Results. Analyzing samples from 191 patients treated with HSCT for nonneoplastic hematologic disorders demonstrated that the cfDNA chimerism is comparable to that seen in PMN cells. Analyzing leuke...

  3. Mapping of the vaccinia virus DNA polymerase gene by marker rescue and cell-free translation of selected RNA

    International Nuclear Information System (INIS)

    The previous demonstration that a phosphonoacetate (PAA)-resistant (PAA/sup r/) vaccinia virus mutant synthesized an altered DNA polymerase provided the key to mapping this gene. Marker rescue was performed in cells infected with wild-type PAA-sensitive (PAA/sup s/) vaccinia by transfecting with calcium phosphate-precipitated DNA from a PAA/sup r/ mutant virus. Formation of PAA/sup r/ recombinants was measured by plaque assay in the presence of PAA. Of the 12 HindIII fragments cloned in plasmid or cosmid vectors, only fragment E conferred the PAA/sup r/ phenotype. Successive subcloning of the 15-kilobase HindIII fragment E localized the marker within a 7.5-kilobase BamHI-HindIII fragment and then within a 2.9-kilobase EcoRI fragment. The location of the DNA polymerase gene, about 57 kilobases from the left end of the genome, was confirmed by cell-free translation of mRNA selected by hybridization to plasmids containing regions of PAA/sup r/ vaccinia DNA active in marker rescue. A 100,000-dalton polypeptide that comigrated with authentic DNA polymerase was synthesized. Correspondence of the in vitro translation product with purified vaccinia DNA polymerase was established by peptide mapping

  4. Protein synthesis directly from PCR: progress and applications of cell-free protein synthesis with linear DNA.

    Science.gov (United States)

    Schinn, Song-Min; Broadbent, Andrew; Bradley, William T; Bundy, Bradley C

    2016-06-25

    A rapid, versatile method of protein expression and screening can greatly facilitate the future development of therapeutic biologics, proteomic drug targets and biocatalysts. An attractive candidate is cell-free protein synthesis (CFPS), a cell-lysate-based in vitro expression system, which can utilize linear DNA as expression templates, bypassing time-consuming cloning steps of plasmid-based methods. Traditionally, such linear DNA expression templates (LET) have been vulnerable to degradation by nucleases present in the cell lysate, leading to lower yields. This challenge has been significantly addressed in the recent past, propelling LET-based CFPS as a useful tool for studying, screening and engineering proteins in a high-throughput manner. Currently, LET-based CFPS has promise in fields such as functional proteomics, protein microarrays, and the optimization of complex biological systems. PMID:27085957

  5. Counting molecules in cell-free DNA and single cells RNA

    OpenAIRE

    Karlsson, Kasper

    2016-01-01

    The field of Molecular Biology got started in earnest with the discovery of the molecular structure of DNA. This lead to a surge of interest into the relationships between DNA, RNA and proteins, and to the development of fundamental tools for manipulating those substances, such as cutting, ligating, amplifying, visualizing and size-selecting DNA. With these tools at hand it was possible to begin sequencing DNA, a process that took a leap forward in 2005 with the advent of Next Generation Sequ...

  6. The circulating cell-free microRNA profile in systemic sclerosis is distinct from both healthy controls and systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Steen, Samantha O; Iversen, Line V; Carlsen, Anting Liu;

    2015-01-01

    OBJECTIVE: To evaluate the expression profile of cell-free circulating microRNA (miRNA) in systemic sclerosis (SSc), healthy controls (HC), and systemic lupus erythematosus (SLE). METHODS: Total RNA was purified from plasma and 45 different, mature miRNA were measured using quantitative PCR assay...... both HC and SLE cases. Some of the predicted targets of the differentially regulated miRNA are of relevance for transforming growth factor-β signaling and fibrosis, but need to be validated in independent studies......., while SLE and SSc differed mainly in the expression of miR-142-3p, -150, -223, and -638. Except for a weak correlation between anti-Scl-70 and miR-638 (p = 0.048), there were no correlations with other patient variables. CONCLUSION: Circulating miRNA profiles are characteristic for SSc compared with...

  7. Actionable mutations in plasma cell-free DNA in patients with advanced cancers referred for experimental targeted therapies

    Science.gov (United States)

    Janku, Filip; Angenendt, Philipp; Tsimberidou, Apostolia M.; Fu, Siqing; Naing, Aung; Falchook, Gerald S.; Hong, David S.; Holley, Veronica R.; Cabrilo, Goran; Wheler, Jennifer J.; Piha-Paul, Sarina A.; Zinner, Ralph G.; Bedikian, Agop Y.; Overman, Michael J.; Kee, Bryan K.; Kim, Kevin B.; Kopetz, E. Scott; Luthra, Rajyalakshmi; Diehl, Frank; Meric-Bernstam, Funda; Kurzrock, Razelle

    2015-01-01

    Cell-free (cf) DNA in the plasma of cancer patients offers an easily obtainable source of biologic material for mutation analysis. Plasma samples from 157 patients with advanced cancers who progressed on systemic therapy were tested for 21 mutations in BRAF, EGFR, KRAS, and PIK3CA using the BEAMing method and results were compared to mutation analysis of archival tumor tissue from a CLIA-certified laboratory obtained as standard of care from diagnostic or therapeutic procedures. Results were concordant for archival tissue and plasma cfDNA in 91% cases for BRAF mutations (kappa = 0.75, 95% confidence interval [CI] 0.63 – 0.88), in 99% cases for EGFR mutations (kappa = 0.90, 95% CI 0.71– 1.00), in 83% cases for KRAS mutations (kappa = 0.67, 95% CI 0.54 – 0.80) and in 91% cases for PIK3CA mutations (kappa = 0.65, 95% CI 0.46 – 0.85). Patients (n = 41) with > 1% of KRAS mutant cfDNA had a shorter median survival compared to 20 patients with 1% of mutant cfDNA (BRAF, EGFR, KRAS, or PIK3CA) had a shorter median survival compared to 33 patients with DNA (5.5 vs. 9.8 months, p = 0.001), which was confirmed in multivariable analysis. PMID:25980577

  8. Detection of Clonal and Subclonal Copy-Number Variants in Cell-Free DNA from Patients with Breast Cancer Using a Massively Multiplexed PCR Methodology

    Science.gov (United States)

    Kirkizlar, Eser; Zimmermann, Bernhard; Constantin, Tudor; Swenerton, Ryan; Hoang, Bin; Wayham, Nicholas; Babiarz, Joshua E.; Demko, Zachary; Pelham, Robert J.; Kareht, Stephanie; Simon, Alexander L.; Jinnett, Kristine N.; Rabinowitz, Matthew; Sigurjonsson, Styrmir; Hill, Matthew

    2015-01-01

    We demonstrate proof-of-concept for the use of massively multiplexed PCR and next-generation sequencing (mmPCR-NGS) to identify both clonal and subclonal copy-number variants (CNVs) in circulating tumor DNA. This is the first report of a targeted methodology for detection of CNVs in plasma. Using an in vitro model of cell-free DNA, we show that mmPCR-NGS can accurately detect CNVs with average allelic imbalances as low as 0.5%, an improvement over previously reported whole-genome sequencing approaches. Our method revealed differences in the spectrum of CNVs detected in tumor tissue subsections and matching plasma samples from 11 patients with stage II breast cancer. Moreover, we showed that liquid biopsies are able to detect subclonal mutations that may be missed in tumor tissue biopsies. We anticipate that this mmPCR-NGS methodology will have broad applicability for the characterization, diagnosis, and therapeutic monitoring of CNV-enriched cancers, such as breast, ovarian, and lung cancer. PMID:26500031

  9. The Most Favourable Procedure for the Isolation of Cell-free DNA from the Plasma of Iso-immunized RHD-negative Pregnant Women

    OpenAIRE

    Riyaz Ahmad Rather; Subhas Chandra Saha; Veena Dhawan

    2015-01-01

    Background: The ability to achieve quality recovery of cell- free foetal DNA is important for making non-invasive prenatal diagnoses. In this study, we performed quantita‐ tive and qualitative analyses of isolated DNA from mater‐ nal plasma, using different DNA-isolation methods. Method: DNA was isolated from 30 iso-immunized women via the QIAamp column-based method, using four differ‐ ent elution volumes and two conventionally based meth‐ ods. Real-time polymerase chain-reaction quantific...

  10. The usage and current approaches of cell free fetal DNA (cffDNA) as a prenatal diagnostic method in fetal aneuploidy screening

    OpenAIRE

    Hülya Erbaba; Gül Pınar

    2015-01-01

    Prenatal diagnosis of invasive and noninvasive tests can be done in a way (NIPT), but because of the invasive methods have risks of infection and abortion, diagnosing non-invasive procedure increasing day by day. One of the widespread cell free fetal DNA in maternal blood test (cffDNA) that is increasing in clinical use has been drawing attention. The incidence of aneuploidy chromosomal anomaly of the kind in which all live births; Trisomy 21 (Down Syndrome) 1/800, trisomy 13 (Patau syndrome)...

  11. Cell-free assay measuring repair DNA synthesis in human fibroblasts

    International Nuclear Information System (INIS)

    Osmotic disruption of confluent cultured human fibroblasts that have been irradiated or exposed to chemical carcinogens allows the specific measurement of repair DNA synthesis using dTTP as a precursor. Fibroblasts similarly prepared from various xeroderma pigmentosum cell lines show the deficiencies of uv-induced DNA synthesis predicted from in vivo studies, while giving normal responses to methylmethanesulfonate. A pyrimidine-dimer-specific enzyme, T4 endonuclease V, stimulated the rate of uv-induced repair synthesis with normal and xeroderma pigmentosum cell lines. This system should prove useful for identifying agents that induce DNA repair, and cells that respond abnormally to such induction. It should also be applicable to an in vitro complementation assay with repair-defective cells and proteins obtained from repair-proficient cells. Finally, by using actively growing fibroblasts and thymidine in the system, DNA replication can be measured and studied in vitro

  12. Fatal outcome in bacteremia is characterized by high plasma cell free DNA concentration and apoptotic DNA fragmentation: a prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Reetta Huttunen

    Full Text Available INTRODUCTION: Recent studies have shown that apoptosis plays a critical role in the pathogenesis of sepsis. High plasma cell free DNA (cf-DNA concentrations have been shown to be associated with sepsis outcome. The origin of cf-DNA is unclear. METHODS: Total plasma cf-DNA was quantified directly in plasma and the amplifiable cf-DNA assessed using quantitative PCR in 132 patients with bacteremia caused by Staphylococcus aureus, Streptococcus pneumoniae, ß-hemolytic streptococcae or Escherichia coli. The quality of cf-DNA was analyzed with a DNA Chip assay performed on 8 survivors and 8 nonsurvivors. Values were measured on days 1-4 after positive blood culture, on day 5-17 and on recovery. RESULTS: The maximum cf-DNA values on days 1-4 (n = 132 were markedly higher in nonsurvivors compared to survivors (2.03 vs 1.26 ug/ml, p1.52 ug/ml remained an independent risk factor for case fatality in a logistic regression model. Qualitative analysis of cf-DNA showed that cf-DNA displayed a predominating low-molecular-weight cf-DNA band (150-200 bp in nonsurvivors, corresponding to the size of the apoptotic nucleosomal DNA. cf-DNA concentration showed a significant positive correlation with visually graded apoptotic band intensity (R = 0.822, p<0.001. CONCLUSIONS: Plasma cf-DNA concentration proved to be a specific independent prognostic biomarker in bacteremia. cf-DNA displayed a predominating low-molecular-weight cf-DNA band in nonsurvivors corresponding to the size of apoptotic nucleosomal DNA.

  13. High cell-free DNA predicts fatal outcome among Staphylococcus aureus bacteraemia patients with intensive care unit treatment.

    Directory of Open Access Journals (Sweden)

    Erik Forsblom

    Full Text Available INTRODUCTION: Among patients with bacteraemia or sepsis the plasma cell-free DNA (cf-DNA biomarker has prognostic value and Pitt bacteraemia scores predict outcome. We evaluated the prognostic value of plasma cf-DNA in patients with Staphylococcus aureus bacteraemia (SAB treated in the ICU or in the general ward. METHODS: 418 adult patients with positive blood culture for S. aureus were prospectively followed for 90 days. SAB patients were grouped according to ICU treatment: 99 patients were treated in ICU within 7 days of documented SAB whereas 319 patients were managed outside ICU. Pitt bacteraemia scores were assessed at hospital arrival and cf-DNA was measured at days 3 and 5 from positive blood culture. RESULTS: SAB patients with high Pitt bacteraemia scores and ICU treatment presented higher cf-DNA values as compared to SAB patients with low Pitt bacteraemia scores and non-ICU treatment at both days 3 and 5. Among ICU patients cf-DNA >1.99 µg/ml at day 3 predicted death with a sensitivity of 67% and a specificity of 77% and had an AUC in receiver operating characteristic analysis of 0.71 (p1.99 µg/ml value demonstrated a strong association to high Pitt bacteraemia scores (≥ 4 points (p<0.000. After controlling for all prognostic markers, Pitt bacteraemia scores ≥ 4 points at hospital admission (OR 4.47, p<0.000 and day 3 cf-DNA (OR 3.56, p<0.001 were the strongest factors significantly predicting outcome in ICU patients. cf-DNA at day 5 did not predict fatal outcome. CONCLUSION: High cf-DNA concentrations were observed among patients with high Pitt bacteraemia scores and ICU treatment. Pitt bacteraemia scores (≥ 4 points and cf-DNA at day 3 from positive blood culture predicted death among SAB patients in ICU and were found to be independent prognostic markers. cf-DNA had no prognostic value among non-ICU patients.

  14. Cell Free DNA of Tumor Origin Induces a 'Metastatic' Expression Profile in HT-29 Cancer Cell Line.

    Directory of Open Access Journals (Sweden)

    István Fűri

    Full Text Available Epithelial cells in malignant conditions release DNA into the extracellular compartment. Cell free DNA of tumor origin may act as a ligand of DNA sensing mechanisms and mediate changes in epithelial-stromal interactions.To evaluate and compare the potential autocrine and paracrine regulatory effect of normal and malignant epithelial cell-related DNA on TLR9 and STING mediated pathways in HT-29 human colorectal adenocarcinoma cells and normal fibroblasts.DNA isolated from normal and tumorous colonic epithelia of fresh frozen surgically removed tissue samples was used for 24 and 6 hour treatment of HT-29 colon carcinoma and HDF-α fibroblast cells. Whole genome mRNA expression analysis and qRT-PCR was performed for the elements/members of TLR9 signaling pathway. Immunocytochemistry was performed for epithelial markers (i.e. CK20 and E-cadherin, DNA methyltransferase 3a (DNMT3a and NFκB (for treated HDFα cells.Administration of tumor derived DNA on HT29 cells resulted in significant (p<0.05 mRNA level alteration in 118 genes (logFc≥1, p≤0.05, including overexpression of metallothionein genes (i.e. MT1H, MT1X, MT1P2, MT2A, metastasis-associated genes (i.e. TACSTD2, MACC1, MALAT1, tumor biomarker (CEACAM5, metabolic genes (i.e. INSIG1, LIPG, messenger molecule genes (i.e. DAPP, CREB3L2. Increased protein levels of CK20, E-cadherin, and DNMT3a was observed after tumor DNA treatment in HT-29 cells. Healthy DNA treatment affected mRNA expression of 613 genes (logFc≥1, p≤0.05, including increased expression of key adaptor molecules of TLR9 pathway (e.g. MYD88, IRAK2, NFκB, IL8, IL-1β, STING pathway (ADAR, IRF7, CXCL10, CASP1 and the FGF2 gene.DNA from tumorous colon epithelium, but not from the normal epithelial cells acts as a pro-metastatic factor to HT-29 cells through the overexpression of pro-metastatic genes through TLR9/MYD88 independent pathway. In contrast, DNA derived from healthy colonic epithelium induced TLR9 and STING signaling

  15. Applications for quantitative measurement of BRAF V600 mutant cell-free tumor DNA in the plasma of patients with metastatic melanoma.

    Science.gov (United States)

    Schreuer, Max; Meersseman, Geert; van Den Herrewegen, Sari; Jansen, Yanina; Seremet, Teofila; Bott, Ambre; Chevolet, Ines; Wilgenhof, Sofie; Maertens, Geert; Neyns, Bart

    2016-04-01

    Small fragments of cell-free DNA that are shed by normal and tumor cells can be detected in the plasma of patients with advanced melanoma. Quantitative measurement of BRAF V600 mutant DNA within the cell-free DNA holds promise as a tumor-specific biomarker for diagnosis and therapeutic monitoring in patients with BRAF V600 mutant melanoma. Allele-specific quantitative PCR analysis for BRAF V600 E/E2/D/K/R/M mutations on DNA extracted from 1 ml of plasma is currently under evaluation in a number of ongoing prospective clinical studies. We report five patient cases that indicate the potential applications and utility of quantitative measurements of BRAF V600 mutant cell-free tumor DNA as a diagnostic test and as a therapeutic monitoring tool in stage IV melanoma patients treated with BRAF-targeted therapy or immunotherapy. Finally, we offer novel insights into the dynamics of cell-free tumor DNA in melanoma. PMID:26636909

  16. Prenatal diagnosis of Down syndrome using cell-free fetal DNA in amniotic fluid by quantitative fluorescent polymersase chain reaction

    Institute of Scientific and Technical Information of China (English)

    Wu Dan; Chi Hongbin; Shao Minjie; Wu Yao; Jin Hongyan; Wu Baiyan; Qiao Jie

    2014-01-01

    Backgroud Amniotic fluid (AF) supernatant contains cell-free fetal DNA (cffDNA) fragments.This study attempted to take advantage of cffDNA as a new material for prenatal diagnosis,which could be combined with simple quantitative fluorescent polymerase chain reaction (QF-PCR) to provide an ancillary method for the prenatal diagnosis of trisomy 21 syndrome.Methods AF supernatant samples were obtained from 27 women carrying euploid fetuses and 28 women carrying aneuploid fetuses with known cytogenetic karyotypes.Peripheral blood samples of the parents were collected at the same time.Short tandem repeat (STR) fragments on chromosome 21 were amplified by QF-PCR.Fetal condition and the parental source of the extra chromosome could be determined by the STR peaks.Results The sensitivity of the assay for the aneuploid was 93% (26/28; confidence interval,CI:77%-98%) and the specificity was 100% (26/26; CI:88%-100%).The determination rate of the origin of the extra chromosome was 69%.The sensitivity and the specificity of the assay in the euploid were 100% (27/27).Conclusions Trisomy 21 can be prenatally diagnosed by the QF-PCR method in AF supernatant.This karyotype analysis method greatly reduces the requirement for the specimen size.It will be a benefit for early amniocentesis and could avoid pregnancy complications.The method may become an ancillary method for prenatal diagnosis of trisomy 21.

  17. Cell-free DNA in Human Follicular Microenvironment: New Prognostic Biomarker to Predict in vitro Fertilization Outcomes.

    Directory of Open Access Journals (Sweden)

    Sabine Traver

    Full Text Available Cell-free DNA (cfDNA fragments, detected in blood and in other biological fluids, are released from apoptotic and/or necrotic cells. CfDNA is currently used as biomarker for the detection of many diseases such as some cancers and gynecological and obstetrics disorders. In this study, we investigated if cfDNA levels in follicular fluid (FF samples from in vitro fertilization (IVF patients, could be related to their ovarian reserve status, controlled ovarian stimulation (COS protocols and IVF outcomes. Therefore, 117 FF samples were collected from women (n = 117 undergoing IVF/Intra-cytoplasmic sperm injection (ICSI procedure and cfDNA concentration was quantified by ALU-quantitative PCR. We found that cfDNA level was significantly higher in FF samples from patients with ovarian reserve disorders (low functional ovarian reserve or polycystic ovary syndrome than from patients with normal ovarian reserve (2.7 ± 2.7 ng/μl versus 1.7 ± 2.3 ng/μl, respectively, p = 0.03. Likewise, FF cfDNA levels were significant more elevated in women who received long ovarian stimulation (> 10 days or high total dose of gonadotropins (≥ 3000 IU/l than in women who received short stimulation duration (7-10 days or total dose of gonadotropins < 3000 IU/l (2.4 ± 2.8 ng/μl versus 1.5 ± 1.9 ng/μl, p = 0.008; 2.2 ± 2.3 ng/μl versus 1.5 ± 2.1 ng/μl, p = 0.01, respectively. Finally, FF cfDNA level was an independent and significant predictive factor for pregnancy outcome (adjusted odds ratio = 0.69 [0.5; 0.96], p = 0.03. In multivariate analysis, the Receiving Operator Curve (ROC analysis showed that the performance of FF cfDNA in predicting clinical pregnancy reached 0.73 [0.66-0.87] with 88% specificity and 60% sensitivity. CfDNA might constitute a promising biomarker of follicular micro-environment quality which could be used to predict IVF prognosis and to enhance female infertility management.

  18. Cell-free DNA in Human Follicular Microenvironment: New Prognostic Biomarker to Predict in vitro Fertilization Outcomes

    Science.gov (United States)

    Mullet, Tiffany; Molinari, Nicolas; Vincens, Claire; Anahory, Tal; Hamamah, Samir

    2015-01-01

    Cell-free DNA (cfDNA) fragments, detected in blood and in other biological fluids, are released from apoptotic and/or necrotic cells. CfDNA is currently used as biomarker for the detection of many diseases such as some cancers and gynecological and obstetrics disorders. In this study, we investigated if cfDNA levels in follicular fluid (FF) samples from in vitro fertilization (IVF) patients, could be related to their ovarian reserve status, controlled ovarian stimulation (COS) protocols and IVF outcomes. Therefore, 117 FF samples were collected from women (n = 117) undergoing IVF/Intra-cytoplasmic sperm injection (ICSI) procedure and cfDNA concentration was quantified by ALU-quantitative PCR. We found that cfDNA level was significantly higher in FF samples from patients with ovarian reserve disorders (low functional ovarian reserve or polycystic ovary syndrome) than from patients with normal ovarian reserve (2.7 ± 2.7 ng/μl versus 1.7 ± 2.3 ng/μl, respectively, p = 0.03). Likewise, FF cfDNA levels were significant more elevated in women who received long ovarian stimulation (> 10 days) or high total dose of gonadotropins (≥ 3000 IU/l) than in women who received short stimulation duration (7–10 days) or total dose of gonadotropins < 3000 IU/l (2.4 ± 2.8 ng/μl versus 1.5 ± 1.9 ng/μl, p = 0.008; 2.2 ± 2.3 ng/μl versus 1.5 ± 2.1 ng/μl, p = 0.01, respectively). Finally, FF cfDNA level was an independent and significant predictive factor for pregnancy outcome (adjusted odds ratio = 0.69 [0.5; 0.96], p = 0.03). In multivariate analysis, the Receiving Operator Curve (ROC) analysis showed that the performance of FF cfDNA in predicting clinical pregnancy reached 0.73 [0.66–0.87] with 88% specificity and 60% sensitivity. CfDNA might constitute a promising biomarker of follicular micro-environment quality which could be used to predict IVF prognosis and to enhance female infertility management. PMID:26288130

  19. Cell free DNA testing-interpretation of results using an online calculator.

    Science.gov (United States)

    Grace, Matthew R; Hardisty, Emily; Green, Noah S; Davidson, Emily; Stuebe, Alison M; Vora, Neeta L

    2015-07-01

    All pregnant women, regardless of age, should be offered screening or invasive testing for chromosomal abnormalities at advertise and report a test's sensitivity and specificity as a means to describe the test's accuracy. The positive predictive value (PPV) of a screening test (the proportion of positive results that are truly positive) is a function of the prevalence of the condition in a population and often is not reported in direct-to-patient advertising. False-positive cfDNA screening tests have been reported, and there is evidence that some women are deciding to terminate their pregnancy without confirmatory testing. We believe that laboratories should disclose the patient-specific PPV of cfDNA screening for aneuploidy on result reports. To assist with counseling patients about the benefits, risks, and limitations of aneuploidy screening with the use of cfDNA and to demonstrate the relationship between an a priori risk and PPV, we developed a web-based calculator to estimate the PPV of the 4 commercially available cfDNA testing platforms for which data have been published. Estimates are made with the use of a patient's age and gestational age-related risk of trisomy 21, 18 and 13 or an a priori risk that is based on other findings. This web-based calculator is an aid for providers and genetic counselors to illustrate the relationship between disease prevalence and a test's PPV. It has enhanced our counseling of patients both before they elect noninvasive prenatal screening and after they receive a positive result. PMID:25957020

  20. Urine Cell-Free DNA Integrity Analysis for Early Detection of Prostate Cancer Patients

    OpenAIRE

    Samanta Salvi; Giorgia Gurioli; Filippo Martignano; Flavia Foca; Roberta Gunelli; Giacomo Cicchetti; Ugo De Giorgi; Wainer Zoli; Daniele Calistri; Valentina Casadio

    2015-01-01

    Introduction. The detection of tumor-specific markers in urine has paved the way for new early noninvasive diagnostic approaches for prostate cancer. We evaluated the DNA integrity in urine supernatant to verify its capacity to discriminate between prostate cancer and benign diseases of the urogenital tract. Patients and Methods. A total of 131 individuals were enrolled: 67 prostate cancer patients and 64 patients with benign diseases of the urogenital tract (control group). Prostate-specific...

  1. Whole-genome bisulfite sequencing of cell-free DNA identifies signature associated with metastatic breast cancer

    OpenAIRE

    Legendre, Christophe; Gooden, Gerald C.; Johnson, Kyle; Martinez, Rae Anne; Liang, Winnie S.; Salhia, Bodour

    2015-01-01

    Background A number of clinico-pathological criteria and molecular profiles have been used to stratify patients into high- and low-risk groups. Currently, there are still no effective methods to determine which patients harbor micrometastatic disease after standard breast cancer therapy and who will eventually develop local or distant recurrence. The purpose of our study was to identify circulating DNA methylation changes that can be used for prediction of metastatic breast cancer (MBC). Resu...

  2. Fetal Aneuploidy Detection by Cell-Free DNA Sequencing for Multiple Pregnancies and Quality Issues with Vanishing Twins

    Directory of Open Access Journals (Sweden)

    Sebastian Grömminger

    2014-06-01

    Full Text Available Non-invasive prenatal testing (NIPT by random massively parallel sequencing of maternal plasma DNA for multiple pregnancies is a promising new option for prenatal care since conventional non-invasive screening for fetal trisomies 21, 18 and 13 has limitations and invasive diagnostic methods bear a higher risk for procedure related fetal losses in the case of multiple gestations compared to singletons. In this study, in a retrospective blinded analysis of stored twin samples, all 16 samples have been determined correctly, with four trisomy 21 positive and 12 trisomy negative samples. In the prospective part of the study, 40 blood samples from women with multiple pregnancies have been analyzed (two triplets and 38 twins, with two correctly identified trisomy 21 cases, confirmed by karyotyping. The remaining 38 samples, including the two triplet pregnancies, had trisomy negative results. However, NIPT is also prone to quality issues in case of multiple gestations: the minimum total amount of cell-free fetal DNA must be higher to reach a comparable sensitivity and vanishing twins may cause results that do not represent the genetics of the living sibling, as described in two case reports.

  3. Non-Invasive Prenatal Testing Using Cell Free DNA in Maternal Plasma: Recent Developments and Future Prospects

    Directory of Open Access Journals (Sweden)

    Peter Benn

    2014-05-01

    Full Text Available Recent advances in molecular genetic technologies have facilitated non-invasive prenatal testing (NIPT through the analysis of cell-free fetal DNA in maternal plasma. NIPT can be used to identify monogenic disorders including the identification of autosomal recessive disorders where the maternally inherited mutation needs to be identified in the presence of an excess of maternal DNA that contains the same mutation. In the future, simultaneous screening for multiple monogenic disorders is anticipated. Several NIPT methods have been developed to screen for trisomy. These have been shown to be effective for fetal trisomy 21, 18 and 13. Although the testing has been extended to sex chromosome aneuploidy, robust estimates of the efficacy are not yet available and maternal mosaicism for gain or loss of an X-chromosome needs to be considered. Using methods based on the analysis of single nucleotide polymorphisms, diandric triploidy can be identified. NIPT is being developed to identify a number of microdeletion syndromes including α-globin gene deletion. NIPT is a profoundly important development in prenatal care that is substantially advancing the individual patient and public health benefits achieved through conventional prenatal screening and diagnosis.

  4. Prenatal screening for fetal aneuploidies with cell-free DNA in the general pregnancy population: a cost-effectiveness analysis

    Science.gov (United States)

    Fairbrother, Genevieve; Burigo, John; Sharon, Thomas; Song, Ken

    2016-01-01

    Abstract Objective: To estimate the cost-effectiveness of fetal aneuploidy screening in the general pregnancy population using non-invasive prenatal testing (NIPT) as compared to first trimester combined screening (FTS) with serum markers and NT ultrasound. Methods: Using a decision-analytic model, we estimated the number of fetal T21, T18, and T13 cases identified prenatally, the number of invasive procedures performed, corresponding normal fetus losses, and costs of screening using FTS or NIPT with cell-free DNA (cfDNA). Modeling was based on a 4 million pregnant women cohort, which represents annual births in the U.S. Results: For the general pregnancy population, NIPT identified 15% more trisomy cases, reduced invasive procedures by 88%, and reduced iatrogenic fetal loss by 94% as compared to FTS. The cost per trisomy case identified with FTS was $497 909. At a NIPT unit, cost of $453 and below, there were cost savings as compared to FTS. Accounting for additional trisomy cases identified by NIPT, a NIPT unit cost of $665 provided the same per trisomy cost as that of FTS. Conclusions: NIPT in the general pregnancy population leads to more prenatal identification of fetal trisomy cases as compared to FTS and is more economical at a NIPT unit cost of $453. PMID:26000626

  5. Non-Invasive Prenatal RHD Genotyping Using Cell-Free Fetal DNA from Maternal Plasma: An Italian Experience

    Science.gov (United States)

    Picchiassi, Elena; Di Renzo, Gian Carlo; Tarquini, Federica; Bini, Vittorio; Centra, Michela; Pennacchi, Luana; Galeone, Fabiana; Micanti, Mara; Coata, Giuliana

    2015-01-01

    Summary Background This study assessed the diagnostic accuracy of a non-invasive approach to fetal RHD genotyping using cell-free fetal DNA in maternal plasma and a combination of methodological strategies. Methods Real-time PCR (qPCR) was performed on 216 RhD-negative women between weeks 10+0 and 14+6 of gestation (1st qPCR). qPCR was repeated (2nd qPCR) to increase the amount of each sample for analysis, on 95 plasma aliquots that were available from first trimester blood collection (group 1) and on 13 samples that were collected between weeks 18+0 and 25+6 of gestation (group 2). qPCR was specific for exons 5 and 7 of the RHD gene (RHD5 and RHD7). The results were interpreted according to the number of positive replicates of both exons. Results 1st qPCR: diagnostic accuracy was of 93.3%. Diagnostic accuracy increased from 90.5% (1st qPCR) to 93.7% (2nd qPCR) in group 1 and from 84.6% (1st qPCR) to 92.3% (2nd qPCR) in group 2. These increments were not statistically significant. Conclusion Our approach to RHD genotyping in early pregnancy yielded high diagnostic accuracy. Increasing the amount of DNA analyzed in each sample did not improve significantly the diagnostic accuracy of the test. PMID:25960712

  6. Tumour pharmacodynamics and circulating cell free DNA in patients with refractory colorectal carcinoma treated with regorafenib

    OpenAIRE

    Wong, Andrea Li Ann; Lim, Joline Si Jing; Sinha, Arvind; Gopinathan, Anil; Lim, Robert; Tan, Chee-Seng; Soh, Thomas; Venkatesh, Sudhakar; Titin, Christina; Sapari, Nur Sabrina; Lee, Soo-Chin; Yong, Wei-Peng; Tan, David Shao Ping; Pang, Brendan; Wang, Ting-Ting

    2015-01-01

    Background Regorafenib, a multi-kinase inhibitor, is used in the treatment of patients with metastatic colorectal cancer refractory to standard therapy. However, this benefit was limited to 1.4 months improvement in overall survival, with more than half of patients experiencing grade 3 to 4 adverse events. We aim to elucidate the pharmacodynamic effects of regorafenib in metastatic colorectal cancer and discover potential biomarkers that may predict clinical benefit. Methods Patients with met...

  7. Cell-free mitochondrial DNA in CSF is associated with early viral rebound, inflammation, and severity of neurocognitive deficits in HIV infection.

    Science.gov (United States)

    Pérez-Santiago, Josué; Schrier, Rachel D; de Oliveira, Michelli F; Gianella, Sara; Var, Susanna R; Day, Tyler R C; Ramirez-Gaona, Miguel; Suben, Jesse D; Murrell, Ben; Massanella, Marta; Cherner, Mariana; Smith, Davey M; Ellis, Ronald J; Letendre, Scott L; Mehta, Sanjay R

    2016-04-01

    Cell-free mitochondiral DNA (mtDNA) is an immunogenic molecule associated with many inflammatory conditions. We evaluated the relationship between cell-free mtDNA in cerebrospinal fluid (CSF) and neurocognitive performance and inflammation during HIV infection. In a cross-sectional analysis, we evaluated the association of mtDNA levels with clinical assessments, inflammatory markers, and neurocognitive performance in 28 HIV-infected individuals. In CSF, we measured mtDNA levels by droplet digital PCR, and soluble CD14 and CD163, neurofilament light, and neopterin by ELISA. In blood and CSF, we measured soluble IP-10, MCP-1, TNF-α, and IL-6 by ELISA, and intracellular expression of IL-2, IFN-γ, and TNF-α in CD4(+) and CD8(+) T cells by flow cytometry. We also evaluated the relationship between CSF pleocytosis and mtDNA longitudinally in another set of five individuals participating in an antiretroviral treatment (ART) interruption study. Cell-free CSF mtDNA levels strongly correlated with neurocognitive performance among individuals with neurocognitive impairment (NCI) (r = 0.77, p = 0.001). CSF mtDNA also correlated with levels of IP-10 in CSF (r = 0.70, p = 0.007) and MCP-1 in blood plasma (r = 0.66, p = 0.01) in individuals with NCI. There were no significant associations between inflammatory markers and mtDNA in subjects without NCI, and levels of mtDNA did not differ between subjects with and without NCI. MtDNA levels preceded pleocytosis and HIV RNA following ART interruption. Cell-free mtDNA in CSF was strongly associated with the severity of neurocognitive dysfunction and inflammation only in individuals with NCI. Our findings suggest that within a subset of subjects cell-free CSF mtDNA is associated with inflammation and degree of NCI. PMID:26428514

  8. Quantitative characterization of pyrimidine dimer excision from UV-irradiated DNA (excision capacity) by cell-free extracts of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Cell-free extracts from wild-type yeast (RAD+) and from rad mutants belonging to the RAD3 epistatic group (rad1-1, rad2-1, rad3-1, rad4-1) contain activities catalyzing the excision of pyrimidine dimers (PD) from purified ultraviolet-irradiated DNA which was not pre-treated with exogenous UV-endonuclease. The level of these activities in cell-free extracts from rad mutants did not differ from that in wild-type extract and was close to the in vivo excision capacity of the latter calculated from the LD37 (about 104 PD per haploid genome). (Auth.)

  9. Complementation of the xeroderma pigmentosum DNA repair synthesis defect with Escherichia coli UvrABC proteins in a cell-free system.

    OpenAIRE

    Hansson, J; Grossman, L; Lindahl, T; Wood, R D

    1990-01-01

    A newly developed cell-free system was used to study DNA repair synthesis carried out by extracts from human cell lines in vitro. Extracts from a normal human lymphoid cell line and from cell lines established from individuals with hereditary dysplastic nevus syndrome perform damage-dependent repair synthesis in plasmid DNA treated with cis- or trans-diamminedichloro-platinum(II) or irradiated with ultraviolet light. Cell extracts of xeroderma pigmentosum origin (complementation groups A, C, ...

  10. Noninvasive prenatal diagnosis of fetal RhD status using cell-free fetal DNA in maternal plasma with TaqMan® real-time PCR assay

    OpenAIRE

    Rekhviashvili, Tea

    2007-01-01

    Prenatal diagnosis is now part of established obstetric practice in many countries. However, conventional methods of prenatal diagnosis of obtaining fetal tissues for genetic analysis, including amniocentesis and chorionic villus sampling, are invasive and constitute a finite risk to the unborn fetus1. At present, it is widely accepted that both intact fetal cells as well as cell-free fetal DN A are present in the maternal circulation and can be recovered for non-invasive prena...

  11. Increased serum cell-free DNA levels in relation to inflammation are predictive of distant metastasis of esophageal squamous cell carcinoma

    OpenAIRE

    TOMOCHIKA, SHINOBU; Iizuka, Norio; Watanabe, Yusaku; TSUTSUI, MASAHITO; Takeda, Shigeru; Yoshino, Shigefumi; ICHIHARA, KIYOSHI; Oka, Masaaki

    2010-01-01

    Distant metastasis hinders a favorable outcome for patients with esophageal squamous cell carcinoma (ESCC) by limiting the surgical cure. The levels of cell-free DNA (cfDNA) in the blood have served as a predictor for metastasis and recurrence in distant organs in liver cancer. Thus, this study tested the clinical efficacy of serum cfDNA levels as a predictive marker for distant metastasis of ESCC. We investigated cfDNA levels in a cohort of 101 ESCC patients and 46 age- and gender-matched co...

  12. Diagnostic Value of Cell-free Circulating MicroRNAs for Obesity and Type 2 Diabetes: A Meta-analysis

    Science.gov (United States)

    Villard, Audrey; Marchand, Lucien; Thivolet, Charles; Rome, Sophie

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is the most common metabolic disorder worldwide. Because of population aging and increasing trends toward obesity and sedentary lifestyles, the number of affected individuals is increasing at worrisome rates. While both environmental and genetic factors are known to contribute to the development of T2DM, continuous research is needed to identify specific biomarkers that could aid both in prevention of the disease and development of newer therapeutic options. Circulating miRNAs are considered as potential biomarkers because they are stable and resistant to degradation by blood RNAses and are modified under different pathophysiological conditions. In this study we carried out a systematic electronic search on PubMed to retrieve all articles that have investigated circulating miRNAs for diagnosing obesity andT2DM in human. We also included lifestyle intervention studies known to be highly effective in delaying onset of diabetes, and studies analyzing the effect of bariatric surgery and anti-diabetic treatment. A total of 26 studies were enrolled in the global meta-analysis. Candidate miRNAs were defined as those reported in at least 2 studies with same direction of differential expression. Ten miRNAs altered in blood of patients suffering fromT2DM were identified (increased: miR-320a, miR-142-3p, miR-222, miR-29a, miR-27a, miR-375; decreased: miR-197, miR-20b, miR-17, miR-652) and 7 miRNAs in blood of obese subjects were identified (increased: miR-142-3p, miR-140-5p, miR-222; decreased:miR-21-5p, miR-221-3p, miR-125-5p, mir-103-5p). Both obese and T2DM patients had elevated concentrations of miR-142-3p and miR-222. MiRNAs target genes were predicted and their cellular functions are discussed in relation with the pathologies. Although a significant number of studies were taken into account in this review, we found a strong discrepancy between miRNA detection and quantification indicating that many of pre-analytical variables have yet to

  13. An Economic Analysis of Cell-Free DNA Non-Invasive Prenatal Testing in the US General Pregnancy Population.

    Directory of Open Access Journals (Sweden)

    Peter Benn

    Full Text Available Analyze the economic value of replacing conventional fetal aneuploidy screening approaches with non-invasive prenatal testing (NIPT in the general pregnancy population.Using decision-analysis modeling, we compared conventional screening to NIPT with cell-free DNA (cfDNA analysis in the annual US pregnancy population. Sensitivity and specificity for fetal aneuploidies, trisomy 21, trisomy 18, trisomy 13, and monosomy X, were estimated using published data and modeling of both first- and second trimester screening. Costs were assigned for each prenatal test component and for an affected birth. The overall cost to the healthcare system considered screening costs, the number of aneuploid cases detected, invasive procedures performed, procedure-related euploid losses, and affected pregnancies averted. Sensitivity analyses evaluated the effect of variation in parameters. Costs were reported in 2014 US Dollars.Replacing conventional screening with NIPT would reduce healthcare costs if it can be provided for $744 or less in the general pregnancy population. The most influential variables were timing of screening entry, screening costs, and pregnancy termination rates. Of the 13,176 affected pregnancies undergoing screening, NIPT detected 96.5% (12,717/13,176 of cases, compared with 85.9% (11,314/13,176 by conventional approaches. NIPT reduced invasive procedures by 60.0%, with NIPT and conventional methods resulting in 24,596 and 61,430 invasive procedures, respectively. The number of procedure-related euploid fetal losses was reduced by 73.5% (194/264 in the general screening population.Based on our analysis, universal application of NIPT would increase fetal aneuploidy detection rates and can be economically justified. Offering this testing to all pregnant women is associated with substantial prenatal healthcare benefits.

  14. An Economic Analysis of Cell-Free DNA Non-Invasive Prenatal Testing in the US General Pregnancy Population

    Science.gov (United States)

    Benn, Peter; Curnow, Kirsten J.; Chapman, Steven; Michalopoulos, Steven N.; Hornberger, John; Rabinowitz, Matthew

    2015-01-01

    Objective Analyze the economic value of replacing conventional fetal aneuploidy screening approaches with non-invasive prenatal testing (NIPT) in the general pregnancy population. Methods Using decision-analysis modeling, we compared conventional screening to NIPT with cell-free DNA (cfDNA) analysis in the annual US pregnancy population. Sensitivity and specificity for fetal aneuploidies, trisomy 21, trisomy 18, trisomy 13, and monosomy X, were estimated using published data and modeling of both first- and second trimester screening. Costs were assigned for each prenatal test component and for an affected birth. The overall cost to the healthcare system considered screening costs, the number of aneuploid cases detected, invasive procedures performed, procedure-related euploid losses, and affected pregnancies averted. Sensitivity analyses evaluated the effect of variation in parameters. Costs were reported in 2014 US Dollars. Results Replacing conventional screening with NIPT would reduce healthcare costs if it can be provided for $744 or less in the general pregnancy population. The most influential variables were timing of screening entry, screening costs, and pregnancy termination rates. Of the 13,176 affected pregnancies undergoing screening, NIPT detected 96.5% (12,717/13,176) of cases, compared with 85.9% (11,314/13,176) by conventional approaches. NIPT reduced invasive procedures by 60.0%, with NIPT and conventional methods resulting in 24,596 and 61,430 invasive procedures, respectively. The number of procedure-related euploid fetal losses was reduced by 73.5% (194/264) in the general screening population. Conclusion Based on our analysis, universal application of NIPT would increase fetal aneuploidy detection rates and can be economically justified. Offering this testing to all pregnant women is associated with substantial prenatal healthcare benefits. PMID:26158465

  15. The severity of alpha-particle-induced DNA damage is revealed by exposure to cell-free extracts

    International Nuclear Information System (INIS)

    The rejoining of single-strand breaks induced by α-particle and γ irradiation in plasmid DNA under two scavenging conditions has been compared. At the two scavenger conditions has been compared. At the two scavenger capacities used of 1.5 x 107 and 3 x 108s-1 using Tris-HCl as the scavenger, the ratio of single- to double-strand breaks for α particles is fivefold less than the corresponding ratios for γ irradiation. The repair of such radiation-induced single-strand breaks has been examined using a cell-free system derived from human whole-cell extracts. We show that the rejoining of single-strand breaks for both α-particle- and γ-irradiated plasmid is dependent upon the scavenging capacity and that the efficiency of rejoining of α-particle-induced single-strand breaks is significantly less than that observed for γ-ray-induced breaks. In addition, for DNA that had been irradiated under conditions that mimic the cellular environment with respect to the radical scavenging capacity, 50 of α-particle-induced single-strand breaks are converted to double-strand breaks, in contrast with only ∼12% conversion of γ-ray-induced single-strand breaks, indicating that the initial damage caused by α particles is more severe. These studies provide experimental evidence for increased clustering of damage which may have important implications for the induction of cancer by low-level α-particle sources such as domestic radon. 37 refs., 5 figs., 1 tab

  16. A Targeted Q-PCR-Based Method for Point Mutation Testing by Analyzing Circulating DNA for Cancer Management Care.

    Science.gov (United States)

    Thierry, Alain R

    2016-01-01

    Circulating cell-free DNA (cfDNA) is a valuable source of tumor material available with a simple blood sampling enabling a noninvasive quantitative and qualitative analysis of the tumor genome. cfDNA is released by tumor cells and exhibits the genetic and epigenetic alterations of the tumor of origin. Circulating cell-free DNA (cfDNA) analysis constitutes a hopeful approach to provide a noninvasive tumor molecular test for cancer patients. Based upon basic research on the origin and structure of cfDNA, new information on circulating cell-free DNA (cfDNA) structure, and specific determination of cfDNA fragmentation and size, we revisited Q-PCR-based method and recently developed a the allele-specific-Q-PCR-based method with blocker (termed as Intplex) which is the first multiplexed test for cfDNA. This technique, named Intplex(®) and based on a refined Q-PCR method, derived from critical observations made on the specific structure and size of cfDNA. It enables the simultaneous determination of five parameters: the cfDNA total concentration, the presence of a previously known point mutation, the mutant (tumor) cfDNA concentration (ctDNA), the proportion of mutant cfDNA, and the cfDNA fragmentation index. Intplex(®) has enabled the first clinical validation of ctDNA analysis in oncology by detecting KRAS and BRAF point mutations in mCRC patients and has demonstrated that a blood test could replace tumor section analysis for the detection of KRAS and BRAF mutations. The Intplex(®) test can be adapted to all mutations, genes, or cancers and enables rapid, highly sensitive, cost-effective, and repetitive analysis. As regards to the determination of mutations on cfDNA Intplex(®) is limited to the mutational status of known hotspot mutation; it is a "targeted approach." However, it offers the opportunity in detecting quantitatively and dynamically mutation and could constitute a noninvasive attractive tool potentially allowing diagnosis, prognosis, theranostics

  17. A genome-wide association study identifies UGT1A1 as a regulator of serum cell-free DNA in young adults: The Cardiovascular Risk in Young Finns Study.

    Directory of Open Access Journals (Sweden)

    Juulia Jylhävä

    Full Text Available INTRODUCTION: Circulating cell-free DNA (cf-DNA is a useful indicator of cell death, and it can also be used to predict outcomes in various clinical disorders. Several innate immune mechanisms are known to be involved in eliminating DNA and chromatin-related material as part of the inhibition of potentially harmful autoimmune responses. However, the exact molecular mechanism underlying the clearance of circulating cf-DNA is currently unclear. METHODS: To examine the mechanisms controlling serum levels of cf-DNA, we carried out a genome-wide association analysis (GWA in a cohort of young adults (aged 24-39 years; n = 1841; 1018 women and 823 men participating in the Cardiovascular Risk in Young Finns Study. Genotyping was performed with a custom-built Illumina Human 670 k BeadChip. The Quant-iT(TM high sensitivity DNA assay was used to measure cf-DNA directly from serum. RESULTS: The results revealed that 110 single nucleotide polymorphisms (SNPs were associated with serum cf-DNA with genome-wide significance (p<5×10(-8. All of these significant SNPs were localised to chromosome 2q37, near the UDP-glucuronosyltransferase 1 (UGT1 family locus, and the most significant SNPs localised within the UGT1 polypeptide A1 (UGT1A1 gene region. CONCLUSION: The UGT1A1 enzyme catalyses the detoxification of several drugs and the turnover of many xenobiotic and endogenous compounds by glucuronidating its substrates. These data indicate that UGT1A1-associated processes are also involved in the regulation of serum cf-DNA concentrations.

  18. The usage and current approaches of cell free fetal DNA (cffDNA as a prenatal diagnostic method in fetal aneuploidy screening

    Directory of Open Access Journals (Sweden)

    Hülya Erbaba

    2015-12-01

    Full Text Available Prenatal diagnosis of invasive and noninvasive tests can be done in a way (NIPT, but because of the invasive methods have risks of infection and abortion, diagnosing non-invasive procedure increasing day by day. One of the widespread cell free fetal DNA in maternal blood test (cffDNA that is increasing in clinical use has been drawing attention. The incidence of aneuploidy chromosomal anomaly of the kind in which all live births; Trisomy 21 (Down Syndrome 1/800, trisomy 13 (Patau syndrome 1 /10,000, trisomy 18 (Edwards syndrome is a form of 1/6000. Because of the high mortality and morbidity, it is vital that congenital anomalies should be diagnosed in prenatal period. Aneuploidy testing for high-risk pregnant women after the 10th week of pregnancy in terms of the blood sample is taken and free fetal DNA in maternal plasma is based on the measurement of the relative amount. Knowledge of the current criteria for use by healthcare professionals in the field test will allow the exclusion of maternal and fetal risks. In this study, it is aimed to demonstrate current international approaches related to the positive and negative sides of non-invasive that is one of the prenatal diagnostic methods of cffDNA test. J Clin Exp Invest 2015; 6 (4: 414-417

  19. Serum cell-free DNA concentration in BALB/c mice with azoxymethane-dextran sodium sulfate-induced colorectal cancer

    OpenAIRE

    Virhan Novianry; Yulhasri Yulhasri; Kusmardi Kusmardi

    2015-01-01

    Background: Colorectal cancer is the third most common cancer in the United States with a mortality rate ranked second in 2012. Early diagnosis such as detection of DNA in serum or faeces at the polyp stage, will reduce colorectal cancer mortality. This study was conducted to analyze the concentration of cell-free DNA (cfDNA) as a tumor marker in colorectal carcinogenesis by using blood serum samples from BALB/c mice previously induced by azoxymethane (AOM) and promoted by dextran sodium sulf...

  20. Chimerism Analysis of Cell-Free DNA in Patients Treated with Hematopoietic Stem Cell Transplantation May Predict Early Relapse in Patients with Hematologic Malignancies

    Directory of Open Access Journals (Sweden)

    Mahmoud Aljurf

    2016-01-01

    Full Text Available Background. We studied DNA chimerism in cell-free DNA (cfDNA in patients treated with HSCT. Methods. Chimerism analysis was performed on CD3+ cells, polymorphonuclear (PMN cells, and cfDNA using 16 small tandem repeat loci. The resulting labeled PCR-products were size-fractionated and quantified. Results. Analyzing samples from 191 patients treated with HSCT for nonneoplastic hematologic disorders demonstrated that the cfDNA chimerism is comparable to that seen in PMN cells. Analyzing leukemia patients (N = 126 showed that, of 84 patients with 100% donor DNA in PMN, 16 (19% had evidence of clinical relapse and >10% recipient DNA in the plasma. Additional 16 patients of the 84 (19% showed >10% recipient DNA in plasma, but without evidence of relapse. Eight patients had mixed chimerism in granulocytes, lymphocytes, and plasma, but three of these patients had >10% recipient DNA in plasma compared to PMN cells and these three patients had clinical evidence of relapse. The remaining 34 patients showed 100% donor DNA in both PMN and lymphocytes, but cfDNA showed various levels of chimerism. Of these patients 14 (41% showed laboratory or clinical evidence of relapse and all had >10% recipient DNA in cfDNA. Conclusion. Monitoring patients after HSCT using cfDNA might be more reliable than cellular DNA in predicting early relapse.

  1. Chimerism Analysis of Cell-Free DNA in Patients Treated with Hematopoietic Stem Cell Transplantation May Predict Early Relapse in Patients with Hematologic Malignancies

    Science.gov (United States)

    Aljurf, Mahmoud; Abalkhail, Hala; Alseraihy, Amal; Mohamed, Said Y.; Ayas, Mouhab; Alsharif, Fahad; Alzahrani, Hazza; Al-Jefri, Abdullah; Aldawsari, Ghuzayel; Al-Ahmari, Ali; Belgaumi, Asim F.; Walter, Claudia Ulrike; El-Solh, Hassan; Rasheed, Walid; Albitar, Maher

    2016-01-01

    Background. We studied DNA chimerism in cell-free DNA (cfDNA) in patients treated with HSCT. Methods. Chimerism analysis was performed on CD3+ cells, polymorphonuclear (PMN) cells, and cfDNA using 16 small tandem repeat loci. The resulting labeled PCR-products were size-fractionated and quantified. Results. Analyzing samples from 191 patients treated with HSCT for nonneoplastic hematologic disorders demonstrated that the cfDNA chimerism is comparable to that seen in PMN cells. Analyzing leukemia patients (N = 126) showed that, of 84 patients with 100% donor DNA in PMN, 16 (19%) had evidence of clinical relapse and >10% recipient DNA in the plasma. Additional 16 patients of the 84 (19%) showed >10% recipient DNA in plasma, but without evidence of relapse. Eight patients had mixed chimerism in granulocytes, lymphocytes, and plasma, but three of these patients had >10% recipient DNA in plasma compared to PMN cells and these three patients had clinical evidence of relapse. The remaining 34 patients showed 100% donor DNA in both PMN and lymphocytes, but cfDNA showed various levels of chimerism. Of these patients 14 (41%) showed laboratory or clinical evidence of relapse and all had >10% recipient DNA in cfDNA. Conclusion. Monitoring patients after HSCT using cfDNA might be more reliable than cellular DNA in predicting early relapse. PMID:27006832

  2. Acceptance of non-invasive prenatal testing by cell free foetal DNA for foetal aneuploidy in a developing country: experience at a tertiary care centre in India

    Directory of Open Access Journals (Sweden)

    Namrata Kashyap

    2016-03-01

    Conclusions: Newer genomic technology involving cell free maternal DNA is a new storm in prenatal diagnosis. Its application in clinical practice is the need of the hour, however, the lack of awareness, high cost and unavailability of the test in the country appears to be a major limiting factor for its poor acceptability. [Int J Reprod Contracept Obstet Gynecol 2016; 5(3.000: 705-710

  3. Accuracy of non-invasive prenatal testing using cell-free DNA for detection of Down, Edwards and Patau syndromes: a systematic review and meta-analysis

    OpenAIRE

    Taylor-Phillips, Sian; Freeman, Karoline; Geppert, Julia; Agbebiyi, Adeola; Olalekan A Uthman; Madan, Jason; Clarke, Angus; Quenby, Siobhan; Clarke, Aileen

    2016-01-01

    Objective To measure test accuracy of non-invasive prenatal testing (NIPT) for Down, Edwards and Patau syndromes using cell-free fetal DNA and identify factors affecting accuracy. Design Systematic review and meta-analysis of published studies. Data sources PubMed, Ovid Medline, Ovid Embase and the Cochrane Library published from 1997 to 9 February 2015, followed by weekly autoalerts until 1 April 2015. Eligibility criteria for selecting studies English language journal articles describing ca...

  4. Detection of fetal cell-free DNA in maternal plasma for Down syndrome, Edward syndrome and Patau syndrome of high risk fetus

    OpenAIRE

    Ke, Wei-Lin; Zhao, Wei-Hua; Wang, Xin-Yu

    2015-01-01

    Objective: The study aimed to validate the efficacy of detection of fetal cell-free DNA in maternal plasma of trisomy 21, 18 and 13 in a clinical setting. Methods: A total of 2340 women at high risk for Down syndrome based on maternal age, prenatal history or a positive sesum or sonographic screening test were offered prenatal noninvasive aneuploidy test. According to the prenatal noninvasive aneuploidy test, the pregnant women at high risk were offered amniocentesis karyotype analysis and th...

  5. Identification of Circulating Tumor DNA for the Early Detection of Small-cell Lung Cancer.

    Science.gov (United States)

    Fernandez-Cuesta, Lynnette; Perdomo, Sandra; Avogbe, Patrice H; Leblay, Noemie; Delhomme, Tiffany M; Gaborieau, Valerie; Abedi-Ardekani, Behnoush; Chanudet, Estelle; Olivier, Magali; Zaridze, David; Mukeria, Anush; Vilensky, Marta; Holcatova, Ivana; Polesel, Jerry; Simonato, Lorenzo; Canova, Cristina; Lagiou, Pagona; Brambilla, Christian; Brambilla, Elisabeth; Byrnes, Graham; Scelo, Ghislaine; Le Calvez-Kelm, Florence; Foll, Matthieu; McKay, James D; Brennan, Paul

    2016-08-01

    Circulating tumor DNA (ctDNA) is emerging as a key potential biomarker for post-diagnosis surveillance but it may also play a crucial role in the detection of pre-clinical cancer. Small-cell lung cancer (SCLC) is an excellent candidate for early detection given there are no successful therapeutic options for late-stage disease, and it displays almost universal inactivation of TP53. We assessed the presence of TP53 mutations in the cell-free DNA (cfDNA) extracted from the plasma of 51 SCLC cases and 123 non-cancer controls. We identified mutations using a pipeline specifically designed to accurately detect variants at very low fractions. We detected TP53 mutations in the cfDNA of 49% SCLC patients and 11.4% of non-cancer controls. When stratifying the 51 initial SCLC cases by stage, TP53 mutations were detected in the cfDNA of 35.7% early-stage and 54.1% late-stage SCLC patients. The results in the controls were further replicated in 10.8% of an independent series of 102 non-cancer controls. The detection of TP53 mutations in 11% of the 225 non-cancer controls suggests that somatic mutations in cfDNA among individuals without any cancer diagnosis is a common occurrence, and poses serious challenges for the development of ctDNA screening tests. PMID:27377626

  6. Bleomycin-induced DNA synthesis in a cell-free system using a permeable mouse sarcoma cell Extract.

    Directory of Open Access Journals (Sweden)

    Seki,Shuji

    1987-10-01

    Full Text Available To investigate factors involved in excision repair DNA synthesis, a soluble extract was prepared from permeable mouse sarcoma (SR-C3H/He cells by homogenization and ultracentrifugation. DNA synthesis measured by using native calf thymus DNA as the template-primer and the extract as the polymerase source showed low activity. The DNA synthesis was enhanced more than ten-fold by the addition of an appropriate concentration of bleomycin, a radiomimetic DNA-damaging drug. Using selective inhibitors of DNA polymerases, it was shown that the DNA polymerase involved in the bleomycin-induced DNA synthesis was DNA polymerase beta. In addition to DNA polymerase beta, an exonuclease which converts bleomycin-damaged DNA into suitable template-primers for repair DNA synthesis appeared to be present in the permeable cell extract.

  7. Acceptance of non-invasive prenatal testing by cell free foetal DNA for foetal aneuploidy in a developing country: experience at a tertiary care centre in India

    OpenAIRE

    Namrata Kashyap; Mandakini Pradhan; Piyush Kumar; Neeta Singh

    2016-01-01

    Background: Non-invasive prenatal testing is a new technique which is deepening its root all over the world. Its tremendous potential lies in its ability of using cell free fetal DNA from the plasma of pregnant women. However, to what extent the technology has reached to a common person is also to be given a thought. hence the study was planned to assess the acceptability of non-invasive prenatal testing in Indian settings, to study about the awareness and baseline knowledge about Down's synd...

  8. Circulating DNA as Potential Biomarker for Cancer Individualized Therapy

    Institute of Scientific and Technical Information of China (English)

    Yu Shaorong; Liu Baorui; Lu Jianwei; Feng Jifeng

    2013-01-01

    Cancer individualized therapy often requires for gene mutation analysis of tumor tissue. However, tumor tissue is not always available in clinical practice, particularly from patients with refractory and recurrence disease. Even if patients have sufifcient tumor tissue for detection, as development of cancer, the gene status and drug sensitivity of tumor tissues could also change. Hence, screening mutations from primary tumor tissues becomes useless, it’s necessary to ifnd a surrogate tumor tissue for individualized gene screening. Circulating DNA is digested rapidly from blood, which could provide real-time information of the released fragment and make the real-time detection possible. Therefore, it’s expected that circulating DNA could be a potential tumor biomarker for cancer individualized therapy. This review focuses on the biology and clinical utility of circulating DNA mainly on gene mutation detection. Besides, its current status and possible direction in this research area is summarized and discussed objectively.

  9. Circulating tumor DNA identified by targeted sequencing in advanced-stage non-small cell lung cancer patients.

    Science.gov (United States)

    Xu, Song; Lou, Feng; Wu, Yi; Sun, Da-Qiang; Zhang, Jing-Bo; Chen, Wei; Ye, Hua; Liu, Jing-Hao; Wei, Sen; Zhao, Ming-Yu; Wu, Wen-Jun; Su, Xue-Xia; Shi, Rong; Jones, Lindsey; Huang, Xue F; Chen, Si-Yi; Chen, Jun

    2016-01-28

    Non-small cell lung cancers (NSCLC) have unique mutation patterns, and some of these mutations may be used to predict prognosis or guide patient treatment. Mutation profiling before and during treatment often requires repeated tumor biopsies, which is not always possible. Recently, cell-free, circulating tumor DNA (ctDNA) isolated from blood plasma has been shown to contain genetic mutations representative of those found in the primary tumor tissue DNA (tDNA), and these samples can readily be obtained using non-invasive techniques. However, there are still no standardized methods to identify mutations in ctDNA. In the current study, we used a targeted sequencing approach with a semi-conductor based next-generation sequencing (NGS) platform to identify gene mutations in matched tDNA and ctDNA samples from 42 advanced-stage NSCLC patients from China. We identified driver mutations in matched tDNA and ctDNA in EGFR, KRAS, PIK3CA, and TP53, with an overall concordance of 76%. In conclusion, targeted sequencing of plasma ctDNA may be a feasible option for clinical monitoring of NSCLC in the near future. PMID:26582655

  10. Impact of Cell-Free Fetal DNA Screening on Patients’ Choice of Invasive Procedures after a Positive California Prenatal Screen Result

    Directory of Open Access Journals (Sweden)

    Forum T. Shah

    2014-07-01

    Full Text Available Until recently, maternal serum analyte levels paired with sonographic fetal nuchal translucency measurement was the most accurate prenatal screen available for Trisomies 18 and 21, (91% and 94% detection and false positive rates of 0.31% and 4.5% respectively. Women with positive California Prenatal Screening Program (CPSP results have the option of diagnostic testing to determine definitively if the fetus has a chromosomal abnormality. Cell-free fetal (cff- DNA screening for Trisomies 13, 18, and 21 was first offered in 2012, allowing women with positive screens to choose additional screening before diagnostic testing. Cff-DNA sensitivity rates are as high as 99.9% and 99.1%, with false positive rates of 0.4% and 0.1%, for Trisomies 18 and 21, respectively. A retrospective chart review was performed in 2012 on 500 CPSP referrals at the University of California, San Diego Thornton Hospital. Data were collected prior to and after the introduction of cff-DNA. There was a significant increase in the number of participants who chose to pursue additional testing and a decrease in the number of invasive procedures performed after cff-DNA screening was available. We conclude that as fetal aneuploidy screening improves, the number of invasive procedures will continue to decrease.

  11. Pleural fluid cell-free DNA integrity index to identify cytologically negative malignant pleural effusions including mesotheliomas

    International Nuclear Information System (INIS)

    The diagnosis of malignant pleural effusions (MPE) is often clinically challenging, especially if the cytology is negative for malignancy. DNA integrity index has been reported to be a marker of malignancy. The aim of this study was to evaluate the utility of pleural fluid DNA integrity index in the diagnosis of MPE. We studied 75 pleural fluid and matched serum samples from consecutive subjects. Pleural fluid and serum ALU DNA repeats [115bp, 247bp and 247bp/115bp ratio (DNA integrity index)] were assessed by real-time quantitative PCR. Pleural fluid and serum mesothelin levels were quantified using ELISA. Based on clinico-pathological evaluation, 52 subjects had MPE (including 16 mesotheliomas) and 23 had benign effusions. Pleural fluid DNA integrity index was higher in MPE compared with benign effusions (1.2 vs. 0.8; p<0.001). Cytology had a sensitivity of 55% in diagnosing MPE. If cytology and pleural fluid DNA integrity index were considered together, they exhibited 81% sensitivity and 87% specificity in distinguishing benign and malignant effusions. In cytology-negative pleural effusions (35 MPE and 28 benign effusions), elevated pleural fluid DNA integrity index had an 81% positive predictive value in detecting MPEs. In the detection of mesothelioma, at a specificity of 90%, pleural fluid DNA integrity index had similar sensitivity to pleural fluid and serum mesothelin (75% each respectively). Pleural fluid DNA integrity index is a promising diagnostic biomarker for identification of MPEs, including mesothelioma. This biomarker may be particularly useful in cases of MPE where pleural aspirate cytology is negative, and could guide the decision to undertake more invasive definitive testing. A prospective validation study is being undertaken to validate our findings and test the clinical utility of this biomarker for altering clinical practice

  12. Identification of Human N-Myristoylated Proteins from Human Complementary DNA Resources by Cell-Free and Cellular Metabolic Labeling Analyses

    Science.gov (United States)

    Takamitsu, Emi; Otsuka, Motoaki; Haebara, Tatsuki; Yano, Manami; Matsuzaki, Kanako; Kobuchi, Hirotsugu; Moriya, Koko; Utsumi, Toshihiko

    2015-01-01

    To identify physiologically important human N-myristoylated proteins, 90 cDNA clones predicted to encode human N-myristoylated proteins were selected from a human cDNA resource (4,369 Kazusa ORFeome project human cDNA clones) by two bioinformatic N-myristoylation prediction systems, NMT-The MYR Predictor and Myristoylator. After database searches to exclude known human N-myristoylated proteins, 37 cDNA clones were selected as potential human N-myristoylated proteins. The susceptibility of these cDNA clones to protein N-myristoylation was first evaluated using fusion proteins in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. Then, protein N-myristoylation of the gene products of full-length cDNAs was evaluated by metabolic labeling experiments both in an insect cell-free protein synthesis system and in transfected human cells. As a result, the products of 13 cDNA clones (FBXL7, PPM1B, SAMM50, PLEKHN, AIFM3, C22orf42, STK32A, FAM131C, DRICH1, MCC1, HID1, P2RX5, STK32B) were found to be human N-myristoylated proteins. Analysis of the role of protein N-myristoylation on the intracellular localization of SAMM50, a mitochondrial outer membrane protein, revealed that protein N-myristoylation was required for proper targeting of SAMM50 to mitochondria. Thus, the strategy used in this study is useful for the identification of physiologically important human N-myristoylated proteins from human cDNA resources. PMID:26308446

  13. Identification of Human N-Myristoylated Proteins from Human Complementary DNA Resources by Cell-Free and Cellular Metabolic Labeling Analyses.

    Directory of Open Access Journals (Sweden)

    Emi Takamitsu

    Full Text Available To identify physiologically important human N-myristoylated proteins, 90 cDNA clones predicted to encode human N-myristoylated proteins were selected from a human cDNA resource (4,369 Kazusa ORFeome project human cDNA clones by two bioinformatic N-myristoylation prediction systems, NMT-The MYR Predictor and Myristoylator. After database searches to exclude known human N-myristoylated proteins, 37 cDNA clones were selected as potential human N-myristoylated proteins. The susceptibility of these cDNA clones to protein N-myristoylation was first evaluated using fusion proteins in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. Then, protein N-myristoylation of the gene products of full-length cDNAs was evaluated by metabolic labeling experiments both in an insect cell-free protein synthesis system and in transfected human cells. As a result, the products of 13 cDNA clones (FBXL7, PPM1B, SAMM50, PLEKHN, AIFM3, C22orf42, STK32A, FAM131C, DRICH1, MCC1, HID1, P2RX5, STK32B were found to be human N-myristoylated proteins. Analysis of the role of protein N-myristoylation on the intracellular localization of SAMM50, a mitochondrial outer membrane protein, revealed that protein N-myristoylation was required for proper targeting of SAMM50 to mitochondria. Thus, the strategy used in this study is useful for the identification of physiologically important human N-myristoylated proteins from human cDNA resources.

  14. BRAF Mutation Testing in Cell-Free DNA from the Plasma of Patients with Advanced Cancers Using a Rapid, Automated Molecular Diagnostics System.

    Science.gov (United States)

    Janku, Filip; Huang, Helen J; Claes, Bart; Falchook, Gerald S; Fu, Siqing; Hong, David; Ramzanali, Nishma M; Nitti, Giovanni; Cabrilo, Goran; Tsimberidou, Apostolia M; Naing, Aung; Piha-Paul, Sarina A; Wheler, Jennifer J; Karp, Daniel D; Holley, Veronica R; Zinner, Ralph G; Subbiah, Vivek; Luthra, Rajyalakshmi; Kopetz, Scott; Overman, Michael J; Kee, Bryan K; Patel, Sapna; Devogelaere, Benoit; Sablon, Erwin; Maertens, Geert; Mills, Gordon B; Kurzrock, Razelle; Meric-Bernstam, Funda

    2016-06-01

    Cell-free (cf) DNA from plasma offers an easily obtainable material for BRAF mutation analysis for diagnostics and response monitoring. In this study, plasma-derived cfDNA samples from patients with progressing advanced cancers or malignant histiocytosis with known BRAF(V600) status from formalin-fixed paraffin-embedded (FFPE) tumors were tested using a prototype version of the Idylla BRAF Mutation Test, a fully integrated real-time PCR-based test with turnaround time about 90 minutes. Of 160 patients, BRAF(V600) mutations were detected in 62 (39%) archival FFPE tumor samples and 47 (29%) plasma cfDNA samples. The two methods had overall agreement in 141 patients [88%; κ, 0.74; SE, 0.06; 95% confidence interval (CI), 0.63-0.85]. Idylla had a sensitivity of 73% (95% CI, 0.60-0.83) and specificity of 98% (95% CI, 0.93-1.00). A higher percentage, but not concentration, of BRAF(V600) cfDNA in the wild-type background (>2% vs. ≤ 2%) was associated with shorter overall survival (OS; P = 0.005) and in patients with BRAF mutations in the tissue, who were receiving BRAF/MEK inhibitors, shorter time to treatment failure (TTF; P = 0.001). Longitudinal monitoring demonstrated that decreasing levels of BRAF(V600) cfDNA were associated with longer TTF (P = 0.045). In conclusion, testing for BRAF(V600) mutations in plasma cfDNA using the Idylla BRAF Mutation Test has acceptable concordance with standard testing of tumor tissue. A higher percentage of mutant BRAF(V600) in cfDNA corresponded with shorter OS and in patients receiving BRAF/MEK inhibitors also with shorter TTF. Mol Cancer Ther; 15(6); 1397-404. ©2016 AACR. PMID:27207774

  15. Detection of Clonal and Subclonal Copy-Number Variants in Cell-Free DNA from Patients with Breast Cancer Using a Massively Multiplexed PCR Methodology

    Directory of Open Access Journals (Sweden)

    Eser Kirkizlar

    2015-10-01

    Using an in vitro model of cell-free DNA, we show that mmPCR-NGS can accurately detect CNVs with average allelic imbalances as low as 0.5%, an improvement over previously reported whole-genome sequencing approaches. Our method revealed differences in the spectrum of CNVs detected in tumor tissue subsections and matching plasma samples from 11 patients with stage II breast cancer. Moreover, we showed that liquid biopsies are able to detect subclonal mutations that may be missed in tumor tissue biopsies. We anticipate that this mmPCR-NGS methodology will have broad applicability for the characterization, diagnosis, and therapeutic monitoring of CNV-enriched cancers, such as breast, ovarian, and lung cancer.

  16. Pleural fluid cell-free DNA integrity index to identify cytologically negative malignant pleural effusions including mesotheliomas

    Directory of Open Access Journals (Sweden)

    Sriram Krishna B

    2012-09-01

    Full Text Available Abstract Background The diagnosis of malignant pleural effusions (MPE is often clinically challenging, especially if the cytology is negative for malignancy. DNA integrity index has been reported to be a marker of malignancy. The aim of this study was to evaluate the utility of pleural fluid DNA integrity index in the diagnosis of MPE. Methods We studied 75 pleural fluid and matched serum samples from consecutive subjects. Pleural fluid and serum ALU DNA repeats [115bp, 247bp and 247bp/115bp ratio (DNA integrity index] were assessed by real-time quantitative PCR. Pleural fluid and serum mesothelin levels were quantified using ELISA. Results Based on clinico-pathological evaluation, 52 subjects had MPE (including 16 mesotheliomas and 23 had benign effusions. Pleural fluid DNA integrity index was higher in MPE compared with benign effusions (1.2 vs. 0.8; p Conclusion Pleural fluid DNA integrity index is a promising diagnostic biomarker for identification of MPEs, including mesothelioma. This biomarker may be particularly useful in cases of MPE where pleural aspirate cytology is negative, and could guide the decision to undertake more invasive definitive testing. A prospective validation study is being undertaken to validate our findings and test the clinical utility of this biomarker for altering clinical practice.

  17. Accuracy of non-invasive prenatal testing using cell-free DNA for detection of Down, Edwards and Patau syndromes: a systematic review and meta-analysis

    Science.gov (United States)

    Taylor-Phillips, Sian; Freeman, Karoline; Geppert, Julia; Agbebiyi, Adeola; Uthman, Olalekan A; Madan, Jason; Clarke, Angus; Quenby, Siobhan; Clarke, Aileen

    2016-01-01

    Objective To measure test accuracy of non-invasive prenatal testing (NIPT) for Down, Edwards and Patau syndromes using cell-free fetal DNA and identify factors affecting accuracy. Design Systematic review and meta-analysis of published studies. Data sources PubMed, Ovid Medline, Ovid Embase and the Cochrane Library published from 1997 to 9 February 2015, followed by weekly autoalerts until 1 April 2015. Eligibility criteria for selecting studies English language journal articles describing case–control studies with ≥15 trisomy cases or cohort studies with ≥50 pregnant women who had been given NIPT and a reference standard. Results 41, 37 and 30 studies of 2012 publications retrieved were included in the review for Down, Edwards and Patau syndromes. Quality appraisal identified high risk of bias in included studies, funnel plots showed evidence of publication bias. Pooled sensitivity was 99.3% (95% CI 98.9% to 99.6%) for Down, 97.4% (95.8% to 98.4%) for Edwards, and 97.4% (86.1% to 99.6%) for Patau syndrome. The pooled specificity was 99.9% (99.9% to 100%) for all three trisomies. In 100 000 pregnancies in the general obstetric population we would expect 417, 89 and 40 cases of Downs, Edwards and Patau syndromes to be detected by NIPT, with 94, 154 and 42 false positive results. Sensitivity was lower in twin than singleton pregnancies, reduced by 9% for Down, 28% for Edwards and 22% for Patau syndrome. Pooled sensitivity was also lower in the first trimester of pregnancy, in studies in the general obstetric population, and in cohort studies with consecutive enrolment. Conclusions NIPT using cell-free fetal DNA has very high sensitivity and specificity for Down syndrome, with slightly lower sensitivity for Edwards and Patau syndrome. However, it is not 100% accurate and should not be used as a final diagnosis for positive cases. Trial registration number CRD42014014947. PMID:26781507

  18. Non-invasive prenatal diagnostic test accuracy for fetal sex using cell-free DNA a review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Wright Caroline F

    2012-09-01

    Full Text Available Abstract Background Cell-free fetal DNA (cffDNA can be detected in maternal blood during pregnancy, opening the possibility of early non-invasive prenatal diagnosis for a variety of genetic conditions. Since 1997, many studies have examined the accuracy of prenatal fetal sex determination using cffDNA, particularly for pregnancies at risk of an X-linked condition. Here we report a review and meta-analysis of the published literature to evaluate the use of cffDNA for prenatal determination (diagnosis of fetal sex. We applied a sensitive search of multiple bibliographic databases including PubMed (MEDLINE, EMBASE, the Cochrane library and Web of Science. Results Ninety studies, incorporating 9,965 pregnancies and 10,587 fetal sex results met our inclusion criteria. Overall mean sensitivity was 96.6% (95% credible interval 95.2% to 97.7% and mean specificity was 98.9% (95% CI = 98.1% to 99.4%. These results vary very little with trimester or week of testing, indicating that the performance of the test is reliably high. Conclusions Based on this review and meta-analysis we conclude that fetal sex can be determined with a high level of accuracy by analyzing cffDNA. Using cffDNA in prenatal diagnosis to replace or complement existing invasive methods can remove or reduce the risk of miscarriage. Future work should concentrate on the economic and ethical considerations of implementing an early non-invasive test for fetal sex.

  19. A Non-Invasive Droplet Digital PCR (ddPCR) Assay to Detect Paternal CFTR Mutations in the Cell-Free Fetal DNA (cffDNA) of Three Pregnancies at Risk of Cystic Fibrosis via Compound Heterozygosity

    OpenAIRE

    Debrand, Emmanuel; Lykoudi, Alexandra; Bradshaw, Elizabeth; Allen, Stephanie K.

    2015-01-01

    Introduction Non-invasive prenatal diagnosis (NIPD) makes use of cell-free fetal DNA (cffDNA) in the mother’s bloodstream as an alternative to invasive sampling methods such as amniocentesis or CVS, which carry a 0.5–1% risk of fetal loss. We describe a droplet digital PCR (ddPCR) assay designed to inform the testing options for couples whose offspring are at risk of suffering from cystic fibrosis via compound heterozygosity. By detecting the presence or absence of the paternal mutation in th...

  20. Early Fetal Gender Determination Using Real-Time PCR Analysis of Cell-free Fetal DNA During 6th-10th Weeks of Gestation

    Directory of Open Access Journals (Sweden)

    Hamid Reza Khorram Khorshid

    2013-04-01

    Full Text Available Nowadays, new advances in the use of cell free fetal DNA (cffDNA in maternal plasma of pregnant women has provided the possibility of applying cffDNA in prenatal diagnosis as a non-invasive method. In contrary to the risks of invasive methods that affect both mother and fetus, applying cffDNA is proven to be highly effective with lower risk. One of the applications of prenatal diagnosis is fetal gender determination, which is important in fetuses at risk of sex-linked genetic diseases. In such cases by obtaining the basic information of the gender, necessary time management can be taken in therapeutic to significantly reduce the necessity of applying the invasive methods. Therefore in this study, the probability of detecting sequences on the human Y-chromosome in pregnant women has been evaluated to identify the gender of fetuses. Peripheral blood samples were obtained from 80 pregnant women with gestational age between 6th to 10th weeks and the fetal DNA was extracted from the plasma. Identification of SRY, DYS14 & DAZ sequences, which are not presentin the maternal genome, was performed using Real-Time PCR. All the obtained results were compared with the actual gender of the newborns to calculate the test accuracy. Considerable 97.3% sensitivity and 97.3% specificity were obtained in fetal gender determination which is significant in the first trimester of pregnancy. Only in one case, false positive result was obtained. Using non-invasive method of cffDNAs in the shortest time possible, as well as avoiding invasive tests for early determination of fetal gender, provides the opportunity of deciding and employing early treatment for fetuses at risk of genetic diseases

  1. Apoptosis-related deregulation of proteolytic activities and high serum levels of circulating nucleosomes and DNA in blood correlate with breast cancer progression

    International Nuclear Information System (INIS)

    As cell-free circulating DNA exists predominantly as mono- and oligonucleosomes, the focus of the current study was to examine the interplay of circulating nucleosomes, DNA, proteases and caspases in blood of patients with benign and malignant breast diseases. The concentrations of cell-free DNA and nucleosomes as well as the protease and caspase activities were measured in serum of patients with benign breast disease (n = 20), primary breast cancer (M0, n = 31), metastatic breast cancer (M1, n = 32), and healthy individuals (n = 28) by PicoGreen, Cell Death Detection ELISA, Protease Fluorescent Detection Kit and Caspase-Glo®3/7 Assay, respectively. Patients with benign and malignant tumors had significantly higher levels of circulating nucleic acids in their blood than healthy individuals (p = 0.001, p = 0.0001), whereas these levels could not discriminate between benign and malignant lesions. Our analyses of all serum samples revealed significant correlations of circulating nucleosome with DNA concentrations (p = 0.001), nucleosome concentrations with caspase activities (p = 0.008), and caspase with protease activities (p = 0.0001). High serum levels of protease and caspase activities associated with advanced tumor stages (p = 0.009). Patients with lymph node-positive breast cancer had significantly higher nucleosome levels in their blood than node-negative patients (p = 0.004). The presence of distant metastases associated with a significant increase in serum nucleosome (p = 0.01) and DNA levels (p = 0.04), and protease activities (p = 0.008). Our findings demonstrate that high circulating nucleic acid concentrations in blood are no indicators of a malignant breast tumor. However, the observed changes in apoptosis-related deregulation of proteolytic activities along with the elevated serum levels of nucleosomes and DNA in blood are linked to breast cancer progression

  2. Identifying mild and severe preeclampsia in asymptomatic pregnant women by levels of cell-free fetal DNA

    DEFF Research Database (Denmark)

    Jakobsen, Tanja Roien; Clausen, Frederik Banch; Rode, Line;

    2013-01-01

    BACKGROUND: The objective was to investigate whether women who develop preeclampsia can be identified in a routine analysis when determining fetal RHD status at 25 weeks' gestation in combination with PAPP-A levels at the first-trimester combined risk assessment for Trisomy 21. STUDY DESIGN AND...... preeclampsia, but adding it to the analysis did not increase the detection rate (DR). CONCLUSION: Women with cffDNA levels below the 5th percentile and above the 90th percentile quantified at 25 weeks' gestation are at increased risk of developing preeclampsia. Adding PAPP-A levels to the analysis did not...

  3. Serum cell-free DNA concentration in BALB/c mice with azoxymethane-dextran sodium sulfate-induced colorectal cancer

    Directory of Open Access Journals (Sweden)

    Virhan Novianry

    2015-04-01

    Full Text Available Background: Colorectal cancer is the third most common cancer in the United States with a mortality rate ranked second in 2012. Early diagnosis such as detection of DNA in serum or faeces at the polyp stage, will reduce colorectal cancer mortality. This study was conducted to analyze the concentration of cell-free DNA (cfDNA as a tumor marker in colorectal carcinogenesis by using blood serum samples from BALB/c mice previously induced by azoxymethane (AOM and promoted by dextran sodium sulfate (DSS.Methods: This experimental animal study used 6 BALB/c mice which had serial intervention in a certain time frame. The first serum samples were taken before induction of carcinogenesis (week-0; then AOM induction of carcinogenesis followed and the second sampling one week after AOM intervention (week-1. Subsequently, promotion of carcinogenesis followed with DSS and the third sampling one week after this intervention (week-2. The fourth sampling was 5 weeks after AOM-DSS intervention (week-6. Quantification of the serum cfDNA was performed with SYBR-Green II fluorescence using Rotor Gene 6000 as a reference. Histopathological examination verified induction of carcinogenesis. For statistical analysis paired T-test was used.Results: Concentration of serum cfDNA showed significant difference between sampling group at week-0 (1238.49 ± 674.84 pg/µL and sampling group at week-6 (2244.04 ± 726.57 pg/µL the latter group showing pre-cancerous histopathology. Slightly increased cfDNA at week-1 with AOM induction (1358.57 ± 803.81 pg/µL and week-2 after DSS promotion (1317.23 ± 735.92 pg/µL were not significantly different from week-0 samples.Conclusion: The concentration of cfDNA in the serum of BALB/c mice 5 weeks after AOM induction of carcinogenesis and DSS promotion is significantly higher than before induction.

  4. Cell-free fetal DNA in the maternal circulation originates from the cytotrophoblast : proof from an unique case

    NARCIS (Netherlands)

    Hochstenbach, Ron; Nikkels, Peter G J; Elferink, Martin G; Oudijk, Martijn A; van Oppen, Carla; van Zon, Patrick; van Harssel, Jeske; Schuring-Blom, Heleen; Page-Christiaens, Godelieve C M L

    2015-01-01

    Noninvasive prenatal testing (NIPT) and direct karyotyping of cytotrophoblast were normal for a male fetus, but cultured chorionic villus mesenchymal cells and umbilical cord fibroblasts showed nonmosaic trisomy 18. This observation provides direct evidence for the cytotrophoblastic origin of cell-f

  5. Silver Nanoscale Hexagonal Column Chips for Detecting Cell-free DNA and Circulating Nucleosomes in Cancer Patients

    OpenAIRE

    Ito, Hiroaki; Hasegawa, Katsuyuki; Hasegawa, Yuuki; Nishimaki, Tadashi; Hosomichi, Kazuyoshi; Kimura, Satoshi; Ohba, Motoi; Yao, Hiroshi; Onimaru, Manabu; Inoue, Ituro; Inoue, Haruhiro

    2015-01-01

    Blood tests, which are commonly used for cancer screening, generally have low sensitivity. Here, we developed a novel rapid and simple method to generate silver nanoscale hexagonal columns (NHCs) for use in surface-enhanced Raman scattering (SERS). We reported that the intensity of SERS spectra of clinical serum samples obtained from gastrointestinal cancer patients is was significantly higher than that of SERS spectra of clinical serum samples obtained from non-cancer patients. We estimated ...

  6. Detection of fetal cell-free DNA in maternal plasma for Down syndrome, Edward syndrome and Patau syndrome of high risk fetus

    Science.gov (United States)

    Ke, Wei-Lin; Zhao, Wei-Hua; Wang, Xin-Yu

    2015-01-01

    Objective: The study aimed to validate the efficacy of detection of fetal cell-free DNA in maternal plasma of trisomy 21, 18 and 13 in a clinical setting. Methods: A total of 2340 women at high risk for Down syndrome based on maternal age, prenatal history or a positive sesum or sonographic screening test were offered prenatal noninvasive aneuploidy test. According to the prenatal noninvasive aneuploidy test, the pregnant women at high risk were offered amniocentesis karyotype analysis and the pregnant at low risk were followed up to make sure the newborn outcome. Results: The prenatal noninvasive aneuploidy test was positive for trisomy 21 in 17 cases, for trisomy 18 in 6 cases and for trisomy 13 in 1 case, which of all were confirmed by karyotype analysis. Newborns of low risk gestational woman detected by prenatal noninvasive aneuploidy for trisomy 21, 18, 13 were followed up and no one was found with trisomy. Conclusions: The prenatal noninvasive aneuploidy test is highly accurate for detection of trisomy 21, 18 and 13, which can be considered as a practical alternative for traditional invasive diagnostic procedures. PMID:26309618

  7. Evaluation of KRAS Gene Expression and LCS6 Variant in Genomic and Cell-Free DNA of Iranian Women With Endometriosis

    Science.gov (United States)

    Farahani, Maryam Shahrabi; Moghaddam, Soheila Amini; Mahdian, Reza

    2015-01-01

    Since the activation of KRAS results in de novo endometriosis in mice, KRAS is regarded as a crucial gene in ectopic endometrial implantation. Recently, it has been reported that 31% of women with endometriosis have KRAS let-7 complementary binding site 6 single-nucleotide polymorphism (LCS6 SNP). This study addresses the correlation between KRAS LCS6 SNP and endometriosis in a case–control study. To detect probable somatic mutation in ectopic endometrial tissue, we evaluated LCS6 SNP in cell-free DNA samples. Quantitative real-time reverse transcription-polymerase chain reaction was performed to determine the expression of KRAS transcripts in eutopic endometrial tissue. Our results suggest that the variant is not associated with the development of endometriosis in Iranian women. We observed higher levels of KRAS messenger RNA (mRNA) expression in eutopic endometrium of patients with endometriosis compared to controls. Although, the KRAS LCS6 is neither constitutional nor somatic biomarker for endometriosis, increased expression ratio of KRAS mRNA indicates its role in the implantation of endometrial tissue outside the uterine cavity. PMID:25361550

  8. Circulating Cell-free miRNA Expression and its Association with Clinicopathologic Features in Inflammatory and Non- Inflammatory Breast Cancer.

    Science.gov (United States)

    Hamdi, K; Blancato, J; Goerlitz, D; Islam, Md; Neili, B; Abidi, A; Gat, A; Ayed, F Ben; Chivi, S; Loffredo, Ca; Jillson, I; Elgaaied, A Benammar; Marrakchi, R

    2016-01-01

    Recent discovery showing the presence of microRNAs (miRNAs) in the circulation sparked interest in their use as potential biomarkers. Our previous studies showed the diagnostic potential of miR-451 as a serological marker for inflammatory breast cancer (IBC), miR-337- 5p and miR-30b for non-inflammatory breast cancer (non-IBC). The aim of this study is to investigate the prognostic values of circulating miRNAs by comparing the amounts of 12 circulating miRNAs in the serum of IBC and non-IBC from Tunisian breast cancer patients, and by determinating whether correlated pairs of miRNAs could provide useful information in the diagnosis of IBC and non-IBC patients. TaqMan qPCR was performed to detect circulating expression of miRNAs in serum of 20 IBC, 20 non-IBC and 20 healthy controls. Nonparametric rank Spearman rho correlation coefficient was used to examine the prognostic value of miRNAs and to assess the correlation profile between miRNAs expression. Further, a large number of miRNAs were highly correlated (rho>0.5) in both patients groups and controls. Also, the correlations profiles were different between IBC, non-IBC and healthy controls indicating important changes in molecular pathways in cancer cells. Our results showed that miR-335 was significantly overexpressed in premenopausal non-IBC patients; miR-24 was significantly overexpressed in non-IBC postmenopausal patients. Patients with previous parity had higher serum of miR-342-5p levels than those without. Furthermore, patients with HER2+ IBC present lower serum levels of miR-15a than patients with HER2- disease. Together, these results underline the potential of miRNAs to function as diagnostic and prognostic markers for IBC and non-IBC, with links to the menopausal state, Her2 status and parity. PMID:27221856

  9. Detection rate of actionable mutations in diverse cancers using a biopsy-free (blood) circulating tumor cell DNA assay

    Science.gov (United States)

    Schwaederle, Maria; Husain, Hatim; Fanta, Paul T.; Piccioni, David E.; Kesari, Santosh; Schwab, Richard B.; Banks, Kimberly C.; Lanman, Richard B.; Talasaz, AmirAli; Parker, Barbara A.; Kurzrock, Razelle

    2016-01-01

    Analysis of cell-free DNA using next-generation sequencing (NGS) is a powerful tool for the detection/monitoring of alterations present in circulating tumor DNA (ctDNA). Plasma extracted from 171 patients with a variety of cancers was analyzed for ctDNA (54 genes and copy number variants (CNVs) in three genes (EGFR, ERBB2 and MET)). The most represented cancers were lung (23%), breast (23%), and glioblastoma (19%). Ninety-nine patients (58%) had at least one detectable alteration. The most frequent alterations were TP53 (29.8%), followed by EGFR (17.5%), MET (10.5%), PIK3CA (7%), and NOTCH1 (5.8%). In contrast, of 222 healthy volunteers, only one had an aberration (TP53). Ninety patients with non-brain tumors had a discernible aberration (65% of 138 patients; in 70% of non-brain tumor patients with an alteration, the anomaly was potentially actionable). Interestingly, nine of 33 patients (27%) with glioblastoma had an alteration (6/33 (18%) potentially actionable). Overall, sixty-nine patients had potentially actionable alterations (40% of total; 69.7% of patients (69/99) with alterations); 68 patients (40% of total; 69% of patients with alterations), by a Food and Drug Administration (FDA) approved drug. In summary, 65% of diverse cancers (as well as 27% of glioblastomas) had detectable ctDNA aberration(s), with the majority theoretically actionable by an approved agent. PMID:26848768

  10. Evaluation of Sample Stability and Automated DNA Extraction for Fetal Sex Determination Using Cell-Free Fetal DNA in Maternal Plasma

    Directory of Open Access Journals (Sweden)

    Elena Ordoñez

    2013-01-01

    Full Text Available Objective. The detection of paternally inherited sequences in maternal plasma, such as the SRY gene for fetal sexing or RHD for fetal blood group genotyping, is becoming part of daily routine in diagnostic laboratories. Due to the low percentage of fetal DNA, it is crucial to ensure sample stability and the efficiency of DNA extraction. We evaluated blood stability at 4°C for at least 24 hours and automated DNA extraction, for fetal sex determination in maternal plasma. Methods. A total of 158 blood samples were collected, using EDTA-K tubes, from women in their 1st trimester of pregnancy. Samples were kept at 4°C for at least 24 hours before processing. An automated DNA extraction was evaluated, and its efficiency was compared with a standard manual procedure. The SRY marker was used to quantify cfDNA by real-time PCR. Results. Although lower cfDNA amounts were obtained by automated DNA extraction (mean 107,35 GE/mL versus 259,43 GE/mL, the SRY sequence was successfully detected in all 108 samples from pregnancies with male fetuses. Conclusion. We successfully evaluated the suitability of standard blood tubes for the collection of maternal blood and assessed samples to be suitable for analysis at least 24 hours later. This would allow shipping to a central reference laboratory almost from anywhere in Europe.

  11. Quantification and dynamic monitoring of EGFR T790M in plasma cell-free DNA by digital PCR for prognosis of EGFR-TKI treatment in advanced NSCLC.

    Directory of Open Access Journals (Sweden)

    Zhijie Wang

    Full Text Available BACKGROUND: Among advanced non-small cell lung cancer (NSCLC patients with an acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI, about 50% carry the T790M mutation, but this frequency in EGFR-TKI-naïve patients and dynamic change during therapy remains unclear. This study investigated the quantification and dynamic change of T790M mutation in plasma cell-free DNA (cf-DNA of advanced NSCLC patients to assess the clinical outcomes of EGFR-TKI therapy. MATERIALS AND METHODS: We retrospectively investigated 135 patients with advanced NSCLC who obtained progression-free survival (PFS after EGFR-TKI for >6 months for their EGFR sensitive mutations and T790M mutation in matched pre- and post-TKI plasma samples, using denaturing high-performance liquid chromatography (DHPLC, amplification refractory mutation system (ARMS, and digital-PCR (D-PCR. Real-time PCR was performed to measure c-MET amplification. RESULTS: Detection limit of D-PCR in assessing the T790M mutation was approximately 0.03%. D-PCR identified higher frequency of T790M than ARMS in pre-TKI (31.3% vs. 5.5% and post-TKI (43.0% vs. 25.2% plasma samples. Patients with pre-TKI T790M showed inferior PFS (8.9 vs. 12.1 months, p = 0.007 and overall survival (OS, 19.3 vs. 31.9 months, p = 0.001 compared with those without T790M. In patients harboring EGFR sensitive mutation, high quantities of pre-TKI T790M predicted poorer PFS (p = 0.001 on EGFR-TKI than low ones. Moreover, patients who experienced increased quantity of T790M during EGFR-TKI treatment showed superior PFS and OS compared with those with decreased changes (p = 0.044 and p = 0.015, respectively. CONCLUSION: Qualitative and quantitative T790M in plasma cf-DNA by D-PCR provided a non-invasive and sensitive assay to predict EGFR-TKI prognosis.

  12. Evaluation of Sample Stability and Automated DNA Extraction for Fetal Sex Determination Using Cell-Free Fetal DNA in Maternal Plasma

    OpenAIRE

    Elena Ordoñez; Laura Rueda; M. Paz Cañadas; Carme Fuster; Vincenzo Cirigliano

    2013-01-01

    Objective. The detection of paternally inherited sequences in maternal plasma, such as the SRY gene for fetal sexing or RHD for fetal blood group genotyping, is becoming part of daily routine in diagnostic laboratories. Due to the low percentage of fetal DNA, it is crucial to ensure sample stability and the efficiency of DNA extraction. We evaluated blood stability at 4°C for at least 24 hours and automated DNA extraction, for fetal sex determination in maternal plasma. Methods. A total of 15...

  13. Quantitative identification of mutant alleles derived from lung cancer in plasma cell-free DNA via anomaly detection using deep sequencing data.

    Directory of Open Access Journals (Sweden)

    Yoji Kukita

    Full Text Available The detection of rare mutants using next generation sequencing has considerable potential for diagnostic applications. Detecting circulating tumor DNA is the foremost application of this approach. The major obstacle to its use is the high read error rate of next-generation sequencers. Rather than increasing the accuracy of final sequences, we detected rare mutations using a semiconductor sequencer and a set of anomaly detection criteria based on a statistical model of the read error rate at each error position. Statistical models were deduced from sequence data from normal samples. We detected epidermal growth factor receptor (EGFR mutations in the plasma DNA of lung cancer patients. Single-pass deep sequencing (>100,000 reads was able to detect one activating mutant allele in 10,000 normal alleles. We confirmed the method using 22 prospective and 155 retrospective samples, mostly consisting of DNA purified from plasma. A temporal analysis suggested potential applications for disease management and for therapeutic decision making to select epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI.

  14. Characterization of DNA Methylation in Circulating Tumor Cells

    Directory of Open Access Journals (Sweden)

    Constantin F. Pixberg

    2015-10-01

    Full Text Available Epigenetics contributes to molecular mechanisms leading to tumor cell transformation and systemic progression of cancer. However, the dynamics of epigenetic remodeling during metastasis remains unexplored. In this context, circulating tumor cells (CTCs might enable a direct insight into epigenetic mechanisms relevant for metastasis by providing direct access to systemic cancer. CTCs can be used as prognostic markers in cancer patients and are regarded as potential metastatic precursor cells. However, despite substantial technical progress, the detection and molecular characterization of CTCs remain challenging, in particular the analysis of DNA methylation. As recent studies have started to address the epigenetic state of CTCs, we discuss here the potential of such investigations to elucidate mechanisms of metastasis and to develop tumor biomarkers.

  15. Positive predictive value of non-invasive prenatal screening for fetal chromosome disorders using cell-free DNA in maternal serum: independent clinical experience of a tertiary referral center

    OpenAIRE

    Neufeld-Kaiser, Whitney A.; Cheng, Edith Y.; Liu, Yajuan J

    2015-01-01

    Background Non-invasive prenatal screening (NIPS) for fetal chromosome abnormalities using cell-free deoxyribonucleic acid (cfDNA) in maternal serum has significantly influenced prenatal diagnosis of fetal aneuploidies since becoming clinically available in the fall of 2011. High sensitivity and specificity have been reported in multiple publications, nearly all of which have been sponsored by the commercial performing laboratories. Once results are returned, positive and negative predictive ...

  16. Model-based analysis of costs and outcomes of non-invasive prenatal testing for Down's syndrome using cell free fetal DNA in the UK National Health Service.

    Directory of Open Access Journals (Sweden)

    Stephen Morris

    Full Text Available BACKGROUND: Non-invasive prenatal testing (NIPT for Down's syndrome (DS using cell free fetal DNA in maternal blood has the potential to dramatically alter the way prenatal screening and diagnosis is delivered. Before NIPT can be implemented into routine practice, information is required on its costs and benefits. We investigated the costs and outcomes of NIPT for DS as contingent testing and as first-line testing compared with the current DS screening programme in the UK National Health Service. METHODS: We used a pre-existing model to evaluate the costs and outcomes associated with NIPT compared with the current DS screening programme. The analysis was based on a hypothetical screening population of 10,000 pregnant women. Model inputs were taken from published sources. The main outcome measures were number of DS cases detected, number of procedure-related miscarriages and total cost. RESULTS: At a screening risk cut-off of 1∶150 NIPT as contingent testing detects slightly fewer DS cases, has fewer procedure-related miscarriages, and costs the same as current DS screening (around UK£280,000 at a cost of £500 per NIPT. As first-line testing NIPT detects more DS cases, has fewer procedure-related miscarriages, and is more expensive than current screening at a cost of £50 per NIPT. When NIPT uptake increases, NIPT detects more DS cases with a small increase in procedure-related miscarriages and costs. CONCLUSIONS: NIPT is currently available in the private sector in the UK at a price of £400-£900. If the NHS cost was at the lower end of this range then at a screening risk cut-off of 1∶150 NIPT as contingent testing would be cost neutral or cost saving compared with current DS screening. As first-line testing NIPT is likely to produce more favourable outcomes but at greater cost. Further research is needed to evaluate NIPT under real world conditions.

  17. The advances in the study of circulating DNA in early diagnosis and treatment for hepatocellular carcinoma%外周血循环DNA在肝细胞癌早期诊治的研究进展

    Institute of Scientific and Technical Information of China (English)

    胡捷; 周俭; 王征; 樊嘉

    2009-01-01

    Circulating DNA is cell-free DNA existing in plasma or serum. It has already been verified that circulating DNA of cancer patients is derived from tumor cells. Therefore, it is of great value to detect the changes in the quantity and quality of the circulating DNA in cancer patients for early diagnosis and prognosis. The advantages of the detection of circulating DNA such as micro-trauma, convenient access to samples, possibility of continuous and dynamic monitoring, make it a promising tumor mark. This review recapitulates the application of circulating DNA analysis in hepatocellular carcinoma patients for diagnosis and prognosis.%循环DNA是存在于血浆/血清中的游离DNA.已有研究证实肿瘤患者循环DNA来源于肿瘤细胞.因此,检测肿瘤患者循环DNA质和量的改变对肿瘤的早期诊断和预后分析具有较大价值.循环DNA检测具有微创性、标本获取方便、可连续动态检测等优点,是一种极具前景的肿瘤标志物.有关肝癌患者循环DNA的研究不多,本文就循环DNA检测在肝癌诊断和预后分析中的研究进展做一综述.

  18. A Non-Invasive Droplet Digital PCR (ddPCR Assay to Detect Paternal CFTR Mutations in the Cell-Free Fetal DNA (cffDNA of Three Pregnancies at Risk of Cystic Fibrosis via Compound Heterozygosity.

    Directory of Open Access Journals (Sweden)

    Emmanuel Debrand

    Full Text Available Non-invasive prenatal diagnosis (NIPD makes use of cell-free fetal DNA (cffDNA in the mother's bloodstream as an alternative to invasive sampling methods such as amniocentesis or CVS, which carry a 0.5-1% risk of fetal loss. We describe a droplet digital PCR (ddPCR assay designed to inform the testing options for couples whose offspring are at risk of suffering from cystic fibrosis via compound heterozygosity. By detecting the presence or absence of the paternal mutation in the cffDNA, it is possible to predict whether the fetus will be an unaffected carrier (absence or whether further invasive testing is indicated (presence.We selected a family in which the parents were known to carry different mutated CFTR alleles as our test system. NIPD was performed for three of their pregnancies during the first trimester (at around 11-12 weeks of gestation. Taqman probes were designed against an amplicon in exon 11 of the CFTR gene, to quantify the proportion of mutant (ΔF508-MUT; FAM and normal (ΔF508-NOR; VIC alleles at position c.1521_1523 of the CFTR gene.The assay correctly and unambiguously recognized the ΔF508-MUT CFTR allele in the cffDNA of all three proband fetuses and none of the six unaffected control fetuses. In conclusion, the Bio-Rad QX100 was found to be a cost-effective and technically undemanding platform for designing bespoke NIPD assays.

  19. A Non-Invasive Droplet Digital PCR (ddPCR) Assay to Detect Paternal CFTR Mutations in the Cell-Free Fetal DNA (cffDNA) of Three Pregnancies at Risk of Cystic Fibrosis via Compound Heterozygosity

    Science.gov (United States)

    Debrand, Emmanuel; Lykoudi, Alexandra; Bradshaw, Elizabeth; Allen, Stephanie K.

    2015-01-01

    Introduction Non-invasive prenatal diagnosis (NIPD) makes use of cell-free fetal DNA (cffDNA) in the mother’s bloodstream as an alternative to invasive sampling methods such as amniocentesis or CVS, which carry a 0.5–1% risk of fetal loss. We describe a droplet digital PCR (ddPCR) assay designed to inform the testing options for couples whose offspring are at risk of suffering from cystic fibrosis via compound heterozygosity. By detecting the presence or absence of the paternal mutation in the cffDNA, it is possible to predict whether the fetus will be an unaffected carrier (absence) or whether further invasive testing is indicated (presence). Methods We selected a family in which the parents were known to carry different mutated CFTR alleles as our test system. NIPD was performed for three of their pregnancies during the first trimester (at around 11–12 weeks of gestation). Taqman probes were designed against an amplicon in exon 11 of the CFTR gene, to quantify the proportion of mutant (ΔF508-MUT; FAM) and normal (ΔF508-NOR; VIC) alleles at position c.1521_1523 of the CFTR gene. Discussion The assay correctly and unambiguously recognized the ΔF508-MUT CFTR allele in the cffDNA of all three proband fetuses and none of the six unaffected control fetuses. In conclusion, the Bio-Rad QX100 was found to be a cost-effective and technically undemanding platform for designing bespoke NIPD assays. PMID:26561302

  20. A Modified Extraction Method of Circulating Free DNA for Epidermal Growth Factor Receptor Mutation Analysis

    OpenAIRE

    Yuan, Haihua; Zhu, Zhong-Zheng; Lu, Yachao; Feng LIU; Zhang, Wenying; Huang, Gang; Zhu, Guanshan; Jiang, Bin

    2011-01-01

    Purpose Circulating free DNA (cfDNA) in plasma is promising to be a surrogate for tumor tissue DNA. However, not all epidermal growth factor receptor (EGFR) mutations in tumor tissue DNA has been detected in matched cfDNA, at least partly due to inefficient cfDNA extraction method. The purpose of this study was to establish an efficient plasma cfDNA extraction protocol. Materials and Methods The yield of plasma cfDNA extracted by our modified phenol-chloroform (MPC) method from non-small-cell...

  1. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients

    OpenAIRE

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-01-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fi...

  2. Failure to detect circulating DNA-anti-DNA complexes by four radioimmunological methods in patients with systemic lupus erythematosus

    International Nuclear Information System (INIS)

    The presence of DNA-anti-DNA complexes in sera from patients with systemic lupus erythematosus (SLE) was investigated by two new radioimmunoassays (RIA) developed for this purpose and by measuring the CLq and DNA binding activity of serum before and after treatment with DNAse. Two direct RIA developed in this study were based on the reactivity of [3H]actinomycin D ([3H]ACT-D) or solid-phase methylated bovine serum albumin (mBSA) with DNA-anti-DNA complexes. DNA-anti-DNA complexes prepared in vitro could be efficiently detected at various antigen-antibody ratios by these two RIA. Increased levels of circulating immune complexes as indicated by the CLq binding test were found in 52% of SLE sera. However, the frequency of specific DNA-anti-DNA complexes detected in SLE sera was very low. Only 6% of sera exhibited an increased value deviating by more than three s.d. from the normal mean when tested with the [3H]ACT-D binding RIA or the solid-phase mBSA RIA. On the other hand, there was no significant difference in the serum CLq or DNA binding activity after treatment with DNAse. These results suggest that DNA-anti-DNA complexes do not occur frequently in circulating blood and represent only a very small portion of the immune complexes detected in serum from patients with SLE. (author)

  3. 孕DOWN综合征胎儿妇女血浆游离胎儿DNA浓度定量研究%Quantitative analysis of cell-free fetal DNA levels in maternal plasma with DOWN syndrome and normal pregnancies

    Institute of Scientific and Technical Information of China (English)

    孙建民; 谈月娣

    2009-01-01

    Objective To investigate the application of real-time quantitative PCR in quantification of cell-free fetal DNA maternal plasma in patients bearing fetuses affected with DOWN syndrome. Methods Cell-free fetal DNA in maternal serum was isolated from 30 samples(7 male DOWN syndrome fetal ,3 female DOWN syndrome fe-tal,14 male euploid fetal,6 female euploid fetal). Cell-free fetal DNA levels in maternal serum were measured using real-time quantitative PCR using SRY as marker. Results The median cell-free fetal DNA levels in pregnant carry-ing male fetuses(n=7) and the controls (pregnant carrying male euploid fetuses,n=14)were 318.03±96.74 ge-nome-equivalents/ml and 154.40±39.43 genome-equivalents/ml of maternal serum,respectively (t=3.33,P=0.004 ),which was o in women with female fetuses. Conclusion The cell-free fetal DNA levels in pregnant women with DOWN syndrome fetuses are higher than that in pregnant women with normal fetuses.%目的 探讨实时定量PCR方法检测妊娠DOWN综合征胎儿妇女血浆游离胎儿DNA的可行性.方法 SRY基因为胎儿游离DNA的标志,应用实时定量PCR分别检测10例妊娠DOWN综合征胎儿(男胎7例,女胎3例)妇女与20例妊娠正常胎儿(男胎14例,女胎6例)妇女血浆标本中游离胎儿DNA含量.结果 7例妊娠DOWN综合征男胎妇女SRY基因当量为(318.03±96.74)拷贝/ml(95%可信区间228.26~407.50拷贝/ml),妊娠正常男胎组SRY基因当量为(154.40±39.43)拷贝/ml(95%可信区间131.63~177.16拷贝/ml);2组差异有统计学意义(t=3.33,P=0.004).妊娠女胎组妇女血浆中SRY基因当量均为0拷贝/ml.结论 妊娠DOWN综合征男胎儿妇女血浆游离胎儿DNA的量较妊娠正常男胎儿妇女高.

  4. DNA fragmentation: manifestation of target cell destruction mediated by cytotoxic T-cell lines, lymphotoxin-secreting helper T-cell clones, and cell-free lymphotoxin-containing supernatant

    International Nuclear Information System (INIS)

    A Lyt-2+, trinitrophenyl-specific, lymphotoxin-secreting, cytotoxic T-cell line, PCl 55, mediates the digestion of target cell DNA into discretely sized fragments. This phenomenon manifests itself within 30 min after effector cell encounter as measured by the release of 3H counts from target cells prelabeled with [3H]deoxythymidine and occurs even at very low effector to target cell ratios (0.25:1). A Lyt-1+, ovalbumin-specific, lymphotoxin-secreting T-helper cell clone, 5.9.24, is also able to mediate fragmentation of target cell DNA over a time course essentially indistinguishable from the cytotoxic T lymphocyte-mediated hit. Cell-free lymphotoxin-containing supernatants also cause release of DNA from targets, although they require a longer time course, on the order of 24 hr. In contrast, lysis of cells by antibody plus complement or Triton X-100 does not result in DNA release even after extended periods of incubation (24 hr). All three treatments that result in the release of DNA from cells cause fragmentation of that DNA into discretely sized pieces that are multiples of 200 base pairs. The results thus suggest that cytotoxic T cells, lymphotoxin-secreting helper clones with cytolytic activity, and lymphotoxin all effect target cell destruction by means of a similar mechanism and that observed differences in time course and the absence of target cell specificity in killing mediated by lymphotoxin may simply reflect differences in the mode of toxin delivery

  5. Quantification of Cell-free HER-2 DNA in Plasma from Breast Cancer Patients: Sensitivity for Detection of Metastatic Recurrence and Gene Amplification

    Directory of Open Access Journals (Sweden)

    Patricia Diana Sørensen

    2015-08-01

    Conclusion: Amplified HER-2 DNA can be detected in plasma when using a ratio between cfHER-2 DNA and a reference gene. cfHER-2 DNA could not be used to dis‐ criminate between patients with primary breast cancer and healthy controls, and could not predict the development of metastatic disease.

  6. Identification of Human N-Myristoylated Proteins from Human Complementary DNA Resources by Cell-Free and Cellular Metabolic Labeling Analyses

    OpenAIRE

    Takamitsu, Emi; Otsuka, Motoaki; Haebara, Tatsuki; YANO, Manami; Matsuzaki, Kanako; Kobuchi, Hirotsugu; Moriya, Koko; Utsumi, Toshihiko

    2015-01-01

    To identify physiologically important human N-myristoylated proteins, 90 cDNA clones predicted to encode human N-myristoylated proteins were selected from a human cDNA resource (4,369 Kazusa ORFeome project human cDNA clones) by two bioinformatic N-myristoylation prediction systems, NMT-The MYR Predictor and Myristoylator. After database searches to exclude known human N-myristoylated proteins, 37 cDNA clones were selected as potential human N-myristoylated proteins. The susceptibility of the...

  7. Carrier molecules and extraction of circulating tumor DNA for next generation sequencing in colorectal cancer.

    Science.gov (United States)

    Beránek, Martin; Sirák, Igor; Vošmik, Milan; Petera, Jiří; Drastíková, Monika; Palička, Vladimír

    2016-01-01

    The aims of the study were: i) to compare circulating tumor DNA (ctDNA) yields obtained by different manual extraction procedures, ii) to evaluate the addition of various carrier molecules into the plasma to improve ctDNA extraction recovery, and iii) to use next generation sequencing (NGS) technology to analyze KRAS, BRAF, and NRAS somatic mutations in ctDNA from patients with metastatic colorectal cancer. Venous blood was obtained from patients who suffered from metastatic colorectal carcinoma. For plasma ctDNA extraction, the following carriers were tested: carrier RNA, polyadenylic acid, glycogen, linear acrylamide, yeast tRNA, salmon sperm DNA, and herring sperm DNA. Each extract was characterized by quantitative real-time PCR and next generation sequencing. The addition of polyadenylic acid had a significant positive effect on the amount of ctDNA eluted. The sequencing data revealed five cases of ctDNA mutated in KRAS and one patient with a BRAF mutation. An agreement of 86% was found between tumor tissues and ctDNA. Testing somatic mutations in ctDNA seems to be a promising tool to monitor dynamically changing genotypes of tumor cells circulating in the body. The optimized process of ctDNA extraction should help to obtain more reliable sequencing data in patients with metastatic colorectal cancer. PMID:27526306

  8. Diagnostic Validity of Serum and Peritoneal TNF-alpha, high sensitivity CRP and Plasma Cell-Free Nuclear DNA (ccf nDNA as Biomarkers of Pelvic Endometriosis- A Case Control Study

    Directory of Open Access Journals (Sweden)

    Ahmed F Koura, MSc*, Mohamed A Yehia, Waleed H ElTantawy, Adel S Salah El Din, Dina El-Sayed ElShennawy

    2013-04-01

    Full Text Available Introduction: Endometriosis is a disease defined by the presence of endometrial glands and stroma located outside the uterine cavity. These ectopic implants can be found throughout the pelvis, on and within the ovaries, abutting the uterine ligaments, occupying the rectovaginal septum, invading the intestinal serosa, and along the parietal peritoneum. Endometrial implantation at distant sites such as the pleura, lung, within surgical scars, and along the diaphragm also has been reported. (1. It results often in subfertility and pain, occurs mainly in women of reproductive age (16–50 years and has a progressive character in at least 50%, but the rate and risk factors for progression are unknown. Endometriosis can be classified into four stages: minimal, mild, moderate and severe. The gold standard for the diagnosis of endometriosis is laparoscopic inspection, ideally with histological confirmation. (2, however, is an invasive technique and should be performed only after imaging techniques prove insufficient for confident diagnosis. (3 Lack of a non-invasive diagnostic test contributes to the long delay between onset of symptoms and diagnosis of endometriosis. (2 Additional tools are needed for non-invasive classifications in order to reduce the number of unnecessary laparoscopies without adversely affecting outcomes. Finding specific and more sensitive biomarkers in endometriosis is critical, because endometriosis is usually diagnosed only in advanced stages, and there is a high rate of morbidity for this disease. (4 Aim of the work: The aim of the current study is to assess the validity of serum and peritoneal high sensitivity CRP and TNF-alpha and plasma cell-free nuclear DNA (ccf nDNA as biomarkers in early diagnosis of pelvic endometriosis.Methods: This study was conducted at the Obstetrics & Gynecology department, Maternity Hospital, Ain Shams University. This is a case control study of 120 women scheduled for diagnostic laparoscopy

  9. Liquid biopsies for liquid tumors:emerging potential of circulating free nucleic acid evaluation for the management of hematologic malignancies

    Institute of Scientific and Technical Information of China (English)

    Jay Hocking; Sridurga Mithraprabhu; Anna Kalff; Andrew Spencer

    2016-01-01

    Circulating free nucleic acids; cell free DNA and circulating micro-RNA, are found in the plasma of patients with hematologic and solid malignancies at levels higher than that of healthy individuals. In patients with hematologic malignancy cell free DNA reflects the underlying tumor mutational profile, whilst micro-RNAs reflect genetic interference mechanisms within a tumor and potentially the surrounding microenvironment and immune effector cells. These circulating nucleic acids offer a potentially simple, non-invasive, repeatable analysis that can aid in diagnosis, prognosis and therapeutic decisions in cancer treatment.

  10. Biophysical analysis of natural, double-helical DNA modified by dinuclear platinum(II) organometallic compound in a cell-free medium

    Czech Academy of Sciences Publication Activity Database

    Marini, Victoria; Kašpárková, Jana; Nováková, Olga; Scolaro, L. M.; Romeo, R.; Brabec, Viktor

    Florence, 2001, s. 9. [COST Action: D20 Metal Compounds in the Treatment of Cancer . Florence (IT), 29.08.2001] Institutional research plan: CEZ:AV0Z5004920 Keywords : DNA * platinum * cross-link Subject RIV: BO - Biophysics

  11. Quantification of Cell-free HER-2 DNA in Plasma from Breast Cancer Patients: Sensitivity for Detection of Metastatic Recurrence and Gene Amplification

    OpenAIRE

    Patricia Diana Sørensen; Rikke Fredslund Andersen; Niels Pallisgaard; Jonna Skov Madsen; Erik Hugger Jakobsen; Ivan Brandslund

    2015-01-01

    The purpose of this study was to quantify the free-circu‐ lating plasma HER-2 DNA (cfHER-2 DNA) and to assess the ability of analysis to discriminate between patients with primary breast cancer and healthy controls in order to detect metastatic recurrence in comparison with serum HER-2 protein and also HER-2 gene amplification. The study population consisted of 100 patients with primary breast cancer and 50 healthy female donors. An additional 22 patients with metastases were subsequently ...

  12. 孕妇外周血中无细胞胎儿DNA的研究进展及应用%Progress for cell free fetal DNA from maternal peripheral blood and its applications

    Institute of Scientific and Technical Information of China (English)

    杨维婵; 傅晓冬; 傅俊江

    2015-01-01

    Cell free fetal DNA (cffDNA) in maternal peripheral blood is an important material of fetus for detection in non-invasive prenatal diagnosis (NIPD).Most DNAs in maternal blood is maternal origin,the proportion of cffDNA is just 3 % ~ 6 %.Therefore,successful isolation of cffDNA from maternal peripheral blood plays an important role in the subsequent NIPT.In this paper we will review the discovery,origin,structure and stability of cffDNA laboratory method of isolation from maternal blood,and the its application in NIPT,and emphasize on the recently research progress of technology systematically.The purpose is to explore the laboratory method for cffDNA isolation with high efficiency,to provide a high concentration of cffDNA for NIPT and increase the accuracy rate and success rate in NIPD.%孕妇外周血中无细胞胎儿DNA(cffDNA)是无创性产前诊断中重要的胎儿物质的检测来源.由于孕妇血中大部分是母体DNA,而游离胎儿DNA的量非常少,仅占3%~6%.因此从孕妇血中成功分离cffDNA,对后续的无创性产前诊断有着十分重要的意义.本文分别从孕妇外周血中cffDNA的发现来源,cffDNA的结构与稳定性,分离孕妇外周血中的cffDNA的实验方法,及在无创性产前诊断中的应用等方面进行介绍,并着重对该技术近年来的研究进展作一综述.旨在探寻较高效率分离孕妇外周血中cffDNA的实验方法,为无创性产前诊断提供较高浓度的检测物质,提高其准确率及成功率.

  13. Digital PCR for quantification of recurrent and potentially actionable somatic mutations in circulating free DNA from patients with diffuse large B-cell lymphoma.

    Science.gov (United States)

    Camus, Vincent; Sarafan-Vasseur, Nasrin; Bohers, Elodie; Dubois, Sydney; Mareschal, Sylvain; Bertrand, Philippe; Viailly, Pierre-Julien; Ruminy, Philippe; Maingonnat, Catherine; Lemasle, Emilie; Stamatoullas, Aspasia; Picquenot, Jean-Michel; Cornic, Marie; Beaussire, Ludivine; Bastard, Christian; Frebourg, Thierry; Tilly, Hervé; Jardin, Fabrice

    2016-09-01

    Diffuse large B-cell lymphoma (DLBCL) is an aggressive and heterogeneous malignancy harboring frequent targetable activating somatic mutations. Emerging evidence suggests that circulating cell-free DNA (cfDNA) can be used to detect somatic variants in DLBCL using Next-Generation Sequencing (NGS) experiments. In this proof-of-concept study, we chose to develop simple and valuable digital PCR (dPCR) assays for the detection of recurrent exportin-1 (XPO1) E571K, EZH2 Y641N, and MYD88 L265P mutations in DLBCL patients, thereby identifying patients most likely to potentially benefit from targeted therapies. We demonstrated that our dPCR assays were sufficiently sensitive to detect rare XPO1, EZH2, and MYD88 mutations in plasma cfDNA, with a sensitivity of 0.05%. cfDNA somatic mutation detection by dPCR seems to be a promising technique in the management of DLBCL, in addition to NGS experiments. PMID:26883583

  14. Prenatal assessment of fetal chromosomal and genetic disorders through maternal plasma DNA analysis.

    Science.gov (United States)

    Liao, Gary J W; Chiu, Rossa W K; Lo, Y M Dennis

    2012-02-01

    The existence of cell free DNA derived from the fetus in the plasma of pregnant women was first demonstrated in 1997. This discovery offered the possibility of non-invasive sampling of fetal genetic material simply through the collection of a maternal blood sample. Such cell free fetal DNA molecules in the maternal circulation have subsequently been shown to originate from the placenta and could be detected from about 7 weeks of gestation. It has been shown that cell free fetal DNA analysis could offer highly accurate assessment of fetal genotype and chromosomal makeup for some applications. Thus, cell free fetal DNA analysis has been incorporated as a part of prenatal screening programs for the prenatal management of sex-linked and sex-associated diseases, rhesus D incompatibility as well as the prenatal detection of Down's syndrome.Cell free fetal DNA analysis may lead to a change in the way prenatal assessments are made. PMID:22198255

  15. DNA repair enzyme deficiency and in vitro complementation of the enzyme activity in cell-free extracts from ataxia telangiectasia fibroblasts

    International Nuclear Information System (INIS)

    Three ataxia telangiectasia homozygotes, one heterozygote and normal fibroblast strains were compared as to the capacity of their cellular extracts to enhance the priming activity of gamma-irradiated colicin E1 DNA for purified DNA polymerase (EC 2.7.7.7) of Escherichia coli. It was found that homozygotes had substantially lower activity than normal strains, while no difference was detected between the heterozygote and normal strains. In vitro complementation of the activity occurred between extracts of certain strains of homozygotes, allocating them to two complementation groups. (Auth.)

  16. The correlation between cell-free DNA and tumour burden was estimated by PET/CT in patients with advanced NSCLC

    DEFF Research Database (Denmark)

    Nygaard, A D; Holdgaard, Paw; Spindler, K-L G;

    2014-01-01

    -FDG) PET/computed tomography (CT) scan was performed and evaluated in terms of metabolic tumour volume (MTV) and total lesion glycolysis (TLG). Tumour contours were delineated semi-automatically by a threshold standardised uptake value (SUV) of 2.5. The primary end point was correlation among cfDNA, MTV...

  17. Mrassf1a-pap, a novel methylation-based assay for the detection of cell-free fetal DNA in maternal plasma.

    Directory of Open Access Journals (Sweden)

    Jessica M E van den Oever

    Full Text Available OBJECTIVES: RASSF1A has been described to be differentially methylated between fetal and maternal DNA and can therefore be used as a universal sex-independent marker to confirm the presence of fetal sequences in maternal plasma. However, this requires highly sensitive methods. We have previously shown that Pyrophosphorolysis-activated Polymerization (PAP is a highly sensitive technique that can be used in noninvasive prenatal diagnosis. In this study, we have used PAP in combination with bisulfite conversion to develop a new universal methylation-based assay for the detection of fetal methylated RASSF1A sequences in maternal plasma. METHODS: Bisulfite sequencing was performed on maternal genomic (gDNA and fetal gDNA from chorionic villi to determine differentially methylated regions in the RASSF1A gene using bisulfite specific PCR primers. Methylation specific primers for PAP were designed for the detection of fetal methylated RASSF1A sequences after bisulfite conversion and validated. RESULTS: Serial dilutions of fetal gDNA in a background of maternal gDNA show a relative percentage of ~3% can be detected using this assay. Furthermore, fetal methylated RASSF1A sequences were detected both retrospectively as well as prospectively in all maternal plasma samples tested (n = 71. No methylated RASSF1A specific bands were observed in corresponding maternal gDNA. Specificity was further determined by testing anonymized plasma from non-pregnant females (n = 24 and males (n = 21. Also, no methylated RASSF1A sequences were detected here, showing this assay is very specific for methylated fetal DNA. Combining all samples and controls, we obtain an overall sensitivity and specificity of 100% (95% CI 98.4%-100%. CONCLUSIONS: Our data demonstrate that using a combination of bisulfite conversion and PAP fetal methylated RASSF1A sequences can be detected with extreme sensitivity in a universal and sex-independent manner. Therefore, this assay could be of great

  18. The study of responses to 'model' DNA breaks induced by restriction endonucleases in cells and cell-free systems: achievements and difficulties

    International Nuclear Information System (INIS)

    The use of restriction endonucleases (RE) as a means of implicating DNA double-strand breaks (dsb) in cellular responses is reviewed. The introduction of RE into cells leads to many of the responses known to be characteristic of radiation damage -cell killing, chromosomal aberration, oncogenic transformation, gene mutation and amplification. Additionally, radiosensitive cell lines are hypersensitive to RE, including those from the human disorder ataxia-telangiectasia. However, quantitation of response and comparisons of the effectiveness of different RE are difficult, partly because of unknown activity and lifetime of RE in the cell. Re-induced dsb have also been used to reveal molecular mechanisms of repair and misrepair at specific sites in DNA. Dsb have been implicated in recombination processes including those leading to illegitimate rejoining (formation of deletions and rearrangements) at short sequence features in DNA. Also model dsb act as a signal to activate other cellular processes, which may influence or indirectly cause some responses, including cell death. In these signalling responses the detailed chemistry at the break site may not be very important, perhaps explaining why there is considerable overlap in responses to RE and to ionizing radiations. (author)

  19. Research advance in noninvasive prenatal testing based on cell-free fetal DNA%基于胎儿游离DNA的无创产前检测的研究进展

    Institute of Scientific and Technical Information of China (English)

    张展; 赵小辰

    2016-01-01

    母血血浆中胎儿游离DNA( cffDNA)的发现为无创产前检测提供了新思路。虽然目前已经发现多种胎儿DNA标志物,但是如何准确地从母血血浆总游离DNA中区分出cffDNA对我们来说仍然是个难题。目前,基于cffDNA的无创产前检测已被用于多种疾病的检测和研究,随着技术的不断进步和发展,它将会有更广阔的应用前景。本文将从cffDNA的生物学特征、标志物,cffDNA的无创产前检测的临床应用及其现阶段存在的问题和发展前景等方面进行阐述。(中华检验医学杂志,2016,39:307-310)%The discovery of cell-free fetal DNA ( cffDNA) in maternal plasma provides a new idea for noninvasive prenatal testing( NIPT).Though some studies to date have shown several fetal DNA markers, how to accurately distinguish cffDNA from the pool of maternal plasma free DNA is still a challenge.So far, NIPT based on cffDNA has been used for detection and study of a variety of diseases, along with the advance and development of technology, it will have a more broad application prospects.This article will make a review for the research status from the biological characteristics and the markers of cffDNA, the clinical applications and the existing issues and development prospects of NIPT based on cffDNA.

  20. Fetal RHD Genotyping Using Real-Time Polymerase Chain Reaction Analysis of Cell-Free Fetal DNA in Pregnancy of RhD Negative Women in South of Iran

    Directory of Open Access Journals (Sweden)

    Leili Moezzi

    2016-05-01

    Full Text Available Background: Maternal-fetal RhD antigen incompatibility causes approximately 50% of clinically significant alloimmunization cases. The routine use of prophylactic anti-D immunoglobulin has dramatically reduced hemolytic disease of the fetus and newborn. Recently, fetal RHD genotyping in RhD negative pregnant women has been suggested for appropriate use of anti-D immunoglobulin antenatal prophylaxis and decrease unnecessary prenatal interventions. Materials and Methods: In this prospective cohort study, in order to develop a reliable and non-invasive method for fetal RHD genotyping, cell free fetal DNA (cffDNA was extracted from maternal plasma. Real-time quantitative polymerase chain reaction (qPCR for detection of RHD exons 7, 5, 10 and intron 4 was performed and the results were compared to the serological results of cord blood cells as the gold standard method. SRY gene and hypermethylated Ras-association domain family member 1 (RASSF1A gene were used to confirm the presence of fetal DNA in male and female fetuses, respectively. Results: Out of 48 fetuses between 8 and 32 weeks (wks of gestational age (GA, we correctly diagnosed 45 cases (93.75% of RHD positive fetuses and 2 cases (4.16% of the RHD negative one. Exon 7 was amplified in one sample, while three other RHD gene sequences were not detected; the sample was classified as inconclusive, and the RhD serology result after birth showed that the fetus was RhD-negative. Conclusion: Our results showed high accuracy of the qPCR method using cffDNA for fetal RHD genotyping and implicate on the efficiency of this technique to predict the competence of anti-D immunoglobulin administration.

  1. Digital PCR analysis of plasma cell-free DNA for non-invasive detection of drug resistance mechanisms in EGFR mutant NSCLC: Correlation with paired tumor samples

    Science.gov (United States)

    Ishii, Hidenobu; Azuma, Koichi; Sakai, Kazuko; Kawahara, Akihiko; Yamada, Kazuhiko; Tokito, Takaaki; Okamoto, Isamu; Nishio, Kazuto; Hoshino, Tomoaki

    2015-01-01

    As the development of resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has become an issue of concern, identification of the mechanisms responsible has become an urgent priority. However, for research purposes, it is not easy to obtain tumor samples from patients with EGFR mutation-positive non-small-cell lung cancer (NSCLC) that has relapsed after treatment with EGFR-TKIs. Here, using digital PCR assay as an alternative and noninvasive method, we examined plasma and tumor samples from patients with relapsed NSCLC to establish the inter-relationships existing among T790M mutation, activating EGFR mutations, HER2 amplification, and MET amplification. Paired samples of tumor and blood were obtained from a total of 18 patients with NSCLC after they had developed resistance to EGFR-TKI treatment, and the mechanisms of resistance were analyzed by digital PCR. Digital PCR analysis of T790M mutation in plasma had a sensitivity of 81.8% and specificity of 85.7%, the overall concordance between plasma and tissue samples being 83.3%. MET gene copy number gain in tumor DNA was observed by digital PCR in three patients, of whom one exhibited positivity for MET amplification by FISH, whereas no patient demonstrated MET and HER2 copy number gain in plasma DNA. Digital PCR analysis of plasma is feasible and accurate for detection of T790M mutation in NSCLC that becomes resistant to treatment with EGFR-TKIs. PMID:26334838

  2. Modulation of DNA double-strand break repair activity in cell-free extracts of gamma-irradiated mouse testicular cells

    International Nuclear Information System (INIS)

    DNA double-strand breaks (DSBs) are potentially mutagenic lesions demanding effective damage recognition and repair. Even a single DSB can be detrimental if left unrepaired or misrepaired, and if present in gamete, it can cause foetal wastage or malformations/congenital defects in the offspring. The threats posed by DSBs have triggered the evolution of two major pathways of DSB repair, homologous recombination-mediated repair (HRR) and non-homologous end-joining (NHEJ), conserved from bacteria to mammals. Though HRR is more predominant in bacteria and yeast, NHEJ is more efficient in mammalian somatic cells. Studies in our laboratory have shown that both the pathways are equally efficient in mammalian male germ cells

  3. Immune re-activation by cell-free fetal DNA in healthy pregnancies re-purposed to target tumors: novel check-point inhibition in cancer therapeutics

    Directory of Open Access Journals (Sweden)

    Elizabeth Ann Lieser Enninga

    2015-08-01

    Full Text Available The role of the immune system in cancer progression has become increasingly evident over the past decade. Chronic inflammation in the promotion of tumorigenesis is well established, and cancer-associated tolerance/immune evasion has long been appreciated. Recent developments of immunotherapies targeting cancer-associated inflammation and immune tolerance such as cancer vaccines, cell therapies, neutralizing antibodies, and immune checkpoint inhibitors, have shown promising clinical results. However, despite significant therapeutic advances, most patients diagnosed with metastatic cancer still succumb to their malignancy. Treatments are often toxic, and the financial burden of novel therapies is significant. Thus, new methods for utilizing similar biological systems to compare complex biological processes can give us new hypotheses for combating cancer. One such approach is comparing trophoblastic growth and regulation to tumor invasion and immune escape. Novel concepts regarding immune activation in pregnancy, especially reactivation of the immune system at labor through toll like receptor engagement by fetal derived DNA, may be applicable to cancer immunotherapy. This review summarizes mechanisms of inflammation in cancer, current immunotherapies used in the clinic, and suggestions for looking beyond oncology for novel methods to reverse cancer-associated tolerance and immunologic exhaustion utilizing mechanisms encountered in normal human pregnancy.

  4. Immune Reactivation by Cell-Free Fetal DNA in Healthy Pregnancies Re-Purposed to Target Tumors: Novel Checkpoint Inhibition in Cancer Therapeutics

    Science.gov (United States)

    Enninga, Elizabeth Ann L.; Nevala, Wendy K.; Holtan, Shernan G.; Markovic, Svetomir N.

    2015-01-01

    The role of the immune system in cancer progression has become increasingly evident over the past decade. Chronic inflammation in the promotion of tumorigenesis is well established, and cancer-associated tolerance/immune evasion has long been appreciated. Recent developments of immunotherapies targeting cancer-associated inflammation and immune tolerance, such as cancer vaccines, cell therapies, neutralizing antibodies, and immune checkpoint inhibitors, have shown promising clinical results. However, despite significant therapeutic advances, most patients diagnosed with metastatic cancer still succumb to their malignancy. Treatments are often toxic, and the financial burden of novel therapies is significant. Thus, new methods for utilizing similar biological systems to compare complex biological processes can give us new hypotheses for combating cancer. One such approach is comparing trophoblastic growth and regulation to tumor invasion and immune escape. Novel concepts regarding immune activation in pregnancy, especially reactivation of the immune system at labor through toll like receptor engagement by fetal derived DNA, may be applicable to cancer immunotherapy. This review summarizes mechanisms of inflammation in cancer, current immunotherapies used in the clinic, and suggestions for looking beyond oncology for novel methods to reverse cancer-associated tolerance and immunologic exhaustion utilizing mechanisms encountered in normal human pregnancy. PMID:26379664

  5. Fetal RHD Genotyping Using Real-Time Polymerase Chain Reaction Analysis of Cell-Free Fetal DNA in Pregnancy of RhD Negative Women in South of Iran

    Science.gov (United States)

    Moezzi, Leili; Keshavarz, Zeinab; Ranjbaran, Reza; Aboualizadeh, Farzaneh; Behzad-Behbahani, Abbas; Abdullahi, Masooma; Ramezani, Amin; Samsami, Alamtaj; Sharifzadeh, Sedigheh

    2016-01-01

    Background Maternal-fetal RhD antigen incompatibility causes approximately 50% of clinically significant alloimmunization cases. The routine use of prophylactic anti-D immunoglobulin has dramatically reduced hemolytic disease of the fetus and newborn. Recently, fetal RHD genotyping in RhD negative pregnant women has been suggested for appropriate use of anti-D immunoglobulin antenatal prophylaxis and decrease unnecessary prenatal interventions. Materials and Methods In this prospective cohort study, in order to develop a reliable and non-invasive method for fetal RHD genotyping, cell free fetal DNA (cffD- NA) was extracted from maternal plasma. Real-time quantitative polymerase chain reaction (qPCR) for detection of RHD exons 7, 5, 10 and intron 4 was performed and the results were compared to the serological results of cord blood cells as the gold standard method. SRY gene and hypermethylated Ras-association domain family member 1 (RASSF1A) gene were used to confirm the presence of fetal DNA in male and female fetuses, respectively. Results Out of 48 fetuses between 8 and 32 weeks (wks) of gestational age (GA), we correctly diagnosed 45 cases (93.75%) of RHD positive fetuses and 2 cases (4.16%) of the RHD negative one. Exon 7 was amplified in one sample, while three other RHD gene sequences were not detected; the sample was classified as inconclusive, and the RhD serology result after birth showed that the fetus was RhD-negative. Conclusion Our results showed high accuracy of the qPCR method using cffDNA for fetal RHD genotyping and implicate on the efficiency of this technique to predict the competence of anti-D immunoglobulin administration.

  6. Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients

    OpenAIRE

    Lallous, Nada; Volik, Stanislav V.; Awrey, Shannon; LeBlanc, Eric; Tse, Ronnie; Murillo, Josef; Singh, Kriti; Azad, Arun A.; Wyatt, Alexander W.; LeBihan, Stephane; Chi, Kim N.; Gleave, Martin E.; Paul S. Rennie; Collins, Colin C; Cherkasov, Artem

    2016-01-01

    Background The androgen receptor (AR) is a pivotal drug target for the treatment of prostate cancer, including its lethal castration-resistant (CRPC) form. All current non-steroidal AR antagonists, such as hydroxyflutamide, bicalutamide, and enzalutamide, target the androgen binding site of the receptor, competing with endogenous androgenic steroids. Several AR mutations in this binding site have been associated with poor prognosis and resistance to conventional prostate cancer drugs. In orde...

  7. 利用孕妇血浆中的胎儿DNA进行β-地中海贫血的产前诊断%Prenatal diagnosis of β-thalassaemia using cell-free fetal DNA in maternal plasma

    Institute of Scientific and Technical Information of China (English)

    李广华; 荣卡彬; 罗燕飞; 陈冬; 龚彩平; 吴劲; 邸玉玮; 葛艳芬

    2011-01-01

    目的 利用孕妇血浆中游离胎儿DNA(cffDNA)对广东省最常见17种β地中海贫血的突变基因进行扩增,探讨非创伤性产前诊断β-地中海贫血的可行性.方法 ①羊水途径:抽取孕妇羊水共9例,采用反向斑点杂交技术检测中国人群8个常见位点和9个少见位点突变的共17种β地贫基因;②抽取孕妇外周血,柱分离法提取及凝胶回收纯化DNA,设计3对引物,对cffDNA进行二次PCR,反向斑点杂交技术检测β地中海贫血的突变基因.结果 9例孕妇中有5例经羊水检测证实胎儿有父系的β地贫基因,有2例孕妇外周血中检测到胎儿(父系)β地贫基因,与羊水检测相符.结论 利用cffDNA进行β-地中海贫血的检测方法可行,但由于母源性DNA背景的污染,以及胎儿DNA因含量而导致检出率低,希望进一步改进该技术后有望可用于β-地中海贫血的诊断.%Objective To investigate the clinical feasibility of cell-free fetal DNA (cffDNA)-based noninvasive prenatal diagnosis of β-thalassemia. Methods Nine samples of amniotic fluid were obtained to detect the 8 common and 9 relatively rare mutation sites of [3-thalassaemia in Guangdong Province. The maternal blood samples were also collected for extracting and purification of the cffDNA, and a duplex PCR was performed using 3 pairs of primers and the fetal β-globin genotype was analyzed by reverse dot-blot hybridization. Results Among the 9 cases, 5 showed fetal genotypes of β-thalassemia inherited from the father by examination of the amniotic fluid, and 2 fetuses were identified to have β-thalassemia genes inherited from the father determined based on the cffDNA in the maternal blood. Conclusion The cffDNA-based noninvasive prenatal diagnosis is feasible for β-thalassemia, but the contamination of the maternal background DNA results in a low detection rate.

  8. Genetic profiling of tumours using both circulating free DNA and circulating tumour cells isolated from the same preserved whole blood sample.

    Science.gov (United States)

    Rothwell, Dominic G; Smith, Nigel; Morris, Daniel; Leong, Hui Sun; Li, Yaoyong; Hollebecque, Antoine; Ayub, Mahmood; Carter, Louise; Antonello, Jenny; Franklin, Lynsey; Miller, Crispin; Blackhall, Fiona; Dive, Caroline; Brady, Ged

    2016-04-01

    Molecular information obtained from cancer patients' blood is an emerging and powerful research tool with immense potential as a companion diagnostic for patient stratification and monitoring. Blood, which can be sampled routinely, provides a means of inferring the current genetic status of patients' tumours via analysis of circulating tumour cells (CTCs) or circulating tumour DNA (ctDNA). However, accurate assessment of both CTCs and ctDNA requires all blood cells to be maintained intact until samples are processed. This dictates for ctDNA analysis EDTA blood samples must be processed with 4 h of draw, severely limiting the use of ctDNA in multi-site trials. Here we describe a blood collection protocol that is amenable for analysis of both CTCs and ctDNA up to four days after blood collection. We demonstrate that yields of circulating free DNA (cfDNA) obtained from whole blood CellSave samples are equivalent to those obtained from conventional EDTA plasma processed within 4 h of blood draw. Targeted and genome-wide NGS revealed comparable DNA quality and resultant sequence information from cfDNA within CellSave and EDTA samples. We also demonstrate that CTCs and ctDNA can be isolated from the same patient blood sample, and give the same patterns of CNA enabling direct analysis of the genetic status of patients' tumours. In summary, our results demonstrate the utility of a simple approach that enabling robust molecular analysis of CTCs and cfDNA for genotype-directed therapies in multi-site clinical trials and represent a significant methodological improvement for clinical benefit. PMID:26639657

  9. Optimized Quantification of Fragmented, Free Circulating DNA in Human Blood Plasma Using a Calibrated Duplex Real-Time PCR

    OpenAIRE

    Horlitz, Martin; Lucas, Annabelle; Sprenger-Haussels, Markus

    2009-01-01

    Background Duplex real-time PCR assays have been widely used to determine amounts and concentrations of free circulating DNA in human blood plasma samples. Circulatory plasma DNA is highly fragmented and hence a PCR-based determination of DNA concentration may be affected by the limited availability of full-length targets in the DNA sample. This leads to inaccuracies when counting PCR target copy numbers as whole genome equivalents. Methodology/Principal Findings A model system was designed a...

  10. Circulating nucleic acids damage DNA of healthy cells by integrating into their genomes

    Indian Academy of Sciences (India)

    Indraneel Mittra; Naveen Kumar Khare; Gorantla Venkata Raghuram; Rohan Chaubal; Fatema Khambatti; Deepika Gupta; Ashwini Gaikwad; Preeti Prasannan; Akshita Singh; Aishwarya Iyer; Ankita Singh; Pawan Upadhyay; Naveen Kumar Nair; Pradyumna Kumar Mishra; Amit Dutt

    2015-03-01

    Whether nucleic acids that circulate in blood have any patho-physiological functions in the host have not been explored. We report here that far from being inert molecules, circulating nucleic acids have significant biological activities of their own that are deleterious to healthy cells of the body. Fragmented DNA and chromatin (DNAfs and Cfs) isolated from blood of cancer patients and healthy volunteers are readily taken up by a variety of cells in culture to be localized in their nuclei within a few minutes. The intra-nuclear DNAfs and Cfs associate themselves with host cell chromosomes to evoke a cellular DNA-damage-repair-response (DDR) followed by their incorporation into the host cell genomes. Whole genome sequencing detected the presence of tens of thousands of human sequence reads in the recipient mouse cells. Genomic incorporation of DNAfs and Cfs leads to dsDNA breaks and activation of apoptotic pathways in the treated cells. When injected intravenously into Balb/C mice, DNAfs and Cfs undergo genomic integration into cells of their vital organs resulting in activation of DDR and apoptotic proteins in the recipient cells. Cfs have significantly greater activity than DNAfs with respect to all parameters examined, while both DNAfs and Cfs isolated from cancer patients are more active than those from normal volunteers. All the above pathological actions of DNAfs and Cfs described above can be abrogated by concurrent treatment with DNase I and/or anti-histone antibody complexed nanoparticles both in vitro and in vivo. Taken together, our results that circulating DNAfs and Cfs are physiological, continuously arising, endogenous DNA damaging agents with implications to ageing and a multitude of human pathologies including initiation of cancer.

  11. Determination of DNA and RNA Methylation in Circulating Tumor Cells by Mass Spectrometry.

    Science.gov (United States)

    Huang, Wei; Qi, Chu-Bo; Lv, Song-Wei; Xie, Min; Feng, Yu-Qi; Huang, Wei-Hua; Yuan, Bi-Feng

    2016-01-19

    DNA methylation (5-methylcytosine, 5-mC) is the best characterized epigenetic mark that has regulatory roles in diverse biological processes. Recent investigation of RNA modifications also raises the possible functions of RNA adenine and cytosine methylations on gene regulation in the form of "RNA epigenetics." Previous studies demonstrated global DNA hypomethylation in tumor tissues compared to healthy controls. However, DNA and RNA methylation in circulating tumor cells (CTCs) that are derived from tumors are still a mystery due to the lack of proper analytical methods. In this respect, here we established an effective CTCs capture system conjugated with a combined strategy of sample preparation for the captured CTCs lysis, nucleic acids digestion, and nucleosides extraction in one tube. The resulting nucleosides were then further analyzed by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). With the developed method, we are able to detect DNA and RNA methylation (5-methyl-2'-deoxycytidine, 5-methylcytidine, and N(6)-methyladenosine) in a single cell. We then further successfully determined DNA and RNA methylation in CTCs from lung cancer patients. Our results demonstrated, for the first time, a significant decrease of DNA methylation (5-methyl-2'-deoxycytidine) and increase of RNA adenine and cytosine methylations (N(6)-methyladenosine and 5-methylcytidine) in CTCs compared with whole blood cells. The discovery of DNA hypomethylation and RNA hypermethylation in CTCs in the current study together with previous reports of global DNA hypomethylation in tumor tissues suggest that nucleic acid modifications play important roles in the formation and development of cancer cells. This work constitutes the first step for the investigation of DNA and RNA methylation in CTCs, which may facilitate uncovering the metastasis mechanism of cancers in the future. PMID:26707930

  12. A New Blood Collection Device Minimizes Cellular DNA Release During Sample Storage and Shipping When Compared to a Standard Device

    OpenAIRE

    Norton, Sheila E; Luna, Kristin K; Lechner, Joel M; Qin, Jianbing; Fernando, M Rohan

    2013-01-01

    Background Cell-free DNA (cfDNA) circulating in blood is currently used for noninvasive diagnostic and prognostic tests. Minimizing background DNA is vital for detection of low abundance cfDNA. We investigated whether a new blood collection device could reduce background levels of genomic DNA (gDNA) in plasma compared to K3EDTA tubes, when subjected to conditions that may occur during sample storage and shipping. Methods Blood samples were drawn from healthy donors into K3EDTA and Cell-Free D...

  13. Evaluation of eukaryotic cultured cells as a model to study extracellular DNA / D.L. Peters

    OpenAIRE

    Peters, Dimetrie Leslie

    2011-01-01

    The diagnostic value of extracellular occurring DNA (eoDNA) is limited by our lack of understanding its biological function. eoDNA exists in a number of forms, namely vesicle bound DNA, histone/DNA complexes or nucleosomes and virtosomes. These forms of DNA can also be categorized under the terms circulating DNA, cell free DNA, free DNA and extracellular DNA. The DNA can be released by means of form–specific mechanisms and seem to be governed by cell cycle phases and apoptosis....

  14. Association of circulating Chlamydia pneumoniae DNA with cardiovascular disease: a systematic review

    Directory of Open Access Journals (Sweden)

    Petrich Astrid

    2002-10-01

    Full Text Available Abstract Background Chlamydia pneumoniae antigens, nucleic acids, or intact organisms have been detected in human atheroma. However, the presence of antibody does not predict subsequent cardiovascular (CV events. We performed a systematic review to determine whether the detection of C. pneumoniae DNA in peripheral blood mononuclear cells (PBMC was associated with CV disease. Methods We sought studies of C. pneumoniae DNA detection in PBMC by polymerase chain reaction (PCR among patients with CV disease or other clinical conditions. We pooled studies in which CV patients were compared with non-diseased controls. We analyzed differences between studies by meta-regression, to determine which epidemiological and technical characteristics were associated with higher prevalence. Results Eighteen relevant studies were identified. In nine CV studies with control subjects, the prevalence of circulating C. pneumoniae DNA was 252 of 1763 (14.3% CV patients and 74 of 874 (8.5% controls, for a pooled odds ratio of 2.03 (95% CI: 1.34, 3.08, P C. pneumoniae DNA detection. High prevalence (>40% was found in patients with cardiac, vascular, chronic respiratory, or renal disease, and in blood donors. Substantial differences between studies were identified in methods of sampling, extraction, and PCR targets. Conclusions C. pneumoniae DNA detection was associated with CV disease in unadjusted case-control studies. However, adjustment for potentially confounding measures such as smoking or season, and standardization of laboratory methods, are needed to confirm this association.

  15. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium β-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Korzeneva, Inna B., E-mail: inna.korzeneva@molgen.vniief.ru [Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190, Sarov, 37 Mira ave., Nizhniy Novgorod Region (Russian Federation); Kostuyk, Svetlana V.; Ershova, Liza S. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, 115478 Moscow, 1 Moskvorechye str. (Russian Federation); Osipov, Andrian N. [Federal Medial and Biological Center named after Burnazyan of the Federal Medical and Biological Agency (FMBTz named after Burnazyan of FMBA), Moscow (Russian Federation); State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Zhivopisnaya, 46, Moscow, 123098 (Russian Federation); Zhuravleva, Veronika F.; Pankratova, Galina V. [Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190, Sarov, 37 Mira ave., Nizhniy Novgorod Region (Russian Federation); Porokhovnik, Lev N.; Veiko, Natalia N. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, 115478 Moscow, 1 Moskvorechye str. (Russian Federation)

    2015-09-15

    Highlights: • The chronic exposure to low-dose IR induces DSBs in human lymphocytes (TM index). • Exposure to IR decreases the level of human circulating DNA (cfDNA index). • IR induces an increase of DNase1 activity (DNase1 index) in plasma. • IR induces an increase of the level of antibodies to DNA (Ab DNA index) in plasma. • The ratio cfDNA/(DNase 1 × Ab DNA × TM) is a potential marker of human exposure to IR. - Abstract: The blood plasma of healthy people contains cell-fee (circulating) DNA (cfDNA). Apoptotic cells are the main source of the cfDNA. The cfDNA concentration increases in case of the organism’s cell death rate increase, for example in case of exposure to high-dose ionizing radiation (IR). The objects of the present research are the blood plasma and blood lymphocytes of people, who contacted occupationally with the sources of external gamma/neutron radiation or internal β-radiation of tritium N = 176). As the controls (references), blood samples of people, who had never been occupationally subjected to the IR sources, were used (N = 109). With respect to the plasma samples of each donor there were defined: the cfDNA concentration (the cfDNA index), DNase1 activity (the DNase1 index) and titre of antibodies to DNA (the Ab DNA index). The general DNA damage in the cells was defined (using the Comet assay, the tail moment (TM) index). A chronic effect of the low-dose ionizing radiation on a human being is accompanied by the enhancement of the DNA damage in lymphocytes along with a considerable cfDNA content reduction, while the DNase1 content and concentration of antibodies to DNA (Ab DNA) increase. All the aforementioned changes were also observed in people, who had not worked with the IR sources for more than a year. The ratio cfDNA/(DNase1 × Ab DNA × TM) is proposed to be used as a marker of the chronic exposure of a person to the external low-dose IR. It was formulated the assumption that the joint analysis of the cfDNA, DNase1, Ab

  16. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium β-radiation

    International Nuclear Information System (INIS)

    Highlights: • The chronic exposure to low-dose IR induces DSBs in human lymphocytes (TM index). • Exposure to IR decreases the level of human circulating DNA (cfDNA index). • IR induces an increase of DNase1 activity (DNase1 index) in plasma. • IR induces an increase of the level of antibodies to DNA (Ab DNA index) in plasma. • The ratio cfDNA/(DNase 1 × Ab DNA × TM) is a potential marker of human exposure to IR. - Abstract: The blood plasma of healthy people contains cell-fee (circulating) DNA (cfDNA). Apoptotic cells are the main source of the cfDNA. The cfDNA concentration increases in case of the organism’s cell death rate increase, for example in case of exposure to high-dose ionizing radiation (IR). The objects of the present research are the blood plasma and blood lymphocytes of people, who contacted occupationally with the sources of external gamma/neutron radiation or internal β-radiation of tritium N = 176). As the controls (references), blood samples of people, who had never been occupationally subjected to the IR sources, were used (N = 109). With respect to the plasma samples of each donor there were defined: the cfDNA concentration (the cfDNA index), DNase1 activity (the DNase1 index) and titre of antibodies to DNA (the Ab DNA index). The general DNA damage in the cells was defined (using the Comet assay, the tail moment (TM) index). A chronic effect of the low-dose ionizing radiation on a human being is accompanied by the enhancement of the DNA damage in lymphocytes along with a considerable cfDNA content reduction, while the DNase1 content and concentration of antibodies to DNA (Ab DNA) increase. All the aforementioned changes were also observed in people, who had not worked with the IR sources for more than a year. The ratio cfDNA/(DNase1 × Ab DNA × TM) is proposed to be used as a marker of the chronic exposure of a person to the external low-dose IR. It was formulated the assumption that the joint analysis of the cfDNA, DNase1, Ab

  17. Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery

    DEFF Research Database (Denmark)

    Reinert, Thomas; Schøler, Lone Vedel; Thomsen, Rune;

    2016-01-01

    quantified in 151 serial plasma samples from six relapsing and five non-relapsing colorectal cancer (CRC) patients by droplet digital PCR, and correlated to clinical findings. RESULTS: Up to six personalised assays were designed for each patient. Our approach enabled efficient temporal assessment of disease......OBJECTIVE: To develop an affordable and robust pipeline for selection of patient-specific somatic structural variants (SSVs) being informative about radicality of the primary resection, response to adjuvant therapy, incipient recurrence and response to treatment performed in relation to diagnosis...... of recurrence. DESIGN: We have established efficient procedures for identification of SSVs by next-generation sequencing and subsequent quantification of 3-6 SSVs in plasma. The consequence of intratumour heterogeneity on our approach was assessed. The level of circulating tumour DNA (ctDNA) was...

  18. Personalized Circulating Tumor DNA Biomarkers Dynamically Predict Treatment Response and Survival In Gynecologic Cancers.

    Directory of Open Access Journals (Sweden)

    Elena Pereira

    Full Text Available High-grade serous ovarian and endometrial cancers are the most lethal female reproductive tract malignancies worldwide. In part, failure to treat these two aggressive cancers successfully centers on the fact that while the majority of patients are diagnosed based on current surveillance strategies as having a complete clinical response to their primary therapy, nearly half will develop disease recurrence within 18 months and the majority will die from disease recurrence within 5 years. Moreover, no currently used biomarkers or imaging studies can predict outcome following initial treatment. Circulating tumor DNA (ctDNA represents a theoretically powerful biomarker for detecting otherwise occult disease. We therefore explored the use of personalized ctDNA markers as both a surveillance and prognostic biomarker in gynecologic cancers and compared this to current FDA-approved surveillance tools.Tumor and serum samples were collected at time of surgery and then throughout treatment course for 44 patients with gynecologic cancers, representing 22 ovarian cancer cases, 17 uterine cancer cases, one peritoneal, three fallopian tube, and one patient with synchronous fallopian tube and uterine cancer. Patient/tumor-specific mutations were identified using whole-exome and targeted gene sequencing and ctDNA levels quantified using droplet digital PCR. CtDNA was detected in 93.8% of patients for whom probes were designed and levels were highly correlated with CA-125 serum and computed tomography (CT scanning results. In six patients, ctDNA detected the presence of cancer even when CT scanning was negative and, on average, had a predictive lead time of seven months over CT imaging. Most notably, undetectable levels of ctDNA at six months following initial treatment was associated with markedly improved progression free and overall survival.Detection of residual disease in gynecologic, and indeed all cancers, represents a diagnostic dilemma and a potential

  19. Personalized Circulating Tumor DNA Biomarkers Dynamically Predict Treatment Response and Survival In Gynecologic Cancers

    Science.gov (United States)

    Anand, Sanya; Sebra, Robert; Catalina Camacho, Sandra; Garnar-Wortzel, Leopold; Nair, Navya; Moshier, Erin; Wooten, Melissa; Uzilov, Andrew; Chen, Rong; Prasad-Hayes, Monica; Zakashansky, Konstantin; Beddoe, Ann Marie; Schadt, Eric; Dottino, Peter; Martignetti, John A.

    2015-01-01

    Background High-grade serous ovarian and endometrial cancers are the most lethal female reproductive tract malignancies worldwide. In part, failure to treat these two aggressive cancers successfully centers on the fact that while the majority of patients are diagnosed based on current surveillance strategies as having a complete clinical response to their primary therapy, nearly half will develop disease recurrence within 18 months and the majority will die from disease recurrence within 5 years. Moreover, no currently used biomarkers or imaging studies can predict outcome following initial treatment. Circulating tumor DNA (ctDNA) represents a theoretically powerful biomarker for detecting otherwise occult disease. We therefore explored the use of personalized ctDNA markers as both a surveillance and prognostic biomarker in gynecologic cancers and compared this to current FDA-approved surveillance tools. Methods and Findings Tumor and serum samples were collected at time of surgery and then throughout treatment course for 44 patients with gynecologic cancers, representing 22 ovarian cancer cases, 17 uterine cancer cases, one peritoneal, three fallopian tube, and one patient with synchronous fallopian tube and uterine cancer. Patient/tumor-specific mutations were identified using whole-exome and targeted gene sequencing and ctDNA levels quantified using droplet digital PCR. CtDNA was detected in 93.8% of patients for whom probes were designed and levels were highly correlated with CA-125 serum and computed tomography (CT) scanning results. In six patients, ctDNA detected the presence of cancer even when CT scanning was negative and, on average, had a predictive lead time of seven months over CT imaging. Most notably, undetectable levels of ctDNA at six months following initial treatment was associated with markedly improved progression free and overall survival. Conclusions Detection of residual disease in gynecologic, and indeed all cancers, represents a diagnostic

  20. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients

    Science.gov (United States)

    Chabon, Jacob J.; Simmons, Andrew D.; Lovejoy, Alexander F.; Esfahani, Mohammad S.; Newman, Aaron M.; Haringsma, Henry J.; Kurtz, David M.; Stehr, Henning; Scherer, Florian; Karlovich, Chris A.; Harding, Thomas C.; Durkin, Kathleen A.; Otterson, Gregory A.; Purcell, W. Thomas; Camidge, D. Ross; Goldman, Jonathan W.; Sequist, Lecia V.; Piotrowska, Zofia; Wakelee, Heather A.; Neal, Joel W.; Alizadeh, Ash A.; Diehn, Maximilian

    2016-01-01

    Circulating tumour DNA (ctDNA) analysis facilitates studies of tumour heterogeneity. Here we employ CAPP-Seq ctDNA analysis to study resistance mechanisms in 43 non-small cell lung cancer (NSCLC) patients treated with the third-generation epidermal growth factor receptor (EGFR) inhibitor rociletinib. We observe multiple resistance mechanisms in 46% of patients after treatment with first-line inhibitors, indicating frequent intra-patient heterogeneity. Rociletinib resistance recurrently involves MET, EGFR, PIK3CA, ERRB2, KRAS and RB1. We describe a novel EGFR L798I mutation and find that EGFR C797S, which arises in ∼33% of patients after osimertinib treatment, occurs in <3% after rociletinib. Increased MET copy number is the most frequent rociletinib resistance mechanism in this cohort and patients with multiple pre-existing mechanisms (T790M and MET) experience inferior responses. Similarly, rociletinib-resistant xenografts develop MET amplification that can be overcome with the MET inhibitor crizotinib. These results underscore the importance of tumour heterogeneity in NSCLC and the utility of ctDNA-based resistance mechanism assessment. PMID:27283993

  1. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients.

    Science.gov (United States)

    Chabon, Jacob J; Simmons, Andrew D; Lovejoy, Alexander F; Esfahani, Mohammad S; Newman, Aaron M; Haringsma, Henry J; Kurtz, David M; Stehr, Henning; Scherer, Florian; Karlovich, Chris A; Harding, Thomas C; Durkin, Kathleen A; Otterson, Gregory A; Purcell, W Thomas; Camidge, D Ross; Goldman, Jonathan W; Sequist, Lecia V; Piotrowska, Zofia; Wakelee, Heather A; Neal, Joel W; Alizadeh, Ash A; Diehn, Maximilian

    2016-01-01

    Circulating tumour DNA (ctDNA) analysis facilitates studies of tumour heterogeneity. Here we employ CAPP-Seq ctDNA analysis to study resistance mechanisms in 43 non-small cell lung cancer (NSCLC) patients treated with the third-generation epidermal growth factor receptor (EGFR) inhibitor rociletinib. We observe multiple resistance mechanisms in 46% of patients after treatment with first-line inhibitors, indicating frequent intra-patient heterogeneity. Rociletinib resistance recurrently involves MET, EGFR, PIK3CA, ERRB2, KRAS and RB1. We describe a novel EGFR L798I mutation and find that EGFR C797S, which arises in ∼33% of patients after osimertinib treatment, occurs in <3% after rociletinib. Increased MET copy number is the most frequent rociletinib resistance mechanism in this cohort and patients with multiple pre-existing mechanisms (T790M and MET) experience inferior responses. Similarly, rociletinib-resistant xenografts develop MET amplification that can be overcome with the MET inhibitor crizotinib. These results underscore the importance of tumour heterogeneity in NSCLC and the utility of ctDNA-based resistance mechanism assessment. PMID:27283993

  2. Quantification of mutant alleles in circulating tumor DNA can predict survival in lung cancer

    Science.gov (United States)

    Ye, Xin; Bai, Hua; Wang, Zhijie; Sun, Yun; Zhao, Jun; An, Tongtong; Duan, Jianchun; Wu, Meina; Wang, Jie

    2016-01-01

    Purpose We aimed to investigate the feasibility of droplet digital PCR (ddPCR) for the quantitative and dynamic detection of EGFR mutations and next generation sequencing (NGS) for screening EGFR-tyrosine kinase inhibitors (EGFR-TKIs) resistance-relevant mutations in circulating tumor DNA (ctDNA) from advanced lung adenocarcinoma (ADC) patients. Results Detection limit of EGFR mutation in ctDNA by ddPCR was 0.04%. Taking the EGFR mutation in tumor tissue as the golden standard, the concordance of EGFR mutations detected in ctDNA was 74% (54/73). Patients with EGFR mutation in ctDNA (n = 54) superior progression-free survival (PFS, median, 12.6 vs. 6.7 months, P 5.15%) showed better PFS compared to those with low EGFR mutated abundance (≤ 5.15%) (PFS, median, 15.4 vs. 11.1 months, P = 0.021). NGS results showed that 66.6% (8/12) total mutational copy number were elevated and 76.5% (26/34) mutual mutation frequency increased after disease progression. Methods Seventy-three advanced ADC patients with tumor tissues carrying EGFR mutations and their matched pre- and post-EGFR-TKIs plasma samples were enrolled in this study. Absolute quantities of plasma EGFR mutant and wild-type alleles were measured by ddPCR. Multi-genes testing was performed using NGS in 12 patients. Conclusions Dynamic and quantitative analysis of EGFR mutation in ctDNA could guide personalized therapy for advanced ADC. NGS shows good performance in multiple genes testing especially novel and uncommon genes. PMID:26989078

  3. Translation in cell-free systems

    International Nuclear Information System (INIS)

    The simplest, unambiguous identification of a particular mRNA is the identification of its protein product. This can be established by translation of the mRNA of interest in a cell-free protein-synthesizing system. Messenger RNA protein product identification is important in the isolation of a particular mRNA species for cDNA cloning and in the identification of positive cDNA clones. The two high-activity translation systems in common use are those prepared from rabbit reticulocytes and from wheat germ. Both systems are easy to prepare, and both are available commercially. Each has advantages and disadvantages over the other and a choice between the two will depend on the type of mRNAs to be translated, the prejudices of experience, and availability. The main disadvantage of the reticulocyte system is that it requires removal of endogenous mRNA. However, this is a relatively simple procedure. The wheat germ system does not require removal of endogenous mRNA and may translate weakly initiating mRNAs more efficiently. However, ionic optima for translation in the wheat germ system are more sensitive to the nature and concentration of mRNA and may need to be determined for each template. The biggest problem with the use of the wheat germ system is its tendency to produce incomplete translation products due to premature termination

  4. Flexible Programming of Cell-Free Protein Synthesis Using Magnetic Bead-Immobilized Plasmids

    OpenAIRE

    Lee, Ka-Young; Lee, Kyung-Ho; Park, Ji-Woong; Kim, Dong-Myung

    2012-01-01

    The use of magnetic bead-immobilized DNA as movable template for cell-free protein synthesis has been investigated. Magnetic microbeads containing chemically conjugated plasmids were used to direct cell-free protein synthesis, so that protein generation could be readily programmed, reset and reprogrammed. Protein synthesis by using this approach could be ON/OFF-controlled through repeated addition and removal of the microbead-conjugated DNA and employed in sequential expression of different g...

  5. Pathophysiological consequences of hemolysis. Role of cell-free hemoglobin

    Directory of Open Access Journals (Sweden)

    Tomasz Misztal

    2011-09-01

    Full Text Available Abundant hemolysis is associated with a number of inherent and acquired diseases including sickle-cell disease (SCD, polycythemia, paroxysmal nocturnal hemoglobinuria (PNH and drug-induced hemolytic anemia. Despite different etiopathology of hemolytic diseases, many concomitant symptoms are comparable and include e.g. hypertension, hemoglobinuria and hypercoagulation state. Studies in the last years have shown a growing list of mechanisms lying at the basis of those symptoms, in particular irreversible reaction between cell-free hemoglobin (Hb and nitric oxide (NO – endogenous vasorelaxant and anti-thrombotic agent. Saturation of protective physiological cell-free Hb-scavenging mechanisms results in accumulation of Hb in plasma and hemoglobinemia. Extensive hemoglobinemia subsequently leads to hemoglobinuria, which may cause kidney damage and development of Fanconi syndrome. A severe problem in patients with SCD and PNH is pulmonary and systemic hypertension. It may lead to circulation failure, including stroke, and it is related to abolition of NO bioavailability for vascular smooth muscle cells. Thrombotic events are the major cause of death in SCD and PNH. It ensues from lack of platelet inhibition evoked by Hb-mediated NO scavenging. A serious complication that affects patients with excessive hemolysis is erectile dysfunction. Also direct cytotoxic, prooxidant and proinflammatory effects of cell-free hemoglobin and heme compose the clinical picture of hemolytic diseases. The pathophysiological role of plasma Hb, mechanisms of its elimination, and direct and indirect (via NO scavenging deleterious effects of cell-free Hb are presented in detail in this review. Understanding the critical role of hemolysis and cell-free Hb is important in the perspective of treating patients with hemolytic diseases and to design new effective therapies in future.

  6. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium β-radiation.

    Science.gov (United States)

    Korzeneva, Inna B; Kostuyk, Svetlana V; Ershova, Liza S; Osipov, Andrian N; Zhuravleva, Veronika F; Pankratova, Galina V; Porokhovnik, Lev N; Veiko, Natalia N

    2015-09-01

    The blood plasma of healthy people contains cell-fee (circulating) DNA (cfDNA). Apoptotic cells are the main source of the cfDNA. The cfDNA concentration increases in case of the organism's cell death rate increase, for example in case of exposure to high-dose ionizing radiation (IR). The objects of the present research are the blood plasma and blood lymphocytes of people, who contacted occupationally with the sources of external gamma/neutron radiation or internal β-radiation of tritium N = 176). As the controls (references), blood samples of people, who had never been occupationally subjected to the IR sources, were used (N = 109). With respect to the plasma samples of each donor there were defined: the cfDNA concentration (the cfDNA index), DNase1 activity (the DNase1 index) and titre of antibodies to DNA (the Ab DNA index). The general DNA damage in the cells was defined (using the Comet assay, the tail moment (TM) index). A chronic effect of the low-dose ionizing radiation on a human being is accompanied by the enhancement of the DNA damage in lymphocytes along with a considerable cfDNA content reduction, while the DNase1 content and concentration of antibodies to DNA (Ab DNA) increase. All the aforementioned changes were also observed in people, who had not worked with the IR sources for more than a year. The ratio cfDNA/(DNase1×Ab DNA × TM) is proposed to be used as a marker of the chronic exposure of a person to the external low-dose IR. It was formulated the assumption that the joint analysis of the cfDNA, DNase1, Ab DNA and TM values may provide the information about the human organism's cell resistivity to chronic exposure to the low-dose IR and about the development of the adaptive response in the organism that is aimed, firstly, at the effective cfDNA elimination from the blood circulation, and, secondly - at survival of the cells, including the cells with the damaged DNA. PMID:26113293

  7. Defective thymine dimer excision by cell-free extracts of xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Crude extracts of normal human diploid fibroblasts and of human peripheral blood lymphocytes excise thymine dimers from purified ultraviolet-irradiated DNA, or from the DNA presumably present as chromatin in unfractionated cell-free preparations of cells that had been labeled with [3H]thymidine. Extracts of xeroderma pigmentosum cells from complementation groups A, C, and D also excise thymine dimers from purified DNA, but extracts of group A cells do not excise dimers from the DNA of radioactively labeled unfractionated cell-free preparations

  8. Circulating Differentially Methylated Amylin DNA as a Biomarker of β-Cell Loss in Type 1 Diabetes

    OpenAIRE

    Olsen, John A.; Kenna, Lauren A.; Spelios, Michael G.; Hessner, Martin J; Akirav, Eitan M.

    2016-01-01

    In type 1 diabetes (T1D), β-cell loss is silent during disease progression. Methylation-sensitive quantitative real-time PCR (qPCR) of β-cell-derived DNA in the blood can serve as a biomarker of β-cell death in T1D. Amylin is highly expressed by β-cells in the islet. Here we examined whether demethylated circulating free amylin DNA (cfDNA) may serve as a biomarker of β-cell death in T1D. β cells showed unique methylation patterns within the amylin coding region that were not observed with oth...

  9. Circulating Differentially Methylated Amylin DNA as a Biomarker of β-Cell Loss in Type 1 Diabetes.

    Directory of Open Access Journals (Sweden)

    John A Olsen

    Full Text Available In type 1 diabetes (T1D, β-cell loss is silent during disease progression. Methylation-sensitive quantitative real-time PCR (qPCR of β-cell-derived DNA in the blood can serve as a biomarker of β-cell death in T1D. Amylin is highly expressed by β-cells in the islet. Here we examined whether demethylated circulating free amylin DNA (cfDNA may serve as a biomarker of β-cell death in T1D. β cells showed unique methylation patterns within the amylin coding region that were not observed with other tissues. The design and use of methylation-specific primers yielded a strong signal for demethylated amylin in purified DNA from murine islets when compared with other tissues. Similarly, methylation-specific primers detected high levels of demethylated amylin DNA in human islets and enriched human β-cells. In vivo testing of the primers revealed an increase in demethylated amylin cfDNA in sera of non-obese diabetic (NOD mice during T1D progression and following the development of hyperglycemia. This increase in amylin cfDNA did not mirror the increase in insulin cfDNA, suggesting that amylin cfDNA may detect β-cell loss in serum samples where insulin cfDNA is undetected. Finally, purified cfDNA from recent onset T1D patients yielded a high signal for demethylated amylin cfDNA when compared with matched healthy controls. These findings support the use of demethylated amylin cfDNA for detection of β-cell-derived DNA. When utilized in conjunction with insulin, this latest assay provides a comprehensive multi-gene approach for the detection of β-cell loss.

  10. Mechanism of estrogen receptor-dependent transcription in a cell-free system.

    OpenAIRE

    Elliston, J F; Fawell, S E; Klein-Hitpass, L; Tsai, S. Y.; Tsai, M J; Parker, M G; O'Malley, B W

    1990-01-01

    RNA synthesis was stimulated directly in a cell-free expression system by crude preparations of recombinant mouse estrogen receptor (ER). Receptor-stimulated transcription required the presence of estrogen response elements (EREs) in the test template and could be specifically inhibited by addition of competitor oligonucleotides containing EREs. Moreover, polyclonal antibodies directed against the DNA-binding region of ER inhibited ER-dependent transcription. In our cell-free expression syste...

  11. DNA Methylation in Peripheral Blood: A Potential Biomarker for Cancer Molecular Epidemiology

    OpenAIRE

    Li, Lian; Choi, Ji-Yeob; Lee, Kyoung-Mu; Sung, Hyuna; Park, Sue K; Oze, Isao; Pan, Kai-Feng; You, Wei-cheng; Chen, Ying-Xuan; Fang, Jing-Yuan; Matsuo, Keitaro; Kim, Woo Ho; Yuasa, Yasuhito; Kang, Daehee

    2012-01-01

    Aberrant DNA methylation is associated with cancer development and progression. There are several types of specimens from which DNA methylation pattern can be measured and evaluated as an indicator of disease status (from normal biological process to pathologic condition) and even of pharmacologic response to therapy. Blood-based specimens such as cell-free circulating nucleic acid and DNA extracted from leukocytes in peripheral blood may be a potential source of noninvasive cancer biomarkers...

  12. Direct detection of circulating free DNA extracted from serum samples of breast cancer using locked nucleic acid molecular beacon.

    Science.gov (United States)

    Gui, Zhen; Wang, Quanbo; Li, Jinchang; Zhu, Mingchen; Yu, Lili; Xun, Tang; Yan, Feng; Ju, Huangxian

    2016-07-01

    As an emerging noninvasive blood biomarker, circulating free DNA (cfDNA) can be utilized to assess diagnosis, progression and evaluate prognosis of cancer. However, cfDNAs are not "naked", they can be part of complexes, or are bound to the surface of the cells via proteins, which make the detection more challenging. Here, a simple method for the detection of Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) DNA exacted from serum of breast cancer (BC) has been developed using a novel locked nucleic acid molecular beacon (LNA-MB). In order to enhance the stability and detection efficiency of the probe in biofluids, we design a shared-stem molecular beacon containing a 27-mer loop and a 4-mer stem with DNA/LNA alternating bases. The fluorescence is released in the presence of target. The detection procedure is simple and can be completed within 1h. This method shows a sensitive response to UHRF1 DNA with a dynamic range of 3 orders of magnitude. The limit of detection is 11nM (S/N=3) with excellent selectivity. It can discriminate UHRF1 DNA from three-base mismatched DNA with a high specificity. More importantly, this method can distinguish the expression of serum UHRF1 DNA among 5 breast cancer patients and 5 healthy controls. The mentioned superiority may suggest that this assay can be served as a promising noninvasive detection tool for early BC diagnosis and monitoring. PMID:27154709

  13. Numerical indices based on circulating tumor DNA for the evaluation of therapeutic response and disease progression in lung cancer patients

    Science.gov (United States)

    Kato, Kikuya; Uchida, Junji; Kukita, Yoji; Kumagai, Toru; Nishino, Kazumi; Inoue, Takako; Kimura, Madoka; Oba, Shigeyuki; Imamura, Fumio

    2016-01-01

    Monitoring of disease/therapeutic conditions is an important application of circulating tumor DNA (ctDNA). We devised numerical indices, based on ctDNA dynamics, for therapeutic response and disease progression. 52 lung cancer patients subjected to the EGFR-TKI treatment were prospectively collected, and ctDNA levels represented by the activating and T790M mutations were measured using deep sequencing. Typically, ctDNA levels decreased sharply upon initiation of EGFR-TKI, however this did not occur in progressive disease (PD) cases. All 3 PD cases at initiation of EGFR-TKI were separated from other 27 cases in a two-dimensional space generated by the ratio of the ctDNA levels before and after therapy initiation (mutation allele ratio in therapy, MART) and the average ctDNA level. For responses to various agents after disease progression, PD/stable disease cases were separated from partial response cases using MART (accuracy, 94.7%; 95% CI, 73.5–100). For disease progression, the initiation of ctDNA elevation (initial positive point) was compared with the onset of objective disease progression. In 11 out of 28 eligible patients, both occurred within ±100 day range, suggesting a detection of the same change in disease condition. Our numerical indices have potential applicability in clinical practice, pending confirmation with designed prospective studies. PMID:27381430

  14. Trinucleotide repeat expansions catalyzed by human cell-free extracts

    Institute of Scientific and Technical Information of China (English)

    Jennifer R Stevens; Elaine E Lahue; Guo-Min Li; Robert S Lahue

    2013-01-01

    Trinucleotide repeat expansions cause 17 heritable human neurological disorders.In some diseases,somatic expansions occur in non-proliferating tissues such as brain where DNA replication is limited.This finding stimulated significant interest in replication-independent expansion mechanisms.Aberrant DNA repair is a likely source,based in part on mouse studies showing that somatic expansions are provoked by the DNA repair protein MutSβ (Msh2-Msh3complex).Biochemical studies to date used cell-free extracts or purified DNA repair proteins to yield partial reactions at triplet repeats.The findings included expansions on one strand but not the other,or processing of DNA hairpin structures thought to be important intermediates in the expansion process.However,it has been difficult to recapitulate complete expansions in vitro,and the biochemical role of MutSβ remains controversial.Here,we use a novel in vitro assay to show that human cell-free extracts catalyze expansions and contractions of trinucleotide repeats without the requirement for DNA replication.The extract promotes a size range of expansions that is similar to certain diseases,and triplet repeat length and sequence govern expansions in vitro as in vivo.MutSβ stimulates expansions in the extract,consistent with aberrant repair of endogenous DNA damage as a source of expansions.Overall,this biochemical system retains the key characteristics of somatic expansions in humans and mice,suggesting that this important mutagenic process can be restored in the test tube.

  15. Pre-Analytical Conditions in Non-Invasive Prenatal Testing of Cell-Free Fetal RHD

    DEFF Research Database (Denmark)

    Clausen, Frederik Banch; Jakobsen, Tanja Roien; Rieneck, Klaus;

    2013-01-01

    Non-invasive prenatal testing of cell-free fetal DNA (cffDNA) in maternal plasma can predict the fetal RhD type in D negative pregnant women. In Denmark, routine antenatal screening for the fetal RhD gene (RHD) directs the administration of antenatal anti-D prophylaxis only to women who carry an Rh...

  16. Cell-free plasma microRNA in pancreatic ductal adenocarcinoma and disease controls

    DEFF Research Database (Denmark)

    Carlsen, Anting Liu; Joergensen, Maiken Thyregod; Knudsen, Steen;

    2013-01-01

    There are no tumor-specific biochemical markers for pancreatic ductal adenocarcinoma (PDAC). Tissue-specific gene expression including microRNA (miRNA) profiling, however, identifies specific PDAC signatures. This study evaluates associations between circulating, cell-free plasma-miRNA profiles and...... PDAC in a disease and disease-control cohort....

  17. Circulating levels of chromatin fragments are inversely correlated with anti-dsDNA antibody levels in human and murine systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Jørgensen, Mariann H; Rekvig, Ole Petter; Jacobsen, Rasmus S;

    2011-01-01

    Anti-dsDNA antibodies represent a central pathogenic factor in Lupus nephritis. Together with nucleosomes they deposit as immune complexes in the mesangial matrix and along basement membranes within the glomeruli. The origin of the nucleosomes and when they appear e.g. in circulation is not known...... inverse correlation between DNA concentration and anti-dsDNA antibodies may reflect antibody-dependent deposition of immune complexes during the development of lupus nephritis in autoimmune lupus prone mice. The measurement of circulating DNA in SLE sera by using qPCR may indicate and detect the...... development of lupus nephritis at an early stage....

  18. [Lung cancer molecular testing, what role for Next Generation Sequencing and circulating tumor DNA].

    Science.gov (United States)

    Pécuchet, Nicolas; Legras, Antoine; Laurent-Puig, Pierre; Blons, Hélène

    2016-01-01

    Molecular screening has become a standard of care for patients with advanced cancers and impacts on how to treat a patient. Advances in genomic technologies with the development of high throughput sequencing methods will certainly improve the possibilities to access a more accurate molecular diagnosis and to go beyond the identification of validated targets as a large number of genes can be screened for actionable changes. Moreover, accurate high throughput testing may help tumor classification in terms of prognosis and drug sensitivity. Finally, it will be possible to assess tumor heterogeneity and changes in molecular profiles during follow-up using ultra-deep sequencing technologies and circulating tumor DNA characterization. The accumulation of somatic ADN alterations is considered as the main contributing factor in carcinogenesis. The alterations can occur at different levels: mutation, copy number variations or gene translocations resulting in altered expression of the corresponding genes or impaired protein functions. Genes involved are mainly tumor suppressors, oncogenes or ADN repair genes whose modifications in tumors will impinge cell fate and proliferation from tumor initiation to metastasis. The entire genome of various tumor types, have now been sequenced. In lung cancer, the average number of mutations is very high with more than 8.9 mutations/Mb (Network TCGAR, 2014) that is to say more than 10,000 mutations/genome. These alterations need to be classified, indeed, some are true drivers that directly impact proliferation and some are passenger mutations linked to genetic instability. The development of targeted therapies relies on the identification of oncogenic drivers. The identification of genotype-phenotype associations as in the case of EGFR-TKI (Epidermal growth factor receptor-tyrosine kinase inhibitor) and EGFR mutations in lung cancer led to the restriction of drugs to patients for which tumor genotype predicts efficacy. Tumor

  19. DNA binding mode of the cis and trans geometries of new antitumor nonclassical platinum complexes containing piperidine, piperazine or 4-picoline ligand in cell-free media. Relations to their activity in cancer cell lines

    Czech Academy of Sciences Publication Activity Database

    Kašpárková, Jana; Marini, Victoria; Najajreh, Y.; Gibson, D.; Brabec, Viktor

    2003-01-01

    Roč. 42, č. 20 (2003), s. 6321-6332. ISSN 0006-2960 R&D Projects: GA AV ČR IAA5004101; GA AV ČR KJB5004301; GA ČR GA305/01/0418 Institutional research plan: CEZ:AV0Z5004920 Keywords : cross links * DNA * nonclassical platinum complexes Subject RIV: BO - Biophysics Impact factor: 3.922, year: 2003

  20. Cell-free fetal DNA in maternal plasma and noninvasive prenatal diagnosis DNA fetal libre en el plasma materno y diagnóstico prenatal no invasivo DNA livre fetal em plasma materno e diagnóstico pré-natal não invasivo

    Directory of Open Access Journals (Sweden)

    Ester Silveira Ramos

    2006-12-01

    Full Text Available The noninvasive nature of the detection of fetal DNA in the maternal circulation represents the greatest advantage over the conventional methods of prenatal diagnosis. The applications of this methodology involve the detection of the fetal sex, and diagnosis, intra-uterine treatment, and evaluation of the prognosis of many diseases. Fetal cells detected in the maternal circulation have also been shown to be implicated in autoimmune diseases and to represent a potential source of stem cells. On the other hand, with the introduction of a technology that detects the fetal sex as early as at 6-8 weeks of gestation, there is the possibility of early abortion based on sex selection for social purposes. This implies an ethical discussion about the question. The introduction of new noninvasive techniques of prenatal diagnosis and the knowledge of the Nursing Team regarding new methodologies can be of great benefit to the mother and her children, and can help the Genetic Counseling of the families.La naturaleza no invasiva de la investigación del DNA fetal en la circulación materna representa una ventaja importante con relación a los métodos convencionales de diagnóstico prenatal. El uso de esta metodología implica la determinación del sexo fetal y el diagnóstico, el tratamiento intra-útero y la evaluación del pronóstico en muchas enfermedades. Las células fetales detectadas en la circulación maternal también pueden ser implicadas en enfermedades autoinmunes y representar una fuente potencial de células madre. Por otra parte, con la introducción de una tecnología que detecte el sexo fetal entre 6-8 semanas de gestación, existe la posibilidad de aborto precoz basada en la selección del sexo para los propósitos sociales. Esto implica una discusión ética previa sobre este problema. La introducción de nuevas técnicas no invasivas de diagnóstico prenatal y el conocimiento del Equipo de Enfermería con respecto a las nuevas metodolog

  1. Detection of cell-free fetal DNA in maternal plasma of the women with pregnancy, who have high-risk of carrying a Down's fetus in Down's syndrome screening%唐氏综合征高危孕妇血浆游离胎儿DNA的检测

    Institute of Scientific and Technical Information of China (English)

    王靖; 陈汉平

    2011-01-01

    Objective: To investigate the value of Realtime PCR ( RQ-PCR) for detection of fetal DNA in maternal plasma to screen the high-risk women in Down's syndrome screening. Methods: We seclected 42 cases of second trimester pregnant women, 22 cases have high-risk of earring a Down's fetus and 20 cases normal. Using RQ-PCR to detect SRY and GAPDH genes in maternal plasma, the varince between the two groups was analysizd by 2△△C1 method. Results; SRY was detected in all 22 women with male fetus, but SRY was detected in 2 cases of 20 women with femal fetus. The amount of cell-free fetal DNA was significantly higher in high-risk pregnant women than normal (P = 0. 006, < 0.05 ) , the ratio was 2. 79. Conclusion: The quantitative analysis of cell-free fetal DNA in maternal plasma is of great value in the Down's syndrome screening.%目的 探讨实时荧光定量PCR(RQ-PCR)检测孕妇血浆游离胎儿DNA在筛查唐氏综合征高危孕妇中的应用.方法 采用RQ-PCR检测22例唐氏综合征高危孕妇及20例低危孕妇血浆中GAPDH及SRY水平,2-△△Ct法分析两组间的差异.结果 22例孕男胎均检出SRY基因,20例孕女胎中出现2例假阳性,高危组游离胎儿DNA水平明显高于低危组(P=0.006,<0.05),比值为2.79.结论 孕妇血浆游离胎儿DNA的定量检测在唐氏综合征筛查中有重要价值.

  2. DNA and glutathione interactions in cell-free media of asymmetric platinum(II) complexes cis- and trans-[PtCl2(isopropylamine)(1-methylimidazole)]: relations to their different antitumor effects

    Czech Academy of Sciences Publication Activity Database

    Suchánková, Tereza; Vojtíšková, Marie; Reedijk, J.; Brabec, Viktor; Kašpárková, Jana

    2009-01-01

    Roč. 14, č. 1 (2009), s. 75-87. ISSN 0949-8257 R&D Projects: GA MŠk(CZ) LC06030; GA MŠk(CZ) ME08017; GA MŠk(CZ) OC08003; GA AV ČR(CZ) 1QS500040581; GA AV ČR(CZ) KAN200200651; GA AV ČR(CZ) IAA400040803; GA MZd(CZ) NR8562 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA * platinum * cancer Subject RIV: BO - Biophysics Impact factor: 3.415, year: 2009

  3. Quantification of Cell-Free mSHOX2 Plasma DNA for Therapy Monitoring in Advanced Stage Non-Small Cell (NSCLC) and Small-Cell Lung Cancer (SCLC) Patients

    OpenAIRE

    Schmidt, Bernd; Beyer, Julia; Dietrich, Dimo; Bork, Ines; Liebenberg, Volker; Fleischhacker, Michael

    2015-01-01

    Purpose Most patients suffering from advanced lung cancer die within a few months. To exploit new therapy regimens we need better methods for the assessment of a therapy response. Material and Methods In a pilot study we prospectively enrolled 36 patients with advanced NSCLC and SCLC (34 stage IV, 2 stage IIIB) of whom 34 received standard platinum-based chemo/radiotherapy and two were treated with a tyrosine kinase inhibitor. We measured the levels of extracellular methylated SHOX2 DNA (mSHO...

  4. HLA class II alleles and the presence of circulating Epstein-Barr virus DNA in greek patients with nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Karanikiotis, C. [424 Army General Hospital, Thessaloniki (Greece); Daniilidis, M.; Karyotis, N.; Nikolaou, A. [AHEPA Hospital, Aristotle Univ. of Thessaloniki School of Medicine (Greece); Bakogiannis, C. [Hygeia Hospital, Athens (Greece); Economopoulos, T. [' Attikon' Univ. Hospital, Athens (Greece); Murray, S. [Metropolitan Hospital, Athens (Greece); Papamichael, D. [Bank of Cyprus Oncology Center, Nicosia, Cyprus (Greece); Samantas, E. [' Agii Anargiri' Cancer Hospital, Athens (Greece); Skoura, L. [' Hippokration' Hospital, Thessaloniki (Greece); Tselis, N.; Zamboglou, N. [Dept. of Radiotherapy, Offenbach Hospital (Germany); Fountzilas, G. [' Papageorgiou' Hospital, Aristotle Univ. of Thessaloniki School of Medicine (Greece)

    2008-06-15

    Background and purpose: nasopharyngeal carcinoma (NPC) represents a seldom malignancy in most developed countries. Nevertheless, NPC receives an endemic form in concrete racial entities. The aims of this study were to detect the presence of Epstein-Barr virus DNA (EBV-DNA) in peripheral blood of NPC patients, to molecularly define human leukocyte antigens (HLA) DRB1*, DQA1* and DQB1* allele frequencies, and, finally, to determine whether the genetic predisposition of an individual to NPC depends on the liability to EBV infection. Patients and methods: a total of 101 patients of Hellenic origin and nationality, with histologically proven NPC, participated in this study. EBV-DNA detection was also applied in 66 patients with EBV-related malignancies (Hodgkin's [HL] and non-Hodgkin's lymphoma [NHL]) and infectious mononucleosis (IM), as well as in 80 healthy EBV-seropositive controls. Results: 81% of the NPC patients, 77.8% with HL, 72.2% with NHL, and 66.7% with IM were EBV-DNA positive, whereas the EBV genome was detected only in 15% of the healthy controls. These differences were statistically significant in all cases. Analysis of HLA class II antigens showed decreased frequency of the DRB1*07 (p = 0.003), DQA1*0103 (p = 0.002), and DQA1*0201 (p = 0.003) alleles among NPC patients. A significant association between the HLA-DR/DQ alleles and the presence of EBV-DNA in peripheral whole blood was not established. Conclusion: circulating EBV-DNA and specific HLA class II alleles may predispose to or protect from NPC. However, the results of this study suggest that the genetic predisposition of an individual to NPC is independent of the liability to EBV infection. (orig.)

  5. HLA class II alleles and the presence of circulating Epstein-Barr virus DNA in greek patients with nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Background and purpose: nasopharyngeal carcinoma (NPC) represents a seldom malignancy in most developed countries. Nevertheless, NPC receives an endemic form in concrete racial entities. The aims of this study were to detect the presence of Epstein-Barr virus DNA (EBV-DNA) in peripheral blood of NPC patients, to molecularly define human leukocyte antigens (HLA) DRB1*, DQA1* and DQB1* allele frequencies, and, finally, to determine whether the genetic predisposition of an individual to NPC depends on the liability to EBV infection. Patients and methods: a total of 101 patients of Hellenic origin and nationality, with histologically proven NPC, participated in this study. EBV-DNA detection was also applied in 66 patients with EBV-related malignancies (Hodgkin's [HL] and non-Hodgkin's lymphoma [NHL]) and infectious mononucleosis (IM), as well as in 80 healthy EBV-seropositive controls. Results: 81% of the NPC patients, 77.8% with HL, 72.2% with NHL, and 66.7% with IM were EBV-DNA positive, whereas the EBV genome was detected only in 15% of the healthy controls. These differences were statistically significant in all cases. Analysis of HLA class II antigens showed decreased frequency of the DRB1*07 (p 0.003), DQA1*0103 (p = 0.002), and DQA1*0201 (p = 0.003) alleles among NPC patients. A significant association between the HLA-DR/DQ alleles and the presence of EBV-DNA in peripheral whole blood was not established. Conclusion: circulating EBV-DNA and specific HLA class II alleles may predispose to or protect from NPC. However, the results of this study suggest that the genetic predisposition of an individual to NPC is independent of the liability to EBV infection. (orig.)

  6. Quantification of cell-free mSHOX2 Plasma DNA for therapy monitoring in advanced stage non-small cell (NSCLC and small-cell lung cancer (SCLC patients.

    Directory of Open Access Journals (Sweden)

    Bernd Schmidt

    Full Text Available Most patients suffering from advanced lung cancer die within a few months. To exploit new therapy regimens we need better methods for the assessment of a therapy response.In a pilot study we prospectively enrolled 36 patients with advanced NSCLC and SCLC (34 stage IV, 2 stage IIIB of whom 34 received standard platinum-based chemo/radiotherapy and two were treated with a tyrosine kinase inhibitor. We measured the levels of extracellular methylated SHOX2 DNA (mSHOX2 in plasma before and during therapy until re-staging. The mSHOX2 analysis was blinded with respect to the clinical data making it an observational study.According to the re-staging of 31 first-line patients, 19 patients were classified as non-responders while 12 patients were in the responder group. We observed a tight correlation between radiological data and the change of plasma mSHOX2 level as the equivalent for a therapy response. A ROC analysis showed a high discriminatory power for both patient groups already one week after therapy start (AUC 0.844. Additionally, a Kaplan-Meier and Cox Proportional Hazards analyses revealed a strong relationship between survival and plasma mSHOX2 value p ≤ 0.001 (hazard ratio 11.08 providing some evidence for mSHOX2 also being a predictive marker.The longitudinal measurement of extracellular plasma mSHOX2 DNA yields information about the response to cytotoxic treatment and allows an early assessment of treatment response for lung cancer patients. If confirmed in a larger study this would be a valuable tool for selecting and guiding a cytotoxic treatment.

  7. Quantification of Cell-Free mSHOX2 Plasma DNA for Therapy Monitoring in Advanced Stage Non-Small Cell (NSCLC) and Small-Cell Lung Cancer (SCLC) Patients

    Science.gov (United States)

    Schmidt, Bernd; Beyer, Julia; Dietrich, Dimo; Bork, Ines; Liebenberg, Volker; Fleischhacker, Michael

    2015-01-01

    Purpose Most patients suffering from advanced lung cancer die within a few months. To exploit new therapy regimens we need better methods for the assessment of a therapy response. Material and Methods In a pilot study we prospectively enrolled 36 patients with advanced NSCLC and SCLC (34 stage IV, 2 stage IIIB) of whom 34 received standard platinum-based chemo/radiotherapy and two were treated with a tyrosine kinase inhibitor. We measured the levels of extracellular methylated SHOX2 DNA (mSHOX2) in plasma before and during therapy until re-staging. The mSHOX2 analysis was blinded with respect to the clinical data making it an observational study. Results According to the re-staging of 31 first-line patients, 19 patients were classified as non-responders while 12 patients were in the responder group. We observed a tight correlation between radiological data and the change of plasma mSHOX2 level as the equivalent for a therapy response. A ROC analysis showed a high discriminatory power for both patient groups already one week after therapy start (AUC 0.844). Additionally, a Kaplan-Meier and Cox Proportional Hazards analyses revealed a strong relationship between survival and plasma mSHOX2 value p≤0.001 (hazard ratio 11.08) providing some evidence for mSHOX2 also being a predictive marker. Conclusion The longitudinal measurement of extracellular plasma mSHOX2 DNA yields information about the response to cytotoxic treatment and allows an early assessment of treatment response for lung cancer patients. If confirmed in a larger study this would be a valuable tool for selecting and guiding a cytotoxic treatment. PMID:25675432

  8. Diagnosi prenatale non invasiva di malattie monogeniche attraverso la ricerca e l'isolamento di cellule e DNA fetale nel sangue materno

    OpenAIRE

    Contini, Antonella

    2012-01-01

    Prenatal genetic diagnosis of monogenic diseases and chromosomal abnormalities is usually performed collecting fetal samples through villocentesis or amniocentesis. These invasive procedures are associated with 0.5-1% risk for the fetus. Due to it, in recent years, much effort has been made to develop non invasive prenatal diagnosis (NIPD). Two potential non invasive approaches involve the analysis of fetal cells and cell-free fetal DNA (cffDNA) found in the maternal circulation. The prese...

  9. Release of cell-free ice nuclei by Erwinia herbicola.

    OpenAIRE

    Phelps, P; Giddings, T. H.; Prochoda, M; Fall, R

    1986-01-01

    Several ice-nucleating bacterial strains, including Erwinia herbicola, Pseudomonas fluorescens, and Pseudomonas syringae isolates, were examined for their ability to shed ice nuclei into the growth medium. Only E. herbicola isolates shed cell-free ice nuclei active at -2 to -10 degrees C. These cell-free nuclei exhibited a freezing spectrum similar to that of ice nuclei found on whole cells, both above and below -5 degrees C. Partially purified cell-free nuclei were examined by density gradie...

  10. Plasma cell-free DNA in diagnostic KRAS mutation testing

    OpenAIRE

    Isomursu, Aleksi

    2015-01-01

    Epidermaalisen kasvutekijän reseptorin (EGFR) monoklonaalisia vasta-aineita (mAb) käytetään apuna metastaattisen kolorektaalisyövän (mCRC) hoidossa. Aktivoivat mutaatiot KRAS- ja NRAS-onkogeeneissä tekevät syöpäsolut vastustuskykyisiksi anti-EGFR-vasta-aineille, ja tästä syystä tuumorit tulee genotyypittää ennen hoidon aloittamista. Kudosbiopsian ottaminen on kuitenkin invasiivinen toimenpide, eikä näyte välttämättä edusta kattavasti syövän kaikkien solupopulaatioiden geneettisiä muutoksia. V...

  11. Quantitative image cytometry measurements of lipids, DNA, CD45 and cytokeratin for circulating tumor cell identification in a model system

    Science.gov (United States)

    Futia, Gregory L.; Qamar, Lubna; Behbakht, Kian; Gibson, Emily A.

    2016-04-01

    Circulating tumor cell (CTC) identification has applications in both early detection and monitoring of solid cancers. The rarity of CTCs, expected at ~1-50 CTCs per million nucleated blood cells (WBCs), requires identifying methods based on biomarkers with high sensitivity and specificity for accurate identification. Discovery of biomarkers with ever higher sensitivity and specificity to CTCs is always desirable to potentially find more CTCs in cancer patients thus increasing their clinical utility. Here, we investigate quantitative image cytometry measurements of lipids with the biomarker panel of DNA, Cytokeratin (CK), and CD45 commonly used to identify CTCs. We engineered a device for labeling suspended cell samples with fluorescent antibodies and dyes. We used it to prepare samples for 4 channel confocal laser scanning microscopy. The total data acquired at high resolution from one sample is ~ 1.3 GB. We developed software to perform the automated segmentation of these images into regions of interest (ROIs) containing individual cells. We quantified image features of total signal, spatial second moment, spatial frequency second moment, and their product for each ROI. We performed measurements on pure WBCs, cancer cell line MCF7 and mixed samples. Multivariable regressions and feature selection were used to determine combination features that are more sensitive and specific than any individual feature separately. We also demonstrate that computation of spatial characteristics provides higher sensitivity and specificity than intensity alone. Statistical models allowed quantification of the required sensitivity and specificity for detecting small levels of CTCs in a human blood sample.

  12. Comparative analysis of eukaryotic cell-free expression systems.

    Science.gov (United States)

    Hartsough, Emily M; Shah, Pankti; Larsen, Andrew C; Chaput, John C

    2015-09-01

    Cell-free protein synthesis (CFPS) allows researchers to rapidly generate functional proteins independent of cell culture. Although advances in eukaryotic lysates have increased the amount of protein that can be produced, the nuances of different translation systems lead to variability in protein production. To help overcome this problem, we have compared the relative yield and template requirements for three commonly used commercial cell-free translation systems: wheat germ extract (WGE), rabbit reticulocyte lysate (RRL), and HeLa cell lysate (HCL). Our results provide a general guide for researchers interested in using cell-free translation to generate recombinant protein for biomedical applications. PMID:26345507

  13. Folic acid functionalized surface highlights 5-methylcytosine-genomic content within circulating tumor cells

    KAUST Repository

    Malara, Natalia

    2014-07-01

    Although the detection of methylated cell free DNA represents one of the most promising approaches for relapse risk assessment in cancer patients, the low concentration of cell-free circulating DNA constitutes the biggest obstacle in the development of DNA methylation-based biomarkers from blood. This paper describes a method for the measurement of genomic methylation content directly on circulating tumor cells (CTC), which could be used to deceive the aforementioned problem. Since CTC are disease related blood-based biomarkers, they result essential to monitor tumor\\'s stadiation, therapy, and early relapsing lesions. Within surface\\'s bio-functionalization and cell\\'s isolation procedure standardization, the presented approach reveals a singular ability to detect high 5-methylcytosine CTC-subset content in the whole CTC compound, by choosing folic acid (FA) as transducer molecule. Sensitivity and specificity, calculated for FA functionalized surface (FA-surface), result respectively on about 83% and 60%. FA-surface, allowing the detection and characterization of early metastatic dissemination, provides a unique advance in the comprehension of tumors progression and dissemination confirming the presence of CTC and its association with high risk of relapse. This functionalized surface identifying and quantifying high 5-methylcytosine CTC-subset content into the patient\\'s blood lead significant progress in cancer risk assessment, also providing a novel therapeutic strategy.© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Cell-free translation of murine coronavirus RNA.

    OpenAIRE

    Leibowitz, J L; Weiss, S.R.; Paavola, E; Bond, C W

    1982-01-01

    The coding assignments of the intracellular murine hepatitis virus-specific subgenomic RNA species and murine hepatitis virion RNA have been investigated by cell-free translation. The six murine hepatitis virus-specific subgenomic RNAs were partially purified by agarose gel electrophoresis and translated in an mRNA-dependent rabbit reticulocyte lysate, and the cell-free translation products were characterized by gel electrophoresis, immunoprecipitation, and tryptic peptide mapping. These stud...

  15. Nitrogen-doped multiple graphene aerogel/gold nanostar as the electrochemical sensing platform for ultrasensitive detection of circulating free DNA in human serum.

    Science.gov (United States)

    Ruiyi, Li; Ling, Liu; Hongxia, Bei; Zaijun, Li

    2016-05-15

    Graphene aerogel has attracted increasing attention due to its large specific surface area, high-conductivity and electronic interaction. The paper reported a facile synthesis of nitrogen-doped multiple graphene aerogel/gold nanostar (termed as N-doped MGA/GNS) and its use as the electrochemical sensing platform for detection of double stranded (dsDNA). On the one hand, the N-doped MGA offers a much better electrochemical performance compared with classical graphene aerogel. Interestingly, the performance can be enhanced by only increasing the cycle number of graphene oxide gelation. On the other hand, the hybridization with GNS further enhances the electrocatalytic activity towards Fe(CN)6(3-/4-). In addition, the N-doped MGA/GNS provides a well-defined three-dimensional architecture. The unique structure make it is easy to combine with dsDNA to form the electroactive bioconjugate. The integration not only triggers an ultrafast DNA electron and charge transfer, but also realizes a significant synergy between N-doped MGA, GNS and dsDNA. As a result, the electrochemical sensor based on the hybrid exhibits highly sensitive differential pulse voltammetric response (DPV) towards dsDNA. The DPV signal linearly increases with the increase of dsDNA concentration in the range from 1.0×10(-)(21) g ml(-)(1) to 1.0×10(-16) g ml(-1) with the detection limit of 3.9×10(-22) g ml(-1) (S/N=3). The sensitivity is much more than that of all reported DNA sensors. The analytical method was successfully applied in the electrochemical detection of circulating free DNA in human serum. The study also opens a window on the electrical properties of multiple graphene aerogel and DNA as well their hybrids to meet the needs of further applications as special nanoelectronics in molecule diagnosis, bioanalysis and catalysis. PMID:26745792

  16. A cell-free expression and purification process for rapid production of protein biologics.

    Science.gov (United States)

    Sullivan, Challise J; Pendleton, Erik D; Sasmor, Henri H; Hicks, William L; Farnum, John B; Muto, Machiko; Amendt, Eric M; Schoborg, Jennifer A; Martin, Rey W; Clark, Lauren G; Anderson, Mark J; Choudhury, Alaksh; Fior, Raffaella; Lo, Yu-Hwa; Griffey, Richard H; Chappell, Stephen A; Jewett, Michael C; Mauro, Vincent P; Dresios, John

    2016-02-01

    Cell-free protein synthesis has emerged as a powerful technology for rapid and efficient protein production. Cell-free methods are also amenable to automation and such systems have been extensively used for high-throughput protein production and screening; however, current fluidic systems are not adequate for manufacturing protein biopharmaceuticals. In this work, we report on the initial development of a fluidic process for rapid end-to-end production of recombinant protein biologics. This process incorporates a bioreactor module that can be used with eukaryotic or prokaryotic lysates that are programmed for combined transcription/translation of an engineered DNA template encoding for specific protein targets. Purification of the cell-free expressed product occurs through a series of protein separation modules that are configurable for process-specific isolation of different proteins. Using this approach, we demonstrate production of two bioactive human protein therapeutics, erythropoietin and granulocyte-macrophage colony-stimulating factor, in yeast and bacterial extracts, respectively, each within 24 hours. This process is flexible, scalable and amenable to automation for rapid production at the point-of-need of proteins with significant pharmaceutical, medical, or biotechnological value. PMID:26427345

  17. A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery.

    Science.gov (United States)

    Karim, Ashty S; Jewett, Michael C

    2016-07-01

    Speeding up design-build-test (DBT) cycles is a fundamental challenge facing biochemical engineering. To address this challenge, we report a new cell-free protein synthesis driven metabolic engineering (CFPS-ME) framework for rapid biosynthetic pathway prototyping. In our framework, cell-free cocktails for synthesizing target small molecules are assembled in a mix-and-match fashion from crude cell lysates either containing selectively enriched pathway enzymes from heterologous overexpression or directly producing pathway enzymes in lysates by CFPS. As a model, we apply our approach to n-butanol biosynthesis showing that Escherichia coli lysates support a highly active 17-step CoA-dependent n-butanol pathway in vitro. The elevated degree of flexibility in the cell-free environment allows us to manipulate physiochemical conditions, access enzymatic nodes, discover new enzymes, and prototype enzyme sets with linear DNA templates to study pathway performance. We anticipate that CFPS-ME will facilitate efforts to define, manipulate, and understand metabolic pathways for accelerated DBT cycles without the need to reengineer organisms. PMID:26996382

  18. Ultra-high-density 3D DNA arrays within nanoporous biocompatible membranes for single-molecule-level detection and purification of circulating nucleic acids

    Science.gov (United States)

    Aramesh, M.; Shimoni, O.; Fox, K.; Karle, T. J.; Lohrmann, A.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA down to the single-molecule level. The biosensor is based on a chemically functionalized nanoporous diamond-like carbon (DLC) coated alumina membrane. The few nanometer-thick, yet perfect and continuous DLC-coating confers the chemical stability and biocompatibility of the sensor, allowing its direct application in biological conditions. The selective detection is based on complementary hybridization of a fluorescently-tagged circulating cancer oncomarker (a 21-mer nucleic acid) with covalently immobilized DNA on the surface of the membrane. The captured DNAs are detected in the nanoporous structure of the sensor using confocal scanning laser microscopy. The flow-through membrane sensor demonstrates broad-range sensitivity, spanning from 1015 molecules per cm2 down to single molecules, which is several orders of magnitude improvement compared to the flat DNA microarrays. Our study suggests that these flow-through type nanoporous sensors represent a new powerful platform for large volume sampling and ultrasensitive detection of different chemical biomarkers.Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA down to the single-molecule level. The biosensor is based on a chemically functionalized nanoporous diamond-like carbon (DLC) coated

  19. Cell-free protein production for NMR studies.

    Science.gov (United States)

    Takeda, Mitsuhiro; Kainosho, Masatsune

    2012-01-01

    The cell-free expression system using an Escherichia coli extract is a practical method for producing isotope-labeled proteins. The advantage of the cell-free system over cellular expression is that any isotope-labeled amino acid can be incorporated into the target protein with minimal scrambling, thus providing opportunities for advanced isotope labeling of proteins. We have modified the standard protocol for E. coli cell-free expression to cope with two problems specific to NMR sample preparation. First, endogenous amino acids present in the E. coli S30 extract lead to dilution of the added isotope. To minimize the content of the remaining amino acids, a gel filtration step is included in the preparation of the E. coli extract. Second, proteins produced by the cell-free system are not necessarily homogeneous due to incomplete processing of the N-terminal formyl-methionine residue, which complicates NMR spectra. Therefore, the protein of interest is engineered to contain a cleavable N-terminal histidine-tag, which generates a homogeneous protein after the digestion of the tag. Here, we describe the protocol for modified E. coli cell-free expression. PMID:22167669

  20. Tissue-specific transcription enhancement of the fibroin gene characterized by cell-free systems.

    OpenAIRE

    Suzuki, Y.; Tsuda, M.; Takiya, S; Hirose, S; Suzuki, E; Kameda, M; Ninaki, O

    1986-01-01

    Six cell-free extracts have been used to characterize the nature of DNA signals and trans-acting factors responsible for the transcription enhancement of the Bombyx mori fibroin gene. The upstream element of the fibroin gene involved in the enhancement can be divided into two regions. The proximal region, -72 to -32, is recognized as a common enhancing signal by all B. mori extracts from the posterior silk gland, the middle silk gland, the ovarian tissue, and an embryonic cell line. It is wea...

  1. Radio-modification by caffeine alone and in combination with phosphorothioates: in vivo and cell-free studies

    International Nuclear Information System (INIS)

    Caffeine is generally considered to result in radiosensitization by affecting the cell cycle. Data from in vivo studies, however, do not suggest sensitization; caffeine administration did not adversely affect survival of mice irradiated at doses causing hematopoietic injury, or gastrointestinal injury, or when administered in combination with phosphorothioates. For example, caffeine administration (20 mg/kg IP) in combination with the radioprotector WR-151327, S-2-(3-methyl-amino-propyl-amino)propyl-phosphoro-thioic acid. (200 mg/kg IP) resulted in a dose modification factor of 1.54 in comparison to 1.51 for WR-151327 treatment alone. In a cell-free system, the active metabolites of phosphorothiotates, i.e. free thiols and disulfides, appear to mimic polyamines and modulate enzymes involves in DNA structure and synthesis. The free thiol of WR-151327 (WR-151326) actively enhanced topoisomerase I-mediated unwinding of supercoiled plB130 DNA and super-coiling of DNA mediated by DNA gyrase (topoisomerase II). Caffeine, in general, had opposite effects on potoisomerase activities compared to WR-151326. When caffeine was added to the cell-free system together with WR-151326, the stimulatory effects of WR-151326 were suppressed. Further studies are needed in cell-free systems, cells, and animals to elucidate the potential utility of caffeine administration in combination with radiation and other therapeutic agents. (authors)

  2. 孕妇外周血中游离胎儿DNA检测在诊断胎儿染色体异常中的应用价值%Value of detection of cell-free fetal DNA in maternal plasma in the prenatal diagnosis of chromosomal abnormalities

    Institute of Scientific and Technical Information of China (English)

    汪淑娟; 高志英; 卢彦平; 李亚里; 游艳琴; 张立文; 汪龙霞; 徐虹

    2012-01-01

    细胞占羊水总细胞的2%,未行引产,胎儿出生后未发现结构异常;有l例因在穿刺手术前已发生胎死宫内,未能进行核型验证,其前超声提示胎儿较孕周小3周,且全身水肿.(3)3组孕妇血浆中游离胎儿DNA检测结果阴性者3173例,经电话随访,截止至2012年5月30日,已有1230例新生儿出生,经检查均未发现唐氏综合征患儿.结论 游离胎儿DNA检测是一种安全、准确、高通量的21三体产前检测方法,与染色体核型分析结果相符;作为唐氏综合征患儿血清学筛查高风险孕妇的进一步筛选方法,可大幅度减少介入性产前诊断,并可作为临床诊断唐氏综合征的依据.%Objective To investigate the value of detection of fetal cell-free fetal DNA(cff-DNA)in maternal plasma in the prenatal diagnosis of chromosomal abnormalities.Methods The plasma from 3200 gravidas(singleton with 20.3 ± 3.8 gestational weeks)was collected from April 1st 2011 to May 30th 2012.They were divided into 3 groups:(1)To tally 1720 cases were included in the high-risk serological screening group,in which women were younger than 35 years and got high-risk results in serological screening;(2)To tally 1310 cases were included in the advanced age group,in which women's age was more than 35 years;(3)To tally 170 cases were included in the supplementary group,in which women were younger than 35 years and got low-risk results in serological screening,or women who didn't take serological screening tests.All the 3030 gravidas in group 1 and 2 didn't take invasive prenatal diagnosis because of fear of abortion or short of prenatal diagnosis.Cff-DNA were detected by next generation sequencing in Shenzhen BGI Genomics Center for clinical laboratory.Amniocentesis and karyotype analysis were provided to the positive cases and women with negative results were followed-up by telephone.Results(1)The 3200 cases took cff-DNA detection,and 31 cases got positive results,including 27 cases of trisomy 21 and 4 cases of

  3. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Science.gov (United States)

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  4. ESR1 gene promoter region methylation in free circulating DNA and its correlation with estrogen receptor protein expression in tumor tissue in breast cancer patients

    International Nuclear Information System (INIS)

    Tumor expression of estrogen receptor (ER) is an important marker of prognosis, and is predictive of response to endocrine therapy in breast cancer. Several studies have observed that epigenetic events, such methylation of cytosines and deacetylation of histones, are involved in the complex mechanisms that regulate promoter transcription. However, the exact interplay of these factors in transcription activity is not well understood. In this study, we explored the relationship between ER expression status in tumor tissue samples and the methylation of the 5′ CpG promoter region of the estrogen receptor gene (ESR1) isolated from free circulating DNA (fcDNA) in plasma samples from breast cancer patients. Patients (n = 110) with non-metastatic breast cancer had analyses performed of ER expression (luminal phenotype in tumor tissue, by immunohistochemistry method), and the ESR1-DNA methylation status (fcDNA in plasma, by quantitative methylation specific PCR technique). Our results showed a significant association between presence of methylated ESR1 in patients with breast cancer and ER negative status in the tumor tissue (p = 0.0179). There was a trend towards a higher probability of ESR1-methylation in those phenotypes with poor prognosis i.e. 80% of triple negative patients, 60% of HER2 patients, compared to 28% and 5.9% of patients with better prognosis such as luminal A and luminal B, respectively. Silencing, by methylation, of the promoter region of the ESR1 affects the expression of the estrogen receptor protein in tumors of breast cancer patients; high methylation of ESR1-DNA is associated with estrogen receptor negative status which, in turn, may be implicated in the patient’s resistance to hormonal treatment in breast cancer. As such, epigenetic markers in plasma may be of interest as new targets for anticancer therapy, especially with respect to endocrine treatment

  5. Immunogenicities of Env glycoproteins from circulating HIV-1 isolates in China focusing on the strategy of "DNA prime plus protein boost"

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng; WANG Shi-xia; LIU Si-yang; BAO Zuo-yi; ZHUANG Dao-min; LI Lin; ZHANG Chun-hua; ZHANG Lu; LI Jing-yun; LU Shan

    2009-01-01

    Background The adenovirus-based HIV-1 vaccine developed by Merck Company suffered from an unexpected failure in September 2007. This generated a big shift in the strategy of HIV vaccine development with renewed focus on the induction of neutralizing antibodies. A major challenge in developing an HIV-1 vaccine is to identify immunogens and adopt delivery methods that can elicit broadly neutralizing antibodies against primary isolates of different genetic subtypes.Methods Most circulating HIV-1 isolates in China are composed of clades Thai-B, CRF_BC and CRF01_AE. In order to construct DNA vaccines against these 3 HIV-1 subtypes, DNA vaccines carrying the gp120 regions from HIV-1 isolates of GX48(AE), GX79(AE), NX22(BC), GS22(BC), HN24(Thai-B) were constructed. Expression of gp120 from these DNA vaccines was detected by Western blotting in transiently transfected 293T cells. Pilot immunizations of New Zealand white rabbits were performed using the strategy of "DNA prime plus protein boost" and the neutralizing antibody response was detected in a Tzm-bl cell based assay against different HIV-1 strains.Results Response of gp120-specific antibody was relatively low after DNA primes (mean titer=10~(4.72)); however, the titer of gp120-specific antibody went up with 2 protein boosts (mean titer=10~(6.81)). Above all, neutralizing antibody (Nab) titers induced by this combined approach were much better than those elicited by DNA or protein used alone (P <0.01). Neutralizing activities of immunized rabbit sera against several pseudoviruses and laboratorial strains were evaluated, most rabbit sera primed with monovalent vaccine were capable of neutralizing only 1 of 5 viruses, however, sera primed with the polyvalent DNA vaccines were able to neutralize at least 2 of 5 viruses.Conclusion Polyvalent DNA prime plus protein boost is an effective immunization strategy to broaden the neutralization breadth and further research should be performed on the basis of this pilot study.

  6. Cell-free protein synthesis and purification of human dopamine D2 receptor long isoform.

    Science.gov (United States)

    Basu, Dipannita; Castellano, Jessica M; Thomas, Nancy; Mishra, Ram K

    2013-01-01

    The human dopamine D2 receptor long isoform (D2L) has significant implications in neurological and neuropsychiatric disorders such as Parkinson's disease and schizophrenia. Detailed structural knowledge of this receptor is limited owing to its highly hydrophobic nature, which leads to protein aggregation and host toxicity when expressed in cellular systems. The newly emerging field of cell-free protein expression presents numerous advantages to overcome these challenges. This system utilizes protein synthesis machinery and exogenous DNA to synthesize functional proteins outside of intact cells. This study utilizes two different cell-free systems for the synthesis of human dopamine D2L receptor. These include the Escherichia coli lysate-based system and the wheat-germ lysate-based system. The bacterial cell-free method used pET 100/D-TOPO vector to synthesize hexa-histidine-tagged D2L receptor using a dialysis bag system; the resulting protein was purified using nickel-nitrilotriacetic acid affinity resin. The wheat germ system used pEU-glutathione-S-transferase (GST) vector to synthesize GST-tagged D2L receptor using a bilayer translation method; the resulting protein was purified using a GST affinity resin. The presence and binding capacity of the synthesized D2L receptor was confirmed by immunoblotting and radioligand competition assays, respectively. Additionally, in-gel protein sequencing via Nano LC-MS/MS was used to confirm protein synthesis via the wheat germ system. The results showed both systems to synthesize microgram quantities of the receptor. Improved expression of this highly challenging protein can improve research and understanding of the human dopamine D2L receptor. PMID:23424095

  7. Cell-Free Metabolic Engineering: Biomanufacturing beyond the cell

    OpenAIRE

    Dudley, Quentin M.; Karim, Ashty S.; Jewett, Michael C.

    2014-01-01

    Industrial biotechnology and microbial metabolic engineering are poised to help meet the growing demand for sustainable, low-cost commodity chemicals and natural products, yet the fraction of biochemicals amenable to commercial production remains limited. Common problems afflicting the current state-of-the-art include low volumetric productivities, build-up of toxic intermediates or products, and byproduct losses via competing pathways. To overcome these limitations, cell-free metabolic engin...

  8. Cell-free translation of bovine viral diarrhea virus RNA.

    OpenAIRE

    Purchio, A F; Larson, R.; Torborg, L L; Collett, M S

    1984-01-01

    Bovine viral diarrhea virus RNA was translated in a reticulocyte cell-free protein synthesizing system. The purified, 8.2-kilobase, virus-specific RNA species was unable to serve an an efficient message unless it was denatured immediately before translation. In this case, several polypeptides, ranging in molecular weight from 50,000 to 150,000 and most of which were immunoprecipitated by bovine viral diarrhea virus-specific antiserum, were synthesized in vitro. When polyribosomes were used to...

  9. Overview of Production of Protein Using Cell-free Systems

    OpenAIRE

    Gao, Fei Philip

    2014-01-01

    One of the most important steps in protein research is production of the target protein. Cell based systems are mature tools that have long been used to express recombinant proteins by manipulation of the expression organisms. However, it is often challenging to find suitable cell systems that allow for rapid screening of conditions and constructs to produce properly folded, functional proteins in a cost effective manner. As a result, cell-free protein production emerged as an attractive alte...

  10. Cell-Free Synthesis Meets Antibody Production: A Review

    Directory of Open Access Journals (Sweden)

    Marlitt Stech

    2015-01-01

    Full Text Available Engineered antibodies are key players in therapy, diagnostics and research. In addition to full size immunoglobulin gamma (IgG molecules, smaller formats of recombinant antibodies, such as single-chain variable fragments (scFv and antigen binding fragments (Fab, have emerged as promising alternatives since they possess different advantageous properties. Cell-based production technologies of antibodies and antibody fragments are well-established, allowing researchers to design and manufacture highly specific molecular recognition tools. However, as these technologies are accompanied by the drawbacks of being rather time-consuming and cost-intensive, efficient and powerful cell-free protein synthesis systems have been developed over the last decade as alternatives. So far, prokaryotic cell-free systems have been the focus of interest. Recently, eukaryotic in vitro translation systems have enriched the antibody production pipeline, as these systems are able to mimic the natural pathway of antibody synthesis in eukaryotic cells. This review aims to overview and summarize the advances made in the production of antibodies and antibody fragments in cell-free systems.

  11. Detection of Circulating Tumor DNA in the Blood of Cancer Patients: An Important Tool in Cancer Chemoprevention.

    Science.gov (United States)

    Ulz, Peter; Auer, Martina; Heitzer, Ellen

    2016-01-01

    Liquid biopsies represent novel promising tools to determine the impact of clonal heterogeneity on clinical outcomes with the potential to identify novel therapeutic targets in cancer patients. We developed a low-coverage whole-genome sequencing approach in order to noninvasively establish copy number aberrations in plasma DNA from metastasized cancer patients. Using plasma-Seq we were able to monitor genetic evolution including the acquirement of novel copy number changes, such as focal amplifications and chromosomal polysomies. The big advantage of our approach is that it can be performed on a benchtop sequencer, speed, and cost-effectiveness. Therefore, plasma-Seq represents an easy, fast, and affordable tool to provide the urgently needed genetic follow-up data. Here we describe our method including plasma DNA extraction, library preparation, and bioinformatic analyses. PMID:26608289

  12. Absence of regulation of tumor cholesterogenesis in cell-free synthesizing systems

    International Nuclear Information System (INIS)

    In tumors, cholesterol synthesis de novo is deregulated relative to normal tissues. But no previous study has demonstrated the decontrol of tumor cholesterogenesis with cell-free cytosolic systems. They have utilized a lipid synthesizing, post-mitochondrial supernatant system (PMS), with 14C-citrate as substrate, to characterize the cholesterogenic pathway in Morris Hepatoma 3924A and normal rat liver. The rate of cholesterogenesis in the hepatoma PMS was 6-fold higher than that in the liver system on a per cell basis. The ratio of sterol-to-fatty acid synthesis was also significantly greater in the tumor versus the liver PMS. The authors determined the steady-state carbon flux through the early intermediates of the lipogenic pathways. Whereas the liver system displayed a metabolic crossover point at the HMG-CoA reductase reaction, the hepatoma system showed no evidence of control at this rate-limiting site of sterol synthesis. Furthermore, acetyl-CoA formation from added citrate (via ATP-citrate lyase) exhibited rates of 42% and 88% in excess of that required for lipidogenesis by liver and tumor PMS systems, respectively. Clearly, a cell-free PMS system from tumor tissue displays the property of deregulated lipidogenesis, especially cholesterol biosynthesis. The authors suggest that deregulated and continuously operating cholesterogenesis would provide for an increased level of a mevalonate-derived sterol pathway intermediate proposed as a trigger for DNA synthesis and cell proliferation in tumors

  13. Efficient production of isotopically labeled proteins by cell-free synthesis: A practical protocol

    International Nuclear Information System (INIS)

    We provide detailed descriptions of our refined protocols for the cell-free production of labeled protein samples for NMR spectroscopy. These methods are efficient and overcome two critical problems associated with the use of conventional Escherichia coli extract systems. Endogenous amino acids normally present in E. coli S30 extracts dilute the added labeled amino acids and degrade the quality of NMR spectra of the target protein. This problem was solved by altering the protocol used in preparing the S30 extract so as to minimize the content of endogenous amino acids. The second problem encountered in conventional E. coli cell-free protein production is non-uniformity in the N-terminus of the target protein, which can complicate the NMR spectra. This problem was solved by adding a DNA sequence to the construct that codes for a cleavable N-terminal peptide tag. Addition of the tag serves to increase the yield of the protein as well as to ensure a homogeneous protein product following tag cleavage. We illustrate the method by describing its stepwise application to the production of calmodulin samples with different stable isotope labeling patterns for NMR analysis

  14. Plant RNA processing: soybean pre-mRNA in a pea cell-free extract

    International Nuclear Information System (INIS)

    Using a pea cell-free extract they have demonstrated the splicing of an SP6 fusion transcript containing an intron derived from the soybean seed storage protein β-subunit gene. Intron 115 from the conglycinin gene was cloned into a SP6 vector and transcribed using standard recombinant DNA techniques. Incubation of radioactively labeled fusion transcripts in the cell-free system produced a number of products which were identified by primer extension and S1 nuclease analysis. All the products are linear RNA molecules. Lariat intermediates, similar to those found in the yeast and HeLa cell RNA processing systems, have not been detected. The linear RNA products detected in their plant in vitro processing system have various portions of the intron removed which suggests that alternative splice sites are used in processing of this plant intron due to activation of cryptic splice sites or creation of splice sites in the fusion construction. The kinetics of the reactions and parameters of the extract are similar to those determined for the HeLa cell system. Sucrose gradient analysis has demonstrated that the plant RNA products sedimented in a 30S particle, similar in size to that found for the spliceosome of the HeLa cell system

  15. High levels of fetal DNA are associated with increased risk of spontaneous preterm delivery

    DEFF Research Database (Denmark)

    Jakobsen, Tanja R; Clausen, Frederik B; Rode, Line;

    2012-01-01

    To assess whether spontaneous preterm delivery can be predicted from the amount of cell free fetal DNA (cffDNA) as determined by routine fetal RHD genotyping at 25 weeks' gestation.......To assess whether spontaneous preterm delivery can be predicted from the amount of cell free fetal DNA (cffDNA) as determined by routine fetal RHD genotyping at 25 weeks' gestation....

  16. Cell-free nucleic acids as a non-invasive route for investigating atherosclerosis.

    Science.gov (United States)

    Cerne, Darko; Bajalo, Jana Lukac

    2014-01-01

    Metabolic syndrome is directly linked with atherosclerotic burden and cell-free nucleic acids (cf-NA) analysis has recently emerged as a novel research tool in atherosclerosis practice and research. cf-NA are nucleic acids (DNA, mRNA, miRNA, mitochondrial DNA) found in plasma and cell-free fractions of various other biological fluids. They have all the characteristics of the nucleic acids in the cells of their origin, thus constituting an emerging field for non-invasive assessment. Initially, quantitative and qualitative analysis of cf-NA has been accepted as clinically useful in non-invasive prenatal diagnosis, and in the diagnosis and monitoring of numerous cancers. As to atherosclerosis, cf-NA analysis poses an important challenge in diagnosis and prognostic evaluation of acute coronary syndrome, in prediction of cardiovascular disease, in non-invasive early detection of atherosclerosis and understanding its pathological mechanism in vivo, in assessing various issues of treatment for atherosclerosis in vivo, and in the unique simultaneous measurement of mRNA levels and protein concentrations in a single sample of plasma. Examples of its use are presented in this review. Besides the advances in technologies, the precise evaluation and optimization of pre-analytical and analytical aspects of cf-NA analysis have impacted importantly on the reliability of test results. We have, therefore, reviewed the most important analytical considerations. Further clinical studies and analytical improvements will answer the question as to whether cf-NA, as novel biomarkers, can be reliably applied clinically in non-invasive, early diagnosis and monitoring of the vulnerable atherosclerotic plaques of patients who could suffer from acute coronary syndrome. PMID:24320033

  17. Fetal Circulation

    Science.gov (United States)

    ... Pressure High Blood Pressure Tools & Resources Stroke More Fetal Circulation Updated:Jul 8,2016 click to enlarge The ... fetal heart. These two bypass pathways in the fetal circulation make it possible for most fetuses to survive ...

  18. Cell-free metabolic engineering: Biomanufacturing beyond the cell

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, QM; Karim, AS; Jewett, MC

    2014-10-15

    Industrial biotechnology and microbial metabolic engineering are poised to help meet the growing demand for sustainable, low-cost commodity chemicals and natural products, yet the fraction of biochemicals amenable to commercial production remains limited. Common problems afflicting the current state-of-the-art include low volumetric productivities, build-up of toxic intermediates or products, and byproduct losses via competing pathways. To overcome these limitations, cell-free metabolic engineering (CFME) is expanding the scope of the traditional bioengineering model by using in vitro ensembles of catalytic proteins prepared from purified enzymes or crude lysates of cells for the production of target products. In recent years, the unprecedented level of control and freedom of design, relative to in vivo systems, has inspired the development of engineering foundations for cell-free systems. These efforts have led to activation of long enzymatic pathways (>8 enzymes), near theoretical conversion yields, productivities greater than 100 mg L-1 h(-1), reaction scales of >100 L, and new directions in protein purification, spatial organization, and enzyme stability. In the coming years, CFME will offer exciting opportunities to: (i) debug and optimize biosynthetic pathways; (ii) carry out design-build-test iterations without re-engineering organisms; and (iii) perform molecular transformations when bioconversion yields, productivities, or cellular toxicity limit commercial feasibility.

  19. Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion.

    Science.gov (United States)

    Lee, Ko-Eun; Radhakrishnan, Ramalingam; Kang, Sang-Mo; You, Young-Hyun; Joo, Gil-Jae; Lee, In-Jung; Ko, Jae-Hwan; Kim, Jin-Ho

    2015-09-01

    The use of microbial extracts containing plant hormones is a promising technique to improve crop growth. Little is known about the effect of bacterial cell-free extracts on plant growth promotion. This study, based on phytohormonal analyses, aimed at exploring the potential mechanisms by which Enterococcus faecium LKE12 enhances plant growth in oriental melon. A bacterial strain, LKE12, was isolated from soil, and further identified as E. faecium by 16S rDNA sequencing and phylogenetic analysis. The plant growth-promoting ability of an LKE12 bacterial culture was tested in a gibberellin (GA)-deficient rice dwarf mutant (waito-C) and a normal GA biosynthesis rice cultivar (Hwayongbyeo). E. faecium LKE12 significantly improved the length and biomass of rice shoots in both normal and dwarf cultivars through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, and GA53), as well as indole-3-acetic acid (IAA). To the best of our knowledge, this is the first study indicating that E. faecium can produce GAs. Increases in shoot and root lengths, plant fresh weight, and chlorophyll content promoted by E. faecium LKE12 and its cell-free extract inoculated in oriental melon plants revealed a favorable interaction of E. faecium LKE12 with plants. Higher plant growth rates and nutrient contents of magnesium, calcium, sodium, iron, manganese, silicon, zinc, and nitrogen were found in cell-free extract-treated plants than in control plants. The results of the current study suggest that E. faecium LKE12 promotes plant growth by producing GAs and IAA; interestingly, the exogenous application of its cell-free culture extract can be a potential strategy to accelerate plant growth. PMID:25907061

  20. Methyl-binding domain protein-based DNA isolation from human blood serum combines DNA analyses and serum-autoantibody testing

    Directory of Open Access Journals (Sweden)

    Jungbauer Christof

    2011-09-01

    Full Text Available Abstract Background Circulating cell free DNA in serum as well as serum-autoantibodies and the serum proteome have great potential to contribute to early cancer diagnostics via non invasive blood tests. However, most DNA preparation protocols destroy the protein fraction and therefore do not allow subsequent protein analyses. In this study a novel approach based on methyl binding domain protein (MBD is described to overcome the technical difficulties of combining DNA and protein analysis out of one single serum sample. Methods Serum or plasma samples from 98 control individuals and 54 breast cancer patients were evaluated upon silica membrane- or MBD affinity-based DNA isolation via qPCR targeting potential DNA methylation markers as well as by protein-microarrays for tumor-autoantibody testing. Results In control individuals, an average DNA level of 22.8 ± 25.7 ng/ml was detected applying the silica membrane based protocol and 8.5 ± 7.5 ng/ml using the MBD-approach, both values strongly dependent on the serum sample preparation methods used. In contrast to malignant and benign tumor serum samples, cell free DNA concentrations were significantly elevated in sera of metastasizing breast cancer patients. Technical evaluation revealed that serum upon MBD-based DNA isolation is suitable for protein-array analyses when data are consistent to untreated serum samples. Conclusion MBD affinity purification allows DNA isolations under native conditions retaining the protein function, thus for example enabling combined analyses of DNA methylation and autoantigene-profiles from the same serum sample and thereby improving minimal invasive diagnostics.

  1. Clinical utility of KRAS status in circulating plasma DNA compared to archival tumour tissue from patients with metastatic colorectal cancer treated with anti-epidermal growth factor receptor therapy

    DEFF Research Database (Denmark)

    Spindler, Karen-Lise Garm; Pallisgaard, Niels; Appelt, Ane Lindegaard;

    2015-01-01

    -house qPCR method. Results are presented according to REMARK. RESULTS: One-hundred-and-forty patients were included. Thirty-four percent had detectable KRAS mutations in the tumour, compared to 23% in plasma. KRAS detection in archival tumour tissue showed no correlation to survival, whereas plasma KRAS...... an additional prognostic effect. CONCLUSION: The value of clinically relevant mutations could be improved by performing the analysis on circulation plasma DNA rather than archival tumour tissue....

  2. Enhanced cell-free protein expression by fusion with immunoglobulin Cκ domain

    OpenAIRE

    Palmer, Elizabeth; Liu, Hong; Khan, Farid; Taussig, Michael J; He, Mingyue

    2006-01-01

    While cell-free systems are increasingly used for protein expression in structural and functional studies, several proteins are difficult to express or expressed only at low levels in cell-free lysates. Here, we report that fusion of the human immunoglobulin κ light chain constant domain (Cκ) at the C terminus of four representative proteins dramatically improved their production in the Escherichia coli S30 system, suggesting that enhancement of cell-free protein expression by Cκ fusion will ...

  3. Chromophore maturation and fluorescence fluctuation spectroscopy of fluorescent proteins in a cell-free expression system

    OpenAIRE

    Macdonald, Patrick J.; Chen, Yan; Mueller, Joachim D.

    2011-01-01

    Cell-free synthesis, a method for the rapid expression of proteins, is increasingly used to study interactions of complex biological systems. GFP and its variants have become indispensable for fluorescence studies in live cells and are equally attractive as reporters for cell-free systems. This work investigates the use of fluorescence fluctuation spectroscopy (FFS) as a tool for quantitative analysis of protein interactions in cell-free expression systems. We also explore chromophore maturat...

  4. Efficient cell-free expression with the endogenous E. Coli RNA polymerase and sigma factor 70

    OpenAIRE

    Noireaux Vincent; Shin Jonghyeon

    2010-01-01

    Abstract Background Escherichia coli cell-free expression systems use bacteriophage RNA polymerases, such as T7, to synthesize large amounts of recombinant proteins. These systems are used for many applications in biotechnology, such as proteomics. Recently, informational processes have been reconstituted in vitro with cell-free systems. These synthetic approaches, however, have been seriously limited by a lack of transcription modularity. The current available cell-free systems have been opt...

  5. Content of intrinsic disorder influences the outcome of cell-free protein synthesis

    OpenAIRE

    Tokmakov, Alexander A.; Kurotani, Atsushi; Ikeda, Mariko; Terazawa, Yumiko; Shirouzu, Mikako; Stefanov, Vasily; SAKURAI, Tetsuya; Yokoyama, Shigeyuki

    2015-01-01

    Cell-free protein synthesis is used to produce proteins with various structural traits. Recent bioinformatics analyses indicate that more than half of eukaryotic proteins possess long intrinsically disordered regions. However, no systematic study concerning the connection between intrinsic disorder and expression success of cell-free protein synthesis has been presented until now. To address this issue, we examined correlations of the experimentally observed cell-free protein expression yield...

  6. Novel Method of Cell-Free In Vitro Synthesis of the Human Fibroblast Growth Factor 1 Gene

    Directory of Open Access Journals (Sweden)

    Peijun Zuo

    2010-01-01

    Full Text Available Recombinant DNA projects generally involve cell-based gene cloning. However, because template DNA is not always readily available, in vitro chemical synthesis of complete genes from DNA oligonucleotides is becoming the preferred method for cloning. This article describes a new, rapid procedure based on Taq polymerase for the precise assembly of DNA oligonucleotides to yield the complete human fibroblast growth factor 1 (FGF1 gene, which is 468 bp long and has a G+C content of 51.5%. The new method involved two steps: (1 the design of the DNA oligonucleotides to be assembled and (2 the assembly of multiple oligonucleotides by PCR to generate the whole FGF1 gene. The procedure lasted a total of only 2 days, compared with 2 weeks for the conventional procedure. This method of gene synthesis is expected to facilitate various kinds of complex genetic engineering projects that require rapid gene amplification, such as cell-free whole-DNA library construction, as well as the construction of new genes or genes that contain any mutation, restriction site, or DNA tag.

  7. Lung Circulation.

    Science.gov (United States)

    Suresh, Karthik; Shimoda, Larissa A

    2016-01-01

    The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed. © 2016 American Physiological Society. Compr Physiol 6:897-943, 2016. PMID:27065170

  8. Noninvasive prenatal testing by maternal plasma DNA analysis: current practice and future applications.

    Science.gov (United States)

    Chiu, Rossa W K

    2014-01-01

    Prenatal screening of fetal chromosomal aneuploidies and some common genetic diseases is an integral part of antenatal care. Definitive prenatal diagnosis is conventionally achieved by the sampling of fetal genetic material by amniocentesis or chorionic villus sampling. Due to the invasiveness of those procedures, they are associated with a 1 in 200 chance of fetal miscarriage. Hence, researchers have been exploring noninvasive ways to sample fetal genetic material. The presence of cell-free DNA released by the fetus into the circulation of its mother was demonstrated in 1997. Circulating fetal DNA is therefore obtainable through the collection of a blood sample from the pregnant woman without posing any physical harm to the fetus. By analyzing this source of fetal genetic material, researchers have succeeded in developing DNA-based noninvasive tests for the assessment of Down syndrome and single gene diseases. Since the end of 2011, tests for the noninvasive assessment of chromosomal aneuploidies have become commercially available in parts of the world. Recommendations from professional groups have since been made regarding how these tests could be incorporated into the framework of existing prenatal screening programs. More recently, cell-free circulating fetal DNA analysis have been shown to be applicable to the deciphering of the fetal molecular karyotype, genome and methylome. It is envisioned that an increasing number of the noninvasive prenatal tests will become clinically available. The ethical, social and legal implications of the introduction of some of these tests would need to be discussed in the context of different cultures, societal values and the legal framework. PMID:25083893

  9. Expression of Green Fluorescent Protein (GFP using In Vitro translation cell free system

    Directory of Open Access Journals (Sweden)

    M Mohamadipoor

    2009-03-01

    Full Text Available ABSTRACT Background and the purpose of the study: One of the major concerns about recombinant protein production is its possible toxicity for the organism. Purification of the recombinant protein is another challenge in this respect. Recently In Vitro translation cell free system that provides a coupled transcription-translation reaction for protein synthesis to overcome the above mentioned problems has been emerged. The aim of this study was expression of GFP as a marker for gene expression and protein in In Vitro translation system. Methods: pIVEX2.3-GFP plasmid was cloned to E. coli   and the plasmid DNA extracted. In Vitro translation was performed with RTS 100 E. coli Hy kit according to manufacture's instructions. Expression of recombinant fusion protein, His- GFP, was determined by SDS-PAGE, ELISA and western blot analysis. Results: Expected size of recombinant protein was detected in SDS-PAGE and further confirmed by western blot analysis and ELISA. Major conclusion: Results showed that In Vitro translation is suitable for expression of recombinant protein and fusion of the recombinant protein with His-tag facilitates the purification.

  10. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Svetlana Kostyuk

    2015-01-01

    Full Text Available Background. Cell free DNA (cfDNA circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Principal Findings. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci. As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR, PCNA (FACS and antiapoptotic genes (BCL2 (RT-PCR and FACS, BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR. Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs. Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR, in the level of fatty acid binding protein FABP4 (FACS analysis and in the level of fat (Oil Red O. Conclusions. GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose—derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.

  11. Cell-free protein synthesis of a cytotoxic cancer therapeutic: Onconase production and a just-add-water cell-free system.

    Science.gov (United States)

    Salehi, Amin S M; Smith, Mark Thomas; Bennett, Anthony M; Williams, Jacob B; Pitt, William G; Bundy, Bradley C

    2016-02-01

    Biotherapeutics have many promising applications, such as anti-cancer treatments, immune suppression, and vaccines. However, due to their biological nature, some biotherapeutics can be challenging to rapidly express and screen for activity through traditional recombinant methods. For example, difficult-to-express proteins may be cytotoxic or form inclusion bodies during expression, increasing the time, labor, and difficulty of purification and downstream characterization. One potential pathway to simplify the expression and screening of such therapeutics is to utilize cell-free protein synthesis. Cell-free systems offer a compelling alternative to in vivo production, due to their open and malleable reaction environments. In this work, we demonstrate the use of cell-free systems for the expression and direct screening of the difficult-to-express cytotoxic protein onconase. Using cell-free systems, onconase can be rapidly expressed in soluble, active form. Furthermore, the open nature of the reaction environment allows for direct and immediate downstream characterization without the need of purification. Also, we report the ability of a "just-add-water" lyophilized cell-fee system to produce onconase. This lyophilized system remains viable after being stored above freezing for up to one year. The beneficial features of these cell-free systems make them compelling candidates for future biotherapeutic screening and production. PMID:26380966

  12. Cell-free fetal DNA detection in maternal plasma using real-time PCR and cycling probe technology for prenatal screening β-thalassaemia major%实时PCR和cycling probe技术检测母血浆游离胎儿DNA筛选重型β地中海贫血胎儿

    Institute of Scientific and Technical Information of China (English)

    陈熙; 任景慧; 郭辉; 林琳华; 姚秋璇

    2008-01-01

    目的 通过检测孕妇外周血中的游离胎儿DNA来筛选重型β-地中海贫血胎儿.方法 选择行产前基因诊断的夫妇6对,孕妇孕周23~26周.血液学检查:胎儿的父亲均为β-地中海贫血17M/N型,孕妇本人为携带除17M/N型之外的另一β-地中海贫血突变类型.针对CD17(A→T)无义突变,设计β-珠蛋白肽链上该等位基因的一对特异性引物和通过cycling probe法分别设计检测正常基因序列和基因突变位点的两条荧光探针,分别用FAM和HEX荧光标记.结合RT-PCR技术检测孕妇外周血中游离胎儿DNA,诊断胎儿是否遗传了其父亲的β地中海贫血17M/N碱基突变位点.同时与脐血血液学检查所诊断的胎儿地贫基因型对照.结果 提取的6例孕妇血浆DNA模板中有3例同时显示FAM和HEX荧光信号值阳性结果,即这3例孕妇的胎儿遗传了父亲β-珠蛋白肽链上CD17位点的突变碱基(A→T).另外3例孕妇血浆DNA模板的FAM信号值阳性,HEX信号值阴性,即所孕胎儿没有遗传父亲的CD17位点的突变碱基.结论 利用RT-PCR和cycling probe技术检测孕妇外周血中的游离胎儿DNA可用来筛选患重型地中海贫血的胎儿.

  13. Expression optimization and synthetic gene networks in cell-free systems

    OpenAIRE

    Karig, David K.; Iyer, Sukanya; Simpson, Michael L.; Doktycz, Mitchel J.

    2011-01-01

    Synthetic biology offers great promise to a variety of applications through the forward engineering of biological function. Most efforts in this field have focused on employing living cells, yet cell-free approaches offer simpler and more flexible contexts. Here, we evaluate cell-free regulatory systems based on T7 promoter-driven expression by characterizing variants of TetR and LacI repressible T7 promoters in a cell-free context and examining sequence elements that determine expression eff...

  14. Effect of erythrocyte aggregation and flow rate on cell-free layer formation in arterioles

    OpenAIRE

    Ong, Peng Kai; Namgung, Bumseok; Johnson, Paul C.; Kim, Sangho

    2010-01-01

    Formation of a cell-free layer is an important dynamic feature of microcirculatory blood flow, which can be influenced by rheological parameters, such as red blood cell aggregation and flow rate. In this study, we investigate the effect of these two rheological parameters on cell-free layer characteristics in the arterioles (20–60 μm inner diameter). For the first time, we provide here the detailed temporal information of the arteriolar cell-free layer in various rheological conditions to bet...

  15. Characterization of the Cell-Free Layer in a Microvessel by Computer Simulation

    Science.gov (United States)

    Jee, Sol Keun; Freund, Jonathon; Moser, Robert

    2006-11-01

    The cell-free layer between the erythrocyte-rich core of a micro-vessel and the vessel wall is a significant component of the hydrodynamics of the microcirculation. To investigate the mechanics of the cell-free layer, we simulate a two-dimensional periodic blood flow in a microvessel containing numerous erythrocytes, modeled as capsules with elastic shell membranes using the boundary integral method. Cell-cell interactions are mediated with an interaction potential which represents aggregation forces. Our model successfully recreates in-vivo hemodynamic properties such as blunt velocity profile and Fahraeus effect. The cell-free layer has a thickness of order one erythrocyte radius which is consistent with experimental results. To investigate the mechanics of the cell-free layer a number of numerical experiments were conducted, in which the effects of aggregation forces, and lubrication forces are investigated, by varying the aggregation potential, introducing artificial body forces and changing boundary condition.

  16. Cell-Free Expression of Protein Kinase A for Rapid Activity Assays

    OpenAIRE

    Leippe, Donna M.; Kate Qin Zhao; Kevin Hsiao; Slater, Michael R.

    2010-01-01

    Functional protein analysis often calls for lengthy, laborious in vivo protein expression and purification, and can be complicated by the lack of stability of the purified protein. In this study, we demonstrate the feasibility of a simplified procedure for functional protein analysis on magnetic particles using cell-free protein synthesis of the catalytic subunit of human cAMP-dependent protein kinase as a HaloTag® fusion protein. The cell-free protein synthesis systems provide quick access t...

  17. Cell-free biology: exploiting the interface between synthetic biology and synthetic chemistry

    OpenAIRE

    Harris, D. Calvin; Jewett, Michael C.

    2012-01-01

    Just as synthetic organic chemistry once revolutionized the ability of chemists to build molecules (including those that did not exist in nature) following a basic set of design rules, cell-free synthetic biology is beginning to provide an improved toolbox and faster process for not only harnessing but also expanding the chemistry of life. At the interface between chemistry and biology, research in cell-free synthetic systems is proceeding in two different directions: using synthetic biology ...

  18. Efficient cell-free expression with the endogenous E. Coli RNA polymerase and sigma factor 70

    Directory of Open Access Journals (Sweden)

    Noireaux Vincent

    2010-06-01

    Full Text Available Abstract Background Escherichia coli cell-free expression systems use bacteriophage RNA polymerases, such as T7, to synthesize large amounts of recombinant proteins. These systems are used for many applications in biotechnology, such as proteomics. Recently, informational processes have been reconstituted in vitro with cell-free systems. These synthetic approaches, however, have been seriously limited by a lack of transcription modularity. The current available cell-free systems have been optimized to work with bacteriophage RNA polymerases, which put significant restrictions to engineer processes related to biological information. The development of efficient cell-free systems with broader transcription capabilities is required to study complex informational processes in vitro. Results In this work, an efficient cell-free expression system that uses the endogenous E. coli RNA polymerase only and sigma factor 70 for transcription was prepared. Approximately 0.75 mg/ml of Firefly luciferase and enhanced green fluorescent protein were produced in batch mode. A plasmid was optimized with different regulatory parts to increase the expression. In addition, a new eGFP was engineered that is more translatable in cell-free systems than the original eGFP. The protein production was characterized with three different adenosine triphosphate (ATP regeneration systems: creatine phosphate (CP, phosphoenolpyruvate (PEP, and 3-phosphoglyceric acid (3-PGA. The maximum protein production was obtained with 3-PGA. Preparation of the crude extract was streamlined to a simple routine procedure that takes 12 hours including cell culture. Conclusions Although it uses the endogenous E. coli transcription machinery, this cell-free system can produce active proteins in quantities comparable to bacteriophage systems. The E. coli transcription provides much more possibilities to engineer informational processes in vitro. Many E. coli promoters/operators specific to sigma

  19. Prognostic importance of cell-free DNA in chemotherapy resistant ovarian cancer treated with bevacizumab

    DEFF Research Database (Denmark)

    Steffensen, Karina Dahl; Madsen, Christine Vestergaard; Andersen, Rikke Fredslund;

    2014-01-01

    AIM: Treatment of multiresistant epithelial ovarian cancer (EOC) is palliative and patients who have become resistant after multiple lines of chemotherapy often have an unmet need for further and less toxic treatment. Anti-angiogenic therapy has attracted considerable attention in the treatment of...... EOC in combination with chemotherapy. However, only a minor subgroup will benefit from the treatment and there is an obvious need for new markers to select such patients. The purpose of this study was to investigate the effect of single-agent bevacizumab in multiresistant EOC and the importance of......). RESULTS: Eighteen percent responded to treatment according to CA125 and 5.6% had partial response by Response Evaluation Criteria in Solid Tumours (RECIST). Stable disease was seen in 53.5% and 48.6% of the patients by CA125 and RECIST, respectively. Median progression free survival (PFS) and overall...

  20. Posttest risk calculation following positive noninvasive prenatal screening using cell-free DNA in maternal plasma.

    Science.gov (United States)

    Benn, Peter

    2016-06-01

    Noninvasive prenatal screening (NIPS) for fetal chromosome defects has high sensitivity and specificity but is not fully diagnostic. In response to a desire to provide more information to individual women with positive NIPS results, 2 online calculators have been developed to calculate posttest risk (PTR). Use of these calculators is critically reviewed. There is a mathematically dictated requirement for a precise estimate for the specificity to provide an accurate PTR. This is illustrated by showing that a 0.1% decrease in the value for specificities for trisomies 21, 18, and 13 can reduce the PTR from 79-64% for trisomy 21, 39-27% for trisomy 18, and 21-13% for trisomy 13, respectively. Use of the calculators assumes that sensitivity and specificity are constant for all women receiving the test but there is evidence that discordancy between screening results and true fetal karyotype is more common for older women. Use of an appropriate value for the prior risk is also important and for rare disorders there is considerable uncertainty regarding prevalence. For example, commonly used rates for trisomy 13, monosomy-X, triploidy, and 22q11.2 deletion syndrome can vary by >4-fold and this can translate into large differences in PTR. When screening for rare disorders, it may not be possible to provide a reliable PTR if there is uncertainty over the false-positive rate and/or prevalence. These limitations, per se, do not negate the value of screening for rare conditions. However, counselors need to carefully weigh the validity of PTR before presenting them to patients. Additional epidemiologic and NIPS outcome data are needed. PMID:26772793

  1. Interaction of DNA with anticancer ruthenium complexes containing dimethylsulfoxide ligands in cell-free media

    Czech Academy of Sciences Publication Activity Database

    Nováková, Olga; Alessio, E.; Brabec, Viktor

    Seville, 1998, s. 286. [Fourth European Biological Inorganic Chemistry Conference. Seville (ES), 20.07.1998-25.07.1998] Institutional research plan: CEZ:A17/98:Z5-004-9-ii Subject RIV: BO - Biophysics

  2. Rapid detection of cancer related DNA nanoparticulate biomarkers and nanoparticles in whole blood

    Science.gov (United States)

    Heller, Michael J.; Krishnan, Raj; Sonnenberg, Avery

    2010-08-01

    The ability to rapidly detect cell free circulating (cfc) DNA, cfc-RNA, exosomes and other nanoparticulate disease biomarkers as well as drug delivery nanoparticles directly in blood is a major challenge for nanomedicine. We now show that microarray and new high voltage dielectrophoretic (DEP) devices can be used to rapidly isolate and detect cfc-DNA nanoparticulates and nanoparticles directly from whole blood and other high conductance samples (plasma, serum, urine, etc.). At DEP frequencies of 5kHz-10kHz both fluorescent-stained high molecular weight (hmw) DNA, cfc-DNA and fluorescent nanoparticles separate from the blood and become highly concentrated at specific DEP highfield regions over the microelectrodes, while blood cells move to the DEP low field-regions. The blood cells can then be removed by a simple fluidic wash while the DNA and nanoparticles remain highly concentrated. The hmw-DNA could be detected at a level of <260ng/ml and the nanoparticles at <9.5 x 109 particles/ml, detection levels that are well within the range for viable clinical diagnostics and drug nanoparticle monitoring. Disease specific cfc-DNA materials could also be detected directly in blood from patients with Chronic Lymphocytic Leukemia (CLL) and confirmed by PCR genotyping analysis.

  3. DNA Methylation as Clinically Useful Biomarkers—Light at the End of the Tunnel

    Directory of Open Access Journals (Sweden)

    Victor V. Levenson

    2012-01-01

    Full Text Available A recent expansion of our knowledge about epigenetic changes strongly suggests that epigenetic rather than genetic features better reflect disease development, and consequently, can become more conclusive biomarkers for the detection and diagnosis of different diseases. In this paper we will concentrate on the current advances in DNA methylation studies that demonstrate a direct link between abnormal DNA methylation and a disease. This link can be used to develop diagnostic biomarkers that will precisely identify a particular disease. It also appears that disease-specific DNA methylation patterns undergo unique changes in response to treatment with a particular drug, thus raising the possibility of DNA methylation-based biomarkers for the monitoring of treatment efficacy, for prediction of response to treatment, and for the prognosis of outcome. While biomarkers for oncology are the most obvious applications, other fields of medicine are likely to benefit as well. This potential is demonstrated by DNA methylation-based biomarkers for neurological and psychiatric diseases. A special requirement for a biomarker is the possibility of longitudinal testing. In this regard cell-free circulating DNA from blood is especially interesting because it carries methylation markers specific for a particular disease. Although only a few DNA methylation-based biomarkers have attained clinical relevance, the ongoing efforts to decipher disease-specific methylation patterns are likely to produce additional biomarkers for detection, diagnosis, and monitoring of different diseases in the near future.

  4. Cell-free microRNAs in blood and other body fluids, as cancer biomarkers.

    Science.gov (United States)

    Ortiz-Quintero, Blanca

    2016-06-01

    The discovery of cell-free microRNAs (miRNAs) in serum, plasma and other body fluids has yielded an invaluable potential source of non-invasive biomarkers for cancer and other non-malignant diseases. miRNAs in the blood and other body fluids are highly stable in biological samples and are resistant to environmental conditions, such as freezing, thawing or enzymatic degradation, which makes them convenient as potential biomarkers. In addition, they are more easily sampled than tissue miRNAs. Altered levels of cell-free miRNAs have been found in every type of cancer analysed, and increasing evidence indicates that they may participate in carcinogenesis by acting as cell-to-cell signalling molecules. This review summarizes the biological characteristics and mechanisms of release of cell-free miRNAs that make them promising candidates as non-invasive biomarkers of cancer. PMID:27218664

  5. Atomic force microscopy observation on nuclear reassembly in a cell-free system

    Institute of Scientific and Technical Information of China (English)

    YANG Ning; CHEN Zhongcai; ZHANG Zhaohui; ZHU Xing; ZHAI Zhonghe; TANG Xiaowei

    2003-01-01

    Cell-free system is interesting and useful for studying nuclear assembly in mitosis. Atomic force micro- scopy (AFM), which is a simple way for imaging fixed reassemble nuclei with high resolution, has not been used in the cell-free system. In this paper, we put forward an air-drying sample preparation for AFM. Using AFM, we observed nuclear reassembly process within 100 nm resolution ina cell-free system. As a result, we found that the images were artifact-free, and with higher resolution compared with fluorescent optical microscope images. Furthermore, the morphology of membrane vesicles was obtained clearly, and a dynamic change of morphology during the vesicles' approaching to nuclear envelope was also observed, which is enlightened to understand the mechanism of nuclear envelope assembly.

  6. Circulation economics

    DEFF Research Database (Denmark)

    Ingebrigtsen, Stig; Jakobsen, Ove

    2006-01-01

    Purpose - This paper is an attempt to advance the critical discussion regarding environmental and societal responsibility in economics and business. Design/methodology/approach - The paper presents and discusses as a holistic, organic perspective enabling innovative solutions to challenges...... concerning the responsible and efficient use of natural resources and the constructive interplay with culture. To reach the goal of sustainable development, the paper argues that it is necessary to make changes in several dimensions in mainstream economics. This change of perspective is called a turn towards...... presupposes a perspective integrating economic, natural and cultural values. Third, to organize the interplay between all stakeholders we introduce an arena for communicative cooperation. Originality/value - The paper concludes that circulation economics presupposes a change in paradigm, from a mechanistic...

  7. A cell-free protein synthesis system for high-throughput proteomics

    OpenAIRE

    Sawasaki, Tatsuya; Ogasawara, Tomio; Morishita, Ryo; Endo, Yaeta

    2002-01-01

    We report a cell-free system for the high-throughput synthesis and screening of gene products. The system, based on the eukaryotic translation apparatus of wheat seeds, has significant advantages over other commonly used cell-free expression systems. To maximize the yield and throughput of the system, we optimized the mRNA UTRs, designed an expression vector for large-scale protein production, and developed a new strategy to construct PCR-generated DNAs for high-throughput production of many ...

  8. Circulating microRNA expression profiles associated with systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Carlsen, Anting Liu; Schetter, Aaron J; Nielsen, Christoffer;

    2013-01-01

    OBJECTIVE: To evaluate the specificity of expression patterns of cell-free, circulating microRNAs in systemic lupus erythematosus (SLE). METHODS: Total RNA was purified from plasma and 45 different specific mature microRNAs were determined using quantitative reverse transcription polymerase chain...

  9. Successful endothelialization and remodeling of a cell-free small-diameter arterial graft in a large animal model.

    Science.gov (United States)

    Koobatian, Maxwell T; Row, Sindhu; Smith, Randall J; Koenigsknecht, Carmon; Andreadis, Stelios T; Swartz, Daniel D

    2016-01-01

    The large number of coronary artery bypass procedures necessitates development of off-the-shelf vascular grafts that do not require cell or tissue harvest from patients. However, immediate thrombus formation after implantation due to the absence of a healthy endothelium is very likely. Here we present the successful development of an acellular tissue engineered vessel (A-TEV) based on small intestinal submucosa that was functionalized sequentially with heparin and VEGF. A-TEVs were implanted into the carotid artery of an ovine model demonstrating high patency rates and significant host cell infiltration as early as one week post-implantation. At one month, a confluent and functional endothelium was present and the vascular wall showed significant infiltration of host smooth muscle cells exhibiting vascular contractility in response to vaso-agonists. After three months, the endothelium aligned in the direction of flow and the medial layer comprised of circumferentially aligned smooth muscle cells. A-TEVs demonstrated high elastin and collagen content as well as impressive mechanical properties and vascular contractility comparable to native arteries. This is the first demonstration of successful endothelialization, remodeling, and development of vascular function of a cell-free vascular graft that was implanted in the arterial circulation of a pre-clinical animal model. PMID:26561932

  10. Advance in Human Circulating DNA at Critical Heart Attack%人体循环DNA在心脏危急症方面的研究进展

    Institute of Scientific and Technical Information of China (English)

    王敏; 郭延松

    2015-01-01

    血浆DNA和线粒体DNA是血液循环系统中游离状态的DNA.健康人的血液中含有极微量的循环DNA并维持相对恒定,当机体在病理状态时常有不同程度的升高.通过血浆DNA和线粒体DNA的实时监测,可以实现心肌梗死、心脏骤停等心脏危急症的早期诊断及预后评估.

  11. Circulating nucleic acids in plasma and serum (CNAPS: applications in oncology

    Directory of Open Access Journals (Sweden)

    González-Masiá JA

    2013-07-01

    Full Text Available José A González-Masiá,1 Damián García-Olmo,2 Dolores C García-Olmo31General Surgery Service, General University Hospital of Albacete, Albacete, 2Department of Surgery, Universidad Autónoma de Madrid and La Paz University Hospital, IdiPaz, Madrid, 3Experimental Research Unit, General University Hospital of Albacete, Albacete, SpainAbstract: The presence of small amounts of circulating nucleic acids in plasma and serum (CNAPS is not a new finding. The verification that such amounts are significantly increased in cancer patients, and that CNAPS might carry a variety of genetic and epigenetic alterations related to cancer development and progression, has aroused great interest in the scientific community in the last decades. Such alterations potentially reflect changes that occur during carcinogenesis, and include DNA mutations, loss of heterozygosity, viral genomic integration, disruption of microRNA, hypermethylation of tumor suppressor genes, and changes in the mitochondrial DNA. These findings have led to many efforts toward the implementation of new clinical biomarkers based on CNAPS analysis. In the present article, we review the main findings related to the utility of CNAPS analysis for early diagnosis, prognosis, and monitoring of cancer, most of which appear promising. However, due to the lack of harmonization of laboratory techniques, the heterogeneity of disease progression, and the small number of recruited patients in most of those studies, there has been a poor translation of basic research into clinical practice. In addition, many aspects remain unknown, such as the release mechanisms of cell-free nucleic acids, their biological function, and the way by which they circulate in the bloodstream. It is therefore expected that in the coming years, an improved understanding of the relationship between CNAPS and the molecular biology of cancer will lead to better diagnosis, management, and treatment.Keywords: plasma, cancer, clinical

  12. Preparative scale production of functional mouse aquaporin 4 using different cell-free expression modes.

    Directory of Open Access Journals (Sweden)

    Lei Kai

    Full Text Available The continuous progress in the structural and functional characterization of aquaporins increasingly attracts attention to study their roles in certain mammalian diseases. Although several structures of aquaporins have already been solved by crystallization, the challenge of producing sufficient amounts of functional proteins still remains. CF (cell free expression has emerged in recent times as a promising alternative option in order to synthesize large quantities of membrane proteins, and the focus of this report was to evaluate the potential of this technique for the production of eukaryotic aquaporins. We have selected the mouse aquaporin 4 as a representative of mammalian aquaporins. The protein was synthesized in an E. coli extract based cell-free system with two different expression modes, and the efficiencies of two modes were compared. In both, the P-CF (cell-free membrane protein expression as precipitate mode generating initial aquaporin precipitates as well as in the D-CF (cell-free membrane protein expression in presence of detergent mode, generating directly detergent solubilized samples, we were able to obtain mg amounts of protein per ml of cell-free reaction. Purified aquaporin samples solubilized in different detergents were reconstituted into liposomes, and analyzed for the water channel activity. The calculated P(f value of proteoliposome samples isolated from the D-CF mode was 133 µm/s at 10°C, which was 5 times higher as that of the control. A reversible inhibitory effect of mercury chloride was observed, which is consistent with previous observations of in vitro reconstituted aquaporin 4. In this study, a fast and convenient protocol was established for functional expression of aquaporins, which could serve as basis for further applications such as water filtration.

  13. Cell-free protein expression based on extracts from CHO cells.

    Science.gov (United States)

    Brödel, Andreas K; Sonnabend, Andrei; Kubick, Stefan

    2014-01-01

    Protein expression systems are widely used in biotechnology and medicine for the efficient and economic production of therapeutic proteins. Today, cultivated Chinese hamster ovary (CHO) cells are the market dominating mammalian cell-line for the production of complex therapeutic proteins. Despite this outstanding potential of CHO cells, no high-yield cell-free system based on translationally active lysates from these cells has been reported so far. To date, CHO cell extracts have only been used as a foundational research tool for understanding mRNA translation (Lodish et al., 1974; McDowell et al., 1972). In the present study, we address this fact by establishing a novel cell-free protein expression system based on extracts from cultured CHO cells. Lysate preparation, adaptation of in vitro reaction conditions and the construction of particular expression vectors are considered for high-yield protein production. A specific in vitro expression vector, which includes an internal ribosome entry site (IRES) from the intergenic region (IGR) of the Cricket paralysis virus (CrPV), has been constructed in order to obtain optimal performance. The IGR IRES is supposed to bind directly to the eukaryotic 40S ribosomal subunit thereby bypassing the process of translation initiation, which is often a major bottleneck in cell-free systems. The combination of expression vector and optimized CHO cell extracts enables the production of approximately 50 µg/mL active firefly luciferase within 4 h. The batch-type cell-free coupled transcription-translation system has the potential to perform post-translational modifications, as shown by the glycosylation of erythropoietin. Accordingly, the system contains translocationally active endogenous microsomes, enabling the co-translational incorporation of membrane proteins into biological membranes. Hence, the presented in vitro translation system is a powerful tool for the fast and convenient optimization of expression constructs, the

  14. Cell-free synthesis system suitable for disulfide-containing proteins

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Takayoshi [NMR Pipeline Methodology Team, RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045 (Japan); Cell-Free Technology Application Laboratory, RIKEN Innovation Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045 (Japan); Watanabe, Satoru [NMR Pipeline Methodology Team, RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045 (Japan); Kigawa, Takanori, E-mail: kigawa@riken.jp [NMR Pipeline Methodology Team, RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045 (Japan); Cell-Free Technology Application Laboratory, RIKEN Innovation Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045 (Japan); Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2013-02-08

    Highlights: ► Cell-free synthesis system suitable for disulfide-containing proteins is proposed. ► Disulfide bond formation was facilitated by the use of glutathione buffer. ► DsbC catalyzed the efficient shuffling of incorrectly formed disulfide bonds. ► Milligram quantities of functional {sup 15}N-labeled BPTI and lysozyme C were obtained. ► Synthesized proteins were both catalytically functional and properly folded. -- Abstract: Many important therapeutic targets are secreted proteins with multiple disulfide bonds, such as antibodies, cytokines, hormones, and proteases. The preparation of these proteins for structural and functional analyses using cell-based expression systems still suffers from several issues, such as inefficiency, low yield, and difficulty in stable-isotope labeling. The cell-free (or in vitro) protein synthesis system has become a useful protein production method. The openness of the cell-free system allows direct control of the reaction environment to promote protein folding, making it well suited for the synthesis of disulfide-containing proteins. In this study, we developed the Escherichia coli (E. coli) cell lysate-based cell-free synthesis system for disulfide-containing proteins, which can produce sufficient amounts of functional proteins for NMR analyses. Disulfide bond formation was facilitated by the use of glutathione buffer. In addition, disulfide isomerase, DsbC, catalyzed the efficient shuffling of incorrectly formed disulfide bonds during the protein synthesis reaction. We successfully synthesized milligram quantities of functional {sup 15}N-labeled higher eukaryotic proteins, bovine pancreatic trypsin inhibitor (BPTI) and human lysozyme C (LYZ). The NMR spectra and functional analyses indicated that the synthesized proteins are both catalytically functional and properly folded. Thus, the cell-free system is useful for the synthesis of disulfide-containing proteins for structural and functional analyses.

  15. Cell-free Protein Synthesis in an Autoinduction System for NMR Studies of Protein-Protein Interactions

    International Nuclear Information System (INIS)

    Cell-free protein synthesis systems provide facile access to proteins in a nascent state that enables formation of soluble, native protein-protein complexes even if one of the protein components is prone to self-aggregation and precipitation. Combined with selective isotope-labeling, this allows the rapid analysis of protein-protein interactions with few 15N-HSQC spectra. The concept is demonstrated with binary and ternary complexes between the χ, ψ and γ subunits of Escherichia coli DNA polymerase III: nascent, selectively 15N-labeled ψ produced in the presence of χ resulted in a soluble, correctly folded χ-ψ complex, whereas ψ alone precipitated irrespective of whether γ was present or not. The 15N-HSQC spectra showed that the N-terminal segment of ψ is mobile in the χ-ψ complex, yet important for its binding to γ. The sample preparation was greatly enhanced by an autoinduction strategy, where the T7 RNA polymerase needed for transcription of a gene in a T7-promoter vector was produced in situ

  16. Fetal Nucleic Acids in Maternal Circulation: A Genetic Resource for Noninvasive Prenatal Diagnosis

    OpenAIRE

    Banerjee, Monisha; Misra, Deepika

    2013-01-01

    Invasive prenatal diagnosis (PND) holds a multitude of psychological considerations for women, their partners, family and community as a whole. Earlier, the non-invasive screening methods for certain disorders were serum analytes or ultrasound with low sensitivity and high false positivity. The discovery of fetal DNA in maternal plasma has opened up an approach for noninvasive PND (NIPD). Presence of fetal cells and cell-free fetal DNA (cffDNA) in the blood of pregnant women has been accepted...

  17. Synthetic biology outside the cell: linking computational tools to cell-free systems.

    Science.gov (United States)

    Lewis, Daniel D; Villarreal, Fernando D; Wu, Fan; Tan, Cheemeng

    2014-01-01

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems. PMID:25538941

  18. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    Directory of Open Access Journals (Sweden)

    Daniel eLewis

    2014-12-01

    Full Text Available As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo systems, with only a few examples of prominent work done on predicting the dynamics of cell-free systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  19. Efficient cell-free production of olfactory receptors: Detergent optimization, structure, and ligand binding analyses

    OpenAIRE

    Kaiser, Liselotte; Graveland-Bikker, Johanna; Steuerwald, Dirk; Vanberghem, Mélanie; Herlihy, Kara; Zhang, Shuguang

    2008-01-01

    High-level production of membrane proteins, particularly of G protein-coupled receptors (GPCRs) in heterologous cell systems encounters a number of difficulties from their inherent hydrophobicity in their transmembrane domains, which frequently cause protein aggregation and cytotoxicity and thus reduce the protein yield. Recent advances in cell-free protein synthesis circumvent those problems to produce membrane proteins with a yield sometimes exceeding the cell-based approach. Here, we repor...

  20. Efficient cell-free production of olfactory receptors: detergent optimization, structure, and ligand binding analyses.

    Science.gov (United States)

    Kaiser, Liselotte; Graveland-Bikker, Johanna; Steuerwald, Dirk; Vanberghem, Mélanie; Herlihy, Kara; Zhang, Shuguang

    2008-10-14

    High-level production of membrane proteins, particularly of G protein-coupled receptors (GPCRs) in heterologous cell systems encounters a number of difficulties from their inherent hydrophobicity in their transmembrane domains, which frequently cause protein aggregation and cytotoxicity and thus reduce the protein yield. Recent advances in cell-free protein synthesis circumvent those problems to produce membrane proteins with a yield sometimes exceeding the cell-based approach. Here, we report cell-free production of a human olfactory receptor 17-4 (hOR17-4) using the wheat germ extract. Using the simple method, we also successful produced two additional olfactory receptors. To obtain soluble olfactory receptors and to increase yield, we directly added different detergents in varying concentrations to the cell-free reaction. To identify a purification buffer system that maintained the receptor in a nonaggregated form, we developed a method that uses small-volume size-exclusion column chromatography combined with rapid and sensitive dot-blot detection. Different buffer components including salt concentration, various detergents and detergent concentration, and reducing agent and its concentrations were evaluated for their ability to maintain the cell-free produced protein stable and nonaggregated. The purified olfactory receptor displays a typical a alpha-helical CD spectrum. Surface plasmon resonance measurements were used to show binding of a known ligand undecanal to hOR17-4. Our approach to produce a high yield of purified olfactory receptor is a milestone toward obtaining a large quantity of olfactory receptors for designing bionic sensors. Furthermore, this simple approach may be broadly useful not only for other classes of GPCRs but also for other membrane proteins. PMID:18840687

  1. Spatial Organization of Cytokinesis Signaling Reconstituted in a Cell-Free System*

    OpenAIRE

    Nguyen, Phuong A.; Groen, Aaron C.; Loose, Martin; Ishihara, Keisuke; Wühr, Martin; Field, Christine M.; Mitchison, Timothy J.

    2014-01-01

    During animal cell division, the cleavage furrow is positioned by microtubules that signal to the actin cortex at the cell midplane. We developed a cell-free system to recapitulate cytokinesis signaling using cytoplasmic extract from Xenopus eggs. Microtubules grew out as asters from artificial centrosomes and met to organize antiparallel overlap zones. These zones blocked interpenetration of neighboring asters and recruited cytokinesis midzone proteins including the Chromosoma...

  2. Enzymatic cyanide degradation by cell-free extract of Rhodococcus UKMP-5M.

    Science.gov (United States)

    Nallapan Maniyam, Maegala; Sjahrir, Fridelina; Latif Ibrahim, Abdul; Cass, Anthony E G

    2015-01-01

    The cell-free extract of locally isolated Rhodococcus UKMP-5M strain was used as an alternative to develop greener and cost effective cyanide removal technology. The present study aims to assess the viability of the cell-free extract to detoxify high concentrations of cyanide which is measured through the monitoring of protein concentration and specific cyanide-degrading activity. When cyanide-grown cells were subjected to grinding in liquid nitrogen which is relatively an inexpressive and fast cell disruption method, highest cyanide-degrading activity of 0.63 mM min(-1) mg(-1) protein was obtained in comparison to enzymatic lysis and agitation with fine glass beads. The cell-free extracts managed to degrade 80% of 20 mM KCN within 80 min and the rate of cyanide consumption increased linearly as the concentration of protein was raised. In both cases, the addition of co-factor was not required which proved to be advantageous economically. The successful formation of ammonia and formate as endproducts indicated that the degradation of cyanide by Rhodococcus UKMP-5M proceeded via the activity of cyanidase and the resulting non-toxic products are safe for disposal into the environment. Further verification with SDS-PAGE revealed that the molecular weight of the active enzyme was estimated to be 38 kDa, which is consistent with previously reported cyanidases. Thus, the utilization of cell-free extracts as an alternative to live microbial in cyanide degradation offers numerous advantageous such as the potential to tolerate and degrade higher concentration of cyanide and total reduction in the overall cost of operation since the requirement for nutrient support is irrelevant. PMID:25723061

  3. A cell-free extract from yeast cells for studying mRNA turnover.

    OpenAIRE

    Vreken, P.; Buddelmeijer, N.; Raué, H A

    1992-01-01

    We have isolated a cell-free extract from yeast cells that reproduces the differences observed in vivo in the rate of turnover of individual yeast mRNAs. Detailed analysis of the degradation of yeast phosphoglycerate kinase (PGK) mRNA in this system demonstrated that both natural and synthetically prepared PGK transcripts are degraded by the same pathway previously established by us in vivo, consisting of endonucleolytic cleavage at a number of 5'-GGUG-3' sequence motifs within a short target...

  4. Robust production of recombinant phosphoproteins using cell-free protein synthesis

    OpenAIRE

    Oza, Javin P.; Aerni, Hans R.; Pirman, Natasha L.; Barber, Karl W.; ter Haar, Charlotte M.; Rogulina, Svetlana; Amrofell, Matthew B.; Isaacs, Farren J.; Rinehart, Jesse; Jewett, Michael C.

    2015-01-01

    Understanding the functional and structural consequences of site-specific protein phosphorylation has remained limited by our inability to produce phosphoproteins at high yields. Here we address this limitation by developing a cell-free protein synthesis (CFPS) platform that employs crude extracts from a genomically recoded strain of Escherichia coli for site-specific, co-translational incorporation of phosphoserine into proteins. We apply this system to the robust production of up to milligr...

  5. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    OpenAIRE

    Lewis, Daniel D.; Villarreal, Fernando D.; Wu, Fan; Tan, Cheemeng

    2014-01-01

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the...

  6. Cell-free synthesis and assembly of connexins into functional gap junction membrane channels.

    OpenAIRE

    Falk, M M; Buehler, L K; Kumar, N.M.; Gilula, N B

    1997-01-01

    Several different gap junction channel subunit isotypes, known as connexins, were synthesized in a cell-free translation system supplemented with microsomal membranes to study the mechanisms involved in gap junction channel assembly. Previous results indicated that the connexins were synthesized as membrane proteins with their relevant transmembrane topology. An integrated biochemical and biophysical analysis indicated that the connexins assembled specifically with other connexin subunits. No...

  7. Degradation of tannic acid by cell-free extracts of Lactobacillus plantarum

    OpenAIRE

    Rodríguez, Héctor; Rivas, Blanca de las; Gómez-Cordovés, Carmen; Muñoz, Rosario

    2008-01-01

    The ability of Lactobacillus plantarum CECT 748T to degrade hydrolysable tannins was evaluated. Three commercial tannic acids were incubated in presence of cell-free extracts containing soluble proteins from L. plantarum. By HPLC analyses, almost a complete tannic acid degradation was observed in the three samples assayed. By using HPLC-DAD/ESI-MS, we partially determined the composition of tannic acid from Quercus infectoria galls. This tannic acid is a gallotannin mainly composed o...

  8. Preparative Scale Production of Functional Mouse Aquaporin 4 Using Different Cell-Free Expression Modes

    OpenAIRE

    Kai, Lei; Kaldenhoff, Ralf; Lian, Jiazhang; Zhu, Xiangcheng; Dötsch, Volker; Bernhard, Frank; Cen, Peilin; Xu, Zhinan

    2010-01-01

    The continuous progress in the structural and functional characterization of aquaporins increasingly attracts attention to study their roles in certain mammalian diseases. Although several structures of aquaporins have already been solved by crystallization, the challenge of producing sufficient amounts of functional proteins still remains. CF (cell free) expression has emerged in recent times as a promising alternative option in order to synthesize large quantities of membrane proteins, and ...

  9. A cell-free approach to accelerate the study of protein–protein interactions in vitro

    OpenAIRE

    Sierecki, E.; Giles, N.; Polinkovsky, M.; Moustaqil, M.; Alexandrov, K.; Gambin, Y.

    2013-01-01

    Protein–protein interactions are highly desirable targets in drug discovery, yet only a fraction of drugs act as binding inhibitors. Here, we review the different technologies used to find and validate protein–protein interactions. We then discuss how the novel combination of cell-free protein expression, AlphaScreen and single-molecule fluorescence spectroscopy can be used to rapidly map protein interaction networks, determine the architecture of protein complexes, and find new targets for d...

  10. Percutaneous Mitral Valve Repair in Mitral Regurgitation Reduces Cell-Free Hemoglobin and Improves Endothelial Function.

    Directory of Open Access Journals (Sweden)

    Christos Rammos

    Full Text Available Endothelial dysfunction is predictive for cardiovascular events and may be caused by decreased bioavailability of nitric oxide (NO. NO is scavenged by cell-free hemoglobin with reduction of bioavailable NO up to 70% subsequently deteriorating vascular function. While patients with mitral regurgitation (MR suffer from an impaired prognosis, mechanisms relating to coexistent vascular dysfunctions have not been described yet. Therapy of MR using a percutaneous mitral valve repair (PMVR approach has been shown to lead to significant clinical benefits. We here sought to investigate the role of endothelial function in MR and the potential impact of PMVR.Twenty-seven patients with moderate-to-severe MR treated with the MitraClip® device were enrolled in an open-label single-center observational study. Patients underwent clinical assessment, conventional echocardiography, and determination of endothelial function by measuring flow-mediated dilation (FMD of the brachial artery using high-resolution ultrasound at baseline and at 3-month follow-up. Patients with MR demonstrated decompartmentalized hemoglobin and reduced endothelial function (cell-free plasma hemoglobin in heme 28.9±3.8 μM, FMD 3.9±0.9%. Three months post-procedure, PMVR improved ejection fraction (from 41±3% to 46±3%, p = 0.03 and NYHA functional class (from 3.0±0.1 to 1.9±1.7, p<0.001. PMVR was associated with a decrease in cell free plasma hemoglobin (22.3±2.4 μM, p = 0.02 and improved endothelial functions (FMD 4.8±1.0%, p<0.0001.We demonstrate here that plasma from patients with MR contains significant amounts of cell-free hemoglobin, which is accompanied by endothelial dysfunction. PMVR therapy is associated with an improved hemoglobin decompartmentalization and vascular function.

  11. Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold

    OpenAIRE

    Fagerholm, Per; Lagali, Neil; Ong, Jeb A.; Merrett, Kimberley; Jackson, W. Bruce; Polarek, James W.; Suuronen, Erik J.; Liu, YuWen; Brunette, Isabelle; Griffith, May

    2014-01-01

    We developed cell-free implants, comprising carbodiimide crosslinked recombinant human collagen (RHC), to enable corneal regeneration by endogenous cell recruitment, to address the worldwide shortage of donor corneas. Patients were grafted with RHC implants. Over four years, the regenerated neo-corneas were stably integrated without rejection, without the long immunosuppression regime needed by donor cornea patients. There was no recruitment of inflammatory dendritic cells into the implant ar...

  12. Cell-free expression and stable isotope labelling strategies for membrane proteins

    International Nuclear Information System (INIS)

    Membrane proteins are highly underrepresented in the structural data-base and remain one of the most challenging targets for functional and structural elucidation. Their roles in transport and cellular communication, furthermore, often make over-expression toxic to their host, and their hydrophobicity and structural complexity make isolation and reconstitution a complicated task, especially in cases where proteins are targeted to inclusion bodies. The development of cell-free expression systems provides a very interesting alternative to cell-based systems, since it circumvents many problems such as toxicity or necessity for the transportation of the synthesized protein to the membrane, and constitutes the only system that allows for direct production of membrane proteins in membrane-mimetic environments which may be suitable for liquid state NMR measurements. The unique advantages of the cell-free expression system, including strong expression yields as well as the direct incorporation of almost any combination of amino acids with very little metabolic scrambling, has allowed for the development of a wide-array of isotope labelling techniques which facilitate structural investigations of proteins whose spectral congestion and broad line-widths may have earlier rendered them beyond the scope of NMR. Here we explore various labelling strategies in conjunction with cell-free developments, with a particular focus on α-helical transmembrane proteins which benefit most from such methods.

  13. Fluorescent in situ folding control for rapid optimization of cell-free membrane protein synthesis.

    Directory of Open Access Journals (Sweden)

    Annika Müller-Lucks

    Full Text Available Cell-free synthesis is an open and powerful tool for high-yield protein production in small reaction volumes predestined for high-throughput structural and functional analysis. Membrane proteins require addition of detergents for solubilization, liposomes, or nanodiscs. Hence, the number of parameters to be tested is significantly higher than with soluble proteins. Optimization is commonly done with respect to protein yield, yet without knowledge of the protein folding status. This approach contains a large inherent risk of ending up with non-functional protein. We show that fluorophore formation in C-terminal fusions with green fluorescent protein (GFP indicates the folding state of a membrane protein in situ, i.e. within the cell-free reaction mixture, as confirmed by circular dichroism (CD, proteoliposome reconstitution and functional assays. Quantification of protein yield and in-gel fluorescence intensity imply suitability of the method for membrane proteins of bacterial, protozoan, plant, and mammalian origin, representing vacuolar and plasma membrane localization, as well as intra- and extracellular positioning of the C-terminus. We conclude that GFP-fusions provide an extension to cell-free protein synthesis systems eliminating the need for experimental folding control and, thus, enabling rapid optimization towards membrane protein quality.

  14. Comparison of various staining methods for the detection of Cryptosporidium in cell-free culture.

    Science.gov (United States)

    Boxell, Annika; Hijjawi, Nawal; Monis, Paul; Ryan, Una

    2008-09-01

    The complete development of Cryptosporidium in host cell-free medium first described in 2004, represented a significant advance that can facilitate many aspects of Cryptosporidium research. A current limitation of host cell-free cultivation is the difficulty involved in visualising the life-cycle stages as they are very small in size, morphologically difficult to identify and dispersed throughout the media. This is in contrast to conventional cell culture methods for Cryptosporidium, where it is possible to focus on the host cells and view the foci of infection on the host cells. In the present study, we compared three specific and three non-specific techniques for visualising Cryptosporidium parvum life-cycle stages in cell-free culture; antibody staining using anti-sporozoite and anti-oocyst wall antibodies (Sporo-Glo and Crypto Cel), fluorescent in-situ hybridization (FISH) using a Cryptosporidium specific rRNA oligonucleotide probe and the non-specific dyes; Texas Red, carboxyfluorescein diacetate succinimidyl ester (CFSE) and 4,6' diamino-2-phenylindole dihydrochloride (DAPI). Results revealed that a combination of Sporo-Glo and Crypto Cel staining resulted in easy and reliable identification of all life-cycle stages. PMID:18547565

  15. An automated method for cell-free layer width determination in small arterioles

    International Nuclear Information System (INIS)

    Histogram-based thresholding techniques utilized for cell-free layer width measurement in arteriolar flow may produce an overestimation of the layer width since they do not consider faint shaded regions near the vessel wall as part of the erythrocyte column. To address this problem, we developed a new method for detecting the boundary of the erythrocyte column based on an edge detection algorithm. This automated method (grayscale method) provides local detections of the inner vessel wall as well as the boundary between the cell-free layer and the erythrocyte column without binarization of grayscale images. The cell-free layer width measurements using the grayscale method and existing techniques (minimum method and Otsu's method) were compared with those determined manually in arteriolar flows of the rat cremaster muscle. In the absence of the shaded regions, values obtained by the grayscale method and minimum method were statistically in good agreement with the manual method but not in the case of Otsu's method. When the faint shaded regions were present, the grayscale method appeared to produce more accurate results than the minimum method and Otsu's method. (note)

  16. Circulating Tumor Cells: What Is in It for the Patient? A Vision towards the Future

    Directory of Open Access Journals (Sweden)

    Anja van de Stolpe

    2014-05-01

    Full Text Available Knowledge on cellular signal transduction pathways as drivers of cancer growth and metastasis has fuelled development of “targeted therapy” which “targets” aberrant oncogenic signal transduction pathways. These drugs require nearly invariably companion diagnostic tests to identify the tumor-driving pathway and the cause of the abnormal pathway activity in a tumor sample, both for therapy response prediction as well as for monitoring of therapy response and emerging secondary drug resistance. Obtaining sufficient tumor material for this analysis in the metastatic setting is a challenge, and circulating tumor cells (CTCs may provide an attractive alternative to biopsy on the premise that they can be captured from blood and the companion diagnostic test results are correctly interpreted. We discuss novel companion diagnostic directions, including the challenges, to identify the tumor driving pathway in CTCs, which in combination with a digital pathology platform and algorithms to quantitatively interpret complex CTC diagnostic results may enable optimized therapy response prediction and monitoring. In contrast to CTC-based companion diagnostics, CTC enumeration is envisioned to be largely replaced by cell free tumor DNA measurements in blood for therapy response and recurrence monitoring. The recent emergence of novel in vitro human model systems in the form of cancer-on-a-chip may enable elucidation of some of the so far elusive characteristics of CTCs, and is expected to contribute to more efficient CTC capture and CTC-based diagnostics.

  17. Circulating Tumor Cells: What Is in It for the Patient? A Vision towards the Future

    Energy Technology Data Exchange (ETDEWEB)

    Stolpe, Anja van de, E-mail: Anja.van.de.stolpe@philips.com [Fellow, Precision and Decentralized Diagnostics, Philips Research, Eindhoven 5656 AE (Netherlands); Toonder, Jaap M. J. den [Chair Microsystems, Eindhoven University of Technology, Postbox 513, Eindhoven 5600 MB (Netherlands)

    2014-05-28

    Knowledge on cellular signal transduction pathways as drivers of cancer growth and metastasis has fuelled development of “targeted therapy” which “targets” aberrant oncogenic signal transduction pathways. These drugs require nearly invariably companion diagnostic tests to identify the tumor-driving pathway and the cause of the abnormal pathway activity in a tumor sample, both for therapy response prediction as well as for monitoring of therapy response and emerging secondary drug resistance. Obtaining sufficient tumor material for this analysis in the metastatic setting is a challenge, and circulating tumor cells (CTCs) may provide an attractive alternative to biopsy on the premise that they can be captured from blood and the companion diagnostic test results are correctly interpreted. We discuss novel companion diagnostic directions, including the challenges, to identify the tumor driving pathway in CTCs, which in combination with a digital pathology platform and algorithms to quantitatively interpret complex CTC diagnostic results may enable optimized therapy response prediction and monitoring. In contrast to CTC-based companion diagnostics, CTC enumeration is envisioned to be largely replaced by cell free tumor DNA measurements in blood for therapy response and recurrence monitoring. The recent emergence of novel in vitro human model systems in the form of cancer-on-a-chip may enable elucidation of some of the so far elusive characteristics of CTCs, and is expected to contribute to more efficient CTC capture and CTC-based diagnostics.

  18. Circulating Tumor Cells: What Is in It for the Patient? A Vision towards the Future

    International Nuclear Information System (INIS)

    Knowledge on cellular signal transduction pathways as drivers of cancer growth and metastasis has fuelled development of “targeted therapy” which “targets” aberrant oncogenic signal transduction pathways. These drugs require nearly invariably companion diagnostic tests to identify the tumor-driving pathway and the cause of the abnormal pathway activity in a tumor sample, both for therapy response prediction as well as for monitoring of therapy response and emerging secondary drug resistance. Obtaining sufficient tumor material for this analysis in the metastatic setting is a challenge, and circulating tumor cells (CTCs) may provide an attractive alternative to biopsy on the premise that they can be captured from blood and the companion diagnostic test results are correctly interpreted. We discuss novel companion diagnostic directions, including the challenges, to identify the tumor driving pathway in CTCs, which in combination with a digital pathology platform and algorithms to quantitatively interpret complex CTC diagnostic results may enable optimized therapy response prediction and monitoring. In contrast to CTC-based companion diagnostics, CTC enumeration is envisioned to be largely replaced by cell free tumor DNA measurements in blood for therapy response and recurrence monitoring. The recent emergence of novel in vitro human model systems in the form of cancer-on-a-chip may enable elucidation of some of the so far elusive characteristics of CTCs, and is expected to contribute to more efficient CTC capture and CTC-based diagnostics

  19. Cell-to-Cell Transmission Can Overcome Multiple Donor and Target Cell Barriers Imposed on Cell-Free HIV

    OpenAIRE

    Zhong, Peng; Agosto, Luis M.; Ilinskaya, Anna; Dorjbal, Batsukh; Truong, Rosaline; Derse, David; Uchil, Pradeep D; Heidecker, Gisela; Mothes, Walther

    2013-01-01

    Virus transmission can occur either by a cell-free mode through the extracellular space or by cell-to-cell transmission involving direct cell-to-cell contact. The factors that determine whether a virus spreads by either pathway are poorly understood. Here, we assessed the relative contribution of cell-free and cell-to-cell transmission to the spreading of the human immunodeficiency virus (HIV). We demonstrate that HIV can spread by a cell-free pathway if all the steps of the viral replication...

  20. Repair of X-ray-induced single-strand breaks by a cell-free system

    International Nuclear Information System (INIS)

    Repair of X-ray-induced single-strand breaks of DNA was studied in vitro using an exonuclease purified from mouse ascites sarcoma (SR-C3H/He) cells. X-ray-dose-dependent unscheduled DNA synthesis was primed by the exonuclease. Repair of X-ray-induced single-strand breaks in pUC19 plasmid DNA was demonstrated by agarose gel electrophoresis after incubating the damaged DNA with the exonuclease, DNA polymerase (Klenow fragment of DNA polymerase I or DNA polymerase β purified from SR-C3H/He cells), four deoxynucleoside triphosphates, ATP and DNA ligase (T4 DNA ligase or DNA ligase I purified from calf thymus). The present results suggested that the exonuclease is involved in the initiation of repair of X-ray-induced single-strand breaks in removing 3' ends of X-ray-damaged DNA. (author)

  1. Oral epithelial cells are susceptible to cell-free and cell-associated HIV-1 infection in vitro

    International Nuclear Information System (INIS)

    Epithelial cells lining the oral cavity are exposed to HIV-1 through breast-feeding and oral-genital contact. Genital secretions and breast milk of HIV-1-infected subjects contain both cell-free and cell-associated virus. To determine if oral epithelial cells can be infected with HIV-1 we exposed gingival keratinocytes and adenoid epithelial cells to cell-free virus and HIV-1-infected peripheral blood mononuclear cells and monocytes. Using primary isolates we determined that gingival keratinocytes are susceptible to HIV-1 infection via cell-free CD4-independent infection only. R5 but not X4 viral strains were capable of infecting the keratinocytes. Further, infected cells were able to release infectious virus. In addition, primary epithelial cells isolated from adenoids were also susceptible to infection; both cell-free and cell-associated virus infected these cells. These data have potential implications in the transmission of HIV-1 in the oral cavity

  2. Study of messenger RNA inactivation and protein degradation in an Escherichia coli cell-free expression system

    OpenAIRE

    Noireaux Vincent; Shin Jonghyeon

    2010-01-01

    Abstract Background A large amount of recombinant proteins can be synthesized in a few hours with Escherichia coli cell-free expression systems based on bacteriophage transcription. These cytoplasmic extracts are used in many applications that require large-scale protein production such as proteomics and high throughput techniques. In recent years, cell-free systems have also been used to engineer complex informational processes. These works, however, have been limited by the current availabl...

  3. Automated system for high-throughput protein production using the dialysis cell-free method.

    Science.gov (United States)

    Aoki, Masaaki; Matsuda, Takayoshi; Tomo, Yasuko; Miyata, Yukako; Inoue, Makoto; Kigawa, Takanori; Yokoyama, Shigeyuki

    2009-12-01

    High-throughput protein production systems have become an important issue, because protein production is one of the bottleneck steps in large-scale structural and functional analyses of proteins. We have developed a dialysis reactor and a fully automated system for protein production using the dialysis cell-free synthesis method, which we previously established to produce protein samples on a milligram scale in a high-throughput manner. The dialysis reactor was designed to be suitable for an automated system and has six dialysis cups attached to a flat dialysis membrane. The automated system is based on a Tecan Freedom EVO 200 workstation in a three-arm configuration, and is equipped with shaking incubators, a vacuum module, a robotic centrifuge, a plate heat sealer, and a custom-made tilting carrier for collection of reaction solutions from the flat-bottom cups with dialysis membranes. The consecutive process, from the dialysis cell-free protein synthesis to the partial purification by immobilized metal affinity chromatography on a 96-well filtration plate, was performed within ca. 14h, including 8h of cell-free protein synthesis. The proteins were eluted stepwise in a high concentration using EDTA by centrifugation, while the resin in the filtration plate was washed on the vacuum manifold. The system was validated to be able to simultaneously and automatically produce up to 96 proteins in yields of several milligrams with high well-to-well reliability, sufficient for structural and functional analyses of proteins. The protein samples produced by the automated system have been utilized for NMR screening to judge the protein foldedness and for structure determinations using heteronuclear multi-dimensional NMR spectroscopy. The automated high-throughput protein production system represents an important breakthrough in the structural and functional studies of proteins and has already contributed a massive amount of results in the structural genomics project at the

  4. Non invasive prenatal diagnosis: analysis of circulating fetal DNA and cells in maternal blood El diagnóstico prenatal no invasor: análisis de células y ADN fetal circulantes en la sangre materna

    Directory of Open Access Journals (Sweden)

    Diana Cecilia Jaramillo Posada

    2009-11-01

    Full Text Available

    Prenatal non invasive diagnosis by means of analyses of foetal DNA or cells circulating in maternal blood is one of the most promising areas of obstetrics. Among maternal diseases that could be diagnosed by these methods, or whose behaviour could be predicted, are preeclampsia, growth restriction and preterm labour. Some foetal conditions that could be detected are sex, chromosomal anomalies and single-gene defects. However, these are complex and expensive techniques that are not regularly performed in health care institutions. With this review we intend to provide the readers with up to date information on the main techniques available for the study of circulating foetal cells and DNA, and on their possible clinical applications. The review was based on a search for journals indexed up to 2008 in Pubmed, Scielo and Latindex. Especially relevant articles were chosen by the authors.

    El diagnóstico prenatal temprano y no invasor por medio del análisis de células o ADN fetales circulantes en la sangre materna es un área prometedora de la obstetricia moderna. Entre las enfermedades que se pueden diagnosticar o cuyo comportamiento es posible predecir por estos métodos se encuentran la preeclampsia, la restricción del crecimiento intrauterino y el parto pretérmino. Algunas condiciones fetales que podrían detectarse son el sexo, ciertas anomalías cromosómicas y los defectos de un solo gen. Sin

  5. A cell-free transcription system for the hyperthermophilic archaeon Pyrococcus furiosus.

    OpenAIRE

    Hethke, C; Geerling, A C; Hausner, W.; de Vos, W.M.; Thomm, M

    1996-01-01

    We describe here the establishment of a cell-free transcription system for the hyperthermophilic Archaeon Pyrococcus furiosus using the cloned glutamate dehydrogenase (gdh) gene as template. The in vitro system that operated up to a temperature of 85 degrees C initiated transcription 23 bp downstream of a TATA box located 45 bp upstream of the translational start codon of gdh mRNA, at the same site as in Pyrococcus cells. Mutational analyses revealed that this TATA box is essential for in vit...

  6. Hexavalent Chromate Reductase Activity in Cell Free Extracts of Penicillium sp.

    OpenAIRE

    Arévalo-Rangel, Damaris L.; Cárdenas-González, Juan F.; Víctor M. Martínez-Juárez; Ismael Acosta-Rodríguez

    2013-01-01

    A chromium-resistant fungus isolated from contaminated air with industrial vapors can be used for reducing toxic Cr(VI) to Cr(III). This study analyzes in vitro reduction of hexavalent chromium using cell free extract(s) of the fungus that was characterized based on optimal temperature, pH, use of electron donors, metal ions and initial Cr(VI) concentration in the reaction mixture. This showed the highest activity at 37°C and pH 7.0; there is an increase in Cr(VI) reductase activity with addi...

  7. Characterization of Ethanol Production from Xylose and Xylitol by a Cell-Free Pachysolen tannophilus System

    OpenAIRE

    Xu, Jie; Taylor, Kenneth B.

    1993-01-01

    Whole cells and a cell extract of Pachysolen tannophilus converted xylose to xylitol, ethanol, and CO2. The whole-cell system converted xylitol slowly to CO2 and little ethanol was produced, whereas the cell-free system converted xylitol quantitatively to ethanol (1.64 mol of ethanol per mol of xylitol) and CO2. The supernatant solution from high-speed centrifugation (100,000 × g) of the extract converted xylose to ethanol, but did not metabolize xylitol unless a membrane fraction and oxygen ...

  8. Checkpoint signaling from a single DNA interstrand crosslink

    OpenAIRE

    Ben-Yehoyada, Merav; Wang, Lily C; Kozekov, Ivan D.; Rizzo, Carmelo J.; Gottesman, Max E.; Gautier, Jean

    2009-01-01

    DNA interstrand crosslinks (ICLs) are the most toxic lesions induced by chemotherapeutic agents such as Mitomycin C and Cisplatin. By covalently linking both DNA strands, ICLs prevent DNA melting, transcription, and replication. Studies on ICL signaling and repair have been limited because these drugs generate additional DNA lesions that trigger checkpoint signaling. Here, we monitor sensing, signaling from and repairing of a single, site-specific ICL in cell-free extract derived from Xenopus...

  9. Completion of proteomic data sets by Kd measurement using cell-free synthesis of site-specifically labeled proteins.

    Directory of Open Access Journals (Sweden)

    Paul Majkut

    Full Text Available The characterization of phosphotyrosine mediated protein-protein interactions is vital for the interpretation of downstream pathways of transmembrane signaling processes. Currently however, there is a gap between the initial identification and characterization of cellular binding events by proteomic methods and the in vitro generation of quantitative binding information in the form of equilibrium rate constants (Kd values. In this work we present a systematic, accelerated and simplified approach to fill this gap: using cell-free protein synthesis with site-specific labeling for pull-down and microscale thermophoresis (MST we were able to validate interactions and to establish a binding hierarchy based on Kd values as a completion of existing proteomic data sets. As a model system we analyzed SH2-mediated interactions of the human T-cell phosphoprotein ADAP. Putative SH2 domain-containing binding partners were synthesized from a cDNA library using Expression-PCR with site-specific biotinylation in order to analyze their interaction with fluorescently labeled and in vitro phosphorylated ADAP by pull-down. On the basis of the pull-down results, selected SH2's were subjected to MST to determine Kd values. In particular, we could identify an unexpectedly strong binding of ADAP to the previously found binding partner Rasa1 of about 100 nM, while no evidence of interaction was found for the also predicted SH2D1A. Moreover, Kd values between ADAP and its known binding partners SLP-76 and Fyn were determined. Next to expanding data on ADAP suggesting promising candidates for further analysis in vivo, this work marks the first Kd values for phosphotyrosine/SH2 interactions on a phosphoprotein level.

  10. High-yield Escherichia coli-based cell-free expression of human proteins

    International Nuclear Information System (INIS)

    Production of sufficient amounts of human proteins is a frequent bottleneck in structural biology. Here we describe an Escherichia coli-based cell-free system which yields mg-quantities of human proteins in N-terminal fusion constructs with the GB1 domain, which show significantly increased translation efficiency. A newly generated E. coli BL21 (DE3) RIPL-Star strain was used, which contains a variant RNase E with reduced activity and an excess of rare-codon tRNAs, and is devoid of lon and ompT protease activity. In the implementation of the expression system we used freshly in-house prepared cell extract. Batch-mode cell-free expression with this setup was up to twofold more economical than continuous-exchange expression, with yields of 0.2–0.9 mg of purified protein per mL of reaction mixture. Native folding of the proteins thus obtained is documented with 2D [15N,1H]-HSQC NMR.

  11. Cell-free translation and purification of Arabidopsis thaliana regulator of G signaling 1 protein.

    Science.gov (United States)

    Li, Bo; Makino, Shin-Ichi; Beebe, Emily T; Urano, Daisuke; Aceti, David J; Misenheimer, Tina M; Peters, Jonathan; Fox, Brian G; Jones, Alan M

    2016-10-01

    Arabidopsis thaliana Regulator of G protein Signalling 1 (AtRGS1) is a protein with a predicted N-terminal 7-transmembrane (7TM) domain and a C-terminal cytosolic RGS1 box domain. The RGS1 box domain exerts GTPase activation (GAP) activity on Gα (AtGPA1), a component of heterotrimeric G protein signaling in plants. AtRGS1 may perceive an exogenous agonist to regulate the steady-state levels of the active form of AtGPA1. It is uncertain if the full-length AtRGS1 protein exerts any atypical effects on Gα, nor has it been established exactly how AtRGS1 contributes to perception of an extracellular signal and transmits this response to a G-protein dependent signaling cascade. Further studies on full-length AtRGS1 have been inhibited due to the extreme low abundance of the endogenous AtRGS1 protein in plants and lack of a suitable heterologous system to express AtRGS1. Here, we describe methods to produce full-length AtRGS1 by cell-free synthesis into unilamellar liposomes and nanodiscs. The cell-free synthesized AtRGS1 exhibits GTPase activating activity on Gα and can be purified to a level suitable for biochemical analyses. PMID:27164033

  12. Preliminary study on preparation of E.coli cell-free system for protein expression

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the new era of "Omics",the traditional techniques of protein expression in vivo can not come up with the exponential increase of genetic information.The cellfree protein synthesis system provides a new strategy of protein expression with advantages of rapid,convenient and high-throughput expression.The preparation of cell extracts,the optimization of substrate concentrations and the energy regeneration system are the key factors for the successful construction of cell-free protein expression system.In this work,the cell extract was prepared from RNase I- defective strain E.coli A19.The cell growth phase,the pressure for cell disruption and the storage condition of cell extracts were optimized.Meanwhile,the optimal substrate concentrations and the energy regeneration system were selected.Under the optimized conditions,the green fluorescent protein (GFP) reporter gene was expressed in the E.coli cell-free system with high expression level (Ca.154 μg/mL) which was 29 times higher than the expression level before optimization.

  13. Investigating and correcting plasma DNA sequencing coverage bias to enhance aneuploidy discovery.

    Directory of Open Access Journals (Sweden)

    Dineika Chandrananda

    Full Text Available Pregnant women carry a mixture of cell-free DNA fragments from self and fetus (non-self in their circulation. In recent years multiple independent studies have demonstrated the ability to detect fetal trisomies such as trisomy 21, the cause of Down syndrome, by Next-Generation Sequencing of maternal plasma. The current clinical tests based on this approach show very high sensitivity and specificity, although as yet they have not become the standard diagnostic test. Here we describe improvements to the analysis of the sequencing data by reducing GC bias and better handling of the genomic repeats. We show substantial improvements in the sensitivity of the standard trisomy 21 statistical tests, which we measure by artificially reducing read coverage. We also explore the bias stemming from the natural cleavage of plasma DNA by examining DNA motifs and position specific base distributions. We propose a model to correct this fragmentation bias and observe that incorporating this bias does not lead to any further improvements in the detection of fetal trisomy. The improved bias corrections that we demonstrate in this work can be readily adopted into existing fetal trisomy detection protocols and should also lead to improvements in sub-chromosomal copy number variation detection.

  14. More Than Tiny Sacks: Stem Cell Exosomes as Cell-Free Modality for Cardiac Repair.

    Science.gov (United States)

    Kishore, Raj; Khan, Mohsin

    2016-01-22

    Stem cell therapy provides immense hope for regenerating the pathological heart, yet has been marred by issues surrounding the effectiveness, unclear mechanisms, and survival of the donated cell population in the ischemic myocardial milieu. Poor survival and engraftment coupled to inadequate cardiac commitment of the adoptively transferred stem cells compromises the improvement in cardiac function. Various alternative approaches to enhance the efficacy of stem cell therapies and to overcome issues with cell therapy have been used with varied success. Cell-free components, such as exosomes enriched in proteins, messenger RNAs, and miRs characteristic of parental stem cells, represent a potential approach for treating cardiovascular diseases. Recently, exosomes from different kinds of stem cells have been effectively used to promote cardiac function in the pathological heart. The aim of this review is to summarize current research efforts on stem cell exosomes, including their potential benefits and limitations to develop a potentially viable therapy for cardiovascular problems. PMID:26838317

  15. Isolation and fractionation of cell-free extract from streptolysin-S-forming streptococci.

    Science.gov (United States)

    Shoin, S

    1976-10-01

    A series of procedures have been developed for obtaining a partially purified fractions possessing anticancer activity using live streptolysin S-forming streptococci (Su strain) harvested from their yeast extract-culture fluid. These procedures consist principally of (1) preparing cell-free extract (CFE) from homogenized streptococci, (2) streptomycin-treatment of CFE (S-CFE) to remove nucleic acids, and (3) stepwise fractionations of S-CFE with 0.4, 0.5, 0.6, and 1.0 saturated solutions of ammonium sulfate, each fraction being dialyzed against distilled water followed by lyophilization. The 60-F product, which was precipitated by the 0.6-saturated solution, was found to be the most potent among six products obtained and to be about 4 times more effective than the original CFE in depriving the invasiveness of Ehrlich carcinoma cells in mice. Data on physical and biochemical properties of 60-F product are also presented. PMID:797624

  16. Nitrogenase activity in cell-free extracts of the blue-green alga, Anabaena cylindrica.

    Science.gov (United States)

    Smith, R V; Evans, M C

    1971-03-01

    Cell-free extracts with high nitrogenase activity were prepared by sonic oscillation and French press treatment from the blue-gree alga Anabaena cylindrica. Extracts were prepared from cells grown on a 95% N(2)-5% CO(2) gas mixture followed by a period of nitrogen starvation under an atmosphere of 95% argon-5% CO(2). No increase in the specific activity of extracts was achieved by breaking heterocysts. Activity (assayed by acetylene reduction) was found to be dependent on adenosine triphosphate (ATP), an ATP-generating system, and a low-potential reductant. Na(2)S(2)O(2) employed as reductant supports higher rates of nitrogenase activity than reduced ferredoxin. The activity is associated with a small-particle fraction that can be sedimented by ultracentrifugation. In contrast to the particulate nitrogenase of Azotobacter, which is stable in air, the A. cylindrica nitrogenase is an oxygen sensitive as nitrogenase prepared from anaerobic bacteria. PMID:4994040

  17. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  18. Chemical communication between bacteria and cell-free gene expression systems within linear chains of emulsion droplets.

    Science.gov (United States)

    Schwarz-Schilling, M; Aufinger, L; Mückl, A; Simmel, F C

    2016-04-18

    Position-dependent gene expression in gradients of morphogens is one of the key processes involved in cellular differentiation during development. Here, we study a simple artificial differentiation process, which is based on the diffusion of genetic inducers within one-dimensional arrangements of 50 μm large water-in-oil droplets. The droplets are filled with either bacteria or cell-free gene expression systems, both equipped with genetic constructs that produce inducers or respond to them via expression of a fluorescent protein. We quantitatively study the coupled diffusion-gene expression process and demonstrate that gene expression can be made position-dependent both within bacteria-containing and cell-free droplets. By generating diffusing quorum sensing signals in situ, we also establish communication between artificial cell-free sender cells and bacterial receivers, and vice versa. PMID:26778746

  19. Prenatal screening for fetal aneuploidies with cell-free DNA in the general pregnancy population: a cost-effectiveness analysis

    OpenAIRE

    Fairbrother, Genevieve; Burigo, John; Sharon, Thomas; Song, Ken

    2015-01-01

    Abstract Objective: To estimate the cost-effectiveness of fetal aneuploidy screening in the general pregnancy population using non-invasive prenatal testing (NIPT) as compared to first trimester combined screening (FTS) with serum markers and NT ultrasound. Methods: Using a decision-analytic model, we estimated the number of fetal T21, T18, and T13 cases identified prenatally, the number of invasive procedures performed, corresponding normal fetus losses, and costs of screening using FTS or N...

  20. Optimizing Immobilized Enzyme Performance in Cell-Free Environments to Produce Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Belfort, Georges [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering; Grimaldi, Joseph J. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering

    2015-01-27

    Limitations on biofuel production using cell culture (Escherichia coli, Clostridium, Saccharomyces cerevisiae, brown microalgae, blue-green algae and others) include low product (alcohol) concentrations (≤0.2 vol%) due to feedback inhibition, instability of cells, and lack of economical product recovery processes. To overcome these challenges, an alternate simplified biofuel production scheme was tested based on a cell-free immobilized enzyme system. Using this cell free system, we were able to obtain about 2.6 times higher concentrations of iso-butanol using our non-optimized system as compared with live cell systems. This process involved two steps: (i) converts acid to aldehyde using keto-acid decarboxylase (KdcA), and (ii) produces alcohol from aldehyde using alcohol dehydrogenase (ADH) with a cofactor (NADH) conversion from inexpensive formate using a third enzyme, formate dehydrogenase (FDH). To increase stability and conversion efficiency with easy separations, the first two enzymes were immobilized onto methacrylate resin. Fusion proteins of labile KdcA (fKdcA) were expressed to stabilize the covalently immobilized KdcA. Covalently immobilized ADH exhibited long-term stability and efficient conversion of aldehyde to alcohol over multiple batch cycles without fusions. High conversion rates and low protein leaching were achieved by covalent immobilization of enzymes on methacrylate resin. The complete reaction scheme was demonstrated by immobilizing both ADH and fKdcA and using FDH free in solution. The new system without in situ removal of isobutanol achieved a 55% conversion of ketoisovaleric acid to isobutanol at a concentration of 0.5 % (v/v). Further increases in titer will require continuous removal of the isobutanol using our novel brush membrane system that exhibits a 1.5 fold increase in the separation factor of isobutanol from water versus that obtained for commercial silicone rubber membranes. These bio-inspired brush membranes are based on the

  1. Optimization of Protein Production Development Using a Combination of Cell-Free Expression and High-Throughput Protein Analysis

    OpenAIRE

    Richter, Carolin

    2014-01-01

    This thesis deals with the optimization of high-throughput cell-free protein expression and subsequent protein analysis as well as the combination of these methods. The research outcome contributes to help simplifying and accelerating the biochemical protein production and analysis.

  2. Innovative production of bio-cellulose using a cell-free system derived from a single cell line.

    Science.gov (United States)

    Ullah, Muhammad Wajid; Ul-Islam, Mazhar; Khan, Shaukat; Kim, Yeji; Park, Joong Kon

    2015-11-01

    The current study was intended to produce bio-cellulose through a cell-free system developed by disrupting Gluconacetobacter hansenii PJK through bead-beating. Microscopic analysis indicated the complete disruption of cells (2.6 × 10(7) cells/mL) in 20 min that added 95.12 μg/mL protein, 1.63 mM ATP, and 1.11 mM NADH into the medium. A liquid chromatography mass spectrometry/mass spectrometry linear trap quadrupole (LC-MS/MS LTQ) Orbitrap analysis of cell-lysate confirmed the presence of all key enzymes for bio-cellulose synthesis. Under static conditions at 30 °C, microbial and cell-free systems produced 3.78 and 3.72 g/L cellulose, corresponding to 39.62 and 57.68% yield, respectively after 15 days. The improved yield based on consumed glucose indicated the superiority of cell-free system. Based on current findings and literature, we hypothesized a synthetic pathway for bio-cellulose synthesis in the cell-free system. This approach can overcome some limitations of cellulose-producing cells and offers a wider scope for synthesizing cellulose composites with bactericidal elements through in situ synthesizing approaches. PMID:26256351

  3. Sodium nitrite induces acute central nervous system toxicity in guinea pigs exposed to systemic cell-free hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Buehler, Paul W.; Butt, Omer I. [Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); D' Agnillo, Felice, E-mail: felice.dagnillo@fda.hhs.gov [Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States)

    2011-06-10

    Highlights: {yields} Toxicological implications associated with the use of NaNO{sub 2} therapy to treat systemic cell-free Hb exposure are not well-defined. {yields} Systemic Hb exposure followed by NaNO{sub 2} infusion induces acute CNS toxicities in guinea pigs. {yields} These CNS effects were not reproduced by the infusion of cell-free Hb or NaNO{sub 2} alone. {yields} NaNO{sub 2}-mediated oxidation of cell-free Hb may play a causative role in the observed CNS changes. -- Abstract: Systemic cell-free hemoglobin (Hb) released via hemolysis disrupts vascular homeostasis, in part, through the scavenging of nitric oxide (NO). Sodium nitrite (NaNO{sub 2}) therapy can attenuate the hypertensive effects of Hb. However, the chemical reactivity of NaNO{sub 2} with Hb may enhance heme- or iron-mediated toxicities. Here, we investigate the effect of NaNO{sub 2} on the central nervous system (CNS) in guinea pigs exposed to systemic cell-free Hb. Intravascular infusion of NaNO{sub 2}, at doses sufficient to alleviate Hb-mediated blood pressure changes, reduced the expression of occludin, but not zona occludens-1 (ZO-1) or claudin-5, in cerebral tight junctions 4 h after Hb infusion. This was accompanied by increased perivascular heme oxygenase-1 expression, neuronal iron deposition, increased astrocyte and microglial activation, and reduced expression of neuron-specific nuclear protein (NeuN). These CNS changes were not observed in animals treated with Hb or NaNO{sub 2} alone. Taken together, these findings suggest that the use of nitrite salts to treat systemic Hb exposure may promote acute CNS toxicity.

  4. Cell-free synthesis of isotopically labelled peptide ligands for the functional characterization of G protein-coupled receptors.

    Science.gov (United States)

    Joedicke, Lisa; Trenker, Raphael; Langer, Julian D; Michel, Hartmut; Preu, Julia

    2016-01-01

    Cell-free systems exploit the transcription and translation machinery of cells from different origins to produce proteins in a defined chemical environment. Due to its open nature, cell-free protein production is a versatile tool to introduce specific labels such as heavy isotopes, non-natural amino acids and tags into the protein while avoiding cell toxicity. In particular, radiolabelled peptides and proteins are valuable tools for the functional characterization of protein-protein interactions and for studying binding kinetics. In this study we evaluated cell-free protein production for the generation of radiolabelled ligands for G protein-coupled receptors (GPCRs). These receptors are seven-transmembrane-domain receptors activated by a plethora of extracellular stimuli including peptide ligands. Many GPCR peptide ligands contain disulphide bonds and are thus inherently difficult to produce in bacterial expression hosts or in Escherichia coli-based cell-free systems. Here, we established an adapted E. coli-based cell-free translation system for the production of disulphide bond-containing GPCR peptide ligands and specifically introduce tritium labels for detection. The bacterial oxidoreductase DsbA is used as a chaperone to favour the formation of disulphide bonds and to enhance the yield of correctly folded proteins and peptides. We demonstrate the correct folding and formation of disulphide bonds and show high-affinity ligand binding of the produced radio peptide ligands to the respective receptors. Thus, our system allows the fast, cost-effective and reliable synthesis of custom GPCR peptide ligands for functional and structural studies. PMID:27047736

  5. Sodium nitrite induces acute central nervous system toxicity in guinea pigs exposed to systemic cell-free hemoglobin

    International Nuclear Information System (INIS)

    Highlights: → Toxicological implications associated with the use of NaNO2 therapy to treat systemic cell-free Hb exposure are not well-defined. → Systemic Hb exposure followed by NaNO2 infusion induces acute CNS toxicities in guinea pigs. → These CNS effects were not reproduced by the infusion of cell-free Hb or NaNO2 alone. → NaNO2-mediated oxidation of cell-free Hb may play a causative role in the observed CNS changes. -- Abstract: Systemic cell-free hemoglobin (Hb) released via hemolysis disrupts vascular homeostasis, in part, through the scavenging of nitric oxide (NO). Sodium nitrite (NaNO2) therapy can attenuate the hypertensive effects of Hb. However, the chemical reactivity of NaNO2 with Hb may enhance heme- or iron-mediated toxicities. Here, we investigate the effect of NaNO2 on the central nervous system (CNS) in guinea pigs exposed to systemic cell-free Hb. Intravascular infusion of NaNO2, at doses sufficient to alleviate Hb-mediated blood pressure changes, reduced the expression of occludin, but not zona occludens-1 (ZO-1) or claudin-5, in cerebral tight junctions 4 h after Hb infusion. This was accompanied by increased perivascular heme oxygenase-1 expression, neuronal iron deposition, increased astrocyte and microglial activation, and reduced expression of neuron-specific nuclear protein (NeuN). These CNS changes were not observed in animals treated with Hb or NaNO2 alone. Taken together, these findings suggest that the use of nitrite salts to treat systemic Hb exposure may promote acute CNS toxicity.

  6. Gene circuit performance characterization and resource usage in a cell-free "breadboard".

    Science.gov (United States)

    Siegal-Gaskins, Dan; Tuza, Zoltan A; Kim, Jongmin; Noireaux, Vincent; Murray, Richard M

    2014-06-20

    The many successes of synthetic biology have come in a manner largely different from those in other engineering disciplines; in particular, without well-characterized and simplified prototyping environments to play a role analogous to wind-tunnels in aerodynamics and breadboards in electrical engineering. However, as the complexity of synthetic circuits increases, the benefits--in cost savings and design cycle time--of a more traditional engineering approach can be significant. We have recently developed an in vitro "breadboard" prototyping platform based on E. coli cell extract that allows biocircuits to operate in an environment considerably simpler than, but functionally similar to, in vivo. The simplicity of this system makes it a promising tool for rapid biocircuit design and testing, as well as for probing fundamental aspects of gene circuit operation normally masked by cellular complexity. In this work, we characterize the cell-free breadboard using real-time and simultaneous measurements of transcriptional and translational activities of a small set of reporter genes and a transcriptional activation cascade. We determine the effects of promoter strength, gene concentration, and nucleoside triphosphate concentration on biocircuit properties, and we isolate the specific contributions of essential biomolecular resources-core RNA polymerase and ribosomes-to overall performance. Importantly, we show how limits on resources, particularly those involved in translation, are manifested as reduced expression in the presence of orthogonal genes that serve as additional loads on the system. PMID:24670245

  7. Cell-free nucleic acids as noninvasive biomarkers for colorectal cancer detection

    KAUST Repository

    Mansour, Hicham

    2014-08-27

    Cell-free nucleic acids (CFNA) have been reported by several authors in blood, stool, and urine of patients with colorectal cancer (CRC). These genetic biomarkers can be an indication of neoplastic colorectal epithelial cells, and can thus potentially be used as noninvasive tests for the detection of the disease in CRC patients and monitor their staging, without the need to use heavier and invasive tools. In a number of test-trials, these genetic tests have shown the advantage of non-invasiveness, making them well accepted by most of the patients, without major side effects. They have also shown a promising sensitivity and specificity in the detection of malignant and premalignant neoplasms. Moreover, costs for performing such tests are very low. Several studies reported and confirmed the proof of the principle for these genetic tests for screening, diagnosis, and prognosis; the main challenge of translating this approach from research to clinical laboratory is the validation from large and long-term randomized trials to prove sustainable high sensitivity and specificity. In this paper, we present a review on the noninvasive genetics biomarkers for CRC detection described in the literature and the challenges that can be encountered for validation processes.

  8. Cell-free synthesis of cytochrome bo(3) ubiquinol oxidase in artificial membranes.

    Science.gov (United States)

    Yildiz, Ahu Arslan; Knoll, Wolfgang; Gennis, Robert B; Sinner, Eva-Kathrin

    2012-04-01

    The analysis of membrane proteins is notoriously difficult because isolation and detergent-mediated reconstitution often results in compromising the protein structure and function. We introduce a novel strategy of combining a cell-free expression method for synthesis of a protein species coping with one of the most important obstacles in membrane protein research-preserving the structural-functional integrity of a membrane protein species and providing a stable matrix for application of analytical tools to characterize the membrane protein of interest. We address integration and subsequent characterization of the cytochrome bo(3) ubiquinol oxidase (Cyt-bo(3)) from de novo synthesis without the effort of conventional cell culture, isolation, and purification procedures. The experimental output supports our idea of a suitable platform for in vitro protein synthesis and functional integration into a membrane-mimicking structure. We show the compatibility of different concepts of in vitro synthesis toward biosensor applicability by the example of Cyt-bo(3) protein expression. Our results obtained from in vitro synthesized proteins displayed similar behavior to proteins isolated from the cellular context. Overall, our approach is suitable for the in vitro expression of "complex" protein species such as Cyt-bo(3), which can be reproducible and stably synthesized and preserved in robust, synthetic planar membrane architecture. PMID:22306473

  9. Biological Synthesis of Silver Nanoparticles by Cell-Free Extract of Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Gaurav Sharma

    2015-01-01

    Full Text Available The present study explores biological synthesis of silver nanoparticles (AgNPs using the cell-free extract of Spirulina platensis. Biosynthesised AgNPs were characterised by UV-Vis spectroscopy, SEM, TEM, and FTIR analysis and finally evaluated for antibacterial activity. Extracellular synthesis using aqueous extract of S. platensis showed the formation of well scattered, highly stable, spherical AgNPs with an average size of 30–50 nm. The size and morphology of the nanoparticles were confirmed by SEM and TEM analysis. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilisation of AgNPs. Furthermore, the synthesised nanoparticles exhibited high antibacterial activity against pathogenic Gram-negative, that is, Escherichia coli, MTCC-9721; Proteus vulgaris, MTCC-7299; Klebsiella pneumoniae, MTCC-9751, and Gram-positive, that is, Staphylococcus aureus, MTCC-9542; S. epidermidis, MTCC-2639; Bacillus cereus, MTCC-9017, bacteria. The AgNPs had shown maximum zone of inhibition (ZOI that is 31.3±1.11 in P. vulgaris. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials of silver in a large scale that could be of great use in biomedical applications.

  10. Combining in Vitro Folding with Cell Free Protein Synthesis for Membrane Protein Expression.

    Science.gov (United States)

    Focke, Paul J; Hein, Christopher; Hoffmann, Beate; Matulef, Kimberly; Bernhard, Frank; Dötsch, Volker; Valiyaveetil, Francis I

    2016-08-01

    Cell free protein synthesis (CFPS) has emerged as a promising methodology for protein expression. While polypeptide production is very reliable and efficient using CFPS, the correct cotranslational folding of membrane proteins during CFPS is still a challenge. In this contribution, we describe a two-step protocol in which the integral membrane protein is initially expressed by CFPS as a precipitate followed by an in vitro folding procedure using lipid vesicles for converting the protein precipitate to the correctly folded protein. We demonstrate the feasibility of using this approach for the K(+) channels KcsA and MVP and the amino acid transporter LeuT. We determine the crystal structure of the KcsA channel obtained by CFPS and in vitro folding to show the structural similarity to the cellular expressed KcsA channel and to establish the feasibility of using this two-step approach for membrane protein production for structural studies. Our studies show that the correct folding of these membrane proteins with complex topologies can take place in vitro without the involvement of the cellular machinery for membrane protein biogenesis. This indicates that the folding instructions for these complex membrane proteins are contained entirely within the protein sequence. PMID:27384110

  11. Antimicrobial Activity of Cell Free Supernatant of Irradiated Lactic Acid Bacteria Isolates

    International Nuclear Information System (INIS)

    Attempts were made to isolate bio preservatives using food wastes with no value and low cost. Whey is the raw material achieved that value. Whey and many other food wastes are used in our study to isolate Lactic acid bacteria (LAB). Cell free supernatants (CFS) of isolates are used to evaluate their antimicrobial activity against indicator pathogenic bacterial strains. CFS-9 isolate from whey has the highest inhibitory activity compared to all other isolates. The inhibitory activity of CFS-9, Nisin (400 IU / ml) and the standard Lactococcus Lactis Subsp. Lactis ATCC 11454 (Lacto) were determined. Furthermore, isolate-9 and Lacto strains were exposed to irradiation at different doses. The inhibition zones of; control isolate-9 (non-irradiated) showed the highest values against all indicator strains, CFS of irradiated Lacto at dose 250 Gy was the highest value against Bacillus cereus and Escherichia coli compared to other irradiation treatments, CFS of irradiated Lacto at dose 100 Gy was the highest value against Staph aureus, while the inhibition zone was in the highest value in CFS of irradiated Lacto at dose 500 Gy against Salmonella typhimurium. Nisin (400 IU / ml) was significantly higher than all CFS of irradiated isolate-9 while, the inhibition zones of all CFS-Lacto (irradiated and nonirradiated) are better and higher than nisin-400

  12. Effects of polymorphisms in ovine and caprine prion protein alleles on cell-free conversion

    Directory of Open Access Journals (Sweden)

    Eiden Martin

    2011-02-01

    Full Text Available Abstract In sheep polymorphisms of the prion gene (PRNP at the codons 136, 154 and 171 strongly influence the susceptibility to scrapie and bovine spongiform encephalopathy (BSE infections. In goats a number of other gene polymorphisms were found which are suspected to trigger similar effects. However, no strong correlation between polymorphisms and TSE susceptibility in goats has yet been obtained from epidemiological studies and only a low number of experimental challenge data are available at present. We have therefore studied the potential impact of these polymorphisms in vitro by cell-free conversion assays using mouse scrapie strain Me7. Mouse scrapie brain derived PrPSc served as seeds and eleven recombinant single mutation variants of sheep and goat PrPC as conversion targets. With this approach it was possible to assign reduced conversion efficiencies to specific polymorphisms, which are associated to low frequency in scrapie-affected goats or found only in healthy animals. Moreover, we could demonstrate a dominant-negative inhibition of prion polymorphisms associated with high susceptibility by alleles linked to low susceptibility in vitro.

  13. Toward Microfluidic Reactors for Cell-Free Protein Synthesis at the Point-of-Care.

    Science.gov (United States)

    Timm, Andrea C; Shankles, Peter G; Foster, Carmen M; Doktycz, Mitchel J; Retterer, Scott T

    2016-02-10

    Cell-free protein synthesis (CFPS) is a powerful technology that allows for optimization of protein production without maintenance of a living system. Integrated within micro and nanofluidic architectures, CFPS can be optimized for point-of-care use. Here, the development of a microfluidic bioreactor designed to facilitate the production of a single-dose of a therapeutic protein, in a small footprint device at the point-of-care, is described. This new design builds on the use of a long, serpentine channel bioreactor and is enhanced by integrating a nanofabricated membrane to allow exchange of materials between parallel "reactor" and "feeder" channels. This engineered membrane facilitates the exchange of metabolites, energy, and inhibitory species, and can be altered by plasma-enhanced chemical vapor deposition and atomic layer deposition to tune the exchange rate of small molecules. This allows for extended reaction times and improved yields. Further, the reaction product and higher molecular weight components of the transcription/translation machinery in the reactor channel can be retained. It has been shown that the microscale bioreactor design produces higher protein yields than conventional tube-based batch formats, and that product yields can be dramatically improved by facilitating small molecule exchange within the dual-channel bioreactor. PMID:26690885

  14. Prolonged survival of virulent Treponema pallidum (Nichols strain) in cell-free and tissue culture systems.

    Science.gov (United States)

    Fieldsteel, A H; Becker, F A; Stout, J G

    1977-10-01

    Survival of Treponema pallidum was found to be prolonged in the presence of tissue culture. Of the 12 cultures studied, cottontail rabbit epithelium (Sf1Ep) supported T. pallidum for the longest time. In horizontal Leighton tubes with reduced medium and an atmosphere of 5% CO2 in N2, the 50% survival time (ST50) was 5 to 6 days for treponemes associated with monolayers of Sf1Ep cells. Comparable cell-free tubes had ST50 values of less than 4 days. In vertical Leighton tubes containing 6 ml of prereduced medium incubated aerobically, gradients of O2 tension and redox potential were established. Attachment and survival of T. pallidum were greatest at a depth of about 10 to 20 mm. Motility was between 70 and 95% in this area throughout the first 14 days of incubation. Occasionally, greater than 50% motility was observed for as long as 21 days. The redox potential and O2 tension in the optimal area of gradient cultures were reproduced by adjusting the medium depth in a shell vial culture system containing cells on a horizontal cover slip. Treponemes associated with the cell monolayer in both gradient and shell vial cultures were still virulent after 21 days in vitro. The dilution of testis extract and the concentration of T. pallidum were found to be important factors in survival of T. pallidum. PMID:332639

  15. Cell-free translation of messenger RNA from bovine submaxillary glands and identification of the apomucin

    International Nuclear Information System (INIS)

    This study was undertaken to identify and characterize the apoprotein of bovine submaxillary mucin (BSM). Purified preparations of BSM were deglycosylated by treatment with either anhydrous hydrogen fluoride or trifluoromethane-sulfonic acid. The amino acid compositions of the deglycosylated and native BSM were similar indicating that chemical deglycosylation did not cause significant degradation of the protein. Messenger RNA was isolated from bovine submaxillary glands by extraction of total RNA followed by chromatography on oligo(dT)-cellulose. The Poly A+ mRNA was translated in a rabbit reticulocyte cell-free translation system using either [35S]methionine, [3H]leucine or [3H]threonine, as label, and the translation products analyzed by SDS-PAGE. The apoprotein of BSM was identified among the translation products by its immunoprecipitation with a specific polyclonal rabbit antiserum prepared against deglycosylated BSM. A product of about 65 kDA was precipitated with the antibody in the absence but not in the presence of deglycosylated BSM. Thus, it can be concluded that the primary translation product of the BSM gene is a 65 kDA protein. It is of interest that enzymatically deglycosylated ovine submaxillary mucin was found to have a molecular weight of 58 kDA

  16. Optimisation of a droplet digital PCR assay for the diagnosis of Schistosoma japonicum infection: A duplex approach with DNA binding dye chemistry.

    Science.gov (United States)

    Weerakoon, Kosala G; Gordon, Catherine A; Gobert, Geoffrey N; Cai, Pengfei; McManus, Donald P

    2016-06-01

    Schistosomiasis is a chronically debilitating helminth infection with a significant socio-economic and public health impact. Accurate diagnostics play a pivotal role in achieving current schistosomiasis control and elimination goals. However, many of the current diagnostic procedures, which rely on detection of schistosome eggs, have major limitations including lack of accuracy and the inability to detect pre-patent infections. DNA-based detection methods provide a viable alternative to the current tests commonly used for schistosomiasis diagnosis. Here we describe the optimisation of a novel droplet digital PCR (ddPCR) duplex assay for the diagnosis of Schistosoma japonicum infection which provides improved detection sensitivity and specificity. The assay involves the amplification of two specific and abundant target gene sequences in S. japonicum; a retrotransposon (SjR2) and a portion of a mitochondrial gene (nad1). The assay detected target sequences in different sources of schistosome DNA isolated from adult worms, schistosomules and eggs, and exhibits a high level of specificity, thereby representing an ideal tool for the detection of low levels of parasite DNA in different clinical samples including parasite cell free DNA in the host circulation and other bodily fluids. Moreover, being quantitative, the assay can be used to determine parasite infection intensity and, could provide an important tool for the detection of low intensity infections in low prevalence schistosomiasis-endemic areas. PMID:27021661

  17. Pyrrhocoricin, a proline-rich antimicrobial peptide derived from insect, inhibits the translation process in the cell-free Escherichia coli protein synthesis system.

    Science.gov (United States)

    Taniguchi, Masayuki; Ochiai, Akihito; Kondo, Hiroshi; Fukuda, Shun; Ishiyama, Yohei; Saitoh, Eiichi; Kato, Tetsuo; Tanaka, Takaaki

    2016-05-01

    Previous studies have shown that pyrrhocoricin, a proline-rich antimicrobial peptide (PrAMP), killed sensitive species in a dose-dependent manner by specifically binding to DnaK. Here, on the basis of the finding that DnaK-deficient Escherichia coli strains are susceptible to PrAMPs, we used pyrrhocoricin to investigate internal targets other than DnaK. Using conventional antibiotics (bleomycin, streptomycin, and fosfomycin) that have known modes of action, first, we validated the availability of an assay using a cell-free rapid translation system (RTS), which is an in vitro protein synthesis system based on E. coli lysate, for evaluating inhibition of protein synthesis. We found that, similarly to bleomycin and streptomycin, pyrrhocoricin inhibited GFP synthesis in RTS in a concentration-dependent manner. In addition, blockage of transcription and translation steps in RTS was individually estimated using RT-PCR after gene expression to determine mRNA products and using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to determine the amounts of GFP expressed from purified mRNA, respectively. The results demonstrated that this inhibition of GFP synthesis by pyrrhocoricin did not occur at the transcription step but rather at the translation step, in a manner similar to that of GFP synthesis by streptomycin, an inhibitor of the translation step by causing misreading of tRNA. These results suggest that RTS is a powerful assay system for determining if antimicrobial peptides inhibit protein synthesis and its transcription and/or translation steps. This is the first study to have shown that pyrrhocoricin inhibited protein synthesis by specifically repressing the translation step. PMID:26472128

  18. Immunogenic DNA-related factors. Nucleosomes spontaneously released from normal murine lymphoid cells stimulate proliferation and immunoglobulin synthesis of normal mouse lymphocytes.

    OpenAIRE

    Bell, D. A.; Morrison, B; VandenBygaart, P

    1990-01-01

    The cell-free supernatants of normal spleen and thymus lymphocytes in short-term culture release low molecular weight (LMW) DNA protein molecules that have an immunoproliferative effect (polyclonal B cell activation) in vitro. We have determined that the protein-LMW DNA complexes responsible for these effects are nucleosomal constituents of chromatin, since the mitogenically active fractions of these cell-free supernatants contain the constituents of core histones (H3, H2A, H2B, H4) together ...

  19. Concepts in Assisted Circulation

    OpenAIRE

    Lefemine, Armand A.; Dunbar, Jacob; DeLucia, Anthony

    1986-01-01

    Assisted circulation by extracorporeal and extracardiac bypass techniques must be based on the requirements of the heart and of the total body, though these may differ. The cardiac problem in cardiogenic shock is more likely to be a biventricular problem demanding decompression of both sides. Extra pulmonary oxygenation should be avoided because of complexity in long-term use. Principles of assisted circulation may be applied in an extra-thoracic temporary manner or as an intracorporeal long-...

  20. Clinical validation of an ultra high-throughput spiral microfluidics for the detection and enrichment of viable circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Bee Luan Khoo

    Full Text Available Circulating tumor cells (CTCs are cancer cells that can be isolated via liquid biopsy from blood and can be phenotypically and genetically characterized to provide critical information for guiding cancer treatment. Current analysis of CTCs is hindered by the throughput, selectivity and specificity of devices or assays used in CTC detection and isolation.Here, we enriched and characterized putative CTCs from blood samples of patients with both advanced stage metastatic breast and lung cancers using a novel multiplexed spiral microfluidic chip. This system detected putative CTCs under high sensitivity (100%, n = 56 (Breast cancer samples: 12-1275 CTCs/ml; Lung cancer samples: 10-1535 CTCs/ml rapidly from clinically relevant blood volumes (7.5 ml under 5 min. Blood samples were completely separated into plasma, CTCs and PBMCs components and each fraction were characterized with immunophenotyping (Pan-cytokeratin/CD45, CD44/CD24, EpCAM, fluorescence in-situ hybridization (FISH (EML4-ALK or targeted somatic mutation analysis. We used an ultra-sensitive mass spectrometry based system to highlight the presence of an EGFR-activating mutation in both isolated CTCs and plasma cell-free DNA (cf-DNA, and demonstrate concordance with the original tumor-biopsy samples.We have clinically validated our multiplexed microfluidic chip for the ultra high-throughput, low-cost and label-free enrichment of CTCs. Retrieved cells were unlabeled and viable, enabling potential propagation and real-time downstream analysis using next generation sequencing (NGS or proteomic analysis.

  1. Nitrogen mustard inhibits transcription and translation in a cell free system.

    OpenAIRE

    Masta, A; Gray, P J; D. R. Phillips

    1995-01-01

    Nitrogen mustard and its derivatives such as cyclophosphamide, chlorambucil and melphalan are widely used anti-cancer agents, despite their non-specific reaction mechanism. In this study, the effect of alkylation by nitrogen mustard of DNA and RNA (coding for a single protein) was investigated using both a translation system and a coupled transcription/translation system. When alkylated DNA was used as the template for coupled transcription and translation, a single translation product corres...

  2. A comparison of cell-free placental messenger ribonucleic acid and color Doppler ultrasound for the prediction of placental invasion in patients with placenta accreta

    Directory of Open Access Journals (Sweden)

    Elham Naghshineh

    2015-01-01

    Conclusions: Cell-free mRNA is an acceptable, easy made, functional test with sensitivity, specificity, PPV and NPV more than Doppler ultrasound for diagnosis and prediction of incidence of placenta accrete and we recommend the use of cell-free mRNA test for diagnosis of placenta accreta.

  3. Cr(VI reduction by cell-free extract of thermophillic Bacillus fusiformis NTR9

    Directory of Open Access Journals (Sweden)

    Pranee Pattanapipitpaisal

    2013-08-01

    Full Text Available Residual chromium compounds in discharged effluents is a serious problem, due to hexavalent chromium or chromate[Cr(VI] being extremely toxic and showing mutagenic and carcinogenic effects on biological systems. The bacterial enzymaticCr(VI reduction can occur and this could be an effective method of detoxifying Cr(VI polluted effluent. The present studycharacterized Cr(VI reductase activity of cell-free extracts (CFE of thermophilic chromate-reducing bacteria, Bacillusfusiformis NTR9. Results showed that the optimum temperature and pH for Cr(VI reductase activity of CFE was 80°C andpH 7, respectively. The reductase activity remained at 60.34% and 26.44% after 30 minutes of exposure to 70 and 90°C,respectively, suggesting a heat stable enzyme. Moreover, the enzyme was resistant under acidic and neutral condition but itsstability was decreased under alkaline condition. The Cr(VI reductase activity of CFE was enhanced when exposed in Cu2+and Fe3+ by 188.19% and 180.38%, respectively. The Cr(VI reductase activity could be reduced to 72.19% and 8.95% in thepresence of Mn2+ and Ag+, respectively. Mg2+, Zn2+, As3+ and electron acceptors like sulfate and nitrate had no affect on Cr(VIreductase activity. The external electron donors (glucose, glycerol, citrate, malate, succinate, and acetate, but not NADHwere essential to improve the chromate reductase activity of NTR9 strain. The chromate reductase was mainly associatedwith the soluble fraction in the cytoplasm of the bacterial cell. The molecular weight of the enzyme was 20 KDa. The resultsshowed that Cr(VI reductase could be a good candidate for detoxification of Cr(VI in industrial effluents.

  4. Antioxidant properties of 4-methylcoumarins in in vitro cell-free systems.

    Science.gov (United States)

    Morabito, Giuseppa; Trombetta, Domenico; Singh Brajendra, K; Prasad Ashok, K; Parmar Virinder, S; Naccari, Clara; Mancari, Ferdinando; Saija, Antonina; Cristani, Mariateresa; Firuzi, Omidreza; Saso, Luciano

    2010-09-01

    4-methylcoumarins that possess two hydroxyl groups ortho to each other in the benzenoid ring have shown to have excellent antioxidant and radical-scavenging properties in different experimental models. Furthermore, they cannot be metabolized by the liver P450 monoxygenases and thus cannot form 3,4-coumarin epoxides, which are believed to be mutagenic. Herein, we present a study on the structure activity relationship of eight synthetic 4-methylcoumarins, carried out by employing a series of different chemical cell-free tests. These compounds were tested by means of three assays involving one redox reaction with the oxidant (DPPH assay, ABTS.+ assay and FRAP). Other assays were employed to evaluate the antioxidant properties of the coumarins under investigation against NO, O2.- and HClO, which are some of the major reactive oxygen and nitrogen species causing damage in the human body. Finally, we have measured the protective capacity of these coumarins against the oxidative damage in a simple biomimetic model of phospholipid membranes. Our results confirm the good antioxidant activity of the 7,8-hydroxy-4-methylcoumarins. In general, their activity is not significantly affected by the introduction of an ethoxycarbonylmethyl or an ethoxycarbonylethyl moiety at the C3 position. A discrete antioxidant activity is retained also by the 7,8-diacetoxy-4-methylcoumarins, although they are less efficient than the corresponding 7,8-dihydroxy compounds. Furthermore, as demonstrated in the brine shrimp toxicity test, none of the tested coumarins significantly affect the larvae viability. Two of the 4-methylcoumarins (7,8-dihydroxy-4-methylcoumarin and 7,8-dihydroxy-3-ethoxycarbonylethyl-4-methylcoumarin), very interestingly, showed strong scavenging activities against the superoxide anion and were also very effective in protecting the lipid bilayer against peroxidation. On the basis of these findings, these 4-methylcoumarins may be considered as potential therapeutic candidates

  5. Gaussian Fibonacci Circulant Type Matrices

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    Full Text Available Circulant matrices have become important tools in solving integrable system, Hamiltonian structure, and integral equations. In this paper, we prove that Gaussian Fibonacci circulant type matrices are invertible matrices for n>2 and give the explicit determinants and the inverse matrices. Furthermore, the upper bounds for the spread on Gaussian Fibonacci circulant and left circulant matrices are presented, respectively.

  6. An inhibitory factor for cell-free protein synthesis from Salmonella enteritidis exhibits cytopathic activity against Chinese hamster ovary cells.

    Science.gov (United States)

    Iwamaru, Y; Miyake, M; Arii, J; Tanabe, Y; Noda, M

    2001-12-01

    A factor inhibiting cell-free protein synthesis was purified from Salmonella enteritidis cell lysate by sequential ammonium sulfate precipitation, chromatography on anion exchange and hydrophobic interaction columns, and polyacrylamide disc gel electrophoresis. The purified factor, which was named SIPS (Salmonella inhibitor of protein synthesis), inhibited in vitro protein synthesis in rabbit reticulocyte lysate and had a molecular mass of 38 kDa, estimated by PAGE under denaturing conditions. SIPS was also cytopathic for Chinese hamster ovary cells. The N-terminal amino acid sequence (20 residues) of SIPS was found to be identical to that of mature L-asparaginase II of Escherichia coli. Indeed, the purified SIPS exhibited asparaginase activity, E. coli L-asparaginase II had cytopathic activity and inhibited in vitro protein synthesis. The results suggest that at least a part of cytotoxicity and inhibition of cell-free protein synthesis caused by S. enteritidis is a property of the bacterial L-asparaginase. PMID:11747376

  7. Responding to chromosomal breakage during M-phase: insights from a cell-free system

    Directory of Open Access Journals (Sweden)

    Costanzo Vincenzo

    2009-07-01

    Full Text Available Abstract DNA double strand breaks (DSBs activate ATM and ATR dependent checkpoints that prevent the onset of mitosis. However, how cells react to DSBs occurring when they are already in mitosis is poorly understood. The Xenopus egg extract has been utilized to study cell cycle progression and DNA damage checkpoints. Recently this system has been successfully used to uncover an ATM and ATR dependent checkpoint affecting centrosome driven spindle assembly. These studies have led to the identification of XCEP63 as major target of this pathway. XCEP63 is a coiled-coil rich protein localized at centrosome essential for proper spindle assembly. ATM and ATR directly phosphorylate XCEP63 on serine 560 inducing its delocalization from centrosome, which in turn delays spindle assembly. This pathway might contribute to regulate DNA repair or mitotic cell survival in the presence of chromosome breakage.

  8. A Continuous-Exchange Cell-Free Protein Synthesis System Based on Extracts from Cultured Insect Cells

    OpenAIRE

    Marlitt Stech; Quast, Robert B.; Rita Sachse; Corina Schulze; Wüstenhagen, Doreen A.; Stefan Kubick

    2014-01-01

    In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case ...

  9. Intravaginal inoculation of rhesus macaques with cell-free simian immunodeficiency virus results in persistent or transient viremia.

    OpenAIRE

    Miller, C. J.; Marthas, M.; Torten, J; Alexander, N. J.; Moore, J P; Doncel, G. F.; Hendrickx, A G

    1994-01-01

    The simian immunodeficiency virus (SIV)-rhesus macaque model of heterosexual human immunodeficiency virus transmission consists of atraumatic application of cell-free SIVmac onto the intact vaginal mucosa of mature female rhesus macaques. This procedure results in systemic infection, and eventually infected animals develop the clinical signs and pathologic changes of simian AIDS. To achieve 100% transmission with the virus stocks used to date, multiple intravaginal inoculations are required. ...

  10. Heavy Water Reduces GFP Expression in Prokaryotic Cell-Free Assays at the Translation Level While Stimulating Its Transcription

    OpenAIRE

    Hohlefelder, Luisa S.; Tobias Stögbauer; Madeleine Opitz; Bayerl, Thomas M.; Joachim O. Rädler

    2013-01-01

    The in vitro proliferation of prokaryotic and eukaryotic cells is remarkably hampered in the presence of heavy water (D2O). Impairment of gene expression at the transcription or translation level can be the base for this effect. However, insights into the underlying mechanisms are lacking. Here, we employ a cell-free expression system for the quantitative analysis of the effect of increasing percentages of D2O on the kinetics of in-vitro GFP expression. Experiments are designed to discriminat...

  11. A systematic approach for testing expression of human full-length proteins in cell-free expression systems

    OpenAIRE

    LaBaer Joshua; Ebert Lars; Scheuermann Tina; Wermke Nadja; Guilleaume Birgit; Langlais Claudia; Korn Bernhard

    2007-01-01

    Abstract Background The growing field of proteomics and systems biology is resulting in an ever increasing demand for purified recombinant proteins for structural and functional studies. Here, we show a systematic approach to successfully express a full-length protein of interest by using cell-free and cell-based expression systems. Results In a pre-screen, we evaluated the expression of 960 human full-length open reading frames in Escherichia coli (in vivo and in vitro). After analysing the ...

  12. Identification of multiple physicochemical and structural properties associated with soluble expression of eukaryotic proteins in cell-free bacterial extracts

    OpenAIRE

    AlexanderA.Tokmakov

    2014-01-01

    Bacterial extracts are widely used to synthesize recombinant proteins. Vast data volumes have been accumulated in cell-free expression databases, covering a whole range of existing proteins. It makes possible comprehensive bioinformatics analysis and identification of multiple features associated with protein solubility and aggregation. In the present paper, an approach to identify the multiple physicochemical and structural properties of amino acid sequences associated with soluble expressio...

  13. Circulating cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia determined by multiplex suspension array

    Directory of Open Access Journals (Sweden)

    Bekő Gabriella

    2010-12-01

    Full Text Available Abstract Background Preeclampsia is a severe complication of pregnancy characterized by an excessive maternal systemic inflammatory response with activation of both the innate and adaptive arms of the immune system. Cytokines, chemokines and adhesion molecules are central to innate and adaptive immune processes. The purpose of this study was to determine circulating levels of cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia in a comprehensive manner, and to investigate their relationship to the clinical features and laboratory parameters of the study participants, including markers of overall inflammation (C-reactive protein, endothelial activation (von Willebrand factor antigen and endothelial injury (fibronectin, oxidative stress (malondialdehyde and trophoblast debris (cell-free fetal DNA. Results Serum levels of interleukin (IL-1beta, IL-1 receptor antagonist (IL-1ra, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p40, IL-12p70, IL-18, interferon (IFN-gamma, tumor necrosis factor (TNF-alpha, transforming growth factor (TGF-beta1, interferon-gamma-inducible protein (IP-10, monocyte chemotactic protein (MCP-1, intercellular adhesion molecule (ICAM-1 and vascular cell adhesion molecule (VCAM-1 were measured in 60 preeclamptic patients, 60 healthy pregnant women and 59 healthy non-pregnant women by multiplex suspension array and ELISA. In normal pregnancy, the relative abundance of circulating IL-18 over IL-12p70 and the relative deficiency of the bioactive IL-12p70 in relation to IL-12p40 might favour Th2-type immunity. Although decreased IL-1ra, TNF-alpha and MCP-1 concentrations of healthy pregnant relative to non-pregnant women reflect anti-inflammatory changes in circulating cytokine profile, their decreased serum IL-10 and increased IP-10 levels might drive pro-inflammatory responses. In addition to a shift towards Th1-type immunity (expressed by the increased IL-2/IL-4 and IFN-gamma/IL-4 ratios, circulating levels of

  14. Synthesis of [11C]interleukin 8 using a cell-free translation system and L-[11C]methionine

    International Nuclear Information System (INIS)

    Positron emission tomography (PET), which requires a compound labeled with a positron emitter radioisotope as an imaging probe, is one of the most useful and valuable imaging modalities in molecular imaging. It has several advantages over other imaging modalities, particularly in sensitive and quantitative investigations of molecular functions and processes in vivo. Recent advances in biopharmaceuticals development have increased interest in practical methods for proteins and peptides labeling with positron emitter radioisotope for PET molecular imaging. Here, we propose a novel approach for preparing positron emitter-labeled proteins and peptides based on biochemical synthesis using a reconstituted cell-free translation system. In this study, [11C]interleukin 8 (IL-8; MW 9.2 kDa) was successfully synthesized by the cell-free system in combination with L-[11C]methionine. The in vitro biochemical reaction proceeded smoothly and gave maximum radioactivity of [11C]IL-8 at 20 min with a radiochemical yield of 63%. Purification of [11C]IL-8 was achieved by conventional cation exchange and ultrafiltration methods, resulting in enough amount of radioactivity with excellent radiochemical purity (>95%) for small-animal imaging. This study clearly demonstrates that cell-free protein production system combined with positron emitter-labeled amino acid holds great promise as a novel approach to prepare radiolabeled proteins and peptides for PET imaging.

  15. An Extraordinary Accumulation of (-)-Pinoresinol in Cell-Free Extracts of Forsythia intermedia: Evidence for Enantiospecific Reduction of (+)-Pinoresinol

    Science.gov (United States)

    Katayama, Takeshi; Davin, Laurence B.; Lewis, Norman G.

    1992-01-01

    Stereoselective and enantiospecific transformation mechanisms in lignan biogenesis are only now yielding to scientific inquiry: it has been shown that soluble cell-free preparations from Forsythia intermedia catalysis the formation of the enantiomerically pure lignan, (-)-secoisolariciresinol, when incubated with coniferyl alcohol in the presence of NAD(P)H and H2O2. Surprisingly, (-)-pinoresinol also accumulates in this soluble cell-free assay mixture in greater than 96% enantiomeric excess, even though it is not the naturally occurring antipode present in Forsythia sp. But these soluble cell-free preparations do not engender stereoselective coupling; instead, racemic pinoresinols are first formed, catalysed by an H2O2-dependent peroxidase reaction. An enantiospecific NAD(P)H reductase then converts (+)- pinoresinol, and not the (-)-antipode, into (-)-secoisolariciresinol. Stereoselective syntheis of(+)-pinoresinol from E-coniferyl alcohol is, however, catalysed by an insoluble enzyme preparation in F. suspensa, obtained following removal of readily soluble and ionically bound enzymes; no exogenously supplied cofactors were required other than oxygen, although the reaction was stimulated by NAD-malate addition. Thus, the overall biochemical pathway to enantiomerically pure (-)-secoisolariciresinol has been delineated.

  16. Wheat germ cell-free expression system as a pathway to improve protein yield and solubility for the SSGCID pipeline

    International Nuclear Information System (INIS)

    A set of 44 protein targets was used to test expression in the wheat germ cell-free system, the vast majority of which were expressed and soluble in this system; further increases in solubility were achieved by addition of the NVoy polymer. Recombinant expression of proteins of interest in Escherichia coli is an important tool in the determination of protein structure. However, lack of expression and insolubility remain significant challenges to the expression and crystallization of these proteins. The SSGCID program uses a wheat germ cell-free expression system as a rescue pathway for proteins that are either not expressed or insoluble when produced in E. coli. Testing indicates that the system is a valuable tool for these protein targets. Further increases in solubility were obtained by the addition of the NVoy polymer reagent to the reaction mixture. These data indicate that this eukaryotic cell-free expression system has a high success rate and that the addition of specific reagents can increase the yield of soluble protein

  17. Cell-free extracellular enzymatic activity is linked to seasonal temperature changes: a case study in the Baltic Sea

    Science.gov (United States)

    Baltar, Federico; Legrand, Catherine; Pinhassi, Jarone

    2016-05-01

    Extracellular enzymatic activities (EEAs) are a crucial step in the degradation of organic matter. Dissolved (cell-free) extracellular enzymes in seawater can make up a significant contribution of the bulk EEA. However, the factors controlling the proportion of dissolved EEA in the marine environment remain unknown. Here we studied the seasonal changes in the proportion of dissolved relative to total EEA (of alkaline phosphatase (APase), β-glucosidase (BGase), and leucine aminopeptidase (LAPase)), in the Baltic Sea for 18 months. The proportion of dissolved EEA ranged between 37 and 100, 0 and 100, and 34 and 100 % for APase, BGase, and LAPase, respectively. A consistent seasonal pattern in the proportion of dissolved EEA was found among all the studied enzymes, with values up to 100 % during winter and hydrolysis rates from microbial dynamics in cold waters. This implies that under cold conditions, cell-free enzymes can contribute to substrate availability at large distances from the producing cell, increasing the dissociation between the hydrolysis of organic compounds and the actual microbes producing the enzymes. This might also suggest a potential effect of global warming on the hydrolysis of organic matter via a reduction of the contribution of cell-free enzymes to the bulk hydrolytic activity.

  18. PULMONARY CIRCULATION AT EXERCISE

    OpenAIRE

    R. Naeije; CHESLER, N

    2012-01-01

    The pulmonary circulation is a high flow and low pressure circuit, with an average resistance of 1 mmHg.min.L−1 in young adults, increasing to 2.5 mmHg.min.L−1 over 4–6 decades of life. Pulmonary vascular mechanics at exercise are best described by distensible models. Exercise does not appear to affect the time constant of the pulmonary circulation or the longitudinal distribution of resistances. Very high flows are associated with high capillary pressures, up to a 20–25 mmHg threshold associ...

  19. Generation of hydrogen peroxide from San Joaquin Valley particles in a cell-free solution

    Science.gov (United States)

    Shen, H.; Barakat, A. I.; Anastasio, C.

    2011-01-01

    Epidemiological studies have shown a correlation between exposure to ambient particulate matter (PM) and adverse health effects. One proposed mechanism of PM-mediated health effects is the generation of reactive oxygen species (ROS) - e.g., superoxide (•O2-), hydrogen peroxide (HOOH), and hydroxyl radical (•OH) - followed by oxidative stress. There are very few quantitative, specific measures of individual ROS generated from PM, but this information would help to more quantitatively address the link between ROS and the health effects of PM. To address this gap, we quantified the generation of HOOH by PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California during summer and winter from 2006 to 2009. HOOH was quantified by HPLC after extracting the PM in a cell-free, phosphate-buffered saline (PBS) solution with or without 50 μM ascorbate (Asc). Our results show that the urban PM generally generates much more HOOH than the rural PM but that there is no apparent seasonal difference in HOOH generation. In nearly all of the samples the addition of a physiologically relevant concentration of Asc greatly enhances HOOH formation, but a few of the coarse PM samples were able to generate a considerable amount of HOOH in the absence of added Asc, indicating the presence of unknown reductants. Normalized by air volume, the fine PM (PM2.5) generally makes more HOOH than the corresponding coarse PM (PMcf, i.e., 2.5 to 10 μm), primarily because the mass concentration of PM2.5 is much higher than that of PMcf. However, normalized by PM mass, the coarse PM typically generates more HOOH than the fine PM. The amount of HOOH produced by SJV PM is reduced on average by (78 ± 15)% when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating that transition metals play a dominant role in HOOH generation. By measuring calibration curves of HOOH generation from copper, and quantifying copper

  20. Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free solution

    Science.gov (United States)

    Shen, H.; Anastasio, C.

    2011-06-01

    Previous studies have suggested that the adverse health effects from ambient particulate matter (PM) are linked to the formation of reactive oxygen species (ROS) by PM. While hydroxyl radical (•OH) is the most reactive of the ROS species, there are few quantitative studies of •OH generation from PM. Here we report on •OH formation from PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California. We quantified •OH in PM extracts using a cell-free, phosphate-buffered saline (PBS) solution with or without 50 μM ascorbate (Asc). The results show that generally the urban Fresno PM generates much more •OH than the rural Westside PM. The presence of Asc at a physiologically relevant concentration in the extraction solution greatly enhances •OH formation from all the samples. Fine PM (PM2.5) generally makes more •OH than the corresponding coarse PM (PMcf, i.e., 2.5 to 10 μm) normalized by air volume collected, while the coarse PM typically generates more •OH normalized by PM mass. •OH production by SJV PM is reduced on average by (97 ± 6) % when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating a dominant role of transition metals. By measuring calibration curves of •OH generation from copper and iron, and quantifying copper and iron concentrations in our particle extracts, we find that PBS-soluble copper is primarily responsible for •OH production by the SJV PM, while iron often makes a significant contribution. Extrapolating our results to expected burdens of PM-derived •OH in human lung lining fluid suggests that typical daily PM exposures in the San Joaquin Valley are unlikely to result in a high amount of pulmonary •OH, although high PM events could produce much higher levels of •OH, which might lead to cytotoxicity.